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Abstract
Tasks are called self-suspending if they can yield their ready state (specifically, releasing the processor
while having highest priority) despite being incomplete, for instance, to offload computation to an
external device or when waiting on access rights for shared resources or data. This self-suspending
behavior requires special treatment when applying analytical results to compute worst-case response
time bounds. One typical treatment is modeling self-suspension as release jitter in a so-called
jitter-based analysis. The state of the art, when considering task-level fixed-priority scheduling,
individually quantifies the jitter term of each higher-priority task by its worst-case response time
minus its worst-case execution time.

This work tightens the jitter term by taking the execution behavior of the other higher-priority
tasks into account. Our improved jitter-based analysis analytically dominates the previous jitter-
based analysis. Moreover, an evaluation for synthetically generated sporadic tasks demonstrates
that this jitter term results in tighter worst-case response time bounds for self-suspending tasks.
We observe an improvement for up to 55.89% of the tasksets compared to the previous jitter-based
analysis.
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1 Introduction

In real-time systems, recurrent tasks have to satisfy timing constraints. Specifically, for hard
real-time systems, every task instance (called a job) has to finish before its absolute deadline,
where the absolute deadline of a job is usually the release time of the job plus the task’s
relative deadline. Schedulability tests have been developed to provide guarantees that there
is no deadline miss. Worst-case response time (WCRT) analyses provide these guarantees by
showing that for any job of the task the maximum response time (i.e., the maximum time
between a job release and its finishing time) is not larger than the task’s relative deadline.

For ordinary sporadic and periodic real-time task systems, in which no job yields its ready
state until it completes, the WCRT of a task under preemptive fixed-priority scheduling
on uniprocessor systems can be computed using time-demand analysis (TDA) [31, 37].
However, in many real-world applications (e.g., when computation is offloaded to hardware
accelerators [21,41] or when access to the shared resource is denied in multiprocessor locking
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4:2 Tighter WCRT for Jitter-Based Self-Suspension Analysis

protocols [8]), a job may yield its ready state between its arrival and completion. In the
literature, such behavior (a job yields its ready state before its completion) is referred to
as self-suspension as a job may suspend itself from the ready state and resume at a later
point in time. In such cases, TDA does not yield a safe upper bound on the WCRT without
further treatment of the suspension time.

Since the observation by Rajkumar et al. [46] in 1988 that self-suspending tasks need
a special treatment in the analysis, many results have been provided in the literature.
However, since self-suspension can induce several non-trivial phenomena, counterexamples for
multiple analyses from before 2014 were found. Details can be found in the review paper by
Chen et al. [17], which concludes that due to the self-suspension behavior, “[...] key insights
underpinning the analysis of non-self-suspending tasks no longer hold” [17].

This paper considers dynamic self-suspending sporadic real-time tasks, one of the two
predominately studied models, under preemptive fixed-priority scheduling on a single processor
platform. For the dynamic self-suspension model, jobs may suspend arbitrarily often as long
as the jobs total suspension time does not exceed the maximum suspension time of the task.
The tasks are assumed to have constrained deadlines, that is, their relative deadline is no
more than their minimum inter-arrival time. According to the classifications of the review
by Chen et al. [17], existing sound results for this scenario quantify the interference from
the higher-priority tasks by adopting suspension-oblivious analysis, carry-in jobs [29, 39],
jitter-based analysis [6, 29,43,45], and blocking-based analysis [40, Page 162] [14].

We focus on jitter-based analysis, which has been widely adopted for application scenarios
with self-suspensions (e.g., multiprocessor synchronization protocols [7,10,30,36], computation
offloading [12], and scheduling of parallel tasks [11,49]) and is still a common approach to
date (e.g., [4]). As long as the release jitter is set correctly, self-suspending tasks can be
analyzed as tasks with release jitter, utilizing the related analysis by Tindell et al. [48].

The only known safe release jitter for a higher-priority self-suspending task is setting
it to its WCRT minus its worst-case execution time1 (i.e., Ri − Ci for τi in our notation
defined in Section 2). Rationale behind this approach is that the execution of the first job
(the so-called carry-in job) must still finish within the WCRT. Hence, it can only be pushed
for at most Ri − Ci time units, assuming that the carry-in job has an execution time of Ci.
This seemingly trivial analysis was considered too pessimistic before 2015, when attempts
to set the suspension time of a higher-priority task as its release jitter [2, 3, 42] were shown
unsafe [6, 17,43]. Since 2015, the jitter term Ri − Ci has gradually become typical as there
has been no analytical improvement, which raises the question:

Is there really no space for improvement?

In this work, we answer this question by providing an improved jitter-based response-time
analysis. Our approach is based on the observation that the typical jitter-based analysis
is pessimistic, in the sense that for a jitter of Ri − Ci the full workload of the carry-in job
must be executed within Ci time units to respect the WCRT bound. Hence, the carry-in
job must be executed simultaneously with other higher-priority tasks (details can be found
in Section 3). For our approach, we formulate a lower bound R−

i ≥ Ci on the time that
is takes to execute the workload of the carry-in job, respecting the interference of other
higher-priority tasks on the carry-in job. We show that the jitter-term Ri − R−

i is safe, thus
dominating the previous jitter-based analysis.

1 Rajkumar [45] and Huang et al. [29] apply a more pessimistic release jitter setting of relative deadline
minus worst-case execution time, assuming that a tasks WCRT is no more than its relative deadline.
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To achieve the new jitter-term, we modify the typical proof structure of jitter-based
analysis. While typical proofs of jitter-based analysis extend the analysis window to the left-
hand side, we move the analysis window to the right-hand side. A more detailed discussion
on why this treatment is necessary can be found in Section 4.2. To the best of our knowledge,
this approach is a novelty for jitter-based analysis and may lead to a series of improved
analytical results in jitter-based scenarios.

Our Contributions. In this work, we tighten the WCRT bounds of sporadic self-suspending
tasks under uniprocessor fixed-priority scheduling by proposing an improved jitter-based
analysis.

We present our improved jitter-based analysis in Section 4. The proof approach is different
from current approaches, since we shift the analysis window to the right instead of to the
left. We first provide the high-level proof concepts together with a running example in
Section 4.1, followed by a detailed and rigorous proof in Section 4.2.
The dominance over the previous jitter-based analysis is shown in Section 5.
In Section 6, we demonstrate the improvement of our jitter-based analysis in an evaluation
considering synthesized tasksets. Specifically, we show that a tighter worst-case response
time can be found in up to 55.89% of the tasksets for the previous jitter-based analysis.

An example for the pessimism of the typical jitter-based analysis is given in Section 3.
The system model is specified in Section 2 while related work is discussed in Section 7. In
Section 8, we discuss potential improvements for the unifying response-time analysis [16] (a
hybrid solution using jitter-based and blocking-based analysis).

2 System Model

Let T = {τ1, . . . , τn} be a taskset of n sporadically released dynamic self-suspending tasks
with constrained deadlines. Each task τi ∈ T releases an infinite number of task instances,
called jobs. A task is described by a tuple τi = (Ci, Si, Ti, Di), where Ci > 0 is the worst-case
execution time, Si ≥ 0 is the maximum suspension time, Ti > 0 is the minimum inter-arrival
time, and Di ≤ Ti is the (constrained) relative deadline.

Two subsequent job releases of a task τi are separated by at least Ti time units. Each job
γ released by τi has to be executed for a certain amount of time cγ ∈ (0, Ci]. We denote by
fγ the finishing time of γ. During execution, a job may suspend itself; that is, it releases the
processor voluntarily and another job can be executed during that time frame. We consider
the dynamic self-suspension model, where γ may suspend itself several (but finitely many)
times as long as the maximum suspension time Si is not exceeded. This separates the job
γ into a finite number of execution and suspension segments. However, in contrast to the
segmented or hybrid self-suspension model, no upper bound on the number of segments is
known beforehand.

To comply with the timing constraints of the system, it has to be ensured that the job
finishes before (i.e., not later than) its absolute deadline rγ + Di. The response time fγ − rγ

of a job is defined as the time between its release rγ and its finishing time fγ . The maximum
response time among all jobs of task τi is the WCRT Ri. We can test whether a task τi is
schedulable by verifying that its worst-case response time is not greater than its relative
deadline Di.

In this paper, we consider preemptive fixed-priority scheduling on a single processor
platform. Each task is assigned a unique priority level and the scheduler always dispatches
the job of the highest-priority task among all released jobs that are not self-suspended. We
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say the system is busy during an interval if at all times during the interval workload is
being executed. Due to the self-suspending behavior, there might be no workload executed
although there are released but unfinished jobs.

We assume that the task priorities are predefined and that the tasks are numbered in
decreasing priority order, that is, τ1 has the highest priority and τn has the lowest priority.
We denote by hp(i) = {τ1, . . . , τi−1} the set of tasks with higher priority than τi. When
performing the schedulability analysis of a specific task τk we assume that all higher-priority
tasks hp(k) are verified to be schedulable, i.e., Ri ≤ Di for all i = 1, . . . , k − 1.

3 Pessimism of Typical Jitter-Based Analysis

Jitter-based analysis over-approximates self-suspending behavior by introducing a release
jitter Ji for each task τi. The idea is that interference from higher-priority tasks on a job of
τk can be maximized if the computation of the first job of each higher-priority task τi ∈ hp(k)
is pushed back, such that it finishes at its worst-case response time, while all subsequent jobs
of τi arrive as early as possible (i.e., with minimum inter-arrival time), do not self-suspend,
and execute their worst-case execution time. This scenario is depicted in the top schedule in
Figure 1. We call jobs (of higher-priority tasks) that are released before but impact the job
under analysis carry-in jobs (e.g., the first jobs of τ1 and τ2 in Figure 1).

It is shown by Nelissen et al. [43] and by Chen et al. [16] that Ji = Ri − Ci is a safe jitter.
Therefore, for constrained deadline tasks, the WCRT of a task τk is upper bounded by the
least non-negative value Rk ≤ Dk that fulfills

Rk = Ck + Sk +
∑

τi∈hp(k)

⌈
Rk + Ji

Ti

⌉
Ci (1)

with Ji = (Ri − Ci). The value of Rk can be computed using fixed-point iteration.
However, assuming the jitter Ji = Ri −Ci for each higher-priority task is pessimistic since,

in this scenario, parts of the carry-in may have to be executed in parallel to higher priority
workload to finish within the worst-case response time. The following example demonstrates
that behavior.

▶ Example 1. We consider the scenario depicted in Figure 1. The schedule consists of three
tasks τ1, τ2, and τ3. Task τ3 is under analysis with an analysis window of length t = 16. The
higher-priority tasks are described by the tuples τ1 = (C1 = 1, S1 = 3, T1 = 5, D1 = 5) and
τ2 = (C2 = 9, S2 = 4, T2 = 21, D2 = 21). We assume that the worst-case response times
of the higher priority tasks are upper bounded by R1 = 4 and R2 = 17. The jitter terms
are typically computed as J1 = R1 − C1 = 3 and J2 = R2 − C2 = 8. This means that, to
finish within their worst-case response time, parts of the carry-in workload may have to be
executed in parallel to other workload. In the top schedule in Figure 1, there is parallel
execution during [8, 9], [10, 11], and [15, 16]. When executing this workload sequentially while
ensuring that the carry-in jobs finish within their worst-case response time, as in the bottom
schedule of Figure 1, J2 must be reduced to 5. As a result, the second job of τ2 is moved out
of the analysis window and the interference from τ2 is reduced.

We take the previous example to motivate further examination of the jitter term. In
particular, we pursue a jitter Ji that ensures that all higher-priority tasks can meet their
deadline by respecting higher-priority interference.
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Figure 1 Pessimism of typical jitter-based analysis. We observe that, with the typical jitter,
tasks τ1 and τ2 have to be executed simultaneously during [8, 17] such that both tasks finish within
their worst-case response time (R1 = 4, R2 = 17). When considering interference from τ1 on the
first job of τ2, the jitter J2 has to be reduced such that the first job of τ2 still finishes within its
worst-case response time. In this case, the second job of τ2 is out of the analysis window.

4 Improved Jitter-Based Analysis

In this section, we show how to include higher-priority interference into the jitter term to
achieve a tighter jitter based analysis. Specifically, we propose a reduced jitter term based
on the previous observation. Furthermore, we prove that our proposed jitter term is safe,
providing the high-level proof concepts together with a running example in Section 4.1,
followed by a detailed and rigorous proof in Section 4.2.

To this end, we first revisit the analytical scenario for typical jitter-based analysis discussed
in Section 3. Recall that we assume that the task priorities are predefined and that the tasks
are numbered in decreasing priority order. Furthermore, when performing the schedulability
analysis for τk we assume that all higher-priority tasks hp(k) are verified to be schedulable,
i.e., Ri ≤ Di for all i = 1, . . . , k − 1.

▶ Definition 2 (Jitter-based analysis scenario.). The higher-priority jobs released at or after
the start of the analysis window fulfill the following analytical properties:
P1 The jobs arrive as early as possible (i.e., with minimum inter-arrival time).
P2 The jobs do not self-suspend.
P3 The jobs execute for their worst-case execution time.

For the analysis window in the jitter-based analysis scenario, during any interval of length
t at least

⌊
t

Tj

⌋
jobs of any task τj are released with a workload of Cj each. Hence, assuming

that the carry-in of a task τi is the full execution of a job, i.e., Ci time units, it takes at least
R−

i to finish the carry-in, where R−
i is the least non-negative value2 that fulfills

R−
i = Ci +

∑
τj∈hp(i)

⌊
R−

i

Tj

⌋
· Cj . (2)

2 The value R−
i can be computed using fixed-point iteration.
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To finish within its worst-case response time, the carry-in workload cannot be released after
more than Ri − R−

i time units. This results in a release jitter of

Ji = Ri − R−
i (3)

for the jitter-based analysis scenario. In Example 1, depicted in Figure 1, it takes at least
R−

2 = 9 +
⌊ 11

5
⌋

= 11 time units to finish the carry-in of length C2 = 9. Hence, for that
example we would obtain a jitter term of J2 = R2 − R−

2 = 17 − 11 = 6 time units, instead of
the typical jitter of R2 − C2 = 17 − 9 = 8.

Our main result is Theorem 3, which shows that the jitter term Ji = Ri − R−
i is safe to

obtain a valid response time analysis.

▶ Theorem 3. Let the jitter term be Ji = Ri − R−
i . The lowest 0 ≤ Rk ≤ Tk that fulfills

Rk = Ck + Sk +
∑

τi∈hp(k)

⌈
Rk + Ji

Ti

⌉
Ci (4)

is an upper bound on the response time of task τk. If Rk ≤ Dk, then τk meets its deadline.

In the following, we provide a detailed proof of Theorem 3. This proof is done by induction.
Specifically, we show that for any fixed-priority preemptive schedule Ψ of the taskset T the
response time upper bound Rk holds for the first ξ jobs of τk for ξ = 0, 1, 2, . . . .

While the induction start (ξ = 0) is trivial, the induction step (ξ − 1 7→ ξ) is a three-step
process. During the process, the schedule is transformed such that properties P1–P3 from
the jitter-based analysis scenario in Definition 2 are fulfilled. For the transformation, careful
treatment is required since self-suspending tasks are prone to timing anomalies [17], i.e.,
increasing the execution of jobs or reducing the inter-arrival time might reduce the response
time of other jobs. For our transformation, we thoroughly remove suspension in the schedule
when necessary to avoid timing anomalies.

We first describe the high-level ideas of each step in Section 4.1 before providing a detailed
proof in Section 4.2. To ease understanding, we provide a running example that illustrates
each step of the proof in Figure 2 to Figure 5.

Running example. As depicted in Figure 2, we consider a set of 4 tasks τ1, . . . , τ4 with the
following description:

Task τi τ1 τ2 τ3 τ4

Ci 1 2 6.5 7
Si 1.5 2 1.5 2
Ti 4.5 7 17 28

The tasks are ordered according to their priorities, i.e., τ1 has the highest and τ4 has the
lowest priority. We assume that we analyze the task with the lowest priority in the system3;
in this case τ4. A job of task τ4 released at time 6 is under analysis (k = 4, rk = 6) and the
analysis window has length t = 15. hp(4) consists of the higher-priority tasks τ1, τ2, and τ3.

4.1 High-Level Proof
Let Ψ be a fixed-priority preemptive schedule of the taskset T.

3 Tasks with a priority lower than the task under analysis can be ignored in the analysis, as they do not
affect the schedule of the task under analysis under static-priority scheduling.
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Induction start (ξ = 0). For ξ = 0 we need to show that Rk is a response-time upper
bound for all jobs in the empty set {}. This is trivially satisfied.

Induction step (ξ − 1 7→ ξ). We assume that Rk is a response-time upper bound for
the first ξ − 1 jobs of τk. Let γk be the ξ-th job of task τk. Moreover, let rk be the
release time of γk and let fk be the time that γk finishes. We consider any t ≥ 0 such that
rk + t < fk, and we prove that in this case t < Ck + Sk +

∑
τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci holds. Hence,

if t ≥ Ck + Sk +
∑

τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci then t ≥ fk − rk and t is a response-time upper bound.

Since t = Ck + Sk +
∑

τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci for t = Rk, we know that Rk is such a response-time

upper bound and Theorem 3 follows directly.

Proof steps. We prove that t < Ck+Sk+
∑

τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci for any t with fk − rk > t ≥ 0.

The analyzing process for the analysis window [rk, rk +t] has three steps. In the first two steps,
we simplify the schedule and revise it to obtain the three properties stated in Definition 2, in
both cases ensuring that (i) the worst-case response time of the task under analysis is not
decreased while (ii) the worst-case response-time bounds of higher-priority tasks still holds.
In the third step, we shift the analysis window to derive a worst-case response-time bound
for the task under analysis.
1. Simplifying the scheduling behavior of τk. In the first step, we remove all jobs of τk

before and after γk, and we make γk suspension oblivious. Since all jobs of τk before γk

finish within Rk ≤ Tk, they all finish before rk and hence removing them has no impact
on schedule within the analysis window [rk, rk + t]. Jobs of τk after γk have no impact
on the analysis window since they are released after rk + t ≤ rk + Tk. For the job γk we
replace suspension by additional execution, i.e., we replace γk by a job with maximal
suspension 0 and execution time Ck + Sk. This step is depicted in Figure 3. We show in
the detailed proof in Section 4.2, that after this treatment still rk + t < fk holds and all
jobs of higher-priority tasks still finish within their worst-case response-time bound.

2. Transforming the schedule into the jitter-based analysis scenario. In the second
step, we transform the schedule such that properties P1, P2, and P3 from Definition 2
are fulfilled. That is, for all jobs of higher-priority tasks released at or after the start of
the analysis window, we 1) remove any self-suspension, 2) enlarge the execution time
to their worst-case execution time, and 3) move their releases to the earliest possible
time. To ensure that the interference of carry-in workload during the analysis interval is
not decreased, we additionally remove the suspension from the carry-in after rk. This
step is depicted in Figure 4. We show in the detailed proof in Section 4.2, that after this
treatment still rk + t < fk holds and all jobs of higher-priority tasks still finish within
their worst-case response-time upper bound.

3. Shifting the analysis window and deriving the bound. Shifting the analysis
window is a typical approach to ensure analytically advantageous properties. In the
typical jitter-based analysis, the analysis window is shifted to the beginning of the
busy-interval, such that all higher-priority jobs that are executed during the analysis
window also start during the analysis window. However, in our case we cannot move the
analysis window to the left because otherwise, properties P1-P3 from Definition 2 might
be violated. Instead, we move the analysis window to the right to the latest time point b

such that γk is not executed during the interval (rk + t, b). This ensures that all jobs of
higher priority tasks that are released during the new analysis window [b − t, b] also finish
before the end of the analysis window. This step is depicted in Figure 5. We show in
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4:8 Tighter WCRT for Jitter-Based Self-Suspension Analysis

the detailed proof in Section 4.2, that indeed all jobs released during [b − t, b] also finish
before b, and we derive the bound t < Ck + Sk +

∑
τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci by analyzing the

interference during [b − t, b].

4.2 Detailed Proof of Induction Step
We now provide a detailed proof of the induction step by individually proving all three
substeps. To formalize our statements, we denote by

execi(a, b) (5)

the amount of execution time of jobs of task τi ∈ T during the interval [a, b] ⊂ R, and by

suspi(a, b) (6)

the amount of suspension time of jobs of τi during [a, b].
The value t ≥ 0 is chosen such that rk + t < fk. Therefore, the time that γk is executed

during [rk, rk + t] must be less than Ck. Moreover, by the induction hypothesis, all jobs of
τk prior to γk finish within the worst-case response-time bound Rk. Since Rk ≤ Tk, all jobs
of τk prior to γk finish before rk. We conclude that execk(rk, rk + t) < Ck holds. Moreover,
during the whole analysis interval [rk, rk + t] at all times either higher-priority tasks are
executed, or γk executes or suspends. Hence, we obtain

t ≤ execk(rk, rk + t) + suspk(rk, rk + t) +
∑

τi∈hp(k)

execi(rk, rk + t) (7)

< Ck + Sk +
∑

τi∈hp(k)

execi(rk, rk + t).

During the three analysis steps we transform the schedule such that properties P1–P3 from
Definition 2 are fulfilled which allows bounding execi(rk, rk + t) by

⌈
t+Ji

Ti

⌉
Ci. For the

transformations, we need to ensure that the property rk + t < fk is preserved, i.e., that
Equation (7) still holds.

Step 1: Simplify the scheduling behavior of τk. In the first step, we apply the following
modifications to the schedule:

(i) We remove all jobs of τk before γk.
(ii) We remove all jobs of τk after γk.
(iii) We replace γk by a job which executes for Ck + Sk time units and does not suspend.

We show that Step 1 preserves the property rk + t < fk (in Lemma 4) and that the
worst-case response-time bound of higher-priority tasks still holds (in Lemma 5).

▶ Lemma 4. After Step 1, rk + t < fk still holds.

For each of the three modifications in Step 1, we show that rk + t < fk still holds after
the modification if it holds before the modification.

Proof. By the induction hypothesis, there is no carry-in from previous jobs of τk after rk.
Therefore, removing jobs of τk before γk has no impact on the schedule of γk; thus, rk +t < fk

still holds after (i).
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τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
rk rk + t

Figure 2 Initial schedule. Tasks may release later than their minimal inter-arrival time, and
self-suspension and early completion are allowed.

τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
rk rk + t

Figure 3 Schedule after Step 1. Job γk is made suspension oblivious with execution time Ck + Sk,
and all other jobs of τk are removed.

τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
rk rk + t

Figure 4 Schedule after Step 2. Higher priority jobs after rk are released as early as possible,
and execute their worst-case execution time without self-suspension. The self-suspension from the
carry-in workload is removed. Please note that γk continues being executed outside of the displayed
time interval, i.e., after 36.

τ1

τ2

τ3

τ4

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
rk rk + tb − t b

Figure 5 Schedule after Step 3. After rk + t = 21 there is no execution of γk before time b = 30.5.
The shifted analysis window (marked in blue) is [15.5, 30.5]. All jobs released during the analysis
window finish during the analysis window.
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Similarly, jobs of τk after γk are released no earlier than at time rk + t, and hence have no
impact on the schedule during the analysis window. Thus, rk + t < fk still holds after (ii).

Modifying the execution and suspension of γk has no impact on the higher-priority tasks.
Therefore, Step 1 has no impact on the higher-priority interference

∑
τi∈hp(k) execi(rk, rk + t),

since we assume a preemptive fixed-priority scheduling algorithm. Considering γk, replacing
an execution time of Ck and suspension time of Sk with execution time of Ck +Sk and without
suspension may increase the value calculated in Equation (7). Specifically, we have to account
for intervals where the suspension of τk overlaps the computation of a higher-priority task.
This can be observed when comparing Figure 3 with Figure 2, where after the replacement
the interval [11; 11.5], in which γk was previously suspended while a job of τ2 was executed,
is added as execution of γk during the interval [26; 26.5]. However, this may never decrease
the workload in a specific interval. Since t < Ck + Sk +

∑
τi∈hp(k) execi(rk, rk + t) holds, the

execution workload Ck + Sk of γk cannot be finished within the analysis window of length t,
i.e., rk + t < fk still holds after (iii). ◀

▶ Lemma 5. After Step 1, all jobs of higher priority tasks τi ∈ hp(k) still finish within their
worst-case response-time upper bound Ri.

Proof. The modification of task τk has no impact on the execution of higher priority tasks.
Hence, after Step 1 all jobs of higher priority tasks τi ∈ hp(k) finish at the same time as
before Step 1, and their response time is upper bounded by Ri. ◀

In Step 1, we modified the job γk under analysis. In Step 2, our goal is to transform the
schedule into the scenario considered in the jitter-based analysis by modifying the execution
and releases of higher-priority tasks.

Step 2: Transform the schedule into the jitter-based analysis scenario. In the second
step, the following modifications are applied to the schedule:

(i) Remove self-suspension of the carry-in workload.
(ii) Remove self-suspension of jobs of higher priority tasks released at or after rk.
(iii) Execute jobs of higher priority tasks τi ∈ hp(k) released at or after rk for Ci time units.
(iv) Move the job release of higher-priority tasks to the earliest possible time. That is, a

job release rγ > rk is moved to rk if there is no previous job release of the same task,
or to max(rk, rγ′ + Ti) if there is a previous job release rγ′ of the same task.

Similar to Step 1, we show that Step 2 preserves the property rk + t < fk (in Lemma 6)
and that the worst-case response-time bound of higher-priority tasks still holds (in Lemma 7).

▶ Lemma 6. After Step 2, rk + t < fk still holds4.

Proof. For the sake of readability, we make the following definitions, differentiating the
behavior before and after Step 2:

We denote by f1
k the finishing time of γk before Step 2, and we denote by f2

k the finishing
time of γk after Step 2.
We denote by exec1

i (a, b) (exec2
i (a, b), respectively) the amount of time that jobs of τi are

executed during the interval [a, b] before (after, respectively) Step 2.
We denote by rel1i (a, b) (rel2i (a, b), respectively) the number of job releases of τi during
the interval [a, b] before (after, respectively) Step 2.

4 In this lemma, fk refers to the finishing time of job γk in the modified schedule (after Step 2).
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We denote by c∗
i the carry-in workload of task τi, i.e., the remaining workload at rk of

jobs of τi released before rk. The carry-in workload is the same before and after Step 2,
since the schedule before rk is not modified and the carry-in jobs execution is not modified
as well. Only the suspension of carry-in jobs is removed by (i).

In the following, we prove that rk + t < f2
k . To this end, we assume that rk + t ≥ f2

k for
contradiction.

After Step 2, the carry-in is executed without suspension. Therefore, the carry-in must
finish before γk can start its execution. Moreover, all jobs of higher priority tasks τi ∈ hp(k)
released during [rk, f2

k ) execute without suspension due to (ii). Therefore, they must finish
before f2

k . Because of (iii), they execute their full WCET Ci. We conclude that

exec2
i (rk, f2

k ) = c∗
i + rel2i (rk, f2

k ) · Ci. (8)

When we consider the schedule before Step 2, we know that f1
k > rk + t, and that

therefore t < Ck + Sk +
∑

τi∈hp(k) exec1
i (rk, rk + t). Moreover, during [f2

k , rk + t], the amount
of execution of higher priority tasks is upper bounded by rk + t − f2

k , i.e.,∑
τi∈hp(k)

exec1
i (rk, rk + t) ≤

∑
τi∈hp(k)

exec1
i (rk, f2

k ) + (rk + t − f2
k ). (9)

We conclude that

f2
k − rk = t − (rk + t − f2

k ) (10)

< Ck + Sk +
∑

τi∈hp(k)

exec1
i (rk, rk + t) − (rk + t − f2

k ) (11)

(9)
≤ Ck + Sk +

∑
τi∈hp(k)

exec1
i (rk, f2

k ). (12)

Before Step 2, during [rk, f2
k ), task τi can only execute its carry-in c∗

i or jobs that are
released during [rk, f2

k ) for up to Ci time units. As a result, exec1
i (rk, f2

k ) ≤ c∗
i +rel1i (rk, f2

k )·Ci

holds. Moreover, in Step 2, the job releases of τi are modified according to (iv). Since job
releases after rk are either not moved or moved to an earlier time, the number of jobs releases
during the interval [rk, f2

k ) cannot be decreased, i.e., rel1i (rk, f2
k ) ≤ rel2i (rk, f2

k ). We obtain

exec1
i (rk, f2

k ) ≤ c∗
i + rel1i (rk, f2

k ) · Ci ≤ c∗
i + rel2i (rk, f2

k ) · Ci = exec2
i (rk, f2

k ) (13)

using Equation (8).
By applying Equation (13) to Equation (12), we obtain

f2
k − rk < Ck + Sk +

∑
τi∈hp(k)

exec1
i (rk, f2

k ) ≤ Ck + Sk +
∑

τi∈hp(k)

exec2
i (rk, f2

k ). (14)

However, since γk finishes before f2
k after Step 2, Ck + Sk +

∑
τi∈hp(k) exec2

i (rk, f2
k ) ≤ f2

k − rk

holds which contradicts Equation (14). ◀

▶ Lemma 7. After Step 2, all jobs of higher priority tasks τi ∈ hp(k) still finish within their
worst-case response time upper bound Ri.

Proof. After modifications (i)–(iv), still the schedule of tasks hp(k) complies with the task
specification. That is, all jobs of tasks τi ∈ hp(k) execute for up to Ci time units, self-suspend
for up to Si time units and release no earlier than with minimum inter-arrival time. Hence,
the worst-case response time bound Ri holds for τi in the schedule after Step 2. ◀
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We now know that Step 1 and Step 2 both preserves the property rk + t < fk and that
the worst-case response-time bound of higher-priority tasks still holds. What remains is to
find the interval with maximum interference for a given t and to show that this interval
fulfills the analytical properties P1–P3 from Definition 2.

Step 3: Shift the analysis window and derive the bound. In the third step, we define the
time point b as the latest time point such that γk is not executed during (rk + t, b). More
formally, b := sup

{
b̃ ≥ rk + t

∣∣ execk(rk + t, b̃) = 0
}

. We move the analysis window from
[rk, rk + t] to [b − t, b]. This has the benefit that all jobs of higher priority tasks released
during the analysis interval also finish within the analysis interval.

▶ Lemma 8. All jobs of higher priority tasks τi ∈ hp(k) released during [b− t, b] finish during
[b − t, b].

Proof. We prove this lemma by contradiction. To that end, we assume there is a job γi

of task τi ∈ hp(k) released at ri ∈ [b − t, b] and finishing at fi > b. In that case, during
[b, fi) only γi and jobs of hp(i) would be executed. In particular, execk(b, fi) = 0. Therefore,
execk(rk + t, fi) = execk(rk + t, b) + execk(b, fi) = 0, which contradicts that b is the latest
time point with execk(rk + t, b) = 0. ◀

Moreover, the analysis window fulfills the analytical properties from Definition 2.

▶ Lemma 9. All higher-priority jobs released at or after b − t fulfill the analytical properties
P1–P3 from Definition 2.

Proof. P1–P3 are ensured for all jobs released at or after rk by transformations (ii), (iii) and
(iv) in Step 2. Since b − t ≥ rk by definition of b, P1–P3 also hold for all jobs released at or
after b − t. ◀

In the following we utilize the properties from Lemma 8 and Lemma 9 to show that
t < Ck + Sk +

∑
τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci with Ji = Ri − R−

i . First, we upper bound the execution
time in the interval of length t for each task.

▶ Lemma 10. For each τi ∈ hp(k), the amount of execution time during [b − t, b] is upper
bounded by

execi(b − t, b) ≤
⌈

t + Ri − R−
i

Ti

⌉
Ci. (15)

Proof. For t = 0, Equation (15) is fulfilled since execi(b, b) = 0 and
⌈

Ri−R−
i

Ti

⌉
Ci ≥ 0. For

t > 0 we distinguish two cases:

Case 1. At most one job of τi is executed during [b − t, b]. In that case execi(b − t, b) ≤
Ci ≤

⌈
t+Ri−R−

i

Ti

⌉
Ci.

Case 2. At least two jobs of τi are executed during [b − t, b]. Let γi be the last job of τi

that is executed during [b − t, b]. The job γi must be released after the previous job finishes,
i.e., after b − t. Hence, rγi

> b − t ≥ rk. Due to P3 in Lemma 9, γi executes for exactly Ci

time units.
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Additionally, during [b−t, b] the jobs of τj ∈ hp(i) are released with minimum inter-arrival
time due to P1 (as shown in Lemma 9). Therefore, during [rγi

, b] ⊆ [b − t, b] at least
⌊

b−rγi

Tj

⌋
jobs of τj ∈ hp(i) are released. Since P3 holds according to Lemma 9, each of these jobs
executes for Cj time units, and due to Lemma 8 each of these jobs finishes before b. Thus,
during [rγi , b] at least Ci and

⌊
b−rγi

Tj

⌋
· Cj for all τj ∈ hp(i) are executed, i.e.,

b − rγi
≥ Ci +

∑
τj∈hp(i)

⌊
b − rγi

Tj

⌋
· Cj (16)

holds. The value R−
i is the lowest non-negative value with R−

i ≥ Ci +
∑

τj∈hp(i)

⌊
R−

i

Tj

⌋
· Cj .

Hence, b − rj ≥ R−
i holds. We conclude that only jobs of τi that are released before b − R−

i

are executed during [b − t, b]. Furthermore, we know that all jobs of τi released before
b − t − Ri finish before b − t. Therefore, only jobs released after b − t − Ri can be executed
during [b − t, b].

To conclude, only jobs released during the half-opened interval (b − t − Ri, b − R−
i ]

can be executed during [b − t, b]. The maximal number of jobs of τi released during
(b − t − Ri, b − R−

i ] is
⌈

b−R−
i

−(b−t−Ri)
Ti

⌉
=

⌈
t+Ri−R−

i

Ti

⌉
. Each of these can be executed for at

most Ci time units, i.e., execi(b − t, b) ≤
⌈

t+Ri−R−
i

Ti

⌉
Ci, which concludes the proof. ◀

Finally, we show that the inequality t < Ck + Sk +
∑

τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci holds for our

derived jitter term Ji = Ri − R−
i if rk + t < fk holds before the transformations.

▶ Lemma 11. If rk+t < fk before Step 1, then the inequality t < Ck+Sk+
∑

τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci

with Ji = Ri − R−
i holds.

Proof. If rk + t < fk before Step 1, then Lemma 4 and Lemma 6 ensure that rk + t < fk

after the transformations of Step 1 and Step 2. Since rk + t < fk after Step 2, we have

t < Ck + Sk +
∑

τi∈hp(k)

execi(rk, rk + t). (17)

By definition of b, during [rk + t, b) the processor is busy executing workload of jobs of hp(k).
Therefore, we obtain∑

τi∈hp(k)

execi(rk, rk + t) + (b − rk − t) =
∑

τi∈hp(k)

execi(rk, b) (18)

=
∑

τi∈hp(k)

execi(b − t, b) +
∑

τi∈hp(k)

execi(rk, b − t)

(19)

≤
∑

τi∈hp(k)

execi(b − t, b) + (b − t − rk). (20)

Hence,
∑

τi∈hp(k) execi(rk, rk + t) ≤
∑

τi∈hp(k) execi(b − t, b) and

t < Ck + Sk +
∑

τi∈hp(k)

execi(b − t, b). (21)

Using Lemma 10, we achieve t < Ck + Sk +
∑

τi∈hp(k)

⌈
t+Ji

Ti

⌉
Ci with Ji = Ri − R−

i . ◀
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This concludes the proof of Theorem 3: Since Rk ≥ Ck + Sk +
∑

τi∈hp(k)

⌈
Rk+Ji

Ti

⌉
Ci, we

know that Rk + rk ≥ fk by Lemma 11, i.e., Rk is an upper bound on the response time of
γk. This was to be shown in the induction step.

5 Dominance

In the preceding section we show that Ji = Ri − R−
i is a safe jitter for jitter-based worst-case

response time analysis of self-suspending tasks. In this section we discuss the dominance of
the new jitter-based analysis with Ji = Ri − R−

i over the previous jitter-based analysis with
Ji = Ri − Ci. First, we observe that R−

i ≥ Ci.

▶ Lemma 12. The worst-case execution time Ci of τi is upper bounded by R−
i .

Proof. R−
i is defined by Equation (2) as the least non-negative value that fulfills R−

i =
Ci +

∑
τj∈hp(i)

⌊
R−

i

Tj

⌋
· Cj . Since

∑
τj∈hp(i)

⌊
R−

i

Tj

⌋
· Cj ≥ 0, we conclude that R−

i ≥ Ci. ◀

As a consequence, the new jitter term Ri − R−
i is upper bounded by the previous jitter

term Ri − Ci. This results in a dominance relation.

▶ Theorem 13. The proposed jitter-based response time analysis with jitter term Ji = Ri−R−
i

analytically dominates previous jitter-based analysis with jitter term Ji = Ri − Ci.

Proof. We show that whenever the previous jitter-based analysis provides a response time
upper bound Rprev

k , our jitter-based analysis provides a response time upper bound Rour
k

as well, and Rour
k ≤ Rprev

k . Let Rprev
k ≤ Dk be the lowest non-negative value that fulfills

Equation (1), i.e., Rprev
k = Ck + Sk +

∑
τi∈hp(k)

⌈
Rprev

k
+Ri−Ci

Ti

⌉
Ci. By Lemma 12, Ri − Ci ≥

Ri − R−
i . Therefore, we obtain

Rprev
k ≥ Ck + Sk +

∑
τi∈hp(k)

⌈
Rprev

k + Ri − R−
i

Ti

⌉
Ci. (22)

We define f := (t 7→ t −
∑

τi∈hp(k)

⌈
t+Ri−R−

i

Ti

⌉
Ci). That is, f is a combination of a

linear part t and a right continuous step function
∑

τi∈hp(k)

⌈
t+Ri−R−

i

Ti

⌉
Ci. Hence, f is

right continuous, and f grows linearly if the step function stagnates. If the step function
jumps, f jumps downward. In particular, f(t − ∆) ≥ f(t) − ∆ for all ∆ ≥ 0. Moreover,
f(Rprev

k ) ≥ Ck + Sk by Equation (22), and f(0) ≤ 0.5

We define t0 := inf {t ≥ 0 | f(t) ≥ Ck + Sk}. Since f is right continuous, f(t0) ≥ Ck + Sk.
Moreover, 0 < t0 ≤ Rprev

k . We show that f(t0) = Ck + Sk by contradiction: Assume that
f(t0) > Ck+Sk. Define ∆ = min(t0, f(t0)−(Ck+Sk)). Then f(t0−∆) ≥ f(t0)−∆ ≥ Ck+Sk

which contradicts the definition of t0.
We conclude that there exists a t0 ∈ [0, Rprev

k ] such that f(t0) = Ck + Sk. This means
that t0 = Ck +Sk +

∑
τi∈hp(k)

⌈
t0+Ri−R−

i

Ti

⌉
Ci for some t0 ∈ [0, Rprev

k ], i.e., Rour
k ≤ Rprev

k . ◀

5 We omit the proof that R−
i ≤ Ri holds, which is necessary to ensure f(0) ≤ 0, due to space limitations.
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6 Evaluation

We evaluated the impact of the improved jitter term on jitter-based analysis considering
synthesized tasksets. Specifically, we examined whether the response time of (at least) one
of the tasks in the set could be reduced when applying the improved analysis compared to
the typical analysis. We did not evaluate the acceptance ratio (i.e., the number of feasible
tasksets) for the following two reasons: (i) our response time analysis is not limited to any
specific deadline as long as the worst-case response time is no more than the minimum
inter-arrival time; (ii) the experimental setting for the configuration of relative deadlines
is a decisive factor for demonstrating the improvements of the acceptance ratio. On the
one hand, any improvement might potentially move the WCRT bound below the deadline
constraint, making the task schedulable. On the other hand, even a large improvement on
the WCRT bound might not affect the schedulability at all. Hence, choosing a particular
deadline hides the impact on the analytical performance. Therefore, since this work is about
improving the WCRT bound, we examined the bound directly.

Evaluation setup. We generated 10 000 tasksets for each combination of the following
parameter values:

number of tasks per set n ∈ {10, 20, 40, 60, 80, 100},
combined utilization of execution and suspension UC+S ∈ {1.0, 2.0, 3.0},
execution segments only utilization UC ∈ {0.05, 0.1, 0.15, . . . , 0.95}, and
period range Prange ∈ {[1, 10], [1, 100], [1, 1000]}.

For a specific combination of n, UC+S , UC , and Prange, each set was generated as follows:
1. We generated a utilization vector for the combined utilization of execution and suspension

using the Dirichlet-Rescale (DRS) [22] algorithm. Specifically, we generated n values
U i

C+S , i = 1, . . . , n such that 0 ≤ U i
C+S ≤ 1 and

∑n
i=1 U i

C+S = UC+S .
2. We generated a utilization vector for execution segments only using DRS. In particular, n

values U i
C , i = 1, . . . , n with 0 ≤ U i

C ≤ U i
C+S and

∑n
i=1 U i

C = UC were generated.
3. Each task minimum inter-arrival time Ti, i = 1, . . . , n was drawn log-uniformly from the

interval Prange.
4. We derived worst-case execution time Ci and maximum suspension time Si by calculating

Ci = Ti · U i
C and Si = Ti · U i

C+S − Ci.
5. The tasks were prioritized in Rate-Monotonic (RM) ordering, i.e., the task with the

shortest minimum inter-arrival time had the highest priority.
For each generated task τk, we consider the following analytical worst-case response time
lower bound (LB):

Rk = Ck + Sk +
∑

τi∈hp(k)

⌈
Rk + Si

Ti

⌉
Ci (23)

This is the exact response time of a special scenario where each higher-priority task delays
the first job for Si time units, and, therefore, it is a lower bound for the general case. If for
any task the lower bound exceeded Tk, then the taskset was discarded and a new one was
generated. If the 10 000 tasksets could not be generated after 100 000 tries, the configuration
was discarded and omitted from the evaluation.

We applied the following response time analyses for each task:
JIT-TYP: The typical jitter-based worst-case response time (WCRT) analysis from
Equation (1) with jitter Ji = Ri − Ci.
JIT-IMP: Our improved jitter-based analysis from Theorem 3 with jitter Ji = Ri − R−

i .
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(b) Prange = [1, 100].
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(c) Prange = [1, 1000].

Figure 6 Number of improved tasksets in % when using JIT-IMP instead of JIT-TYP.

Evaluation results. We evaluated the number of tasksets where the analytical WCRT of
at least one task in the set can be improved by utilizing JIT-IMP instead of JIT-TYP
(denoted as Improvements JIT). We observed that the amount of suspension and the
number of tasks per set have rather low impact on the number of tasksets where the analytical
WCRT was improved. Therefore, we only show the results for UC+S = 2.0 and n = 40 in
Figure 6 as the results for other configurations are similar.

The number of tasksets where our improved analysis results in improved WCRTs increases
(i) with the period range, and (ii) with the utilization. Specifically, for the period range, we
observed barely any improvement for Prange = [1, 10], but the WCRT analysis was improved
for Prange = [1, 100] up to 17.84% and 12.25%, and for Prange = [1, 1000] up to 55.89%
and 43.51% of the tasksets for the improved jitter-based and the improved unified analysis,
respectively. This suggests good potential improvement in practical scenarios where the
periods usually range over two to three orders of magnitude [9] and where a period range
from 1 to 1000 is common in automotive systems [34].

The improvement increases with the utilization up to around 80% utilization and slightly
decreases afterwards. Thus, the improvement is most prominent in the area where tasksets
are neither most likely anyway schedulable due to low utilization nor anyway not schedulable
due to high utilization. Specifically, regarding high utilization tasksets, note that there are
no results for utilization values UC = 0.95 in Figure 6 since we could not generate 10 000
tasksets which could potentially be schedulable according to the lower bound LB in 100 000
tries. Furthermore, the drop for higher utilization in Figure 6 is likely the result of tasksets
which may still be schedulable according to the lower bound LB which actually are not
schedulable and thus no improvement can be obtained.
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(b) Prange = [1, 100].
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Figure 7 Number of improved tasks when using JIT-IMP instead of JIT-TYP. The x-axis
shows the index of the task in its taskset.

Additionally, we depict the number of improved tasks plotted over the task index (i.e., the
priority of that task in its tasksets) in Figure 7. We observe that our improvement has a larger
impact for the tasks with lower priority in a taskset. That is, JIT-TYP usually has optimal
performance for the highest priority tasks and show a larger degree of over-approximation for
the lower priority tasks. These lower-priority tasks can benefit from the improved analysis
presented in this work. Please note that the number of improved tasks differs significantly
for the different evaluation scenarios, which is why we chose to utilize different ranges for the
y-axes of the plots.

7 Related Work

In 1988, Rajkumar et al. [46] observed that self-suspending tasks need a special treatment
in the analysis. Early results tried to deal with self-suspension by extending classical
schedulability analyses and WCRT analyses of non-self-suspending tasks. However, self-
suspension can induce several non-trivial phenomena, as discussed in the review paper by
Chen et al. [17]. Hence, careful treatment of self-suspending tasks is required. After the
first counterexample of the extension of the critical instant theorem in [35] was found by
Nelissen et al. [43], several counterexamples of analyses before 2014 have been provided by
Chen et al. [17], Bletsas et al. [6], and Günzel and Chen [23,24].

In the literature, the dynamic self-suspension model [1, 2, 16, 19, 23, 26, 27, 29, 39] and the
segmented self-suspension model [5, 13, 15, 24, 28, 33, 43, 44, 47] are predominately studied.
They differ in their specifications of suspension patterns. More specifically, in the segmented
self-suspension model, computation and suspension segments of a task are predefined to
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appear in an interleaved manner, each with bounded duration. On the other hand, in
the dynamic self-suspension model, any arbitrary computation and suspension sequence is
admissible as long as the worst-case execution time and the maximum suspension time are
both respected. The dynamic self-suspension model is classified as a behavior relaxation [50]
of the segmented self-suspension model. To bridge the gap between the dynamic and the
segmented self-suspension model, hybrid self-suspension models have been provided by
von der Brüggen et al. [51], assuming that the maximum number of suspension intervals
is known but concrete execution/suspension patterns are unknown. Literature reviews for
self-suspension have been provided by Chen et al. [17, 18].

This paper considers dynamic self-suspending real-time tasks, which has been examined in
multiple papers [6,16,27,29,39] and in the book by Jane Liu [40, Page 162]. Other results [2,32]
have been disproved (c.f. the review by Chen et al. [17]). Valid analytical results quantify
the interference from the higher-priority tasks by adopting suspension-oblivious analysis,
carry-in jobs [29, 39], jitter-based analysis [6, 29, 43, 45], and blocking-based analysis [40, Page
162] [14]. Chen et al. [16] show that the jitter-based and blocking-based analyses do not
dominate each other and provide a hybrid solution, called unifying response-time analysis.
Günzel et al. [25] extend the unifying response-time analysis to arbitrary deadlines and
arrival curves. For EDF scheduling, the result by Devi [19] has been disproved [23]. Further
analytical results are provided by Liu and Anderson [38] and Dong and Liu [20] for global
EDF and by Günzel et al. [26] for uniprocessor systems. Moreover, Günzel et al. [27]
consider EDF-Like scheduling and show that their analysis can be applied for uniprocessor
fixed-priority preemptive scheduling. However, for the fixed-priority setup, they achieve
worse schedulability, compared to the jitter-based and the unifying analysis.

Regarding non-preemptive scheduling, to the best of our knowledge only two schedulability
analyses exist. Casini et al. [11] analyze self-suspending tasks scheduled by partitioned fixed-
priority scheduling, while Yalcinkaya et al. [52] consider global multiprocessor scheduling.
The latter provide an exact analysis utilizing the UPPAAL model checker.

8 Remarks on Improving the Unifying Response Time Analysis

Although this is the first work tightening the jitter term Ji in jitter-based analysis, there
is another dominating result on the typical jitter-based analysis in the literature. More
specifically, the unifying response time analysis by Chen et al. [16] is a hybrid solution of
jitter-based and blocking-based analysis. They show that, for any arbitrary vector assignment
x⃗ = (x1, . . . , xk−1) ∈ {0, 1}k−1, the least non-negative value Rk that fulfills

Rk ≥ Ck + Sk +
k−1∑
i=1

⌈
Rk + Qx⃗

i + (1 − xi)(Ri − Ci)
Ti

⌉
Ci, (24)

with Qx⃗
i =

∑k−1
j=i xjSj , is an upper bound on the worst-case response time of τk.

When choosing the vector assignment x⃗ = (0, . . . , 0), the unifying analysis simplifies to
the typical jitter-based analysis, i.e., Equation (1). Hence, it seems intuitive that (Ri − Ci)
in Equation (24) can be replaced by the new jitter term Ri − R−

i . However, the underlying
analysis structure is fundamentally different. More specifically, the proof of the unifying
response-time analysis is based on shifting the analysis window to the left, combined with
job modifications. The proof of the new jitter term is based on shifting the analysis window
to the right, combined with different job modifications. Thus, it is not clear if the unifying
response-time analysis can utilize the improved jitter term presented in this work.
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Figure 8 Number of improved tasksets in % when using UNI-IMP instead of UNI-TYP.

However, to showcase the potential improvement that might be achieved from integrating
the improved jitter term into the unifying response-time analysis, we consider the following
improvement strategy: First, we compare the result obtained by the unifying response-time
analysis with a worst-case response-time lower bound in Equation (23). If the worst-case
response-time upper bound from the unifying response-time analysis (Equation (24)) coincides
with the lower bound (Equation (23)), it is an exact upper bound and there is no further
space for improvement. Otherwise, we apply the improved jitter-based analysis (Theorem 3)
and take the minimum of both worst-case response-time upper bounds.

We examined this improvement that can by achieved by this ad-hoc integration, by
evaluating a similar scenario as in Section 6. Instead of JIT-TYP and JIT-IMP, we
utilized the following response time analyses for each task:

UNI-TYP: The unifying response time analysis from Chen et al. [16] with their three
suggestions for vector x⃗.
UNI-IMP: The improved unifying response-time analysis using our improved jitter-based
analysis as discussed in this Section.

We evaluated the number of tasksets where the analytical WCRT of at least one task in the set
can be improved by utilizing UNI-IMP instead of UNI-TYP (denoted as Improvements
UNI). As in Section 6, we only show the results for UC+S = 2.0 and n = 40, as we observed
that the amount of suspension and the number of tasks per set have a rather low impact
on the number of tasksets where the analytical WCRT was improved. Figure 8 shows the
number of improved tasksets and Figure 9 shows the number of improved tasks. We observe
that the number of improvements for the typical jitter-based response-time analysis (in
Figures 6 and 7) is larger than for the unifying response-time analysis. The reason is that
the unifying response time analysis performs already closer to an optimal analysis than

ECRTS 2024
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Figure 9 Number of improved tasks when using UNI-IMP instead of UNI-TYP. The x-axis
shows the index of the task in its taskset.

the jitter-based response-time analysis. However, we observe that there is still a significant
amount of improvements for the unifying response-time analysis. This indicates that the
unifying response-time analysis would benefit from the improved jitter term as well.

Although the experiments in this section showcase the potential improvement for the
unifying response time analysis, a proper integration of the jitter term is part of future work.
In case the unifying response time analysis can be proven by shifting the analysis to the
right-hand side instead of to the left-hand side in future work, then we conjecture that the
improved jitter-term Ri − R−

i presented in this work can be utilized directly in the unifying
analysis as well, i.e., Equation (24) could be replaced by

Rk ≥ Ck + Sk +
k−1∑
i=1

⌈
Rk + Qx⃗

i + (1 − xi)(Ri − R−
i )

Ti

⌉
Ci. (25)

Therefore, if this conjecture holds, this new analysis will dominate all previous analytical
approaches for sporadic tasks with dynamic self-suspension under uniprocessor fixed-priority
scheduling. This is left as an open problem.

9 Conclusion

Jitter-based analysis is a common approach to bound the worst-case response time of self-
suspending tasks. However, to date the seemingly trivial jitter term Ji = Ri − Ci (that
is, the worst-case response time minus the worst-case execution time of the higher-priority
tasks) is the only safe result.
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In this work we observe that this jitter term is pessimistic in the sense that this jitter
can only occur for all higher-priority tasks in a system if carry-in workload of multiple tasks
is executed simultaneously. Building upon that observation, we reduce the jitter term to
Ji = Ri − R−

i , which incorporates a lower bound R−
i ≥ Ci that it takes to execute the

carry-in workload. The new jitter-term requires a fundamentally different analytical approach
where the analysis window is shifted to the right-hand side instead of to the left-hand side.

With the new jitter-term, our analysis dominates the previous jitter-based analysis.
Moreover, we show that for synthesized tasksets an improvement of the worst-case response
time over the previous jitter-based analysis can be found in up to 55.89% of the tasksets.
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