
Shared Resource Contention in MCUs: A Reality
Check and the Quest for Timeliness
Daniel Oliveira #

Centro ALGORITMI, University of Minho, Guimarães, Portugal

Weifan Chen #

Department of Computer Science, Boston University, MA, USA

Sandro Pinto #

Centro ALGORITMI, University of Minho, Guimarães, Portugal

Renato Mancuso #

Department of Computer Science, Boston University, MA, USA

Abstract
Microcontrollers (MCUs) are steadily embracing multi-core technology to meet growing performance
demands. This trend marks a shift from their traditionally simple, deterministic designs to more
complex and inherently less predictable architectures. While shared resource contention is well-
studied in mid to high-end embedded systems, the emergence of multi-core architectures in MCUs
introduces unique challenges and characteristics that existing research has not fully explored. In this
paper, we conduct an in-depth investigation of both mainstream and next-generation MCU-based
platforms, aiming to identify the sources of contention on systems typically lacking these problems.
We empirically demonstrate substantial contention effects across different MCU architectures (i.e.,
from single- to multi-core configurations), highlighting significant application slowdowns. Notably,
we observe that slowdowns can reach several orders of magnitude, with the most extreme cases
showing up to a 3800x (times, not percent) increase in execution time. To address these issues, we
propose and evaluate µTPArtc, a novel mechanism designed for Timely Progress Assessment (TPA)
and TPA-based runtime control specifically tailored to MCUs. µTPArtc is an MCU-specialized
TPA-based mechanism that leverages hardware facilities widely available in commercial off-the-shelf
MCUs (i.e., hardware breakpoints and cycle counters) to successfully monitor applications’ progress,
detect, and mitigate timing violations. Our results demonstrate that µTPArtc effectively manages
performance degradation due to interference, requiring only minimal modifications to the build
pipeline and no changes to the source code of the target application, while incurring minor overheads.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases multi-core microcontrollers, shared resources contention, progress-aware
regulation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.5

Supplementary Material
Software (Source Code): https://github.com/danielRep/mcu-tpa-eval [30]

archived at swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471aa5790

Funding Daniel Oliveira: This work was supported by the Fundação para a Ciência e Tecnologia
(FCT) within the Research and Development Units under Grant UIDB/00319/2020, and the Ph.D.
Scholarship under Grant 2020.04585.BD.
Renato Mancuso: The material presented in this paper is based upon work supported by the
National Science Foundation (NSF) under grant number CNS-2238476. Any opinions, findings, and
conclusions or recommendations expressed in this publication are those of the authors and do not
necessarily reflect the views of the NSF.

Acknowledgements We would like to express our gratitude to the reviewers for their valuable
feedback and suggestions.

© Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 5; pp. 5:1–5:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniel.oliveira@dei.uminho.pt
https://orcid.org/0000-0003-4119-8482
mailto:wfchen@bu.edu
https://orcid.org/0000-0003-0265-3577
mailto:sandro.pinto@dei.uminho.pt
https://orcid.org/0000-0003-4580-7484
mailto:rmancuso@bu.edu
https://orcid.org/0000-0003-3558-5216
https://doi.org/10.4230/LIPIcs.ECRTS.2024.5
https://github.com/danielRep/mcu-tpa-eval
https://archive.softwareheritage.org/swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471aa5790;origin=https://github.com/danielRep/mcu-tpa-eval;visit=swh:1:snp:0830cfc1ab9c1a89b90af8d1f5cfbd34009f6593;anchor=swh:1:rev:491481ac0a296ec2f9fa62acce39b2e717f79f46
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

1 Introduction

In 2022, the microcontrollers (MCUs) market was valued at USD 20.61 billion, with pro-
jections indicating a compound annual growth rate of 11.0% from 2023 to 2030 [36,37,45].
Meanwhile, there’s a rising demand for MCUs with higher computing power, stemming from
the proliferation and the range of functions required by Internet-of-Things (IoT) based devices.
From communication and sensing [12] to machine learning algorithms [8], these devices are
increasingly incorporating diverse and processing-intensive workloads [4]. To accommodate
this demand, manufacturers are enhancing the architectures and microarchitectures of MCUs,
notably adopting multi-core designs [1, 4, 28].

Predictability in MCUs. Unlike high-end systems powered by application processors (APU)
found on desktops, servers, and mobile devices, MCUs, such as the Arm Cortex-M (CM) family,
are the foundations of small embedded and IoT-based systems. MCUs are characterized by
limited computing power and memory capacity, typically featuring simple microarchitectures
without cache, having 2-3 pipeline stages, and lacking virtual memory support [48,51]. For
instance, the Armv6-M CM0+ and Armv8-M CM23 processors have 2-stage instruction
pipelines, whereas the Armv7-M CM3/4 and Armv8-M CM33 include 3-stage pipelines.
Additionally, they are designed with low interrupt latencies; for instance, CM-based devices
typically range from 12 to 16 cycles. As such, MCUs are perceived as deterministic platforms
due to their simplistic hardware designs, aiming to guarantee the timely behavior of deployed
applications. This predictability is vital since MCUs frequently interface with the physical
world and host applications with real-time and safety-critical requirements [12, 18, 34].
However, as extensively studied in high-end APUs, the introduction of multi-core in MCUs
leads to unpredictability [17] due to the reciprocal interference in shared resources [19, 22, 25,
31,49,52].

The need for new solutions. Shared resource contention in high-end multi-core APUs has
been extensively studied [22,23]. Caches, interconnect networks, and the DRAM memory
controller and banks are among noteworthy sources of interference [25, 52, 53]. However,
MCUs present unique characteristics that have not been thoroughly studied so far: MCUs
often lack a memory management unit (MMU); no shared caches are used, and only very few
employ caches in the form of private caches with no hardware coherence; use flash memories
with non-standardized controllers offering caching/prefetching capabilities; include different
peripherals; and incorporate multiple Direct Memory Access (DMA) engines. Yet, empirical
studies addressing contention in MCUs remain scarce. To the best of our knowledge, only
two academic works have tackled this issue [31,34]; however, their insights do not apply to
a broad spectrum of MCUs since they target a specific platform (i.e., Armv8-M Musca-A1
test chip). From a different angle, contention within bus interconnects has been observed
in various MCUs and leveraged to implement a side-channel attack [38]. Moreover, MCU
contention is also challenging the industry; for instance, a recent study on a dual-core Arm
Cortex M0+ (i.e., Raspberry Pi Pico) disclosed a priority inversion scenario resulting from
contention on shared memory [49].

Timely progress assessment. To address interference, researchers have proposed different
approaches (e.g., memory bandwidth regulators [53], cache coloring [19]). These techniques
rely on hardware features unique to APUs and absent in MCUs (e.g., performance counters1.

1 Recently, Armv8.1-M-based CM55 and CM85 announced a Performance Monitoring Extension, but at
the time of writing boards equipped with these processors were still not available.

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:3

and virtual memory). In another line of works [6,21], timely progress assessment (TPA) is
leveraged to live-monitor contention-induced delays and restore the system’s predictability.
TPA-capable systems perform a timeliness check when the program counter (PC) of the
application under test (AUT) reaches a predefined address. Then, the system evaluates
the AUT’s timely progress and adjusts the resource allocation accordingly (e.g., suspending
co-runner CPUs). Existing TPA methods still face a series of trade-offs: whether the source
code of the AUT is required, whether the AUT needs modification, to what extent specialized
hardware is necessary (e.g., trace units), and how much overhead it incurs. Nonetheless,
we posit that an aptly-designed TPA-based approach is well-suited to tackle performance
interference issues in MCUs. Indeed, using simple, architectural-defined hardware components
(e.g., hardware breakpoints) offers a more straightforward and scalable implementation of
TPA techniques compared to other, more complex approaches in the literature [6, 21].

In this paper, we shed light on the “elephant in the room” [5] for MCUs by posing two
pivotal questions: (1) How significantly does contention affect the MCU landscape? and (2)
How can timeliness/predictability be restored in MCUs?. Our approach to answering these
questions is twofold: (i) through an extensive, empirical investigation, we seek to identify
and understand the sources and effects of contention on MCUs; subsequently, (ii) we propose
µTPArtc, a novel TPA-based mechanism specifically tailored to tackle this issue and restore
timeliness in MCUs. We initially surveyed leading MCU vendors. Based on this survey, we
document contention issues in three Commercial Off-The-Shelf (COTS) MCUs from distinct
silicon manufacturers featuring single vs. dual-core configurations and platform-specific
memories. When contention was observed, the performance degradation reached several
orders of magnitude; surprisingly, one platform displayed slowdowns up to 3800x.

The proposed µTPArtc. The novelty of µTPArtc design lies in a new trade-off among the
existing methods: (i) it employs a novel milestone selection algorithm that can be used
without access to the source code; (ii) it only requires that µTPArtc is added at linking time
before deployment on the AUT; (iii) it leverages ISA-defined, readily available hardware
components found in MCUs; and (iv) it incurs minimal overhead. To achieve this, µTPArtc
encompasses two steps and corresponding subsystems: (i) an offline profiling phase that
constructs a timing reference profile of the AUT through an automated selection of progress
milestones and (ii) an online monitoring mechanism that assesses the timely progress of AUTs
at each milestone, ensuring the preservation of end-to-end timeliness. µTPArtc live-monitors
the AUT by leveraging widely available hardware breakpoint primitives across the MCU
landscape (e.g., Arm’s CM family, RISC-V debug module IP). Upon reaching a milestone,
the CPU is interrupted, and a debug exception is triggered, allowing µTPArtc to conduct
TPA within the corresponding exception handler.

We implemented a prototype of µTPArtc on a state-of-the-art Armv8-M MCU platform,
i.e., NXP LPC55S69 featuring a dual-core Arm CM33. Implementation-wise, µTPArtc is
developed as a static library and the binary size is notably small (≈ 1.3KiB). Our evaluation
shows that, in general, µTPArtc’s overhead is tightly coupled with the number of progress
milestones monitored and their granularity; nevertheless, µTPArtc is capable of balancing
this interplay efficiently, with results showing that overhead averages around 1% for different
reference application benchmarks (i.e., Embench suite). Furthermore, our results demonstrate
that µTPArtc is able to control performance degradation within a predefined, controlled
threshold even when severe contention is introduced.

ECRTS 2024

5:4 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

TIM WDT DAC SPI PWM I2C

TIM WDT DAC SPI PWM I2CEmbedded
NVM Memory

(Flash)

System Interconnect

TIM

UART

WDT

I2S

DAC

ADC

SPI

RTC

PWM

GPIO

I2C

...

MMIO
Peripherals

Peripheral BridgeFC

CPU
0

I$/D$

TC
M

CPU
1

TC
M

Data
Memories
(SRAMs)

DMA-
capable
devices

Generic
DMAs

I$/D$

Figure 1 Generic model for an MCU-based platform, characterized by (i) single-/dual-core
configuration (occasionally integrated with TCMs); (ii) several DMA controllers; (iii) a myriad of
peripherals; (iv) flash and SRAM memories for instruction fetching and data, respectively; (v) and a
system interconnect, typically based on a multi-layer AHB matrix.

Contributions. In summary, this paper makes four major contributions. First, we survey
COTS MCUs and provide a generalized architectural model. With that, we identify the
potential points of contention. Second, we empirically demonstrate the magnitude of
contention on three representative, commercially available MCUs. Third, we propose a
new hardware-assisted TPA-based mechanism called µTPArtc to manage contention and
provide a reference implementation. And fourth, we conduct a comprehensive evaluation of
µTPArtc’s performance and incurred overhead.

2 Motivation: The Contention Problem in MCUs

To shed light on the contention problem in MCUs, we conducted an empirical evaluation
to provide compelling evidence of the existence of interference sources and their significant
impact on performance. Given MCUs’ distinct architectural characteristics when compared
to high-end APU systems, our investigation is organized into four key steps:
(1) Scoping and modeling MCU architectures. Aiming to define the scope of our evaluation,

we conducted a survey of current COTS MCU platforms, documenting their architecture
and hardware features (Table 1). Based on this systematized information, we developed
a generic MCU architectural model (Figure 1) as the basis for our study.

(2) Identifying potential sources of contention. Using the model formulated in (1), we
discuss and characterize which shared resources may be prone to contention, while
highlighting their differences from other high-end APUs.

(3) Designing resource-stressing scenarios. We select three distinct platforms for our
evaluation: (i) two representative of the most recent multi-core MCUs and (ii) one
exemplifying a mainstream single-core MCU (Figure 2). For each target MCU, we
mount different system configurations designed to stress-test contention on the resources
identified in (2).

(4) Assessing contention impact. We evaluate the impact of interference on MCUs by
using the previously devised setups. We provide empirical evidence of how a seemingly
inincuous system misconfiguration or a deliberate attack aimed at maximizing contention
can lead to performance slowdowns from 2x up to 3800x.

2.1 Scope and Platform Model
COTS platforms. We target MCU-based platforms specifically designed for embedded
systems and IoT devices. Arm’s CM family is the dominating 32-bit MCU architecture,
with almost 30 billion chips shipped in 2021 [2]. In Table 1, we present a selection of 17

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:5

Table 1 Available MCU-based COTS platforms on the low-end market segment.

Platform 32-bit Cortex- MemoryClass vendor series acron CPUs cache (I/D) flash ACC SRAM TCM DMA Peripherals (subset) Sys. Bus

tie
r1

ST STM32C0x stm1 M0+ (42MHz) – 32KiB 6KiB – 1 GPIO, ADC, USART, SPI, I2C,
WDT, Timers

M-AHB

Renesas RA2E2 ren1 M23 (48MHz) – 64KiB 8KiB – 1 GPIO, ADC, USART, SPI, I3C,
WDT, Timers, AES, TRNG

M-AHB

NXP LPC860 nxp1 M0+ (60MHz) – 64KiB 8KiB – 1 GPIO, ADC, USART, SPI, I2C,
WDT, Timers

M-AHB

tie
r2

Infineon XMC4200 inf1 M4 (80MHz) – 256KiB 40KiB – 1 GPIO, ADC USART, CAN,
Timers, SPI, I2C, I2S, CAN, USB

M-AHB-
L

ST STM32L4 stm2 M4 (80MHz) – 1MiB 128KiB – 2 GPIO, ADC, Timers, USART,
SPI, CAN, I2C, WDT, RNG

M-AHB

NXP KV30F nxp2 M4 (100MHz) – 128KiB 16KiB – 1 GPIO, ADC, USART, SPI, I2C,
WDT, Timers

N/P

tie
r3

NXP Kinetis
K26

nxp3 M4 (180MHz) 8KiB 2MiB 256KiB – 1 ADC, Timers, USB, USART,
GPIO, I2C, SPI, CAN, I2S,

M-AHB

ST STM32F7 stm3 M7 (216MHz) 2x 16KiB 2MiB 512KiB 128KiB 1 GPIO, UART, CAN, Timers,
USB, ADC, I2C, SPI, Crypto

M-AHB

Renesas S7G2 ren2 M4 (240MHz) – 4MiB 64KiB – 1 GPIO, Eth, SPI, CAN, ADC,
Crypto, HMI, USB, I2C, USART

N/P

nex
tge

n

Raspberry RP2040 rpb1 2xM0+ (133MHz) – 16MiB 264KiB – 1 GPIO, UART, SPI, I2C, USB,
Timers, WDT

M-AHB-
L

Infineon CY8C63x6 inf2 M4 (150MHz) &
M0+ (100MHz)

– 1024KiB 288KiB – 2 Crypto, Timers, I2C, SPI, UART,
I2S, SD, USB, BLE, GPIO

M-AHB

NXP LPC55S6x nxp4 2xM33 (150MHz) – 640KiB 320KiB – 2 AES, SD, USB, GPIO, SPI, I2C,
UART, Crypto, Timers, I2S

M-AHB

Nordic nRF54H nrd1 ?xM33 (320MHz) – 2MiB N/P 1MiB – N/P CAN, BLE, ADC, I3C, USB N/P
Infineon TRAVEO

T2G
inf3 2xM7 (320MHz)

& M0+ (100MHz)
M7:2x 16KiB 6336KiB 640KiB M7:128KiB 3 Crypto, CAN, UART, I2C, SPI,

SD, Timers, GPIO, I2S, Eth
M-AHB
& AXI-I

ST STM32H7 stm4 M7 (480MHz) &
M4 (240MHz)

M7:2x 16KiB 2x 1MiB 1MiB M7:192KiB 2 I2C, USART, SPI, SD, CAN,
USB, Eth, Timers, Crypto, LCD

M-AHB
& AXI-I

NXP i.MX
RT1180

nxp5 M7 (800MHz) &
M33 (240MHz)

M7:2x 32KiB
M4:2x 16KiB

N/P N/P 1.5MiB M7:512KiB
M33:256KiB

2 UART, WDT, Timers, Crypto,
SD, GPIO, USB, I3C, CAN

N/P

NXP i.MX
RT1170

nxp6 M7 (1GHz) & M4
(400MHz)

M7:2x 32KiB
M4:2x 16KiB

N/P N/P 2MiB M7:512KiB
M4:256KiB

2 UART, WDT, Timers, Crypto,
SD, GPIO, USB, I3C, CAN

N/P

We have classified well-established MCU platforms into three classes based on their price per ≈10,000 units: tier1
(<1$), tier2 ([1,10[$), and tier3 (≥10$). The nextgen class refers to next-generation multi-core MCUs, some still in
pre-production. N/P: not provided. ACC.: flash acceleration (e.g., cache, prefetchers). M-AHB: multilayered AHB
matrix. M-AHB-L: M-AHB Lite. AXI-I : AXI Interconnect. acron.: acronym used across the document.

COTS MCU families, with a focus on the industry leaders by sales (i.e., NXP, ST, Infineon,
and Renesas) [45]. Among the surveyed vendors, it is noteworthy that, in comparison to
well-established platforms (i.e., tier1,2,3), the next-generation platforms (i.e., nextgen) are
consistently moving towards adopting multi-core configurations. In contrast, traditional
platforms feature simple, single-core architectures without cache or virtual memory support,
and with elementary 2-3 stages pipelines (e.g., stm1/2, ren1/2, nxp1/2, inf1). Fewer platforms
feature longer pipelines, optional caches (e.g., stm3), and special memory controllers (e.g.,
nxp3) for performance purposes. Notwithstanding, nextgen devices are standing out with
their adoption of multi-core architectures, featuring CPUs with higher clock frequencies
(e.g., nxp6 goes up to 1GHz), along with the inclusion of instruction and data caches (e.g.,
nxp5 features 2x 32KiB caches). Simultaneously, memory capacities are increasing, while
tightly-coupled memories (TCM) are becoming ubiquitous. Additionally, the number of
DMAs is also rising, and at the microarchitecture level, AXI interconnects are being placed
alongside the conventional AHB system buses to meet the increasing bandwidth demands.

MCU characteristics and platform model. Figure 1 depicts the MCU model, generalized
from the unique characteristics presented in Table 1. MCUs feature single- to dual-core
configurations and optionally incorporate instruction/data caches and TCMs with zero-wait
states. They often support peripherals with DMA capabilities (e.g., Ethernet, USB), as well
as generic DMA bus masters. Key architectural components, such as CPUs, memories, DMA
controllers, and peripherals, are interconnected usually by a multi-layer AHB matrix. Flash
memories are used for code and read-only data, while SRAMs are used for data. DRAMs
are generally not used in MCUs. Due to the relatively slow speed of flash, most devices

ECRTS 2024

5:6 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

M-AHB
(prio.)

CPU 0
(CM33)

CPU 1
(M33)

DMA
0

DMA
1

Flash
(640 KiB)
SRAMX
(32 KiB)

SRAM0
(64 KiB)
SRAM1
(64 KiB)
SRAM2
(64 KiB)
SRAM3
(64 KiB)
SRAM3
(64 KiB)

C
+P

Flash
(256 KiB)

SRAM0
(32 KiB)
SRAM1
(8 KiB)

M-AHB
(r.r.)

ii)

C
+P

CPU
(CM4)

DMA
0

DMA
1

Flash
(1 MiB)

M-AHB
(prio.)

iii)

C
+P

SRAM
(288 KiB)

CPU 0
(CM4)

CPU 1
(CM0+)

DMA
0

DMA
1

i)

Figure 2 Block diagram of selected platforms from Table 1. (i) nxp4 (SRAMX is reserved for
code); (ii) stm2 (SRAM1 is reserved for code); (iii) inf2.

feature acceleration mechanisms within the flash controller (FC) to expedite flash memory
access (e.g., small internal caches and prefetchers). SRAM memories are faster memories
and typically apply very few wait-states. A myriad of peripherals (e.g., timers, SPI, I2C,
UART, CAN controllers, etc.) is connected through a bridge module (e.g., AHB-to-APB
bridge) that interfaces the system bus with a slower bus connected to each memory-mapped
peripheral. Across the spectrum, MCUs adhere to this architectural model.

2.2 Potential Sources of Contention
MCU-based systems are perceived as immune to interference effects, while high-end APU
systems face recognized challenges in dealing with interference in real-time applications [22].
As previously mentioned, high-end systems experience interference effects precisely in com-
ponents typically absent from MCUs (e.g., shared caches, interconnect networks, and DRAM
memory controller and banks [9,10,22]). However, as shown in Table 1, recent nextgen MCUs
exhibit two notable trends that could serve as sources of contention: (i) a higher number
of integrated bus masters capable of creating interference exacerbated by the integration of
dual-core configurations and additional DMAs, all connected to a typical bus with round-
robin arbitration policy; and (ii) the enhancement of memory resources, such as FCs being
equipped with internal caches and prefetchers, to address growing performance demands.

Memory contention. Unlike APUs that predominantly utilize DRAM for main memory,
MCUs rely on flash and SRAM memories. Flash memory serves as non-volatile storage,
from which code and read-only data are directly fetched when firmware/applications are
executed. Known for its slower access times, FCs typically implement proprietary, black-box
architectures [15]. Moreover, to cope with rising CPU frequencies, the number of wait-states
that cause CPU idling introduced during slow flash reads is becoming prohibitive [11]. A
common solution to this issue is to include a zero-wait state cache on the FC that ensures
immediate access to the most recently used instruction(s). However, these caches are typically
small and implement unusual organizations seldomly found in high-end L1/L2 caches. For
example, ST’s flash ART accelerator does not cache the most recently fetched instructions.
Rather, it caches only the 16 bytes at the target of a recent branch instruction [11, 47].
Consequently, while wait states may delay the initial branch to a specific address, subsequent
branches to the same address do not experience the same delay. On the other hand, SRAM
memories are typically single-ported with an arbiter in place to handle collisions [38].

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:7

Table 2 Memory allocation layouts and system configuration for the common and catastrophic
experiments. In the catastrophic configuration, we use two DMAs.

(a) Common experiment configuration.

read-only read+write
test board CPU0 CPU1 CPU0 CPU1

cmn1 Flash SRAM0 SRAM1
cmn2 nxp4 Flash SRAM0

cmn3 inf2 Flash SRAM

(b) Catastrophic experiment configuration.
read-only read+write

test board CPU0 CPU1 CPU0 CPU1 DMAs-src DMAs-dst BP (High Prio.)

ctt1 Flash SRAM0 Flash SRAM0 CPU0
ctt2 nxp4 Flash SRAM0 Flash SRAM0 CPU1, DMAs

ctt3 Flash SRAM Flash SRAM CPU0
ctt4 inf2 Flash SRAM Flash SRAM CPU1, DMAs

ctt5 stm2 Flash - SRAM0 - Flash SRAM0 N/A

DMAs-src and DMAs-dst denote the DMAs source and destination buffer’s memory locations, respectively. N/A:
not applicable, since stm2 applies fixed round-robin arbitration. BP: bus prioritization.

Bus contention. As depicted in Figure 1, memories and peripherals are interconnected to
the CPU(s) and DMA(s) controllers through a system bus. A multi-layer AHB matrix is the
most widespread bus topology. It allows different bus masters to execute several non-blocking,
full-bandwidth transfers to non-shared slaves concurrently. However, when multiple masters
attempt to access the same slave, the bus must arbitrate them, which inherently introduces
contention [38]. Typically, the bus arbitration policy is round-robin. Still, recent platforms
are implementing priority-based policies: nxp4 and inf2 provide a priority-based policy, while
stm2 adopts a round-robin approach. Attached to the system bus, more and more MCUs
support both general-purpose and I/O-specific DMA controllers (e.g., Ethernet modules,
SDMMC card interfaces, USB drivers, etc) that autonomously access memory without the
intervention of the CPU. As observed in high-end APUs, such devices can further exacerbate
the load on the system bus and thus worsen contention effects [33,55].

2.3 Methodology and Experimental Setup
Our series of experiments conducted on three MCUs aim to illustrate the impact of contention
on performance due to shared hardware resources. We devised two evaluation scenarios, as
outlined in Table 2: common and catastrophic. Each experiment implies different system
configurations that result in either manageable or severe contention-related delays.

Selected platforms. Based on the potential sources of contention described in Subsection 2.2,
we have selected for our empirical study three distinct platforms: nxp4 [29], inf2 [14], and
stm2 [47]. These platforms are representative of a subset of different MCU-based architectural
organizations, including (i) single- or dual-core designs; (ii) distinct ISAs and processors
(Armv6-M CM0+, Armv7-M CM4, and Armv8-M CM33); (iii) bus topologies with differing
arbitration policies (round-robin or priority-based); (iv) different memory organizations (e.g.,
vendor-specific FCs, single- vs. multi-block SRAMs); and (v) implementation-specific DMA
controllers with different functionalities. In Figure 2, we illustrate a simplified version of the
main block elements of each selected platform architecture (i.e., bus masters and slaves, and
bus interconnect). More details on each platform can be found in Table 1.

System configuration. During the evaluation of each experimental scenario, we made an
effort to maintain the consistency of the platform’s configuration. This included (i) configuring
CPU clocks at their maximum frequencies, which inherently required the maximum number
of wait states in each platform’s FC, and (ii) activating any platform-specific performance-
enhancing features available for the FC, such as small internal caches and prefetchers. Table 2
summarizes the memory layout of each system configuration used in the two experiments.

ECRTS 2024

5:8 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

The observed CPU (i.e., CPU0) runs an Embench’s benchmark [32], while the co-runner (i.e.,
CPU1), as the interfering CPU, runs a synthetic memory-intensive application. This synthetic
application is designed to stress the target shared memory resources by performing branch-
intensive operations of multiple non-sequential blocks of nop instructions. We emphasize that
while we have deliberately parameterized the interference application to create a significant
level of contention, the observed effects can possibly be aggravated with further fine-tuning.

Experimental methodology. The evaluation is designed to assess performance degradation
in the CPU executing the Embench benchmark. The degradation arises due to contention
from other bus masters, such as additional CPUs or DMAs, that concurrently compete for
the same hardware resources used by the CPU under test. In the first experiment, i.e., the
common scenario – see Table 2(a), we instantiate a typical multi-core memory layout on
the nxp4 and inf2 boards. The configuration separates read-only sections (code in .text
and constants in .rodata) from read+write sections (.data, .heap, and .stack) segments
depending on the available memory units on each platform. As illustrated in Figure 2, the
inf2 board is limited to a single code and data memory; hence, in our experiments, memory
contention arises from both flash and SRAM (cmn3 configuration). In contrast, the nxp4,
with its multiple SRAM memories, opened up the possibility of performing two distinct
experiments (cmn1 and cmn2). In both experiments, the CPUs’ read-only segments are
stored in flash memory. Then, their read+write segments are either split between two SRAMs
(cmn1) or combined into a single SRAM memory (cmn2).

In the second experiment, i.e., the catastrophic scenario – see Table 2(b), we aim to
demonstrate the most extreme form of performance degradation resulting from contention.
We adopt a victim-vs-attacker system model, where the attacker, operating from a secondary,
compromised CPU, aims to disrupt the performance execution of the victim running in the
primary CPU. The attacker has full access to the DMAs interface and the bus arbitration;
however, it cannot directly use platform-enabled functions to stall/pause the victim’s CPU
(e.g., CPU1 in nxp4 cannot reset or disable CPU0 ’s clock [29]). Therefore, the attacker
configures the system to intentionally (i) use DMAs in a way that stresses the victim’s access
to its assigned memories and (ii) prioritize all other bus masters (i.e., CPU1 and DMAs)
over the victim’s CPU. This scenario is demonstrated in the ctt(1-5) configurations. For
nxp4 and inf2, we showcase the resulting contention from (i) CPU1 and DMAs interference
(ctt1 and ctt3), while CPU0 is configured with the highest priority bus mater in the BP
and (ii) the inverse configuration, i.e., CPU1 and DMAs have the highest priority (ctt2 and
ctt4). In the case of stm2, only DMAs are enabled, as the platform has a fixed round-robin
arbitration policy.

Result validity. The conducted experiments involved two researchers who independently
carried out each experiment. To maintain consistency between each configuration, both
researchers have used the same evaluation framework. Notwithstanding, we argue that
some results could present inconsistencies when repeated. Therefore, we strongly encourage
other independent users to validate them through the framework that we are open-sourcing2.
While we made efforts to select a diverse range of platforms across the MCU spectrum, we
acknowledge that the results in this study might not immediately generalize to other MCU
platforms. MCUs are increasingly heterogeneous in their architectures, and even seemingly
similar platforms can yield different results due to their unique microarchitectures.

2 GitHub repository: https://github.com/danielRep/mcu-tpa-eval

https://github.com/danielRep/mcu-tpa-eval

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:9

0

101

102

103

104

aha-m
ont64

crc32
cubic edn

huffb
ench

matmult-i
nt

minver
nbody

nettle
-aes

nettle
-sh

a256

nsic
hneu

picojpeg
qrduino

sglib-combined slre st

sta
temate ud

wikiso
rt

S
lo

w
do

w
n

R
at

io

cmn1 cmn2 ctt1 ctt2

0.
23

m
s

0.
92

m
s

13
.4

4m
s

1.
06

m
s

6.
72

m
s

2.
44

m
s

0.
05

m
s

94
.0

7m
s

3.
1m

s

0.
25

m
s

0.
12

m
s

22
.4

1m
s

18
.2

2m
s

3.
68

m
s

1.
24

m
s

11
.3

1m
s

0.
1m

s

0.
09

m
s

67
.3

7m
s

0.
32

m
s

1.
28

m
s

16
.6

6m
s

1.
52

m
s

10
.2

1m
s

3.
41

m
s

0.
06

m
s

12
2.

4m
s

3.
52

m
s

0.
29

m
s

0.
14

m
s

30
.0

4m
s

26
.8

3m
s

4.
97

m
s

1.
48

m
s

13
.7

1m
s

0.
12

m
s

0.
11

m
s

91
.0

1m
s1.

06
m

s

3.
79

m
s

45
.0

5m
s

7.
27

m
s

40
.4

8m
s

11
.1

7m
s

0.
16

m
s

34
3.

06
m

s

9.
07

m
s

0.
77

m
s

0.
37

m
s

84
.8

2m
s

84
.1

7m
s

14
.7

m
s

3.
89

m
s

34
.7

8m
s

0.
39

m
s

0.
32

m
s

27
3.

25
m

s

17
5.

1m
s

79
2.

55
m

s

70
82

.5
1m

s

10
47

.7
1m

s

65
27

.0
6m

s

23
55

.0
4m

s

22
.6

3m
s

21
68

5.
88

m
s

15
05

.9
5m

s

12
8.

44
m

s

11
5.

61
m

s

14
86

7.
31

m
s

14
48

4.
21

m
s

24
54

.6
2m

s

67
7.

35
m

s

55
50

.1
6m

s

67
.6

5m
s

46
.9

7m
s

19
60

1.
36

m
s

(a) Multi-core MCU: nxp4 with 2xCM33 (logarithmic scale).

 0

 1

 2

 3

 4

 5

aha-m
ont64

crc32
cubic edn

huffb
ench

matmult-i
nt

minver
nbody

nettle
-aes

nettle
-sh

a256

nsic
hneu

picojpeg
qrduino

sglib-combined slre st

sta
temate ud

wikiso
rt

S
lo

w
do

w
n

R
at

io

cmn3 ctt3 ctt4

0.
26

m
s

0.
35

m
s

10
.0

9m
s

0.
74

m
s

4.
54

m
s

1.
34

m
s

0.
19

m
s

58
.7

m
s

1.
07

m
s

0.
17

m
s

0.
08

m
s

10
.3

6m
s

9.
25

m
s

1.
59

m
s

0.
42

m
s

6.
04

m
s

0.
03

m
s

0.
05

m
s

32
.1

9m
s

0.
3m

s

0.
38

m
s

10
.5

2m
s

0.
94

m
s

5.
48

m
s

1.
73

m
s

0.
2m

s

63
.5

m
s

1.
18

m
s

0.
19

m
s

0.
09

m
s

12
.3

8m
s

11
.4

5m
s

1.
96

m
s

0.
46

m
s

6.
27

m
s

0.
04

m
s

0.
06

m
s

36
.2

7m
s

0.
35

m
s

0.
42

m
s 18

.1
1m

s

1.
1m

s

6.
1m

s

2.
2m

s

0.
25

m
s

73
.4

2m
s

1.
23

m
s

0.
21

m
s

0.
33

m
s

14
.8

5m
s

12
.7

m
s

2.
59

m
s

0.
48

m
s

6.
68

m
s 0.

05
m

s

0.
07

m
s

43
.9

8m
s

(b) Multi-core MCU: inf2 with 1xCM4 and 1xCM0+.

0

1

101

102

103

104

aha-m
ont64

crc32
cubic edn

huffb
ench

matmult-i
nt

minver
nbody

nettle
-aes

nettle
-sh

a256

nsic
hneu

picojpeg
qrduino

sglib-combined slre st

sta
temate ud

wikiso
rt

S
lo

w
do

w
n

R
at

io

ctt5

20
.4

m
s

0.
6m

s

79
70

.7
m

s

24
.6

m
s

45
.1

m
s

1.
3m

s

12
3.

2m
s

52
20

3.
2m

s

16
4.

4m
s 13

5.
2m

s

94
.3

m
s

52
63

.5
m

s

31
6.

3m
s

14
3.

1m
s

56
1.

5m
s

53
65

.4
m

s

12
.3

m
s 43
.2

m
s

22
60

7.
7m

s

(c) Single-core MCU: stm2 with 1xCM4 (logarithmic scale).

Figure 3 Slowdown ratios across platforms and scenarios, normalized to the baseline execution
time of each benchmark running in single-core.

2.4 Evidence Results
Degree of contention-induced delays in nextgen MCUs. Figure 3a and Figure 3b depict
the slowdown ratio of each benchmark running atop the selected nextgen MCUs, i.e., the nxp4
and inf2, respectively. In the common experiment, both platforms exhibit varying degrees
of impact across three configurations: (i) cmn1 and cmn2 show significant performance
slowdown on nxp4 (ranging from 2.27x to 5.77x); (ii) cmn3 results in negligible impact
on inf2, with a maximum of 10% degradation in the nschineu benchmark. Regarding the
catastrophic experiment, the results are, again, orders of magnitude different on each platform.
The inf2 exhibits a maximum slowdown of 4.67x (nsichneu benchmark in ctt4), whereas
nxp4 experiences an almost complete stall of CPU0, with execution time reaching 3800x in
the worst case (matmult-int benchmark in ctt2).

▶ Finding 1. Contention-induced slowdowns in MCUs are a reality, with effects varying
widely across platforms and configurations, sometimes leading to the complete CPU stall.

Influence of FC’s architecture on contention. The obtained results indicate that contention
is predominantly rooted in shared flash memory, influenced by unique properties of the
FC. For example, the inf2 ’s FC provides an 8KiB instruction cache for each CPU, while
nxp4 implements a notably smaller cache. This variance in cache size is evident in the
cmn3 results of inf2, where only the nsichneu benchmark exhibits contention since its code

ECRTS 2024

5:10 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

size surpasses the cache capacity (≈15KiB of code). This stands in contrast to the other
benchmarks, with an average code size of ≈2KiB, fitting within the cache and thus avoiding
any performance degradation due to cache misses. Moreover, nxp4 ’s uses a priority-based
bus that, by default, configures CPU0 with a higher priority than the co-runner CPU1,
suggesting that the primary contention source is the FC rather than the shared bus.

▶ Finding 2. Flash memory is acutely susceptible to contention, with the FC specific
characteristics, notably internal cache sizes, playing a pivotal role on the extent of slowdowns.

DMAs add fuel to contention effects. In the catastrophic experiments, the DMAs are
enabled and configured to continuously move data between two memory buffers located in
CPU0 assigned memories (from flash to SRAM). On nxp4 and inf2 platforms, the benchmark
performance drops significantly, showing an increase in memory contention when DMAs
create contention on such memories (e.g., in ctt1, a 23x performance slowdown is observed in
the edn benchmark). Moreover, this can be even aggravated if we change the bus arbitration
policies (ctt2 and ctt4 configurations). Configuring CPU0 as the low-priority bus master
has a catastrophic impact on benchmark performance, particularly in the nxp4 platform.

▶ Finding 3. Enabling DMAs significantly increases memory contention, causing notable
performance drop across platforms. Adjusting bus priorities exacerbates the issue.

Contention in classical single-core MCUs. In Figure 3c, the catastrophic experimental
results for the stm2 reveal significant slowdowns, reaching up to 1390x, leading to near CPU
starvation due to intensive memory access by both DMAs. The stm2 ’s FC includes a 1KiB
instruction cache and a 256B data cache for fetching instructions and read-only constants,
respectively. CPUs fetch instructions and literal pools (constant/data) from flash memory
through dedicated buses in the FC (I-code and D-code, respectively); DMAs also utilize the
D-code bus. According to the platform’s manual [47], D-code accesses are prioritized over
I-code accesses to limit the time lost due to fetches from literal pools that lead to stalls during
the execution stage of the CPU pipeline. However, the continuous data requests from the two
DMAs saturate the D-code bus, meaning that the CPU can only fetch instructions during the
intervals when the DMA transaction is restarted. We conducted additional experiments to
probe this behavior further. These tests involved running a sequence of 100 nop instructions
while varying the number of active DMAs and FC’s acceleration settings, such as enabling
instruction or data caches. The results indicate that a single active DMA incurs an overhead
of approximately 30%. With the activation of a second DMA, the CPU experiences starvation
unless either the flash instruction or data cache is activated, which aligns with the results
observed in ctt5.

▶ Finding 4. Contention is also present in single-core MCUs, where DMAs commonly operate
alongside the CPU. Our observations reveal that flash memory constitutes the primary
bottleneck, with certain configurations resulting in significant performance slowdowns.

3 µTPArtc: A MCU-powered TPA-based Mechanism

In the previous section, we empirically demonstrated how contention arises in single- and
multi-core MCUs when bus masters concurrently access shared memory resources. Following
that study, we present a solution to address those contention issues in this section. We propose
µTPArtc, a µcontroller-specialized, TPA-based runtime control mechanism designed to ensure

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:11

timeliness specifically in multi-core environments. µTPArtc monitors an application’s timely
progress in run-time, and in the presence of contention delays, it takes proper regulatory
actions in the secondary, interfering CPU.

3.1 Background

Timely progress assessment (TPA). The term TPA is initially introduced in Chen et
al. [6], “TPA refers to the ability of a system to live-monitor the positive/negative slack –
with respect to a known reference – at key milestones throughout an application’s lifespan.”
The milestones could be instructions or source code at specific addresses or lines. When
the program counter (PC) reaches a milestone, a.k.a., a milestone hit, it can be concluded
that the application has made some sizable progress. For example, the exit point of a
loop could be a milestone candidate. Upon a milestone hit at runtime, the system emits
various information, including the wall clock time. Kritikakou et al. [20,21] firstly design and
implement TPA-like mechanism. One important usage of TPA is to enforce the application’s
timely progress integrity (TPI). The latter captures the idea that, as long as the progress rate
of an application throughout its lifespan is sufficient, execution can finish before the deadline.
Several works have demonstrated the effectiveness of TPA in enforcing TPI [6,20,21,43]. All
TPA methods start by analyzing the control flow graph (CFG) of the AUT. The following
points provide a brief overview of CFGs.

Basic block and branch instructions. A basic-block (BB) in this work refers to a consecutive
series of non-branching assembly instructions, concluding with a branching instruction. This
means that, except for the final instruction, every other instruction in the BB increments
the PC to point to the next sequential instruction. The number of target BBs of a branch
instruction varies depending on the type. Unconditional branch instructions have one target,
for example, B and BL in Armv7/8-M. Conditional instructions (e.g., B.BEQ) have two targets.
The targets of return instruction (e.g., RET) can be enumerated by inspecting its call sites.

Control flow graph (CFG). The control flow transfer within a program can be modeled
as a directed graph G = (V, E). A node in V corresponds to a BB, and an edge (u, v) ∈ E
represents that the ending branch instruction in u has v as a target. For the purpose of TPA,
it is unnecessary to construct the complete CFG. Instead, a partial CFG for a function of
interest func is constructed as func-CFG. func-CFG has the following property: for (u, v) ∈
func-CFG, if u ends with a function call instruction, then v is the BB starting with the
function call return address, instead of the actual branch target BB of that call.

3.2 System Overview

Figure 4 presents the µTPArtc system divided into its two main subsystems: (i) an offline
profiling tool that automates the selection of milestones and adds reference timing information,
and (ii) an online monitoring mechanism that, at each milestone and employing TPA, evaluates
the application’s timely progress, ensuring that end-to-end timeliness is preserved. µTPArtc’s
online monitoring mechanism conducts TPA by setting hardware breakpoints on milestones,
and the corresponding exception handler is programmed for TPA logic. The logic includes
checking whether the current progress is ahead or behind the reference timing to take proper
regulation actions and updating the breakpoints for the next milestones.

ECRTS 2024

5:12 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Generate CFG
using angr

Identify function
subgraph

AUT's
binary

AUT's
tgt function

Apply milestone
selection strategy

Generate MG
(C struct)

Milestone Selection Alg.

Link uTPAmech
w/ AUT firmware

Set hw breakpoint
to MG entry MBB

Run AUT

Output TMG
(C struct)

Timing Profiling

Get MBB from
MG

Debug Exception Handler

x

Calculate avg
nominal/tail time

Update MG

Set hw breakpoint
to next MBB

1 2 3

(a) Offline profiling tool flow chart.

M
on

ito
rin

g
C

he
ck

po
in

ts

MCU platform

CPU0
(observed core)

CPU1
(corunner core)

Corunner
App

IPC handler

IPCBKU CC

t0

t1

t2

t3

tn

tn+1

MBB1

MBB2

MBB3

MBBn

MBBn+1

AUT

Pause

uTPArtc

M
ile

st
on

es
 H

its

Positive slack

Negative slack

Resume

(b) Online monitoring mech. architecture overview.

Figure 4 System overview of µTPArtc, consisted by the profiling tool and monitoring mechanism.

3.2.1 Offline Profiling Step
The TPA logic executed in the debug exception handler is not part of the application logic.
In other words, a milestone hit would incur an overhead. Thus, the overhead might become
excessive if the selected milestones are hit too frequently. If the selected milestones are too
“close” to each other, µTPArtc might not be counterproductive. When this is the case, it is
beneficial to de-select some of them to reduce overhead. On the other hand, if the hits are
too sparse, µTPArtc could be ineffective due to coarse monitoring granularity. So, choosing
an appropriate set of milestones is essential in conducting effective TPA. The milestone
selection is an optimization problem and a challenging one at that. In this work, we provide
an initial milestone selection algorithm that is not meant to be the absolute best. When
used in conjunction with profiling, the proposed algorithm produces satisfactory solutions.

Initial milestone selection. Intuitively, an application spends most of its time executing
loops. Thus, given a function CFG, e.g., main-CFG, two types of location could be good
candidate milestones. The first type is the return address of function calls in main because
these functions usually take a sizable portion of the execution time. The second type is the
successor(s) of a strongly connected component (SCC) because the control flow might iterate
through the loops in the SCC, taking a sizable amount of time. The set of successors of an
SCC is the union of all successors of nodes in the SCC minus all nodes in the SCC. The
initial milestone selection algorithm works as follows: (i) given the AUT binary, construct the
main-CFG. We use the open-source angr [42] tool. (ii) Color the entry node, the return BBs
of function calls, and successors of SCCs red. Color all the other nodes white. (iii) Remove
all the white nodes and connect the red nodes according to the topology of the main-CFG.
This is done by removing each white node and directly connecting all the edges from its
predecessors to its successors. The resulting directed graph is a milestone graph (MG). Nodes
in the MG form a complete set of milestones for the AUT. At runtime, when a milestone is
hit at node u, the next milestone is guaranteed to be one of the successors of u in the MG.

Timing profiling. Given an edge (u, v) in MG, define a random variable transfer time Ttransfer
for the time it takes for the execution to transfer from u to v without other milestones hit in
between. Although, by construction, an edge in the MG indicates that the execution will
encounter functions or loops during the transfer, the actual Ttransfer might still be too short
or too large, leading to the aforementioned overhead/granularity problems. Timing profiling
tackles this issue and adds reference timing information in the MG. The first step is to gather
the timing information. This is done in three steps. (i) The MG information is stored as a

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:13

struct in C and compiled/linked to the firmware; (ii) the hardware breakpoint is set to the
starting address of the entry node in MG; (iii) the application is run multiple times. Upon a
milestone hit, the exception handler logs the current wall clock time and configures the next
set of milestones to monitor according to the MG.

Timed milestone graph (TMG). After milestone timing has been gathered, per-edge and
per-node timing information, i.e., nominal time Tn(u, v) and tail time Tt(u) respectively, are
added to the MG. Tn(u, v) is the average transfer time for edge (u, v), indicating the expected
time the application needs to transfer from one milestone to the other. The time elapsed
between the application’s start time and the last time u is hit is a random variable. The
tail time Tt(u) is the maximum of said random variable. This term can be experimentally
derived (as in our evaluation) or computed using static analysis. The tail time is necessary
complementary information to nominal time because the latter only expresses the expected
transfer time but not how many times the transfer should occur. Consider a loop. At runtime,
each iteration could be timely from the perspective of nominal time. However, the number of
iterations might be significantly larger than those observed during the profiling phase. In this
scenario, checking against tail time could spot a potential TPI violation. The nominal time
is also used to refine the graph and enhance milestone granularity; however, it is imperative
to balance granularity with the potential runtime overhead introduced, which we discuss
further in Section 4.1. When Tn(u, v) is notably large, the refinement logic depends on the
edge type. If u ends with a function call, the function can be analyzed by the profiling tool
in the same way, and the resulting function graph can be merged into the upper-level graph.
If v is the successor of an SCC, more milestones can be placed inside the SCC, and a new
iteration of the timing profiling will be performed. Conversely, if the nominal time is too
small, the associated milestones can be removed to reduce overhead. The final satisfactory
MG with nominal and tail time embedded within is called timed milestone graph (TMG).
For the AUTs in this work, the final refinement is small: after the initial selection, this step
only adds/removes a couple of milestones.

3.2.2 Online Monitoring Mechanism
Consider an AUT that runs on an MCU with other co-runners. µTPArtc conducts online
monitoring to pause/resume the co-runner(s) and mitigate contention based on the delta
between the actual runtime and the reference time. µTPArtc implements a controlled
degradation mechanism similar to the one proposed in [6]. The same symbols are chosen to
stay consistent. While the operational principle is similar, recall that µTPArtc does not rely
on the presence of a trace unit nor uses a secondary CPU. As such, µTPArtc is not subject
to the problem of trace blackout that was a key limiting factor in [6].

Two times are tracked during the runtime: (i) the actual time Θ(i) and (ii) the running
nominal time N(i). Let MBBi be the milestone reached with the i-th hit. Θ(i) is updated
with the current time when the i-th hit occurs. Therefore, it indicates the time between the
first milestone hit and the i-th milestone hit. The running nominal time N(i) is updated as
N(i) = N(i − 1) + Tn(MBBi−1, MBBi). When the i-th milestone hit occurs, min(Tt(MBBi), N(i))
indicates the expected timely behavior when the AUT runs in isolation. If co-runners are
active, the actual time is usually larger than expected due to contention. Thus, for controlled
degradation, α > 1 is introduced to provide a set-point for the timely behavior of the AUT.
Upon the i-th milestone hit, the slack is calculated as:

slack(i) = α min{Tt(MBBi), N(i)} − Θ(i) (1)

ECRTS 2024

5:14 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Table 3 Hardware primitives support for Arm-based architectures and nextgen platforms. Filled
circle: supported. Empty circle: not supported.

Hardware Primitives Arm Architectures
ISA-
defined

Platform-
defined

v6-M v7-M v8-M
CM0 CM0+ CM3 CM4 CM7 CM23 CM33

Available
nextgen

Platforms
CC 1 1 all

BPU #2 #2 #2 all, except rpb1

IPC – all
1) While DWT cycle counter is not supported, the system timer can be used (SysTick) in these processors.
2) BPU is supported, but not accessible by the CPU only the debug access port.

If a negative slack is detected, i.e., the timely progress falls behind, the µTPArtc’s exception
handler pauses the co-runners. This allows the application to recover some slack. When
enough positive slack is accumulated, the co-runner(s) can be resumed. An aggressiveness
parameter β ∈ [0, 1] is introduced to decide when to resume. The co-runners are resumed
when slack(i) > βαN(i). A smaller β causes the resume to be as early as possible. A larger
β causes the regulation to be more conservative.

3.3 System Implementation
Hardware primitives and support. µTPArtc is designed for MCU-based platforms, and our
current prototype implementation targets the Armv8-M nxp4 platform. To conduct TPA,
µTPArtc resorts on three hardware primitives (Figure 4b): (i) a Breakpoint Unit (BPU) for
setting hardware breakpoints at each milestone and redirect execution to µTPArtc; (ii) a
Cycle Counter (CC) to serve as a wall-clock timer; and (iii) an Inter-Process Communication
(IPC) module as a way to intervene with the co-runner upon detecting a TPI violation.
Table 3 summarizes the availability of each hardware primitive across Arm’s CM-based
processors and the nextgen platforms listed in Table 1. These features are widely available in
MCU-based platforms, with both the BPU and CC typically defined at the Instruction Set
Architecture (ISA) level. In Arm architectures, the BPU is implemented as the Flash Patch
and Breakpoint (FPB) unit, which exposes hardware breakpoint functionality via, typically, 8
comparators [41]. The FPB implemented by the nextgen platforms features 8 comparators,
which, from our tests, is typically sufficient for monitoring the usual number of milestone
edges, i.e., 2 to 3 edges. When an instruction fetch matches a comparator’s address, the
core halts or a debug exception is triggered – µTPArtc’s runs the monitoring logic in this
exception handler. Moreover, most CM-based processors implement a 32-bit CC in the Data
Watchpoint and Trace (DWT) unit. However, for those processors that do not support DWT,
the 24-bit system timer (i.e., SysTick) can serve as an alternative. In another example,
RISC-V-based platforms feature a system CC and address/data match triggers to implement
hardware breakpoints. Additionally, we use a platform-specific IPC module (Inter-CPU
Mailbox in the case of nxp4) to send pause/resume commands to the co-runner.

Profiling and TMG construction. The offline profiling tool requires two inputs: (i) the
unmodified binary of the AUT, which is analyzed by a Python script that utilizes angr to
implement the milestone selection algorithm; and (ii) AUT’s function of interest, for which a
CFG is to be constructed. Figure 4a shows µTPArtc’s sequence of operations. Initially, in
the milestone selection algorithm step (1), the AUT’s binary is analyzed, and an MG is

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:15

Algorithm 1 µTPArtc’s monitoring logic (Arm-based implementation).

input : Current MBB address, addr
input : Timed Milestone Graph, TMG
begin Run µTPArtc debug monitor handler

i← Get current MBB id based on addr, TMG(addr)
Θi ← Get actual time from DWT cycle counter
N(i)← Calculate running nominal time

slack(i) = α min(Tt(MBBi), N(i))−Θ(i) // Calculate slack;

if slack ≥ 0 then // Positive slack -> no TPI violation
if Corunner = SUSPENDED then

if slack > (βαN(i)) then
Send IPI to the co-runner to resume
Corunner← RUNNING

else // Negative slack -> TPI violation
if Corunner = RUNNING then

Send IPI to the co-runner to suspend
Corunner← SUSPENDED

end

FPB← Clean MBBprev edges breakpoints // Reconfigure hw breakpoints;
FPB← Set next MBBi edges breakpoints

end

generated, following the strategy outlined in Subsubsection 3.2.1. Then, µTPArtc’s profiler
(2) is integrated into AUT’s firmware by modifying the debug exception vector table entry
and linking the system’s library to the executable. During runtime, the profiler starts by
configuring a hardware breakpoint at the MG’s MBB0 entry point. This involves programming
the MBB0 address into an FPB’s instruction address comparators. A debug exception is
triggered when the PC reaches the generic MBBn. Within the debug exception handler (3),
the MBBn responsible for the exception is identified. Then, the wall-clock time is read from
the DWT cycle counter, and the nominal and tail times are calculated; the MG’s MBBn entry
is then updated accordingly. Before handling control back to the AUT, the profiler sets
new hardware breakpoints for all the MBBs that can be directly reached from MBBn. The
analysis is repeated across multiple runs of the AUT. Finally, the tool outputs the TMG. The
TMG comprises an array of mbb_t structures. This structure contains information about
each milestone: (i) entry point address, (ii) tail time, and (iii) a list of edges to adjacent
milestones, each with the edge’s nominal time and index of the target milestone.

Monitoring logic. Algorithm 1 illustrates µTPArtc monitoring handler. Before entering the
monitoring logic, µTPArtc resorts to a pre-handler routine that recovers the PC value from the
exception stack frame3. Using the PC address, the MBBi that caused the exception is identified.
Then, the actual time Θi is read from the cycle counter, and the running nominal time N(i)
is calculated. Next, the slack is evaluated (Equation 1), and according to this value, two
operations can be performed: (i) if the slack is positive, no TPI violation is detected, and the
co-runner is resumed based on the β parameter; (ii) if the slack is negative, the co-runner
is signaled to suspend operations. Before returning from the handler, the previously-set
hardware breakpoints are cleared, and the successor edges of MBBi are configured as the new
set of breakpoints in the BPU, preparing the system for the next monitoring checkpoint.

3 On CM architectures, the CPU automatically pushes a number of registers to stack memory on exception
entry.

ECRTS 2024

5:16 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Table 4 System binary size and run-time overhead. Ovhd (∆%) refers to the run-time overhead
percentage of µTPArtc (Ttime) compared to the baseline execution time.

Monitoring Checkpoints Binary Size (bytes) Run-time Overhead (cycles)Benchmark Total MBBs
in TMG Total Hits Max. (<1%) TMG Total µTPArtc (∆%) min max mean Ttime Ovhd (∆%)

cubic 13 38 47 1872 43316 7.23% 122 190 155 5889 0.66%
nbody 8 213 310 1152 32328 7.31% 122 172 151 32094 0.55%

nettle-aes 11 40 11 1584 44180 6.34% 121 151 134 5221 2.62%
huffbench 15 13 17 2160 42644 8.11% 107 151 128 1662 0.54%

st 10 405 42 1440 33816 7.95% 120 168 150 60871 8.28%
matmult-int 8 7 5 1152 40408 5.76% 107 139 130 909 1.00%

wikisort 9 20 220 1296 42392 5.86% 124 171 143 7006 0.17%

4 Evaluation

Our evaluation of µTPArtc was conducted on the nxp4 platform using the same framework
mentioned in Section 3. Firstly, we evaluate the run-time overhead imposed in a µTPArtc-
enabled system and measure the memory footprint of µTPArtc. Following this, we assess
the mechanism’s ability to mitigate contention effects, aiming to control the performance
degradation of a target application within an acceptable slowdown threshold.

4.1 Performance Overhead and Memory Considerations

Monitoring checkpoints overhead. µTPArtc conducts TPA by preemptively interrupting
the core each time a milestone is reached, a routine that we refer to as a monitoring checkpoint.
This process inherently incurs a run-time overhead. As a result, increasing the number
of monitoring checkpoints leads to larger cumulative overheads. If the overhead grows
too large, it might exacerbate contention delays but also impair µTPArtc’s ability to enact
effective TPA without fully halting the co-runner. This interplay highlights the challenge of
balancing the granularity of milestone placement with the imperative to maintain manageable
overhead levels, ensuring that µTPArtc interventions are both effective and as minimally
intrusive as possible. Table 4 reports the variable impact of µTPArtc’s run-time overhead
across different benchmarks, with overheads ranging from a minimal 0.17% in wikisort to
a moderate 8.28% in st. Noteworthy, benchmarks such as st and nettle-aes exhibit the
highest overheads, primarily due to the number of monitoring checkpoints surpassing the
pre-computed maximum threshold intended to limit impact to less than 1% (as seen in the
Total Hits column surpassing the Max (<1%)) – see Section 5. This observation underscores
the importance of strategic milestone placement within µTPArtc to mitigate unnecessary
performance degradation while ensuring effective TPA.

Memory footprint. The µTPArtc is developed as a static library, allowing it to be directly
linked with a target application. The binary size of µTPArtc is notably small, approxim-
ately 1.3KiB when compiled with -O2 optimizations (GNU toolchain version 11.2.1.). The
configuration requires a C source file that describes the TMG through a data structure,
which can increase the binary size (around 150 bytes of data is allocated for each milestone
defined). According to Table 4, which details the binary size of various setups used within
the controlled performance degradation use-case (Subsection 4.2), the increase is between 6%
to 8%.

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:17

Baseline (in isolation) Computed set-point Interference (w/ co-runner) Regulated run-time Co-runners resumed Co-runners paused

0 500 1000 1500 2000
Time (kcycles)

0

5

10

15

20

25

30

35

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(a) cubic.

0 2000 4000 6000 8000 10000 12000 14000
Time (kcycles)

0

50

100

150

200

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts
(b) nbody.

0 100 200 300 400
Time (kcycles)

0

5

10

15

20

25

30

35

40

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(c) nettle-aes.

0 200 400 600 800 1000
Time (kcycles)

0

2

4

6

8

10

12

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(d) huffbench.

0 250 500 750 1000 1250 1500 1750
Time (kcycles)

0

50

100

150

200

250

300

350

400

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(e) st.

0 50 100 150 200 250
Time (kcycles)

0

1

2

3

4

5

6

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(f) matmult-int.

0 2000 4000 6000 8000 10000
Time (kcycles)

0

5

10

15

20

25

30

35

40

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(g) wikisort.

0 2000 4000 6000 8000 10000 12000 14000 16000
Time (kcycles)

0

5

10

15

20

25

30

35

40

N
um

be
r o

f M
on

ito
rin

g
C

he
ck

po
in

ts

(h) wikisort (w/ max. Tn).

0 2000 4000 6000 8000 10000
Time (kcycles)

0

10

20

30

40

50
N

um
be

r o
f M

on
ito

rin
g

C
he

ck
po

in
ts

(i) wikisort (w/ fine granularity).

Figure 5 Selected benchmarks behavior when regulated by µTPArtc.

4.2 Use-case: Controlled Performance Degradation
Experimental setup. We selected nxp4 based on its observed significant performance
degradation in the common experiment, making it an ideal target for assessing µTPArtc’s
ability to restore timeliness. To recap, the common experiment applies a typical multi-core
setup, where the interplay between CPUs accessing common memory resources generates
contention (i.e., the flash and SRAM). The observed primary CPU runs the target benchmark,
while the second CPU runs the synthetic memory-intensive application used in Section 2. In
all the performance tests, both CPU clocks are configured at a 150MHz maximum frequency,
and the flash acceleration is enabled to speed up its performance.

Benchmark selection. The benchmarks from Embench chosen for our use-case study are
reported in Table 4. With each µTPArtc intervention consuming an average of 142 cycles
(0.95µs), we pinpointed 10 benchmarks where adding at least one monitoring checkpoint
results in no more than 1% of total overhead. Due to limitations in space, three benchmarks
– qrduino, picojpeg, and sglib-combined – were further excluded from this selection.

ECRTS 2024

5:18 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Algorithm 2 WikiSort benchmark marked with MBB placement.

begin Run wikisort benchmark
← MBB1

Create data array to be sorted (D⃗)
Initialize funcGenPointers (F⃗) with different data generator functions
Initialize the random-number generator
foreach Function f in F⃗ do
← MBB2

foreach Index d in D⃗ do
d← Generate data by calling f(d)

end
← MBB3

Call WikiSort(D⃗)
← MBB4

end
← MBB5

end

Results overview. Figure 5 depicts the behavior of the selected benchmarks when regulated
by µTPArtc, which strives to maintain their timely behavior with a set-point of α = 1.3.
This regulation entails intervening in the AUT’s operation – pausing or resuming interfering
CPUs – when contention occurs, thereby allowing the AUT to recover slack. We analyze
the AUT’s progress in three scenarios: (i) operating in isolation (Baseline (in isolation)),
(ii) under the impact of interference from a co-runner (Interference w/ co-runner), and (iii)
when regulated by µTPArtc (Regulated run-time). Additionally, we display the computed
set-point to explain µTPArtc’s regulation actions at each monitoring checkpoint (Computed
set-point). The y-axis chronologically details the timeline of each monitoring checkpoint,
whereas the x-axis indicates the time interval between these checkpoints. Furthermore, the
figure reports the decisions to pause (red ×) or resume (green) the co-runner made by
µTPArtc based on its slack monitoring. Co-runners are resumed promptly as soon as the
AUT recovers some slack (β = 0.05).

Evaluation results. As depicted in Figure 5, in the first three cases, i.e., cubic, nbody, and
nettle-aes, µTPArtc successfully enforces a runtime very close to the set-point. As soon as
negative slack is detected, a corrective adjustment of the co-runner is performed, allowing
for the recovery of performance slack. For huffbench, a minor deviation from the baseline
is observed at the final checkpoint. Increasing milestone granularity between checkpoints
7 and 8 could improve regulation, avoiding the notable slowdown observed in this interval;
µTPArtc only applies a corrective measure in 8 after huffbench has been substantially affected
by contention. Regarding st, µTPArtc aligns the regulated performance with the set point.
However, as reported in Table 4, st exhibits a large 8.28% overhead. This excessive overhead
arises from a milestone positioned within a loop, prompting µTPArtc to intervene 405 times –
far exceeding the threshold established for maintaining overhead at 1% (specifically, 42 hits).
To address such scenarios, we suggest implementing a countdown counter that selectively
bypasses monitoring checkpoints in extensive loops, as detailed in Section 5. The matmult-int
benchmark could also benefit from a thin granularity between checkpoint 2 and 3; nevertheless,
as soon as µTPArtc pauses the co-runner in 3, the performance is prevented from dropping
further, and matmult-int recovers close to the set-point.

The wikisort demonstrates certain limitations of µTPArtc. Wikisort is based on a block
merge sort algorithm, as detailed in Algorithm 2. It consists of a two-level nested loop.
The inner loop prepares the data, and the outer loop executes the WikiSort algorithm for
each prepared data set. The execution time of each inner and outer loop iteration varies,

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:19

depending on the data type to be generated (e.g., random, equal, etc.) and the time elapsed
in the WikiSort function. Consequently, Ttransfer for (MBB2,MBB3) and (MBB3,MBB4) has a large
variance, which causes the nominal and tail time to no longer be accurate representations
of the true behavior. This inaccuracy makes µTPArtc overly conservative. The intersection
between the baseline and progress set-point in Figure 5g illustrates one such case. To mitigate
the issue, one could use the maximum Ttransfer to calculate the nominal time. When doing so,
as shown in Figure 5h, said intersection disappears. Nonetheless, the set-point still appears
far from the actual timely behavior due to the overestimation of the nominal time. In
Section 5, we propose a strategy for addressing timing imbalances in loops. Additionally, the
granularity-overhead trade-off problem (see Section 3.2.1) also appears at the 11th milestone
hit. The flat slope here suggests coarse monitoring. An attempt is made to add one more
milestone in the outer loop, resulting in a much improved albeit imperfect TPI as shown
in Figure 5i. When more milestones are placed in the inner loop for better TPI, the large
number of iterations results in impractical overhead, a scenario also noted in st.

5 Discussion

Timing high variance nominal in loop. The variance problem exhibited in wikisort shows
only one possible case of complex control flow that the proposed method cannot satisfactorily
solve. Although Kritikakou et al. [20,21] provide a treatment for the timing variance, this
work adopts Chen et al. [6]’s TMG to store timing information, which does not provide a
treatment yet. Thus, we extend the TMG to provide a solution for the wikisort-like problems.
The following notations are used to better explain the peculiarity of wikisort. Given an
edge, let T denote the set containing all the measured Ttransfer for the edge throughout
the profiling phase. ti,j ∈ T represents the measured Ttransfer for the j-th iteration of the
edge during the i-th run of the AUT. The offending edge whose transfer time exhibits high
variance, in wikisort, is part of a loop, and its nominal time represents the expected time for
the WikiSort function call. At profiling, the number of iterations is found to be precisely
9. Define a set Pk = {ti,j ∈ T |i = k, j ∈ N+, 1 ≤ j ≤ 9}, the nine measurements for the
k-th run. If the variance σ2(Pk) of Pk is high, neither the average nor the maximum of Pk

is suitable for nominal time. Interestingly, let m be the total number of profiling runs and
define P ′k = {ti,j ∈ T |i ∈ N+, 1 ≤ i ≤ m, j = k}, all the measured transfer times for the k-th
iteration in the loop across all the runs. The data indicates σ2(P ′k) is sufficiently small for all
k. The implication is that given the k-th iteration of the loop, the average µ(P ′k) of P ′k is a
suitable representation of the timely behavior. Thus, instead of a single nominal time, a list
of nominal times [µ(P ′1), ..., µ(P ′9)] should be added to the edge. Then, µTPArtc chooses the
corresponding nominal time and conducts TPA based on the current iteration. Two lessons
are learned: (i) when profiling a loop, one must check whether σ2(Pk) is sufficiently small;
(ii) by extrapolation, a non-loop edge can also be associated with a set P ′1. When σ2(P ′1) is
sufficiently small, the nominal time is an accurate representation. Last but not least, (iii)
instead of solely relying on the variance, the profiling phase should also consider the range of
T to improve the mechanism’s reliability.

Reducing overhead for loop with large iterations. st exhibits a relatively large overhead
(8.28%) due to one milestone in a loop being hit 405 times, as shown in Table 4. The overhead
can be reduced by not conducting TPA every time the milestone is hit. Upon a hit, the
overhead is the sum of (a) entering/leaving the exception handler and (b) TPA/TPI logic.
The overall overhead per hit is 150 cycles. However, the measured overhead for (a) is only 15

ECRTS 2024

5:20 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Table 5 Gap analysis table of mitigation techniques for shared resources interference.

PlatformRef Year Target HW Platform ISA SoC Shared Resource Mitigation
Technique Hw Support

[3] 2019 Raspberry Pi 31 Armv8-A 4xCortex-A53 LLC CC PMC
[6] 2023 Xilinx UltraScale+ Armv8-A/-R 4xCortex-A53

& 2xCortex-R5
LLC TPA PMC, TU

[7] 2023 Zynq Ultrascale+ Armv8-A 4xCortex-A53 IRQ IRQ Coloring PMC
[26] 2020 Zynq Ultrascale+ Armv8-A 4xCortex-A53 LLC CC MMU
[53] 2013 Desktop Machine1 Intel x86 Core2Quad

Q8400
Bus & DRAM MBR PMC

[50] 2016 Odroid XU4 Armv7-A 4x Cortex-A7 &
4x Cortex-A15

LLC CC MMU

[24] 2013 Pandaboard Armv7-A 2xCortex-A9 LCC CC & Cache
Locking

MMU & Cache
Lockdown

Desktop Machine Intel x86 Xeon W3530[52] 2014 Freescale P4080 PowerPC 8xe500mc DRAM Bank-aware Mem.
Allocator MMU

[27] 2018 Raspberry Pi 2 Armv7-A 4xCortex-A7 LLC & DRAM MBR & CC MMU, PMC
[19] 2019 Nvidia Tegra TX1 Armv8-A 4x4xCortex-

A57
LLC & DRAM DRAM & CC Virtualization

Extensions
[56] 2023 Zynq Ultrascale+ Armv8-A 4xCortex-A53 DRAM MBR PMC, CoreSight
[44] 2020 NXP S32V234 Armv8-A 4xCortex A53 DRAM MBR DRAM
[39] 2022 NXP S32V234 Armv8-A 4xCortex A53 DRAM MBR QoS-PU & PMC
[55] 2022 Zynq Ultrascale+ Armv8-A 4xCortex-A53 DRAM IO-related MBR QoS-PU

[34] 2019 Musca-A1 Armv8-M 2xCortex-M33 Flash & SRAM Mem. Static
Allocation

-

[31] 2023 Musca-A1 Armv8-M 2xCortex-M33 Flash & SRAM - -
Our work 2024 LPC55S69 Armv8-M 2xCortex-M33 Flash & SRAM TPA FPB, DWT

1 Here, we have only detailed a subset of the platforms tested. CC : Cache coloring. MBR: Memory bandwidth
regulation. MMU : Memory management unit (i.e., virtual memory) QoS-PU : Quality-of-Service profiling units.

cycles. Thus a counter-down counter can be defined in the handler for the milestone, such
that only if the counter value equals to zero, the TPA would be executed and the counter is
replenished, otherwise it merely decrements the counter and exit the handler. For example, if
the replenishment value is 81, the number of fully handled TPA events for the same milestone
would be reduced from 405 to 5.

Extending µTPArtc regulation to DMAs. In Subsection 2.4, the catastrophic scenario
illustrates how DMAs can be instrumental in exacerbating contention on shared memory.
Although µTPArtc’s current regulatory actions are directed at interfering CPUs, we believe
our methodology is broadly applicable and, with minor engineering modifications, can be
expanded to include DMAs. Notably, several nexgen platforms (e.g., nxp5, nxp6, stm4) offer
DMA controllers that allow software to suspend/resume each channel at any time, presenting
a practical way to integrate DMA management into µTPArtc’s resources allocation strategy.

6 Related Work

To the best of our knowledge, only two works have specifically measured interference in
MCUs [31,34]. In [34], temporal interference is observed in the access to shared memories.
The authors propose a memory allocation strategy for statically segregating code and data;
however, this approach offers limited scalability and flexibility. On the other hand, [31]
introduces a framework for analyzing interference in low-end MCUs and proposes a monitoring
system to manage contention; however, they lack implementation and evaluation details. Both
contributions target the Arm Musca-A1 test chip, which does not include common features
of commercial platforms (e.g., DMAs and flash acceleration). This section summarizes
significant research on shared resource contention and explores studies on TPA techniques.

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:21

Measuring multi-core interference. Assessing interference in multi-core systems requires a
comprehensive knowledge of a system’s s underlying microarchitecture in order to identify
sources of contention and fine-tune synthetic benchmarks that stress-test those resources.
Radojkovic et al. [35] designed a set of benchmarks to stress core- and memory-level shared
resources (e.g., L1 caches, memory bandwidth through L2 cache) in 3 multi-core Intel
processors. In [16], D. Iorga, et al. proposed techniques for empirically testing interference
across different chips (Arm Cortex-A53, -A7, and Intel Atom); authors are able to cause
slowdowns up to 3.8x larger than prior work. In [3], authors carefully crafted write-intensive
applications that are capable of originating a DDoS attack on a particular internal structure of
a Cortex-A53-based last-level cache (LLC). While these works offer insights into interference
assessment methods, MCUs represent a distinct computing paradigm with unique challenges
and limitations.

Addressing multi-core interference. Table 5 highlights several works proposing techniques
to address interference, mainly in the LLC and DRAM resources. These approaches utilize
specific hardware features, including performance monitor counters (PMC) [3, 7, 27, 39,
53, 54], as well as resource partitioning and virtual memory capabilities [19, 24–27, 34, 50,
52]. Additionally, some techniques take advantage of debug facilities [56] or specialized
interconnects [13,40,44,46,55]. Memguard [53,54] presented the initial effort using PMCs to
regulate memory bandwidth, and subsequent works have included cache coloring features [27]
and reinforced the actual memory utilization by using memory’s QoS-PU [39]. In another
perspective, MemPol [56] uses debug facilities to monitor interference outside the core.
PALLOC [52] optimizes the use of DRAM by allocating memory pages for each application
to specific banks, while [19] leverages virtualization extensions to extend a hypervisor with
memory coloring. In cache partitioning, different techniques have been proposed [24,26, 50].
Mancuso et al. [24] proposed “Cache Lockdown,” combining cache coloring and locking
techniques. Other works propose mechanisms to address interference from interrupts [7] and
DMA-enabled I/O peripherals [55]. While effective in APU systems, these methods are less
applicable to MCUs which lack the necessary hardware.

Existing TPA methods. Existing methods to achieve TPA fall into two categories, i.e.,
software instrumentation [20,21,43] and hardware monitoring [6]. All software instrumentation
approaches require the source code of AUTs available, and the source code needs to be
modified to add a portion of TPA logic. These requirements are constraints on the AUT
side but make software approaches implementable on a wider range of platforms because the
modified AUT carries out necessary TPA logic, which needs to be handled by the platform
otherwise. On the other hand, the hardware monitor method only needs the binaries of the
AUTs without code instrumentation, but the platform needs a trace unit infrastructure. From
an overhead perspective, all software approaches rely on interrupting or at least “preempting”
AUT from its payload to conduct TPA, which inevitably introduces overhead; on the contrary,
the hardware approach introduces negligible to no overhead, and the AUT can run as it is.
Our work achieves a new trade-off: (a) in contrast to [6] relying on a trace unit, ours leverage
ISA-defined hardware breakpoints, which allows (b) to operate on black-box binary AUTs
with minor modifications to the linking step, but by (c) introducing some overhead due to
the nature of hardware breakpoints. Table 6 shows the trade-off. On the TPI side, all works
derive a reference time for each milestone via offline profiling and measure the slack at runtime.
Kritikakou et al. [20,21] utilize the slack to enforce the timing requirement for hard real-time
systems, Sinha et al. [43] to run a scheduler upon milestone hits to prevent unnecessary

ECRTS 2024

5:22 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

Table 6 The trade-off among different methods.

Category Work Preemption Code Instrumentation TU Breakpoint
Kritikakou et al. Software Sinha et al.

Chen et al. Hardware Ours

abortions of low critical tasks, and Chen et al. [6] to conduct controlled degradation. Ours
also adopts the controlled degradation scheme. Importantly, as presented in Table 5, this is
the first work demonstrating how TPA-based regulation can be applied to MCUs.

7 Conclusion

As MCUs evolve to embrace multi-core architectures with complex memory hierarchies and
integrate multiple DMAs, their predictable and deterministic nature faces new challenges due
to the interference within shared hardware resources. Recognizing the scarcity of research on
contention issues in these platforms, we embarked on an empirical investigation to assess the
impact of contention delays on application performance on three different COTS platforms.
Our research uncovers that contention can cause application slowdowns by factors ranging
from 2x to an extreme 3800x. To address this, we proposed µTPArtc, a mechanism designed
to enforce TPI on applications. We demonstrated µTPArtc’s ability to regulate performance
degradation within a predetermined threshold while incurring a minimal overhead. This
establishes µTPArtc as a promising strategy for achieving timeliness in modern MCUs.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis.

A Comprehensive Survey of Industry Practice in Real-Time Systems. Real-Time Systems,
58(3):358–398, 2022.

2 Arm. Arm Delivers Record Revenues and Record Profits in FY21, 2022. URL: https://news
room.arm.com/news/arm-delivers-record-revenues-and-record-profits-in-fy21.

3 Michael G. Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore:
Analysis and Prevention. In Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 357–367, 2019.

4 Jacob Beningo. Why and How to Get Started with Multicore Microcontrollers for IoT Devices
at the Edge, 2020. URL: https://www.digikey.com/en/articles/why-and-how-to-get-s
tarted-with-multicore-microcontrollers.

5 Marko Bertogna. A View on Future Challenges for the Real-Time Community, 2019. URL:
https://www.irit.fr/rtns2019/wp-content/uploads/2019/11/bertogna_keynote.pdf.

6 Weifan Chen, Ivan Izhbirdeev, Denis Hoornaert, Shahin Roozkhosh, Patrick Carpanedo,
Sanskriti Sharma, and Renato Mancuso. Low-Overhead Online Assessment of Timely Progress
as a System Commodity. In Euromicro Conference on Real-Time Systems (ECRTS), volume
262, pages 13:1–13:26, 2023.

7 Diogo Costa, Luca Cuomo, Daniel Oliveira, Ida Maria Savino, Bruno Morelli, José Martins,
Fabrizio Tronci, Alessandro Biasci, and Sandro Pinto. IRQ Coloring: Mitigating Interrupt-
Generated Interference on ARM Multicore Platforms. In Next Generation Real-Time Embedded
Systems (NG-RES), volume 108, pages 2:1–2:13, 2023.

https://newsroom.arm.com/news/arm-delivers-record-revenues-and-record-profits-in-fy21
https://newsroom.arm.com/news/arm-delivers-record-revenues-and-record-profits-in-fy21
https://www.digikey.com/en/articles/why-and-how-to-get-started-with-multicore-microcontrollers
https://www.digikey.com/en/articles/why-and-how-to-get-started-with-multicore-microcontrollers
https://www.irit.fr/rtns2019/wp-content/uploads/2019/11/bertogna_keynote.pdf

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:23

8 Miguel Costa, Diogo Costa, Tiago Gomes, and Sandro Pinto. Shifting capsule networks from
the cloud to the deep edge. ACM Transactions on Intelligent Systems and Technology, 13(6),
September 2022.

9 Dakshina Dasari, Benny Akesson, Vincent Nélis, Muhammad Ali Awan, and Stefan M. Petters.
Identifying the Sources of Unpredictability in COTS-based Multicore Systems. In IEEE
International Symposium on Industrial Embedded Systems (SIES), pages 39–48, 2013.

10 Kinjal Dave. Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor
Systems for Rich Embedded Applications. In Embedded World Conference, 2017.

11 Jack Ganssle. On Wait States, 2015. URL: https://www.embedded.com/on-wait-states/.
12 Hamed HaddadPajouh, Ali Dehghantanha, Reza M. Parizi, Mohammed Aledhari, and Hadis

Karimipour. A Survey on Internet of Things Security: Requirements, Challenges, and Solutions.
Internet of Things, 14:100129, 2021.

13 Přemysl Houdek, Michal Sojka, and Zdeněk Hanzálek. Towards Predictable Execution Model
on ARM-based Heterogeneous Platforms. In International Symposium on Industrial Electronics
(ISIE), pages 1297–1302, 2017.

14 Infineon. PSoC 6 MCU: CY8C63x6, CY8C63x7 Architecture Technical Reference Manual,
2020.

15 Gideon Intrater. On Wait States, 2019. URL: https://embeddedcomputing.com/technology
/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-cod
e-and-performance-requirements-of-edge-iot-and-ai.

16 Dan Iorga, Tyler Sorensen, John Wickerson, and Alastair F. Donaldson. Slow and Steady:
Measuring and Tuning Multicore Interference. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 200–212, 2020.

17 Ian Johnson Joseph Yiu. Multi-core Microcontroller Design with Cortex-M Processors and
CoreSight SoC. Technical report, Arm, 2013.

18 Chung Hwan Kim, Taegyu Kim, Hongjun Choi, Zhongshu Gu, Byoungyoung Lee, X. Zhang,
and Dongyan Xu. Securing Real-Time Microcontroller Systems through Customized Memory
View Switching. In Network and Distributed System Security Symposium (NDSS), 2018.

19 Tomasz Kloda, Marco Solieri, Renato Mancuso, Nicola Capodieci, Paolo Valente, and Marko
Bertogna. Deterministic Memory Hierarchy and Virtualization for Modern Multi-Core Embed-
ded Systems. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 1–14, 2019.

20 Angeliki Kritikakou, Claire Pagetti, Olivier Baldellon, Matthieu Roy, and Christine Rochange.
Run-Time Control to Increase Task Parallelism In Mixed-Critical Systems. In Euromicro
Conference on Real-Time Systems (ECRTS), pages 119–128, 2014.

21 Angeliki Kritikakou, Christine Rochange, Madeleine Faugère, Claire Pagetti, Matthieu Roy,
Sylvain Girbal, and Daniel Gracia Pérez. Distributed Run-Time WCET Controller for
Concurrent Critical Tasks in Mixed-Critical Systems. In International Conference on Real-
Time Networks and Systems (RTNS), pages 139–148, 2014.

22 Tamara Lugo, Santiago Lozano, Javier Fernández, and Jesus Carretero. A Survey of Techniques
for Reducing Interference in Real-Time Applications on Multicore Platforms. IEEE Access,
10:21853–21882, 2022.

23 Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer, and Robert I.
Davis. A Survey of Timing Verification Techniques for Multi-Core Real-Time Systems. ACM
Computing Surveys, 52(3), 2019.

24 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo
Pellizzoni. Real-Time Cache Management Framework for Multi-Core Architectures. In
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54, 2013.

25 José Martins and Sandro Pinto. Shedding Light on Static Partitioning Hypervisors for Arm-
based Mixed-Criticality Systems. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2023.

ECRTS 2024

https://www.embedded.com/on-wait-states/
https://embeddedcomputing.com/technology/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-code-and-performance-requirements-of-edge-iot-and-ai
https://embeddedcomputing.com/technology/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-code-and-performance-requirements-of-edge-iot-and-ai
https://embeddedcomputing.com/technology/storage/execute-in-place-xip-an-external-flash-architecture-ideal-for-the-code-and-performance-requirements-of-edge-iot-and-ai

5:24 Shared Resource Contention in MCUs: A Reality Check and the Quest for Timeliness

26 José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto. Bao: A
Lightweight Static Partitioning Hypervisor for Modern Multi-Core Embedded Systems. In
Next Generation Real-Time Embedded Systems (NG-RES), volume 77, pages 3:1–3:14, 2020.

27 Paolo Modica, Alessandro Biondi, Giorgio Buttazzo, and Anup Patel. Supporting temporal
and spatial isolation in a hypervisor for ARM multicore platforms. In International Conference
on Industrial Technology (ICIT), pages 1651–1657, 2018.

28 Fabio Montagna, Giuseppe Tagliavini, Davide Rossi, Angelo Garofalo, and Luca Benini.
Streamlining the openmp programming model on ultra-low-power multi-core mcus. In In-
ternational Conference on Architecture of Computing Systems (ARCS), volume 12800, pages
167–182, 2021.

29 NXP. LPC55S6x/LPC55S2x/LPC552x User manual, 2022.
30 Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. MCU Contention Evaluation

Framework. Software, version 0.1., swhId: swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471
aa5790 (visited on 2024-06-19). URL: https://github.com/danielRep/mcu-tpa-eval.

31 Daniel Oliveira, Weifan Chen, Sandro Pinto, and Renato Mancuso. Investigating and Mitigating
Contention on Low-End Multi-Core Microcontrollers. In Real-time And IntelliGent Edge
Computing Workshop (RAGE), pages 221–226, 2023.

32 David Patterson, Jeremy Bennett, Palmer Dabbelt, Cesare Garlati, G. S. Madhusudan,
and Trevor Mudge. Embench: A Modern Embedded Benchmark Suite. URL: https:
//www.embench.org/.

33 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst Case Delay Analysis for Memory Interference in Multicore Systems. In Design, Auto-
mation & Test in Europe Conference & Exhibition (DATE), pages 741–746, 2010.

34 Sandro Pinto, Hugo Araujo, Daniel Oliveira, José Martins, and Adriano Tavares. Virtualization
on TrustZone-Enabled Microcontrollers? Voilà! In Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 293–304, 2019.

35 Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and
Francisco J. Cazorla. On the Evaluation of the Impact of Shared Resources in Multithreaded
COTS Processors in Time-Critical Environments. ACM Transactions on Architecture and
Code Optimization, 8(4), 2012.

36 Grand View Research. Microcontroller Market Size & Share and Trends Analysis Report By
Product (8-bit, 16-bit, 32-bit), By Application (Consumer Electronics & Telecom, Automotive,
Industrial, Medical Devices, Aerospace & Defense), By Region, And Segment Forecasts, 2023 -
2030, 2022. URL: https://www.grandviewresearch.com/industry-analysis/microcontr
oller-market.

37 Precedence Research. Microcontroller (MCU) Market - Global Market Size, Trends Analysis,
Segment Forecasts, Regional Outlook 2023 - 2032, 2023. URL: https://www.precedencerese
arch.com/microcontroller-mcu-market.

38 Cristiano Rodrigues, Daniel Oliveira, and Sandro Pinto. BUSted!!! Microarchitectural Side-
Channel Attacks on the MCU Bus Interconnect. In Security and Privacy (S&P), pages 62–62,
2024.

39 Ahsan Saeed, Dakshina Dasari, Dirk Ziegenbein, Varun Rajasekaran, Falk Rehm, Michael
Pressler, Arne Hamann, Daniel Mueller-Gritschneder, Andreas Gerstlauer, and Ulf Schlicht-
mann. Memory Utilization-Based Dynamic Bandwidth Regulation for Temporal Isolation in
Multi-Cores. In Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 133–145, 2022.

40 Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico Mezzetti, and Francisco J.
Cazorla. Leveraging Hardware QoS to Control Contention in the Xilinx Zynq UltraScale+
MPSoC. In Euromicro Conference on Real-Time Systems (ECRTS), volume 196, pages
3:1–3:26, 2021.

41 Haoqi Shan, Dean Sullivan, and Orlando Arias. When Memory Mappings Attack: On the
(Mis)use of the ARM Cortex-M FPB Unit. In Asian Hardware Oriented Security and Trust
Symposium (AsianHOST). IEEE, 2023.

https://archive.softwareheritage.org/swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471aa5790;origin=https://github.com/danielRep/mcu-tpa-eval;visit=swh:1:snp:0830cfc1ab9c1a89b90af8d1f5cfbd34009f6593;anchor=swh:1:rev:491481ac0a296ec2f9fa62acce39b2e717f79f46
https://archive.softwareheritage.org/swh:1:dir:ac8ce99c9ea41bf6dba2aaa197f4bda471aa5790;origin=https://github.com/danielRep/mcu-tpa-eval;visit=swh:1:snp:0830cfc1ab9c1a89b90af8d1f5cfbd34009f6593;anchor=swh:1:rev:491481ac0a296ec2f9fa62acce39b2e717f79f46
https://github.com/danielRep/mcu-tpa-eval
https://www.embench.org/
https://www.embench.org/
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://www.grandviewresearch.com/industry-analysis/microcontroller-market
https://www.precedenceresearch.com/microcontroller-mcu-market
https://www.precedenceresearch.com/microcontroller-mcu-market

D. Oliveira, W. Chen, S. Pinto, and R. Mancuso 5:25

42 Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens, Mario Polino, Audrey
Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel, and Giovanni
Vigna. SoK: (State of) The Art of War: Offensive Techniques in Binary Analysis. In Security
and Privacy (S&P), 2016.

43 Soham Sinha, Richard West, and Ahmad Golchin. PAStime: Progress-Aware Scheduling for
Time-Critical Computing. In Euromicro Conference on Real-Time Systems (ECRTS), volume
165, pages 3:1–3:24, 2020.

44 Parul Sohal, Rohan Tabish, Ulrich Drepper, and Renato Mancuso. E-WarP: A System-
wide Framework for Memory Bandwidth Profiling and Management. In Real-Time Systems
Symposium (RTSS), pages 345–357, 2020.

45 Statista. Microcontroller Unit (MCU) Market Revenues from 2005 to 2021 by Type. Technical
report, Statista, 2021.

46 Ashley Stevens. Quality of Service (QoS) in ARM Systems: An Overview. Technical report,
Arm, 2014.

47 STMicroelectronics. STM32L42xxx advanced Arm-based 32-bit MCUs, 2018.
48 Xi Tan, Zheyuan Ma, Sandro Pinto, Le Guan, Ning Zhang, Jun Xu, Zhiqiang Lin, Hongxin Hu,

and Ziming Zhao. Where’s the “up”?! A Comprehensive (bottom-up) Study on the Security
of Arm Cortex-M Systems, 2024. arXiv:2401.15289.

49 Ken Tindell. Raspberry Pi Pico Priority Inversion, 2021. URL: https://kentindell.github.
io/2021/03/05/pico-priority-inversion/.

50 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming Non-Blocking Caches to
Improve Isolation in Multicore Real-Time Systems. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2016.

51 Joseph Yiu. Definitive Guide to Arm Cortex-M23 and Cortex-M33 Processors. Newnes, 1st
edition, 2021.

52 Heechul Yun, Renato Mancuso, Zheng-Pei Wu, and Rodolfo Pellizzoni. PALLOC: DRAM
bank-aware memory allocator for performance isolation on multicore platforms. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 155–166, 2014.

53 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. MemGuard:
Memory bandwidth reservation system for efficient performance isolation in multi-core plat-
forms. In Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
55–64, 2013.

54 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memory Bandwidth
Management for Efficient Performance Isolation in Multi-Core Platforms. IEEE Transactions
on Computers, 65(2):562–576, 2016.

55 Matteo Zini, Giorgiomaria Cicero, Daniel Casini, and Alessandro Biondi. Profiling and
controlling I/O-related memory contention in COTS heterogeneous platforms. Software:
Practice and Experience, 52(5):1095–1113, 2022.

56 Alexander Zuepke, Andrea Bastoni, Weifan Chen, Marco Caccamo, and Renato Mancuso.
MemPol: Policing Core Memory Bandwidth from Outside of the Cores. In Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 235–248, 2023.

ECRTS 2024

https://arxiv.org/abs/2401.15289
https://kentindell.github.io/2021/03/05/pico-priority-inversion/
https://kentindell.github.io/2021/03/05/pico-priority-inversion/

	1 Introduction
	2 Motivation: The Contention Problem in MCUs
	2.1 Scope and Platform Model
	2.2 Potential Sources of Contention
	2.3 Methodology and Experimental Setup
	2.4 Evidence Results

	3 µTPArtc: A MCU-powered TPA-based Mechanism
	3.1 Background
	3.2 System Overview
	3.2.1 Offline Profiling Step
	3.2.2 Online Monitoring Mechanism

	3.3 System Implementation

	4 Evaluation
	4.1 Performance Overhead and Memory Considerations
	4.2 Use-case: Controlled Performance Degradation

	5 Discussion
	6 Related Work
	7 Conclusion

