
Optimizing Per-Core Priorities to Minimize
End-To-End Latencies
Francesco Paladino #

Scuola Superiore Sant’Anna, Pisa, Italy

Alessandro Biondi #

Scuola Superiore Sant’Anna, Pisa, Italy

Enrico Bini #Ñ

University of Turin, Italy

Paolo Pazzaglia #

Robert Bosch GmbH, Corporate Research, Renningen, Germany

Abstract
Logical Execution Time (LET) allows decoupling the schedule of real-time periodic tasks from their
communication, with the advantage of isolating the communication pattern from the variability of
the schedule. However, when such tasks are organized in chains, the usage of LET at the task level
does not necessarily transfer the same LET properties to the chain level.

In this paper, we extend a LET-like model from tasks to chains spanning over multiple cores. We
leverage the designed constant latency chains to optimize per-core priority assignment. Finally, we
also provide a set of heuristic algorithms, that are compared in a large-scale experimental evaluation.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded and cyber-physical systems; Software and its engineering →
Multiprocessing / multiprogramming / multitasking; Software and its engineering → Real-time
schedulability

Keywords and phrases Cause-Effect Chains, Logical Execution Time, End-to-End Latency, Design
Optimization, Task Priorities, Data Age, Reaction Time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.6

Funding Enrico Bini: Partially supported by the spoke “FutureHPC and BigData” of the ICSC –
Centro Nazionale di Ricerca in High-Performance Computing, Big Data and Quantum Computing
funded by European Union – NextGenerationEU

1 Introduction

Multicore real-time systems are commonly developed by distributing tasks among the available
cores. It is quite rare that real-world applications include independent tasks only: rather, as
for instance witnessed by automotive benchmarks [38], they tend to be involved in a series of
producer-consumer relationships that define cause-effect task chains [22]. A chain of tasks
generally starts by sampling and processing an input of the system (e.g., produced by a
sensor or another system connected by a network), proceeds by traversing a series of tasks
that process the data produced by the previous task in the chain, and terminates with the
production of a system output (e.g., in the form of a control output for an actuator or a
network message for another system).

The deployment of real-time applications requires to bound the end-to-end latency for task
chains [18], which represent the most stringent constraint in some systems [21, 26]. Studying
the dependency of the end-to-end latency on the parameters of the tasks that compose the
chain is not trivial. Indeed, even if adopting the Logical Execution Time (LET) [32] paradigm

© Francesco Paladino, Alessandro Biondi, Enrico Bini, and Paolo Pazzaglia;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 6; pp. 6:1–6:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francesco.paladino@santannapisa.it
https://orcid.org/0009-0009-0903-1149
mailto:alessandro.biondi@santannapisa.it
https://orcid.org/0000-0002-6625-9336
mailto:enrico.bini@unito.it
http://www.di.unito.it/~bini/
https://orcid.org/0000-0001-9205-584X
mailto:paolo.pazzaglia@de.bosch.com
https://orcid.org/0000-0003-0377-3327
https://doi.org/10.4230/LIPIcs.ECRTS.2024.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

times

Response
parameters

LET

latencies

End−to−end
Priorities

Figure 1 The approach followed in this work.

to allow tasks producing outputs in constant, logical times, the end-to-end latency of a task
chain may vary significantly at run time [12]. Computing tight bounds or exact values for
end-to-end latency measures is also complex from a computational perspective [28].

As such, if one intends to optimize the deployment of a real-time application, it becomes
particularly challenging to explore the design space of the task set parameters to find a
solution that, for instance, minimizes end-to-end latency for a set of chains. Nevertheless, the
optimization of relevant parameters such as the tasks’ priorities can significantly influence
end-to-end latency measures [16, 53] and is hence worth to be investigated in detail.

Contribution. This paper tackles the problem of computing optimized priority assignments
for real-time tasks, running onto a multicore platform under partitioned fixed-priority
scheduling, which minimize a latency-dependent objective function. A generalized LET
model [45, 42] is used so that tasks are allowed to publish outputs at or after their response
time. In this context, the selection of priorities determines the LET parameters of tasks,
which in turn affect end-to-end latency metrics (see Figure 1). The paper shows how to
build constant-latency chains, which allow computing exact end-to-end latency measures in
polynomial time (Section 4). This efficient construction is the enabler of a feasible exploration
of the design space of priorities. Experiments also show that constant-latency chains increase
the latency measures by a small amount. Remarkably, the regularity of the pattern of
constant-latency chains may also reduce some metrics. An optimal priority assignment
algorithm for tasks involved in constant-latency chains is then presented (Section 5). Finally,
heuristic algorithms for priority assignment are presented (Section 6). Both the optimal and
heuristic algorithms are validated by experiments.

2 Model

2.1 Tasks and communication
The application is modeled by a set of periodic tasks, denoted by T . We denote a task with τi

and the number of tasks by N = |T |. Starting from a start-up instant, each task τi releases
a job every period Ti. We assume that the indices of jobs belong to N, the set of natural
numbers including 0.

Tasks communicate by means of shared memory. Each job j ∈ N of τi performs the
following operations, in this order:
1. it reads the input data from shared memory at the read instant rdi(j);
2. it performs its computations; and
3. it writes the output data in shared memory at the write instant wri(j), making it available

to other tasks.

This work focuses on a generalization of the Logical Execution Time (LET) paradigm to
implement inter-task communication, inspired by previous works like [24, 47, 45], where data
reads and data writes are performed at fixed instants, but not necessarily at the start and
end of the task periods. We allow any protocol for managing the shared memory, as long as
(i) read/write operations are non-blocking, (ii) the data is available to the consumer(s) only

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:3

0 1 2 3 4 5 6 7 8 9 10 11 12 13−1−2

0 1 2
τ1

θ
w

1θ
r

1

T1T1

Figure 2 Representing the communication instants of the LET task τ1 = ⟨6,−2, 3⟩. According to
Eq. (1): rd1(0) = −2, rd1(1) = 4, . . . and wr1(0) = 3, wr1(1) = 9, and so on.

Table 1 Summary of notations.

Symbol Interpretation

Ta
sk

s

τi Task
T Set of tasks

N = |T | Number of tasks
Ti Period of task τi

Ci WCET of task τi

Ri Response time of task τi

rdi(j) Read instant of job j of τi

wri(j) Write instant of job j of τi

θr
i Read phasing of τi

θw
i Write phasing of τi

Symbol Interpretation

C
or

es m Number of cores
Tk Set of tasks mapped to core k

pri(i) Priority of task τi

C
ha

in
s

γ Chain (function or enumeration)
γ(z) Index of task at position z in chain γ

κi Occurrences of τi in any chain
Jγ Set of jobs of γ

Jγ(ℓ) ℓ-th job of the chain γ

when the producer task has completed the write operation, and (iii) each write operation by
the same task overwrites the previously written data, thus read operations will only access
the last written data. Note that these requirements hold in AUTOSAR implementations of
the LET paradigm [13].

Under the considered generalized LET paradigm, the read/write instants of the jobs of τi

(enumerated with index j) are fixed and can be written as

rdi(j) = j Ti + θr
i, wri(j) = j Ti + θw

i , (1)

with θr
i representing the read phasing of τi, θw

i representing the write phasing of τi, and job j

of task τi executing (and completing its execution) between rdi(j) and wri(j).
The phasings θr

i and θw
i , also called offsets and task deadlines in other works, may in

principle take any value in R, provided that causality holds, i.e., θw
i ≥ θr

i. Our definition allows
negative values for the phasings. We remark that the “time 0” has no special interpretation
here (such as the typical “critical instant”), i.e. having the read instant at negative time
does not invalidate our contribution. Also, one may add an arbitrarily large number to all
phasings to make them all positive, without affecting the correctness of the paper. Since
we are only interested in how task τi communicates with the others, we represent it by
the tuple τi = ⟨Ti, θr

i, θw
i ⟩. Under the original definition of LET [32, 35], all tasks are

τi = ⟨Ti, 0, Ti⟩, with reads and writes occurring at the beginning and end of the tasks’
periods, respectively. This work hence considers a more general interpretation of LET where
the read and write phases are arbitrary, but anyway constant. The read and write phases
are the “LET parameters” cited in Figure 1 which, as detailed in the next sections, impact
end-to-end latency metrics. Figure 2 shows an example of the communication instants of a
LET task.

Every job j of task τi has a worst-case execution time (WCET) Ci, which is the longest
CPU time needed to complete any job. Tasks execute over a multicore architecture comprising
m cores. Tasks are partitioned over the m cores and Tk ⊆ T denotes the partition of tasks

ECRTS 2024

6:4 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

30 31 32 33 34 3510 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6

0 1 2 3 4 5 6 7 8 9

τ1

τ2

τ3

rdγ(0) rdγ(1) rdγ(2) rdγ(3) rdγ(4) rdγ(5) rdγ(6)

wrγ(0) wrγ(1) wrγ(2) wrγ(3)

Figure 3 The jobs of chain γ = [τ1, τ2, τ3] with τ1 = ⟨5, 0, 4⟩, τ2 = ⟨3, 1, 3⟩, and τ3 = ⟨4, 1, 4⟩.
The set of chain jobs is Jγ = {(0, 1, 2), (1, 3, 3), (3, 6, 5), (4, 8, 7), . . .} and the task jobs are drawn
in black only if they belong to some chain job in Jγ , otherwise they are drawn in gray. The
depicted chain jobs are Jγ(0) = (0, 1, 2), Jγ(1) = (1, 3, 3), Jγ(2) = (3, 6, 5), and so on. Also, we use
this example to illustrate the four latencies of Section 2.3. The maximum of DLF

γ occurs at the
job chain Jγ(6) = (7, 13, 11) with rdγ(6) = rd1(7) = 35 and wrγ(6) = wr3(11) = 48 (beyond the
schedule represented above). This job chain yields the value of DLF

γ = 48 − 35 = 13. With the
same logic, we find DFF

γ = 19 for job Jγ(2) = (3, 6, 5) and DLL
γ = 19 for job Jγ(1) = (1, 3, 3) of the

chain. Finally, DFL
γ = 27 occurring for Jγ(2) = (3, 6, 5) and is found from rdγ(1) = rd1(1) = 5 to

wrγ(3) = wr3(7) = 32.

assigned to core k. Within each core, tasks are scheduled by any fixed-priority algorithm.
Each task τi is assigned a priority denoted by pri(i). A low value of pri(i) indicates a high
priority.

We denote with Ri the worst-case response time of τi, computed with the standard
iterative procedure [34, 2]. Then, since the output data is written at the completion of the
jobs, the LET mechanism must be designed such that:

θw
i ≥ Ri + θr

i. (2)

2.2 Task chains
A task chain γ is an ordered sequence of Nγ ≥ 1 tasks, and the set of all chains is denoted
by Γ. We equivalently represent a chain γ in two ways:

By enumerating its tasks as γ = [τa, τb, τc, . . .] in the order they appear in the chain.
By a function γ : {1, . . . , Nγ} → {1, . . . , N} such that γ(z) is the index of the task in
position z along the chain, i.e. τγ(1) is the first task of the chain.

In the chain γ, for any z = 1, . . . , Nγ − 1, the task τγ(z) writes some data that is read by
τγ(z+1). The last task τγ(Nγ) writes its output to the external environment. For instance, if
task τi is the third task of γ and the first one in γ′, then γ(3) = γ′(1) = i. Note that the
same task τi ∈ T may belong to more chains, while a task can appear at most once in a
chain. For any pair of chains γ and γ′, we use [γ, γ′] to denote the concatenation of the two
chains, i.e. if γ = [τa, τb, τc] and γ′ = [τx, τy], then [γ, γ′] = [τa, τb, τc, τx, τy]. Finally, we use

κi =
∣∣{(γ, z) : γ(z) = i}

∣∣, (3)

to count the number of chains in which task τi appears.
Like tasks, chains have jobs too and Jγ ⊂ NNγ denotes the set of all jobs of the chain γ.

Informally speaking, given a chain γ, a job (j1, . . . , jNγ) belongs to Jγ as long as:
for any z = 1, . . . , Nγ , jz is the index of a job of τγ(z),
for any z = 1, . . . , Nγ − 1, the job jz+1 is the earliest job of τγ(z+1) reading the data
written by the job jz of task τγ(z),
for any pair of chain jobs (j1, . . . , jNγ

), (j′
1, . . . , j′

Nγ
) ∈ Jγ , j1 = j′

1 if and only if jNγ
= j′

Nγ
.

Figure 3 shows an example of Jγ for a 3-task chain. The interested reader can find the
formal definition in [46], which is also related to another common model, namely immediate
forward job chains (see e.g., [20, 28, 27]).

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:5

The jobs in Jγ are totally ordered as they follow the total order of task jobs. Also, Jγ has
a minimal element corresponding to the tuple with smallest job indices. We denote such a
minimal element in Jγ as Jγ(0), and following the total order over the discrete set Jγ , we
denote by Jγ(1), Jγ(2), and so on all following chain jobs.

The definitions of read/write instants of Section 2.1 can now be naturally extended to
any chain γ by considering the read instant of the first task τγ(1) in γ and the write instant
of the last one τγ(Nγ). More formally, for any chain γ, we define the read and write instants
of the ℓ-th job of the chain γ as

Jγ(ℓ) = (j1, j2, . . . , jNγ
) ⇒

{
rdγ(ℓ) = rdγ(1)(j1)
wrγ(ℓ) = wrγ(Nγ)

(
jNγ

)
,

(4)

meaning that the read instant of the ℓ-th chain job, with Jγ(ℓ) = (j1, j2, . . . , jNγ
), is the

read instant of the j1-th job of the first task τγ(1) of γ, whereas its write instant is the write
instant of the jNγ -th job of the last task of γ.

The read and write instants of chain jobs are instrumental for the definition of all the
four end-to-end latencies of chains, as shown in next section.

2.3 End-to-end latency
This work allows four different definitions for the maximum end-to-end latency of task
chains [22], which are listed below.

The Last-to-First latency DLF
γ represents the measure of the maximum reaction time of

a task chain, from the last time an input of the chain is read until the first time the
corresponding output of the chain is produced. Formally, it is defined as

DLF
γ = max

ℓ∈N
{wrγ(ℓ)− rdγ(ℓ)} . (5)

The First-to-First latency DFF
γ extends DLF

γ by accounting for the input sampling delay,
i.e., coping with the largest amount of time a chain is not detecting a new input at the
beginning of the chain. Formally, it is defined as

DFF
γ = max

ℓ∈N
{wrγ(ℓ)− rdγ(ℓ− 1)} , (6)

to account for the earliest time after which the input of the chain can change before being
sampled by the ℓ-th job of the chain.
The Last-to-Last latency DLL

γ encodes the maximum data age, i.e., the longest time for
which an input can affect the output of a chain, and is formally defined as

DLL
γ = max

ℓ∈N
{wrγ(ℓ + 1)− rdγ(ℓ)} . (7)

The First-to-Last latency DFL
γ extends DLL

γ by accounting for the input sampling delay
as DFF

γ does, hence defined by

DFL
γ = max

ℓ∈N
{wrγ(ℓ + 1)− rdγ(ℓ− 1)} . (8)

Figure 3 reports the values of the four latencies for a task chain given as an example. The
definitions of First-to-Last and Last-to-Last latency slightly differ from those proposed in [22]
by accounting for the longest time the data produced by a chain remain eligible for being
used (before they will be overwritten by the next chain job). This makes the above definitions
more expressive and composable. Nevertheless, the definitions from [22] can be obtained by
subtracting the period of the last task in the chain from the corresponding latency value.

ECRTS 2024

6:6 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

In the trivial case of a chain γ = [τi] composed of one task τi only, by exploiting:
the above definitions of Equations (5)–(8)
the fact that rdγ(j) = rdi(j) and wrγ(j) = wri(j), and
the expressions of rdi(j) and wri(j) of (1),

we can extend the definition of the chain latencies to the case of a single task τi only. Hence,
we define the per-task latencies DLF

i , DFF
i , DLL

i , and DFL
i as follows

DLF
i = DLF

[τi] = max
j∈N

{
wri(j)− rdi(j)} = max

j∈N

{
jTi + θw

i − (jTi + θr
i)

}
= θw

i − θr
i

DFF
i = DFF

[τi] = θw
i − θr

i + Ti = DLF
i + Ti

DLL
i = DLL

[τi] = θw
i − θr

i + Ti = DLF
i + Ti

DFL
i = DFL

[τi] = θw
i − θr

i + 2Ti = DLF
i + 2Ti.

(9)

3 Problem statement and approach

As illustrated qualitatively in Figure 1 and described in greater detail later in Section 5, the
assignment of priorities to the tasks of the chain affects the response times of such tasks,
which in turn drive the designed values of the read and write phasings (i.e., the generalized
LET parameters satisfying Eqs. (1) and (2)) and thus the latency of the chains.

Given a set Γ of task chains, this work is concerned with finding a priority assignment for
all tasks in the system that minimizes the objective function∑

γ∈Γ
f

(
DLF

γ , DFF
γ , DLL

γ , DFL
γ

)
. (10)

The above function is representative of a general latency-dependent metric that one may
want to optimize. A concrete definition will be considered later in Section 5.

To reach this goal, the next section shows how to transform each chain γ ∈ Γ into a
chain γ∗ with constant latency under all definitions provided in Section 2.3. Besides extending
the LET paradigm to task chains, making it possible to leverage the benefits of LET (no jitter,
composability, etc.) also at the chain level, this approach also has the advantage of enabling
a very efficient computation of exact end-to-end latency measures with an algorithm that
has O(Nγ log(maxi:τi∈γ{Ti})) complexity. Furthermore, we will prove that constant-latency
chains have latency bounded by a closed-form expression that allows constructing efficient
heuristics. These properties make the exploration of the priority space very efficient whenever
a design is concerned with the optimization of latency-dependent objective functions.

4 Building constant latency chains

LET tasks have constant latency. It is disappointing that chains of LET tasks do not,
whichever definition among the ones of Section 2.3 is used. A recent work [12] showed that
the introduction of a properly designed “copier” task (hereafter called publisher to recall
its basic work of publishing data to the readers) in a chain of two tasks does eliminate
the jitter, hence making the corresponding end-to-end latency constant. Ensuring such
property is particularly unique in the spectrum of other prominent state-of-the-art works
such as [16, 17, 55], where the target is instead optimizing the average end-to-end latencies.

Publisher tasks are logical activities (i.e., they do not necessarily have to be implemented
as application tasks) that are in charge of periodically fetching or publishing data along the
chain, with their own timing. Their computation time is therefore negligible. For the purposes

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:7

of this work, it is convenient to first provide a generalization of the jitter removal approach
from chains of two tasks, to chains with an arbitrary number of tasks. This generalization
is a new contribution made by this work as it was only hinted as possible in [12], without
providing a formal method, algorithms, and proofs. Further details on how this work differs
from [12] are reported in Section 7.

They key benefits of this approach are twofold:
It makes the computation of end-to-end latency metrics particularly efficient, hence
enabling the design of latency-dependent optimization.
It allows the extension of the LET paradigm to any chain while not increasing, on average,
the end-to-end latency metrics.

Next, we first recall the previous result [12] targeting a chain of two tasks, and then we
demonstrate how to extend it to a chain with a generic number of tasks.

4.1 Chain of two tasks
First, we introduce some needed basic operators: gcd(x, y) is the greatest common divisor of
any two integers x and y and ⌊x⌋m is the remainder of the integer division of x by m, so
that 0 ≤ ⌊x⌋m ≤ m− 1 and x = q m + ⌊x⌋m for some q ∈ Z.

Following [12], the jitter of any chain of two LET tasks γ = [τa, τb] can be eliminated by
adding a third publisher task τpub = ⟨Tpub, θr

pub, θw
pub⟩, attached to γ to form the extended

chain γ∗. As formally stated next, the publisher task τpub for a 2-task chain γ = [τa, τb] has
always the largest period Tpub = max{Ta, Tb} among the two tasks and:

when Ta < Tb, it is attached before τa to “slow down” the data fetched by τa,
when Ta > Tb, it is appended after τb to prevent publishing redundant data produced
by τb,
when Ta = Tb, it does not change the chain which already has constant latency.

▶ Definition 1 (Theorems 4 and 5 from [12]). Given γ = [τa, τb], let G = gcd(Ta, Tb). Then,
the publisher task τpub = ⟨Tpub, θr

pub, θw
pub⟩ and the corresponding chain γ∗ extended with τpub

are defined as follows:
the period of τpub is

Tpub = max{Ta, Tb} (11)

if Ta ≥ Tb, then γ∗ = [γ, τpub], that is τpub is appended after γ, where τpub has phases

θr
pub = θw

pub = −θr
b + θw

a + ⌊θr
b − θw

a ⌋G −G + θw
b + Tb (12)

otherwise, γ∗ = [τpub, γ], that is τpub is attached before γ, where τpub has phases

θr
pub = θw

pub = θr
b − θw

a − ⌊θr
b − θw

a ⌋G + G + θr
a − Ta. (13)

The name “publisher” follows from the coincidence of the read and write phasings of τpub:
such a task makes a simple data copy and it could also be implemented by some low level
mechanism (without requiring a real OS task).

As shown in [12], the advantage of the chain γ∗ with the publisher task τpub over the
original chain γ is that, by construction, its first and last (third) tasks τγ∗(1) and τγ∗(3),
respectively, have the same period Tpub of (11). This, combined with the particular choice of
the phases of τpub set by Equations (12) and (13) guarantees that (i) the output of each job
of τγ∗(1) is always read by some job of τγ∗(2) and that (ii) all the values of τγ∗(1) are further

ECRTS 2024

6:8 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

Algorithm 1 The publisher of a chain of two tasks.

1: function publisher(τa, τb)
2: Tpub ← max{Ta, Tb} ▷ from Eq. (11)
3: G← gcd(Ta, Tb)
4: θ′ ← ⌊θr

b − θw
a⌋G − θr

b + θw
a −G ▷ Eqs. (12), (13)

5: if Ta ≥ Tb then
6: θr

pub ← θw
pub ← θ′ + θw

b + Tb ▷ Eq. (12)
7: τpub ← ⟨Tpub, θr

pub, θw
pub⟩

8: pos← “tail” ▷ publisher after τb

9: τeq ← ⟨Tpub, θr
a, θw

pub⟩
10: else
11: θr

pub ← θw
pub ← −θ′ + θr

a − Ta ▷ Eq. (13)
12: τpub ← ⟨Tpub, θr

pub, θw
pub⟩

13: pos← “head” ▷ publisher before τa

14: τeq ← ⟨Tpub, θr
pub, θw

b ⟩
15: return

(
τpub, pos, τeq

)
propagated to τγ∗(3), such that two consecutive jobs of τγ∗(3) never read the same input value
propagated from τγ∗(1), formally ∀j1 ∈ N, ∃(j1, j2, j3) ∈ Jγ∗ , for some unique j2, j3. This
means that the resulting chain γ∗ has the same read/write instants of a periodic LET task.

▶ Lemma 2. Given a chain γ = [τa, τb], the chain γ∗ of Definition 1 has the same read and
write instants of the LET task τeq = ⟨Tγ∗ , θr

γ∗ , θw
γ∗⟩, with

Tγ∗ = max{Ta, Tb} (14)

θr
γ∗ =

{
θr

a if Ta ≥ Tb

θr
pub of Eq. (13) otherwise,

(15)

θw
γ∗ =

{
θw

pub of Eq. (12) if Ta ≥ Tb

θw
b otherwise.

(16)

Proof. From the construction of γ∗ of Definition 1, it is always the case that Tγ∗(1) =
Tγ∗(3) = max{Ta, Tb} and Tγ∗(2) = min{Ta, Tb}. Then, any pair of consecutive jobs Jγ∗(j)
and Jγ∗(j + 1) of the chain γ∗ have read and write instants separated by exactly Tγ∗ , which
proves (14).

If Ta ≥ Tb then, from Definition 1, γ∗ = [γ, τpub]. This implies that θr
γ∗ is the read

phasing of the first task of γ∗, which is τγ∗(1) = τa. Hence θr
γ∗ = θr

a. The last task of γ∗ is
the publisher τpub and then θw

γ∗ = θw
pub of Equation (12).

On the other hand, if Ta ≤ Tb, then γ∗ = [τpub, γ], which implies that θw
γ∗ = θw

b and
θr

γ∗ = θr
pub of Eq. (13). This concludes the proof. ◀

We provide here Algorithm 1, which translates Lemma 2 and Definition 1 into a con-
structive form, by returning

the publisher task τpub,
its position “head” or “tail” along the chain, and
the LET task τeq equivalent to the constant latency chain.

The time complexity is O(log(max{Ta, Tb})), which is polynomial, due to the complexity of
computing the greatest common divisor G with Euclid’s algorithm.

The next corollary, instead, determines the analytical expression of the Last-to-First
latency of γ∗ found from the two-task chain [τa, τb].

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:9

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 350 1 2 3 4 5 6 7 8 9

τ1

τ2

τ3

〈4,−3,−3〉

〈5, 14, 14〉

rdγ∗(0) rdγ∗(1) rdγ∗(2) rdγ∗(3) rdγ∗(4) rdγ∗(5) rdγ∗(6)

wrγ∗(0) wrγ∗(1) wrγ∗(2) wrγ∗(3) wrγ∗(4)

Figure 4 Constant latency chain γ∗ constructed by constLatChain(γ) of Algorithm 2 from the
same chain γ = [τ1, τ2, τ3] of Figure 3. Upon the recursive invocation of constLatChain(γtail), with
γtail = [τ2, τ3], the returned constant latency chain is γ∗

tail = [⟨4,−3,−3⟩, τ2, τ3], which is equivalent
to τtail = ⟨4,−3, 4⟩. After the invocation of publisher(τ1, τtail) at line 6, the new publisher task
⟨5, 14, 14⟩ needs to be appended to the tail of [τ1, γ∗

tail] so that the returned constant latency chain
from γ is γ∗ = [τ1, ⟨4,−3,−3⟩, τ2, τ3, ⟨5, 14, 14⟩]. The two publisher tasks ⟨4,−3,−3⟩ and ⟨5, 14, 14⟩
are represented by dotted down-arrows. Only the jobs belonging to Jγ∗ are drawn in black, the others
are drawn in grey. Unlike the case of Figure 3, all latencies are constant: DLF

γ∗ = 14, DFF
γ∗ = DLL

γ∗ = 19,
DFL

γ∗ = 24. As also discussed in Section 4.3, publisher tasks may also allow reducing the First-to-Last
latency, which here decreases from DFL

γ = 27, shown earlier in Figure 3, to DFL
γ∗ = 24.

▶ Corollary 3. If γ = [τa, τb], the Last-to-First latency of the chain γ∗ built as in Definition 1
is constant and equal to

DLF
γ∗ = DLF

a + DLF
b + ⌊θr

b − θw
a ⌋G −G + min{Ta, Tb}. (17)

Proof. From Lemma 2, the chain γ∗ has the same read and write instants as the LET task
τeq = ⟨Tγ∗ , θr

γ∗ , θw
γ∗⟩. Hence, from (9), DLF

γ∗ = θw
γ∗ − θr

γ∗ , with θw
γ∗ and θr

γ∗ as in (16) and (15),
respectively.

If Ta ≥ Tb, by taking the difference between θw
γ∗ , which is Eq. (12), and θr

γ∗ = θr
a, we find

DLF
γ∗ = DLF

a + DLF
b + ⌊θr

b − θw
a ⌋G + Tb −G.

Otherwise when Ta < Tb, γ∗ = [τpub, γ] and we take the difference between θw
b and θr

pub of
Eq. (13) and we get

DLF
γ∗ = DLF

a + DLF
b + ⌊θr

b − θw
a ⌋G + Ta −G.

By merging the two cases, we find (17), as required. ◀

Corollary 3 is a fundamental step for the following parts of the paper. To further
strengthen this concept, we will hereafter refer to the chain γ∗ as a constant-latency chain.

4.2 Constant-latency chains with an arbitrary number of tasks
This section builds upon the results presented in Section 4.1 to realize constant-latency chains
from chains with an arbitrary number of tasks.

Starting from the original chain γ, Algorithm 2 returns the pair (γ∗, τeq) of the constant-
latency chain γ∗ and its equivalent LET task τeq. If the chain is made of one task only,
then it already has constant latency (line 3) and it outputs the chain itself and its only
task. Otherwise, the algorithm invokes recursively constLatChain(γtail) (at line 5) and
obtains as output, the constant-latency sub-chain γ∗

tail and the equivalent single task τtail
(their equivalence is proved later in Theorem 4). By exploiting the equivalence between
the chain γtail and the LET task τtail, at line 6 it is invoked publisher(τγ(1), τtail) to obtain
the publisher task τpub, its position pos in the constructed constant latency γ∗ chain, and

ECRTS 2024

6:10 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

Algorithm 2 Building constant-latency chains.

1: function constLatChain(γ)
2: if γ has one task only then
3: return

(
γ, τγ(1)

)
▷ the task itself

4: γtail ← [τγ(2), . . . , τγ(Nγ)] ▷ all tasks but τγ(1)

5:
(
γ∗

tail, τtail
)
← constLatChain(γtail)

6: (τpub, pos, τeq)← publisher(τγ(1), τtail)
7: if pos = “tail” then ▷ publisher is last task
8: γ∗ ← [τγ(1), γ∗

tail, τpub]
9: else ▷ publisher is first task

10: γ∗ ← [τpub, τγ(1), γ∗
tail]

11: T ← T ∪ {τpub} ▷ add the publisher to T
12: return

(
γ∗, τeq

)
the LET task τeq equivalent γ∗. Finally, the last part (lines 7–10) builds the final chain γ∗

by properly concatenating τγ(1), all tasks in γ∗
tail, and the publisher task τpub in the proper

position indicated by pos ∈ {“head”, “tail”}.
Algorithm 2 applies the recursion over the chain γ by splitting between the head τγ(1)

and all other tasks in γtail. Any other recursive invocation (for example, to recursively split
the chain in the middle) is also feasible. Such investigation, however, is narrow in scope and
is not further elaborated in this paper.

Example. We illustrate here an example of invocation of constLatChain(γ) for γ =
[τ1, τ2, τ3] with τ1 = ⟨5, 0, 4⟩, τ2 = ⟨3, 1, 3⟩, and τ3 = ⟨4, 1, 4⟩, the same chain of Figure 3.

γtail ← [τ2, τ3], i.e., the last two tasks of γ

constLatChain([τ2, τ3]) is recursively invoked on γtail
publisher(τ2, τ3) builds the publisher (from Alg. 1) to make [τ2, τ3] a constant latency
chain

τpub = ⟨4,−3,−3⟩ the publisher task
pos = “head” because T2 < T3 implies that τpub is added in such a position, and
τeq = ⟨4,−3, 4⟩ is the LET task equivalent to [τpub, τ2, τ3], from Line 14 of Alg. 1

the values returned by constLatChain([τ2, τ3]) (line 5) are then assigned to γ∗
tail =

[⟨4,−3,−3⟩, τ2, τ3] and τtail = ⟨4,−3, 4⟩
publisher(τ1, τtail) is then invoked to make the final constant-latency chain and returns

the publisher τpub = ⟨5, 14, 14⟩,
its position pos = “tail”, because T1 = 5 > Ttail = 4, and
the equivalent task τeq = ⟨5, 0, 14⟩.

The final chain γ∗ = [τ1, ⟨4,−3,−3⟩, τ2, τ3, ⟨5, 14, 14⟩] is then built (at line 8) by concat-
enating τ1 and γ∗

tail with the last created publisher τpub.

Figure 4 shows the constructed constant-latency chain γ∗.
The next theorem establishes the equivalence between the constant-latency chain γ∗ and

a LET task, and then gives the value Tγ∗ of the period of such a task, which is hence the
periodicity of the whole chain.

▶ Theorem 4. Given the pair
(
γ∗, τeq

)
returned by the invocation of constLatChain(γ)

of Algorithm 2 for γ = [τγ(1), . . . , τγ(Nγ)], the chain γ∗:
has the same read and write instants as the task τeq = ⟨Tγ∗ , θr

γ∗ , θw
γ∗⟩, and

the period is Tγ∗ = maxi=1,...,Nγ
{Tγ(i)}.

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:11

Proof. The proof is by induction over the length of the chain.

Base case (γ has one task). The algorithm exits at line 3 and returns the constant-latency
chain γ∗ = γ. The read/write instants of γ∗ coincide with the ones of its only task τγ(1).

Inductive step. From the inductive hypothesis on the chain of length Nγ−1, given (γ∗
tail, τtail)

returned by constLatChain(γtail) at line 5, we know that
γ∗

tail has the same read and write instants as the task τtail = ⟨Ttail, θr
tail, θw

tail⟩, and
Ttail = maxi=2,...,Nγ{Tγ(i)}.

If pos = “tail”, then γ∗ = [τγ(1), γ∗
tail, τpub], from line 8. From the inductive hypothesis of

equivalence between γ∗
tail and τtail, γ∗ is equivalent to [τγ(1), τtail, τpub]. Finally, the equivalence

between [τγ(1), τtail, τpub] and τeq follows from Lemma 2 allowing us to conclude that γ∗ has
the same read/write instants of τeq.

If instead pos = “head”, then γ∗ = [τpub, τγ(1), γ∗
tail], from line 10. From the inductive

hypothesis, γ∗ is equivalent to [τpub, τγ(1), τtail], which is equivalent to τeq from Lemma 2.
The second statement follows from

Tγ∗ =
from line 2 of Alg. 1︷ ︸︸ ︷
max{Tγ(1), Ttail} =

from inductive hyp.︷ ︸︸ ︷
max{Tγ(1), max

i=2,...,Nγ

{Tγ(i)}} =
as required︷ ︸︸ ︷

max
i=1,...,Nγ

{Tγ(i)}

This concludes the proof. ◀

The algorithm returns the constant-latency chain γ∗ equivalent to γ, with the equivalent
task τeq = ⟨Tγ∗ , θr

γ∗ , θw
γ∗⟩. The time complexity of Algorithm 2 is O(Nγ log(maxi:τi∈γ{Ti}))

due to the Nγ − 1 invocations of Algorithm 1.
The resulting chain γ∗, built through Algorithm 2 from an arbitrary-length chain γ, has

the enormous advantage over γ of having all latency metrics constant, as presented in the
following Corollary.

▶ Corollary 5. Let
(
γ∗, τeq

)
, with τeq = ⟨Tγ∗ , θr

γ∗ , θw
γ∗⟩, be the pair returned by the function

constLatChain(γ). Then, γ∗ has all constant latencies DLF
γ∗ , DFF

γ∗ , DLL
γ∗ , and DFL

γ∗ equal to{
DLF

γ∗ = θw
γ∗ − θr

γ∗ , DFF
γ∗ = DLF

γ∗ + Tγ∗ ,

DLL
γ∗ = DLF

γ∗ + Tγ∗ , DFL
γ∗ = DLF

γ∗ + 2Tγ∗ .
(18)

Proof. From Theorem 4, the constant latency chain γ∗ has the same read and write instants
as the LET task τeq = ⟨Tγ∗ , θr

γ∗ , θw
γ∗⟩. From the expressions of all four latencies of a single

task of (9), the statement immediately follows. ◀

The DLF
γ∗ latency can also be upper bounded by a closed-form linear-time expression

provided by the next theorem.

▶ Theorem 6. The end-to-end Last-to-First latency DLF
γ∗ of the constant-latency chain γ∗,

built by Alg. 2 from a chain γ of size Nγ , is bounded by

DLF
γ∗ ≤

Nγ∑
i=1

(DLF
γ(i) + Tγ(i))− max

i=1,...,Nγ

{Tγ(i)} −Nγ + 1. (19)

ECRTS 2024

6:12 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

Proof. Let (γ∗[x], τeq[x]) be the pair returned by constLatChain([τx, . . . , τNγ]), i.e. when
invoked over the last Nγ−x+1 tasks of γ. The parameters of τeq[x] are denoted in accordance
to τeq[x] = ⟨Tγ∗ [x], θr

γ∗ [x], θw
γ∗ [x]⟩. We also set DLF

γ∗ [x] = θw
eq[x]− θr

eq[x], as in Eq. (18). We
remark that Theorem 4 implies that Tγ∗ [x] = maxi=x,...,N{Tγ(i)}.

We aim at proving

DLF
γ∗ [x] ≤

Nγ∑
i=x

(DLF
γ(i) + Tγ(i))− Tγ∗ [x]−Nγ + x (20)

by backward induction on x, as Eq. (20) for x = 1 is our required theorem statement of
Eq. (19).

Base case. If x = Nγ , the chain γ∗[Nγ] is just the last task [τγ(Nγ)] and the RHS of (20)
becomes

DLF
γ(Nγ) + Tγ(Nγ) − Tγ(Nγ) − 1 + 1 = DLF

γ(Nγ),

which makes Eq. (20) true because DLF
γ∗ [Nγ] = DLF

γ(Nγ).

Inductive step. We now assume Eq. (20) be true for x and we need to prove it for x− 1.
From Cor. 3 and from the basic property of the modulo operator ⌊·⌋m ≤ m− 1, we find that
the DLF

γ∗
◦

of a two-task chain γ◦ = [τa, τb] is bounded by

DLF
γ∗

◦
≤ DLF

a + DLF
b + G− 1 + min{Ta, Tb} −G = DLF

a + DLF
b + min{Ta, Tb} − 1.

Algorithm 2 (at line 5) determines the chain γ∗[x− 1] by concatenating τγ(x−1) and γ∗[x].
The chain γ∗[x] is equivalent to the task τeq[x] with latency DLF

γ∗ [x] and period Tγ∗ [x], so we
can leverage the above bound as follows:

DLF
γ∗ [x− 1] ≤ DLF

γ(x−1) + DLF
γ∗ [x] + min{Tγ(x−1), Tγ∗ [x]} − 1.

Let us now work on the RHS above. We have

DLF
γ∗ [x] + DLF

γ(x−1) + min{Tγ∗ [x], Tγ(x−1)} − 1

≤

DLF
γ∗ [x]︷ ︸︸ ︷

Nγ∑
i=x

(DLF
γ(i) + Tγ(i))− Tγ∗ [x]−Nγ + x +DLF

γ(x−1) + min{Tγ∗ [x], Tγ(x−1)} − 1

=
Nγ∑

i=x−1
(DLF

γ(i) + Tγ(i))− Tγ∗ [x]− Tγ(x−1) + min{Tγ∗ [x], Tγ(x−1)} −Nγ + x− 1 ≤ . . .

Now, from the property that a + b − min{a, b} = max{a, b}, the inequality above can be
further simplified as

. . . ≤
Nγ∑

i=x−1
(DLF

γ(i)+Tγ(i))−max{Tγ∗ [x], Tγ(x−1)}−Nγ + x− 1

=
Nγ∑

i=x−1
(DLF

γ(i) + Tγ(i))− Tγ∗ [x− 1]−Nγ + x− 1,

which is exactly the statement of Eq. (20) for x− 1. Such a statement is then proven for all
x, specifically for x = 1, which concludes the proof. ◀

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:13

Table 2 Relative gap percentages of the latencies of γ∗ w.r.t. γ.

Benchmark periods Log-uniform periods
Avg Min Max Avg Min Max

DLF
γ∗ 3.16% 0% 98.04% 9.51% 0% 90.91%

DLL
γ∗ 2.12% 0% 43.1% 5.3% 0% 39.7%

DFF
γ∗ 1.3% 0% 48.31% 5.89% 0% 44.1%

DFL
γ∗ 1.36% -14.29% 19.92% 1.92% -18.74% 24.06%

4.3 Evaluation of the insertion of publisher tasks

An experiment was set up to compare the constant-latency values produced by Alg. 2 with
the exact latencies of (5)–(8). The latter was computed by exploring all chain jobs in Jγ up
to the tasks’ hyper-period. We generated random chains in two ways: (i) tasks with periods
from the automotive benchmarks in [38], and (ii) tasks with log-uniform periods.

Benchmark periods [38]. The periods are drawn from {1, 2, 5, 10, 20, 50, 100, 200, 1000},
with a probability set by the benchmark. The number of different periods per chain was
uniformly chosen in {3, 4, 5}. For each period, we created from 1 to 3 tasks, hence with the
number of tasks per chain ranging in [3, 15]. Finally, the tasks were randomly arranged in
each chain. We generated 106 chains as described above.

Log-uniform periods. The periods were drawn from [1, 1000] with a log-uniform distribution.
The number of different task periods was 3 or 4 and for each period value we created from 1 to
3 tasks and placed them randomly along the chain. Because of the much larger hyper-period
of this setup, we generated 104 random chains. In both cases, for each task τi, we set θr

i = 0
and the write phasing θw

i was drawn uniformly from the interval [1, Ti], so abstracting from
the actual WCETs of the tasks (varying also θr

i is not expected to provide different results).
All four end-to-end latencies listed in Section 2.3 were evaluated.

Table 2 reports the average, minimum, and maximum of the relative gap (DLF
γ∗ −DLF

γ)/DLF
γ ,

in percentage, for all four semantics (DLF
γ , DLL

γ , DFF
γ , and DFL

γ) and for the two methods for
random periods. From the results, it emerges that the latencies of the chain γ∗ with the
publisher tasks computed with Alg. 2 are, on average, significantly close to the values of
the original chain γ. Also, it is worth observing that the regularity in the pattern of the
constant-latency chain γ∗ can even provide a shorter First-to-Last latency DFL

γ∗ compared
to the original DFL

γ . This apparently surprising property can be explained by noting that
the read and write instants of two consecutive jobs of γ∗ are always regularly separated
by one period Tγ∗ , while in the non-constant-latency chain γ this gap can be larger. An
example of this phenomenon is shown by comparing DFL

γ of the chain γ in Figure 3, which is
27 (between rdγ(1) and wrγ(3)), with the equivalent chain γ∗ shown in Figure 4, which has
instead a constant DFL

γ∗ = 24.
Noticeably, the runtime for computing the latencies of γ∗ was five orders of magnitude

smaller than the time needed for γ, since we are comparing a polynomial time algorithm vs.
an algorithm that needs to construct all jobs over a hyper-period.

This preliminary evaluation shows that the benefits of the chain γ∗ with publishers
(constant per-job latencies, low time complexity) generally dominate its downsides (small
latency gap in average). In the rest of the paper, we will use such a chain γ∗ for the
optimization of the priorities.

ECRTS 2024

6:14 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

5 Optimal E2E latency aware priorities

In this section, we leverage the results presented above to explore the priority assignment
of systems with constant-latency chains. The contribution provided in the previous section
serves both as an enabler to efficiently evaluate different priority assignments as well as a
set of mathematical foundations to devise analysis-driven optimization algorithms. More
specifically, Algorithm 2 and Corollary 5, presented above, enable a feasible design space
exploration when end-to-end latencies are among the constraints or participate in the cost
to be optimized. We recall from Section 4.3 that the runtime for computing the latencies
without publisher tasks is five orders of magnitude greater than that to compute the latencies
with Algorithm 2. Without publisher tasks, the design space exploration is computationally
more expensive.

A problem-specific optimization algorithm is presented next by building upon these
observations. Note that the family of Optimal Priority Assignment (OPA) algorithms [1, 19]
cannot be seamlessly applied to solve this problem, as they are concerned with ensuring
schedulability constraints only. The approach presented next can handle any function of the
latencies in the cost, in the constraints, or both. Nevertheless, for the purpose of the results
discussed next, we choose the following representative form of the cost in (10):

minimize F(Γ) =
∑
γ∈Γ

DLF
γ∗ , (21)

with γ∗ denoting a constant-latency chain, as constructed by Algorithm 2 from any γ ∈ Γ.
This cost definition is relevant as it fairly provides benefits to all task chains.

Equation (19) of Theorem 6 links linearly the reduction of the task latencies DLF
i to the

reduction of DLF
γ∗ , which are in the cost. Hence, it is convenient to set DLF

i to its minimal
value compatible with the schedulability constraints of (2), that is

DLF
i = θw

i − θr
i = Ri, (22)

with the response time Ri computed through the standard iterative procedure [34, 2].
In this work, the design space of the priority assignments is explored and possibly pruned

over a decision tree. At the root, no priority is assigned. At each level of the tree, a priority
is assigned to some task. The assignment is performed on a per-core basis, as priorities are
meaningful only among tasks belonging to the same core.

Algorithm 3 describes the recursive procedure, which takes the following input parameters:
(i) T : the set of all tasks; (ii) U : the set of unassigned tasks, i.e., tasks that do not have
a priority assigned yet; (iii) p: the current priority level in the decision tree; (iv) k: the
core for which the priority assignment is currently in progress; (v) currMin: the current
minimum objective function value.

The procedure starts with explorePrioTree(T , T1, |T1|, 1, +∞). The exploration of
the priorities proceeds level by level and is encoded by Lines 11–16. At any node at priority p,
the algorithm creates a branch for each of the tasks currently in U , which do not have a
priority yet. All these branches are at priority level p−1. The recursive procedure terminates
whenever a leaf of the tree is reached (Line 4). From Lines 2-9, whenever the priority
assignment of the k-th core is complete, the algorithm moves to the next one. Once all tasks
have a priority assigned, a leaf of the decision tree is reached (Line 4), enabling the explicit
evaluation of the cost, possibly updating the minimum one (currMin) found so far.

In principle, this algorithm has a worst-case complexity of O(N !). For this reason we used
a branch-and-bound approach by means of two pruning rules to check if the current (partial)
priority assignment can be pruned from the search (Line 14). The pruning rules can be
independently enabled/disabled and we provide next the proof that they do not compromise
optimality.

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:15

Algorithm 3 Exploring the priority space.

1: procedure explorePrioTree(T , U , p, k, currMin)
2: if U = ∅ then
3: k ← k + 1
4: if k > m then ▷ Reached a leaf of the tree
5: if evalObjFun(T) < currMin then
6: currMin← evalObjFun(T)
7: return
8: else ▷ Moving to the next core
9: U ← Tk; p← |Tk|

10: p← p− 1
11: for τi ∈ U do ▷ Creating branches
12: pri(i)← p

13: Ri ← computeResponseTime(τi, T ,U)
14: if Ri > Ti or getLowerBound(T ,U) > currMin then
15: return ▷ Prune the sub-tree
16: explorePrioTree(T ,U \ {τi}, p, k, currMin)

▶ Rule 1 (schedulability-based pruning). A partial priority assignment and its corresponding
subtree can be pruned if the newly assigned task τi is not schedulable, i.e., Ri > Ti.

▶ Theorem 7. During the exploration of the priority decision tree with Algorithm 3, pruning
the subtrees with Rule 1 does not prevent from reaching the optimal priority assignment
according to Eq. (21).

Proof. Suppose the algorithm reaches a partial priority assignment where task τi has just
been assigned priority p, but Line 14 finds Ri > Ti. Similarly as in OPA [1, 19], priorities are
assigned bottom-up, enabling the evaluation of the response time Ri even without the relative
priority order of higher-priority tasks in U . Therefore, any complete priority assignment
in the subtree of this node will find τi non-schedulable. Being we interested in finding
the optimal priority assignment where all the tasks are schedulable, it is guaranteed that
the optimal solution cannot be in the current subtree; hence, it can be pruned without
compromising the optimality of Algorithm 3. ◀

▶ Rule 2 (cost-based pruning). A partial priority assignment and its corresponding subtree
can be pruned if a lower bound of the cost is greater than the minimum cost found by the
algorithm so far, i.e., getLowerBound(T ,U) > currMin (Line 14).

The lower bound returned by getLowerBound(T ,U) can be computed by considering the
best possible response times for the unassigned tasks (i.e., Ri = Ci). If even under this
optimistic hypothesis the cost is larger than the current minimum, the whole subtree can be
safely pruned.

▶ Theorem 8. During the exploration of the priority decision tree with Algorithm 3, pruning
the subtrees with Rule 2 does not prevent from reaching the optimal priority assignment
according to Eq. (21).

Proof. Suppose the algorithm reaches a partial priority assignment where task τi has just
been assigned priority p, but Line 14 finds getLowerBound(T ,U) > currMin. For the
lower bound computation, every task τk ∈ U is optimistically assumed to have Rk = Ck,
because Rk cannot be determined for tasks not yet having a priority assigned. Whatever
priority assignment for τk in the subtree of the current node will necessarily find Rk ≥ Ck,

ECRTS 2024

6:16 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

-10
 0

 10
 20
 30
 40
 50
 60
 70
 80

 3 4 5 6 7 8 9 10

Im
pr

ov
em

en
t

[%
]

Tasks per chain

-10

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9

Im
pr

ov
em

en
t

[%
]

Tasks per core

-10

 0

 10

 20

 30

 40

 50

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Im
pr

ov
em

en
t

[%
]

Utilization per core

Figure 5 Improvement of the optimal priority assignment w.r.t. RM. The percentage of improve-
ment is evaluated over the number of tasks per chain (left), the number of tasks per core (middle),
and the per-core total utilization.

1

10

100

1e3

1e4

1e5

1e6

1e7

1e8

 3 4 5 6 7 8 9

R
un

ti
m

e
[m

se
c]

Tasks per core

1

10

100

1e3

1e4

1e5

1e6

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

R
un

ti
m

e
[m

se
c]

Utilization per core

Figure 6 Runtime of the optimal priority assignment as function of the number of tasks per core
(left) and of the utilization per core (right).

with Ck being a lower bound for Rk. Because of Theorem 6 and Eq. (22), an increase in
the response time of tasks leads to an increase of chain latencies, which in turn inflates the
cost function of Eq. (21). The subtree of the current node will contain complete priority
assignments whose objective function value will be no lower than the lower bound just
computed. Therefore, since the lower bound is already greater than the current minimum,
the subtree of the current node cannot contain the optimal priority assignment and can be
pruned without compromising the optimality of Algorithm 3. ◀

The exploration of the whole priority space with pruning guarantees that the returned
solution is the optimal priority assignment minimizing F(Γ), as it is proved next.

▶ Theorem 9. Given a set of tasks T and a set of chains Γ, Algorithm 3 returns the optimal
priority assignment according to Eq. (21).

Proof. Suppose Algorithm 3 returns the priority assignment encoded by the function pria(),
and that there exists another priority assignment prib(), obtained with some other procedure,
so that evalObjFunb(T) < evalObjFuna(T). If prib(), which has lower cost value than
pria(), was not returned by the algorithm, then it was not explored. The algorithm explores
the whole priority space except the branches pruned by Rules 1 and 2. Therefore, prib() must
belong to the pruned space. Theorems 7 and 8 show that the pruned space cannot contain
the optimal solution for our optimization problem; it follows that prib() is not the optimal
solution. ◀

5.1 Evaluation of optimal E2E priorities
The quality of the optimal priority assignments of Alg. 3 is evaluated w.r.t Rate Monotonic
(RM) [40] as a baseline. The experiments consider synthetically generated task sets running
on a 3-core platform generated as follows.

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:17

The number of tasks per core is generated in the range [3, 9], fixed for a given test and
equal for all 3 cores. Task periods are randomly generated in the interval [1, 1000] following
a log-uniform distribution. The read phasing is set to θr

i = 0,∀τi. The utilization of each
task is generated by the UUniFast [9] algorithm, setting a fixed value of reference utilization
Uref ∈ [0.5, 0.9], equal for all 3 cores.

For each experiment, the number of task chains is randomly chosen in the range [3, 10],
following a uniform distribution. The number of tasks of each chain spans in the range [3, 10].
Chains are generated by randomly picking tasks from the set of tasks, allowing tasks mapped
on different cores to be part of the same chain.

The metrics used for evaluating the optimizer are its running time and the percentage
improvement of the optimal solution w.r.t. that obtained with RM, defined as FRM−Fopt

FRM ×100.
Three types of experiments are set up to study the impact of the generation parameters

on the above metrics.

Varying Uref . We vary Uref in [0.5, 0.9] with step 0.05, generating 1000 task sets for each
value. The number of tasks per core is fixed to 7, while the number of tasks per chain was
randomly chosen in [4, 10]. The effects on the percentage improvement are shown in Figure 5
(right), from which it emerges that higher Uref values permit larger improvements, up to more
than 45% w.r.t. to RM. Running times are depicted in Figure 6 (right), where it is evident
that higher Uref values reduce the optimization time due to the increase in the number of
configurations that can be pruned by leveraging schedulability constraints.

Varying the number of tasks per core. The number of tasks per core is varied in the range
[3, 9], generating 1000 task sets for each task number. The number of tasks per chain is
randomly picked in [4, 9]. Figure 5 (center) shows representative results for Uref = 0.8 from
which it emerges that the higher the number of tasks per core, the greater the improvement
w.r.t. RM, with peaks above 50%. Figure 6 (left) reports the corresponding running time of
the optimizer, which exponentially increases with the number of tasks. This is due to the
factorial number of possible priority assignments.

Varying the number of tasks per chain. The number of tasks per chain is varied in the
range [3, 10]. 1000 task sets are generated for each task number. Figure 5 (left) reports
the results for the representative configuration with Uref = 0.8 and seven tasks per core. It
can be noted that the improvement grows when the number of tasks per chain decreases,
reaching very large values up to 70%.

6 Heuristic priority assignments

The minimization of the cost of Eq. (21) can be made only through the costly exploration
described in Section 5 because:

the space of priority assignment is discrete, and
the response time Ri used for DLF

i is a discontinuous function.
Hence, this section explores some heuristic algorithms.

For the purpose of highlighting the impact of priorities on the cost, we write

∑
γ∈Γ

DLF
γ∗ ≤

∑
γ∈Γ

Nγ∑
j=1

DLF
γ(j) + const. =

N∑
i=1

κiD
LF
i + const. =

N∑
i=1

κiRi + const. (23)

with:

ECRTS 2024

6:18 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

the inequality holding from Theorem 6
the term “const.” denoting the constant, priority-independent quantities of (19)
κi equal to the number of times task τi appears in any chain in Γ, as defined in (3), and
DLF

i = Ri, because of our choice of (22) that minimizes DLF
i .

In short, we seek a priority assignment that minimizes a weighted sum of the response times
of tasks.

6.1 Response-time upper-bound-driven (RUD) priorities
The first heuristic is developed under the following simplifying assumption: (i) we approximate
the response time with a continuous upper bound [10]; (ii) we study the case of any task
used by one chain; and (iii) we compare only the two highest priority tasks. Despite these
restricting conditions, the derived O(N log N) priority assignment performs very well, even
in the general case without such restrictions.

We start by recalling the response time upper bound [10] R̄i of task τi, that is

R̄i =
Ci +

∑
j:pri(j)<pri(i) Cj(1− Uj)

1−
∑

j:pri(j)<pri(i) Uj

with Uj = Cj/Tj . Even though tighter continuous upper bounds exist [11, 15], only this
expression led us to the rule we will show next.

Let us now denote by ΣR̄j,i, the sum R̄j + R̄i, assuming that τj has a higher priority
than τi (i.e. pri(j) < pri(i)) and that only {τj , τi} are in the system. From the expression of
the upper bound, we find

ΣR̄j,i =
R̄j︷︸︸︷
Cj +

R̄i︷ ︸︸ ︷
Ci + Cj(1− Uj)

1− Uj
= 2Cj + Ci

1− Uj
.

It now becomes relevant to capture the condition on the task parameters that makes
ΣR̄j,i ≤ ΣR̄i,j , corresponding to the two different priority orderings among τj and τi. For
such a comparison, we find

ΣR̄j,i ≤ ΣR̄i,j ⇔ 2Cj + Ci

1− Uj
≤ 2Ci + Cj

1− Ui
⇔

2
Ci

+ 1
Cj(1− Uj) ≤

2
Cj

+ 1
Ci(1− Ui)

⇔ 1
Cj(1− Uj) −

2
Cj
≤ 1

Ci(1− Ui)
− 2

Ci
⇔

1
Tj

2Uj − 1
Uj(1− Uj) ≤

1
Ti

2Ui − 1
Ui(1− Ui)

which yields the following O(N log N) Response time Upper bound Driven (RUD) priority
assignment:

pri(i) ∝ 1
Ti

2Ui − 1
Ui(1− Ui)

. (24)

Note that pri(i) is directly proportional to the ratio of Eq. (24) because the numerator is
almost always negative. Interestingly, in the case of tasks with equal utilizations, such an
ordering is exactly the same as RM. Also, note that the rule of Eq. (24) tends to give high
priority to low utilization tasks.

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:19

6.2 κ̂-monotonic priority assignment

The RUD priority assignment rule of Eq. (24) is derived by studying the case in which each
task appears in one chain only, i.e., κi = 1 in Eq. (23). The heuristic presented next is
instead derived by studying the general case of tasks that appear in more than one chain.

Since κi has a direct impact on the cost, as shown by (23), the principle explored here is
to assign higher priorities to tasks having higher values of κi (hence, the name κ-monotonic),
using the RUD heuristic of Eq. (24) to break ties when tasks have the same κi value.

Instead of directly applying this assignment, a more general approach is followed to
balance between κ-monotonic and RUD. To this purpose, we re-scaled the κi values to obtain
κ̂i =

⌊
B κ

κmax

⌋
, where κmax is the maximum κi value of a given task set and B is a parameter

representing the maximum value κ̂i can assume. In this way, by setting B = κmax we can
get a pure κ-monotonic priority assignment, while B = 0 implies the RUD assignment (i.e.,
Eq. (24) only). The values of B in between produce a fluid combination of the two rules.
Overall, after setting B, the resulting κ̂-monotonic priority assignment consists in assigning
the tasks priorities so that the higher κ̂i the higher the task priority.

6.3 Bubble-sort-like meta-heuristic algorithm

We further improved the quality of the heuristic priority assignment with a bubble-sort-like
meta-heuristic algorithm. Starting from any initial priority assignment above, the procedure
iterates over the task set and swaps two tasks with adjacent priorities if the overall cost
decreases. The choice of two tasks with adjacent priorities avoids the re-computation of the
cost of all other tasks which is unaffected by the relative priority order of the two tasks.

Because the algorithm scans N − 1 tasks, and each one may be potentially swapped with
all those having higher priority, the number of steps is O(N2).

6.4 Evaluation of heuristics

The performance of the heuristic priority assignment algorithms was evaluated against the
baseline of the optimal value found by the optimizer of Section 5 and then compared with
RM. The quality was measured using the cost functions:

costheu = F
heu −Fopt

Fopt ∗ 100 , costRM = F
RM −Fopt

Fopt ∗ 100. (25)

The comparison is carried out with the RUD, κ-monotonic and κ̂-monotonic algorithms.
All their solutions are then used as the starting point for the bubble sort. In our testing
scenario, it is not required that each task completes within its period, thus Rule 1 was not
enforced in Algorithm 3. Still, the constraint Uref ≤ 1 guarantees that the response time of
each task is finite. The response time of tasks is computed using the formula for the arbitrary
deadline case in [39]. This is representative of the case in which only the end-to-end deadline
constraints are relevant. Several values for B in κ̂-monotonic were evaluated. The most
performant proves to be B = κmax

2 , which is selected for the comparison.
The experimental setup is the same of Section 5.1, except for the number of tasks per

core that is lowered to compensate the increased running time of the optimizer because of
the missing pruning rule based on the deadline constraint. Two types of experiments were
carried out.

ECRTS 2024

6:20 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

 0.01

 0.1

 1

 10

 100

 1000

 3 4 5 6 7 8 9 10

C
os

t
in

cr
ea

se
 [

%
]

Tasks per chain

RM
RUD + BS

κ-monotonic + BS
κ̂-monotonic + BS

Figure 7 Cost increase over the optimal prior-
ities as function of the number of tasks in a chain
of RM (red) and the heuristic algorithms: RUD
(gray), κ-monotonic (yellow) and κ̂-monotonic
(green), all after the bubble sort (BS).

 0.01

 0.1

 1

 10

 100

 1000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

C
os

t
in

cr
ea

se
 [

%
]

Utilization per core

RM
RUD + BS

κ-monotonic + BS
κ̂-monotonic + BS

Figure 8 Cost increase over the optimal pri-
orities as function of the per-core utilization of
RM (red) and the heuristic algorithms: RUD
(gray), κ-monotonic (yellow) and κ̂-monotonic
(green), all after the bubble sort (BS).

Varying the number of tasks per chain. The number of tasks per chain is varied in the
range [3, 10], generating 1000 task sets for each value in the range. Uref is set to 0.8 and
the number of tasks per core fixed to 6. The effects on the costs are shown in Figure 7. All
the heuristic algorithms are able to obtain better solutions than RM. The RUD heuristic
improves as chains grow in size, whilst κ-monotonic does the opposite. κ̂-monotonic inherits
both behaviors and keeps the average cost increase between 1% and 4%, fairly close to the
optimum. Further, the experiments conducted in the same setting but with 4 tasks per core
revealed that κ̂-monotonic maintains the average cost below 0.05%, and in many cases the
solution found is, in fact, the optimal value.

Varying Uref . We varied Uref in [0.5, 0.9], generating 1000 task sets for each value. The
number of tasks per chain is randomly picked in [4, 10], while the number of tasks per core
is fixed to 6. From Figure 8 it can be seen again that the heuristics find better solutions
than RM that are close to the optimal ones, with the κ̂-monotonic algorithm being the most
balanced.

7 Related work

Task chains have been extensively studied in previous works from several perspectives. The
distinguishing factor of our work is that it explicitly addresses the optimization of the priority
assignment by leveraging the analytical properties of constant-latency chains.

Early contributions related to our research can be traced back to reactive systems [31, 7],
which led to the development of programming languages such as LUSTRE [29] and ES-
TEREL [8]. Task chains were also studied in the context of distributed real-time sys-
tems [54, 44, 48]. The same analysis was extended to the case of tasks running upon
reservation servers [41]. A alternate approach was proposed by Jayachandran and Abdelza-
her [33], which reduced chains in distributed systems to the single-processor case.

End-to-end latency metrics were first taken into account at the stage of design optimization
in the seminal work of Davare et al. [18]. Schlatow et al. [49] presented a holistic method based
on mathematical programming to optimize the task set parameters. They did not rely on the
LET paradigm and focused on data-age latencies only. Many authors worked on the analysis of
end-to-end latencies, either providing exact solutions or upper bounds [50, 4, 26, 25, 37, 28, 27].
Unlike ours, these works did not consider the LET paradigm, nor did they propose effective
linear-time analysis methods to compute latencies. Comparison of latencies between chains
made of classic and LET tasks has been proposed, e.g., in [5, 6, 43].

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:21

Bini et al. [12] proposed a method to compare pairs of LET tasks, which we use here
to assign priorities. Our work significantly differs from [12], as it studies chains with an
arbitrary number of tasks, it treats four forms of end-to-end latency, it provides an algorithm
to bound end-to-end latency in linear time, and, above all, it presents priority assignment
algorithms. Martinez et al. [42, 43] analyzed end-to-end latencies for LET tasks to improve
control performance. In [42], the authors proposed a heuristic algorithm to assign offsets to
LET tasks to reduce end-to-end latencies. However, unlike our work, the algorithm focuses on
one chain at a time and changes the offsets of the contained tasks, so the approach can only
optimize chains having no tasks in common. Our strategy instead provides benefits for all the
chains in the system. Choi et al. [17] designed a chain-aware scheduler for ROS2 to reduce
end-to-end latencies of chains of callbacks. In [16], the authors introduced a chain-based
fixed-priority scheduler for chains made of periodic tasks following the read-execute-write
semantics. Verucchi et al. in [55] presented an approach to turn DAG-based applications
made of multi-rate tasks into single-rate DAGs where tasks communicate following the read-
execute-write model. Forget et al. [23] proposed a language to specify end-to-end constraints
and a method to verify them. For the sake of analysis, they all explored task jobs up to the
hyper-period of tasks in chains.

A related problem is the one of task placement. Pazzaglia et al. [45] proposed a solution
based on mathematical programming to address the placement of runnables with end-to-end
constraints under the LET paradigm. Casini and Biondi [14] proposed a method to allocate
tasks to heterogeneous cores with end-to-end constraints under EDF scheduling. Recently,
Sun et al. [52] proposed an ILP formulation to jointly address end-to-end constraints and
EDF schedulability on each core. Han and Kim [30] addressed the problem of synthesizing a
schedule aiming at reducing probabilistic end-to-end latencies.

Klaus et al. [36] proposed an execution model that maps task sets with data-age latency
constraints to event-triggered systems to reduce overheads and improve schedulability. Sinha
and West used constraint programming to find execution times and periods of pipelined
tasks that meet the end-to-end constraints and schedulability requirements [51]. The priority
assignment of tasks within distributed systems was addressed by Tang et al. [53], however, not
in the context of LET communication. Bai et al. [3] studied end-to-end latency constraints
in autonomous driving software.

8 Conclusion and future work

This paper addresses the selection of optimal priorities that minimizes any function of any of
the different definitions for end-to-end latencies. The core of the efficiency of our method
resides in the polynomial-time method for computing the latencies of the chains with the
proper insertion of publisher tasks. We firmly believe that the efficiency of this novel analysis
is a key enabler for further research in this area which includes the task mapping problem, the
progress-based resource management, and more. Finally, another possible research direction
is the combination of our approach to build constant-latency chains with techniques [42] that
reduce the end-to-end latency with proper offset assignments.

References
1 Neil C Audsley. On priority assignment in fixed priority scheduling. Information Processing

Letters, 79(1):39–44, 2001. doi:10.1016/S0020-0190(00)00165-4.
2 Neil C. Audsley, Alan Burns, Mike Richardson, Ken W. Tindell, and Andy J. Wellings. Applying

new scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, September 1993. doi:10.1049/sej.1993.0034.

ECRTS 2024

https://doi.org/10.1016/S0020-0190(00)00165-4
https://doi.org/10.1049/sej.1993.0034

6:22 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

3 Yunhao Bai, Zejiang Wang, Xiaorui Wang, and Junmin Wang. Autoe2e: end-to-end real-time
middleware for autonomous driving control. In 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS), pages 1101–1111. IEEE, 2020. doi:10.1109/
ICDCS47774.2020.00092.

4 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. Syn-
thesizing job-level dependencies for automotive multi-rate effect chains. In 2016 IEEE 22nd
International Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pages 159–169. IEEE, 2016. doi:10.1109/RTCSA.2016.41.

5 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. End-
to-end timing analysis of cause-effect chains in automotive embedded systems. Journal of
Systems Architecture, 80:104–113, 2017. doi:10.1016/j.sysarc.2017.09.004.

6 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. Analyz-
ing end-to-end delays in automotive systems at various levels of timing information. ACM
SIGBED Review, 14(4):8–13, 2018. doi:10.1145/3177803.3177805.

7 Albert Benveniste, Paul Le Guernic, Yves Sorel, and Michel Sorine. A denotational theory
of synchronous reactive systems. Information and Computation, 99(2):192–230, 1992. doi:
10.1016/0890-5401(92)90030-J.

8 Gérard Berry and Georges Gonthier. The Esterel synchronous programming language: Design,
semantics, implementation. Science of computer programming, 19(2):87–152, 1992. doi:
10.1016/0167-6423(92)90005-V.

9 Enrico Bini and Giorgio Buttazzo. Biasing effects in schedulability measures. In 16th Euromicro
Conference on Real-Time Systems (ECRTS 2004), 30 June - 2 July 1004, Catania, Italy,
Proceedings, pages 196–203, 2004. doi:10.1109/ECRTS.2004.7.

10 Enrico Bini, Thi Huyen Châu Nguyen, Pascal Richard, and Sanjoy K. Baruah. A response-time
bound in fixed-priority scheduling with arbitrary deadlines. IEEE Transactions on Computers,
58(2):279–286, February 2009. doi:10.1109/TC.2008.167.

11 Enrico Bini, Andrea Parri, and Giacomo Dossena. A quadratic-time response time upper
bound with a tightness property. In 2015 IEEE Real-Time Systems Symposium, pages 13–22.
IEEE, 2015. doi:10.1109/RTSS.2015.9.

12 Enrico Bini, Paolo Pazzaglia, and Martina Maggio. Zero-jitter chains of periodic LET
tasks via algebraic rings. IEEE Transactions on Computers, 72(11):3057–3071, 2023. doi:
10.1109/TC.2023.3283707.

13 Alessandro Biondi and Marco Di Natale. Achieving predictable multicore execution of auto-
motive applications using the LET paradigm. In IEEE Real-Time and Embedded Technology
and Applications Symposium, RTAS 2018, 11-13 April 2018, Porto, Portugal, pages 240–250,
2018. doi:10.1109/RTAS.2018.00032.

14 Daniel Casini and Alessandro Biondi. Placement of chains of real-time tasks on heterogeneous
platforms under EDF scheduling. In 2022 25th Euromicro Conference on Digital System
Design (DSD), pages 149–156, 2022. doi:10.1109/DSD57027.2022.00029.

15 Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. k2Q: A quadratic-form response time and
schedulability analysis framework for utilization-based analysis. In 2016 IEEE Real-Time
Systems Symposium (RTSS), pages 351–362. IEEE, 2016. doi:10.1109/RTSS.2016.041.

16 Hyunjong Choi, Mohsen Karimi, and Hyoseung Kim. Chain-based fixed-priority scheduling of
loosely-dependent tasks. In 2020 IEEE 38th International Conference on Computer Design
(ICCD), pages 631–639, 2020. doi:10.1109/ICCD50377.2020.00109.

17 Hyunjong Choi, Yecheng Xiang, and Hyoseung Kim. PiCAS: New design of priority-driven
chain-aware scheduling for ROS2. In 2021 IEEE 27th Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 251–263, 2021. doi:10.1109/RTAS52030.2021.00028.

18 Abhijit Davare, Qi Zhu, Marco Di Natale, Claudio Pinello, Sri Kanajan, and Alberto
Sangiovanni-Vincentelli. Period optimization for hard real-time distributed automotive sys-
tems. In Proceedings of the 44th annual Design Automation Conference, pages 278–283, 2007.
doi:10.1145/1278480.1278553.

https://doi.org/10.1109/ICDCS47774.2020.00092
https://doi.org/10.1109/ICDCS47774.2020.00092
https://doi.org/10.1109/RTCSA.2016.41
https://doi.org/10.1016/j.sysarc.2017.09.004
https://doi.org/10.1145/3177803.3177805
https://doi.org/10.1016/0890-5401(92)90030-J
https://doi.org/10.1016/0890-5401(92)90030-J
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1109/ECRTS.2004.7
https://doi.org/10.1109/TC.2008.167
https://doi.org/10.1109/RTSS.2015.9
https://doi.org/10.1109/TC.2023.3283707
https://doi.org/10.1109/TC.2023.3283707
https://doi.org/10.1109/RTAS.2018.00032
https://doi.org/10.1109/DSD57027.2022.00029
https://doi.org/10.1109/RTSS.2016.041
https://doi.org/10.1109/ICCD50377.2020.00109
https://doi.org/10.1109/RTAS52030.2021.00028
https://doi.org/10.1145/1278480.1278553

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:23

19 Robert I. Davis, Liliana Cucu-Grosjean, Marko Bertogna, and Alan Burns. A review of
priority assignment in real-time systems. Journal of Systems Architecture, 65:64–82, 2016.
doi:10.1016/j.sysarc.2016.04.002.

20 Marco Dürr, Georg Von Der Brüggen, Kuan-Hsun Chen, and Jian-Jia Chen. End-to-end
timing analysis of sporadic cause-effect chains in distributed systems. ACM Transactions on
Embedded Computing Systems (TECS), 18(5s):1–24, 2019. doi:10.1145/3358181.

21 Rolf Ernst, Leonie Ahrendts, and Kai-Björn Gemlau. System level LET: Mastering cause-effect
chains in distributed systems. In IECON 2018 - 44th Annual Conference of the IEEE Industrial
Electronics Society, pages 4084–4089, 2018. doi:10.1109/IECON.2018.8591550.

22 Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A compositional framework
for end-to-end path delay calculation of automotive systems under different path semantics. In
Workshop on Compositional Theory and Technology for Real-Time Embedded Systems (CRTS),
2008.

23 Julien Forget, Frédéric Boniol, and Claire Pagetti. Verifying end-to-end real-time constraints on
multi-periodic models. In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–8. IEEE, 2017. doi:10.1109/ETFA.2017.8247612.

24 Goran Frehse, Arne Hamann, Sophie Quinton, and Matthias Woehrle. Formal analysis of
timing effects on closed-loop properties of control software. In 2014 IEEE Real-Time Systems
Symposium, pages 53–62. IEEE, 2014. doi:10.1109/RTSS.2014.28.

25 Max J Friese, Thorsten Ehlers, and Dirk Nowotka. Estimating latencies of task sequences
in multi-core automotive ecus. In 2018 IEEE 13th International Symposium on Industrial
Embedded Systems (SIES), pages 1–10. IEEE, 2018. doi:10.1109/SIES.2018.8442095.

26 Alain Girault, Christophe Prévot, Sophie Quinton, Rafik Henia, and Nicolas Sordon. Improving
and estimating the precision of bounds on the worst-case latency of task chains. IEEE
transactions on computer-aided design of integrated circuits and systems, 37(11):2578–2589,
2018. doi:10.1109/TCAD.2018.2861016.

27 Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, Marco Dürr, and
Jian-Jia Chen. Compositional timing analysis of asynchronized distributed cause-effect chains.
ACM Trans. Embed. Comput. Syst., March 2023. doi:10.1145/3587036.

28 Mario Günzel, Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, Marco Dürr, and
Jian-Jia Chen. Timing analysis of asynchronized distributed cause-effect chains. In 27th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 40–52.
IEEE, 2021. doi:10.1109/RTAS52030.2021.00012.

29 Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. The synchronous
data flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, 1991.
doi:10.1109/5.97300.

30 Taeho Han and Kanghee Kim. Minimizing probabilistic end-to-end latencies of autonom-
ous driving systems. In IEEE 29th Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 27–39, 2023. doi:10.1109/RTAS58335.2023.00010.

31 David Harel and Amir Pnueli. On the development of reactive systems. In Logics and Models of
Concurrent Systems - Conference proceedings, Colle-sur-Loup (near Nice), France, 8-19 October
1984, volume 13, pages 477–498. Springer, 1984. doi:10.1007/978-3-642-82453-1_17.

32 Thomas A. Henzinger, Benjamin Horowitz, and Christoph M. Kirsch. Giotto: A time-
triggered language for embedded programming. Proceedings of the IEEE, 91(1):84–99, 2003.
doi:10.1109/JPROC.2002.805825.

33 Praveen Jayachandran and Tarek Abdelzaher. Delay composition in preemptive and non-
preemptive real-time pipelines. Real-Time Systems, 40(3):290–320, 2008. doi:10.1007/
s11241-008-9056-3.

34 Mathai Joseph and Paritosh K. Pandya. Finding response times in a real-time system. The
Computer Journal, 29(5):390–395, October 1986. doi:10.1093/comjnl/29.5.390.

35 Christoph M. Kirsch and Ana Sokolova. The logical execution time paradigm. Advances in
Real-Time Systems, pages 103–120, 2012. doi:10.1007/978-3-642-24349-3_5.

ECRTS 2024

https://doi.org/10.1016/j.sysarc.2016.04.002
https://doi.org/10.1145/3358181
https://doi.org/10.1109/IECON.2018.8591550
https://doi.org/10.1109/ETFA.2017.8247612
https://doi.org/10.1109/RTSS.2014.28
https://doi.org/10.1109/SIES.2018.8442095
https://doi.org/10.1109/TCAD.2018.2861016
https://doi.org/10.1145/3587036
https://doi.org/10.1109/RTAS52030.2021.00012
https://doi.org/10.1109/5.97300
https://doi.org/10.1109/RTAS58335.2023.00010
https://doi.org/10.1007/978-3-642-82453-1_17
https://doi.org/10.1109/JPROC.2002.805825
https://doi.org/10.1007/s11241-008-9056-3
https://doi.org/10.1007/s11241-008-9056-3
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/978-3-642-24349-3_5

6:24 Optimizing Per-Core Priorities to Minimize End-To-End Latencies

36 Tobias Klaus, Matthias Becker, Wolfgang Schröder-Preikschat, and Peter Ulbrich. Constrained
data-age with job-level dependencies: How to reconcile tight bounds and overheads. In IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 66–79.
IEEE, 2021. doi:10.1109/RTAS52030.2021.00014.

37 Tomasz Kloda, Antoine Bertout, and Yves Sorel. Latency upper bound for data chains of
real-time periodic tasks. Journal of Systems Architecture, 109:101824, 2020. doi:10.1016/j.
sysarc.2020.101824.

38 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks
for free. In International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

39 John P. Lehoczky. Fixed priority scheduling of periodic task sets with arbitrary deadlines. In
[1990] Proceedings 11th Real-Time Systems Symposium, pages 201–209, 1990. doi:10.1109/
REAL.1990.128748.

40 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. J. ACM, 20(1):46–61, January 1973. doi:10.1145/321738.321743.

41 José L. Lorente, Giuseppe Lipari, and Enrico Bini. A hierarchical scheduling model for
component-based real-time systems. In 20th International Parallel and Distributed Processing
Symposium (IPDPS 2006), Proceedings, 25-29 April 2006, Rhodes Island, Greece, pages 8–pp.
IEEE, 2006. doi:10.1109/IPDPS.2006.1639405.

42 Jorge Martinez, Ignacio Sañudo, and Marko Bertogna. Analytical characterization of end-to-
end communication delays with logical execution time. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 37(11):2244–2254, 2018. doi:10.1109/TCAD.2018.
2857398.

43 Jorge Martinez, Ignacio Sañudo, and Marko Bertogna. End-to-end latency characterization of
task communication models for automotive systems. Real-Time Systems, 56:315–347, 2020.
doi:10.1007/s11241-020-09350-3.

44 José Carlos Palencia and Michael Gonzalez Harbour. Exploiting precedence relations in the
schedulability analysis of distributed real-time systems. In Proceedings of the 20th IEEE
Real-Time Systems Symposium, Phoenix, AZ, USA, December 1-3, 1999, pages 328–339. IEEE,
1999. doi:10.1109/REAL.1999.818860.

45 Paolo Pazzaglia, Alessandro Biondi, and Marco Di Natale. Optimizing the functional deploy-
ment on multicore platforms with logical execution time. In 2019 IEEE Real-Time Systems
Symposium (RTSS), pages 207–219, 2019. doi:10.1109/RTSS46320.2019.00028.

46 Paolo Pazzaglia and Martina Maggio. Characterizing the effect of deadline misses on time-
triggered task chains. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 41(11):3957–3968, 2022. doi:10.1109/TCAD.2022.3199146.

47 Paolo Pazzaglia, Luigi Pannocchi, Alessandro Biondi, and Marco Di Natale. Beyond the
weakly hard model: Measuring the performance cost of deadline misses. In 30th Euromicro
Conference on Real-Time Systems, ECRTS 2018, July 3-6, 2018, Barcelona, Spain, volume
106, pages 10:1–10:22. Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ECRTS.2018.10.

48 Rodolfo Pellizzoni and Giuseppe Lipari. Improved schedulability analysis of real-time transac-
tions with earliest deadline scheduling. In 11th IEEE Real Time and Embedded Technology
and Applications Symposium, pages 66–75. IEEE, 2005. doi:10.1109/RTAS.2005.28.

49 Johannes Schlatow, Mischa Mostl, Sebastian Tobuschat, Tasuku Ishigooka, and Rolf Ernst.
Data-age analysis and optimisation for cause-effect chains in automotive control systems.
In 13th IEEE International Symposium on Industrial Embedded Systems, SIES 2018, Graz,
Austria, June 6-8, 2018, pages 1–9. IEEE, 2018. doi:10.1109/SIES.2018.8442077.

50 Simon Schliecker and Rolf Ernst. A recursive approach to end-to-end path latency computation
in heterogeneous multiprocessor systems. In Proceedings of the 7th IEEE/ACM international
conference on Hardware/software codesign and system synthesis, pages 433–442, 2009. doi:
10.1145/1629435.1629494.

https://doi.org/10.1109/RTAS52030.2021.00014
https://doi.org/10.1016/j.sysarc.2020.101824
https://doi.org/10.1016/j.sysarc.2020.101824
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/IPDPS.2006.1639405
https://doi.org/10.1109/TCAD.2018.2857398
https://doi.org/10.1109/TCAD.2018.2857398
https://doi.org/10.1007/s11241-020-09350-3
https://doi.org/10.1109/REAL.1999.818860
https://doi.org/10.1109/RTSS46320.2019.00028
https://doi.org/10.1109/TCAD.2022.3199146
https://doi.org/10.4230/LIPIcs.ECRTS.2018.10
https://doi.org/10.4230/LIPIcs.ECRTS.2018.10
https://doi.org/10.1109/RTAS.2005.28
https://doi.org/10.1109/SIES.2018.8442077
https://doi.org/10.1145/1629435.1629494
https://doi.org/10.1145/1629435.1629494

F. Paladino, A. Biondi, E. Bini, and P. Pazzaglia 6:25

51 Soham Sinha and Richard West. End-to-end scheduling of real-time task pipelines on multi-
processors. Journal of Systems Research, 2(1), 2022. doi:10.5070/sr32158647.

52 Jinghao Sun, Kailu Duan, Xisheng Li, Nan Guan, Zhishan Guo, Qingxu Deng, and Guozhen
Tan. Real-time scheduling of autonomous driving system with guaranteed timing correctness.
In IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 185–197, 2023. doi:10.1109/RTAS58335.2023.00022.

53 Yue Tang, Xu Jiang, Nan Guan, Dong Ji, Xiantong Luo, and Wang Yi. Comparing communic-
ation paradigms in cause-effect chains. IEEE Transactions on Computers, 72(1):82–96, 2022.
doi:10.1109/TC.2022.3197082.

54 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and microprogramming, 40(2-3):117–134, 1994. doi:10.1016/
0165-6074(94)90080-9.

55 Micaela Verucchi, Mirco Theile, Marco Caccamo, and Marko Bertogna. Latency-aware
generation of single-rate DAGs from multi-rate task sets. In 2020 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 226–238, 2020. doi:10.
1109/RTAS48715.2020.000-4.

ECRTS 2024

https://doi.org/10.5070/sr32158647
https://doi.org/10.1109/RTAS58335.2023.00022
https://doi.org/10.1109/TC.2022.3197082
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1109/RTAS48715.2020.000-4
https://doi.org/10.1109/RTAS48715.2020.000-4

	1 Introduction
	2 Model
	2.1 Tasks and communication
	2.2 Task chains
	2.3 End-to-end latency

	3 Problem statement and approach
	4 Building constant latency chains
	4.1 Chain of two tasks
	4.2 Constant-latency chains with an arbitrary number of tasks
	4.3 Evaluation of the insertion of publisher tasks

	5 Optimal E2E latency aware priorities
	5.1 Evaluation of optimal E2E priorities

	6 Heuristic priority assignments
	6.1 Response-time upper-bound-driven (RUD) priorities
	6.2 k-cap-monotonic priority assignment
	6.3 Bubble-sort-like meta-heuristic algorithm
	6.4 Evaluation of heuristics

	7 Related work
	8 Conclusion and future work

