
Deadline Miss Early Detection Method for
DAG Tasks Considering Variable Execution Time
Hayate Toba #

Graduate School of Science and Engineering, Saitama University, Japan

Takuya Azumi #

Graduate School of Science and Engineering, Saitama University, Japan

Abstract
Autonomous driving systems must guarantee safety, which requires strict real-time performance. A
series of processes, from sensor data input to vehicle control command output, must be completed
by the end-to-end deadline. If a deadline miss occurs, the system must quickly transition to a safe
state. To improve safety, an early detection method for deadline misses was proposed. The proposed
method represents the autonomous driving system as a directed acyclic graph (DAG) with a mixture
of timer-driven and event-driven nodes. It assigns appropriate time constraints for each node based
on the end-to-end deadline. However, the existing methods assume the worst-case execution time
(WCET) for calculating the time constraints of each node and do not consider the execution time
variation of nodes, making the detection of deadline misses pessimistic. This paper proposes a
deadline miss early detection method to determine the possibility of deadline misses quantitatively at
the beginning of each node execution in a DAG task. It calculates the time constraints of each node
using probabilistic execution time, which treats execution time as a random variable. Experimental
evaluation shows that the proposed method reduces pessimism, which is a problem of conventional
methods using WCET, and then achieves more accurate early detection of deadline misses. The
evaluation also indicates that the execution time of static analysis required for deadline miss early
detection is within a practical level.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Autonomous driving system, deadline miss early detection, DAG, event-driven
task, timer-driven task, probabilistic execution time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2024.8

Funding This work was supported by JST PRESTO Grant Number JPMJPR21P1.

1 Introduction

In recent years, autonomous vehicles have attracted a great deal of attention. The realization
and widespread adoption of autonomous vehicles are expected to solve social problems such
as traffic congestion, traffic accidents, transportation in rural areas, and labor shortages in
logistics. Examples of autonomous driving systems include Waymo Driver [18], Autoware [7],
and Apollo [1], and all of these systems aim for fully autonomous driving. According to
the standards set by the society of automotive engineers, there are six levels of autonomous
driving ranging from zero to five [15]. As the level increases, the responsibility of the system
becomes greater. Fully autonomous driving corresponds to level five, and the system of level
three and above must guarantee safety even in emergency situations.

To ensure the safe operation, autonomous driving systems must be strictly real-time. This
is because even a slight delay in processing can lead to a serious accident. For instance, a
delay in emergency braking or processing of collision avoidance action can cause an accident
that results in the loss of life. Therefore, it must be guaranteed that all processing – from
sensor data acquisition at the input of the system to vehicle control at the output – will be
completed within a specified time frame. To this end, an autonomous driving system can be

© Hayate Toba and Takuya Azumi;
licensed under Creative Commons License CC-BY 4.0

36th Euromicro Conference on Real-Time Systems (ECRTS 2024).
Editor: Rodolfo Pellizzoni; Article No. 8; pp. 8:1–8:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.toba.498@saitama-u.ac.jp
https://orcid.org/0009-0000-5741-8721
mailto:takuya@mail.saitama-u.ac.jp
https://orcid.org/0000-0003-0767-4086
https://doi.org/10.4230/LIPIcs.ECRTS.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Deadline Miss Early Detection Method Considering Variable Execution Time

represented as a directed acyclic graph (DAG) with an end-to-end deadline [11, 4, 8]. With
the DAG representation, the system can be analyzed to satisfy the real-time constraints,
considering complex dependencies among many tasks.

Efficient scheduling algorithms that take a deadline into account have contributed to the
reduction of deadline misses in DAGs. However, completely eliminating the probability of
deadline misses is still impossible due to various complex factors. This challenge underscores
the necessity for a functionality that shifts immediately to a safe state when a deadline
miss occurs. Implemented in autonomous driving systems as a solution is a minimum risk
maneuver (MRM) mode. By immediately shifting to MRM mode when a deadline miss is
detected, the occurrence of serious accidents can be mitigated. However, the current system
can only detect a deadline miss at the end of the processing flow. To address this problem, a
method for deadline miss early detection was proposed [19]. This method sets appropriate
time constraints for each task in the middle based on the deadline given at the end of the
processing flow. Detecting deadline misses and shifting to MRM mode earlier can further
improve the safety of autonomous driving systems.

The existing method [19] assumes that the execution time of each task in the processing
flow is the worst-case execution time (WCET). However, the actual execution time of tasks is
variable, and the probability of them reaching WCET is extremely low. Therefore, assuming
that task execution time is always WCET leads to pessimistic analysis results. In other
words, there are cases where a deadline miss is predicted in the middle of the processing flow,
and the system shifts to MRM, but the deadline may have been met even if the processing
had continued. When the probability of the execution time reaching WCET is significantly
low, the majority of MRM transitions are inherently unnecessary and interfere with the
smooth operation of the system.

To reduce this pessimism, this paper proposes a deadline miss early detection method
that takes into account the variation in execution time of each task in the system. To account
for the variation, the execution time of each task is taken as a random variable. In this
case, the problem is more complex than the situation when only WCET is considered. This
is because, in order to set time constraints at the middle of the processing flow based on
end-to-end deadlines, it is necessary to calculate the sum of execution times of multiple
consecutive tasks in the flow. If the execution time of each task is assumed to be a fixed
value, this calculation is a simple addition. However, when the execution time of each task is
considered as a random variable, the sum cannot be calculated in the same way as for fixed
values. Therefore, we introduce a method that convolves the execution time distributions of
consecutive tasks to obtain their total execution time distribution. This gives the deadline
miss probability from the middle of the processing flow, and the time constraints are set so
that this probability is below a user-defined threshold.

The primary contributions of this paper are summarized as follows:
We propose the deadline miss early detection method with reduced pessimism by introdu-
cing probabilistic execution time to consider task execution time variability.
We enable flexible deadline miss early detection by convolving probabilistic execution
times and defining a probabilistic time constraint on the start time of each job.
We show that the proposed method outperforms the conventional method and completes
the calculation of time constraints in practical time through experimental evaluation on
random DAGs modeled after an actual autonomous driving system.

The remainder of this paper is organized as follows. Section 2 describes the system
model of this paper. Section 3 defines the problem model addressed in this paper. Section 4
introduces the proposed method. Section 5 evaluates and discusses the proposal method.
Section 6 introduces related research. Section 7 presents the conclusions and future work.

H. Toba and T. Azumi 8:3

Deadline: 100

: Timer-driven node

: Event-driven node

: Trigger edge

: Update edge

Figure 1 Simple example of DAG.

Table 1 DAG notations.

Symbol Description
n Total number of nodes in a DAG
τi Node
τ td

i Timer-driven node
τed

i Event-driven node
V td Set of all timer-driven nodes

in a DAG
Ti Period of τ td

i

ϕi Offset of τ td
i

⟨τi, k⟩ kth job of τi

⟨τ td
i , k⟩ kth job of τ td

i

⟨τed
i , k⟩ kth job of τed

i

Xi Probabilistic execution time of τi

Xi Probability distribution of Xi

etr
i,j Trigger edge from τi to τj

eup
i,j Update edge from τi to τj

commi,j Worst-case communication time
of ei,j

2 System Model

This section outlines the system model of this paper. We first introduce the DAG model and
then define probabilistic execution time.

2.1 DAG
An autonomous driving system can be represented as a DAG, where tasks are nodes, and the
data flows between tasks are directed edges. The inputs of the system are data from various
sensors such as cameras, LiDAR, and the global navigation satellite system (GNSS), which are
acquired in different periods. Using these sensor data, the system performs self-localization,
object perception, and route planning, and finally outputs a single vehicle control command.
Thus, the DAG considered in this paper has multiple entry nodes with different periods and
a single exit node. In addition, since vehicle control must not be delayed in an autonomous
driving system, a deadline is defined at the node that outputs the control command (i.e.,
exit node). A simple example of the DAG considered in this paper is shown in Figure 1.

DAG notations in this paper are listed in Table 1. A DAG is denoted as G = (V, E),
where V = {τ1, τ2, . . . , τi, . . . , τn} is the set of all nodes, each node τi represents the ith task
in the DAG, and n = |V | is the total number of tasks in the DAG. There are two types of
node:
timer-driven nodes – nodes that are triggered at a given period, denoted by τ td

i

event-driven nodes – nodes that are triggered when data from their predecessor nodes
arrive, denoted by τed

i .
Each timer-driven node τ td

i has the period Ti and the offset ϕi, where the offset means the
start time of the first execution of timer-driven nodes. A node is executed an infinite number
of times, and each execution is called a job. The kth job of τi is denoted by ⟨τi, k⟩. Each
node has a probabilistic execution time denoted as Xi, and the probability distribution of
the execution time of the job is the same as that of the node.

ECRTS 2024

8:4 Deadline Miss Early Detection Method Considering Variable Execution Time

○ : node
: edge

Probabilistic
execution time

Figure 2 Probabilistic total execution time of two nodes.

E is the set of all edges, and each edge ei,j ∈ E represents communication between nodes,
where data generated by τi is used by τj . Note that the buffer for inter-node communication
is overwritten each time new data arrives so that only the latest data is preserved. There are
two types of edges:
trigger edges – edges indicating that the successor event-driven nodes are triggered when

data from the predecessor node arrives, denoted by etr
i,j

update edges – edges indicating that the data received from predecessor nodes are stored
in memory at that time and read out when successor nodes are triggered, denoted by eup

i,j .
Among a pair of nodes connected by update edges, the successor node is either a timer-driven
node or an event-driven node that is activated by the trigger edge from another predecessor
node. commi,j represents the worst-case communication time of each edge ei,j . While
considering variations in both node execution time and inter-node communication time would
be preferable, this paper assumes worst-case communication times for the simplicity of the
problem.

As an example of these notations, the nodes and edges in Figure 1 are classified as follows.
The nodes {τ td

1 , τ td
2 , τ td

3 , τ td
8 } are timer-driven nodes, the nodes {τed

4 , τed
5 , τed

6 , τed
7 , τed

9 } are
event-driven nodes, the edges {etr

1,4, etr
2,5, etr

3,6, etr
4,7, etr

8,9} are trigger edges, and the edges
{eup

5,8, eup
6,8, eup

7,9} are update edges.

2.2 Probabilistic Execution Time
This paper treats the execution time of each node τi as a random variable Xi in order to reduce
pessimism in the early detection of deadline misses. The execution time Xi takes various
values probabilistically, and the probability distribution of Xi is represented as Xi = (xi, pi).
Here, xi = {xi,1, xi,2, . . . , xi,l} is an ascending list, dividing the range of possible execution
times for τi into l − 1 intervals. pi = {pi,1, pi,2, . . . , pi,l} is a list of probabilities for τi to take
corresponding execution time (i.e., pi,m = P (xi,m−1 < Xi ≤ xi,m)). Note that xi,0 = 0, xi,l

is WCET of τi, and
∑

pi
pi,m = 1. For τ1 in Figure 2, P ((0 <) Xi ≤ 10) = 0.8, P (10 < Xi ≤

15) = 0.2. In this study, probability distributions for nodes are generated based on statistics
obtained by running an actual autonomous driving system, so these distributions are similar
to that of the real system, and these distributions are assumed to be independent of each
other.

To verify whether the system satisfies the time constraints, it is essential to calculate
the total execution time of a sequence of multiple nodes. However, probabilistically varying
values can not simply be added together, unlike the fixed value. Therefore, convolution is
introduced to consider the sum of probabilistic execution times as a random variable. For the
probabilistic execution times Xi, Xj , the convolution is expressed as Xi ⊗ Xj and calculated
as follows:

P (Y = y) =
l∑

m=1
P (Xi = xi,m) · P (Xj = y − xi,m), (1)

where Y is the probabilistic total execution time, and Xi and Xj are independent of each
other. A simplified example of this operation is illustrated in Figure 2.

H. Toba and T. Azumi 8:5

Table 2 Problem model notations.

Symbol Description
sgi Subgraph
head(sgi) Index of the head timer-driven node of sgi

Tsgi Period of sgi

Tsgexit Period of the subgraph that includes exit node
jτi Join node
tτi Tail node
sub(tτi) Index of the subgraph that contains tτi

predtr(τi) Set of nodes with a trigger edge to τi

DF C(tτi) Data freshness constraint of the data generated by tτi

data(tτi, k) Data generated by the tail node job ⟨tτi, k⟩
stamp[data(tτi, k)] Timestamp of data(tτi, k)
D End-to-end deadline
dk Deadline of kth job of exit node
HP Hyper-period of a DAG
JLD Set of all the job-level dependencies in HP

(⟨τi, k⟩ → ⟨τj , s⟩) Job-level dependency from ⟨τi, k⟩ to ⟨τj , s⟩
Nsgi Number of times sgi is executed during HP

RST (τi, k) Reference start time of ⟨τi, k⟩
RF T (τi, k) Reference finish time of ⟨τi, k⟩

3 Problem Model

In an autonomous driving system, time constraints must be satisfied. To meet these con-
straints, we need to analyze the dependencies among jobs, and finally to find the relationship
between the start time of each job and the probability of a deadline miss. However, the
timing analysis of a DAG with a mixture of nodes that are activated at different periods
is a complex problem [2]. Therefore, in Section 3.1, the DAG is divided into subgraphs
that are driven by a single period (i.e., only the first node is timer-driven). We then define
the constraints to be satisfied in Section 3.2, and determine the job-level dependencies in
Section 3.3, following the approach of Ref. [19]. The notations for the problem model are
listed in Table 2.

3.1 Dividing DAG into Subgraphs
A DAG that includes timer-driven nodes with different periods is divided into subgraphs
with single-period, denoted by sgi. As mentioned above, the subgraph consists of a single
timer-driven node and zero or more event-driven nodes that are directly/indirectly triggered
by the timer-driven one (i.e., sgi = {τ td

a , τed
b , . . . , τed

c }). The first nodes in the sequences are
triggered according to their own period, and subsequent nodes are sequentially triggered in a
chain. Therefore, the period of a subgraph is the same as the head timer-driven node. The
period of the subgraph sgi is denoted by Tsgi and given as follows:

Tsgi
= Thead(sgi), (2)

where head(sgi) is a function that returns the index of the head timer-driven node of sgi.

ECRTS 2024

8:6 Deadline Miss Early Detection Method Considering Variable Execution Time

Deadline: 100

: Trigger edge

: Update edge

: Timer-driven node

: Event-driven node

: Tail node

: Join node

Figure 3 Dividing the example DAG into a set of subgraphs.

The result of dividing the example DAG in Figure 1 into a set of subgraphs is shown in
Figure 3. The subgraph sg1 consists of one timer-driven node τ td

1 and two event-driven nodes
τed

4 , τed
7 . Then, the period of sg1 is Tsg1 = Thead(sg1) = T1 = 50 according to Equation (2).

The transmissions of data across subgraphs are particularly important for analyzing
job-level dependencies, as described in more detail later. Therefore, the nodes involved in
the transfer of such data are defined:
Join nodes – nodes that receive data from nodes in multiple different subgraphs, denoted

by jtτi

Tail nodes – nodes that have at least one edge to a join node in other subgraphs, denoted
by tτi.

jτ td
8 and jτed

9 are join nodes, and tτed
5 , tτed

6 and tτed
7 are tail nodes, in Figure 3. Note that

nodes can be both join nodes and tail nodes. For instance, in Figure 3, if jτed
9 has an edge

to a node in another subgraph, jτed
9 is both a join node and a tail node.

For the model addressed in this paper, all nodes in a DAG are included in one of the
subgraphs without duplication. That is, even if an event-driven node has multiple predecessor
nodes in different subgraphs, the node is triggered by predecessor nodes in the same subgraph
to which the node belongs. Therefore, any edge connecting a tail node to another node in
another subgraph is an update edge.

3.2 Definitions of Constraints
An autonomous driving system must satisfy the following two constraints: (i) data freshness
constraint and (ii) end-to-end deadline. These two constraints are defined in this section.

Since the surroundings of an autonomous vehicle change constantly, using too old data
can lead to less accurate self-localization and object perception [8, 17]. This loss of accuracy
is so undesirable for the safety that each node in an autonomous driving system must use
sufficiently fresh data. To ensure this, the data freshness constraint is imposed on the system
as an acceptable staleness of data used by each join node. When a join node is triggered, if
the data from all predecessor nodes that satisfy the data freshness constraint are available,
that join node can be executed. Here, data freshness is the time duration since the timestamp

H. Toba and T. Azumi 8:7

Figure 4 The data freshness constraint for tτed
5 and jτ td

8 .

labeled on the data until the data is used. The timestamp of data generated by sensors
of the system, which are the entry nodes of the DAG, is the execution start time of that
entry node. The timestamp is not updated by regular successor nodes, but is carried over
until the data is used and integrated with other data by a join node. Join nodes update the
timestamp of the data they generate to their own execution start times, and the timestamp
is carried over until the data is used by another join node. The data freshness constraint of
the data output from a tail node tτi is denoted by DFC(tτi) and is defined as follows:

DFC(tτi) = α × Tsgsub(tτi) , (3)

where α ∈ R+ and Tsgsub(tτi) is the period of the subgraph that contains tτi. As evident from
Equation (3), DFC(tτi) is a positive real multiple of Tsgsub(tτi) . Here, the value of α can be
set flexibly according to the system requirements. The smaller value of α results in a shorter
valid data duration, making the data freshness constraint stricter, while the larger value of α

makes the data freshness constraint more lenient.
An example of data freshness constraint for tτed

5 and jτ td
8 in Figure 3 when α = 2, as shown

in Figure 4. Here, the data output from the tail node job ⟨tτi, k⟩ is denoted as data(tτi, k),
and the timestamp of data(tτi, k) is denoted as stamp[data(tτi, k)]. DFC(tτ5) is 60 ms
according to Equation (3). Since stamp[data(tτ5, 1)] is carried over from stamp[data(τ2, 1)],
which is the execution start time of ⟨τ2, 1⟩, stamp[data(tτ5, 1)] is 0 ms. Therefore, jobs of
jτ8 that start execution by stamp[data(tτ5, 1)] + DFC(tτ5) = 60 ms can use data(τ5, 1).
Since ⟨jτ8, 2⟩ starts execution at 100 ms, ⟨jτ8, 2⟩ cannot use data(tτ5, 1). Similarly, since
stamp[data(tτ5, 2)] + DFC(tτ5) = 90 ms, ⟨jτ8, 2⟩ cannot use data(tτ5, 2) too. Meanwhile,
since stamp[data(tτ5, 3)] + DFC(tτ5) = 120 ms, ⟨jτ8, 2⟩ can use data(tτ5, 3).

To guarantee the real-time performance of the system, an end-to-end deadline constraint
is also imposed. The end-to-end deadline constrains the total time from input to output of
the system. Let D denote the end-to-end deadline given to the exit node, and dk denote the

ECRTS 2024

8:8 Deadline Miss Early Detection Method Considering Variable Execution Time

deadline given to the kth job of the exit node. In the example in Figure 3, an end-to-end
deadline of 100 ms is assigned to the exit node τed

9 . The deadline for the first job of the
exit node d1 is D, and the deadlines for the second and subsequent jobs are shifted by their
activation times. Here, since the activation interval of the exit node follows the period of the
subgraph containing the exit node, dk can be calculated as follows:

dk = D + (k − 1) × Tsgexit
, (4)

where Tsgexit is the period of the subgraph containing the exit node (i.e., the period of the
head timer-driven node in the subgraph).

3.3 Determining Job-level Dependencies
An autonomous driving system must complete the execution of the jobs of the exit node by
the end-to-end deadline while satisfying the data freshness constraints for each job. To this
end, it is essential to analyze the relationship named job-level dependency, which jobs have
“valid” data exchanges, meaning data that meets the data freshness constraint output by one
job is used by another job.

In order to cover the job-level dependencies in all cases, an interval that is the least
common multiple (LCM) of the periods of all subgraphs in the DAG (i.e., the periods of
all timer-driven nodes) must be considered. This is because the periods of the subgraphs
resulting from the division of the DAG are different from each other. Such interval is the
hyper-period of the DAG, denoted as HP , and calculated as follows:

HP = LCM∀τtd
i

∈V td(Ti). (5)

To analyze job-level dependencies, the first step is to calculate reference values of the
start and finish times of each job. This operation calculates the times at which data is read
and written, and investigates which data satisfies the data freshness constraint. Therefore,
by calculating the reference start times and reference finish times for all jobs within HP , all
job-level dependencies can be derived. The reference start times and reference finish times
for all jobs (of timer-driven nodes and event-driven nodes) can be calculated according to
Equations (5)-(8) in Ref. [19]. Here, the reference start time and reference finish time of a
job ⟨τi, k⟩ are denoted by RST (τi, k) and RFT (τi, k), respectively.

Using the reference start times and reference finish times of each job, determine all
job-level dependencies in HP . This allows us to understand the flow of data to each job of
the exit node and to identify the jobs involved in that flow. Finally, the start times of these
jobs can be used to estimate the probabilities of deadline misses at runtime.

The set of all job-level dependencies within HP is denoted by JLD, and the job-level
dependency from ⟨τi, k⟩ to ⟨τj , s⟩ by (⟨τi, k⟩ → ⟨τj , s⟩) ∈ JLD. The job-level dependencies
in each subgraph are simply obtained, as the node-level dependencies are directly job-
level dependencies. That is, if an edge from τi to τj within the subgraph exists, then
(⟨τi, k⟩ → ⟨τj , k⟩) for any k. An example is provided with sg2 = {τ td

2 , τed
5 } in Figure 3. HP of

this DAG is 300 ms, as derived from Equation (5). Here, the number of times sgi is executed
during HP is denoted as Nsgi , and calculated as follows:

Nsgi
= HP

Tsgi

. (6)

Then, Nsg2 = 300
30 = 10, and {(⟨τ2, 1⟩ → ⟨τ5, 1⟩), (⟨τ2, 2⟩ → ⟨τ5, 2⟩), . . . , (⟨τ2, 10⟩ → ⟨τ5, 10⟩)}

is added to JLD.

H. Toba and T. Azumi 8:9

Table 3 Notations for the proposed method.

Symbol Description
Li,k plaxity of ⟨τi, k⟩
Li,k Probability distribution of Li,k

Lc
i,k plaxity-cdf of ⟨τi, k⟩

Lc
i,k Cumulative distribution of Li,k

AST (τi, k) Actual start time of ⟨τi, k⟩
succ(τi, k) Set of jobs with a job-level dependency from ⟨τi, k⟩

In contrast, job-level dependencies between different subgraphs, i.e., from jobs of tail
nodes to jobs of join nodes, are not as simple. Job-level dependencies from jobs of tail node
to jobs of join node are defined based on the reference start times, reference finish times,
and data freshness constraints, as follows:

▶ Definition 1 ([19]). Suppose that eτi,τj
∈ E and tτi is a tail node, and jτj is a join node.

There exists a job-level dependency from ⟨tτi, k⟩ to ⟨jτj , s⟩, that is, if
1. RFT (tτi, k) + commi,j ≤ RST (jτj , s) and
2. RST (jτj , s) − stamp[data(tτi, k)] ≤ DFC(tτi).

Here, let ⟨tτi, k⟩ ∈ sgi, then stamp[data(tτi, k)] is given by:

stamp[data(tτi, k)] = RST (τhead(sgi), k), (7)

where τhead(sgi) is the head timer-driven node of the subgraph containing the job ⟨tτi, k⟩, and
RST (τhead(sgi), k) is the reference start time for the job of that head node. Condition 1 of
Definition 1 requires that the data from the job of the tail node has arrived at the reference
start time for the job of the join node, and condition 2 of Definition 1 requires that the data
satisfy the data freshness constraint.

4 Proposed Method

In the existing method for deadline miss early detection, a time constraint is given to each
job based on the end-to-end deadline and job-level dependencies determined in Section 3
and on WCET of each node. The time constraint is a threshold called laxity whose value
represents the slack time for each job to the end-to-end deadline. That is, if the execution
start time of a job exceeds the laxity, the data that satisfies the data freshness constraint
will not arrive soon enough at the successor job, and a deadline miss is predicted as a result.
The laxity of each job can be calculated by recursively subtracting the execution time of the
predecessor job and the communication time between jobs from the deadline given to the
job of the exit node. When the execution time of each job is a fixed value (WCET), the
calculation of laxity is straightforward. However, when considering that the execution time
of each job varies, simple subtraction is not applicable. This paper proposes a method for
calculating the laxity of each job for a DAG in which each node has a probabilistic execution
time to consider the variations in execution time. The notations for this section are presented
in Table 3.

The laxity calculated using the execution times represented as random variables is also
a random variable, and this “probabilistic” laxity is referred to as plaxity. The plaxity of
each job ⟨τi, k⟩ is denoted as Li,k, and the probability distribution of Li,k is denoted as

ECRTS 2024

8:10 Deadline Miss Early Detection Method Considering Variable Execution Time

: Job

: Job-level dependency

Figure 5 plaxity of the exit node job.

Li,k = (λi,k, ℓpi,k). Here, {λi,k,1, λi,k,2, . . . , λi,k,u} is an ascending list of possible values
for the plaxity of the job ⟨τi, k⟩, and {ℓpi,k,1, ℓpi,k,2, . . . , ℓpi,k,u} is probabilities for the
corresponding plaxity values. For example, consider the following Li,k:

Li,k =
(

λi,k

ℓpi,k

)
=

(
70 75 80 85

0.02 0.08 0.18 0.72

)
.

In this case, Li,k is 70 with a probability of 0.02, 75 with 0.08, 80 with 0.18, and 85 with 0.72.
Let AST (τi, k) denote the actual start time of the job ⟨τi, k⟩, when 75 < AST (τi, k) ≤ 80,
P (Li,k < AST (τi, k)) = 0.02 + 0.08 = 0.1, and P (AST (τi, k) ≤ Li,k) = 0.18 + 0.72 = 0.9. In
other words, based on the definition of laxity, the probability of missing the deadline is 0.1,
and that of meeting the deadline is 0.9. The threshold for the probability of meeting the
deadline is determined according to user and system requirements, and if the probability
of meeting the deadline falls below the threshold, a deadline miss is detected. However, as
calculated above, the probability of meeting the deadline cannot be obtained directly by
comparing AST (τi, k) and Li,k. Therefore, plaxity-cdf is defined as the cumulative probability
form of plaxity, denoted as Lc

i,k, and the distribution of Lc
i,k is denoted as Lc

i,k = (λi,k, ℓpc
i,k).

Here, for all integers v with 1 ≤ v ≤ u, ℓpc
i,k,v ∈ ℓpc

i,k is given as follows:

ℓpc
i,k,v =

u∑
h=v

ℓpi,k,h. (8)

By Equation (8), the cumulative probability form of Li,k, the previous example, is calculated
as follows:

Lc
i,k =

(
λi,k

ℓpc
i,k

)
=

(
70 75 80 85
1 0.98 0.9 0.72

)
.

By comparing AST (τi, k) and Lc
i,k, the probability of meeting the deadline is directly obtained

from the start time of the job. Formally, for AST (τi, k) such that λi,k,v−1 < AST (τi, k) ≤
λi,k,v, the probability of meeting the deadline is ℓpc

i,k,v. Note that λi,k,0 = 0, λi,k,u+1 = ∞,
and ℓpc

i,k,u+1 = 0. The plaxity-cdf is used to compare with the start time of the job, and
is not directly involved in the calculation of the plaxity of each job. The plaxity alone is
primarily used for the calculation of the plaxity of each job.

In the following, we define the method for calculating the plaxity for each job. As with
laxity, the procedure is to calculate the plaxity recursively, starting from the job of the exit
node. Therefore, the calculation method for plaxity of the job of the exit node is defined
first. The possible values for the plaxity of the exit node job are obtained by subtracting the
possible execution times of the job from the deadline. The probability of each plaxity value
corresponds to the probability of the job taking respective execution time. Then, the plaxity
Li,k of the exit node job ⟨τi, k⟩ is defined as follows:

P (Li,k = λ) = P (Xi = dk − λ). (9)

H. Toba and T. Azumi 8:11

: Job

: Job-level dependency

Figure 6 plaxity of the job that has one successor job.

An example of calculating the plaxity L5,1 of the exit node job ⟨τ5, 1⟩ in Figure 5 is shown
below. Using X5, dk, and Equation (9),

P (L5,1 = 85) = P (X5 = 15) = 0.72,

P (L5,1 = 80) = P (X5 = 20) = 0.18,

P (L5,1 = 75) = P (X5 = 25) = 0.08,

and P (L5,1 = 70) = P (X5 = 30) = 0.02

are obtained. Therefore, L5,1 is

L5,1 =
(

70 75 80 85
0.02 0.08 0.18 0.72

)
.

Next, the plaxity of jobs that have successor jobs is defined. For the sake of clarity, jobs
with only one successor job are considered. The plaxity of jobs with a successor job can be
defined by applying the convolution operation in Equation (1). The possible values of the
plaxity of the job with a successor job are obtained by subtracting the communication time
between the jobs and the possible execution time of the predecessor job from the plaxity
values of the successor job. The probability of each plaxity value corresponds to the joint
probability of the predecessor job taking the respective execution time and the successor job
having the corresponding plaxity value. Since these random variables are independent of each
other, the joint probability is calculated as the product of their probabilities. Then, we define
the calculation called convolutional subtraction, applying Equation (1). Here, the operation
of deriving the plaxity of the job ⟨τi, k⟩ with only one successor job ⟨τj , s⟩ by convolutional
subtraction is expressed as Li,k = Lj,s ⊗− Xi, and defined as follows:

P (Li,k = λ) =
l∑

m=1
P (Xi = xi,m) · P (Lj,s = λ + commi,j + xi,m). (10)

Note that this operation takes into account the communication time between jobs. An
example of calculating the plaxity L1,3 of the job ⟨τ1, 3⟩ is illustrated in Figure 6. Using
X1, comm1,2,L2,2, and Equation (10),

P (L1,3 = 60) = P (X1 = 20) · P (L2,2 = 85) = 0.02,

P (L1,3 = 70) = P (X1 = 10) · P (L2,2 = 85)
+ P (X1 = 20) · P (L2,2 = 95) = 0.26,

and P (L1,3 = 80) = P (X1 = 10) · P (L2,2 = 95) = 0.72

ECRTS 2024

8:12 Deadline Miss Early Detection Method Considering Variable Execution Time

are obtained. Therefore, L1,3 is

L1,3 =
(

60 70 80
0.02 0.26 0.72

)
.

Finally, the plaxity of jobs that have multiple successor jobs is defined. In the case of
laxity, to satisfy the deadline of all subsequent paths, the minimum value of the laxity among
successor jobs is used. However, in the case of plaxity, since the direct comparison is not
possible, determining the minimum value requires further consideration. Suppose that two
jobs, each with a different plaxity. Define a new plaxity with the probability that both
of these jobs meet their deadlines when they start at the same time t. Such probability
is the joint probability of each job independently meeting the deadline from t. Since the
plaxity of each job are independent, this joint probability can be calculated as the product of
their probabilities. Therefore, the minimum value L of two different plaxity, Li,k and Lj,s is
given by:

min(Li,k, Lj,s) = L;
P (L = λ) = P (Li,k = λ) · P (λ ≤ Lj,s) + P (λ < Li,k) · P (Lj,s = λ).

(11)

The minimum value of plaxity can be obtained for three or more jobs, by repeatedly
applying this calculation. Thus, the plaxity Li,k of the job ⟨τi, k⟩ with multiple successor
jobs can be calculated by Equations (10) and (11), as follows:

Li,k = min
⟨τj ,s⟩∈succ(τi,k)

(
Lj,s ⊗− Xi

)
. (12)

The plaxity of all jobs can be calculated by Equations (9) and (12). Then applying
Equation (8) to the determined plaxity immediately yields the plaxity-cdf. During runtime,
the actual start time of the job and the plaxity-cdf are compared, and if the probability of
meeting the deadline is below the threshold, a deadline miss is detected.

5 Evaluation

The performance of the proposed method for early detection of deadline miss is evaluated
through experiments which are performed by simulating task scheduling for multiple periodic
DAGs.

5.1 Experiment Setup
The experimental targets for performing evaluation are DAGs randomly generated using
RD-Gen [20], with modifications to fit the model considered in this paper. The period
of timer-driven nodes and communication time are set to default values. First, trigger
edges and update edges are defined. Since timer-driven nodes are activated at their own
periods, all inputs to timer-driven nodes are update edges, and no trigger edges are input.
For event-driven nodes, if they have only one input edge, that edge is a trigger edge. In
the case of multiple input edges, the type of edge is determined based on the chain given
by RD-Gen. Only the edges from nodes in the same chain are considered trigger edges,
while inputs from other nodes are considered update edges. When determining the edge
type in this way, note that an event-driven node can have multiple trigger edges. Such
event-driven nodes cannot begin execution until all predecessor nodes connected by trigger
edges have completed. Next, the execution time for each node is set based on the given

H. Toba and T. Azumi 8:13

WCET. The average is set as µ = WCET/3.0, and the standard deviation is σ = µ/2.0.
The execution time follows a normal distribution N (µ, σ) with a probability of 0.98, and a
normal distribution N (WCET, 0.2σ) with a probability of 0.02. This setting is empirically
derived from the characteristics of Autoware runtimes measured by CARET [9].

The scheduling algorithm adopted is Earliest Deadline First (EDF) [16]. That is, jobs
with shorter time to the deadline are given higher priority for execution. Here, implicit
deadlines are assumed, and the relative deadline for each job is equal to the period of the
corresponding node. The relative deadline of event-driven nodes that do not have their own
period is assumed to be equal to the period of the subgraph they belong to. Additionally,
each job is executed non-preemptively, and once assigned to a processor, the job will not be
interrupted until completion.

The simulations are written in Python and executed on a system with 2.9 GHz 8-Core
Intel Core i7 CPU, 32 GiB RAM, and Ubuntu 22.04 LTS (64-bit) OS.

5.2 Performance Metrics
This section describes the metrics for evaluation. First, the classification of simulation results
needed to calculate performance metrics is listed:

True Positive (TP): TP is the case where a deadline miss is detected early by the proposed
method, and an actual deadline miss occurs when the processing has progressed. This
result indicates that the early detection of deadline miss by the proposed method is
accurate.
False Positive (FP): FP is the case where a deadline miss is detected early by the proposed
method, but no deadline miss actually occurs when processing has progressed. This result
indicates that the deadline miss detection by the proposed method is pessimistic. In the
context of autonomous driving systems, a higher occurrence of FP results implies that
the system often transitions to the MRM mode even when no actual deadline miss occurs,
which hinders smooth operation.
True Negative (TN): TN is the case where a deadline miss is not detected early, and
no deadline miss actually occurs when processing has progressed. This result means
that the system can correctly predict that no deadline miss will occur. In safety-critical
real-time systems, the occurrence of deadline misses is expected to be rare. Therefore, if
the accuracy of early detection of deadline miss is high, most results will be TN when
the system is in a safe state.
False Negative (FN): FN is the case where a deadline miss is not detected early, but an
actual deadline miss occurs when processing has progressed. This result indicates that
the proposed method failed to detect the deadline miss early.

Using the counts of these results, the following performance metrics to evaluate the
proposed method are calculated:

Accuracy: The Accuracy represents the proportion of accurate predictions among the
total number of results of deadline miss prediction and is defined as follows:

Accuracy = TP + TN

TP + FP + TN + FN
(13)

As evident from the formula, the smaller FP and FN are, the closer Accuracy approaches 1.
When FP and FN are both 0, i.e., a deadline miss always occurs when a deadline miss is
predicted, and all actual deadline misses are detected early, Accuracy is exactly 1.

ECRTS 2024

8:14 Deadline Miss Early Detection Method Considering Variable Execution Time

Table 4 Experimental parameters in Section 5.3.

Parameter Value
Number of cores 8
Normalized utilization [%] 275, 280, 285, 290, 295, 300, 3051

α in Equation (3) 2.0, 2.1, 2.2, 2.3, 2.4, 2.5
Number of entry nodes 7, 8, 9
Number of exit nodes 1
Period of timer-driven nodes [ms] 10, 20, 30, 50, 60, 100
Probability threshold 1, 0.99, 0.95, 0.90

Recall: The Recall represents the proportion of predicted deadline misses among all
actual deadline misses and is defined as follows:

Recall = TP

TP + FN
(14)

The higher value of the Recall, the more reliably deadline misses are detected. From the
standpoint of safety, the value close to 1 is desirable.
Precision: The Precision is the ratio of accurately predicted deadline misses to the total
number of deadline miss predictions and is defined as follows:

Precision = TP

TP + FP
(15)

A higher Precision value indicates that a higher proportion of early-detected deadline
misses actually result in deadline misses, which is crucial for avoiding unnecessary
disruptions.
F-measure: The F-measure is the harmonic mean of the Recall and the Precision, and is
derived as follows:

F-measure = 2 · Recall · Precision
Recall + Precision (16)

As mentioned above, the higher Recall and Precision, the better the result. However,
they are in a trade-off relationship. Therefore, the balance between the Recall and the
Precision is evaluated using the F-measure index.

5.3 Comparison of Detection Results with Different Thresholds
In this section, the performance of deadline miss early detection using different probability
thresholds is examined. Here, how the probability threshold works is explained. The early
detection of deadline miss is conducted at the beginning of job execution by referring to
the plaxity-cdf. In practice, the largest plaxity-cdf value with a probability greater than or
equal to the given threshold (i.e., quantile for the threshold) is compared with the execution
start time. If the latter is greater, a deadline miss is detected. That is, if the probability
of meeting the deadline at execution start time is greater than the specified threshold, a

1 To compare the performance of deadline miss predictions, it is necessary to consider the situation in
which a deadline miss occurs, i.e., when the system is overloaded. In this experimental setting, the
normalized utilization is defined using WCET, although the job execution time is extremely smaller
than WCET. Therefore, tasks with normalized utilization that are well above 100% are considered, for
the occurrence of deadline misses.

H. Toba and T. Azumi 8:15

0.0

0.2

0.4

0.6

0.8

1.0

275 280 285 290 295 300 305

Normalized utilization [%]

TN Ratio

FP Ratio

FN Ratio

TP Ratio

(a) Threshold: 1.00.

0.0

0.2

0.4

0.6

0.8

1.0

275 280 285 290 295 300 305

Normalized utilization [%]

TN Ratio

FP Ratio

FN Ratio

TP Ratio

(b) Threshold: 0.99.

0.0

0.2

0.4

0.6

0.8

1.0

275 280 285 290 295 300 305

Normalized utilization [%]

TN Ratio

FP Ratio

FN Ratio

TP Ratio

(c) Threshold: 0.95.

0.0

0.2

0.4

0.6

0.8

1.0

275 280 285 290 295 300 305

Normalized utilization [%]

TN Ratio

FP Ratio

FN Ratio

TP Ratio

(d) Threshold: 0.90.

Figure 7 TP, FP, TN, and FN ratios with increasing utilization.

deadline miss is not detected. Therefore, setting a high probability threshold results in a
more strict deadline miss prediction, while a low threshold leads to a more lenient prediction.
When the threshold is set to 1, the results are the same as for the conventional method,
which calculates laxity using WCET.

For each probability threshold, simulations are performed with increasing task utilization,
and the results obtained are evaluated using defined performance metrics. The parameters
used in this section are listed in Table 4. The normalized utilization is the total utilization
of the task divided by the number of processor cores. The task utilization is based on the
assumption of WCET. Note that the normalized utilization ratio above 100% does not mean
that the system is immediately overloaded, since the actual execution time is extremely
small compared to WCET in this paper. In this experiment, it is necessary to increase the
utilization to a level where deadline misses occur for comparison, which is greater than 100%.

Changes in TP, FP, TN, and FN with increasing utilization are shown in Figure 7. For
each utilization (i.e., each point on the x-axis of figures), 500 randomly-generated DAGs
were run 10 times each. Note that the execution time of nodes differs from run to run for
the same DAG. As the utilization rate increases, more deadline misses occur. Then, the
fact that decreasing the threshold results in fewer occurrences of FP is clear. This implies a
reduction in the number of instances where a deadline miss is predicted despite not actually
missing a deadline, thereby mitigating pessimism. However, it is important to note that
as the probability threshold decreases and FP decreases, FN increases. This can be easily
understood from the fact that there is a trade-off between reducing the number of useless

ECRTS 2024

8:16 Deadline Miss Early Detection Method Considering Variable Execution Time

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

275 280 285 290 295 300 305

A
c
c
u
ra

c
y

Normalized utilization [%]

threshold: 1.00

threshold: 0.99

threshold: 0.95

threshold: 0.90

(a) Accuracy.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

275 280 285 290 295 300 305

R
e
c
a
ll

Normalized utilization [%]

threshold: 1.00

threshold: 0.99

threshold: 0.95

threshold: 0.90

(b) Recall.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

275 280 285 290 295 300 305

P
re

c
is

io
n

Normalized utilization [%]

threshold: 1.00

threshold: 0.99

threshold: 0.95

threshold: 0.90

(c) Precision.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

275 280 285 290 295 300 305

F
-m

e
a
s
u
re

Normalized utilization [%]

threshold: 1.00

threshold: 0.99

threshold: 0.95

threshold: 0.90

(d) F-measure.

Figure 8 Accuracy, Recall, Precision and F-measure results with increasing utilization.

deadline miss predictions and detecting deadline errors without missing them. Then, the
Accuracy, Precision, Recall, and F-measure are calculated from these values of TP, FP, TN,
and FN.

The proposed method is clearly superior with respect to the Accuracy as shown in
Figure 8(a). However, setting the probability threshold to 1 corresponds to the conventional
method using WCET. Higher Accuracy is obtained by setting the threshold smaller than 1.
For the thresholds shown in the figure, the decrease of FP is greater than the increase of FN
with decreasing threshold, so that smaller thresholds result in higher Accuracy.

The Recall with each threshold as utilization increases is shown in Figure 8(b). The Recall
is an indicator of the ability to detect deadline misses without omission, and is highly relevant
to the safety. At least when the threshold is set to 0.99, the Recall is maintained at almost 1.
When the threshold is set to 0.9, the Recall is reduced by up to five percent. Although
lowering the threshold can reduce pessimism, the threshold must be set in consideration of
the decrease in the Recall.

The comparison of the Precision results is shown in Figure 8(c). This result is the primary
contribution of this paper. In the conventional method, the actual execution time of a task
is almost never WCET, resulting in a low Precision in many cases where a deadline miss is
detected but no deadline miss actually occurs. The purpose of this paper is to overcome this
pessimism, and from the figure, this purpose has been fulfilled.

The F-measure results are shown in Figure 8(d). The F-measure is the harmonic mean
of the Recall and the Precision and evaluates the balance between them. The results of
F-measure show almost the same trend as those of Precision. This is because the Recall is
always close to 1, meaning that the proposed method succeeds in reducing pessimism while
minimizing the loss of the safety.

H. Toba and T. Azumi 8:17

Table 5 Earlier time results.

Probability threshold Average earlier time [ms]
1.00 301.8
0.99 229.0
0.95 198.0
0.90 183.4

Table 6 Experimental parameters in Section 5.5.

Parameter Value
α in Equation (3) 2.0
Period of timer-driven nodes [ms] 10, 20, 30, 50, 60, 100

5.4 Earlier Time Result with Proposed Method
The earlier time of the proposed method is evaluated in this section. Here, the earlier time
indicates how early a deadline miss is predicted. The systems, incorporating our proposed
method, can detect a deadline miss earlier and shift to a safe state by earlier time than if
deadline miss early detection is not performed. The task set and parameters evaluated in
this section are identical to those in Section 5.3 and Table 4, respectively.

The earlier time results at each probability threshold are shown in Table 5. As mentioned
above, the deadline miss prediction is more severe for higher threshold values and less severe
for lower values. Generally, a higher threshold results in earlier deadline miss predictions,
as shown in Table 5. However, the fact that a large value of the earlier time does not
immediately mean that the method is superior should be noted. The reason is that the earlier
the deadline miss prediction is made, regardless of the deadline miss probability at the time,
the larger the result of the earlier time will be. However, in that case, most of the predicted
deadline misses will not actually occur, resulting in an overly pessimistic system. Therefore,
comparing the earlier time at different threshold values is not inherently meaningful. Rather,
assessing the earlier time while considering the Accuracy of deadline miss detection at each
threshold makes more sense. With a probability threshold of 0.95, the Accuracy for deadline
miss detection is significantly improved over the conventional method, exceeding 0.8 for all
utilization (refer to Figure 8(a)). At this threshold, the average earlier time is 198.0 ms.
The practical impact of this earlier time is evident in operational scenarios. For instance,
when an autonomous vehicle is traveling at 60 km/h, this vehicle advances approximately
3.3 meters in 198.0 ms, and this distance has a significant impact on the success of crisis
avoidance. Therefore, the proposed method can detect a deadline miss early enough while
maintaining high prediction accuracy when an appropriate probability threshold is specified.

5.5 Calculation Time of plaxity of Each Job
The time cost of computing plaxity with respect to the following two factors are evaluated:
(i) the number of nodes in a system, and (ii) the unit of execution time. Note that a smaller
execution time unit means that the number of entries in the execution time distribution of
each task increases. The common parameter settings to the experiments for the two factors
are shown in Table 6.

First, the variation of the calculation time with the number of nodes in a system is
investigated. In this experiment, 500 DAGs with the number of nodes randomly set in the
range [20, 200] were generated to measure plaxity calculation time. Note that the execution

ECRTS 2024

8:18 Deadline Miss Early Detection Method Considering Variable Execution Time

0

10

20

30

40

50

60

70

80

90

100

110

0 50 100 150 200

C
a
lc

u
la

ti
o
n
 t

im
e

[s

]

Number of nodes

Figure 9 Calculation time of plaxity with
increasing nodes. 10−3 10−4 10−5

����������	

��
��

��
��

��
��

��
�

��
�

��
�

��
�

�

�
��

�

��

��
��

��
��
	

Figure 10 Calculation time of plaxity
for different time units.

time unit for this experiment is 10−4 seconds. The results of this experiment are shown in
Figure 9. The overall trend is that the calculation time lengthens as the number of nodes
increases. However, the calculation time for a large number of nodes varies widely. This
is because the number of nodes itself does not determine the number of plaxity calculated.
The only jobs for which plaxity is calculated are those for which exit jobs have a direct or
indirect dependency. The number of such jobs depends on the structure of the DAG and the
difference in periods between subgraphs exchanging data. Nevertheless, the more nodes a
system contains, the larger the maximum number of plaxity computed tends to be. As a
result, the number of nodes and the calculation time of plaxity are correlated at a certain
extent. Then, focusing on the case with 100 nodes, due to the fact that the number of
nodes in Autoware is around 100, the calculation is completed in less than 40 seconds at
the maximum. Considering that the calculation of plaxity is done statically during system
development, this calculation time is a sufficiently practical level. Even when the number of
nodes is doubled to 200, the calculation is completed in approximately 100 seconds, which is
still a practical calculation cost.

Next, the relationship between the unit of execution time and the calculation time is
examined. In this experiment, 100 DAGs each with execution time unit of 10−3 s, 10−4 s,
and 10−5 s, the time cost of computing their plaxity is measured. Here, for example, the
execution time distribution of a task with WCET of 5 ms has 5, 50, and 500 entries in
each case. If the unit is 10−3 s, then all probabilities of execution times greater than 4 ms
and less than 5 ms are integrated into the probability of 5 ms, which leads to pessimism.
Therefore, while having as fine as possible is desirable, the increase in time cost resulting
from this is not negligible and needs to be investigated. Note that the number of nodes
in DAG is fixed at 100 for the aforementioned reason. The results of each experiment are
shown in Figure 10. The calculation time in the case of 10−3 s is extremely short and not a
problem at all. Besides, in the case of 10−4 s, as mentioned earlier, the calculation time is
sufficiently practical level. Then, in the case of 10−5 s, the maximum calculation time is less
than one hour. Although this is a longer time than the previous units, but still at a practical
level, considering that the plaxity is calculated statically. As a whole, when the time unit is

H. Toba and T. Azumi 8:19

reduced to 1/10, the calculation time tends to increase by a factor of about 100. This result
is consistent with the insight obtained from the fact that the time complexity of applying
linear convolution to distributions with m and n elements is O(mn), and that the number
of entries in the execution time distribution increases tenfold when the time unit is 1/10.
Therefore, if the time unit is 10−6 s, the time required to calculate plaxity for a system with
100 nodes is expected to less than 100 hours, or about four days. From the standpoint of
practicality, this will be the limit for mincing the execution time.

6 Related Work

Methods for determining job-level dependencies in HP have been proposed for timing analysis
of DAGs consisting of tasks that are driven by different periods. One heuristic solution was
proposed by Becker et al. [2]. In their method, the earliest and latest cases of data read
and write times for each periodic task are considered, and all possible job-level dependencies
are obtained. Then, as an equivalent problem to determining the job-level dependencies
in HP, a method for converting a multi-period DAG into multiple single-period DAGs was
proposed by Verucchi et al. [17]. These methods adequately determine job-level dependencies
in multi-period DAGs. However, they consider DAGs consisting only of periodic tasks and
are not directly applicable to DAGs with a mixture of timer-driven and event-driven nodes.

Models with a mixture of timer-driven and event-driven nodes have been studied in
the field of the robot operating systems (ROS). The response time analysis of the ROS 2
processing chain, first proposed by Casini et al. [4] is an example of such a study. They
also proposed a real-time scheduling method for ROS 2. However, their research has not
determined the job-level dependencies.

As a result that straddles the above two contexts, a method for deadline miss early
detection for mixed timer-driven and event-driven DAG tasks was proposed by Yano et
al. [19]. Their method first determines the job-level dependencies in a mixed timer-driven
and event-driven DAG task, and then places reasonable time constraints on each job based
on defined end-to-end deadlines and data freshness constraints. At runtime, the system
checks to see if the job start time meets the established time constraint to achieve deadline
miss early detection. However, this method has the disadvantage of being pessimistic because
each job is assumed to take WCET in calculating time constraints.

Pessimism caused by the assumption of WCET is a constant problem in the timing
analysis of real-time systems. To overcome this problem, studies have been conducted to
capture the runtime behavior of the system in probabilistic terms and to analyze the actual
timing behavior in a more rigorous manner. One example is the method using convolution
of probability mass functions, which was first proposed by Bernat et al. [3]. Their method
expresses the execution time of program components as a probability mass function and
defines a convolutional operation to add them. Then, by repeatedly applying this operation,
the execution time of the entire program is finally expressed as a probability mass function.
This framework was applied to the context of autonomous driving systems by Lee et al. [10].
They proposed a probabilistic analysis of the end-to-end latency of a multi-period DAG
modeling an autonomous driving system. Similarly, a method to reduce end-to-end latency
was proposed by Han et al. [6]. In their proposal, they introduced a technique to mitigate
pessimistic predictions by using probabilistic execution time.

ECRTS 2024

8:20 Deadline Miss Early Detection Method Considering Variable Execution Time

Table 7 Comparison of the proposed method with related work.

DAG MPDa) MTEb) DEDc) PRBd)

RTCSA 2016 [2] ✓ ✓

RTAS 2019 [17] ✓ ✓

ECRTS 2019 [4] ✓ ✓ ✓

IEEE Access 2023 [19] ✓ ✓ ✓ ✓

RTSS 2002 [3] ✓

IEEE Transactions on Computers 2022 [10] ✓ ✓ ✓

RTAS 2023 [6] ✓ ✓ ✓ ✓

Proposed method ✓ ✓ ✓ ✓ ✓
a) MPD: Multi-period DAG
b) MTE: Mixture of timer-driven and event-driven nodes
c) DED: Deadline miss early detection
d) PRB: Probabilistic method

7 Conclusion

In this paper, we have proposed a method for deadline miss early detection for real-time
systems that takes into account variations in task execution time. The proposed method
takes the execution time of each task in the system as a random variable and convolves them
to place an appropriate time constraint called plaxity on each job in the DAG. This constraint
allows the system to detect deadline misses early at any level required by users. In this
way, the proposed method provides deadline miss early detection at an arbitrary probability
threshold to suppress the pessimism of the conventional method. The experimental evaluation
showed that the proposed method successfully reduced pessimism and significantly improved
accuracy compared to the conventional method, which does not account for variations in
task execution time. By setting a sufficiently high probability threshold with the proposed
method, false positives can be significantly reduced with little loss of completeness in deadline
miss early detection. Experiments also indicated that the calculation of the proposed method
can be completed in a sufficiently practical time, assuming that the proposed method is
applied to an actual automated driving system.

In future work, consideration of execution time variation in job-level dependency analysis
will be of interest. The proposed method uses WCET for this analysis, but more accurate
detection can be expected by probabilistically capturing job-level dependencies as well. In
this case, since the computational complexity is expected to increase as the number of
combinations increases, efforts to reduce the complexity are needed to be done. For example,
circular convolution [12], appropriate re-sampling [5, 13], and parallelization [14] are seen as
promising options.

References
1 Baidu Apollo project. URL: https://www.apollo.auto/.
2 Matthias Becker, Dakshina Dasari, Saad Mubeen, Moris Behnam, and Thomas Nolte. Syn-

thesizing job-level dependencies for automotive multi-rate effect chains. In Proceedings of the
22nd IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications (RTCSA), pages 159–169, 2016.

3 Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET analysis of probabilistic hard
real-time systems. In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS),
pages 279–288, 2002.

4 Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Brandenburg. Response-Time
Analysis of ROS 2 Processing Chains Under Reservation-Based Scheduling. In Proceedings of
the 21st Euromicro Conference on Real-Time Systems (ECRTS), pages 1–23, 2019.

https://www.apollo.auto/

H. Toba and T. Azumi 8:21

5 José Luis Díaz, José María López, Manuel García, Antonio Manuel Campos, Kanghee Kim,
and Lucia Lo Bello. Pessimism in the stochastic analysis of real-time systems: concept and
applications. In Proceedings of the 25th IEEE International Real-Time Systems Symposium
(RTSS), pages 197–207, 2004.

6 Taeho Han and Kanghee Kim. Minimizing probabilistic end-to-end latencies of autonomous
driving systems. In Proceedings of the 29th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 27–39, 2023.

7 Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki
Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware
on board: Enabling autonomous vehicles with embedded systems. In Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS), pages 287–296,
2018.

8 Alix Munier Kordon and Ning Tang. Evaluation of the age latency of a real-time communicating
system using the LET paradigm. In Proceedings of the 32nd Euromicro Conference on Real-
Time Systems (ECRTS), pages 1–21, 2020.

9 Takahisa Kuboichi, Atsushi Hasegawa, Bo Peng, Keita Miura, Kenji Funaoka, Shinpei Kato,
and Takuya Azumi. CARET: Chain-Aware ROS 2 Evaluation Tool. In Proceedings of the 20th
IEEE International Conference on Embedded and Ubiquitous Computing (EUC), pages 1–8,
2022.

10 Hyoeun Lee, Youngjoon Choi, Taeho Han, and Kanghee Kim. Probabilistically guaranteeing
end-to-end latencies in autonomous vehicle computing systems. IEEE Transactions on
Computers, 71(12):3361–3374, 2022.

11 Jing Li, Jian Jia Chen, Kunal Agrawal, Chenyang Lu, Chris Gill, and Abusayeed Saifullah.
Analysis of federated and global scheduling for parallel real-time tasks. In Proceedings of the
26th Euromicro Conference on Real-Time Systems (ECRTS), pages 85–96, 2014.

12 Filip Marković, Alessandro Vittorio Papadopoulos, and Thomas Nolte. On the Convolution
Efficiency for Probabilistic Analysis of Real-Time Systems. In Proceedings of the 33rd Euromicro
Conference on Real-Time Systems (ECRTS), pages 16:1–16:22, 2021.

13 Dorin Maxim, Mike Houston, Luca Santinelli, Guillem Bernat, Robert I. Davis, and Liliana
Cucu-Grosjean. Re-sampling for statistical timing analysis of real-time systems. In Proceedings
of the 20th ACM International Conference on Real-Time and Network Systems (RTNS), pages
111–120, 2012.

14 Suzana Milutinovic, Jaume Abella, Damien Hardy, Eduardo Quiñones, Isabelle Puaut, and
Francisco J. Cazorla. Speeding up static probabilistic timing analysis. In Proceedings of the
28th International Conference on Architecture of Computing Systems (ARCS), pages 236–247,
2015.

15 SAE International. Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles, 4th edition, April 2021.

16 John A Stankovic, Marco Spuri, Krithi Ramamritham, and Giorgio Buttazzo. Deadline
scheduling for real-time systems: EDF and related algorithms, volume 460. Springer Science &
Business Media, 1998.

17 Micaela Verucchi, Mirco Theile, Marco Caccamo, and Marko Bertogna. Latency-aware
generation of single-rate DAGs from multi-rate task sets. In Proceedings of the 26th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 226–238,
2020.

18 Waymo driver. URL: https://waymo.com/waymo-driver/.
19 Atsushi Yano and Takuya Azumi. Deadline miss early detection method for mixed timer-driven

and event-driven DAG tasks. IEEE Access, 11:22187–22200, 2023.
20 Atsushi Yano and Takuya Azumi. RD-Gen: Random DAG generator considering multi-

rate applications for reproducible scheduling evaluation. In Proceedings of the 26th IEEE
International Symposium on Real-Time Distributed Computing (ISORC), pages 21–31, 2023.

ECRTS 2024

https://waymo.com/waymo-driver/

	1 Introduction
	2 System Model
	2.1 DAG
	2.2 Probabilistic Execution Time

	3 Problem Model
	3.1 Dividing DAG into Subgraphs
	3.2 Definitions of Constraints
	3.3 Determining Job-level Dependencies

	4 Proposed Method
	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Metrics
	5.3 Comparison of Detection Results with Different Thresholds
	5.4 Earlier Time Result with Proposed Method
	5.5 Calculation Time of plaxity of Each Job

	6 Related Work
	7 Conclusion

