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Abstract
This paper studies the notion of meaningfulness for a unifying framework called dBang-calculus, which
subsumes both call-by-name (dCBN) and call-by-value (dCBV). We first define meaningfulness in dBang
and then characterize it by means of typability and inhabitation in an associated non-idempotent
intersection type system previously appearing in the literature. We validate the proposed notion of
meaningfulness by showing two properties: (1) consistency of the smallest theory, called H, equating
all meaningless terms, and (2) genericity, stating that meaningless subterms have no bearing on
the significance of meaningful terms. The theory H is also shown to have a unique consistent and
maximal extension H∗, which coincides with a well-known notion of observational equivalence. Last
but not least, we show that the notions of meaningfulness and genericity in the literature for dCBN
and dCBV are subsumed by the corresponding ones proposed here for the dBang-calculus.
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1 Introduction

A common line of research in logic and theoretical computer science is to find unifying
frameworks that subsume different paradigms, systems or calculi. Examples are call-by-push-
value [54, 55], polarized system LU [45], linear calculi [57, 58, 72], bang-calculus [38, 39, 23, 24],
system L [62, 35], ecumenical systems [68], monadic calculus [60, 61], and others [71, 40, 73].

The relevance of these unifying frameworks lies in the range of properties and models
they encompass. Finding unifying and simple primitives, tools and techniques to reason
about properties of different systems is challenging, and provides a deeper and more abstract
understanding of these properties. The advantages of this kind of approach are numerous, for
instance the several-for-one deal: study a property in a unifying framework gives appropriate
intuitions and hints for free for all the subsumed systems. The aim of this paper is to go
beyond the state of the art in a framework subsuming the call-by-name and call-by-value
evaluation mechanisms, by unifying their notions of meaningful (and meaningless) programs.

Call-by-name and call-by-value. Every programming language implements a particular
evaluation strategy, specifying when and how parameters are evaluated during function calls.
For example, in call-by-value (CBV), the argument is evaluated before being passed to the
function, while in call-by-name (CBN) the argument is passed immediately to the function
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1:2 Meaningfulness and Genericity in a Subsuming Framework

body, so that it may never be evaluated, or may be re-evaluated several times. These models
of computation serve as the basis for many theoretical and practical studies in programming
languages and proof assistants, such as OCaml, Haskell, Coq, Isabelle, etc.

The CBN strategy has garnered significant attention in the literature on theoretical studies
and is generally perceived as well-established. In contrast, the CBV strategy has received
limited attention. Despite their similarities, CBN and CBV strategies have predominantly been
studied independently, leading to a fragmented research. This approach not only duplicates
research efforts – once for CBN and once again for CBV – but also generally results in ad-hoc
methods for dealing with the CBV case that are naively adapted from the CBN one.

Understanding the (logical) duality between CBN and CBV (e.g. [34]) marked a significant
step towards properly unifying these models. It paved the way for the emergence of Call-by-
Push-Value (CBPV), a unifying framework introduced by P.B. Levy [54, 55] which subsumes,
among others, CBN and CBV denotational and operational semantics thanks to the distinction
between computations and values, according to the slogan “a value is, a computation does”.
This framework attracts growing attention: proving advanced properties of a single unifying
paradigm, and subsequently instantiate them for a wide range of computational models.

The distant Bang-calculus. Drawing inspiration from Girard’s Linear Logic (LL) [44] and
the interpretation of CBPV into LL [38], Ehrhard and Guerrieri [39] introduced an (untyped)
restriction of CBPV, named Bang-calculus, already capable of subsuming both CBN and CBV. It
is obtained by enriching the λ-calculus with two modalities ! and its dual der. The modality !
actually plays a twofold role: it freezes the evaluation of subterms (called thunk in CBPV), and
it marks what can be duplicated or erased during evaluation (i.e. copied an arbitrary number
of times, including zero). The modality der annihilates the effect of !, effectively restoring
computation and eliminating duplicability. Embedding CBN or CBV into the Bang-calculus via
Girard’s translations simply consists in decorating λ-terms with ! and der, thereby forcing
one model of computation or the other one. Thanks to these elementary modalities and
embeddings, the Bang-calculus eases the identification of shared behaviors and properties of
CBN and CBV, encompassing both syntactic and semantic aspects of them.

The original Bang-calculus [39] uses some permutation rules, similar to the ones used
in [70, 30], that unveil hidden redexes and unblock reductions that otherwise would be stuck.
These permutation rules make the calculus adequate, preventing some normal forms from
being observationally equivalent to non-terminating terms. A major drawback is that the
resulting combined reduction is not confluent (Page 6 in [39]). The distant Bang-calculus
(dBang) [23, 24] was proposed as an adequate and confluent alternative. This is achieved by
enriching the syntax with explicit substitutions, in the vein of Accattoli and Kesner’s linear
substitution calculus [7, 9, 1, 2] (generalizing in turn Milner’s calculus [59, 51]), thanks to
rewrite rules that act at a distance, so that permutation rules are no longer needed.

In this paper, we focus on dBang, and its relations with dCBN [9, 1] and dCBV [11], which
are distant adequate variants of the CBN and CBV λ-calculi. This unifying framework is
fruitful, subsuming numerous dCBN and dCBV properties through their associated embedding,
as for instance big step semantics: evaluating the result from the dCBN/dCBV embedding of a
given program t with the dBang model actually corresponds to the embedding of the result
of evaluating the original program t with the dCBN/dCBV model. In other words, dBang is a
language that breaks down the dCBN and dCBV paradigms into elementary primitives.

Let us now review the state of the art by discussing some advanced properties of
programming languages that have been studied in the literature by using the unifying
approach dBang. Some of these results, including this work, strongly rely on semantical tools
such as quantitative types. To ensure clarity regarding the state of the art, let us briefly
discuss in first place the main ideas behind quantitative types.
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Quantitative Type Systems. Intersection type systems [31, 32] increase the typability power
on λ-terms with respect to simple types by introducing a new intersection type constructor
∧ that is associative, commutative and idempotent (i.e. σ ∧ σ = σ). Intersection types allow
terms to have different types simultaneously, e.g. a term has type σ ∧ τ whenever it has
both types σ and τ . They constitute a powerful tool to reason about qualitative properties
of programs. For example, different notions of normalization can be characterized using
intersection types [67, 33], in that a term t is typable in a given system if and only if t is
normalizing (as a consequence, typability in these systems is undecidable). An alternative
version of intersection type systems for the λ-calculus, called non-idempotent [43, 36], is
obtained by dropping idempotence. In such a setting, a term of type σ ∧ σ ∧ τ can be
seen as a resource used exactly once as a data of type τ and twice as a data of type σ.
Interestingly, such type systems provide not only qualitative characterizations of different
operational properties, but also quantitative ones: e.g. a term t is still typable if and only if t

is normalizing, moreover any type derivation of t gives an upper bound to the execution time
for t (the number of steps to reach a normal form) [37]. These upper bounds can be further
refined into exact measure using tight non-idempotent typing systems, as pioneered in [4].

State of the Art. This paper contributes to a broader initiative aimed at consolidating the
theory of dCBN and dCBV, by unifying them into dBang. Several results have already been
factorized and generalized in this framework, we now revisit some of them.

In [46], it is shown that the interpretation of a term t in any denotational model of
CBN/CBV obtained from LL is included in the interpretation of the CBN/CBV translation of t in
any denotational model of Bang obtained from LL. The reverse inclusion also holds for CBN
but not for CBV. In particular, these results apply to typability in non-idempotent intersection
type systems inspired by LL. Indeed, typing is preserved by Girard’s translations, meaning
that if a term is typable in the CBN/CBV type system, then its CBN/CBV translation is typable
in the type system B for Bang, using the same types. The converse holds for CBN but not for
CBV. In [23, 24], the CBV typing system is modified so that the reverse implication also holds.
Moreover, an extension of Girard’s CBN translation to dCBN and a new CBV translation for
dCBV are proposed. Similar typing preservation results have been obtained in [52] for the
translations in [23, 24], but for the more precise notion of tight typing introduced in [4].

Retrieving dynamic properties from Bang into CBN and CBV turns out to be a more
intricate task, especially in their adequate (distant) variant [23, 41, 24].

In [46] it is shown that CBN and CBV can be simulated by reduction in Bang through
Girard’s original translations. But the CBV translation fails to preserve normal forms, as some
CBV normal forms translate to reducible terms in Bang. This issue is solved in dBang [23, 24],
thanks to the new CBV translation for dCBV previously mentioned. In the end, reductions
and normal forms are preserved by both the CBN and the new CBV translations.

Even if dCBN and dCBV can be both simulated by reduction in dBang, the converse, known
as reverse simulation, holds for dCBN but fails for dCBV [24, 14]: a dBang reduction sequence
from a term in the image of the dCBV embedding may not correspond to a valid reduction
sequence in dCBV. Yet another new dCBV translation is proposed in [14] so that simulation
and reverse simulation are now recovered.

Another major contribution concerns the inhabitation problem: given an environment Γ
(a type assignment for variables) and a type σ, decide whether there is a term t that can be
typed with σ under the environment Γ. While inhabitation was shown [74] to be undecidable
in CBN for idempotent intersection type systems, it turns out to be decidable [25, 28] in the
non-idempotent setting. Decidability of the inhabitation problem leads to the development
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1:4 Meaningfulness and Genericity in a Subsuming Framework

of automatic tools for type-based program synthesis [56, 21], whose goal is to construct a
program – the term t – that satisfies some high-level formal specification, expressed as a type
σ with some assumptions described by the environment Γ. It has been proved in [13] that
the algorithms deciding the inhabitation problem for dCBN and dCBV can be inferred from
the corresponding one for dBang, thus providing a unified solution to this relevant problem.

Meaningfulness and Genericity. In this work, we aim to unify the notions of meaningfulness
and genericity in dCBN and dCBV so as to derive them from the respective ones in dBang.

A naive approach to set a semantics for the pure untyped λ-calculus is to define the
meaning of a β-normalizing λ-term as its normal form, and equating all λ-terms that do not
β-normalize. The underlying idea is that, as β-reduction represents evaluation and a normal
form stands for its outcome, all non-β-normalizing λ-terms (i.e. diverging programs) are
then considered as meaningless. However, this simplistic approach is flawed, as thoroughly
discussed in [20]. For example, any λ-theory equating all non-β-normalizing λ-terms is
inherently inconsistent – it effectively equates all λ-terms, not just the meaningless ones!

Alternatively, during the 70s, Wadsworth [75, 76] and Barendregt [17, 18, 19, 20] showed
that the meaningful (CBN) λ-terms can be identified with the solvable ones. Solvability
is defined in a rather technical way: a λ-term t is solvable if there is a special kind of
context, called head context H, sending t to the identity function I = λz.z, meaning that H⟨t⟩
β-reduces to I. Roughly, a solvable λ-term t may be divergent, but its diverging subterms
can be eliminated by supplying the right arguments to t via an appropriate interaction with
a suitable head context H. For instance, in CBN, xΩ is divergent but solvable using the head
context H = (λx.⋄)(λy.I). It turns out that unsolvable λ-terms constitutes a strict subset
of the non-β-normalizing ones. Moreover, the smallest λ-theory that equates all unsolvable
λ-terms is consistent (i.e. it does not equate all terms). In Barendregt’s book [20], these
results rely on a keystone property known as (full) genericity, which states that meaningless
subterms are computationally irrelevant – in the sense that they do not play any role – in
the evaluation of β-normalizing terms. Formally, if t is unsolvable and C⟨t⟩ β-reduces to
some β-normal term u for some context C, then C⟨s⟩ β-reduces to u for every λ-term s. This
property stands as a fool guard that the choice of meaningfulness is adequate. A variant of
genericity [16], called surface in [15] and light in [10], states that any meaningless subterm t

is irrelevant in a meaningful term C⟨t⟩ in that C⟨s⟩ is still meaningful, for every term u.
Meaningfulness was also studied for first order rewriting systems [48] and other strategies

of the λ-calculus [71]. Notably, finding the correct notion of meaningfulness for CBV has
been a challenge [5, 6, 15]. Similarly, an extension of the dCBN was studied [29, 26] in the
framework of a λ-calculus equipped with pattern matching for pairs. The use of different data
structures in the language – functions and pairs – makes meaningfulness more challenging.
Indeed, it was shown that meaningfulness cannot be characterized only by means of typability
alone, as in CBN and CBV, but also requires some additional conditions stated in terms of
the inhabitation problem previously mentioned. This result for the λ-calculus with patterns
inspired the characterization of meaningfulness for dBang that we provide in this paper.
Genericity for dCBN and the more subtle case of dCBV was recently proved in [15].

Our Contributions. We first define meaningfulness for dBang, for which we provide a
characterization by means of typability and inhabitation. As a second contribution, we
validate this notion of meaningfulness twofold: meaningless terms enjoy surface genericity,
and the smallest λdBang-theory HdBang obtained by equating all the meaningless terms is
consistent. Moreover, we show that HdBang admits a unique maximal consistent extension
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H∗
dBang and show that it coincides with the well-known notion of observational equivalence.

Last but not least, as a third contribution, we show that the notions of meaningfulness in
the literature for dCBN and dCBV are subsumed by the one proposed here for dBang. We also
obtain surface genericity for dCBN and dCBV as a consequence of the genericity property for
dBang, and relate the theories HdBang and H∗

dBang (in dBang) to the corresponding ones in
dCBN and dCBV. Detailed proofs of our results can be found in [50].

Roadmap. Section 2 recalls dBang and its quantitative type system B. Section 3 defines
meaningfulness for dBang, and characterizes it in terms of typability and inhabitation in the
type system B. Section 4 addresses surface genericity and the construction of the theories
HdBang and H∗

dBang, while Section 5 establishes a precise relationship between meaningless
and genericity in dCBN/dCBV and their corresponding notions in dBang. Section 6 discusses
future and related work and concludes.

2 The dBang-Calculus

2.1 Syntax and Operational Semantics
We introduce the syntax of the distant Bang-calculus (dBang) [23, 24]. Given a countably
infinite set X of variables x, y, z, . . . , the set Λ! of terms is inductively defined as follows:

(Terms) t, u, s := x ∈ X | t u | λx.t | t[x\u] | !t | der(t)

The set Λ! includes variables x, abstractions λx.t and applications tu (as in the
λ-calculus), and three other constructors: a closure t[x\u] representing a pending explicit
substitution (ES) [x\u] on a term t, a bang !t to freeze the execution of t, and a dereliction
der(t) to fire again the frozen term t. The argument of an application t u (resp. a closure
t[x\u]) is the subterm u. From now on, we set I! := λz.!z, ∆! := λx.x!x, and Ω! := ∆!!∆!.

Abstractions λx.t and closures t[x\u] bind the variable x in the term t. Free and bound
variables are defined as expected, in particular fv(λx.t) := fv(t) \ {x} and fv(t[x\u]) :=
fv(u) ∪ (fv(t) \ {x}). The usual notion of α-conversion [20] is extended to Λ!, and terms are
identified up to α-conversion. We denote by t{x\u} the usual (capture avoiding) meta-level
substitution of the term u for all free occurrences of the variable x in the term t.

List contexts (L), surface contexts (S) and full contexts (F), which can be seen as
terms containing exactly one hole ⋄, are inductively defined as follows:

(List Contexts) L ::= ⋄ | L[x\t]
(Surface Contexts) S ::= ⋄ | S t | t S | λx.S | der(S) | S[x\t] | t[x\S]

(Full Contexts) F ::= ⋄ | F t | t F | λx.F | der(F) | F[x\t] | t[x\F] | !F

List and surface contexts are special cases of full contexts. The hole can occur everywhere
in full contexts, while it is forbidden under ! in surface contexts. For example, y (λx.⋄) is a
surface context hence a full context, while (!⋄)[x\I!] is a full context but not a surface one.
We write F⟨t⟩ for the term obtained by replacing the hole in F with the term t.

The following rewrite rules are the base components of the reduction system of dBang.
Any term having the shape of the left-hand side of one of these three rules is called a redex.

L⟨λx.t⟩ u 7→dB L⟨t[x\u]⟩ t[x\L⟨!u⟩] 7→s! L⟨t{x\u}⟩ der(L⟨!t⟩) 7→d! L⟨t⟩

Rule dB (resp. s!) is assumed to be capture free: no free variable of u (resp. t) is captured
by the list context L. The rule dB fires a β-redex and generates an ES. The rule s! operates
a substitution provided its argument is a bang: only bang terms can be erased or duplicated,
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1:6 Meaningfulness and Genericity in a Subsuming Framework

and they lose their bang when the substitution is performed. The rule d! opens a bang. All
these rewrite rules act at a distance [7, 9, 2]: the main constructors involved in the rule can
be separated by a finite – possibly empty – list context L of ES. This mechanism unblocks
redexes that would otherwise be stuck, e.g. (λx.x)[y\w]!z 7→dB x[x\!z][y\w] fires a β-redex
where L = ⋄[y\w] is the list context in between the abstraction λx.x and the argument !z.

The surface reduction →S is the surface closure of the three rewrite rules dB, s! and d!,
i.e. →S only fires redexes in surface contexts (not under bang). Similarly, the full reduction
→F is the full closure of the three rewrite rules dB, s! and d!, i.e. →F fires redexes in any
full contexts and thus the bang loses its freezing behavior. For example,

(λx.!der(!x))!y →S (!der(!x))[x\!y] →S !(der(!y)) →F !y

The first two →S-steps are →F-steps too, the last one is not a →S-step. We denote by →∗
S

the reflexive-transitive closure of →S, and similarly for →F. A reduction →R is confluent if
for all t, u1, u2 such that t →∗

R u1 and t →∗
R u2, there is s such that u1 →∗

R s and u2 →∗
R s.

▶ Theorem 1. The reductions →S and →F are confluent.

Proof. For →S see [23], for →F see [50]. ◀

A term t is a surface (resp. full) normal form if there is no u such that t →S u (resp.
t →F u). A term t is surface (resp. full) normalizing if t →∗

S u (resp. t →∗
F u) for some

surface (resp. full) normal form u. Since →S ⊊→F, some terms may be surface-normalizing
but not full-normalizing, e.g. λx.!(der(!Ω!)).

As a matter of fact, some ill-formed terms are not redexes but neither represent a desired
computation result. They are called clashes and have one of the following forms:

L⟨!t⟩ u t[x\L⟨λx.u⟩] der(L⟨λx.t⟩) t(L⟨λx.u⟩) if t ̸= L′⟨λy.s⟩

This static notion of clash is lifted to a dynamic level. A term t is surface (resp. full)
clash-free if it does not surface (resp. full) reduce to a term with a clash in surface (resp. full)
position, i.e. if there are no surface (resp. full) context S (resp. F) and clash c such that
t →∗

S S⟨c⟩ (resp. t →∗
F F⟨c⟩). For example, x!(y(λz.z)) is surface clash-free but not full

clash-free as it has a clash y(λz.z) under a bang. Both notions are stable under reduction.
Finally, some terms contain neither redexes nor clashes. A surface (resp. full) clash-

free normal form is a surface (resp. full) normal form which is also surface (resp. full)
clash-free, as e.g. the term xx. These are the results of the computation, and they can even
be syntactically characterized by the grammar noS below.

neS := x ∈ X | neS naS | der(neS) | neS[x\neS] naS := !t | neS | naS[x\neS]
nbS := neS | λx.noS | nbS[x\neS] noS := naS | nbS

▶ Lemma 2 ([23]). Let t ∈ Λ!, then t ∈ noS iff t is a surface clash-free normal form.

2.2 Quantitative Typing System
We present the quantitative typing system B [23], based on [43, 36], for dBang. It contains
arrow and intersection types. Intersections are associative, commutative but not idempotent,
thus an intersection type is represented by a (possibly empty) finite multiset [σi]i∈I . Given a
countably infinite set T V of type variables α, β, γ, . . . , we define by mutual induction:

(Types) σ, τ, ρ := α ∈ T V | M | M ⇒ σ

(Multitypes) M, N := [σi]i∈I where I is a finite set



D. Kesner, V. Arrial, and G. Guerrieri 1:7

(var)
x : [σ] ⊢ x : σ

Γ ⊢ t : M ⇒ σ ∆ ⊢ u : M
(app)

Γ + ∆ ⊢ t u : σ

(Γi ⊢ t : σi)i∈I I finite
(bg)

+i∈IΓi ⊢ !t : [σi]i∈I

Γ, x : M ⊢ t : σ
(abs)

Γ ⊢ λx.t : M ⇒ σ

Γ, x : M ⊢ t : σ ∆ ⊢ u : M
(es)

Γ + ∆ ⊢ t[x\u] : σ

Γ ⊢ t : [σ]
(der)

Γ ⊢ der(t) : σ

Figure 1 Type System B for the dBang-calculus.

A (type) environment, noted Γ or ∆, is a function from variables to multitypes,
assigning the empty multitype [ ] to all variables except a finite number (possibly zero).
The empty environment, noted ∅, maps every variable to [ ]. The domain of Γ is
dom(Γ) = {x ∈ X | Γ(x) ̸= [ ]}, the image of Γ is im(Γ) = {Γ(x) | x ∈ dom(Γ)}. Given the
environments Γ and ∆, Γ + ∆ is the environment mapping x to Γ(x) ⊎ ∆(x), where ⊎ denotes
multiset union; and +i∈I∆i (with I finite) is its n-ary extension, in particular +i∈I∆i = ∅
if I = ∅. An environment Γ is denoted by x1 :M1, . . . , xn :Mn when the xi’s are pairwise
distinct variables and Γ(xi) = Mi for all 1 ≤ i ≤ n, and Γ(y) = [ ] for y /∈ {x1, . . . , xn}.

A typing is a pair (Γ; σ), where Γ is an environment and σ is a type. A (typing)
judgment is a tuple of the form Γ ⊢ t : σ, where (Γ; σ) is a typing and t is a term (the
subject of the judgment). The typing system B for dBang is defined by the rules in Figure 1.
The axiom rule (var) is relevant, i.e. there is no weakening. Rules (abs), (app) and (es)
are standard. Rule (bg) has as many premises as elements in the finite (possibly empty)
index set I, and its conclusion types !t with a multitype gathering all the (possibly different)
types in the premises typing t. In particular, when I = ∅, the rule has no premises, and it
types any term !t with [ ], leaving the subterm t untyped. Rule (der) forces the argument of a
dereliction to be typed by a multitype of cardinality 1.

A (type) derivation in system B is a tree obtained by applying the rules in Figure 1. The
judgment at the root of the type derivation Π is the conclusion of Π. We write Π▷B Γ ⊢ t : σ

when Π is a derivation in system B with conclusion Γ ⊢ t : σ, and ▷B Γ ⊢ t : σ if there exists
some derivation Π ▷B Γ ⊢ t : σ. A term t is B-typable if ▷B Γ ⊢ t : σ for some typing (Γ; σ).

System B enjoys subject reduction and expansion with respect to →F, and characterizes
surface-normalizing clash-free terms.

▶ Theorem 3 ([23, 13]). Let t, u ∈ Λ!.
1. If t →F u, then for any typing (Γ; σ), one has ▷B Γ ⊢ t : σ if and only if ▷B Γ ⊢ u : σ.
2. t is B-typable if and only if t surface-reduces to a surface clash-free normal form.

3 Meaningfulness = Typability + Inhabitation

In this section, we introduce the notion of meaningfulness for dBang and we establish a
logical characterization of meaningfulness via system B. Intuitively, a term t is meaningful if
it can be supplied by some arguments (possibly binding some free variables of t) so that it
reduces to some observable term. In dBang, the observables are the bang terms since they
are the only terms enabling substitution to be fired.

▶ Definition 4. A term t is dBang-meaningful if there are a testing context T and u ∈ Λ! such
that T⟨t⟩ →∗

S !u, where testing contexts are defined by the grammar T := ⋄ | Ts | (λx.T)s.1 A
term t is dBang-meaningless if it is not dBang-meaningful.

1 Thanks to a factorization theorem for dBang [14], in our definition of dBang-meaningfulness →∗
S can

equivalently be replaced by →∗
F. For the same reason, the same remark also applies to Definition 14.
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(var)
x : [M ⇒ σ] ⊢ x : M ⇒ σ

(var)
x : [M] ⊢ x : M

(app)
x : [M ⇒ σ, M] ⊢ xx : σ

Figure 2 A type derivation of xx in system B.

(var)
x : [α] ⊢ x : α

(bg)
x : [α] ⊢ !x : [α]

(abs)
∅ ⊢ λx.!x : [α] ⇒ [α]

Figure 3 Inhabitation of [α] ⇒
[α] in system B.

For example, I! is dBang-meaningful, take the testing context T = ⋄ !u. Both Ω! and xΩ!
are dBang-meaningless: every testing context they are plugged in cannot erase Ω!, which
is not normalizing and does not reduce to a bang term. Note that all testing contexts are
surface, and that the hole in a testing context is always in the functional position of an
application, in particular if the hole is in the scope of some λ, then this λ must be applied.

Readers familiar with the advanced theory of λ-calculus may wonder about the relevance
of our notion of dBang-meaningfulness. In particular, we could have just naively extended the
well-known notion of call-by-name solvability: a term t is dBang-solvable if there are a testing
context T such that T⟨t⟩ →∗

S I!. We found at least two reasons to not use dBang-solvability:
the first one is that we would lose consistency of the smallest λdBang-theory generated by
equating all dBang-unsolvable terms (see discussion after Proposition 8), while the second
one is that we would lose genericity (see discussion after Corollary 11).

In an adequate calculus, meaningfulness is usually characterized both operationally
(normalizability) and logically (typability): a term is meaningful iff it is normalizing for a
suitable subreduction of the calculus iff it is typable in a suitable type system. Surprisingly,
these characterizations are subtler in dBang, because the language has two (incompatible)
data structures: abstractions (playing the role of functions) and bangs (playing as values).

A natural idea to operationally characterize dBang-meaningfulness would be normaliz-
ability by surface reduction, but this fails, even if we require the obtained surface normal
form to be clash-free. For instance, the term xx is dBang-meaningless despite being a surface
clash-free normal form. Indeed, for xx to be dBang-meaningful, a testing context T would
need to provide a term u to substitute the variable x, so that T⟨xx⟩ would eventually reduce
to a bang. However, achieving this requires the term u to reduce to both an abstraction and
a bang, which is impossible. Hence, dBang-meaningfulness is not only the ability to produce
a surface clash-free normal form, but also to transform this result into an observable.

Concerning a logical characterization of dBang-meaningfulness, typability is not enough,
at least in system B, since it just characterizes surface clash-free normalization (Theorem 3.2).
For instance, the dBang-meaningless term xx seen above is typable in system B. Every type
derivation of xx has the form of that in Figure 2, which reveals the conflict when assigning
to x both an arrow type M ⇒ σ (the type of terms eventually reducing to abstractions) and
a multitype M (the type of terms eventually reducing to bangs). The inhabitation problem
can be used to detect such conflicts, allowing for a handy characterization of meaningfulness.
Indeed, the multitype [M ⇒ σ, M] assigned to the variable x in Figure 2 is not inhabited.
Other (naive and unsuccessful) alternatives are discussed in Section 6.

While it seems complex to syntactically establish operational conditions such as (not)
reducing to abstractions or bangs, this is easily achieved semantically. Indeed, we establish
a logical characterization of dBang-meaningfulness based on typability and inhabitation in
system B, similarly to what happens in the λ-calculus with pairs [12, 29, 26]. Intuitively,
suppose that a term t is dBang-meaningful, so there is a testing context T such that T⟨t⟩



D. Kesner, V. Arrial, and G. Guerrieri 1:9

reduces to an observable, i.e. a bang, which can be (trivially) typed with the typing (∅; [ ]) in
system B. By Theorem 3.1, T⟨t⟩ must also be typable by the same typing (∅; [ ]), meaning that
t is typable by some environment x1 :M1, . . . , xn :Mm and some type N1 ⇒ . . . ⇒ Nn ⇒ [ ],
where each of the Mi’s and Ni’s is inhabited, i.e. there is a term with such a type.

A similar argument holds for other type systems and calculi [29, 26] with their own
notions of meaningfulness and observable. The point is to identify the set of types T obs

S
associated with the observables. In any type system S whose types are those of Section 2.2,
given a set of types T obs

S for observable terms, the set of arguments argsS(σ) of a type σ is
the set of multitypes appearing to the left of arrows, until reaching the type of an observable.
Formally, if σ ∈ T obs

S then argsS(σ) := ∅, otherwise argsS(α) := ∅, argsS(M ⇒ σ) :=
{M} ∪ argsS(σ), and argsS(M) = ∅. In system B, we set T obs

B := {M | M multitype},
because bang terms – the observables in dBang – can be only typed by multisets. For
example, argsB([τ ] ⇒ (M ⇒ [α])) = {[τ ] , M}. The cases of dCBN and dCBV type systems
are discussed in Section 5, this is why our definitions deal with a generic type system S.

▶ Definition 5. Let S be a type system and inhS(·) be a predicate on the types of S. A
set S of types is inhabited, noted inhS(S), if inhS(σ) for all σ ∈ S. We write inhS(Γ)
if inhS(im(Γ)). A typing (Γ; σ) or a judgment Γ ⊢ t : σ is S-testable if inhS(Γ) and
inhS(argsS(σ)). A term t is S-testable if ▷S Γ ⊢ t : σ for some S-testable typing (Γ; σ).

A type σ is inhabited in system B, noted inhB(σ), if Π▷B ∅ ⊢ t : σ for some Π and t. For
instance, in system B, the type [ ] is inhabited by any bang, use rule (bg) with no premises;
the environment ∅ is trivially inhabited; the type [α] ⇒ [α] is inhabited, see Figure 3. The
term λx.!x is B-testable because ▷B ∅ ⊢ λx.!x : [ ] ⇒ [ ] and (∅, [ ] ⇒ [ ]) is B-testable.

▶ Lemma 6. Let t ∈ Λ! and T be a testing context. If ▷B ∅ ⊢ T⟨t⟩ : [ ], then ▷BΓ ⊢ t : σ with
inhB(Γ) and inhB(argsB(σ)).

Inhabitation serves as a crucial tool to produce an observable from a typable term. As
said before, any multitype assigned to a variable x by the environment Γ in the derivation
of a meaningful term t should be inhabited. Hence, the environment Γ has to be inhabited.
However, relying solely on the inhabitation of Γ is not sufficient, as illustrated by the typable
term ▷B ∅ ⊢ λx.xx : [[M] ⇒ τ, M] ⇒ τ , which, despite having a trivially inhabited environ-
ment, is dBang-meaningless. We thus also test the inhabitation of type arguments of the type
σ of t. This therefore means that B-testability is sufficient to ensure dBang-meaningfulness.
Surprisingly, this actually provides a characterization of dBang-meaningfulness.

▶ Theorem 7 (Logical Characterization). Let t ∈ Λ!: t is dBang-meaningful iff t is B-testable.

Now that we have a logical characterization of dBang-meaningfulness, we can reason
about the consequences of equating all dBang-meaningless terms in a λdBang-theory, that
is, in a quotient of Λ! that roughly equates all terms with the same semantics. Formally,
a λdBang-theory is an equivalence ≡ on Λ! containing →F and closed under full contexts.
Let HdBang (also noted ≡HdBang) be the smallest λdBang-theory equating all dBang-meaningless
terms. Theorem 7 entails that HdBang is consistent, that is, it does not equate all terms.

▶ Proposition 8 (Consistency of HdBang). There exist t, u ∈ Λ! such that t ̸≡HdBang u.

Replacing dBang-meaningfulness by dBang-solvability would result in the loss of consist-
ency. Indeed, take an arbitrary term t ∈ Λ! and the two dBang-unsolvable terms !Ω! and
Ω! that the resulting (alternative) theory, written Hsolv

dBang, would equate. By contextuality,
we would have (λx.t) !Ω! ≡Hsolv

dBang
(λx.t) Ω!, and by reduction t ≡Hsolv

dBang
(λx.t) !Ω! (suppose
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x /∈ fv(t)) . Notice that (λx.t) Ω! is also dBang-unsolvable since the term Ω! cannot be erased,
thus (λx.t) Ω! ≡Hsolv

dBang
Ω!. By transitivity t ≡Hsolv

dBang
(λx.t) !Ω! ≡Hsolv

dBang
(λx.t) Ω! ≡Hsolv

dBang
Ω!. Since

t is arbitrary, we easily conclude that all terms are equated in Hsolv
dBang, making it inconsistent.

We also corroborate our definition of meaningfulness by proving that it fulfills a pair of
genericity properties, and show that HdBang admits a unique maximal consistent extension
H∗

dBang (Section 4). Finally, we also show that dBang-meaningfulness, HdBang and H∗
dBang

subsume the well-established corresponding notions for dCBN and dCBV (Section 5).

4 Typed and Surface Genericity in dBang

In Section 3, we proved that dBang-meaningfulness is captured by typability in system B with
some B-testable typing. While this concise characterization formulated as “meaningfulness =
typability + inhabitation” [26] provides a high level understanding, its practical manipulation
might pose some challenges. Suppose we study some properties of a dBang-meaningful term t

through the logical characterization (Theorem 7), thus having a type derivation Π▷B Γ ⊢ t : σ

with (Γ; σ) B-testable. If we proceed by induction on Π, then there is no guarantee that
all the judgments appearing in Π have B-testable typings as well, which would make the
reasoning awkward and the logical characterization of Theorem 7 difficult to exploit. But this
is not the case. Upcoming Lemma 9 states that B-testability propagates bottom-up: if the
conclusion of a derivation Π has a B-testable typing, then so does every other judgment in Π.

We write Π ▷Bm Γ ⊢ t : σ if Π ▷B Γ ⊢ t : σ and each judgment in Π is B-testable, and
Π ▷Bm t if Π ▷Bm Γ ⊢ t : σ holds for some typing (Γ; σ).

▶ Lemma 9. Let t ∈ Λ!. Then Π ▷B Γ ⊢ t : σ with (Γ; σ) B-testable iff Π ▷Bm Γ ⊢ t : σ.

Proof. (⇐): Trivial. (⇒): By an induction on Π. ◀

We can therefore easily use the logical characterization of dBang-meaningfulness to prove
the following first genericity result for dBang: in a dBang-meaningful term s, a dBang-
meaningless subterm can be replaced by any term, without impacting the typing of s.

▶ Theorem 10 (Typed Genericity). Let t ∈ Λ! be dBang-meaningless and F be a full context.
If ▷Bm Γ ⊢ F⟨t⟩ : σ, then ▷Bm Γ ⊢ F⟨u⟩ : σ for all u ∈ Λ!.

Proof. By induction on F, using both Theorem 7 and Lemma 9. ◀

This proof relies on the fact that the dBang-meaningless subterm t cannot be explicitly
typed in any of the judgments of Π, as typing t in Bm is equivalent to being dBang-meaningful
(by Theorem 7 and Lemma 9). Thus, typed genericity fails when weakening the hypothesis
from Bm-typability to B-typability. For example, given the dBang-meaningless term t = xx

and the context F = y ⋄, F⟨t⟩ is B-typable as witnessed by ▷B y : [N ⇒ α] , x : [M ⇒ N , M] ⊢
F⟨t⟩ : α – note that the type of x is not inhabited – while F⟨Ω!⟩ = y Ω! is not B-typable.

As a consequence of typed genericity, we can now prove a qualitative surface genericity
result, stating that dBang-meaningless subterms have no bearing on the significance of
dBang-meaningful terms: in a dBang-meaningful term s, a dBang-meaningless subterm can
be replaced by any term, still keeping s dBang-meaningful. We call this genericity result
surface, despite it universally quantifies over full contexts, as dBang-meaningful is defined
in terms of surface reduction. The corresponding results for dCBN and dCBV are also called
surface in [15] and light in [10], they are both later generalized to a stratified notion in [15].

▶ Corollary 11 (Qualitative Surface Genericity). Let F be a full context. If F⟨t⟩ is dBang-
meaningful for some dBang-meaningless t ∈ Λ!, then F⟨u⟩ is dBang-meaningful for all u ∈ Λ!.
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Proof. Let u∈Λ!. As F⟨t⟩ is dBang-meaningful, then Π▷Bm F⟨t⟩ holds for some Π by Theorem 7
and Lemma 9. As t is dBang-meaningless, then Π′ ▷Bm F⟨u⟩ holds for some Π′ by Theorem 10,
and hence F⟨u⟩ is dBang-meaningful by Theorem 7 and Lemma 9. ◀

As for consistency, surface genericity fails when replacing dBang-meaningfulness with
dBang-solvability. Indeed, consider the full context F := (λy.x) ⋄ and the two dBang-unsolvable
terms t = !Ω! and u = Ω!. One then has that F⟨t⟩ = (λy.x) !Ω! →∗

S x is trivially dBang-
solvable, while F⟨u⟩ = (λy.x) Ω! is not, as the term Ω! cannot be erased.

Genericity is a sanity check on meaningfulness: it holds only if all dBang-meaningless
terms are truly meaningless. Still, some truly meaningless terms might be misinterpreted as
dBang-meaningful. Indeed, when crafting a notion of dBang-meaningless that would satisfy
genericity, one might not take all truly meaningless terms. The λdBang-theory H∗

dBang is
introduced to avoid that. Let H∗

dBang, also noted ≡H∗
dBang

, be the relation on Λ! defined by:

H∗
dBang := {(t, u) | ∀ F full context, F⟨t⟩ dBang-meaningful ⇔ F⟨u⟩ dBang-meaningful}

The theory H∗
dBang equates more than HdBang. For example, let t = x[x\z][y\z] and

u = x[y\z][x\z]: it can be shown that t ̸≡HdBang u while t ≡H∗
dBang

u due to Theorem 7 since t

and u (and so F⟨t⟩ and F⟨u⟩ for any full context F) are B-typable by exactly the same typings.
▶ Remark 12. In H∗

dBang, a term reducing to a bang will only be equated to terms which also
reduce to bangs. This can be formally proved using a property stating that neutral normal
forms can create clashes via a single substitution, technical details can be found in [50].

We expect H∗
dBang to extend the theory HdBang. Moreover, to check that all truly meaning-

less terms are actually dBang-meaningless, we also want this theory to be maximal, meaning
that no more terms can additionally be equated without compromising consistency.

▶ Theorem 13. H∗
dBang is the unique maximal consistent λdBang-theory containing HdBang.

We now show that the theory H∗
dBang coincides with the well-known notion of observational

equivalence in the literature. Observational equivalence roughly equates terms having the
same operational behavior (i.e. reduction to an observable) in any context. The fact that
H∗

dBang and observational equivalence coincide means that two different approaches to define
a semantics in dBang actually coincide. This further backs up the idea that what we call
dBang-meaningfulness appropriately represents meaningfulness in dBang.

▶ Definition 14 (Observational Equivalence). Let t, u ∈ Λ!, then t and u are open-
observational equivalent (resp. observational equivalent), noted t ∼=o u (resp. t ∼= u) if
for every full context F (resp. full context F such that F⟨t⟩ and F⟨u⟩ are closed), F⟨t⟩ →∗

S !t′

for some t′ ∈ Λ! iff F⟨u⟩ →∗
S !u′ for some u′ ∈ Λ!.

Note that, differently from ∼=, ∼=o quantifies over all full contexts and not only on closing
full contexts, hence ∼=o⊆ ∼=. Finally, we now prove that the λdBang-theory H∗

dBang actually
coincides with the observational equivalences ∼= and ∼=o.

▶ Theorem 15. Let t, u ∈ Λ!, then (1) t ∼= u iff (2) t ∼=o u iff (3) t ≡H∗
dBang

u.

Proof. Let t, u ∈ Λ!. Let us show that (3) ⇒ (2) ⇒ (1) ⇒ (3).
(3) ⇒ (2): Let t ≡H∗

dBang
u. Suppose F is an arbitrary full context such that F⟨t⟩ →∗

S !t′

for some t′ ∈ Λ!. Since H∗
dBang is a λdBang-theory (Theorem 13) then it is contextual and

hence F⟨t⟩ ≡H∗
dBang

F⟨u⟩. By Remark 12, F⟨u⟩ →∗
S !u′ for some u′ ∈ Λ!. Therefore, t ∼= u.

(2) ⇒ (1): Immediate.
(1) ⇒ (3): We can easily prove that ∼= is a consistent λdBang-theory. As (3) ⇒ (2) ⇒ (1),
we have ∼= ⊇ H∗

dBang ⊇ HdBang (the last inclusion holds by Theorem 13). By maximality of
H∗

dBang (Theorem 13), then necessarily ∼= ⊆ H∗
dBang. ◀
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5 Subsuming CBN and CBV Meaningfulness

In this section we show that the notions of meaningfulness for dCBN and dCBV in the
literature [15] are subsumed by the one proposed in Section 3 for dBang. We also deduce
surface genericity for dCBN and dCBV as a consequence of surface genericity for dBang.

5.1 dCBN and dCBV Calculi
Both dCBN [7, 8, 1] and dCBV [11] are specified using ES and action at a distance, as explained
in Section 2.1 for dBang. Both dCBN and dCBV share the same term syntax. The sets Λ of
terms and Υ of values are inductively defined below.

(Terms) t, u ::= v | t u | t[x\u] (Values) v ::= x | λx.t

From now on, we set I := λz.z, ∆ := λx.xx, and Ω := ∆∆. Note that the syntax contains
neither der nor !. The distinction between terms and values is irrelevant in dCBN but crucial
in dCBV. The two calculi also share the same list contexts LN, LV and full contexts FN, FV,
but use specialized surface contexts SN and SV for dCBN and dCBV, respectively. Again,
contexts can be seen as terms with exactly one hole ⋄ and are inductively defined below.

(List Contexts) LN, LV ::= ⋄ | LN[x\t]
(dCBN Surface Contexts) SN ::= ⋄ | SN t | λx.SN | SN[x\t]
(dCBV Surface Contexts) SV ::= ⋄ | SV t | t SV | SV[x\t] | t[x\SV]

(Full Contexts) FN, FV ::= ⋄ | FN t | t FN | λx.FN | FN[x\t] | t[x\FN]

We now consider the following rewrite rules:

LN⟨λx.t⟩ u 7→dB LN⟨t[x\u]⟩ t[x\u] 7→s t{x\u} t[x\LV⟨v⟩] 7→sV LV⟨t{x\v}⟩

Rules dB and sV are both capture-free: no free variable of u (resp. t) is captured by the
list context LN (resp. LV). The differences between dCBN and dCBV are in the previous notions
of surface contexts, and in the rewrite rules. The dCBN surface reduction →SN is the union
of the dCBN surface closure of rewrite rules dB and s, while the dCBV surface reduction
→SV is the union of the dCBV surface closure of the rewrite rules dB and sV. Finally, we use
→∗

SN
(resp. →∗

SV
) to denote the reflexive-transitive closure of the relation →SN (resp. →SV).

▶ Example 16. For example, t0 := (λx.yxx)(II) →SN (yxx)[x\II] →SN y(II)(II) =: t1 and
t0 = (λx.yxx)(II) →SV (yxx)[x\II] →SV (yxx)[x\z[z\I]] →SV (yxx)[x\I] →SV yII =: t2.

The dCBN surface reduction is (a non-deterministic diamond variant of) the well-known head
reduction [20], and dCBV surface reduction is the weak reduction not reducing under λ’s.

The quantitative type systems N for dCBN and V for dCBV are presented in Figures 4
and 5, respectively. Types and judgments are the same as for system B. A derivation Π in
system N with conclusion Γ ⊢ t : σ is noted Π ▷N Γ ⊢ t : σ; we write ▷N Γ ⊢ t : σ if there is
a derivation Π ▷N Γ ⊢ t : σ. We use similar notations for system V.

The salient property of type systems N and V is characterizing normalization in dCBN
and dCBV, respectively.

▶ Lemma 17 ([23, 24]). Let t ∈ Λ, then:
t is dCBN surface normalizing iff it is N -typable.
t is dCBV surface normalizing iff it is V-typable.
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(var)
x : [σ] ⊢ x : σ

Γ ⊢ t : [τi]i∈I ⇒ σ (∆i ⊢ u : τi)i∈I I finite
(app)

Γ +i∈I ∆i ⊢ t u : σ

Γ, x : M ⊢ t : σ
(abs)

Γ ⊢ λx.t : M ⇒ σ

Γ, x : [τi]i∈I ⊢ t : σ (∆i ⊢ u : τi)i∈I I finite
(es)

Γ +i∈I ∆i ⊢ t[x\u] : σ

Figure 4 Type System N for the dCBN-calculus.

(var)
x : M ⊢ x : M

Γ ⊢ t : [M ⇒ σ] ∆ ⊢ u : M
(app)

Γ + ∆ ⊢ t u : σ

(Γi, x : Mi ⊢ t : σi)i∈I I finite
(abs)

+i∈IΓi ⊢ λx.t : [Mi ⇒ σi]i∈I

Γ, x : M ⊢ t : σ ∆ ⊢ u : M
(es)

Γ + ∆ ⊢ t[x\u] : σ

Figure 5 Type System V for the dCBV-calculus.

Both dCBN and dCBV can be embedded into dBang by decorating each term with the !
and der modalities. The embedding ·n for dCBN is standard, while various embeddings ·v
for dCBV have been proposed in the literature [44, 57, 58, 46, 23, 24, 14], each with its own
strengths and weaknesses. In this work, we use the embeddings from [23, 24] defined below:

xn := x xv := !x
(λx.t)n := λx.tn (λx.t)v := !λx.tv

(tu)n := tn !un (tu)v :=
{

L⟨s⟩ uv if tv = L⟨!s⟩
der(tv) uv otherwise

(t[x\u])n := tn[x\!un] (t[x\u])v := tv[x\uv]

These translations are extended to contexts as expected by setting ⋄n := ⋄ and ⋄v := ⋄.

▶ Example 18. Recalling Example 16, one has tn
0 = (λx.y !x !x) !(I!!I!), tn

1 = y !(I!!I!) !(I!!I!),
tv
0 = (λx.(der(y !x) !x))(I! !I!) and tv

2 = der(y !I!) !I!.

Let us give some intuition on these embeddings. In dCBN, any argument (right-hand side
of application or substitution) can be erased/duplicated, just as bang terms in the dBang-
calculus, so that arguments must be translated to bang terms. In dCBV, only values can
be erased/duplicated so that values – and only values – must be translated to bang terms.
However, this remark alone is not sufficient to achieve a dCBV embedding enjoying good
properties, and in particular to translate dCBV-normal forms to dBang-normal forms. The
translation of applications is precisely designed in order to guarantee this property.

These embeddings preserve reductions, which will allows us to show that meaningfulness
if preserved through embedding (Theorems 25 and 30).

▶ Lemma 19 (Simulation [23, 24]). Let t, u ∈ Λ.
1. If t →∗

SN
u then tn →∗

S un.
2. If t →∗

SV
u then tv →∗

S uv.

▶ Example 20. In Example 16, we showed that t0 →∗
SN

t1 and t0 →∗
SV

t2. Recalling
Example 18, one has tn

0 →S (y !x !x)[x\!(I!!I!)] →S tn
1 and tv

0 →S (der(y !x) !x)[x\I! !I!] →S
(der(y !x) !x)[x\(!z)[z\!I!]] →S (der(y !x) !x)[x\!I!] →S tv

2.
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As the dCBV-embedding uses der, some d!-step might be needed in the simulation process.
These embeddings also preserve typing, which will make possible to project dBang

meaningfulness and surface genericity onto dCBN and dCBV. More precisely, the two embeddings
are proven to be sound and complete with respect to system B.

▶ Proposition 21 ([23, 24]). Let t ∈ Λ and (Γ; σ) be a typing.
1. One has ▷N Γ ⊢ t : σ if and only if ▷B Γ ⊢ tn : σ.
2. One has ▷V Γ ⊢ t : σ if and only if ▷B Γ ⊢ tv : σ.

A straightforward corollary is that dCBN and dCBV inhabitation properties are well
subsumed in dBang, as illustrated in [13]. In simpler words, any type inhabited in dCBN (resp.
dCBV) is also inhabited in dBang. As expected, the converse is false.

In dCBV and dBang, typing an arbitrary term and typing an argument is similar, as it can
be seen in the right premise ∆ ⊢ u : M of the typing rules (app) and (es) of systems V and
B. This is not the case in dCBN, as the right premise of the (app) and (es) rules of system
N requires, not a single derivation, but a finite set (∆i ⊢ u : τi)i∈I of typing derivation for
the same term u. In the logical characterization (Theorem 7), we check that arguments of
a given type can be inhabited. We therefore need to reflect the typability of arguments –
rather than typability of arbitrary terms – in the definition of dCBN inhabitation.

▶ Definition 22. In system N , a non-multitype σ is inhabited, noted inhN (σ), if Π ▷N ∅ ⊢
t : σ for some Π and t. A multitype [τi]i∈I is inhabited in system N , noted inhN

(
[τi]i∈I

)
if there exists u ∈ Λ such that for each i ∈ I, ▷N ∅ ⊢ u : τi.

In system V, a type σ is inhabited, noted inhV(σ), if Π ▷V ∅ ⊢ t : σ for some Π and t.

In particular, the type [ ] is inhabited in both dCBN and dCBV (i.e. inhN ([ ]) and inhV([ ])).
Similarly, the environment ∅ is also trivially inhabited in both (i.e. inhN (∅) and inhV(∅)).

5.2 dCBN Meaningfulness and Surface Genericity
In this subsection, our attention shifts towards the dCBN-calculus, where we show that its
notion of meaningfulness is subsumed by that of dBang. This observation enables us to project
the surface genericity theorem accordingly. We start by introducing dCBN-meaningfulness.

▶ Definition 23. A term t ∈ Λ is dCBN-meaningful if there is a testing context TN such that
TN⟨t⟩ →∗

SN
I, where testing contexts are defined by TN ::= ⋄ | TN u | (λx.TN) u.2

For example t = x(λy.Ω) is dCBN-meaningful as TN⟨t⟩ →∗
SN

I for TN = (λx.⋄)(λz.I), while Ω
and λx.Ω are dCBN-meaningless as for whatever testing context Ω and λx.Ω are plugged into,
Ω will not be erased. According to the definition of dCBN-meaningfulness, it is natural to define
the types of observable terms in dCBN as the identity types, i.e. T obs

N := {[σ] ⇒ σ | σ type}.
Unlike dBang, dCBN-meaningfulness can be characterized both operationally, through

surface normalizability, and logically, through typability in system N . Moreover, this logical
characterization turns out to be equivalent to N -testability, meaning that dCBN-meaningfulness
can also be characterized via typability and inhabitation, as already observed in [27].

2 Usually, dCBN-meaningfulness (aka solvability) is defined using contexts of the form
(λx1 . . . xm.⋄)N1 . . . Nn (m, n ≥ 0) [19, 20, 71], instead of testing contexts. It is easy to check
that the two definitions are equivalent in dCBN. The benefit of our definition is that the same testing
contexts are also used to define dCBV-meaningfulness (Section 5.3).
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▶ Theorem 24 (Characterizations of dCBN-Meaningfulness [29, 27, 23]). Let t ∈ Λ.
1. (Operational) t is dCBN-meaningful iff t is dCBN surface-normalizing.
2. (Logical) (1) t is dCBN-meaningful iff (2) t is N -typable iff (3) t is N -testable.

Thanks to the specific shape of dCBN-normal forms, we can always type a dCBN-meaningful
term t by a typing (Γ; σ) such that the non-empty multitypes in Γ and argsN (σ) are of
the form [[ ] ⇒ · · · [ ] ⇒ [α] ⇒ α]. These types are trivially inhabited by erasers of the form
λx1. · · · λxn.I, used to prove that N -typability implies dCBN-meaningfulness.

Having an operational characterization of meaningfulness seems to point out that trans-
forming a result into something observable is a trivial operation in dCBN. Indeed, using
simulation (Lemma 19.2), we easily show that dCBN-meaningful is preserved by the dCBN-
embedding, thus confirming this intuition. Moreover, and thanks to the logical characteriza-
tion (Theorem 24.2), we show that the converse also holds, yielding the following result.

▶ Theorem 25. Let t ∈ Λ, then t is dCBN-meaningful iff tn is dBang-meaningful.

Proof.
(⇒) We present here an operational proof. Let t be dCBN-meaningful, thus TN⟨t⟩ →∗

SN
I for

some testing context TN. By induction on TN, one has that (TN⟨t⟩)n = Tn
N⟨tn⟩. By simulation

(Lemma 19.1), one deduces that Tn
N⟨tn⟩ →∗

S λx.x thus Tn
N⟨tn⟩ !!y →∗

S (λx.x)!!y →∗
S !y. Notice

that Tn
N!!y is a dBang-testing context. We thus conclude that tn is dBang-meaningful.

(⇐) Let tn be dBang-meaningful, then using Theorem 7, it is B-testable and thus B-typable.
By Proposition 21.1, t is N -typable and hence t is dCBN-meaningful by Theorem 24. ◀

Observe for example that I and In = I! are both dCBN/dBang-meaningful while Ω and
Ωn = Ω! are both dCBN/dBang-meaningless.

Theorem 25 states that dCBN-meaningfulness precisely aligns with dBang-meaningfulness
on its image via ·n, strengthening the idea that these two notions are adequately chosen.
Thanks to Theorem 25, we can now project surface genericity from dBang to dCBN.

▶ Theorem 26 (dCBN Qualitative Surface Genericity). Let FN be a full context. If FN⟨t⟩ is dCBN-
meaningful for some dCBN-meaningless t ∈ Λ, then FN⟨u⟩ is dCBN-meaningful for every u ∈ Λ.

Proof. Let t ∈ Λ be dCBN-meaningless and FN be a full context. Suppose that FN⟨t⟩ is
dCBN-meaningful: by Theorem 25 and since (FN⟨t⟩)n = Fn

N⟨tn⟩ (simple induction on FN), Fn
N⟨tn⟩

is dBang-meaningful, and tn is dBang-meaningless. By Corollary 11, for any u ∈ Λ, Fn
N⟨un⟩ =

(FN⟨u⟩)n is dBang-meaningful, and hence FN⟨u⟩ is dCBN-meaningful using Theorem 25. ◀

We now discuss some crucial consequences of our previous results, captured by the use
of λdCBN-theories. A λdCBN-theory is an equivalence ≡ on Λ containing →FN and closed
under full contexts. Let HdCBN (also noted ≡HdCBN) be the smallest λdCBN-theory equating all
dCBN-meaningless terms, and let H∗

dCBN be defined as follows:

H∗
dCBN := {(t, u) | ∀ FN full context, FN⟨t⟩ dCBN-meaningful ⇔ F⟨u⟩ dBang-meaningful}

As for dBang, H∗
dCBN is the maximal consistent λdCBN-theory containing HdCBN and it coincides

with observational equivalence in dCBN (see [15]). Thanks to the preservation of meaningful-
ness via the dCBN-embedding ·n (Theorem 25), we can actually relate the theories HdBang and
H∗

dBang (in dBang) to the corresponding ones in dCBN, that is, HdCBN and H∗
dCBN respectively.

▶ Theorem 27. Let t, u ∈ Λ.
1. If t ≡HdCBN u then tn ≡HdBang un.
2. If tn ≡H∗

dBang
un then t ≡H∗

dCBN
u.
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Proof.
1. Immediate consequence of Theorem 25 and Lemma 19.1.
2. Let t, u ∈ Λ such that tn ≡H∗

dBang
un. Let FN be a full context and suppose that FN⟨t⟩ is dCBN-

meaningful. Using Theorem 25, one deduces that (FN⟨t⟩)n = Fn
N⟨tn⟩ is dBang-meaningful.

Since tn ≡H∗
dBang

un, one has that Fn
N⟨un⟩ = (FN⟨u⟩)n is dBang-meaningful. Using Theorem 25,

one concludes that FN⟨u⟩ is dCBN-meaningful and therefore t ≡H∗
dCBN

u. ◀

We strongly conjecture that the converse of Theorem 27.1 also holds. Perhaps unexpec-
tedly, the converse of Theorem 27.2 is actually false. Indeed, η-expansion is included in H∗

dCBN
(see [20]) but not in H∗

dBang thus x ≡H∗
dCBN

λy.xy but xn = x ̸≡H∗
dCBN

λy.x!y = (λy.xy)n: the
context F = ⋄[x\!!w] separates x and λy.x!y. However, through Theorem 15, this phenomenon
is not so surprising as it tells us that the dCBN observational equivalence does not coincide
with dBang observational equivalence on the image of ·n, since dBang is a finer language than
dCBN, with more contexts to separate terms operationally.

5.3 dCBV Meaningfulness and Surface Genericity
We now move to the dCBV-calculus, where we show that its notion of meaningfulness is sub-
sumed by that of the dBang-calculus, and then project surface genericity theorem accordingly.

Adapting meaningfulness from dCBN to dCBV by replacing dCBN-reduction with dCBV-
reduction may seem initially promising. This notion, known as dCBV-solvability, has appealing
properties [64, 71, 11, 30, 47, 6]. Unfortunately, Accattoli and Guerrieri showed that genericity
fails in such setting [6], and that equating unsolvable terms yields an inconsistent theory
(see e.g. [6]). Consequently, dCBV-meaningfulness cannot be identified with dCBV-solvability.
Identifying appropriate notions to capture dCBV meaningful λ-terms and formally validating
these notions has been a longstanding and challenging open question.

Paolini and Ronchi Della Rocca [64, 71] introduced the notion of potentially valuability for
CBV, also studied in [63, 11, 30, 42] and renamed (dCBV) scrutability in [6]. This notion, which
we introduce below, proves to be suitable dCBV-meaningfulness. Notably, it aligns seamlessly
with dBang-meaningfulness through the dCBV-embedding and thus enjoys a genericity theorem.

▶ Definition 28. A term t ∈ Λ is dCBV-meaningful if there exists a testing context TV and a
value v such that TV⟨t⟩ →∗

SV
v, where testing contexts are defined by TV ::= ⋄ | TV u | (λx.TV) u.

For example t = x(λy.z) is dCBV-meaningful as TV⟨t⟩ →∗
SV

λy.z for TV = (λx.⋄)(λz.z),
while Ω and xΩ are dCBV-meaningless as for whatever testing context Ω and xΩ are plugged
into, Ω will not be erased. Note that the set of testing contexts is the same as those of dCBN.

Notice that this definition closely mirrors that of dBang-meaningfulness, with the primary
difference being the replacement of dBang values for those of dCBV. Since values are typed
with multitypes, it is natural to take them as types of the observable terms in dCBV (i.e.
T obs

V := {M | M multitype}). Consequently, and thanks to the preservation of typing
(Proposition 21.2), one easily shows that testability is preserved through the dCBV translation:
if a term t is V-testable, then its image tv is B-testable.

As in dCBN and unlike dBang, dCBV-meaningfulness can actually be characterized both
operationally, through surface normalizability, and logically, through typability in system V.
Moreover, the logical characterization turns out to be equivalent to V-testability, meaning
that dCBV-meaningfulness is also characterized by means of typability and inhabitation.

▶ Theorem 29 (Characterizations of dCBV-Meaningfulness [11, 6, 23]). Let t ∈ Λ.
1. (Operational) t is dCBV-meaningful iff t is dCBV surface-normalizing.
2. (Logical) (1) t is dCBV-meaningful iff (2) t is V-typable iff (3) t is V-testable.
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The notion of observable aligns in dCBV and dBang, at least from the type perspective.
This yields a simple fully semantical proof of the preservation of dCBV-meaningfulness.

▶ Theorem 30. Let t ∈ Λ, then t is dCBV-meaningful iff tv is dBang-meaningful.

Proof.
(⇒) We present here a semantical proof. Let t be dCBV-meaningful, then using Theorem 29,

one has that t is V-testable thus, by preservation of testability, tv is B-testable and one
concludes that tv is dBang-meaningful according to Theorem 7.

(⇐) Let tv be dBang-meaningful, then using Theorem 7, it is B-testable thus B-typable. By
Proposition 21.2, t is V-typable and thus t is dCBV-meaningful by Theorem 29. ◀

Observe for example that I and Iv = !I! are both dCBV/dBang-meaningful while Ω and
Ωv = Ω! are both dCBV/dBang-meaningless.

Theorem 30 states that dCBV-meaningfulness precisely aligns with dBang-meaningfulness
on its image, strengthening the idea that these two notions are adequately chosen. Thanks
to Theorem 30, we can now project surface genericity from dBang to dCBV.

▶ Theorem 31 (dCBV Qualitative Surface Genericity). Let FV be a full context. If FV⟨t⟩ is dCBV-
meaningful for some dCBV-meaningless t ∈ Λ, then FV⟨u⟩ is dCBV-meaningful for every u ∈ Λ.

Proof. Let t ∈ Λ be dCBV-meaningless and FV be a full context. Suppose that FV⟨t⟩ is dCBV-
meaningful, then using Theorem 30, (FV⟨t⟩)v is dBang-meaningful, and tv is dBang-meaningless.
By induction on FV, (FV⟨t⟩)v = Fv

V⟨tv⟩ thus Fv
V⟨tv⟩ is dBang-meaningful. By Corollary 11,

for any u ∈ Λ, Fv
V⟨uv⟩ is dBang-meaningful. So, by typing preservation (Proposition 21.2),

(FV⟨u⟩)v is dBang-meaningful, and hence FV⟨u⟩ is dCBV-meaningful using Theorem 30. ◀

We now discuss some crucial consequences of our previous results, captured by the use
of λdCBV-theories. A λdCBV-theory is an equivalence ≡ on Λ containing →FV and closed
under full contexts. Let HdCBV (also noted ≡HdCBV) be the smallest λdCBV-theory equating all
dCBV-meaningless terms, and let H∗

dCBV be defined as follows:

H∗
dCBV := {(t, u) | ∀ FV full context, FV⟨t⟩ dCBV-meaningful ⇔ F⟨u⟩ dBang-meaningful}

As for dBang and dCBN, H∗
dCBV is the maximal consistent λdCBV-theory containing HdCBV and

coincides with observational equivalence in dCBV (see [15]). Again, thanks to the preservation
of meaningfulness via the dCBV-embedding ·v (Theorem 30), we can relate the theories HdBang

and H∗
dBang (in dBang) to the corresponding ones in dCBV, that is, HdCBN and H∗

dCBV.

▶ Theorem 32. Let t, u ∈ Λ.
1. If t ≡HdCBV u then tv ≡HdBang uv.
2. If tv ≡H∗

dBang
uv then t ≡H∗

dCBV
u.

Proof.
1. Immediate consequence of Theorem 30 and Lemma 19.2
2. Let t, u ∈ Λ such that tv ≡H∗

dBang
uv. Let FV be a full context and suppose that FV⟨t⟩

is dCBV-meaningful. By Theorem 30, (FV⟨t⟩)v is dBang-meaningful, and by Theorem 7
(FV⟨t⟩)v is B-testable. As (FV⟨t⟩)v →∗

F Fv
V⟨tv⟩ (see [14]) and typing is preserved by reduction

(Theorem 3.1), we deduce that Fv
V⟨tv⟩ is also dBang-meaningful. Since tv ≡H∗

dBang
uv, one

has that Fv
V⟨uv⟩ is dBang-meaningful and so is (FV⟨u⟩)v, thanks to Theorem 3.1 and since

(FV⟨u⟩)v →∗
F Fv

V⟨uv⟩. By Theorem 30, FV⟨u⟩ is dCBV-meaningful and hence t ≡H∗
dCBV

u. ◀
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As in the dCBN-case, we strongly conjecture that the converse of Theorem 32.1 also
holds. As in the dCBN-case again, the converse of Theorem 32.2 is actually false. Indeed, the
ηv-expansion is included in H∗

dCBV (see [66, 53, 22, 3]) but not in H∗
dBang, i.e. x ≡H∗

dCBV
λy.xy

but xv = !x ̸≡H∗
dCBV

!λy.x!y = (λy.xy)v: the context F = der(⋄) [x\!!w] separates the two.
Again, from the viewpoint of Theorem 15, this phenomenon is not so surprising as it tells us
that the dCBV and dBang observational equivalence does not coincide on the image of ·v, since
dBang is a finer language than dCBV, with more contexts to separate terms operationally.

6 Conclusion and Future Work

We defined a notion of meaningful term, in a unifying well-established framework dBang that
is able to capture both dCBN and dCBV calculi. We validated this notion of meaningfulness
by providing a (high-level) characterization based on both typability and inhabitation, and
showing a (surface) genericity result. All these results in dBang are perfectly analogous to
well-known results for dCBN and dCBV [15]. Furthermore, both meaningfulness and genericity
in dBang are shown to capture their respective notions in dCBN and dCBV. This suggests that
there is a sort of canonicity in our definition of dBang-meaningfulness.

It is natural to wonder why this work is not conducted on the usual CBN and CBV calculi
but rather their distant version dCBN and dCBV, which make use of explicit substitutions.
The main reason is the non-adequacy of Plotkin’s CBV calculus [66], meaning that some
observational equivalent terms have different operational behaviors. Indeed, take the term
t := (λx.∆) (yy) ∆ which is observationally equivalent to the prototypical diverging term
Ω. Since λx.∆ is applied to yy – which is not a value and cannot reduce to a value
– it makes t a normal form in Plotkin’s CBV. This mismatch complicates the study of
dCBV-meaningfulness. Notice that this issue is solved in dCBV as the term t now diverges:
t →SV ∆[x\yy]∆ →SV (zz)[z\∆][x\yy] →SV Ω[x\yy] →SV . . ., as expected. Furthermore, the
observational equivalences generated by Plotkin’s CBV and dCBV coincide, making the calculus
switch harmless. Since adequacy for CBV is recovered thanks to ES and action at a distance, it
is then natural to adopt a similar specification for CBN, knowing that standard CBN λ-calculus
and dCBN are operationally and semantically equivalent.

While the logical characterization of meaningfulness for dBang (Theorem 7) requires
additional hypotheses (typability and inhabitation) compared to those for dCBN (Theorem 24)
and dCBV (Theorem 29), which only require typability, this dissimilarity should not be
mistakenly interpreted as a weakness of our approach.

Firstly, the inhabitation condition becomes trivial in the case of dCBN and dCBV, as test-
ability and typability coincide in both cases. Consequently, our approach to meaningfulness
for dBang clearly provides a conservative extension of those for dCBN and dCBV.

Secondly, the use of distinct term constructors to specify data that cannot be intermingled
seems unavoidable to embed both call-by-name and call-by-value calling paradigms within a
single unifying framework. In the case of dBang, a clear distinction must be made between
functions (represented by abstractions) and duplicable terms (represented by bang). This
syntactic distinction, absent in both call-by-name and call-by-value, results in a unifying
framework containing (at least) two built-in primitives that capture incompatible data. Then,
the use of intersection types enable, in principle, such mismatch to exists even though a term
cannot actually be a bang and a function at the same time. To address this issue, it may
seem tempting to explore some syntactical restriction of intersection type systems such as
uniformity [65] or compatibility [29], but both these cases result in a loss of completeness.
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Finally, the characterization of meaningfulness through typability and inhabitation in a
language equipped with incompatible data structures was initially studied in [29, 26], in the
context of a λ-calculus with pair patterns. Clearly, functions cannot be pattern-matched by
pair patterns, and pairs cannot be applied to arguments.

Besides that, several questions remain to be explored. First of all, we aim to show that
our notion of meaningfulness for dBang allows us to prove a full genericity result in dBang in
Barendregt’s sense as mentioned in Section 1 (meaningless subterms are computationally
irrelevant in the evaluation of full normalizing terms). A notion of stratified reduction, a finer
operational semantics generalizing surface reduction to different levels, has been recently
defined for dCBN and dCBV [15]. Stratified reduction is a key tool to show a full genericity
result for both dCBN and dCBV. We plan to transfer these techniques to the more general
framework of dBang, so that full genericity for dCBN and dCBV can be simply obtained by
projecting the more general notion of full genericity for dBang via CBN/CBV translations.

It has been observed [69] that dBang can be embedded in this pattern language. Never-
theless, these two languages are not semantically equivalent, as dBang allows only duplication
of values (bang terms), whereas the pattern language allows duplication of arbitrary terms.

We also plan to further study the properties of the smallest theory HdBang generated by
equating all the meaningful terms in dBang. We strongly conjecture that HdBang restricted to
the image of the embedding ·n (resp. ·v) is equivalent to HdCBN in dCBN (resp. HdCBV in dCBV).

We would like to extend our study to other natural objects in the theory of programming,
such as Böhm trees for dBang and their related theorems (e.g. approximation and separability).
Böhm trees for dBang are expected to encompass both dCBN [20] and dCBV [49] ones.

Unifying frameworks such as dBang should also provide other general results for dCBN
and dCBV, such as standardization, separability, etc. All this is left to future work. Finally, a
more ambitious goal would be to generalize these results to models of computations with
effects, such as global memory, non-determinism, exceptions, etc. This would approach our
study on dBang to a more general unifying framework such as call-by-push-value [54, 55].
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