
Second-Order Generalised Algebraic Theories:
Signatures and First-Order Semantics
Ambrus Kaposi #

Eötvös Loránd University, Budapest, Hungary

Szumi Xie #

Eötvös Loránd University, Budapest, Hungary

Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees,
well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by
conversion). Another aspect is the representation of binding structure for which nominal approaches,
De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders
are given by the function space of an internal language of presheaves. In this paper, we show how to
combine the algebraic approach with the HOAS approach: following Uemura, we define languages
as second-order generalised algebraic theories (SOGATs). Through a series of examples we show
that non-substructural languages can be naturally defined as SOGATs. We give a formal definition
of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from
SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on
parallel and single substitutions, respectively.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Type theory, universal algebra, inductive types, quotient inductive types,
higher-order abstract syntax, logical framework

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.10

Supplementary Material Software (Implementation and detailed constructions): https://bitbucket.
org/akaposi/sogat, archived at swh:1:dir:0f9fefbd89f1151eedb46518bde3062c0bc5a3fe

Funding Ambrus Kaposi: The author was supported by project no. TKP2021-NVA-29 which has
been implemented with the support provided by the Ministry of Culture and Innovation of Hungary
from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA
funding scheme.

1 Introduction

The traditional way of defining a programming language comprises of a BNF-style description
of abstract syntax trees, a typing relation and a reduction or conversion relation [48, 49, 53].
If instead the syntax is defined using well-scoped syntax trees [34, 27, 3], bound names do
not matter: for example, one cannot distinguish 𝜆𝑥.𝑥 and 𝜆𝑦.𝑦 anymore. A higher level
representation is given by intrinsic (well-typed) terms [9, 53] where one merges the syntax
and the typing relation: non well-typed terms are not expressable in such a representation.
The next level of abstraction is when well-typed terms are quotiented by the conversion
relation: this is especially convenient for dependently typed languages where typing depends
on conversion [7]. Here one can only define functions on the syntax that preserve conversion:
a simple printing function is not definable, but normalisation [6, 20], typechecking [35] or
parametricity [7] preserve conversion, so they can be defined on the well-typed quotiented
syntax. The well-typed quotiented syntax is also concordant with the semantics: there is no
reason to have a separate definition of syntax and a different notion of semantics, but the
syntax can be simply defined as the initial model, which always exists for any generalised
algebraic theory (GAT) [39]. Thus, abstractly, a language is simply a GAT.

© Ambrus Kaposi and Szumi Xie;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 10; pp. 10:1–10:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akaposi@inf.elte.hu
https://orcid.org/0000-0001-9897-8936
mailto:szumi@inf.elte.hu
https://orcid.org/0009-0001-1355-1114
https://doi.org/10.4230/LIPIcs.FSCD.2024.10
https://bitbucket.org/akaposi/sogat
https://bitbucket.org/akaposi/sogat
https://archive.softwareheritage.org/swh:1:dir:0f9fefbd89f1151eedb46518bde3062c0bc5a3fe;origin=https://bitbucket.org/akaposi/sogat;visit=swh:1:snp:9ab652defd158cdf6ac4a86acfec9db30ddf868f;anchor=swh:1:rev:18e37940efd8a8b5b8f9c11a4beebea8a83f22fb
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Another aspect of the definition of a language is the treatment of bindings and variables:
one can use De Bruijn indices to make sure that choices of names do not matter, but
then substitution has to be part of the syntax, for example in the form of a category with
families [19]. Logical frameworks [29, 47] and higher-order abstract syntax (HOAS) [32]
provide another way to implement bindings and variables: they use the function space of the
metatheory. For example, the type of the lambda operation in the pure lambda calculus is
simply the second-order function space (Tm → Tm) → Tm. The justification of HOAS is the
type-theoretic internal language of presheaves over the category of contexts and syntactic
substitutions [32]. In this internal language, lambda indeed has the above type. This internal
language viewpoint can also be used to define languages: in this case a language with
bindings is not a GAT, but a second-order generalised algebraic theory (SOGAT), which
allows second-order (but not general higher-order) operations. While untyped or simply typed
languages were defined as second-order theories before [23, 21, 2], SOGATs were first used
by Uemura [52] for defining languages with bindings. The step from second-order algebraic
theories to SOGATs is a big one: it is analogous to the step from inductive types to inductive-
inductive types [40]. The SOGAT definition of a language can be even more abstract than
the well-typed quotiented definition: the SOGAT does not mention contexts or substitutions:
these can be seen as boilerplate that should be automatically generated. SOGATs are not
well-behaved algebraic theories, for example, there is no meaningful notion of homomorphism
of second-order models. To describe first order models, homomorphisms or the notion of
syntax for a SOGAT, we turn it into a GAT. In this process we introduce new sorts for
contexts and substitutions, we index every operation with its context, and the second-order
function spaces become first order using this context indexing. The thus obtained GAT has
some “correctness by construction” properties, for example, every operation automatically
preserves substitution. For complicated theories, this property is not trivial if we do not
start from a SOGAT, but try to work with the lower level GAT presentation directly.

Cubical type theory [51] and a type theory with internal parametricity [5] have been
presented as SOGATs, and methods were developed to prove properties of type theories at
the SOGAT level of abstraction [50, 16]. Substructural (e.g. linear or modal) type theories
are not definable as SOGATs using the method described in this paper, but sometimes
presheaves over a substructural theory provide a substructural internal language which can
be used to describe the theory, as in the case of multi-modal type theory [26].

Simple algebraic theories can be presented using signatures and equations, or presentation-
independently as Lawvere theories. GATs have syntactic signatures defined using preterms
and well-formedness relations [18], and they can be described presentation-independently
as contextual categories [18], categories with families (CwFs) or clans [24]. The “theory of
signatures” (ToS) approach [39] is halfway between the syntactic and presentation-independent
approaches: here signatures are defined by the syntax of a particular GAT, which is a domain-
specific type theory designed for defining signatures. Signatures look exactly as we write
inductive datatype definitions in a proof assistant like Agda: a list (telescope) of the curried
types of sorts and constructors. A signature in the ToS is a concrete presentation of a theory,
but it is given at the level of abstraction of well-typed quotiented syntax. This allows elegant
semantic constructions [43], while still working directly with signatures. SOGATs again can
be defined syntactically [52] or presentation-independently as representable map categories
[52] or CwFs with locally representable types [14]. The current paper contributes the ToS
style definition of SOGATs (we leave the proof of equivalence with the former definitions as
future work). The theory of SOGAT signatures is itself a SOGAT which can describe itself.
Circularity is avoided because we bootstrap the theory of SOGAT signatures by first defining
it as a GAT, and the theory of GAT signatures (which is the syntax of a GAT) can itself be
bootstrapped using a Church-encoding [42].

A. Kaposi and Sz. Xie 10:3

Contributions. The main takeaway of this paper is that structural languages are SOGATs.
We justify this claim through several examples. Our technical contributions are the following:

The theory of SOGAT signatures (ToS+), a domain-specific type theory in which every
closed type is a SOGAT signature. As it is a structural type theory, it can be defined as
a SOGAT itself. Signatures can be formalised in ToS+ without encoding overhead.
A translation from SOGAT signatures to GAT signatures based on a parallel substitution
calculus. Thus, for every SOGAT, we obtain all of the semantics of GATs: a category of
models with an initial object, (co)free models, notions of displayed models and sections,
the fact that induction is equivalent to initiality, and so on. The GAT descriptions that
we obtain are readable, do not contain occurrences of Yoneda as in usual presheaf function
spaces. Correctness of the translation is showed by proving that internally to presheaves
over a model of the GAT, a second-order model of the SOGAT is available.
We define an alternative translation producing a single substitution calculus.

Structure of the paper. In Section 2, we walk through examples of languages defined as
second-order algebraic theories (SOGATs) including (simply typed) combinator calculus,
(simply typed) lambda calculus, first-order logic, System F(𝜔), Martin-Löf type theory.
We list more examples in Appendix A including the lambda cube. We explain what the
SOGAT → GAT translation will give for each example. In Section 3, we define languages
for describing algebraic theories, culminating in the theory of SOGAT signatures (ToS+).
A SOGAT is simply a closed type in the syntax of ToS+. Then we define the SOGAT →
GAT translation in three iterations: Section 4 presents a naive notion of model which is
obviously correct, but has lots of encoding overhead. Section 5 defines an isomorphic notion
of model with less encoding overhead. The final translation is defined in Section 6. Section 7
discusses open and infinitary signatures, and explains the single substitution calculus variant.
Section 8 concludes.

Related work. The “theory of signatures” (ToS) approach was introduced by Kaposi and
Kovács [38] for a higher variant of GATs (higher inductive-inductive types), and was used to
describe ordinary [39] and infinitary [42] GATs (quotient inductive-inductive types). The
thesis of Kovács [43] summarises and generalises these results, in particular, it provides
semantics internal to any category with families (CwF) using the semantic setting of two-level
type theory [4, 10]. The current paper extends this work with second-order operations.
The ToS that we use differs from the one in Kovács’ thesis by including Σ types and being
presented as a SOGAT itself. This has the advantage that we do not have to deal with De
Bruijn indices when giving formal signatures. A version of ToS+ with two fixed sorts of types
and terms was given in the HoTTeST talk by Kaposi [36].

Direct precursors of our work are Hofmann’s analysis of higher-order abstract syntax
(HOAS) [32] and Capriotti’s rule framework [17]. Syntactic definitions of SOGATs are given
in Uemura’s thesis [52] and Harper’s equational logical framework [28]. A syntactic definition
of type theories (SOGATs with two fixed sorts: types and terms) is described by Bauer
and Haselwarter [30] based on earlier work [13]. Presentation-independent definitions of
SOGATs are representable map categories by Uemura [52] and CwFs with a sort of locally
representable types (CwF+) [15]. The presentation-independent ways define models using
functorial semantics, while the ToS approach defines semantics of GATs by induction on
the signature. Functorial semantics for our SOGAT signatures is as follows: every SOGAT
signature Ω gives rise to the free CwF+ over Ω (the slice of the theory of SOGAT signatures
over Ω). Now a model is a category C together with a CwF+-morphism from this CwF+ to
the CwF+ of presheaves over C.

FSCD 2024

10:4 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Our two different ways of translating SOGATs to GATs roughly correspond to Voevodsky’s
two different descriptions of the substitution calculus for dependent type theory: B-systems
correspond to single substitutions, C-systems to parallel substitutions. B-systems and C-
systems are equivalent [1], however our single substitution calculus is more minimalistic, and
has more models than the parallel substitution calculus.

In this paper we explain how to define languages as SOGATs and then translate them
into GATs. Then, the induction principle of the GAT can be used to prove properties of
the syntax. However, certain metatheoretic proofs can be described at the level of SOGATs
avoiding mentioning contexts or substitutions. Synthethic Tait computability [50] and
internal sconing [16] are techniques for this. We leave adapting them to ToS+ as future work.

Metatheory and notation. Our metatheory is extensional type theory with uniqueness of
identity proofs, we use Agda-like notation with implicit arguments sometimes omitted. We
write function application as juxtaposition, the universe of types is denoted Set𝑖, we usually
omit the level subscripts. We use infix Σ type notation using ×, the single element of the
singleton type 𝟙 is denoted ★. Sometimes we work in the internal language of a presheaf
category using the same notations, in the style of two-level type theory [4, 10].

2 Classes of algebraic theories through examples

In this section, we walk through examples of logic and programming languages defined as
algebraic theories: we define a single-sorted algebraic theory (AT), a generalised algebraic
theory (GAT), a second-order algebraic theory (SOAT) and multiple second-order generalised
algebraic theories (SOGATs). GATs include typing information compared to ATs, SOATs
include binders, while SOGATs combine these two aspects.

2.1 Algebraic theories

Combinator calculus is an algebraic theory (AT) with a single sort of terms, one binary,
two nullary operations and two equations. We denote its signature as follows (unlike usual
presentations of algebraic theories, we include the equations in the notion of signature,
because for generalised algebraic theories separation is not possible).

▶ Definition 1 (Schönfinkel’s combinator calculus).

Tm : Set K : Tm K𝛽 : K · 𝑢 · 𝑓 = 𝑢
– · – : Tm → Tm → Tm S : Tm S𝛽 : S · 𝑓 · 𝑔 · 𝑢 = 𝑓 · 𝑢 · (𝑔 · 𝑢)

The notion of algebra/model is evident from this signature. The quotiented syntax of
combinator calculus is the initial model, which always exists. Notions of homomorphism,
displayed/dependent model, induction, products and coproducts of models, free models, and
so on, are derivable from the signature, as described in any book on universal algebra. The
initial algebra of an AT is called a quotient inductive type [22].

Single-sorted algebraic theories from logic are classical (or intuitionistic) propositional
logic defined as the theory of Boolean algebras (or Heyting algebras). Examples from algebra
are monoids, groups, rings, lattices, and so on.

A. Kaposi and Sz. Xie 10:5

2.2 Generalised algebraic theories

Generalised algebraic theories (GATs) allow sorts indexed by other sorts. Examples are
typed combinator calculus and propositional logic with Hilbert-style proof theory, theories of
graphs, preorders, categories, and so on.

▶ Definition 2 (Typed combinator calculus).

Ty : Set K : Tm (𝐴⇒ 𝐵 ⇒ 𝐴)
Tm : Ty → Set S : Tm

(
(𝐴⇒ 𝐵 ⇒ 𝐶) ⇒ (𝐴⇒ 𝐵) ⇒ 𝐴⇒ 𝐶

)
𝜄 : Ty K𝛽 : K · 𝑢 · 𝑓 = 𝑢
– ⇒ – : Ty → Ty → Ty S𝛽 : S · 𝑓 · 𝑔 · 𝑢 = 𝑓 · 𝑢 · (𝑔 · 𝑢)
– · – : Tm (𝐴⇒ 𝐵) → Tm 𝐴→ Tm 𝐵

We have a sort of types, and for each type, a separate sort of terms of that type. Now the K
and S operations are nullary only in the sense that they don’t take Tm arguments, but they
still take two and three Ty arguments, respectively. For readability, these are given implicitly.
Similarly, application – · – takes the arguments 𝐴 and 𝐵 implicitly.

The above mentioned universal algebraic features of ATs generalise to GATs [43]. In
particular, each GAT has a syntax given by a quotient inductive-inductive type [39], we have
free models [43] and cofree models [45].

If the language has variables or binders, we will define it as a second-order theory.

2.3 Second-order algebraic theories

The SOAT of lambda calculus is the following.

▶ Definition 3 (Lambda calculus).

Tm : Set lam : (Tm → Tm) → Tm – · – : Tm → Tm → Tm 𝛽 : lam 𝑓 · 𝑢 = 𝑓 𝑢

The type of lam is not first-order (not strictly positive), hence this is not an algebraic theory
anymore. It is clear what a second-order model is (a set with a binary operation and a
second-order function with the type of lam satisfying the equation 𝛽). However, we do not
have a usable notion of homomorphism between second-order models 𝑀 and 𝑁: this would be
a function 𝛼 : Tm𝑀 → Tm𝑁 such that 𝛼 (𝑡 ·𝑀 𝑢) = 𝛼 𝑡 ·𝑁 𝛼 𝑢 and 𝛼 (lam𝑀 𝑓) = lam𝑁 (𝛼◦ 𝑓 ◦?),
but we don’t know what to put in place of the ?. To talk about homomorphisms or the
syntax, we translate the SOAT to a first-order GAT: we add contexts, substitutions, index
Tm and all operations by contexts and then lam becomes a first order function taking a term
in an extended context as input. The resulting GAT is the following.

FSCD 2024

10:6 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

▶ Definition 4 (Lambda calculus as a first-order GAT).

Con : Set [id] : 𝑡 [id] = 𝑡
Sub : Con → Con → Set – ⊲ : Con → Con
– ◦ – : Sub ∆ Γ → Sub Θ ∆ → Sub Θ Γ – , – : Sub ∆ Γ → Tm ∆ → Sub ∆ (Γ ⊲)
ass : (𝛾 ◦ 𝛿) ◦ 𝜃 = 𝛾 ◦ (𝛿 ◦ 𝜃) p : Sub (Γ ⊲) Γ
id : Sub Γ Γ q : Tm (Γ ⊲)
idl : id ◦ 𝛾 = 𝛾 ⊲𝛽1 : p ◦ (𝛾, 𝑡) = 𝛾
idr : 𝛾 ◦ id = 𝛾 ⊲𝛽2 : q[𝛾, 𝑡] = 𝑡
⋄ : Con ⊲𝜂 : 𝜎 = (p ◦ 𝜎, q[𝜎])
𝜖 : Sub Γ ⋄ lam : Tm (Γ ⊲) → Tm Γ
⋄𝜂 : (𝜎 : Sub Γ ⋄) → 𝜎 = 𝜖 lam[] : (lam 𝑡) [𝛾] = lam (𝑡 [𝛾 ◦ p, q])
Tm : Con → Set – · – : Tm Γ → Tm Γ → Tm Γ
– [–] : Tm Γ → Sub ∆ Γ → Tm ∆ ·[] : (𝑡 · 𝑢) [𝛾] = 𝑡 [𝛾] · (𝑢[𝛾])
[◦] : 𝑡 [𝛾 ◦ 𝛿] = 𝑡 [𝛾] [𝛿] 𝛽 : lam 𝑡 · 𝑢 = 𝑡 [id, 𝑢]

We explain in more detail how we obtained the GAT of Definition 4 from the SOAT of
Definition 3: the GAT starts with a category with a terminal object (Con, . . . , ⋄𝜂), then
there is a sort Tm which is now indexed by Con and comes with an instantiation operation
– [–] which is functorial ([◦], [id]). There is a context extension – ⊲ which makes contexts
a natural number algebra (with zero ⋄ and successor – ⊲). Substitutions are lists of terms,
this is expressed by the components – , –, . . . , ⊲𝜂, which can be grouped together into an
isomorphism p ◦ – , q[–] : Sub ∆ (Γ ⊲) � Sub ∆ Γ × Tm ∆ : – , –. Now variables are definable
as De Bruijn indices: 0 = q, 1 = q[p], 2 = q[p] [p], and so on. The operations lam and
– · – are also (implicitly) indexed by contexts and come equipped with substitution laws
(lam[] and ·[]). The function in the input of the SOAT presentation of lam becomes a Tm
in an extended context. In lam[], the substitution (𝛾 ◦ p, q) : Sub (∆ ⊲) (Γ ⊲) is the lifting of
𝛾 : Sub ∆ Γ which does not touch the last variable bound by lam. Finally, the metatheoretic
function application on the right hand side of the 𝛽 law in the SOAT presentation becomes
an instantiation of the last variable by (id, 𝑢) : Sub Γ (Γ ⊲).

In the special case of the lambda calculus, there are equivalent simpler GATs, but this
is the one which is generated by the translation of Section 6. Our translation will work
generically for any SO(G)AT, hence it does not necessarily give the most minimal GAT
presentation.

By the syntax of lambda calculus, we mean the syntax for the GAT of Definition 4.
However, we still prefer to define lambda calculus as a SOGAT: it is a shorter definition,
does not include boilerplate, and ensures that once translated to its first-order version, all
operations respect substitution by construction. Also, we can do programming using the
second-order representation in the style of logical frameworks. This means that using the
second-order presentation, we can define derivable operations and prove derivable equations
as opposed to admissible ones for which we would need induction. An example of a derivable
operation is the Y combinator: we assume a second-order model of the lambda calculus given
by Tm, lam, – · –, 𝛽, and define Y := lam𝜆 𝑓 .

(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
. We prove

that this is indeed a fixpoint combinator as follows.

A. Kaposi and Sz. Xie 10:7

Y · 𝑓 =
(
lam𝜆 𝑓 .

(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

))
· 𝑓 = (𝛽)(

lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)
)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
= (𝛽)

𝑓 ·
((

lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)
)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

))
= 𝑓 · (Y · 𝑓)

This kind of reasoning makes sense for any second-order model, and any first-order model
gives rise to a second-order model in the internal language of presheaves over the first-order
model, see Corollary 28.

2.4 Second-order generalised algebraic theories

SOGATs combine the two previous classes: sorts can be indexed over previous sorts and
second-order operations are allowed. In the following examples, we write f : A ↔ B : g for
f : A → B and g : B → A, we write f : A � B : g for f : A ↔ B : g with two equations
𝛽 : g (f 𝑎) = 𝑎 and 𝜂 : f (g 𝑏) = 𝑏. We write A : Prop for A : Set together with an equation
irr : (𝑎 𝑎′ : A) → 𝑎 = 𝑎′. We list the theories as SOGATs, and discuss the interesting aspects
of their first-order models.

▶ Definition 5 (Simply typed lambda calculus).

Ty : Set Tm : Ty → Set
– ⇒ – : Ty → Ty → Ty lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –

An alternative popular description of simply typed lambda calculus is when we omit Ty
and Tm, write a horizontal line or ⊢ for function space, give names to every input of a
function (i.e. we write (𝑎 : Tm 𝐴) → Tm 𝐵 instead of Tm 𝐴→ Tm 𝐵) and use named function
application written using square brackets (i.e. we write 𝑡 [𝑥 ↦→ 𝑎] instead of 𝑡 𝑎, where
𝑡 : (𝑥 : 𝐴) → 𝐵[𝑥 ↦→ 𝑎], where 𝐵 : (𝑥 : 𝐴) → Set). Note that there are no rules for typing
variables as they are handled by the metatheory.

𝐴 𝐵

𝐴⇒ 𝐵

𝑥 : 𝐴 ⊢ 𝑏 : 𝐵
lam 𝑥.𝑏 : 𝐴⇒ 𝐵

𝑓 : 𝐴⇒ 𝐵 𝑎 : 𝐴
𝑓 · 𝑎 : 𝐵 (lam 𝑥.𝑏) · 𝑎 = 𝑏[𝑥 ↦→ 𝑎]

𝑓 : 𝐴⇒ 𝐵

𝑓 = lam 𝑥. 𝑓 · 𝑥

A first-order model of the simply typed lambda calculus contains a category with a terminal
object (Con, Sub and the empty context ⋄), two sorts Ty and Tm which are both indexed by
contexts, and there are context extension operations both for types and terms (we omit the
types of some operations and equations which are the same as in Definition 4):

FSCD 2024

10:8 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

▶ Definition 6 (Simply typed lambda calculus as a GAT with both type and term variables).

Con, Sub, – ◦ – , id, ass, idl, idr,⋄, 𝜖 ,⋄𝜂
Ty : Con → Set
– [–]Ty : Ty Γ → Sub ∆ Γ → Ty ∆
[◦]Ty, [id]Ty

– ⊲Ty : Con → Con
pTy ◦ – , qTy [–] : Sub ∆ (Γ ⊲Ty) � Sub ∆ Γ × Ty ∆ : – ,Ty –
Tm : (Γ : Con) → Ty Γ → Set
– [–]Tm : Tm Γ 𝐴→ (𝛾 : Sub ∆ Γ) → Tm ∆ (𝐴[𝛾]Ty)
[◦]Tm, [id]Tm

– ⊲Tm – : (Γ : Con) → Ty Γ → Con
pTm ◦ – , qTm [–] : Sub ∆ (Γ ⊲Tm 𝐴) � (𝛾 : Sub ∆ Γ) × Tm ∆ (𝐴[𝛾]Ty) : – ,Tm –
– ⇒ – : Ty Γ → Ty Γ → Ty Γ
⇒[] : (𝐴⇒ 𝐵) [𝛾] = (𝐴[𝛾]) ⇒ (𝐵[𝛾])
lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]) → Tm Γ (𝐴⇒ 𝐵)
lam[] : (lam 𝑡) [𝛾] = lam (𝑡 [𝛾 ◦ pTm ,Tm qTm])
– · – Tm Γ (𝐴⇒ 𝐵) → Tm Γ 𝐴→ Tm Γ 𝐵

·[] : (𝑡 · 𝑢) [𝛾] = 𝑡 [𝛾] · (𝑢[𝛾])
⇒𝛽 : lam 𝑡 · 𝑢 = 𝑡 [id, 𝑢]
⇒𝜂 : 𝑡 = lam (𝑡 [pTm] · qTm)

The context extension operations take as arguments the index of the corresponding sort: Ty is
not indexed, so ⊲Ty does not take any arguments, ⊲Tm takes a Ty argument. In simply typed
lambda calculus, none of the operations (or sorts) use type variables, hence it is not necessary
to include the operation ⊲Ty and the type variables qTy, qTy [p], qTy [p] [p], and so on. In
the formal version of signatures (Definition 13), we will distinguish those sorts which have
variables and those which do not, so this optimisation can be handled by our setup. The fact
that all types are closed (don’t depend on term variables, hence do not depend on the context
at all) will not be handled by our translation, so the generated theory will include unnecessary
dependencies, and a by hand optimisation step is needed to replace Ty : Con → Set by Ty : Set
and removing the – [–]Ty operation. The operations in the notion of first-order model are
the typed versions of the operations in Definition 4. Lambda and application could have been
presented by an isomorphism lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]) � Tm Γ (𝐴 ⇒ 𝐵) : app, using
a unary app application operation instead of the binary – · –. Our setup allows choosing
between the two versions, see the discussion after Definition 13. This concludes the typed
lambda calculus example.

The following definition of first-order logic has minimal amount of logical connectives,
but illustrates the general idea. The proof theory that comes with it is natural deduction
style, it can be also written following the above conventions using horizontal lines and ⊢.

A. Kaposi and Sz. Xie 10:9

▶ Definition 7 (Minimal intuitionistic first-order logic).

For : Set Pf : For → Prop
Tm : Set intro⊃ : (Pf 𝐴→ Pf 𝐵) ↔ Pf (𝐴 ⊃ 𝐵) : elim⊃

– ⊃ – : For → For → For intro∀ :
(
(𝑡 : Tm) → Pf (𝐴 𝑡)

)
↔ Pf (∀𝐴) : elim∀

∀ : (Tm → For) → For introEq : Pf (Eq 𝑡 𝑡)
Eq : Tm → Tm → For elimEq : (𝐴 : Tm → For) → Pf (Eq 𝑡 𝑡′) →

Pf (𝐴 𝑡) → Pf (𝐴 𝑡′)

A first-order model contains a category of contexts and substitutions equipped with three
different kinds of context extension corresponding to three different kinds of variables. This
means that there are three different 0 De Bruijn indices (qFor, qTm, qPf), nine different 1
De Bruijn indices (qFor [pFor]For, qFor [pTm]For, qFor [pPf]For, . . . , qPf [pPf]Pf). In general, De
Bruijn index 𝑛 has 3𝑛+1 variants. We list the types of the binders:

∀ : For (Γ ⊲Tm) → For Γ
intro⊃ : Pf (Γ ⊲Pf 𝐴) (𝐵[pPf]For) → Pf Γ (𝐴 ⊃ 𝐵)
intro∀ : Pf (Γ ⊲Tm) 𝐴→ Pf Γ (∀𝐴)
elimEq :

(
𝐴 : For (Γ ⊲Tm)

)
→ Pf Γ (Eq 𝑡 𝑡′) → Pf Γ (𝐴[id ,Tm 𝑡]For) → Pf Γ (𝐴[id ,Tm 𝑡

′]For)

The GAT presentation of first-order logic can be simplified by removing For variables as
no operations bind formulas. Another post-hoc simplification is separating the Tm-variable
contexts and the Pf-variable contexts which depend on the former. After such a separation,
it is possible to define [11] the syntax of first-order logic simply using inductive types and
avoiding quotienting (with the exception of Pf where we use a full quotient which can be
implemented by SProp of Agda or Coq [25]). One reason for being able to do this is that the
above SOGAT does not have any equations, but this is not enough in general. For example, if
we do not have quotients, it does not seem to be possible to define the syntax of a Martin-Löf
type theory without computation rules.

Next we show the SOGAT definition of the polymorphic lambda calculus.

▶ Definition 8 (System F).

Ty : Set
Tm : Ty → Set
– ⇒ – : Ty → Ty → Ty
lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –
∀ : (Ty → Ty) → Ty
Lam :

(
(𝑋 : Ty) → Tm (𝐴 𝑋)

)
� Tm (∀ 𝐴) : – • –

The first order version is Definition 6 extended with the following operations and equations for
∀. Now we really need both type and term variables. We use a unary application operation
for ∀, see discussion after Definition 13.

∀ : Ty (Γ ⊲Ty) → Ty Γ Lam : Tm (Γ ⊲Ty) 𝐴 � Tm Γ (∀ 𝐴) : App
∀[] : (∀ 𝐴) [𝛾] = ∀ (𝐴[𝛾 ◦ pTy ⊲Ty qTy]) Lam[] : (Lam 𝑡) [𝛾] = Lam (𝑡 [𝛾 ◦ pTy ⊲Ty qTy])

The next language is interesting because its sorts and operations are interleaved: the typing
of the sort Tm depends on the operation ∗.

FSCD 2024

10:10 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

▶ Definition 9 (System F𝜔).

□ : Set Tm : Ty ∗ → Set
Ty : □ → Set ∀ : (Ty𝐾 → Ty ∗) → Ty ∗
– ⇛ – : □ → □ → □ Lam : ((𝑋 : Ty𝐾) → Tm (𝐴 𝑋)) �
LAM : (Ty𝐾 → Ty 𝐿) � Tm (∀ 𝐴) : – • –

Ty (𝐾 ⇛ 𝐿) : – – – ⇒ – : Ty ∗ → Ty ∗ → Ty ∗
∗ : □ lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –

In the first-order version (minimised by removing □ (kind) variables), we have sorts □ : Set,
Ty : Con → □ → Set, an operation ∗ : □, and a sort Tm : (Γ : Con) → Ty Γ ∗ → Set. We
have three operations binding Ty-variables and one operation binding a term-variable:

LAM : Ty (Γ ⊲Ty 𝐾) 𝐿 → Ty Γ (𝐾 ⇛ 𝐿) Lam : Tm (Γ ⊲Ty 𝐾) 𝐴→ Tm Γ (∀𝐴)
∀ : Ty (Γ ⊲Ty 𝐾) ∗ → Ty Γ ∗ lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]Ty) → Tm Γ (𝐴⇒ 𝐵)

Our next example is a theory with dependent types featuring Π types, a Coquand-universe
(which forces types to be indexed by levels) and a lifting operation. This is an open signature
which means that it refers to some external types, in this case a natural number algebra (we
can make it closed by adding N as a new sort and 0 and 1 + – as new operations).

▶ Definition 10 (Minimal Martin-Löf type theory).

Ty : N → Set U : (𝑖 : N) → Ty (1 + 𝑖)
Tm : Ty 𝑖 → Set c : Ty 𝑖 � Tm (U 𝑖) : El
Π : (𝐴 : Ty 𝑖) → (Tm 𝐴→ Ty 𝑖) → Ty 𝑖 Lift : Ty 𝑖 → Ty (1 + 𝑖)
lam : ((𝑎 : Tm 𝐴) → Tm (𝐵 𝑎)) � Tm (Π 𝐴 𝐵) : – · – mk : Tm 𝐴 � Tm (Lift 𝐴) : un

The first-order translation of this theory results in a category with families (CwF [19]), more
precisely, a category with N-many families equipped with familywise Π-types, universes and
a one-step upwards lifting between the families. The sorts are Ty : Con → N → Set and
Tm : (Γ : Con) → Ty Γ 𝑖 → Set, the 𝑖 argument is implicit in the latter.

Instead of a Coquand-universe with c and El, we could have defined a Russell universe
where we have a sort equality Ty 𝑖 = Tm (U 𝑖), and we also have the option to do this for lifting
and Π types. The first-order semantics of such a theory has the following equalities where
the second one makes sense because of the first one: Ty Γ 𝑖 = Tm Γ (U 𝑖), 𝐴[𝛾]Ty = 𝐴[𝛾]Tm.
Having strict Π types means Tm (Γ ⊲ 𝐴) 𝐵 = Tm Γ (Π 𝐴 𝐵) and 𝑡 [𝛾] = 𝑡 [𝛾 ◦ p, q] where the
left hand side 𝑡 is in Tm Γ (Π 𝐴 𝐵).

3 Theories of signatures as SOGATs

In this section we define three languages which describe signatures for ATs, GATs and
SOGATs, respectively. All three languages are given as SOGATs.

The theory of signatures for ATs is a dependent type theory without a universe, it has
one base type Srt for the (single) sort, Σ types, a Π type with fixed Srt domain, and an
equality type. Π types are equipped with application, but the Σ and Eq types don’t have
constructors or destructors, because those are not needed when defining signatures.

A. Kaposi and Sz. Xie 10:11

▶ Definition 11 (Signatures for single-sorted algebraic theories).

Ty : Set ΠSrt : (Tm Srt → Ty) → Ty
Tm : Ty → Set – · – : Tm (ΠSrt 𝐵) → (𝑥 : Tm Srt) → Tm (𝐵 𝑥)
Σ : (𝐴 : Ty) → (Tm 𝐴→ Ty) → Ty Eq : Tm Srt → Tm Srt → Ty
Srt : Ty

A first-order model of this theory is a CwF with type formers Σ, Srt, ΠSrt, Eq and a term
former – · – : Tm Γ (ΠSrt 𝐵) → (𝑥 : Tm Γ Srt) → Tm Γ (𝐵[id, 𝑥]). An element of Ty in the
syntax of this language is an AT signature. We introduce abbreviations Srt⇒ 𝐴 := ΠSrt𝜆_.𝐴
and 𝐴 × 𝐵 := Σ 𝐴𝜆_.𝐵. The signature for combinator calculus is the following Ty:

Σ (Srt⇒Srt⇒Srt) 𝜆app.Σ Srt𝜆𝐾.Σ Srt𝜆𝑆.
(
ΠSrt𝜆𝑢.ΠSrt𝜆 𝑓 .Eq

(
app · (app · 𝐾 · 𝑢) · 𝑓

)
𝑢

)
×
(
ΠSrt𝜆 𝑓 .ΠSrt𝜆𝑔.ΠSrt𝜆𝑢.Eq

(
app ·

(
app · (app · 𝑆 · 𝑓) · 𝑔

)
· 𝑢

)
(
app · (app · 𝑓 · 𝑢) · (app · 𝑔 · 𝑢)

))
This can be seen as a more explicit version of Definition 1: we use Σ types instead of a
newline-separated list, we use the metatheoretic 𝜆 binder to give names to operations, we
use an explicit · operation for application and write Eq instead of =. Moreover, we don’t
have infix operators or implicit arguments, the three arguments of equation K𝛽 and the four
arguments of equation S𝛽 have to be introduced using ΠSrt explicitly. Being more explicit is
needed to make sure that we describe an algebraic theory: for example, the fact that the
domain of Π is fixed ensures strict positivity.

The theory of GAT signatures (ToS) is a type theory with an empty universe (a type and
a family over it), ⊤ and Σ types, equality with reflection, and a Π type with U-domain.

▶ Definition 12 (ToS: the theory of GAT signatures).

Ty : Set Σ : (𝐴 : Ty) → (Tm 𝐴→ Ty) → Ty
Tm : Ty → Set (– , –) : (𝑎 : Tm 𝐴) × Tm (𝐵 𝑎) � Tm (Σ 𝐴 𝐵) : fst, snd
U : Ty Π : (𝑎 : Tm U) → (Tm (El 𝑎) → Ty) → Ty
El : Tm U → Ty lam :

(
(𝑥 : Tm (El 𝑎)) → Tm (𝐵 𝑥)

)
� Tm (Π 𝑎 𝐵) : – · –

⊤ : Ty Eq : (𝐴 : Ty) → Tm 𝐴→ Tm 𝐴→ Ty
tt : 𝟙 � Tm⊤ refl : (𝑢 = 𝑣) � Tm (Eq 𝐴 𝑢 𝑣) : reflect

The first-order version is Definition 14. A (presentation of a) GAT is defined as a closed
type in the syntax of ToS. The base type U is for declaring sorts, so a signature has to start
with a sort, and then we can declare elements of the sort using El or functions where the
input is a sort. For example, part of typed combinator calculus (Definition 2) is given by the
following signature. We use the abbreviations 𝑎 ⇒ 𝐵 := Π 𝑎 𝜆_.𝑏 and 𝐴 × 𝐵 = Σ 𝐴𝜆_.𝐵. We
left out the S combinator and its 𝛽 rule for reasons of space.

FSCD 2024

10:12 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

ΣU𝜆Ty.Σ (Ty ⇒ U) 𝜆Tm.El Ty × Σ (Ty ⇒ Ty ⇒ El Ty) 𝜆arr .Σ(
Π Ty 𝜆𝐴.Π Ty 𝜆𝐵.Tm · (arr · 𝐴 · 𝐵) ⇒ Tm · 𝐴⇒ El (Tm · 𝐵)

)
𝜆app.Σ(

Π Ty 𝜆𝐴.Π Ty 𝜆𝐵.El
(
Tm ·

(
arr · 𝐴 · (arr · 𝐵 · 𝐴)

)))
𝜆𝐾.Σ(

Π Ty 𝜆𝐴.Π Ty 𝜆𝐵.Π (Tm · 𝐴) 𝜆𝑢.Π (Tm · 𝐵) 𝜆 𝑓 .Eq
(
El (Tm · 𝐴)

)
(
app · (arr · 𝐵 · 𝐴) · 𝐵 · (app · (arr · 𝐴 · (arr · 𝐵 · 𝐴)) · 𝐴 · 𝐾 · 𝑢) · 𝑓

)
𝑢

)
× . . .

This type is a very explicit version of Definition 2: we use Σ, explicit application ·, no infix
operators, no implicit arguments, and explicit El turning terms in U into types. We expect
that an elaboration algorithm can turn Definition 2 into such an explicit version.

For the theory of SOGAT signatures (ToS+), we add a new universe U+ of sorts for which
variables are allowed: with the help of these we can write second order functions. U+ is a
subuniverse of U (witnessed by el+) and has a Π type with U+-domain and U-codomain.

▶ Definition 13 (ToS+: the theory of SOGAT signatures). We extend ToS with the following.

U+ : Ty 𝜋+ : (𝑎+ : Tm U+) →
(
Tm

(
El (el+ 𝑎+)

)
→ Tm U

)
→ Tm U

el+ : Tm U+ → Tm U lam+ :
(
𝑥 : El (el+ 𝑎+)

)
→ Tm (El (𝑏 𝑥)) � Tm

(
El (𝜋+ 𝑎+ 𝑏)

)
: – ·+ –

The first-order version is Definition 15. A (presentation of a) GAT is defined as a closed
type in the syntax of ToS+. The signature for lambda calculus (Definition 3) is the following
element of Ty.

ΣU+ 𝜆Tm.Σ
(
(Tm ⇒+ el+ Tm) ⇒ El (el+ Tm)

)
𝜆lam.Σ

(
el+ Tm ⇒ el+ Tm ⇒ El (el+ Tm)

)
𝜆app.

Π (Tm ⇒+ el+ Tm) 𝜆𝑡.Π (el+ Tm) 𝜆𝑢.Eq
(
El (el+ Tm)

) (
app · (lam · 𝑡) · 𝑢

)
(𝑡 ·+ 𝑢)

We have one sort Tm for which variables are allowed, application app uses ordinary function
space ⇒ where Tm has to be lifted by el+ from U+ to U. Lambda lam is defined as a
second-order function where ⇒+ can appear on the left hand side of an ⇒. When stating
the 𝛽 equation, note the two different application operators (· vs. ·+): ·+ is used when giving
value to a variable. This becomes clear if we look at the first-order presentation of the 𝛽 law
(last line in Definition 4, we write app instead of · to avoid confusion): app (lam 𝑡) 𝑢 = 𝑡 [id, 𝑢].
So the semantics of · should be simply function application, while the semantics of ·+ is
instantiation with a substitution. We give another illustration of this difference: in the
above signature, the type of app is el+ Tm ⇒ el+ Tm ⇒ El (el+ Tm), and this is translated to
Tm Γ → Tm Γ → Tm Γ in the GAT version (see Definition 4). But we could have defined
app as having type El (Tm ⇒+ Tm ⇒+ Tm). In this case the GAT version of app would be
in Tm (Γ ⊲ ⊲). Both variants are meaningful, and ToS+ allows the user to make a choice if
she wants an operation with arguments, or an operation returning in an extended context.
Note that both function spaces in the type of lam are forced to be ⇒+ and ⇒, respectively.

Analogously, all SOGATs in Sections 2, 3 and Appendix A can be reified into SOGAT
signatures (with the exception of Martin-Löf type theory which is an open signature, but we
will rectify this in Section 7). This includes ToS+ itself.

A. Kaposi and Sz. Xie 10:13

4 Naive semantics of SOGAT signatures

In this section, for any SOGAT signature, we define a notion of first-order model. The idea
is that a model is a category together with the presheaf interpretation of the signature over
that category: the category of presheaves supports a universe, Π types, and so on, so we
directly use these when interpreting the type formers of ToS+. We assume basic working
knowledge of categories with families (CwFs [19]).

▶ Definition 14 (First-order model of ToS). A first-order model of ToS is a CwF (sorts
are denoted Con, Sub, Ty, Tm, the empty context is ⋄, the empty substitution is 𝜖 : Sub Γ ⋄,
context extension is – ⊲ – : (Γ : Con) → Ty Γ → Con with p ◦ – , q[–] : Sub ∆ (Γ ⊲ 𝐴) � (𝛾 :
Sub ∆ Γ) × Tm ∆ (𝐴[𝛾]) : – , –) equipped with:

⊤ and Σ types given by isomorphisms
tt : 𝟙 � Tm Γ ⊤, (– , –) : (𝑎 : Tm Γ 𝐴) ×Tm Γ (𝐵[id, 𝑎]) � Tm Γ (Σ 𝐴 𝐵) : fst, snd.
A universe given by U : Ty Γ and El : Tm Γ U → Ty Γ .
A function space with domain in U, that is Π : (𝑎 : Tm Γ U) → Ty (Γ ⊲El 𝑎) → Ty Γ , with
an isomorphism lam : Tm (Γ ⊲El 𝑎) 𝐵 � Tm Γ (Π 𝑎 𝐵) : app.
A strict equality type Eq with reflection and uniqueness of identity proofs.
All the operations listed above are natural in Γ .

▶ Definition 15 (First-order model of ToS+). A first-order model of ToS+ is a first-order
model of ToS equipped with:

Another universe U+ : Ty Γ that is a subuniverse of U i.e. el+ : Tm Γ U+ → Tm Γ U.
U is closed under functions with U+-domain, i.e. 𝜋+ : (𝑎+ : Tm Γ U+) →
Tm

(
Γ ⊲El (el+ 𝑎+)

)
U → Tm Γ U with lam+ : Tm

(
Γ ⊲El (el+ 𝑎)

)
(El 𝑏) �

Tm Γ
(
El (𝜋+ 𝑎+ 𝑏)

)
: app+.

All the operations listed above are natural in Γ .

▶ Problem 16 (PSh). Presheaves over a category 𝐶 form a CwF equipped with ⊤, Σ types, an
equality type with reflection, Π types and a Coquand-universe U with c : Ty Γ � Tm Γ U : El.
Unlike in Definition 10, we omit writing universe indices for readibility.

Construction. We recall the main parts of the construction [31] for fixing notations. Γ : Con
is a presheaf, that is a family of sets Γ : C → Set with reindexing 𝛾𝐼 [𝑓]Γ : Γ 𝐽 for 𝛾𝐼 : Γ 𝐼 and
𝑓 : C(𝐽, 𝐼) such that 𝛾𝐼 [𝑓 ◦ 𝑔]Γ = 𝛾𝐼 [𝑓]Γ [𝑔]Γ and 𝛾𝐼 [id]Γ = 𝛾𝐼 . A 𝜎 : Sub ∆ Γ is a function
𝜎 : ∆ 𝐼 → Γ 𝐼 such that (𝜎 𝛿𝐼) [𝑓]Γ = 𝜎 (𝛿𝐼 [𝑓]∆). A type 𝐴 : Ty Γ is a dependent presheaf
containing a family 𝐴 : (𝐼 : C) → Γ 𝐼 → Set with reindexing 𝑎𝐼 [𝑓]𝐴 : 𝐴 𝐽 (𝛾𝐼 [𝑓]Γ) for
𝑎𝐼 : 𝐴 𝐼 𝛾𝐼 and 𝑓 : C(𝐽, 𝐼) satisfying functoriality. Type substitution is 𝐴[𝛾] 𝐼 𝛿𝐼 := 𝐴 𝐼 (𝛾 𝛿𝐼).
A term 𝑎 : Tm Γ 𝐴 is a function 𝑎 : (𝛾𝐼 : Γ 𝐼) → 𝐴 𝐼 𝛾𝐼 such that (𝑎 𝛾𝐼) [𝑓]𝐴 = 𝑎 (𝛾𝐼 [𝑓]Γ).
Term substitution is 𝑎[𝛾] 𝛿𝐼 := 𝑎 (𝛾 𝛿𝐼). The empty context is constant unit: ⋄ 𝐼 := 𝟙.
Context extension is pointwise: (Γ ⊲ 𝐴) 𝐼 := (𝛾𝐼 : Γ 𝐼) × 𝐴 𝐼 𝛾𝐼 , its universal property is given
by projections and pairing for metatheoretic Σ types. ⊤, Σ and Eq are pointwise. We have
the functor Yoneda y : C → PSh(C) defined by y 𝐼 𝐽 := C(𝐽, 𝐼), and we use this to define the
universe by U 𝐼 𝛾𝐼 := Ty (y 𝐼). We observe that 𝛾𝐼 [–]Γ : Sub (y 𝐼) Γ (forward part of Yoneda
lemma), and define Π 𝐴 𝐵 𝐼 𝛾𝐼 := Tm (y 𝐼 ⊲ 𝐴[𝛾𝐼 [–]Γ]) (𝐵[𝛾𝐼 [–]Γ ◦ p, q]). ◀

▶ Problem 17 (Locally representable types). The CwF of presheaves can be extended to a
CwF+, which means a CwF with a subsort of Ty called Ty+ and a Π+ type with domain in Ty+,
i.e. Π+ : (𝐴 : Ty+ Γ) → Ty (Γ ⊲ 𝐴) → Ty Γ with lam+ : Tm (Γ ⊲ 𝐴) 𝐵 � Tm Γ (Π+ 𝐴 𝐵) : app+,
natural in Γ . Ty+ is classified by the Coquand universe U+.

FSCD 2024

10:14 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Construction. An element 𝐴 : Ty+ Γ is an 𝐴 : Ty Γ together with – ⊲𝐴 – : (𝐼 : C) → Γ 𝐼 → C
and an isomorphism p𝐴◦– , q𝐴[–]𝐴 : C(𝐽, 𝐼 ⊲𝐴 𝛾𝐼) � (𝑓 : C(𝐽, 𝐼))×𝐴 𝐽 (𝛾𝐼 [𝑓]Γ) : – ,𝐴 – natural
in 𝐽. So p𝐴 : C(𝐼 ⊲𝐴 𝛾𝐼 , 𝐼) and q𝐴 : 𝐴 (𝐼 ⊲𝐴 𝛾𝐼) (𝛾𝐼 [p𝐴]Γ). Substitution is given by 𝐼 ⊲𝐴[𝛾] 𝛿𝐼 :=
𝐼 ⊲𝐴 𝛾 𝛿𝐼 and we have C(𝐽, 𝐼 ⊲𝐴[𝛾] 𝛿𝐼) = C(𝐽, 𝐼 ⊲𝐴 𝛾 𝛿𝐼) � (𝑓 : C(𝐽, 𝐼)) × 𝐴 𝐽 (𝛾 𝛿𝐼 [𝑓]Γ) =

(𝑓 : C(𝐽, 𝐼)) × 𝐴[𝛾] 𝐽 (𝛿𝐼 [𝑓]∆). We define Π+ using the ⊲𝐴 operator which comes with
𝐴, i.e. Π+ 𝐴 𝐵 𝐼 𝛾𝐼 := 𝐵 (𝐼 ⊲𝐴 𝛾𝐼) (𝛾𝐼 [p𝐴]Γ , q𝐴), 𝑏𝐼 ′ [𝑓]Π+ 𝐴𝐵 := 𝑏𝐼 ′ [𝑓 ◦ p𝐴 ,𝐴 q𝐴], lam+ 𝑏 𝛾𝐼 :=
𝑏 (𝛾𝐼 [p𝐴]Γ , q𝐴) and app+ 𝑡 (𝛾𝐼 , 𝑎𝐼) := (𝑡 𝛾𝐼) [id𝐼 ,𝐴 𝑎𝐼]𝐵. Like U, U+ 𝐼 𝛾𝐼 := Ty+ (y 𝐼). ◀

▶ Definition 18 (Naive semantics). Given a category C, PSh(C) is a model of ToS+ choos-
ing U := U, El 𝑎 := El 𝑎, Π 𝑎 𝐵 := Π (El 𝑎) 𝐵, U+ := U+, el+ 𝑎+ := c (El+ 𝑎+), 𝜋+ 𝑎+ 𝑏 :=
c
(
Π+ (El+ 𝑎+) (El 𝑏)

)
. Recall that a SOGAT signature Ω is an element of Ty⋄ in the syn-

tax of ToS+. A naive model of Ω is a category with a terminal object ⋄ together with the
interpretation of Ω in presheaves over this category, i.e. (C : Cat⋄) × TmPSh(C) ⋄ ⟦Ω⟧PSh(C) .

This definition immediately implies that internally to presheaves over a naive first-order
model, we have a second order model.

For illustration, we compute the naive semantics for the signature of untyped lambda
calculus without the equations. The informal signature is Tm : U, lam : (Tm → Tm) →
Tm, – · – : Tm → Tm → Tm, the second-order formal version is ΣU+ 𝜆Tm.

(
(Tm ⇒+

el+ Tm) ⇒ El (el+ Tm)
)
× (el+ Tm ⇒ el+ Tm ⇒ El (el+ Tm)), and we interpret the first-order

version of this. We assume a C : Cat⋄, write D := PSh(C), and use TmD ⋄⟦Ω⟧D � ⟦Ω⟧D ⋄C ★.�
ΣU+

((
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

))�
D

⋄C ★ =

(Tm : Ty+D (y⋄)) × TmD
(
y ⋄ ⊲(Tm ⇒+

D Tm)
) (

Tm [p]
)
× TmD (y ⋄ ⊲Tm) (Tm ⇒ Tm [p]) =

(Tm : (𝐼 : C) → C(𝐼,⋄) → Set) × (– [–]Tm : Tm 𝐼 𝜖 → C(𝐽, 𝐼) → Tm 𝐽 𝜖) × . . . ×
(– ⊲Tm – : (𝐼 : C) → C(𝐼,⋄) → C) × · · · ×

(
𝑙𝑎𝑚 : C(𝐼,⋄) × Tm (𝐼 ⊲Tm 𝜖) → Tm 𝐼 𝜖

)
× · · · ×

(app : C(𝐼,⋄) × Tm 𝐼 𝜖 → ({𝐽 : C} → C(𝐽, 𝐼) × Tm 𝐽 𝜖 → Tm 𝐽 𝜖) × . . .) × . . .

As we can see, the naive semantics produces some encoding overhead: the above definition
differs from Definition 4 in the following ways: the operations are uncurried, have several
extra C(𝐼,⋄) arguments (which can be all filled by 𝜖), and the type of app quantifies over
another object of C for each argument. This is the result of using the usual presheaf universe
and function space for interpreting U and Π. We will rectify this in the next section.

5 Direct semantics of SOGAT signatures

In this section, we define first-order models of SOGATs using a more careful version of the
presheaf model. We make sure that no Yoneda-encodings are present in the semantics using
the idea of two-level type theory [4, 10] where presheaves over a CwF include a universe
of “inner types” coming from the CwF. We extend two-level type theory with a separate
function space where the domain is an inner type. This function space is isomorphic to the
usual presheaf function space, but has a simpler semantics.

▶ Problem 19 (Presheaves over a CwF). If C is a CwF, then PSh(C) models ToS without
using the usual presheaf U and Π.

Construction. We interpret ⊤, Σ, Eq as in Problem 16, but define U, El and Π by
TyC, TmC and ⊲C, respectively: U 𝐼 𝛾𝐼 := TyC 𝐼, El 𝑎 𝐼 𝛾𝐼 := TmC 𝐼 (𝑎 𝛾𝐼), Π 𝑎 𝐵 𝐼 𝛾𝐼 :=
𝐵 (𝐼 ⊲C 𝑎 𝛾𝐼) (𝛾𝐼 [pC]Γ , qC) with lam 𝑏 𝛾𝐼 := 𝑏 (𝛾𝐼 [pC]Γ , q𝐶) and app 𝑡 (𝛾𝐼 , 𝑎𝐼) := 𝑡 𝛾𝐼 [id𝐼 ,C
𝑎𝐼]𝐵. ◀

A. Kaposi and Sz. Xie 10:15

▶ Problem 20 (Presheaves over a CwF+). If the category C is a CwF+, then the previous
model extends to a model of ToS+ (Definition 15).

Construction. We interpret U+, el+ and 𝜋+ by Ty+C, identity and Π+
C, respectively:

U+ 𝐼 𝛾𝐼 := Ty+C 𝐼, el+ 𝑎 𝛾𝐼 := 𝑎 𝛾𝐼 , 𝜋+ 𝑎 𝑏 𝛾𝐼 := Π+ (𝑎 𝛾𝐼)
(
𝑏 (𝛾𝐼 [pC]Γ , qC)

)
, lam+ 𝑡 𝛾𝐼 :=

lam+
C
(
𝑡 (𝛾𝐼 [pC]Γ , qC)

)
, app+ 𝑡 (𝛾𝐼 , 𝑎𝐼) := app+C (𝑡 𝛾𝐼) [id𝐼 ,C 𝑎𝐼]TmC . ◀

▶ Definition 21 (Direct semantics). A direct model of a SOGAT signature Ω is a category C
with a terminal object together with the interpretation of Ω in presheaves over presheaves
over C, evaluated at the terminal presheaf: (C : Cat⋄) × ⟦Ω⟧PSh(PSh(C)) ⋄PSh(C) ★. Note that
this makes sense because PSh(C) : CwF+, hence PSh

(
PSh(C)

)
is a model of ToS+.

We revisit the example from the end of the previous section. We again assume a C : Cat⋄
and write D := PSh(C) and E := PSh(D).�

ΣU+
((
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

))�
E
⋄D ★ =

(Tm : Ty+D ⋄D) × TmD
(
⋄ ⊲(Tm ⇒+

D Tm)
)
(Tm [p]) × TmD (⋄ ⊲Tm ⊲Tm [p]) (Tm [p] [p]) =

(Tm : C → 𝟙 → Set) × (– [–]Tm : Tm 𝐼 ★→ C(𝐽, 𝐼) → Tm 𝐽 ★) × . . . ×
(– ⊲Tm – : C → 𝟙 → C) × · · · ×

(
lam : 𝟙 × Tm (𝐼 ⊲Tm ★) → Tm 𝐼 ★

)
× · · · ×

(app : 𝟙 × Tm 𝐼 ★× Tm 𝐼 ★→ Tm 𝐼 ★) × . . .

This translation is closer to computing Definition 4 from Definition 3: the only remaining
noise is that the types of Tm, lam and app include extra 𝟙 components and app is uncurried.
In the next section, we will remove the extra 𝟙s and make the type of application curried.

▶ Theorem 22. For any signature, the naive and direct semantics result in isomorphic
notions of models.

Proof. We fix a C : Cat⋄, and denote D := PSh(C) and E := PSh(D). D is a model of ToS+

via Definition 18 and E is a model via Definition 21, and Yoneda navigates between them
(it is not only a functor, but a CwF pseudomorphism [37]). By induction on the syntax of
ToS+, we define 𝛼 for contexts, substitutions, types and terms: 𝛼Γ : SubE ⟦Γ⟧E (y ⟦Γ⟧D),
𝛼𝛾 : 𝛼Γ ◦⟦𝛾⟧E = y ⟦𝛾⟧D◦𝛼∆, 𝛼𝐴 : ⟦𝐴⟧E � y ⟦𝐴⟧D [𝛼Γ], 𝛼𝑎 : 𝛼𝐴[id, ⟦𝑎⟧E] = y ⟦𝑎⟧D [𝛼Γ]. For
a signature Ω : Ty⋄, we thus obtain ⟦Ω⟧E ⋄D ★ � y ⟦Ω⟧D [𝛼Γ] ⋄D ★ = TmD ⋄D ⟦Ω⟧D . ◀

Note that there is no size issue when stating the isomorphism because even if E is one level
up compared to D, we only use small components from E when evaluating into it.

6 GAT signature semantics of SOGAT signatures

In this section we translate SOGAT signatures into GAT signatures. The idea is the same as
in the previous two sections: the GAT signature will start with a category with terminal
object and then contain the presheaf interpretation of the SOGAT signature over that
category. However now the presheaf model is not expressed in the metatheory, but internally
to the theory of GAT signatures. This is challenging because this language is quite limited:
there are no higher-order functions, no real universe, and so on.

In this section we work internally to presheaves over the syntax of ToS. Another way to say
this is that we work in two-level type theory where the inner model is the syntax of ToS. Hence,
we have the components Ty : Set, Tm : Ty → Set, . . . , refl : (𝑢 = 𝑣) � Tm (Eq 𝐴 𝑢 𝑣) : reflect
of Definition 12 available (these are the inner types and type formers). We will build a
first-order model of ToS+, and the final result of the translation will be an element of Ty.

FSCD 2024

10:16 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

▶ Construction 23 (Curried Π). By induction-recursion, we define the Σ-closure of U.

U∗ : Set El∗ : U∗ → Ty
⊤∗ : U∗ El∗ ⊤∗ := ⊤
Σ∗ : (as : U∗) →

(
Tm (El∗ as) → Tm U

)
→ U∗ El∗ (Σ∗ as 𝑏) := Σ (El∗ as) 𝜆𝑥.El (𝑏 𝑥)

By induction on U∗, we define the curried function space with U∗ domain.

Π∗ : (as : U∗) → (Tm (El∗ as) → Ty) → Ty
Π∗ ⊤∗ 𝐵 := 𝐵 tt
Π∗ (Σ∗ as 𝑐) 𝐵 := Π∗ as

(
𝜆xs.Π (𝑐 xs) 𝜆𝑦.𝐵 (xs, 𝑦)

)
Π∗ comes with lam∗, ·∗, and 𝛽, 𝜂 laws all defined by induction on U∗ providing the following
isomorphism.

lam∗ :
(
(xs : Tm (El∗ as)) → Tm (𝐵 xs)

)
� Tm (Π∗ as 𝐵) : – ·∗ –

We define the signature for categories with a terminal object by Cat⋄ : Ty := ΣU𝜆Ob.Σ (Ob ⇒
Ob ⇒ U) 𝜆Hom . . . We assume a C : Tm Cat⋄, we refer to its components by Ob, Hom, . . .

▶ Problem 24 (A CwF+ D of presheaves over C). There is a notion of CwF+ where the sorts
of types and terms are Ty-valued. We construct such a CwF+ D of presheaves over C.

Construction. The category part is given by U∗-valued presheaves and natural trans-
formations where ConD :=

(
Γ : Tm (El Ob) → U∗) ×

(
– [–]Γ : Tm

(
El∗ (Γ 𝐼)

)
→

Tm
(
El (Hom ·𝐽 ·𝐼)

)
→ Tm

(
El∗ (Γ 𝐽)

))
×(functoriality) and SubD ∆ Γ :=

(
𝛾 : Tm

(
El∗ (∆ 𝐼)

)
→

Tm
(
El∗ (Γ 𝐼)

))
× (naturality). Recall that Ty and Tm are those of the syntax of ToS. We

make sure that Ty, Tm have enough structure to define U-valued presheaves. For example,
we define TyD : ConD → Ty by

TyD Γ := Σ (Π Ob 𝜆𝐼.Γ 𝐼 ⇒∗ U) 𝜆𝐴.Σ(
Π Ob 𝜆𝐼.Π∗ (Γ 𝐼) 𝜆𝛾𝐼 .𝐴 · 𝐼 ·∗ 𝛾𝐼 ⇒ Π Ob 𝜆𝐽.Π (Hom · 𝐽 · 𝐼) 𝜆 𝑓 .El

(
𝐴 · 𝐽 ·∗ (𝛾𝐼 [𝑓]Γ)

))
. . .

We define TmD : (Γ : ConD) → Tm (TyD Γ) → Ty as TmD Γ 𝐴 := Σ
(
Π Ob 𝜆𝐼.Π∗ (Γ 𝐼) 𝜆𝛾.

El (𝐴 · 𝐼 ·∗ 𝛾)
)
. . . Context extension ⊲D is Σ∗, Ty+D is the same as TyD extended with an ⊲𝐴

operator in Π Ob 𝜆𝐼.Γ 𝐼 ⇒∗ El Ob, and its universal property. We define the first component
of Π+

D :
(
𝐴 : Tm (Ty+D Γ)

)
→ Tm

(
TyD (Γ ⊲D 𝐴)

)
→ Tm (TyD Γ) by Π+

D 𝐴 𝐵 · 𝐼 ·∗ 𝛾𝐼 :=
𝐵 · (⊲𝐴 ·𝐼 ·∗ 𝛾𝐼) ·∗ (𝛾𝐼 [p𝐴]Γ , q𝐴) where ⊲𝐴, p𝐴 and q𝐴 are components in the input 𝐴. Note
the careful distinguishing of metatheoretic function application, ·s and ·∗s. The full details
are given as Supplementary Material. ◀

▶ Problem 25 (E := PSh(D)). The Ty-valued presheaves over D are a first-order model of
ToS+. We name this model E.

Proof. ConE is defined as (Ψ : ConD → Ty) × (– [–]Ψ : Tm (ΨΓ) → SubD ∆ Γ →
Tm (Ψ∆)) × (functoriality). Types are Ty-valued dependent presheaves, terms are sec-
tions, context extension ⊲E and ΣE are given by Σ. UE , ElE , ΠE are given by TyD , TmD , ⊲D ,
respectively. EqE is pointwise Eq, its restriction operation and reflectE use reflect. U+

E , el+E ,
𝜋+E are defined by Ty+D , identity and Π+

D , respectively. ◀

A. Kaposi and Sz. Xie 10:17

▶ Construction 26 (SOGAT → GAT translation). Given an Ω : Ty⋄ in the first-order syntax
of ToS+, its GAT translation is ΣCat⋄ 𝜆C.⟦Ω⟧E(C) ⋄D(C) tt where we explicitly marked that
D and E depend on C.

Now we can reuse the semantics of GATs [43, Chapter 4] for any SOGAT, e.g. there is a
category of models with an initial object, notions of dependent/displayed models, sections,
induction is equivalent to initiality, free models, cofree models [45].

Our running example assuming C : Tm Cat⋄ (its first two components named Ob, Hom):�
ΣU+

((
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

))�
E
⋄D tt =

Σ (Ty+D ⋄D) 𝜆Tm.TmD
(
⋄ ⊲(Tm ⇒+

D Tm)
)
(Tm [p]) × TmD (⋄ ⊲Tm ⊲Tm [p]) (Tm [p] [p]) =

Σ

(
Σ (Ob ⇒ U) 𝜆Tm.Σ

(
Π Ob 𝜆𝐼.Tm · 𝐼 ⇒ Π Ob 𝜆𝐽.Hom · 𝐽 · 𝐼 ⇒ El (Tm · 𝐽)

)
. . .

Σ (Ob ⇒ El Ob) . . .
)
𝜆(Tm, . . . , ⊲Tm , . . .).Σ

(
Σ (Π Ob 𝜆𝐼.Tm · (⊲ ·𝐼) ⇒ El (Tm · 𝐼)

)
. . .)

𝜆lam.Σ
(
Π Ob 𝜆𝐼.Tm · 𝐼 ⇒ Tm · 𝐼 ⇒ El (Tm · 𝐼)

)
. . .

The second line is the same as for the direct semantics, but now D is defined using the curried
function space, which removes the extra 𝟙s and makes application curried when we unfold
even more. As we now compute a formal signature in Ty, we do not use implicit arguments,
and use 𝜆 for binders. The only difference from Definition 4 is that the components for Cat⋄,
Tm and lam are separate (flat) Σ types, rather than one flat iterated Σ.

We implemented the SOGAT → GAT translation in Agda using partial deep embeddings
of ToS and ToS+. It computes the expected GAT signatures for a number of SOGAT examples.
It is available as Supplementary Material.

The GAT semantics was defined relative to the syntax of ToS. However, it works for any
model of ToS: if we use the standard model of ToS (set model, metacircular interpretation
where Con = Set, Ty Γ = Γ → Set, Tm Γ 𝐴 = (𝛾 : Γ) → 𝐴 𝛾) instead of the syntax, we obtain
another notion of model for each SOGAT signature. We show that this notion of model is
isomorphic to the direct semantics from the previous section.

▶ Theorem 27. For any SOGAT signature, the direct semantics and the GAT semantics
over the standard model yield isomorphic notions of models.

Proof. We work in presheaves over the standard model of ToS. We observe that in this
model U and Ty are Russell-universes and are closed under type formers Σ, Π, Eq without
the restrictions we have in the syntax of ToS. We reformulate Definition 21 in this internal
language: the category C becomes an element of Tm Cat⋄, the D′ := PSh(C) is a CwF+

with Ty-valued types and terms. We compare this D′ and the D given by Problem 24:
we define 𝛼 : D → D′ as a strict CwF+-morphism which is bijective on Ty, Ty+ and Tm.
The content of 𝛼 is mapping in and out of the inductive-recursive universe U∗. We denote
E := PSh(D) and E′ := PSh(D′). Precomposition with 𝛼 is 𝛼∗ : PSh(D′) → PSh(D) which
is a strict CwF-morphism. Now, by induction on the syntax of ToS+, we define 𝛽 for contexts,
substitutions, types and terms: 𝛽Γ : SubE ⟦Γ⟧E (𝛼∗ ⟦Γ⟧E′), 𝛽𝛾 : 𝛽Γ ◦ ⟦𝛾⟧E = 𝛼∗ ⟦𝛾⟧E′ ◦ 𝛽∆,
𝛽𝐴 : ⟦𝐴⟧E � 𝛼∗ ⟦𝐴⟧E′ [𝛽Γ], 𝛽𝑎 : 𝛽𝐴[id, ⟦𝑎⟧E] = 𝛼∗ ⟦𝑎⟧E′ [𝛽Γ]. Now for a signature Ω : Ty⋄,
from 𝛽Ω we have ⟦Ω⟧E ⋄D ★ � 𝛼∗ ⟦Ω⟧E′ [𝛽⋄] ⋄D ★ = ⟦Ω⟧E′ ⋄D′ ★. ◀

▶ Corollary 28. By combining the isomorphisms of Theorems 22 and 27: for any SOGAT
signature, in presheaves over any of its first-order models, a second-order model is available.

This corollary formalises the diagonal internalisation arrow S ↦−→ S in [16, page 3].

FSCD 2024

10:18 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

7 Extensions and variants

In this section, we sketch some extensions of ToS+ and the alternative single substitution
calculus semantics, see the Supplementary Material for details.

Open and infinitary SOGATs. The SOGAT→GAT translation also works in the case when
signatures are open (can refer to external types like N in Definition 10) or infinitary. In this
case the theory of signatures is defined in the outer layer of a two-level type theory where
the inner layer is any chosen CwF, and signatures can refer to the universe Set◦ of inner
types [43, Chapter 3]. The theory of possibly open signatures includes a type former Π̂ : (𝐴 :
Set◦) → (𝐴 → Ty) → Ty, with the universal property

(
(𝑎 : 𝐴) → Tm (𝐵 𝑎)

)
� Tm (Π̂ 𝐴 𝐵).

For example, Definition 10 is formalised as Σ (N⇒̂U)𝜆Ty.Σ (Π̂N𝜆𝑖.Ty ·̂ 𝑖 ⇒ U)𝜆Tm . . . where
N : Set◦. Similarly, for infinitary signatures, we have a type former 𝜋 : (𝐴 : Set◦) → (𝐴 →
Tm U) → Tm U with the universal property

(
(𝑎 : 𝐴) → Tm (El (𝑏 𝑎))

)
� Tm (El (𝜋 𝐴 𝑏)).

When supporting infinitary operations, we have to replace the general Eq type by an equality
of types in U. This is because the semantics of infinitary GATs is not compatible with sort
equations [43, Chapter 5].

Semantics using single substitution calculus. Our translation from SOGAT to GAT is not
canonical: for example, we could have used semicategories instead of categories. There is
also a minimalistic version of the translation which results in a single substitution calculus
(SSC), which does not involve a category (single substitutions are not composable). For the
SOGAT given by the signature ΣU𝜆𝑇𝑦.𝑇𝑦 ⇒ U+, the parallel translation results in the GAT
known as CwF. The SSC translation for the same SOGAT gives a smaller theory: there is
no composition of substitutions, no identity substitution, no empty substitution 𝜖 and no
– , – operator for building substitutions into extended contexts. We have single weakening
p : Sub (Γ ⊲ 𝐴) Γ , single substitution ⟨–⟩ : Tm Γ 𝐴→ Sub Γ (Γ ⊲ 𝐴) and a lifting operation on
substitutions –+ : (𝛾 : Sub ∆ Γ) → Sub (∆ ⊲ 𝐴[𝛾]) (Γ ⊲ 𝐴). There are four equations for types:
𝐴[p] [𝛾+] = 𝐴[𝛾] [p], 𝐴[p] [⟨𝑏⟩] = 𝐴, 𝐴[⟨𝑏⟩] [𝛾] = 𝐴[𝛾+] [⟨𝑏[𝛾]⟩], 𝐴[p+] [⟨q⟩] = 𝐴 and four
equations for terms: q[⟨𝑏⟩] = 𝑏, q[𝛾+] = q, 𝑏[p] [𝛾+] = 𝑏[𝛾] [p], 𝑏[p] [⟨𝑎⟩] = 𝑏. The resulting
theory is a minimalistic variant of B systems [1]. CwFs are models of the resulting theory,
but not the other way.1 The syntaxes are however equivalent [41]. This situation is analogous
to the relationship of lambda calculus and combinatory logic [8], where combinatory logic
has more models, but the sets of syntactic terms are isomorphic.

With small modifications, the translation described in Section 6 can be used to obtain
the SSC translation of a GAT. We only change the construction for Problem 24: C is not a
category, just a graph with a vertex ⋄; ConD and TyD do not include functoriality equations;
𝐴 : Ty+D Γ includes ⊲𝐴, but not the usual universal property; instead we have p𝐴, q𝐴, ⟨–⟩𝐴,
–+𝐴 operations and the above described 8 equations.

8 Conclusions and further work

In this paper we described SOGAT signatures and translations from SOGAT signatures to
GAT signatures. Correctness of our parallel substitution-based translation was shown by
constructing an isomorphism with the naive semantics, and was validated by several examples.

1 We can restrict any CwF to be only an SSC: we build a new sort of substitutions out of a single term or
a single weakening inductively. These substitutions do not compose, so they do not form a category,
but they form a model of the above described SSC.

A. Kaposi and Sz. Xie 10:19

In the future we would like to show equivalence with Uemura’s semantic definition of SOGATs.
We would like to computer check our constructions possibly using strict presheaves [46]. It
would be interesting to understand the exact relationship between our parallel and single
substitution calculi: we conjecture that for any SOGAT, they yield equivalent syntaxes.

We hope that our paper makes a step towards proof assistants with SOGAT support.
In such a system, the user could specify the signature for a SOGAT using a built-in ToS+,
and would automatically obtain notions of first-order and second-order models, morphisms,
iterators, induction principles (also for second-order displayed models [16]), and so on.

References

1 Benedikt Ahrens, Jacopo Emmenegger, Paige Randall North, and Egbert Rijke. B-systems
and C-systems are equivalent. The Journal of Symbolic Logic, pages 1–9, 2023. doi:10.1017/
jsl.2023.41.

2 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular spe-
cification of monads through higher-order presentations. In Herman Geuvers, editor, 4th
International Conference on Formal Structures for Computation and Deduction, FSCD 2019,
June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.FSCD.2019.6.

3 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A
type- and scope-safe universe of syntaxes with binding: their semantics and proofs. J. Funct.
Program., 31:e22, 2021. doi:10.1017/S0956796820000076.

4 Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. Extending homotopy type theory
with strict equality. In Jean-Marc Talbot and Laurent Regnier, editors, 25th EACSL Annual
Conference on Computer Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille,
France, volume 62 of LIPIcs, pages 21:1–21:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPICS.CSL.2016.21.

5 Thorsten Altenkirch, Yorgo Chamoun, Ambrus Kaposi, and Michael Shulman. Internal
parametricity, without an interval. Proc. ACM Program. Lang., 8(POPL):2340–2369, 2024.
doi:10.1145/3632920.

6 Thorsten Altenkirch and Ambrus Kaposi. Normalisation by evaluation for dependent types. In
Delia Kesner and Brigitte Pientka, editors, 1st International Conference on Formal Structures
for Computation and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, volume 52
of LIPIcs, pages 6:1–6:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:
10.4230/LIPICS.FSCD.2016.6.

7 Thorsten Altenkirch and Ambrus Kaposi. Type theory in type theory using quotient inductive
types. In Rastislav Bodík and Rupak Majumdar, editors, Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 18–29. ACM, 2016. doi:10.1145/
2837614.2837638.

8 Thorsten Altenkirch, Ambrus Kaposi, Artjoms Sinkarovs, and Tamás Végh. Combinatory logic
and lambda calculus are equal, algebraically. In Marco Gaboardi and Femke van Raamsdonk,
editors, 8th International Conference on Formal Structures for Computation and Deduction,
FSCD 2023, July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 24:1–24:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.FSCD.2023.24.

9 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer
Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer
Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

FSCD 2024

https://doi.org/10.1017/jsl.2023.41
https://doi.org/10.1017/jsl.2023.41
https://doi.org/10.4230/LIPICS.FSCD.2019.6
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.4230/LIPICS.CSL.2016.21
https://doi.org/10.1145/3632920
https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.4230/LIPICS.FSCD.2016.6
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.4230/LIPICS.FSCD.2023.24
https://doi.org/10.1007/3-540-48168-0_32

10:20 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

10 Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. Two-level type
theory and applications. Mathematical Structures in Computer Science, 33(8):688–743, 2023.
doi:10.1017/S0960129523000130.

11 Samy Avrillon. Logic as a second-order generalized algebraic theory, 2023. Report on the
3-month research internship at the Faculty of Informatics of ELTE. URL: https://github.
com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf.

12 Henk Barendregt. Introduction to generalized type systems. Journal of Functional Program-
ming, 1(2):125–154, 1991. doi:10.1017/S0956796800020025.

13 Andrej Bauer, Philipp G. Haselwarter, and Peter LeFanu Lumsdaine. A general definition of
dependent type theories. CoRR, abs/2009.05539, 2020. arXiv:2009.05539.

14 Rafaël Bocquet. External univalence for second-order generalized algebraic theories. CoRR,
abs/2211.07487, 2022. doi:10.48550/arXiv.2211.07487.

15 Rafaël Bocquet. Towards coherence theorems for equational extensions of type theories. CoRR,
abs/2304.10343, 2023. doi:10.48550/arXiv.2304.10343.

16 Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. For the metatheory of type theory,
internal sconing is enough. In Marco Gaboardi and Femke van Raamsdonk, editors, 8th
International Conference on Formal Structures for Computation and Deduction, FSCD 2023,
July 3-6, 2023, Rome, Italy, volume 260 of LIPIcs, pages 18:1–18:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.FSCD.2023.18.

17 Paolo Capriotti. Notions of type formers. In Ambrus Kaposi, editor, 23rd International
Conference on Types for Proofs and Programs, TYPES 2017. Eötvös Loránd University, 2017.
URL: http://types2017.elte.hu/proc.pdf#page=77.

18 John Cartmell. Generalised algebraic theories and contextual categories. Ann. Pure Appl.
Log., 32:209–243, 1986. doi:10.1016/0168-0072(86)90053-9.

19 Simon Castellan, Pierre Clairambault, and Peter Dybjer. Categories with families: Unityped,
simply typed, and dependently typed. CoRR, abs/1904.00827, 2019. arXiv:1904.00827.

20 Thierry Coquand. Canonicity and normalization for dependent type theory. Theor. Comput.
Sci., 777:184–191, 2019. doi:10.1016/J.TCS.2019.01.015.

21 Marcelo P. Fiore and Chung-Kil Hur. Second-order equational logic (extended abstract). In
Anuj Dawar and Helmut Veith, editors, Computer Science Logic, 24th International Workshop,
CSL 2010, 19th Annual Conference of the EACSL, Brno, Czech Republic, August 23-27, 2010.
Proceedings, volume 6247 of Lecture Notes in Computer Science, pages 320–335. Springer,
2010. doi:10.1007/978-3-642-15205-4_26.

22 Marcelo P. Fiore, Andrew M. Pitts, and S. C. Steenkamp. Quotients, inductive types, and
quotient inductive types. Log. Methods Comput. Sci., 18(2), 2022. doi:10.46298/LMCS-18(2:
15)2022.

23 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193–202. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782615.

24 Jonas Frey. Duality for clans: a refinement of gabriel-ulmer duality. CoRR, abs/2308.11967,
2023. doi:10.48550/arXiv.2308.11967.

25 Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau. Definitional proof-
irrelevance without K. Proc. ACM Program. Lang., 3(POPL):3:1–3:28, 2019. doi:10.1145/
3290316.

26 Daniel Gratzer. Normalization for multimodal type theory. In Christel Baier and Dana Fisman,
editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, August 2 - 5, 2022, pages 2:1–2:13. ACM, 2022. doi:10.1145/3531130.3532398.

27 Robert Harper. Practical Foundations for Programming Languages (2nd. Ed.). Cambridge
University Press, 2016. URL: https://www.cs.cmu.edu/%7Erwh/pfpl/index.html.

28 Robert Harper. An equational logical framework for type theories. CoRR, abs/2106.01484,
2021. arXiv:2106.01484.

https://doi.org/10.1017/S0960129523000130
https://github.com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf
https://github.com/MysaaJava/m1-internship/releases/download/project-report/Avrillon-02.pdf
https://doi.org/10.1017/S0956796800020025
https://arxiv.org/abs/2009.05539
https://doi.org/10.48550/arXiv.2211.07487
https://doi.org/10.48550/arXiv.2304.10343
https://doi.org/10.4230/LIPICS.FSCD.2023.18
http://types2017.elte.hu/proc.pdf#page=77
https://doi.org/10.1016/0168-0072(86)90053-9
https://arxiv.org/abs/1904.00827
https://doi.org/10.1016/J.TCS.2019.01.015
https://doi.org/10.1007/978-3-642-15205-4_26
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.46298/LMCS-18(2:15)2022
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.48550/arXiv.2308.11967
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3290316
https://doi.org/10.1145/3531130.3532398
https://www.cs.cmu.edu/%7Erwh/pfpl/index.html
https://arxiv.org/abs/2106.01484

A. Kaposi and Sz. Xie 10:21

29 Robert Harper, Furio Honsell, and Gordon D. Plotkin. A framework for defining logics. J.
ACM, 40(1):143–184, 1993. doi:10.1145/138027.138060.

30 Philipp G. Haselwarter and Andrej Bauer. Finitary type theories with and without contexts.
J. Autom. Reason., 67(4):36, 2023. doi:10.1007/S10817-023-09678-Y.

31 Martin Hofmann. Syntax and semantics of dependent types. In Semantics and Logics of
Computation, pages 79–130. Cambridge University Press, 1997.

32 Martin Hofmann. Semantical analysis of higher-order abstract syntax. In 14th Annual IEEE
Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999, pages 204–213. IEEE
Computer Society, 1999. doi:10.1109/LICS.1999.782616.

33 Jasper Hugunin. Why not W? In Ugo de’Liguoro, Stefano Berardi, and Thorsten Altenkirch,
editors, 26th International Conference on Types for Proofs and Programs, TYPES 2020, March
2-5, 2020, University of Turin, Italy, volume 188 of LIPIcs, pages 8:1–8:9. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.TYPES.2020.8.

34 Jonas Kaiser, Steven Schäfer, and Kathrin Stark. Binder aware recursion over well-scoped
de Bruijn syntax. In June Andronick and Amy P. Felty, editors, Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018, Los Angeles,
CA, USA, January 8-9, 2018, pages 293–306. ACM, 2018. doi:10.1145/3167098.

35 Ambrus Kaposi. Formalisation of type checking into algebraic syntax. https://bitbucket.
org/akaposi/tt-in-tt/src/master/Typecheck.agda, 2018.

36 Ambrus Kaposi. Quotient inductive-inductive types and higher friends. Talk given at
the Homotopy Type Theory Electronic Seminar Talks (HoTTEST), October 2020. URL:
https://akaposi.github.io/pres_hottest.pdf.

37 Ambrus Kaposi, Simon Huber, and Christian Sattler. Gluing for type theory. In Herman
Geuvers, editor, 4th International Conference on Formal Structures for Computation and
Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages
25:1–25:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPICS.
FSCD.2019.25.

38 Ambrus Kaposi and András Kovács. A syntax for higher inductive-inductive types. In Hélène
Kirchner, editor, 3rd International Conference on Formal Structures for Computation and
Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs, pages 20:1–20:18.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPICS.FSCD.2018.
20.

39 Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. Constructing quotient inductive-
inductive types. Proc. ACM Program. Lang., 3(POPL):2:1–2:24, 2019. doi:10.1145/3290315.

40 Ambrus Kaposi, András Kovács, and Ambroise Lafont. For finitary induction-induction,
induction is enough. In Marc Bezem and Assia Mahboubi, editors, 25th International Con-
ference on Types for Proofs and Programs, TYPES 2019, June 11-14, 2019, Oslo, Norway,
volume 175 of LIPIcs, pages 6:1–6:30. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPICS.TYPES.2019.6.

41 Ambrus Kaposi and Szumi Xie. Type theory in type theory using single substitutions. In 30th
International Conference on Types for Proofs and Programs. IT University of Copenhagen,
2024.

42 András Kovács and Ambrus Kaposi. Large and infinitary quotient inductive-inductive types.
In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July
8-11, 2020, pages 648–661. ACM, 2020. doi:10.1145/3373718.3394770.

43 András Kovács. Type-Theoretic Signatures for Algebraic Theories and Inductive Types. PhD
thesis, Eötvös Loránd University, Hungary, 2022. arXiv:2302.08837.

FSCD 2024

https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/S10817-023-09678-Y
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.4230/LIPICS.TYPES.2020.8
https://doi.org/10.1145/3167098
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://bitbucket.org/akaposi/tt-in-tt/src/master/Typecheck.agda
https://akaposi.github.io/pres_hottest.pdf
https://doi.org/10.4230/LIPICS.FSCD.2019.25
https://doi.org/10.4230/LIPICS.FSCD.2019.25
https://doi.org/10.4230/LIPICS.FSCD.2018.20
https://doi.org/10.4230/LIPICS.FSCD.2018.20
https://doi.org/10.1145/3290315
https://doi.org/10.4230/LIPICS.TYPES.2019.6
https://doi.org/10.1145/3373718.3394770
https://arxiv.org/abs/2302.08837.

10:22 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

44 Paul Blain Levy, John Power, and Hayo Thielecke. Modelling environments in call-by-value
programming languages. Inf. Comput., 185(2):182–210, 2003. doi:10.1016/S0890-5401(03)
00088-9.

45 Hugo Moeneclaey. Parametricity and semi-cubical types. In 36th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages
1–11. IEEE, 2021. doi:10.1109/LICS52264.2021.9470728.

46 Pierre-Marie Pédrot. Russian constructivism in a prefascist theory. In Holger Hermanns,
Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual ACM/IEEE
Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages
782–794. ACM, 2020. doi:10.1145/3373718.3394740.

47 Brigitte Pientka and Jana Dunfield. Beluga: A framework for programming and reasoning
with deductive systems (system description). In Jürgen Giesl and Reiner Hähnle, editors,
Automated Reasoning, pages 15–21, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

48 Benjamin C. Pierce. Types and programming languages. MIT Press, 2002.

49 Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino, Marco Gaboardi, Michael
Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg, Andrew Tolmach, and Brent Yorgey. Programming
Language Foundations, volume 2 of Software Foundations. Electronic textbook, 2024. Version
6.5, http://softwarefoundations.cis.upenn.edu.

50 Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory of
Cubical Type Theory. PhD thesis, Carnegie Mellon University, USA, 2022. doi:10.1184/R1/
19632681.V1.

51 Jonathan Sterling and Carlo Angiuli. Normalization for cubical type theory. In 36th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 -
July 2, 2021, pages 1–15. IEEE, 2021. doi:10.1109/LICS52264.2021.9470719.

52 Taichi Uemura. Abstract and Concrete Type Theories. PhD thesis, University of Amsterdam,
2021.

53 Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming Language Foundations in Agda.
Online, August 2022. URL: https://plfa.inf.ed.ac.uk/22.08/.

A More examples of languages as SOGATs

▶ Definition 29 (Hindley–Milner type system).

MTy : Set – ⇒ – : MTy → MTy → MTy
Ty : Set lam :

(
Tm (i 𝐴) → Tm (i 𝐵)

)
� Tm (i (𝐴⇒ 𝐵)) : – · –

i : MTy → Ty ∀ : (MTy → Ty) → Ty
Tm : Ty → Set Lam :

(
(𝐴 : MTy) → Tm (𝐵 𝐴)

)
� Tm (∀ 𝐵) : – • –

The language of fine-grain call by value is to Freyd categories [44] as simply typed lambda
calculus is to cartesian closed categories. Here we add some type formers and a fixpoint
operator for illustration. All variables are values (in Val).

https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1109/LICS52264.2021.9470728
https://doi.org/10.1145/3373718.3394740
http://softwarefoundations.cis.upenn.edu
https://doi.org/10.1184/R1/19632681.V1
https://doi.org/10.1184/R1/19632681.V1
https://doi.org/10.1109/LICS52264.2021.9470719
https://plfa.inf.ed.ac.uk/22.08/

A. Kaposi and Sz. Xie 10:23

▶ Definition 30 (Fine-grain call by value).

Ty : Set – ⇒ – : Ty → Ty → Ty
Val : Ty → Set lam : (Val 𝐴→ Tm 𝐵) → Val (𝐴⇒ 𝐵)
Tm : Ty → Set – · – : Val (𝐴⇒ 𝐵) → Val 𝐴→ Tm 𝐵

return : Val 𝐴→ Tm 𝐴 ⇒𝛽 : lam 𝑓 · 𝑎 = 𝑓 𝑎

– ≫= – : Tm 𝐴→ (Val 𝐴→ Tm 𝐵) → Tm 𝐵 – × – : Ty → Ty → Ty
idl : return 𝑎≫= 𝑓 = 𝑓 𝑎 – , – : Val 𝐴→ Val 𝐵 → Val (𝐴 × 𝐵)
idr : 𝑚 ≫= return = 𝑚 case× : Val (𝐴 × 𝐵) →
ass : (𝑚 ≫= 𝑓) ≫= 𝑔 = (Val 𝐴→ Val 𝐵 → Tm𝐶) → Tm𝐶

𝑚 ≫= (𝜆𝑎. 𝑓 𝑎≫= 𝑔) ×𝛽 : case× (𝑎, 𝑏) 𝑓 = 𝑓 𝑎 𝑏

T : Ty → Ty fix : (Val (T 𝐴) → Tm 𝐴) → Tm 𝐴

thunk : Tm 𝐴 � Val (T 𝐴) : force fix𝛽 : fix 𝑓 = 𝑓
(
thunk (fix 𝑓)

)
The following definition shows that all the languages in the lambda cube [12] can be

given as SOGATs. The simply typed lambda calculus (STLC) only includes Π∗,∗, and the
edges in each dimension add one of the other three Π types, respectively. The calculus of
constructions (CC) includes all four Π types.

• CC

LF •

• F𝜔

STLC F

Π∗,□

Π□,□

Π□,∗

We don’t give names to the maps in the universal properties.

▶ Definition 31 (CC).

□ : Set
Ty : □ → Set
∗ : □
Tm : Ty ∗ → Set
Π∗,∗ : (𝐴 : Ty ∗) → (Tm 𝐴→ Ty (∗)) → Ty ∗ Tm (Π∗,∗ 𝐴 𝐵) � (𝑎 : Tm 𝐴) → Tm (𝐵 𝑎)
Π∗,□ : (𝐴 : Ty ∗) → (Tm 𝐴→ □) → □ Ty (Π∗,□ 𝐴 𝐿) � (𝑎 : Tm 𝐴) → Ty (𝐿 𝑎)
Π□,∗ : (𝐾 : □) → (Ty𝐾 → Ty ∗) → Ty ∗ Tm (Π□,∗ 𝐾 𝐵) � (𝐴 : Ty𝐾) → Tm (𝐵 𝐴)
Π□,□ : (𝐾 : □) → (Ty𝐾 → □) → □ Ty (Π□,□, 𝐾 𝐿) � (𝐴 : Ty𝐾) → Ty (𝐿 𝐴)

The next definition adds Σ, 0, 1, 2 and W-types to minimal Martin-Löf type theory,
which is enough to encode all inductive types [33].

▶ Definition 32 (Martin-Löf type theory with inductive types). We extend Definition 10 with
the following.

FSCD 2024

10:24 Second-Order Generalised Algebraic Theories: Signatures and First-Order Semantics

Σ : (𝐴 : Ty 𝑖) → (Tm 𝐴→ Ty 𝑖) → Ty 𝑖
(– , –) : (𝑎 : Tm 𝐴) × Tm (𝐵 𝑎) � Tm (Σ 𝐴 𝐵) : fst, snd
⊥ : Ty 0
exfalso : Tm⊥ → Tm 𝐴

⊤ : Ty 0
tt : ⊤ � Tm⊤
Bool : Ty 0
true : Tm Bool
false : Tm Bool
indBool : (𝐶 : Tm Bool → Ty 𝑖) → Tm (𝐶 true) → Tm (𝐶 false) →

(𝑏 : Tm Bool) → Tm (𝐶 𝑏)
Bool𝛽1 : indBool 𝑡 𝑓 true = 𝑡

Bool𝛽2 : indBool 𝑡 𝑓 false = 𝑓

Id : (𝐴 : Ty 𝑖) → Tm 𝐴→ Tm 𝐴→ Ty 𝑖
refl : (𝑎 : Tm 𝐴) → Tm (Id 𝑎 𝑎)
J :

(
𝐶 : (𝑥 : Tm 𝐴) → Tm (Id 𝐴 𝑎 𝑥) → Ty 𝑖

)
→

Tm
(
𝐶 𝑎 (refl 𝑎)

)
→ (𝑥 : Tm 𝐴) (𝑒 : Tm (Id 𝐴 𝑎 𝑥)) → Tm (𝐶 𝑥 𝑒)

Id𝛽 : J𝐶 𝑤 𝑎 (refl 𝑎) = 𝑤
W : (𝑆 : Ty 𝑖) → (Tm 𝑆 → Ty 𝑖) → Ty 𝑖
sup : (𝑠 : Tm 𝑆) → (Tm (𝑃 𝑠) → Tm (W 𝑆 𝑃)) → Tm (W 𝑆 𝑃)
indW : (𝐶 : Tm (W 𝑆 𝑃) → Ty 𝑖) →((

(𝑝 : Tm (𝑃 𝑠)) → Tm (𝐶 (𝑓 𝑝))
)
→ Tm

(
𝐶 (sup 𝑠 𝑓)

))
→

(𝑤 : Tm (W S P)) → Tm
(
𝐶 𝑤

)
W𝛽 : indW𝐶 ℎ (sup 𝑠 𝑓) = ℎ (𝜆𝑝.indW𝐶 ℎ (𝑓 𝑝))

In the following example, we add a new sort of telescopes to type theory. This can also be
seen as an inductive-recursive definition internally to presheaves over the syntax (or any
model; it shows that any CwF with ⊤ and Σ can be extended with telescopes).

▶ Definition 33 (Telescopes in Martin-Löf type theory). We extend Definition 32 with the
following.

Tys : Set ⋄ : Tys – ⊲ – : (𝐴 : Tys) → (Tms 𝐴→ Ty) → Tys

⌜–⌝ : Tys → Ty ⋄𝛽 : ⌜⋄⌝ = ⊤ ⊲𝛽 : ⌜𝐴 ⊲ 𝐴⌝ = Σ ⌜𝐴⌝ 𝐴

The next SOGAT has both telescopes and telecopic terms, it does not rely on the presence
of Σ types.

▶ Definition 34 (Telescopes and telescopic terms in Martin-Löf type theory). We extend
Definition 10 or Definition 32 with the following.

Tys : Set ⋄ : Tys – ⊲ – : (𝐴 : Tys) → (Tms 𝐴→ Ty) → Tys

Tms : Tys → Set ★ : Tms⋄ � 𝟙 : 𝜖 (𝜋1, 𝜋2) : Tms (𝐴 ⊲ 𝐴) � (𝑎 : Tms 𝐴) × Tm (𝐴 𝑎)

We can turn the above two isomorphisms into equalities if U in the theory of SOGAT
signatures was closed under unit and Σ, and had sort equations at the same time. Note that
these are not featured at the same time in the semantics of GATs [43].

	1 Introduction
	2 Classes of algebraic theories through examples
	2.1 Algebraic theories
	2.2 Generalised algebraic theories
	2.3 Second-order algebraic theories
	2.4 Second-order generalised algebraic theories

	3 Theories of signatures as SOGATs
	4 Naive semantics of SOGAT signatures
	5 Direct semantics of SOGAT signatures
	6 GAT signature semantics of SOGAT signatures
	7 Extensions and variants
	8 Conclusions and further work
	A More examples of languages as SOGATs

