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Abstract
When working in optimisation or privacy protection, one may need to estimate the sensitivity of
computer programs, i.e., the maximum multiplicative increase in the distance between two inputs
and the corresponding two outputs. In particular, differential privacy is a rigorous and widely
used notion of privacy that is closely related to sensitivity. Several type systems for sensitivity
and differential privacy based on linear logic have been proposed in the literature, starting with
the functional language Fuzz. However, they are either limited to certain metrics (L1 and L∞),
and thus to the associated privacy mechanisms, or they rely on a complex notion of type contexts
that does not interact well with operational semantics. We therefore propose a graded linear type
system – inspired by Bunched Fuzz [27] – called Plurimetric Fuzz that handles Lp vector metrics
(for 1 ≤ p ≤ +∞), uses standard type contexts, gives reasonable bounds on sensitivity, and has good
metatheoretical properties. We also provide a denotational semantics in terms of metric complete
partial orders, and translation mappings from and to Fuzz.
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1 Introduction

The sensitivity of a program is a measure of how much the result of the computation
depends on its inputs, and is defined with respect to some metrics on data. Concretely,
if dX and dY are metrics on the input and output spaces respectively, and if f is the
function computed by the program, its sensitivity is the smallest positive real s such that
dY

(
f(x), f(x′)

)
≤ s · dX(x, x′), for any pairs of inputs (x, x′). This notion is important for

analysing the stability of some machine-learning algorithms, or the privacy properties of a
program [9, 12]. In particular, sensitivity is a key notion for differential privacy [14, 15],
a popular approach to the protection of sensitive data, like medical records, that provides
mathematically-based, rigorous and composable guarantees. The intuition behind differential
privacy is that one can hide the information about whether or not a given individual is
included in the input dataset by perturbating the result of the function. In practice, one adds
a well-calibrated amount of random noise to the result, by means of specific mechanisms:
one should not be able to deduce from the output whether the individual belongs to the
input or not, but the result should still be accurate enough.
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12:2 Plurimetric Fuzz

As the analysis of sensitivity and the implementation of differential privacy are delicate
and error-prone tasks, some approaches in the programming languages community have
been developed to assist programmers. They can be categorised into two classes: those
based on Hoare logics [6, 7, 5], which are interactive and suitable for verifying mechanism
implementations, and those based on type systems [23, 16], which are automatisable and
well-suited for verifying functional programs that compose mechanisms. Moreover recent
works [21, 24] on type systems have suggested that the analysis of sensitivity and privacy in
these systems could be handled essentially separately, by using two different classes of typing
judgements.

In this paper, we are interested in the type systems for the analysis of sensitivity. The
seminal work on the Fuzz language by Reed and Pierce [23] has shown how ideas from linear
logic [18, 19] can be used to design a type system for a functional language which statically
bounds the sensitivity of a program by providing connectives which can express two metrics
on vectors: the L1 and the L∞ metrics. However depending on the applications some other
metrics on vectors are relevant. For instance, for many geometric algorithms one is interested
in the Euclidean distance L2, and more generally, in the literature on optimisation and
statistical applications [10, 20], Lp distances with 1 ≤ p ≤ +∞ have been used to advantage.
For this reason, wunder et al. [27] have introduced an extension of Fuzz, called Bunched Fuzz,
which features connectives allowing to handle Lp-metrics (1 ≤ p ≤ +∞) on vectors. The
derivations of this system use generalised typing judgements inspired by the logic of Bunched
Implications [22], where typing contexts have a tree structure. The authors established a
soundness result analogous to that of Fuzz, showing that the functions computed by well-
typed programs admit a certain sensitivity property.

In the following, we will discuss why Bunched Fuzz does not satisfy the desired properties
with respect to an operational semantics, and we will design a type system for Lp metrics
inspired by Bunched Fuzz with the following expectations: (i) sensitivity soundness property,
(ii) substitution and subject-reduction property, (iii) subtyping property, and (iv) express-
iveness. Requirement (iii) refers to the fact that for all p and q, the Lp and Lq-metrics are
related by two inequalities that can be used for coercions between data types convenient for
composing functions. As to (iv), we mean that we want the system to be able to type some
meaningful examples.

Concretely, we keep the same type language as Bunched Fuzz, but we consider a system of
rules that uses standard judgements with list contexts, we call this system Plurimetric Fuzz.
As an additional benefit, we will define (partial) translation mappings from Fuzz to Plurimetric
Fuzz, and vice versa, that we think shed some light on how the new system refines Fuzz.

1.1 Summary of Contributions
We introduce Plurimetric Fuzz, a type system with recursive types and a form of subtyping (see
Section 3.4) for bounding the Lp-sensitivity of vector-valued functions, which subsumes Fuzz
(p = 1). We show that Plurimetric Fuzz enjoys the subject reduction property (Theorem 5.2),
and that it is sound with respect to its denotational semantics (Theorem 4.15). We also show
that it gives significantly lower bounds on sensitivity compared to a naïve extension of Fuzz,
and that it is expressive enough to prove a classification algorithm (ϵ, 0)-private (see Section 6).

2 Background

We first give an overview of the notions and results about sensitivity, differential privacy and
type systems that will be needed in the paper.
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2.1 Metric Spaces and Sensitivity
▶ Definition 2.1. An extended pseudosemimetric space, or metric space for short, is a pair
(X, d) where X is a set and d : X × X → [0, ∞] is a function such that for all x, y, z ∈ X:
(1) d(x, y) = 0 if x = y; and (2) d(x, y) = d(y, x).

Note that we do not require the triangle inequality to hold.
In this paper, we are interested in a family of metrics over Rd, which are defined as

follows, and related by the inequalities of Lemma 2.3.

▶ Definition 2.2. For all parameter p ≥ 1 and for all vectors x = (x1, . . . , xd) and y =
(y1, . . . , yd) in Rd, we define the Lp-distance or the vector metric of parameter p between x
and y by dp(x, y) =

(∑d
i=1
∣∣xi − yi

∣∣p)1/p.

▶ Lemma 2.3. For all parameters p and q such that 1 ≤ p, q ≤ ∞, let c(p, q) = 2|1/p−1/q|.
If p ≤ q, then we have dp ≥ dq ≥ c(p, q) · dp.

The sensitivity of a map between metric spaces is a measure of how much its output
changes when its input changes. This notion is useful for analysing the privacy guarantees of
probabilistic algorithms, as we will see in Section 2.2.

▶ Definition 2.4. A map f between two metric spaces (X, dX) and (Y, dY ) is said to be
s-sensitive, or s-Lipschitz continuous, for s ∈ [0, ∞] if for all points x and x′ in X, we
have dY

(
f(x), f(x′)

)
≤ s · dX(x, x′). The sensitivity of f is the least real s such that f is

s-sensitive. When it is bounded by 1, we say that f is non-expansive.

▶ Remark 2.5. To perform operations on sensitivities, we extend addition to possibly infinite
reals in a straightforward way and multiplication in the same way as [3, Section 2], that is such
that s · ∞ equals ∞, and ∞ · s equals 0 if s = 0 and ∞ otherwise. Note that this operation
is not commutative, see [24, Section 4.2] for a discussion on the soundness of this choice.

For differentiable real functions, sensitivity is related to the magnitude of the derivative.

▶ Lemma 2.6. Let f be a differentiable function from R to R such that for all x ∈ R, we
have |f ′(x)| ≤ s. Then f is s-sensitive.

2.2 Differential Privacy
A strong motivation for studying sensitivity lies in the field of privacy-preserving data analysis.
Informally, differential privacy [14, 15] is a strong statistical notion of privacy, probably the
most widely used and studied, which requires that the outcome of a computation should not
depend too much on the presence or absence of a single record in the input database.

▶ Definition 2.7. A probabilistic algorithm A endowed with an adjacency relation is said to
be (ϵ, δ)-differentially private for some ϵ ≥ 0 and δ ∈ [0, 1] if, for all adjacent inputs x and x′,
and all subsets S of codom(A), we have Pr[A(x) ∈ S] ≤ eϵ Pr[A(x′) ∈ S] + δ.

▶ Remark. Differential privacy can also be defined in terms of a hypothesis-testing problem,
where an adversary attempts to distinguish between two adjacent inputs by observing the
outcome of the algorithm [25].

In practice, X will often be the set of databases, and two databases will be adjacent
if one can be obtained from the other by adding or removing a single record. Moreover,
the codomain will often be of the form Rd and endowed with a vector metric such as the
Manhattan distance (p = 1) or the Euclidean distance (p = 2).

FSCD 2024



12:4 Plurimetric Fuzz

In order to guarantee differential privacy, it is enough to add noise to the computation,
as long as the noise is sufficiently large compared to the sensitivity of the function being
computed. Let us give more precise statements.

Let f be a vector-valued function from a metric space (X, dX) to Rd. We write ∆pf

for the sensitivity of f when the codomain is endowed with the Lp-distance, that is for the
Lp-sensitivity of f . Recall that the Laplace distribution of parameter b > 0 is the probability
distribution with density function x 7→ 1/2b · e−|x|/b, for x in R.

▶ Theorem 2.8 (Laplace Mechanism [15, Theorem 3.6]). If ∆1f is finite, then for all positive
real number ϵ, the function x 7→ f(x) +

(
Lap(∆1f/ϵ), . . . , Lap(∆1f/ϵ)

)
is ϵ-differentially

private.

However, in some cases, we may prefer to add Gaussian noise instead of Laplace noise. This
way, the noise added to protect privacy is of the same type as other sources of perturbation in
the original data. Moreover, the effects of the privacy mechanism on the statistical analysis
may be easier to account for given that the sum of normally distributed random variables is
itself normally distributed [15, Section 3.5.3]. To do so, we need to bound the L2-sensitivity
of f .

▶ Theorem 2.9 (Gaussian mechanism [15, Theorem 3.22]). If ∆2f is finite, then for all
positive real numbers ϵ and δ, if σ >

√
2 ln(5/4δ) · ∆2f/ϵ, then the function x 7→ f(x) +(

N (0, σ2), . . . , N (0, σ2)
)

is (ϵ, δ)-differentially private.

▶ Remark 2.10. In this paper, we will only consider discrete probability distributions, but
the above two theorems can be adapted to this setting [17, 11].

2.3 Type Systems for Bounding Sensitivity
Reed and Pierce have introduced the Fuzz type system [23] based on the fact that L1-
sensitivity can be viewed as an affine resource (in the sense of linear logic [18, 19]). For
example, the judgement [x : A]2 ⊢ (x, x) : A⊗A means that the map x 7→ (x, x) is 2-sensitive
(for the L1-distance). See the following tensor rules for an example of Fuzz typing rules:

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ + ∆ ⊢ (a, b) : A ⊗ B

∆ ⊢ e : A ⊗ B Γ, [x : A]s, [y : B]s ⊢ c : C
⊗E

Γ + s∆ ⊢ (let (x, y) = e in c) : C

where the sum of two contexts is the result of adding the sensitivities of the involved variables.
It was subsumed by Bunched Fuzz [27], which allows for the analysis of Lp-sensitivity for

p ∈ [1, ∞] by the introduction of a family of tensor products (⊗p)p∈[1,∞] and affine arrows
(⊸p)p∈[1,∞]. Moreover contexts Γ are no longer represented as lists, but as trees (or bunches).
We reproduce the tensor rules below:

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ ,p ∆ ⊢ (a, b) : A ⊗p B

∆ ⊢ e : A ⊗p B Γ
(
[x : A]s ,p [y : B]s

)
⊢ c : C

⊗E
Γ(s∆) ⊢ (let (x, y) = e in c) : C

where Γ(∆) denotes a composite bunch formed by substituting the bunch ∆ into another
bunch Γ(⋆), which features a unique, distinguished hole ⋆.
▶ Remark 2.11. We write b[a/x] for the capture-avoiding substitution of b for x in a.

The contraction rule enables the identification of variables with the same type in two
different subtrees of a context,

Γ(∆ ,p ∆′) ⊢ a : A ∆ ≈ ∆′
Contr

Γ
(
Contr(p; ∆; ∆′)

)
⊢ a[vars ∆/ vars ∆′] : A



V. Sannier and P. Baillot 12:5

where Contr(p; Γ; ∆) is defined by induction on the structure of Γ by the following equations,
and where we write · for the sensitivity scaling operation.

Contr(p; ∅; ∅) def= ∅

Contr(p; [x : A]r; [y : A]s) def= [x : A] p
√

rp+sp

Contr(p; Γ1 ,q Γ2; ∆1 ,q ∆2) def= 2|1/p−1/q| ·
(
Contr(p; Γ1; ∆1) ,q Contr(p; Γ2; ∆2)

)
The authors have proved that if types and contexts are interpreted as metric spaces, then

the derivations correspond to non-expansive functions.

▶ Theorem 2.12 ([27, Theorem 7]). Given a derivation π proving Γ ⊢ a : A, the function
JπK : JΓK → JAK is non-expansive.

However, the use of bunches comes at the cost of the loss of the substitution property:
there exists derivations Γ ⊢ a : A and ∆([x : A]s) ⊢ b : B such that ∆(sΓ) ̸⊢ b[a/x] : B.

Proof. To see this, let us look at the following example. Here, we use the algorithmic approach
to the rules, which means we systematically apply a contraction after each typing rule:

+
∅ ⊢ (+) : Nat ⊗1 Nat ⊸1 Nat

var
[a : Nat]1 ⊢ a : Nat

var
[b : Nat]1 ⊢ b : Nat

⊗I
[a : Nat]1 ,1 [b : Nat]1 ⊢ (a, b) : Nat ⊗1 Nat

⊸ E
[a : Nat]1 ,1 [b : Nat]1 ⊢ (+)(a, b) : Nat

If we could substitute (+)(a, b) for x in the derivation

var
[x : Nat]1 ⊢ x : Nat

var
[x : Nat]1 ⊢ x : Nat

⊗I
[x : Nat]√2 ⊢ (x, x) : Nat ⊗2 Nat

we would obtain [a : Nat]√2 ,1 [b : Nat]√2 ⊢
(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat, which is not

derivable. Indeed, a derivation of this judgement would have the following shape:

...
[a : Nat]ra

,1 [b : Nat]rb
⊢ (+)(a, b) : Nat

...
[a : Nat]sa

,1 [b : Nat]sb
⊢ (+)(a, b) : Nat

⊗I
c(2, 1) ·

(
[a : Nat]1 ,1 [b : Nat]1

)
⊢
(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat

=
[a : Nat]√2 ,1 [b : Nat]√2 ⊢

(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat

where ra, rb, sa and sb would be such that r2
a + s2

a = 1 and r2
b + s2

b = 1. We would have
min{ra, sa} ≤

√
2/2 < 1, which is absurd as (a, b) 7→ a+b is 1-sensitive for the L1-metric. ◀

▷ Claim 2.13. Bunched Fuzz doesn’t meet the subject reduction property when it is given a
standard operational semantics similar to that of Fuzz (see Figure 3).

In addition, the failure to satisfy the substitution property implies that we cannot
meaningfully state certain properties regarding denotational semantics (see Section 5 for the
metatheoretical properties our type system enjoys). This includes the assertion, using the
notations above, that Jb[a/x]K is equal to JbK when partially applied to a, as the first term
may not have a valid derivation, and therefore a well-defined interpretation.

In conclusion, the flexibility provided by representing contexts as trees is offset by the
loss of important syntactic and semantic properties.

FSCD 2024
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3 Syntax

In a nutshell we will consider the terms of Fuzz, that is to say an extended λ-calculus, with
the types of Bunched Fuzz, but with a new notion of typing context.

3.1 Types and Terms
Types are defined by the following context-free grammar where s and p range over [0, ∞] and
[1, ∞] respectively: A, B, · · · ::= Unit | A ⊕ B | µα. A | ⃝A | !sA | A ⊗p B | A ⊸p B. We
write Bool for the type Unit ⊕ Unit; Listp(A) for the iso-recursive type µα. Unit ⊕ (A ⊗p α);

and
⊗d

p A =
d times︷ ︸︸ ︷

A ⊗p . . . ⊗p A.
On the other hand, the terms of the language are defined by the following grammar, for

c ∈ Const, x, y ∈ Var and A ∈ Typ:

a, b, c, d, e, f, . . . ::= ∗ | c | x | (a, b) | let (x, y) = e in b | πie | λx. e | f e

| inj1 e | inj2 e | case e of x ⇒ a or y ⇒ b | !e | let !x = e in b

| fold
A

e | unfold
A

e | return e | let ⃝x = e in b

(1)

▶ Remark 3.1. In examples, we write terms in an ML-like syntax instead of the one described
in Section 3. In particular, we may write x |> f for f x, we may use pattern matching
and let bindings (let x = e in b is syntactic sugar for (λx. b) e), and we may omit the
Y combinator (see Remark 3.5) when defining recursive functions.

3.2 Precontexts and Contexts
We refer to elements of the set defined by the grammar Γ ::= ∅ | [x : A]s, Γ – where s, x and A

range over [0, ∞], Var and Type respectively – as precontexts. In addition, we define the
scaling sΓ of a precontext Γ by a sensitivity s by s · ∅ def= ∅ and s · ([x : A]r, Γ) def= [x : A]rs, sΓ
for all s ∈ [0, ∞].

▶ Definition 3.2. Two precontexts Γ and ∆ are said to be compatible if they do not assign
different types to the same variable. The p-contraction of two compatible precontexts Γ and ∆
is defined by induction on the structure of Γ by the following equations:

Cp
(
∅; ∆

) def= ∆

Cp
(
[x : A]r, Γ; ∆

) def= [x : A]r, Cp (Γ; ∆) if x /∈ ∆

Cp
(
[x : A]r, Γ; [x : A]s, ∆

) def= [x : A] p
√

rp+sp , Cp (Γ; ∆)

(2)

We write Γ + ∆ for C1 (Γ; ∆). ⌟

▶ Lemma 3.3. For all precontexts Γ and ∆, and all parameters p:
Cp (Γ; ∆) = Cp (∆; Γ);
if Cp (Γ; ∆) = ∅, then Γ = ∅ and ∆ = ∅;
for all sensitivity s, we have s · Cp (Γ; ∆) = Cp (sΓ; s∆).

▶ Definition 3.4. For any two precontexts Γ and ∆, we write Γ ≤ ∆ if every variable of Γ
also occurs in ∆, and with greater or equal sensitivity.

Finally, we define a context as a pair of a parameter and a precontext, which can be
seen as a Bunched Fuzz context where all parameters are equal, and which can therefore be
flattened into a list. More precisely, a context is a pair (p, Γ) written (p) Γ.
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var
(p) [x : A]1 ⊢ x : A

Unit
⊢ ∗ : Unit

(p) Γ ⊢ a : A (p) ∆ ⊢ b : B
⊗I

(p) Cp (Γ; ∆) ⊢ (a, b) : A ⊗p B

(p) Γ ⊢ e : A ⊗p B (p) ∆, [x : A]s, [y : B]s ⊢ c : C
⊗E

(p) Cp (sΓ; ∆) ⊢ (let (x, y) = e in c) : C

(p) Γ ⊢ a : A
⊕I◁

(p) Γ ⊢ inj1 a : A ⊕ B

(p) Γ ⊢ b : B
⊕I▷

(p) Γ ⊢ inj2 b : A ⊕ B

(p) Γ ⊢ e : A ⊕ B (p) ∆, [x : A]s ⊢ c1 : C (p) ∆, [y : B]s ⊢ c2 : C
⊕E

(p) Cp (sΓ; ∆) ⊢ (case e of x ⇒ c1 or y ⇒ c2) : C

(p) Γ ⊢ a : A
!I

(p) sΓ ⊢ !a : !sA

(p) Γ ⊢ e : !rA (p) ∆, [x : A]rs ⊢ c : C
!E

(p) Cp (sΓ; ∆) ⊢ (let x = e in c) : C

(p) Γ, [x : A]1 ⊢ b : B
⊸ I

(p) Γ ⊢ (λx. b) : A ⊸p B

(p) Γ ⊢ f : A ⊸p B (p) ∆ ⊢ a : A
⊸ E

(p) Cp (Γ; ∆) ⊢ f a : B

(p) Γ ⊢ e : A[µα. A/α]
µI

(p) Γ ⊢ fold
µα. A

e : A

(p) Γ ⊢ a : A
µE

(p) Γ ⊢ unfold
µα. A

a : A[µα. A/α]

(1) Γ ⊢ a : A
⃝I

(1) ∞ · Γ ⊢ return a : ⃝A

(1) Γ ⊢ e : ⃝A (1) ∆, [x : A]∞ ⊢ b : ⃝B
⃝E

(1) Γ + ∆ ⊢ (let ⃝x = e in b) : ⃝B

(p) Γ ⊢ a : A Γ ≤ ∆ p ≥ q
≥ W

(q) ∆ ⊢ a : A

(p) Γ ⊢ a : A Γ ≤ ∆ p ≤ q
≤ W

(q) c(p, q) · ∆ ⊢ a : A

Figure 1 Typing Rules for Plurimetric Fuzz.

3.3 Typing Rules
The typing rules and typing rules schemas for Plurimetric Fuzz are given in Figure 1 where
Γ and ∆ range over contexts, A, B, and C range over types, etc.

We omit the →p type constructor, and encode it with ⊸p and !∞ as follows: A →p

B
def= !∞A ⊸p B. Similarly, the & constructor can be encoded by ⊗∞ like in [27, Section 3].

Observe that, as C1 (Γ; ∆) = Γ+∆, all rules but the last two, (≥ W ) and (≤ W ), correspond
to Fuzz rules when p = 1 (by identifying connectives of parameter 1 with the corresponding
Fuzz ones). So all Fuzz type derivations can be seen as Plurimetric Fuzz type derivations (up
to the encoding of &). We will see in Section 7 other ways of translating Fuzz derivations,
by choosing other values of p.

Also note that the weakening rules (≥ W ) and (≤ W ) are the only ones that make the
parameter of the judgement change. One direction (≥ W ) is direct, but the other one (≤ W )
requires a coefficient c(p, q) = 2|1/p−1/q| (see Lemma 2.3). In addition, as a particular case
of these rules, for all parameters p and q, from (p) ∅ ⊢ a : A we can derive (q) ∅ ⊢ a : A. For
this reason, we may simply write ⊢ a : A.

FSCD 2024



12:8 Plurimetric Fuzz

Nat
⊢ n : Nat

Real
⊢ r : Real

(p) Γ ⊢ x : N (p) ∆ ⊢ y : N N ∈ {Nat, Real}
+

(p) c(1, p) · Cp (Γ; ∆) ⊢ x + y : N

(p) Γ ⊢ x : N k ∈ N N ∈ {Nat, Real}
×

(p) kΓ ⊢ k × x : N

(p) Γ ⊢ x : A
Set

(p) ∞ · Γ ⊢ {x} : Set(A)
(p) Γ ⊢ e : Set(A)

card
(p) Γ ⊢ card(e) : Nat ⊕ Unit

setfilter
⊢ setfilter : (A →p Bool) →p Set(A) ⊸p Set(A)

setmap
⊢ setmap : (A →p B) →p Set(A) ⊸p Set(B)

setfold
⊢ setfold : (A ⊸p B ⊸p B) →p B →p Set(A) ⊸p B

Figure 2 Typing Rules for Primitive Operations.

▶ Remark 3.5. As shown in [23, Section 3.1], recursive types let us encode a fix-point
combinator for any two types A and B, and parameters p without a specific rule:

Y
def= λf.

(
λx. λa. f

(
(unfold

A0
x)x
)
a
)(

fold
A0

(
λx. λa. f

(
(unfold

A0
x)x
)
a
))

where A0
def= µα

(
α →p (A ⊸p B)

)
, and Y :

(
(A ⊸p B) →p (A ⊸p B)

)
→p (A ⊸p B). ⌟

We can extend the type system to handle primitive operations on natural and real numbers,
as well as on sets, having extending the syntax of types and terms accordingly in Figure 2.

3.4 Subtyping
For all p and q, the Lp and Lq-metrics are related by two inequalities that can be used for
coercions between data types: if p ≤ q, from (p) Γ ⊢ e : A ⊗p B, we can derive (p) Γ ⊢(
let (x, y) = e in (x, y)

)
: A ⊗q B; and similarly from (q) Γ ⊢ e : A ⊗q B, we can derive

(q) c(p, q) · Γ ⊢
(
let (x, y) = e in (x, y)

)
: A ⊗p B. Let us give the derivation of the first case:

(p) Γ ⊢ e : A ⊗p B

var
(q) [x : A]1 ⊢ x : A

var
(q) [y : B]1 ⊢ y : B

⊗I
(q) [x : A]1, [y : B]1 ⊢ (x, y) : A ⊗q B

≥ W
(p) [x : A]1, [y : B]1 ⊢ (x, y) : A ⊗q B

⊗E
(p) Γ ⊢

(
let (x, y) = e in (x, y)

)
: A ⊗q B

▶ Example 3.6. As an example, say we want to compose a function f : Real ⊸1 Real ⊗2 Real
with a function g : Real ⊗1 Real ⊸1 Real, both typable in an empty context. We can first
apply f to an input x, and then coerce the result to obtain the judgement (1) [x : Real]√2 ⊢
e : Real ⊗1 Real for some term e which is semantically equivalent to the term f(x). At this
point, we can apply g to e, and use the (!I) and (⊸ I) rules to derive the judgement
(1) ∅ ⊢ h : !√2Real ⊸1 Real for some term h which behaves like g ◦ f .
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∗ ⇓ ∗ λx. b ⇓ λx. b

f ⇓ λx. b a ⇓ va b[va/x] ⇓ v

f a ⇓ v

a ⇓ va b ⇓ vb

(a, b) ⇓ (va, vb)
c ⇓ (va, vb) e[va/x][vb/y] ⇓ v

(let (x, y) = c in e) ⇓ v

e ⇓ v

inji e ⇓ inji v

e ⇓ inji v ei[v/x] ⇓ vi

(case e of x ⇒ e1 or x ⇒ e2) ⇓ vi

e ⇓ v

!e ⇓ !v
b ⇓ !vb e[vb/x] ⇓ v

(let !x = b in e) ⇓ v

e ⇓ v

foldA e ⇓ foldA v

e ⇓ foldA v

unfoldA e ⇓ v

e ⇓ v

return e ⇓ (1, v)
d ⇓ (pi, vi)i∈I

i ∈ I

b[vi/x] ⇓ (qij , wij)j∈J

let ⃝x = d in b ⇓ (piqij , wij)i∈I,j∈J

Figure 3 Evaluation rules for (Plurimetric) Fuzz.

4 Semantics

4.1 Operational Semantics
We consider the same big-step operational semantics as for Fuzz [23]. First, values are given
by the following grammar: u, v, · · · ::= ∗ | (u, v) | λx. b | !v | µ | foldA v | inj1 v | inj2 v where
µ ranges over multisets of probability-value pairs.

See Figure 3 for the complete set of evaluation rules, which can be extended with rules
for primitive operations. We will see in the Section 5 that this semantics enjoys the desired
properties such as subject reduction (also known as type preservation).

4.2 Denotational semantics
We also introduce a denotational semantics by interpreting types as metric spaces and type
derivations as non-expansive maps, following the denotational semantics of Bunched Fuzz [27].

Operations on metric spaces

▶ Definition 4.1. Let (X, dX), (Y, dY ) and (Z, dZ) be three metric spaces, p be a parameter,
and s be a sensitivity. The scaling of (X, d) by s is the metric space !sX

def= (X, s · dX).
Moreover, the p-tensor product X ⊗p Y of X and Y is the set X × Y endowed with

dX⊗pY

(
(x, y), (x′, y′)

) def= p
√

dX(x, x′)p + dY (y, y′)p ; (3)

the p-affine arrow X ⊸p Y from X to Y is the set Y X endowed with

dX⊸pY (f, f ′) def= inf
{

r ≥ 0 : ∀x, x′ ∈ X, dY

(
f(x), f ′(x′)

)p ≤ rp + dX(x, x′)p
}

; (4)

and the disjoint union X ⊕ Y of X and Y is the set X ⊔ Y endowed with

dA1⊕A2(e, e′) def=

di(e, e′) if e, e′ ∈ JAiK
∞ otherwise.

(5)

Given two maps f : X → Z and g : Y → Z, the coproduct [f, g] : X ⊕ Y → Z of f and g is
the map defined by [f, g]

(
i1(x)

) def= f(x), and [f, g]
(
i2(y)

) def= g(y). ⌟

FSCD 2024
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Note that it follows directly from the definitions above that for all p, the operation ⊗p is
commutative and associative up to isomorphism, and that the evaluation map Ev: (X ⊸p

Y ) ⊗p X ⊸p Y is non-expansive. Moreover, we have (X ⊕ Y ) ⊗p Z ≃ (X ⊗p Z) ⊕ (Y ⊗p Z).
We also define probability distributions over metric spaces.

▶ Definition 4.2. A discrete probability distribution over a metric space with countable
support X is a function µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. We write Dist(X) for the set

of such distributions endowed with the following distance, parametrised by a positive real ϵ0:

max div(µ, µ′) def= 1
ϵ0

max
x∈X

∣∣∣∣ ln µ(x)
µ′(x)

∣∣∣∣ (6)

with the convention that 0/0 def= 1 and | ln(0/x)| def= | ln(x/0)| def= ∞ for all x > 0. We write δx

for the Dirac distribution at x: δx(x) = 1 and δx(x′) = 0 for all x′ ̸= x. ⌟

Recall that the support supp µ of a distribution µ over a set X is the set of elements of X

with non-zero probability, and note that if µ and µ′ are two discrete distributions over the
same set X, then max div(µ, µ′) is finite if and only if supp µ = supp µ′. This distance is
“carefully chosen” [23, Section 4.2] to ensure that the following lemma holds.

▶ Lemma 4.3. A non-expansive map from X to Dist(Y ) is exactly an ϵ0-differentially private
random map from X to Y .

To compose probabilistic programs, we define the Kleisli extension of a map.

▶ Definition 4.4. The Kleisli extension f† : Dist(X) → Dist(Y ) of a map f : X → Dist(Y )
is defined by the following formula: f(µ)(y) def=

∑
x∈X µ(x)f(x)(y).

Interpretation of Types, Contexts and Derivations

Let Core Plurimetric Fuzz be the fragment of Plurimetric Fuzz without recursive types. We
interpret its types inductively as metric spaces:

JUnitK def= ({∗}, 0);
JNatK def= (N, (m, n) 7→ |m − n|);
JRealK def= (R, (x, y) 7→ |x − y|);
J!sAK def= !sJAK;
JA ⊗p BK def= JAK ⊗p JBK;

JA ⊸p BK def= JAK ⊸p JBK;

JA ⊕ BK def= JAK ⊕ JBK;
J⃝AK def= Dist JAK;
JSet(A)K def=

(
Pfinite(JAK), card(− △ −)

)
.

where △ is the symmetric difference on sets. Next, we define the interpretation of contexts:
J(p) ∅K def= {∗} and J(p) Γ, x : AK def= J(p) ΓK⊗pJAK. Derivations are seen as non-expansive maps
between metric spaces. More precisely, if π is a derivation whose last rule is R, we write πe for
its premise whose conclusion has term e, and Γ and ∆ for the contexts involved. Moreover, we
write −̂ for the currying map; Ev for the evaluation map; if R is a weakening rule, Ip for the
inclusion map from J(p) ∆K to J(p) ΓK when Γ ≤ ∆, and Iq

p for the natural map from J(p) ΓK
to J(q) ΓK; and if R is binary or ternary, Dp for the diagonal-like map from J(p) Cp (Γ; ∆)K
to J(p) ΓK ⊗p J(p) ∆K. We omit isomorphisms when they are clear from the context.

(Unit) JπK def= Const∗

(var) JπK def= IdJAK

(⊗I) JπK def=
(
JπaK × JπbK

)
◦ Dp

(⊗E) JπK def= JπcK ◦ (Id × r · JπeK) ◦ Dp

(⊸ I) JπK def= ĴπbK

(⊸ E) JπK def= Ev ◦
(
Jπf K × JπaK

)
◦ Dp
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(⊕I◁) JπK def= i1 ◦ JπaK
(⊕I▷) JπK def= i2 ◦ JπbK
(⊕E) JπK def= [Jπc1K, Jπc2K] ◦ (Id × s · JπeK) ◦ Dp

(!I) JπK def= s · JπaK
(!E) JπK def= JπcK ◦

(
Id × r · JπeK

)
◦ Dp

(⃝I) JπK def= δ ◦ ∞ · JπaK

(⃝E) JπK def= Ev ◦
(
(∞ · JπeK) × (·† ◦ ĴπbK)

)
◦ D1

(≤ W ) JπK def= c(p, q) · Ip
q ◦ Iq ◦ JπaK

(≥ W ) JπK def= Ip
q ◦ Iq ◦ JπaK

Soundness of Core Plurimetric Fuzz

Let Core Plurimetric Fuzz be the fragment of Plurimetric Fuzz without recursive types.

▶ Proposition 4.5 (Soundness). If π is a Core Plurimetric Fuzz derivation of (p) Γ ⊢ a : A,
then JπK is a non-expansive map from J(p) ΓK to JAK.

Properties we use repeatedly in the proof of this result are summarised in the following
lemmata. See Appendix A.1 for more details.

▶ Lemma 4.6. For all precontexts Γ, and reals p ≥ 1 and s ≥ 0, we have J(p) sΓK = !sJ(p) ΓK.

▶ Lemma 4.7. For all metric spaces X1, X2, Y1, and Y2, and parameters p, if f : X1 → Y1
and g : X2 → Y2 are non-expansive maps, then so is f × g : X1 ⊗p X2 → Y1 ⊗p Y2.

Proof. The function (x, y) 7→ p
√

xp + yp is increasing in both arguments over R≥0 ×R≥0. ◀

▶ Lemma 4.8 ([27, Proposition 6]). For all metric spaces X and Y , and parameters p and q

such that p ≤ q, the identity map on pairs belongs to the following spaces: X ⊗p Y ⊸ X ⊗q Y

and !c(p,q)(X ⊗q Y ) ⊸ X ⊗p Y .

▶ Lemma 4.9. For all compatible precontexts Γ and ∆, the diagonal-like map Dp from
J(p) Cp (Γ; ∆)K to J(p) ΓK⊗pJ(p) ∆K is non-expansive. Moreover, if Γ ≤ ∆, then the inclusion
map Ip : J(p) ΓK → J(p) ∆K is non-expansive.

Proof. By induction on Γ, using the fact that for all metric spaces X, and sensitivities r

and s, we have a non-expansive map from ! p
√

rp+spX to !rX ⊗p !sX given by x 7→ (x, x). ◀

▶ Lemma 4.10. The bind map defined by bind(f, µ) def= f†(µ) is non-expansive from Dist Y ⊗1
(Y →1 Dist X) to Dist X.

See Appendix A.2 for a proof of the soundness of the typing rule for the primitive
operations. Note that the types of the higher-order primitives setmap, setfilter, and setfold
are not sound when the functional is not guaranteed to converge. Some solutions to this
problem are discussed in [23, Section 3.5].

Recursive types and Recursive functions

In this section, we will show that the introduction of a denotational semantics for interpreting
recursive definitions of both data types and functions for the fragment of Fuzz that does
not include probability distributions [3] can be generalised to our setting. Note that the
interpretation is parametrized by a finite set of type identifiers, that behave as iso-recursive
types, and by a definition environment. This approach slightly diverges from what precedes.

▶ Definition 4.11. A metric complete partial order is a complete partial order X endowed
with a metric d such that for all (xi)i∈N and (x′

i)i∈N two ω-chains in X, if dX(xi, x′
i) ≤ r

for all i ∈ N, then dX

(⊔
i∈N xi,

⊔
i∈N x′

i

)
≤ r.

FSCD 2024
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Equivalently, we may ask that d
(⊔

i∈N xi,
⊔

i∈N x′
i

)
≤ lim infi→∞ d(xi, x′

i) [3, Lemma 4.5].
This framework allows to describe Plurimetric Fuzz recursive types as solutions to domain

equations of the form F (X) = X, and to describe divergence by the least element ⊥.

▶ Theorem 4.12 ([3, Theorem 4.15]). MetCPO⊥ is an algebraically compact CPO-category,
that is for every CPO-endofunctor F , there exists an object µF and an isomorphism i :
F (µF ) ≃ µF such that i is an initial algebra and i−1 is a final coalgebra.

We have to show that MetCPO⊥ is closed under the tensor and arrow constructors.

▶ Lemma 4.13. If X and Y are two metric complete partial orders, then so is X ⊸p Y .

Proof. Let (fi)i∈N and (gi)i∈N be two ω-chains in X ⊸p Y such that for all i ∈ N, we have
dX⊸pY (fi, gi) ≤ r. Let x1 and x2 in X, and i ∈ N.

dY

(
fi(x1), gi(x2)

)
≤ dX⊸1Y (fi, gi) + dX(x1, x2) by Equation (4)
≤ dX⊸pY (fi, gi) + dX(x1, x2) by [27, Theorem 5]
≤ r + dX(x1, x2) ◀

▶ Lemma 4.14. If X and Y are two metric complete partial orders, then so is X ⊗p Y .

Proof. Let (pi)i∈N and (p′
i)i∈N be two ω chains in X ×Y . For all i ∈ N we write pi = (xi, yi)

and p′
i = (x′

i, y′
i). Since X and Y are metric complete partial orders, we have

dX

(⊔
i∈N

xi,
⊔

i∈N

x′
i

)
≤ lim inf

i→∞
dX(xi, x′

i) and dY

(⊔
i∈N

yi,
⊔

i∈N

y′
i

)
≤ lim inf

i→∞
dY (yi, y′

i) .

Therefore, as the function x 7→ xp is increasing, we have

dX

(⊔
i∈N

xi,
⊔

i∈N

x′
i

)p

+ dY

(⊔
i∈N

yi,
⊔

i∈N

y′
i

)p

≤ lim inf
i→∞

dX(xi, x′
i)p + lim inf

i→∞
dY (yi, y′

i)p

≤ lim inf
i→∞

(
dX(xi, x′

i)p + dY (yi, y′
i)p
)

= lim inf
i→∞

dX(xi, x′
i)p + dY (yi, y′

i)p

and by taking the p-th root of both sides, we obtain dX⊗pY

(⊔
i∈N pi,

⊔
i∈N p′

i

)
≤ lim infi→∞ dX⊗pY (pi, p′

i). ◀

From Proposition 4.5 and what precedes, we can deduce the soundness of the deterministic
fragment of Plurimetric Fuzz, which features recursive types and functions.

▶ Theorem 4.15 (Soundness). If π is a derivation in the deterministic fragment of Plurimetric
Fuzz of (p) Γ ⊢ a : A, then JπK is a non-expansive map from J(p) ΓK to JAK.

▶ Remark 4.16. One may notice that if we use recursive types to define Nat as µα. Unit ⊕ α,
then the following implementation of (+) is non-expansive for all p rather than c(1, p)-sensitive:

Listing 1 Non-expansive implementation of the addition.
let rec (+) n m = match n with injl () -> m | injr k -> injr (k + m)

However, in this setting, the sensitivity is calculated with respect to the following distance:
dNat(m, n) equals 0 if m = n, and ∞ otherwise, rather than the usual distance on N. This
justifies the introduction of Nat as a primitive data type and of (+) as a primitive operation. ⌟
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5 Metatheoretical properties

Unless otherwise stated, J−K will refer to one of the two closely-related denotational semantics
we have defined. More specifically, JAK may be either a metric space or a metric complete
partial order (CPO). Furthermore, the terms will be drawn from the appropriate fragment.

In the same way as [3], we call a substitution a finite partial map from variables to values.
We write S(e) for the simultaneous substitution of x by S(x) in e for all x in dom(S) ∩ FV(e).
A substitution S is said to be well-typed by a precontext Γ and we write S : Γ when the
following two assertions are equivalent: ⊢ S(x) : A and [x : A]s ∈ Γ for some s ≥ 0. Finally,
for all parameters p, we naturally define JSK as an element of J(p) ΓK.

▶ Lemma 5.1 (Substitution). For all derivations π of (p) Γ, ∆ ⊢ a : A and for all well-
typed substitutions S : Γ, there exists a derivation π′ of (p) ∆ ⊢ S(a) : A. Moreover,
Jπ′K = JπK(JSK, −).

Types and denotation are preserved by the operational semantics.

▶ Theorem 5.2 (Preservation). For all derivations πa of ⊢ a : A, if a ⇓ v, then there exists a
derivation πv of ⊢ v : A. Moreover, JπaK = JπvK.

Let us now state the main result of this section, that is the metric preservation theorem.

▶ Theorem 5.3 (Metric preservation for Core Plurimetric Fuzz). For all derivations π of
(p) Γ ⊢ a : A and for all well-typed substitutions S, S′ : Γ, then there exists well-typed values
v and v′ such that S(a) ⇓ v and S′(a) ⇓ v′ and dJAK

(
JvK, Jv′K

)
≤ dJΓK

(
JSK, JS′K

)
,

▶ Theorem 5.4 (Metric preservation for Plurimetric Fuzz). For all derivations π of (p) Γ ⊢ a : A

and for all well-typed substitutions S, S′ : Γ, we have dJAK⊥

(
JS(a)K, JS′(a)K

)
≤ dJΓK

(
JSK, JS′K

)
.

By itself, the second formulation of the metric preservation theorem does not constrain
the termination behaviour of the two terms S(a) and S′(a). However, the following lemma
connects termination from both the operational and denotational perspectives. More details
on the implications of this result are given in [3, Section 5].

▶ Lemma 5.5 (Adequacy for Plurimetric Fuzz). If ∅ ⊢ a : A and JaK ̸= ⊥, then there exists a
value v such that a ⇓ v.

The proofs are similar to the one given in [3], given our soundness results (Proposition 4.5
and Theorem 4.15).

6 Expressive power and Precision

Let us now illustrate the usage of our type system with three examples.

Example: Functions with Multiple Arguments

Let us consider the term λc.
(
let (x, y) = c in f(!x, y) + g(x, !y)

)
where f : !2Real⊗2Real ⊸2

Real and g : Real ⊗2 !2Real ⊸2 Real, that is the same example as in [27, Section 5].
...

(2) [x : Real]2, [y : Real]1 ⊢ f(!x, y) : Real

...
(2) [x : Real]1, [y : Real]2 ⊢ g(x, !y) : Real

+
(2)

√
2 · ([x : Real]√5, [y : Real]√5) ⊢ f(!x, y) + g(x, !y) : Real

This typing derivation shows that, by using Plurimetric Fuzz, we manage to obtain the
same sensitivity as with Bunched Fuzz, that is to say

√
10 ≈ 3 + 1/6, while a naïve extension

of Fuzz would overestimate it to 4 [27, Section 5].
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Example: Suboptimal sensitivity analysis

We can without difficulty find a term e and a type A such that ⊢ e : A in Bunched Fuzz,
but ̸⊢ e : A in Plurimetric Fuzz. For example, let e = λx.

(
(x, x), ∗

)
and A = !2B ⊸2

(B ⊗1 B)⊗2 Unit for any type B. (Plurimetric Fuzz would require the exponential constructor
to be annotated with at least 2

√
2.) However, such cases do not seem to appear in practical

programs.

Example: Neighbour classification

Let us consider an example using the Euclidean distance L2. Say that given a database of
labelled points in the Euclidean plane, we want to predict the label of a new point x by a
majority vote weighted by the distance d to its neighbours (approximately 1 when d < r for a
given radius r, and 0 otherwise). Here, we choose the function weight : x 7→ 1−1/(1+e−4(x−r)).
This is the complement of a shifted and scaled function (widely used as an activation function
in machine learning), which can be soundly added to the language as a primitive of type
Real ⊸1 Real (see Lemma 2.6).

A row of the database is represented by the following type: Row = Point ⊗1 Label where
Point = Real ⊗2 Real, and Label = Unit ⊕ · · · ⊕ Unit. We assume that the coordinates are
precise enough so that no two different points have the same coordinates, and that x = (0, 0)
(we lose nothing in generality by doing this, since translation is a non-expansive operation
on the Euclidean plane).

The algorithm is implemented as follows (where = is an ∞-sensitive primitive):

Listing 2 Implementation of the neighbour classification algorithm.
let get_pos (r : row) : point = let (pos , _) = r in pos
let get_label (r : row) : label = let (_, label) = r in label

let score (l : label) (db : database ) : real = db
|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setfold (fun acc x -> acc + weight x) 0

let predict (db : database ) : label = exp_noise labels score db

Informally, score computes the score of a label by: (1) filtering the database to keep only
the points with the given label; (2) computing the distance of each point to the origin (the
Euclidean distance distance is non-expansive on elements of type Point); (3) computing
the sum of the weights of the points. Moreover, exp_noise is a specialised version of the
exponential mechanism presented in [16, Equation 1] for the case s = 1 and ϵ = 1, which has
type Set(Label) →1 (Label →1 Database ⊸1 Real) →1 Set(Row) ⊸1 ⃝Label.

We can derive the following types for the above functions: score : Label →1 Database ⊸1
Real, and predict : Set(Row) ⊸1 ⃝Label. First, by applying the tensor-elimination and
arrow-introduction rules, we can show that the helper functions get_pos and get_label
have type Row ⊸1 Point and Row ⊸1 Bool respectively. Then we type the three anonymous
functions that appear in our implementation:

fun r -> get_label r = l has type Row →1 Bool in the context [l : Label]∞;
fun r -> distance (0, 0) (get_pos r) has type Row ⊸1 Real as the Euclidean
distance distance has type Point ⊸1 Point ⊸1 Real;
fun acc x -> acc + weight x has type Real ⊸1 Real ⊸1 Real.

This way, we show that score has the following type Label →1 Database ⊸1 Real and we
can apply the exp_noise function to conclude.

In particular, by Lemma 4.3, this classification algorithm is 1-differentially private.
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7 Translation Mappings

In order to better understand the relationships between Fuzz and Plurimetric Fuzz we will
now investigate some translations between the two systems. We consider a presentation of
Fuzz with a weakening rule (W ), rather than axioms with an arbitrary context. Moreover,
we extend Plurimetric Fuzz by adding a & type constructor to simplify the presentation. Its
introduction and elimination rules are given in Appendix B.

Let Der(Fuzz) be the set of derivations in Fuzz endowed with the following partial order:
for all derivations π of Γ ⊢ a : A and π′ of ∆ ⊢ b : B, we have π ≤ π′ iff Γ ≤ ∆ (see
Definition 3.4) and (a, A) = (b, B). Similarly, we define Der(PFuzz) for Plurimetric Fuzz.

7.1 Translation from Fuzz to Plurimetric Fuzz
For all parameters p, we define a mapping P p

type from Fuzz types to Plurimetric Fuzz types
by structural induction as follows:

P p
type(Unit) = Unit

P p
type(A ⊕ B) = P p

type(A) ⊕ P p
type(B)

P p
type(A & B) = P p

type(A) & P p
type(B)

P p
type(A ⊗ B) = P p

type(A) ⊗p P p
type(B)

P p
type(A ⊸ B) = P p

type(A) ⊸p P p
type(B)

P p
type(!sA) = !s1/pP p

type(A)
P p

type(⃝A) = ⃝P p
type(A)

P p
type(µα. A) = µα. P p

type(A)

(7)

Note that Fuzz lists are mapped to p-lists in Plurimetric Fuzz, i.e., for all type A, we have
P p

type
(
List(A)

)
= Listp

(
P p

type(A)
)
. The distance on the latter type is given by dListp(A)(l, l′) =

p
√∑n

i=1 dA(li, l′
i)p if length(l) = length(l′) = n, and ∞ otherwise.

We also define a mapping P p
ctx from Fuzz contexts to Plurimetric Fuzz precontexts by

P p
ctx(∅) = ∅, and P p

ctx(Γ, [x : A]s) = P p
ctx(Γ), [x : P p

type(A)]s1/p , and a mapping P p
der on

derivations. For unary and binary rules, we have for instance:

P
p
der

( var
[x : A]1 ⊢ x : A

)
=

var
(p) [x : P p

type(A)]1 ⊢ x : P p
type(A)

P
p
der

 .... πa

Γ ⊢ a : A

.... πb

∆ ⊢ b : B
⊗I

Γ + ∆ ⊢ (a, b) : A ⊗ B

 =

......
P p

der(πa)

(p) P p
ctx(Γ) ⊢ a : P p

type(A)

......
P p

der(πb)

(p) P p
ctx(∆) ⊢ b : P p

type(B)
⊗I

(p) Cp
(

P p
ctx(Γ); P p

ctx(∆)
)

⊢ (a, b) : P p
type(A) ⊗p P p

type(B)
= W

(p) P p
ctx(Γ + ∆) ⊢ (a, b) : P p

type(A ⊗ B)

▶ Definition 7.1. A derivable judgement Γ ⊢ e : A is said to be minimal in a (Plurimetric)
Fuzz if for all contexts ∆ such that ∆ ⊢ e : A, we have Γ ≤ ∆.

We can now prove the main result of this section, that is to say that the translation of a
valid derivation is valid (see Appendix B for a proof).

▶ Lemma 7.2. For all precontexts Γ and ∆, sensitivities s, and parameters p, we have the
following equality: Cp

(
P p

ctx(Γ); s1/p · P p
ctx(∆)

)
= P p

ctx(Γ + s∆).

▶ Corollary 7.3. For all parameters p, the image by P p
der of the derivation π of a (minimal)

judgement Γ ⊢ a : A in Fuzz is a valid derivation of a (minimal) judgement (p) P p
ctx(Γ) ⊢ a :

P p
type(A) in Plurimetric Fuzz.

FSCD 2024
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In particular, all examples in [23] that only use structural and logical rules can be
translated to Plurimetric Fuzz for any parameter p. This includes elementary operations on
lists such as binary and iterated concatenation, length, but also higher-order combinators such
as map, foldl, foldr (see [23, Section 3.2]). More generally, this means that the L1 sensitivity
properties obtained by typing in Fuzz for these programs can be for free transposed into Lp

sensitivity properties obtained by typing in Plurimetric Fuzz. However, Corollary 7.3 does
not extend to primitive operations (the ones presented in Figure 2), which do not behave
uniformly with respect to the metric chosen on the pairs and functions.

▷ Claim 7.4 (No miracle). We cannot soundly extend Pder to the derivations involving
primitive operations such as addition on numbers.

Proof. For instance, we cannot soundly translate the following (+) rule for p = 2:

Γ ⊢ a : Real ∆ ⊢ b : Real +
Γ + ∆ ⊢ a + b : Real

P 2
der−−−→

(2) P 2
ctx(Γ) ⊢ a : Real (2) P 2

ctx(∆) ⊢ b : Real
+

(2) P 2
ctx(Γ + ∆) ⊢ a + b : Real

as the following function is not non-expansive: (+): R ⊗2 R → R (its sensitivity is
√

2). ◁

7.2 Translation from Plurimetric Fuzz to Fuzz

Conversely, we can define partial mappings F p
type, F p

ctx and F p from Plurimetric Fuzz to
Fuzz. We only give the most interesting cases:

F p
type(A ⊗q B) = F p

type(A) ⊗ F p
type(B) if q ≤ p

F p
type(A ⊸q B) = F p

type(A) ⊸ F p
type(B) if q ≤ p

F p
type(!sA) = !spF p

type(A)
F p

ctx([x : A]s, Γ) = [x : F p
type(A)]sp , F p

ctx(Γ)

F p
der

( var
(q) [x : A]1 ⊢ x : A

)
=

var
[x : F p

type(A)]1 ⊢ x : F p
type(A) if q ≤ p

▶ Lemma 7.5. For all precontexts Γ and ∆, for all sensitivities s, we have the following
inequality: spF p

ctx(Γ) + F p
ctx(∆) ≤ F p

ctx
(
Cp (Γ; s∆)

)
.

It follows from the definition above that the image F p
der(π) of a Plurimetric Fuzz derivation π

is defined iff any parameter q occurring in a judgement of π is inferior or equal to p.

▶ Corollary 7.6. For all parameters p, if the image by the mapping F p
der of a derivation π in

Plurimetric Fuzz is defined, then it is a valid derivation in Fuzz.

Finally, we obtain the following property relating the two translations:

▶ Theorem 7.7. For all parameters p, we have F p
der ◦ P p

der = IdDer(Fuzz). In other words, the
following diagram commutes:

Der(Fuzz) Der(PFuzz)Id

P p
der

F p
der
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8 Conclusion and Future Work

We have shown that Plurimetric Fuzz extends the Fuzz language by handling Lp distance,
using the types of Bunched Fuzz but with classical typing judgements. This system can be
seen as a subsystem of Bunched Fuzz which satisfies type safety. Among its other benefits
are the facts that it includes subtyping which relates distances Lp and Lq, and it supports
recursive types. We have also investigated translations between Plurimetric Fuzz and Fuzz.

Type checking and type inference for systems based on linear logic have been the object of
several works, e.g., [4, 1, 13]. While type checking for Fuzz is straightforward (for DFuzz [16],
which is a variant of Fuzz that incorporates dependent types, see [2]), we anticipate that type
checking for Plurimetric Fuzz will be significant more challenging to the non-linear nature
of the sensitivity constraints. If solved, it would allow us to replace Fuzz by Plurimetric
Fuzz in [26], and obtain a type system for adaptive differential privacy with respect to vector
metrics.

In addition, one may work on improving the sensitivity obtained by typing in Plurimetric
Fuzz. One the one hand, we do not know whether a generalisation of the monad elimination
rule to any parameter p, which would be finer than the one presented in this paper, is sound.

Finally, the question of whether one can combine recursive types and functions with
probability distributions is still open, both in the case of Fuzz and of its extensions like
Plurimetric Fuzz.
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Appendix

A Semantics

A.1 Proof of the Soundness of the Typing Rules
▶ Lemma A.1. For all metric spaces X1, X2, Y1, and Y2, and parameters p, if f : X1 → Y1
and g : X2 → Y2 are non-expansive maps, then so is f × g : X1 ⊗p X2 → Y1 ⊗p Y2.

Proof. Let (x1, x2) and (x′
1, x′

2) be two elements of X1 ⊗p X2.

dY1⊗pY2

(
(f × g)(x1, x2), (f × g)(x′

1, x′
2)
)

= dY1⊗pY2

(
(f(x1), g(x2)), (f(x′

1), g(x′
2))
)

= p

√
dY1

(
f(x1), f(x′

1)
)p + dY2

(
g(x2), g(x′

2)
)p

≤ p

√
dX1(x1, x′

1)p + dX2(x2, x′
2)p

= dX1⊗pX2

(
(x1, x2), (x′

1, x′
2)
)

◀

Let us show that bind is non-expansive. We first need the following lemmata.

▶ Lemma A.2. For all finite sequences of positive reals (xi)1≤i≤n and (yi)1≤i≤n, we have∑n
i=1 xi∑n
i=1 yi

≤ max
1≤i≤n

xi

yi
and therefore

∣∣∣∣∣ln
∑n

i=1 xi∑n
i=1 yi

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
Proof. Let us show the first inequality by induction on n.

If n = 1, then the inequality becomes x1/y1 ≤ max{x1/y1} which is true.
If n = 2, then we have∑n

i=1 xi∑n
i=1 yi

= x1

y1 + y2
+ x2

y1 + y2

= 1
1 + y2

y1

· x1

y1
+ 1

1 + y1
y2

· x2

y2
=

1
y1

1
y1

+ 1
y2

· x1

y1
+

1
y2

1
y1

+ 1
y2

· x2

y2
.

Let u =
1

y1
1

y1
+ 1

y2
and v =

1
y2

1
y1

+ 1
y2

. We have∑n
i=1 xi∑n
i=1 yi

≤ u · max
{

x1

y1
,

x2

y2

}
+ v · max

{
x1

y1
,

x2

y2

}
= (u + v) · max

{
x1

y1
,

x2

y2

}
which is the desired inequality since u + v = 1.
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If n ≥ 3 and if the result has been proved up to n − 1, then we write∑n
i=1 xi∑n
i=1 yi

=
x1 +

∑n
i=2 xi

y1 +
∑n

i=2 yi
≤ max

{
x1

y1
,

∑n
i=2 xi∑n
i=2 yi

}

≤ max
{

x1

y1
, max

2≤i≤n

xi

yi

}
= max

1≤i≤n

xi

yi
.

Now, let us show the second inequality. Let X = ln(
∑n

i=1 xi) and Y = ln(
∑n

i=1 yi) so
that we have X − Y = ln

(∑n
i=1 xi

)
− ln

(∑n
i=1 yi

)
= ln

(∑n
i=1 xi/

∑n
i=1 yi

)
.

If X ≥ Y , then |X − Y | = X − Y . Moreover, by the first inequality, we have

X − Y = ln
∑n

i=1 xi∑n
i=1 yi

≤ ln
(

max
1≤i≤n

xi

yi

)
= max

1≤i≤n

(
ln xi

yi

)
≤ max

1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
If X ≤ Y , then |X − Y | = Y − X, and we have

Y − X = ln
∑n

i=1 yi∑n
i=1 xi

≤ max
1≤i≤n

∣∣∣∣ln yi

xi

∣∣∣∣ = max
1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
In both cases, we get |X − Y | ≤ max1≤i≤n | ln(xi/yi)| as desired. ◀

▶ Lemma A.3. The following map is non-expansive:

bind : Dist Y ⊗1 (Y →1 Dist X) −→ Dist X

(µ, f) 7−→ t 7→
∑

s∈Y f(s)(t) µ(t) .

We present an elementary proof of this result (which also follows from the work of Barthe
and Olmedo [8]).

Proof. Let µ and µ′ be two distributions over Y and let f and f ′ be two maps from Y

to Dist X.
For all t ∈ X, we have∣∣∣∣∣ln

∑
s∈Y f(s)(t)µ(s)∑

s∈Y f ′(s)(t)µ′(s)

∣∣∣∣∣ ≤ max
s∈Y

∣∣∣∣ln f(s)(t)µ(s)
f ′(s)(t)µ′(s)

∣∣∣∣
≤ max

s∈Y

(∣∣∣∣ln µ(s)
µ′(s)

∣∣∣∣+
∣∣∣∣ln f(s)(t)

f ′(s)(t)

∣∣∣∣
)

.

Therefore, we have

max
t∈X

∣∣∣∣∣ln
∑

s∈Y f(s)(t)µ(s)∑
s∈Y f ′(s)(t)µ′(s)

∣∣∣∣∣ ≤ max
s∈Y

∣∣∣∣ln µ(s)
µ′(s)

∣∣∣∣+ max
s∈Y

max
t∈X

∣∣∣∣ln f(s)(t)
f ′(s)(t)

∣∣∣∣
which is equivalent to the desired inequality:

dDist X

(
f†(µ), f ′†(µ′)

)
≤ dDist Y (µ, µ′) + max

s∈Y
dDist X(f(s), f ′(s))

= dDist Y (µ, µ′) + dY →1Dist X(f, f ′)
= dDist Y ⊗1(Y →1Dist X)

(
(µ, f), (µ′, f ′)

)
. ◀
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A.2 Proof of the Soundness of the Rules for Primitive Operations
▶ Lemma A.4. The following rules are sound with respect to the denotational semantics:

(p) Γ ⊢ x : A
Set

(p) ∞ · Γ ⊢ {x} : Set(A)
(p) Γ ⊢ n : Nat

SetNat
(p) 2Γ ⊢ {n} : Set(Nat)

Proof. For all set X, the sensitivity of the map x 7→ {x} is bounded by ∞. Therefore, on
can soundy introduce the following rule:

⊢ λx. {x} : !∞A ⊸1 Set(A)

which is equiderivable with the (Set) rule.
If X = N, then the map n 7→ {n} is 2-sensitive. Indeed for n and n′ in N,
if n = n′, then {n} = {n′} and therefore dSet(N)({n}, {n′}) = 0;
otherwise, we have dSet(N)({n}, {n′}) = 2, and dN(n, n′) ≥ 1.

In both cases, we get the inequality dSet(N)({n}, {n′}) ≤ 2 ·dN(n, n′), and for all parameters p,
we can soundly introduce the following rule:

⊢ λn. {n} : !2Nat ⊸p Set(Nat)

which is equiderivable with the (SetNat) rule. ◀

▶ Remark. Given a metric space X containing at least one limit point (such as R with the
usual distance), the map x 7→ {x} is ∞-sensitive, and the factor ∞ above is optimal.

B Translation mappings

Below are the typing rules for the & connective that we use in the translation of Fuzz to
Plurimetric Fuzz.

(p) Γ ⊢ a : A (p) Γ ⊢ b : B
&I

(p) Γ ⊢ (a, b) : A & B

(p) Γ ⊢ c : A & B
&E◁

(p) Γ ⊢ π1(c) : A

(p) Γ ⊢ c : A & B
&E▷

(p) Γ ⊢ π2(c) : B

▶ Lemma B.1. For all precontexts Γ, sensitivities s and parameters p, we have:
s1/p · P p

ctx(∆) = P p
ctx(s∆);

sp · F p
ctx(∆) = F p

ctx(s∆).

Proof. By induction on the structure of ∆. ◀

▶ Lemma B.2. For all precontexts Γ and ∆, for all sensitivities s and parameters p, we
have the following equality: Cp

(
P p

ctx(Γ); s1/p · P p
ctx(∆)

)
= P p

ctx(Γ + s∆).

Proof. Let us prove this equality by induction on the structure of Γ.
If Γ = ∅, then the equality becomes s1/p · P p

ctx(∆) = P p
ctx(s∆).

If Γ = Γ0, [x : A]r, then we write ∆ = ∆0, [x : A]t (with t being possibly zero) and we have

Cp
(

P p
ctx(Γ); s1/p · P p

ctx(∆)
)

= Cp
(

P p
ctx(Γ0, [x : A]r); s1/p · P p

ctx(∆0, [x : A]t)
)

= Cp
(
P p

ctx(Γ0, [x : A]r); P p
ctx(s∆0, [x : A]st)

)
= Cp

(
P p

ctx(Γ0), [x : P p
type(A)]r1/p ; P p

ctx(s∆0), [x : P p
type(A)](st)1/p

)
= Cp

(
P p

ctx(Γ0); s1/p · P p
ctx(∆0)

)
, [x : P p

type(A)] p√r+st

= P p
ctx(Γ0 + s∆0), [x : P p

type(A)] p√r+st

= P p
ctx(Γ0 + s∆0, [x : A]r+st)

= P p
ctx(Γ + s∆)

as desired. ◀
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▶ Lemma B.3. For all precontexts Γ and ∆, for all sensitivities s, for all parameters p and q

such that p ≥ q, we have the following inequality: spF p
ctx(Γ) + F p

ctx(∆) ≤ F p
ctx
(
Cq (Γ; s∆)

)
.

Proof. Let us prove this inequality by induction on the structure of Γ.
If Γ = ∅, then the inequality becomes spF p

ctx(∆) ≤ F p
ctx(s∆).

If Γ = Γ0, [x : A]r, then we write ∆ = ∆0, [x : A]t (with t being possibly zero) and we have

spF p
ctx(Γ) + F p

ctx(∆) = spF p
ctx(Γ0, [x : A]r) + F p

ctx(∆0, [x : A]t)
= sp

(
F p

ctx(Γ0), [x : F p
type(A)]rp

)
+ F p

ctx(∆0), [x : F p
type(A)]tp

= spF p
ctx(Γ0) + F p

ctx(∆0), [x : F p
type(A)](rs)p+tp

≤ F p
ctx
(
Cq (Γ0; s∆0)

)
, [x : F p

type(A)](rs)p+tp

≤ F p
ctx
(
Cq (Γ0; s∆0)

)
, [x : F p

type(A)](
(rs)q+tq

)p/q

≤ F p
ctx

(
Cq (Γ0; s∆0) , [x : F p

type(A)](
(rs)q+tq

)1/q

)
≤ F p

ctx
(
Cq (Γ; s∆)

)
as desired. ◀
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