
Adjoint Natural Deduction
Junyoung Jang #

McGill University, Montreal, Canada

Sophia Roshal #

Carnegie Mellon University, Pittsburgh, USA

Frank Pfenning #

Carnegie Mellon University, Pittsburgh, USA

Brigitte Pientka #

McGill University, Montreal, Canada

Abstract
Adjoint logic is a general approach to combining multiple logics with different structural properties,
including linear, affine, strict, and (ordinary) intuitionistic logics, where each proposition has an
intrinsic mode of truth. It has been defined in the form of a sequent calculus because the central
concept of independence is most clearly understood in this form, and because it permits a proof of
cut elimination following standard techniques.

In this paper we present a natural deduction formulation of adjoint logic and show how it is
related to the sequent calculus. As a consequence, every provable proposition has a verification
(sometimes called a long normal form). We also give a computational interpretation of adjoint logic
in the form of a functional language and prove properties of computations that derive from the
structure of modes, including freedom from garbage (for modes without weakening and contraction),
strictness (for modes disallowing weakening), and erasure (based on a preorder between modes).
Finally, we present a surprisingly subtle algorithm for type checking.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Linear logic

Keywords and phrases Substructural Logic, Type Systems, Functional Programming

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.15

Related Version Full Version: https://arxiv.org/abs/2402.01428

Funding Junyoung Jang: Fonds de recherche du Québec – Nature et Technologies (FRQNT)
Brigitte Pientka: Natural Sciences and Engineering Research Council of Canada (NSERC) and
Fonds de recherche du Québec – Nature et Technologies (FRQNT)

1 Introduction

A substructural logic provides fine control over the use of assumptions during reasoning. It
usually does so by denying the general sequent calculus rules of contraction (which permits
an antecedent to be used more than once) and weakening (which permits an antecedent not
to be used). Instead, these rules become available only for antecedents of the form !A. Ever
since the inception of linear logic [23], researchers have found applications in programming
languages, for example, to avoid garbage collection [24], soundness of imperative update [53],
the chemical abstract machine [2], and session-typed communication [12, 54], to name just a
few.

Besides linear logic, there are other substructural logics and type systems of interest. For
example, affine logic denies general contraction but allows weakening and is the basis for
the type system of Alms [51] (an affine functional language) and Rust [50] (an imperative
language aimed at systems programming).

© Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:junyoung.jang@mail.mcgill.ca
https://orcid.org/0000-0001-6338-2155
mailto:sophiaroshal@cmu.edu
https://orcid.org/0009-0001-8574-3705
mailto:fp@cs.cmu.edu
https://orcid.org/0000-0002-8279-5817
mailto:bpientka@cs.mcgill.ca
https://orcid.org/0000-0002-2549-4276
https://doi.org/10.4230/LIPIcs.FSCD.2024.15
https://arxiv.org/abs/2402.01428
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Adjoint Natural Deduction

If we deny weakening but accept contraction we obtain strict logic (a variant of relevance
logic) where every assumption must be used at least once. On the programming language side,
this corresponds to strictness, which allows optimizations in otherwise nonstrict functional
languages such as Haskell [39]. Interestingly, Church’s original λI calculus [18] was also strict
in this sense.

The question arises how we can combine such features, both in logics and in type systems.
Recently, this question has been tackled through graded or quantitative type systems (see
for example, [37, 5, 38, 17, 55, 1]). The essential idea is to track and reason explicitly about
the usage of a given assumption through grades. This provides very fine-grained control and
allows us to, for example, model linear, strict, and unrestricted usage of assumptions through
graded modalities. In this paper, we pursue an alternative, taking a proof-theoretic view
with the goal of building a computational interpretation. There are three possible options
that emerge from existing proof-theoretic explorations that could serve as a foundation of
such a computational interpretation. The first one is by embedding. For example, we can
embed (structural) intuitionistic logic in linear logic writing !A ⊸ B for A → B. Similarly,
we can embed affine logic in linear logic by mapping hypotheses A to A N 1 so they do not
need to be used. The difficulties with such embeddings is that, often, they neither respect
proof search properties such as focusing [4] nor do they achieve a desired computational
interpretation.

A second approach is taken by subexponential linear logic [20, 41, 30] that defines multiple
subexponential modalities !mA, where each mode m has a specific set of structural properties.
As in linear logic, all inferences are carried out on linear formulas, so while it resolves some
of the issues with embeddings, it still requires frequent movement into the linear layer using
explicit subexponentials.

We pursue a third approach, pioneered by Benton [7] who symmetrically combined
(structural) intuitionistic logic with (purely) linear intuitionistic logic. He employs two
adjoint modalities that switch between the two layers and works out the proof theoretic
and categorical semantics. This approach has the advantage that one can natively reason
and compute within the individual logics, so we preserve not only provability but the fine
structure of proofs and proof reduction from each component. This has been generalized
in prior work [49, 46] by incorporating from subexponential linear logic the idea to have
a preorder between modes m ≥ k that must be compatible with the structural properties
of m and k (explained in more detail in Section 2). This means we can now also model
intuitionistic S4 [42] and lax logic [9], representing comonadic and monadic programming,
respectively. We hence arrive at a unifying calculus firmly rooted in proof theory that is
more general than previous graded modal type systems in that we can construct monads
as well as comonads. We will briefly address dependently typed variations of the adjoint
approach in Section 7.

Most substructural logics and many substructural type systems are most clearly formulated
as sequent calculi. However, natural deduction has not only an important foundational role
[22, 44, 21], it also has provided a simple and elegant notation for functional programs through
the Curry-Howard correspondence [27]. We therefore develop a system of natural deduction
for adjoint logic that, in a strong sense, corresponds to the original sequent formulation. It
turns out to be surprisingly subtle because we have to manage not only the substructural
properties that may be permitted or not, but also respect the preorder between modes. We
show that our calculus satisfies some expected properties like substitution and has a natural
notion of verification that corresponds to proofs in long normal form, satisfying a subformula
property.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:3

In order to illustrate computational properties, we give an abstract machine and show
the consequences of the mode structure: freedom from garbage for linear modes (that is,
modes admitting neither weakening nor contraction), strictness for modes that do not admit
weakening, and erasure for modes that a final value may not depend on, based on the
preorder of modes. We close with an algorithmic type checker for our language which, again,
is surprisingly subtle.

2 Adjoint Sequent Calculus

We briefly review the adjoint sequent calculus from [46]. We start with a standard set of
possibly substructural propositions, indexing each with a mode of truth, denoted by m, k, n, r.
Propositions are perhaps best understood by using their linear meaning as a guide, so we
uniformly use the notation of linear logic. Also, for programming convenience, we generalize
the usual binary and nullary disjunction (A ⊕ B and 0) and conjunction (A N B and ⊤)
by using labeled disjunction ⊕{ℓ : Aℓ

m}ℓ∈L and conjunction N{ℓ : Aℓ
m}ℓ∈L. From the linear

logical perspective, these are internal and external choice, respectively; from the programming
perspective they are sums and products. We write Pm for atomic propositions of mode m.

Propositions Am, Bm ::= Pm | Am ⊸ Bm | N{ℓ : Aℓ
m}ℓ∈L | ↑m

k Ak (negative)
| Am ⊗ Bm | 1m | ⊕{ℓ : Aℓ

m}ℓ∈L | ↓n
mAn (positive)

Contexts Γ ::= · | Γ, x : Am (unordered)

Each mode m comes with a set σ(m) ⊆ {W, C} of structural properties, where W stands for
weakening and C stands for contraction. We further have a preorder m ≥ r that specifies
that a proof of the succedent Cr may depend on an antecedent Am. This is enforced
using the presupposition that in a sequent Γ ⊢ Cr, every antecedent Am in Γ must satisfy
m ≥ r, written as Γ ≥ r. We have the additional stipulation of monotonicity, namely that
m ≥ k implies σ(m) ⊇ σ(k). This is required for cut elimination to hold. Furthermore, we
presuppose that in ↑m

k Ak we have m ≥ k and for ↓n
mAn we have n ≥ m. Also, contexts may

not have any repeated variables and we will implicitly apply variable renaming to maintain
this presupposition. Finally, we abbreviate ·, x : A as just x : A.

In preparation for natural deduction, instead of explicit rules of weakening and contraction
(see [46] for such a system) we have a context merge operation Γ1 ; Γ2. Since, as usual in the
sequent calculus, we read the rules bottom-up, it actually describes a nondeterministic split
of the context that is pervasive in the presentations of linear logic [4].

(Γ1, x : Am) ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am provided C ∈ σ(m)
(Γ1, x : Am) ; Γ2 = (Γ1 ; Γ2), x : Am provided x ̸∈ dom(Γ2)

Γ1 ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am provided x ̸∈ dom(Γ1)
(·) ; Γ2 = Γ2
Γ1 ; (·) = Γ1

Note that the context merge is a partial operation, which prevents, for example, the use of
an antecedent without contraction in both premises of the ⊗R rule.

The complete set of rules can be found in Figure 1. In the rules, we write ΓW for a
context in which weakening can be applied to every antecedent, that is, W ∈ σ(m) for every
antecedent x : Am. Also, as is often the case in presentations of the sequent calculus, we omit
explicit variable names that tag antecedents. We only discuss the rules for ↓n

mAn because
they illustrate the combined reasoning about structural properties and modes.

FSCD 2024

15:4 Adjoint Natural Deduction

ΓW ; Am ⊢ Am

id
Γ ≥ m ≥ r Γ ⊢ Am Γ′, Am ⊢ Cr

Γ ; Γ′ ⊢ Cr

cut

Γ, Am ⊢ Bm

Γ ⊢ Am ⊸ Bm

⊸R
Γ ≥ m Γ ⊢ Am Γ′, Bm ⊢ Cr

Γ ; Γ′ ; Am ⊸ Bm ⊢ Cr

⊸L

Γ ⊢ Aℓ
m (∀ℓ ∈ L)

Γ ⊢ N{ℓ : Aℓ
m}ℓ∈L

NR
Γ, Aℓ

m ⊢ Cr (ℓ ∈ L)

Γ ; N{ℓ : Aℓ
m}ℓ∈L ⊢ Cr

NL

Γ ⊢ Ak

Γ ⊢ ↑m
k Ak

↑R
k ≥ r Γ, Ak ⊢ Cr

Γ ; ↑m
k Ak ⊢ Cr

↑L

Γ ⊢ Am Γ′ ⊢ Bm

Γ ; Γ′ ⊢ Am ⊗ Bm

⊗R
Γ, Am, Bm ⊢ Cr

Γ ; Am ⊗ Bm ⊢ Cr

⊗L

ΓW ⊢ 1m

1R
Γ ⊢ Cr

Γ ; 1m ⊢ Cr

1L

Γ ⊢ Aℓ
m (ℓ ∈ L)

Γ ⊢ ⊕{ℓ : Aℓ
m}ℓ∈L

⊕R
Γ, Aℓ

m ⊢ Cr (∀ℓ ∈ L)

Γ ; ⊕{ℓ : Aℓ
m}ℓ∈L ⊢ Cr

⊕L

Γ′ ≥ n Γ′ ⊢ An

ΓW ; Γ′ ⊢ ↓n
mAn

↓R
Γ, An ⊢ Cr

Γ ; ↓n
mAn ⊢ Cr

↓L

Figure 1 Implicit Adjoint Sequent Calculus.

First, the ↓R rule.

Γ′ ≥ n Γ′ ⊢ An

ΓW ; Γ′ ⊢ ↓n
mAn

↓R

Because we presuppose the conclusion is well-formed, we know ΓW ; Γ′ ≥ m since ↓n
mAn

has mode m. Again, by presupposition n ≥ m and we have to explicitly check that Γ′ ≥ n

because it doesn’t follow from knowing that ΓW ; Γ′ ≥ m. There may be some antecedents
Ak in the conclusion such that k ̸≥ n. If the mode k admits weakening, we can sort them
into ΓW. If it does not, then the rule is simply not applicable.

On to the ↓L rule:
Γ, An ⊢ Cr

Γ ; ↓n
mAn ⊢ Cr

↓L

By presupposition on the conclusion, we know Γ ; ↓n
mAn ≥ r which means that Γ ≥ r and

m ≥ r. Since n ≥ m we have n ≥ r by transitivity, so Γ, An ≥ r and we do not need any
explicit check. The formulation of the antecedents in the conclusion Γ ; ↓n

mAn means that if
mode m admits contraction, then the antecedent ↓n

mAn may also occur in Γ, that is, it may
be preserved by the rule. If m does not admit contraction, this occurrence of ↓n

mAn is not
carried over to the premise.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:5

This implicit sequent calculus satisfies the expected theorems, due to [49, 46] and, most
closely reflecting the precise form of our formulation, [45]. They follow standard patterns,
modulated by the substructural properties and the preorder on modes.

▶ Theorem 1 (Admissibility of Weakening and Contraction). The following are admissible:

ΓW ≥ m Γ ⊢ Am

ΓW ; Γ ⊢ Am

weaken
C ∈ σ(m) Γ, Am, Am ⊢ Cr

Γ, Am ⊢ Cr

contract

▶ Theorem 2 (Admissibility of Cut and Identity).
(i) In the system without cut, cut is admissible.
(ii) In the system with identity restricted to atoms Pm, the general identity is admissible.

We call a proof cut-free if it does not contain cut and long if the identity is restricted to
atomic propositions P . It is an immediate consequence of Theorem 2 that every derivable
sequent has a long cut-free proof. The subformula property of cut-free proofs directly implies
that a cut-free proof of a sequent Γm ⊢ Am where all subformulas are of mode m is directly a
proof in the logic captured by the mode m. Moreover, an arbitrary proof can be transformed
into one of this form by cut elimination. These strong conservative extension properties are
a hallmark of adjoint logic.

Since our main interest lies in natural deduction, we consider only three examples.

▶ Example 3 (G3). We obtain the standard sequent calculus G3 [31] for intutionistic logic
with a single mode U. All side conditions are automatically satisfied since U ≥ U.

▶ Example 4 (LNL and DILL). By specializing the rules to two modes, U and L with the order
U > L, we obtain a minor variant of Linear/Non Linear Logic (LNL) in its parsimonious
presentation [8]. Our notation is FX = ↓U

L X and GA = ↑U
L A. Significant here is that we do

not just model provability, but the exact structure of proofs except that our structural rules
remain implicit.

We obtain the sequent calculus formulation of dual intuitionistic linear logic (DILL)
[6, 15] by restricting the formulas of mode U so that they only contain ↑U

L AL. In this version
we have !A = ↓U

L ↑U
L A. Again, the rules of dual intuitionistic linear logic are modeled precisely.

▶ Example 5 (Intuitionistic Subexponential Linear Logic). Subexponential linear logic [40, 41]
also uses a preorder of modes, each of which permits specific structural rules. We obtain a
formulation of intuitionistic subexponential linear logic by adding a new distinguished mode
L with m ≥ L for all given subexponential modes m, retaining all the other relations. We
further restrict all modes m except for L to contain only ↑m

L AL, forcing all logical inferences
to take place at mode L.

Compared to [16] our system does not contain ?A and is not focused; compared to [29],
our base logic is linear rather than ordered. Also, all of our structural rules are implicit.

3 Adjoint Natural Deduction

Substructural sequent calculi have recently found interesting computational interpretations
[12, 54, 13, 43, 48], including adjoint logic [47]. In this paper, we look instead at functional
interpretations, which are most closely related to natural deduction. Some guide is provided
by natural deduction systems for linear logic (see, for example, [2, 10, 52]), but already they
are not entirely straightforward. For example, some of these calculi do not satisfy subject
reduction. The interplay between modes and substructural properties creates some further

FSCD 2024

15:6 Adjoint Natural Deduction

complications. The closest blueprint to follow is probably Benton’s [8], but his system does
not exhibit the full generality of adjoint logic and is also not quite “parsimonious” in the
sense of the LNL sequent calculus.

In the interest of economy, we present the calculus with proof terms and two bidirectional
typing judgments, ∆ ⊢ e ⇐= Am (expression e checks against Am) and ∆ ⊢ s =⇒ Am

(expression s synthesizes Am). The syntax for expressions is summarized in Figure 2. The
bidirectional nature will allow us to establish a precise relationship to the sequent calculus
(Section 4), but it does not immediately yield a type checking algorithm since the context
merge operation is highly nondeterministic when used to split contexts. An algorithmic
system can be found in Section 6.

We obtain the vanilla typing judgment by replacing both checking and synthesis judgments
with ∆ ⊢ e : A, dropping the rules ⇒/⇐ and ⇐/⇒, and removing the syntactic form (e : Am).
We further obtain a pure natural deduction system by removing the proof terms, although
uses of the hypothesis rule then need to be annotated with variables in order to avoid any
ambiguities.

Checkable Exps.
e ::= λx. e (⊸)

| {ℓ ⇒ eℓ}ℓ∈L (N)
| susp e (↑)

| (e1, e2) (⊗)
| () (1)
| ℓ(e) (⊕)
| down e (↓)

| match s M

| s

Synthesizable Exps.
s ::= x

| s e (⊸)
| s.ℓ (N)
| force s (↑)
| (e : Am)

Matches
M ::= (x1, x2) ⇒ e′ (⊗)

| () ⇒ e′ (1)
| (ℓ(x) ⇒ eℓ)ℓ∈L (⊕)
| down x ⇒ e′ (↓)

Figure 2 Expressions for Bidirectional Natural Deduction.

The rules maintain a few important invariants, particularly independence:
(i) ∆ ⊢ e ⇐= Am presupposes ∆ ≥ m (ii) ∆ ⊢ s =⇒ Am presupposes ∆ ≥ m

This is somewhat surprising because we think of the synthesis judgment s =⇒ Am as
proceeding top-down rather than bottom-up. Indeed, there are other choices with dependence
and structural properties being checked in different places. We picked this particular form
because we want general typing e : Am to arise from collapsing the checking/synthesis
distinction. This means that the two rules ⇒/⇐ and ⇐/⇒ should have no conditions
because those would disappear. The algorithmic system in Section 6 checks the conditions in
different places.

As an example of interesting rules we revisit ↓n
mAn (where n ≥ m is presupposed). The

introduction rule of natural deduction mirrors the right rule of the sequent calculus, which is
the case throughout.

Γ′ ≥ n Γ′ ⊢ An

ΓW ; Γ′ ⊢ ↓n
mAn

↓R
∆′ ≥ n ∆′ ⊢ e ⇐= An

∆W ; ∆′ ⊢ down e ⇐= ↓n
mAn

↓I

As is typical for these translations, the elimination rules turns the left rule “upside down”
because (like all rules in natural deduction) the principal formula is on the right-hand side of
judgment, not the left as in the sequent calculus. This means we now have some conditions
to check.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:7

∆ ⊢ s =⇒ Am

∆ ⊢ s ⇐= Am

⇒/⇐
∆ ⊢ e ⇐= Am

∆ ⊢ (e : Am) =⇒ Am

⇐/⇒
∆W ; x : Am ⊢ x =⇒ Am

hyp

∆, x : Am ⊢ e ⇐= Bm

∆ ⊢ λx. e ⇐= Am ⊸ Bm

⊸I
∆ ⊢ s =⇒ Am ⊸ Bm ∆′ ⊢ e ⇐= Am

∆ ; ∆′ ⊢ s e =⇒ Bm

⊸E

∆ ⊢ eℓ ⇐= Aℓ
m (∀ℓ ∈ L)

∆ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ
m}ℓ∈L

NI
∆ ⊢ s =⇒ N{ℓ : Aℓ

m}ℓ∈L (ℓ ∈ L)

∆ ⊢ s.ℓ =⇒ Aℓ
m

NE

∆ ⊢ e ⇐= Ak

∆ ⊢ susp e ⇐= ↑m
k Ak

↑I
∆′ ≥ m ∆′ ⊢ s =⇒ ↑m

k Ak

∆W ; ∆′ ⊢ force s =⇒ Ak

↑E

∆ ⊢ e1 ⇐= Am ∆′ ⊢ e2 ⇐= Bm

∆ ; ∆′ ⊢ (e1, e2) ⇐= Am ⊗ Bm

⊗I

∆ ⊢ s =⇒ Am ⊗ Bm ∆ ≥ m ≥ r ∆′, x1 : Am, x2 : Bm ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s ((x1, x2) ⇒ e′) ⇐= Cr

⊗E

∆W ⊢ () ⇐= 1m

1I
∆ ⊢ s =⇒ 1m ∆ ≥ m ≥ r ∆′ ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s (() ⇒ e′) ⇐= Cr

1E

∆ ⊢ e ⇐= Aℓ
m

∆ ⊢ ℓ(e) ⇐= ⊕{ℓ : Aℓ
m}ℓ∈L

⊕I

∆ ⊢ s =⇒ ⊕{ℓ : Aℓ
m}ℓ∈L ∆ ≥ m ≥ r ∆′, x : Aℓ

m ⊢ eℓ ⇐= Cr (∀ℓ ∈ L)

∆ ; ∆′ ⊢ match s (ℓ(x) ⇒ eℓ)ℓ∈L ⇐= Cr

⊕E

∆′ ≥ n ∆′ ⊢ e ⇐= An

∆W ; ∆′ ⊢ down e ⇐= ↓n
mAn

↓I
∆ ⊢ s =⇒ ↓n

mAn ∆ ≥ m ≥ r ∆′, x : An ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s (down x ⇒ e′) ⇐= Cr

↓E

Figure 3 Implicit Bidirectional Natural Deduction.

Γ, An ⊢ Cr

Γ ; ↓n
mAn ⊢ Cr

↓L
∆ ⊢ s =⇒ ↓n

mAn ∆ ≥ m ≥ r ∆′, x : An ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s (down x ⇒ e′) ⇐= Cr

↓E

∆ ≥ m is needed to enforce independence on the first premise. m ≥ r together with
n ≥ m enforces independence on the second premise. Similar restrictions appear in the other
elimination rules for the positive connectives (⊗, 1, ⊕).

We often say a natural deduction is normal, which means that it cannot be reduced, but
under which collection of reductions? The difficulty here is that rewrite rules that reduce
an introduction of a connective immediately followed by its elimination are not sufficient to
achieve deductions that are analytic in the sense that they satisfy the subformula property.
To obtain analytic deductions, we have to add permuting conversions.

FSCD 2024

15:8 Adjoint Natural Deduction

We follow a different approach by directly characterizing verifications [21, 36], which
are proofs that can be seen as constructed by applying introduction rules bottom-up and
elimination rules top-down. By definition, verifications satisfy the subformula property and
are therefore analytic and a suitable “normal form” even without defining a set of reductions.

How does this play out here? It turns out that if ∆ ⊢ e ⇐= Am then the corresponding
proof of Am (obtained by erasure of expressions) is a verification if the ⇐/⇒ rule is disallowed
and the ⇒/⇐ rule is restricted to atomic propositions P . As we will see in Section 4, this
corresponds precisely to a cut-free sequent calculus derivation where the identity is restricted
to atomic propositions. Proof-theoretically, the meaning of a proposition is determined by its
verifications, which, by definition, only decompose the given proposition into its components.
Compare this with general proofs that do not obey such a restriction.

In the next section we will prove that every proposition that has a natural deduction also
has a verification by relating the sequent calculus and natural deduction.

▶ Example 6 (Church’s λI calculus). Church [18] introduced the λI calculus in which each
bound variable requires at least one occurrence. We obtain the simply-typed λI calculus
with one mode S with σ(S) = {C} and using AS ⊸ BS as the only type constructor.

Similarly, we obtain the simply-typed λ-calculus with a single mode U with σ(U) = {W, C}
and the simply-typed linear λ-calculus with a single mode L with σ(L) = { }, using AL ⊸ BL

as the only type constructor.

▶ Example 7 (Intuitionistic Natural Deduction). We obtain (structural) intutionistic natural
deduction with a single mode U with σ(U) = {W, C}, where we can define A ∨ B = ⊕{inl :
A, inr : B} and ⊥ = ⊕{ }, A ∧ B = N{π1 : A, π2 : B} and ⊤ = N{ } and A → B = A ⊸ B.

▶ Example 8 (Intuitionistic S4). We obtain the fragment of intuitionistic S4 in its dual
formulation [42] without possibility (♢A) with two modes V and U with V > U and σ(V) =
σ(U) = {W, C}. As in the DILL example of the adjoint sequent calculus, the mode V is
inhabited only by types ↑V

UAU and we define □AU = ↓V
U↑V

UAU, which is a comonad. The
judgment ∆ ; Γ ⊢ C true with valid hypotheses ∆ and true hypothesis Γ is modeled by
∆V, ΓU ⊢ CU.

The structure of verifications is modeled almost exactly with one small exception: we
allow the form ∆V ⊢ CV. Because any proposition BV = ↑V

UAU, there is only one applicable
rule to construct a verification of this judgment: ↑I (which, not coincidentally, is invertible).

▶ Example 9 (Lax Logic). We obtain natural deduction for lax logic [9, 42] with two modes,
U and X, with U > X and σ(U) = σ(X) = {W, C}. The mode X is inhabited only by ↓U

XAU.
We define ⃝AU = ↑U

X↓U
XAU, which is a strong monad [9].

We model the rules of Pfenning and Davies [42] exactly, except that we allow hypotheses
BX, which must have the form ↓U

XAU. We can eagerly apply ↓E to obtain AU, which again
does not lose completeness by the invertibility of ↓L in the sequent calculus. We can also
obtain linear versions of these relationships following [11], although the term calculi do not
match up exactly.

4 Relating Sequent Calculus and Natural Deduction

Rather than trying to find a complete set of proof reductions for natural deduction, we
translate a proof to the sequent calculus, apply cut and identity elimination, and then translate
the resulting proof back to natural deduction. This is not essential, but it simultaneously
proves the soundness and completeness of natural deduction for adjoint logic and the
completeness of verifications. This allows us to focus on the computational interpretation in
Section 5 that is a form of substructural functional programming.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:9

In general we see the following patterns in the correctness proofs:
The identity corresponds to ⇒/⇐
Cut corresponds to ⇐/⇒
Right rules correspond to introduction rules
Left rules correspond to upside-down elimination rules

For negative connectives (⊸, N, ↑) they are just reversed
For positive connectives (⊗, 1, ⊕, ↓) in addition a new hypothesis is introduced in a
second premise

The last point justifies reading a hypothesis x : Am as x =⇒ Am.
For completeness of natural deduction, one might expect to prove that Γ ⊢ C in the

sequent calculus implies Γ ⊢ e ⇐= C in natural deduction. While this holds, a direct proof
would not generate a verification from a cut-free proof. Intuitively, the way the proof proceeds
instead is to take a sequent x1 : A1, . . . , xn : An ⊢ C (ignoring modes for the moment) and
annotate each antecedent with a synthesizing term and the succedent with an expression
s1 =⇒ A1, . . . , sn =⇒ An ⊢ e ⇐= C. This means we have to account for the variables in si,
and we do this with a substitution θ assigning synthesizing terms to each antecedent in Γ.
We therefore define substitutions as mapping from variables to synthesizing terms.

Substitutions θ ::= · | θ, x 7→ s

We type substitutions with the judgment ∆ ⊢ θ =⇒ Γ, where ∆ contains the free variables in
θ. This judgment must respect independence and the structural properties of each antecedent
in Γ, as defined by the following rules:

· ⊢ (·) =⇒ (·)

∆ ⊢ θ =⇒ Γ ∆′ ≥ m ∆′ ⊢ s =⇒ Am

∆ ; ∆′ ⊢ (θ, x 7→ s) =⇒ (Γ, x : Am)

We will use silently that if ∆ ⊢ θ =⇒ Γ and Γ ≥ m then ∆ ≥ m.
We write e(x) and s′(x) for terms with (possibly multiple, possibly no) occurrences of x

and e(s) and s′(s) for the result of substituting s for x, respectively. Because variables x : A

synthesize their types x =⇒ A, the following admissible rules are straightforward assuming
the premises satisfy our presuppositions.

▶ Theorem 10 (Substitution Property). The following properties are admissible:
(i) If ∆ ⊢ s =⇒ Am and ∆′, x : Am ⊢ e(x) ⇐= Cr then ∆ ; ∆′ ⊢ e(s) ⇐= Cr

(ii) If ∆ ⊢ s =⇒ Am and ∆′, x : Am ⊢ s′(x) =⇒ Bk then ∆ ; ∆′ ⊢ s′(s) =⇒ Bk

Proof. By a straightforward simultaneous rule induction on the second given derivation. In
some cases we need to apply monotonicity. For example, if m admits contraction and ∆ ≥ m,
then each hypothesis in ∆ must also admit contraction. ◀

Now we have the pieces in place to prove the translation from the sequent calculus to natural
deduction.

▶ Lemma 11 (Context Split). If ∆ ⊢ θ =⇒ (Γ; Γ′) then there exists θ1 and θ2 and ∆1 and
∆2 such that ∆ = ∆1; ∆2 and ∆1 ⊢ θ1 =⇒ Γ and ∆2 ⊢ θ2 =⇒ Γ′.

Proof. By case analysis on the definition of context merge operation and induction on
∆ ⊢ θ =⇒ (Γ; Γ′). We rely on associativity and commutativity of context merge. We show
two cases.

FSCD 2024

15:10 Adjoint Natural Deduction

Case: (Γ1, x : Am) ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am and C ∈ σ(m)

∆ ⊢ θ12 =⇒ Γ1 ; Γ2 ∆′ ≥ k ∆′ ⊢ s =⇒ Am

∆ ; ∆′ ⊢ (θ12, x 7→ s) =⇒ (Γ1 ; Γ2), x : Am

∆1 ⊢ θ1 =⇒ Γ1 and
∆2 ⊢ θ2 =⇒ Γ2 and
∆ = ∆1 ; ∆2 by IH
∆1 ; ∆′ ⊢ θ1, x 7→ s =⇒ Γ1, x : Am by rule
∆2 ; ∆′ ⊢ θ2, x 7→ s =⇒ Γ2, x : Am by rule
since C ∈ σ(m) and ∆′ ≥ m, we have C ∈ σ(k) for any Bk ∈ ∆′ by monotonicity
(∆1 ; ∆′) ; (∆2 ; ∆′) = (∆1 ; ∆2) ; ∆′ = ∆ ; ∆′ by previous line

Case: Γ1 ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am and x ̸∈ dom(Γ1)

∆ ⊢ θ12 =⇒ Γ1 ; Γ2 ∆′ ≥ k ∆′ ⊢ s =⇒ Am

∆ ; ∆′ ⊢ (θ12, x 7→ s) =⇒ ((Γ1 ; Γ2), x 7→ Am)

∆1 ⊢ θ1 =⇒ Γ1 and
∆2 ⊢ θ2 =⇒ Γ2 and
∆ = ∆1 ; ∆2 by IH
∆2 ; ∆′ ⊢ θ2, x 7→ s =⇒ Γ2, x 7→ Am by rule
∆1 ; (∆2 ; ∆′) = (∆1 ; ∆2) ; ∆′ = ∆ ; ∆′ by associativity of context merge

◀

▶ Theorem 12 (From Sequent Calculus to Natural Deduction). theoremseqtond
If Γ ⊢ Ar and ∆ ⊢ θ =⇒ Γ then ∆ ⊢ e ⇐= Ar for some e.

Proof. By rule induction on the derivation D of Γ ⊢ Ar and applications of inversion on the
definition of substitution. We present several indicative cases. In this proof we write out the
variables labeling the antecedents in sequents to avoid ambiguities.

Case: D ends in the identity.

D = ΓW ; x : Am ⊢ Am

id

∆ ⊢ θ =⇒ (ΓW ; x : Am) Given
θ = (θW, x 7→ s) By inversion
∆ = (∆W ; ∆′) with ∆W ⊢ θW =⇒ ΓW and ∆′ ⊢ s =⇒ Am By context split
∆W satisfies weakening By monotonicity
∆′ ⊢ s ⇐= Am By rule ⇒/⇐
∆W ; ∆′ ⊢ s ⇐= Am By weakening
∆ ⊢ s ⇐= Am Since ∆ = (∆W ; ∆′)

Case: D ends in cut.

D =

Γ1 ≥ m ≥ r
D1

Γ1 ⊢ Am

D2
Γ2, x : Am ⊢ Cr

Γ1 ; Γ2 ⊢ Cr

cut

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:11

∆ ⊢ θ =⇒ (Γ1 ; Γ2) Given
∆ = (∆1 ; ∆2), θ = (θ1, θ2) with ∆1 ⊢ θ1 =⇒ Γ1 and ∆2 ⊢ θ2 =⇒ Γ2 By context split
∆1 ⊢ e1 ⇐= Am By IH on D1
∆1 ⊢ (e1 : Am) =⇒ Am by rule ⇐/⇒
∆2, x : Am ⊢ (θ2, x 7→ x) =⇒ (Γ2, x : Am) By subst. rule
∆2, x : Am ⊢ e2(x) ⇐= Cr By IH on D2
∆1 ; ∆2 ⊢ e2(e1 : Am) ⇐= Cr By substitution (Theorem 10)

◀

While there are no substitutions involved, the other direction has to take care to introduce
a cut only for uses of the ⇐/⇒ rule, and identity only for uses of the ⇒/⇐ rule. This
requires a generalization of the induction hypothesis so that the elimination rules can be
turned “upside down”.

▶ Theorem 13 (From Natural Deduction to Sequent Calculus). theoremndtoseq
(i) If ∆ ⊢ e ⇐= Cr then ∆ ⊢ Cr

(ii) If ∆ ⊢ s =⇒ Am and ∆′, x : Am ⊢ Cr then ∆ ; ∆′ ⊢ Cr

Proof. By simultaneous rule induction on ∆ ⊢ e ⇐= Cr and ∆ ⊢ s =⇒ Am. We provide
several sample cases.
Case: The derivation ends in ⇒/⇐.

D =

D′

∆ ⊢ s =⇒ Am

∆ ⊢ s ⇐= Am

⇒/⇐

x : Am ⊢ Am By identity rule
∆ ⊢ Am By IH(ii) with ∆′ = (·)

Case: The derivation ends in ⇐/⇒.

D =

D′

∆ ⊢ e ⇐= Am

∆ ⊢ (e : Am) =⇒ Am

⇐/⇒

∆′, x : Am ⊢ Cr and ∆ ≥ r Assumption
∆ ⊢ Am By IH(i) on D′

∆ ; ∆′ ⊢ Cm By rule of cut
◀

As mentioned above, verifications are the foundational equivalent of normal forms in
natural deduction. Using the two translations above we can show that every provable
proposition has a verification. While we have not written the translations out as functions,
they constitute the computational contents of our constructive proof of Theorem 12 and
Theorem 13.

▶ Theorem 14. If ∆ ⊢ e ⇐= Am then there exists a verification of ∆ ⊢ e ⇐= Am.

Proof. Given an arbitrary deduction of ∆ ⊢ e ⇐= Am, we can use Theorem 13 (i) to
translate it to a sequent derivation of ∆ ⊢ Am. By the admissibility of cut and identity
(Theorem 2), we can obtain a long cut-free proof of ∆ ⊢ Am. We observe that the translation
of Theorem 12 translates only cut to ⇐/⇒ and only identity to ⇒/⇐. Using the translation
back to natural deduction from a long cut-free proof therefore results in a verification. ◀

FSCD 2024

15:12 Adjoint Natural Deduction

5 Dynamics

As mentioned in Section 3, we obtain a simple typing judgment ∆ ⊢ e : A by collapsing the
distinction between e ⇐= A and s =⇒ A, using e as a universal notation for all expressions.
Furthermore, the annotation (e : Am) is removed and the rules ⇒/⇐ and ⇐/⇒ are also
removed. The resulting rules remain syntax-directed in the sense that for every form of
expression there is a unique typing rule.

We further annotate the mode-changing constructors with the mode of their subject,
which in each case is uniquely determined by the typing derivation. Some of these annotations
are necessary, because the computation rules depend on them; other information is redundant
but kept for clarity.

suspm
k e : ↑m

k Ak if e : Ak

downn
m e : ↓n

mAn if e : An

forcem
k e : Ak if e : ↑m

k Ak

matchm e Mr : Cr if e : Am

We give a sequential call-by-value semantics similar to the K machine (e.g., [26]), but
maintaining a global environment similar to the Milner Abstract Machine [3]. There are two
forms of state in the machine:

η ; K ▷m e (evaluate e of mode m under continuation stack K and environment η)
η ; K ◀m v (pass value v of mode m to continuation stack K in environment η)

In the first, e is an expression to be evaluated and K is a stack of continuations that the
value of e is passed to for further computation. The second then passes this value v to the
continuation stack.

The global environment η maps variables to values, but these values may again reference
other variables. In this way it is like Launchbury’s [32] heap. We can exploit this to model
the call-by-need evaluation strategy, which can be found in our extended version (link in
preamble). Because we maintain a global environment, we do not need to build closures, nor
do we need to substitute values for variables. Instead, we only (implicitly) rename variables
to make them globally unique. This form of specification allows us to isolate the dynamic use
of variables, which means we can observe the computational consequences of modes and their
substructural nature. We could also use the translation to the sequent calculus and then
observe the consequence with an explicit heap [48, 43], but in this paper we study natural
deduction and functional computation more directly.

The syntax for continuations, environments, values, and machine states is summarized in
Figure 4. Although not explicitly polarized (as in [33]), values of negative type (⊸, N, ↑)
are lazy in the sense that they abstract over unevaluated expressions, while values of positive
types (⊗, 1, ⊕, ↓) are constructed from other values. This will be significant in our analysis
of the computational properties of modes. Continuation frames just reflect the left-to-right
call-by-value nature of evaluation.

Values are typed as expressions. Frames are typed with Γ ⊢ f : Bk < Am, which means
f takes a value of type Am and passes a value of type Bk further up the continuation stack.
We show the rules for continuations. Note that the non-empty continuation rule has a mode
k in the premises that doesn’t appear in the conclusion.

∆W ⊢ ϵ : Am < Am

∆ ⊢ K : Cr < Bk ∆′ ⊢ f : Bk < Am

∆ ; ∆′ ⊢ K · f : Cr < Am

Regarding environments we face a fundamental choice. One possibility is to extend the
term language of natural deduction with explicit constructs for weakening and contraction.
Then, similar to Girard and Lafont [24], no garbage collection would be required during
evaluation since uniqueness of references to variables would be maintained.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:13

Frames
f ::= _ e2 | v1 _ (⊸)

| _.ℓ (N)
| forcem

k _ (↑)

| (_, e2) | (v1, _) (⊗)
| ℓ(_) (⊕)
| downn

m _ (↓)
| matchm _ Mr (⊗, 1, ⊕, ↓)

Continuations
K ::= ϵ | K · f

Environments
η ::= · | η, x 7→ v | η, [x 7→ v]

States
S ::= η ; K ▷m e

| η ; K ◀m v

Values
v ::= λx. e(x) (⊸)

| {ℓ ⇒ eℓ}ℓ∈L (N)
| suspm

k e (↑)

| (v1, v2) (⊗)
| () (1)
| ℓ(v) (⊕)
| downn

m v (↓)

Figure 4 Machine States.

We pursue here an alternative that leads to slightly deeper properties. We leave the
structural rules implicit as in the rules so far. This means that variables of linear mode (that
is, a mode that allows neither weakening nor contraction) have uniqueness of reference and
their bindings can be deallocated when dereferenced. Variables of structural mode (that is, a
mode that allows both weakening and contraction) are simply persistent in the dynamics
and therefore could be subject to an explicit garbage collection algorithm.

A difficulty arises with variables that only admit contraction but not weakening. After
they are dereferenced the first time, they may or may not be dereferenced again. That is,
they could be implicitly weakened after the first access. In order to capture this we introduce
a new form of typing [x : Am] and binding [x 7→ v] we call provisional. A provisional binding
does not need to be referenced even if m does not admit weakening. The important new
property is that an “ordinary” variable y : Ak that does not admit weakening can not appear
in a binding [x 7→ v]. In addition, all the usual independence requirements have to be
observed.

The rules for typing expressions, continuations, etc. are extended in the obvious way,
allowing variables [x : Am] to be used or ignored (as a part of some ∆W). We extend the
context merge operation as follows, keeping in mind that x : Am may require an occurrence
of x (depending on σ(m)), while [x : Am] does not.

(∆1, [x : Am] ; (∆2, [x : Am]) = (∆1 ; ∆2), [x : Am] provided C ∈ σ(m)
(∆1, x : Am) ; (∆2, [x : Am]) = (∆1 ; ∆2), x : Am provided C ∈ σ(m)
(∆1, [x : Am] ; (∆2, x : Am) = (∆1 ; ∆2), x : Am provided C ∈ σ(m)

(∆1, [x : Am]) ; ∆2 = (∆1 ; ∆2), [x : Am] provided x ̸∈ dom(∆2)
∆1 ; (∆2, [x : Am]) = (∆1 ; ∆2), [x : Am] provided x ̸∈ dom(∆1)

We have the following typing rules for environments. ∆W now means that every declaration
in ∆ can be weakened, either explicitly because its mode allows weakening, or implicitly
because it is provisional.

(·) : (·)

η : (∆ ; ∆′) ∆′ ≥ m ∆′ ⊢ v : Am

(η, x 7→ v) : (∆, x : Am)

η : (∆ ; ∆′
W) ∆′

W ≥ m ∆′
W ⊢ v : Am

(η, [x 7→ v]) : (∆, [x : Am])

FSCD 2024

15:14 Adjoint Natural Deduction

As an example, consider η0 = (x 7→ (), y 7→ λf. f x) where the mode of variables is
immaterial, but let’s fix them to be L with σ(L) = { }.

(·) : (·) · ⊢ () : 1L

(x 7→ ()) : (x : 1L)

...
x : 1L ⊢ λf. f x : (1L ⊸ AL) ⊸ AL

(x 7→ (), y 7→ λf. f x) : (y : (1L ⊸ AL) ⊸ AL)

We observe that the binding of x 7→ () does not contribute a declaration x : 1 to the result
context due to the occurrence of x in the value of y.

Now consider a slightly modified version where the mode of both x and y is S with
σ(S) = {C}, and the binding of y 7→ . . . becomes provisional. This modified example is no
longer well-typed.

(·) : (·) · ⊢ () : 1S

(x 7→ ()) : (x : 1S)

...
x : 1S ⊢ λf. f x : (1S ⊸ AS) ⊸ AS

(x 7→ (), [y 7→ λf. f x]) : (y : [(1S ⊸ AS) ⊸ AS)]
??

The problem is at the rule application marked by ??. The variable y does not need to be
used, despite its mode, because the binding is provisional. This means that x might also not
be used because its only occurrence is in the value of y. But that is not legal, since the mode
of x does not admit weakening and the binding is not provisional.

We type abstract machine states with the type of their final answer, that is S : Cr.

η : (∆ ; ∆′) ∆ ⊢ K : Cr < Am ∆′ ⊢ e : Am

(η ; K ▷m e) : Cr

η : (∆ ; ∆′) ∆ ⊢ K : Cr < Am ∆′ ⊢ v : Am

(η ; K ◀m v) : Cr

We now continue with the computational rules for our abstract machine. The full set of
rules can be found in Figure 5. We factor out passing a value to a match, η ; v ▶m M = η′ ; e′

that produces a (possibly extended) environment η′ and expression e′. In all cases below, we
presuppose the variable names are chosen so the extended environment has unique bindings
for each variable. For an extension with mutual recursion, see our extended version (link in
preamble).

We obtain the following expected theorems of preservation and progress.

▶ Theorem 15 (Preservation). theorempreservation If S : A and S −→ S′ then S′ : A.

Proof. By cases on S −→ S′, applying inversion to the typing of S and assembling a typing
derivation of S′ from the resulting information.

The trickiest case involves dereferencing a variable x 7→ v admitting contraction. It is
sound because every variable y occurring in v must also admit contraction by monotonicity
and, furthermore, such variables still have an occurrence in the value v that is being returned.
Therefore in the typing of the environment we can now type [x 7→ v] with [x : Am]. ◀

A machine state is final if it has the form η ; ϵ ◀m v, that is, if a value is returned to the
empty continuation in some global environment η. In order to prove progress, we need to
characterize values of a given type using a canonical forms property. Note that we allow a
context ∆ to provide for the variables that may be embedded in a value of negative type
(⊸, N, ↑), but that a variable by itself does not count as a value.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:15

η ; () ▶m (() ⇒ e′) = η ; e′

η ; (v1, v2) ▶m ((x1, x2) ⇒ e′(x1, x2)) = η, x1 7→ v1, x2 7→ v2 ; e′(x1, x2)
η ; ℓ(v) ▶m (ℓ(x) ⇒ e′

ℓ(x))ℓ∈L = η, x 7→ v ; e′
ℓ(x)

η ; downn
m v ▶m (down(x) ⇒ e′(x)) = η, x 7→ v ; e′(x)

η, x 7→ v, η′ ; K ▷m x −→ η, η′ ; K ◀m v (C ̸∈ σ(m))
η, x 7→ v, η′ ; K ▷m x −→ η, [x 7→ v], η′ ; K ◀m v (C ∈ σ(m))

η ; K ▷r matchm e Mr −→ η ; K · (matchm _ Mr) ▷m e (⊗, 1, ⊕, ↓)
η ; K · (matchm _ Mr) ◀m v −→ η′ ; K ▷r e′ where η ; v ▶m Mr = η′ ; e′

η ; K ▷m λx. e(x) −→ η ; K ◀m λx. e(x) (⊸)
η ; K ▷m (e1 e2) −→ η ; K · (_ e2) ▷m e1
η ; K · (_ e2) ◀m v1 −→ η ; K · (v1 _) ▷m e2
η ; K · (λx. e(x), _) ◀m v2 −→ η, x 7→ v ; K ▷m e(x)

η ; K ▷m {ℓ ⇒ eℓ}ℓ∈L −→ η ; K ◀m {ℓ ⇒ eℓ}ℓ∈L (N)
η ; K ▷m e.ℓ −→ η ; K · (_.ℓ) ▷m e

η ; K · (_.ℓ) ◀m {ℓ ⇒ eℓ}ℓ∈L −→ η ; K ▷m eℓ (ℓ ∈ L)

η ; K ▷m suspm
k e −→ η ; K ◀m suspm

k e (↑)
η ; K ▷k forcem

k e −→ η ; K · (forcem
k _) ▷m e

η ; K · (forcem
k _) ◀m suspm

k e −→ η ; K ▷k e

η ; K ▷m (e1, e2) −→ η ; K · (_, e2) ▷m e1 (⊗)
η ; K · (_, e2) ◀m v1 −→ η ; K · (v1, _) ▷m e2
η ; K · (v1, _) ◀m v2 −→ η ; K ◀m (v1, v2)

η ; K ▷m () −→ η ; K ◀m () (1)

η ; K ▷m ℓ(e) −→ η ; K · ℓ(_) ▷m e (⊕)
η ; K · ℓ(_) ◀m v −→ η ; K ◀m ℓ(v)

η ; K ▷m downn
m e −→ η ; K · downn

m _ ▷n e (↓)
η ; K · (downn

m _) ◀n v −→ η ; K ◀m downn
m v

Figure 5 Computation Rules.

▶ Lemma 16 (Canonical Forms). If ∆ ⊢ v : Am then one of the following applies:
(i) if Am = Bm ⊸ Cm then v = λx. e(x) for some e

(ii) if Am = N{ℓ : Aℓ
m}ℓ∈L then v = {ℓ ⇒ eℓ}ℓ∈L for some set eℓ

(iii) if Am = ↑m
k Bk then v = suspm

k e

(iv) if Am = Bm ⊗ Cm then v = (v1, v2) for values v1 and v2

(v) if Am = 1 then v = ()
(vi) if Am = ⊕{ℓ : Bℓ

m}ℓ∈L then v = ℓ(v′) for some ℓ ∈ L and value v′

(vii) if Am = ↓n
mAn then v = downn

mv′ for some value v′

Proof. As usual, by inversion on typing and the possible forms of values, remembering that
variables do not count as values. ◀

FSCD 2024

15:16 Adjoint Natural Deduction

▶ Theorem 17 (Progress). theoremprogress If S : Cr then either S is final or S 7→ S′ for
some S′

Proof. By cases on the typing derivation for the configuration and inversion on the typing
of the embedded frames, values, and expressions. We apply the canonical forms theorem
when we need the shape of a value. ◀

Purely positive types play an important role because we view values of these types as
directly observable, while values of negative types can only be observed indirectly through
their elimination forms.

Purely positive types A+, B+ ::= A+ ⊗ B+ | 1 | ⊕{ℓ : A+
ℓ }ℓ∈L | ↓A+

Values of purely positive types are closed, even if values of negative types may not be.

▶ Lemma 18 (Positive Values). If ∆ ⊢ v : A+
r then · ⊢ v : A+

r and all declarations in ∆
admit weakening (either due to their mode or because they are provisional).

Proof. By induction on the structure of the typing derivation, recalling that variables are
not values. ◀

We call a variable x : Am linear if σ(m) = { }, that is, the mode m admits neither
weakening or contraction. We extend this term to types, bindings in the environment, etc.
in the obvious way.

▶ Theorem 19 (Freedom from Garbage). theoremfreedom If · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ;

ϵ ◀r v, then η does not contain a binding x 7→ v with σ(m) = { } where m is the mode of x.

Proof. Because A+
r is purely positive, we know by Lemma 18 that v is closed.

When the continuation K is empty, the typing rule for valid states implies that η : ∆ and
∆ ⊢ v : A+

r for some ∆. Since v is closed, ∆ cannot contain any linear variables.
Then we prove by induction on the typing of η that none of variables in η can be linear.

In the inductive case
η′ : (∆ ; ∆′) ∆′ ≥ m ∆′ ⊢ v : Am

(η′, x 7→ v) : (∆, x : Am)

we know that m must admit weakening or contraction or both. Since ∆′ ≥ m, by monotonicity,
∆′ must also admit weakening or contraction and we can apply the induction hypothesis to
η′ : (∆ ; ∆′). ◀

We call a variable xm, an expression e : Am, or a binding x 7→ v strict if σ(m) ⊆ {C},
that is, m does not admit weakening.

▶ Theorem 20 (Strictness). theoremstrictness If · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ; ϵ ◀r v,

then every strict binding in η is of the form [x 7→ v].

Proof. Because A+
r is purely positive, we know by Lemma 18 that v is closed.

When the continuation K is empty, the typing rule for valid states implies η : ∆ and
∆ ⊢ v : A+

r for some ∆. Since v is closed, ∆ contains strict variables only in the form
[x : Am].

We prove by induction on the typing of η all strict variables in η have the form [x 7→ w].
There are two inductive cases.

η′ : (∆ ; ∆′) ∆′ ≥ m ∆′ ⊢ w : Am

(η′, x 7→ w) : (∆, x : Am)

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:17

Since m is not strict, it must admit weakening. Since ∆′ ≥ m, every variable in ∆′ must
also admit weakening by monotonicity, so we can apply the induction hypothesis to ∆ ; ∆′.

η′ : (∆ ; ∆′
W) ∆′

W ≥ m ∆′
W ⊢ w : Am

(η′, [x 7→ v]) : (∆, [x : Am])

Any declaration in ∆′
W either directly admits weakening or is of the form [y : Ak] for a strict

k so we can apply the induction hypothesis to η′ : (∆ ; ∆′
W). ◀

In this context of call-by-value, this property expresses that every strict variable will
be read at least once, since a binding [x 7→ v] arises only from reading the value of x. In
call-by-need it means that the value is indeed needed.

▶ Theorem 21 (Dead Code). theoremdeadcode If · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ; ϵ ◀r v

then every state during the computation either evaluates ▷m or returns ◀m for m ≥ r.

Proof. Most rule do not change the subject’s mode. Several rules potentially raise the mode,
name evaluating a match, a force, or a down. For each of these there is a corresponding
rule lowering the mode back to its original, namely return a value to a match, to a force,
or to a down.

We say the mode of a frame f is the mode of the following state after a value is returned
to f . We prove by induction over the computation that in all states, all continuation frames
and subjects have modes m ≥ r. ◀

▶ Theorem 22 (Erasure). corollaryerasure Assume · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ; ϵ ◀r v.

Let Ω be a new term of every type and no transition rule.
If we obtain e′ by replacing all subterms of type Bk for k ̸≥ r with Ω, then evaluation

e′ still terminates in a final state. This final state differs from v in that subterms of mode
k ̸≥ r are also replaced by Ω.

Proof. The computation of e′ parallels that of e. It would only get stuck for a state
η′ ; K ′ ▷k Ω, but that is impossible by the preceding dead code theorem since k ̸≥ r. ◀

6 Algorithmic Type Checking

The bidirectional type system of Section 3 is not yet algorithmic, among other things because
splitting a given context into ∆ = (∆1 ; ∆2) is nondeterministic. One standard solution
is to track which hypotheses are used in one premise (which ends up ∆1), subtract them
from the available ones, and pass the remainder into the second premise (which ends up ∆2
together with an overall remainder) [14]. This originated in proof search, but here when
we actually have a proof terms available to check, other options are available. Additive
resource management computes the used hypotheses (rather than the unused ones) and
merges (“adds”) them [37, 5], which is conceptually slightly simpler and also has been shown
to be more efficient [28].

The main complication in the additive approach are internal and external choice, more
specifically, the NR and ⊕L rules when the choice is empty. For example, while checking
∆ ⊢ { } ⇐= N{ } any subset of ∆ could be used. We reuse the idea from the dynamics
to have provisional hypotheses [x : Am]. In the additive approach, the context merge for
provisional hypotheses then no longer requires contraction since such variables do not occur
(but could be considered as used). There are a plethora of different judgments, but it is not

FSCD 2024

15:18 Adjoint Natural Deduction

clear how to simplify them. In defining the additive approach, the main two judgments are
Γ ⊢ s =⇒ Am / Ξ and Γ ⊢ e ⇐= Am / Ξ which we summarize as Γ ⊢ e ⇐⇒ Am / Ξ where Γ
is a plain (that is, free of provisional hypotheses) context containing all variables that might
occur in e (regardless of mode or structural properties) and Ξ is a context that may contain
provisional hypotheses. We maintain the mode invariant Ξ ≥ m (even if it may be the case
that Γ ̸≥ m). The rules can be found in Figure 6. We show some of the crucial properties to
understand the rules, defining some of these operations later with these properties in mind.

Because we keep the contexts ∆ free of provisional hypotheses, we define the relation
Ξ ⊒ ∆ which may remove or keep provisional hypotheses.

(Ξ, x : Am) ⊒ (∆, x : A) if Ξ ⊒ ∆
(Ξ, [x : Am]) ⊒ (∆, x : A) if Ξ ⊒ ∆
(Ξ, [x : Am]) ⊒ ∆ if Ξ ⊒ ∆

(·) ⊒ (·)

With this relation, we can state the soundness of algorithmic typing.

▶ Theorem 23 (Soundness of Algorithmic Typing).
If Γ ⊢ e ⇐⇒ Am / Ξ and Ξ ⊒ ∆ then ∆ ⊢ e ⇐⇒ Am.

Proof. By rule induction on the algorithmic typing derivation and inversion of the Ξ ⊒ ∆
judgment. ◀

For completeness we need a different relation ∆ ≥ Ξ which means that Ξ contains a
legal subset of the hypotheses in ∆. This means hypotheses in ∆ might be in Ξ (possibly
provisional) or not, but then only if they can be weakened.

(∆, x : Am) ≥ (Ξ, x : Am) if ∆ ≥ Ξ
(∆, x : Am) ≥ (Ξ, [x : Am]) if ∆ ≥ Ξ
(∆, x : Am) ≥ Ξ if ∆ ≥ Ξ provided W ∈ σ(m)

(·) ≥ (·)

With this relation we can state the completeness of algorithmic typing.

▶ Theorem 24 (Completeness of Algorithmic Typing).
If ∆ ⊢ e ⇐⇒ Am then ∆ ⊢ e ⇐⇒ Am / Ξ for some Ξ with ∆ ≥ Ξ

Proof. By rule induction on the given bidirectional typing. ◀

For the algorithm itself we need several operations. Some key properties of these operations
that are needed in the soundness and completness proof can be found in the extended version
of this paper (link in preamble).

The first, Ξ \ x : A removes x : A from Ξ if this is legal operation. Its prototypical use is
in the ⊸I rule. For the rule application to be correct the new variable x : Am must either
have been used and therefore occur in Ξ, or the mode m must allow weakening.

(Ξ, x : Am) \ x : Am = Ξ
(Ξ, [x : Am]) \ x : Am = Ξ

(Ξ, y : Bk) \ x : Am = (Ξ \ x : Am), y : Bk provided y ̸= x

(Ξ, [y : Bk]) \ x : Am = (Ξ \ x : Am), [y : Bk] provided y ̸= x

(·) \ x : Am = (·) provided W ∈ σ(m)

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:19

We also need two forms of context restriction. The first Ξ∥m removes all hypotheses whose
mode is not greater or equal to m to restore our invariant. It fails if Ξ contains a used
hypothesis Br with r ̸≥ m. It is used only in the ↑I rule to restore the invariant.

The second form of context restriction occurs in the case of an empty internal or external
choice. All of the hypothesis that are allowed by the independence principle could be
considered used, but they might also not. We write [Γ|m]. It is used only in the nullary case
for internal and external choice.

(Ξ, x : Ak)∥m = Ξ∥m, x : Ak (k ≥ m) [(Γ, x : Ak)|m] = [Γ|m], [x : Ak] (k ≥ m)
(Ξ, [x : Ak])∥m = Ξ∥m, [x : Ak] (k ≥ m)
(Ξ, [x : Ak])∥m = Ξ∥m (k ̸≥ m) [(Γ, x : Ak)|m] = [Γ|m] (k ̸≥ m)

(·)∥m = (·) [(·)|m] = (·)

We come to the final operation Ξ1 ⊔ Ξ2 which is needed for NI and ⊕E. Variables used
in one branch must also be used in all other branches, or be available for weakening, either
because they are provisional or because their mode admits weakening. This idea is captured
formally by the definition of ⊔.

(Ξ1, x : Am) ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, [x : Am]) ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, x : Am) ⊔ (Ξ2, [x : Am]) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, [x : Am]) ⊔ (Ξ2, [x : Am]) = (Ξ1 ⊔ Ξ2), [x : Am]
(Ξ1, x : Am) ⊔ Ξ2 = (Ξ1 ⊔ Ξ2), x : Am for x ̸∈ dom(Ξ2), W ∈ σ(m)

Ξ1 ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am for x ̸∈ dom(Ξ1), W ∈ σ(m)
(Ξ1, [x : Am]) ⊔ Ξ2 = Ξ1 ⊔ Ξ2 for x ̸∈ dom(Ξ2)

Ξ1 ⊔ (Ξ2, [x : Am]) = Ξ1 ⊔ Ξ2 for x ̸∈ dom(Ξ1)
(·) ⊔ (·) = (·)

7 Conclusion

We have presented a natural deduction formulation of adjoint logic. By carefully constructing
these rules and the translations to and from the sequent calculus, we automatically obtained
the presence of long normal forms for the proofs in natural deduction. We then presented a
computational interpretation in the form of a state machine with a global context which leads
to proofs of some properties of programs that come directly from having a mode hierarchy.
Lastly, we presented an algorithmic type checking system, that due to the empty sum and
(positive) product constructors requires a somewhat complicated approach.

There have been recent proposals to extend the adjoint approach to combining logics
to dependent types. Licata et al. [34, 35] permit dependent types and richer connections
between the logics that are combined, but certain properties such as independence are no
longer fundamental and have to be proved in each case where they apply. While they mostly
stay within a sequent calculus, they also briefly introduce natural deduction. They further
provide a categorical semantics. Hanukaev and Eades [25] also permit dependent types and
use the graded/algebraic approach to defining their system. However, their approach to
dependency appears incompatible with control of contraction, so their adjoint structure is
not nearly as general as ours. They also omit empty internal choice (and external choice
altogether), which created some of the trickiest issues in our system. Curien et al. [19]
investigate call-by-push-value [33] and provide a semantic foundation for the adjunction
properties that is flexible enough to accommodate effects. It also incorporates Benton’s mixed

FSCD 2024

15:20 Adjoint Natural Deduction

Γ ⊢ s =⇒ Am / Ξ

Γ ⊢ s ⇐= Am / Ξ
⇒/⇐

Γ ⊢ e ⇐= Am / Ξ

Γ ⊢ (e : Am) =⇒ Am / Ξ
⇐/⇒

x : Am ∈ Γ

Γ ⊢ x =⇒ Am / (x : Am)
hyp

Γ, x : Am ⊢ e ⇐= Bm / Ξ

Γ ⊢ λx. e ⇐= Am ⊸ Bm / (Ξ \ x : Am)
⊸I

Γ ⊢ s =⇒ Am ⊸ Bm / Ξ Γ ⊢ e ⇐= Am / Ξ′

Γ ⊢ s e =⇒ Bm / Ξ ; Ξ′
⊸E

Γ ⊢ { } ⇐= Nm{ } / [Γ|m]
NI0

Γ ⊢ eℓ ⇐= Aℓ
m / Ξℓ (∀ℓ ∈ L ̸= ∅)

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ
m}ℓ∈L / ⊔ℓ∈LΞℓ

NI

Γ ⊢ e =⇒ N{ℓ : Aℓ
m}ℓ∈L / Ξ (ℓ ∈ L)

Γ ⊢ e.ℓ =⇒ Aℓ
m / Ξ

NE

Γ ⊢ e ⇐= Ak / Ξ

Γ ⊢ susp e ⇐= ↑m
k Ak / Ξ∥m

↑I
Γ ⊢ s =⇒ ↑m

k Ak / Ξ

Γ ⊢ force s =⇒ Ak / Ξ
↑E

Γ ⊢ e1 ⇐= Am / Ξ Γ ⊢ e2 ⇐= Bm / Ξ′

Γ ⊢ (e1, e2) ⇐= Am ⊗ Bm / Ξ ; Ξ′
⊗I

Γ ⊢ s =⇒ Am ⊗ Bm / Ξ m ≥ r Γ, x1 : Am, x2 : Bm ⊢ e′ ⇐= Cr / Ξ′

Γ ⊢ match s ((x1, x2) ⇒ e′) ⇐= Cr / Ξ ; (Ξ′ \ x1 : Am \ x2 : Bm)
⊗E

Γ ⊢ () ⇐= 1m / (·)
1I

Γ ⊢ s =⇒ 1m / Ξ m ≥ r Γ ⊢ e′ ⇐= Cr / Ξ′

Γ ⊢ match s (() ⇒ e′) ⇐= Cr / Ξ ; Ξ′
1E

Γ ⊢ e ⇐= Aℓ
m / Ξ (ℓ ∈ L)

Γ ⊢ ℓ(e) ⇐= ⊕{ℓ : Aℓ
m}ℓ∈L / Ξ

⊕I
Γ ⊢ s =⇒ ⊕m{ } / Ξ m ≥ r

Γ ⊢ match s () ⇐= Cr / Ξ ; [Γ|r]
⊕E0

Γ ⊢ s =⇒ ⊕{ℓ : Aℓ
m}ℓ∈L / Ξ m ≥ r Γ, x : Aℓ

m ⊢ eℓ ⇐= Cr / Ξ′
ℓ (∀ℓ ∈ L ̸= ∅)

Γ ⊢ match s (ℓ(x) ⇒ eℓ)ℓ∈L ⇐= Cr / Ξ ; ⊔ℓ∈L(Ξ′
ℓ \ x : Aℓ

m)
⊕E

Γ ⊢ e ⇐= An / Ξ

Γ ⊢ down e ⇐= ↓n
mAn / Ξ

↓I
Γ ⊢ s =⇒ ↓n

mAn / Ξ m ≥ r Γ, x : An ⊢ e′ ⇐= Cr / Ξ′

Γ ⊢ match s (down x ⇒ e′) ⇐= Cr / Ξ ; (Ξ′ \ x : An)
↓E

Figure 6 Algorithmic Typing for Natural Deduction.

linear/nonlinear calculus [7] in the form of a sequent calculus but does not consider a general
preorder of modes or more flexible structural properties. None of these propose an algorithm
for type checking or an operational semantics that would exploit the substructural and mode
properties to obtain “free theorems” about well-typed programs as in our dynamics.

We are pursuing several avenues building on the results of this paper. On the foundational
side, we are looking for a direct algorithm to convert an arbitrary natural deduction into a
verification. On the programming side, we are considering mode polymorphism: type-checking
the same expression against multiple different modes to avoid code duplication. On the
application side, we are considering staged computation, quotation, and metaprogramming,
decomposing the usual type □A or its contextual analogue along the lines of Example 8.

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:21

References
1 Andreas Abel, Nils Anders Danielsson, and Oskar Eriksson. A graded modal dependent type

theory with a universe and erasure, formalized. Proc. ACM Program. Lang., 7(ICFP’23):920–
954, 2023.

2 Samson Abramsky. Computational interpretations of linear logic. Theoretical Computer
Science, 111:3–57, 1993.

3 Beniamino Accattoli, Pablo Barenbaum, and Damiano Mazza. Distilling abstract machines.
In J. Jeuring and M. Chakravarty, editors, 19th International Conference on Functional
Programming (ICFP 2014), pages 363–376, Gothenburg, Sweden, September 2014. ACM. Long
version available at arXiv:1406.2370.

4 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3):197–347, 1992.

5 Robert Atkey. Syntax and semantics of quantitative type theory. In Anuj Dawar and Erich
Grädel, editors, 33rd Conference on Logic in Computer Science (LICS 2018), pages 56–65,
Oxford, UK, July 2018. ACM.

6 Andrew Barber. Dual intuitionistic linear logic. Technical Report ECS-LFCS-96-347, Depart-
ment of Computer Science, University of Edinburgh, September 1996.

7 P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Leszek
Pacholski and Jerzy Tiuryn, editors, Selected Papers from the 8th International Workshop
on Computer Science Logic (CSL’94), pages 121–135, Kazimierz, Poland, September 1994.
Springer LNCS 933. An extended version appears as Technical Report UCAM-CL-TR-352,
University of Cambridge.

8 P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models (preliminary
report). Technical Report UCAM-CL-TR-352, University of Cambridge, October 1994. URL:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-352.html.

9 P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from a logical
perspective. Journal of Functional Programming, 8(2):177–193, March 1998.

10 P. N. Benton, Gavin M. Bierman, Martin Hyland, and Valeria de Paiva. A term calculus
for intuitionistic linear logic. In International Conference on Typed Lambda Calculi and
Applications, pages 75–90, Utrecht, The Netherlands, 1993. Springer LNCS 664.

11 P. N. Benton and Philip Wadler. Linear logic, monads, and the lambda calculus. In E. Clarke,
editor, Proceedings of the 11th Annual Symposium on Logic in Computer Science, pages
420–431, New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

12 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
Proceedings of the 21st International Conference on Concurrency Theory (CONCUR 2010),
pages 222–236, Paris, France, August 2010. Springer LNCS 6269.

13 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016. Special Issue on
Behavioural Types.

14 Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource management for
linear logic proof search. Theoretical Computer Science, 232(1–2):133–163, February 2000.
Special issue on Proof Search in Type-Theoretic Languages, D. Galmiche and D. Pym, editors.

15 Bor-Yuh Evan Chang, Kaustuv Chaudhuri, and Frank Pfenning. A judgmental analysis of
linear logic. Technical Report CMU-CS-03-131R, Carnegie Mellon University, Department of
Computer Science, December 2003.

16 Kaustuv Chaudhuri. Classical and intuitionistic subexponential logics are equally expressive.
In Computer Science Logic, pages 185–199. Springer LNCS 6247, August 2010.

17 Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. A
graded dependent type system with a usage-aware semantics. Proc. ACM Program. Lang.,
5(POPL’21):1–32, 2021.

18 Alonzo Church. The Calculi of Lambda-Conversion, volume 6 of Annals of Mathematics
Studies. Princeton University Press, 1941.

FSCD 2024

arXiv:1406.2370
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-352.html

15:22 Adjoint Natural Deduction

19 Pierre-Louis Curien, Marcelo P. Fiore, and Guillaume Munch-Maccagnoni. A theory of effects
and resources: Adjunction models and polarised calculi. In R. Bodík and R. Majumdar,
editors, Proceedings of the 43rd Symposium on Principles of Programming Languages (POPL
2016), pages 44–56, St. Petersburgh, Florida, USA, January 2016. ACM.

20 Vincent Danos, Jean Baptiste Joinet, and Harold Schellinx. The structure of exponentials:
Uncovering the dynamics of linear logic proofs. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors, Computational Logic and Proof Theory, pages 159–171, Berlin,
Heidelberg, 1993. Springer Berlin Heidelberg.

21 Michael Dummett. The Logical Basis of Metaphysics. Harvard University Press, Cambridge,
Massachusetts, 1991. The William James Lectures, 1976.

22 Gerhard Gentzen. Untersuchungen über das logische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935. English translation in M. E. Szabo, editor, The Collected Papers
of Gerhard Gentzen, pages 68–131, North-Holland, 1969.

23 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
24 Jean-Yves Girard and Yves Lafont. Linear logic and lazy computation. In H. Ehrig, R. Kowalski,

G. Levi, and U. Montanari, editors, Proceedings of the International Joint Conference on
Theory and Practice of Software Development, volume 2, pages 52–66, Pisa, Italy, March 1987.
Springer-Verlag LNCS 250.

25 Peter Hanukaev and Harley Eades, III. Combining dependency, grades, and adjoint logic. In
8th Workshop on Type-Driven Development (TyDe 2023), pages 58–70, Seattle, Washington,
2023. ACM. arXiv:2307.09563.

26 Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, second edition, April 2016.

27 W. A. Howard. The formulae-as-types notion of construction. Unpublished note. An annotated
version appeared in: To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus and
Formalism, 479–490, Academic Press (1980), 1969.

28 Jack Hughes and Dominic Orchard. Resourceful program synthesis from graded linear types.
In M. Fernández, editor, 30th International Symposium on Logic-Based Program Synthesis and
Transformation (LOPSTR 2020), pages 151–170, Bologna, Italy, September 2020. Springer
LNCS 12561.

29 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov. Subexponentials in
non-commutative linear logic. ArXiv e-prints, September 2017. arXiv:1709.03607.

30 Max Kanovich, Stepan Kuznetsov, Vivek Nigam, and Andre Scedrov. A logical framework
with commutative and non-commutative subexponentials. In International Joint Conference
on Automated Reasoning (IJCAR 2018), pages 228–245. Springer LNAI 10900, 2018.

31 Stephen Cole Kleene. Introduction to Metamathematics. North-Holland, 1952.
32 John Launchbury. A natural semantics for lazy evaluation. In 20th Annual Symposium

on Principles of Programming Languages (POPL 1993), pages 144–154, Charleston, South
Carolina, January 1993. ACM.

33 Paul Blain Levy. Call-by-push-value: Decomposing call-by-value and call-by-name. Higher-
Order and Symbolic Computation, 19(4):377–414, 2006.

34 Daniel R. Licata and Michael Shulman. Adjoint logic with a 2-category of modes. In
International Symposium on Logical Foundations of Computer Science (LFCS), pages 219–235.
Springer LNCS 9537, January 2016.

35 Daniel R. Licata, Michael Shulman, and Mitchell Riley. A fibrational framework for substruc-
tural and modal logics. In Dale Miller, editor, Proceedings of the 2nd International Conference
on Formal Structures for Computation and Deduction (FSCD’17), pages 25:1–25:22, Oxford,
UK, September 2017. LIPIcs.

36 Per Martin-Löf. On the meanings of the logical constants and the justifications of the
logical laws. Notes for three lectures given in Siena, Italy. Published in Nordic Journal
of Philosophical Logic, 1(1):11-60, 1996, April 1983. URL: http://www.hf.uio.no/ifikk/
forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf.

https://arxiv.org/abs/2307.09563
https://arxiv.org/abs/1709.03607
http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf
http://www.hf.uio.no/ifikk/forskning/publikasjoner/tidsskrifter/njpl/vol1no1/meaning.pdf

J. Jang, S. Roshal, F. Pfenning, and B. Pientka 15:23

37 Conor McBride. I got plenty o’ nuttin’. In Sam Lindley, Conor McBride, Phil Trinder, and
Don Sannella, editors, A List of Successes That can Change the World—Essays Dedicated to
Philip Wadler on the Occasion of His 60th Birthday, pages 207–233. Springer LNCS 9600,
2016.

38 Benjamin Moon, Harley Eades III, and Dominic Orchard. Graded modal dependent type
theory. In 30th European Symposium on Programming (ESOP’21), volume 12648 of Lecture
Notes in Computer Science, pages 462–490. Springer, 2021.

39 Alan Mycroft. The theory and practice of transforming call-by-need into call-by-value. In 4th
International Symposium on Programming, pages 269–281. Springer LNCS 83, 1980.

40 Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic with subexponentials.
In Proceedings of the 11th International Conference on Principles and Practice of Declarative
Programming (PPDP), pages 129–140, Coimbra, Portugal, September 2009. ACM.

41 Vivek Nigam, Elaine Pimental, and Giselle Reis. An extended framework for specifying and
reasoning about proof systems. Journal of Logic and Computation, 26(2):539–576, 2016.

42 Frank Pfenning and Rowan Davies. A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science, 11:511–540, 2001. Notes to an invited talk at the Workshop
on Intuitionistic Modal Logics and Applications (IMLA’99), Trento, Italy, July 1999.

43 Frank Pfenning and Klaas Pruiksma. Relating message passing and shared memory, proof-
theoretically. In S. Jongmans and A. Lopes, editors, 25th International Conference on
Coordination Models and Languages (COORDINATION 2023), pages 3–27, Lisbon, Portugal,
June 2023. Springer LNCS 13908. Notes to an invited talk.

44 Dag Prawitz. Natural Deduction. Almquist & Wiksell, Stockholm, 1965.
45 Klaas Pruiksma. Adjoint Logic with Applications. PhD thesis, Carnegie Mellon University,

2024. In preparation.
46 Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. Adjoint logic. Unpublished

manuscript, April 2018. URL: http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf.
47 Klaas Pruiksma and Frank Pfenning. A message-passing interpretation of adjoint logic. Journal

of Logical and Algebraic Methods in Programming, 120(100637), 2021.
48 Klaas Pruiksma and Frank Pfenning. Back to futures. Journal of Functional Programming,

32:e6, 2022.
49 Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript, May 2009.

URL: http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf.
50 The Rust programming language. Available at https://www.rust-lang.org/. Accessed

January 15, 2024.
51 Jesse A. Tov and Riccardo Pucella. Practical affine types. In T. Ball and M. Sagiv, editors,

Proceedings of the 38th Symposium on Principles of Programming Languages (POPL 2011),
pages 447–458. ACM Press, January 2011.

52 Anne S. Troelstra. Natural deduction for intuitionistic linear logic. Annals of Pure and Applied
Logic, 73(1):79–108, 1995.

53 Philip Wadler. Linear types can change the world. In IFIP TC, volume 2, pages 347–359,
1990.

54 Philip Wadler. Propositions as sessions. In Proceedings of the 17th International Conference
on Functional Programming (ICFP 2012), pages 273–286, Copenhagen, Denmark, September
2012. ACM Press.

55 James Wood and Robert Atkey. A framework for substructural type systems. In Ilya Sergey,
editor, 31st European Symposium on Programming (ESOP 2022), pages 376–402, Munich,
Germany, April 2022. Springer LNCS 13240.

FSCD 2024

http://www.cs.cmu.edu/~fp/papers/adjoint18b.pdf
http://www.cs.cmu.edu/~jcreed/papers/jdml2.pdf
https://www.rust-lang.org/

	1 Introduction
	2 Adjoint Sequent Calculus
	3 Adjoint Natural Deduction
	4 Relating Sequent Calculus and Natural Deduction
	5 Dynamics
	6 Algorithmic Type Checking
	7 Conclusion

