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Abstract
Separation logic is successful for software verification of heap-manipulating programs. Numbers are
necessary to be added to separation logic for verification of practical software where numbers are
important. However, properties of the validity such as decidability and complexity for separation
logic with numbers have not been fully studied yet. This paper presents the translation of Pi-0-1
formulas in Peano arithmetic to formulas in a small fragment of separation logic with numbers,
which consists only of the intuitionistic points-to predicate, 0 and the successor function. Then this
paper proves that a formula in Peano arithmetic is valid in the standard model if and only if its
translation in this fragment is valid in the standard interpretation. As a corollary, this paper also
gives a perspective proof for the undecidability of the validity in this fragment. Since Pi-0-1 formulas
can describe consistency of logical systems and non-termination of computations, this result also
shows that these properties discussed in Peano arithmetic can also be discussed in such a small
fragment of separation logic with numbers.
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1 Introduction

Separation logic is successful both theoretically and practically [5, 12] and has been actively
studied. It enables us to verify heap-manipulating programs by concise description of memory.
Separation logic itself is also interesting theoretically.

When one uses separation logic for verifying software where numbers are important, one
often has to extend separation logic by arithmetic. In order for handling numbers, we have to
add Peano arithmetic or Presburger arithmetic to separation logic. Then the decidability of
the validity in the system of separation logic with arithmetic under the standard interpretation
of numbers becomes a question, since the logical system with decidable validity is more
appropriate for software verification systems. In particular, since Presburger arithmetic is
decidable for the validity, we might expect that some fragment of Presburger arithmetic with
some decidable fragment of separation logic is decidable for the validity. In this paper, we
will show that it is not the case by proving that the separation logic with only ↪→, 0 and
the successor s without any other separation logic constructs or any arithmetical operations
can simulate Π0

1 formulas of Peano arithmetic, and consequently it is undecidable for the
validity in the standard interpretation. It was surprising for us that such a weak fragment
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18:2 Representation of Peano Arithmetic in Separation Logic

of separation logic becomes such a strong logic even if we only add 0 and s, because the
fragment of separation logic with only ↪→ is known to be decidable for the validity in the
standard interpretation [4].

Our main theorem in this paper is a representation theorem which states that there is a
translation of Π0

1 formulas in Peano arithmetic to formulas in the separation logic with only
the intuitionistic points-to predicate and numbers such that a formula in Peano arithmetic is
valid in the standard model if and only if its translation in the separation logic with numbers
is valid in the standard interpretation. Namely, the translation preserves the validity and
the non-validity. The undecidability result is obtained as a corollary of this theorem.

The main technique of the proof of our representation theorem is to have an operation
table for addition, multiplication, and inequality in a heap, and to remove x + y = z,
x × y = z and x ≤ y by referring to the value z or the truth of x ≤ y. For this, we will code
the operation table by the consecutive heap cells that contain 0, x + 3, y + 3, x + y + 3 or
1, x + 3, y + 3, x × y + 3 or 2, x + 3, y + 3 where 3 is an offset and 0, 1 and 2 are tags for
addition, multiplication, and inequality, respectively. In order to define the translation, we
will introduce normal form of a bounded formula of Peano arithmetic.

Our translation can be extended to arbitrary formulas of Peano arithmetic, but the
representation theorem does not hold for formulas beyond Π0

1. We will give some Σ0
1 formula

as a counterexample.
Our result shows that discussion about properties described by Π0

1 formulas such as
consistency of logical systems and strong normalization properties for reduction systems in
Peano arithmetic can be simulated in the separation logic with numbers. The undecidability
of the validity in the separation logic with numbers itself can be proved in a simpler way, by
using a similar idea to [7]. We will also give a proof in that way.

There are some undecidability results about the validity of separation logic and some of
them use some translations. The separation logic with the 1-field points-to predicate and
the separating implication is known to be undecidable for its validity [4]. The separation
logic with the 2-field points-to predicate is also known to be undecidable for its validity [7].
It is proved by translating formulas in a first-order logic with one binary relation into the
separation logic with the 2-field points-to predicate. On the other hand, there are some
decidability results about the validity of separation logic. The separation logic with the
1-field points-to predicate and without the separating implication is known to be decidable
for its validity [4]. The quantifier-free separation logic is known to be decidable [6]. It is
proved by translating the separation logic into a first-order logic with empty signature. We
do not know any work on a translation from some fragment of arithmetic into such a weak
separation logic with only {↪→, 0, s}.

If we restrict ourselves to symbolic heaps in separation logic with arithmetic or inductive
definitions, there are some decidability results. Symbolic heap entailment with Presburger
arithmetic [15], bounded-treewidth symbolic heap entailment [10], symbolic heap entailment
with cone inductive definitions [16, 11], and symbolic heap entailment with lists [2, 3, 8, 1] are
known to be decidable for their validity. Even for symbolic heaps, if we weaken conditions,
they easily become undecidable. Symbolic heap entailment with unrestricted inductive
definitions [10], and symbolic heap entailment with bounded-treewidth inductive definitions
and implicit existentials [14] are known to be undecidable for their validity.

This paper is organized as follows: Section 2 defines Peano arithmetic. Section 3 defines
the separation logic with numbers SLN. Section 4 defines the translation of normal formulas
in Peano arithmetic to formulas in SLN and shows the preservation property of the translation.
In Section 5 we define an auxiliary translation to normal form and prove the main theorem
for the preservation of the translation for Π0

1 formulas from PA to SLN. Section 6 gives
another proof of undecidability for the validity of SLN. Section 7 concludes.
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2 Peano arithmetic

In this section, we define Peano arithmetic PA and its standard model.
Let Vars = {x, y, . . .} be the set of variables. The terms of PA are defined by:

t ::= x | 0 | s(t) | t + t | t × t.

The formulas of PA are defined by:

A ::= t = t | t ≤ t | ¬A | A ∧ A | A ∨ A | ∃xA | ∀xA.

We will write A → B for ¬A ∨ B.

We write sn(t) for
n︷ ︸︸ ︷

s(. . . (s(t)) . . .). We use the abbreviation n = sn(0). We write A[x := t]
for the formula obtained by capture-free substitution of t for x in A.

Let N be the standard model of PA, namely, its universe |N | is N = {0, 1, 2, . . .}, 0N =0,
sN (x) = x + 1, +N (x, y) = x + y, ×N (x, y) = x × y, (≤)N (x, y) iff x ≤ y. Let σ : Vars → N
be a variable assignment. We extend σ to terms in a usual way. We write σ[x := n] for the
variable assignment that assigns n to x and σ(y) to y other than x.

We write σ |= A when A is true in N under the variable assignment σ. This relation is
defined in a usual way. If σ |= A for every variable assignment σ, A is defined to be valid. If
A does not contain free variables, A is called closed.

A formula ∀x ≤ t.A is an abbreviation of ∀x(x ≤ t → A), where t does not contain x.
A formula ∃x ≤ t.A is an abbreviation of ∃x(x ≤ t ∧ A), where t does not contain x. We
call ∀x ≤ t and ∃x ≤ t bounded quantifiers. A formula A is defined to be bounded if every
quantifier in A is bounded. If A ≡ ∀xB and B is bounded, A is called a Π0

1 formula.

3 Separation logic with numbers

In this section, we define a small fragment SLN of separation logic with numbers. We will
also define the standard interpretation of SLN.

Let Vars = {x, y, . . .} be the set of variables. The terms of SLN are defined by:

t ::= x | 0 | s(t).

The formulas of SLN are defined by:

A ::= t = t | t ↪→ t | ¬A | A ∧ A | A ∨ A | ∃xA | ∀xA.

We will write A → B for ¬A ∨ B.
The predicate t1 ↪→ t2 is the intuitionistic points-to predicate and means that there is

some cell of address t1 which contains t2 in the heap.
We use the same abbreviation n and substitution A[x := t] as in PA. For simplicity,

we write (t ↪→ t1, . . . , tn) for t ↪→ t1 ∧ . . . ∧ sn−1(t) ↪→ tn. We sometimes write only one
quantifier for consecutive quantifiers in a usual way like ∀xy∃zw for ∀x∀y∃z∃w.

Now we define the standard interpretation [[·]] of SLN. Let N be {0, 1, . . .}. We use N for
both the sets of addresses and values. Let [[0]] = 0, [[s]](x) = x + 1. Let σ : Vars → N be a
variable assignment. The extension of σ to terms and the variable assignment σ[x := n] are
defined similarly to those in PA. A heap is a finite function h : N →fin N. A heap represents
a state of the memory.
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18:4 Representation of Peano Arithmetic in Separation Logic

For a formula A of SLN, we define σ, h |= A by:

σ, h |= t1 = t2 iff σ(t1) = σ(t2),
σ, h |= t1 ↪→ t2 iff h(σ(t1)) = σ(t2),
σ, h |= ¬A iff σ, h ̸|= A,

σ, h |= A1 ∧ A2 iff σ, h |= A1 and σ, h |= A2,

σ, h |= A1 ∨ A2 iff σ, h |= A1 or σ, h |= A2,

σ, h |= ∃xA iff for some n ∈ N, σ[x := n], h |= A,

σ, h |= ∀xA iff for all n ∈ N, σ[x := n], h |= A.

σ, h |= A means that A is true under the variable assignment σ and the heap h. A formula
A is defined to be valid if σ, h |= A for all σ and h. If a formula does not contain atoms
t ↪→ u, the truth of the formula does not depend on heaps.

The validity defined in this section is the validity in the standard interpretation of SLN,
and it is different from the ordinary validity for separation logic, since the interpretations
depend on the set of addresses in the definition of the ordinary validity.

4 Translation of Normal Formulas in PA into SLN

In this section, we define the translation (·)◦ of bounded formulas in PA to formulas in SLN,
and prove that the translation preserves the validity and the non-validity.

The key of the translation is to keep an operation table for addition, multiplication and
inequality in a heap, and a resulting formula in SLN refers to the table instead of using the
addition, multiplication and inequality symbols. To state that a heap keeps the operation
table, we will use a table heap condition. For proving the preservation of the translation, we
will use a simple table heap, which is a heap that contains all the operation entries of some
size. Since the table in a heap is finite, to estimate the necessary size of the operation table
for translating a given formula, we will use the upper bound of arguments in the formula.

We will first define normal form of a bounded formula in PA, which we will translate
into a formula in SLN. Next we will define a table heap condition, which guarantees that a
heap has an operation table for addition, multiplication and inequality. Then we will define
the translation of a normal formula in PA into a formula in SLN. Then we will define a
simple table heap and the upper bound of arguments in a formula. Finally we will prove the
preservation of the translation.

We write ∃(x = t)A for an abbreviation of ∃x(x = t ∧ A), where t does not contain x.
Our translation is defined for only normal formulas. This does not lose the generality

since any bounded formula can be transformed into a normal formula in Section 5. In a
normal formula, + and × appear only in t of ∃(x = t). Moreover, this t is of the form a + b

or a × b where a, b do not contain + or ×.

▶ Definition 4.1 (Normal form). Normal forms of PA are given by A in the following grammar:

A ::= B | ∀x ≤ t.A | ∃x ≤ t.A | ∃(x = t)A

satisfying the following conditions: (1) B is a disjunctive normal form of a formula in PA
without quantifiers, +, ×, and formulas of the form ¬(t ≤ u), (2) each t in ∀x ≤ t and ∃x ≤ t

does not contain +, ×, and (3) each t in ∃(x = t) is of the form a + b or a × b for some terms
a and b that do not contain + or ×.

The table heap condition is defined as the formula H in the next definition. It guarantees
that a heap that satisfies H contains a correct operation table for +, × and ≤. The formulas
Add, Mult and Ineq in the following definition refer to the operation table when a heap satisfies
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the table heap condition. The normal formula enables us to represent each occurrence of +,
× and ≤ by Add, Mult and Ineq, respectively. We will write [t] for s3(t) for readability, since
the offset is 3.

▶ Definition 4.2 (Table Heap Condition). H, Add(x, y, z), Mult(x, y, z) and Ineq(x, y) are the
formulas defined by:

HAdd1 ≡ ∀ay((a ↪→ 0, [0], [y]) → s3(a) ↪→ [y]),
HAdd2 ≡ ∀axy((a ↪→ 0, [s(x)], [y])

→ ∃bz((b ↪→ 0, [x], [y], [z]) ∧ s3(a) ↪→ [s(z)])),
HMult1 ≡ ∀ay((a ↪→ 1, [0], [y]) → s3(a) ↪→ [0]),
HMult2 ≡ ∀axy((a ↪→ 1, [s(x)], [y]) → ∃bz((b ↪→ 1, [x], [y], [z])∧

∃cw((c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w]))),
HIneq1 ≡ ∀axy((a ↪→ 2, [s(x)], [y]) → ∃zb(y = s(z) ∧ (b ↪→ 2, [x], [z]))),
HIneq2 ≡ ∀axy((a ↪→ 2, [s(x)], [y]) → ∃b(b ↪→ 2, [x], [y])),

H ≡ HAdd1 ∧ HAdd2 ∧ HMult1 ∧ HMult2 ∧ HIneq1 ∧ HIneq2,

Add(x, y, z) ≡ ∀a((a ↪→ 0, [x], [y]) → s3(a) ↪→ [z]),
Mult(x, y, z) ≡ ∀a((a ↪→ 1, [x], [y]) → s3(a) ↪→ [z]),

Ineq(x, y) ≡ ∃a(a ↪→ 2, [x], [y]).

The formula H forces a heap to have a table that contains results of addition, multiplication
and inequality for some natural numbers. Each entry for addition and multiplication consists
of four cells, and each entry for inequality consists of three cells. If the first cell contains 0,
then the entry is for addition. If the first cell contains 1, then the entry is for multiplication.
If the first cell contains 2, then the entry is for inequality. The second and third cells of
an entry represent arguments of addition, multiplication or inequality. The entries for +, ×
have the forth cells, which contain the results of addition or multiplication. For inequality,
if there is an entry for two arguments x and y, then x ≤ y holds. Since 0, 1 and 2 have a
special meaning, arguments and results are stored by adding three. The definition of H uses
the following inductive definitions of addition and multiplication: s(x) + y = s(x + y) and
(x + 1) × y = x × y + x. The formulas HAdd1 and HMult1 force the base cases of addition and
multiplication, respectively, and HAdd2 and HMult2 force the induction steps of addition and
multiplication, respectively. HIneq1 means that if there is an entry for x + 1 ≤ y, then the
entry for x ≤ y − 1 exists in the heap. HIneq2 means that if there is an entry for x + 1 ≤ y,
then the entry for x ≤ y exists in the heap.

We will show that the formula H actually forces the heap to have a correct table for
addition, multiplication and inequality (the claims (1), (2) and (3) below). The claim (4)
below says that H ensures that if a heap contains an entry for u ≤ u, then it contains all the
entries for t ≤ u.

▶ Lemma 4.3. Let σ be a variable assignment and h be a heap.
(1) If σ, h |= H, h(m) = 0, h(m+1) = n+3 and h(m+2) = k +3, then h(m+3) = n+k +3.

(2) If σ, h |= H, h(m) = 1, h(m+1) = n+3 and h(m+2) = k +3, then h(m+3) = n×k +3.

(3) If σ, h |= H, h(m) = 2, h(m + 1) = n + 3, h(m + 2) = k + 3, then n ≤ k.

(4) If σ, h |= H, σ(t) ≤ σ(u), σ, h |= Ineq(u, u), then σ, h |= Ineq(t, u).

FSCD 2024



18:6 Representation of Peano Arithmetic in Separation Logic

Proof.

(1) We will show the claim by induction on n.
(Base case) Let n = 0. Since h(m) = 0, h(m + 1) = 3, h(m + 2) = k + 3 and
σ, h |= HAdd1, we have σ[a := m, x := n, y := k], h |= s3(a) ↪→ [y]. Hence, we have
h(m + 3) = σ[a := m, x := n, y := k]([y]) = k + 3 = n + k + 3.
(Induction step) Let n > 0. Then, n − 1 ≥ 0. Let σ′ = σ[a := m, x := n − 1, y := k].
Since h(m) = 0, h(m + 1) = n + 3, h(m + 2) = k + 3 and σ, h |= HAdd2, we have
σ′, h |= ∃bz((b ↪→ 0, [x], [y], [z]) ∧ s3(a) ↪→ [s(z)]). There exist q and ℓ such that σ′[b :=
q, z := ℓ], h |= (b ↪→ 0, [x], [y], [z])∧s3(a) ↪→ [s(z)]. That is, h(q) = 0, h(q+1) = (n−1)+3,
h(q + 2) = k + 3, h(q + 3) = ℓ + 3 and h(m + 3) = ℓ + 4. By induction hypothesis, we
have h(q + 3) = (n − 1) + k + 3 = n + k + 2. That is, ℓ = n + k − 1. Thus, we have
h(m + 3) = ℓ + 4 = n + k − 1 + 4 = n + k + 3.

(2) We will show the claim by induction on n.
(Base case) Let n = 0. Since h(m) = 1, h(m + 1) = 3, h(m + 2) = k + 3 and
σ, h |= HMult1, we have σ[a := m, x := n, y := k], h |= s3(a) ↪→ [0]. Hence, we have
h(m + 3) = σ[a := m, x := n, y := k]([0]) = 3 = n × k + 3.
(Induction step) Let n > 0. Then, n − 1 ≥ 0. Let σ′ = σ[a := m, x := n − 1, y := k].
Since h(m) = 1, h(m + 1) = n + 3, h(m + 2) = k + 3 and σ, h |= HMult2, we have
σ′, h |= ∃bz((b ↪→ 1, [x], [y], [z]) ∧ ∃cw((c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w])). There exist
q and ℓ such that σ′[b := q, z := ℓ], h |= (b ↪→ 1, [x], [y], [z]) ∧ ∃cw((c ↪→ 0, [z], [y], [w]) ∧
s3(a) ↪→ [w]). That is, h(q) = 1, h(q + 1) = (n − 1) + 3, h(q + 2) = k + 3, h(q + 3) = ℓ + 3.
So by induction hypothesis, h(q + 3) = (n − 1) × k + 3. Thus ℓ = (n − 1) × k.
Furthermore, since σ′[b := q, z := ℓ], h |= ∃cw((c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w]), we
have σ′[b := q, z := ℓ, c := r, w := p], h |= (c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w] for some
r and p. That is, h(r) = 0, h(r + 1) = ℓ + 3, h(r + 2) = k + 3, h(r + 3) = p + 3 and
h(m+3) = p+3. By (1) of this Lemma, we have p = ℓ+k. With this and ℓ = (n−1)×k,
we have p = (n − 1) × k + k = n × k. Hence, h(m + 3) = p + 3 = n × k + 3.

(3) We will show the claim by induction on n.
(Base case) Let n = 0. We immediately have n ≤ k.
(Induction step) Let n > 0. Then, n − 1 ≥ 0. Let σ′ = σ[a := m, x := n − 1, y := k].
Since h(m) = 2, h(m + 1) = n + 3, h(m + 2) = k + 3 and σ, h |= HIneq1, we have
σ′, h |= ∃zb(y = s(z) ∧ (b ↪→ 2, [x], [z])). Thus, there exist ℓ and q such that σ′[z :=
ℓ, b := p], h |= y = s(z) ∧ (b ↪→ 2, [x], [z]), that is, h(p) = 2, h(p + 1) = (n − 1) + 3,
h(p + 2) = ℓ + 3 = (k − 1) + 3. By induction hypothesis, n − 1 ≤ k − 1, that is, n ≤ k.

(4) We will show the claim by induction on σ(u) − σ(t).
(Base case) Let σ(u) − σ(t) = 0, i.e. σ(t) = σ(u). By assumption, we have σ, h |=
Ineq(u, u). Since σ(t) = σ(u), we have the claim.
(Induction step) Let σ(u) − σ(t) > 0, i.e. σ(t) < σ(u). Since σ(u) − (σ(t) + 1) <

σ(u) − σ(t), we have σ, h |= Ineq(s(t), u) by induction hypothesis. That is, σ, h |=
∃a(a ↪→ 2, [s(t)], [u]). Since σ, h |= HIneq2, we have σ, h |= ∃b(b ↪→ 2, [t], [u]), that is,
σ, h |= Ineq(t, u). ◀

Now we define the translation of normal formulas in PA into formulas in SLN. In the
translation, +, × and ≤ are replaced by Add, Mult and Ineq with the table heap condition.
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▶ Definition 4.4 (Translation (·)◦). Let A be a normal formula in PA. We define SLN formula
(∀xA)◦ as:

B◦ ≡ B≤ if B is quantifier-free,

(∃x ≤ t.B)◦ ≡ H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦),
(∀x ≤ t.B)◦ ≡ H → ∀x(¬Ineq(x, t) ∨ B◦),

(∃(x = t + u)B)◦ ≡ H → ∃x(Add(t, u, x) ∧ B◦),
(∃(x = t × u)B)◦ ≡ H → ∃x(Mult(t, u, x) ∧ B◦),

(∀xA)◦ ≡ ∀xA◦,

where B≤ is obtained from B by replacing each positive occurrence of t ≤ u by H →
¬Ineq(u, t) ∨ t = u.

Example. For a normal formula

A ≡∃(x1 = x + s(x))∃(x2 = x + x1)∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5),

its translation A◦ is

A◦ ≡H → ∃x1(Add(x, s(x), x1) ∧ (H → ∃x2(Add(x, x1, x2) ∧ (H → ∀y(¬Ineq(y, x2)∨
(H → ∃x3(Add(x, y, x3) ∧ (H → ∃x4(Mult(y, x3, x4)∧
(H → ∃x5(Add(x, x4, x5) ∧ (H → ¬Ineq(x5, 0) ∨ 0 = x5)))))))))))).

Our goal is to show that for any Π0
1 formula A of PA, A is valid in PA if and only if A◦ is

valid in SLN. Therefore, A◦ should hold for every heap h. By the definition of (·)◦, x = t + u

and x = t × u are translated into H → Add(t, u, x) and H → Mult(t, u, x), respectively. Thus,
if a heap h does not have a sufficiently large table for x = t + u and x = t × u, the translated
formulas are trivially true. Since we demand that A◦ hold for all heaps, there is h that
contains a sufficiently large table. Furthermore, if the addition and multiplication in the
formula are correct in such a sufficiently large heap, they must be correct in every heap,
because addition and multiplication are numeric properties and do not depend on heaps.
The same is true for inequality. This is the key idea to prove our goal. That is, σ |= A if
and only if σ, h |= A◦ for sufficiently large h if and only if σ, h |= A◦ for all h. We will prove
them in Lemmas 4.10 and 4.11 later.

Since we demand that A◦ hold for all heaps, we define the translation of t ≤ u to be
H → ¬Ineq(u, t) ∨ t = u and we do not straightforwardly define it to be H → Ineq(t, u),
because Ineq(t, u) demands the heap to contain the entry for t ≤ u, which is not possible
if the heap is not sufficiently large. Furthermore, the translation of ∃x ≤ t.B is not simply
H → ∃x(Ineq(x, t) ∧ B) but rather seemingly tricky H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦). If
we adopt the simple translation, we may not be able to find x such that the entry for x ≤ t is
in the heap when it is not sufficiently large. Our idea is to let such a case be true. Therefore,
we allow the case ¬Ineq(t, t), which is true if the heap may not contain some entries for · ≤ t.

First, we estimate the necessary size of the operation table for a given formula and a
given variable assignment. This size is defined in the next definition.

FSCD 2024



18:8 Representation of Peano Arithmetic in Separation Logic

▶ Definition 4.5. Let A be prenex and disjunctive normal form of a bounded formula in PA
and σ be a variable assignment. We define the number max(σ, A) by:

max(σ, t ≤ u) = max{σ(t), σ(u)},

max(σ, t = u) = {0},

max(σ, ¬B) = max(σ, B)
max(σ, B ∧ C) = max{max(σ, B), max(σ, C)}
max(σ, B ∨ C) = max{max(σ, B), max(σ, C)}
max(σ, ∀x ≤ t.B) = max{σ(t), max(σ, B[x := t])},

max(σ, ∃x ≤ t.B) = max{σ(t), max(σ, B[x := t])},

max(σ, ∃(x = t)B) = max{σ(t), max(σ, B[x := t])}.

Example. By using the above definition one by one, we have

max(σ, ∃(x1 = x + s(x))∃(x2 = x + x1)∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5))
= max{σ(x + s(x)), max(σ, ∃(x2 = x + (x + s(x)))∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5))}
= max{σ(x + s(x)), max{σ(x + (x + s(x))), max(σ, ∀y ≤ x + (x + s(x)).

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5))}}
= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),

max(σ, ∃(x3 = x + (x + (x + s(x))))∃(x4 = (x + (x + s(x))) × x3)
∃(x5 = x + x4)(0 ≤ x5))}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max(σ, ∃(x4 = (x + (x + s(x))) × (x + (x + (x + s(x)))))∃(x5 = x + x4)(0 ≤ x5))}}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max{σ((x + (x + s(x))) × (x + (x + (x + s(x))))),
max(σ, ∃(x5 = x + (x + (x + s(x))) × (x + (x + (x + s(x)))))(0 ≤ x5))}}}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max{σ((x + (x + s(x)) × (x + (x + (x + s(x))))),
max{σ(x + (x + (x + s(x))) × (x + (x + (x + s(x))))),
max(σ, 0 ≤ x + (x + (x + s(x))) × (x + (x + (x + s(x)))))}}}}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max{σ((x + s(x)) × (x + (x + (x + s(x))))),
max{σ(x + (x + s(x)) × (x + (x + (x + s(x))))),
max{0, σ(x + (x + (x + s(x))) × (x + (x + (x + s(x)))))}}}}}}}

= σ(x) + (3σ(x) + 1)(4σ(x) + 1).

Next, for a given size n we will define a heap that covers addition of arguments ≤ n2 and
multiplication and inequality of arguments ≤ n. We call it a simple table heap.
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▶ Definition 4.6. For a number n, we define a heap hn as the heap defined by:

hn(x) =



0 (x = 4i, i < (n2 + 1)2)
i mod (n2 + 1) + 3 (x = 4i + 1, i < (n2 + 1)2)
⌊i/(n2 + 1)⌋ + 3 (x = 4i + 2, i < (n2 + 1)2)
hn(x − 2) + hn(x − 1) − 3 (x = 4i + 3, i < (n2 + 1)2)
1 (x = c1 + 4i, i < (n + 1)2)
i mod (n + 1) + 3 (x = c1 + 4i + 1, i < (n + 1)2)
⌊i/(n + 1)⌋ + 3 (x = c1 + 4i + 2, i < (n + 1)2)
(hn(x − 2) − 3) × (hn(x − 1) − 3) + 3 (x = c1 + 4i + 3, i < (n + 1)2)
2 (x = c2 + 3i, i < (n + 1)2)
i mod (n + 1) + 3 (x = c2 + 3i + 1, i < (n + 1)2)
n + 3 (x = c2 + 3i + 2, i < (n + 1)2,

⌊i/(n + 1)⌋ < i mod (n + 1))
⌊i/(n + 1)⌋ + 3 (x = c2 + 3i + 2, i < (n + 1)2,

⌊i/(n + 1)⌋ ≥ i mod (n + 1))
undefined otherwise

where c1 = 4(n2 + 1)2 and c2 = c1 + 4(n + 1)2.

hn has the operation table that has entries of + for arguments ≤ n2 and the entries
of × and ≤ for arguments ≤ n. The i-th entry for + contains the result of addition of
x = i mod (n2 +1) and y = ⌊i/(n2 +1)⌋, that is, h(4i) = 0, h(4i+1) = x+3, h(4i+2) = y +3
and h(4i + 3) = x + y + 3. The i-th entry for × contains the result of multiplication of
x = i mod (n + 1) and y = ⌊i/(n + 1)⌋, that is, h(c1 + 4i) = 0, h(c1 + 4i + 1) = x + 3,
h(c1 +4i+2) = y +3 and h(c1 +4i+3) = x×y +3. The i-th entry for ≤ signifies inequality of
x = i mod (n + 1) and y = ⌊i/(n + 1)⌋ or y = n, where h(c2 + 4i) = 2, h(c2 + 4i + 1) = x + 3,
and h(c2 + 4i + 2) = y + 3 if x ≤ y and h(c2 + 4i + 2) = n + 3 if x > y.

The next lemma shows that the simple table heap hn satisfies the table heap condition H.

▶ Lemma 4.7. For a variable assignment σ, we have σ, hn |= H.

Proof. hn clearly satisfies H. ◀

The next lemma shows that the truth of t + u = v, t × u = v and t ≤ u in PA for
the standard model is equivalent to the truth of their translations in SLN for the standard
interpretation for the simple table heap.

▶ Lemma 4.8. For n ≥ max{σ(t), σ(u)}, the following hold.
(1) σ |= t + u = v if and only if σ, hn |= Add(t, u, v).
(2) σ |= t × u = v if and only if σ, hn |= Mult(t, u, v).
(3) σ |= t ≤ u if and only if σ, hn |= Ineq(t, u).

Proof.
(1) Only-if-direction: Since n ≥ max{σ(t), σ(u)}, by the definition of hn, there exists p such

that σ[a := p], hn |= (a ↪→ 0, [t], [u]). That is, hn(p) = 0, hn(p+1) = σ(t)+3, hn(p+2) =
σ(u) + 3. By the definition of hn, we have hn(p + 3) = σ(t) + σ(u) + 3. By assumption,
σ(t) + σ(u) = σ(v). Therefore, hn(p + 3) = σ(v) + 3. Thus, σ[a := p], hn |= s3(a) ↪→ [v].
Hence, σ, hn |= Add(t, u, v).
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If-direction: Since n ≥ max{σ(t), σ(u)}, by the definition of hn, there exists p such that
σ[a := p], hn |= (a ↪→ 0, [t], [u], [v]). Thus, hn(p) = 0, hn(p + 1) = σ(t) + 3, hn(p + 2) =
σ(u) + 3, hn(p + 3) = σ(v) + 3. By the definition of hn, we have hn(p + 3) = (hn(p + 1) −
3) + (hn(p + 2) − 3) + 3. Since hn(p + 1) = σ(t) + 3 and hn(p + 2) = σ(u) + 3, we have
hn(p + 3) = σ(t) + σ(u) + 3. Thus, we have σ(t) + σ(u) = σ(v). Hence, σ |= t + u = v.

(2) The claim can be shown similarly to (1).
(3) Only-if-direction: Suppose σ(t) ≤ σ(u). Let i = σ(t) · (n + 1) + σ(u). Since n ≥

max{σ(t), σ(u)}, we have i < (n + 1)2. Furthermore, σ(t) = ⌊i/(n + 1)⌋ and σ(u) =
i mod (n+1). For p = 4(n2 +1)2 +4(n+1)2 +3i, we have hn(p) = 2, hn(p+1) = σ(t)+3
by the definition of hn. Since σ(t) ≤ σ(u), we have hn(p + 2) = σ(u) + 3 by the definition
of hn. From this, we have σ, hn |= ∃a(a ↪→ 2, [t], [u]), that is, σ, hn |= Ineq(t, u).
If-direction: Suppose σ, hn |= Ineq(t, u). Since n ≥ max{σ(t), σ(u)}, there exists p such
that hn(p) = 2, hn(p + 1) = σ(t) + 3, hn(p + 2) = σ(u) + 3. By Lemma 4.3 (3), we have
hn(p + 1) ≤ hn(p + 2), that is, σ(t) ≤ σ(u). ◀

The next lemma shows that if Add, Mult and ¬Ineq are true for a sufficiently large simple
table heap, they are also true for all heaps.

▶ Lemma 4.9. For n ≥ max{σ(t), σ(u)}, the following hold.
(1) σ, hn |= Add(t, u, v) if and only if σ, h |= H → Add(t, u, v) for all h.
(2) σ, hn |= Mult(t, u, v) if and only if σ, h |= H → Mult(t, u, v) for all h.
(3) σ, hn |= ¬Ineq(t, u) if and only if σ, h |= H → ¬Ineq(t, u) for all h.

Proof. The if-direction is obvious. We will show the only-if-direction.
(1) Since σ, hn |= Add(t, u, v) by assumption, we have σ(t) + σ(u) = σ(v) by Lemma 4.8 (1).

We fix h in order to show σ, h |= H → Add(t, u, v).
Case 1. If σ, h ̸|= H, the claim follows trivially.
Case 2. Assume σ, h |= H.

Case 2.1 If σ, h |= ∀a¬(a ↪→ 0, [t], [u]), the claim follows trivially, because σ, h |=
∀a((a ↪→ 0, [t], [u]) → s3(a) ↪→ [u]).

Case 2.2 Assume σ, h |= ∃a(a ↪→ 0, [t], [u]). We assume h(p) = 0, h(p + 1) = σ(t) +
3, h(p + 2) = σ(u) + 3 for arbitrary p. Since σ, h |= H, we have h(p + 3) =
(h(p + 1) − 3) + (h(p + 2) − 3) + 3 by Lemma 4.3 (1). Therefore, h(p + 3) =
σ(t) + σ(u) + 3. That is, h(p + 3) = σ(v) + 3. Thus σ, h |= s3(a) ↪→ [v]. Then, we
have σ[a := p], h |= (a ↪→ 0, [t], [u]) → s3(a) ↪→ [v] for all p.

Hence in both cases σ, h |= H → Add(t, u, v).
(2) The claim can be shown similarly to (1) (except it uses Lemma 4.3 (2)).
(3) By Lemma 4.8 (3), we have σ |= ¬(t ≤ u). We fix h in order to show σ, h |= H →

¬Ineq(t, u).
Case 1. If σ, h ̸|= H, the claim follows trivially.
Case 2. Assume σ, h |= H. Assume σ, h |= Ineq(t, u) for contradiction. Then, there is q

such that h(q) = 2, h(q + 1) = σ(t) + 3, h(q + 2) = σ(u) + 3. By Lemma 4.3 (3), we
have σ(t) ≤ σ(u), a contradiction. ◀

The next lemma says that the truth in PA is equivalent to the truth of the translation in
SLN for a large simple table heap.

▶ Lemma 4.10. For a normal formula A in PA and n ≥ max(σ, A), σ |= A if and only if
σ, hn |= A◦.
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Proof. We will show the claim by induction on A.
Case 1. A is quantifier-free. We will only show the cases for A ≡ (t ≤ u) since the cases t = u

and t ̸= u are obvious and the cases A∧B and A∨B follow from the induction hypothesis.
σ |= t ≤ u is equivalent to σ |= ¬(u ≤ t) ∨ t = u. Since n ≥ max{σ(t), σ(u)}, by Lemma
4.8 (3), σ |= ¬(u ≤ t) is equivalent to σ, hn |= ¬Ineq(u, t). Hence, σ |= t ≤ u is equivalent
to σ, hn |= ¬Ineq(u, t)∨ t = u. Since σ, hn |= H by Lemma 4.7, σ, hn |= ¬Ineq(u, t)∨ t = u

is equivalent to σ, hn |= H → ¬Ineq(u, t) ∨ t = u.
Case 2. A ≡ ∃x ≤ t.B.

Only-if-direction: By assumption, there is k such that σ[x := k] |= x ≤ t ∧ B. That is,
σ[x := k] |= x ≤ t and σ[x := k] |= B. Thus, we have k ≤ σ(t). Since n ≥ max(σ[x :=
k], B), by induction hypothesis, we have σ[x := k], hn |= B◦. Furthermore, by Lemma
4.8 (3), σ[x := k], hn |= Ineq(x, t). Thus, we have σ[x := k], hn |= Ineq(x, t) ∧ B◦. Hence,
σ[x := k], hn |= ¬Ineq(t, t) ∨ (Ineq(x, t) ∧ B◦).
If-direction: Suppose σ[x := k], hn |= H → ¬Ineq(t, t) ∨ (Ineq(x, t) ∧ B◦) for some k.
Since σ[x := k], hn |= H, we have σ[x := k], hn |= ¬Ineq(t, t) ∨ (Ineq(x, t) ∧ B◦). Since
n ≥ max(σ, A) ≥ σ(t), by the definition of hn, σ[x := k], hn |= Ineq(t, t). Thus, we
have σ[x := k], hn |= Ineq(x, t) ∧ B◦. Since σ[x := k], hn |= Ineq(x, t), by Lemma 4.8
(3), we have k ≤ σ(t). Then, since k ≤ σ(t) ≤ n, by the induction hypothesis for B,
σ[x := k] |= x ≤ t ∧ B.

Case 3. A ≡ ∀x ≤ t.B. We will show the claim: for all k, σ[x := k] |= ¬(x ≤ t) ∨ B if
and only if σ[x := k], hn |= ¬Ineq(x, t) ∨ B◦. If k ≤ n, then by Lemma 4.8 (3) and
the induction hypothesis for B, the claim holds. If k > n, then since k > n ≥ σ(t),
we have σ[x := k] |= ¬(x ≤ t). On the other hand, by the definition of hn, we have
σ[x := k], hn |= ¬Ineq(x, t). So the claim holds.

Case 4. A ≡ ∃(x = t + u)B. σ |= ∃(x = t + u)B is equivalent to σ[x := k] |= x =
t + u and σ[x := k] |= B for some k. Since n ≥ max{σ(t), σ(u)}, by Lemma 4.8 (1),
σ[x := k] |= x = t + u is equivalent to σ[x := k], hn |= Add(t, u, x). Furthermore, since
n ≥ max(σ[x := k], B), by induction hypothesis for B, σ[x := k] |= B is equivalent to
σ[x := k], hn |= B◦. Therefore, σ |= A is equivalent to σ[x := k], hn |= Add(t, u, x) ∧ B◦

for some k, which is equivalent to σ, hn |= ∃x(Add(t, u, x) ∧ B◦).
Case 5. A ≡ ∃(x = y × z)B. This case can be shown similarly to Case 4 (except it uses

Lemma 4.8 (2)). ◀

The next lemma says that for the translation of a normal formula in PA, the truth for a
large simple table heap is the same as the truth for all heaps in the standard interpretation
of SLN.

▶ Lemma 4.11. Let A be a normal formula in PA and n ≥ max(σ, A). Then, σ, hn |= A◦ if
and only if σ, h |= A◦ for all h.

Proof. The if-direction is trivial. We will show the only-if-direction by induction on A.
Case 1. A is quantifier-free. We will only show the cases for A ≡ (t ≤ u) since the cases

t = u and t ̸= u are obvious and the cases A ∧ B and A ∨ B follow from the induction
hypothesis. Since σ, hn |= H by Lemma 4.7, σ, hn |= H → ¬Ineq(u, t) ∨ t = u is
equivalent to σ, hn |= ¬Ineq(u, t) ∨ t = u. Since n ≥ max{σ(t), σ(u)}, by Lemma 4.9 (3),
σ, hn |= ¬Ineq(u, t) is equivalent to σ, h |= H → ¬Ineq(u, t) for all h. Clearly, σ, hn |= t = u

is equivalent to σ, h |= t = u for all h. Therefore, we have σ, h |= (H → ¬Ineq(u, t))∨t = u

for all h, which is equivalent to σ, h |= H → ¬Ineq(u, t) ∨ t = u for all h.
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Case 2. A ≡ ∃x ≤ t.B. Suppose σ, hn |= H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦). Since
σ, hn |= H and σ, hn |= Ineq(t, t), we have σ, hn |= ∃x(Ineq(x, t) ∧ B◦), that is, for
some k, σ[x := k], hn |= Ineq(x, t) ∧ B◦. Let this fact be (a). We fix h in order to
show σ, h |= H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦). Assume σ, h |= H. If σ, h |=
¬Ineq(t, t), the claim trivially holds. Consider the case σ, h |= Ineq(t, t). By (a), we have
σ[x := k], hn |= Ineq(x, t). Thus, by Lemma 4.8 (3), k ≤ σ(t). By the case condition,
σ, h |= Ineq(t, t). Then, by Lemma 4.3 (4), we have σ[x := k], h |= Ineq(x, t). Moreover,
since n ≥ max(σ[x := k], B), by induction hypothesis, we have σ[x := k], h′ |= B◦ for all
h′. Therefore, we have σ[x := k], h |= B◦. Thus, we have σ[x := k], h |= Ineq(x, t) ∧ B◦,
that is, σ, h |= ∃x(Ineq(x, t) ∧ B◦).

Case 3. A ≡ ∀x ≤ t.B. Suppose σ, hn |= H → ∀x(¬Ineq(x, t) ∨ B◦). Since σ, hn |= H, we
have σ, hn |= ∀x(¬Ineq(x, t)∨B◦). We fix h in order to show σ, h |= H → ∀x(¬Ineq(x, t)∨
B◦). Assume σ, h |= H. We fix k in order to show σ[x := k], h |= ¬Ineq(x, t) ∨ B◦. We
consider the cases for σ[x := k], h |= Ineq(x, t) and σ[x := k], h |= ¬Ineq(x, t) separately.
Case 3.1. The case σ[x := k], h |= Ineq(x, t). Then, there is p such that h(p) = 2,

h(p + 1) = σ[x := k](x) + 3 = k + 3, h(p + 2) = σ[x := k](t) + 3 = σ(t) + 3. By Lemma
4.3 (3), we have k ≤ σ(t). Hence, by Lemma 4.8 (3), we have σ[x := k], hn |= Ineq(x, t).
Then, σ[x := k], hn |= B◦ must be the case. Since k ≤ σ(t) ≤ n, we apply the
induction hypothesis to B and obtain σ[x := k], h′ |= B◦ for all h′. Hence, we have
σ[x := k], h |= B◦. Then, we have the desired result σ[x := k], h |= ¬Ineq(x, t) ∨ B◦.

Case 3.2. If σ[x := k], h |= ¬Ineq(x, t), then σ[x := k], h |= ¬Ineq(x, t) ∨ B◦ trivially
holds.

Hence in both cases, we have σ[x := k], h |= ¬Ineq(x, t) ∨ B◦.
Case 4. A ≡ ∃(x = t + u)B. Then, A◦ ≡ H → ∃x(Add(t, u, x) ∧ B◦). We fix h and assume

σ, h |= H in order to show σ, h |= ∃x(Add(t, u, x)∧B◦). Since σ, hn |= H, we have σ, hn |=
∃x(Add(t, u, x) ∧ B◦). That is, there exists k such that σ[x := k], hn |= Add(t, u, x) ∧ B◦,
which is equivalent to σ[x := k], hn |= Add(t, u, x) and σ[x := k], hn |= B◦. By Lemma
4.9 (1), σ[x := k], hn |= Add(t, u, x) is equivalent to σ[x := k], h′ |= H → Add(t, u, x) for
all h′. Since we assumed σ, h |= H, we have σ[x := k], h |= Add(t, u, x). Moreover, since
n ≥ max(σ[x := k], B), by induction hypothesis for B, we have σ[x := k], h′ |= B◦ for all
h′. Thus, we have σ[x := k], h |= B◦. Therefore, we have σ[x := k], h |= Add(t, u, x) ∧ B◦,
that is, σ, h |= ∃x(Add(t, u, x) ∧ B◦).

Case 5. A ≡ ∃(x = y × z)B. This case can be shown similarly to Case 4 (except it uses
Lemma 4.9 (2)). ◀

Now we have the main lemma, which says that the truth of a normal formula with ∀ in
PA for the standard model is the same as the truth of its translation in SLN for the standard
interpretation for all heaps.

▶ Lemma 4.12. If A is a normal formula in PA, σ |= ∀xA if and only if σ, h |= (∀xA)◦ for
all h.

Proof. σ |= ∀xA is equivalent to σ[x := k] |= A for all k ∈ N. We fix k. Let n ≥ max(σ[x :=
k], A). By Lemma 4.10, σ[x := k] |= A is equivalent to σ[x := k], hn |= A◦. Then, by
Lemma 4.11, this is equivalent to σ[x := k], h |= A◦ for all h. Therefore, σ[x := k] |= A is
equivalent to σ[x := k], h |= A◦ for all h. Hence, σ[x := k] |= A for all k is equivalent to
σ[x := k], h |= A◦ for all h for all k. Thus, σ |= ∀xA is equivalent to σ, h |= ∀xA◦ for all h,
that is, σ, h |= (∀xA)◦ for all h. ◀
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5 Translation from PA into SLN

In this section, we will present the translation of a Π0
1 formula in PA to a formula in SLN

and prove that the translation preserves the validity and the non-validity. In order to define
the translation, first we will define a translation of a Π0

1 formula in PA into an equivalent
normal formula with one universal quantifier in PA. Finally we will define the translation by
combining the two translations and will present the main theorem, which says a Π0

1 formula
in PA can be simulated in the weak fragment SLN of separation logic. We also discuss a
counterexample for the translation when we extend it to Σ0

1 formulas.
First we will transform a Π0

1 formula in PA into a normal formula with one universal
quantifier in PA. For simplicity, we use vector notation −→e for a sequence e1, ..., en of objects.

▶ Proposition 5.1. If A is a bounded formula in PA, there is a normal formula B such that
A ↔ B is valid.

Proof. First, transform A into a prenex normal form and replace ¬(t ≤ u) by u ≤ t∧u ≠ t to
obtain A′ ≡

−−−−→
Qx ≤ t.C, where C is a quantifier-free disjunctive normal form without formulas

of the form ¬(t ≤ u). Choose the leftmost occurrence among the innermost occurrences of
u + v or u × v in A′ and explicitly denote it by A′[u + v] or A′[u × v].

Let A′[z] be the formula obtained from A′[u + v] or A′[u × v] by replacing the occurrence
of u + v or u × v in A′ by a fresh z. Define

−−−−−→
Qx′ ≤ t′.D by A′[z] ≡

−−−−−→
Qx′ ≤ t′.D where

−−−−−→
Qx′ ≤ t′

is the longest prefix such that z is not in t′, namely, it has the longest
−−−−−→
Qx′ ≤ t′ among such−−−−−→

Qx′ ≤ t′’s. We transform D into ∃(z = u + v)D or ∃(z = u × v)D.
We repeat this process until we have the form

−−−−−−−−−−−−−−→
{Qx ≤ y, ∃(x = t)}A′′, where t is of the

form a + b or a × b for some terms a, b that do not contain + or ×, and A′′ and u do not
contain +, ×. Define B as this result. ◀

We define the translation A2 by using the proof of the previous proposition.

▶ Definition 5.2 (Translation (·)□). Let A ≡ ∀xB be a Π0
1 formula in PA, where B contains

only bounded quantifiers. Let B′ be a normal form of B obtained by the procedure described
in the proof of Proposition 5.1. We define A□ ≡ ∀xB′.

Example. For a formula

A ≡ ∀y ≤ x + (x + s(x)).(0 ≤ x + (y × (x + y))),

its translation A2 is

A2 ≡∃(x1 = x + s(x))∃(x2 = x + x1)∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5).

Now, we have the main theorem which says that Π0
1 formulas can be translated into SLN

formulas preserving the validity and the non-validity.

▶ Theorem 5.3. For a Π0
1 formula A in PA, A is valid in the standard model of PA if and

only if A□◦ is valid in the standard interpretation of SLN.

Proof. By Proposition 5.1 and Lemma 4.12. ◀

As a by-product of the above theorem, we have the undecidability of SLN.
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▶ Corollary 5.4. The validity of SLN formulas is undecidable.

Proof. Given a Turing machine, its halting problem statement P is Σ0
1, since it can be

expressed as ∃z.T (e, e, z), where e is the index of the given Turing machine and T is Kleene’s
T-predicate which is primitive recursive (for rigorous definition, see e.g. [13]). Thus, ¬P is
Π0

1. By Theorem 5.3, ¬P is valid in PA if and only if (¬P )□◦ is valid in SLN. If the validity in
SLN is decidable, we can decide whether P is true in the standard model and this contradicts
the undecidability of the halting problem. Hence the validity in SLN is undecidable. ◀

We have just proved that Π0
1 formulas can be translated preserving the validity and

the non-validity. We might extend the translation (·)◦ by (∃xA)◦ ≡ ∃xA◦. However, the
extended translation does not preserve the validity and the non-validity, which is shown in
the next proposition.

▶ Proposition 5.5. There is some Σ0
1 closed formula A such that A is not valid in PA but

A□◦ is valid in SLN.

Proof. Consider the formula A ≡ ∃x(x + 0 ̸= x). This sentence is clearly not valid in
PA. However, we can prove that σ, h |= A□◦ for all σ, h as follows. By the procedure
in the proof of Proposition 5.1, A□ ≡ ∃x∃(z = x + 0)(z ̸= x). Thus, A□◦ ≡ ∃x(H →
∃z(Add(x, 0, z) ∧ z ≠ x)). We fix σ, h in order to prove σ, h |= A□◦. Let n = max{k | h(p) =
0, h(p + 1) = k + 3, h(p + 2) = 3} + 1, and m = n + 1. Let σ′ = σ[x := n, z := m].
We will show σ′, h |= Add(x, 0, z) ∧ z ̸= x assuming σ′, h |= H. By choice of n, we have
σ′, h |= ∀a¬(a ↪→ 0, s3(n), 3). Thus, σ′, h |= Add(n, 0, m) holds, because the premise of
Add(n, 0, m) is false. Therefore, σ′, h |= Add(x, 0, z). Furthermore, clearly σ′, h |= z ̸= x.
Hence, σ, h |= A□◦ for all h. ◀

6 Another undecidability proof

In this section, we will give another proof of the undecidability of the validity of SLN given
in Corollary 5.4, where it can be proved in a way similar to that in [7]. This proof is simpler
than the proof of Theorem 5.3, but this proof cannot show the representation of Peano
arithmetic in the separation logic SLN with numbers.

A first-order language L is defined as that with a binary predicate symbol P and without
any constants or function symbols. Namely,

Terms t ::= x.
Formulas A ::= t = t | P (t, t) | ¬A | A ∧ A | ∃x.A.
A finite structure is defined as (U, R) where U ⊆ N and U is finite and R ⊆ U2. σ is a

variable assignment of (U, R) if σ : Vars → U . We define σ0 as σ0(x) = 0 for all variables x.
We write M, σ |= A to denote that a formula A is true by a variable assignment σ of a

structure M .
The idea of this proof is to encode a finite structure (U, R) for the language L by a heap

h such that
n ∈ U iff h has some entry of 0, n + 2, and

(n, m) ∈ R iff h has some entry of 1, n + 2, m + 2.
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▶ Definition 6.1. For a given finite structure M = (U, R) of L, we define the heap hM by

Dom(h) = {0, 1, . . . , 2k + 3l − 1},

hM (x) = 0 (x = 2i, i < k),
hM (x) = pi + 2 (x = 2i + 1, i < k),
hM (x) = 1 (x = 2k + 3i, i < l),
hM (x) = ni + 2 (x = 2k + 3i + 1, i < l),
hM (x) = mi + 2 (x = 2k + 3i + 2, i < l),

where U = {pi | i < k} and R = {(ni, mi) | i < l}.

The heap hM has information of a given structure M .

▶ Definition 6.2. For a given heap h, if σ0, h |= ∃ax(a ↪→ 0, s2(x)), we define a structure
Mh = (Uh, Rh) by

Uh = {n | σ0[x := n], h |= ∃a(a ↪→ 0, s2(x))},

Rh = {(n, m) | σ0[x := n, y := m], h |= ∃a(a ↪→ 1, s2(x), s2(y))}.

The structure Mh is a structure represented by a given heap h.
We define a translation (·)△ from L into SLN.

▶ Definition 6.3. For a formula A in the language L, we define the formula A△ in SLN by

(x = y)△ ≡ x = y ∧ ∃a(a ↪→ 0, s2(x)),
(P (x, y))△ ≡ ∃a(a ↪→ 1, s2(x), s2(y)) ∧ ∃b(b ↪→ 0, s2(x)) ∧ ∃c(c ↪→ 0, s2(y)),
(∃x.A)△ ≡ ∃x(∃a(a ↪→ 0, s2(x)) ∧ A△),
(¬A)△ ≡ ¬A△,

(A ∧ B)△ ≡ A△ ∧ B△.

The next is a well-known theorem for finite structures [9].

▶ Theorem 6.4 (Trakhtenbrot). The validity of formulas in the language L for every finite
structure is undecidable.

The next lemma shows the equivalence for any formulas.

▶ Lemma 6.5. M, σ |= A for all finite M for all variable assignments σ of M iff σ, h |=
∃ax(a ↪→ 0, s2(x)) →

∧
x∈FV(A)

∃a(a ↪→ 0, s2(x)) → A△ for all h and all variable assignments

σ.

Proof. If-direction: For a given finite structure M , we can construct the heap hM and by
induction on A we can show that σ, hM |= A△ iff M, σ |= A, for every variable assignment σ

of M .
Only-if-direction: For a given heap h such that σ0, h |= ∃ax(a ↪→ 0, s2(x)), we can

construct the finite structure Mh and by induction on A we can show that Mh, σ |= A iff
σ, h |= A△, for every variable assignment σ of Mh. To show the only-if-direction in the
statement of the lemma by using this claim, from the assumption σ0, h |= ∃ax(a ↪→ 0, s2(x)),
we have p, q such that h(p) = 0 and h(p + 1) = q + 2, and for a given σ we apply this
claim with the variable assignment σ′ of Mh such that σ′(x) = σ(x) (x ∈ FV(A)) and
σ′(x) = q (otherwise). ◀
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Another proof of Corollary 5.4. Taking a closed formula A in Lemma 6.5, we have the
equivalence: A is true in all finite structure M iff ∃ax(a ↪→ 0, s2(x)) → A△ is valid in the
standard interpretation of SLN.

By Theorem 6.4, the validity of SLN for the standard interpretation is undecidable. ◀

7 Conclusion

We have presented the translation from Π0
1 formulas in PA into formulas in the fragment

SLN of separation logic with numbers, which has only ↪→, 0 and the successor function, and
proved that this translation preserves the validity and the non-validity for the standard model
of PA and the standard interpretation of SLN. By this, we have shown that Π0

1 formulas in
Peano arithmetic can be simulated by SLN. As a corollary, we have proved the validity of
SLN is undecidable. We have also given a counterexample when we extend this translation
to Σ0

1 formulas.
Future work would be to present a translation from other logical systems into SLN, and

prove the preservation of the validity and the non-validity by extending our technique used in
this paper. Another future work would be to try to show the validity of SLN is Π0

1-complete.

References
1 Timos Antonopoulos, Nikos Gorogiannis, Christoph Haase, Max I. Kanovich, and Joël Ou-

aknine. Foundations for decision problems in separation logic with general inductive predicates.
In Anca Muscholl, editor, Foundations of Software Science and Computation Structures – 17th
International Conference, FOSSACS 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Pro-
ceedings, volume 8412 of Lecture Notes in Computer Science, pages 411–425. Springer, 2014.
doi:10.1007/978-3-642-54830-7_27.

2 Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable fragment of separation
logic. In Kamal Lodaya and Meena Mahajan, editors, FSTTCS 2004: Foundations of Software
Technology and Theoretical Computer Science, 24th International Conference, Chennai, India,
December 16-18, 2004, Proceedings, volume 3328 of Lecture Notes in Computer Science, pages
97–109. Springer, 2004. doi:10.1007/978-3-540-30538-5_9.

3 Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Symbolic execution with separation
logic. In Kwangkeun Yi, editor, Programming Languages and Systems, Third Asian Symposium,
APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, volume 3780 of Lecture
Notes in Computer Science, pages 52–68. Springer, 2005. doi:10.1007/11575467_5.

4 Rémi Brochenin, Stéphane Demri, and Étienne Lozes. On the almighty wand. Inf. Comput.,
211:106–137, 2012. doi:10.1016/j.ic.2011.12.003.

5 Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. Compositional
shape analysis by means of bi-abduction. J. ACM, 58(6):26:1–26:66, 2011. doi:10.1145/
2049697.2049700.

6 Cristiano Calcagno, Philippa Gardner, and Matthew Hague. From separation logic to first-
order logic. In Vladimiro Sassone, editor, Foundations of Software Science and Computational
Structures, 8th International Conference, FOSSACS 2005, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005,
Proceedings, volume 3441 of Lecture Notes in Computer Science, pages 395–409. Springer,
2005. doi:10.1007/978-3-540-31982-5_25.

7 Cristiano Calcagno, Hongseok Yang, and Peter W. O’Hearn. Computability and complexity
results for a spatial assertion language for data structures. In The Second Asian Workshop on
Programming Languages and Systems, APLAS’01, Korea Advanced Institute of Science and
Technology, Daejeon, Korea, December 17-18, 2001, Proceedings, pages 289–300, 2001.

https://doi.org/10.1007/978-3-642-54830-7_27
https://doi.org/10.1007/978-3-540-30538-5_9
https://doi.org/10.1007/11575467_5
https://doi.org/10.1016/j.ic.2011.12.003
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1145/2049697.2049700
https://doi.org/10.1007/978-3-540-31982-5_25


S. Ito and M. Tatsuta 18:17

8 Byron Cook, Christoph Haase, Joël Ouaknine, Matthew J. Parkinson, and James Worrell.
Tractable reasoning in a fragment of separation logic. In Joost-Pieter Katoen and Barbara
König, editors, CONCUR 2011 – Concurrency Theory – 22nd International Conference,
CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings, volume 6901 of Lecture
Notes in Computer Science, pages 235–249. Springer, 2011. doi:10.1007/978-3-642-23217-6_
16.

9 Heinz-Dieter Ebbinghaus and Jörg Flum. Finite Model Theory. Springer-Verlag, 1995.
10 Radu Iosif, Adam Rogalewicz, and Jirí Simácek. The tree width of separation logic with

recursive definitions. In Maria Paola Bonacina, editor, Automated Deduction – CADE-24 –
24th International Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14,
2013. Proceedings, volume 7898 of Lecture Notes in Computer Science, pages 21–38. Springer,
2013. doi:10.1007/978-3-642-38574-2_2.

11 Koji Nakazawa, Makoto Tatsuta, Daisuke Kimura, and Mitsuru Yamamura. Spatial factoriza-
tion in cyclic-proof system for separation logic. Computer Software, 37(1):1_125–1_144, 2020.
doi:10.11309/jssst.37.1_125.

12 Peter W. O’Hearn. Separation logic. Commun. ACM, 62(2):86–95, 2019. doi:10.1145/
3211968.

13 Joseph R. Shoenfield. Mathematical Logic. Addison-Wesley, 1967.
14 Makoto Tatsuta and Daisuke Kimura. Separation logic with monadic inductive definitions

and implicit existentials. In Xinyu Feng and Sungwoo Park, editors, Programming Languages
and Systems – 13th Asian Symposium, APLAS 2015, Pohang, South Korea, November 30 –
December 2, 2015, Proceedings, volume 9458 of Lecture Notes in Computer Science, pages
69–89. Springer, 2015. doi:10.1007/978-3-319-26529-2_5.

15 Makoto Tatsuta, Quang Loc Le, and Wei-Ngan Chin. Decision procedure for separation logic
with inductive definitions and presburger arithmetic. In Atsushi Igarashi, editor, Programming
Languages and Systems – 14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November
21-23, 2016, Proceedings, volume 10017 of Lecture Notes in Computer Science, pages 423–443,
2016. doi:10.1007/978-3-319-47958-3_22.

16 Makoto Tatsuta, Koji Nakazawa, and Daisuke Kimura. Completeness of cyclic proofs for
symbolic heaps with inductive definitions. In Anthony Widjaja Lin, editor, Programming
Languages and Systems – 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia,
December 1-4, 2019, Proceedings, volume 11893 of Lecture Notes in Computer Science, pages
367–387. Springer, 2019. doi:10.1007/978-3-030-34175-6_19.

FSCD 2024

https://doi.org/10.1007/978-3-642-23217-6_16
https://doi.org/10.1007/978-3-642-23217-6_16
https://doi.org/10.1007/978-3-642-38574-2_2
https://doi.org/10.11309/jssst.37.1_125
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
https://doi.org/10.1007/978-3-319-26529-2_5
https://doi.org/10.1007/978-3-319-47958-3_22
https://doi.org/10.1007/978-3-030-34175-6_19

	1 Introduction
	2 Peano arithmetic
	3 Separation logic with numbers
	4 Translation of Normal Formulas in PA into SLN
	5 Translation from PA into SLN
	6 Another undecidability proof
	7 Conclusion

