
Abstraction-Based Decision Making for
Statistical Properties
Filip Cano #

Graz University of Technology, Austria

Thomas A. Henzinger #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Bettina Könighofer #

Graz University of Technology, Austria

Konstantin Kueffner #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Kaushik Mallik #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract

Sequential decision-making in probabilistic environments is a fundamental problem with many
applications in AI and economics. In this paper, we present an algorithm for synthesizing sequential
decision-making agents that optimize statistical properties such as maximum and average response
times. In the general setting of sequential decision-making, the environment is modeled as a random
process that generates inputs. The agent responds to each input, aiming to maximize rewards and
minimize costs within a specified time horizon. The corresponding synthesis problem is known to be
PSPACE-hard. We consider the special case where the input distribution, reward, and cost depend
on input-output statistics specified by counter automata. For such problems, this paper presents the
first PTIME synthesis algorithms. We introduce the notion of statistical abstraction, which clusters
statistically indistinguishable input-output sequences into equivalence classes. This abstraction allows
for a dynamic programming algorithm whose complexity grows polynomially with the considered
horizon, making the statistical case exponentially more efficient than the general case. We evaluate
our algorithm on three different application scenarios of a client-server protocol, where multiple
clients compete via bidding to gain access to the service offered by the server. The synthesized
policies optimize profit while guaranteeing that none of the server’s clients is disproportionately
starved of the service.

2012 ACM Subject Classification Theory of computation → Online algorithms; Theory of computa-
tion → Computational pricing and auctions; Theory of computation → Abstraction

Keywords and phrases Abstract interpretation, Sequential decision making, Counter machines

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.2

Category Invited Talk

Supplementary Material
Software: https://github.com/filipcano/abstraction-based-decision-making-FSCD24

archived at swh:1:dir:1113fa6039e8d3792e47a1fed24cc5210159ebef

Funding This work is partly supported by the European Research Council under Grant No.: ERC-
2020-AdG 101020093. It is also partially supported by the State Government of Styria, Austria –
Department Zukunftsfonds Steiermark.

© Filip Cano, Thomas A. Henzinger, Bettina Könighofer, Konstantin Kueffner, and Kaushik Mallik;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:filip.cano@iaik.tugraz.at
https://orcid.org/0000-0002-0783-904X
mailto:tah@ist.ac.at
https://orcid.org/0000-0002-2985-7724
mailto:bettina.koenighofer@iaik.tugraz.at
https://orcid.org/0000-0001-5183-5452
mailto:Konstantin.Kueffner@ist.ac.at
https://orcid.org/0000-0001-8974-2542
mailto:kaushik.mallik@ist.ac.at
https://orcid.org/0000-0001-9864-7475
https://doi.org/10.4230/LIPIcs.FSCD.2024.2
https://github.com/filipcano/abstraction-based-decision-making-FSCD24
https://archive.softwareheritage.org/swh:1:dir:1113fa6039e8d3792e47a1fed24cc5210159ebef;origin=https://github.com/filipcano/abstraction-based-decision-making-FSCD24;visit=swh:1:snp:bfc0bbde2691d723667085bb04a31ef1cc5bee60;anchor=swh:1:rev:38631c93da6d4784cfce6943684098d91fe36552
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Abstraction-Based Decision Making for Statistical Properties

1 Introduction

Sequential decision-making is a core algorithmic task in many AI-based planning and control
problems with uncertain environments. The environment produces a sequence of inputs one
at a time, and the decision-making agent needs to produce outputs on each of the inputs
as soon as they arrive – without having seen the inputs from the future. We consider the
finite-horizon setting, where the decision horizon, i.e., the total number of inputs to appear,
is finite and fixed apriori.

The problem of computing an optimal decision-making agent in the sequential setting is
known to be PSPACE-hard. Our contribution is to introduce a class of statistical properties
for which the same problem can be solved in polynomial time. A property is called statistical
if its satisfaction can be measured by keeping track of small statistics, typically a fixed set of
states and a fixed set of counter values. The class of statistical properties not only includes
every regular property but also includes richer quantitative properties like maximum and
average response times. We present a new synthesis algorithm for sequential decision-makers
whose constraint, objective function, and environment model can all be captured using
statistical properties. The complexity of our algorithm, which is based on a notion of
statistical abstraction, grows only polynomially with respect to the considered horizon.

The problem setting. The inputs to our synthesis algorithm are a probabilistic model of
the environment generating a random sequence of inputs, a horizon length, a qualitative
constraint function, and a quantitative objective function over the generated input-output
sequence. The environment model, the constraint, and the objective function are required to
be given as statistical properties, which guarantee that their outputs depend only on some
small statistics about the past sequence of inputs and outputs. Since our statistical properties
include regular properties, the qualitative constraint can be any finite-state constraint.
Henceforth, we will refer to the constraint and the objective function as cost constraint and
reward, respectively. We propose a synthesis procedure to compute a decision maker that,
at each step, reads the current environment input and computes an output such that the
expected reward is maximized over all possible futures that satisfy the cost constraint up to
the given horizon. If no such future is possible, the decision maker outputs “fail.”

Example – Synthesis of responsive servers. We consider a simple client-server model,
inspired by online advertisements [10], where multiple clients (i.e., the advertisers) compete
via a bidding mechanism to access a certain service (i.e., the act of putting up the ads)
hosted by the server (i.e., the advertisement publisher). A greedy server would always accept
the highest bidder to maximize its profit, but this could potentially starve the weaker clients,
monopolize the market, and ultimately result in overall bad ratings that are harmful to its
business in the long run. We consider three different synthesis problems for designing servers
that strike a balance between profit-making and maintaining acceptable service quality for
all clients – both aspects being representable as statistical properties.

Synthesis problem I: Balanced servers. We say that a server is balanced if the individual
frequencies of the clients getting access are similar. A balanced server ensures that no client
experiences a significantly lower number of server accesses compared to the other clients.
Given a time horizon t, a constant probability distribution over the prices that the clients
will offer, and given a bound on the “imbalance,” how do we compute a server policy that
will maximize the expected profit while keeping the imbalance within bounds in time t?

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:3

Synthesis problem II: Maximally responsive servers. While the balanced server guarantees
that each client would get a similar total number of accesses by the end of the horizon, the
clients may end up waiting for longer periods. Maximally responsive servers minimize the
maximal waiting time for each client. As a trade-off, the server may need to occasionally
select the client offering a lower price. We quantify this trade-off using the opportunity cost,
defined as the extra profit the server could make by selecting the client offering the highest
price at a given stage. Given a time horizon t, a constant distribution over prices that the
clients will offer, and a bound k on the total opportunity costs, how do we compute a server
policy that is maximally responsive while making sure that the sum of opportunity costs
after time t does not exceed k?

Synthesis problem III: Clientele-aware servers. So far, the probability distribution over
the offer prices by the clients was assumed to remain constant. The more realistic setting
is when the clients adjust their prices based on their past experiences with the service: a
dissatisfied client would lower the offer prices in the future whereas a satisfied client would
be willing to pay more. Therefore, a far-sighted server policy should limit its initial rejection
rates to keep up the expected offer prices in the future – even if this may need sacrificing the
profit in the beginning. We consider the setting with just one client and assume that the
server has a budget of N on the number of times the client can be accepted. Given a time
horizon t and a model of how the past decisions affect the future price distributions, how
do we compute a server policy that will maximize the expected profit while accepting the
client’s request for at most N times?

Algorithmic solution and complexity. We present synthesis algorithms for the case that
the probability distribution of the environment, the reward, and the cost constraint are all
provided as statistical properties. For the general class of properties, the optimal decision of
the agent at any point may need to consider every possible sequence of future inputs and
outputs. This causes an expensive blow-up that is unavoidable in general, as the problem is
known to be PSPACE-hard [12].

Our key insight is that for properties we call statistical, such as the maximum response
time of a server, the computational blow-up can be avoided by using a statistical abstraction of
the history. Such an abstraction of the observed input-output sequences combines statistically
indistinguishable sequences into the same equivalence classes. For properties for which the
number of equivalence classes grows polynomially with time, we obtain a polynomial-time
algorithm for computing the optimal decision maker. Any property that can be described
using a constant number of counters (like the maximum response time in the aforementioned
client-server examples) and a constant number of states (like regular languages) falls into
this category. In contrast, any order-dependent property (like a discounted sum) would have
an exponentially growing number of equivalence classes. Note, that there are other common
“statistics,” such as variance, which are more complicated to compute and do not lie within
our class of statistical properties.

We show how to adapt the standard dynamic programming algorithm to work on the
abstracted domain, rather than on the full history. We also show a correspondence between
the size of the abstraction and the size of the representation of statistical properties using
counter automata.

Experiments. We evaluated our method on the three examples described above. For
each example, we compared the computational performances of the dynamic programming
algorithm with and without using a statistical abstraction. Without the abstraction, the

FSCD 2024

2:4 Abstraction-Based Decision Making for Statistical Properties

algorithm runs out of memory (with a memory limit of 200 GB) for horizon lengths less than
10 in all cases. With the abstraction, however, the algorithm manages much larger instances,
exceeding 400 in all cases and reaching up to 60000 for the balanced server.

Furthermore, we demonstrate how our decision-makers fare in simulations. For balanced
servers, we demonstrate that our synthesized policy maintains balance while achieving
performance similar to that of a greedy policy. Additionally, it significantly outperforms
a policy synthesized to be balanced on expectation. For maximally responsive servers, we
show how our method produces policies that can significantly reduce maximum waiting time,
paying a comparatively small price in opportunity cost. Finally, we analyse the policies
synthesized for clientele-aware servers for different budgets.

2 Sequential Decision Making for Statistical Properties

2.1 The Sequential Decision Making Problem
We first formulate a general problem statement for sequential decision making involving
arbitrary quantitative properties. Afterwards, we will identify the important subclass of the
problem where all the quantitative properties are actually statistical in nature, like the ones
we described in Sec. 1.

We consider the alternating turn-based interaction of the decision maker with its uncertain
environment. At each interaction phase, called a stage, the environment samples an action
from a known probability distribution over the input alphabet X , and the decision maker
responds by generating an action from the output alphabet Y , and both actions may depend
on the past stages. Formally, the environment is modeled as stochastic generators of
the form θ : (X × Y)∗ → ∆(X), and the system is modeled as transducers of the form
γ : (X × Y)∗ × X → Y. Let Θ be the set of every stochastic generator and Γ be the set of
every transducer. The interaction between θ and γ induces a probability distribution Pθ,γ

over the space of finite input-output sequences – called traces – as follows. For every stage
t > 0 and for every trace z⃗t = z1 . . . zt ∈ (X × Y)t,

Pθ,γ(z⃗t) :=
t∏

i=1
Pθ,γ(zi | z⃗i−1),

where

Pθ,γ(zi | z⃗i−1) :=
{

θ(z⃗i−1)(xi) if γ(z⃗i−1, xi) = yi,

0 otherwise,

with the convention that z⃗0 represents the empty word. We will write Dom(Pθ,γ) to denote
the domain of Pθ,γ , i.e., the set of traces with positive probabilities. Sometimes, we will call
traces as histories to stress that the given input-output sequence consists of concrete inputs
and outputs as observed in the past.

We consider a lexicographic specification for the transducer, formalized as follows. We
consider the real-valued reward function rew : (X × Y)∗ → R, and the binary cost func-
tion cost : (X × Y)∗ → {0, 1} (where “1” could represent that the cost is below a given
threshold). We define the expected value of the reward after stage t as Et

θ,γ [rew] :=∑
z⃗t∈(X ×Y)t rew(z⃗t) · Pθ,γ(z⃗t). The lexicographic specification requires the cost to be 1 for

every probable input sequence of the environment (“hard” objective) and the expected reward
is maximized (“soft” objective), at the end of a given number of stages.

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:5

▶ Problem 1. Let T ∈ N be the given horizon length (i.e., the last stage index), θ be the
given stochastic generator, rew be the given reward function, and cost be the given cost
function. Let Γθ

feas ⊆ Γ be the set of feasible transducers fulfilling the cost constraint in the
presence of θ, i.e.,

Γθ
feas := {γ ∈ Γ | ∀z⃗T ∈ Dom(Pθ,γ) . cost(z⃗T) = 1}. (1)

Compute the optimal transducer γ∗ that is feasible and is reward-optimal, i.e.,

γ∗ = arg max
γ∈Γθ

feas

ET
θ,γ [rew] . (2)

We will call the tuple ⟨X ,Y, θ, rew, cost, T ⟩ a problem instance.

The finiteness of the horizon length is a standard choice in the literature on sequential
decision making problems [9, 2] and is a natural choice in many practical situations. Naïvely
lifting this finite-horizon restriction is technically tricky because it is unclear how Γθ

feas will
be defined in the first place.

It follows from known results [12] that Prob. 1 is PSPACE-hard in general; see Sec. 3.1
for details. We present a PTIME algorithm for the special case where the functions θ, rew,
and cost depend only on some particular statistics of histories.

2.2 Statistical Properties
In many practical instances of Prob. 1, including the motivating examples in Sec. 1, the
functions rew, cost, and θ depend only on some aggregated statistic of the history, and the
exact order of the inputs and outputs is unimportant. We formalize this in the following.

▶ Definition 2 (Statistics). Let W be an alphabet and S be an output domain. An S-statistic
over W is a function µ : W∗ → S.

We will omit W or S whenever they are either clear from the context or are unimportant.
Following is the key property of statistics that will be useful to us.

▶ Definition 3 (Well-behaved statistics). A statistic µ over W is called well-behaved if for
every u⃗, v⃗, w⃗ ∈ W∗, µ(u⃗) = µ(v⃗) implies µ(u⃗w⃗) = µ(v⃗w⃗).

These concepts are illustrated using the following example.

▶ Example 4. Suppose we are given a sequence of the toss outcomes of a given coin, where
heads and tails are represented as “1” and “0,” respectively. Following are examples of
statistics over {0, 1}: total number of heads µ1(·), largest number of consecutive tails between
any two heads µ2(·), average number of heads µ3(·), the mode statistic µ4(·), etc. Among
these, it can be easily verified that µ1 and µ2 are well-behaved. The average statistic µ3 is not
well-behaved: The sequences 10 and 1010 have the same averages (which is 1/2), but extending
them with the sequence 11 gives us different averages (3/4 and 2/3, respectively). The mode
statistic µ4 is also not well-behaved: the sequences 110 and 1110 have the same mode 1, but
extending them with the sequence 00 gives us different modes (0 and 1, respectively).

Let µ be an S-statistic over the alphabet W. For every t > 0, the statistic µ induces
an equivalence relation ≡µ,t on the set Wt, defined as follows: w⃗t ≡µ,t z⃗t iff µ(w⃗t) = µ(z⃗t).
For instance, for the statistic µ1 from Ex. 4 and for t = 3, we have 110 ≡µ1,3 101 ≡µ1,3 011,
because µ1(110) = µ1(101) = µ1(011) = 2 and each of them have length 3.

FSCD 2024

2:6 Abstraction-Based Decision Making for Statistical Properties

In the subsequent sections, the equivalence relation≡µ,t will give way to a small abstraction
of the set Wt, where all the words in a given equivalence class will be abstracted by a
single representative word from that equivalence class. Therefore, the larger the number of
equivalence classes, the larger and more complex will be the abstraction. We formalize this
as a measure of the complexity of statistics.

▶ Definition 5 (Size of statistics). Let µ : W∗ → S be a statistic. The size of µ is the function
sizeµ : N → N mapping every t to the number of equivalence classes in Wt induced by the
equivalence relation ≡µ,t.

Consider the statistics µ1 and µ4 from Ex. 4. For any given t, it is easy to see that
sizeµ1(t) = t + 1 (because there can be 0, 1, . . . , t number of “1”-s) and sizeµ4(t) = 2 (because
the mode of any sequence can be either 0 or 1).

For a given t ∈ N, let St ⊆ S be the set of every valuation of µ on every word of length t,
i.e., St = µ(Wt). A t-reconstructor of µ is any function κt : St →Wt such that if κt(s) = w⃗t

then µ(w⃗t) = s. Observe that κt is not unique. For the statistic µ1 in Ex. 4, we have
St = {0, 1, 2}, and one possible 2-reconstructor is given as κ2(0) = 00, κ2(1) = 01, and
κ2(2) = 11. The following claim follows immediately.

▶ Proposition 6. Let µ : W → S be a statistic and κt be a t-reconstructor of µ. Then for
every w⃗ ∈ Wt, µ(w⃗) = µ(κt ◦ µ(w⃗)).

We will now use well-behaved statistics to define the class of problem instances that are
amenable to efficient computations and are our subject of study.

▶ Definition 7 (µ-representability of functions). Let µ be a S-statistic over W. The function
f : W∗ → U is µ-representable, if there exists a function f̂ : S → U such that for every
w⃗ ∈ W∗, f(w⃗) = f̂(µ(w⃗)).

We will later show that Prob. 1 can be efficiently solved if we can identify a well-behaved
statistic µ such that θ, rew, and cost are µ-representible and µ is “small” in size. How
to determine a small, well-behaved µ such that a given property f is µ-representible is a
problem on its own. In Sec. 2.4, we present a pragmatic approach to quickly identify µ and
its size when f is specified as a counter automaton. The problem of finding a small µ for f

then boils down to the problem of finding a small counter automaton representing f .

2.3 Examples: Synthesis of Responsive Servers
Below, we describe how the examples from Sec. 1 can be formalized. We first introduce some
common notation for the client-server model. Suppose that there are two clients, A and B,
competing to access a resource hosted by a server. At each stage t, A and B concurrently
submit their offer prices, at and bt respectively, indicating the amount they are willing to
pay for the service. Let at and bt be non-negative integers, both less than or equal to C,
where zero indicates that the respective client does not request the service at that stage. The
server responds with the decision dt ∈ Y = {A, B}, representing whether client A or B get
access. We model the pair of clients as the environment and the server as the system, i.e.,
X = [0; C]× [0; C] and Y = {A, B}.

▶ Example 8 (Balanced server). Recall that the objective of the balanced server is to
maximize profit while ensuring an even allocation of resources to its clients by the end
of a given horizon. If the server initially acts greedily and accepts whoever offers the
higher price, then it may later need to pay high opportunity costs (i.e., sacrifice profits to

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:7

balance out the past imbalances). We formulate the synthesis problem for the balanced
server problem as follows. We assume that the distribution θ is known and remains fixed
over time and that we have given an arbitrary trace z⃗t = (a1, b1)d1 . . . (at, bt)dt ∈ (X ×
Y)t. We define the profit at stage i, denoted as Profit(ai, bi, di), to be equal to ai if
di = A and else equal to bi (if di = B). Furthermore, we define the imbalance over z⃗t,
denoted as Imbalance(z⃗t), as the absolute difference of acceptance rates between the two
clients, i.e., Imbalance(z⃗t) :=

∣∣∣∑t
i=1 1(di = A ∧ ai ̸= 0)−

∑t
i=1 1(di = B ∧ bi ̸= 0)

∣∣∣. Then,
the synthesis problem for balanced servers can be encoded using Prob. 1 by assigning
rew(z⃗t) =

∑t
i=1 Profit(ai, bi, di) and cost(z⃗t) = 1 iff Imbalance(z⃗t) ≤ δ for a given

tolerance δ > 0.

▶ Example 9 (Maximally responsive server). The objective of the maximally responsive server
is to minimize the maximum waiting time for each client while paying a bounded total amount
of the sum of opportunity costs. As for the balanced server problem, we assume that the
distribution θ is known and does not change over time and we have given an arbitrary trace
z⃗t = (a1, b1)d1 . . . (at, bt)dt ∈ (X × Y)t. We define the maximum waiting time, denoted as
MaxWait(d1 . . . dt), to be equal to the length of the largest subsequence of consecutive A’s or
B’s in the sequence d1 . . . dt. Additionally, we define the opportunity cost at stage i, denoted
as OppCost(ai, bi, di), to be equal to |ai − bi| if ai > bi but di = B or if ai < bi but di = A.
Then, the synthesis problem for maximally responsive servers can be encoded using Prob. 1
by assigning rew(z⃗t) = −MaxWait(d1 . . . dt) and cost(z⃗t) = 1 iff

∑t
i=1 OppCost(ai, bi, di) ≤ k

for a given budget k > 0, and is 0 otherwise.

▶ Example 10 (Clientele-aware server). Clientele-aware servers account for the loss of clients
due to dissatisfied clients who were rejected in the past. For simplicity, we assume that only
client A is active and B is inactive; this can be achieved by simply setting bi = 0 always. For
simplicity, we will write (ai, ·) to denote (ai, bi = 0). The critical component in this example
is the environment θ. We assume θ(ε), for the empty word ε, is the given initial distribution
P0 over X such that the probability of seeing the price a from the client A conditioned on
a ̸= 0 is fixed as PA, i.e., P0((a, ·) | a ̸= 0) = PA(a). We assume that a constant δ ∈ (0, 1) is
given such that for every z⃗i = (a1, ·)d1 . . . (ai, ·)di ∈ (X × Y)i, we have:

θ(z⃗i)((a = 0, ·)) = P0((a0 = 0, ·))

+ max

0, min

1, δ ·
i−1∑
j=1

(1(aj ̸= 0 ∧ dj = A)− 1(aj ̸= 0 ∧ dj ̸= A))

 ,

and θ(z⃗i)((a, ·) | a ̸= 0) = PA(a) for every a ∈ [1; C]. Intuitively, the probability of
seeing “a = 0” increases or decreases by δ for every rejection or acceptance of A, respectively.
Conditioned on “a ̸= 0” being true, the probability of seeing a price a from A is fixed to PA(a).
The reward and cost functions are: rew(z⃗t) =

∑t
i=1 Profit(ai, ·, di) =

∑t
i=1 ai · 1(di = A)

and cost(z⃗t) = 1 iff
∑t

i=1 1(di = A) ≤ N for a given N .

2.4 Specifications using Counter Automata
Counter automaton is a rich framework for modeling functions that has access to both states
and a finite set of counters. When rew, cost, and θ are given as counter automata, we show
that there is a systematic procedure to extract the statistical complexity and the witness
statistic µ with theor respective µ-representations r̂ew, ĉost, and θ̂.

FSCD 2024

2:8 Abstraction-Based Decision Making for Statistical Properties

Our counter automata are adoptions of counter monitors introduced by Ferrère et al. [6].
A counter is an integer variable, which can be read and written according to relations and
functions in the signature S = ⟨0, +1,−1,≤⟩. In particular, a test is a conjunction of atomic
formulas over S and their negation, and an update is a mapping from variables to terms over
S. The sets of tests and updates over a set of counters X are denoted as Φ(X) and Γ(X),
respectively.

▶ Definition 11 (Counter automata). Let Σ be a given input alphabet and D be an output
domain. A counter automaton A on Σ and D is a tuple ⟨Σ, D, R, Q, λ, qinit, δ⟩, where R is
a finite set of registers, Q is a finite set of states, λ : Q × NR → D is an output function,
qinit ∈ Q is the initial state, and δ ⊆ Q× Σ× Φ(R)× Γ(R)×Q is a transition relation such
that for every state q ∈ Q, input σ ∈ Σ, and valuation v : R→ N, there exists a unique edge
(q, σ, ϕ, γ, q′) ∈ δ with v |= ϕ satisfied.

A run of the automaton on a given finite word w = w0w1 . . . wn ∈ Σ∗ is the unique sequence
of transitions (q0, v0) w0−−→ (q1, v1) w1−−→ . . .

wn−−→ (qn, vn) such that q0 = qinit, v0(r) = 0 for every
r ∈ R, and we write (q, v) σ−→ (q′, v′) when there exists an edge (q, σ, ϕ, γ, q′) ∈ δ such that
v |= ϕ and v′(r) = v(γ(r)) for every r ∈ R. We write finalA(w) to denote the last configuration
(qn, vn). The semantics of a counter automaton A is given as JAK(w) = λ(finalA(w)) ∈ D

where (q, v) is the final configuration of the run of A on w.

▶ Proposition 12. Suppose φ : Σ∗ → D is a function and Aφ is the equivalent counter
automaton on Σ such that φ(w) = JAφK(w) for every w ∈ Σ∗. The function φ is µ-
representible for the statistic µ defined as µ(w) := finalAφ

(w), and the µ-representation of φ

is given by the output function of Aφ.

When θ, rew, and cost are expressed using counter automata, Prop. 12 outlines a simple
syntactic approach to extract the well-behaved statistic µ and the respective µ-representation.
The output domains of the counter-automata for θ, rew, and cost are, respectively, R,
{0, 1}, and ∆(X). Fig. 1 shows examples of counter automata representations of some of the
statistical properties from Ex. 8–10.

For any given counter automaton A = ⟨Σ, D, R, Q, λ, qinit, δ⟩, the size of the underlying
statistic µ as defined in Prop. 12 is given by:

sizeµ(t) = |{finalA(w) | w ∈ Σt}| = |Q| × t× |R|︸ ︷︷ ︸
P

, (3)

where P is the total number of counter values, obtained by using the fact that each counter
will have a value in [0; t− 1] after t stages.

3 Policy Synthesis Algorithms

3.1 Dynamic Programming
Prob. 1 can be solved using dynamic programming, whose time and space complexities would
unfortunately grow exponentially with respect to the horizon T . Let z⃗t be a given trace of
length t ∈ [0; T] and x ∈ X be an input; z⃗0 is the empty word. We write vt(z⃗t) and wt(z⃗t, x)
to denote the maximum expected rewards achievable in the remaining T − t stages, while
fulfilling the cost constraint, before and after revealing the next input x, respectively. We
can compute the functions {vt(·)}t∈[0;T] and {wt(·, ·)}t∈[1;T] recursively as below:

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:9

qstart

(a, b, A) : a > 0 ? ra ++

(a, b, B) : b > 0 ? rb ++

qstart

(·, ·, A) : true ?
[

db ++

da ← 0

]
(·, ·, B) : true ?

[
da ++

db ← 0

]

ε : db > d ? d← dbε : da > d ? d← da

q0start

(a, ·, B) : a > 0 ? r −−

(a, ·, A) : a > 0 ? r ++

q0start q1

(a, ·, B) : a > 0 ? rb ++

(a, ·, A) : a > 0 ? ra ++

ε : ra > N ? ∅

Figure 1 Counter automata representation of several properties used in Ex. 8, 9, and 10. TOP-
LEFT represents Imbalance from Ex. 8: The counters ra and rb count the total numbers of accepted
nonzero price requests from the clients A and B, respectively. For Imbalance, we use the output
function λ(q, ra, rb) = 1 if |ra − rb| ≤ δ and λ(q, ra, rb) = 0 otherwise. TOP-RIGHT represents
MaxWait from Ex. 9: The counters da and db count the total numbers of stages since requests
from, respectively, clients A and B were accepted (i.e., the current waiting times). The counter
d keeps track of the current maximum waiting times for both clients. For MaxWait, we use the
output function λ(q, da, db, d) = d. BOTTOM-LEFT represents the environment from Ex. 10: The
counter r represents the difference between the numbers of acceptances and rejections of offers by A

that were positive. For the environment, we use the output function λ(q, r) that is a probability
distribution over [0; C] such that λ(q, r)(0) = P0((a = 0)) + max{0, min{1, r}}. BOTTOM-RIGHT
represents the cost function from Ex. 10: The counters ra and rb represent the numbers of times A

and B were accepted, respectively, given the price offered by A was positive. For the constraint, we
use the output function λ(q0, ra, rb) = 1 and λ(q1, ra, rb) = 0.

t ∈ [0; T − 1] : vt(z⃗t) =
∑
x∈X

wt(z⃗t, x) · θ(z⃗t)(x),

wt(z⃗t, x) = max
y∈Y

vt+1(z⃗txy),

t = T : vt(z⃗t=T) =
{
−∞ if cost(z⃗T) = 0,

rew(z⃗T) otherwise.

(standard-DP)

The sought optimal transducer γ∗ of Prob. 1 is then obtained as: for every t ∈ [0; T − 1]
and for every z⃗t ∈ (X × Y)t, if vt(z⃗t) ̸= −∞ then γ(z⃗tx) = arg maxy∈Y vt+1(z⃗txy), and else
γ(z⃗tx) = FAIL. Note that even if v0(ε) ̸= −∞, for the empty word ε, the environmental
uncertainty may force the system to a stage from where the cost constraint can no longer be
satisfied, which is when γ would output FAIL.

As we unroll the recursion tree in (standard-DP) forward, we observe that every vt node
has |X | children and every wt node has |Y| children. Therefore, the size of the entire tree
will be O(|X |T · |Y|T), causing an exponential blow-up in time and space complexities. In
fact, from a classical result by Papadimitriou [12], it follows that Prob. 1 is PSPACE-hard.
Note that the paper considers the setting without the cost function cost, which is a special
case of our setting. The paper has proven this special case to be PSPACE-complete.

FSCD 2024

2:10 Abstraction-Based Decision Making for Statistical Properties

The difficulty of Prob. 1 stems from the history dependence of the stochastic generator θ,
the reward function rew, and the cost function cost. Take for example the case where the
output symbol selected at a given stage affects the distribution of θ at a future stage, for
which building the entire recursion tree is unavoidable [12]. A similar situation arises when
the reward and the cost are affected by all the past inputs and outputs and their exact order.

3.2 Simple Problem Instances
We take a slight detour and present a subclass of problem instances for which a PTIME
algorithm exists; ideas from this algorithm will be useful in Sec. 3.4 when we will present
special optimizations of our algorithm. We call the problem instance ⟨X ,Y, θ, rew, cost, T ⟩
simple if the following hold:
Additive reward and cost: For every t ∈ [1; T], let there be functions rt, ct : X × Y → R≥0,

assigning constant, history-independent reward and cost to each individual input-output
pair, such that for every z⃗ = x1y1x2y2 . . ., rew(z⃗) =

∑
t rt(xtyt) and cost(z⃗) = 1 iff∑

t ct(xtyt) ≤ B for a given budget B.
History-independent environment: For every t ∈ [0; T − 1], let θ̄t be a fixed probability

distribution such that θ(w⃗t) = θ(z⃗t) = θ̄t for every w⃗t, z⃗t ∈ (X × Y)t.
Then we can modify the dynamic programming algorithm in (standard-DP) by replacing
the history z⃗ with just the cost b incurred in z⃗, and define the respective counterparts
v′

t(b), w′
t(b, x) of vt(z⃗), wt(z⃗, x) as below:

t ∈ [0 : T − 1] : v′
t(b) =

∑
x∈X

w′
t(b, x) · θ̄t(x),

w′
t(b, x) = max

y∈Y

[
v′

t+1(b + ct(x, y)) + rt(x, y)
]

,

t = T : v′
t(b) =

{
−∞ if b > B,

0 otherwise.

(simple-DP)

The sought optimal transducer γ∗ of Prob. 1 is obtained as follows: for every t ∈ [0; T −
1] and for every z⃗t ∈ (X × Y)t with b =

∑t
i=1 ci(xiyi), if v′

t(b) ̸= −∞ then γ(z⃗tx) =
arg maxy∈Y v′

t+1(b + ct(xy)), and else γ(z⃗tx) = FAIL, where FAIL is defined as for the case
of standard-DP, and indicates that the cost constraint cannot be satisfied in any possible
future extension of the current trace.

Let us analyze the size of the recursion tree of (simple-DP). At every stage t, the number
of v′

t(b) nodes is B and the number of w′
t(b, x) nodes is B · |X |, implying that the tree’s size

is O(T ·B · |X |), establishing the PTIME complexity.
In general, if even one of the three functions rew, cost, and θ is history-dependent, like

in the examples of Sec. 2.3, the PTIME algorithm is not applicable. In the next section, we
show a sub-class of Prob. 1 with statistical properties – with the dependence being only on a
small statistic over the history instead of the exact history – for which efficient algorithms
exist.

3.3 Statistical Abstraction
We now present the main contribution of this paper. Suppose we are given a problem instance
⟨X ,Y, θ, rew, cost, T ⟩ such that there exists a well-behaved S-statistic µ on (X × Y)∗ for
which θ, rew, and cost are µ-representible. In this case, we no longer need to consider
each history z⃗t while using standard-DP, but rather we can combine histories that are
statistically indistinguishable, i.e., equivalent with respect to ≡µ,t for a given t. This way

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:11

we obtain an abstraction-based implementation of standard-DP– called statistical-DP,
where, for each stage t, (X × Y)t serves as the concrete domain of histories, S serves as its
abstraction, µ serves as the abstraction function, and κt serves as the concretization function.
Following we give a key consistency property of the abstraction, whose proof follows from
the well-behavedness of µ.

▶ Proposition 13. For a fixed stage t < T and an arbitrary history z⃗t ∈ (X × Y)t with
µ(z⃗t) = s, it holds that for every x ∈ X and y ∈ Y, we have µ(z⃗txy) = µ(κt(s)xy).

The above claim suggests that the statistic µ of an input-output trace can be computed
sequentially and efficiently, without keeping track of the entire history but only from the
value of the statistic in the last step. This enables us to only keep track of the value of the
statistic µ in each recursive call, instead of the full histories and lets us lift the functions
vt and wt to their abstract counterparts, respectively, v̂t and ŵt as follows. For every stage
t ∈ [0; T], we define v̂t : S → R and ŵ : S → {0, 1} as below:

t ∈ [0; T − 1] : v̂t(s) =
∑
x∈X

ŵt(s, x) ·

I︷ ︸︸ ︷
θ̂(s)(x),

ŵt(s, x) = max
y∈Y

II︷ ︸︸ ︷
v̂t+1 (µ(κt(s)xy)),

t = T : v̂t(s) =

−∞ if ĉost(s) = 0 ←← IV
r̂ew(s)︸ ︷︷ ︸

III

otherwise.

(statistical-DP)

We use the annotations I, II, III, and IV in Sec. 3.4 to present further optimizations.
The sought optimal transducer γ∗ of Prob. 1 is obtained as follows: for every t ∈ [0; T −1]

and every z⃗t ∈ (X × Y)t, if v̂t(µ(z⃗t)) ̸= −∞ then γ(z⃗tx) = arg maxy∈Y v̂t+1(µ(z⃗txy)), and
else γ(z⃗tx) = FAIL, where FAIL is as defined for the case of standard-DP, and indicates that
the cost constraint cannot be satisfied in any possible future extension of the current trace.

Next we compare statistical-DP from above with the general dynamic programming
scheme standard-DP for Prob. 1. The highlight of statistical-DP is that the functions v̂t

and ŵt do not depend on the history z⃗t (unlike vt and wt in standard-DP) anymore; rather
they only depend on the statistical values of histories. If we interpret each v̂t(·) and ŵt(·, x)
as vectors Vt and Wt, respectively, then the sizes of Vt and Wt are equal to the size sizeµ(t)
of the statistic µ on t, and not on the size of (X × Y)t. Usually, sizeµ(t) is substantially
smaller than |(X ×Y)t|, and the computational savings with statistical-DP are significant.
For instance, in Ex. 8 and Ex. 9, when the property is specified using the counter automata
in Fig. 1, it follows from (3) that sizeµ(t) = 1× t× 4 = 4t, which is significantly smaller than
|(X × Y)t| = (|G| × |C| × |E|)t = (2× 2c× 2)t = (8c)t for sufficiently large t.

Theorem 14 demonstrates the correctness and the complexity of statistical-DP.

▶ Theorem 14. Let ⟨X ,Y, θ, rew, cost, T ⟩ be a problem instance and µ be a well-behaved
statistic on (X×Y)∗ such that θ, rew, and cost are µ-representible. For every stage t ∈ [0; T],
and every z⃗t ∈ (X ×Y)t with µ(z⃗t) = s we have vt(z⃗t) = v̂t(s). Furthermore, the computation
of {v̂t(·)}t∈[0;T] requires O

(
|X | · |Y| ·

∑T
t=1 sizeµ(t)

)
time and O

(∑T
t=1 sizeµ(t)

)
space.

▶ Remark 15 (Product statistic). If θ, rew, and cost are represented using individual well-
behaved statistics µθ, µrew, and µcost, respectively, the common statistic µ of Thm. 14
can be obtained by computing a product statistic as follows: For every z⃗t, µ(z⃗t) :=

FSCD 2024

2:12 Abstraction-Based Decision Making for Statistical Properties

(µθ(z⃗t), µrew(z⃗t), µcost(z⃗t). If θ, rew, and cost are provided as counter automata, then
µ can be extracted from their product automaton. Consequently, we obtain sizeµ(t) =
sizeµθ

(t)× sizeµrew(t)× sizeµcost(t).

Proof of Thm. 14. The first part of the proof is via backward induction on the stages.
Throughout, we will use the trace z⃗t ∈ (X × Y)t for which µ(z⃗t) = s. To make the proof
easy to follow, we show that both (i) vt(z⃗t) = v̂t(s) and (ii) wt(z⃗t, x) = ŵt(s, x) hold.

For the base case t = T , from Prop. 6 and the µ-representability of rew and cost, it
follows that rew(z⃗t) = rew(κt ◦ µ(z⃗t)) = r̂ew(s) and cost(z⃗t) = cost(κt ◦ µ(z⃗t)) = ĉost(s).
Therefore, vT (z⃗T) = v̂T (s) holds as the base case for Claim (i). From the base case and
Prop. 13 we obtain that, for every t ∈ [0; T − 1], it holds that:

wt(z⃗t, x) = max
y∈Y

vt+1(z⃗txy) = max
y∈Y

v̂t+1(µ(z⃗txy))

= max
y∈Y

v̂t+1(µ(κt(s)xy)) = ŵt(s, x). (4)

By using t = T − 1, we obtain wT −1(z⃗T −1, x) = ŵT −1(µ(z⃗T −1), x), which serves as the base
case for Claim (ii).

Now suppose Claim (i) holds for an arbitrary stage t + 1 ≤ T . Then the same derivation
(4) can be used to show that Claim (ii) holds for the stage t. These two statements serve as
the induction steps, and we will show that Claim (i) holds for stage t and Claim (ii) holds
for stage t− 1. The following is the proof of the induction step for Claim (i) which holds due
to the base case and the µ-representibility of θ:

vt(z⃗t) =
∑
x∈X

wt(z⃗t, x) · θ(z⃗t)(x) =
∑
x∈X

ŵt(s, x) · θ̂(s)(x) = v̂t(s). (5)

We can use the same derivation (4) by only substituting t + 1 with t, where the second
inequality will now follow from (5), and obtain the proof of induction step for Claim (ii).

The time and space complexity bounds are established as follows. It follows from (3) that
for each stage t, there are at most sizeµ(t) distinct values of s ∈ S which can represent the
whole set (X × Y)t. Then, v̂t(·) will have at most sizeµ(t) arguments. Therefore, there are
O(

∑T
t=1 sizeµ(t)) elements in {v̂t(·)}t∈[1;T], for which we will need O(

∑T
t=1 sizeµ(t)) space

in total. On the other hand, for every distinct element in {v̂t}t∈[1;T], the recursion will have
|X | × |Y| branchings (|X | branchings for the sum operator and |Y| branchings for the max).
Therefore, we will need O(|X | · |Y| ·

∑T
t=1 sizeµ(t)) time in total for the computation. ◀

3.4 Additional Optimizations for Special Cases
We identify three special cases with potentially additional complexity improvements. We
highlight conditions under which we can disregard each individual size, sizeµθ

, sizeµrew , and
sizeµcost , one by one, when computing sizeµ, as outlined in Remark 15. This optimization
potentially reduces sizeµ, providing synthesis algorithms with improved complexity.

Independent environmental distributions. Suppose θ has the property that for every
t ∈ [0; T − 1] and for every w⃗t, z⃗t ∈ (X × Y)t, we have θ(w⃗t) ≡ θ(z⃗t) (in distribution), which
we write as θt. We can replace θ̂(s)(x) in (I) in statistical-DP with θt(x). Removing θ̂

from statistical-DP means that we can ignore sizeµθ
while computing sizeµ of the product

statistic µ as in Rem. 15 (i.e., set sizeµθ
(t) = 1 for all t).

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:13

0 20000 40000 60000

10−2
10−1

100
101
102
103

E
xe

c.
ti

m
e

(s
ec

.)

0 200 400

10−2
10−1

100
101
102
103

0 2000 4000

10−2
10−1

100
101
102
103

hybrid

statistical-DP

standard-DP

0 20000 40000 60000
Horizon length

101

102

103

104

105

M
em

or
y

u
se

(M
B

)

0 200 400
Horizon length

101

102

103

104

105

0 2000 4000
Horizon length

101

102

103

104

105

hybrid

statistical-DP

standard-DP

Memory limit

Figure 2 Top row: plots of computation time (in log-scale) versus horizon length for Ex. 8, 9,
and 10 (left to right). Bottom row: plots of memory usage (in log-scale) versus horizon length for
Ex. 8, 9, and 10 (left to right).

Additive reward. Suppose rew has the property that for every z⃗t = x1y1 . . . xtyt ∈ (X ×Y)t,
we can express the reward as rew(z⃗t) =

∑t
i=1 r(x1y1) for some positive, stage-invariant

reward r : X × Y → R≥0. In statistical-DP, we can replace v̂t+1(µ(κt(s)xy)) in (II) with
v̂t+1(µ(κt(s)xy))+r(xy) and replace r̂ew(s) in (III) with “0,” like in the simple case described
in Sec. 3.2. Removing r̂ew from statistical-DP means that we can ignore sizeµrew while
computing sizeµ of the product statistic µ as in Rem. 15. Both Ex. 8 and Ex. 10 have
additive rewards, which helped us to obtain faster computations in our experiments; see
Sec. 4.1.

Cost is a safety constraint. Suppose cost is a stateless, boolean safety property, specified
using a function c : X × Y → {0, 1} such that cost(x1y1 . . . xtyt) = 0 iff there exists an
i ∈ [1; t] for which c(xiyi) = 1. In statistical-DP, we can replace (II) with “0” if c(xy) = 1,
and remove (IV). Removing ĉost from statistical-DP means that we can ignore sizeµcost

while computing sizeµ of the product statistic µ as in Rem. 15.

4 Experiments

4.1 Comparison of Computational Performances
We considered problem instances with varying time horizons for all three of our examples,
namely synthesis of balanced, maximally responsive, and clientele-aware servers, formalized
in Ex. 8, 9, and 10, respectively. For each example, we compared the computational
performances between standard-DP and statistical-DP, and for Ex. 8 and Ex. 10, we also
compared the hybrid approach discussed in Sec. 3.4 for when the reward is additive. Fig. 2
compares the time and memory usage of our synthesis tool to solve each problem instance
using different approaches. For all reported results we use a time limit of 1 hour and a
memory limit of 200 GB. As expected, the time and memory usage for standard-DP grows
exponentially with T in all cases, and the memory limit is reached way earlier compared to
the statistical-DP approach. The hybrid approach, when available, performs even better
than statistical-DP.

FSCD 2024

2:14 Abstraction-Based Decision Making for Statistical Properties

4.2 Analysis of Synthesized Policies

We demonstrate the quality of the policies synthesized using statistical-DP for each of
the three examples that we consider. Tab. 1 summarizes the problem instances and Fig. 3
summarizes the aggregated outcomes of 100 simulations in each case.

Example – Balanced server. We compare the quality of the synthesized balanced server
policy, formalized in Ex. 8 and from hereon referred to as the balanced-by-construction policy,
with two baseline policies. The first baseline is a greedy policy, that always accepts the
client with the highest price, and in the case of a tie, accepts the client that would make the
imbalance smaller. The second baseline maximizes the expected profit, constrained to having
a balanced execution in expectation. We call this the balanced-on-average policy. Fig. 3a
shows that the balanced-by-construction policy is balanced on every run, whereas both the
greedy policy and the balanced-on-average policy are unbalanced in the worst case. Besides,
the average profit of the balanced-by-construction policy remains competitive (not shown
in figures). In particular, on average the profit for the balanced-by-construction policy, the
greedy policy, and the balanced-on-average policy were, respectively: 10719, 10723, and 8267.
In this setting, the balanced-by-construction policy obtains almost the same profit as the
greedy policy, while maintaining the balance constraint. The balanced-on-average policy
obtains worse results both in terms of profit and balance.

Example – Maximally responsive server. We compare the performance of a maximally
responsive server, formalized in Ex. 9, with the same input distribution and different budgets.
As a baseline, we use a greedy policy that accepts the client offering the highest price. Fig. 3b
shows the average and standard deviation of the maximal response time achieved by policies
with different bounds on the total opportunity costs. In the experiments illustrated in Fig. 3b,
the greedy policy obtains an average maximum response time of 24.4 time steps after a
horizon length of 100 time steps. Our maximally responsive server with budgets 5, 15, and 25,
respectively, achieves average maximum waiting time of 12.35, 7.94, and 5.55 while obtaining
98.75%, 96.25%, and 93.81% of the profit obtained by the greedy policy. Intuitively, the
higher the budget on opportunity costs is, the more freedom the server gets to reduce the
waiting time, though this impacts the overall profit.

Example – Clientele-aware server. We compare the performances of four different clientele-
aware server policies (from Ex. 10) with four different constraints on the maximum number
N of accepted requests. From the plot in Fig. 3c, we observe that the higher the value of
N is, the lower is the initial price threshold, i.e., the higher is the acceptance rate in the
beginning. This happens because for a higher value of N , the server has more freedom to
initially accept more requests from the client (by lowering the threshold) to improve the
chances of seeing better offer prices in future.

Table 1 Where qn,k is the centered Binomialn,k/n, i.e. X −E(X) ∼ qn,k with X ∼ Binomialn,k/n.

Example Horizon Price A PDF Price B PDF Objective Constraint
8 1000 Binomial20,0.49 Binomial20,0.51 profit imbalance (δ = 5)
9 100 Binomial6,0.3 Binomial6,0.75 wait time budget (k ∈ {5, 15, 25})
10 500 q6,1 - profit budget (N ∈ {50, 150, 250, 350})

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:15

0 500 1000
Time steps

−100

0

Im
b

al
an

ce Target

(a) Balanced server.

0 50 100
Time steps

0

20

M
ax

.
w

ai
t

ti
m

e

(b) Maximally responsive.

0 200 400
Time steps

0

2

P
ri

ce
th

re
sh

ol
d

(c) Clientele-aware.

Figure 3 Fig. 3a depicts the minimal and maximal imbalance values over 100 simulations for
the balanced-by-construction policy (), the greedy policy (), and the balanced-on-average
policy (). Fig. 3b depicts the maximal wait time values obtained over 100 simulations after
deploying the maximally responsive server for a budget of 5 (), 10 (), and 25 (). We also
show for comparison, the maximal response time obtained by a server with a greedy policy ().
Fig. 3c depicts mean and standard deviation of the acceptance thresholds of the synthesized policy
for various budget constraints: 50 (), 150 (), 250 (), and 350 ().

5 Related Work

The literature on bounded-horizon sequential decision-making broadly distinguishes between
model-free and model-based instances of the problem, based on whether a model of the
environment is available [14]. In this paper, we study the model-based problem.

For model-based problems, a common assumption is that the environment can be modeled
with a Markov Decision Process (MDP) [14]. Hence, the synthesis problem reduces to finding
the optimal policy in a finite MDP [13], for which extensive literature is available [7]. The
size of the MDP can however be exponential in the horizon length, and solving the derived
optimization problem is known to be PSPACE-hard [12]. Our statistical abstraction can be
viewed as a small abstraction over the state space of this exponentially large MDP, which is
only implicitly built and explored via statistical-DP. A large body of work on model-based
sequential decision-making falls under the term optimal stopping problems [15]. The theory
of optimal stopping revolves around the problem of choosing the ideal time to take a specific
action to either maximize an expected reward or minimize an expected cost.Among those
works, a variety of environment models – both Markovian [15] and non-Markovian [3] –
and a variety of properties [1, 4, 11, 8] have been studied. To the best of our knowledge,
the history-dependent statistical properties that we consider are beyond the reach of the
existing algorithms in the optimal stopping literature. Moreover, due to the generality of
our assumptions, common analytical tools, like competitive ratios [16], would fail to provide
anything beyond trivial bounds.

For model-free problems, optimal policy synthesis algorithms are predominantly data-
driven and rely on learning [18]. Under the assumption that the unknown state space is finite,
PAC-style guarantees are possible [17]. The quality of algorithms in this area is often assessed
using regret where the performance is compared against the model-based setting [5, 19]. We
plan to consider this direction for future work, with an unknown environment and the goal
to compute policies that fulfill the objectives with high probabilities.

6 Conclusion

We considered the sequential decision-making problem with uncertain environments where
the objective of the decision-maker includes fulfillment of a statistical property over a finite
horizon of a given length. Although the problem was known to be PSPACE-hard for general

FSCD 2024

2:16 Abstraction-Based Decision Making for Statistical Properties

properties (possibly non-stochastic), for statistical properties, we present a solution whose
complexity grows only polynomially with respect to the horizon length. The crux of our
approach is a novel statistical abstraction that clusters statistically indistinguishable traces
of the system. Using a prototype implementation, we demonstrated the computational
performance and effectiveness of our approach on three examples of designing server policies
that need to act fairly towards its clients.

Several future directions exist. Firstly, the unbounded-horizon setting presents an
interesting and non-trivial extension, given the inherent challenge of defining the feasible
set of policies (Eq. 1) within this setting. Secondly, it will be valuable to consider the
multi-objective problem where both cost and rew need to be optimized. The goal here will
be to compute a Pareto-optimal solution. In contrast, our approach is currently limited
to unconditionally fulfilling the qualitative constraint cost. Finally, our work establishes
only the sufficient requirements on the properties (µ-representibility for a well-behaved
statistic µ) which admit efficient abstractions. Determining the necessary requirements will
be an interesting theoretical quest, which may improve our understanding of the complexity
landscape of sequential decision-making problems.

References
1 Stefan Ankirchner, Maike Klein, and Thomas Kruse. A verification theorem for optimal

stopping problems with expectation constraints. Applied Mathematics & Optimization, 79:145–
177, 2019.

2 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47:235–256, 2002.

3 Elena Bandini, Andrea Cosso, Marco Fuhrman, and Huyên Pham. Backward SDEs for optimal
control of partially observed path-dependent stochastic systems: a control randomization
approach. The Annals of Applied Probability, 28(3):1634–1678, 2018.

4 Erhan Bayraktar and Song Yao. Optimal stopping with expectation constraints. The Annals
of Applied Probability, 34(1B):917–959, 2024.

5 Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained
MDPs. arXiv preprint, 2020. arXiv:2003.02189.

6 Thomas Ferrère, Thomas A Henzinger, and Bernhard Kragl. Monitoring event frequencies.
In 28th EACSL Annual Conference on Computer Science Logic (CSL). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

7 Abhijit Gosavi et al. Simulation-based optimization. Springer, 2015.
8 Sigrid Källblad. A dynamic programming approach to distribution-constrained optimal

stopping. The Annals of Applied Probability, 32(3):1902–1928, 2022.
9 Robert Kleinberg and S Matthew Weinberg. Matroid prophet inequalities and applications to

multi-dimensional mechanism design. Games and Economic Behavior, 113:97–115, 2019.
10 S. Muthukrishnan. Ad exchanges: Research issues. In Internet and Network Economics, 5th

International Workshop (WINE), pages 1–12, 2009.
11 Aaron Zeff Palmer and Alexander Vladimirsky. Optimal stopping with a probabilistic constraint.

Journal of Optimization Theory and Applications, 175:795–817, 2017.
12 Christos H. Papadimitriou. Games against nature. Journal of Computer and System Sciences,

31(2):288–301, 1985.
13 David C Parkes and Satinder Singh. An MDP-based approach to online mechanism design.

Advances in neural information processing systems (NIPS), 16, 2003.
14 Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey

of multi-objective sequential decision-making. Journal of Artificial Intelligence Research,
48:67–113, 2013.

https://arxiv.org/abs/2003.02189

F. Cano, T. A. Henzinger, B. Könighofer, K. Kueffner, and K. Mallik 2:17

15 Albert N Shiryaev. Optimal stopping rules, volume 8. Springer Science & Business Media,
2007.

16 Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

17 Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. PAC
model-free reinforcement learning. In International Conference on Machine Mearning (ICML),
pages 881–888, 2006.

18 Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press,
2018.

19 Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, and Kevin Jamieson. First-
order regret in reinforcement learning with linear function approximation: A robust estimation
approach. In International Conference on Machine Learning (ICML), pages 22384–22429,
2022.

FSCD 2024

	1 Introduction
	2 Sequential Decision Making for Statistical Properties
	2.1 The Sequential Decision Making Problem
	2.2 Statistical Properties
	2.3 Examples: Synthesis of Responsive Servers
	2.4 Specifications using Counter Automata

	3 Policy Synthesis Algorithms
	3.1 Dynamic Programming
	3.2 Simple Problem Instances
	3.3 Statistical Abstraction
	3.4 Additional Optimizations for Special Cases

	4 Experiments
	4.1 Comparison of Computational Performances
	4.2 Analysis of Synthesized Policies

	5 Related Work
	6 Conclusion

