
On Iteration in Discrete Probabilistic Programming
Mateo Torres-Ruiz #

University College London, United Kingdom

Robin Piedeleu
University College London, United Kingdom

Alexandra Silva
Cornell University, Ithaca, NY, United States of America

Fabio Zanasi
University College London, United Kingdom
University of Bologna, OLAS team (INRIA), Italy

Abstract
Discrete probabilistic programming languages provide an expressive tool for representing and
reasoning about probabilistic models. These languages typically define the semantics of a program
through its posterior distribution, obtained through exact inference techniques.

While the semantics of standard programming constructs in this context is well understood,
there is a gap in extending these languages with tools to reason about the asymptotic behaviour of
programs. In this paper, we introduce unbounded iteration in the context of a discrete probabilistic
programming language, give it a semantics, and show how to compute it exactly. This allows us
to express the stationary distribution of a probabilistic function while preserving the efficiency of
exact inference techniques. We discuss the advantages and limitations of our approach, showcasing
their practical utility by considering examples where bounded iteration poses a challenge due to the
inherent difficulty of assessing the proximity of a distribution to its stationary point.

2012 ACM Subject Classification Theory of computation → Program semantics

Keywords and phrases Probabilistic programming, Programming languages semantics, Unbounded
iteration

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.20

Funding This work was partially supported by ERC grant Autoprobe (no. 101002697; Piedeleu,
Silva, and Torres-Ruiz).
Fabio Zanasi: Fabio Zanasi acknowledges support from epsrc EP/V002376/1 and miur P2022HXNSC
(prin 2022 pnrr - Next Generation EU).

Acknowledgements The authors would like to thank the anonymous reviewers for their helpful
comments and suggestions.

1 Introduction

Probabilistic Programming Languages (PPLs) combine the expressive power of classical
programming constructs with the ability to draw random values from probability distributions
and condition on the variables declared [18]. Unlike traditional programming languages,
where evaluation leads to executing a routine, evaluating a probabilistic program results in
computing the posterior probability distribution it specifies, a task called inference.

Inference can be either approximate [9, 17, 44], typically performed via sampling, or
exact [7, 16, 35, 37], where the aim is to compute the exact posterior specified by the
program. While most PPLs emphasise the use of continuous random variables, discrete
random variables lend themselves to exact inference techniques. Moreover, they are better
suited to several application domains, from cryptography [1, 33] to networks [14, 15, 42] or
graphs [39]. These appealing properties have sparked renewed interest in discrete PPLs.

© Mateo Torres-Ruiz, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 20; pp. 20:1–20:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:m.torresruiz@cs.ucl.ac.uk
https://doi.org/10.4230/LIPIcs.FSCD.2024.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 On Iteration in Discrete Probabilistic Programming

While finiteness of the discrete setting permits the computation of an exact posterior,
exact inference is known to be undecidable for programs with an unbounded domain and
#P-complete for programs which make use of Boolean variables only [40]. To tackle this
difficulty, PPL compilers use data structures that exploit independence between variables,
leading to efficient and scalable exact inference [24, 7].

Even though the semantics of probabilistic languages have been extensively studied ever
since the seminal work of Kozen [29], and the standard programming constructs are well-
understood for discrete distributions, their extension to unbounded iteration in the presence
of exact inference has been mostly absent. Possibly, due to the fact that unbounded iteration
is seen to introduce non-termination, which can take the language semantics and inference
capabilities outside the domain of discrete probabilities. As we show in this paper, this does
not have to be the case: we extend a discrete PPL with unbounded iteration, while retaining
the ability to perform exact inference.

Unbounded iteration is important to model probability distributions arising as the
asymptotic behaviour of a (discrete-time) stochastic process, which are the natural object of
study in a multitude of applications: given a ciphertext, we can construct a Markov chain
to represent the posterior distribution of encryption keys [12]; in molecular physics, protein
trajectories can be modeled using discrete-time Markov Chains (DTMCs), providing insights
into the protein’s biological function through their stationary distribution [38]; random
walks on the symmetric group offer various applications such as diffusion models or shuffling
schemes, where stationarity ensures reaching some optimal state [31]. From a probabilistic
perspective, these can be seen as the outcome of iterating a program which models the
one-step dynamics of the chain. Of course, one can always iterate such process a fixed number
of times or until some condition is met. As we will see, this is often insufficient, and does not
lead to the desired asymptotic behaviour in general. To reach the asymptotic limit, dedicated
programming constructs for unbounded iteration are required.

The language we chose to extend is Dice [24], a functional PPL designed to handle discrete
random variables and perform exact inference. Dice has a mature implementation and a very
efficient exact inference engine. Before delving into our contributions, we provide a simple
example that further motivates the use of unbounded iteration in probabilistic programming.

▶ Example 1. Consider the following probabilistic model which simulates a die using repeated
throws of a coin c [28]. Starting at the root vertex, s0, the model iteratively flips c and
branches with a solid line whenever it lands heads, and with a dashed line when it results in
tails. The coin-flipping procedure continues until a leaf is reached, i.e., until the value of the
die is determined. We can write this as a probabilistic program:

fun knuth_yao (s) {
if s == 0 then (if flip 1/2 then 1 else 2) else
if s == 1 then (if flip 1/2 then 3 else 4) else
if s == 2 then (if flip 1/2 then 5 else 6) else
if s == 3 then (if flip 1/2 then else 1) else
if s == 4 then (if flip 1/2 then else) else
if s == 5 then (if flip 1/2 then else) else
if s == 6 then (if flip 1/2 then else 2) else s }

1

2

3

4

5

6

0

The proposed model has 13 possible states: {0, . . . , 6, , . . . , }. The transition from the
current state s is dependent upon both s and the result of a fair coin flip. For instance,
starting from 0, we transition to either 1 or 2 based on the outcome of a coin flip, and it
takes at least three consecutive runs to reach a , . . . , state. Each function call yields not
a single state but a probability distribution on the 13 potential states. While careful analysis

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:3

of this and similar programs make it clear that in the limit the model indeed simulates a
six-side fair die [26, 27], it is not immediately apparent that by iteratively applying this
function, we will attain each possible die outcome with a probability of 1

6 .

Contributions. We extend Dice [24], a discrete PPL, with an unbounded iteration operator,
give it a semantics that remains within the discrete realm, and show how to compute it
exactly. Furthermore, we also consider an alternative form of iteration, which is more closely
related to probabilistic while-loops and whose semantics is given by a least fixpoint.

We begin in Section 2 by formalizing the semantics of Dice. In Section 3 we highlight the
difficulties encountered when attempting to use bounded iteration to obtain the asymptotic
behaviour of some stochastic process. We then introduce the syntax and semantics for our
proposed unbounded iteration operator in Section 4. An alternative form of iteration is then
presented in Section 5, followed by a discussion of the implementation of both iterators,
and an empirical evaluation of their performance in Section 6. Finally, we conclude with a
discussion of related work and a few suggestions for future research in Section 7.

2 Dice: An Efficient Discrete PPL

In this section we review the syntax and semantics of Dice [24], a first-order non-recursive
functional language featuring the essential characteristics of a discrete PPL. It supports
Bernoulli distributions and has first-class observations which allow for Bayesian inference,
while it offers an efficient approach to probabilistic inference by exploiting the internal
representation of its programs.

2.1 Syntax

Dice supports Boolean and product types, as well as common branching and customary
Boolean operators. The language features two probabilistic constructs: one for defining
Bernoulli distributions (flip) and one for Bayesian evidence (observe). The first of these takes
a real number as a parameter θ ∈ [0, 1] and denotes a distribution that evaluates to true with
probability θ and false with probability 1 − θ, while the second takes an atomic expression
a as a parameter and incorporates it as evidence that a evaluates to true throughout the
program. This effectively changes the probability of all program paths where a does not hold
to 0. The type of a Dice program is a product of Booleans, determined by the rules in Fig. 1.

A Dice program consists of a sequence of non-recursive functions followed by a main
expression. We will later see that these expressions can be interpreted as discrete distributions
on the declared values. Furthermore, it supports syntactic sugar for logical operations
(∧,∨,¬), bounded loops, bounded-size integers, and discrete distributions over k integers.

▶ Example 2. Consider the following straightforward setting: we have observed that trains
to the nearest city experience delays with a 0.7 chance when it is raining and 0.3 otherwise.
On any given day, there is a 0.1 probability of rain. If we observe that the trains are running
late, what is the probability that it is raining? We can write down this in Dice as follows:

let x = flip 0.1 in
let y = if x then flip 0.7 else flip 0.3 in
let z = observe (y) in x

FSCD 2024

20:4 On Iteration in Discrete Probabilistic Programming

2.2 Semantics

Recall that a function p : X → [0, 1] is a probability distribution whenever
∑
x∈X p(x) = 1,

and is called a subprobability distribution when
∑
x∈X p(x) < 1. Closed Dice expressions can

be viewed as a means of representing a subprobability distribution over the set of values
attainable by the variables declared. The distributions expressible in Dice are furthermore
finitely supported. That is, the set supp(p) := {x ∈ X | p(x) > 0} is finite.

We can define well-typed expressions Γ ⊢ e : τ and these will represent a (sub)probability
distribution over the tuple of variables τ conditional on the value of the free variables that
appear in Γ. To give a compositional interpretation of Dice expressions, we will interpret
conditional distributions in a category of certain linear maps represented as matrices. In
this sense, our presentation of the semantics of Dice is superficially different from that of the
original paper, though the two are equivalent.

A nonnegative matrix is stochastic if each column sums to 1 and substochastic if the
total of each column falls between 0 and 1. We write RX for the vector space of real-valued
functions on R which we equip with its Dirac basis {δx |x ∈ X} where δx(y) = 1 if x = y

and 0 otherwise. Conditional (sub)distributions p(y|x) can be thought of as linear maps
φp : RX → RY where φp is given by extending the mapping x 7→

∑
y p(y|x)δy linearly. The

map φp then has the additional property that its matrix representation in the Dirac bases for
RX and RY is (sub)stochastic. We also call such maps (sub)stochastic maps. More generally,
in what follows, we will speak of linear maps and matrices interchangeably, since all of our
vector spaces are equipped with a chosen basis. We will use ◦ to denote composition of linear
maps or simply juxtaposition to denote the product of matrices.

Since the product of substochastic matrices is substochastic, substochastic maps form
a category Stoch with finite sets as objects and morphisms X → Y substochastic maps
RX → RY . This is the category in which we interpret Dice programs. To interpret tuples,
we also need to equip Stoch with the monoidal product given by the Cartesian product of
sets on objects, and the usual tensor product on linear maps or, alternatively, the Kronecker
product ⊗ on matrices. Note that the set of Diracs {δx ⊗ δy | (x, y) ∈ X × Y } forms a basis
of RX×Y ∼= RX ⊗ RY . This defines a monoidal structure over the category Stoch, which is
moreover symmetric monoidal by equipping it with swapX,Y : X × Y → Y × X given by
extending the mapping δx ⊗ δy 7→ δy ⊗ δx linearly.

▶ Remark 3. For the categorically-minded reader, the interpretation of Dice could also
be given in the Kleisli category of the (sub)probability monad, which is equivalent to the
category of (sub)stochastic linear maps. Therefore, most of the subsequent development
could be phrased in this more categorical setting. We prefer a straightforward linear algebraic
presentation, because our treatment of iteration in the coming sections makes use of standard
results about Markov chains, which are usually formulated in a less abstract setting.

The type of the Booleans can be interpreted in Stoch as JBK = B = {true, false} and
extends J·K to arbitrary types and contexts J()K = 1 ∼= {0}, Jτ × τ ′K = JτK× Jτ ′K, Jτ, . . . , τ ′K =
JτK × · · · × Jτ ′K. To define the semantics of open terms, we will need the following stochastic
maps for variable management.

To discard a variable we will use the linear map disX obtained by extending δx 7→ 1 for
all x ∈ X linearly; for a single Boolean variable disB is given by the stochastic matrix/row
vector

(
1 1

)
.

To use a variable more than once, we use the linear map copyX obtained by extending
δx 7→ δx ⊗ δx linearly, for each x ∈ X; for a single Boolean variable copyB is represented

by the stochastic matrix
(

1 0 0 0
0 0 0 1

)⊤

.

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:5

(true)Γ ⊢ true : B (false)Γ ⊢ false : B (flip)Γ ⊢ flip θ : B
Γ ⊢ x : B (obs)Γ ⊢ observe x : B

(var)
Γ, x : τ, Γ′ ⊢ x : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ1 (tup)
Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τl × τr (π1)Γ ⊢ fst e : τl

Γ ⊢ e : τl × τr (π2)Γ ⊢ snd e : τr

Γ ⊢ e0 : τ0 Γ, x : τ0 ⊢ e1 : τ (let)Γ ⊢ let x = e0 in e1 : τ
Γ ⊢ g : B Γ ⊢ eT : τ Γ ⊢ eF : τ (ite)Γ ⊢ if g then eT else eF : τ

Γ, x 7→ τ ⊢ e : τ ′
(fn)

Γ ⊢ fun f(x : τ) : τ ′ {e} : τ → τ ′

Γ ⊢ f : τ → τ ′ Γ ⊢ z : τ (call)
Γ ⊢ f(z) : τ ′

Figure 1 Dice typing rules.

In general a typing statement Γ ⊢ t : τ is interpreted as a substochastic map JtK : JΓK → JτK,
where the semantics J·K of an open term Γ ⊢ t : τ is given recursively on the structure of the
typing rules of Fig. 1.

By convention, the Booleans are represented as the following column vectors: JtrueK =
δtrue =

(
1 0

)⊤ and JfalseK = δfalse =
(
0 1

)⊤.
Jflip θK is given by the Bernoulli distribution that assigns true with probability θ and

false with probability 1 − θ. This is interpreted as the map JΓK
disJΓK−−−→ 1 [θ 1−θ]T

−−−−−→ JBK.
Notice that JfalseK and JtrueK can be obtained as flip θ (in the empty context) where
θ takes values 0 and 1, respectively.

JΓ, τ,Γ′K ∼= JΓK × JτK × JΓ′K
disJΓK⊗idJτK⊗disJΓ′K−−−−−−−−−−−−→ 1 × JτK × I ∼= JτK

Variables are introduced through let-expressions, which are interpreted as the map

JΓK
copyJΓK−−−−→ JΓK × JΓK

Je0K⊗idJΓK−−−−−−−→ Jτ0K × JΓK
Je1K−−→ JτK

Tuples (e1, e2) are interpreted as a joint distribution over the expressions involved, given
by the map JΓK

copyJΓK−−−−→ JΓK × JΓK
Je1K⊗Je2K−−−−−−→ Jτ1K × Jτ2K ∼= Jτ1 × τ2K.

The projections Jfst eK and Jsnd eK correspond to the marginalisation of joint dis-
tributions, given by applying disJτK to the component over which we wish to margin-

alise, i.e., Jfst eK = JΓK JeK
−−→ JτlK × JτrK

idJτlK⊗disJτrK
−−−−−−−−−→ JτlK and Jsnd eK = JΓK

JeK−−→

JτlK × JτrK
disJτlK⊗idJτrK−−−−−−−−→ JτrK.

Conditionals Jif g then eT else eF K take an expression g as guard whose truth value
determines which of the branchings will be selected; its semantics is given by the map

JΓK
copyJΓK−−−−→ JΓK×JΓK

idJΓK⊗copyJΓK−−−−−−−−→ JΓK×(JΓK×JΓK) JgK⊗(JeF K⊗JeT K)
−−−−−−−−−−−→ B×(JτK×JτK)

joinJτK−−−−→ JτK

where joinX : B×X×X → X is the linear map obtained by extending the following map-
ping linearly: joinX(δtrue, x, y) = x and joinX(δfalse, x, y) = y. For simple Boolean expres-

sions, i.e., for JτK = B, the corresponding 2-by-8 matrix is
(

1 0 1 0 1 1 0 0
0 1 0 1 0 0 1 1

)
.

Observe statements Jobserve xK incorporate evidence by assigning a 0 probability to
executions where x does not hold. The interpretation of observations is given by the map

B observe−−−−→ B, defined as the 2-by-2 matrix
(

1 0
0 0

)
. Note that this is the only substochastic

map which is not stochastic of all the Dice constructs.

FSCD 2024

20:6 On Iteration in Discrete Probabilistic Programming

Functions are simply interpreted by keeping an environment mapping names to the
semantics of the corresponding term: the (fn) rule then creates a new name for a given
function, and (call) is interpreted as function application (note that Dice does not allow
higher-order functions). This aspect of the semantics is not of much relevance to the
development below, so we refer the interested reader to the original paper on Dice [24].

▶ Example 4. The semantics of the program in Example 2 is (idB ⊗ (disB ◦ observe)) ◦ (idB ⊗

joinB)◦ (copyB ⊗ idB ⊗ idB) ◦ (Jflip 0.1K ⊗ Jflip 0.7K ⊗ Jflip 0.3K) which computes to
(

0.07
0.27

)
.

Notice that the use of observe in the program makes this an unnormalised subprobability
distribution. To interpret the outcome of a computation, the user needs a bona fide probability
distribution. Hence, the Dice compiler automatically normalises the result at the end of a
computation. From a denotational perspective, there is not much difference between the two,
since one can always renormalise a nonzero subprobability. Note however that normalising is
an expensive operation in principle. For this reason, the Dice compiler keeps track of the
subprobability distribution that a given term denotes and of its associated normalisation
constant as well. See Appendix A for a discussion of Dice’s implementation details.

3 Iteration in PPLs: Existing Approaches and Challenges

It is straightforward to extend a discrete PPL with an operation for bounded iteration. In
Dice, this problem was already addressed in [24] through the introduction of bounded loops,
iterate(f, i, k), where f is a function name, i an initialization expression and k an integer
specifying the number of times the function f : τ → τ should be iterated with a starting
value i. While this allows for denoting a loop that terminates after a known number of
iterations, it does not allow us to obtain the limiting behaviour of f . In this section, we
review these limitations, thus justifying the need for unbounded iteration in general.

From Section 2.2, every Dice function of type f : τ → τ denotes a substochastic matrix
and in turn, defines a DTMC. Conversely, every DTMC over a finite state-space can be
encoded as a Dice program of type τ → τ . The semantics of the Dice program f then defines
a Markov chain on the state space JτK. For a Markov chain with underlying transition
matrix P , a vector π is a stationary distribution vector if Pπ = π. In many applications,
Markov chains are useful when it can be shown that their behaviour closely approximates
a given target within a reasonable number of steps in its time evolution. It is then useful
to have a measure of how close a chain is from stationarity. For this purpose, the mixing
time of a DTMC X with transition kernel P and stationary distribution π is often defined
as min{t : maxx∈Ω ∥P t(x, ·) − π∥TV ≤ 1/4}, where ∥ · ∥TV is the total variation distance.
Intuitively, the mixing time gives the minimum amount of steps X must be iterated in order
to be reasonably close to its limiting behaviour.

It may be tempting to sidestep the lack of an unbounded iteration operator by using
iterate(f, i, k) for some sufficiently large k in order to approximate the stationary distribu-
tion π of some program f . However, determining the mixing time of an arbitrary expression
f remains a challenging task. While classic Markov chain theory asserts that iterates of a
chain with distribution P approach its stationary distribution subject to mild conditions on
its internal structure (such as non-periodicity), it does not provide bounds on the number of
steps required to be sufficiently close. This makes the naïve approach to iteration – using a
bounded loop – unsatisfactory, as it does not allow the user to ascertain whether the posterior
is close enough to stationarity. Or rather, such an approach offsets the burden of knowing
the mixing time to the user, rather than the compiler.

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:7

Moreover, if empirical exploration of the distribution obtained by iterate(f, i, k) for
different values of k can give an indication of progress towards stationarity, there are DTMCs
where the convergence rate in total-variation undergoes an abrupt change over a negligible
period of time [11]. This phenomenon, called cutoff, makes it infeasible to rely on heuristics
based on statistical distances between successive iterations to determine when to stop the
computation in the hope of getting a distribution that is sufficiently close to stationarity.

▶ Example 5 (Limitations of finite iteration). To illustrate the challenges in determining the
stationary distribution of a DTMC, we examine the Bernoulli-Laplace model of diffusion.
This model can be depicted using two urns containing n balls each. Initially, the left and
right urns contain n red balls and n blue balls, respectively. In each step, a ball is chosen at
random from each urn, and they are exchanged. After sufficiently many exchanges, urns will
be mixed, each of them containing approximately equal proportions of red and blue balls.

This process is fully determined by the number of blue (red) balls in one of the urns.
Call this set Ω = {1, . . . , n}. The transition matrix of this model can be built by considering
how many blue balls will be in the left urn given that there are b ≤ n currently. There are
three possibilities: either a blue ball or a red ball is grabbed from both urns (Pb,b = 2 b(n−b)

n2),
a red ball is grabbed from the left urn and a blue ball is grabbed from the right urn
(Pb,b+1 =

(
n−b
n

)2
), a blue ball is grabbed from the left urn and a red ball is grabbed from

the right urn (Pb,b−1 =
(
b
n

)2
). This process can be encoded in the following Dice program:

fun bernoulli_laplace (blues_in_urn : int) {
let urn =
if blues_in_urn == 0 then (0, 1, 0, 0, ...)
else if blues_in_urn == 1 then

(1/n2 , (2*(n -1))/ n2 , (n -1)2/n2 , 0, ...)
else if blues_in_urn == 2 then

(0, 22/n2 , (2*(n -2)*2)/ n2 , (n -2)2 , ...)
...
else (... , 0, 0, 1, 0) in urn

}
let ith_trial = iterate (bernoulli_laplace , 0, i) in ith_trial

Note that this idealized encoding of the Bernoulli-Laplace model assumes a fixed urn size n,
where “. . . ” indicates a distribution that ought to follow above’s model. Concrete instances
of this program can be found in the tests provided in our implementation.

Consider the problem of determining the convergence of the above program to its stationary
state. To assess the number of iterations required for the distribution to reach a sufficiently
close approximation to the stationary state, we can conduct multiple experiments using
various urn sizes. Analysis of the model [13] yields that for any finite state space Ω, for any
b ∈ Ω, the stationary distribution is given by

π(b) =
(
n

b

)(
n

n− b

)/(2n
n

)
, 0 ≤ b ≤ n.

We can measure the time it takes to become reasonably close to this distribution by
calculating the total-variation between the distribution of the urn at each iteration step and
its stationary state for different urn sizes. Note how the distance between the distribution and
its stationary state remains close to its maximum value before dropping to near zero during
a short period of time. This cutoff phenomenon shows the impracticality of approximate
heuristics to determine the optimal number of iterations required for a probabilistic function
to converge to a distribution that accurately represents its limiting behaviour.

FSCD 2024

20:8 On Iteration in Discrete Probabilistic Programming

0 20 40 60 80 100 120 140

t

0.0

0.2

0.4

0.6

0.8

1.0

d
T
V
(P

t
,π

)

|Ω| = 10

|Ω| = 20

|Ω| = 50

|Ω| = 100

Indeed, it has been proven that the Bernoulli-Laplace diffusion model exhibits a cutoff at
time 1

4n logn [13]. While a cutoff is not present in every DTMC, there are various families
where it has been proven to exist [2, 11]. Furthermore, it remains a challenging task to
determine if a chain has a cutoff window. For these reasons, a form of unbounded iteration
is genuinely needed.

4 Introducing Unbounded Iteration

At first glance, it seems like unbounded iteration should force us out of the discrete probability
setting by introducing nonterminating behaviour. How can potentially infinite execution runs
be given a semantics with finitely-supported probability distributions? Perhaps surprisingly,
we will now see that unbounded iteration can be accommodated in this setting.

If we think of a probabilistic program t : τ → τ as encoding the dynamics of some
Markov chain, iterating t should give us the limiting behaviour of the chain, limn→∞JtKn.
However, this limit does not always exist, as is the case for example for chains that exhibit
periodic behaviour. Thus, we cannot use it to define the semantics of unbounded iteration in
general. Nonetheless, we can guarantee the existence of a limit by considering the average
time spent on each of the possible states defined by the probabilistic function to be iterated:
indeed, while the powers of an arbitrary stochastic matrix P need not have a limit, its
Cesàro sum limn→∞

1
n

∑n
k=1 P

k always exists [34, Section 8.4]. This is what we propose as
semantics here. Note that this is not the first time that this is suggested as a reasonable
semantics of iteration: in [8], the authors mention it in passing in the context of continuous
probability. Here, we show that it gives a suitable semantics to iteration even in the discrete
case. A precise way to compute it, together with a benchmark of our implementation against
approximations that use bounded iteration are provided in Section 6.

Given a program t : τ → τ , we want the program iterate t to denote a distribution that
represents the average time spent on each element of JτK by all finite iterations of t. The
typing rule for this iterator is given by

Γ ⊢ t : τ → τ
Γ ⊢ iterate t : τ

Operationally, we can think of iterate t as unfolding to the program if flip 1
n then (iterate t)

else tn, assuming n is a runtime variable keeping track of the current execution step.
Denotationally, the semantics of iterate t, is given by the Cesàro sum of t : τ → τ , i.e.,

Jiterate tK :=
(

lim
n→∞

1
n

n∑
k=1

JtKk
)

0

, where A0 denotes the first column of the matrix A.

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:9

The choice of 0 here is arbitrary since, as we will see, all the columns of the Cesàro sum are
equal. If we think of t as encoding the transition kernel of some Markov chain, this limit
characterises the fraction of time the underlying Markov chain spends in each of its possible
states, and its value is independent of the initial distribution we consider. The intuition is
that the averaging of the Cesàro sum removes any oscillatory behaviour that could prevent
the sequence of iterated powers to converge. The following example illustrates this point.

▶ Example 6. Consider the following program, one of the simplest programs exhibiting
periodic behaviour (note that the exclamation mark denotes negation).

fun swap_state (a : bool) : bool { !a }
iterate swap_state

This program denotes a Markov chain that jumps between its only two states at every step.
It is not hard to see that this chain has stationary distribution

(
1/2 1/2

)T . Intuitively, if
we distribute the total weight equally between the two states, then swapping them does not
change the distribution. It should be noted that the periodic behaviour of the program makes
it impossible to arrive at such distribution through successive iterations. Indeed, iterating
the chain will simply shift the weight back and forth between the two states, while its Cesàro
sum is equal to the stationary distribution.

4.1 Exact Inference
It is clear that to obtain Jiterate tK, we could simply compute 1

n

∑n
k=1JtK

k for successive
values of n. However, the compiler would then need to decide when the approximation is
sufficiently close to the limit to stop the computation. There are several possible heuristics
to decide when a given approximation is satisfactory. For example, one could decide to stop
when the distance between a given approximation and the previous one differ only by a small
value ε in KL divergence. As we aim for exact inference, this approach would be insufficient,
not to mention that it suffers from the same drawbacks as bounded iteration, highlighted
in Section 3. It is in general a hard problem to determine whether the underlying Markov
chain exhibits cutoff and when, thereby making it difficult to decide when we are reasonably
close to the asymptotic behaviour of the chain. We can however sidestep these challenges by
leveraging standard results from linear algebra that suggest a different–and most importantly,
exact–way to compute the semantics of iteration, which we now explain.

Given any scalar sequence (an)n∈N, there is an associated Cesàro sequence of its averages,
(bn)n∈N, where bn = 1

n

∑n−1
k=0 ak; we say that the sequence (an)n∈N is summable to s (or

just summable) whenever limk→∞ bk = s. The same idea can easily be transported to the
setting of matrices: given a sequence (An)n∈N of powers of some square matrix A, we say
that A is convergent when limk→∞ Ak exists and that A is summable whenever its sequence
of averages

(
1
n

∑n−1
k=0 A

k
)
n∈N

converges. Note that matrices that do not converge can be
summable. Indeed, the averaging of a Cesàro sequence smooths away any periodic behaviour
the chain could have. Furthermore, whenever a matrix A converges, its limit coincides with
that of its Cesàro sequence [34]. In order for the Cesàro sum to be a suitable candidate for
the semantics of iterate t, we must first make sure that this limit always exists for the
family of matrices we are interested in. It is a well-known fact that this is always the case
for (sub)stochastic matrices.

The following result about substochastic matrices is a mild generalisation of a theorem
appearing in [34, Section 8.4] for stochastic ones. We will use it in Section 6, where we explain
how our implementation computes the relevant projection and evaluate its performance.

FSCD 2024

20:10 On Iteration in Discrete Probabilistic Programming

▶ Proposition 7. Every substochastic matrix M is summable and its sum is equal to the
projection onto Ker(I −M) along Im(I −M).

Interestingly, when the limit limnM
n exists, it is also equal to the projection onto

Ker(I − M) along Im(I − M) and is therefore equal to the Cesàro sum [34, Section 7.10].
While we do not use this fact, it lends further support to the intuition that the Cesàro sum
provides a generalised semantics for iteration, even in the context when the limit of finite
iterations does not exist.

We make use of Proposition 7 when explaining how our implementation computes the
relevant projection and evaluate its performance in Section 6.

5 An Alternative: Least Fixpoint Iterator

We can give an alternative form of iteration which is more closely related to imperative
while-loops in the style of [29]. This follows the approach taken in [43], where iteration is
defined by exploiting coproducts: starting from a program t : A → A+ B, iterate t from u

repeatedly calls t (starting from some value u) until the output of t is of type B, signalling
the stopping condition for iteration, and returning the last output of t.

Although Dice does not have explicit sum types, the same procedure can be mimicked
using products and the fact that B = 1 + 1. We can represent the repeated application
of some expression t : τ → B × τ that depends on an argument x : τ through an iterator
that repeatedly calls t starting from some initial value u, in each step consuming a Boolean
variable (that acts as a guard) until this variable evaluates to false, in which case the value
of the last evaluation is output. The derived typing rule for this iterator is given by

Γ ⊢ u : τ Γ ⊢ t : τ → B × τ
Γ ⊢ iterate0 t from u : τ

The operational intuition given above suggests that iterate0 t from u unfolds once to
let (b, v) = t(u) in (if b then (iterate0 t from v) else v). In plain language, we apply t once
to u, getting a pair (b, v) of a Boolean guard and a new value v; we then examine b to decide
whether to apply t again or to return v.

We can think of this process in two ways: as iterating t from u or, equivalently, as
iterating t and applying the resulting operation to u. With the latter perspective, we want
to find a (sub)stochastic matrix M such that MJuK = Jiterate0 t from uK. Then,

MJuK = Jiterate0 t from uK

= Jlet (b, v) = t(u) in (if b then (iterate0 t from v) else v)K
= joinτ ◦ (idB ⊗M ⊗ idτ) ◦ (idB ⊗ copyτ) ◦ JtKJuK

Since u can denote an arbitrary distribution, we are looking for a matrix M that is a solution
of the equation above. This equation might have several solutions. However, in the presence
of an order, it is traditional in programming language semantics to take the smallest solution
as the canonical semantics of iteration [46]. For this purpose, we equip the set of substochastic
maps with the pointwise order, i.e., A ≤ B for two substochastic matrices if Ax ≤ Bx for
all nonnegative x ∈ Rn. With this order, we want the semantics of iterate0 t to be the
least fixpoint of the map φ given by φ(M) = joinτ ◦ (idB ⊗M ⊗ idτ) ◦ (idB ⊗ copyτ) ◦ JtK for
M : JτK → JτK. Note that idB = JtrueKJtrueKT + JfalseKJfalseKT , so that

φ(M) = joinτ ◦
((

JtrueKJtrueKT + JfalseKJfalseKT
)

⊗M ⊗ idτ
)

◦ (idB ⊗ copyτ) ◦ JtK

= joinτ ◦
((

JtrueKJtrueKT
)

⊗M ⊗ idτ
)

◦ (idB ⊗ copyτ) ◦ JtK

+ joinτ ◦
((

JfalseKJfalseKT
)

⊗M ⊗ idτ
)

◦ (idB ⊗ copyτ) ◦ JtK

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:11

Since joinX(δtrue, x, y) = x and joinX(δfalse, x, y) = y, we can simplify the previous expression
considerably: φ(f) = M ◦ (JtrueKT ⊗ idτ) ◦ JtK + (JfalseKT ⊗ idτ) ◦ JtK. Thus, φ is an affine
transformation over the vector space of linear maps RJτK → RJτK (which is isomorphic
to RJτK ⊗ RJτK), given by φ(M) = MB + A, where A := (JfalseKT ⊗ idτ) ◦ JtK and B :=
(JtrueKT ⊗ idτ)◦ JtK. Moreover, φ maps substochastic maps to substochastic maps, since φ(M)
can also be expressed as joinτ ◦ (idB ⊗M ⊗ idτ) ◦ (idB ⊗ copyτ) ◦ JtK, which is a composition
of substochastic maps, and therefore substochastic.

In the literature [8, 29], the problem of characterising this fixpoint is usually approached
by showing that φ is order-continuous – then, its least fixpoint can be obtained by taking the
suprema of successive iteration of φ starting from the bottom of the order, i.e., the uniform
zero distribution:∨

n≥0
φn(0) = lim

n→∞

n∑
k=0

A ◦Bk

However, in general, this only gives a recipe to approximate the desired least fixpoint. In
the discrete setting that is ours, we want to compute it exactly. We lay out the details on
how we accomplish this to Section 6, where we elucidate the internal implementation of this
iterator and evaluate its performance.

6 Implementation and Empirical Evaluation

We now extend the core syntax of Dice by incorporating the two iterators described in
Sections 4 and 5 [45]. We evaluate their performance by comparing the average time required
to attain the stationary distribution of a specific probabilistic function using these, contrasted
with the time needed to approximate the same distribution through bounded iteration.

Dice is implemented in OCaml and uses rsdd [22], a Rust-based implementation for
building and handling decision diagrams, as its backend for compiling binary decision
diagrams (BDDs). To extend Dice, we employ py.ml [32], an OCaml library that facilitates
the dynamic binding of Python modules, to harness efficient and extensively used linear
algebra tools for the computation of linear operators corresponding to the semantics given
by the iterators. While at compile time a Dice program is encoded as a weighted BDD,
we obtain its matrix representation by evaluating its action on the canonical Dirac basis.
This matrix is subsequently sent through py.ml to a Python library, where the distribution
associated to either iterate or iterate0 is obtained. Subsequently, we obtain the weighted BDD
representation of this distribution by leveraging Dice’s internal encoding [24, Section 5.1] to
define a distribution over a finite set of states. All our experiments were ran single-threaded
on the same machine with a 2.7GHz CPU and 15GB of RAM. Timings were recorded using
time, the standard GNU utility.

6.1 Cesàro Iterator
For computing the semantics of iterate t we work with the matrix representation of JtK.
From the discussion in Section 4 and Proposition 7, we know that the semantics of iterate t
is any column of the projection onto Ker(I − JtK) along Im(I − JtK).

There are several ways to compute this projection. We have chosen to use a full-rank
factorisation of I − JtK. A full-rank factorisation of a n× n matrix M is a pair of of an n× r

matrix B and a r×n matrix C such that M = BC, where r is the rank of B,C, and M . Given
such a factorisation, the projection onto ImM along KerM is given by P = B(CB)−1C, a
result which can be found in § 7.10 of [34]. Since I − P is the complementary projector of P ,
the projection onto KerM along ImM is therefore I −B(CB)−1C.

FSCD 2024

20:12 On Iteration in Discrete Probabilistic Programming

In practice, we obtain a full rank factorisation from the singular value decomposition (SVD)

of M , by taking M = U

(
Σ 0
0 0

)
V T = (U0|U1)

(
Σ 0
0 0

)(
V0
V1

)
, making (U0Σ)V0 = U0(ΣV0)

a full-rank factorisation of M , where U0 corresponds to the matrix made by the first n columns
of U where n is the number of non-zero singular values of Σ and, similarly, V0 corresponds
to the first n rows of V . Thus, Jiterate tK is (say) the first column of I − U0(V0U0)−1V0,
where U0, V0 come from the full-rank factorisation of I − JtK given by its SVD (note that
the singular values are not needed, since they cancel out for these choices of B = U0Σ and
C = V0).

▶ Example 8. Consider the transition kernel JtK of the program that simply swaps two states

(Example 6). An SVD of M = I − JtK gives M = UΣV T where U = V =

− 1√
2

1√
2

1√
2

1√
2


and Σ =

(
2 0
0 0

)
. Thus, Jiterate tK is any column of I − U0(V0U0)−1V0, which gives the

distribution
(1

2
1
2
)⊤. This witnesses the fact that the program oscillates between its only

two states, spending equal time on each. Note that this gives a stationary distribution of the
corresponding Markov chain which cannot be obtained by successive iterations.

d
T
V

(B
,π

)

Total elapsed time (s)

1
4

1
2

3
4

1

to322021.751.51.2510.750.50.25
▲ ▲ ▲ ▲

Figure 2 Comparative graph depicting the required time for various simulations of the Bernoulli-
Laplace model to converge to a posterior distribution within 0 + ϵ, 1

4 , 1
2 , 3

4 and 1 in total variation
distance (drawn as points “•” in the above graph) from the stationary distribution, and the time it
takes for Jiterate tK to compute the stationary distribution for an instance of the Bernoulli-Laplace
model with equal number of states (drawn as triangles “▲”). Different colors represent distinct
instances of the Bernoulli-Laplace model with different urn size. We extend the time line with a
timeout data point (to) for the cases in which no posterior could be retrieved.

Empirical Evaluation. We now evaluate the time performance of iterate. Note that a direct
comparison of our iterative operator with other existing forms of iteration in Dice is not
feasible. This is because while our iterator obtains the exact posterior distribution of some
function t : τ → τ , Dice can only approximate this distribution by simulating the underlying
transition kernel of t by unfolding its BDD representation a fixed number of times.

To empirically evaluate the performace of JiterateK, we compare the time it takes for
Jiterate tK to obtain the stationary distribution π for t an instance of the Bernoulli-Laplace
diffusion model described in Section 3, with urns of various sizes |Ω| = {3, 7, 10, 20}, and
the time it takes for an iterative simulation to obtain a posterior distribution B at distances

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:13

of 1, 3
4 ,

1
2 ,

1
4 and 0 + ε in total variation from the stationary distribution π. Already for urns

as small as |Ω| = 7 it is not possible to obtain a posterior that is within ε = 0.001 distance
from π in any reasonable amount time. Moreover, for models with an urn size of 10 or more,
it becomes practically infeasible to achieve a posterior distribution beyond the mixing time
of t. For this reason, we have decided to set ϵ = 0.005 for the above experiments.

Colored dots in the graph in Fig. 2 represent the time it takes for the bounded iterative
method to initially produce a posterior B that is within y-axis distance from π, while the
colored triangles placed along the x-axis indicate the time required for Jiterate tK to compute
the exact posterior, π. It can be observed that even in experiments with small urn sizes,
achieving a reasonably close approximation to the stationary distribution (reaching its mixing
time) is not feasible through existing means.

6.2 Least Fixpoint Iterator
As introduced in Section 5, the semantics of iterate0 t from u is given by the fixpoint of
equation (??). One way to compute this fixpoint exactly is with linear programming. Every
fixpoint M of φ will satisfy MA + B = M so we are looking for M ∈ RJτK ⊗ RJτK that
satisfies M(I −A) = B and M ≥ 0. We also need a linear form to minimise such that the
solution to the corresponding linear program is the desired least fixpoint. In other words,
we are looking for C ∈ RJτK ⊗ RJτK such that the minimum of CTM subject to the linear
constraints M(I −A) = B and M ≥ 0 is the least fixpoint of φ. Which C should we choose?
We claim that any strictly positive C will work.

▶ Proposition 9. Let C be any positive vector of RJτK ⊗ RJτK. The least fixpoint of φ : M 7→
MA+B over the poset of substochastic maps is the solution to the following linear program:
minimise CTM subject to the constraints M(I −A) = B and M ≥ 0.

Empirical Evaluation. Now we compare the efficiency of iterate0 t from u to obtain the
least fixpoint of a probabilistic procedure against the time it takes to approximate the
same distribution through finite iterative means. To this end, we adapt a probabilistic
program that models a packet delivery reliability problem, inspired by Bayonet [15], a
domain-specific language (DSL) focusing in network analysis, which captures the inherent
probabilistic behaviour of computer networks. Similar to Dice, Bayonet allows to define
discrete distributions within its program structure. This is achieved through PSI in its
backend [16], a discrete PPL featuring a symbolic engine that generates concise expressions
for representing distributions. A network topology defines the network nodes which can be
hosts or switches, and the links that interconnect them. Every link between two nodes is
represented by two ports, and each of these nodes has both an input and an output queue,
for received and outgoing packets, respectively. To capture the behaviour of a node, we
specify how the node processes the packets it receives.

s0h0 s3 h1

s1

s2

⟨1 2
,
1
10
⟩

⟨ 1
2 , 110 ⟩

⟨ 3
4 , 120 ⟩

⟨3 4
,
1
20
⟩

⟨1 4
,
1
20
⟩

⟨ 1
4 , 120 ⟩

⟨ 116 , 130 ⟩

⟨
1
16
,
1
30
⟩

⟨ 7
8 , 0⟩⟨1, 0⟩

Consider above’s network topology, where some switches si have a non-zero probability
⟨−, q⟩ of dropping a packet at any given moment and forwarding their packet with some
probability ⟨p,−⟩. Host h0 sends a packet to host h1 every clock tick. Switch s0 forwards

FSCD 2024

20:14 On Iteration in Discrete Probabilistic Programming

half of h0’s packets to s1 and the other half to s2, with a 1
10 chance of dropping a packet.

Both s1 and s2 forward their packets to s3 with a 3
4 chance and send it back with a 1

4 chance.
At every moment, they have a 1

20 chance of dropping the packet. Finally, s3 has a 7
8 chance

of forwarding its packet to h1 without any inconvenience and a 1
8 chance of sending it back

to either s1 or s2 with equal probability and a 1
30 chance of dropping it.

The problem of packet delivery reliability is defined as the probability that a given packet
(or flow of packets) reaches its intended destination. In our setting, we are interested in
knowing the reliability of the entire network. This is, for any packet sent by h0, what is the
probability that it hits h1. This network’s behaviour is captured by the following program:
fun network (si) {

if s0 then (if flip 1/2 then (s1 , flip 1/10) else (s2 , flip 1/10)) else
if s1 then (if flip 3/4 then (s3 , flip 1/20) else (s0 , flip 1/20)) else
if s2 then (if flip 3/4 then (s3 , flip 1/20) else (s0 , flip 1/20)) else
if flip 7/8 then (s3 , false) else

(if flip 1/2 then (s1 , flip 1/30) else (s2 , flip 1/30))
}
fun aux(a) { let x = network (a) in (if (π2 t) then (aux (π1 t)) else (π1 t)) }

The network function returns, for any state s, the distribution over the state space that
represents the probability of transitioning to any other state. To evaluate the efficiency of
Jiterate0 t from uK in computing the fixpoint of the transition function implicitly given by
the above program, we compare the time it takes to obtain this distribution via the least
fixpoint iterator against the time it takes to approximate it through successive iterations, by
unrolling the underlying BDD. Since, similar to the previous example, we cannot directly
compare these two times, as one method finds the desired distribution exactly and the other
only approximates it, we also provide how close we are in total variation distance to the
target distribution π at each iteration i.

We denote by f i the distribution given by the first projection of the output provided
by iterate(aux, s0, i). Each column of the following table displays the average time taken
by five different executions of f i to obtain the posterior, along with its proximity to π, the
stationary distribution of the transition given by network:

iterations 1 3 5 7 9
dT V (f i, π) 0.912627 0.168776 0.023505 0.008805 0.013332
Ellapsed time (s) 0.252 0.266 0.296 1.030 58.32

While the simulation quickly converges to stationary, the oscillatory behaviour of the
model hinders the possibility of establishing any stopping criterion. This naïve iterat-
ive method becomes unwieldy, already taking one minute to simulate only nine steps of
the network. We contrast the times in the above table with the 0.54 seconds that it takes
iterate0 network from s0 to compute the stationary distribution.

7 Conclusion and Future Work

We have shown that it is possible to extend discrete probabilistic programming with unboun-
ded iteration in at least two different ways, without giving up exact inference. Unbounded
iteration is valuable because it allows us to compute the limiting behaviour of probabilistic
programs that encode discrete-time stochastic processes. Since deciding when a stochastic
process is sufficiently close to its limiting distribution is intractable in principle, we have
argued that unbounded iteration and exact inference are both necessary in this setting.
Finally, we have implemented these two different forms of iteration and demonstrated their
performance on simple benchmarks, extending a functional programming language with
discrete probabilistic choices.

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:15

Comparing the two iterators. In this paper, we have given two forms of unbounded
iteration: one based on averaging the behaviour of a term t : τ → τ over all iterations, and
another given by iterating a term t : τ → B × τ from a given initial condition u, while the
Boolean guard of t remains true. The former only makes sense in the context of probabilistic
programming while the latter is a direct translation of while loops into the setting of a
(functional) PPL.

While we have not given the Cesàro iterator as a fixpoint, it can also be characterised
as one. Indeed, it is a well-known corollary of Proposition 7 that the Cesàro sum of
a (sub)stochastic map M always gives a stationary distribution for the Markov chain it
represents, in other words a fixpoint of M . Indeed, if P is the projection onto Ker(I −M)
along Im(I −M), then for all x, Px−MPx = 0 and therefore MPx = Px.

At first sight, comparing these two forms of iteration is not meaningful, since they
take arguments of different types. Therefore, one cannot simply ask when is iterate t =
iterate0 t from u, since the same t cannot be fed to both. Nevertheless, given t : τ → τ ,
one can ask when does iterate t = iterate0 (t, true) from u, for some program u? It
turns out that if the guard is always true, the semantics of iterate0 (t, true) from u is
uniformly 0 (regardless of u), which is not necessarily the case for iterate t. Conversely,
given t : τ → B × τ , one can obtain a program t′ : τ → τ by marginalising over the Boolean
guard. Even in this case, iterate t′ does not necessarily coincide with iterate0 t from u.
There are edge cases for which the two are equal (e.g., when the spectral radius of t′ is strictly
less than 1, see Appendix A.2), but they do not correspond to any meaningful conditions
on the corresponding program. Therefore, the forms of iteration have genuinely distinct
capabilities and use cases: the first is useful to obtain the stationary distribution of some
program encoding the dynamics of a Markov chain, while the second can be used to simulate
while loops.

Related work. As far as we are aware, the only other line of work that combines exact
inference and unbounded iteration is [6]. There, the semantics of programs is given in terms
of probability generating functions and thus rather different from ours, making a direct
comparison with our work more challenging. Moreover, while their language allows some
infinitely-supported distributions, it does not allow conditioning inside of loops. In [7], the
authors present an imperative PPL for discrete random variables, called BernoulliProb.
Notably, BernoulliProb has while-loops and therefore support unbounded iteration. While
the semantics of while-loops is closely related to the one we give to the least fixpoint iterator
of Section 5, in practice, the implementation of [7] only approximates this least fixpoint using
KL-divergence as a measure of convergence. Thus, their implementation suffers from the
limitations we have highlighted in Section 3.

In [16], the authors introduce PSI, a PPL that is able to perform exact symbolic inference
for programs with discrete and continuous random variables. However, the syntax of
their language allows only bounded iteration. There are other general-purpose PPLs and
frameworks including looping constructs with constant bounds [19, 36], leading to approximate
rather than exact inference. These languages do not offer guarantees on the convergence
rates of the associated fixpoint computation, running into the problems outlined in Section 3.

It is also worth comparing our work with the the Probabilistic Model Checking (PMC) tools
[30, 10], which focus on generalising traditional model checking to verify that a probabilistic
system satisfies a particular temporal logic formula. The main difference between Dice
and these tools lies in their approach to probabilistic inference. While Dice utilizes WMC
over BDDs, PMC tools frequently employ ADDs and explicit matrix representations that
are combined with iterative techniques to derive posterior distributions. For discrete-time

FSCD 2024

20:16 On Iteration in Discrete Probabilistic Programming

Markov chains, these tools integrate PCTL operators whose semantics is akin to the least
fixed-point operator of this paper [20], allowing for the expression of stationary distributions,
when they exist. Although obtaining the exact stationary distribution is feasible, practical
implementations often resort to iterative methods to address issues stemming from state
space explosion – similar to those faced by Dice – making them prone to the challenges
discussed in Section 3.

Finally, there are domain-specific PPLs that include some form of unbounded iteration
[41, 42], but do so only for their restricted domain of application. In particular, the more
narrow focus of [42] on network specification gives stronger guarantees on the convergence
of the loops that can be specified in the language. This allows for exact inference in the
presence of unbounded iteration, albeit in a setting which is less general than ours.

Future work. As mentioned in Remark 3, our work could be formulated in a more categorical
context. This would enable us to connect the different notions of iteration and their
corresponding fixpoints to traces in monoidal categories. In categories for which the monoidal
product coincides with the categorical product, a trace always defines a notion of fixpoint. This
is not necessarily the case in more general monoidal categories, such as that of (sub)stochastic
maps. Finding a suitable trace would open the possibility of reasoning equationally about
probabilistic programs with iteration.

In a more practical note, one possible avenue for future work is to explore data structures
that enable the representation of discrete probabilistic programs with loops without incurring
in any kind of space explosion. Similarly, efficient transformations from explicit representations
of DTMCs to BDDs have been explored in the context of finite-horizon Markov Chains
[23], a natural next step is to adapt the insights gained for finite iterations to a compact
representation of iterators.

References
1 Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy, and San-

tiago Zanella-Béguelin. Probabilistic relational verification for cryptographic implementations.
SIGPLAN Not., 49(1):193–205, January 2014. doi:10.1145/2578855.2535847.

2 Riddhipratim Basu, Jonathan Hermon, and Yuval Peres. Characterization of cutoff for revers-
ible markov chains. The Annals of Probability, 45(3), May 2017. doi:10.1214/16-aop1090.

3 Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision diagrams.
ACM Comput. Surv., 24(3):293–318, September 1992. doi:10.1145/136035.136043.

4 Dmitry Bugaychenko. On application of multi-rooted binary decision diagrams to probabilistic
model checking. In Proceedings of the 13th International Conference on Verification, Model
Checking, and Abstract Interpretation, VMCAI’12, pages 104–118, Berlin, Heidelberg, 2012.
Springer-Verlag. doi:10.1007/978-3-642-27940-9_8.

5 Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6):772–799, 2008. doi:10.1016/j.artint.2007.11.002.

6 Mingshuai Chen, Joost-Pieter Katoen, Lutz Klinkenberg, and Tobias Winkler. Does a program
yield the right distribution? verifying probabilistic programs via generating functions. In
International Conference on Computer Aided Verification, pages 79–101. Springer, 2022.

7 Guillaume Claret, Sriram K. Rajamani, Aditya V. Nori, Andrew D. Gordon, and Johannes
Borgström. Bayesian inference using data flow analysis. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pages 92–102, New York,
NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2491411.2491423.

8 Fredrik Dahlqvist, Alexandra Silva, and Dexter Kozen. Semantics of Probabilistic Pro-
gramming: A Gentle Introduction, pages 1–42. Cambridge University Press, 2020. doi:
10.1017/9781108770750.002.

https://doi.org/10.1145/2578855.2535847
https://doi.org/10.1214/16-aop1090
https://doi.org/10.1145/136035.136043
https://doi.org/10.1007/978-3-642-27940-9_8
https://doi.org/10.1016/j.artint.2007.11.002
https://doi.org/10.1145/2491411.2491423
https://doi.org/10.1017/9781108770750.002
https://doi.org/10.1017/9781108770750.002

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:17

9 Swaraj Dash, Younesse Kaddar, Hugo Paquet, and Sam Staton. Affine monads and lazy
structures for bayesian programming. Proc. ACM Program. Lang., 7(POPL), January 2023.
doi:10.1145/3571239.

10 Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. A storm is
coming: A modern probabilistic model checker, 2017. arXiv:1702.04311.

11 P Diaconis. The cutoff phenomenon in finite markov chains. Proceedings of the National
Academy of Sciences of the United States of America, 93(4):1659–1664, February 1996. doi:
10.1073/pnas.93.4.1659.

12 Persi Diaconis. The markov chain monte carlo revolution. Bulletin of the American Mathem-
atical Society, 46(2):179–205, November 2008. doi:10.1090/s0273-0979-08-01238-x.

13 Persi Diaconis and Mehrdad Shahshahan. Time to reach stationarity in the bernoulli-laplace
diffusion model. Siam Journal on Mathematical Analysis, 18:208–218, 1987.

14 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.
Probabilistic netkat. In Peter Thiemann, editor, Programming Languages and Systems, pages
282–309, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

15 Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal Wiesmann, and
Martin Vechev. Bayonet: Probabilistic inference for networks. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2018, pages 586–602, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3192366.3192400.

16 Timon Gehr, Sasa Misailovic, and Martin Vechev. Psi: Exact symbolic inference for probabil-
istic programs. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
pages 62–83, Cham, 2016. Springer International Publishing.

17 Noah D. Goodman, Vikash K. Mansinghka, Daniel Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: A language for generative models. In Proceedings of the Twenty-Fourth
Conference on Uncertainty in Artificial Intelligence, UAI’08, pages 220–229, Arlington, Virginia,
USA, 2008. AUAI Press.

18 Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sriram K. Rajamani. Probab-
ilistic programming. In Proceedings of the on Future of Software Engineering, pages 167–181.
ACM, 2014. doi:10.1145/2593882.2593900.

19 Maria I. Gorinova, Andrew D. Gordon, and Charles Sutton. Probabilistic programming
with densities in SlicStan: efficient, flexible, and deterministic. Proceedings of the ACM on
Programming Languages, 3(POPL):1–30, January 2019. doi:10.1145/3290348.

20 Hans Hansson and Bengt Jonsson. A logic for reasoning about time and reliability. Form.
Asp. Comput., 6(5):512–535, September 1994. doi:10.1007/BF01211866.

21 Holger Hermanns, Marta Kwiatkowska, Gethin Norman, David Parker, and Markus Siegle.
On the use of mtbdds for performability analysis and verification of stochastic systems. The
Journal of Logic and Algebraic Programming, 56(1):23–67, 2003. Probabilistic Techniques for
the Design and Analysis of Systems. doi:10.1016/S1567-8326(02)00066-8.

22 Steven Holtzen. RSDD. https://github.com/neuppl/rsdd/, 2023.
23 Steven Holtzen, Sebastian Junges, Marcell Vazquez-Chanlatte, Todd Millstein, Sanjit A. Seshia,

and Guy Van Den Broeck. Model checking finite-horizon markov chains with probabilistic
inference, 2021. arXiv:2105.12326.

24 Steven Holtzen, Guy Van den Broeck, and Todd Millstein. Scaling exact inference for
discrete probabilistic programs. Proc. ACM Program. Lang., 4(OOPSLA), November 2020.
doi:10.1145/3428208.

25 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
doi:10.1017/CBO9780511810817.

26 Joe Hurd. Formal verification of probabilistic algorithms. Technical Report UCAM-CL-TR-566,
University of Cambridge, Computer Laboratory, May 2003. doi:10.48456/tr-566.

27 Joost-Pieter Katoen. Model checking meets probability: A gentle introduction. In Manfred
Broy, Doron A. Peled, and Georg Kalus, editors, Engineering Dependable Software Systems,
volume 34 of NATO Science for Peace and Security Series, D: Information and Communication
Security, pages 177–205. IOS Press, 2013. doi:10.3233/978-1-61499-207-3-177.

FSCD 2024

https://doi.org/10.1145/3571239
https://arxiv.org/abs/1702.04311
https://doi.org/10.1073/pnas.93.4.1659
https://doi.org/10.1073/pnas.93.4.1659
https://doi.org/10.1090/s0273-0979-08-01238-x
https://doi.org/10.1145/3192366.3192400
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1145/3290348
https://doi.org/10.1007/BF01211866
https://doi.org/10.1016/S1567-8326(02)00066-8
https://github.com/neuppl/rsdd/
https://arxiv.org/abs/2105.12326
https://doi.org/10.1145/3428208
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.48456/tr-566
https://doi.org/10.3233/978-1-61499-207-3-177

20:18 On Iteration in Discrete Probabilistic Programming

28 D. Knuth and A. Yao. Algorithms and Complexity: New Directions and Recent Results, chapter
The complexity of nonuniform random number generation. Academic Press, 1976.

29 Dexter Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences,
22(3):328–350, 1981. doi:10.1016/0022-0000(81)90036-2.

30 Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of probabilistic
real-time systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors, Computer Aided
Verification, pages 585–591, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

31 D.A. Levin and Y. Peres. Markov Chains and Mixing Times. MBK. American Mathematical
Society, 2017.

32 Thierry Martinez. pyml. https://opam.ocaml.org/packages/pyml/, 2023.
33 A.J. Menezes, J. Katz, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Crypto-

graphy. Discrete Mathematics and Its Applications. CRC Press, 1996.
34 Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. Society for Industrial and Applied

Mathematics, USA, 2000.
35 T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. /Infer.NET 0.3,

2018. Microsoft Research Cambridge. http://dotnet.github.io/infer.
36 T. Minka, J.M. Winn, J.P. Guiver, Y. Zaykov, D. Fabian, and J. Bronskill. /Infer.NET 0.3,

2018. Microsoft Research Cambridge. http://dotnet.github.io/infer.
37 Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov.

Probabilistic inference by program transformation in Hakaru (system description). In Oleg
Kiselyov and Andy King, editors, Functional and Logic Programming, pages 62–79, Cham,
2016. Springer International Publishing.

38 Frank Noé. Probability distributions of molecular observables computed from Markov models.
The Journal of Chemical Physics, 128(24):244103, June 2008. doi:10.1063/1.2916718.

39 Fritz Obermeyer, Eli Bingham, Martin Jankowiak, Justin Chiu, Neeraj Pradhan, Alexander
Rush, and Noah Goodman. Tensor variable elimination for plated factor graphs, 2019.
arXiv:1902.03210.

40 Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1):273–302,
1996. doi:10.1016/0004-3702(94)00092-1.

41 Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. Cantor
meets Scott: semantic foundations for probabilistic networks. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages. ACM, January 2017.
doi:10.1145/3009837.3009843.

42 Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and
Alexandra Silva. Scalable verification of probabilistic networks. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM,
June 2019. doi:10.1145/3314221.3314639.

43 Sam Staton. Commutative semantics for probabilistic programming. In Hongseok Yang, editor,
Programming Languages and Systems, pages 855–879, Berlin, Heidelberg, 2017. Springer Berlin
Heidelberg.

44 David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank Wood. Design and
implementation of probabilistic programming language anglican. In Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming Languages,
IFL 2016, New York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/
3064899.3064910.

45 Mateo Torres-Ruiz. Dice. https://bitbucket.org/dice-iter/dice, 2024.
46 Glynn Winskel. The formal semantics of programming languages - an introduction. In

Foundation of computing series, 1993. URL: https://api.semanticscholar.org/CorpusID:
7767429.

https://doi.org/10.1016/0022-0000(81)90036-2
https://opam.ocaml.org/packages/pyml/
https://doi.org/10.1063/1.2916718
https://arxiv.org/abs/1902.03210
https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/3064899.3064910
https://doi.org/10.1145/3064899.3064910
https://bitbucket.org/dice-iter/dice
https://api.semanticscholar.org/CorpusID:7767429
https://api.semanticscholar.org/CorpusID:7767429

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:19

Table 1 Dice’s core syntax. Metavariable f ranges over function names, x over variable names,
and θ over reals in the range [0, 1].

τ ::= B | τ1 × τ2 (Types)
v ::= true | false | (v, v) (Values)
a ::= x | v (Atomic expressions)
e ::= a | fst a | snd a | (a, a) | let x = e in e

| if a then e else e | flip θ | observe a | f(e) (Expressions)
func ::= fun f(x : τ) : τ {e} (Functions)

p ::= e | func p (Programs)

A Appendix

A.1 Core Dice
Dice programs are compiled into weighted Boolean formulas on top of which exact inference is
performed via weighted model counting to obtain the distribution of densities specified in the
main return expression [5]. To represent these formulas, the compiler internally manipulates
programs by using multi-rooted binary decision diagrams (MRBDDs) [3], allowing it to take
advantage of the conditional independence of the declared variables and the local structure
amenable to efficient MRBDD compilation, making it possible for Dice to handle inference
tasks even in the presence of models with a large number of variables.

Internally, the compiler maintains two Boolean formulas, φ and ψ. These represent all
possible execution paths and only those that satisfy the Bayesian evidence provided by the
observe statements, respectively. A global weighting function w : L → R is employed to
assign weights to literals. This allows for the assignment of weights to all models ω that
satisfy a given formula, and the task of obtaining the posterior distribution of a given program
is then reduced to a weighted model counting problem

∑
ω∈M(φ∧ψ) w(ω)/

∑
ω∈M(φ) w(ω),

where M(α) is the set of models of some Boolean formula α.

▶ Example 10. The internal representation of the program in Example 2 is given by the
following MRBDD, where the solid lines denote the paths where the decision variable is true
and the dashed lines those where it is false.

x

yT yF

T F

0.1 0.9

0.7
0.3 0.3

0.7

where M(φ ∧ ψ) = {xyT } and M(φ) = {xyT , xyF }, evaluating to w(xyT)/(w(xyT) +
w(xyF)) = (0.1 · 0.7)/(0.1 · 0.7 + 0.9 · 0.3) ≈ .2059.

Dice can compile discrete probabilistic programs with bounded loops into a symbolic
representation using MRBDDs by “unfolding” each iteration step. However, MRBDDs
can only represent finite Boolean functions and thus are not suitable for directly encoding
programs with unbounded loops. There is nevertheless a bijection between matrices and
MRBDDs enabling us to move freely between the two representations as needed and leverage
the diverse results from linear algebra to our advantage [4, 21].

FSCD 2024

20:20 On Iteration in Discrete Probabilistic Programming

▶ Example 11. The unfolding action on BDDs of bounded iteration leads to an increase in
the number of nodes on its underlying representation, making it hard to reach sensible bounds
on its approximation to the stationary distribution of the function that is iterated. Consider
the problem of simulating a fair coin given samples from a biased one c with probability
p ∈ (0, 1) of landing heads. This can be done by employing von Neumann’s trick: we flip c

two times, if the outcomes are identical, we select the first sample as our sample, otherwise,
we repeat the process. This procedure can be encode as the following program.

fun flip_biased_coin () {
flip p

}

fun simulate_fair_coin (coin : bool) : (bool , bool) {
snd (coin , coin ⊙ flip_biased_coin ())

}

iterate (simulate_fair_coin , flip_biased_coin (), k)

While it is clear from the repeated runs of the above program that we converge to the expected
value of Bernoulli(1

2), the number of nodes in its BDD representation grows linearly with
the number of iterations k.

▶ Remark 12 (On normalisation). In general, the semantics of a term t might be a substochastic
map. Nevertheless, eventually, the user would like to recover the normalised probability
distribution encoded by a given program. While this is an expensive operation in general,
the Dice compiler keeps track of an auxiliary formula, which encodes the paths through
the compiled BDD allowed by the observe statements. This formula can be used to recover
the normalisation constant and normalise JtK efficiently before computing Jiterate tK or
iterate0 t from u. In other words, we always normalise before iterating. The Cesàro sum of
a stochastic map is a stochastic map, so Jiterate tK will also be normalised. However, this
is not always the case for iterate0 t from u: for example, if the the guard in t : τ → B × τ

is always true, the semantics of the resulting iteration is uniformly zero. Note that this
subprobability distribution cannot be normalised and interpreted as a genuine probability
distribution. As we saw, this distribution is the bottom for the order over subprobability
distributions and a program whose semantics assigns zero weights to all outcomes is better
thought of as having an undefined value.

A.2 Least Fixpoint Iterator
Proof of Proposition 9. Let us call M∗ the least fixpoint of φ over the poset of substochastic
maps. By definition, it satisfies M∗(I −A) = B and M∗ ≥ 0. Furthermore, if M is any other
nonnegative fixpoint of φ, we have M∗ ≤ X, so that CTM∗ ≤ CTM . Indeed, this holds for
any pair of vectors, since C has all positive entries. Thus, M∗ is indeed the solution to the
linear program given in the statement. ◀

▶ Remark 13. Whenever the spectral radius of B, the transition kernel of a Markov chain
representing some program t : τ → τ , is strictly bellow 1, there is a simpler method to
compute the least fixpoint of φ than the outlined in Section 5. First, recall from 5 that

∨
n≥0

φn(0) = lim
n→∞

n∑
k=0

A ◦Bk

M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:21

And that for T an operator Rn → Rn, its Neumann series I+T +T 2 + . . . converges if and
only if ρ(T) < 1 [25]. Moreover, in this case, (I − T) is invertible and

∑∞
n=0 T

n = (I − T)−1.
Indeed, if (I−T) was not invertible, there would be u ∈ Rn different from 0 such that Tu = u

and hence, ρ(T) ≥ 1 since 1 would necessarily be an eigenvalue of T .

Therefore, when Ker(I −B) = {0}, we have A(I−B)−1 = A lim
n→∞

n∑
k=0

Bk = lim
n→∞

n∑
k=0

ABk,

by continuity of matrix multiplication. We see that, in this case, A(I − B)−1 is the least
fixpoint of φ. Note that whenever Ker(I −B) is not trivial, the series

∑∞
n=0 B

n diverges and
this approach fails.

FSCD 2024

	1 Introduction
	2 Dice: An Efficient Discrete PPL
	2.1 Syntax
	2.2 Semantics

	3 Iteration in PPLs: Existing Approaches and Challenges
	4 Introducing Unbounded Iteration
	4.1 Exact Inference

	5 An Alternative: Least Fixpoint Iterator
	6 Implementation and Empirical Evaluation
	6.1 Cesàro Iterator
	6.2 Least Fixpoint Iterator

	7 Conclusion and Future Work
	A Appendix
	A.1 Core Dice
	A.2 Least Fixpoint Iterator

