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Abstract
Proof assistants such as Coq implement a type theory featuring three important features: impredic-
ativity, cumulativity and product covariance. This combination has proven difficult to be expressed
in the logical framework Dedukti, and previous attempts have failed in providing an encoding that
is proven confluent, sound and conservative. In this work we solve this longstanding open problem
by providing an encoding of these three features that we prove to be confluent, sound and to satisfy
a restricted (but, we argue, strong enough) form of conservativity. Our proof of confluence is a
contribution by itself, and combines various criteria and proof techniques from rewriting theory.
Our proof of soundness also contributes a new strategy in which the result is shown in terms of an
inverse translation function, fixing a common flaw made in some previous encoding attempts.
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1 Introduction

As the number of proof systems grow, it becomes increasingly important to understand the
relationship between their logics and to which extent they can be expressed in a unified
setting. The research project centered around the logical framework Dedukti [7, 16] has
precisely the intent of providing such a setting. By allowing for the encoding of popular
logics such as predicate logic [16], higher-order logic [32, 16], set theory [17] and pure type
systems [18, 22], it provides a common framework in which proofs coming from different
proof systems can be rechecked, increasing the trust in their correctness. Moreover, Dedukti
can then also be used for sharing these proofs with other systems, which has already allowed
for exporting results to tools like Coq [15, 44], Agda [24] and HOL [44, 29].

The correctness of the verification provided by Dedukti relies however on methatheoretic
results stating that the theorems that can be proven by a Dedukti encoding are exactly
the same ones of the encoded logic. In the particular case of the cumulative calculus
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21:2 Impredicativity, Cumulativity and Product Covariance in Dedukti

Table 1 Comparison with previous encodings.

Assaf˚ [5] Assaf et al. [8] Thiré˚ [45] Férey` [26] This work
Confluence ✗ ✓; ✗ ✗ ✓

Soundness ✗: ✗: ✗: ✓ ✓

Conservativity ✗ ✗ ✗ ✗ ✓‹

:: The translation function is ill-defined (see the discussion in Section 9).
;: Requires matching modulo ACU. ‹: Only in a restricted form.
˚: Also handles other cumulative type systems. `: Also supports universe polymorphism.

of constructions, a type theory combining impredicativity and cumulativity with product
covariance, giving an encoding satisfying these properties has remained to this day a challenge.
This issue is made especially relevant by the fact that this theory is quite popular, and is
most notably implemented by the proof assistant Coq.

The current situation regarding encodings of this theory is summarised in Table 1. All
encodings presented until now came with a proof of soundness, meaning that all facts that
can be proven by the encoded logic can also be proven in the encoding. However, the proofs
provided by Assaf, Assaf et al. and Thiré have turned out to be incorrect, as they rely on
ill-defined translation functions – see Section 9 for a detailed explanation. The situation is
even more serious regarding conservativity, the property dual to soundness and which ensures
that the encoding cannot prove more theorems than the encoded system. Indeed, none of
the previous proposals have provided a proof of this fact, which is nevertheless essential to
ensure that a proof checked by Dedukti is indeed correct in the original system.

One of the challenges in proving conservativity is that all known proof methods rely on
confluence – which is moreover also essential to establish subject reduction. However, the
combination of impredicativity, cumulativity and product covariance has proven difficult to
be expressed in a confluent way in Dedukti. Indeed, almost all previous encodings have not
succeeded in proving this property. A notable exception is the impressive work of Assaf et
al. [8], which however relies on matching modulo ACU (assocativity-cumutativity with unit)
a form of matching that is much less efficient and harder to implement than pure syntactical
matching. For instance, the addition of ACU matching to the DkCheck implementation
doubled the size of the kernel [20] (see also the discussion by Blanqui [14]).

In this work we address this unsatisfying state of affairs by giving an encoding of the
cumulative calculus of constructions, featuring cumulativity with product covariance, that
we show to satisfy the necessary metaproperties to be used in practice.

Contrary to the previous proposals, our encoding does not require non-left-linear rewrite
rules, which not only are less efficient but also make confluence proofs much harder [33].
Our proof of confluence then relies on a sophisticated combination of classical results and
techniques [36, 47], and automated checkers developed by the rewriting community [30, 28, 38].

With the confluence of our encoding in hand, we proceed to show soundness. In order
to fix the problem with the translation function made in previous attempts, we contribute
an adaptation of the technique of Winterhalter et al. [48] and Oury [39] in which the well-
typedness of the translation is stated and proved in terms of an inverse translation function.
The direct translation function can then be extracted from our constructive proof of soundness.

We finish by showing that our encoding satisfies a restricted form of conservativity, namely
only for so-called object terms. We argue that, in the encoding, these are the only terms that
one writes in practice, and therefore this restricted result is sufficient.
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EmptyCtx

¨ $

ExtCtx
Γ $ A : Type

Γ, x : A $
x : A P Γ

Var
Γ $

Γ $ x : A
c : A P Σ

Cons
Γ $

Γ $ c : A

Sort
Γ $

Γ $ Type : Kind
A ” B

Conv
Γ $ t : A Γ $ B : s

Γ $ t : B

Pi
Γ $ A : Type Γ, x : A $ B : s

Γ $ px : Aq Ñ B : s

Abs
Γ $ A : Type Γ, x : A $ B : s Γ, x : A $ t : B

Γ $ λx : A.t : px : Aq Ñ B

App
Γ $ t : px : Aq Ñ B Γ $ u : A

Γ $ t u : Bru{xs

Figure 1 Typing rules of Dedukti.

Outline of the paper

We start in Sections 2 and 3 by recalling the definitions of Dedukti and of the variant of
the calculus of constructions we consider. We then proceed in Section 4 to present the theory
used in our encoding, and in Section 5 by proving its desirable properties – in particular its
confluence. We define the translation function we use in Section 6, and in Sections 7 and 8
we establish the soundness and conservativity of our encoding respectively. We finish by
discussing related work in Section 9, before concluding in Section 10.

2 Dedukti

We assume an underlying set c, d, ... P C of constants, x, y, z... P V of variables and
A, B, t, u, ... P M of metavariables equipped with an arity (a natural number). The metaterms
of Dedukti [26] are defined by the following grammar.

Λ̂dk Q t, u, A, B, ... ::“ x | c | Type | Kind | px : Aq Ñ B | λx : A.t | t u | ttt1, ..., tarityptqu

A metavariable application is written ttt1, ..., tku when arityptq “ k, or just t when
arityptq “ 0. The metaterms Type and Kind are called sorts and referred to by the letter s.
We write px : Aq Ñ B for the dependent function type, and whenever x does not appear free
in B we write A Ñ B instead. We define fvptq as the set of free variables of t and mvptq as
the set of metavariables of t. When no ambiguity can arise, we allow ourselves to also write
t, u, A, B for variables. We adopt the convention of writing constants names in blue font.

A substitution θ is a finite set of pairs t{x or px1..xk.tq{t, where k “ arityptq. We write trθs

for the application of a substitution θ to a metaterm t. The main cases of its definition are
xrθs “ t when t{x P θ, and ttu1, ..., ukurθs “ tru1rθs{x1, ..., ukrθs{xks when px1..xk.tq{t P θ –
see for instance Férey [26] for the complete definition. A rewrite system R is a set of rewrite
rules, which are pairs of the form t ÞÝÑ u where t is of the form c t1...tk and fvptq “ fvpuq “ H

and mvpuq Ď mvptq and all occurrences of metavariables in t are of the form ttx1, ..., xku

with x1...xk pairwise disjoint (known as the pattern condition [37]). When convenient, a rule
can be given a name α, in which case we write t

α
ÞÝÑ u.

We write ÝÑR for the closure under context and substitution of R, and ÝÑβR for
ÝÑβ Y ÝÑR where ÝÑβ is the usual β-reduction. Note that all these rewrite relations are
defined over untyped metaterms, and that we do not consider η-reduction or -expansion,
as they behave badly in the context of rewriting. We then write ÝÑ˚

βR for the reflexive-
transitive closure of ÝÑβR, and ”βR for its reflexive-symmetric-transitive closure, usually
called conversion or definitional equality. Most of the time R is clear from the context,
allowing us to write just ÝÑ for ÝÑβR and ” for ”βR.
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21:4 Impredicativity, Cumulativity and Product Covariance in Dedukti

Sub
n ď m

n Ď m

Eq
A ” B

A Ď B

Trans
A Ď B B Ď C

A Ď C

ProdCov
A Ď B

Πx : C.A Ď Πx : C.B

EmptyCtx

¨ $CC

ExtCtx
Γ $CC Γ $CC A : n

Γ, x : A $CC

px : Aq P Γ

Var
Γ $CC

Γ $CC x : A

Sort
Γ $CC

Γ $CC n : Apnq

Pi
Γ $CC A : n Γ, x : A $CC B : m

Γ $CC Πx : A.B : Rpn, mq

Lam
Γ $CC A : n Γ, x : A $CC t : B

Γ $CC λx : A.t : Πx : A.B

App
Γ $CC t : Πx : A.B Γ $CC u : A

Γ $CC t u : Bru{xs
A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B

Figure 2 Typing rules for CC.

Metavariables are useful in order to define the notion of rewrite rules, but apart from
this they will have no use for us, and in particular typing will only be defined for metaterms
without metavariables. Because of this, we define the set of Dedukti terms Λdk as the
metaterms t satisfying mvptq “ H. Given that terms will be the main object of study, from
now on we adopt the convention that the letters t, u, A, B, ... refer to terms, unless it is
explicitly said that they refer to metaterms.

A context Γ is a finite sequence of entries of the form x : A. A signature Σ is a (possibly
infinite) sequence of entries of the form c : A. One central notion in Dedukti is that of
theory, which is a pair T “ pΣT, RTq where ΣT is a signature and all constants appearing in
RT are declared in ΣT. Theories are used in Dedukti to define the object logics in which
we work (for instance, predicate logic). Given a theory T, the typing rules of Dedukti are
given in Figure 1, where the signature Σ and the conversion relation ” are the ones defined
by the theory T. Whenever T is not clear from the context, we write T Ż Γ $ t : A.

A signature entry c : A is valid in T when T Ż ¨ $ A : s for some sort s. A theory T is
said to be well typed when each entry c : A P ΣT is valid in pΣ1, R1q, where Σ1 is the prefix of
ΣT preceding c : A, and R1 is the restriction of RT to rules only containing constants in Σ1.

3 The Cumulative Calculus of Constructions with Product Covariance

We recall the definition of the cumulative calculus of constructions with product covariance [35,
31]. It can be seen as the underlying cumulative type system [34, 10] of the Coq proof
assistant [42], omitting the sorts Set and SProp. Its syntax is given by the following grammar.

ΛCC Q t, u, A, B ::“ x | n | Πx : A.B | λx : A.t | t u

Here we have made the choice of representing universes directly by a natural number n.
The universe that is commonly referred to as Prop then corresponds to 0, whereas Typen

corresponds to n ` 1, allowing us to manipulate them in a more uniform way. The typing
rules are then given in Figure 2, and are parametrized by the following axiom and rule
functions, as they are known in the pure type system literature [27, Definition 4.3.2].
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A : N Ñ N R : N ˆ N Ñ N
Ap0q :“ 2 Rpn, 0q :“ 0
Ap1 ` nq :“ 2 ` n Rpn, 1 ` mq :“ maxtn, 1 ` mu

▶ Remark 1. We choose to follow the implementation of Coq in placing 0 (Prop) in the
universe 2 (Type1). Some presentations choose instead to place it in 1 (Type0) [35], a technical
change that would have no impact in the strategy developed in this paper.

Compared with type systems that do not feature cumulativity, the conversion rule for CC
does not only allow to exchange two types A and B when they are convertible, but also to
coerce a term from type A to B when the former is a subtype of the latter. This subtyping
relation, written A Ď B, is defined in the base case as A Ď B when A ” B, or n Ď m when
n ď m. The second rule allows us for instance to coerce a type Γ $ A : 0 to Γ $ A : 1. Then,
what one calls product covariance is the rule allowing to deduce Πx : C.A Ď Πx : C.B from
A Ď B, which lets us for instance to coerce a function Γ $CC f : Nat Ñ 0 to Γ $CC f : Nat Ñ 1.

4 Introducing the theory TCC

We now introduce the Dedukti theory TCC we will use in our encoding. We build it
incrementally in order to motivate as best as possible the choices we have made.

Our first step is declaring a type S along with constants 0 and S for zero and successor,
allowing us to represent the CC sort n by the Dedukti term Sn 0 – which from now on we
write as n. We then define many auxiliary constants that will be useful later, such as addition
` , truncated predecessor P, and also constants A and R to represent the functions A and
R from the definition of CC. We declare the associated rewrite rules so that they have the
expected computational behavior, such as n`m ÝÑ˚ n ` m, n _ m ÝÑ˚ maxtn, mu, etc.

S : Type
0 : S
S : S Ñ S

A : S Ñ S

A 0 ÞÝÑ S pS 0q

A pS lq ÞÝÑ S pS lq

P : S Ñ S

P 0 ÞÝÑ 0
P pS lq ÞÝÑ l

´ : S Ñ S Ñ S pinfixq

l1 ´ 0 ÞÝÑ l1

l1 ´ pS l2q ÞÝÑ pP l1q ´ l2

` : S Ñ S Ñ S pinfixq

0`l2 ÞÝÑ l2

l1 `0 ÞÝÑ l1

pS l1q`l2 ÞÝÑ S pl1 `l2q

l1 `pS l2q ÞÝÑ S pl1 `l2q

_ : S Ñ S Ñ S pinfixq

0 _ l2 ÞÝÑ l2

l1 _ 0 ÞÝÑ l1

pS l1q _ pS l2q ÞÝÑ S pl1 _ l2q

R : S Ñ S Ñ S

R l1 0 ÞÝÑ 0
R l1 pS l2q ÞÝÑ l1 _ pS l2q

Using S we can then encode the universes of CC. This is done by declaring a constant U,
such that the inhabitants of Un can then be thought of as codes for the types of CC in n.
The decoding function El then maps each such code to the Dedukti type of its elements.

U : pl : Sq Ñ Type pwritten Ulq El : pl : Sq Ñ Ul Ñ Type pwritten Ellq

Next we add constants to represent the codes inhabiting such universes. Because in CC
each universe n inhabits Apnq, we add a constant u mapping each l : S to its code in UpA lq.
An associated rewrite rule then ensures that ul decodes to the type Ul as expected.

FSCD 2024



21:6 Impredicativity, Cumulativity and Product Covariance in Dedukti

u : pl : Sq Ñ UpA lq pwritten ulq Elp_q ul
Elu
ÞÝÑ Ul

A similar story happens for the function type: we add a constant π mapping a code
a : Ula and a family of codes b : Ella a Ñ Ulb

to a code in UpR la lbq, so that if a represents
A and b represents B, then the result represents the CC type Πx : A.B. However, for reasons
that will become clear later, our constant also allows us to decompose the sorts la and lb
into a common factor l0 to which we apply offsets l1 and l2. In order to equate different
decompositions of la and lb, we also add a rewrite rule which removes two successors of l1
and l2 and compensates it by adding one in l0. Finally, we add a rewrite rule defining the
elements of πl0

l1,l2
a λx.b as the Dedukti functions from the elements of a to the ones of b.

π : pl0 l1 l2 : Sq Ñ pA : Upl0 ` l1qq

Ñ pB : Elpl0 ` l1q A Ñ Upl0 ` l2qq Ñ UpR pl0 ` l1q pl0 ` l2qq pwritten πl0
l1,l2

q

πl0
pS l1q,pS l2q

A B
πS

ÞÝÑ π
pS l0q

l1,l2
A B

Elp_q pπl0
l1,l2 A λx : C.Btxuq

Elπ
ÞÝÑ px : Elpl0 ` l1q Aq Ñ Elpl0 ` l2q Btxu

The theory given until this point is a representation of CC without cumulativity, and
straightforwardly applies well-known techniques from previous Dedukti encodings [18, 16].
The interesting part is for the encoding of cumulativity. The main insight of our proposal
comes from the following simple result regarding the relation Ď. In the following, given a
context ∆ “ x1 : B1..xk : Bk, let us write ∆ ñ A for the CC term Πx1 : B1...xk : Bk.A.

▶ Lemma 2 (Case analysis of Ď). If A Ď B then either A ” B or A ÝÑ˚ ∆ ñ n and
B ÝÑ˚ ∆ ñ m for some context ∆ and natural numbers n, m with n ď m.

Therefore, in order to simulate CC’s cumulativity it suffices to add a lift Ò allowing the
coercion of terms from a type ∆ ñ n to ∆ ñ n ` 1. However, to be able to state the type of
Ò we first need to have an internal representation for types of the form ∆ ñ n in Dedukti.
We do this by first defining a type for telescopes whose canonical elements are either the
empty telescope ˛, or the extension A l ◀ λx.D of a telescope D with a code A in universe Ul.
We can then define a function ñ that computes a Dedukti type corresponding to ∆ ñ n.

Tele : Type
˛ : Tele
◀ : pl : Sq Ñ pA : Ulq Ñ pEll A Ñ Teleq

Ñ Tele pinfix, written l ◀ q

ñ : Tele Ñ S Ñ Type pinfixq

˛ ñ l1
ñ˛
ÞÝÑ Ul1

pA l2 ◀ λx : _.Dtxuq ñ l1
ñ◀
ÞÝÑ px : Ell2 Aq Ñ Dtxu ñ l1

With these definitions in place we can finally give the definition of Ò.1

Ò : pl : Sq Ñ pD : Teleq Ñ pD ñ lq Ñ pD ñ pS lqq pwritten Òlq

Because in CC the applications of cumulativity are silent, the main challenge in the
encoding is to ensure that different Dedukti representations of the same CC term are
convertible. The pioneering work of Assaf [4] first identified that, in a setting without
product covariance, it suffices to add the following full reflection equations – here and in the
rest of the article we write Ò

m
n D t as a notation for Òm´1 D p...pÒn D tq...q when n ď m.

1 Note that our lift is single-step, in contrast with some previous encodings [5, 45, 26] which employed a
multi-step lift, taking a type A : Ul1 to Ò

l2
l1

˛ t : Ul2 . The avoidance of the multi-step lift is essential in
order to prevent its associated non-left-linear rules, such as Ò

l
l D t ÞÝÑ t.
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π
0
1`n,m pÒn ˛ aq pλx.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx.bqq

π
0
n,1`m a pλx.Òm ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx.bqq

The main difficulty in implementing these as rewrite rules is that the multistep lift Ò
m
n is

just a notation which computes the correct number of lifts Ò to be inserted only for a given
concrete choice of n and m. For instance, if n ą m ą 0 in the second equation then no lifts
should be inserted in the right hand side, whereas if n ą m “ 0 then we must insert n´1 lifts.
Of course, this could be solved by adding these as infinite schemes of rewrite rules, for all
n, m P N, however we want to keep the rewrite system finitary, so it can actually be used in
practice in the implementation.

If only we could have more information about n and m when applying the rule, we would
be able to calculate the correct amount of lifts. Thankfully, because the sorts of a and b can
be decomposed with the rule πS, we know that for any π

n0
n1,n2 a λx.b in normal form we must

have either n1 “ 0 or n2 “ 0. We can then proceed with a disjunction of cases, where in
each situation we have enough information to apply the right number of lifts.

π0
pS lq,0 pÒ_ ˛ Aq B

Ò1
π

ÞÝÑ π0
l,0 A B

π
pS l1q

0,l2
pÒ_ ˛ Aq B

Ò2
π

ÞÝÑ πl1
0,pS l2q

A B

π
pS l1q

pS l2q,0 pÒ_ ˛ Aq B
Ò3

π
ÞÝÑ ÒpS pl1 ` l2qq ˛ pπ

pS l1q

l2,0 A Bq

ò : pl : Sq Ñ pA : U0q Ñ Ul pwritten òlq

ò0 A ÞÝÑ A

òpS lq A ÞÝÑ Òl ˛ pòl Aq

π
pS pS l1qq

l2,0 A pλx : C.Ò_ ˛ Btxuq
Ò4

π
ÞÝÑ π

pS l1q

pS l2q,0 A pλx : C.Btxuq

πl1
0,pS l2q

A pλx : C.Ò_ ˛ Btxuq
Ò5

π
ÞÝÑ Òpl1 ` l2q ˛ pπl1

0,l2 A pλx : C.Btxuqq

π
pS 0q

l,0 A pλx : C.Ò_ ˛ Btxuq
Ò6

π
ÞÝÑ òpS lq pπ0

pS lq,0 A pλx : C.Btxuqq

Note that in order to state the last rule we also define an auxiliary constant ò which
given a sort l, lifts a type from U0 to Ul. The following proposition then ensures that we
have correctly implemented Assaf’s full reflection equations.

▶ Proposition 3 (Simulation of Assaf’s full reflection rules). We have the following conversions.

π
0
1`n,m pÒl ˛ aq pλx : C.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (1)

π
0
n,1`m a pλx : C.Òl ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (2)

Proof. By a disjunction of cases in which each case corresponds to one of the rules Òi
π. ◀

▶ Remark 4. We note that the rules Òi
π are also very similar to the ones identified by Assaf et

al. [8]. However they also differ in a crucial way by avoiding the use of non-left-linearity and
matching modulo ACU, which are less efficient and render confluence proofs much harder.

The rules given until now would ensure the uniqueness of codes for a version of CC with
“simple” cumulativity. However, in a setting with product covariance we also need to ensure
that Ò properly commutes with abstraction and application. We therefore add the following
two rules, which are variants of similar equations first identified by Thiré [45] and Férey [26].

FSCD 2024



21:8 Impredicativity, Cumulativity and Product Covariance in Dedukti

Òl p_ p_q ◀ λx : _.Dtxuq λx : A.ttxu
Òλ

ÞÝÑ λx : A.Òl Dtxu ttxu

Òl p_ p_q ◀ λx : _.Dtxuq t u
Ò@

ÞÝÑ Òl Dtuu pt uq

We now have almost finished presenting the theory TCC. The final step is adding the
following rule explaining the relationship between the elements of Òl ˛ A and the ones of A,
which as expected should be the same. Here we have purposely avoided the expected rule
ElpS lq pÒp_q ˛ Aq ÞÝÑ Ell A used in some previous proposals [5, 45]. This subtle difference is
essential in order to allow the critical pairs between Òi

π and Elπ to close. We add a similar
rule for ò, but once again we annotate El with l2 ´l1 instead of 0 in order to ensure that
critical pairs all close. Finally, we need a last rule similar to ÒEl ensuring the uniqueness of
telescope representations, which will be key when proving the injectivity of ñ.

Ell pÒ_ ˛ Aq
ÒEl
ÞÝÑ ElpP lq A Ell2 pòl1 Aq

òEl
ÞÝÑ Elpl2 ´ l1q A pÒ_ ˛ Aq l ◀ D

Ò◀
ÞÝÑ A pP lq ◀ D

5 Basic properties of TCC

With the definition of the theory TCC in place, we now show that it satisfies the basic properties
one expects, which will be essential for proving soundness and conservativity later. The first
of them is the fact the the theory TCC is well-typed, in the sense defined in Section 2.

▶ Proposition 5 (Well-typedness of TCC). The theory TCC is well typed.

Proof. Checked automatically with Lambdapi – see the artifact [19] for more details. ◀

5.1 Confluence
Unlike all previous proposals, our theory TCC only makes use of left-linear rules. By preventing
the use of non-left-linearity, which interacts very badly with higher-order rewriting, we have
made a first step for proving confluence. Yet, confluence still does not come for free. In
order to show it, we split βRCC into subsystems βR1 and R2, allowing us to apply different
techniques for showing their confluence. Note that the union βR1 Y R2 is not disjoint: the
rule ÒEl, needed for closing critical pairs in both subsystems, is shared between them.

R1 :“ tÒ@, Òλ, Ò◀, ñ˛, ñ◀, ÒElu R2 :“ RCCztÒ@, Òλ, Ò◀, ñ˛, ñ◀u

Confluence of βR1

The hardest part of our proof is showing the confluence of βR1, for two main reasons. First,
even though all critical pairs of βR1 close (as shown in Figure 3), because the β rule is
non-normalizing on untyped terms, we cannot apply Newman’s Lemma to reduce proving
confluence to local confluence. Second, because the critical pairs are neither trivial [47]
nor development closed [46], we cannot apply the classical criteria that avoid the use of
termination. Thankfully, it turns out that we can still employ the well-known technique
of showing that orthogonal rewriting with βR1 satisfies the diamond property, from which
confluence of βR1 will follow as a simple corollary.

Given a rewrite system R, the orthogonal rewriting relation ùñβR [21, 26] (also known
as developments or multi-step reduction [11]) is defined over metaterms by the following
inference rules, where we write θ ùñ θ1 as an abbreviation for dompθq “ dompθ1q and for all
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Òl p_ p_q ◀ λx : C.Dtxuq pλx : A.ttxuq u Òl Dtuu ppλx : A.ttxuq uq

pλx : A.Òl Dtxu ttxuq u Òl Dtuu ttuu

β

β

Òλ

Ò@

Òl ppÒp_q ˛ Bq l1 ◀ λx : C.Dtxuq pλx : A.ttxuq λx : A.Òl Dtxu ttxu

Òl pB pP l1q ◀ λx : C.Dtxuq pλx : A.ttxuq

Òλ
Ò◀

Òλ

Òl ppÒp_q ˛ Bq l1 ◀ λx : C.Dtxuq t u Òl Dtuu pt uq

Òl pB pP l1q ◀ λx : C.Dtxuq t u

Ò@
Ò◀

Ò@

ppÒl2 ˛ Aq l1 ◀ λx : C.Dtxuq ñ l px : Ell1 pÒl2 ˛ Aqq Ñ Dtxu ñ l

pA pP l1q ◀ λx : C.Dtxuq ñ l px : ElpP l1q Aq Ñ Dtxu ñ l
ñ◀

ÒElÒ◀

ñ◀

Figure 3 Critical pairs of βR1.

x⃗.t{t P θ and x⃗.t1{t P θ1 we have t ùñ t1.

Var

x ùñ x

Const

c ùñ c

Sort

s ùñ s

Meta
ti ùñ t1

i for all i

ttt1..tku ùñ ttt1
1..t1

ku

App
t ùñ t1 u ùñ u1

t u ùñ t1 u1

Abs
A ùñ A1 t ùñ t1

λx : A.t ùñ λx : A1.t1

Fun
A ùñ A1 B ùñ B1

px : Aq Ñ B ùñ px : A1q ùñ B1

l ÞÝÑ r P R
mvplq “ dompθq

RedR

θ ùñ θ1

lrθs ùñ rrθ1s

Redβ

t ùñ t1 u ùñ u1

pλx : A.tq u ùñ t1ru1{xs

For all R, orthogonal rewriting satisfies the following well-known properties – see for
instance [11].

▶ Proposition 6. We have ÝÑβRĎùñβRĎÝÑ˚
βR, hence ÝÑ˚

βR and ùñ˚
βR are equal.

▶ Proposition 7. If t ùñβR t1 and θ ùñβR θ1 then trθs ùñβR t1rθ1s.

▶ Proposition 8. We have t ùñβR t for all t.

Using these properties, we can now show the following:

▶ Proposition 9. ùñβR1 satisfies the diamond property.

Proof. Given t, u, v with u ðù t ùñ v we show that there is w with u ùñ w ðù v. The
proof is by induction on t ùñ u and t ùñ v. The only interesting case is when t ùñ u (or
dually, t ùñ v) is derived with rules RedR or Redβ . The case Redβ follows by the same
argument as in the proof of confluence for the λ-calculus [9, Lemma 3.2.6], so let us now
consider the case RedR, in which we have t “ lrθs for some l ÞÝÑ r P R1 and u “ rrθ1s with
θ ùñ θ1. There are then three possibilities regarding t ùñ v.

FSCD 2024
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If all applications of RedR or Redβ in t ùñ v occur inside the substitution θ, then
because l is linear we have v “ lrθ2s with θ ùñ θ2. By i.h. we have θ1 ùñ θ3 ðù θ2 for
some θ3, and thus u “ rrθ1s ùñ rrθ3s ðù lrθ2s “ v using Propositions 7 and 8.
If t ùñ v starts with an application of RedR using the same rule as the one applied in
t ùñ u, then we have v “ rrθ2s with θ ùñ θ2. By i.h. we have θ1 ùñ θ3 ðù θ2 for some
θ3, and thus u “ rrθ1s ùñ rrθ3s ðù rrθ2s “ v using Propositions 7 and 8.
If in t ùñ v there is at least one application of RedR with a rule l1 ÞÝÑ r1 destroying the
redex t “ lrθs (note that this is impossible with Redβ), we consider all such possible cases.
In our case, this turns out to correspond exactly to the critical pairs2 in Figure 3. We
can then conclude each of these cases by appealing to the i.h. and Proposition 7 to close
the diagrams. The following diagram illustrates this for when t ùñ u is derived with Ò@
and t ùñ v destroys its redex with Òλ. In the middle square, X stands for C, D, A, t, u.

Òl p_ p_q ◀ λx : C.Dq pλx : A.tq u Òl1 D1ru1{xs ppλx : A1.t1q u1q

X X 1

i.h.

X2 X3

pλx : A2.Òl2 D2 t2q u2 Òl3 D3ru3{xs t3ru3{xs ◀

Combining Proposition 9 with Proposition 6, we immediately get the following corollary.

▶ Corollary 10. βR1 is confluent.

▶ Remark 11. Alternatively, one can show the confluence of βR1 by applying a recent
criterion by Dowek, Férey, Jouannaud and Liu [21, Theorem 38]. However, the proof we
give is more elementary as it relies neither on orthogonal critical pairs nor on decreasing
diagrams, and therefore we believe that it is accessible to a wider audience.

Confluence of R2

We now move to the proof of confluence of R2, which relies on termination.

▶ Lemma 12. R2 is strongly normalizing.

Proof. We translate from R2 into the first-order rewrite system R̂2 obtained by forgetting
about binders: λx : A.t is translated into λ̂ A1 t1 and Πx : A.B is translated into Π̂ A1 B1,
where A1, B1, t1 are the translations of A, B, t. For instance, the rule Ò4

π is translated into
the rule π

pS pS l1qq

l2,0 A pλ̂ C pÒ_ ˛ Bqq ÞÝÑ π
pS l1q

pS l2q,0 A pλ̂ C Bq. We can easily show that this
interpretation preserves reduction sequences, therefore we reduce SN of R2 to the one of R̂2.
The latter can be shown with the use of the first-order termination checker AProVE [1, 28], and
the proof can be verified by the formally certified tool CeTA [2, 43] – see the artifact [19]. ◀

▶ Proposition 13. R2 is confluent.

Proof. We use the tools CSIho [3, 38] and SOL [30] to verify that all critical pairs of R2 are
joinable – see the artifact [19] for details – so by Mayr and Nipkow’s critical pair criterion [36,
Theorem 4.7] we conclude that R2 is locally confluent.3 Together with Lemma 12, this gives
the confluence of R2 by applying Newman’s Lemma. ◀

2 Although, for arbitrary R, it is not true in general that all such situations arise from simple critical
pairs, and one needs instead to consider the more general notion of orthogonal critical pairs [21].

3 Note that, although Mayr and Nipkow’s criterion was shown for the specific rewrite formalism of Higher-
order Rewrite Systems (HRSs), following Saillard [40, Definition 5.2] we can encode the formalism of
Dedukti as a specific HRS, allowing us to use their result in our setting. Alternatively, we refer to
Férey’s PhD thesis [26], which revisits classic confluence criteria in the rewrite formalism of Dedukti.
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Confluence of βRCC

Putting everything together, we obtain the confluence of βRCC.

▶ Theorem 14. βRCC is confluent.

Proof. By Corollary 10 and Proposition 13 we have the confluence of βR1 and R2, and
moreover the rewrite systems are left-linear and there are no critical pairs between them.
Therefore, we conclude the confluence of their union by applying van Oostrom and van
Raamsdonk’s orthogonal combinations criterion [47, Theorem 3.13].4 ◀

We obtain the following useful corollary, which we implicitly use in the rest of the article.

▶ Corollary 15 (Injectivity of undefined symbols). If c is a constant that does not appear in
the head of a rewrite rule, then c t1...tk ” c u1...uk implies ti ” ui for i “ 1..k.

5.2 Subject reduction
We start with subject reduction for β. Because we have already shown confluence of βRCC,
we obtain directly the injectivity of function types: if px : Aq Ñ B ” px : A1q Ñ B1 then
A ” A1 and B ” B1. This is sufficient in order to ensure that β satisfies subject reduction.

▶ Proposition 16 (SRβ). If Γ $ t : A and t ÝÑβ t1 then Γ $ t1 : A.

Proof. Follows from the injectivity of function types [12, Lemma 31]. ◀

Moving to subject reduction for RCC, the first point we realize is that this property does
not hold unconditionally. For instance, the rule

π
pS l1q

0,l2
pÒ_ ˛ Aq B ÞÝÑ πl1

0,pS l2q
A B

only preserves typing if S pl1rθs _ pl1rθs`l2rθsqq ” l1rθs _ S pl1rθs`l2rθsq, yet both sides
are already in normal form. We could try to make the two sides convertible by adding a
rewrite rule, however this rule would not be left-linear and thus make proving confluence
much harder. Nevertheless, the fact that these terms are not convertible is actually not a
problem because whenever l1 and l2 are substituted by terms of the form n for some n P N
then we see that the equation holds. Starting from this insight, we now show that subject
reduction holds in a restricted form, which turns out to be sufficient for our needs.

We say that a term is guarded when all occurrences of ò are of the form òn and all
occurrences of π are of the form π

n0
n1,n2 for some n, n0, n1, n2 P N. The set of guarded terms

satisfies the following basic stability properties.

▶ Proposition 17 (Stability of guarded terms under substitution and reduction).
1. If t, u are guarded then tru{xs is guarded.
2. If t is guarded and t ÝÑ t1 then t1 is guarded.

We can now show that RCC satisfies subject reduction for guarded terms.

▶ Proposition 18 (SRRCC). If t is guarded and Γ $ t : A and t ÝÑRCC t1 then Γ $ t1 : A.

4 The same observation as in Footnote 3 applies here.
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Proof. We use Lambdapi to automatically verify that the rules preserve typing (the cor-
rectness of this verification relies on the confluence of the rewrite system [41, 13], which we
have by Theorem 14). The verification succeeds for all rules l ÞÝÑ r P RCC, except for those
which do not preserve typing unconditionally. For these cases, Lambdapi reports conversion
constraints on the substitution θ under which Γ $ lrθs : A implies Γ $ rrθs : A.

1. Case òEl. Preserves typing if l2rθs ´l2rθs ” 0. But by inversion of typing of the left-hand
side we also get l1rθs ” l2rθs, so the rule preserves typing whenever l1rθs ´ l1rθs ” 0.

2. Case Ò2
π. Preserves typing if S pl1rθs _ pl1rθs`l2rθsqq ” l1rθs _ S pl1rθs`l2rθsq.

3. Case Ò3
π. Preserves typing if pl1rθs`l2rθsq _l1rθs ” l1rθs`l2rθs and

S pl1rθs`l2rθsq _l1rθs ” S pl1rθs`l2rθsq.
4. Case Ò4

π. Preserves typing if S pl1rθs`l2rθsq _l1rθs ” S ppl1rθs`l2rθsq _l1rθsq.
5. Case Ò5

π. Preserves typing if l1rθs _ S pl1rθs`l2rθsq ” S pl1rθs`l2rθsq and
R l1rθs pl1rθs`l2rθsq ” l1rθs`l2rθs.

Because t is guarded, it follows that l1rθs is a concrete sort in case 1, and both l1rθs

and l2rθs are concrete sorts in the other cases, so the result follows from the fact that these
equations all hold for natural numbers. ◀

▶ Corollary 19 (SRβRCC). If t is guarded and Γ $ t : A and t ÝÑ˚ t1 then Γ $ t1 : A.

▶ Remark 20. Corollary 19 guarantees that the usual type inference algorithm for Dedukti [41]
is sound when Γ and t are guarded. Indeed, by inspection on its definition, if the inputs Γ
and t are guarded then only guarded terms are ever reduced.

6 The translation function

Defining a Dedukti encoding usually requires specifying a translation function from the
syntax of the source system to the one of the framework. However, whereas cumulativity
is implicit in CC, in Dedukti it is made explicit by the use of a lift (Ò). Therefore, when
translating a CC term, the translation function needs to figure out when to insert such lifts,
even though the initial term contains no information about cumulativity. To handle this, a
first idea could be to define this function only for well-typed CC terms and use typing to
retrieve the missing information. However, it is not clear how to define such a function in a
unique and well-founded way – see Section 9 for a detailed discussion on why.

To solve this problem, we adapt the approach of Winterhalter et al. [48] of relying instead
on an inverse translation function | ´ |, defined from a subset of the syntax of the framework
to the syntax of CC. Because the syntax of Dedukti is more explicit than the one of CC,
this function can be straightforwardly defined by structural induction. Then, we can use it
to state and prove soundness and conservativity. Finally, the direct translation function can
then be recovered as the underlying algorithm of our constructive proof of soundness.

We start by carving out a subset of Dedukti’s syntax over which we define | ´ |. These
are the object terms and object contexts, defined by the following grammars, and where n, m

ranges over natural numbers and G ranges over arbitrary guarded terms.

Λo Q t, u, A, B ::“ x | λx : Eln A.t | un | π
0
n,m A λx : G.B | Òn G t | t u

Ctxo Q Γ ::“ ¨ | Γ, x : Eln A
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The inverse translation function can then be defined by structural induction over object
terms and contexts, by the following clauses.

| ´ | : Λo Ñ ΛCC } ´ } : Ctxo Ñ CtxCC

|x| :“ x } ¨ } :“ ¨

|un| :“ n }Γ, x : Eln A} :“ }Γ}, x : |A|

|λx : Eln A.t| :“ λx : |A|.|t|

|π
0
n,m A pλx : G.Bq| :“ Πx : |A|.|B|

|Òn G t| :“ |t|

|t u| :“ |t| |u| pt u not of previous formsq

Crucially, object terms are all guarded, ensuring that whenever they are well typed then
their reducts also are. In addition, object terms are stable under substitution, which moreover
commutes with | ´ |, two basic properties that will be essential to our proofs.

▶ Proposition 21 (Basic properties of Λo and | ´ |).
1. If t P Λo then t is guarded.
2. If t, u P Λo then tru{xs P Λo and |t|r|u|{xs “ |tru{xs|.

7 Soundness

Our proof of soundness requires multiple intermediate steps. We start by showing the
injectivity modulo lifting of El (Proposition 23) and the injectivity of ñ (Proposition 24),
two technical results that are then used in the proof of coherence (Theorem 26), ensuring
that any two different Dedukti representations of the same CC term must be convertible.
With coherence in hand, we can then show that the conversion relation of CC can be reflected
by the inverse translation function into the framework (Proposition 28), which then finally
allow us to show the soundness of our encoding (Theorem 31).

7.1 Injectivity
We start with the following generalization of Assaf’s full reflection equations, used in the
proof of the injectivity of El modulo lifting. From now on, let us write pÒ_ Dqk t for
Òl1 D p...pÒlk

D tq...q where the l1, ..., lk can be any terms.

▶ Lemma 22 (Generalized full reflection). For all k1, k2, n1, n2 P N we have

π
0
k1`n1,k2`n2

ppÒ_ ˛qk1 Aq pλx : C.pÒ_ ˛qk2 Bq ” Ò
Rpn1`k1,n2`k2q

Rpn1,n2q
˛ pπ

0
n1,n2 A pλx : C.Bqq

Proof. By induction on k1 ` k2, using Proposition 3. ◀

In the following, we use the greek letter ρ to refer to rewrite sequences t ÝÑ˚ u. Given a
rewrite sequence ρ, we write ℏρ for the first rewrite rule applied in the head in ρ or ℏρ “ K

if no step takes place at the head, and we write #ρ for the total number of rewrite steps
in ρ. For instance, if ρ denotes the sequence

Ell ppλx.Òl1 ˛ xq u0q ÝÑ Ell pÒl1 ˛ u0q ÝÑ ElpP lq u0 ÝÑ U0

then we have #ρ “ 3 and ℏρ “ ÒEl, which is the rule applied in the middle.
We can now show that the constant El is injective modulo the insertion of some lifts.

FSCD 2024
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▶ Proposition 23 (Injectivity of El modulo lifting). If Ell1 A1 ” Ell2 A2, where both sides are
guarded and well typed, then there are natural numbers k1, k2 such that
(1) A1 ” pÒ_ ˛qk1 A0 and A2 ” pÒ_ ˛qk2 A0 for some term A0.
(2) Sk1 l0 ” l1 and Sk2 l0 ” l2 for some term l0.

Proof. Note that, under the hypotheses of the lemma, (1) implies (2), so we proceed to show
that the hypotheses imply (1), however when applying the i.h. we also obtain (2) for free.

By confluence we have Ell1 A1 ÝÑ˚ B ˚ÐÝ Ell2 A2 for some B. Writing ρ1 for
Ell1 A1 ÝÑ˚ B and ρ2 for Ell2 A2 ÝÑ˚ B, we show the result by induction on #ρ1 ` #ρ2,
and by case analysis on ℏρ1 and ℏρ2. If ℏρ1 or ℏρ2 is ÒEl or òEl then the result is easily
discharged using the induction hypothesis. Otherwise, we must have ℏρ1 “ ℏρ2, and the only
possibilities are K or Elu or Elπ. If ℏρ1 “ ℏρ2 “ K then the result is easily shown, and if
ℏρ1 “ ℏρ2 “ Elu then the result follows by using the injectivity of U (which is an undefined
constant). We now illustrate the more intricate case, when ℏρ1 “ ℏρ2 “ Elπ.

For i “ 1, 2 we can decompose ρi as

Elli
Ai ÝÑ˚ Ell1

i
pπ

mi

na
i

,nb
i

Aa
i λx : Ci.A

b
i q ÝÑ px : Elpmi ` na

i
q Aa

i q Ñ Elpmi ` nb
i

q Ab
i

ρ1
i

ÝÑ˚ B

where the first arguments of π must be concrete sorts because these are reducts of guarded
terms. In the following, we write δ for either a or b. Then it must be the case that B is of
the form px : Baq Ñ Bb and that we can decompose ρ1

1 and ρ1
2 into ρa

1 , ρb
1, ρa

2 , ρb
2 given by

Elpm1 ` nδ
1q Aδ

1

ρδ
1

ÝÑ˚ Bδ
ρδ

2
˚ÐÝ Elpm2 ` nδ

2q Aδ
2

We have #ρδ
1 ` #ρδ

2 ă #ρ1 ` #ρ2, therefore by i.h. we deduce that for some terms
Aδ

0, lδ
0 and natural numbers kδ

1, kδ
2 we have (a) Aδ

1 ” pÒ_ ˛qkδ
1 Aδ

0 and Aδ
2 ” pÒ_ ˛qkδ

2 Aδ
0, and

moreover also (b) m1 `nδ
1 ” Skδ

1 lδ
0 and m2 `nδ

2 ” Skδ
2 lδ

0.
Because m1 `nδ

1 ÝÑ˚ m1 ` nδ
1, by confluence it follows that lδ

0 also reduces to a concrete
sort pδ P N. We therefore have m1 ` nδ

1 “ kδ
1 ` pδ and m2 ` nδ

2 “ kδ
2 ` pδ. Together with

the equations from (a), this allows us to show the following for i “ 1, 2.

Ai ” π
mi

na
i

,nb
i

Aa
i λx : Ci.A

b
i ” π

0
mi`na

i
,mi`nb

i

Aa
i λx : Ci.A

b
i

” π
0
ka

i
`pa,kb

i
`pb ppÒ_ ˛qka

i Aa
0q pλx : Ci.pÒ_ ˛qkb

i Ab
0q

” Ò
Rppa

`ka
i ,pb

`kb
i q

Rppa,pbq
˛ pπ

0
pa,pb Aa

0 pλx : Ci.A
b
0qq

where the last equation follows from Lemma 22. It suffices now to show that C1 ” C2. To
see this, note that by typing constraints we must have Ci ” Elmi`na

i
Aa

i and thus

Ci ” Elka
i

`pa ppÒ_ ˛qka
i Aa

0q ” ElpaAa
0

where the right-hand side does not depend on i. ◀

The injectivity of El modulo lifting is then used to establish the injectivity of ñ.
▶ Proposition 24 (Injectivity of ñ ). If D1 ñ l1 ” D2 ñ l2 and both sides are well typed
and guarded, then D1 ” D2 and l1 ” l2.
Proof. The strategy is similar to the one employed in Proposition 23. By confluence we have
D1 ñ l1 ÝÑ˚ B ˚ÐÝ D2 ñ l2 for some B. By writing ρi for Di ñ li ÝÑ˚ B, we show the
result by induction on #ρ1 and case analysis on ℏρ1 (which must be the same as ℏρ2). The
case ℏρ1 “ K is easy, and ℏρ1 “ ñ˛ follows by injectivity of U. Finally, the case ñ◀ follows
by the induction hypotheses, typing constraints and Proposition 23. ◀
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7.2 Coherence
To show coherence, we first need the following technical lemma, allowing to decompose a
telescope D when D ñ l is convertible to a function type.

▶ Lemma 25 (Telescope decomposition). If D ñ l ” px : P q Ñ Q then D ÝÑ˚ A l1 ◀ λx :
C.D1 for some A, l1, C, D1 with P ” Ell1 A and Q ” D1 ñ l.

Proof. By confluence, we have D ñ l ÝÑ˚ B ˚ÐÝ px : P q Ñ Q. We must have B of the
form px : P 1q Ñ Q1 with P 1 ” P and Q1 ” Q, and we can decompose D ñ l ÝÑ˚ B as

D ñ l ÝÑ˚ pA l1 ◀ λx : C.D1q ñ l2 ÝÑ px : Ell1 Aq Ñ D1 ñ l2 ÝÑ˚ px : P 1q Ñ Q1

We thus have D ÝÑ˚ A l1 ◀ λx : C.D1 and Ell1 A ” P 1 ” P and D1 ñ l ” Q1 ” Q. ◀

We now move to the proof of coherence, the central auxiliary result needed for soundness,
ensuring that any two different Dedukti representations of the same CC term must be
convertible. The actual statement of the theorem is however a bit more intricate.

▶ Theorem 26 (Coherence). Let t1, t2 P Λo with Γ $ t1 : A1 and Γ $ t2 : A2. If |t1| “ |t2|

then at least one of the following holds:
(1) t1 ” t2
(2) Γ $ Ò

m
n D t2 : D ñ m and t1 ” Ò

m
n D t2 for some D guarded

(3) Γ $ Ò
m
n D t1 : D ñ m and t2 ” Ò

m
n D t1 for some D guarded

Proof. The proof is by induction on t1 and t2, following the definition of | ´ |.
Case t1 “ Òn D u. By inversion of typing, uniqueness of type and injectivity of function
types, we have Γ $ D : Tele and Γ $ u : D ñ n. By i.h. on u and t2, we have three cases
to consider.

(a) u ” t2. By confluence, u and t2 have a common reduct w. Using subject reduction we
know w has both types D ñ n and A2 so by uniqueness of type, we know D ñ n ” A2
so we can conclude that Γ $ t2 : D ñ n and thus that Γ $ Òn D t2 : D ñ pS nq.
Knowing that t1 ” Òn D t2 by congruence, we conclude.

(b) Γ $ Ò
m1

n1 D1 t2 : D1 ñ m1 and u ” Ò
m1

n1 D1 t2. Similarly to above, we can show
D ñ n ” D1 ñ m1 by confluence, subject reduction and uniqueness of type. By
injectivity of ñ (Proposition 24) we get D ” D1 and n ” m1 which means n “ m1

given that they are concrete. So t1 “ Òn D u ” Òn D pÒ
n
n1 D t2q “ Ò

1`n

n1 D t2 by folding
notations. Finally, we have Γ $ t2 : D1 ñ n1, so by conversion we get Γ $ t2 : D ñ n1

and thus Γ $ Ò
1`n

n1 D t2 : D ñ 1 ` n.

(c) Γ $ Ò
m1

n1 D1 u : D1 ñ m1 and t2 ” Ò
m1

n1 D1 u. This gives us in particular that
Γ $ u : D1 ñ n1 so by uniqueness of type we get D ñ n ” D1 ñ n1 and thus D ” D1

and n “ n1. If m1 “ n then we have t2 ” u so we proceed as in case (a), otherwise
m1 ě 1 ` n so we can conclude with t2 ” Ò

m1

n D u “ Ò
m1

1`n D pÒn D uq “ Ò
m1

1`n D t1

and Γ $ Ò
m1

1`n D t1 : D ñ m1.

The case t2 “ Òn D u follows by the same reasoning, and for the other cases the definition
of | ´ | imposes that t1 and t2 must have the same head structure. Therefore, to conclude we
consider t1 and t2 of the same form. We illustrate the following case:

Case t1 “ u1 v1 and t2 “ u2 v2. By inversion we have Γ $ ui : px : Aiq Ñ Bi and
Γ $ vi : Ai. By the i.h. applied to u1 and u2, we have three cases to consider:
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(a) u1 ” u2. We thus get A1 ” A2 and B1 ” B2. Looking at the induction hypothesis on
v1 and v2, in all cases we must have v1 ” v2. Indeed, if we are in cases (2) or (3) then
we get A1 ” D ñ p and A2 ” D ñ q, but together with A1 ” A2 this implies p “ q,
meaning that no lifts are inserted between v1 and v2. We thus conclude that t1 ” t2.

(b) Γ $ Ò
m
n D u2 : D ñ m and u1 ” Ò

m
n D u2. Now, px : A1q Ñ B1 ” D ñ m, so

by Lemma 25 we have D ÝÑ˚ a l ◀ λx : C.D1 with Ell a ” A1 and B1 ” D1 ñ m.
Moreover, we also get that Ell a ” A2 and B2 ” D1 ñ n. We are again in a situation
where v1 and v2 share a type, so by the same arguments as in case (a) the i.h. gives
v1 ” v2. Therefore,

t1 “ u1 v1 ” pÒ
m
n pa l ◀ λx : C.D1q u2q v2 ” Ò

m
n D1rv2{xs pu2 v2q “ Ò

m
n D1rv2{xs t2

For typing, we have Γ $ t2 : B2rv2{xs so by conversion we have Γ $ t2 : D1rv2{xs ñ n

and thus Γ $ Ò
m
n D1rv2{xs t2 : D1rv2{xs ñ m.

(c) Γ $ Ò
m
n D u1 : D ñ m and u2 ” Ò

m
n D u1. Symmetric to case (b). ◀

7.3 Reflection of conversion
With coherence in hand, we can show that the conversion relation of CC can be reflected by
the inverse translation function into the framework. As an intermediate lemma, we first need
to show that individual reduction steps of CC can be simulated in Dedukti.

▶ Lemma 27 (Simulation of reduction steps). Let t P Λo with Γ $ t : A and |t| ÝÑ u for
some u P ΛCC. Then, there is some t1 P Λo such that |t1| “ u and t ÝÑ˚ t1.

Proof. By induction on t, following the definition of Λo. Almost all cases are either impossible,
or follow by applying the i.h. to the subterm being reduced. The only interesting case is
when t “ t1 t2 and the reduction happens in the head. Then, the only possibility is that
t1 “ Ònk

Dk p...pÒn1 D1 vq...q with v “ λx : C.s and |t| “ pλx : |C|.|s|q |t2| ÝÑ |s|r|t2|{xs. If
k “ 0 then the result is immediate, as t is a β redex. Otherwise, by typing constraints and
Proposition 24 we can see that we have D1 ” ... ” Dk and ni`1 “ ni ` 1 for i “ 1..k ´ 1, so
by confluence we have some common reduct D0 of all of them so that t1 ÝÑ˚ Ò

nk`1
n1 D0 v.

Then, by inversion of typing, v has both types D0 ñ n1 and px : Cq Ñ A1 for some A1,
hence by uniqueness of types we have D0 ñ n1 ” px : Cq Ñ A1, which by Lemma 25 implies
D0 ÝÑ˚ C 1

l ◀ λx : B.D1 for some C 1, l, B, D1. Abbreviating C 1
l ◀ λx : B.D1 as D1

0,

t ÝÑ˚ Ò
nk`1
n1 D1

0 pλx : C.sq t2 ÝÑ˚ pλx : C.Ò
nk`1
n1 D1 sq t2 ÝÑ Ò

nk`1
n1 D1rt2{xs srt2{xs

and we have Ò
nk`1
n1 D1rt2{xs srt2{xs P Λo, with |Ò

nk`1
n1 D1rt2{xs srt2{xs| “ |s|r|t2|{xs. ◀

▶ Proposition 28 (Reflection of type conversion). Let A, B P Λo with Γ $ A : Un and
Γ $ B : Um. If |A| ” |B| then Eln A ” Elm B.

Proof. Take k :“ maxtn, mu; we have Γ $ Ò
k
n ˛ A : Uk and Γ $ Ò

k
m ˛ B : Uk and

|Ò
k
n ˛ A| “ |A| ” |B| “ |Ò

k
m ˛ B|. By confluence we have |Ò

k
n ˛ A| ÝÑ˚ C ˚ÐÝ |Ò

k
m ˛ B|

for some C. By iterating Lemma 27 with subject reduction, we get Ò
k
n ˛ A ÝÑ˚ A1 and

Ò
k
m ˛ B ÝÑ˚ B1 and |A1| “ C “ |B1| for some A1 and B1. We also have Γ $ A1 : Uk and

Γ $ B1 : Uk, so by Theorem 26 we get A1 ” B1 – note that because A1 and B1 have the same
type, there can be no lifts between them. Therefore, we have Ò

k
n ˛ A ” Ò

k
m ˛ B and thus we

conclude Eln A ” Elk pÒ
k
n ˛ Aq ” Elk pÒ

k
m ˛ Bq ” Elm B. ◀
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7.4 Soundness
We now have almost all auxiliary results needed for showing soundness. As a last step, we
only need the following two easy lemmas.

▶ Lemma 29 (Computing the El of a translation). Let A P Λo with Ell A well typed.
1. If |A| “ n then Ell A ÝÑ˚ Un.
2. If |A| “ Πx : A1.A2 then Ell A ÝÑ˚ px : Eln1 A1

1q Ñ Eln2 A1
2 with |A1

i| “ Ai.

Proof. By definition of | ´ | and typing constraints. ◀

▶ Lemma 30 (Telescope translation). Let A1, A2 P Λo with Γ $ Ai : Uni
. If |Ai| “ ∆ ñ mi

for some m1 ď m2, then we have Elni
Ai ” D ñ mi for some guarded D with Γ $ D : Tele.

Proof. By induction on ∆. ◀

▶ Theorem 31 (Soundness). If Γ $CC t : A then we have Γ1 $ t1 : Eln A1 for some Γ1 P Ctxo

and t1, A1 P Λo and n P N with }Γ1} “ Γ and |t1| “ t and |A1| “ A.

Proof. We instead show the following two points, which together imply the theorem.
If Γ $CC then Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ.
If Γ $CC t : A and Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ then Γ1 $ t1 : Eln A1 for some
n P N and A1, t1 P Λo with |A1| “ A and |t1| “ t.

We prove them by induction on the derivation of Γ $CC or Γ $CC t : A, and illustrate here
two interesting cases.

Case
Lam
Γ $CC A : n Γ, x : A $CC t : B

Γ $CC λx : A.t : Πx : A.B

By i.h. and Lemma 29 we have Γ1 $ A1 : Un and |A1| “ A. Therefore we have
Γ1, x : Eln A1 $, so by i.h. we get Γ1, x : Eln A1 $ t1 : Elm B1 for some m and with |t1| “ t

and |B1| “ B. By inversion, we then deduce Γ1, x : Eln A1 $ B1 : Um. We can now
show Γ1 $ λx : Eln A1.t1 : px : Eln A1q Ñ Elm B1 and because its type is convertible to
ElRpn,mq pπ

0
n,m A1 pλx : Eln A1.B1qq, which is well typed, we conclude by applying the

conversion rule.
Case

A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B

By induction hypothesis we have Γ1 $ t1 : Elm A1 and Γ1 $ B1 : Un with |t1| “ t, |A1| “ A

and |B1| “ B (using Lemma 29 for the second derivation). By inversion we obtain
Γ1 $ A1 : Um. We now use Lemma 2 to split A Ď B into two cases:

A ” B. We have |A1| ” |B1| so by Proposition 28 we conclude Elm A1 ” Eln B1, and
thus Γ1 $ t1 : Eln B1.
A ÝÑ˚ ∆ ñ p and B ÝÑ˚ ∆ ñ q with p ď q. We apply Lemma 27 on A1 to get some
A2 such that |A2| “ ∆ ñ p and A1 ÝÑ˚ A2. Similarly, we get B2 with |B2| “ ∆ ñ q

and B1 ÝÑ˚ B2. We can then apply Lemma 30 to obtain a guarded term D such that
Γ1 $ D : Tele and Elm A2 ” D ñ p and Eln B2 ” D ñ q. We can now conclude with
Γ1 $ Ò

q
p D t : Eln B1. ◀
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8 Conservativity

Now that we have seen that our encoding is sound, we can move to the proof of conservativity.
The usual statement of conservativity (using direct translation functions r´s : ΛCC Ñ Λdk and
J´K : CtxCC Ñ Ctxdk) would say that, given Γ, A satisfying Γ $CC A : n, if JΓK $ t : Eln rAs

then we have Γ $CC t1 : A for some t1. When rephrasing this statement with the inverse
translation function | ´ |, the full conservativity property would then assert that, for Γ P Ctxo

and A P Λo with }Γ} $ |A| : n, if Γ $ t : Eln A then }Γ} $CC t1 : |A| for some t1.
In the following, we instead show conservativity for object terms, a restricted form of

conservativity in which the witness t of the typing judgment Γ $ t : Eln A is required to be an
object term. We argue that this is enough because in practice the object terms are the only
ones a user of the encoding (or an automatic translator) would write. Nevertheless, it should
be possible to strengthen our result to obtain full conservativity, as discussed in the conclusion.

The first step in our proof is showing that | ´ | preserves definitional equality. This is
however not immediate, because | ´ | does not preserve reduction steps. Fortunately, we can
define an auxiliary function | ´ |‚ extending | ´ | that satisfies this property. We start by
defining the extended object terms Λ‚

o which will be used as the domain of | ´ |‚. Here we
write G, G1 for any guarded terms, and n, n0, n1, n2 for any natural numbers.

Λ‚
o Q t, u, A, B ::“ x | px : Aq Ñ B | λx : A.t | Un | ElG A | un

| π
n0
n1,n2 A λx : G.B | ÒG G1 t | òn t | t u

The function | ´ |‚ is then defined by the following clauses.

| ´ |‚ : Λ‚
o Ñ ΛCC |px : Aq Ñ B|‚ :“ Πx : |A|‚.|B|‚

|x|‚ :“ x |ElG A|‚ :“ |A|‚ |λx : A.t|‚ :“ λx : |A|‚.|t|‚

|un|‚ :“ n |ÒG G1 t|‚ :“ |t|‚ |π
n0
n1,n2 A pλx : G.Bq|‚ :“ Πx : |A|‚.|B|‚

|Un|‚ :“ n |òn t|‚ :“ |t|‚ |t u|‚ :“ |t|‚ |u|‚ pt u not of previous formsq

We can show that | ´ |‚ satisfies many desirable properties, among them being the
preservation of reduction steps and thus also of definitional equality by | ´ |‚.

▶ Lemma 32 (Basic properties of Λ‚
o and | ´ |‚).

1. Λ‚
o is a superset of Λo, and | ´ |‚ restricts to | ´ | in Λo.

2. If t P Λ‚
o then t is guarded.

3. If t, u P Λ‚
o then tru{xs P Λ‚

o and |t|‚r|u|‚{xs “ |tru{xs|‚.
4. If t P Λ‚

o and t ÝÑ˚ u then u P Λ‚
o and |t|‚ ÝÑ˚ |u|‚.

5. If t, u P Λ‚
o and t ” u then |t|‚ ” |u|‚.

Using these basic properties, we can now show conservativity.

▶ Theorem 33 (Conservativity for object terms). Let Γ P Ctxo and A P Λo with }Γ} $CC |A| : n

for some n. If Γ $ t : Eln A with t an object term, then we have }Γ} $CC |t| : |A|.

Proof. We instead show the following claim.

▷ Claim 34. Let Γ $ t : A with Γ P Ctxo and }Γ} $CC. If t is an object term, then there
exists A1 P Λ‚

o with A ” A1 and }Γ} $CC |t| : |A1|‚.
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First note that this implies the statement of the theorem. Indeed, by the claim we have
}Γ} $CC |t| : |B|‚ for some B P Λ‚

o with B ” Eln A. Therefore |B|‚ ” |A|‚ “ |A|, so we
conclude }Γ} $CC |t| : |A| by the conversion rule.

We proceed with the proof of the claim, by induction on t, following the definition of Λo.
We illustrate the interesting case of λ-abstraction: t “ λx : Eln A1.u. By inversion we
have Γ $ A1 : Un and Γ, x : Eln A1 $ u : A2 for some A2 with A ” px : Eln A1q Ñ A2.
By i.h. we thus have }Γ} $CC |A1| : |B1|‚ with B1 ” Un. Therefore, we have |B1|‚ ” n,
so by conversion we can derive }Γ} $CC |A1| : n, and so }Γ}, x : |A1| $CC. By i.h. once
more, we have }Γ}, x : |A1| $CC |u| : |B2|‚ for some B2 with B2 ” A2. We can thus derive
}Γ} $CC λx : |A1|.|u| : |px : Eln A1q Ñ B2|‚ and A ” px : Eln A1q Ñ B2. ◀

9 Related work

The first attempt to encode CC in Dedukti dates back to the work of Assaf. He first
identified the full-reflection equations (discussed in Section 4) in earlier work studying a
variant of the calculus of constructions with explicit cumulativity [4]. There, cumulativity is
made explicit by a family of lifts Òi: Ui Ñ Ui`1, which are sufficient in his setting because
the theory considered lacks product covariance.

These ideas were then employed in encoding a class of cumulative type systems (CTSs)
in Dedukti [5], containing in particular the type system CC. In order to handle product
covariance, he proposed the use of η-expansion at translation time: for instance, a variable
f : Nat Ñ 0 would be translated at type Nat Ñ 1 as λx.Ò0 pf xq. This however turned out to
invalidate conservativity, as observed by Thiré [45, Example 6.6].

Moreover, as mentioned in the introduction, the translation functions used by Assaf for
stating and proving soundness turn out to be ill-defined. He mutually defines functions
r´sΓ and r´sΓ$C and J´K, and among their defining clauses he states rtsΓ$C :“ λx :
JAK.rt xsΓ,x:A$B if C ” Πx : A.B and t has a principal type convertible to Πx : A.B1 with
B1 Ĺ B. However, the term A is only determined up to conversion, yet the function is defined
over unquontiented terms, and the preservation of conversion is only shown at a later stage.
Worse, because A is recovered using typing information, it might not be structurally smaller
than t, and no well-founded order is given to justify the recursive call of J´K on A.

Regarding confluence, Assaf actually relies in his presentation on an axiomatization of the
conversion relation required for the encoding. Because in Dedukti the conversion must be
implemented by rewrite rules, each instantiation of his encoding then also needs to provide a
rewrite system correctly implementing these equational axioms. In the particular case of CC,
Assaf provides rules for implementing them, yet they are not confluent since some critical
pairs are not joinable. This problem was later fixed in his joint work with Dowek, Jouannaud
and Liu [8], though it required the use of rewriting modulo ACU, which is less efficient
and harder to implement than pure syntactic matching. The problems with soundness and
conservativity remained unaddressed.

Some years after the work of Assaf, the problem regained attention and new encodings
were proposed by Thiré [45], also supporting a class of CTSs, and Férey [26], also supporting
universe polymorphism. Starting from Thiré’s observation that η-expanding at translation
time breaks conservativity, they decided to instead rely on a generalized cast operator
mapping a term t : Ella

a to lb

la
Òb

a e t : Ellb
b, where e is a term witnessing the inclusion of a

in b. Unfortunately, the use of a multi-step lift then required non-left-linear rules to ensure
that two consecutive casts can be composed or that identity casts can be removed. Despite
the impressive work of Férey on confluence criteria for non-left-linear systems [25], they were
unable to show the confluence of their encodings.
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The translation function employed by Thiré unfortunately inherited the issue of Assaf’s
function, as it also makes recursive calls on terms obtained through typing information without
giving a decreasing measure. The proposal of Férey uses however a different technique, and
instead defines the translation function over typing derivations. However, because a typing
judgment can be derived in multiple ways, he then needs to show that they are nevertheless
translated to convertible terms in Dedukti, which corresponds in our case to the coherence
property. To show this, he crucially relies on the way terms are represented in his encoding, as
untyped codes annotated with a type. Because of this, it is not clear to us how his technique
could be adapted to our case, which is why we chose to prove soundness using an inverse
translation function, instead of defining a translation function over derivations. Finally,
conservativity is stated only as a conjecture for both of Thiré’s and Férey’s encodings.

10 Conclusion

In this work we have given an encoding of CC in Dedukti satisfying the necessary properties
for being used in practice, solving a longstanding open problem. Our proof of confluence
combines many confluence criteria and heavily uses the automated tools developed by the
community. Yet, at the present moment, none of the available tools are able to fully show
our result by themselves. Proving the confluence of our system automatically can thus be
an interesting challenge for the next generation of today’s confluence checkers. A natural
direction could be trying to automate Dowek et al.’s criterion [21], which is the only one we
are aware of that can show the confluence of βR1 directly.

Our work has also identified a problem with the definition of the translation function
in some previous attempts at encoding CC in Dedukti. To solve this issue, we have then
contributed an adaptation of the technique of Winterhalter et al. [48] in which soundness is
instead stated and proved using an inverse translation function.

Regarding conservativity, we have proven a restricted form concerning only object terms.
Even though we believe that for practical needs our result is sufficient, we conjecture
that full conservativity can be obtained by adapting the logical relations technique of
Assaf [6]. Alternatively, we could modify our encoding and employ the technique described
by Felicissimo [22], which allows for easy conservativity proofs at the cost of increasing the
amount of type annotations in the syntax. There is already ongoing work on removing
these annotations by incorporating bidirectional typing into Dedukti [23], yet the encoding
presented here would not be covered by the presently available framework.

Finally, we believe that our work can be a starting point for incorporating Coq’s universe-
polymorphism. Among previous work, only Férey considers the combination of CC with
universe polymorphism. Combining his ideas with ours is a promising direction to explore.
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