
Substitution for Non-Wellfounded Syntax with
Binders Through Monoidal Categories
Ralph Matthes # Ñ

IRIT, Université de Toulouse, CNRS, Toulouse INP, UT3, Toulouse, France

Kobe Wullaert #Ñ

Delft University of Technology, The Netherlands

Benedikt Ahrens # Ñ

Delft University of Technology, The Netherlands
University of Birmingham, United Kingdom

Abstract
We describe a generic construction of non-wellfounded syntax involving variable binding and its
monadic substitution operation.

Our construction of the syntax and its substitution takes place in category theory, notably by
using monoidal categories and strong functors between them. A language is specified by a multi-
sorted binding signature, say Σ. First, we provide sufficient criteria for Σ to generate a language of
possibly infinite terms, through ω-continuity. Second, we construct a monadic substitution operation
for the language generated by Σ. A cornerstone in this construction is a mild generalization of the
notion of heterogeneous substitution systems developed by Matthes and Uustalu; such a system
encapsulates the necessary corecursion scheme for implementing substitution.

The results are formalized in the Coq proof assistant, through the UniMath library of univalent
mathematics.

2012 ACM Subject Classification Theory of computation → Type theory; Theory of computation
→ Logic and verification

Keywords and phrases Non-wellfounded syntax, Substitution, Monoidal categories, Actegories,
Tensorial strength, Proof assistant Coq, UniMath library

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.25

Related Version Full Version: https://arxiv.org/abs/2308.05485 [23]

Acknowledgements We thank Henning Basold for pointing us to the work on completely iterative
algebras, leading to a simpler proof of Theorem 4. We also thank Thomas Lamiaux for valuable
comments on a draft of this paper. We gratefully acknowledge the work by the Coq development
team in providing the Coq proof assistant and surrounding infrastructure, as well as their support
in keeping UniMath compatible with Coq. Not least, we thank the anonymous FSCD reviewers for
their thoughtful feedback on our submission.

1 Introduction

1.1 General Motivation for Non-Wellfounded Syntax With Binders
Non-wellfounded syntax with binders appears in its purest form in the coinductive reading
of untyped λ-calculus. Potentially non-wellfounded λ-terms still consist of variables, λ-
abstractions and applications only, but the construction process with these constructors can
go on forever. Such construction processes can be described through functional programming,
and the host programming language then serves as a meta-language for the description of
those infinitary λ-terms. Instead of taking a programming perspective, one can also ask if
a possibly circular definition of such a non-wellfounded term is well-formed, in the sense

© Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 25; pp. 25:1–25:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Ralph.Matthes@irit.fr
https://www.irit.fr/~Ralph.Matthes/
https://orcid.org/0000-0002-7299-2411
mailto:K.F.Wullaert@tudelft.nl
https://kfwullaert.github.io/
https://orcid.org/0000-0003-4281-2739
mailto:B.P.Ahrens@tudelft.nl
https://benediktahrens.gitlab.io
https://orcid.org/0000-0002-6786-4538
https://doi.org/10.4230/LIPIcs.FSCD.2024.25
https://arxiv.org/abs/2308.05485
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


25:2 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

that it uniquely determines such a structure. Naturally, uniqueness is understood up to
bisimilarity, i. e., two such non-wellfounded λ-terms are considered equal if their infinite
unfoldings have the same labels (indicating the applied constructor) in the same order on each
level, starting at the root. The presence of variable binding presents the extra challenge of
having to consider this bisimilarity modulo renaming of bound variables, i. e., α-equivalence
– a challenge that is amplified by the possibility of having an infinite number of bindings
in a non-wellfounded λ-term. In this paper, we either work on an abstract level that does
not reveal this challenge, or we resort to a representation using nested datatypes that is a
form of de Bruijn representation with well-scopedness guaranteed by the typing system (see,
e. g., [6]), and therefore α-equivalence is just not needed.

There are many uses of coinductive untyped λ-terms (such as Böhm trees), and coinductive
readings of term structures with binding (also with simple types, e. g., as in an automata-
theoretic analysis by Melliès [24]) have a counterpart in infinitary rewriting.

1.2 A Motivational Application Scenario
We have an application scenario in mind for which the “static” part, i. e., the well-typed syntax
itself, is important, even without the aforementioned “dynamics” of infinitary rewriting. It is
more complicated than just λ-calculus, notably by the presence of embedded inductive types.
This in particular motivates our search for datatype-generic constructions for a wide range of
non-wellfounded simply-typed syntax.

The application scenario is as follows: We want to represent the entire search space for
inhabitants in simply-typed λ-calculus (STLC) by a potentially non-wellfounded term of a
suitable calculus. The inhabitation problem itself is the following question: “Given a context
Γ and a type A of STLC, is there a term t of STLC such that Γ ⊢ t : A?”. Taking into
account the entire search space means including infinite runs that arise in a (naive) search
loop. And the term of the “suitable calculus” should again have type A in context Γ but
represent the search space and not only be a single inhabitant. This calculus is informally
given by the following grammar:

(terms) N ::=co λxA.N |E1 + · · ·+ En

(elimination alternatives) E ::=co x⟨N1, . . . , Nk⟩

with one constructor for each n, k ≥ 0, hence we have sums with any finite number of
summands and tuples with any finite number of arguments. We write x in place of x⟨⟩ –
this captures k = 0. The elimination alternatives resemble the neutral terms of λ-calculus of
the form xN1 . . . Nk – we are only searching for inhabitants in normal form. They have this
name because they correspond to repeated implication elimination (as expressed by STLC
typing) and they are summands in E1 + · · ·+ En that indicate a finite choice between those
“alternative” n summands. Search for normal forms in STLC only has finitely many options
at each choice point, even though, e. g., there are infinitely many inhabitants of the type of
Church numerals.

The elements of the syntactic category of terms are also called “forests”. The index co
means that the grammar is read coinductively. There are two clauses that embed (finite)
lists into the codata type. It therefore presents at least the challenges of non-wellfounded
“rose trees”, i. e., finitely-branching unlabeled trees without a bound on the branching width.
The scenario comes from [27, Section 3.2], and we plan to study it with our formalization.
The typing rules for these expressions are given in Figure 1, with Γ ranging over finite(!)
typing contexts. They are the usual implication introduction and a vectorized implication
elimination (down to atomic types p), and the rule for typing alternatives (of the same



R. Matthes, K. Wullaert, and B. Ahrens 25:3

Γ, x : A ⊢ N : B

Γ ⊢ λxA.N : A→ B
co (x : B⃗ → p) ∈ Γ ∀i ≤ k, Γ ⊢ Ni : Bi

Γ ⊢ x⟨Ni⟩i≤k : p
co ∀i ≤ n, Γ ⊢ Ei : p

Γ ⊢
∑

i≤n Ei : p
co

Figure 1 Coinductive typing rules for simple types in the application scenario.

λf (0→0)→0 f@ λy0

+

y f@

λz0

[(y + z)/y]

Figure 2 Forest representation of all inhabitants of THREE.

atomic type) – and all rules are read coinductively, indicated by the co mark. A well-typed
such term hence locally conforms to intuitionistic implicational logic. For illustration, we
give a well-typed forest in graphical form – the much easier example of Church numerals is
found in Appendix A. Let THREE :≡ ((0→ 0)→ 0)→ 0 for an atom 0. This is the simplest
type of rank (i. e., nesting depth) 3. We define a closed forest of type THREE in Figure 2
[27, Example 16]. f@ is short for f⟨N⟩ with N given by where the arrow points to. The
“decontraction operation” in the back link resides on the meta-level and is specific to the
summation in this example grammar: [(y + z)/y] (written [y : 0, z : 0/y : 0] in the cited
paper) is decontraction and says that every occurrence of y has to be replaced by a sum
once with y and once with z in place of the original y. This forest representation can be
seen as a formal approach to the informal concept of “inhabitation machines” [8, pp. 34–38].
All the inhabitants of THREE can be read off this forest: omitting types, they are of the
form λf.f⟨λy1.f⟨λy2.f⟨· · · ⟨λyn.yi⟩ · · ·⟩⟩⟩, with 1 ≤ i ≤ n. The individual inhabitants are
wellfounded, but the forests representing the entire search spaces (for all simple types) are
obtained coinductively in [27]. We use a generic construction of syntax such as the forests of
this scenario that is based on category theory.

1.3 Context and Overview of this Paper

For wellfounded languages with variable binding, categorical semantics are given in [17]. The
importance of monoidal structure for the modelling of substitution is emphasized there; many
of the constructions are given on the level of monoidal categories, and are later instantiated
to a suitable category of contexts. A very extensive overview of work on substitution for
wellfounded syntax with binders, comparing [17] and subsequent work by the same and other
authors, is given by Lamiaux and Ahrens [21]. A categorical semantics of non-wellfounded
syntax with binding appeared in [22] involving the first author. That work is set concretely
in endofunctor categories instead of general monoidal categories.

FSCD 2024



25:4 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

In that context, the present paper makes the following contributions. Firstly, the new
definitions and results of the present paper lift the approach of [22] to the abstraction
level of monoidal categories – to reach the same abstraction level as [17]. Secondly, we
provide a full type-theoretic formalization of the results on the abstract level. Using both
of these contributions, by (non-trivial) instantiation, we get a tool chain from multi-sorted
binding signatures to certified monadic substitution for non-wellfounded syntax and thus the
non-wellfounded counterpart to the tool chain described in [5] involving two of the present
authors. Such a tool chain is absent from [22] even on the informal level (neither multi-sorted
binding signatures nor unsorted binding signatures are considered). Our approach is now
general enough so that the monoidal category underlying [17] and its ramifications can also
be studied concerning non-wellfounded syntax and substitution for it.

In more detail, we construct non-wellfounded syntax from final coalgebras in suitable
functor categories, hence based on category theory. Variable binding is modelled through
the use of nested datatypes, as, e.g., in [10, 11]. The structure map of the final coalgebra is,
of course, an isomorphism with its inverse providing an algebra structure. This excludes the
existence of exotic terms. We benefit from that abstract view in order to construct a monadic
substitution operation similar to [7], i. e., a meta-level operation that is not specific to the
application scenario presented above (in contrast to the decontraction operation it features).
The qualifier “monadic” implies that the generic approach includes proving the monad laws.
For the case of wellfounded syntax, this is well-established in the literature (see, e. g., [7]).
For the non-wellfounded case but without types, this has also been done before [20].

Further previewing our technical contributions, our approach is to generalize the notion of
heterogeneous substitution systems [22] from endofunctor categories to monoidal categories.
Those systems (abbreviated HSS) were meant as a tool to construct monadic substitution
both for wellfounded and non-wellfounded syntax – by a common abstraction that serves as a
pivotal structure between initial algebras and final coalgebras, respectively, on the input side
and the substitution monad as output. We call the generalization monoidal heterogeneous
substitution systems (MHSS). All these ingredients have been considered before for the sake
of representation of wellfounded syntax [16, Section I.1.2][19, Section 5.2.1]. Section 3 is
the core contribution of this paper, making the step to non-wellfounded syntax on the more
abstract level of monoidal categories. The results in that section demonstrate the pivotal
role of MHSS: from a final coalgebra, a MHSS is constructed, and from a MHSS, a monoid is
constructed, which abstracts away from monadic substitution. Section 4 applies the results
of Section 3 to the endofunctor scenario – which is hardwired into the definitions in [22].

1.4 Synopsis
The remainder of this paper is structured as follows. In Section 2 we review some prerequisites
from category theory that are used later in the paper. Section 3 presents the construction of
non-wellfounded syntax with substitution on the level of monoidal categories. As promised
above, it generalizes both to monoidal categories and from wellfounded to non-wellfounded
syntax – sloppily construable as “pushout” of these two directions. Section 4 applies the
results of Section 3 to the endofunctor scenario, capturing simply-typed non-wellfounded
syntax (with binding) generically. The appendix contains technical complements. However,
for lack of space, Appendix B and Appendix D are only present in the full version [23].

All of the definitions and results presented in this paper (except for the motivational
application scenario in Section 1.2) are formalized and computer-checked in UniMath [29], a
library of univalent mathematics based on the computer proof assistant Coq [28]. Throughout
this paper, definitions and results are annotated by Coq identifiers for the corresponding



R. Matthes, K. Wullaert, and B. Ahrens 25:5

definitions and results in our library. These identifiers are hyperlinks leading to an HTML
version of the proof code; for instance, clicking on monoidal brings you to the definition of
monoidal category. The formalization is not the main topic of this paper (a discussion of
some formalization aspects is found in Appendix E); we use it mainly to relieve ourselves
from the burden of writing out lengthy and uninteresting proofs, and the reader from the
burden of reading them. Instead, we restrict ourselves to pointing the reader to interesting
aspects of proofs and constructions, and aim to convey the intuition behind – and useful
applications of – our work.

2 Preliminaries

We assume working knowledge of category theory and mostly only point to specific choices of
notation. We write a : C to indicate that a is an object in category C; we write f : a→ b to
indicate that f is a morphism from a to b in C. Following the choice adopted for the UniMath
library, composition is written in “diagrammatic” order, i. e., the composite of f : a→ b and
g : b→ c is denoted f · g : a→ c. We will make use of a category Set of sets; objects of this
category are called “small” sets.

2.1 Monoidal Categories and Actegories
In this section we briefly review the notions of monoidal category and of actegory.

A monoidal category is given by a six-tuple (C,⊗, I, λ, ρ, α) where C is a category,
⊗ : C × C → C, I : C, λ = (λx)x:C (the left unitor) with λx : I ⊗ x→ x, ρ = (ρx)x:C (the right
unitor) with ρx : x⊗I → x and α = (αx,y,z)x,y,z:C (the associator) with αx,y,z : (x⊗y)⊗z →
x⊗ (y ⊗ z). The unitors and the associator are required to be natural isomorphisms, and
are furthermore subject to coherence laws called the “triangle law” and the “pentagon law”,
recalled in Appendix B that is only available in the full version [23]. We will use the letter V
to indicate the first component of a monoidal category and, by slight abuse of language, we
even call V a monoidal category when the other components are left implicit. We can also
just mention (C,⊗, I) or (V,⊗, I).

For the proper understanding of the strength notion and for the construction process of
a strength in our application scenario, we use actions of monoidal categories on categories,
called actegories. For the naming of concepts, we vaguely follow [14].

Given a monoidal category V, a (left) V-actegory is given by a quadruple (C,⊙, λ, act)
where C is a category, ⊙ : V×C → C (the action), λ = (λx)x:C (the unitor) with λx : I⊙x→ x,
and act = (actv,w,x)v,w:V,x:C (the actor) with actv,w,x : (v⊗w)⊙x→ v⊙ (w⊙x). The unitor
and the actor are required to be natural isomorphisms, and are furthermore required to
satisfy coherence laws analogous to the ones for monoidal categories, called also “triangle law”
and “pentagon law” that are found in Appendix B (only in [23]). We consider it as important
that actegories are a kind of widening of the concept of monoidal categories, in the following
sense: Given a monoidal category (V,⊗, I, λ, ρ, α), (V,⊗, λ, α) is a V-actegory, and it is called
the actegory with the canonical self-action (cf. actegory_with_canonical_self_action).

We furthermore consider strong monoidal functors from monoidal category (C,⊗, I) to
monoidal category (D,⊗′, I ′). Such a functor is given by a triple (F, ϵ, µ), where F : C → D
(the underlying functor), ϵ : I ′ → FI (preservation of unit) and µ = (µx,y)x,y:C (preservation
of tensor) with µx,y : Fx⊗′ Fy → F (x⊗y). Here, we assume µ to be a natural transformation,
and ϵ and µ to be isomorphisms (so as to be “strong”), as well as the three well-known (lax)
laws of preservation of left and right unitality and associativity. By abuse of notation, we
even call F a strong monoidal functor when the other components are left implicit.

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.CategoryTheory.Monoidal.Categories.html#monoidal
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.CategoryTheory.Actegories.ConstructionOfActegories.html#actegory_with_canonical_self_action


25:6 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

I ⊙′ Fx F (I ⊙ x)

Fx

ℓI,x

λ′
F x F λx

(v ⊗ w)⊙′ Fx F ((v ⊗ w)⊙ x)

v ⊙′ (w ⊙′ Fx) F (v ⊙ (w ⊙ x))

v ⊙′ F (w ⊙ x)

ℓv⊗w,x

act′
v,w,F x F actv,w,x

1v⊙′ℓw,x ℓv,w⊙x

Figure 3 Preservation of the unitor and the actor in a linear functor.

For the purposes of syntax representation, we only consider the lax form of morphisms
between actegories, over a common monoidal category V . Given a monoidal category (V,⊗, I),
a lax linear functor from actegory (C,⊙, λ, act) to actegory (D,⊙′, λ′, act′) is given by a pair
(F, ℓ), where F : C → D (the underlying functor) and ℓ = (ℓv,x)v:V,x:C (the lineator) with
ℓv,x : v ⊙′ Fx → F (v ⊙ x). We require the lineator to be a natural transformation (not
necessarily an isomorphism), and furthermore require it to satisfy two laws of preservation
of the unitor and the actor, see Figure 3. Currying away the second index to ℓ and using
that λ and act are isomorphisms, these laws uniquely determine ℓI and give a formula to
calculate ℓv⊗w from ℓv and ℓw. (On this level of generality of the description, this is not
different from the situation for the µ component of a strong monoidal functor.)

2.2 Pointed Strength
Pointed strength is best understood through actegories; this is sketched in [16, Section I.1.2]),
and our presentation here has the same main ingredients (using reindexing and a coslice
category, see below). This abstract view is helpful for creating libraries of functors with
pointed strength, as will be visible in Section 4. Hur uses the notion of pointed strength
extensively but only spells it out concretely [19, Section 5.2.1].

Given monoidal categories W and V, a strong monoidal functor F : W → V and a
V-actegory (C,⊙, λ, act), one can canonically construct a W-actegory (C,⊙′, λ′, act′) over the
same base category – the reindexing of the V-actegory along F . (It seems that it would suffice
that F is an oplax monoidal functor instead of a strong one.) On objects, the action ⊙′ is
constructed as w⊙′ x :≡ Fw⊙ x. We will not spell out the details here; our formalization of
this construction is given in reindexed_actegory.

We need reindexed actegories for one specific situation: the actegory with the canonical
pointed action. We assume a monoidal category V with unit I and construct the monoidal
category of “monoidal-pointed objects”: the underlying category is the coslice category I/V
whose objects are pairs (v, pv) with v : V and pv : I → v (“a point for v”), and the monoidal
category can be easily constructed. Just for the record: Iptd :≡ (I, 1I) is the unit, and the
tensor is defined on objects as (v, pv)⊗ptd (w, pw) :≡ (v ⊗ w, λ−1

I · (pv⊗ pw)).
Given a monoidal category V, the actegory Vptd that we call the actegory with the

canonical pointed action of V is obtained by reindexing: in the definition above, we take
W := I/V , V as given, F the forgetful functor that forgets the points (and is strong monoidal),
and as V-actegory the actegory with the canonical self-action of V introduced above. It
follows that in Vptd , the monoidal-pointed objects of V act on the objects of V.

Given a monoidal category V and an endofunctor F on V, a pointed tensorial strength
for F is a θ so that (F, θ) is a lax endomorphism of actegory Vptd . In other words, θ is the
lineator (following the literature, we use θ for this specific use of lineators) in the situation
where source and target action are Vptd .

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.CategoryTheory.Actegories.ConstructionOfActegories.html#reindexed_actegory


R. Matthes, K. Wullaert, and B. Ahrens 25:7

I ⊗ Fv F (I ⊗ v)

Fv

θ
Iptd ,v

λF v F λv

(v ⊗ w)⊗ Fx F ((v ⊗ w)⊗ x)

v ⊗ (w ⊗ Fx) F (v ⊗ (w ⊗ x))

v ⊗ F (w ⊗ x)

θ(v,pv)⊗ptd (w,pw),x

αv,w,F x F αv,w,x

1v⊗θ(w,pw),x θ(v,pv),w⊗x

Figure 4 Preservation of the unitor and the actor for pointed tensorial strength.

In order to allow for an easy comparison with the literature, we spell out the lineator laws
for pointed tensorial strength θ (besides the requirement of naturality in both arguments):
the components are θ(v,pv),x : v ⊗ Fx → F (v ⊗ x), and the preservation rules are given
in Figure 4. The differences with [19, Section 5.2.1] are all of presentational nature, most
notably that we use left actegories while Hur has the monoidal-pointed objects as second
parameter of his “pointed strength” st.

3 Monoid Structure on Non-Wellfounded Syntax

In this section, we construct a well-behaved substitution operation on non-wellfounded syntax.
We do so on the level of monoidal categories, using the new notion of “monoidal heterogeneous
substitution system”. Already mentioned in the introduction, this notion will have a pivotal
role in this section: as an intermediate step between a given final coalgebra and the monoid
representing substitution on that final coalgebra. The carrier of these structures is one object
t of the given monoidal category V, so t is the representation of all terms as a whole, thus
abstracting away from context/scope and typing details. (In Section 4, V will be instantiated
to an endofunctor category, so that such a t will be a functor whose argument is interpreted
as a typing context.)

▶ Definition 1 (Monoidal heterogeneous substitution system, mhss). Let V be a monoidal
category with unit I, tensor ⊗ and right unitor ρ and H an endofunctor on V with a pointed
tensorial strength θ for H. We consider triples (t, η, τ) with t : V (the “terms”), η : I → t

(representing the injection of variables into terms) and τ : Ht→ t (the H-algebra representing
the domain-specific constructors). Hence (t, η) is a monoidal-pointed object. (t, η, τ) is a
monoidal heterogeneous substitution system (MHSS) for (V, H, θ) if, for all (z, e, f) with
z : V, e : I → z and f : z → t, there is a unique morphism h : z ⊗ t → t such that the
following diagram commutes:

z ⊗ I z ⊗ t z ⊗Ht

H(z ⊗ t)

z t Ht

1z⊗η

ρz h

1z⊗τ

θ(z,e),t

Hh
f τ

(1)

The uniquely existing morphism h is denoted as LfM(z,e).

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.html#mhss


25:8 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

Notice that for the considered triples (z, e, f), (z, e) is a monoidal-pointed object. The
morphism f is just a V-morphism and not a “monoidal-pointed” morphism from (z, e) to
(t, η), see Remark 2. The left unitor and the associator of the monoidal category do not enter
this definition directly but through the laws governing θ (cf. Figure 4).

As seen on the right-hand side of Equation (1), the strength θ is an operation that
serves to prepare the arguments that are fed into the “structurally recursive call” Hh, before
applying the domain-specific constructors bundled in τ . In other words, h mostly follows a
homomorphic pattern, except for the rearrangement required by variable binding – implicitly
expressed in functor H – that is taken care of by θ.

This notion of MHSS is not a recursion scheme specifically for the carrier of an initial
algebra (for the functor I + H−). The present notion of MHSS only formulates the “desider-
atum”, not sufficient conditions for its fulfillment. What makes MHSS suitable for dealing
with coinductive syntax as well (when t, η, τ come from a final coalgebra) is the deliberate
restriction of the target type of h to t. (This is already part of the notion of heterogeneous
substitution system (HSS) [22], see Remark 2). There is also the restriction to τ as the
H-algebra in the arrow on the bottom of the diagram, hence the limitation to a notion of
substitution and not some general recursive pattern.

▶ Remark 2. Monoidal heterogeneous substitution systems “almost” generalize the notion of
HSS of [22] from the specific situation where an endofunctor category [C, C] is considered to
the (unrestricted) monoidal category V . The ingredients and stipulations of [22, Definition 5]
are an instance of our notion of MHSS as soon as C has binary coproducts – so as to be able
to speak about an (Id + H−)-algebra – modulo the following:
1. The order of the arguments of strength θ is inverted.
2. We consider all V-morphisms f and not only morphisms f between the monoidal-pointed

objects (z, e) and (t, η), satisfying η = e · f . In our diagram, that is Equation (1), f is
just the V-morphism. However, in the diagram in [22, Definition 5], f is written although
Uf is meant, with U the forgetful functor from pointed endofunctors to endofunctors
forgetting the points.1

For the representation of substitution for non-wellfounded syntax, we will need abstract
counterparts to the construction of a monad out of a HSS [22, Theorem 10] and the
construction of a HSS from a final coalgebra [22, Theorem 17]. It is fair to say that these
results carry over to MHSS without difficulty. We sketch the counterpart to the former
construction in Section 3.1 and detail a different path to obtaining the latter in Section 3.2.

3.1 Construction of a Monoid From a MHSS
Let (V,⊗, I, λ, ρ, α) be a monoidal category. A V-monoid is given by a triple (v, η, µ) where
v : V, η : I → v (the “unit” of the monoid) and µ : v ⊗ v → v (monoid “multiplication”),
such that the left and right unit laws and the associative law hold. We recall the laws in
Appendix B (only in [23]).

Let furthermore H be an endofunctor on V with a pointed tensorial strength θ for H.
An (H, θ)-monoid [17] is a quadruple (v, η, µ, τ) with (v, η, µ) a V-monoid and τ : Hv → v

(thus (v, τ) is an H-algebra), such that the following diagram commutes:

1 This second difference appears to be a conceptual simplification, and has been formalized in 2022 for
endofunctor categories as a “simplified notion of HSS”, serving as a test bed for our definition of MHSS,
cf. SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.v.

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.html


R. Matthes, K. Wullaert, and B. Ahrens 25:9

v ⊗Hv H(v ⊗ v) Hv

v ⊗ v v

θ(v,η),v

1v⊗τ

Hµ

τ

µ

(2)

The condition expressed by the diagram is the starting point for the parameterization process
that ends in the definition of MHSS.

▶ Theorem 3 (Construction of a monoid from MHSS, mhss_monoid, mhss_to_sigma_monoid).
We assume the parameters V, H and θ of a MHSS. Let (t, η, τ) be a MHSS, and let µ := L1tM(t,η)
the uniquely existing morphism for (t, η, 1t). Then (t, η, µ, τ) is an (H, θ)-monoid.

This generalizes [17, Proposition 3.5] from the construction of an initial (H, θ)-monoid
(under extra sufficient conditions) to the construction of an (H, θ)-monoid from a suitable
H-algebra (without further conditions). On the other hand, it lifts [22, Theorem 10] from
the abstraction level of endofunctor categories to that of monoidal categories. For the proof
of Theorem 3, we can precisely follow the organization of the proof of [22, Theorem 10].
The absence of the pointedness requirement for f in the definition of MHSS gives rise to an
inessential simplification. The defining diagram of an (H, θ)-monoid is just the right-hand
side of Equation (1) for the instance used to define µ. So, we have to establish the monoid
laws, for which we only give an overview (cf. mhss_monoid for the formalization). We define
µ(0) :≡ η : I → t and µ(1) :≡ LηMIptd : I ⊗ t → t. The morphism λt satisfies its defining
diagram, hence µ(1) = λt by uniqueness. The right unit law of a monoid is just the left-hand
side of the defining diagram of µ. The left unit law of a monoid asks for λv to be equal to
a morphism m; since λt = µ(1), it suffices to show that m satisfies the defining diagram of
µ(1). Now, define µ(2) :≡ µ. The morphism µ(2) is even a morphism of the monoidal-pointed
objects (t, η)⊗ptd (t, η) and (t, η); the proof uses that λI = ρI , which holds generally. Define
µ(3) :≡ Lµ(2)M(t,η)⊗ptd(t,η) : (t⊗ t)⊗ t→ t. The associative law of a monoid can now be dealt
with by showing that both sides of that equation satisfy the defining diagram of µ(3) and are
hence equal by uniqueness. The reasoning in both cases is just the monoidal generalization
of the first two items of [22, p. 168].

3.2 Construction of a MHSS From a Final Coalgebra
In this section, we assume the parameters V, H and θ of a MHSS. We require binary
coproducts in the underlying category of V (and use inl and inr without indices for the
left and right injection into the coproduct). We also assume a final coalgebra (t, out) of
the functor (I + H−), i. e., t : V and out : t → I + Ht. By Lambek’s theorem, out is an
isomorphism, with inverse out−1 : I + Ht → t that can be written as out−1 = [η, τ ] with
η : I → t and τ : Ht → t. We also require that binary coproducts distribute over the
tensor of V in its second argument; this means that, for all v, w1 and w2, the morphism
[1v ⊗ inl, 1v ⊗ inr] from v⊗w1 + v⊗w2 to v⊗ (w1 + w2) has an inverse. We call that inverse
δ for “distributor”, without specifying its arguments.

▶ Theorem 4 (Construction of MHSS from final coalgebra, final_coalg_to_mhss_alt). The
triple (t, η, τ) is a MHSS for (V, H, θ).

For clarity, we deviate from the proof of [22, Theorem 17] for HSS, which uses primitive
corecursion. We instead use that out−1 is a completely iterative algebra (abbreviated as
“cia”), which follows from out being a final coalgebra [25]. In particular, we will only use the
definition of cia and not more general corecursion schemes implied by that property.

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.html#mhss_monoid
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.SigmaMonoids.html#mhss_to_sigma_monoid
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.html#mhss_monoid
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ConstructionOfGHSS.html#final_coalg_to_mhss_alt


25:10 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

z ⊗ t (I + H−)(z ⊗ t) + t

z ⊗ (I + Ht)

z ⊗ I + z ⊗Ht z + H(z ⊗ t)

eqm

1z⊗out

δ
ρz+θ(z,e),t

[f ·inr,inr·inl]

Figure 5 Definition of eqm as composition of four morphisms.

Given an endofunctor F on a category C with binary coproducts, an F -algebra (c, α)
is called a cia iff for every x : C and every morphism e : x → Fx + c (“a flat equation
morphism”), there is a unique morphism h : x→ c that is a “solution” of e in c in the sense
that the following diagramm commutes:

x Fx + c

c Fc + c

e

h F h+1c

[α,1c]

This generalizes the intuition when C is Set: the elements of x are the unknowns, and e either
requires a structure in F over the unknowns or directly assigns a value in c. A morphism
h is a solution if, in the first case, applying h inside the structure and then assembling the
structure through α yields the value of h again.

To prove Theorem 4, we apply the cia scheme for F := I + H− and α := out−1. Given a
triple (z, e, f), the following are equivalent:
1. h : z ⊗ t→ t satisfies the defining diagram for LfM(z,e)
2. h satisfies the defining diagram of a solution for the flat equation morphism eqm : z⊗ t→

(I + H−)(z ⊗ t) + t defined in Figure 5.
The details are found in Appendix C. In a nutshell, the two defining diagrams can be
massaged so that the equivalence can be seen for each path in the diagrams individually.

On a general note, there is a whole arsenal of categorical corecursion schemes. For MHSS
(and hence for the representation of substitution in the section to come), we picked the
method of completely iterative algebras. Working with these tools from category theory is
an alternative to intuitive “guarded” definitions and reasoning with observation depths. This
alternative is suitable for formalization, for which the present paper is further evidence.

4 Non-Wellfounded Syntax for Multi-Sorted Binding Signatures

In this section, we start from the notion of multi-sorted binding signature (reviewed in
Section 4.1). Exploiting the high-level results of Section 3 and thus showing their usefulness,
we are going to construct the non-wellfounded syntax specified by such a signature, together
with a well-behaved – monadic – substitution operation on the terms of that syntax.

Our work builds upon previous work [5] involving two of the present authors. There,
categorical semantics of languages of wellfounded terms is developed, and a construction
of the syntax generated by a multi-sorted binding signature is given. In this section, we
construct non-wellfounded syntax based on that very same notion of multi-sorted binding
signatures. Given such a signature, the existence of the generated syntax is guaranteed by
ω-continuity of the associated signature functor – while, for wellfounded terms, [5] establishes
ω-cocontinuity to construct the syntax. For a modular proof of ω-continuity, we decompose



R. Matthes, K. Wullaert, and B. Ahrens 25:11

the construction of the associated signature functor slightly differently. Extensionally, we
arrive at the same functor, but the formalization of that proof is somewhat intricate. We
therefore suggest the new construction of the signature functor as the one to work with also
in the wellfounded case. This makes good sense if one wants to consider the embedding of
wellfounded syntax into non-wellfounded syntax for the same multi-sorted binding signature,
and it is doable since we also formalized a proof of ω-cocontinuity. But there is also an
advantage on the conceptual side: the building blocks of the signature functor are all
endofunctors, unlike previously [5]. A second difference with the previous work is that, for
the strength construction, we systematically refer to results that reside on the abstract level
of monoidal categories. (Aspects of steps 1, 2, and 4 below are also described in [5, Section 2];
we discuss them here again for the sake of being self-contained. The items 5-7 are concretized
in Section 4.4.)

1. We describe simply-typed syntax with variable binding (of finitely many sorted variables
in each constructor argument) as a multi-sorted binding signature, see Section 4.1.

2. Given a multi-sorted binding signature, we construct a signature functor H (deviating
from [5] for technical reasons), see Section 4.2.

3. We prove ω-continuity of (Id + H−) and construct the coinductive syntax as the inverse
of a final coalgebra thereof, see Section 4.3.

4. We construct a “lax lineator” between actions expressing pointed tensorial strength of H,
see Section 4.4 including a discussion of the case of simply-typed λ-calculus and references
to the appendix for more details on the general case (only in [23]).

5. We construct a MHSS (Definition 1) for (H, θ) by applying Theorem 4.
6. We construct an (H, θ)-monoid by applying Theorem 3.
7. Finally we interpret the obtained monoid as monad (hence as monadic substitution) since,

during the entire section, we are instantiating the monoidal category to the endofunctors.

4.1 Multi-Sorted Binding Signatures: Motivation and Definition
We want to construct syntax of non-wellfounded terms that feature variable binding and
have a simple notion of typing. Such type systems can be specified using “multi-sorted
binding signatures”; this notion was used, in particular, in [5], but appears in almost any
literature about initial semantics for multi-sorted syntax. The prime example is simply-typed
λ-calculus (STLC), whose extension to non-wellfounded well-typed terms is an instance of
our construction. We study this example in some detail in Example 5 before reviewing
multi-sorted binding signatures in Definition 6.

▶ Example 5 (Non-wellfounded simply-typed lambda-calculus). We are now rephrasing [5,
Example 2.2 and Example 2.10]. We assume the types of simply-typed λ-calculus to form
a small set S that is closed under a binary operation ⇒: S → S → S. The elements of S
are called sorts, so as to distinguish them from the types of our ambient type theory. We
model syntax over a base category C (with initial object ⊥, terminal object ⊤, and binary
products and binary coproducts), not necessarily the category Set; however, we motivate the
notions for the special case where C is Set. Let CS be the functor category [S, C] where S is
viewed as a discrete category. In the case when C is Set, objects of this category are simply
functions ξ : S→ Set, and we generally use letter ξ to indicate objects of CS. They represent
the typing contexts since ξs represents the totality of variables of sort s.

For the instantiation of Section 3, we take V as the monoidal category of endofunctors of
CS – with the tensor operation X ⊗ Y :≡ X · Y in diagrammatic order. In Definition 1, we
are looking for one object T of V (i. e., T : [CS, CS]) as representation of all the wellfounded
and non-wellfounded terms, here of simply-typed λ-calculus. On objects, T assigns to ξ : CS

FSCD 2024



25:12 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

and s : S the object T ξ s of C, a representation of all the wellfounded and non-wellfounded
terms that have sort s in the typing context ξ. The functor H of Section 3 prepares for
the construction of T as a fixed point. Instead of only considering the “solution” T as an
argument to H, we have to abstract over an arbitrary X : V as an object argument to H.
We would like to take H as the pointwise coproduct of one summand for application and one
for abstraction, for each pair (s, t) of sorts that parameterize the respective typing rules, i. e.
H :≡

∑
s,t:S(apps,t + lams,t). Here the summands have to be endofunctors on [CS, CS], and

we only give the definition for objects (in all arguments) – where the defining equation is
between objects of C:

apps,t X ξ u :≡
{

X ξ (s⇒ t)×X ξ s if u = t

⊥ else ,

lams,t X ξ u :≡
{

X ξ′ t if u = (s⇒ t), with ξ′s :≡ ⊤+ ξs and ξ′u′ = ξu′ for u′ ̸= s

⊥ else

These summands represent all well-sorted applications and λ-abstractions made from the
material in the yet arbitrary object X of V , while the variables are dealt with separately from
H through the unit of V (in our case the identity functor) in Section 3. The case distinctions
on equality of sorts in this motivating example can be avoided following [5], and we will do
so in the generic construction in Section 4.2.

We fix a small set S representing the sorts.

▶ Definition 6 ([5, Definition 2.1], MultiSortedSig). A multi-sorted binding signature is
given by a small set I together with an arity function ar : I → (S∗ × S)∗ × S.

Here, we write A∗ for the set of finite lists formed from elements of A. The intuition is as
follows: for any i : I, ar(i) is the signature of a term constructor. The second component of
ar(i) is the sort of the constructed term. The first component is a list of signatures of the
arguments of that constructor. Each such signature is an element of S∗ × S, describing the
sorts of all the (anonymous) variables bound by that argument, together with the sort of
the argument itself. [5] makes no claim on originality of that definition, see the discussion
there. It should be stressed that, while S and I can be infinite sets, each term constructor
described by an ar(i) only has finitely many arguments. Non-wellfounded syntax with these
constructors is therefore still finitary in the sense that terms, when viewed as trees, are
finitely branching.

▶ Example 7 ([5, Example 2.2], STLC_Sig). Assume that S is closed under a binary operation
⇒. We put into I the sort parameters of the typing rules of the term constructors of STLC.
Thus, I is taken to be (S × S) + (S × S). The left summand pertains to the application
operation while the right summand describes λ-abstraction:

ar(inl⟨s, t⟩) :≡
〈
[⟨[], s⇒ t⟩, ⟨[], s⟩], t

〉
ar(inr⟨s, t⟩) :≡

〈
[⟨[s], t⟩], s⇒ t

〉
▶ Example 8 (UntypedForest_Sig). We model the grammar of the untyped version of the
forests described in Section 1.2 as a multi-sorted binding signature. Let S0 := {v, t, e} be a
three-element set, having sorts for the three syntactic categories of term variables (v), terms
(t) and elimination alternatives (e). The first sort seems unavoidable since the elimination
alternative x⟨N1, . . . , Nk⟩ only allows term variables in the head position, not arbitrary
terms. The index set I represents the different forms of expressions that are parameterized
in the elements of the syntactic categories: one for λ-abstraction, one for each index n for

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSortedBindingSig.html#MultiSortedSig
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.STLC_alt.html#STLC_Sig
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.UntypedForests.html#UntypedForest_Sig


R. Matthes, K. Wullaert, and B. Ahrens 25:13

summation, one for each index k for tupling, hence we set I := (1 + N) + N. We define
ar(inl(inl∗)) :≡

〈
[⟨[v], t⟩], t

〉
, a simplified version of the second case for STLC: a term variable

is being bound in a term, yielding a term. The other forms of expressions do not feature
variable binding:

ar(inl(inr n)) :≡
〈
[⟨[], e⟩, . . . , ⟨[], e⟩︸ ︷︷ ︸

n

], t
〉

ar(inr k) :≡
〈
[⟨[], v⟩, ⟨[], t⟩, . . . , ⟨[], t⟩︸ ︷︷ ︸

k

], e
〉

None of the arities have v as second component, hence term variables will only come from a
given context. Using the pipeline of Section 4.4, we can represent these untyped forests as an
object T of [CS0 , CS0 ], analogously to Example 5. Again analogously to that example, objects
ξ of CS0 represent contexts; in this untyped version they correspond just to a choice of names
for all occurring variables. Then, because of the absence of v as second component of our
arities, we should have that Tξv and ξv are isomorphic for any ξ : CS0 . In our representation,
we are interested in those ξ : CS0 for which ξt and ξe are the initial object of C – empty sets
in the case of C = Set – so that ξ only provides names for term variables. For those ξ, the
untyped forests in the terms category and elimination alternatives category, of the grammar
in Section 1.2, are represented as Tξt and Tξe, respectively.

▶ Example 9 (Forest_Sig). The typed forests of Section 1.2 have as the set of sorts the set
S× S0, with S and S0 from the two previous examples. Moreover, since atomic types play
a specific role in the typing rules in Figure 1, we have to assume a set atom of atoms and
an operation atotype : atom→ S (which should be thought of as an inclusion). The typing
rule for tuples is additionally (as compared to the raw syntax) parameterized by a list of
k elements of S and one element of atom. Accordingly, the index set for this multi-sorted
binding signature is I := (S× S + atom× N) + S∗ × atom, using the set S∗ of finite S-lists
introduced above. We define ar(inl(inl⟨s, t⟩)) :≡

〈
[⟨[⟨s, v⟩], ⟨t, t⟩⟩], ⟨s⇒ t, t⟩

〉
, which combines

the second case of Example 7 and the first case of Example 8. The other definitions are as
follows:

ar(inl(inr ⟨p, n⟩)) :≡
〈
[⟨[], ⟨atotype p, e⟩⟩, . . . , ⟨[], ⟨atotype p, e⟩⟩︸ ︷︷ ︸

n

], ⟨atotype p, t⟩
〉

ar(inr ⟨[B1, . . . , Bk], p⟩) :≡
〈
[⟨[], ⟨B, v⟩⟩, ⟨[], ⟨B1, t⟩⟩, . . . , ⟨[], ⟨Bk, t⟩⟩], ⟨atotype p, e⟩

〉
,

with B := B1 ⇒ . . .⇒ Bk ⇒ atotype p, parenthesized to the right.

A multi-sorted binding signature is just simple syntactic data (of a signature), so rather
the description of a task to define the intended syntax – which in our case will include
non-wellfounded terms. In the next section we discuss how to transform such a signature into
a more “semantic” kind of signature: a functor H such that the semantics of the signature
is given by (Id + H−)-algebras. While we did this “by hand” for STLC in Example 5 (but
limited the description just to object arguments), it should be clear that an automatic
generation for more involved grammars such as Example 9 would be desirable.

4.2 (Modified) Signature Functor for Multi-Sorted Binding Signatures
Here, we associate to any multi-sorted binding signature (I, ar) a suitable functor H, such that
the non-wellfounded syntax generated by (I, ar) is, in particular, an (Id + H−)-(co)algebra.
Definitions 10–13 provide the building blocks for building H modularly from basic con-
structions, following the combinatorial structure of (I, ar) as a family of pairs containing
lists.

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.Forests.html#Forest_Sig


25:14 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

We now use CS generally for the functor category [S, C], not just for the STLC example
in Section 4.1. One can still think of C as being Set, but we keep the category C abstract
and collect requirements on C on the way – that are all fulfilled by Set. As mentioned in
Section 4.1, we instantiate V of Section 3 with the endofunctors on CS and now have to
determine the endofunctor H on [CS, CS].

In order to do this, we assume that C has a terminal object ⊤, binary products, and
set-indexed coproducts (including initial object ⊥ and binary coproducts).

▶ Definition 10 ([5, Definition 2.3], sorted_option_functor). Let s be a sort. The sorted
option functor options : CS → CS is defined (on objects) as options ξ t :≡

∐
(s=t)⊤ + ξ t .

In this definition, we form a coproduct in C of ⊤ over the type of proofs that s = t; i. e., we
form a subsingleton. We thus avoid the use of case distinction: options ξ is an equivalent
replacement for ξ′ in the definition of lam above [5, Remark 2.4, Remark 2.8].

▶ Definition 11 ([5, Definition 2.5], option_list). Given a non-empty list of sorts ℓ ≡
[s1, . . . , sn], option∗ ℓ : CS → CS is defined as option∗ ℓ :≡ options1 · (options2 · . . .) . For an
empty list, it is option∗ [] :≡ Id.

▶ Definition 12 ([5, Definition 2.6], projSortToC). For any s : S the projection functor
prs : CS → C is defined (on objects) as: prs ξ :≡ ξ s .

▶ Definition 13 ([5, Definition 2.7], hat_functor). For any s : S we have a left adjoint to
prs, written ŝ : C → CS, defined on objects as ŝ c t :≡

∐
(s=t) c .

Here, we essentially define ŝ c s = c and ŝ c t = ⊥ otherwise. As above, we avoid the
case analysis for apps,t X ξ u in our STLC example in Section 4.1, hence do not need the
matching of the constructor’s target type.

We now have all the basic building blocks to associate, to a given multi-sorted binding
signature (I, ar), a signature functor H : [CS, CS] → [CS, CS]. We turn to the construction
of the corresponding building blocks for H, involving a formal argument X : [CS, CS] to H.
Intuitively, X is the unknown functor that, after applying our results of Section 3, will be
set to the functor representing the coinductive sorted syntax. For the sake of motivating the
modification of the definition of H compared to [5], we will now work top-down and use the
letter G with upper indices (instead of F with upper indices, used there).

The final step of the construction of H is unchanged from [5]. Assume that we already
have a functor G(a⃗,t) : [CS, CS] → [CS, CS] for all (⃗a, t) : (S∗ × S)∗ × S. Then, for the multi-
sorted binding signature (I, ar), the associated signature functor H : [CS, CS] → [CS, CS] is
given by the (pointwise) coproduct HX :≡

∐
i : I G ar(i)X (MultiSortedSigToFunctor’).

The penultimate step constructs G(a⃗,t) (hat_exp_functor_list’_optimized). It as-
sumes given functors G(a,t) : [CS, CS]→ [CS, CS] for all (a, t) : (S∗×S)×S. Given a non-empty
list a⃗ ≡ [a1, . . . , an], G(a⃗,t) is defined (on objects) as the iterated pointwise binary product
G(a,t)X :≡ G(a1,t)X × (G(a2,t)X × . . .). The corner case G([],t) is given (maybe peculiarly)
by G([],t)X :≡ ⊤[CS,C] · t̂, regardless of X, with ⊤D the terminal object of D. (The terminal
object in functor categories is given by constantly the terminal object of the target category.)
More precisely, G([],t) is the composition (in diagrammatic order) of first ⊤[[CS,CS],[CS,C]] and
second post-composition with t̂ (which is a functor from [CS, C] to [CS, CS]). This view will
be exploited for the construction of a pointed tensorial strength for G([],t).

It remains to construct G(a,t) (hat_exp_functor_list’_piece). It is a refined version
of F a in [5] since it takes into account the “target” sort t. In fact G(a,t), corresponds to
F a · t̂ in terms of that paper, and so the difference between our G(a⃗,t) and F (a⃗,t) in that

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#sorted_option_functor
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#option_list
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#projSortToC
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#hat_functor
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#MultiSortedSigToFunctor'
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#hat_exp_functor_list'_optimized
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#hat_exp_functor_list'_piece


R. Matthes, K. Wullaert, and B. Ahrens 25:15

paper is whether the composition with t̂ is on each component of the product (our solution)
or only on the product itself. That previous solution looks less convoluted but requires the
consideration of non-endofunctors.

Let a ≡ (ℓ, s) with ℓ : S∗. The object part of functor G(a,t) is defined as G(a,t)X :≡
option∗ ℓ ·X · prs · t̂. More precisely, G(a,t) is the composition (in diagrammatic order) of
first the precomposition with option∗ ℓ and second the postcomposition with prs · t̂. This
view will be important to establish ω-continuity of G(a,t).

The instance for STLC can be compared to our introductory example in Section 4.1 –
assuming decidability of the set of sorts, they coincide mathematically.

4.3 Existence of Final Coalgebra for Functor Id + H−
Given a multi-sorted binding signature, we want to apply Theorem 4 with V the endofunctors
on CS and the signature functor H defined in the previous section. Its first requirement is a
final coalgebra of the functor (Id + H−), with Id the identity functor on CS (which is the
unit of V). We get a final coalgebra through the dual of Adámek’s theorem on the existence
of initial algebras for ω-cocontinuous functors on ω-cocomplete categories with initial object.
We now require that C is ω-complete (i. e., C has limits of shape 0← 1← 2← · · · ), whence
V is also ω-complete. (We had already generally required a terminal object ⊤ for C, which
gives one for V .) We argue first that H is ω-continuous, then that (Id + H−) is ω-continuous.

We analyze the building blocks of H. G(a,t) is defined as the composition of two functors,
so it is ω-continuous if both functors are. We prove that postcomposition with prs · t̂ is
ω-continuous (post_comp_with_pr_and_hat_is_omega_cont). For this, we require of C that
ω-limits distribute over sub-singleton coproducts. This means that the canonical morphism
from the coproduct of the respective limits to the limit of the coproducts is an isomorphism.
Precomposition with any fixed functor is ω-continuous, hence in particular for option∗

ℓ .
We move to ω-continuity of G(a⃗,t), which we prove by induction on the length of a⃗. For

an empty a⃗, this is a constant functor; and pointwise binary products preserve ω-continuity.
Moreover, we require of C that ω-limits distribute over I-coproducts, a property that

then also holds of V. Then, ω-continuity of the G ar(i) carries over to their coproduct H.
As a final step, we need to show ω-continuity of (Id + H−) (is_omega_cont_Id_H). In

order to avoid still other hypotheses about distribution of ω-limits over certain colimits,
we use that binary coproducts are (isomorphic) to bool-indexed coproducts. So, the final
assumption on C is that ω-limits distribute also over bool-coproducts (besides over sub-
singleton coproducts and I-coproducts for the index set I of the multi-sorted binding
signature).

For the most interesting case C = Set, all these requirements are met.

4.4 Putting Everything Together
We can now apply the general results of Section 3 for the construction of coinductive syntax
with monadic substitution, as specified by a multi-sorted binding signature. We fix a set
S of sorts and a multi-sorted binding signature (I, ar) over S. This means in particular
that we take as V the endofunctors on CS when instantiating the results of Section 3. We
denote by H : [CS, CS]→ [CS, CS] the signature functor associated to (I, ar) according to the
construction in Section 4.2.

We aim to apply Theorem 4 to the final (Id + H−)-coalgebra obtained in Section 4.3. To
this end, the parameter θ of a MHSS has to be specified, i. e., we have to construct a suitable
pointed tensorial strength θ for the signature functor H. To recall, θ instructs via the notion

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#post_comp_with_pr_and_hat_is_omega_cont
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSortedMonadConstruction_coind_actegorical.html#is_omega_cont_Id_H


25:16 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

of (H, θ)-monoid (Equation (2)) how the monoid multiplication µ acts on the constructors
(embodied in the H-algebra τ). But in our situation, µ is the monad multiplication expressing
substitution – it is well-known that V-monoids in this case are nothing but monads on CS (cf.
monoid_to_monad_CAT). In other words, we have to define θ so that it describes correctly
the recursive behaviour of substitution (as expressed by µ).

▶ Example 14 (Strength for STLC). A suitable θ for the “hand-written” signature functor
H in Example 5 contains, in particular, operations from Y · (apps,tX) to apps,t(Y ·X) and
from Y · (lams,tX) to lams,t(Y ·X) for any s, t : S, endofunctor Y on CS that has a point
η : Id→ Y , and endofunctor X on CS. The instance relevant in Equation (2) is then with X

and Y the representation T of STLC, and with η the inclusion of variables in terms T . The
operations for application do essentially nothing since µ should just descend into the subtrees.
For abstraction, given a ξ : CS, we need to specify a function of type Tξ + 1s → T (ξ + 1s),
where 1s : CS is defined as 1s(t) := (t = s); that is, X + 1s is X extended by an element of
sort s. In other words, we need to lift Tξ : CS extended by an element ⋆ of sort s to Tξ′,
with ξ′ the extension of ξ by an element ⋆ of sort s (as in Example 5); this will need η for
⋆ in the input. In short, for abstraction, the strength specifies essentially the famous “lift”
operation on a substitution function to avoid capture when descending under a binder.

The construction of a suitable θ for the variant of the generic H considered in [5] could
have been adapted to our H, but we have preferred to give a construction that, although
working on the level of endofunctors, is formed from building blocks that reside on the general
level of monoidal categories. To structure this construction, we propose the notion of relative
lax commutator that generalizes the notion of “pointed distributive law” in [4, Definition 10].
For lack of space, the whole (technical) construction is explained in Appendix D, but only in
[23]. We thus take as θ the pointed tensorial strength for H described in the appendix. For
STLC (Example 7), the strength can be exploited on the abstract level with base category
C (cf. thetaSTLC in the formalization). For forests (Example 8 and Example 9), we only
exploited the situation with C set to Set (cf. thetaUntypedForest and thetaForest in the
formalization).

Theorem 4 provides us with a MHSS that serves as input to Theorem 3, hence we get an
(H, θ)-monoid. This monoid is, in particular, a monad, our (certified) substitution monad for
the non-wellfounded syntax described by the given multi-sorted binding signature. For STLC,
we have formalized this on the abstract level and constructed the finite Church numerals
as well as the infinite Church numeral (cf. SubstitutionSystems.STLC_actegorical_
abstractcat.v).

To be more concrete, we can instantiate the base category C to Set that satisfies
all requirements on C we made during the construction process and get a set of well-
sorted non-wellfounded terms for any sort, given a supply of sets of variables for any
sort, together with a substitution operation that respects sorts and satisfies the monad
laws. We replayed the construction of the finite Church numerals in STLC in this concrete
setting (cf. SubstitutionSystems.STLC_actegorical.v). For forests, we only considered
the Set case and have instantiated the general constructions (cf. SubstitutionSystems.
UntypedForests.v and SubstitutionSystems.Forests.v).

Although this not the topic of this paper, we mention that we also have adapted the
results and the formalization of wellfounded syntax to the present setting: This includes
the construction of a MHSS from an initial (I + H−)-algebra under the proviso it has been
obtained through a Mendler-style construction based on ω-cocontinuity of H (initial_
alg_to_mhss). We further established that this MHSS gives rise to an initial (H, θ)-monoid
SigmaMonoidFromInitialAlgebraInitial, for the given strength θ. These results are on

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.CategoryTheory.Monoidal.Examples.MonadsAsMonoidsElementary.html#monoid_to_monad_CAT
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.STLC_actegorical_abstractcat.html#a4d147d62cd033ae14f5653d183758ed
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.UntypedForests.html#f9f6d2c8a60aa898e8c41345b02b9c5c
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.Forests.html#458425600edbc6e909943333ac02c4ff
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.STLC_actegorical_abstractcat.html
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.STLC_actegorical_abstractcat.html
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.STLC_actegorical.html
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.UntypedForests.html
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.UntypedForests.html
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.Forests.html
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ConstructionOfGHSS.html#initial_alg_to_mhss
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ConstructionOfGHSS.html#initial_alg_to_mhss
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ConstructionOfGHSS.html#SigmaMonoidFromInitialAlgebraInitial


R. Matthes, K. Wullaert, and B. Ahrens 25:17

the level of a monoidal category, as in our Section 3. The signature functor H constructed
in Section 4.2 is even ω-cocontinuous (based on the proof of the same property for the
variant considered in [5]), under conditions on C that are fulfilled for Set. Thus, (Id + H−)
is ω-bicontinuous, and we get a morphism of (H, θ)-monoids from the inductive to the
coinductive syntax (ind_into_coind for the case Set). The above-mentioned four Coq
vernacular example files in our UniMath library illustrate that, thanks to that actegorical
development, the use of the formalized wellfounded and the formalized non-wellfounded
syntax for those multi-sorted binding signatures can be done in parallel. For example, the
finite Church numerals in STLC are developed independently of the choice for one of these
two options. This conforms to the intuition that every single wellfounded term belonging
to the non-wellfounded syntax already belongs to the wellfounded syntax, even though the
categorical development of these structures is very different.

5 Related Work and Conclusions

We have cited throughout the paper the work we rely on or which initiated a line of thought.
Here, we give additional information on other related work (that may have been also cited
already in the main text). [20] also have codatatypes and define datatype-generic substitution
corecursively, and they even calculate infinitary normal forms for their example of untyped
λ-calculus. However, they do not consider typed systems, and the results are not presented
on the abstraction level of monoidal categories. Instead, they use a concrete “nominal”
presentation of syntax with binders. [6] also have codatatypes and even datatype-generic
programming not only of substitution, but the work is not based on category theory (and
so the approach is rather axiomatic than definitional). That work is implemented in the
Agda system. [30] considers different categorical models of simply-typed wellfounded syntax.
In its Chapter 5, the monoidal category corresponding to the framework of [17] is laid out
in detail for simple types, and its Chapter 7 compares it with the monoidal category of
endofunctors over a slice category. The latter is close to the concrete instance we are studying
in Section 4, but we deal with non-wellfounded syntax. All in all, [30] has a lot on the
strength construction with actegories, including for the typed case, and this for more than one
concrete categorical representation, but non-wellfounded syntax is not considered. [12] have
an approach to codatatypes that is definitionally based on category theory; but it is strongly
tied to set theory through infinite cardinal numbers that appear in the definition of the class of
“bounded natural functors” they consider. This allows them to implement the approach in the
Isabelle system (based on a very small kernel). Popescu [26] compares different corecursors
for syntax with variable binding in nominal style; it is partially formalized in Isabelle/HOL.
[15] also translate multi-sorted binding signatures into signatures with strength. Their notion
of syntax includes “meta-variables”, but they stay within the wellfounded terms and heavily
use inductive families as provided by the Agda system. [13] comes with a UniMath/Coq
formalization of the whole chain even from skew monoidal categories to an initial (H, θ)-
monoid, hence for wellfounded syntax. Beware that swapping of the arguments of the tensor
is not a harmless operation for skew monoidal categories, so our present definition of MHSS
does not fit as a pivotal element in their development. [18] rework the approach of [17], still
using pointed strength and (H, θ)-monoids. They also deal with simple types but do not
consider non-wellfounded syntax.

We have presented, through the notion of monoidal heterogeneous substitution system, a
tool which provides a monadic substitution operation also for non-wellfounded syntax, and
this for the first time on the abstraction level of monoidal categories.

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSortedEmbeddingIndCoindHSET.html#ind_into_coind


25:18 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

Our definitions and results unify the construction of both wellfounded and non-wellfounded
syntax with substitution.

We also instantiated monoidal heterogeneous substitution systems to endofunctor cat-
egories and adapted the full chain from multi-sorted binding signatures to substitution for
non-wellfounded syntax. For the sake of this instantiation, we provide modular results
to prove ω-cocontinuity of signature functors and hence obtain both ω-cocontinuity and
ω-continuity for the signature functors we generate from multi-sorted binding signatures.

All the results of this paper have been rigorously formalized with UniMath/Coq. For the
specific category of sets (types of homotopy level 2 according to univalent foundations) as
base category, the hypotheses of the construction of non-wellfounded syntax can be proved.
Hence, for this base category, we have a “concrete” formalization of the tool chain, which
provides in particular a formal construction in univalent foundations of non-wellfounded
syntax with binding, as instructed by a multi-sorted binding signature, and its monadic
substitution operation.

A question we have left open is that of equations on non-wellfounded terms, for instance,
β-equivalence. We anticipate that some definitions could carry over from the wellfounded
setting, like the definition of equations and reductions given in [2, 3]. The construction of
suitable terminal coalgebras, however, seems to require some work.

References
1 Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in homotopy

type theory. In Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda
Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, volume 38 of LIPIcs,
pages 17–30. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
TLCA.2015.17.

2 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular spe-
cification of monads through higher-order presentations. In Herman Geuvers, editor, 4th
International Conference on Formal Structures for Computation and Deduction, FSCD 2019,
June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSCD.2019.6.

3 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Reduction
monads and their signatures. Proc. ACM Program. Lang., 4(POPL):31:1–31:29, 2020. doi:
10.1145/3371099.

4 Benedikt Ahrens, Ralph Matthes, and Anders Mörtberg. From signatures to monads in
UniMath. J. Autom. Reason., 63(2):285–318, 2019. doi:10.1007/s10817-018-9474-4.

5 Benedikt Ahrens, Ralph Matthes, and Anders Mörtberg. Implementing a category-theoretic
framework for typed abstract syntax. In Andrei Popescu and Steve Zdancewic, editors, CPP ’22:
11th ACM SIGPLAN International Conference on Certified Programs and Proofs, Philadelphia,
PA, USA, January 17 - 18, 2022, pages 307–323. ACM, 2022. doi:10.1145/3497775.3503678.

6 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A
type- and scope-safe universe of syntaxes with binding: their semantics and proofs. J. Funct.
Program., 31:e22, 2021. doi:10.1017/S0956796820000076.

7 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer
Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer
Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

8 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus
with Types. Perspectives in logic. Cambridge University Press, 2013. URL: http:
//www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/
lambda-calculus-types.

https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.1145/3371099
https://doi.org/10.1145/3371099
https://doi.org/10.1007/s10817-018-9474-4
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1007/3-540-48168-0_32
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types


R. Matthes, K. Wullaert, and B. Ahrens 25:19

9 Henning Basold. Mixed Inductive-Coinductive Reasoning—Types, Programs and Logic. PhD
thesis, Radboud University, Nijmegen, The Netherlands, 2018. URL: https://repository.
ubn.ru.nl/handle/2066/190323.

10 Richard Bird and Lambert Meertens. Nested Datatypes. In Johan Jeuring, editor, Mathematics
of Program Construction, MPC’98, Proceedings, volume 1422 of Lecture Notes in Computer
Science, pages 52–67. Springer, 1998.

11 Richard S. Bird and Ross Paterson. De Bruijn Notation as a Nested Datatype. J. Funct. Pro-
gram., 9(1):77–91, 1999. URL: http://journals.cambridge.org/action/displayAbstract?
aid=44239, doi:10.1017/S0956796899003366.

12 Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. Bindings
as bounded natural functors. Proc. ACM Program. Lang., 3(POPL):22:1–22:34, 2019. doi:
10.1145/3290335.

13 Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont. A cellular Howe theorem. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, pages 273–286. ACM, 2020. doi:10.1145/3373718.3394738.

14 Matteo Capucci and Bruno Gavranović. Actegories for the working amthematician, 2022.
doi:10.48550/arXiv.2203.16351.

15 Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract syntax.
Proc. ACM Program. Lang., 6(POPL):1–29, 2022. doi:10.1145/3498715.

16 Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In Proceedings
of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA, pages 57–68. IEEE Computer Society, 2008. doi:
10.1109/LICS.2008.38.

17 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193–202. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782615.

18 André Hirschowitz, Tom Hirschowitz, Ambroise Lafont, and Marco Maggesi. Variable bind-
ing and substitution for (nameless) dummies. In Patricia Bouyer and Lutz Schröder, ed-
itors, Foundations of Software Science and Computation Structures - 25th International
Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceed-
ings, volume 13242 of Lecture Notes in Computer Science, pages 389–408. Springer, 2022.
doi:10.1007/978-3-030-99253-8_20.

19 Chung-Kil Hur. Categorical equational systems : algebraic models and equational reasoning.
PhD thesis, University of Cambridge, UK, 2010. URL: http://ethos.bl.uk/OrderDetails.
do?uin=uk.bl.ethos.608664.

20 Alexander Kurz, Daniela Petrisan, Paula Severi, and Fer-Jan de Vries. Nominal coalgebraic
data types with applications to lambda calculus. Log. Methods Comput. Sci., 9(4), 2013.
doi:10.2168/LMCS-9(4:20)2013.

21 Thomas Lamiaux and Benedikt Ahrens. An introduction to different approaches to initial
semantics, 2024. arXiv:2401.09366.

22 Ralph Matthes and Tarmo Uustalu. Substitution in non-wellfounded syntax with variable
binding. Theoretical Computer Science, 327(1-2):155–174, 2004. doi:10.1016/j.tcs.2004.
07.025.

23 Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. Substitution for non-wellfounded
syntax with binders through monoidal categories. CoRR, abs/2308.05485, 2023.
doi:10.48550/arXiv.2308.05485, minimally version 3.

24 Paul-André Melliès. Higher-order parity automata. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12.
IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005077.

FSCD 2024

https://repository.ubn.ru.nl/handle/2066/190323
https://repository.ubn.ru.nl/handle/2066/190323
http://journals.cambridge.org/action/displayAbstract?aid=44239
http://journals.cambridge.org/action/displayAbstract?aid=44239
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.48550/arXiv.2203.16351
https://doi.org/10.1145/3498715
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1007/978-3-030-99253-8_20
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608664
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608664
https://doi.org/10.2168/LMCS-9(4:20)2013
https://arxiv.org/abs/2401.09366
https://doi.org/10.1016/j.tcs.2004.07.025
https://doi.org/10.1016/j.tcs.2004.07.025
https://doi.org/10.48550/arXiv.2308.05485
https://doi.org/10.1109/LICS.2017.8005077


25:20 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

25 Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,
196(1):1–41, 2005. doi:10.1016/j.ic.2004.05.003.

26 Andrei Popescu. Nominal recursors as epi-recursors. Proc. ACM Program. Lang., 8(POPL):425–
456, 2024. doi:10.1145/3632857.

27 José Espírito Santo, Ralph Matthes, and Luís Pinto. A coinductive approach to proof
search through typed lambda-calculi. Ann. Pure Appl. Log., 172(10):103026, 2021. doi:
10.1016/j.apal.2021.103026.

28 The Coq Development Team. The Coq proof assistant, version 8.17, 2023. URL: https:
//zenodo.org/record/8161141.

29 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at http://unimath.github.io/UniMath/ , 2021.

30 Julianna Zsidó. Typed Abstract Syntax. PhD thesis, University of Nice Sophia Antipolis, 2010.
URL: http://tel.archives-ouvertes.fr/tel-00535944/.

A An Easy Example for the Application Scenario

To ease the understanding of the example given in Section 1, we also show the one of Church
numerals.

λf0→0 λx0 +

x f@

Figure 6 Forest representation of all Church numerals, including infinity.

Let 0 be a base type. We define a closed forest of type (0 → 0) → 0 → 0 in Figure 6
[27, Example 5]. f@ is short for f⟨N⟩ with N given by where the arrow points to. The
back link (in blue and thick) forms a cycle that does not go through a λ-abstraction. Hence,
we get a rational tree (with only a finite number of non-isomorphic subtrees). This is a
representation of all Church numerals, including infinity, and they are all the “solutions”
(including the non-wellfounded ones) for the search for inhabitants in long normal form of
the type (0→ 0)→ 0→ 0. Thus, by infinite unfolding of the just binary choice, an infinite
number of finite solutions and even one infinite solution are obtained. The latter is the only
infinite Church numeral, obtained by looping with f . In naive proof search, this is at least a
potential outcome, and one may want to analyze this phenomenon.

B Recalling Some Notions of the Category-theoretical Background

For reasons of space limitations, this appendix is only available in [23].

C Proof of Theorem 4

This short appendix completes the proof of Theorem 4 in Section 3.2. It also discusses why
the result on final coalgebras is in some sense easier than its counterpart for initial algebras.

https://doi.org/10.1016/j.ic.2004.05.003
https://doi.org/10.1145/3632857
https://doi.org/10.1016/j.apal.2021.103026
https://doi.org/10.1016/j.apal.2021.103026
https://zenodo.org/record/8161141
https://zenodo.org/record/8161141
http://unimath.github.io/UniMath/
http://tel.archives-ouvertes.fr/tel-00535944/


R. Matthes, K. Wullaert, and B. Ahrens 25:21

z ⊗ t z ⊗ (I + Ht) z ⊗ I + z ⊗Ht

z + H(z ⊗ t)

(I + H(z ⊗ t)) + t

t (I + Ht) + t

h

1z⊗out−1 [1z⊗inl,1z⊗inr]
ρz+θ(z,e),t

[f ·inr,inr·inl]

(I+H−)h+1t

[out−1,1t]

Figure 7 Diagram characterizing a solution h for eqm.

z ⊗ t z ⊗ I + z ⊗Ht

z + H(z ⊗ t)

t z + Ht

h

[1z⊗η,1z⊗τ ]
ρz+θ(z,e),t

1z+Hh
[f,τ ]

Figure 8 Diagram characterizing morphism h that should be LfM(z,e).

The diagram describing a solution of eqm is given in Figure 7. Of course, the diagram
governing LfM(z,e) can be brought into a single equation over coproducts, as seen in Figure 8.
The chain of morphisms from z ⊗ I + z ⊗Ht to t in both diagrams – Figure 7 and Figure 8 –
is identical on the path to the left, as well as on the path to the right.

We remark that Theorem 4 (and also its proof) is slicker than the case of wellfounded
syntax studied in [5] (however, concretely for endofunctor categories) where extra requirements
beyond being an initial algebra come into play so as to guarantee the applicability of a
categorical Mendler-style recursion scheme. This difference can be motivated as follows:
substitution for functor T is represented by a monadic multiplication operation of type
T · T → T (with T · T self-composition of T ). In the non-wellfounded case, this has the
support T of the final coalgebra as target, which is suitable for using finality. However, in
the wellfounded case, the source type is T · T and not just T that would be the basis for
using initiality.

D Pointed Tensorial Strength for the Signature Functor

For reasons of space limitations, this appendix is only available in [23].

E On the Formalization

Most of the definitions and results presented in this paper are formalized and computer-
checked in UniMath [29], a library of univalent mathematics based on the computer proof
assistant Coq [28]. An exception is the application scenario in Section 1; its formalization
is ongoing work. For this application, we can only offer the instantiation of the general
constructions of this paper but not yet the inhabitation analysis alluded to in Figure 2. Our
HTML documentation is derived from commit 7432fee of the UniMath library. Proof-checking
and creation of the HTML documentation can easily be reproduced at home by following
the UniMath compilation instructions – do try this at home!

FSCD 2024

https://github.com/UniMath/UniMath/tree/7432feea2113a460eb5a69fbbba5fda02e2bf234


25:22 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

Concerning coinductive definitions, Coq features a built-in mechanism for specifying
coinductive types (via the keyword CoInductive) and for defining functions by corecursion.
However, the UniMath library departs from standard use of Coq in that such declarations of
coinductive datatypes are not part of the language used in UniMath. Furthermore, definitions
by corecursion in Coq face numerous issues with guardedness, in particular with so-called
“mixed inductive-coinductive” declarations [9] – declarations where the coinductive type
makes use of a parameterized inductive type whose parameter is built with the coinductive
type. The coinductive calculus of our application scenario (see Section 1), with its lists of
alternatives and arguments, falls into that class. In the formalization of the contents of this
paper, we therefore construct coinductive datatypes from other type constructors, rather than
postulating (a class of) coinductive datatypes using meta-theoretic devices. Our approach is
thus comparable to the one employed for working with coinductive datatypes in the Isabelle
system [12] and of the construction of indexed M-types in univalent foundations [1]; in all of
these cases, a major goal is to keep the “trusted code base” small.

We now discuss some design choices we made in the formalization. When formalizing
mathematics in a formal system, some design choices need to be made that are not of
mathematical significance: different choices lead to (trivially) equivalent mathematical
concepts. Nevertheless, making the right choices can be crucial for the maintainability and
usability of the formal library. An example of such a choice is the following. In Section 2.1, we
said that a monoidal category is given by a six-tuple, with the tensor component a bifunctor.
However, for the sake of our formalization, we have chosen a different but equivalent format
to present the tensor operation that we are calling “whiskered”. Here, the object mapping of
⊗ is replaced by its curried version, and the morphism mapping is replaced by two families
of endofunctors on C that represent the morphism mappings with one of the arguments
fixed to the identity morphism – thus the “whiskerings” of that bifunctor. The whiskered
definition avoids functors on cartesian products of categories. Such functors do not behave
well in practice: the inference of the implicit object arguments – which are pairs of objects
– to the functorial action on morphisms often fails, and thus these arguments need to be
given explicitly. This would make the formalization cumbersome – which is why we adopted
the whiskered format for our work and hence do not suffer from those problems. A third
alternative to the traditional definition and the whiskered definition would be a currying
of the tensor, to be a functor into a functor category. However, this definition would not
provide a clean separation between data and properties – another prerequisite for a library
that scales well, in our experience.


	1 Introduction
	1.1 General Motivation for Non-Wellfounded Syntax With Binders
	1.2 A Motivational Application Scenario
	1.3 Context and Overview of this Paper
	1.4 Synopsis

	2 Preliminaries
	2.1 Monoidal Categories and Actegories
	2.2 Pointed Strength

	3 Monoid Structure on Non-Wellfounded Syntax
	3.1 Construction of a Monoid From a MHSS
	3.2 Construction of a MHSS From a Final Coalgebra

	4 Non-Wellfounded Syntax for Multi-Sorted Binding Signatures
	4.1 Multi-Sorted Binding Signatures: Motivation and Definition
	4.2 (Modified) Signature Functor for Multi-Sorted Binding Signatures
	4.3 Existence of Final Coalgebra for Functor {Id} {}+H{-}
	4.4 Putting Everything Together

	5 Related Work and Conclusions
	A An Easy Example for the Application Scenario
	B Recalling Some Notions of the Category-theoretical Background
	C Proof of Theorem 4
	D Pointed Tensorial Strength for the Signature Functor
	E On the Formalization

