
On the Logical Structure of Some Maximality and
Well-Foundedness Principles Equivalent to Choice
Principles
Hugo Herbelin #

Université de Paris Cité, Inria, CNRS, IRIF, France

Jad Koleilat #

Université Paris Cité, France

Abstract
We study the logical structure of Teichmüller-Tukey lemma, a maximality principle equivalent to the
axiom of choice and show that it corresponds to the generalisation to arbitrary cardinals of update
induction, a well-foundedness principle from constructive mathematics classically equivalent to the
axiom of dependent choice.

From there, we state general forms of maximality and well-foundedness principles equivalent to
the axiom of choice, including a variant of Zorn’s lemma. A comparison with the general class of
choice and bar induction principles given by Brede and the first author is initiated.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases axiom of choice, Teichmüller-Tukey lemma, update induction, constructive
reverse mathematics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.26

1 Introduction

1.1 Context
The axiom of choice is independent of Zermelo-Fraenkel set theory and equivalent to many
other formulations [4, 5, 6], the most famous ones being Zorn’s lemma, a maximality
statement, and Zermelo’s theorem, a well-ordering thus also well-foundedness theorem, since
well-foundedness and well-ordering are logically dual notions.

In the family of maximality theorems equivalent to the axiom of choice one statement
happens to be particularly concise and general, it is Teichmüller-Tukey lemma, that states
that every non-empty collection of finite character, that is, characterised only by its finite
sets, has a maximal element with respect to inclusion.

The axiom of dependent choice is a strict consequence of the axiom of choice. In the
context of constructive mathematics, various statements classically but non intuitionistically
equivalent to the axiom of dependent choice are considered, such as bar induction, open
induction [3], or, more recently, update induction [1], the last two relying on a notion of open
predicate over functions of countable support expressing that the predicate depends only on
finite approximations of the function.

In a first part of the paper, we reason intuitionistically and show that the notion of finite
character, when specialised to countable sets, is dual to the notion of open predicate, or,
alternatively, that the notion of open predicate, when generalised to arbitrary cardinals is dual
to the notion of finite character. As a consequence, we establish that update induction and
the specialisation of Teichmüller-Tukey lemma to countable sets are logically dual statements,
or, alternatively, that Teichmüller-Tukey lemma and the generalisation of update induction
to arbitrary cardinals are logically dual.

© Hugo Herbelin and Jad Koleilat;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hugo.herbelin@inria.fr
https://orcid.org/0009-0004-6927-3346
mailto:jadkoleilat4@gmail.com
https://doi.org/10.4230/LIPIcs.FSCD.2024.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 On the Logical Structure of Some Maximality and Well-Foundedness Principles

In a second part of the paper, we show how Teichmüller-Tukey lemma and Zorn’s lemma
can be seen as mutual instances the one of the other.

Finally, in a third part, we introduce a slight variant of Teichmüller-Tukey lemma referring
to functions rather than sets and make some connections with the classification of choice
and bar induction principles studied by Brede and the first author in [2].

The ideas of Section 2 have been developed during an undergraduate internship of
the second author under the supervision of the first author in 2022, leading to the idea
in Section 4.1 of introducing ∃MPCF by the second author. Section 3 contains extra
investigations made in 2023 by the second author. Section 4.2 contains investigations made
jointly in 2024 by the authors.

1.2 The logical system
In this section we describe the logical setting and give definitions that are used throughout
the article. The results we prove do not depend greatly on its structure as they require only
basic constructions, we shall make precise exactly was is necessary and what is left to the
preferences of the reader.

We work in an intuitionistic higher order arithmetic equipped with inductive types like
the type with one element (1, 0 : 1), the type of Boolean values (B, 0B, 1B : B), the type of
natural numbers (N), the product type (A×B), or the coproduct type (A+B). In particular,
we write B⊥ for the coproduct of B and of 1, identifying b : B with inl(b) : B⊥ and ⊥ with
inr(0) where inl and inr are the two injections of the coproduct.

We write Prop for the type of propositions. For all types A, the type P(A) denotes the
type A → Prop, we shall sometimes refer to it as “subsets of A”. We also use the type
N → A⊥, shortly AN

⊥, to represent the countable subsets of A, implicitly referring to the
non-⊥ elements of the image of the function1.

We also require a type for lists: for all types A we denote by A∗ the type of lists of terms
of type A defined as follows:

ε : A∗
u : A∗ a : A

u@a : A∗

We inductively define ⋆ : A∗ → A∗ → A∗, the concatenation of two lists:

u : A∗

u ⋆ ε := u

u : A∗ v : A∗ a : A

u ⋆ (v@a) := (u ⋆ v)@a

We denote by [a1, . . . , an] the list (. . . (ε@a1)@ . . .)@an), since ⋆ is associative we drop the par-
entheses. If n ∈ N and α : AN, we write α|n for the recursively defined list [α(0), . . . , α(n−1)].
We define ∈ : A → A∗ → Prop as: a ∈ u := ∃v, wA∗

, v ⋆ [a] ⋆ w = u.

The symbol ∈ will be used as defined above and also as a notation for P (a). To be
more precise, for all types A, P : P(A) and a : A we will write a ∈ P for P (a) and a /∈ P

for P (a) → ⊥. Continuing with the set-like notations, for P, Q : P(A) we write P ⊆ Q for
∀aA, a ∈ P → a ∈ Q. We require extensional equality for predicates: for all P, Q : P(A),

1 For inhabited A, this is intuitionistically equivalent to considering N → A.

H. Herbelin and J. Koleilat 26:3

P = Q ↔ P ⊆ Q ∧ Q ⊆ P 2. The symbol ⊆ will also be used for lists: for all u, v : A∗,
u ⊆ v := ∀aA, a ∈ u → a ∈ v. Note that equipped with this relation, lists behave more like
finite sets than lists. Nevertheless the list structure is not superfluous as will be shown later.

As a convention, we let the scope of quantifiers spans until the end of the sentence, so,
for instance, ∀n, P → Q reads as ∀n, (P → Q) and similarly for ∃.

1.3 Closure operators and partial functions
Let us now define some closure operators and relations on subsets and lists:

▶ Definition 1. Let A be a type, u : A∗, α : P(A), T : P(A∗), P : P(P(A))

u ⊂ α : Prop ⟨T ⟩ : P(P(A))

u ⊂ α := ∀aA, a ∈ u → a ∈ α ⟨T ⟩ := λαP(A).∀uA∗
, u ⊂ α → u ∈ T

⟨T ⟩◦ : P(P(A))

⟨T ⟩◦ := λαP(A).∃uA∗
, u ⊂ α ∧ u ∈ T

⟨u⟩ : P(A) ⌊P ⌋ : P(A∗)

⟨u⟩ := λxA. x ∈ u ⌊P ⌋ := λuA∗
. ⟨u⟩ ∈ P

The symbol ⟨ ⟩ is the translation from “the list world” to “the predicate world”. More
precisely, ⟨u⟩ is the canonical way to see a list as a predicate (u ⊂ α ↔ ⟨u⟩ ⊆ α) and ⟨T ⟩
is an extension of T as a predicate on subsets, α : P(A) is in ⟨T ⟩ if and only if it can be
arbitrarily approximated by lists of T . Dually, ⌊ ⌋ is the translation from predicate to list,
taking predicate of finite domain to all lists of elements in the domain. Note that ⟨T ⟩ is
downward closed, that is, α ⊂ β and β ∈ ⟨T ⟩ implies α ∈ ⟨T ⟩. Note also that ⟨⌊P ⌋⟩ is a
downward closure operator, defining the largest downward closed subset of P . On its side,
⌊⟨T ⟩⌋ builds the downward closure up to permutation and replication of the elements of the
lists of T . Also, symmetrical properties applies to ⟨ ⟩◦ exchanging downward with upward
and largest subset with smallest superset. Finally, notice that ⟨T ⟩ may be empty, in fact ⟨T ⟩
is inhabited if and only if ε ∈ T , and the same for ⟨T ⟩◦.

Examples

Consider T : P(B∗), for simplicity let us use set-like notations when defining T . If T :=
{[1B, 0B], [1B], [0B], ϵ} then ⟨T ⟩ will contain all subsets of B. Now, if T := {[1B, 0B], [1B], [0B]},
⟨T ⟩ will be empty since for all α : P(B), ϵ ⊂ α but ϵ /∈ T . If T := {ϵ, [1B], [1B, 0B]} then
⟨T ⟩ will contain only the empty subset and the singleton containing 1B. Now consider
T ′ := {ϵ, [1B], [1B, 1B], [0B, 1B], [1B, 0B, 1B, 1B]}, notice that ⟨T ⟩ = ⟨T ′⟩. The ⟨ ⟩ operation does
not care for duplications or permutations.
For T := {ϵ, [1B], [1B, 0B]}, ⌊⟨T ⟩⌋ is {ϵ, [1B], [1B, 1B], [1B, 1B, 1B], . . . }. Similarly, for T :=
{ϵ, [1B], [0B], [1B, 0B]}, ⌊⟨T ⟩⌋ is the set of all lists on B.
The ⟨ ⟩◦ operator has the dual behaviour. Consider T : P(N∗), T := {[1]} then, ⟨T ⟩◦ contains
exactly all subsets of N containing 1. Similarly if ϵ ∈ T , then ⟨T ⟩◦ contains all subsets of N.
For T := {[1]},

⌊
⟨T ⟩◦⌋

will contain every list on N that contains at least one 1.

We also give similar definitions relatively to countable subsets, abbreviating (A⊥)∗

into A∗
⊥:

2 Extensionality for predicates is assumed for convenience, it is not fundamentally needed

FSCD 2024

26:4 On the Logical Structure of Some Maximality and Well-Foundedness Principles

▶ Definition 2. Let A be a type, u : A∗
⊥, α : AN

⊥ and T : P(A∗
⊥)

u ⊂N α : Prop ⟨T ⟩N : P(AN
⊥)

u ⊂N α := ∃nN, u = α|n ⟨T ⟩N := λαAN
⊥ .∀uA∗

, u ⊂N α → u ∈ T

⟨T ⟩◦
N : P(AN

⊥)

⟨T ⟩◦
N := λαAN

⊥ .∃uA∗
, u ⊂N α ∧ u ∈ T

We conclude this section defining two different notions of partial functions:

▶ Definition 3 (Relational partial function). Let A, B be types, a relational partial function f

from A to B is a relational functional relation of P(A × B). Formally, a relational partial
function from A to B is a term f : P(A × B) such that ∀aA, ∀b, b′B , ((a, b) ∈ f ∧ (a, b′) ∈
f) → b = b′. Its domain is defined by:

dom(f) : P(A)
dom(f) := λaA.∃bB , (a, b) ∈ f

For all a′ : A, we denote by dom(f) ∪ a′ the predicate λaA.(∃bB , (a, b) ∈ f) ∨ a = a′.

▶ Definition 4 (Decidable partial function). Let A, B be types, a decidable partial function f

from A to B is a total function f : A → B⊥. Its domain and graph are defined by:

dom(f) : P(A) G(f) : P(A × B)
dom(f) := λaA.f(a) ̸= ⊥ G(f) := λ(a, b)A×B .f(a) = inl(b)

For all a′ : A, we denote by dom(f) ∪ a′ the predicate λaA. f(a) ̸= ⊥ ∨ a = a′.

Notation

We write f ∈ A →p B to denote that f is a relational partial function from A to B and
f : A → B⊥ for the type of decidable partial functions from A to B. We will also write
ΘfA→pB , P for ΘfP(A×B), (f ∈ A →p B) → P for Θ ∈ {λ, ∀, ∃}.

The difference between these two definitions is in the decidability of the domain: decidable
partial functions have a decidable domain while it’s not the case of relational partial functions.
The graph operation G allows us to recover a relational partial function from a decidable
partial function. One needs excluded middle to recover a decidable partial function from a
relation partial function, hence decidable partial functions are stronger axiomatically. Notice
that we used the same notation dom in both definitions. Since they both have the same
semantic meaning and we will make clear whether we are using relation partial function or
decidable partial function, it should not cause any confusion.

2 TTL and UI

In this section, we define Teichmüller-Tukey lemma and update induction and emphasise
that they are logically dual, up to the difference that the former is relative to predicates over
subsets of arbitrary cardinals while update induction is relative to predicates over countable
subsets. Underneath, they rely on the dual notions of predicate of finite character and of
open predicate.

H. Herbelin and J. Koleilat 26:5

2.1 Predicates of finite character
A set is of finite character if all its information is contained in its finite elements. In our
setting, a predicate P : P(P(A)) is of finite character if all its information is contained in a
predicate over lists. There are two canonical ways to express this:

▶ Definition 5 (Finite character). Let A be a type and P : P(P(A)). We propose two
definitions of finite character:

P ∈ FC1 := ∀αP(A), α ∈ P ↔ ∀uA∗
, u ⊂ α → u ∈ ⌊P ⌋

P ∈ FC2 := ∃T P(A∗), ⟨T ⟩ = P

Rewriting FC1 using the terms just defined:

P ∈ FC1 := P = ⟨⌊P ⌋⟩

FC1 and FC2 are, in essence, paraphrases of one an other, thus there is no reason not to
expect them to be equivalent. First we will need a lemma:

▶ Lemma 6. Let A be a type and T : P(A∗) then ⟨T ⟩ ∈ FC1.

Proof. Let α : P(A). Suppose α ∈ ⟨T ⟩, our goal is to show that α ∈ ⟨⌊⟨T ⟩⌋⟩. Let u : A∗ such
that u ⊂ α, we will show that u ∈ ⌊⟨T ⟩⌋. By definition u ∈ ⌊⟨T ⟩⌋ if and only if ⟨u⟩ ∈ ⟨T ⟩ if
and only if every sublist of u is in T . Since α can be arbitrarily approximated by terms of T

and u ⊂ α, so can u. Hence, u ∈ ⌊⟨T ⟩⌋ thus, α ∈ ⟨⌊⟨T ⟩⌋⟩.
Suppose α ∈ ⟨⌊⟨T ⟩⌋⟩, then for all u : A∗ such that u ⊂ α, u ∈ ⌊⟨T ⟩⌋ which we can rewrite as
⟨u⟩ ∈ ⟨T ⟩. We easily show that ⟨u⟩ ∈ ⟨T ⟩ → u ∈ T thus α ∈ ⟨T ⟩. ◀

We have shown that ⟨T ⟩ = ⟨⌊⟨T ⟩⌋⟩. This means that without loss of generality, we can
require in FC2 that the witness T be of the form ⌊⟨T ′⟩⌋ for some T ′. This is a way to express
that T can be chosen to be minimal. In fact if we are given P and T such as in FC2, it may
happen that T contains a list u that is not closed under ⊆ (i.e.. v ⊆ u ̸→ v ∈ T). Such an u

will be invisible when looking at ⟨T ⟩, hence we can consider u as a superfluous term. The
⌊⟨ ⟩⌋ operation allows us, without loss of generality, to remove those terms, thus making T

minimal.

▶ Theorem 7. FC1 ↔ FC2

Proof. Let A be a type and P : P(P(A)). From left to right: suppose P ∈ FC1. ⌊P ⌋ is a
witness of P ∈ FC2.
From right to left: suppose P ∈ FC2, let T be the witness of P ∈ FC2. By lemma 6
⟨⌊⟨T ⟩⌋⟩ = ⟨T ⟩ and by hypothesis P = ⟨T ⟩, we can rewrite the first equality as ⟨⌊P ⌋⟩ = P . ◀

Since FC1 and FC2 are equivalent, we will from now on write FC without the indices.

2.2 Open predicates
A notion of open predicates over functions of countable domain was defined in Coquand [3]
and generalised by Berger [1]. Using the definitions of Section 1.3, a predicate over α : AN is
open in the sense of Berger if it has the form α ∈ ⟨T ⟩N → α ∈ ⟨U⟩◦

N for some T, U : P(A∗).
In order to get a closer correspondence with the notion of finite character, we will however
stick to Coquand’s definition. Additionally, to get a closer correspondence with the case of
open predicates used in update induction, we consider open predicates for functions to A⊥.

FSCD 2024

26:6 On the Logical Structure of Some Maximality and Well-Foundedness Principles

▶ Definition 8 (Countably-open predicate, in Coquand’s sense, with partiality). Let A be a type
and P : P(AN

⊥). We define:

P ∈ OPENN := ∃T P(A∗
⊥), ⟨T ⟩◦

N = P

The observations made on predicates of finite character apply to countably-open predicates,
namely that ⟨T ⟩◦

N =
〈⌊

⟨T ⟩◦
N
⌋〉◦

N. Obviously, we can also move from AN
⊥ to P(A) and introduce

a general notion of open predicates which again, will satisfy ⟨T ⟩◦ =
〈⌊

⟨T ⟩◦⌋〉◦:

▶ Definition 9 (Open predicate). Let A be a type and P : P(P(A)). We define:

P ∈ OPEN := ∃T P(A∗), ⟨T ⟩◦ = P

Conversely, we can define a notion of predicate of countably-finite character dual the
notion of countably-open predicate:

▶ Definition 10 (Predicate of countably-finite character). Let A be a type and P : P(AN
⊥). We

define:

P ∈ FCN := ∃T P(A∗
⊥), ⟨T ⟩N = P

This finally results in the following dualities:

Table 1 Predicates of finite character VS Open predicate.

Universal notion Existential notion

Arbitrary subsets Finite character Open

Countable subsets Countably-finite character Countably-open

2.3 Teichmüller-Tukey lemma and Update induction
Before defining Teichmüller-Tukey lemma we need a few definitions:

▶ Definition 11. Let A be a type, P : P(P(A)) and α, β : P(A). We define:

β ≺ α : Prop
β ≺ α := ∃aA, a /∈ α ∧ β = (λxA. x ∈ α ∨ x = a)

α ∈ Max≺(P) : Prop

α ∈ Max≺(P) := α ∈ P ∧ ∀βP(A), β ≺ α → β /∈ P

Thus, β ≺ α stands for β extends α (if β is an update of α) while Max≺(P) is the
predicate of maximal elements of (P, ≻) (≻ is the reverse of ≺).

What we are interested in are predicates of finite character but Theorem 7 allows us to
consider only predicates on lists since there is a correspondence between them. Hence, we
will quantify or instantiate schemas on predicate on lists.

▶ Definition 12 (Teichmüller-Tukey lemma). Let A be a type and T : P(A∗), we define the
Teichmüller-Tukey lemma, TTLAT :

(∃αP(A), α ∈ ⟨T ⟩) → ∃αP(A), α ∈ Max≺(⟨T ⟩)

H. Herbelin and J. Koleilat 26:7

Notations

TTL denotes the full schema: for all types A and all T : P(A∗), ∃αP(A), α ∈ ⟨T ⟩ →
∃αP(A), α ∈ Max≺(⟨T ⟩).
TTLAT denotes the schema specialised in this A and this T .
TTLAT denotes the restriction of the full schema TTL to A and T of a particular shape.
For example: TTLNT is the schema: for all T : P(N∗), ∃αP(N), α ∈ ⟨T ⟩ → ∃αP(N), α ∈
Max≺(⟨T ⟩). Moreover, if CA denotes a particular collection of predicates over lists of A (A
is a parameter), then TTLACA

denotes the restrictions of the schema TTL to any A type
and T : P(A∗) that is in CA.

Following an earlier remark, we impose that the finite character predicate we are consid-
ering must be inhabited, without this TTL becomes trivially inconsistent. Having defined
TTL we now show that we can recover an induction principle by using contraposition and
Morgan’s rules:

Unfolding some definitions, TTLAT is

(∃αP(A), α ∈ ⟨T ⟩) → ∃αP(A), α ∈ ⟨T ⟩ ∧ (∀βP(A), β ≺ α → β /∈ ⟨T ⟩)

Contraposing and pushing some negations:

∀αP(A), [¬(α ∈ ⟨T ⟩) ∨ ¬∀βP(A), β ≺ α → β /∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩

We have a sub-formula of the form ¬A ∨ ¬B, we have the choice of writing it as A → ¬B or
B → ¬A. The first choice leads to a principle we will call TTLco

AT :

∀αP(A), [α ∈ ⟨T ⟩ → ∃βP(A), β ≺ α ∧ β ∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩

And the second choice leads to an induction principle:

∀αP(A), [(∀βP(A), β ≺ α → β /∈ ⟨T ⟩) → α /∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩

TTLco is intuitively an opposite formulation of TTL. The induction principle we obtain
seems to express something different. We can push further the negations in order to obtain a
positive formulation of it:

∀αP(A), [(∀βP(A), β ≺ α → β ∈ ⟨T ⟩◦) → α ∈ ⟨T ⟩◦] → ∀αP(A), α ∈ ⟨T ⟩◦

And this can be seen as as a generalisation of Berger’s update induction [1] going from
countably-open predicates to arbitrary open predicates.

To state update induction, we need to focus on partial functions from N to A which we
equip with an order:

▶ Definition 13. Let A be a type, P : P(AN
⊥) and α, β : AN

⊥. We define:

β ≺N α : Prop
β ≺N α := ∃mN, ∃aA, α(m) = ⊥ ∧ β(m) = a ∧ ∀nN, n ̸= m → α(n) = β(n)

Like TTL, update induction is originally defined on open predicates but since any open
predicate comes from a predicate on lists, we can more primitively state it as follows:

FSCD 2024

26:8 On the Logical Structure of Some Maximality and Well-Foundedness Principles

▶ Definition 14 (Update induction). Let A be a type and T : P(A∗
⊥), we define Update

induction, UIAT :

∀αAN
⊥ , [(∀βAN

⊥ , β ≺N α → β ∈ ⟨T ⟩◦
N) → α ∈ ⟨T ⟩◦

N] → ∀αAN
⊥ , α ∈ ⟨T ⟩◦

N

Contrastingly, we now formally state the dual of TTL that we obtained above:

▶ Definition 15 (Generalised update induction). Let A be a type and T : P(A∗), we define
Generalised update induction, GUIAT :

∀αP(A), [(∀βP(A), β ≺ α → β ∈ ⟨T ⟩◦) → α ∈ ⟨T ⟩◦] → ∀αP(A), α ∈ ⟨T ⟩◦

Also, we introduce a countable version of TTL, logically dual to UI:

▶ Definition 16 (Countable Teichmüller-Tukey lemma). Let A be a type and T : P(A∗
⊥), we

define the countable Teichmüller-Tukey lemma, TTLN
AT :

(∃αAN
⊥ , α ∈ ⟨T ⟩N) → ∃αAN

⊥ , α ∈ Max≺N(⟨T ⟩N)

We thus obtain the following table:

Table 2 Maximality principles VS Induction principles.

Finite character Open

Arbitrary subsets TTLAT GUIAT

Countable subsets TTLN
AT UIAT

In particular, since TTL is classically equivalent to the full axiom of choice, GUI is also
classically equivalent to the full axiom of choice.

3 TTL and Zorn’s lemma

In this section we analyse precisely the relationships of TTL with Zorn’s lemma. We go
further than showing their equivalence, we look at which part of TTL (as a schema) is
necessary to prove Zorn’s lemma and reciprocally. This equivalence result is also a proof
that the version of Teichmüller-Tukey lemma we defined captures the full choice.

▶ Definition 17. Let A be a type, < a strict order on A, a : A and E, F : P(A). Define:

E ∈ Ch(A) : Prop
E ∈ Ch(A) := ∀a, bA, a, b ∈ E → (a < b ∨ b < a ∨ a = b)

F ∈ SCh(E) : Prop
F ∈ SCh(E) : F ⊆ E ∧ F ∈ Ch(A)

E ∈ Ind(A) : Prop

E ∈ Ind(A) := (∀F P(A), F ∈ SCh(E) → ∃aA, a ∈ E ∧ ∀bA, b ∈ F → b ≤ a)

a ∈ Max<(E) : Prop
a ∈ Max<(E) := a ∈ E ∧ ∀bA, a < b → b /∈ E

Where ≤ is the reflexive closure of <.

H. Herbelin and J. Koleilat 26:9

Ch is the chain predicate, SCh is the subchain predicate, Ind is the inductive “subset”
predicate and Max< is simply the maximal element predicate. We choose to express these
definitions in terms of predicates over types rather than directly in terms of types, to avoid
discussions on proof relevance and stay in a more general setting. If we were proof-irrelevant,
instantiating our schemas on predicates over types would be identical to doing it directly on
types which would simplify notations and yield the same results.
We can now define concisely Zorn’s lemma:

▶ Definition 18 (Zorn lemma). Let A be a type, < a strict order on A, and E a predicate on
A. ZornA<E is the following statement

E ∈ Ind → ∃aA, a ∈ Max<(E)

▶ Theorem 19. TTL ↔ Zorn

The following is an adaptation of a usual set-theoretic proof in our setting.

Proof. From left to right: fix A a type, < a strict order on A and E : P(A) such that
E ∈ Ind(A). We first show that SCh(E) is of finite character:

Let F : P(A) such that F ∈ SCh(E), we show F ∈ ⟨⌊SCh(E)⌋⟩: let u : A∗ such that u ⊂ F ,
⟨u⟩ is thus a chain of E therefore u ∈ ⌊Ch(E)⌋. Let F : P(A) such that F ∈ ⟨⌊SCh(E)⌋⟩,
by choosing lists of length 2 we can show that F is a subchain of E. Hence SCh(E) ∈ FC.

Using TTLA⌊SCh(E)⌋, we get G : P(A) such that G ∈ Max(SCh(E)). G is a subchain of
E, since E is inductive we get g : A such that g ∈ E and ∀aA, a ∈ G → a < g. Suppose we
have h : A such that g < h and h ∈ E . Let G′ := λaA.a ∈ G ∨ a = h, then we have G′ ≺ G,
since G ∈ Max(SCh(E)), G′ /∈ SCh(E). On the other side, G′ is obviously a chain and
G′ ⊆ E, therefore G′ ∈ SCh(E). This is a contradiction, hence g ∈ Max<(E).

From right to left: let T : P(A∗). ⊂ is a strict order on P(P(A)). Since ⟨T ⟩ is of finite
character, a maximal element for ⊂ is also a maximal element for ≻. Hence, what is left
to show is that ⟨T ⟩ is inductive and use ZornP(A)⊂⟨T ⟩ to produce a maximal term. Let
Q : P(P(A)) such that Q ∈ SCh(⟨T ⟩). Let α := λaA.∃βP(A), β ∈ Q∧a ∈ β. By construction,
α is an upper bound of Q, let’s show that it is indeed in ⟨T ⟩. Since ⟨T ⟩ is of finite character
it suffices to show that for all u : A∗, u ⊂ α → u ∈ T . Let u : A∗ such that u ⊂ α. Since
u is a finite list, we can enumerate its elements a0, . . . , an. For all 0 ≤ i ≤ n, let βi : P(A)
be such that ai ∈ βi and βi ∈ Q. Since Q is chain, there exists 0 ≤ i0 ≤ n such that for all
0 ≤ i ≤ n, βi ⊆ βi0 . Thus, u ⊂ βi0 , βi0 ∈ ⟨T ⟩ and so u ∈ ⟨T ⟩. ◀

Looking more closely at this proof we notice that we have proved a finer result than simply
the equivalence. We have shown TTLA⌊SCh(E)⌋ → ZornA<E and ZornP(A)⊂⟨T ⟩ → TTLAT .
We can express for a predicate over lists to be of the form ⌊SCh(E)⌋ in a more syntactic
way.

▶ Definition 20. Let A be a type and T : P(A∗), we say that T is a list of chains, if there
exists T ′ such that:

ϵ ∈ T ′

u@a ∈ T ′ and [a] ⋆ v ∈ T ′ if and only if u ⋆ [a] ⋆ v ∈ T ′

u ⋆ [a] ⋆ v ∈ T ′ implies u ⋆ v ∈ T ′

if a ̸= b and u ⋆ [a] ⋆ v ⋆ [b] ⋆ w ∈ T ′ then for all u′, v′, w′ : A∗, u′ ⋆ [b] ⋆ v′ ⋆ [a] ⋆ w′ /∈ T ′

and T is the downward closure of T ′ by ⊆. We denote by CA the collection of lists of chains
of A.

FSCD 2024

26:10 On the Logical Structure of Some Maximality and Well-Foundedness Principles

▶ Lemma 21. Let A be a type, < a strict order on A and E : P(A), then there exists T ∈ CA

such that SCh(E) = ⟨T ⟩. Reciprocally, let A be a type, then for every T ∈ CA there exist a
strict order < on A and E : P(A) such that SCh(E) = ⟨T ⟩.

Proof. Proof of the first statement: we inductively define a T ′ : P(A∗).

ε ∈ T ′
a ∈ E

[a] ∈ T ′
b ∈ E a < b u@a ∈ T ′

u@a@b ∈ T ′

We easily show that T ′ satisfies the conditions of the above definition. Let T be the downward
closure of T ′. Let F ∈ SCh(E) and u : A∗ such that u ⊂ F . Since F is a chain we can
construct a list u′ of all elements of u such that u′ does not contain twice the same element
and is ordered increasingly relative to <. u′ is thus in T ′ hence u is in T . Let F ∈ ⟨T ⟩ and
a, b : A such that a, b ∈ F . By hypothesis the list [a, b] is in T . There exists u ∈ T ′ such that
[a, b] ⊂ u. Hence a, b ∈ ⟨u⟩ which is a chain. In conclusion F is a subchain of E.

Proof of the reciprocal: suppose given a type A with decidable equality and T ∈ CA.
There exists a T ′ satisfying the aforementioned conditions. Let E := λaA.∃uA∗

, u ∈ T ′ ∧ a ∈
u. We now must define an ordering on A. Define < a binary relation on A such that
a < b := [a, b] ∈ T ′. Using last “axiom” of the definition of T ′ we easily show that it is
irreflexive. For transitivity notice that if [a, b], [b, c] ∈ T ′ then [a, b, c] ∈ T ′ then [a, c] ∈ T ′.
Thus, it is a strict ordering on A. Let F ∈ SCh(E) and u : A∗ such that u ⊂ F . We can
assume that u is sorted increasingly relatively to <. Using the same trick used for proving
transitivity show that u ∈ T . Let F ∈ ⟨T ⟩ and a, b : A such that a, b ∈ F . By hypothesis the
list [a, b] is in T therefore, a < b which means that F is indeed a chain. ◀

▶ Corollary 22. TTLACA
→ Zorn and ZornP(A)⊂⟨T ⟩ → TTL. Hence we deduce the

somewhat surprising results TTL ↔ TTLACA
and Zorn ↔ ZornP(A)⊂⟨T ⟩.

Looking back at the path we took to arrive at this conclusion, the results are quite
expected, but looking only at the definition of a list of chains it is quite surprising that
restricting TTL this much does not change its power.

4 ∃MPCF

In this section we define a choice principle ∃MPCF which stands for “Exists a Maximal
Partial Choice Function” and a weaker version ∃MPCF−. It is weaker in the sense that
∃MPCF implies ∃MPCF− but the equivalence is true if we allow excluded middle. We
show that ∃MPCF− is equivalent in its general form to TTL and link ∃MPCF to the
general class of dependent choice GDC, given by Brede and the first author in [2]. In
particular, ∃MPCF and ∃MPCF− can be seen as refinements of TTL whose strength is
more explicitly controlled.

▶ Definition 23. Let A, B be types, f, g ∈ A →p B and P : P(P(A × B)), define:

g ≺ f : Prop
g ≺ f : ∃aA, a /∈ dom(f) ∧ (dom(g) = dom(f) ∪ a) ∧

(∀xA, x ∈ dom(f) → ∃bB , (x, b) ∈ f ∧ (x, b) ∈ g)
f ∈ Maxrpf (P) : Prop
f ∈ Maxrpf (P) := f ∈ P ∧ ∀gA→pB , g ≺ f → g /∈ P

H. Herbelin and J. Koleilat 26:11

▶ Definition 24 (∃MPCF−). Let A, B be types and T : P((A × B)∗), ∃MPCF−
ABT is the

statement:

(∃αP(A×B), α ∈ ⟨T ⟩) → ∃fA→pB , f ∈ Maxrpf (⟨T ⟩)

▶ Definition 25. Let A, B be types, f, g : A → B⊥ and P : P(P(A × B)), define:

g ≺ f : Prop
g ≺ f : ∃aA, a /∈ dom(f) ∧ (dom(g) = dom(f) ∪ a) ∧

(∀xA, x ∈ dom(f) → f(x) = g(x))
f ∈ Maxdpf (P) : Prop
f ∈ Maxdpf (P) := G(f) ∈ P ∧ ∀gA→B⊥ , g ≺ f → G(g) /∈ P

Since the intuitive meaning is the same we use the symbol ≺ for predicate, for relational
partial functions and decidable partial function.

▶ Definition 26 (∃MPCF). Let A, B be types and T : P((A×B)∗), the theorem of existence
of a maximal partial choice function ∃MPCFABT is the statement:

(∃αP(A×B), α ∈ ⟨T ⟩) → ∃fA→B⊥ , f ∈ Maxdpf (⟨T ⟩)

The difference between ∃MPCF and ∃MPCF− lies solely in the “kind” of partial function
that is used. Hence, as per the above remark on the differences between relation partial
function and decidable partial function, ∃MPCF → ∃MPCF− and assuming excluded
middle ∃MPCF− → ∃MPCF which we denote by ∃MPCF− →cl ∃MPCF.

4.1 ∃MPCF and TTL
Now that we have defined ∃MPCF−, we show that it is equivalent to TTL hence,
∃MPCF → TTL and TTL →cl ∃MPCF.

▶ Theorem 27. Let A be a type, T : P(A∗) and π∗T the operation that maps T to
λu(A×1)∗

. π(u) ∈ T where π is the canonical projection of (A × 1)∗ on A∗. Then,
∃MPCF−

A1π∗T → TTLAT . Let A, B be types and T : P((A × B)∗) then, TTL(A×B)T →
∃MPCF−

ABT .

Proof. ∃MPCF−
A1π∗T → TTLAT : let A a type, T : P(A∗) and π∗T := λu(A×1)∗

. π(u) ∈ T .
From ∃MPCF−

A1π∗T we obtain f ∈ A →p 1 such that f ∈ Maxrpf (⟨π∗T ⟩). Define
α := dom(f) and let’s show that α ∈ Max(⟨T ⟩). By construction, α is in ⟨T ⟩. Suppose
β : P(A × B) such that β ≺ α. We can construct a relational partial function g : A →p 1

such that β = dom(g). Since g ≺ f , g is not in ⟨U⟩ hence β is not in ⟨T ⟩.

TTL(A×B)T → ∃MPCF−
ABT : let A, B types and T : P((A × B)∗). Define

Q := λu(A×B)∗
. (∀aA, ∀b, b′B , (a, b) ∈ u ∧ (a, b′) ∈ u → b = b′) ∧ u ∈ T

Notice that ⟨Q⟩ is not empty, since ⟨T ⟩ is inhabited, ϵ ∈ T . From this, we deduce that ϵ ∈ Q

hence, the empty predicate is in ⟨Q⟩. We can now apply TTL(A×B)Q and get α such that
α ∈ Max(⟨Q⟩). By construction α is a relational partial function. It follows that it’s a
maximal relational partial function, thus proving ∃MPCF−

ABT . ◀

TTL can be seen as a projection of ∃MPCF. The fact that they are so tightly linked
is not surprising as “being a partial function” for a subset of A × B is a property of finite
character.

FSCD 2024

26:12 On the Logical Structure of Some Maximality and Well-Foundedness Principles

4.2 ∃MPCF and GDC
Introduced in [2], Generalised Dependent Choice (GDCABT) is a common generalisation of
the axiom of dependent choice and of the Boolean prime ideal theorem. Parameterised by a
domain A, a codomain B and a predicate T : P((A × B)∗), it yields dependent choice when
A is countable, the Boolean prime ideal theorem when B is two-valued, and the full axiom
of choice when T comes as the “alignment” of some relation (see below). To the difference
of ∃MPCF, GDC asserts the existence of a total choice function, but this to the extra
condition of a property of “approximability” of T by arbitrary long finite approximations.
To the difference of ∃MPCF whose strength is the one of the full axiom of choice, expecting
a total choice function makes GDC inconsistent in its full generality.

In this section we investigate how restricting ∃MPCF to countable A or two-valued B

impacts its strength to exactly the same extent as it restricts the strength of GDC. Two
such preliminary results are given, but first, let’s translate GDC in our setting:

▶ Definition 28 (A-B-approximable). Let A, B be types and T : P((A × B)∗). For all
X : P((A × B)∗) define

ϕ(X) := λu(A×B)∗
. (u ∈ ⌊⟨T ⟩⌋ ∧ ∀aA, ¬(∃bB , (a, b) ∈ u) → ∃bB , u@(a, b) ∈ X)

The A-B-approximation of T denoted TABap is the greatest fixed point of ϕ. We say that T

is A-B-approximable if ε ∈ TABap.

▶ Definition 29 (A-B-choice function). Let A, B be types and T : P((A × B)∗). T has an
A-B-choice function if:

∃fA→B , ∀u(A×B)∗
, u ⊂ G(f) → u ∈ T

▶ Definition 30 (GDC). Let A, B be types and T : P((A×B)∗), GDCABT is the statement:
if T is A-B-approximable then T has an A-B-choice function.

▶ Theorem 31. GDCNBT →cl ∃MPCFNBT

Proof. Let B be a type and T : P((N × B)∗). In order to use GDC, T must be
N-B-approximable but the T we are given might not be. Thus, we are going to construct
T⊥ : P((N × B⊥)∗) that is N-B⊥-approximable and use GDC to obtain a function that we
will prove maximal.

For all u : P((A × B⊥)∗) define u inductively:

ε := ε

a : A b : B

u@(a, b) := u@(a, b)
a : A

u@(a, ⊥) := u

By induction define T n
⊥ : P((N × B⊥)∗):

T 0
⊥ := λu(N×B⊥)∗

. u = ε

Let T n+1
⊥ be defined inductively

u ∈ Tn b : B u@(n + 1, b) ∈ T

u@(n + 1, b) ∈ T n+1
⊥

u ∈ Tn ∀bB , u@(n + 1, b) /∈ T

u@(n + 1, ⊥) ∈ T n+1
⊥

Now define T⊥ as the ⊆-downward closure of the union of the T n
⊥. We must show that T⊥ is

N-B⊥-approximable. By definition T⊥ = ⌊⟨T⊥⟩⌋. Let n : N, v : (N × B⊥)∗ such that v ∈ T⊥
and ¬(∃cB⊥ , (n, c) ∈ v). By definition, there exists m : N and u ∈ T m

⊥ such that v ⊆ u. If

H. Herbelin and J. Koleilat 26:13

n ≤ m then there exists c : B⊥ such that (n, c) ∈ u, thus v@(n, c) ⊆ u and v@(n, c) ∈ T⊥.
If n > m then there exists u′ ∈ T n

⊥ such that u ⊆ u′. It is in the proof of this statement
that we need excluded middle to show that we always satisfy the hypothesis of one of the
induction steps. Hence, v ⊆ u′ and we now repeat the same argument. T⊥ satisfies ϕ and
contains ε, thus we can apply GDCNB⊥T⊥ and get f : N → B⊥ a choice function.

What is left to show is that f is a maximal partial function. Let n : N such that
n /∈ dom(f) and let g : N → B⊥ extending f with dom(g) = dom(f) ∪ n. Let us write
f<n for the list [(0, f(0)), . . . , (n − 1, f(n − 1))]. f<n ∈ T n

⊥ and since f<n+1 is of the
form f<n@(n, ⊥) by case analysis we deduce that ∀bB , f<n@(n, b) /∈ T . If G(g) ∈ ⟨T⊥⟩
then g<n+1 ∈ T⊥ and g<n+1 = f<n@(n, g(n)) with g(n) : B. f<n@(n, g(n)) is thus in T ,
contradiction. Hence, f is maximal. ◀

Let’s write DC for the axiom of dependent choice. We have:

▶ Corollary 32. Since GDCNBT is equivalent to DC [2] we deduce: DC →cl TTL(N×B)T

▶ Theorem 33. For A a type with decidable equality, ∃MPCFABT → GDCABT

Proof. Let A be a type and T : P((A × B)∗) A-B-approximable. Define U := ⌊⟨TABap⟩⌋,
the A-B-approximable hypothesis guarantees that ⟨U⟩ is inhabited. Using ∃MPCFABU we
get f : A → B⊥ a maximal partial choice function. We show that f must be total, that
is that it is impossible that it takes the value ⊥. Indeed assume f(a) = ⊥ for some a : A

and consider g : A → B⊥ that extends f with g0(a) = 0B. We have g ≺ f , thus G(g) /∈ ⟨U⟩.
Then, there exists u : (A × B)∗ such that u ⊂ G(g) and u /∈ U . Using the decidability of
equality in A, we can find u′ such that u = u′@(a, 0B) where u′ ⊂ G(f). Symmetrically,
by considering the extension g of f obtained by setting g(a) = 1B, there exists v′ ⊂ G(f)
such that v′@(a, 1B) /∈ U . Since u′ ⋆ v′ ⊂ G(f), u′ ⋆ v′ ∈ U . There must be b : B such
that (u′ ⋆ v′)@(a, b) ∈ U . But in both cases (b = 0B or 1B) there is a sublist (u′@(a, 0B) or
v′@(a, 1B)) that is not in U , contradiction. Hence, f is total. ◀

The following definition, taken from [2], describes how to turn a relation on A and B as
a predicate over (A × B)∗ that filters approximations.

▶ Definition 34 (Positive alignment). Let A and B be types and R a relation on A and B.
The positive alignment R⊤ of R is the predicate on (A × B)∗ defined by:

R⊤ := λu.∀(a, b) ∈ u, R(a, b)

Positive alignments can be characterised by the following property.

▶ Definition 35 (Downward prime). Let A and B be types. We say that T : P((A × B)∗) is
downward prime when u ∈ T and v ∈ T implies u ⋆ v ∈ T . We denote by DAB the collection
of downward prime T : P((A × B)∗).

▶ Theorem 36. If R is a relation on A and B, its positive alignment is downward prime.
Conversely, if T is downward prime, it is the positive alignment of the relation |T | defined by

|T |(a, b) := [(a, b)] ∈ T

Proof. This is because u ⋆ v ∈ R⊤, that is ∀(a, b) ∈ u ⋆ v, R(a, b) is equivalent to (∀(a, b) ∈
u, R(a, b)) ∧ (∀(a, b) ∈ v, R(a, b)), that is to u ∈ R⊤ ∧ v ∈ R⊤, and, conversely, because
u ∈ |T |⊤, that is ∀(a, b) ∈ u, [(a, b)] ∈ T , is equivalent, by induction on u, using downward
primality at each step, to u ∈ T . ◀

FSCD 2024

26:14 On the Logical Structure of Some Maximality and Well-Foundedness Principles

Based on the equivalence between ACABR and GDCABR⊤ in [2, Thm 7], we obtain:

▶ Corollary 37. GDCABT for T downward prime characterises the full axiom of choice
ACABR, that is ∀xA, ∃yB , R(a, b) → ∃fA→B , ∀xA, R(a, f(a)).

We now show that GDCABT is also equivalent to ∃MPCFABT for T downward prime.

▶ Theorem 38. For T : P((A × B)∗) downward prime for A with decidable equality,
∃MPCFABT → GDCABT .

Proof. Since T is A-B-approximable, it contains ε, so that ⟨T ⟩ is non-empty. Thus, by
∃MPCFABT , we get f : A → B⊥ a maximal partial choice function. We show that f must
be total. Indeed, assume a : A such that f(a) = ⊥. By A-B-approximability, we can obtain
a b such that [(a, b)] ∈ ⌊⟨T ⟩⌋. Let’s now consider the function g : A → B⊥ defined by setting
g(a′) = b if a = a′ and g(a′) = f(a′) otherwise. We have g ≺ f , thus G(g) /∈ ⟨T ⟩. But this
contradicts that we can also prove that any u ⊂ G(g) is in T , that is G(g) ∈ ⟨T ⟩. Indeed, by
decidability of equality on A, either u has an element of the form (a, b′) or not. In the second
case, u ⊂ G(f) and thus u ∈ T . In the first case, u has the form u′ ⋆ (a, b′) ⋆ u′′ with u′ ∈ G(f)
and u′′ ∈ G(f), thus u′ ∈ T and u′′ ∈ T . Since u ⊂ G(g), we also have b′ = g(a) = b. Then,
by downward primality, we get u′ ⋆ [(a, b)] ⋆ u′′ ∈ T . ◀

▶ Theorem 39. For T : P((A × B)∗) downward prime, GDCABDAB
→ ∃MPCF−

ABDAB
.

Proof. There are two ways to embed a partial function from A to B into a total function:
either restrict A to the domain of the function, or extend B into B⊥, as in Theorem 31. We
give a proof using the first approach.

Let A′ be the subset of A such that ∃bB , [(a, b)] ∈ T . We show coinductively that if A′ is
infinite, the restriction of T on A′ is A′-B-approximable. First, we do have ε ∈ T because
⟨T ⟩ is non empty. Then, assume u ∈ T and a : A′ such that ¬(∃bB , (a, b) ∈ u) (which is
possible since A′ is supposed infinite). Since a is in A′, there is b such that [(a, b)] ∈ T , and
by downward primality, u ⋆ (a, b) ∈ T , hence A′-B-approximable by coinduction.

Thus, there is a total function f : A′ → B such that G(f) ∈ ⟨T ⟩, which induces a partial
function f ′ from A →p B⊥. It remains to show that f ′ is maximal. Let a /∈ dom(f), that is
such that ∀bB , ¬[(a, b)] ∈ T . Then, there is obviously no extension of f ′ on a that would be
in ⟨T ⟩.

It remains to treat the case of A′ finite, which can be obtained by (artificially) reasoning
on the disjoint sum of A′ and N, and setting T [(n, p)] := (n = p) on N. ◀

5 Conclusion

While Brede and the first author [2] investigated the general form of a variety of choice and
bar induction principles seen as contrapositive principles, this paper initiated the investigation
of a general form of maximality and well-foundedness principles equivalent to the axiom of
choice. One of the surprise was that, up to logical duality, two principles such as Teichmüller-
Tukey lemma and Berger’s update induction were actually of the very same nature. By
seeing all these principles as schemes, we could also investigate how to express Zorn’s lemma
and Teichmüller-Tukey lemma as mutual instances the one of the other. Finally, by starting
investigating how maximality, when applied to functions, relates to totality in the presence
of either a countable domain or a finite codomain, we initiated a bridge between maximality
and well-foundedness principles and the general family of choice and bar induction principles
from [2].

The investigation could be continued in at least five directions:

H. Herbelin and J. Koleilat 26:15

In the articulation between TTL and ∃MPCF: assuming an alternative definition of
TTL, say TTL+, where P(A) is represented as a characteristic function from A to B, that
is, equivalently, as a function from A to 1⊥, one would get the following identifications:

TTL+
AT = ∃MPCFA1π∗T TTL+

(A×B)T = ∃MPCFABT

TTLAT = ∃MPCF−
A1π∗T TTL(A×B)T = ∃MPCF−

ABT

In the articulation between a sequential definition of countably-finite character and
countably-open predicate, as in TTLN

BT and UIBT , and a non-sequential definition,
as in ∃MPCFNBT and ∃MPCF−

NBT , similar to the connection between DCprod.
BT and

GDCNBT in [2].
In the relation between ∃MPCFABT and ∃MPCF−

ABT on one side and GDCABT on
the other side, verifying that the correspondences between ∃MPCFNBT and GDCNBT ,
and between ∃MPCFABT and GDCABT hold, at least classically, in both directions, the
same way as they do in the case T downward prime.
In the articulation between TTL and GUI, formulating statements dual to ∃MPCF
and ∃MPCF− and connecting them to GBI [2], analysing the role of classical reasoning
and decidability of the equality on the domain in the correspondences.
In the relation between TTL, ∃MPCF, ∃MPCF− and other maximality principles than
Zorn’s lemma, also studying other well-foundedness principles than UI.

In particular, an advantage of ∃MPCF and ∃MPCF− over GDC is that their more
general form is classically equivalent to the axiom of choice while the most general form of
GDC is inconsistent.

References
1 Ulrich Berger. A computational interpretation of open induction. In Proceedings of the 19th

Annual IEEE Symposium on Logic in Computer Science, LICS ’04, page 326, USA, 2004.
IEEE Computer Society.

2 Nuria Brede and Hugo Herbelin. On the logical structure of choice and bar induction principles.
36th Annual Symposium on Logic in Computer Science, 2021.

3 Thierry Coquand. Constructive topology and combinatorics. In J. Paul Myers and Michael J.
O’Donnell, editors, Constructivity in Computer Science, pages 159–164, Berlin, Heidelberg,
1992. Springer Berlin Heidelberg.

4 Horst Herrlich. Axiom of Choice. Lecture Notes in Mathematics. Springer, 2006.
5 Thomas J. Jech. The Axiom of Choice. Dover Books on Mathematics Series. Courier

corporation, 1973.
6 Herman Rubin and Jean E. Rubin. Equivalents of the Axiom of Choice. North-Holland

Publishing Company, 1970.

FSCD 2024

	1 Introduction
	1.1 Context
	1.2 The logical system
	1.3 Closure operators and partial functions

	2 TTL and UI
	2.1 Predicates of finite character
	2.2 Open predicates
	2.3 Teichmüller-Tukey lemma and Update induction

	3 TTL and Zorn's lemma
	4 exists MPCF
	4.1 exists MPCF and TTL
	4.2 exists MPCF and GDC

	5 Conclusion

