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Abstract
We introduce an algebraic structure for studying state-independent contextuality arguments, a key
form of quantum non-classicality exemplified by the well-known Peres-Mermin magic square, and
used as a source of quantum advantage. We introduce commutation groups presented by generators
and relations, and analyse them in terms of a string rewriting system. There is also a linear algebraic
construction, a directed version of the Heisenberg group. We introduce contextual words as a general
form of contextuality witness. We characterise when contextual words can arise in commutation
groups, and explicitly construct non-contextual value assignments in other cases. We give unitary
representations of commutation groups as subgroups of generalized Pauli n-groups.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Contextuality, state-independence, quantum mechanics, Pauli group, group
presentations, unitary representations

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.28

Funding Samson Abramsky: EPSRC EP/V040944/1 Resources in Computation, UKRI 10050493
FoQaCiA
Carmen-Maria Constantin: UKRI 10050493 FoQaCiA

1 Introduction

Contextuality is a key form of non-classicality in quantum mechanics, and is the source
of quantum advantage in a range of settings, including measurement-based quantum com-
putation [17] and shallow circuits [8, 7]. In classical physics, observable quantities have
well-defined values independently of which measurements are performed. This is contradicted
by the predictions of quantum mechanics [13], as verified in numerous experiments [6, 10].
These say that values can only be assigned locally, in measurement contexts, i.e. with respect
to sets of measurements which can be performed together, providing observational “windows”
of classical information on the quantum system. These windows may overlap, and will agree
on their overlaps (local consistency), but it is not possible, on pain of logical contradiction,
to glue all these pieces of information together (global inconsistency).

The strongest form of this phenomenon is state-independent contextuality, where the
structure of the observables dictates that contextuality arises for any state. The most famous
example of this phenomenon is the Peres-Mermin magic square [14], which is constructed
from the 2-qubit Pauli group1:

1 We recall the definition of the Pauli group in the Appendix.
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XI — IX — XX

| | |
IZ — ZI — ZZ

| | |
XZ — ZX — Y Y

Here XI denotes the 2-qubit operator σx ⊗ I, and similarly for the other entries. One can
now calculate that the operators in each row and column pairwise commute, and hence form
a valid measurement context. Moreover, the product of each of the rows, and of the first two
columns, is II; while the product of the third column is −II.

We shall now see how to recognize contextuality in this example. The key point is that
this can be done a priori, independently of any observational data. We ask if there is an
assignment of outcomes v : X→ Z2 , where X is the set of operators in the table, subject to
the conditions that
1. if p and q commute, then v(pq) = v(p) + v(q).
2. v(II) = 0 and v(−II) = 1.
Such an assignment is called a non-contextual value assignment. If no such assignment exists,
this yields an example of contextuality. We call this state-independent, since it arises purely
at the level of the operators in the table, independently of any state.

Note that we only require the homomorphism condition (1) for commuting operators,
which correspond to observables that can be performed together, in a common context. This
is the key idea introduced by Kochen and Specker in their seminal work on contextuality [13].

Now assume for contradiction that such an assignment exists. We obtain the following
set of equations over Z2 from the above table, one for each row and each column:

a+ b+ c = 0 a+ d+ g = 0
d+ e+ f = 0 b+ e+ h = 0
g + h+ i = 0 c+ f + i = 1

(1)

Here a is a variable corresponding to v(XI), etc.
Since each variable appears twice in the left hand sides, summing over them yields 0,

while summing over the right hand sides yields 1. This yields the required contradiction.
The justification for assuming the partial homomorphism condition comes from the

quantum case, where if A and B are commuting observables and ψ is a common eigenvector
of A and B, with eigenvalue v for A and w for B, then ψ is an eigenvector for AB with
eigenvalue vw. Also, II has the unique eigenvalue +1, and −II the unique eigenvalue −1.2

We now wish to abstract from the specifics of the Pauli group, and understand the general
structure which makes such arguments possible. This leads us to introduce the notion of
commutation group, to which we now turn.

2 Commutation groups

The idea behind commutation groups is that they are built freely from prescribed commutation
relations on a set of generators. Commutation relations play a fundamental role in quantum
mechanics, the canonical example being the commutation relation between position and
momentum (see e.g. [11]): [p, q] = iℏ1. We can think of a commutation relation as saying that
two elements commute up to a prescribed scalar. For this to make sense in a group theoretic

2 Note that {+1, −1} under multiplication is an isomorphic representation of Z2, with 0 corresponding to
+1 and 1 to −1 under the mapping i 7→ (−1)i.
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context, we need an action of a suitable (classical, hence abelian) group of scalars or “phases”
on the group we are constructing. We are interested here in finite group constructions, so we
shall work over the finite cyclic groups Zd, d ≥ 2.

Given a finite set Xof generators, we define a commutator matrix to be a map µ : X2 → Zd

which is skew-symmetric, meaning that µ(x, y) = −µ(y, x) for all x, y ∈ X. We also assume
that µ(x, x) = 0 for all x ∈ X.3

We shall describe the construction of commutation groups from commutator matrices
in two ways: by generators and relations, and by a linear algebraic construction. Both are
useful, and convey different intuitions.

2.1 Commutation groups by generators and relations
We briefly review the standard notion of presentation of a monoid by generators and relations
⟨X|R⟩. We form the free monoid X∗, and quotient it by the congruence induced from the
relations R ⊆ X∗ × X∗. Explicitly, we define a symmetric relation ←→

R
⊆ X∗ × X∗ by

s ←→
R

t iff there is (u, v) ∈ R ∪ R−1 such that, for some w1, w2 ∈ X∗, s = w1uw2, and

t = w1vw2. We then take the reflexive transitive closure ∗←→
R

. This is a monoid congruence,

and the quotient M = X∗/
∗←→
R

is the presented monoid.

Notation. We write relations as u .= v. We write the empty sequence, which forms the
identity element of the free monoid, as 1.

Given a commutator matrix µ : X2 → Zd, we define a set of relations RG over the gener-
ators X⊔ Zd (using ⊔ for disjoint union), where we write Jk for the generator corresponding
to k ∈ Zd, and:

We have relations Rµ := {xy .= Jµ(x,y)yx | x, y ∈ X}.
We have RJ := {J0

.= 1} ∪ {JkJk′
.= Jk+k′ | k, k′ ∈ Zd} ∪ {Jkx

.= xJk | x ∈ X, k ∈ Zd}.
We have Rd := {xd .= 1 | x ∈ X}.
Finally, RG := Rµ ∪RJ ∪Rd.

The resulting monoid G(µ) := ⟨X⊔ Zd | RG⟩ is in fact a group, since every generator has an
inverse. We call it the commutation group generated by µ.

The J-relations ensure that there is an isomorphic copy of Zd in the centre of the
group. The key relations are the commutation relations xy .= Jµ(x,y)yx. Note that these are
directional, since by skew-symmetry of µ, if µ(x, y) = k, then yx

.= J−kxy. Thus moving
x right past y has the opposite “cost” to moving x left past y. This suggests that we can
analyze G(µ) by a directed string rewriting system.

To do this, we fix a linear ordering x1 < · · · < xn on X.4 Relative to this ordering,
elements of G(µ) can be represented as ordered multisets over X with multiplicities strictly
less than d, together with a “global phase” from Zd. Explicitly, we define N to be the set of
all expressions Jkx

k1
1 · · ·xkn

n , with k ∈ Zd, and 0 ≤ ki < d, 1 ≤ i ≤ n. There is an evident
bijection N ∼= Zd × Zn

d . Thus N has cardinality dn+1.
We now define a string rewriting system on X⊔ Zd, obtained by orienting a subset of the

relations RG, determined by the chosen linear order on X:
→µ := {xy → Jµ(x,y)yx | x > y}.
→J := {J0 → 1} ∪ {JkJk′ → Jk+k′ | k, k′ ∈ Zd} ∪ {xJk → Jkx | x ∈ X, k ∈ Zd}.
→d := {xd → 1}.
→G := →µ ∪→d ∪→J .

3 Note that if d is even, this does not follow automatically from skew-symmetry.
4 As we shall see, the choice of ordering is immaterial, leading to isomorphic results.

FSCD 2024
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This induces a relation on (X⊔Zd)∗ by s→ t iff for some u→G v, for some w1, w2 ∈ (X⊔Zd)∗,
s = w1uw2, and t = w1vw2.

▶ Theorem 1. The rewrite system →G is confluent and normalizing. The set of normal
forms is N (up to identification of J0 and 1).

Proof. Given a word s ∈ (X⊔ Zd)∗, we define:
An X-inversion in s is (u, v, w, x, y) such that s = uxvyw, and x > y.
A J-inversion in s is (u, v, w, x, k) such that s = uxvJkw.

We define a function φ : (X⊔A)∗ → N× N× N by φ(s) = (n,m, l), where n is the number
of X-inversions in s, m is the number of J-inversions, and l is the length of s.

We now observe that for each rewrite s → t in the above system →G, φ(s) ≻ φ(t) in
the lexicographic ordering on N × N × N. Indeed, the µ relations decrease the number
of X-inversions, the J-commutation rule decreases the number of J-inversions while not
increasing the number of X-inversions, and the remaining rules decrease length while not
increasing the number of inversions. Since this ordering is well-founded, it follows that →G
is normalizing.

By Newman’s Lemma, it now suffices to show that →G is weakly confluent. This is
verified straightforwardly by examining the critical pairs.

Firstly, consider x > y > z, µ(x, y) = a, µ(y, z) = b, µ(x, z) = c:

uxyzv

uJayxzv uxJbzyv

uJa+b+czyxv

∗ ∗

uxyJbv

uJayxJbv uxJbyv

uJa+byxv

∗ ∗

Next, two cases involving J-generators:

uxd−1xJav

uJav uxd−1Jaxv

uJax
dv

∗

uJaJbJcv

uJa+bJcv uJaJb+cv

uJa+b+cv

Finally:

uxd−1xyv

uyv uxd−1Jayxv

uJd·ayx
dv

∗ ∗

uxyyd−1v

uxv uJayxy
d−1v

uJd·ay
dxv

∗ ∗

Note that d · a = 0 mod d, justifying the final legs. ◀
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By virtue of this theorem, we can define a function θ : (X⊔ Zd)∗ → N, which returns the
normal form of a word. Note that, if w →∗ w′, then by confluence, θ(w) = θ(w′).

We can use this function to define an equivalence on (X⊔ Zd)∗ by s ≃ t iff θ(s) = θ(t).
This equivalence is in fact a congruence, since if θ(u) = s = θ(u′) and θ(v) = t = θ(v′), then,
using confluence, θ(uv) = θ(st) = θ(u′v′).

▶ Proposition 2. For all s, t ∈ (X⊔ Zd)∗, s ≃ t iff s
.= t.

Proof. The left-to-right implication follows immediately since →G⊂ RG. For the converse,
it suffices to show that s ≃ t for all relations s .= t in RG, since .= is the least congruence
containing these relations.

Consider firstly xy .= Jkyx, where k = µ(x, y). There are two cases:
1. If x < y, then xy ∈ N, and Jkyx→ JkJ−kxy →∗ xy.
2. If x > y, then Jkyx ∈ N, and xy → Jkyx.
The other relations are verified similarly. ◀

We now define a monoid with carrier N. Note that 1 and Jk, k ∈ Zd, are in N. We define
the multiplication by u · v := θ(uv).

▶ Proposition 3. (N, ·, 1) is a monoid.

Proof. We need to verify associativity. This follows from

θ(θ(uv)w) = θ(uvw) = θ(uθ(vw)) (2)

which in turn follows from confluence. ◀

We now define a map h : G(µ)→ N by h([w]) = θ(w).

▶ Theorem 4. The map h is well-defined, and is a monoid isomorphism h : G(µ) ∼= N.

Proof. If u .= v, then by Proposition 2, θ(u) = θ(v). Thus h is well-defined. The fact that it
preserves multiplication follows from θ(uv) = θ(θ(u)θ(v)), which follows from confluence. If
w ∈ N, then h([w]) = θ(w) = w. Thus h is surjective. Finally, if h([u]) = h([v]), then u ≃ v,
so by Proposition 2, [u] = [v]. ◀

We now come to a key property for applications to contextuality.

▶ Theorem 5. The internal Zd-action given by the J-generators is faithful: if Jk
.= Jk′ in

G(µ), then k = k′.

Proof. This is immediate from the isomorphic representation given by N, since if k ̸= k′, Jk

and Jk′ are distinct normal forms. ◀

The parameter d plays a double role in the commutation groups, defining the order of
the generators by the relations xd = 1, and also the abelian “phase group” Zd acting on the
commutation group. We used this double role of d in proving confluence for the rewriting
system. This assumption is in fact necessary to obtain a confluent system with a faithful
action, as the following example shows.

▶ Example 6. We assume the relations xd .= 1 for the generators. Consider the word
w ≡ yxyd−1xd−1, and let a = µ(x, y). Then w

.= J(d−1)·ay
dxd .= J(d−1)·a, and also w

.=
J−axy

dxd−1 .= J−ax
d .= J−a. Thus to maintain confluence and faithfulness of the action, we

require (d− 1) · a = −a, and hence d · a = 0.

FSCD 2024
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Comparison with solution groups
In [9] another way of abstracting from the Peres-Mermin square and similar constructions is
pursued, leading to the introduction of solution groups. These groups are specified by sets of
equations of similar form to (1). The generators appearing together in an equation, and only
these, are specified to commute. These groups are shown in [9] to control the question of
whether there is a quantum realization for these equations. Importantly, this is shown to be
equivalent to the existence of quantum perfect strategies for Alice-Bob non-local games.

A remarkable result of Slofstra [19] shows that solution groups, even over Z2, are extremely
expressive (i.e. “wild”). Every finitely presentable group can be embedded in a solution
group. It follows immediately that the word problem for solution groups, and hence the
quantum realization questions, are undecidable.

By contrast, commutation groups are highly tractable. By Theorem 4, they are always
finite. From the proof of termination in Theorem 1, we see that reduction to normal form,
and hence the decision procedure for the word problem, is at most quadratic in the length
of the word. As we shall see later, every commutation group admits a faithful unitary
representation.

2.2 Linear algebraic construction of commutation groups
The characterization of commutation groups in Theorem 4 suggests another description. We
shall now use the fact that Zd is not just an abelian group, but a commutative ring with
unit. We can write a commutator matrix, with a chosen order on the set of generators, as
an n× n matrix with entries in Zd. We write so(n,Zd) for the set of all n× n commutator
matrices (skew-symmetric and zero on the diagonal) over Zd. Given a commutator matrix µ,
we write µ̌ for its lower triangular part, so that µ = µ̌− µ̌⊺.

An n × n matrix M over Zd defines a bilinear form on the free Zd-module Zn
d , by

M(k⃗, l⃗) := k⃗⊤Ml⃗. Now given µ ∈ so(Zd, n), we define a group H(µ) with carrier Zd × Zn
d .

The group product is defined by

(k, k⃗) · (l, l⃗) = (k + l + µ̌(k⃗, l⃗), k⃗ + l⃗).

Thus it is precisely the phase factor µ̌(k⃗, l⃗) which makes the group non-commutative.
The associativity of the product follows from bilinearity. The unit is (0, 0). The inverse

of (k, k⃗) is (−k − µ̌(k⃗,−k⃗),−k⃗).

▶ Proposition 7. For any µ ∈ so(n,Zd), H(µ) ∼= G(µ).

Proof. By Theorem 4, the carriers are in evident bijection: Jkx
k1
1 · · ·xkn

n ↔ (k, (k1, . . . , kn)).
We just have to check that the group product is preserved. The only non-imediate part of
this is to check that the phase factors agree.

Suppose in N we have normal forms with vector parts u = xk1
1 · · ·xkn

n and v = xl1
1 · · ·xln

n .
To combine them into θ(uv), with vector part xk1+l1

1 · · ·xkn+ln
n , we must move l1 copies of

x1 over kn copies of xn, each with a cost of µ(xn, x1); and similarly for the occurrences
of xn−1, . . . , x2 in u, with total cost

∑
i>1 kiµ(xi, x1)l1. A similar analysis applies to the

occurrences of x2, . . . , xn−1 in v, leading to a total cost of
∑

i>j kiµ(xi, xj)lj . This is exactly
k⃗⊤µ̌l⃗ = µ̌(k⃗, l⃗). ◀

Note that we would get the same result if we moved the vector part of u rightwards over the
vector part of v. The choice of left/right orientation is just a convention. On the other hand,
the use of µ̌ rather than µ is significant. As we will see in the next section, using µ would
render the structure useless for our purpose of analyzing contextuality.
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However, we do retrieve µ as the group-theoretic commutator in H(µ).

▶ Proposition 8. Given g = (k, k⃗), h = (l, l⃗) ∈ H(µ), their group theoretic commutator
is given by [g, h] := ghg−1h−1 = (µ̌(k⃗, l⃗) − µ̌(⃗l, k⃗), 0) = (µ(k⃗, l⃗), 0). In terms of G(µ), for
u, v ∈ X∗, [u, v] .= Jk−l, where θ(uv) .= Jkw, θ(vu) .= Jlw.

As Proposition 7 makes clear, commutation groups are very close to the (discrete version
of) the Heisenberg or Heisenberg-Weyl groups [18], and their close relatives the Pauli groups.
The novelty lies mainly in our combinatorial mode of presentation of commutation groups,
which we will make use of in our analysis of contextuality arguments. It should be noted,
though, that the direct equivalent of the usual Heisenberg group construction in our setting
would be to use the full commutator matrix µ.5 As we have mentioned, using µ would yield
a non-isomorphic construction, which would not be useful for analyzing contextuality. This
perhaps suggests that we can think of commutation groups as a directed version of Heisenberg
groups.

3 Contextuality arguments in commutation groups

The commutation group has an evident short exact sequence

0 Zd H(µ) Zn
d 0i π2 (3)

where i(k) = (k, 0). This says that it is a non-abelian group extension of Zn
d by Zd. The image

of Zd lies in the centre of H(µ), so the extension is central. Because of the non-commutativity
of H(µ), it is easy to see that there is no left-splitting of this extension, i.e. a homomorphism
l : H(µ)→ Zd such that l ◦ i = idZd

. One could say that this simple observation is essentially
a form of von Neumann’s much criticised No-Go theorem for hidden variables [15]. The
point of the criticism is that it is not reasonable to ask for a splitting which preserves
non-commuting products.

Following Kochen-Specker [13] and the huge literature on ensuing developments, we want
to consider only assignments to observationally accessible contexts, i.e. those constructed
from commuting products. A general setting for capturing this idea is provided by com-
patible monoids, introduced in [1] with different terminology. A compatible monoid is a
structure (M,⊙, ·, 1), where ⊙ is a reflexive, symmetric relation on M , of “compatibility” or
“comeasurability”, and · : ⊙ →M is a partial binary operation with domain ⊙ ⊆M2, such
that:

x⊙ y ⇒ x · y = y · x,
x⊙ 1 for all x ∈M , and x · 1 = x,
if x⊙ y, x⊙ z, and y ⊙ z, then x⊙ (y · z) and (x · y)⊙ z, and (x · y) · z = x · (y · z).

Homomorphisms of compatible monoids are maps which preserve the compatibility relation,
and the monoid operations when defined.

Any monoid M defines a compatible monoid with the same carrier, with x⊙ y iff xy = yx

in M . We will be interested in the compatible submonoid of M generated by a set S ⊆M .
This is the least set T containing S ∪ {1}, and such that, whenever u, v ∈ T and u⊙ v, then
u · v ∈ T . In particular, we will apply this to G(µ) with respect to the generators X⊔ Zd.
We will write C(µ) for this compatible submonoid of G(µ).

5 There is a notion of polarized Heisenberg group, but this is isomorphic to the usual presentation.

FSCD 2024
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In terms of H(µ), we can identify the generators as follows: k ∈ Zd can be identified with
the scalar (k, 0), while the generators X can be identified with the standard basis E of the
free module Zn

d , xi ↔ ei := [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

]⊤.

We obtain a short exact sequence for C(µ):

0 Zd C(µ) P 0i p (4)

Here p is the restriction of the second projection to C(µ), and P is its image.
A non-contextual value assignment for the commutation group G(µ) is exactly a left

splitting of this short exact sequence: i.e. a homomorphism l : C(µ)→ Zd such that l◦i = idZd
.

If no such left splitting exists, then we say that G(µ) exhibits state-independent contextuality.

3.1 Contextual words
We can distill the essential features of “parity proofs” such as the one given for the Peres-
Mermin square into a notion of contextual word, which provides a witness for state-independent
contextuality. This notion was introduced, somewhat informally, in the concrete context of
Pauli groups over qubits in [12], but can be formulated generally for any commutation group
G(µ). A contextual word for G(µ) is given by a triple (w, β, k) such that:

w ∈ X+.
The number of occurrences of each generator x ∈ X in w is a multiple of d.
β is a bracketing of w, witnessing that it is in C(µ).
w
.= Jk, where k ̸= 0.

Bracketings are defined inductively by

β ∈ BE ::= x | (β1, β2).

We define ∂ : BE → X+ by ∂(x) = x, ∂(β1, β2) = ∂(β1)∂(β2). If ∂(β) = w, then w is the
word bracketed by β. A bracketing β provides a witness for w = ∂(β) ∈ C(µ) if, for every
(β′

1, β
′
2) occurring in β, with u = ∂(β′

1) and v = ∂(β′
2), uv .= vu in G(µ).

▶ Proposition 9. If there is a contextual word for G(µ), then it is state-independently
contextual.

Proof. If (w, β, k) is a contextual word over S, assume for a contradiction that l : C(µ)→ Zd

is a non-contextual value assignment, i.e. a left splitting of (4). The bracketing β witnesses
that w ∈ C(µ). By the homomorphism property, l(w) =

∑
i l(xi), where w = x1 · · ·xn.

Since each x ∈ X occurs with multiplicity kd in w for some k ≥ 0, l(w) = 0 (mod d).
However, we also have w .= Jk, so we must have l(w) = l(Jk) = k ≠ 0, yielding the required
contradiction. ◀

▶ Example 10. Consider the following commutator matrices over Z2

µ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 µ2 =


0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0

 µ3 =


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0


with generators a < b < c < d. Then (wi, βi, 1) is a contextual word for G(µi), with

w1 = abdccabd β1 = ((ab)(dc))((ca)(bd))
w2 = bdccaabd β2 = (b(dc))((ca)((ab)d))
w3 = dcabbadc β3 = (d(ca))(b(((ba)d)c))
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▶ Example 11. We show that the Peres-Mermin square arises in commutation groups.
Firstly, we show that the tensor product construction underlying the extension of the Pauli

group to Paulin has a simple form in terms of group presentations. Given a commutator
matrix µ : X2 → Zd, we define µ2 : (X+ X)2 → Zd by µ2(xi, yi) = µ(x, y), µ2(xi, yj) = 0,
i ̸= j. Thus elements in different copies of X commute with each other.

We now consider the commutator matrix with µ(x, y) = 1 for generators x, y. We can
define the following Peres-Mermin square over G(µ2):

x1 — x2 — x1x2
| | |
y2 — y1 — y1y2
| | |

x1y2 — y1x2 — J1(x1y1)(x2y2)

We can verify that exactly the same algebraic properties hold for this square as in the
concrete example: each row and column pairwise commutes, the product of each row and
the first two columns is 1, the product of the third column is −1 (or more pedantically, J1 in
additive notation).

We can extract a contextual word from this construction: ((x1y2)(y1x2))((x1x2)(y1y2)).
Up to dropping the J1 factor, and interchanging the commuting pair x2y1, this can be read
off from product of the bottom row of the square.

This provides a more succinct contextuality witness than the usual parity proof, which
amounts to taking the product of all the rows and columns.

A similar treatment can be given of the Mermin star [14].

3.2 Comparison with other Heisenberg groups
We can now see why taking the more standard Heisenberg group construction, defined exactly
as for H(µ), but using µ rather than µ̌, would not be suitable for our purposes. Let us
denote the construction using µ rather than µ̌ by H+(µ). By Proposition 8, the commutator
in H(µ) is µ, which means that we can have commuting products gh = hg with non-zero but
equal phase factors, which is clearly essential for contextual words to exist. By contrast, the
commutator in H+(µ) is easily seen to be 2µ, which means in Z2 that all products commute,
while in odd orders, no products commute.

4 No state-independent contextuality in odd characteristics

We shall now show that contextual words can only exist over Zd if d is even. Moreover, we
shall explicitly describe the non-contextual value assignments which exist when d is odd.

In order to prove these results, we will analyze the structure of inversions in bracketed
words.

Notation. In this section, we will deal exclusively with non-empty words over the generators,
w ∈ X+. We will also write formal sums in variables vx,y to stand in for values of the
commutator matrix µ(x, y). We will use the following notation. If S = {λi}i∈I is a family of
inversions, then

∑
S :=

∑
i∈I vxi,yi

, where λi is an inversion between xi and yi, xi > yi.
Given a word s, we write I(s) for the set of inversions in s. Given words s, t, I(s, t) is the

set of inversions between s and t, i.e. the set of all (w1, x, w2, y) such that w1x is a prefix of
s, w2y is a prefix of t, and x > y.

The following is immediate.
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▶ Lemma 12. For all words s, t,∑
I(st) =

∑
I(s) +

∑
I(t) +

∑
I(s, t).

In this notation, the equation forcing the global phase factor for a word s to be k is∑
I(s) = k.

Also, given words s, t, we define the “formal commutator” of s and t to be

Js, tK :=
∑

I(s, t)−
∑

I(t, s).

The equation forcing s and t to commute is
∑

I(st)−
∑

I(ts) = 0. By the previous lemma,
this is equivalently written as Js, tK = 0.

▶ Lemma 13. Let s† be the reverse of a word s. Then
∑

I(s, t) =
∑

I(s†, t†).

Proof. Note that s† defines the same multiset of occurrences of generators as s, so there
will be a bijection between the inversions in I(s, t) and those in I(s†, t†), inducing the same
multiset of variables vx,y. ◀

We now consider bracketings of words. Given a bracketing β, we define the multiset Φ(β)
by

Φ(x) = ∅, Φ(β1, β2) = {|(∂(β1), ∂(β2))|} ⊎ Φ(β1) ⊎ Φ(β2).

Given a word s with bracketing β, we can write Φ(β) as a family {(si, ti)}i∈I of adjacent
subwords of s corresponding to subexpressions of the full bracketing.

▶ Lemma 14. With notation as above, let s† be the reverse of s. Then∑
i∈I

Jsi, tiK =
∑

I(s) −
∑

I(s†). (5)

Proof. By induction on the length of s. If s = x, then the sums on both sides of (5) are
empty, and we have the equation 0 = 0.

In the inductive case, suppose the top-level bracketing of s is s = uv. We can write the
bracketings of u and v as families {(uj , u

′
j)}j∈J , {(vk, v

′
k)}k∈K . Then, applying the induction

hypothesis:∑
i∈I Jsi, tiK = Ju, vK +

∑
jJuj , u

′
jK +

∑
kJvk, v

′
kK

= (
∑

I(u, v)−
∑

I(v, u)) + (
∑

I(u)−
∑

I(u†)) + (
∑

I(v)−
∑

I(v†)).

By Lemma 12,
∑

I(s) =
∑

I(uv) =
∑

I(u, v) +
∑

I(u) +
∑

I(v). Since s† = v†u†, applying
Lemma 12 again yields

∑
I(s†) =

∑
I(v†, u†) +

∑
I(v†) +

∑
I(u†). Applying Lemma (13)

and rearranging terms yields (5). ◀

▶ Lemma 15. Let w be a word in which each generator x occurs nx times, modulo d. Then∑
I(w) +

∑
I(w†) =

∑
x<y

nynxvyx

In particular, when each generator occurs a multiple of d times, we have
∑

I(w) = −
∑

I(w†).
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Proof. In order to count the number of occurrences of the variable vyx, consider each
occurrence of y within w. For the ith occurrence we can write w = uiyvi and for each x such
that x < y, the mi occurrences of x in vi will yield mi inversions in w, while the occurrences
of x in ui will yield ni inversions in w†. Thus, the total multiplicity of vx,y in

∑
I(w) will be∑

i mi, where i ranges over occurrences of y in w. Similarly, the total multiplicity of vx,y in∑
I(w†) will be

∑
i ni. Since for each i, mi + ni = nx we will have the overall multiplicity

nyx =
ny∑
i=1

mi +
ny∑
i=1

ni =
ny∑
i=1

nx = nynx.

When each nx is a multiple of d we therefore have
∑

I(w) +
∑

I(w†) = 0 (mod d). ◀

▶ Theorem 16. If (w, β, k) is a contextual word over Zd, then d is even.

Proof. Since (w, β, k) is contextual, we have Js, tK = 0 for all bracketed subexpressions (s, t)
in β. Hence summing over all such subexpressions yields

∑
iJsi, tiK = 0. By Lemma 14,

this implies that
∑

I(w) −
∑

I(w†) = 0. Applying Lemma 15 yields 2
∑

I(w) = 0. The
contextuality of (w, β, k) forces

∑
I(w) = k, where k ̸= 0. We can only have a non-zero

solution of 2k = 0 (mod d) if d is even. ◀

▶ Theorem 17. If w1 and w2 are words in X+ formed out of commuting products and which
have the same multiset of generators, modulo d, then if d is odd their overall commutation
factors are equal.

Proof. Since w1 and w2 are formed out of commuting products, each of the formal com-
mutators corresponding to the sub-expressions of w1 and w2 is equal to zero, hence∑

I(wi) =
∑

I(w†
i ). From Lemma 15 it follows that

2
∑

I(wi) =
∑
x<y

ni
yn

i
x · vyx

The right hand side of this equation is the same for w1 and w2, since the number ni
x of

occurrences of each generator is equal modulo d in the two words. Since d is odd, the equation
2x = k (mod d) has a unique solution for any k ∈ Zd, and

∑
I(w1) =

∑
I(w2). ◀

▶ Theorem 18. Let µ be a commutator matrix over Zd. If d is odd, there is a non-contextual
value assignment v : C(µ)→ Zd.

Proof. We use the vector representation of C(µ) ⊆ G(µ). Define S := {k⃗ ∈ Zn
d | ∃k. (k, k⃗) ∈

C(µ)}. By Lemma 17, there is a unique φ(k⃗) ∈ Zd such that every word w ∈ X+ which can
be formed by commuting products and evaluates to a normal form θ(w) with corresponding
vector part k⃗ ∈ S has global phase factor φ(k⃗). Thus if w is such a word, φ(k⃗) =

∑
I(w).

By Theorem 16, φ(0) = 0. Given (k, k⃗) ∈ C(µ), we define v : (k, k⃗) 7→ k − φ(k⃗). Clearly this
is left-inverse to the inclusion ι : Zd → C(µ). We must verify the homomorphism condition.
Given a commuting product (k, k⃗) · (l, l⃗) = (k + l+ µ̌(k⃗, l⃗), k⃗ + l⃗) in C(µ), we must show that

(k − φ(k⃗)) + (l − φ(⃗l)) = (k + l + µ̌(k⃗, l⃗))− φ(k⃗ + l⃗),

i.e. that φ(k⃗ + l⃗) = [φ(k⃗) + φ(⃗l) + µ̌(k⃗, l⃗)]. Taking words s, t evaluating to k⃗, l⃗, this is∑
I(st) =

∑
I(s) +

∑
I(t) +

∑
I(s, t), i.e. Lemma 12. ◀
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5 Contextuality in even characteristics

We now show that contextual words exist in abundance in even characteristics. Firstly, we
characterize the circumstances under which non-contextual value assignments do arise.

Given S ⊆ C(µ), we define Z(S) := {a ∈ S | ∀b ∈ S. a⊙ b}. A graph will always mean a
reflexive undirected graph, i.e. a set of vertices with a reflexive, symmetric relation.

A cluster graph is a coproduct (disjoint union) of complete graphs. Equivalently, it is
a graph in which the adjacency relation is transitive, so that the maximal cliques are the
equivalence classes, and hence disjoint, with no adjacencies between them.

We will show that, if (C(µ) \ Z(C(µ)),⊙) is a cluster graph, every empirical model over
C(µ) has global sections, which are exactly non-contextual value assignments.

We briefly review what we need of empirical models; for further details, see [4, 3]. A
maximal clique over the graph (C(µ),⊙) is a (total) commutative sub-monoid of C(µ): closure
under products is implied by maximality. Moreover, it contains Z(C(µ)). Let M be the set
of maximal cliques. Note that the union of this family is C(µ).

A (possibilistic) empirical model over C(µ) assigns to each C ∈ M a non-empty set of
homomorphisms s : C → Zd which split the inclusion Zd ↪→ C. We write {eC}C∈M for this
family of sets of homomorphisms. The family is moreover required to satisfy the following
local consistency property: for all C,C ′ ∈M, eC |C∩C′ = eC′ |C∩C′ , where e.g

eC |C∩C′ := {s|C∩C′ | s ∈ eC}.

We say that such an empirical model is non-contextual (in the sense of not strongly contex-
tual [4]) if there exists a global section: a homomorphism s : C(µ)→ Zd such that s|C ∈ eC

for all C ∈M. Such a global section is necessarily a left splitting, and hence a non-contextual
value assignment for C(µ).

▶ Theorem 19. If (C(µ) \ Z(C(µ)),⊙) is a cluster graph, then every empirical model over
C(µ) is non-contextual.

Proof. Let N := C(µ) \ Z(C(µ)), Z := Z(C(µ)). Each maximal clique of (C(µ),⊙) is of the
form C ⊔ Z, where C is a maximal clique of (N,⊙). Let e be an empirical model, and
consider s ∈ eC⊔Z for C ⊔ Z ∈ M. We can write s = [sC , sZ ] : C ⊔ Z → Zd. By the local
consistency property for e, for any C ′ ̸= C maximal in (N,⊙), there is sC′ : C ′ → Zd such that
s′ = [sC′ , sZ ] : C ′⊔Z → Zd ∈ eC′⊔Z . Morever, as C ′, C ′′ range over maximal cliques of (N,⊙),
since C ′ ∩ C ′′ = ∅, s′ = [sC′ , sZ ] is compatible with s′′ = [sC′′ , sZ ], i.e. s′|Z = sZ = s′′|Z .
Thus we obtain a pairwise compatible family of sections {[sC , sZ ]}C⊔Z∈M.

Since M covers C(µ), this family determines a unique function s : C(µ)→ Zd. We must
check the homomorphism condition. This holds because whenever g⊙h, {g, h} ⊆ C for some
C ∈M, hence s(gh) = sC(gh) = sC(g) + sC(h) = s(g) + s(h). ◀

Note that in the last part of the argument, we were verifying the sheaf property for the cover
M over the presheaf of left splittings on cliques in (C(µ),⊙).

One remaining question is whether empirical models over C(µ) actually exist.6 We shall
discuss unitary representations of commutation groups in the next section. Given a quantum
realization of the associated measurements, we can always obtain an empirical model by
applying any quantum state.

6 The issue is whether we can have a non-empty model satisfying the local consistency conditions.
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5.1 Positive results
We now assume that (C(µ) \ Z(C(µ)),⊙) is not a cluster graph, which means that there are
elements a, b, c such that a⊙ b, a⊙ c, but not b⊙ c. Since a is not in Z(C(µ)), there must
be some d such that not a⊙ d. Allowing for the various possibilities for commutativity of d
with b and c, up to relabelling this gives us the following three compatibility graphs [12]:

a b

c d

a b

c d

a b

c d

(6)

5.1.1 The Z2 case

In the case where µ is a commutator matrix over Z2, we can give a definitive characterisation of
contextuality in C(µ). This follows similar lines to [12], in the general setting of commutation
groups.

▶ Theorem 20. If µ is a commutator matrix over Z2, then the following are equivalent:
1. C(µ) is contextual.
2. There are contextual words over C(µ).
3. The graph (C(µ),⊙) contains one of the graphs in (6) as an induced sub-graph.

Proof. The implication (2) ⇒ (1) is Proposition 9. By contraposition, (1) ⇒ (3) follows
from Theorem 19. Now assume (3). If a, b, c, d are generators, the matrices µi given in
Example 10 correspond to the graphs in (6), and the corresponding contextual words given
in the Example show that (2) holds. Otherwise, these elements arise as commuting products,
each of which can be described by a suitably bracketed word. If any of these words has
global phase factor 1, they are already contextual words. Otherwise, we can substitute them
into the words given in Example 10 to obtain contextual words. ◀

5.1.2 Beyond Z2: padding, splitting and variable changes

We can transfer contextual words from Z2 to Z2k, using the embedding Z2 ↣ Z2k which
sends 1 to k, which can be applied to a commutator matrix over Z2 to produce one over
Z2k. If we take any of the contextual words w from Example 10, we can then perform a
simple padding construction. We append a2k−2b2k−2c2k−2d2k−2 to w, and this produces a
contextual word over Z2k.

Can we construct contextual words over Z2k using matrix values other than 0 and k? By
Theorem 16, the global phase factor for a contextual word over Z2k must be k, but we may
use other values from Z2k in constructing the word. We can use a splitting construction to
achieve this. We illustrate the idea with a simple example over Z4. Given the contextual
word ((ab)(dc))((ca)(bd)) from Example 10, we split the generator a into a1 and a2. We can
use the commutator matrix

µ =


0 0 1 1 1
0 0 3 3 1
3 1 0 2 0
3 1 2 0 0
3 3 0 0 0


and obtain the contextual word [((a1a2)b)(cd)][((a1a2)c)(bd)][a2

1a
2
2b

2c2d2], using also the
padding construction described previously.
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5.1.3 Classification of contextuality for matrices in Darboux normal form
Our overall aim is to give a complete classification of which commutation groups G(µ) admit
contextual words. We shall achieve this for matrices µ in Darboux normal form, i.e. whose
only non-zero entries occur in block 2× 2 matrices on the main diagonal of the form

0 λi

−λi 0

Given a matrix µ over Z2n, which is in Darboux normal form, it is possible to decide
whether it supports contextual words by considering the parity, relative to n, of the non-zero
entries of µ. By relative parity, we mean whether the power with which 2 appears in the
prime factor decomposition of n is lower than the power with which it appears in the prime
factor decomposition of each of the non-zero entries. Thus, if n = n′ × 2y and λ = l × 2x,
where n′ and l′ are both odd integers, we say that λ is even relative to n if x > y and that λ
is odd relative to n if x ≤ y.

Firstly, a preliminary lemma. We use the notation m
...n to mean that m is divisible by n.

▶ Lemma 21. If a word s is formed out of commuting products, and sa and sb denote the

multiplicities with which a and b appear within s, then sasb

... 2k+1.

Proof. We prove this by induction on the length of s. If s is length 1 then either sa or sb, or
both, are zero, and the statement holds trivially. Assume that the statement holds for words
of length less than or equal to L and let s be a word of length L+ 1. Then s = uv for some
u and v of length at most L and let ua, ub, va, vb denote the respective multiplicities of a and
b within u and v. Since u and v commute, we must have

(uavb − ubva)
... 2k+1

By the inductive hypothesis uaub

... 2k+1 and vavb

... 2k+1 and therefore uaubvavb

... 22k+2. If

uavb ̸
... 2k+1 then ubva must be divisible by 2k+1 and this would contradict the commutativity

condition. Hence both uavb and ubva are divisible by 2k+1. This allows us to complete the
inductive proof, as sa = ua + va and sb = ub + vb and so the product sasb expands as a sum
of terms which are each divisible by 2k+1:

sasb = uaub + uavb + ubva + vavb. ◀

▶ Theorem 22. If µ is in Darboux normal form, then there is a contextual word over G(µ)
if and only if there are two non-zero entries above the main diagonal, λi = li × 2xi and
λj = lj × 2xj which are both odd relative to n.

Proof. If we can find two non-zero entries above the main diagonal, λi = li × 2xi and
λj = lj × 2xj which are both odd relative to n and we denote their corresponding variables
by a, b, c, d, then we can form the contextual word

((a . . . a︸ ︷︷ ︸
k

c . . . c︸ ︷︷ ︸
k

)(bd))((a . . . a︸ ︷︷ ︸
k

d)(b c . . . c︸ ︷︷ ︸
k

))(a . . . a︸ ︷︷ ︸
m

)(b . . . b︸ ︷︷ ︸
2n−2

)(c . . . c︸ ︷︷ ︸
m

)(d . . . d︸ ︷︷ ︸
2n−2

)

where k = n′ × 2y−xj , m = n′ × 2y−xi(2xi+1 − 2) and k +m = 2n. It is straightforward to
check that all the brackets commute and that the overall commutation factor is equal to

n′ × 2y−xi × li × 2xi = n× li

which is equal to n modulo 2n, since li is odd.
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On the other hand, if all the non-zero entries of µ are even relative to n then we will not
be able to get any word w with a non-zero commutation factor since, as we have shown in
Section 4, the commutation factor of w must satisfy the equation

2
∑

I(w) = 0

In Z2n the only non-zero solution to this equation is
∑

I(w) = n = n′ × 2y and since
all the commutation variables in the matrix µ have a factor of 2 greater than y, any linear
combination of them will also have a factor of 2 greater than y, and so will not yield a
commutation factor equal to n modulo 2n.

Finally, we can show that if only one non-zero entry is odd relative to n, while all the
others are relatively even, then contextual words cannot exist. For simplicity of notation, we
will show this for 4 generators but the proof, which is essentially a parity argument, works
equally well for any number of generators. Let n = n′ × 2y, as before, and let a and b denote
the two variables whose corresponding entry in the commutation matrix is m × 2y−k for
some odd m and k ≥ 0. By assumption, all other entries are of the form m′ × 2y+1+t for
some odd m′ and t ≥ 0. Then any bracketed subexpression of the form

w = (alablbclcdld)(arabrbcrcdrd)

commutes only if

2y−k ×m(larb − lbra) + 2y+1+t ×m′(lcrd − ldrc) = N × 2y+1 × n′

Since the right hand side is a multiple of 2y+1 and the terms on the left hand side coming
from the relatively even entries are also multiples of 2y+1 and m is odd, it follows that

(larb − lbra)
... 2k+1

By Lemma 21, lbra is divisible by 2k+1 and so the contribution to the overall commutation
factor, which is

2y−k ×mlbra + 2y+1+t ×m′ldrc

will also be a multiple of 2y+1. Recall that the only possible non-zero value for the overall
commutation factor is n modulo 2n which implies∑

I(w) = (2N + 1)n = (2N + 1)n′ × 2y

and therefore a sum of terms which are divisible by 2y+1 cannot yield a non-zero overall
commutation factor, which completes the proof. ◀

5.1.4 Reduction to Darboux normal form
Every commutator matrix can be reduced to one in Darboux normal form. This is standard
over a field, but less obvious over Zd for arbitrary d, so we include a proof.

Note that since µ plays the role of a bilinear form, if we wish to perform a change of basis
preserving this form, we must perform the corresponding row and column operations on the
matrix µ. These operations are encoded by an invertible base change matrix U ; the resulting
matrix UTµU is said to be cogredient to µ.

▶ Lemma 23. Every commutation matrix µ is cogredient to a skew-symmetric matrix µd

whose only non-zero entries occur directly above and below the main diagonal. We call this
the standard form of the commutation matrix.
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Proof. We start by noting that the “swapping” matrix Ui,j which is obtained by swapping
the ith and jth columns of the identity matrix is self-inverse over Z2n and

UT
i,jµUi,j

is the commutation matrix obtained from µ by first swapping the ith and jth rows of µ and
then the ith and jth columns.

Similarly, the “adding” matrix V α
i,j which is obtained by adding to the ith column of the

identity matrix α times the jth column is invertible, its inverse being V −α
i,j . Hence the matrix

V αT
i,j µV

α
i,j

is cogredient with µ and has the corresponding effect of adding α times the jth row/column
of µ to its ith row/column.

Using these two types of cogredient operations it is possible, using Euclid’s algorithm to
change µ into a cogredient matrix µd with the desired property.

The first step is to consider the nth row of the matrix µ:

. . .
...

...
...

...
. . . 0 ∗ ∗ −c
. . . ∗ 0 ∗ −b
. . . ∗ ∗ 0 −a
. . . c b a 0

If it has k non-zero entries, we can use suitable swapping Ui,j matrices to bring those entries to
the right of all zero entries, ordered ascendingly. Then if a = µ(n, n− 1) > µ(n, n− 2) = b we
can use V α

n−1,(n−2) and Un−1,n−2 matrices to perform Euclid’s algorithm on the bottom entries
of these penultimate two columns, resulting in a cogredient matrix µ1 with µ1(n, n− 2) = 0
and µ1(n, n − 1) = gcd(a, b). For example, if the first step of the algorithm gives the
decomposition a = bq1 + r1 then the matrix

µ′ = UT
n−1,n−2V

−q1T
n−1,n−2µV

−q1
n−1,n−2Un−1,n−2

will have µ′(n, n− 2) = r1 and µ′(n, n− 1) = b. If r1 is non-zero, we can continue iterating
the next steps of the algorithm, until eventually we reach µ1.

The next step is to consider c = µ1(n, n − 3) and use suitable Un−3,n−1 and V α
n−1,n−3

matrices to again perform Euclid’s algorithm, resulting in a matrix µ2 for which µ2(n, n−2) =
µ2(n, n− 3) = 0 and µ2(n, n− 1) = gcd(a, b, c). And we proceed to eliminate all the k next
non-zero entries of the last row, thus leaving

µk−1(n, n− 1) = gcd(µ(n, n− 1), µ(n, n− 2), . . . , µ(n, n− k))

as the only non-zero entry on the nth row. And since cogredient operations result in skew-
symmetric matrices, the only non-zero entry on the nth column will also be the one above
the main diagonal.

We can repeat these steps to clear out the t non-zero entries on row n− 1, which are to
the left of the (n− 1, n− 2) position. This results in some matrix µt−1 whose only nonzero
entries on row n− 1 are µt−1(n− 1, n) = µk−1(n− 1, n) and

µt−1(n− 1, n− 2) = gcd(µk−1(n− 1, n− 2), µk−1(n− 1, n− 3), . . . , µk−1(n− 1, n− t)).

We proceed similarly with the remaining rows, eventually resulting in a matrix µd in standard
form. ◀



S. Abramsky, Ş.-I. Cercelescu, and C.-M. Constantin 28:17

▶ Theorem 24. Every commutation matrix µ is cogredient to a matrix µD in Darboux
normal form, whose only non-zero entries occur in block 2× 2 matrices on the main diagonal
of the type

0 λi

−λi 0

Proof. From Lemma 23, we know that µ is cogredient to a matrix µd in standard form. We
describe an algorithm which, given a 4× 4 diagonal block of µd of the type

0 a 0 0
−a 0 b 0
0 −b 0 c

0 0 −c 0

performs cogredient operations on µd to produce a block in Darboux normal form of the type

0 λ1 0 0
−λ1 0 0 0

0 0 0 λ2
0 0 −λ2 0

Assume without loss of generality that the 4 × 4 block is in the top left-hand corner of
µd. If b = 0 the block already has the desired format. If c is equal to zero, we can use
“swapping” U1,3 and suitable “adding” V α

1,3 matrices to perform Euclid’s algorithm on the
non-zero entries in the first and third columns, resulting in a block of the desired format,
with λ1 = gcd(a, b) and λ2 = 0, and the same type of procedure can be used when a = 0.

In the remaining case, when all entries are non-zero, we have to distinguish two scenarios:
first, if aq = b then V qT

3,1 µdV
q

3,1 has the top left-hand block in Darboux normal form with
λ1 = a and λ2 = c.

Otherwise, performing Euclid’s algorithm as above will initially result in a block with
non-zero entries away from the main diagonal:

0 gcd(a, b) 0 y

−gcd(a, b) 0 0 0
0 0 0 x

−y 0 −x 0

We now make a slight modification to the procedure in Lemma 23 in order to bring this block
matrix back to standard form: instead of applying Euclid’s algorithm to reduce the entries
on the last row and column, we use it to reduce the entries on the first row and column. The
resulting matrix will be of the form

0 gcd(a, b, y) 0 0
−gcd(a, b, y) 0 y′ 0

0 −y′ 0 x′

0 0 −x′ 0

At this point we can repeat the steps outlined so far until we eventually bring the block to
Darboux normal form. Since we started with the assumption that a is not a factor of b, the
greatest common divisor of a, b and y must be strictly less than a in the divisibility order, so
eventually the process will terminate. ◀
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Discussion. There is an important caveat to this result. We have defined contextuality
for G(µ) in terms of C(µ), which is defined relative to the set of generators X. When
transforming µ to µ′ in Darboux normal form, we will have G(µ) ∼= H(µ) ∼= H(µ′) ∼= G(µ′),
but this transformation will not preserve the generators. In particular, the new generators
corresponding to the transformed basis for µ′ may correspond to words in the old generators
which cannot be formed from commuting products. This means that a contextual word over
G(µ′) may not correspond to one over G(µ).

6 Unitary representation

Since G(µ) is a finite group, it has unitary representations. Indeed, every linear representation
is equivalent to a unitary one. We wish to have unitary representations which faithfully
preserve the internal Zd-action.

We use the qudit Hilbert space Hd := Cd, with basis vectors |k⟩ labelled by elements
of Zd. The tensor product of n copies of this space, Hn,d, has basis vectors |⃗k⟩ labelled
by k⃗ ∈ Zn

d . We write U(Hn,d) for the unitary group on Hn,d. The centre of this group is
isomorphic to the circle group, U(1) := {z ∈ C | |z| = 1}. For each d ≥ 2, this contains the
cyclic subgroup of the d’th complex roots of unity. We write ω := e

2πi
d for the primitive d’th

root of unity. The map k 7→ ωk is an isomorphism from Zd to the multiplicative group of
d’th complex roots of unity.

Given a commutator matrix µ ∈ so(n,Zd), we shall define a representation ρ : H(µ)→
U(Hn,d): ρ(k, k⃗) |⃗l⟩ = ωk+µ̌(k⃗,⃗l) |⃗l + k⃗⟩.

▶ Proposition 25. For each (k, k⃗) ∈ H(µ), ρ(k, k⃗) is a well-defined unitary operation.
Moreover, ρ is an injective group homomorphism which preserves scalars, i.e. ρ(k, 0) = ωk1.

Proof. The verification that ρ is a homomorphism amounts to showing that

ρ(k, k⃗) ◦ ρ(k′, k⃗′) |⃗l⟩ = ρ(k + k′ + µ̌(k⃗, k⃗′), k⃗ + k⃗′) |⃗l⟩

which reduces to

µ̌(k⃗, k⃗′) + µ̌(k⃗ + k⃗′, l⃗) = µ̌(k⃗′, l⃗) + µ̌(k⃗, k⃗′ + l⃗)

which follows from bilinearity. ◀

Representation in Pauli groups

The generalized Pauli groups Pn,d are the subgroups of U(Hn,d) generated by the X and Z

operations. These operations are defined on Hd by X |k⟩ = |k+ 1⟩, and Z |k⟩ = ωk|k⟩. These
are the Sylvester “shift” and “clock” matrices [20], and can be seen as discrete versions of
position and momentum operators. Note that they satisfy the basic commutation relation
ZX = ωXZ. They are then extended to Hn,d as Xi := I ⊗ · · · ⊗ I︸ ︷︷ ︸

i−1

⊗X ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−i

, and

similarly for Zi, i = 1, . . . , n. Note that the commutator matrix for the generators Xi, Zi

is in Darboux normal form: the only non-zero entries are µ(Zi, Xi) = 1, µ(Xi, Zi) = −1
(mod d).

▶ Proposition 26. The image of H(µ) under ρ is a subgroup of Pn,d.
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Proof. Given an element ei of the standard basis of Zn
d , we have ρ(ei) = Xi

∏n
j=1 Z

µ̌i,j

j ,
which can be verified by a simple computation:

Xi

∏n
j=1 Z

µ̌i,j

j |k1⟩ ⊗ · · · ⊗ |kn⟩ = Xi(ωµ̌i,1k1 |k1⟩ ⊗ · · · ⊗ ωµ̌i,nkn |kn⟩)
= Xi(

∏
j ω

µi,jkj ) |⃗k⟩
= ω

∑
j

µ̌i,jkjXi |⃗k⟩
= ωµ̌(ei ,⃗k) |⃗k + ei⟩
= ρ(ei) |⃗k⟩.

Since H(µ) is generated by the ei and the scalar (1, 0), this yields the result. ◀

This result shows the universality of the Pauli operations for expressing discrete commutation
relations. At the same time, the structural tools made available by the presentations of
commutation groups allow for a fine-grained analysis of the “algebra of contextuality”.

7 Outlook

Non-commutativity is a fundamental mathematical feature of quantum mechanics, distin-
guishing it from classical physics. But in many key cases, we do not simply have the failure
of commutativity, but rather that commutativity holds up to a specified scalar. This is the
phenomenon of commutation relations, which play a central role in quantum physics. There
are many familiar examples.

In this paper, we have given an answer, in the discrete case working over Zd, to the
question: what is a commutation relation in general? This opens up the possibility of
classifying the possible contextual behaviours arising from commutation relations. By virtue
of the existence of unitary representations, these arise within quantum mechanics.

We mention a few topics of current and future work:
Studying the cohomology of commutation groups, and relating this to the cohomological
criteria for contextuality studied e.g. in [5, 3, 16, 1].
Studying commutation groups in relation to state-dependent contextuality and empirical
models [4].
Relating commutation groups to the logical analysis of contextuality in terms of partial
Boolean algebras [13, 2].
Generalizing commutation groups to more general abelian groups of scalars.
A Stone-von Neumann type theorem for commutation groups.
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A The Pauli group on qubits

We recall the definition of the Pauli operators, dichotomic (i.e. two-valued) observables
corresponding to measuring spin in the x, y, and z axes, with eigenvalues ±1

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
These matrices are self-adjoint, have eigenvalues ±1, and together with the identity matrix I
satisfy the following relations:

X2 = Y 2 = Z2 = I

XY = iZ, Y Z = iX, ZX = iY, (7)
Y X = −iZ, ZY = −iX, XZ = −iY.
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