
homotopy.io: A Proof Assistant for
Finitely-Presented Globular n-Categories
Nathan Corbyn #

University of Oxford, Oxford, UK

Lukas Heidemann #

University of Oxford, Oxford, UK

Nick Hu #

University of Oxford, Oxford, UK

Chiara Sarti #

University of Cambridge, Cambridge, UK

Calin Tataru #

University of Cambridge, Cambridge, UK

Jamie Vicary #

University of Cambridge, Cambridge, UK

Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher
categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation
of proof objects via a graphical representation. We describe the user interface and explain how
the tool can be used in practice. We also describe the essential subsystems of the tool, including
collapse, contraction, expansion, typechecking, and layout, as well as key implementation details
including data structure encoding, memoisation, and rendering. These technical innovations have
been essential for achieving good performance in a resource-constrained setting.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Higher category theory, proof assistant, string diagrams

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.30

Related Version Full Version: https://arxiv.org/abs/2402.13179

Supplementary Material Software (Source Code): https://github.com/homotopy-io/homotopy-rs
archived at swh:1:dir:836bb913a5b2d2556f124f1a260a631a1a7f7387

Audiovisual (Video Tutorial): https://homotopy.io/braiding-example [1]

Funding Nathan Corbyn: EPSRC Industrial CASE Studentship
Nick Hu: EPSRC Doctoral Training Partnership Scholarship [grant number 2218955]

Acknowledgements The authors would like to thank Anastasia Courtney, Yulong Huang, and Jasper
Parish for their contributions during their summer internships, Akvilė Valentukonytė and Klaudia
Urbanska for their contributions during their undergraduate projects, and Manuel Araújo, Wilf
Offord, and Hao Xu for extensive testing of the tool and valuable feedback. We are also grateful to
the students of the “Categorical Quantum Mechanics” course at Oxford, and the “Advanced Topics
in Category Theory” course at Cambridge for testing and feedback.

1 Introduction

Higher category theory [26, 34] is a branch of mathematics that now has a wide range
of applications, in areas as diverse as logic [18, 41], quantum field theory [3, 36], and
geometry [27]. For working practically with higher categories, string diagrams are an

© Nathan Corbyn, Lukas Heidemann, Nick Hu, Chiara Sarti, Calin Tataru, and Jamie Vicary;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 30; pp. 30:1–30:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathan.corbyn@cs.ox.ac.uk
https://orcid.org/0000-0003-0513-8618
mailto:lukas.heidemann@cs.ox.ac.uk
https://orcid.org/0000-0002-7137-2368
mailto:nick.hu@cs.ox.ac.uk
https://orcid.org/0000-0002-4783-9757
mailto:chiara.sarti@cl.cam.ac.uk
https://orcid.org/0000-0002-4935-9466
mailto:calin.tataru@cl.cam.ac.uk
https://orcid.org/0009-0009-5243-8913
mailto:jamie.vicary@cl.cam.ac.uk
https://orcid.org/0000-0002-0998-1701
https://doi.org/10.4230/LIPIcs.FSCD.2024.30
https://arxiv.org/abs/2402.13179
https://github.com/homotopy-io/homotopy-rs
https://archive.softwareheritage.org/swh:1:dir:836bb913a5b2d2556f124f1a260a631a1a7f7387;origin=https://github.com/homotopy-io/homotopy-rs;visit=swh:1:snp:8b7539522ddc8fcaab336d1b196b28f6e6acf018;anchor=swh:1:rev:cefca78b8a33ee4b4f9c5d1763dcf074ff09f89e
https://homotopy.io/braiding-example
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

(a) 2D projection. (b) 3D projection. (c) 3D print.

Figure 1 The associator 3-diagram shown in both 2D and 3D (link to online workspace).

increasingly popular technique, introduced for monoidal categories by Joyal and Street [23],
and since extended into higher dimensions by a range of authors [5, 7, 11, 13]. In a
higher-categorical setting, string diagrams take the form of higher-dimensional manifold-like
structures, which can efficiently encode complex compositional information. However, these
structures can be hard to visualise, manipulate, or represent in research articles, limiting
their effectiveness.

Our tool aims to bridge this gap, allowing string diagrams to become a practical technique
for working higher category theorists. It runs in the browser, giving a low barrier-to-entry,
and allows direct construction and manipulation of graphical representations of n-dimensional
categorical structures, which we call n-diagrams, by direct point-and-click manipulation with
the mouse or touch interface.

In this article, we give an overview of the user interface, and describe the following major
subsystems, which give the tool its range of functionality.

Collapse acts on a combinatorial n-diagram, constructing a quotient geometry by identi-
fying points which can be considered topologically equivalent.
Contraction allows a region of an n-diagram to be geometrically contracted to a point,
yielding a homotopy that is itself encoded by an (n+ 1)-diagram; the collapse algorithm
gives its base case. This is the major mechanism for constructing all nontrivial diagrams
in the theory.
Expansion provides a limited converse to contraction, defined on a diagram with at least
two vertices at the same height, with the effect that one vertex is moved to an adjacent
height. The resulting diagram will always contract to yield the original diagram.
Typechecking analyses an instance of our n-diagram data structure, and decides whether
it represents a valid composite n-morphism in a free higher category.
Layout generates a set of linear constraints representing the necessary coordinate rela-
tionships between all the parts of a diagram (such as the vertices, wires, and regions),
which can be passed to a linear solver, and used by the rendering pipeline.

We also examine two significant aspects of the implementation.
Memoisation is necessary since the n-diagrams stored by the tool have an intricate
recursive structure, which in principle encodes all sub-k-diagrams for k < n. If this data
was stored separately in memory, the resource requirements of the proof assistant would
grow exponentially with diagram dimension. Memoisation ensures each logically-distinct
k-diagram is stored only once in memory.
Rendering is a complex pipeline that produces suitable output on the screen (see Figure 1);
we use SVG for output in dimension 0, 1, and 2, and WebGL for output in dimension 3
and 4. A subdivision algorithm is necessary to produce visually appealing output. We
also render to STL for 3D printing, and to TikZ for convenient diagram export.

https://beta.homotopy.io/p/2402.00001

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:3

x f x f x

x f x β x

x f x f x f x

x α x f x

x f x f x

Figure 2 A string diagram and the corresponding zigzag encoding.

The version of the tool presented in this article is a pre-release version, available here:

https://beta.homotopy.io

It is written in the Rust programming language, and compiled to WebAssembly to run in the
web browser. The implementation is available under a free open-source licence on GitHub.

1.1 Mathematical Context
Our proof assistant implements the theory of higher categories known as associative n-cate-
gories, due to Dorn, Douglas and Vicary [12, 33]. This model is globular, in the sense that
for n ≥ 2 the boundary data of any n-cell satisfies the globularity condition: the source of
the source equals the source of the target, and the target of the source equals the target
of the target. It is also strictly associative and unital, while retaining weak interchangers;
in this sense it is a semistrict theory. It is conjectured that every weak higher category is
equivalent to an associative n-category, although the proof of this remains out of reach.

The proof assistant allows users to build composite cells in the graphical language for
freely generated semistrict globular n-categories which are free on a signature, a list of
variables of specified types. For example, to define a monad-like structure, starting from the
empty signature, we might first add an object x, followed by a 1-cell f : x → x, followed in
turn by a multiplication 2-cell µ : f ◦ f → f , which we interpret as the monad multiplication.

The tool allows generators of non-zero dimension to be optionally tagged as invertible; this
allows the user to work with directed higher categories (if no generators are tagged), higher
groupoids (if all generators are tagged), or more general structures. The resulting invertible
structure is coherent, meaning that it automatically satisfies the necessary higher-dimensional
constraints, such as the adjunction equations.

In the implementation, n-cells are represented combinatorially as n-diagrams, simple in-
ductive data structures which allow us to represent the mathematical zigzag construction [33].
We depict this in Figure 2, which illustrates the encoding of a 2-diagram (drawn on the
left) in terms of an iterated sequence of cospans (drawn on the right). Here, a zigzag is a
sequence of cospans taking value in some category of labels. We distinguish the singular
heights drawn in green, where vertices might appear, from the regular heights drawn in red
which are adjacent. Since zigzags and their morphisms themselves form a category, this
construction can be iterated, and in this way higher-dimensional diagrams can be represented.
This inductive nature of the construction is an essential requirement for our proof assistant:
it allows us to describe n-cells as algebraic data types, as we will detail in Section 4, and to
structure our key algorithms of Section 5 as recursive procedures.

FSCD 2024

https://beta.homotopy.io
https://github.com/homotopy-io/homotopy-rs

30:4 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Table 1 Comparison of existing tools for string diagrams.

tool generality interactive invertibility visualisation

homotopy.io n-categories ✓ ✓ up to 4D
Cartographer [37] symmetric monoidal categories ✓ ✗ 2D
DisCoPy [10] monoidal categories ✗ ✗ 2D
Globular [6] 4-categories ✓ partial 2D
rewalt [16] n-categories ✗ partial 2D
sd-visualiser [20] traced cartesian closed categories ✓ ✗ 2D
Quantomatic [24] compact closed categories ✓ ✗ 2D
wiggle.py [9] monoidal 2-categories ✗ ✗ up to 3D

1.2 Related Work
There are many tools for higher categories that use string diagrams as a visualisation method,
and we summarise several of them in Table 1. Each takes a different categorical perspective,
and is focused on a particular formalism. The most closely related tool is Globular, the
direct precursor to homotopy.io, which was limited to 4-categories and lacked full support for
coherent inverses. One other tool, rewalt, also allows manipulations at the level of n-categories
for arbitrary n. Both homotopy.io and rewalt implement semistrict n-categories, but they have
different notions of semistrictness: homotopy.io has strict associators and unitors, but weak
interchanges; whereas rewalt has strict interchangers and associators, with weak identities.
This difference of approach means that the corresponding notions of string diagram are quite
different in each tool. The homotopy.io tool is the first string diagram proof assistant that can
handle coherent invertible generators in all dimensions, an aspect it shares with traditional
type-theoretic approaches to higher category theory, such as homotopy type theory [41],
interpreted via proof assistants such as Agda or Coq.

This paper is the first detailed description of homotopy.io, with previous works focused
on aspects of the theoretical foundations [33, 17, 39, 35, 40, 21]. The theory of associative
n-categories, which is the basis of homotopy.io, was first developed by Dorn, Douglas, and
Vicary and described in Dorn’s PhD thesis [12].

2 Using the Tool

The tool consists of two main components: the signature and the workspace. The signature
stores a list of generators for an n-category, and the workspace stores an n-diagram in the
free n-category generated by this signature. The tool implements a number of actions to
modify the signature and/or workspace, and every state of the tool is determined by the list
of actions that led to that state, starting from the empty signature and workspace. This
makes it easy to implement an undo/redo system, and to reproduce a state by replaying the
list of actions which is useful for debugging and testing.

All actions can be triggered by clicking on UI elements such as the buttons on the sidebar,
interacting with the workspace diagram, or with keyboard shortcuts. We denote the keyboard
shortcut associated to an action as A , which represents pressing the “A” key. Unlike a
traditional proof assistant, there is no text-based aspect to the user-interface, except for
metadata and for providing generator names. A screenshot of the user interface is shown in
Figure 3. In this section, we describe its major components.

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:5

Figure 3 The interface of the proof assistant.

Adding generators. There are two primary ways to add new generators to the signature:
We can add new 0-dimensional generators by clicking “Add 0-cell” (A) on the sidebar.
We can add new (n+ 1)-dimensional generators by constructing a source n-diagram in
the workspace and clicking “Source” (S), and then constructing a compatible target
n-diagram in the workspace and clicking “Target” (T). The order of these two actions
is not important, and the first diagram will be stashed and displayed in the bottom-left
corner of the workspace until the second one is constructed.

Manipulating the workspace. Clicking on any generator in the signature will bring that
diagram into the workspace. We can raise the dimension of the diagram with the “Identity”
(I) action. We can construct composite diagrams by attaching another diagram to a
boundary by clicking on the edge of the diagram. We can also use generators in the signature
to perform rewrites by clicking inside the workspace diagram. Finally, we can perform
homotopies, such as contractions and expansions which will be described in Section 5, by
clicking and dragging.

Theorems. If the workspace is displaying an n-diagram D for n > 1, the “Theorem” (H)
action becomes available. This action creates a new n-dimensional generator T with the
same type as D, and a new invertible (n+ 1)-dimensional generator P : T → D. This could
be done by hand, and in this sense this action does not strictly add functionality, rather it
adds a useful shortcut.

The idea is that T is an algebraic generator which axiomatises the existence of D, therefore
allowing users to use it as a rewrite, and the generator P witness the fact that T is true (i.e.
is inhabited), by rewriting it to D. This feature is useful for formalising complex proofs that
depend on other lemmas, by saving each lemma as a theorem and then combining them to
prove the main theorem. It can also be used to give definitions – i.e. we can think of T as a
new generator which is defined to equal D, and P can then be used to expand the definition.
This is similar to using the abstract keyword in Agda, to hide the “implementation detail”
of a proof.

FSCD 2024

30:6 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

View control. Visualising n-diagrams for n > 2 presents a fundamental challenge, since the
geometry can be difficult for us to visualise. A number of features are therefore provided for
manipulating the visualisation: projecting out certain dimensions, navigating to a subdiagram,
and changing the rendering dimension (with a choice between 0 and 4 dimensions).

These manipulations are effected via the view control component in the top-right corner
of the workspace. This consists of a list of n+ 1 buttons, where n is the dimension of the
workspace diagram, corresponding to the following regular expression:

⋆ (S | T | Ri | Si)k Vd Pn−k−d (d ≤ 4)

Here S means source, T means target, Ri means the i-th regular height, and Si means the
i-th singular height. This means that we are viewing a k-dimensional subdiagram of the
workspace diagram, which is an (n− k)-diagram obtained by recursively going into heights
as specified by the first k symbols. This subdiagram is then projected to d dimensions; that
is, we are viewing d dimensions, and projecting the remaining n− k− d dimensions. Clicking
the star will reset the view to the original n-diagram (i.e. reset k to 0), and clicking on any
of the k view buttons will reset the view to some prefix. Clicking on any V button will
decrement d by 1, to a minimum of 0 (displayed as a single point) and clicking on any P
button will increment d by 1, to a maximum of 4 (rendered as a movie of 3D geometries).

Users can descend into a height by clicking the chevrons appearing on the right-hand side
of the diagram, or descend into the source height by pressing . Similarly, while inside a
height, users can ascend to the parent height by pressing , and navigate to adjacent k-th
height components by pressing / .

To illustrate how the projection works, consider Figure 1 which shows the 2D and 3D
projections of a 3-dimensional diagram side-by-side. Note that the 2D projection can be
understood as looking at the 3D projection from below, and projecting onto a 2D plane.

Generator options. When hovering over a generator, a Ó icon appears on the left which
reveals a menu of options for that generator. This allows the user to rename the generator
(with support for LATEX) or change its colour or shape. Most importantly, it allows the user
to mark a generator as invertible.

Image export. The sidebar has an “Image Export” button which reveals a panel for
exporting the workspace diagram to different formats, such as SVG, TikZ, Manim, and STL.

3 Example: Eckmann-Hilton

Here we will illustrate how the proof assistant may be used in practice to formalise results in
higher category theory. Our running example will be the Eckmann-Hilton argument, the key
result in the correspondence between braided monoidal categories and 3-categories which
are doubly-degenerate, meaning they have a unique 0-cell and no non-identity 1-cells. This
will be essential in Appendix A for our formalisation of Hopf algebras in braided monoidal
categories. This section is accompanied by a video tutorial [1]. The resulting workspace can
be loaded into the tool at https://beta.homotopy.io/p/2402.00002.

To formalise the Eckmann-Hilton argument, we load the tool and begin constructing our
signature, which is given by a unique 0-cell x and two 2-cells α, β which have source and
target the identity on x. Since x is a 0-cell, we may immediately add this to the signature by
pressing the “Add 0-Cell” button, and renaming the cell to “x” – the use of “$”s is optional,
but indicates to the tool that the generator’s name should be interpreted as LATEX. To add

https://beta.homotopy.io/p/2402.00002

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:7

α :

target

source

β :

target

source

Figure 4 The scalars α and β in our signature for the Eckmann-Hilton argument.

drag

drag

Figure 5 The Eckmann-Hilton argument.

the two scalars α and β to the signature, we need to provide the tool with their sources and
targets, which in this case is 1x. Selecting the generator x we have added to the signature,
we make it the current working diagram. We then click on the “Identity” button to get 1x

from x, and take it as the source of a new 2-cell α by clicking on “Source”. Repeating the
construction of 1x, we can provide the tool with the target of α. Since the diagrams have
compatible boundaries, the globularity condition is satisfied and the tool allows to click on
“Target” to create a 2-cell, which we rename to “α”. By repeating this procedure for
β, we get the signature depicted in Figure 4.

With our signature in place, we can begin proving facts about the compositional behaviour
of our scalars. The essence of the Eckmann-Hilton argument amounts to the commutativity
and coincidence of vertical and horizontal composites of scalars, as depicted in Figure 5.

Let us detail how this proof can be built. We begin by constructing the right-most
diagram in Figure 5 by selecting α from the signature, clicking on the highlighted region
marked as target in Figure 4 and selecting β to attach. This builds the vertical composite of
α and β and gives us the starting point or source for our proof. Since we wish to collect the
steps of the proof into a 3-cell, we take the identity on the current diagram. This does not
appear to change the current diagram displayed but adds an extra dimension in the view
control.

We then drag β towards α along the right to get the middle diagram, triggering a
contraction procedure, which we will detail in Section 5.2. Next, we drag β further downwards,
triggering the dual procedure of expansion, detailed in Section 5.3. Note that these procedures
only succeed if they are sound, i.e. the resulting diagram has a valid type as checked by the
procedure of Section 5.4.

We now inspect the proof from the top-dimension by clicking on the ⋆ button on the
right. From this view, our proof amounts to the construction of a braid as depicted in the
first image of Figure 6. We can see this more clearly if we contract the middle part of the
diagram by vertically dragging the bottom half-braid towards the top, obtaining the second
image of Figure 6. We may also perform the proof entirely from this view, by horizontally
dragging the legs of the braid past each other. A 3D visualisation of this proof can now be
observed by pressing the P button in the view control.

FSCD 2024

30:8 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Figure 6 The Eckmann-Hilton proof (left) and its contraction (right).

4 Core Data Structures

In this section we outline the fundamental algebraic data types which are used to encode
n-diagrams in the implementation. These are diagrams, rewrites, cones and cospans; their
definitions are sketched in Figure 7. Note that the Rust type system, along with our choice
of encoding, has the following limitation: there exist valid terms of the diagram type which
do not correspond to admissible n-cells of the free higher category generated by the current
signature. For example, any Diagram0 which consists of a generator with its dimension field
set to a non-zero integer does not correspond to any 0-cell of any higher category. The
typechecking procedure of Section 5.2 is used to determine validity of these terms.

1 type frame = int
2 type generator = { dimension: int; id: int }
3

4 type rewrite =
5 | Rewrite0Identity
6 | Rewrite0 of { source: generator; target: generator; label: frame }
7 | RewriteN of { cones: cone list }
8

9 and cone = {
10 index: int;
11 source: cospan list;
12 target: cospan;
13 slices: rewrite list;
14 }
15

16 and cospan = { forward: rewrite; backward: rewrite }
17

18 type diagram =
19 | Diagram0 of generator
20 | DiagramN of { source: diagram; cospans: cospan list }

Figure 7 The core data structures of homotopy.io.

4.1 Diagrams
The core data structure of homotopy.io is a recursive encoding for diagrams that is derived
from the zigzag construction. A 0-diagram has trivial shape (a single point), and type is
essentially the labelling which is an assignment of name to colour, which we call a generator.
An (n+ 1)-diagram is determined by an alternating sequence of singular and regular heights,
which are n-diagrams, together with information on how the heights fit together:

r0 s1 r1 s1 r1 s2 r2.
f0 b0 f1 b1 f2 b2

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:9

A

B

C

D

Figure 8 A zigzag with four cones. A and B are identity cones that do not change the diagram,
omitted in the sparse representation.

Each singular height si is equipped with rewrites fi : ri → si and bi : ri+1 → si that encode
the difference between si and its neighbouring regular heights ri and ri+1. We call the pair
(fi, bi) a cospan, and describe the height of a diagram as the number of cospans (equally,
singular heights) it contains. There is always one more regular height than singular heights.
Instead of storing all the heights of a diagram, we only keep around the first regular height
r0 and reconstruct the other heights when needed by applying the rewrites backwards and
forwards.

4.2 Rewrites
Rewrites between diagrams are also encoded as a recursive data structure. A rewrite of
0-diagrams (0-rewrite) is either the identity rewrite or a rewrite between the underlying gen-
erators; in the latter case, it is also equipped with a frame which represents the directionality
of the rewrite in some space associated to the ambient diagram. A (n+ 1)-rewrite x → y

modifies the sequence of cospans in x by removing subsequences and replacing them with
individual cospans. Each such modification is called a cone (see Figure 8). The following
diagram, which encodes the bottom half of Figure 81, is an example of a rewrite with a single
cone that replaces the cospans (f1, b1) and (f2, b2) with the cospan (f ′, b′):

r0 s0 r1 s′
1 r3

r0 s0 r1 s1 r2 s2 r3

f0 b0 f ′
b′

f0 b0 f1

ℓ1

b1 f2

ℓ2

b2

A cone in a rewrite of (n+ 1)-diagrams also contains rewrites between the n-dimensional
singular heights. In the example above these are the rewrites ℓ1 : s1 → s′

1 and ℓ2 : s2 → s′
1.

A rewrite does not store information for the parts of the diagrams that do not change. Since
in practice most adjacent heights only differ in small parts, this sparse encoding leads to
significant space efficiency.

The core data structures admit a series of auxiliary algorithms:
1. Given an n-diagram x we can apply a rewrite x R−→ y forwards to obtain y. Similarly,

given an n-diagram y and a rewrite x R−→ y we can apply R backwards to y.

1 This can be seen by overlaying the diagram along the bottom of Figure 8. The identity map s0 99K s0
corresponds to cone A, and the right component consisting of s1, r2, s2, s

′
1 and maps between them

corresponds to cone C.

FSCD 2024

30:10 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

2. We can compute the heights of an (n+ 1)-diagram at any singular or regular height. In
particular, we can obtain the source and target of a diagram.

3. When x
R−→ y and y

R′

−→ z are rewrites, we can compute the composite rewrite x R′◦R−−−→ z

while preserving sparsity.
4. For two n-diagrams s and t whose sources and targets agree, we can create an (n+ 1)-

dimensional diagram which represents an (n+ 1)-morphism between s and t.
5. Given an n-diagram x and k ≤ n we can compute the generators that would be visible in

the projection of x to k dimensions.
6. For an n-diagram x and k ≤ n we can produce a graph that is a dense encoding of the

projection of x to k dimensions. The simplicial complex obtained as the flag complex
from this graph has the geometry of the rendered diagram. The layout algorithm then
assigns coordinates to the vertices (see Section 5.5).

7. Given a pair of diagrams x, y we can search for copies of y that are embedded into x and
intersect a line through the projection. This allows us to find opportunities to rewrite a
diagram, which itself can be realised as a higher cell.

5 Key Algorithms

Many of our key algorithms described in this section first compute the shape of the result,
usually by recursion over diagram dimension, and then complete the type information. These
data are encoded by directed graphs, for which we can utilise graph algorithms to implement
our operations.

5.1 Collapse
A string diagram has geometric properties (e.g. the length of a wire) which are not intended
to be meaningful, as its meaning is captured entirely by topological properties (e.g. connec-
tivity of a wire). Topology yields a natural compatibility with composition in the string
diagram calculus: if two wires are placed in sequence, then the resulting string diagram is
merely a longer wire, and therefore it looks topologically the same and represents the same
mathematical content. However, both the tool and the theory are based on combinatorial
encodings of string diagrams, and moreover there is a distinct encoding for the diagram of
two wires in sequence versus one wire.

We describe the collapse of a diagram as a combinatorial representation of these topological
invariants, essentially as a directed graph, which gives a normal form for the fully-exploded
graph obtained from an n-diagram in a frame-preserving way. In more detail, given such
a graph, every node has a neighbourhood which determines a set of outgoing frames and
incoming frames (framing data); now, consider the largest equivalence relation on nodes
determined by x ∼ y when x is adjacent to y by an identity 0-rewrite, and x and y admit
equal framing data; collapse is the quotient graph induced by ∼. Explicitly, we compute
this by treating the graph as a simplicial complex and checking each 1-simplex (edge) which
is an identity 0-rewrite to see if it is collapsible, whereby identifying both 0-simplex faces
(endpoints) respects ∼, by checking all 2-simplices (triangles) for which that 1-simplex is a
face. A simple example of this is given in Figure 9.

Collapse is used to compare when two diagrams differ as encodings but have the same
topological data: many different diagrams may have the same collapse, for instance degener-
ating a diagram along any part2 does not change its collapse, but two diagrams with distinct

2 This corresponds to composition with a weak unit in the n-categorical model; combinatorially, this
represents the insertion of redundant data.

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:11

a b

b

1

id
1

a b1

Figure 9 The edge b id−→ b is collapsible, so the graph can be simplified in a frame-preserving
fashion.

c
⇝

Figure 10 A contraction of two beads on two singular heights.

collapses are necessarily distinct. These degeneracies arise naturally in the course of the
other operations described in this section, but can be often eliminated without rendering the
diagram malformed. Collapse is a crucial component of typechecking, analogously to how
the standard technique of deciding equality in a term calculus often amounts to computing
normal forms for each term. A detailed account is given in [21].

5.2 Contraction
Contraction is the process of shortening a diagram along a homotopy equivalence which
reduces the height of a diagram locally, producing a contraction rewrite D c−→ C, which may
or may not exist depending on D. An example of this is given by Figure 10, which combines
both singular heights on the left into one on the right. The result of the contraction C always
has a singular height of one. Informally, as a homotopy, the contraction rewrite c is the
unique canonical way to shorten the diagram without making any arbitrary choices, and this
is mathematically captured by its description as the computation of a categorical colimit.

Contraction works recursively on diagram dimension, with the 0-dimensional base case
obtained via collapse, as in Section 5.1, and then ensuring that the maximal elements of the
poset induced by the reachability relation on the resulting directed graph are compatible [21].
The higher-dimensional recursive case has been described theoretically by Reutter and
Vicary [33]; it works by first determining a “∆-colimit”, which determines the shape that
the result necessarily possesses, and then if that exists it then attempts to find a compatible
labelling of each stratum to complete the typing information by a divide-and-conquer strategy.

In the base case, compatibility is the uniqueness of the labelling of the maximal element
of the poset, combined with the condition that the framing data on each maximal element is
identical. In the recursive case, for an (n+ 1)-rewrite D c−→ C, the algorithm is as follows:
1. D is associated to a directed graph G whose nodes represent regular and singular heights

of D, weighted by n-diagrams, and whose edges form cospans between regular heights
and are weighted by n-rewrites;

2. this directed graph is then exploded, obtaining a larger directed graph E whose nodes
are weighted by (n− 1)-diagrams, and whose edges are weighted by (n− 1)-rewrites, by
replacing each node of G with a directed graph, as in the previous step, and each edge by
a collection of connecting (n− 1)-rewrites;

FSCD 2024

30:12 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

e
⇝

Figure 11 An anticontraction move.

3. E induces a subgraph ∆E which represents only the shape data of D consisting of only
the singular-singular nodes; on ∆E , we obtain its condensation graph with respect to
strongly-connected components3; if the edge relation of the condensation graph does not
correspond to a linear order on nodes, then fail, otherwise, this determines:

a. subproblems determined by the subgraph of E induced by reachability for the nodes
of a particular strongly-connected component of ∆E ;

b. a linear ordering of subproblems, which will determine how their solutions should be
combined.

4. each subproblem represents an independent fragment of D which spans its entire height,
and is solved recursively (step 2); its solution is a singular-singular height of C, which
necessitates the linear ordering of subproblems; the rest of C and c are constructed from
the remaining data;

5. the result is then typechecked, and if it fails, then the algorithm fails.

There are also auxiliary algorithms which propagate a contraction within some height of
a larger diagram. We refer the interested reader to [33].

5.3 Expansion

Expansion is the dual of contraction, first described by Reutter and Vicary [33], and later
refined by Tataru and Vicary [40]. It takes a diagram D and produces an expanded diagram
E, such that E in fact contracts to give D via some rewrite E c−→ D. In this sense, expansion
is a partial converse to contraction.

It is defined inductively, similarly to contraction. In the base case, it performs an
interchanger move that separates two singular levels (the reverse of Figure 10). In the
recursive case, expansion attempts to propagate an expansion of a sub-diagram to the
diagram itself, yielding a diagram which will contract to the original. Since contraction is
computed by a colimit process, this requires an algorithm that can reverse the ordinary
colimit process, a procedure that we call anticontraction [40]. We illustrate this with the
recursive expansion example in Figure 11, where a vertex is moved out of a singular height.
Note that the expanded diagram on the right indeed contracts to give the original diagram
on the left.

3 This graph has a node for each strongly-connected component, and each edge represents reachability for
strongly-connected components.

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:13

Figure 12 The cancellation 2-cell f−1 ◦ f → 1x generated by an invertible 1-cell f : x → y.

5.4 Typechecking
Typechecking is the process of checking the validity of a diagram with respect to a given
signature. Note that despite the name, in our context, “typechecking” does not refer to a
type-theoretic procedure determined by inference rules. The underlying theory gives a clear
perspective on this process [12, 17]: break the diagram into atomic “pieces”, and ensure that
each piece collapses to the canonical neighbourhood of the respective generator. This tells us
that the neighbourhood of each point in the diagram is fully described by the signature.

Collapse plays a crucial role here, because it ensures that higher-dimensional coherences
of invertible generators also typecheck. For example, if f : x → y is an invertible 1-cell, we
can generate a 2-cell f−1 ◦ f → 1x known as the counit (see Figure 12); this is well-typed
because it collapses to the canonical neighbourhood of f .

5.5 Layout
The layout algorithm is used to assign coordinates to every point in an n-diagram, and is a
crucial component of the rendering pipeline described in Section 6.2, enabling rendering in
2D, 3D and 4D. We use a categorical construction based on factorisation systems and colimits
to extract a set of linear constraints from the total order data of the diagram [39]. These
constraints encode the necessary conditions for a layout to be well-defined. For example,
in 2D, this would include the information that one wire is to the left of another wire; or,
in 3D, that one surface is in front of another. We further impose aesthetic constraints, e.g.
that wires and surfaces should be centred. Finally, these constraints are passed to the linear
solver HiGHS [22] to find a layout that satisfies all constraints. An example layout for a
2-diagram is given in Figure 13: each node receives a cartesian coordinate (x, y) from the
solver, which is used to determine where it should be rendered on-screen.

6 Implementation

Here, we describe further implementation details: the memoisation techniques used in our
core data structures and aspects of the rendering pipeline. Whilst independent of the tool’s
mathematical foundations, we have found many of the details here essential, particularly in
enabling the tool to operate in a resource-constrained environment – i.e. the browser.

6.1 Memoisation
Our data structures for Diagram and Rewrite are immutable. Operations that would modify
an object instead create a new one with the modifications applied. This allows us to apply a
technique known as hash consing [14]: whenever a new Diagram or Rewrite is created, we

FSCD 2024

30:14 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

(0, 0) (1, 0) (3
2 , 0) (2, 0) (5

2 , 0) (3, 0) (4, 0)

(0, 1) (3
2 , 1) (9

4 , 1) (3, 1) (4, 1)

(0, 3
2) (3

2 ,
3
2) (9

4 ,
3
2) (3, 3

2) (4, 3
2)

(0, 2) (9
4 , 2) (4, 2)

(0, 3) (9
4 , 3) (4, 3)

Figure 13 The layout of a 2-diagram.

check in a hash table if a logically equal instance is already present and reuse it if possible.
Hash consing enforces the invariant that any two instances that are logically equal must
become physically equal – i.e. have the same representation and location in memory. To
test for equality we may therefore perform a simple pointer comparison instead of traversing
the entire deeply nested structure; similarly, we cache the hash value of every Diagram and
Rewrite to avoid deep traversals. We incur a performance cost due to the hash table lookup
involved whenever a new instance is created. However, we observe significant improvements
in performance and memory usage overall. In practice, we have found that even under
the sparse encoding of Section 4, directly representing diagrams remains highly redundant:
applying hash consing makes memory usage almost negligible, even for large diagrams.

The algorithms from Section 5 are largely recursive over the structure of a diagram
and perform many repeated recursive calls on logically equal substructures. We therefore
memoise the results of recursive calls. Since our deduplicated representation allows for
very fast equality checks and caches hash values, lookups in the memoisation table are
comparatively cheap.

Our data structures are reference counted, so we know when the last reference to an
instance goes out of scope and it is safe to remove it from the hash table. The recursive
algorithms operating on diagrams temporarily materialise the structure that is implicit in
the sparse encoding, leading to the same Diagram or Rewrite being created and destroyed
many times during the execution of the algorithm. An eager approach to maintaining the
deduplication hash table therefore leads to unnecessary churn. We therefore delay the removal
of dead objects from the hash table to a batched garbage collection step that walks the table
and removes instances that have no remaining references.

6.2 Rendering Pipeline
One of the most important parts of the implementation is the rendering pipeline, which
allows for visualising n-diagrams in up to four dimensions. It consists of three components.
First, we have the layout algorithm described in Section 5.5 that assigns real coordinates
to every point of an n-diagram. Second, there is the mesh generation, which takes an
n-diagram and computes a cubical mesh – i.e. a subdivision of the n-diagram into abstract
k-dimensional cubes for k ≤ n. Together, these data are called a geometry which is a
collection of k-dimensional cuboids in the Euclidean space Rn. Finally, we have a subdivision

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:15

procedure which takes a geometry and makes it smoother by recursively subdividing each
cube into smaller cubes with the positions of the new vertices calculated by interpolating the
positions of the old vertices.

The subdivided geometry can then be sent to a number of rendering engines. Amongst
these, the most important are the SVG renderer, rendering 2D diagrams for all the user’s
primary interaction, and the WebGL renderer, rendering 3D and 4D diagrams (with the
4D diagrams appearing as smooth animations of 3D diagrams). We also support a TikZ
renderer, which can be used to generate high quality string diagrams for use in papers such
as in this article.

In the 4-dimensional case, we obtain the animation by intersecting the geometry with
an axis-aligned hyper-plane. This computation is easily implemented via a compute shader.
However, to maximise homotopy.io’s compatibility with contemporary browsers, our shading
pipeline is implemented in WebGL2, precluding the use of compute shaders.

This situation presents a challenge, as computing intersection geometries offline for large
diagrams is prohibitively expensive in terms of memory consumption. Thus, we are forced
perform the slicing in real-time, using a subtle rendering trick:
1. each cube is broken down into a disjoint collection of covering simplices (Figure 14, left);
2. each simplex is further decomposed into sub-simplices, each with one face whose vertices

have equal w-components4,
3. of the six edges of each simplex, the three with non-zero w-components are converted to

three GL vertices, and the simplex a corresponding polygon (Figure 14, right);
4. each GL vertex is supplied with the start and end coordinates of the corresponding edge;
5. the vertex shader interpolates between these points given a global w-coordinate, passed

in as a uniform, dropping the vertex whenever w is outside the bounds of the edge.
The effect is that the animation is broken down into a collection of “birth” and “death”
events for small polygons, which can be rendered straightforwardly, as if it were a 3D mesh.
Animated wires in 4-dimensions are produced through a similar process, but the “pipe”-like
appearance is produced via a deferred post-processing effect, to minimise the cost of storing
geometry for the cylinders.

We additionally compute normals for intersection geometries in real-time via a barycentric
interpolation across a volume-weighted average taken at each vertex. This is directly analogous
to the calculation of normals in traditional 3D pipelines. However, much care is required
when it comes to calculating and preserving the orientations of the elements of the mesh.

7 Future work

The tool is under active development, both mathematically as an end itself and as a piece of
research software as a means to facilitate the development of higher-categorical mathematics.
We sketch some ideas for future improvements to the tool:
Functor boxes It would be both interesting and practical to consider what a functor would

mean in this context; graphically, it should allow for “boxing” pieces of diagrams, allowing
those components to be treated as atomic; this would present the user with more flexibility
in representing proofs.

4 w-component refers to the fourth coordinate of the homogeneous coordinate system commonly used in
computer graphics, and in our tool via WebGL.

FSCD 2024

30:16 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

Figure 14 The decomposition of a 3-cube into six 3-simplices (left) and a 3-simplex into w-aligned
sub-simplices (right).

Dualisability support The next logical step after the introduction of coherent inverses would
be the introduction of coherent duals, which would allow for a mathematical exploration
of important problems in higher algebra, such as the tangle hypothesis [4], and knot
theory.

Interopability with type theory Some arguments of logical flavour are more easily expressed
type-theoretically, e.g. in homotopy type theory or CaTT [15], while more graphical
arguments are better suited to homotopy.io; ideally, we could make these tools talk to
each other to support bimodal reasoning.

Linearity Support for higher linear categories would make the tool amenable to directly
performing calculations in topological quantum field theory.

Gallery An arXiv-like gallery can be presented to showcase published proofs, better enabling
proof discovery.

Cubical version More general notions of string diagrams for cubical n-categories have been
considered [32] and it would be an interesting question to extend homotopy.io to cubical
shapes.

References
1 Constructing a braiding in homotopy.io. URL: https://homotopy.io/braiding-example.
2 Nicolás Andruskiewitsch and Walter Ferrer Santos. The Beginnings of the Theory of

Hopf Algebras. Acta Applicandae Mathematicae, 108(1):3–17, October 2009. doi:10.1007/
s10440-008-9393-1.

3 Michael F Atiyah. Topological quantum field theory. Publications Mathématiques de l’IHÉS,
68:175–186, 1988.

4 John C Baez and James Dolan. Higher-dimensional algebra and topological quantum field
theory. Journal of mathematical physics, 36(11):6073–6105, 1995.

5 John C Baez and Martin Neuchl. Higher dimensional algebra: I. braided monoidal 2-categories.
Advances in Mathematics, 121(2):196–244, 1996.

6 Krzysztof Bar, Aleks Kissinger, and Jamie Vicary. Globular: an online proof assistant
for higher-dimensional rewriting. Logical Methods in Computer Science, 14, 2018. doi:
10.23638/LMCS-14(1:8)2018.

7 John W Barrett, Catherine Meusburger, and Gregor Schaumann. Gray categories with duals
and their diagrams. arXiv preprint, 2012. arXiv:1211.0529.

8 Yuri Bespalov and Bernhard Drabant. Hopf (bi-)modules and crossed modules in braided
monoidal categories. Journal of Pure and Applied Algebra, 123(1-3):105–129, 1998.

9 Simon Burton. String diagrams for higher mathematics with wiggle.py, 2023. Talk at SYCO
11. URL: https://arrowtheory.com/wiggle_demo.pdf.

https://homotopy.io/braiding-example
https://doi.org/10.1007/s10440-008-9393-1
https://doi.org/10.1007/s10440-008-9393-1
https://doi.org/10.23638/LMCS-14(1:8)2018
https://doi.org/10.23638/LMCS-14(1:8)2018
https://arxiv.org/abs/1211.0529
https://arrowtheory.com/wiggle_demo.pdf

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:17

10 Giovanni de Felice, Alexis Toumi, and Bob Coecke. Discopy: Monoidal categories in python.
arXiv preprint, 2020. arXiv:2005.02975.

11 Antonin Delpeuch. A complete language for faceted dataflow programs. arXiv preprint, 2019.
arXiv:1906.05937.

12 Christoph Dorn. Associative n-categories. arXiv preprint, 2018. arXiv:1812.10586.
13 Christoph Dorn and Christopher L Douglas. Manifold diagrams and tame tangles. arXiv

preprint arXiv:2208.13758, 2022.
14 Jean-Christophe Filliâtre and Sylvain Conchon. Type-safe modular hash-consing. In Proceedings

of the 2006 Workshop on ML, pages 12–19, 2006. doi:10.1145/1159876.1159880.
15 Eric Finster and Samuel Mimram. A type-theoretical definition of weak ω-categories. In

2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12.
IEEE, 2017. doi:10.1109/LICS.2017.8005124.

16 Amar Hadzihasanovic and Diana Kessler. Data structures for topologically sound higher-
dimensional diagram rewriting. arXiv preprint, 2022. arXiv:2209.09509.

17 Lukas Heidemann, David Reutter, and Jamie Vicary. Zigzag normalisation for associative
n-categories. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 1–13, 2022. doi:10.1145/3531130.3533352.

18 Martin Hofmann and Thomas Streicher. The groupoid interpretation of type theory. Twenty-
five years of constructive type theory (Venice, 1995), 36:83–111, 1998.

19 Heinz Hopf. Uber Die Topologie der Gruppen-Mannigfaltigkeiten und Ihre Verallgemeinerungen.
Annals of Mathematics, 42(1):22–52, 1941. Publisher: Annals of Mathematics. doi:10.2307/
1968985.

20 Nick Hu, Alex Rice, and Calin Tataru. sd-visualiser, 2024. URL: https://github.com/
sd-visualiser/sd-visualiser.

21 Nick Hu, Calin Tataru, and Jamie Vicary. Coherent invertibility in associative n-categories.
In preparation, 2024.

22 Qi Huangfu and JA Julian Hall. Parallelizing the dual revised simplex method. Mathematical
Programming Computation, 10(1):119–142, 2018. doi:10.1007/s12532-017-0130-5.

23 André Joyal and Ross Street. The geometry of tensor calculus, i. Advances in mathematics,
88(1):55–112, 1991.

24 Aleks Kissinger and Vladimir Zamdzhiev. Quantomatic: A proof assistant for diagrammatic
reasoning. In Automated Deduction-CADE-25: 25th International Conference on Automated
Deduction, Berlin, Germany, August 1-7, 2015, Proceedings 25, pages 326–336. Springer, 2015.
doi:10.1007/978-3-319-21401-6_22.

25 Richard Gustavus Larson and Moss Eisenberg Sweedler. An Associative Orthogonal Bilinear
Form for Hopf Algebras. American Journal of Mathematics, 91(1):75, January 1969. doi:
10.2307/2373270.

26 Tom Leinster. Higher operads, higher categories. Number 298 in London Mathematical Society
Lecture Note Series. Cambridge University Press, 2004.

27 Jacob Lurie. Higher topos theory. Princeton University Press, 2009.
28 V. Lyubashenko. Modular transformations for tensor categories. Journal of Pure and Applied

Algebra, 98(3):279–327, February 1995. doi:10.1016/0022-4049(94)00045-K.
29 S. Majid. Algebras and Hopf Algebras in Braided Categories, September 1995. arXiv:q-

alg/9509023. arXiv:q-alg/9509023.
30 Shahn Majid. Braided groups and algebraic quantum field theories. letters in mathematical

physics, 22:167–175, 1991.
31 John W. Milnor and John C. Moore. On the Structure of Hopf Algebras. The Annals of

Mathematics, 81(2):211, March 1965. doi:10.2307/1970615.
32 David Jaz Myers. String diagrams for double categories and equipments. arXiv preprint, 2016.

arXiv:1612.02762.

FSCD 2024

https://arxiv.org/abs/2005.02975
https://arxiv.org/abs/1906.05937
https://arxiv.org/abs/1812.10586
https://doi.org/10.1145/1159876.1159880
https://doi.org/10.1109/LICS.2017.8005124
https://arxiv.org/abs/2209.09509
https://doi.org/10.1145/3531130.3533352
https://doi.org/10.2307/1968985
https://doi.org/10.2307/1968985
https://github.com/sd-visualiser/sd-visualiser
https://github.com/sd-visualiser/sd-visualiser
https://doi.org/10.1007/s12532-017-0130-5
https://doi.org/10.1007/978-3-319-21401-6_22
https://doi.org/10.2307/2373270
https://doi.org/10.2307/2373270
https://doi.org/10.1016/0022-4049(94)00045-K
https://arxiv.org/abs/q-alg/9509023
https://doi.org/10.2307/1970615
https://arxiv.org/abs/1612.02762

30:18 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

33 David Reutter and Jamie Vicary. High-level methods for homotopy construction in associative
n-categories. In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785895.

34 Emily Riehl and Dominic Verity. Elements of ∞-Category Theory, volume 194. Cambridge
University Press, 2022.

35 Chiara Sarti and Jamie Vicary. Posetal diagrams for logically-structured semistrict higher
categories. arXiv preprint, 2023. arXiv:2305.11637.

36 Christopher John Schommer-Pries. The classification of two-dimensional extended topological
field theories. University of California, Berkeley, 2009.

37 Pawel Sobocinski, Paul W Wilson, and Fabio Zanasi. Cartographer: A tool for string
diagrammatic reasoning (tool paper). In 8th Conference on Algebra and Coalgebra in Computer
Science (CALCO 2019). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

38 Moss E. Sweedler. Hopf algebras. Mathematics lecture note series. Benjamin, New York, NY,
1969.

39 Calin Tataru and Jamie Vicary. A layout algorithm for higher-dimensional string diagrams.
arXiv preprint, 2023. arXiv:2305.06938.

40 Calin Tataru and Jamie Vicary. The theory and applications of anticolimits. arXiv preprint,
2024. arXiv:2401.17076.

41 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. https://homotopytypetheory.org/book, Institute for Advanced Study, 2013.

42 Shouchuan Zhang. Braided hopf algebras. arXiv preprint, 2005. arXiv:math/0511251.

A Case Study: Hopf Algebras and Hopf Modules

In this appendix, we will detail an extended case study to highlight how homotopy.io may be
practically employed to formalise mathematical results of substantial character. The basis
we will build on for this case study will be the discussion in Section 3, showing that the
Eckmann-Hilton argument could be used to formalise braids in the tool. This will allow us
to define Hopf algebras and Hopf modules in braided monoidal categories, and build towards
a proof of the fundamental theorem of Hopf modules, asserting the freeness of Hopf modules
when certain idempotents split. Since this formalisation will involve rich algebraic gadgets,
long proofs and universal properties, we will build it up gradually. The final formalisation,
consisting of the full proofs, is available at https://beta.homotopy.io/p/2402.00006 so that
the reader can inspect the proofs in detail and visualise them in 3D and 4D.

Hopf algebras originated in work by Hopf [19] in topology, developed on and popularised
by Milnor and Moore [31] (see [2] for more detail). They have served to generalise results from
group theory to objects of study in topology, knot theory, algebraic geometry, combinatorics
and quantum theory [38]. Our discussion here is informed by the original proof of the
fundamental theorem of Hopf modules for Hopf algebras over principal ideal domains is given
in [25], its generalisation to braided monoidal categories in [28] and the alternative proof
using Karoubi completions given in [8]. We also use the diagrammatic calculus for Hopf
modules introduced by Majid in [30], which has been used to give a string diagrammatic
translation of this result in [42], though the reader should be warned that the proof contains
flaws.

We start by first defining a bialgebra H in a braided monoidal category. Recall from
Section 3 that in order to obtain the braiding, we will start by adding a single 0-cell x to
our signature, and then add our 2-cell H by specifying 1x as source and target. Hence, H is
an object in our braided monoidal category. Moreover, we need to add four 3-cells: a unit
η : 1 → H, a multiplication µ : H ⊗ H → H, a counit ε : H → 1, and a comultiplication
δ : H → H ⊗H, which are depicted in Figure 15.

https://doi.org/10.1109/LICS.2019.8785895
https://arxiv.org/abs/2305.11637
https://arxiv.org/abs/2305.06938
https://arxiv.org/abs/2401.17076
https://homotopytypetheory.org/book
https://arxiv.org/abs/math/0511251
https://beta.homotopy.io/p/2402.00006

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:19

For H to be an algebra, η and µ must satisfy associativity and unitality laws, which are
witnessed by the 4-cells depicted in Figure 16. We add these to the signature and mark them
as invertible. For H to be a coalgebra, it will have to satisfy dual laws of coassociativity and
counitality. Finally, for H to be a bialgebra, the algebra and coalgebra structure have to
interact: units must propagate through comultiplications, counits through multiplication,
counit and units must be one-sided inverses, and multiplication and comultiplication have to
interact via the braiding. These interaction laws are specified as in Figure 17.

Thus, H is now a bialgebra. In order for it to be a Hopf algebra, we must additionally
equip it with an antipode map σ : H → H. This map needs to satisfy the two cancellation
laws given in Figure 18, which make it an inverse to the identity map on H under the
convolution product. These two laws are enough to establish the following lemmas on the
interactions between the antipode and the bialgebra structure.

▶ Lemma 1. For a Hopf algebra H in a braided monoidal category, we have σ ◦ η = η.

▶ Lemma 2 ([29, Lemma 2.3]). For a Hopf algebra H in a braided monoidal category, we
have (σ ⊗ σ) ◦ γH,H ◦ δ = δ ◦ σ, where γH,H : H ⊗H → H ⊗H is the braiding.

Proof. The essential steps of the graphical proof are given in Figure 25. We start by
constructing the left-hand side of the equation, as it involves a braid and thus is more
complex than the right-hand side. This gradient of complexity helps us to use the contraction
procedure effectively.

The first step of the proof is to introduce units at the top of the diagram, and a counit
at the bottom. We then braid the right-most unit past the antipode on the left, multiply
the units and use them with the counit to introduce an antipode on the left. Above this
antipode, we then use the multiplication/comultiplication axiom. Here we note that for proof
to go through, the orientation of this braid, the braid in the starting diagram and the braid
in the multiplication/comultiplication interaction axioms must match.

A sequence of (co)associativity and braid naturality moves follows, until we can isolate
the right-most antipode into a bubble to eliminate it into a unit/counit pair, which we use
to remove a pair of (co)multiplications. We then move to use the (co)associativity laws to
isolate the right-most antipode into a bubble, and proceed to simplify the remaining diagram
down to our target diagram by cancelling the (co)units. ◀

At this point, our signature contains our Hopf algebra H and two results about its
properties, namely Lemma 1 and Lemma 2. Here we must note that the axioms for a Hopf
algebra are self-dual, hence whenever we establish a result its dual statement, obtained by
swapping unit and counit, multiplication and comultiplication and vice versa, will also hold.
For instance, the dual of Lemma 1 would show that ε ◦ σ = ε.

We will now add another object M with the same boundary as H, which is to be a (left)
H-Hopf module. This means M is equipped with two maps, a (left) action α : H ⊗M → M

and a (left) coaction ϕ : M → H ⊗M , which are compatible with the structure of H. Thus,
we add invertible cells as in Figure 20 to impose interaction between the multiplication µ and
the action α, between the unit η and α, their duals for δ, ε and ϕ, and finally the interaction
between the action/coaction pair.

Figure 15 The 3-cells η, µ, ε, and δ (left to right) in the bialgebra signature.

FSCD 2024

30:20 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

assoc : →

l-unit : →

r-unit : →

Figure 16 The associativity and unitality laws for the algebra (H, η, µ).

We now have an H-Hopf module M which we have manually added to the signature. The
structure of the Hopf algebra H gives us another way to obtain H-Hopf modules: given any
object B in our braided monoidal category, we may equip H ⊗B with the structure of an
H-Hopf module by taking the action to be µ⊗ 1B : H ⊗H ⊗B → H ⊗B and the coaction
to be δ ⊗ 1B : H ⊗B → H ⊗H ⊗B. We call Hopf modules of this form free.

With the action and coaction of M and the antipode of H, we may define the endomor-
phism ν := α ◦ (σ ⊗ 1M) ◦ ϕ : M → M depicted in Figure 21. It turns out that this map is
idempotent.

▶ Lemma 3 ([8, Prop. 3.2.1]). The map ν : M → M is idempotent – i.e. ν ◦ ν = ν.

Proof. We first use Lemma 2 to establish that ϕ◦ν = (η⊗1M)◦ν. This is given in Figure 22,
where the key step is to use the action/coaction interaction axiom in order to apply Lemma 3,
and then simplify down the diagram. With this at hand, idempotency follows from Lemma 1
and routine simplifications. ◀

With Lemma 3 at hand, we assume now that we have a splitting for ν – i.e. an object
MH and maps ι : MH → M , υ : M → MH such that υ ◦ ι = 1MH and ι ◦ υ = ν. It turns
out that this splitting enjoys an additional universal property.

▶ Lemma 4 ([8, Prop. 3.2.1]). The map ι : MH → M is the equaliser of ϕ and η ⊗ 1M .

Proof. We add an object P and a map χ : P → M such that ϕ ◦ χ = η ⊗ χ to the signature.
We then show that χ = ν ◦χ by applying Lemma 1. But this means χ = ι ◦ (υ ◦χ) and since
ι is monic this factorisation must be unique. ◀

Thus, MH enjoys a universal property which trivialises the coaction, we call it object of
coinvariants of M . Note that by dualising Lemma 4 and its dependencies, we may also prove

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:21

mul-comul-int : →

mul-counit-int : →

comul-unit-int : →

unit-counit-int : →

Figure 17 The bialgebra interaction laws for (H, η, µ, ε, δ).

l-antipode-elim : →

r-antipode-elim : →

Figure 18 The antipode cancellation laws for σ : H → H.

FSCD 2024

30:22 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

⇝ ⇝ ⇝ ⇝

Figure 19 The proof of Lemma 1.

that υ is the coequaliser of α and ε⊗ 1M , and thus MH is also the object of invariants of M .
Now the fundamental theorem of Hopf modules then asserts that if idempotents split in a
braided monoidal category, up to isomorphism, every Hopf module is free.

▶ Theorem 5 (Fundamental Theorem of Hopf Modules [25, Prop. 1],[8, Lemma 3.3.3]). Let M
be a left H-Hopf module in a braided monoidal category, and assume the map ν : M → M

splits through MH . There is an isomorphism of left H-Hopf modules H ⊗MH ∼= M .

Proof. We use the data of the splitting ν = ι ◦ υ to construct two comparison maps
ξ := α ◦ (1H ⊗ ι) and ψ := (1H ⊗ υ) ◦ ϕ between H ⊗MH and M , which will show induce
the isomorphism of Hopf modules. The string diagrams corresponding to ξ and ψ are given
in Figure 23.

We claim ξ respects the Hopf module structure. Compatibility between ξ and the actions
α and µ⊗ 1MH follows immediately from the multiplication/action interaction law. As for
the coactions, we follow Figure 24 in using the action/coaction interaction law, followed by
the equaliser property given by Lemma 4. This establishes the claim.

Finally, we prove that ξ and ψ are mutual inverses. The proof of ξ ◦ ψ = 1M is simpler,
consisting mainly in the cancellation of the antipode, and is given in Figure 26. The proof of
ψ ◦ ξ = 1H⊗MH is more involved, making use of ν being idempotent (Lemma 3) as well as ι
being an equaliser (Lemma 4). This is given in Figure 27. ◀

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:23

mul-act-int : →

unit-act-int : →

act-coact-int : →

Figure 20 The H-Hopf module laws for M , with the duals to the first two omitted.

Figure 21 The idempotent endomorphism ν : M → M .

FSCD 2024

30:24 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

Figure 22 The proof of ϕ ◦ ν = (η ⊗ 1M) ◦ ν in Lemma 3.

(a) The map ξ : H ⊗MH → M . (b) The map ψ : M → H ⊗MH .

Figure 23 The string diagrams for the mutually inverse ξ and ψ.

⇝ ⇝ ⇝

Figure 24 The map ξ respects the coactions ϕ and δ ⊗ 1MH .

N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:25

⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝

Figure 25 The proof of Lemma 2.

FSCD 2024

30:26 homotopy.io: A Proof Assistant for Finitely-Presented Globular n-Categories

⇝ ⇝ ⇝ ⇝

Figure 26 The proof of ξ ◦ ψ = 1M in Theorem 5.

⇝ ⇝ ⇝

⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

Figure 27 The proof of ψ ◦ ξ = 1H⊗MH in Theorem 5.

	1 Introduction
	1.1 Mathematical Context
	1.2 Related Work

	2 Using the Tool
	3 Example: Eckmann-Hilton
	4 Core Data Structures
	4.1 Diagrams
	4.2 Rewrites

	5 Key Algorithms
	5.1 Collapse
	5.2 Contraction
	5.3 Expansion
	5.4 Typechecking
	5.5 Layout

	6 Implementation
	6.1 Memoisation
	6.2 Rendering Pipeline

	7 Future work
	A Case Study: Hopf Algebras and Hopf Modules

