Termination of Generalized Term Rewriting
Systems

Salvador Lucas =24
DSIC & VRAIN, Universitat Politécnica de Valéncia, Spain, Spain

—— Abstract

We investigate termination of Generalized Term Rewriting Systems (GTRSs), which extend Condi-
tional Term Rewriting Systems by considering replacement restrictions on selected arguments of
function symbols, as in Context-Sensitive Rewriting, and conditional rewriting rules whose condi-
tional part may include not only a mix of the usual (reachability, joinability,...) conditions, but
also atoms defined by a set of definite Horn clauses. GTRSs can be used to prove confluence and
termination of Generalized Rewrite Theories and Maude programs. We have characterized confluence
of terminating GTRSs as the joinability of a finite set of conditional pairs. Since termination of
GTRSs is underexplored to date, this paper introduces a Dependency Pair Framework which is
well-suited to automatically (dis)prove termination of GTRSs.

2012 ACM Subject Classification Theory of computation — Automated reasoning; Theory of
computation — Logic and verification; Theory of computation — Equational logic and rewriting

Keywords and phrases Program Analysis, Reduction-Based Systems, Termination
Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.32

Funding Supported by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”
(PID2021-1228300B-C42) and by the grant CIPROM/2022/6 funded by Generalitat Valenciana.

Acknowledgements I thank the reviewers for their useful comments leading to several improvements

in the paper. I also thank Rail Gutiérrez for his comments.

1 Introduction

Generalized Term Rewriting Systems (GTRS [21]) extend Conditional Term Rewriting
Systems (CTRSs, see, e.g., [29, Chapter 7] and the references therein) by (i) restricting
reductions on specific arguments of function symbols by means of a replacement map p [17]
and by also (ii) including atoms in the conditional part of rules which are defined by (iii) a
set of definite Horn clauses. GTRSs and CTRSs are compared in [21, Section 7.3].

» Example 1. The following GTRS R to divide natural numbers in Peano’s notation (adap-
ted from [32, Example 9]), consists of clauses (1)-(5) and rules (6)-(10).

rRy & "y (1) z—0—>z (6)
s(z) >0 (2) 0—y—0 (7)
s(z) >s(y) <« x>y (3) s(z) —s(y) »x—y (8)
0<x (4) div(z,y) — pair(0,z) < y>=x (9)
s(x) <s(y) <« z<y (5)
div(z,y) — pair(s(q),r) < y <uz,div(z —y,y) =~ pair(q,r) (10)

A call div(m, n) would return pair(q,r) with ¢ and r the quotient and remainder.

Rewriting steps s —x t with GTRSs R are defined by deduction of goals s — ¢ (where — is
a predicate symbol) with respect to the first-order theory R of R, i.e., s =g t iff R s — ¢
holds. Accordingly, main computational properties such as confluence and termination are

© Salvador Lucas;
37 licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 32; pp. 32:1-32:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:slucas@dsic.upv.es
http://slucas.webs.upv.es
https://orcid.org/0000-0001-9923-2108
https://doi.org/10.4230/LIPIcs.FSCD.2024.32
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2

Termination of Generalized Term Rewriting Systems

defined by applying the usual abstract notions to —x. For instance, a GTRS R is terminating
if = is terminating, i.e., there is no infinite rewrite sequence t; —x to =g ---. Confluence
of terminating GTRSs R is characterized as the joinability of a number of conditional pairs
(s,t) < c obtained from the rules in R [21]. In this paper we investigate how to prove
termination of GTRSs. As explained in [24], the “termination behavior” (of CTRSs) can be
investigated as having a horizontal dimension (H-termination, or just termination in the usual
sense), which pays attention to sequences of rewriting steps only, and a vertical dimension
(V-termination) which pays attention to the existence of infinite proof trees, eventually built
to prove a rewriting goal s — t in a proof system as in natural deduction [30]. When both H-
and V-termination are achieved, the CTRS is said to be operationally terminating [22].
Thus, termination is a weaker property, easier to achieve. For instance, R in Example 1
is not operationally terminating: the attempt to rewrite div(0,0) using rule (10) leads to
build an infinite tree due to the (recurrent) need to prove that div(0,0) = pair(q,r) (obtained
from the second condition of the rule after simplifying div(0 — 0,0) = pair(q,r)) is satisfied
by further rewriting on div(0,0). However, R is terminating (see Example 43).

The paper is organized as follows: after some preliminaries in Section 2, Section 3 recalls
the notion of a GTRS. Section 4 investigates the structure of infinite rewrite sequences
with GTRSs. Nowadays, proofs of termination of reduction-based systems are based on
the notion of dependency pair (DP [2]) and dependency pair framework [8, 9] for Term
Rewriting Systems (TRSs [3]). Section 5 introduces appropriate notions of dependency pairs
of a GTRS R = (F,II, u, H, R), which are viewed as a new set P of Horn clauses which are
added to H to obtain a new GTRS DPy¢(R) which characterizes termination of R. Section
6 introduces a framework for (dis)proving termination of GTRSs which is amenable for
automation through appropriate adaptations of the usual notions of termination problem and
processor introduced in the DP Framework for TRSs [8]. Section 7 introduces five processors
to be used in our framework and illustrates their use by means of examples. Section 8
discusses some related work. Section 9 concludes.

2 Preliminaries

In the following, we often write iff instead of if and only if. We assume some familiarity with
the basic notions of term rewriting [3, 29, 33] and first-order logic [7, 27]. We just summarize
the main notions and notations we use.

Given a binary relation RC A x A on a set A, we often write a R b instead of (a,b) € R.
The transitive closure of R is denoted by R, and its reflexive and transitive closure by
R*. An element a € A is irreducible (or an R-normal form), if there exists no b such that
a R b. We say that R is terminating if there is no infinite sequence a; R a3 R az---. In
this paper, A denotes a countable set of variables and F denotes a signature, i.e., a set of
symbols {f,g, ...}, each with a fixed arity given by a mapping ar : F — N. The set of terms
built from F and X is T(F,X). The set of variables occurring in ¢ is Var(t). Terms are
viewed as labeled trees in the usual way. Positions p are represented by chains of positive
natural numbers used to address subterms t|, of ¢. The root position of a term is denoted
as A; the root symbol as root(t). The set of positions of a term t is Pos(t). A term t is a
strict subterm of s (written s> t) iff ¢ = s|, for some p € Pos(s) — {A}. We write s > ¢ if
s=tor s>t

Given a signature F, a replacement map is a mapping p from symbols in F to sets of
positive numbers satisfying p(f) C {1,...,ar(f)} for all f € F [17]. The set of replacement
maps for F is Mz. We use uv(f) ={1,...,ar(f)} and p, (f) = 0 for all f € F. The set of u-

S. Lucas

replacing (or active) positions of t is Pos*(t) = {A}, if t € X, and Pos”(t) = {A}U{i.p|i €
w(f),p € Pos”(t;)}, if t = f(t1,...,tx). The set of non-u-replacing (or frozen) positions of ¢

is Pos”(t) = Pos(t) — Pos”(t). Accordingly, subterms u = t|, of a term ¢ at an active (resp.

frozen) position p € Pos(t) (vesp. p € Pos"(t)) of t are called active (resp. frozen). Positions
of active non-variable subterms of ¢ are denoted as Posz(t). Given a term ¢, the set of

variables occurring at active positions in ¢ is Var#(t) = {x € Var(t) | 3Ip € Pos"(t),z =t|,}.
A term t is a strict, active subterm of s (written s>, t) iff t = s|, for some p € Pos"(s) —{A}.

We write s>, tif s=tor s>, t.

Consider a signature F of function symbols and a signature I of predicate symbols. Atoms
A € Atoms(F,II, X) and first-order formulas F' € Forms(F,II, X') on such signatures, with
variables in X, are built in the usual way. A (definite) Horn clause (with label «) is written
a: A< Ay, .. Ay, for atoms A, Ay, ..., Ay; if n = 0, then « is written A rather than
A <. A first-order theory (FO-theory for short) Th is a set of sentences (formulas whose
variables are all quantified). An F,II-structure A (or just structure if no confusion arises)
consists of a non-empty set dom(A), called domain and often denoted A if no confusion
arises, together with an interpretation of symbols f € F and P € II as mappings f* and
relations P4 on A, respectively. Then, the usual interpretation of first-order formulas with
respect to A is considered [27, page 60]. An F,II-model for a theory Th is just a structure A
that makes them all true, written A = Th. A formula F is a logical consequence of a theory
Th (written Th = F) iff every model A of Th is also a model of F'. Also, Th F F' means that
F is deducible from Th by using a correct and complete deduction procedure. In that case, -
and = coincide.

An f-condition v is an atom [13]. Sequences F = (v;)"_; = (y1,...,7n) of f-conditions are
called f-sequences. We often drop “f-” when no confusion arises. Empty sequences are written
(). Given an FO-theory Th, a condition ~y is Th-feasible (or just feasible if no confusion
arises) if Th F o(y) holds for some substitution o; otherwise, it is infeasible. Note that
(in)feasibility is, in general, undecidable. A sequence F is Th-feasible (or just feasible) iff
there is a substitution o such that, for all v € F, Th F o() holds.

A CTRS is a pair R = (F, R) where F is a signature and R is a set of rules £ — r < ¢,
with ¢ a sequence s; ~ t1, -, s, &~ t, for some n > 0 and terms ¢,r,sq,...,t, such that
¢ ¢ X. As usual, £ and r are called the left- and right-hand sides of the rule (lhs and rhs,
respectively), and c is the conditional part of the rule. Labeled rules are written v : £ — r < ¢,
where « is a label. In the following, given R, we often write @ € R, instead of « € R, to say
that « is a rule of R.

3 Generalized Term Rewriting Systems

A Generalized Term Rewriting System (GTRS) is a tuple R = (F,II, u, H, R) where F is
a signature of function symbols, I1 is a signature of predicate symbols, including at least
— and —*, p € Mz (ur is assumed if p is not explicitly given, as in Example 1), H is a
(possibly empty) set of clauses A < ¢, where root(A) ¢ {—,—*}, and R is a set of rewrite
rules £ — r < ¢ such that £ ¢ X. In both cases, ¢ is a sequence of atoms. Note that rules in
R are Horn clauses. We often give them a label « as follows: a : ¢ — r <= ¢. The rules in R
permit the usual distinction of function symbols f € F as defined (if root(£) = f for some
{ — r < c € R) or constructor symbols (otherwise). The set of defined (resp. constructor)
symbols of R is D or just D if no confusion arises (resp. Cg or C). The FO-theory of R is

R ={®Rf),(Co)} U{(Pr)si| feF ieculf)}U{HC)a|aeHUR}

32:3

FSCD 2024

32:4

Termination of Generalized Term Rewriting Systems

Table 1 Generic sentences of the first-order theory of rewriting.

Label Sentence
(Rf) (Vz) z =" z
(Co) Vz,y,2z) x 2 yANy =" z=>2 =" 2
(Pr) i (le,...7wk7yi) mi—>y¢éf(a?17...,xi,,..,xk)—>f(ac1,...7yi,.,.,xk)
(HC)A¢A1 ,,,,, Apn (le,...7CL‘p) AN NA, = A
where z1,...,z, are the variables occurring in Ay,..., A, and A

where (see Table 1), (Rf) expresses reflezivity of many-step rewriting; (Co) expresses compat-
ibility of one-step and many-step rewriting; for each k-ary function symbol f and i € u(f),
(Pr),; enables the propagation of rewriting steps in the i-th immediate active subterm ¢t|; of
a term t with root symbol f; finally, for each Horn clause « € H U R, (HC), provides the
usual implicative form for them. For all terms s and ¢, we write s =g t (resp. s =% t) iff
REs—t (resp. R+ s —*t). Since R is a Horn theory, the use of, e.g., resolution [31]
provides a correct and complete proof method for the considered goals.

» Remark 2 (Infeasible rules). Only rules ¢ — r < ¢ € R whose conditional part c is R-feasible
can be used in rewriting steps. In the following, we assume that all rules in R can be proved
R-feasible. Again, resolution can be used for this purpose, see also [13].

The following result provides a position-based view of rewriting with GTRSs.

» Proposition 3 ([21, Proposition 58]). Let R = (F,II,u, H,R) be a GTRS and s,t €
T(F,X). Then, s —r t iff there is p € Pos"(s) and £ — r < c € R such that (i) s|, = o(¥)
for some substitution o, (ii) for all A € ¢, R+ a(A) holds, and (iii) t = s[o(r)],.

» Definition 4. A GTRS R is terminating iff there is no infinite sequence t1 =g to — g «-- .

» Example 5. Consider the GTRS R = (F,II, pu, H, R) (from COPS #342, [34, Ex. 4])

xRy < oy (11)

f(z',2") = h(z,f(z,b)) < 2/ =~uz,2" ~x (12)
flgv'),y") = h(y,f(g(y),a)) < v =yy' =y (13)
a—b (14)

where F = {a,b,f,g,h}, I = {~,—,—*}, H={(11)}, and R = {(12),(13), (14)}. R is:
{(Rf), (Co), (Pr)¢,1, (Pr)s,2, (Pr)g,1, (Pr)n,1, (Pr)n,2, (HC) 11y, (HC)(12), (HC) 13y, (HC) (14) }
Note that R is not terminating: f(b,b) —% h(b,f(b,b)) =% --- We prove it in Example 30.

The following example illustrates the use of replacement maps.

» Example 6. Consider the GTRS R = (F,II, u, H, R) with F, II, H and R as in Example
5 but with u(f) = {1,2}, u(g) = {1}, and p(h) = 0. Now,

R = {(Rf), (Co), (Pr)¢.1, (Pr)f 2, (Pr)g,1, (HC)(H), (HC)(12)> (HC)(13), (HC)(14)}

Note the absence of (Pr)n 1 and (Pr)n s due to p(h) = (. Since rewritings on the arguments
of h are forbidden by p(h) =0, R is terminating (see Example 8 below).

Termination of GTRSs is characterized by interpretation of the symbols as follows.

S. Lucas

» Proposition 7 (Termination of GTRSs by interpretation). A GTRS R is terminating iff
there is a model A of R with non-empty domain A and —* is terminating on A.

» Example 8. Consider the GTRS R in Example 6. By Proposition 7, the following model
A of R (computed by the tool AGES [12] for the automatic generation of models of first-order
theories) with domain A4 = NU {—1}, function symbols interpreted by

aA=3 b4=0 fA(z)=2 +y+13 gh(r)=x hA(z,y)=1
and predicate symbols as follows:

z Ay & true rotys x>y z(=*)Ay & true
proves termination of R, as —* is terminating on NU {~1}.

Sometimes, termination of GTRSs R is difficult to prove by using Proposition 7 due to the
need of (automatically) synthesizing appropriate interpretations. In the following, we develop
a more powerful approach to prove termination of GTRSs. For instance, in Example 20 we
prove termination of R in Example 6 without synthesizing any interpretation.

4 Infinite rewrite sequences starting from minimal terms

In this section, following [14], we consider the structure of infinite rewrite sequences as the
starting point for the subsequent analysis of termination of GTRSs.

» Definition 9. Let R = (F, 11, u, H, R) be a GTRS. A term t is nonterminating if there is
an infinite sequence t = t; =g ts =g ---. A nonterminating term t is minimal if all strict
active subterms t’ of t (i.e., t >, t') are terminating. Let My, be the set of such minimal
nonterminating terms.

Nonterminating terms contain active minimal nonterminating subterms (cf. [1, Lemma 3]).

» Definition 10. Let R = (F,II, u, H,R) be a GTRS. The set of active defined subterms
of a term t is Dy, (R, t) = {t], | p € Pos"(t), root(t|,) € D}.

Infinite rewrite sequences starting from a minimal nonterminating term s (i) first rewrite
s below the root to a term ¢ (written s>—A>§‘2t) which (ii) matches the left-hand side ¢ of a
rule { = r < c € R, ie., t = o({) for some substitution ¢ such that o(c) holds, and hence
(iii) ¢ rewrites at the root to o(r) (written t = o(¢) Ar o(r)), and then (iv) o(r) contains a
minimal nonterminating subterm w on which the infinite sequence may continue.

» Proposition 11. Let R = (F,IL, u, H,R) be a GTRS and t € M ,,. There exist { — r <=
¢ € R, a substitution o, and u € M, such thatt LA)% o(f) Ax o(r) >, u, and either
1. there is s € D, (R, 1), L, s, such that u = o(s), or

2. there is x € Vart(r) — Vart(£) such that o(z) >, u.

The following definition collects the rules that are used in the first and second cases of
Proposition 11, respectively.

» Definition 12. Let R = (F,II,u, H,R) be a GTRS. Let DRules(R) be the set of rules
in R which depend on other defined symbols in R and ERules(R) be the set of rules in R
whose right-hand sides contain active variables which are not active in the corresponding
left-hand side:

DRules(R) = {{—r<ceR|Ds,(R,r)#0}
ERules(R) {{ = r<=ceR|Vart(r) — Vart(l) # 0}

32:5

FSCD 2024

32:6

Termination of Generalized Term Rewriting Systems

5 Dependency pairs for termination of GTRSs

In the dependency pair approach (or just DP approach) for TRSs [2], termination of a TRS
R is characterized as the absence of infinite chains (ui,v1), (ug, va),...,* where for all i > 1,
(us,v;) are dependency pairs, which are obtained from the rules £ — r € R [2, Definition 3]
by marking the root symbols f (as, e.g., f* but often capitalizing it as F) in the left-hand
side ¢ of the rule and also the root symbol of the defined subterm s of the right-hand side r
which is referred in Proposition 11. Hence, (u,v), where u = ¢* and v = s* is a dependency
pair of R. Furthermore, there is a substitution o such that, for all ¢ > 1, consecutive
pairs are connected as follows o(v;) =% o(u;y1) [2, Definition 5]. This corresponds to the
sequence t LAY;Q o(?) referred in Proposition 11. In our generalization of the DP approach to
GTRSs R = (F,II, u, H, R), we use a fresh predicate symbol BN ¢ 11 to represent conditional
pairs u % v <= ¢ which are then added as new definite Horn clauses to H to capture the
termination behavior of R (hence the “t” over the arrow). In this way, we obtain a new
GTRS R’ whose set of rules is R as well. Since the reduction relation of R does not depend
on i>, both —% and — % coincide; thus, we take the pairs from the set of Horn clauses in
R’ while using —%,=—% to connect them.

» Notation 13. Given a GTRS R, we write R = (F,IL, u, HW P, R) making explicit the
(possibly empty) set P of all clauses u LHovec for some terms u and v and conditional part
¢ which are used in R. We also write Pr to refer to such a subset P of Horn clauses of R.

As usual in the DP approach, unless established otherwise, in the following we assume that
considered pairs are pairwise variable-disjoint renamings of pairs taken from Pg.

» Definition 14 (Chain of pairs of a GTRS). Let R be a GTRS. An R-chain is a finite or
infinite sequence of pairs u; 5 v; <= ¢; € PR together with a substitution o such that, for all
i>1(1<i<n for sequences of n > 1 pairs), R+ o(c;),o(v;) =* o(uir1),0(civ1) holds.
An R-chain is called minimal if for all i > 1, o(v;) is terminating.

According to Definition 14, the existence of a finite chain a1, . . . , au, for pairs «; : u; 5 v; < ¢,
1 <i < n, is equivalent to the feasibility of the sequence

* *
C1,V1 — U2,...,Cn—1,Up—1 —> Up,Cp (15)

» Remark 15 (Infeasible pairs). Since only R-feasible pairs can be used in R-chains, we can
safely remove R-infeasible pairs from Pg in termination proofs.

As discussed above, we use marked symbols f¥ associated to (defined) symbols f. In general,

given a signature F, we let % = {f* | f € F}; and given u € Mz and D C F, we let
/J% € Mz pt (or just p* if no confusion arises) be as follows: for all f € F U D

o ulf) ifferF
'“ﬁ(f)_{ u(g) if f = g* for some g € D

As for the DP approach for TRSs, “classical” dependency pairs u S e ¢, obtained from
rules £ — 7 <= ¢ by letting u = % and v = s* for some active defined subterm s of v, capture
the situation described in the first item of Proposition 11 (see, e.g., [14, Lemma 1] for TRSs).

1 We use this early notation instead of the current rule-based one, u — v, to prepare the inclusion of our
dependency pairs in the component H, rather than R, of the considered GTRS. See Definition 14.

S. Lucas

However, dealing with GTRSs, we also need to consider item 2 in Proposition 11 for which
“classical” dependency pairs are not appropriate. In this case, Proposition 11 guarantees that
a minimal nonterminating subterm s can be found in (). In order to find and then mark
s, we use (i) the active subterm relation >, defined by a set of clauses Subt(F,) and (ii)
a binary predicate symbol Mk defined by a set of clauses Mark(F) for a signature F and
n e M]:Z
1. Let wp, be a new predicate symbol. Then, & ubt(F,) consists of clauses
T, T (16)
[, @i, ap) W, T S T W, T (17)
for each f € F, k =ar(f), i € u(f), and variables = and z;, z} for 1 <i < k.
2. Let Mk be a new predicate symbol. Then, Mark(F) consists of the clauses :
MK(f(z1,. .. 2k), fA (21, ... xn)) (18)
for each f € F, k = ar(f), and fresh variables 1, ..., zk.

» Definition 16. Let R = (F,IL, u, H, R) be a GTRS whose set of defined symbols is D. The
GTRS DPyc(R) is:

(FUD* TTU{ @, , Mk}, p*, HUSubt(F UD*, 1) UMark(D) U Hpp(R) UHppc(R), R)
where

Hpp(R) = {¢ i)’l)u<:C‘é—>T<=CGDRUZ@S(R),UG'DB“(R,T),K B v}
Hppe(R) = {## Sz <cx we, ', Mk(z',2") [£ —r < ce R,z e Vart(r) — Vart(£)
and =’ and 2" are fresh variables}

The set of clauses Hpp(R) correspond to “classical” conditional dependency pairs for R.

Hppc(R) contains collapsing dependency pairs for rules £ — r <= ¢ in R, as the right-hand
side of one of such pairs is a variable " corresponding to a variable z € Var(r) which is
active in r but missing, or not active, in ¢; the conditional part of such pairs uses wpy, to
extract active minimal nonterminating subterms s to which z’ gets bounded, and finally
mark it using Mk so that 2’ is finally bound to s* (see item 2 of Proposition 11). Note that
Pop,o(r) = Hpp(R) U Hppc(R).

» Example 17. For R in Example 1, PDPHC(R) = Hpp(R)U Hppc(R) where Hpp(R) =
{(19)} and Hppe(R) = {(20), (21)}, with

s(z) —Fs(y) > x-fy (19)
DV(z,y) — ¢"<y<a,div(z—y,y) = pair(qr),qws, ¢, Mk(q,q") (20)
DNV(z,y) — 1" <y <adiv(z—y,y)~ pair(q,r),r we, ', Mk(r’, ") (21)

where, as usual in the DP approach, the uppercase identifier DIV corresponds to divF. Besides,
Subt(F, n) ={(22),...,(33)} and Mark(D) = {(34), (35)}, with

v @, @ (22) pair(z,y) e,y = ywe,y (29)

s(x) w, ¥ = =z W, x (23) z -ty W, r = =z W, z' (30)

T— Yo, ¥ < T W, z’ (24) x—uwa# y <= Y o, ' (31)
r—yws,y & yw,y (25) DIV(z,y) we, ' < zwp, s (32)
div(z,y) wp, ¢’ < zws, 2 (26) DV(z,y) e, ¥y < yws,y (33)
div(z,y) @, Yy o=y W, Y (27) Mk(z — y, = - y) (34)
pair(z,y) we, &’ = rwp, o (28) Mk(div(z,y), DIV(z, 1)) (35)

32:7

FSCD 2024

32:8

Termination of Generalized Term Rewriting Systems

» Example 18. For R in Example 5, Ppp,,(r) = Hpp(R) U Hppc(R), where Hpp(R) =
{(36), (37),(38)} and Hppc(R) = {(39), (40)}, with

F(',2") 5 F(z,b) < 2/ ~uz1" ~z (36)
Fe).y") > Fley).a) < v ~yy =y (37)
Fiey).y") A < ¢y ~yy' ~y (38)
Fa/,2") 5 2 <« o/ =a,2" 22w, 2,Mk(z,2') (39)
Fiely),y) =~ 2 < ¥ =yy ~yyws, 2,Mk(z2) (40)

» Theorem 19 (Termination). Let R = (F,II, u, H, R) be a GTRS.
1. R is terminating if there is no infinite minimal DP g (R)-chain.
2. R is nonterminating if there is an infinite DP o (R)-chain.

» Example 20 (Termination of R in Example 6 by absence of DP g (R)-chains). For R in
Example 6, Hpp(R) is empty as the (definite) subterms f(z,b), f(g(y),a), and a in the
right-hand sides of rules (13) and (14) are frozen. Also, Hppc(R) = 0 as variables x and
y in the right-hand sides of rules (13) and (14) are frozen too. Thus, no DP g¢(R)-chain
is possible. By Theorem 19, R is terminating. In contrast to the proof of termination in
Example 8, based on Proposition 7, no synthesis of any model is required here.

The following section introduces a Dependency Pair Framework for the mechanization of
proofs of termination of GTRSs using dependency pairs.

6 The Dependency Pair Framework for GTRSs

The Dependency Pair (DP) Framework is a divide-and-conquer technique to prove “termina-
tion problems”. They are decomposed into smaller or simpler ones to finally obtain “trivial”
problems which can be easily solved. Then, we combine the obtained answers to provide a
solution to the initial problem. Thus, the first ingredient of the DP Framework for GTRSs is
a suitable notion of termination problem. Let F = {a,m} be a signature of flag constants ¢
referring to arbitrary (resp. minimal) R-chains if ¢ = a (resp. ¢ = m).

» Definition 21 (GTRS problem). A GTRS problem 7 = (R, ¢) consists of a GTRS R and
peF.

We often speak of (R, m)-chains (or just 7-chains if 7 = (R, m)) instead of minimal R-chains;
and of (R, a)-chains (resp. T-chains if 7 = (R, a)) instead of arbitrary R-chains.

» Definition 22 (Finite GTRS problem). A GTRS problem T = (R,) is finite iff there is no
infinite T-chain; otherwise, T is infinite.

Accordingly, the following result rephrases Theorem 19.
» Theorem 23. A GTRS R is terminating iff (DPpc(R),v) is finite for some f € F.

Processors transform GTRS problems 7 = (R, ¢) into possibly empty sets {71,...,7,} of
GTRS problems 7; = (R, v;), hopefully easier to deal with. Processors may also return
“no”, with the intended meaning of 7 being infinite.

» Definition 24 (GTRS processor). A GTRS processor P is a partial function from GTRS
problems into sets of GTRS problems. Alternatively, it can return “no”. Dom(P) is the set
of GTRS problems T for which P is defined.

S. Lucas

In the following we often speak of “processors” rather than “GTRS processors”. For the sake
of readability, we often write P(R, ¢) rather than P((R, ¢)). The most relevant properties to
be established when using processors are soundness and completeness. Soundness is essential
to prove GTRS problems finite by using combinations of processors; completeness for proving
infiniteness.

» Definition 25 (Soundness and completeness). Let P be a processor and 7 € Dom(P). We
say that P is:
7-sound iff T is finite whenever P(1) # no and for all 7 € P(7), 7' is finite.
T-complete iff T is infinite whenever P(t) = no or there is 7 € P(7) such that 7’ is
infinite.
Accordingly, given ¢ € F, we say that P is @-sound (resp. @-complete) if it is T-sound
(T-complete) for all T = (R, ¢") € Dom(P) such that ¢ = ¢'. P is sound (resp. complete) if
it is p-sound (p-complete) for all ¢ € F.

Processors are used in a divide and conquer scheme to incrementally simplify a target GTRS
problem 7q, possibly decomposing it into (a tree of) smaller problems which are independently
treated in the same way.

» Definition 26 (GTRS Proof Tree). Let 79 be a GTRS problem. A GTRS Proof tree T
(GTRSP-tree for short) for 19 is a tree whose nodes are labeled with GTRS problems; the
leaves may also be labeled with either “yes” or “no”. The root of T is labeled with T9. For
every inner node n with label T, there is a processor P such that 7 € Dom(P) and:

1. If P(7) = no, then n has just one child n" with label “no”.

2. If P(1) = 0, then n has just one child n' with label “yes”.

3. If P(r) = {m1,..., 7} with k > 0, then n has exactly k children ny,...,n; with labels

Ti, ..., Tk, TESpPEctively.

» Theorem 27. Let 7 be a GTRS problem and T be a GTRSP-tree for . Then,

1. If all leaves in T are labeled with “yes”, and all involved processors are sound for the
GTRS problems they are applied to, then T is finite.

2. If T has a leaf with label “no” and all processors from 7 to the leaf are complete for the
GTRS problems they are applied to, then T is infinite.

Given a GTRS R, 71 = (DPuc(R),), where ¢ € F, is called an initial problem, from which
a proof of (non)termination of R is initiated. The specific choice of ¢ is important in practice,
as soundness/completeness of some processor may depend of this choice. However, from
an implementation point of view (which we do not address in this paper), we could easily
adapt the open DP framework discussed in [25, Section 6], which leaves ¢ unespecified until
a particular use of processors establishes some requirements to fix it.

7 Processors for the DP Framework for GTRSs

In this section we introduce several processors for their use in proofs of termination of GTRSs
and illustrate their application with some examples. Processors Pp,s and Py, are used to
prove GTRS problems infinite (Section 7.1). The SCC processor Pscc permits the use of
graph techniques to decompose GTRS problems (Section 7.2). The subterm processor Py .,
removes pairs from P without paying attention to rules in R (Section 7.3). The Removal
Pair Processor Prp uses terminating relations to remove pairs from P (Section 7.4).

32:9

FSCD 2024

32:10

Termination of Generalized Term Rewriting Systems

7.1 Proving GTRS problems infinite
The following processor detects a simple kind of infinite GTRS problems.

» Definition 28 (Infiniteness processor). Let R be a GTRS and ¢ € F. Then, Py is given
by Prmf(R,) = no iff there is u Y v < ¢ € Pr and substitutions 1) and 0 such that n(c) and

n(v) = 0(n(u)) hold.

» Theorem 29. P, is sound and a-complete. If T = (R, m) and v in Definition 28 is
ground and contains no symbol from Dr, then Pr,s is T-complete.

» Example 30 (Nontermination of R in Example 5). For DPy¢(R) in Example 18, and
71 = (DPyc(R), a), consider (36) in Example 18, i.e., F(z/,2") - F(z,b) < 2/ ~ z, 2" ~ z,
n = {z — b,a’ — b,2” — b}, and 0 be the empty substitution. Since 5 satisfies the
conditional part of (36) and n(F(z,b)) = F(b,b) = n(F(«’,2")), we have P,s(r7) = no.
Hence, by completeness of P ¢y, (Theorem 32), 77 is infinite, and R is not terminating.

Just requiring (i) feasibility of ¢ and that (ii) v matches u in Definition 28 does not guarantee
completeness. For instance, « : F(z) = F(s(z)) < z —* 0 is feasible (use o(z) = 0). The
right-hand side F(s(z)) matches the left-hand side F(z). However, there is no infinite chain
using o only. In practice, P,y will be used with pairs u % v without conditional part. In
this way, checking that v matches u, i.e., v = 6(u) for some substitution 6, suffices.

» Definition 31 (Cycle processor). Let R be a GTRS, and ¢ € F. Then, Pgy. is given by
Peyc(R,) = no iff there are n > 1 pairs aq,...,a, € Pr such that the following sequence
is R-feasible

C1,V1 = U,y .o Ciy Vi = Uit 1, e ey Cpy U = U (41)
» Theorem 32. P¢y. is sound and a-complete. If T = (R,m) and for all 1 < i <n and

v; in pairs a; in Definition 31 is ground and contains no symbol from Dy, then Pcyc is
T-complete.

» Example 33. Consider R = (F,II, ut, H, R), where H = {(42)} and R = {(43), (44)}:
TRy < "y (42) b — a (44)
a—cz) <« z=xb (43)

Regarding DP o (R), Subt(F,) and Mark(F) are defined as explained above, and we have
HDP(R) = {(45)} and HDpc(R) = {(46)}, with

B —- A (45)

A - 2 <r=xbrws, 2, Mk, z") (46)
We prove R nonterminating by applying P ¢y to 71 = (DPuc(R), a). The following sequence
built using the pairs in Hpp(R) and Hppc(R) according to (41):

A—="Az~bxws, o', Mk(z', 2"), 2" =" B (47)
is DP ¢ (R)-feasible, as it is satisfied by o = {x + b, 2’ + b, 2" + B}. Thus, P¢gy.(71) = no.
Note that Pp,s does not apply to R in Example 33: the only substitution satisfying the

conditional part of (46) is o in the example. But the instance o(z”) = B of the right-hand
side of (46) does not match the left-hand side A of (46). However, P ¢y does not subsume
P . For instance, F(z) % F(s(x)), where s is not a defined symbol, can be used to define an
infinite chain which would be easily detected by Pj,s;. However, F(s(z)) —* F(z) is infeasible
and P gy could not be used to detect infiniteness of a GTRS-problem involving such a pair.

S. Lucas 32:11

7.2 The SCC processor

In this section we provide a notion of graph which captures infinite (minimal) chains of
(dependency) pairs as given in Definition 14.

» Definition 34 (GTRS Graph of Pairs). Let R be a« GTRS. The GTRS-graph G(R) has Pr
as the set of nodes. There is an arc from o € Pr to o' € Pr iff a,a’ is an R-chain for some
substitution o.

The following result approzimates the (in general incomputable) dependency graph using
the infeasibility of some sequences. Although (in)feasibility is undecidable, a number of
techniques and tools have been developed to automatically (dis)prove it, thus providing a
practical approach to approximate the graph.

» Definition 35 (Estimated GTRS Graph). Let R be a GTRS. The estimated GTRS-graph
EG(R) has Pr as the set of nodes. Let oo :u — v < ¢,o/ 1 u' <> v' < ¢/ € Pg be such that
Var(a) N Var(a') = 0 (rename if necessary). There is an arc from « to o/ in EG(R) iff
c,v —=*u', ¢ cannot be proved R-infeasible.

The sequence considered in Definition 35 actually characterizes the GTRS chain required in
Definition 34 to draw an arc from a node a; to a node as (see (15)): there is such an arc
iff ¢,c/,v —* o/ is feasible. Definition 35 provides an estimation as only an R-infeasibility
proof is attempted (by using some method, tool, etc.); if it succeeds, the arc is dismissed;
otherwise, the arc is included in the graph. Thus, all nodes and arcs of G(R) are in EG(R).

» Example 36. Consider the GTRS R in Example 1 and DPy¢(R) in Example 17. The
estimated dependency graph EG(DPy¢(R)) is

< @ @

For instance, the following sequence, that corresponds to an arc from (20) to (20),

Y1 S ZCl,diV(ZCl - ylayl) ~ pair(Qlﬂ"l)le wEu qllv Mk(qllaqi/)7

1

Y2 < 2, div(ze — Yo, y2) & pair(qe,72), g2 W, 45, Mk(gy, ¢5), ¢ =% DIV(z2,y2)

can be proved DP g (R)-infeasible (see [13] for a general treatment of such infeasibility
problems, including mechanization issues).

» Definition 37 (SCC processor). Let R = (F,I,u, HW P, R) be a GTRS and 7 = (R,) be
an R-problem. Then, Pscc is given by

Psco(r) ={((F,I,u, HW P', R),) | P'are the nodes of an SCC in EG(R)}

» Example 38. For Ry = DPyc(R) = (F,IL, pf, H v {(19), (20), (21)}, R) in Example 17
and EG(Ry) displayed in Example 36, we have Pscc(Ro,p) = {1}, where 71 = (R1,),
with Ry = (F, 1L, ¥, H w {(19)}, R).

» Theorem 39. Pgcc is sound and complete.

With Psce we can separately work with the strongly connected components of EG(R, ¢),
disregarding other parts of the graph.

FSCD 2024

32:12

Termination of Generalized Term Rewriting Systems

7.3 Subterm processor

This section generalizes the subterm processor for TRSs [14] to GTRSs R. Such a processor
removes pairs u — v < ¢ € Py if some immediate subterm v|; of v is a strict active subterm
of an immediate subterm u|; of u, i.e., ul; >, v|; holds, where ¢ and j are determined by
the root symbols of u and v, respectively, by means of a so-called simple projection. The
processor does not pay attention to the conditional part ¢ of a or to the rules in R. The set
of root symbols associated to Pg is:

Root(Pr) = {root(u)|u-v < ce Pr}U{root(v) |u-3v<ce Pr,v¢gX}

» Definition 40 (Simple projection). Let R be a GTRS. A simple projection for R is a
mapping 7 : Root(Pr) — N such that n(f) € {1,...,ar(f)}. The mapping that assigns a
subterm m(t) = t|(s) to each term t with root(t) € Root(Pr) is also denoted by m; we also
let m(zx)=x ifz e X.

» Definition 41 (Subterm processor). Let R = (F,II,u, HW P,R) be a GTRS, 7 be a
simple projection for R, and o : u HoveceP. Then, Py, is given by Pr s (R, p) =
{(F, 1, u, He(P—{a}), R)}, if (i) for allu’ 5 o' < ¢ € P—{a} we have that w(u') >, 7(v')
holds and (ii) m(u) >, m(v) holds.

Note that P ., can not be applied to a GTRS problem (R, o) if Pr contains pairs u SHovee
from Hppe(R). This is because, by definition, v is a fresh variable not belonging to w. Thus,
neither (i) nor (ii) in Definition 41 are fulfilled and (R, ¢) ¢ Dom(P,).

» Theorem 42 (Soundness and completeness of Py .). P, is complete and T-sound for
all 7 = (R,) € Dom(Pr .,) such that for all u SveceProd X, p=m, and
ROOtp(R) NDr = 0.

» Example 43 (Termination of R in Example 1). Consider 71 = (R1,) in Example 38 with
Pr, = {(19)}, where (19) is s(z) —* s(y) = = —* y. Since Root(Pg,) = {—*}, with =(=%) =1
we obtain 7(s(z) —* s(y)) = s(z) >, = n(z —* y). Hence, P (11) = {(R11,9)} where
Pr,, = 0. This proves termination of R in Example 1, after a “formal” application of Pgcc
to obtain an empty set of GTRS problems, see Figure 1 left.

7.4 Use of terminating relations
The absence of infinite R-chains can be ensured by using terminating relations on terms.

» Definition 44 (Removal pair). A removal pair (Z,3) consists of relations 2 and 3 on
terms such that 1 is terminating and 2 o 2 C 1.

» Definition 45 (Compatible removal pair). Let R be a GTRS. A removal pair (Z,3) is
compatible with R if (i) =% C 2 and (ii) if Pr is not a singleton, then for all u Lo e
c,u/ v’ < ¢ € Pr and for all substitutions o, if R+ o(c),o0(v) —=* o(u),o(c’) holds, then
(ii.1) o(u) 2 o(v) or (#.2) o(u) 3 o(v).

Compatibility guarantees that, if « is followed by another (possibly the same, up to renaming)
pair o’ in a chain, then, by (i), a non-strict decrease is introduced in the transition o(v) —%
o(u'), and, if Pgr is not a singleton, then there is a non-strict (ii.1) or a strict (ii.2) decrease
in the instances of components u and v of a. In the second case (ii.2), we can remove «.
This is the purpose of the removal pair processor. If Pr is a singleton, then (ii.1) is useless
when the processor is applied to remove the only pair in Pr. In this case, (ii.2) is specifically
required by the processor, as shown in the following.

S. Lucas

» Definition 46 (Removal pair processor). Let R = (F,II,u, HW P,R) be a GTRS, « :
uv<<ceP, and (2,3) be a removal pair compatible with R. Then, Prp(R, @) =
{(F, I, u, HW (P — {a}), R),)} if for all substitutions o, whenever R I o(c) holds, we
have o(u) 3 o(v).

» Theorem 47 (Soundness and completeness of Prp). Prp is sound and complete.
As discussed in [18, 26], the following semantic approach is useful in practice.

» Definition 48 (Semantic version of the removal pair processor). Let R = (F,II, u, H W P, R)

be a GTRS and o : u ~> v < ¢ € P. Let w> and w— be fresh predicate symbols. Let A

be a model of R such that ©4 is terminating; on the domain of A. Then, Prp(R,p) =

{(F,II p, HY (P — {a}), R),)} if each of the following conditions hold:

1. AE (Vo,y,2) (woy ANy > 2) = 2 w5 2),

2. AE (Vo,y) (z =" y=> 2 w>y),

3. if P is not a singleton, then for allu’ v < ¢, u" 5" < ¢ € P, A (VZ)((d A —*
u" N") = (w0 Vo wg),

4. A= (VZ) (c = uwov).

The removal pair (2, 3) implicit in Definition 48 is as follows: for all terms s and ¢, s > ¢
(resp. s T t) iff for all valuations v : X — A, [s]A @wd [t]7' (resp. [s]! @4 [t]) holds, where
for all terms ¢t € T(F, &), [{]* denotes the (usuaNl) interpretation of terms ¢ using the
interpretations f# of function symbols f € F by A and the interpretation v(z) of variables
x by v. Thus, requirement (1) in Definition 48 guarantees that J o 2 C 3 in Definition
44 holds; (2) and (3) make (2, 3J) compatible with R (Definition 45); and (4) permits the

removal of a (Definition 46).

» Example 49. Consider the following GTRS R (COPS #330 [28, Ex. 5.1)):

rRy <= ="y (48)
pin(z) — pout(g(z)) (49)
pin(z) — pout(f(y)) < pin(z) ~ pout(g(y)) (50)

In DPyc(R), we have Hpp(R) = 0; and Hppc(R) consists of a single clause:

PIN(z) 5 ¢" < pin(z) ~ pout(g(y)),y @e, ¥, Mk(y',y") (51)

With Prp we can remove (51). Since Ppp,,.(r) = {(51)} is a singleton, requirement (3) in
Definition 48 is not necessary. Requirements (1), (2), and (4) amount at considering:

(Va,y, 2) TWoYANYyws 2= T w2 (52)
(V,y) ="y =>Trwsy (53)
(Vz,y.9',y") (pin(z) ~ pout(g(y)) ANy we, ¥ AMK(Y',y")) = PIN(z) w " (54)

The following structure A (computed by AGES) with domain Z — N (the set of nonpositive
integers); function symbols are interpreted as follows:

fA(2)=2x gh(z)=2x pin(z)=2z — 1 pout?(z)=2 — 1 PINA(z)=2z

and predicate symbols as follows:

rrRAyesy>a r A ysy>a (=) yesy>r
x(—t>)Ay<:>true T wéL yesy>a MkA(z,y) &y > =
xwéy@yZm xwéy®y>x

32:13

FSCD 2024

32:14

Termination of Generalized Term Rewriting Systems

@

P PInf P Cyc
no no
TI1 Pscc

Pscc

yes
Examples 1, 38 & 43 Examples 5 & 30 Example 33 Example 49

Figure 1 Proofs of (non)termination in the DP Framework for the running examples.

is a model of DP ¢ (R) U {(52), (53), (54)}. Hence (51) can be removed from DPyc(R) to
obtain a GTRS Ry, with Pr, =0, i.e., Prp(DPuc(R), ¢) = {1}, where 1 = (R1,). Now,
Pscc(R1,¢) = 0 (due to Pr, = @) completes the proof.

The proof trees for our running examples are shown in Figure 1.

8 Related work

The results in this paper extend and generalize the treatment of termination of oriented
CTRSs presented in [24] which is implemented using the 2D DP Framework for oriented
(2-)CTRSs [25, 26]. Furthermore, some improvements on [25, 26] are obtained:
In contrast to [24], Definition 16 provides a uniform definition of DPy¢(R) with pairs of
two classes, Hpp(R) and Hppc(R), but with a single definition of R-chain. Also, the
use of atoms x wy, ¢’ and Mk(z’, 2") in the conditional part of pairs in Hppc(R) (also
in contrast to [24, Definition 41]) often helps to prove DP o (R)-infeasibility of pairs in
Hppe(R), which is helpful. For instance, (20) and (21) are actually DP g (R)-infeasible
for R in Example 1. This would not happen with the corresponding pairs obtained from
[24, Definition 41]. We included (20) and (21) here just to illustrate the use of Pgoc. A
simpler proof would be obtained otherwise.
Proofs of termination of CTRSs in the 2D DP Framework are restricted, in practice, to
2-CTRSs, i.e., those whose rules { — r < ¢ satisfy that all variables in r also occur in
¢ [25, Theorem 16(1)].2 Neither the CTRSs R in Examples 5 and 49 nor Example 1,
viewed as a CTRS, are 2-CTRSs.
As a consequence of [25, Theorem 16(1)], only processors which are sound on arbit-
rary chains can be used in proofs of termination in the 2D DP Framework for CTRSs.
For instance, Pr cannot be used, as it is sound on minimal chains only. In contrast, our
termination proof of R in Example 1 uses P.
P cye was not considered in [25, 26] and can be used to detect infinite chains involving an
arbitrary number of pairs. Also, P¢cy. can be implemented as a feasibility problem.

2 Actually, [25, Theorem 16(1)] uses the more general requirement of rules that preserve terminating
substitutions discussed in [24, Section 4.2]. A sufficient condition guaranteeing the property is being a
2-CTRS [24, Proposition 37].

S. Lucas

mod Ex9_SchGralO is
sorts Boolean S .

op true : -> Boolean . op 0 : ->8S . ops:S->8S.
ops _>_ : S S -> Boolean [frozen] . op _<=_ : S S -> Boolean [frozen]
op _—_ :88->8. op pair : S S -> S .

op div: 88 ->38 . var g r xy : S .

eq s(x) > 0 = true . eq s(x) >s(y) =x>y . eq0<=x = true .
eq s(x) <=s(y) =x<=y . rlx-0=>x.

rl10-y=>y. rl s(x) - s(y) =>x -y .

crl div(x,y) => pair(0,x) if y > x = true .
crl div(x,y) => pair(s(q),r) if y <= x = true /\ div(x - y,y) => pair(q,r) .
endm

Figure 2 Maude enconding of the GTRS R in Example 1.

Approximations of the dependency graph for CTRSs in [25, Section 7.1.1] pay no attention
to the conditional parts of pairs [25, Definitions 55 & 56]. For instance, for DPg¢(R) in
Example 17, instead of the graph in Example 36, the techniques in [25] produce:

o=t

GTRSs also include CS-CTRS [19, Section 8.1], for which no technique for proving termin-
ation is known. Also, computations with Generahzed Rewrite Theories (GRTs [4]) and
Maude programs [5, 6] can often be simulated using (Equational) GTRSs as briefly discussed
in [20, 21]. Vice versa, Maude can be used as a practical platform to use GTRSs.

» Example 50. The Maude module in Figure 2 provides an appropriate translation of R
in Example 1 to Maude. Predicates are treated as boolean functions defined by equations
obtained from the corresponding definite Horn clauses. Also note that the arguments of
“predicate” function symbols are all frozen, thus disabling reductions on their arguments.
This makes Maude computations with Ex9_SchGra10 closer to R, viewed as a GTRS. For
instance, the result of the integer division of 3 by 2 is computed as follows:

Maude> rew div(s(s(s(0))),s(s(0)))

rewrite in Ex9_SchGral0 : div(s(s(s(0))), s(s(0)))
rewrites: 12 in Oms cpu (Oms real) (363636 rewrites/second)
result S: pair(s(0), s(0))

Thus, our results provide a basis for the development of techniques and tools for proving
termination of GRTs and Maude programs.

Finally, at first sight, our techniques would also apply to prove termination of Logically
Constrained TRSs (LCTRSs [15, 16]). LCTRSs and GTRSs differ in the treatment of the
conditional part of the rules: LCTRSs use fixed interpretations and GTRSs additional Horn
clauses. Although rewriting with LCTRSs (which requires substitutions that respect the
rules [15, page 347]) is, in general, more restrictive than rewriting with GTRSs, our notion
of dependency pair would capture termination of LCTRSs, although the treatment of the
DP problems would be different due to the semantic treatment of conditions.

32:15

FSCD 2024

32:16

Termination of Generalized Term Rewriting Systems

9 Conclusions and future work

We have presented a Dependency Pair Framework for (dis)proving termination of GTRSs.
To the best of our knowledge, this is the first time that the DP Framework has been adapted
to deal with GTRSs. It extends previous proposals for proving termination of CTRSs [25].
As discussed in the previous section, even when applied to CTRSs (as particular GTRSs),
we are able to obtain proofs of termination which are not possible in the 2D DP Framework.
Also, the proof of termination of the CTRS R in Example 5 supplied with a replacement map
i (see Example 8) cannot be obtained either in the DP Framework for CSR (as it does not
consider conditional rules) or in the 2D DP Framework (replacement maps are not allowed).

From a theoretical point of view, a lot of work remains to be done. For instance, the
refinements in the treatement of frozen subterms in the right-hand sides of unconditional
rules developed in [10, 11] should be adapted to the new conditional setting. Also, the
improvements on the reduction pair processor obtained by considering powerful notions such
as that of usable rule, which are already in use both for CS-TRSs [11, Section 6] and CTRSs
[26, Section 4.4] should also be developed for GTRSs and the DP Framework introduced
here. Also, extending the framework to deal with operational termination of GTRSs is also
important, as operational termination provides the best conditions to compute with rewriting-
based systems using conditional rules (see [23]). The approach for CTRSs developed in [25]
(dealing with the vertical dimension of operational termination by means of an additional set
of dependency pairs) should be thoroughly revised for GTRSs R as operational termination
of GTRSs depends on proofs of atoms using the Horn theory component H of R.

The implementation of the DP Framework for proving termination of GTRSs introduced
here is also an important subject for future work. Regarding the implementation of our
techniques, we are improving our tool MU-TERM [13] with the ability to deal with GTRSs.
However, this actually depends on other tools, in particular infChecker [13], still unable to deal
with GTRSs. Also, as discussed in [21], GTRSs can be useful to investigate computational
properties of GRTs and Maude programs, which implement GRTs.

—— References

1 Beatriz Alarcén, Raul Gutiérrez, and Salvador Lucas. Context-sensitive dependency pairs.
Inf. Comput., 208(8):922-968, 2010. doi:10.1016/j.ic.2010.03.003.

2 Thomas Arts and Jurgen Giesl. Termination of term rewriting using dependency pairs. Theor.
Comput. Sci., 236(1-2):133-178, 2000. doi:10.1016/50304-3975(99)00207-8.

3 Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge University Press,
1998. doi:10.1017/CB09781139172752.

4 Roberto Bruni and José Meseguer. Semantic foundations for generalized rewrite theories.
Theor. Comput. Sci., 360(1-3):386-414, 2006. doi:10.1016/j.tcs.2006.04.012.

5 Manuel Clavel, Francisco Durdn, Steven Eker, Patrick Lincoln, Narciso Marti-Oliet, José
Meseguer, and Carolyn L. Talcott. All About Maude - A High-Performance Logical Framework,
How to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes
in Computer Science. Springer, 2007. doi:10.1007/978-3-540-71999-1.

6 Francisco Durdn, Steven Eker, Santiago Escobar, Narciso Marti-Oliet, José Meseguer, Rubén
Rubio, and Carolyn L. Talcott. Programming and symbolic computation in Maude. J. Log.
Algebr. Meth. Program., 110, 2020. doi:10.1016/j.jlamp.2019.100497.

7 Melvin Fitting. First-Order Logic and Automated Theorem Proving, Second Edition. Graduate
Texts in Computer Science. Springer, 1996. doi:10.1007/978-1-4612-2360-3.

https://doi.org/10.1016/j.ic.2010.03.003
https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/j.tcs.2006.04.012
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1007/978-1-4612-2360-3

S. Lucas

10

11

12

13

14

15

16

17

18

19

20

Jurgen Giesl, René Thiemann, and Peter Schneider-Kamp. The dependency pair framework:
Combining techniques for automated termination proofs. In Franz Baader and Andrei Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning, 11th International
Conference, LPAR 200/, Proceedings, volume 3452 of Lecture Notes in Computer Science,
pages 301-331. Springer, 2004. doi:10.1007/978-3-540-32275-7_21.

Jirgen Giesl, René Thiemann, Peter Schneider-Kamp, and Stephan Falke. Mechanizing
and improving dependency pairs. J. Autom. Reasoning, 37(3):155-203, 2006. doi:10.1007/
s10817-006-9057-7.

Ratl Gutiérrez and Salvador Lucas. Proving termination in the context-sensitive dependency
pair framework. In Peter Csaba Olveczky, editor, Rewriting Logic and Its Applications - Sth
International Workshop, WRLA 2010, Held as a Satellite Event of ETAPS 2010, Revised
Selected Papers, volume 6381 of Lecture Notes in Computer Science, pages 18-34. Springer,
2010. doi:10.1007/978-3-642-16310-4_3.

Ratl Gutiérrez and Salvador Lucas. Function calls at frozen positions in termination of
context-sensitive rewriting. In Narciso Marti-Oliet, Peter Csaba Olveczky, and Carolyn L.
Talcott, editors, Logic, Rewriting, and Concurrency - Essays dedicated to José Meseguer on
the Occasion of His 65th Birthday, volume 9200 of Lecture Notes in Computer Science, pages
311-330. Springer, 2015. doi:10.1007/978-3-319-23165-5_15.

Rail Gutiérrez and Salvador Lucas. Automatic Generation of Logical Models with AGES. In
Pascal Fontaine, editor, Automated Deduction - CADE 27 - 27th International Conference
on Automated Deduction, Proceedings, volume 11716 of Lecture Notes in Computer Science,
pages 287-299. Springer, 2019. doi:10.1007/978-3-030-29436-6_17.

Ratul Gutiérrez and Salvador Lucas. Automatically Proving and Disproving Feasibility Condi-
tions. In Nicolas Peltier and Viorica Sofronie-Stokkermans, editors, Automated Reasoning - 10th
International Joint Conference, IJCAR 2020, Proceedings, Part II, volume 12167 of Lecture
Notes in Computer Science, pages 416-435. Springer, 2020. doi:10.1007/978-3-030-51054-1_
27.

Nao Hirokawa and Aart Middeldorp. Dependency pairs revisited. In Vincent van Qostrom,
editor, Rewriting Techniques and Applications, 15th International Conference, RTA 2004,
Aachen, Germany, June 3-5, 2004, Proceedings, volume 3091 of Lecture Notes in Computer
Science, pages 249-268. Springer, 2004. doi:10.1007/978-3-540-25979-4_18.

Cynthia Kop and Naoki Nishida. Term rewriting with logical constraints. In Pascal Fontaine,
Christophe Ringeissen, and Renate A. Schmidt, editors, Frontiers of Combining Systems - 9th
International Symposium, FroCoS 2013, Nancy, France, September 18-20, 2013. Proceedings,
volume 8152 of Lecture Notes in Computer Science, pages 343—-358. Springer, 2013. doi:
10.1007/978-3-642-40885-4_24.

Cynthia Kop and Naoki Nishida. Constrained term rewriting tool. In Martin Davis, Ansgar
Fehnker, Annabelle Mclver, and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva, Fiji,
November 24-28, 2015, Proceedings, volume 9450 of Lecture Notes in Computer Science, pages
549-557. Springer, 2015. doi:10.1007/978-3-662-48899-7_38.

Salvador Lucas. Context-sensitive Rewriting. ACM Comput. Surv., 53(4):78:1-78:36, 2020.
doi:10.1145/3397677.

Salvador Lucas. Using Well-Founded Relations for Proving Operational Termination. J.
Autom. Reasoning, 64(2):167-195, 2020. doi:10.1007/s10817-019-09514-2.

Salvador Lucas. Applications and extensions of context-sensitive rewriting. Journal of
Logical and Algebraic Methods in Programming, 121:100680, 2021. doi:10.1016/j.jlamp.
2021.100680.

Salvador Lucas. Confluence of Conditional Rewriting Modulo. In Aniello Murano and
Alexandra Silva, editors, 32nd EACSL Annual Conference on Computer Science Logic (CSL
2024), volume 288 of Leibniz International Proceedings in Informatics (LIPIcs), pages 37:1-
37:21, Dagstuhl, Germany, 2024. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik. doi:
10.4230/LIPIcs.CSL.2024.37.

32:17

FSCD 2024

https://doi.org/10.1007/978-3-540-32275-7_21
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/s10817-006-9057-7
https://doi.org/10.1007/978-3-642-16310-4_3
https://doi.org/10.1007/978-3-319-23165-5_15
https://doi.org/10.1007/978-3-030-29436-6_17
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-030-51054-1_27
https://doi.org/10.1007/978-3-540-25979-4_18
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-642-40885-4_24
https://doi.org/10.1007/978-3-662-48899-7_38
https://doi.org/10.1145/3397677
https://doi.org/10.1007/s10817-019-09514-2
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.1016/j.jlamp.2021.100680
https://doi.org/10.4230/LIPIcs.CSL.2024.37
https://doi.org/10.4230/LIPIcs.CSL.2024.37

32:18

Termination of Generalized Term Rewriting Systems

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Salvador Lucas. Local confluence of conditional and generalized term rewriting systems.
Journal of Logical and Algebraic Methods in Programming, 136:paper 100926, pages 1-23, 2024.
doi:10.1016/j.jlamp.2023.100926.

Salvador Lucas, Claude Marché, and José Meseguer. Operational termination of conditional
term rewriting systems. Inf. Process. Lett., 95(4):446-453, 2005. doi:10.1016/j.ipl.2005.
05.002.

Salvador Lucas and José Meseguer. Normal forms and normal theories in conditional rewriting.
J. Log. Algebr. Meth. Program., 85(1):67-97, 2016. doi:10.1016/j.jlamp.2015.06.001.
Salvador Lucas and José Meseguer. Dependency pairs for proving termination properties
of conditional term rewriting systems. J. Log. Algebr. Meth. Program., 86(1):236-268, 2017.
doi:10.1016/5.jlamp.2016.03.003.

Salvador Lucas, José Meseguer, and Ratl Gutiérrez. The 2D Dependency Pair Framework for
conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci.,
96:74-106, 2018. doi:10.1016/j.jcss.2018.04.002.

Salvador Lucas, José Meseguer, and Ratl Gutiérrez. The 2D Dependency Pair Framework for
Conditional Rewrite Systems. Part II: Advanced Processors and Implementation Techniques.
J. Autom. Reasoning, 64(8):1611-1662, 2020. doi:10.1007/s10817-020-09542-3.

Elliott Mendelson. Introduction to mathematical logic (4. ed.). Chapman and Hall, 1997.
Enno Ohlebusch. Termination of logic programs: Transformational methods revisited. Appl.
Algebra Eng. Commun. Comput., 12(1/2):73-116, 2001. doi:10.1007/s002000100064.

Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, 2002. doi:10.1007/
978-1-4757-3661-8.

Dag Prawitz. Natural deduction. A proof theoretical study. Stockholm Studies in Philosophy.
Almqvist & Wiksell, 1965.

John Alan Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J. ACM,
12(1):23741, 1965. doi:10.1145/321250.321253.

Felix Schernhammer and Bernhard Gramlich. Characterizing and proving operational termin-
ation of deterministic conditional term rewriting systems. J. Log. Algebraic Methods Program.,
79(7):659-688, 2010. doi:10.1016/j.jlap.2009.08.001.

Terese. Term rewriting systems, volume 55 of Cambridge tracts in theoretical computer science.
Cambridge University Press, 2003.

Yoshihito Toyama and Michio Oyamaguchi. Church-rosser property and unique normal form
property of non-duplicating term rewriting systems. In Nachum Dershowitz and Naomi
Lindenstrauss, editors, Conditional and Typed Rewriting Systems, 4th International Workshop,
CTRS-94, Jerusalem, Israel, July 13-15, 1994, Proceedings, volume 968 of Lecture Notes in
Computer Science, pages 316-331. Springer, 1994. doi:10.1007/3-540-60381-6_19.

https://doi.org/10.1016/j.jlamp.2023.100926
https://doi.org/10.1016/j.ipl.2005.05.002
https://doi.org/10.1016/j.ipl.2005.05.002
https://doi.org/10.1016/j.jlamp.2015.06.001
https://doi.org/10.1016/j.jlamp.2016.03.003
https://doi.org/10.1016/j.jcss.2018.04.002
https://doi.org/10.1007/s10817-020-09542-3
https://doi.org/10.1007/s002000100064
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1007/978-1-4757-3661-8
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/j.jlap.2009.08.001
https://doi.org/10.1007/3-540-60381-6_19

	1 Introduction
	2 Preliminaries
	3 Generalized Term Rewriting Systems
	4 Infinite rewrite sequences starting from minimal terms
	5 Dependency pairs for termination of GTRSs
	6 The Dependency Pair Framework for GTRSs
	7 Processors for the DP Framework for GTRSs
	7.1 Proving GTRS problems infinite
	7.2 The SCC processor
	7.3 Subterm processor
	7.4 Use of terminating relations

	8 Related work
	9 Conclusions and future work

