
The Flower Calculus
Pablo Donato #

LIX, École Polytechnique, Palaiseau, France

Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic
inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects
called “flowers”, that enjoy both a graphical interpretation as topological diagrams, and a textual
presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses
completely with the traditional notion of symbolic connective, operating solely on nested flowers
containing atomic predicates. We prove both the soundness of the full calculus and the completeness
of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first
analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination
techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is
fully invertible, a desirable property for both automated and interactive proof search.

2012 ACM Subject Classification Theory of computation → Proof theory; Theory of computation
→ Constructive mathematics

Keywords and phrases deep inference, graphical calculi, existential graphs, intuitionistic logic,
Kripke semantics, cut-elimination

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.5

Related Version Full Version: https://arxiv.org/abs/2402.15174 [21]

Supplementary Material
Software (Mechanized Theory): https://github.com/Champitoad/flowers-metatheory [19]

archived at swh:1:dir:290076a847ca95e93c17fb66659086d7f68be014
Software (Online Demo): https://github.com/Champitoad/flower-prover [20]

archived at swh:1:dir:fcc934cae3a75692c031dc82ffdab138084a472d

Acknowledgements I want to thank Luc Chabassier for writing the Lua script that was used to
generate all the flower drawings in this document, and Benjamin Werner for useful feedback on a
first draft of this paper. Lastly, I thank Tito for teaching me some invaluable formatting tricks.

1 Introduction

Graphical proof building. Proof assistants – also called interactive theorem provers (ITPs)
– provide a set of tools to ease the process of formalizing mathematical developments. This
includes languages to specify definitions and statements conveniently, but also interfaces to
build proofs interactively without having to fill in all the details. The dominant paradigm for
these interfaces is that of tactic languages [44]: the user is exposed with a set of goals that
remain to be proved, constituting the proof state, and modifies these goals through textual
commands, called tactics, until there is no goal left. This is currently what is implemented
in mainstream proof assistants such as Coq [58] and Lean [45].

In recent years, there have been several efforts to replace or complement textual tactic
languages with graphical user interfaces (GUIs) [51, 4, 38, 12, 53, 35, 68, 3]. The hope is
to make proof assistants more intuitive and accessible to beginners and non-specialists, but
also, to some extent, more productive and ergonomic even for experts.

The initial motivation for this work was to design a proof calculus well-suited to direct
manipulation in such a graphical setting. The idea is that the user should be able to interact
directly with the graphical representation of the proof state, using a pointing device such as

© Pablo Donato;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 5; pp. 5:1–5:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pablo.donato@polytechnique.edu
https://orcid.org/0000-0001-7883-6754
https://doi.org/10.4230/LIPIcs.FSCD.2024.5
https://arxiv.org/abs/2402.15174
https://github.com/Champitoad/flowers-metatheory
https://archive.softwareheritage.org/swh:1:dir:290076a847ca95e93c17fb66659086d7f68be014;origin=https://github.com/Champitoad/flowers-metatheory;visit=swh:1:snp:4e8e9db020ad62996ea53e2f7aa11a1293700d6c;anchor=swh:1:rev:9fad86b89037ce4aca7ffefc9a964a39ee3e473d
https://github.com/Champitoad/flower-prover
https://archive.softwareheritage.org/swh:1:dir:fcc934cae3a75692c031dc82ffdab138084a472d;origin=https://github.com/Champitoad/flower-prover;visit=swh:1:snp:25cb9a170bf72700948f6d30840e8593c52316a5;anchor=swh:1:rev:a14d2f0c6b4ff596eb5169115ef454b86080361b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Flower Calculus

a mouse or fingers on a touch screen. In previous work [22], we proposed a way to synthesize
complex logical inferences through drag-and-drop actions between two formulas of the current
goal/sequent, based on the subformula linking (SFL) methodology [12, 13].

Diagrammatic reasoning. In this work, we show that (single-conclusion) sequents and
symbolic formulas built from binary connectives and unary quantifiers are not mandatory
for representing the proof state. Other authors have defended the idea of using diagrams as
a more user-friendly frontend for ITPs. In particular, Linker et al. showed how to integrate
tactic-based automation in an ITP based on spider diagrams [35], which are equivalent in
expressive power to classical monadic first-order logic (FOL) [29].

We introduce a new data structure for goals inspired by an earlier invention in the history
of diagrammatic logic: the existential graphs (EGs) of C. S. Peirce [52]. We noticed that
our structure could be drawn and manipulated metaphorically in the form of nested flowers,
and thus chose to name flower calculus the proof system for full intuitionistic FOL that we
built around it. Our focus in this paper will be to introduce the flower calculus to readers
unfamiliar with EGs, and to study its fundamental properties through the lens of modern
structural proof theory.

Implementation. We have formalized in Coq a bidirectional simulation between the flower
calculus and cut-free sequent calculus, yielding a soundness theorem and a weak completeness
theorem for an analytic fragment of the flower calculus [19]. In this paper, we follow a
semantic rather than syntactic approach, avoiding translations to and from symbolic formulas
to obtain a stronger completeness result.

While currently at an early stage, we are also developing the Flower Prover, a prototype
of direct-manipulation GUI for ITPs based on the flower calculus [20]. The interested reader
can try a publicly available version of the prototype online1. We leave a detailed account of
the Flower Prover and its connection to the flower calculus for future work.

Outline. The article is organized as follows: in Section 2 we give a brief overview of
the original diagrammatic syntax of EGs used by Peirce in his system Alpha for classical
propositional logic. In Section 3 we retrace the origin of an intuitionistic variant of EGs
first introduced by Oostra in [46], that directly inspired our flower metaphor. In Section 4
we illustrate quickly the original mechanism of lines of identity used by Peirce to express
first-order quantifiers in his Beta system, and show how to recast it in a more traditional
binder-based syntax. In Section 5 we introduce our inductive syntax for flowers, and in
Section 6 we give the full set of inference rules of the flower calculus as well as our notion of
proof. In Section 7 we give a direct Kripke semantics to flowers, and in Section 8 we show
that a restricted fragment of analytic and invertible rules is complete with respect to the
semantics. Finally we conclude in Section 9 by a comparison with some related works.
▶ Note. The full version of this paper with complete appendices is available on arXiv [21].
The proof of soundness of the flower calculus is given in [21, Appendix B]. Contrary to
the completeness proof, it is mostly routine work that does not require much insight.
Detailed proofs for the deduction and completeness theorems are given respectively in [21,
Appendix C.1] and [21, Appendix C.2]. Readers already familiar with EGs can find a detailed
comparison of the rules of the flower calculus with Peirce’s illative transformations in [21,
Appendix A].

1 https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/

P. Donato 5:3

2 Existential graphs

Peirce designed in total three systems of EGs, which he called respectively Alpha, Beta
and Gamma. They were invented chronologically in that order, which also captures their
relationship in terms of complexity: Alpha is the foundation on which the other systems are
built, and can today be understood as a diagrammatic calculus for classical propositional
logic. As we will see in Section 4, Beta corresponds to a variable-free representation of
first-order logic without function symbols. The last system Gamma is more experimental,
with various unfinished features that have been interpreted as attempts to capture modal [67]
and higher-order logics.

Sheet of Assertions. The most fundamental concept of Alpha is the sheet of assertion,
denoted by SA thereafter. It is the space where statements are scribed by the reasoner,
typically a sheet of paper, a blackboard, or a computer display. As its name indicates,
scribing a statement on SA amounts to asserting its truth. Thus naturally, the empty SA
where nothing is scribed will denote vacuous truth, traditionally signified by the symbol ⊤.

Juxtaposition. As we know from natural deduction, asserting the truth of the conjunction
a∧ b of two propositions a and b, amounts to asserting both the truth of a and the truth of b.
In Alpha, there is no need to introduce the symbolic connective ∧, since one can just write
both a and b at distinct locations on SA:

a b

More generally, one might consider any two portions G and H of SA, and interpret their
juxtaposition G H as signifying that we assert the truth of their conjunction.

Cuts. Asserting the truth of the negation ¬ a of a proposition a, amounts to denying the
truth of a. This is done in Alpha by enclosing a in a closed curve like so:

a

Peirce called such curves cuts2, because they ought to be seen as literal cuts in the paper
sheet that embodies SA. Note that they do not need to be circles: all that matters is that a
is in a separate area from the rest of SA. This is precisely the content of the Jordan curve
theorem in topology, and thus we can take cuts to be arbitrary Jordan curves. This entails
in particular that cuts cannot intersect each other, but can be freely nested. Then as for
juxtaposition, one can replace the proposition a in the interior of the cut by any graph G –
i.e. any portion of SA – as long as the cut does not intersect other cuts in G.

Relationship with formulas. With just these two icons, juxtaposition and cuts, one can
therefore assert the truth of any proposition made up of conjunctions and negations and
built from atomic propositions. Importantly, the only symbols needed for doing so are letters
a, b, c . . . denoting atomic propositions, that is “pure” symbols that do not have any logical
meaning associated to them.

2 Not to be confused with the name given to instances of the cut rule in sequent calculus.

FSCD 2024

5:4 The Flower Calculus

a a
Iteration−−−−−−→ a

Insertion−−−−−−→ Double−cut−−−−−−−−→

Figure 1 Proof of the law of excluded middle in Alpha.

Now, it is well-known that {∧,¬} is functionally complete, meaning that any boolean truth
function can be expressed as the composition of conjunctions and negations. In particular,
the symbolic definitions of falsehood ⊥ ≜ ¬ ⊤, classical disjunction A ∨ B ≜ ¬(¬A ∧ ¬B)
and classical implication A⊃B ≜ ¬(A∧ ¬B) can be expressed by the following three graphs:

A B A B

Thus one can easily encode any propositional formula into a classically equivalent graph.
Conversely, one can translate any graph into a classically equivalent formula, as has been
shown for instance in [54]. In fact, there are usually many possible formula readings of a
given graph. One reason is that juxtaposition of graphs is a variadic operation, as opposed
to conjunction of formulas which is dyadic: thus formulas that only differ up to associativity
are associated to the same graph. Also, thanks to the topological nature of SA, juxtaposition
is naturally commutative: the locations of two juxtaposed graphs do not matter, as long as
they live in the same area delimited by a cut. The combination of these properties is called
the isotropy of SA in [40], and is captured in traditional proof theory through the use of
(multi)sets for modelling contexts in sequents.

Illative transformations. In order to have a proof system, one needs a collection of inference
rules for deducing true statements from other true statements. In Alpha, inference rules are
implemented by what Peirce called illative transformations on graphs. In modern terminology,
they correspond to rewriting rules that can be applied to any subgraph. By measuring the
depth of a subgraph as the number of cuts in which it is enclosed, we thus have that the
rules of Alpha are applicable on subgraphs of arbitrary depth. This makes Alpha deserving of
the title of deep inference system.

Figure 1 shows a proof of the law of excluded middle a ∨ ¬ a in Alpha. The first step
consists in applying the illative transformation of Iteration to erase the subgraph a . More
generally, Iteration allows to erase any subgraph G as long as G already occurs “higher” in
SA, i.e. in an area that encloses the erased occurrence of G. The second step of Insertion
allows to erase the other occurrence of a because it is scribed in a negative area, i.e. an
area enclosed in an odd number of cuts – 1 in this case3. The last step of Double−cut allows
to collapse the two remaining cuts, because there is nothing but empty space in between
them. This leaves us with the empty SA, having thus reduced the initial goal to trivial truth.

3 It might be quite confusing that we call “Insertion” a transformation that erases information. This is
because we use Peirce’s original terminology, despite the fact that we adopt a backward reading of rules
where the conclusion that we want to prove is reduced to a sufficient premiss.

P. Donato 5:5

(a) Peirce’s scroll.

b

cf

e

a

d

(b) Oostra’s curl.

b

cf

e

a

d

(c) Inside-out curl.

b

f

e d

c
a

(d) Flower.

Figure 2 From scrolls to flowers.

3 Flowers

The scroll. In [50, pp. 533–535], Peirce explains that he did not immediately come up
with the idea of juxtaposition and cuts as diagrammatizations of conjunction and negation.
Instead, they arose as the natural development of a more primitive icon that he called the
scroll. Figure 2a shows Peirce’s drawing of the scroll as it appears in [50, Fig. 5]. He defines
its intended meaning as that of a “conditional de inesse”, which corresponds to the material
implication of classical logic. Then the graph of Figure 2a is interpreted as the formula
(A ∧B) ⊃ (C ∧D). This agrees with the encoding of implication given in Section 2, if one
sees the outer boundary enclosing the antecedent A B and the inner boundary enclosing the
consequent C D as nested cuts.

It is no coincidence that Peirce based his most fundamental icon on implication: according
to Lewis [34, p. 79], he was the one who introduced the “illative relation” of implication into
symbolic logic in the first place, by giving it a distinguished symbol and studying extensively
the algebraic laws that govern it (e.g. Peirce’s law ((A⊃B) ⊃A) ⊃A).

The n-ary scroll. In order to interpret the scroll as an intuitionistic implication, Oostra
proposed in [46] to reify the scroll as a primitive icon of EGs, distinguished from the nesting
of two cuts. In fact he went further, by generalizing both the cut and the scroll into an
n-ary construction called the curl, where n is the number of inner boundaries, called loops.
Figure 2b shows an example of curl with five loops, where the unique intersection points
between inner and outer boundaries are highlighted in orange4. In [40], the curl is simply
called n-ary scroll, the outer boundary outloop, and the inner boundaries inloops. Then cuts
and scrolls are indeed special cases of n-ary scrolls, respectively with n = 0 and n = 1.

Like the unary scroll, the n-ary scroll is to be read as an implication whose antecedent is
the content of the outloop, and consequent the content of the inloops. The generalization
consists in taking the disjunction of the contents of all inloops: this reflects nicely the
etymological meaning of the word “disjunction”, since the inloops enclose disjoint areas of
the outloop to which they are attached. Then the 5-ary scroll of Figure 2b can be read as
the formula a⊃ (b∨ c∨ d∨ e∨ f); and the 0-ary scroll obtained by removing all inloops from
the latter as a⊃ ⊥, since a 0-ary disjunction is naturally evaluated to its neutral element ⊥.
This coincides with the intuitionistic reading of negation ¬A ≜ A⊃ ⊥.

Continuity. With this interpretation of the n-ary scroll, the Alpha encodings of disjunction
and implication as nested cuts given in Section 2 are no longer valid, because they are not
intuitionistically equivalent to the associated binary and unary scrolls. This is illustrated in

4 We also shade the negative area delimited by the outer boundary in gray.

FSCD 2024

5:6 The Flower Calculus

A B A B

A ∨B A⊃B

̸= A B A B

¬(¬A ∧ ¬B) ¬(A ∧ ¬B)

Figure 3 Continuity, disjunction and implication in intuitionistic EGs.

Figure 3, where the closeness in meaning is reflected iconically (but not symbolically) in the
fact that the graphs only differ in the continuity (or lack thereof) between inloops and their
outloop.
▶ Remark 3.1. This might be related to other manifestations of the notion of continuity in
the semantics of intuitionistic logic, such as the well-known Stone-Tarski interpretation of
formulas as topological spaces [57], and the interpretation of proofs as continuous maps in
the denotational semantics of Dana Scott5 [1].

Blooming. In terms of ergonomy, the n-ary scroll has one notable flaw, also shared with the
classical cut-based syntax: it quickly induces heavy nestings of curves in the plane, making
even relatively simple graphs hard to read for an untrained eye. Our solution is to turn
inloops inside-out, as illustrated in Figure 2c. In this way, we effectively divide the amount
of curve-nesting in scrolls by two. And as an added bonus, the new icon is reminiscent of a
flower, as if it had bloomed from its curled bud; or as if the pistol cylinder from Figure 2b
had transformed into a pistil, and its bullet chambers into petals.

From that point onwards, we chose to fully embrace the flower metaphor: first in our
drawing style as witnessed in Figure 2d, but also in our syntactic terminology, to be introduced
in the next pages. Negative (resp. positive) outloops are now drawn as yellow (resp. white)
pistils for a slightly more colorful experience, and inloops as transparent petals, i.e. of the
same color as the area on which they are scribed.

4 Gardens

Lines of identity. To express first-order quantification, Peirce introduced in Beta the icon
of lines of identity (LoIs). In short, the usual binders and variables of predicate calculus are
replaced by lines that connect the occurrences of bound variables in predicate arguments to
their binding point. For instance, the formulas ∃x.P (x) ∧Q(x) and ∀x.R(x) ⊃ S(x) can be
represented in Beta by the graphs of Figure 4a.

The kind of quantification is determined by the location of the binding point, which is
taken to be the outermost point in the line: if it is in a positive area as in the upper graph,
then the quantifier is existential; otherwise if it is in a negative area as in the lower graph,
the quantifier is universal. This is justified by De Morgan’s laws: the lower graph can also
be read as the classically equivalent formula ¬ ∃x.R(x) ∧ ¬S(x).

5 Before the advent of Oostra’s intuitionistic EGs, Zalamea gave a detailed analysis of Peirce’s philosophy
of the continuum, how it relates to modern developments in mathematics, and how it is embodied
in EGs [66]. Actually according to Oostra [49, p. 162], “the possibility of developing intuitionistic
existential graphs was first suggested by Zalamea in the 1990s [64, 65]”.

P. Donato 5:7

P Q

SR

(a) EGs with LoIs.

QP

SR

(b) Flowers with LoIs.

Q(x)P (x)
x

S(x)
R(x)
x

(c) Flowers with variables.

Figure 4 From LoIs to variables.

Intuitionistic quantification. In intuitionistic logic however, De Morgan’s laws do not hold
anymore. Thus in the flower calculus we need a different way to interpret LoIs as quantifiers.
Our key insight is to adopt a polarity-invariant viewpoint: a LoI now has existential (resp.
universal) force when its outermost point is located in a petal (resp. pistil). In particular,
this implies that LoIs cannot occur at the top-level of SA anymore, but only inside flowers.
Thus the two previous Beta graphs are transformed into the single-petal flowers of Figure 4b.

Variables. Quine experimented with a notation similar to LoIs, but deemed it “too cum-
bersome for practical use” [52, p. 125]. While his lines connected locations inside symbolic
formulas written in linear notation, it is true that having a line for each occurrence of bound
variable can quickly lead to unreadable diagrams ridden with overlapping lines. This is not
a problem in the context of Peirce’s work, because his aim was “to separate [relational]
reasoning into its smallest steps, [...] not to facilitate reasoning, but to facilitate the study of
reasoning” [52, p. 111]; and recent formalizations of the algebra of LoIs in category theory
support the pertinence of Peirce’s approach [27, 6].

However, keeping in mind our goal of laying the basis for a calculus well-suited to practical
reasoning in ITPs, we chose to replace LoIs by a more traditional syntax based on binders
and variables. The idea is to substitute every LoI with a variable binder scribed in the area
of its outermost point, so that the two flowers of Figure 4b transform into those of Figure
4c. Areas delimited by pistils and petals now comprise both flowers and binders, which can
be seen metaphorically as sprinklers that irrigate the leaves (atomic predicates) of flowers
through invisible LoIs, imagined as underground hoses. Hence we call these areas gardens.

5 Syntax

We are now going to distill the syntactic essence of flowers into an inductive, (multi)set-
based data structure. This will allow for a more compact textual notation, that is better
suited to proof-theoretical study. We previously illustrated how flowers allow to represent
purely relational statements without function symbols. Since functions are just deterministic
relations, one can in principle formalize any first-order theory in this syntax6.

▶ Definition 5.1. A first-order signature is a pair Σ = (P, ar), where P is the countable set
of predicate symbols of Σ, and ar : P → N gives an arity to each symbol.

6 Conversely, every relation can be faithfully encoded as its characteristic function, which is the basis for
the formalization of mathematics in type theories.

FSCD 2024

5:8 The Flower Calculus

Kind Letters
Variables (V) x, y, z

Flowers (F) ϕ, ψ, ξ

Gardens (G) γ, δ

Sprinklers x,y, z
Variable vectors x⃗, y⃗, z⃗

Substitutions σ, τ

Bouquets Φ,Ψ,Ξ
Corollas Γ,∆
Contexts Φ̂, Ψ̂, Ξ̂
Theories T ,U

(a) Conventions for meta-variables.

∀x1∀x2.(p(x1, x2) ⊃ (∃y1.q(x1, y1) ∧ (r(x2) ⊃ s(y1))) ∨ (∃y2.q(x2, y2)))

x1, x2 · p(x1, x2) ⫐ y1 · q(x1, y1), (r(x2) ⫐ s(y1)) ; y2 · q(x2, y2)

y2

q(x2, y2)

x1 x2

p(x1, x2)

y1 q(x1, y1)

r(x2) s(y1)

(b) Interpreting flowers.

Figure 5 Notations.

In the following, we fix a countable set of variables V and a first-order signature Σ.

▶ Definition 5.2. The sets of flowers F and gardens G are defined by mutual induction:

Atom If p ∈ P and x⃗ ∈ Var(p), then p(x⃗) ∈ F;

Garden If x ⊂ V is a finite set and Φ ⊂ F a finite multiset, then x · Φ ∈ G;

Flower If γ ∈ G and ∆ ⊂ G is a finite multiset, then γ ⫐ ∆ ∈ F.
Similarly to nested sequents, the syntax of flowers ϕ, ψ and gardens γ, δ can be expressed
succinctly with the following grammar:

ϕ, ψ ⩴ p(x1, . . . , xn) | γ ⫐ δ1 ; . . . ; δn γ, δ ⩴ x1, . . . , xn · ϕ1, . . . , ϕn

Building on our botanical metaphor, any finite set x ⊂ V of variables is called a sprinkler,
finite multiset Φ ⊂ F of flowers a bouquet, and finite multiset Γ ⊂ G of gardens a corolla.
Following the grammar presentation, we will often write gardens as x1, . . . , xn · ϕ1, . . . , ϕm,
where the xi are called binders; and non-atomic flowers as γ ⫐ δ1 ; . . . ; δn, where γ is the
pistil and the δi are the petals. We write {Ei}ni to denote a finite (multi)set of size n with
elements Ei indexed by 1 ≤ i ≤ n. We also omit writing the empty (multi)set, accounting
for it with blank space as is done in sequent notation; in particular, · stands for the empty
garden ∅ · ∅, γ ⫐ for the flower with no petals γ ⫐ ∅, and γ ⫐ · for the flower with one
empty petal.

Note that the order of precedence of operators is , < · < ; < ⫐: this is illustrated in
Figure 5b, where a flower expression is parsed into the corresponding flower drawing, and
then translated as a formula. Also to improve readability, we will most of the time omit the
garden dot “·” when the sprinkler is empty, writing Φ instead of · Φ.

▶ Remark 5.3. In some places the choice of letter for meta-variables will be important to
disambiguate the kind of syntactic object we denote. Table 5a summarizes our chosen
notational conventions in this respect.

We now proceed with routine definitions for handling variables.

P. Donato 5:9

▶ Definition 5.4. The sets of free variables fv(−) and bound variables bv(−) of a
flower/bouquet/garden are defined recursively by:

fv(p(x⃗)) = x⃗ fv(Φ) =
⋃
ϕ∈Φ

fv(ϕ) fv(x · Φ) = fv(Φ) \ x

fv(x · Φ ⫐ ∆) = fv(x · Φ) ∪
⋃

y·Ψ∈∆

fv(x,y · Ψ)

bv(p(x⃗)) = ∅ bv(Φ) =
⋃
ϕ∈Φ

bv(ϕ) bv(x·Φ) = x∪bv(Φ) bv(γ ⫐ ∆) = bv(γ)∪
⋃
δ∈∆

bv(δ)

To avoid reasoning about α-equivalence, we adopt in this work the so-called Barendregt
convention that all variable binders are distinct, both among themselves and from free
variables. Formally, we assume that for any bouquet Φ the two following conditions hold:
1. computing bv(Φ) as a multiset gives the same result as computing it as a set;
2. bv(Φ) ∩ fv(Φ) = ∅.

To define substitutions, we introduce a general notion of function update, which will be
useful for the semantic evaluation of flowers in Section 7.

▶ Definition 5.5. Let A,B be two sets, f, g : A → B two functions and R ⊆ A some subset
of their domain. The update of f on R with g is the function defined by:

(f |R g)(x) =
{
g(x) if x ∈ R

f(x) otherwise

− |− − is left-associative, that is f |R g |S h = (f |R g) |S h. Also if f or g is the identity
function 1 we omit writing it, i.e. f |R = f |R 1 and |R g = 1 |R g.

▶ Definition 5.6. A substitution is a function σ : V → V with a finite support supp(σ) =
{x | σ(x) ̸= x}. We write σ : x to denote a substitution σ whose support is x. The domain
of substitutions is extended to flowers, bouquets and gardens mutually recursively by:

σ(p(x1, . . . , xn)) = p(σ(x1), . . . , σ(xn)) σ(ϕ1, . . . , ϕn) = σ(ϕ1), . . . , σ(ϕn)

σ(x · Φ) = x · σ |x(Φ) σ(x · Φ ⫐ δ1 ; . . . ; δn) = σ(x · Φ) ⫐ σ |x(δ1) ; . . . ; σ |x(δn)

We say that a substitution σ : x is capture-avoiding in a bouquet Φ if σ(x) ∩ bv(Φ) = ∅.

6 Calculus

Equipped with an inductive syntax, we can now express formally the inference rules of the
flower calculus. First we need a notion of context to apply rules at arbitrarily deep locations:

▶ Definition 6.1 (Context). Contexts Φ̂ are defined inductively by the following grammar:

Φ̂, Ψ̂, Ξ̂ ⩴ Ψ, ϕ̂ ϕ̂, ψ̂, ξ̂ ⩴ □ | x · Φ̂ ⫐ ∆ | γ ⫐ x · Φ̂ ; ∆

Informally, a context can be seen as a bouquet with exactly one occurrence of a special flower
□ called its hole. The filling of a context Φ̂ with a bouquet Ψ (resp. context Ψ̂) is the bouquet
Φ̂{Ψ} (resp. context Φ̂{Ψ̂}) equal to Φ̂ where □ has been substituted with Ψ (resp. Ψ̂).

FSCD 2024

5:10 The Flower Calculus

(a) Cross-pollination. (b) Self-pollination.

Figure 6 Pollination in flowers.

▶ Definition 6.2 (Polarity). The number of inversions inv(Φ̂) of a context Φ̂ is:

inv(□) = 0 inv(Ψ, ϕ̂) = inv(ϕ̂) inv(x · Φ̂ ⫐ ∆) = 1 + inv(Φ̂) inv(γ ⫐ x · Φ̂ ; ∆) = inv(Φ̂)

We say that a context Φ̂ is positive if inv(Φ̂) is even, and negative otherwise. We denote
positive and negative contexts respectively by Φ̂+ and Φ̂−.

In order to formulate the equivalent of the Iteration rule of EGs for flowers, we introduce
a pollination relation that captures the availability of a flower in a given context:

▶ Definition 6.3 (Pollination). We say that a flower ϕ can be pollinated in a context Φ̂,
written ϕ ≻ Φ̂, when there exists a bouquet Ψ with ϕ ∈ Ψ and contexts Ξ̂ and Ξ̂0 s.t. either:
Cross-pollination Φ̂ = Ξ̂{Ψ, Ξ̂0};
Self-pollination Φ̂ = Ξ̂{x · Ψ ⫐ y · Ξ̂0 ; ∆} for some x,y,∆.
A bouquet Φ can be pollinated in Φ̂, written Φ ≻ Φ̂, if ϕ ≻ Φ̂ for all ϕ ∈ Φ.

Figure 6 illustrates the meaning of pollination as a relation of justification between
locations: the blue dot marks the location of the justifying/pollinating occurrence of ϕ, and
the red dots all the areas that it justifies/pollinates, and thus where ϕ is available for use. We
distinguish two cases of cross-pollination and self-pollination, as botanists do when describing
the reproduction of flowers. This distinction does not exist in classical EGs, because pistils
and petals are both identified as instances of cuts7.
▶ Remark 6.4. Incidentally, the pollination relation also explains the scope of variables.
Indeed, one can interpet red dots in Figure 6 as the allowed usage points for the variable
bound at the linked blue dot. This hints at a possible type-theoretic variant of the flower
calculus where variables are also used for higher-order individuals, including flowers.

Proofs. The inference rules of the flower calculus are presented in Figure 7. Read from top
to bottom, they correspond to traditional inference rules deducing a necessary conclusion
from a valid premiss. But we will prefer their backward, bottom-up reading: then they can be
seen as rewriting rules that reduce a goal to a sufficient premiss, just like in our illustration
of the illative transformations of EGs in Figure 1. Also, all rules manipulate bouquets: this
is seen more clearly in the graphical presentation of the rules in appendix (Figures 8 and 9).

7 The same phenomenon is at work in SFL: cross-pollination and self-pollination can be seen as generalizing
the forward and backward interaction connectives ⚪ and ▹ of intuitionistic SFL [13, 22], while the
original formulation of SFL for classical linear logic had only one interaction connective ∗ [12]. Through
the Curry-Howard-Lambek correspondence, this is also reminiscent of the adjunction between products
(⚪) and exponentials (▹) in cartesian closed categories, as opposed to the natural isomorphism (−)∗ of
∗-autonomous categories.

P. Donato 5:11

Nature ❀

Ξ̂{}
poll↓

Ξ̂{Φ}

Ξ̂{Φ}
poll↑

Ξ̂{}

· ⫐ · Φ
epis

Φ
epet

γ ⫐ · ; ∆

x · Φ ⫐ · {γi ⫐ ∆}n
i srep

x · Φ, (· ⫐ {γi}n
i) ⫐ ∆

(x · σ(Φ) ⫐ σ(∆)), (x,y · Φ ⫐ ∆)
ipis

x,y · Φ ⫐ ∆

γ ⫐ x · σ(Φ); x,y · Φ; ∆
ipet

γ ⫐ x,y · Φ; ∆

Culture ✂

Ξ̂+{Φ}
grow

Ξ̂+{}

Ξ̂−{}
crop

Ξ̂−{Φ}

Ξ̂+{γ ⫐ ∆}
pull

Ξ̂+{γ ⫐ Γ; ∆}

Ξ̂−{γ ⫐ Γ; ∆}
glue

Ξ̂−{γ ⫐ ∆}

Ξ̂+{x,y · Φ ⫐ ∆}
apis

Ξ̂+{x · σ(Φ) ⫐ σ(∆)}

Ξ̂−{γ ⫐ x,y · Φ; ∆}
apet

Ξ̂−{γ ⫐ x · σ(Φ); ∆}

In the rules poll↓ and poll↑, we assume that Φ ≻ Ξ̂.
In the rules ipis, apis (resp. ipet, apet), we assume some substitution σ : y that is

capture-avoiding in · Φ ⫐ ∆ (resp. Φ).

Figure 7 Rules of the flower calculus.

We partition the rules into two sets: the natural rules denoted by ❀ that apply in
arbitrary contexts, and the cultural rules denoted by ✂ that apply exclusively in positive or
negative contexts. In particular, every ❀-rule is both analytic (i.e. every atom in the premiss
already appears in the conclusion) and invertible (see [21, Lemma B.17]); on the contrary, all
✂-rules are non-invertible, and they will be shown to be admissible in Section 8.

▶ Definition 6.5 (Derivation). Given a set of rules R, we write Φ →R Ψ to indicate a rewrite
step in R, that is an instance of some r ∈ R with Ψ as premiss and Φ as conclusion. We
just write Φ → Ψ to mean Φ →❀∪✂ Ψ. A derivation Φ →n

R Ψ is a sequence of rewrite
steps Φ0 →R Φ1 . . . →R Φn with Φ0 = Φ, Φn = Ψ and n ≥ 0. Generally the length n of
the derivation does not matter, and we just write Φ →∗

R Ψ. Finally, natural derivations are
closed under arbitrary contexts: for every context Ξ̂, Φ →❀ Ψ implies Ξ̂{Φ} →❀ Ξ̂{Ψ}. We
write Φ ⇀❀ Ψ to denote a shallow natural step, i.e. an instance of a ❀-rule in the empty
context □.

▶ Definition 6.6 (Proof). A proof of a bouquet Φ is a derivation Φ →∗ ∅.

In Peircean terms, the empty bouquet is the blank SA. Then proving a bouquet amounts
to erasing it completely from SA, thus reducing it to trivial truth as in Figure 1. Figure 10 in
appendix shows an example of ❀-proof in the flower calculus, both in textual and graphical
syntax. Note that we used a non-duplicating version of the rules ipis and ipet, in order to
save some space in the graphical presentation.

If we want to reason about relative truth, i.e. Φ is true under the assumption that Ψ
is, we can simply rely on the existence of a derivation Φ →∗ Ψ in the full flower calculus.
This will be justified by the soundness of all rules ([21, Theorem B.20]) as well as a strong
completeness result (Corollary 8.8), that relies on the following strong deduction theorem:

FSCD 2024

5:12 The Flower Calculus

▶ Theorem 6.7 (Strong deduction). Φ →∗ Ψ if and only if Ψ ⫐ Φ →∗ ∅.

Contrary to full derivability, natural derivability Φ →∗
❀ Ψ is too weak to satisfy a strong

deduction theorem. This is a consequence of the fact that ❀-rules are invertible, and thus
can only relate equivalent bouquets. Indeed, as soon as Ψ ⫐ Φ is ❀-provable but the converse
Φ ⫐ Ψ is not, it follows from the completeness of ❀-rules that Φ and Ψ are not equivalent:
thus Φ ↛∗

❀ Ψ, contradicting the strong deduction statement.
A trivial way to circumvent this is to define directly the relation of hypothetical provability

Ψ ⊢ Φ as Ψ ⫐ Φ →∗ ∅. This is closer to what one would find in sequent calculus, where
hypothetical proofs are closed derivations of hypothetical sequents, not open derivations. The
difference is that sequents capture only the first-order8 implicative structure of logic, while
flowers capture the full structure of intuitionistic FOL. This allows for a nice generalization
of the notion of hypothetical provability, which will be useful in our completeness proof:

▶ Definition 6.8. We say that Φ is hypothetically provable from Ψ in a fragment R of rules,
written Ψ ⊢R Φ, if Ξ̂{Φ} →∗

R Ξ̂{} for every context Ξ̂ such that Ψ ≻ Ξ̂. We write Ψ ⊢ Φ to
denote hypothetical provability in the full flower calculus.

▶ Theorem 6.9 (Deduction). Ψ ⊢❀ Φ if and only if ⊢❀ Ψ ⫐ Φ.

7 Semantics

We now give a semantics to flowers in Kripke structures. We recall the standard definitions:

▶ Definition 7.1. A first-order structure is a pair (M, ⟦·⟧) where M is a non-empty set
called the domain, and ⟦·⟧ is a map called the interpretation that associates to each predicate
symbol p ∈ P a relation ⟦p⟧ ⊆ M ar(p).

▶ Definition 7.2. A Kripke structure is a triplet K = (W,≤, (Mw)w∈W), where W is the set
of worlds, ≤ is a pre-order on W called accessibility, and (Mw)w∈W is a family of first-order
structures indexed by W . Furthermore, we require the following monotonicity conditions to
hold whenever w ≤ w′: 1. Mw ⊆ Mw′ ; 2. for every p ∈ P, ⟦p⟧w ⊆ ⟦p⟧w′ .

▶ Definition 7.3. Given a Kripke structure K and a world w in K, a w-evaluation is a
function e : V → Mw. The interpretation map of Mw is extended to variables and substitutions
with respect to any w-evaluation e as follows:

⟦x⟧e = e(x) ⟦σ⟧e(x) = ⟦σ(x)⟧e

The crux of Kripke semantics is the forcing relation, that captures the truth-conditions of
statements in Kripke structures. While it is usually defined on formulas, here we adapt the
definition to flowers, which in our opinion makes it simpler and more uniform since flowers
can be seen as built from essentially one big constructor:

▶ Definition 7.4. The depth |−| of a flower/garden is defined by mutual recursion:

|p(x⃗)| = 0 |x · Φ| = max
ϕ∈Φ

|ϕ| |γ ⫐ ∆| = 1 + max(|γ|,max
δ∈∆

|δ|)

▶ Definition 7.5. Given some Kripke structure K, the forcing relation w ⊩ ϕ [e] between a
world w, a flower ϕ and a w-evaluation e is defined by induction on |ϕ| as follows:

8 As opposed to higher-order, in the sense of having negatively nested implications.

P. Donato 5:13

Atom w ⊩ p(x⃗) [e] iff ⟦x⃗⟧e ∈ ⟦p⟧w;
Flower w ⊩ x · Φ ⫐ {xi · Φi}ni [e] iff for every w′ ≥ w and every w′-evaluation e′, if w′ ⊩

Φ [e |x e′] then there is some 1 ≤ i ≤ n and w′-evaluation e′′ such that w′ ⊩ Φi [e |x e′ |xi e
′′].

Bouquet w ⊩ Φ [e] iff w ⊩ ϕ [e] for every ϕ ∈ Φ.

Lastly, we define the notion of semantic entailment Φ ⊨ Ψ on bouquets, mirroring the
syntactic entailment Φ ⊢ Ψ of the last section:

▶ Definition 7.6. Let K be a Kripke structure, and Φ,Ψ some bouquets. We say that Φ
semantically entails Ψ in K, written Φ ⊨K Ψ, when w ⊩ Φ [e] implies w ⊩ Ψ [e] for every
world w ∈ W and w-evaluation e. This entailment is valid if it holds for any Kripke structure
K, and in that case we simply write Φ ⊨ Ψ. We say that Φ is semantically equivalent to Ψ,
written Φ

⊨

⊨ Ψ, when Φ ⊨ Ψ and Ψ ⊨ Φ.

8 Completeness

We now outline a direct completeness proof for the natural fragment ❀ of the flower calculus:
every true flower ϕ is naturally provable, i.e. ⊨ ϕ implies ⊢❀ ϕ. Since this fragment is
analytic, we cannot reuse most completeness proofs from the literature, because they usually
rely on a non-analytic principle like the cut rule of sequent calculus. Our insight was to
adapt techniques from the semantic cut-elimination proof given by Hermant in [28], which is
nonetheless relatively close to the original completeness proof of Gödel. A novelty of our
proof is that it dispenses completely with the need for Henkin witnesses.

First we need to generalize our notions of syntactic and semantic entailment to possibly
infinite sets of flowers, so-called theories:

▶ Definition 8.1. Any set T ⊆ F of flowers is called a theory. In particular, a bouquet can
be regarded as a finite theory, by forgetting the number of repetitions of its elements. We
say that a bouquet Φ is provable from a theory T , written T ⊢ Φ, if there exists a bouquet
Ψ ⊆ T such that Ψ ⊢ Φ. Given a Kripke structure K, a world w in K and a w-evaluation e,
we say that T is forced by w under e, written w ⊩ T [e], if w ⊩ ϕ [e] for all ϕ ∈ T . Then Φ
is a consequence of T , written T ⊨K Φ, if w ⊩ T [e] implies w ⊩ Φ [e] for every world w in
K and w-evaluation e.

▶ Definition 8.2. A theory T is said to be ψ-consistent when T ⊬❀ ψ, and ψ-complete when
for all ϕ ∈ F, either T , ϕ ⊢❀ ψ or ϕ ∈ T .

Intuitively, a theory T is ψ-consistent when one cannot deduce ψ from it, and ψ-complete
when it decides any formula ϕ relatively to ψ. This is better understood by considering the
special case where ψ = (⫐) is the absurd flower: then consistency means that one cannot
derive any contradiction from T ; and completeness that T either refutes ϕ syntactically with
a proof of Φ, ϕ ⫐ (⫐) for some Φ ⊆ T , or already validates it “semantically”, i.e. without
the need for a proof since ϕ ∈ T .

The next two propositions constitute the central argument that allows the completeness
proof to go through despite the analyticity of ❀-rules. They are a direct adaptation of [28,
Proposition 7], which Hermant identifies as “an important property of any A-consistent,
A-complete theory, [...] that it enjoys some form of the subformula property”.

Roughly, the first proposition captures the intuitionistic truth-conditions that make a
flower valid (i.e. true in every model) by modelling them on material implication, just like
Peirce would do with his scroll (see Section 3): ϕ is true if the content Φi of one of its petals
(consequents) is, or if the content Φ of its pistil (antecedent) is not.

FSCD 2024

5:14 The Flower Calculus

▶ Proposition 8.3 (Analytic truth). Let ψ ∈ F, T some ψ-consistent and ψ-complete theory,
and ϕ = x · Φ ⫐ ∆ with ∆ = {δi}ni = {xi · Φi}ni such that ϕ ∈ T . Then for every substitution
σ : x, either σ(Φi) ⊆ T for some 1 ≤ i ≤ n, or T ⊬❀ σ(Φ).

Proof. Suppose the contrary, i.e. there is a substitution σ such that T ⊢❀ σ(Φ) and for all
1 ≤ i ≤ n, there is some ϕi ∈ Φi ① such that σ(ϕi) ̸∈ T . Thus by ψ-completeness of T ,
we get T , σ(ϕi) ⊢❀ ψ. So there are Ψ ⊆ T and Ψi ⊆ T ∪ σ(ϕi) such that Ψ ⊢❀ σ(Φ) ②

and Ψi ⊢❀ ψ ③. Now it cannot be the case that Ψi ⊆ T , otherwise by weakening and
ψ-consistency of T we would have Ψi ⊬❀ ψ. So there must exist Ψ′

i ⊆ T such that
Ψi = Ψ′

i ∪ σ(ϕi) ④. Again by weakening and ψ-consistency of T , we get Ψ,
⋃n
i=1 Ψ′

i, ϕ ⊬❀ ψ.
Now we derive a contradiction by showing Ψ,

⋃n
i=1 Ψ′

i, ϕ ⊢❀ ψ. Let Ξ̂ be a context such that
Ψ,

⋃n
i=1 Ψ′

i, ϕ ≻ Ξ̂ ⑤. Then Ξ̂{ψ} →∗
❀ Ξ̂{} with the following derivation:

Ξ̂{ψ} →epis Ξ̂{ · ⫐ · ψ}
→poll↑ Ξ̂{ · ϕ ⫐ · ψ} (⑤)
→ipis Ξ̂{ · (· σ(Φ) ⫐ σ(∆)), ϕ ⫐ · ψ}
→poll↓ Ξ̂{ · (· ⫐ σ(∆)), ϕ ⫐ · ψ} (②, ⑤)
→srep Ξ̂{ · ϕ ⫐ · {σ(δi) ⫐ · ψ}ni }
= Ξ̂{ · ϕ ⫐ · {xi · σ(Φi) ⫐ · ψ}ni }
→n

poll↓ Ξ̂{ · ϕ ⫐ · {xi · σ(Φi) ⫐ · }ni } (①, ③, ④, ⑤)
→n

epet Ξ̂{ · ϕ ⫐ · }
→epet Ξ̂{}

◀

Dually, the second proposition captures the grounds on which a flower can be deemed
invalid (i.e. false in at least one model): ϕ is not true if assuming that its pistil Φ is true is
not sufficient to conclude that one of its petals Φi is.

▶ Proposition 8.4 (Analytic refutation). Let ψ ∈ F, T some ψ-consistent and ψ-complete
theory, and ϕ = x · Φ ⫐ ∆ with ∆ = {δi}ni = {xi · Φi}ni such that T ⊬❀ ϕ. Then for every
1 ≤ i ≤ n and substitution σ : xi, there is some ϕi ∈ Φi such that T ,Φ ⊬❀ σ(ϕi).

Proof. Suppose the contrary, i.e. there are some 1 ≤ i ≤ n and σ : xi such that T ,Φ ⊢❀ σ(Φi).
Therefore there must exist Ψ ⊆ T and Φ0 ⊆ Φ ① such that Ψ,Φ0 ⊢❀ σ(Φi) ②. By
hypothesis, for every Φ′ ⊆ T there is a context Ξ̂ such that Φ′ ≻ Ξ̂ and Ξ̂{ϕ} ↛∗

❀ Ξ̂{}. We
now derive a contradiction by showing Ξ̂{ϕ} →∗

❀ Ξ̂{} for all Ξ̂ such that Ψ ≻ Ξ̂ ③:

Ξ̂{ϕ} →ipet Ξ̂{x · Φ ⫐ · σ(Φi) ; ∆}
→poll↓ Ξ̂{x · Φ ⫐ · ; ∆} (①, ②, ③)
→epet Ξ̂{}

◀

Next, we define the so-called universal Kripke structure ✿(ψ) relative to a flower ψ:

▶ Definition 8.5. Let ψ ∈ F. The universal Kripke structure ✿(ψ) has:
The set of ψ-consistent and ψ-complete theories as its worlds;
Set inclusion ⊆ as its accessibility relation;

P. Donato 5:15

For each world T , a first-order structure whose domain is the set of variables V, and
whose interpretation map is given by ⟦p⟧T = {x⃗ | p(x⃗) ∈ T }.

One can easily check that the monotonicity conditions of Kripke structures hold for ✿(ψ).

We are now equipped to formulate the main adequacy lemma, which relates forcing in
✿(ψ) to ψ-consistency and ψ-completeness:

▶ Lemma 8.6 (Adequacy). Let ϕ, ψ ∈ F, T a ψ-consistent and ψ-complete theory, and σ a
substitution. Then 1. σ(ϕ) ∈ T implies T ⊩ ϕ [σ], and 2. T ⊬❀ σ(ϕ) implies T ⊮ ϕ [σ].

Proof. The proof goes by induction on |ϕ|. We only give an informal sketch, see [21,
Appendix C.2] for the detailed proof. There are just two cases to consider:
Base case ϕ = p(x⃗). The first statement is trivial. The second statement is immediate from

reflexivity and weakening lemmas on the hypothetical provability relation ⊢.
Recursive case ϕ = γ ⫐ ∆. The first statement follows from Proposition 8.3. The second

statement follows from Proposition 8.4, as well as the existence and properties of the
completion procedure. ◀

We get the completeness theorem as a near-direct consequence:

▶ Theorem 8.7 (Completeness). Φ ⊨ Ψ implies Φ ⊢❀ Ψ.

Combined with strong deduction (Theorem 6.7), this also yields a strong completeness
theorem for the full flower calculus9:

▶ Corollary 8.8 (Strong completeness). Φ ⊨ Ψ implies Ψ →∗ Φ.

Finally, the composition of the soundness, completeness and deduction theorems ([21,
Theorem B.20], Theorem 8.7 and Theorem 6.9) gives the admissibility of ✂-rules, and thus
the analyticity of the flower calculus:

▶ Corollary 8.9 (Cult-elimination). If Φ ⊢ Ψ then Φ ⊢❀ Ψ.

9 Related works

Intuitionistic EGs. We have already mentioned the seminal work of Oostra, who introduced
in [46] an intuitionistic version of Alpha. In [47] he describes its natural extension with LoIs to
get an intuitionistic version of Beta, and in [48] he gives formal soundness and completeness
proofs for intuitionistic Alpha, based on a linear notation for graphs. Ma and Pietarinen
have developed in [40] their own system of intuitionistic EGs for propositional logic, with
a different set of inference rules than Oostra’s. They give a more systematic proof theory,
including deduction, soundness and completeness theorems with respect to Heyting algebras.

Our work brings several new contributions on top of those:
Variadicity Our multiset-based definition of flowers captures faithfully the variadic nature

of juxtaposition and n-ary scrolls in the diagrammatic syntax. In contrast, previous
formalizations rely on a restricted inductive syntax which only captures graphs that are
isomorphic to formulas built with binary connectives.

Intuitionistic binders While replacing LoIs with binders and variables has already been done
by Sowa in the context of classical EGs [56], it seems like we are the first to adapt the
idea to the intuitionistic setting.

9 Actually it already works for the fragment ❀ ∪ {grow}, thanks to the proof of the strong deduction
theorem (see [21, Appendix C.1]).

FSCD 2024

5:16 The Flower Calculus

Analyticity To our knowledge, we are the first to give a Kripke semantics to a syntax based
on EGs, and to use this to obtain an analyticity result10.

Invertibility The natural fragment of the flower calculus appears to be the first proof system
based on EGs where all rules are invertible.

Deep inference. While the deep inference literature is most furnished with systems for
classical logic, a few works tackle intuitionistic logics: the seminal work of Tiu, who proposed a
calculus of structures for intuitionistic FOL [59], was followed by computational interpretations
of the implicative fragment in Guenot’s thesis [26]. There are also nested sequent systems for
(propositional) full intuitionistic linear logic [15], standard and constant-domain intuitionistic
FOL [23], and intuitionistic modal logics [14, 32, 37]. The flower calculus is closer to Guenot’s
nested sequent calculi for implicative logic which also function as rewriting systems, but
extends them to full intuitionistic FOL.

Labelled sequent calculi. For a long time, it was believed that there could not be fully
invertible proof systems for intuitionistic logics, even in the propositional case. While this
might be true in standard Gentzen formalisms, recent works have shown that it is possible
in the context of labelled sequent calculi: first with Lyon’s G3IntQ calculus for FOL [36,
Section 3.3], and then with the calculus labIS4≤ of Girlando et al. for the modal logic S4 [25].
In these systems, invertibility is made possible by the addition of semantic information to
sequents, in the form of so-called labels and relational atoms that respectively encode the
worlds and accessibility relations of Kripke structures. The flower calculus follows instead a
purely syntactic approach, by relying on deep inference to retrieve what would normally be
semantic information from the context Ξ̂ in the pollination rules poll↑ and poll↓.

Categorical EGs. Since the seminal work of Brady and Trimble in 2000 on the formalization
of EGs in category theory [7, 8], there have been various efforts to find rich categorical
axiomatizations of Beta. The first approach – initiated in [8] – is based on string diagrams,
and has recently enabled strong connections with Frobenius algebras and bicategories or
relations [43, 27, 6]. A second approach makes use of the concept of generic figure [11],
introduced by Reyes as a basic building block for topos theory [33]. We do not know however
of any attempt to uncover the categorical structures underlying intuitionistic EGs. The
flower calculus might be an interesting candidate, in that the invertibility of the natural
fragment could enable a purely equational approach.

Coherent logic. We noticed a formal connection between flowers and coherent logic, a
subset of the formulas of FOL discovered by Skolem in 1920 [55] that is capable of expressing
many mathematical theories, and has close connections to topos theory [31, Section D3.3].
Indeed, the interpretation ⌊x · Φ ⫐ ∆⌋ of a generic flower is given by the following formula,
which has exactly the shape of a coherent formula as described e.g. in [5]:

∀x.

 ∧
ϕ∈Φ

⌊ϕ⌋ ⊃
∨

y·Ψ∈∆

∃y.
∧
ψ∈Ψ

⌊ψ⌋

10 Ma and Pietarinen claim in [39] that Alpha is analytic because it can simulate the cut rule of sequent

calculus. This is a misinterpretation, since this supports precisely the contrary: the ability to simulate
the cut rule with a constant number of rules implies the non-analyticity of one the rules involved (namely,
Peirce’s Deletion rule). Still, the notion of analyticity is not yet fully understood in deep inference
systems, as discussed in [10].

P. Donato 5:17

The only difference is that flowers can be nested, while coherent formulas (also called coherent
sequents) are first-order, in the sense that ϕ and ψ must be atoms. Coherent formulas
appear in the theory of focusing in sequent calculi [41], and they lend themselves to simple
proof search procedures that allow for explainable proof automation in ITPs [5, 30]. A
higher-order variant of coherent formulas that is almost isomorphic to flowers has also been
used to construct an intuitionistic version of the arithmetical hierarchy, as well as a fully
non-invertible proof system for propositional intuitionistic logic [9].

Graph calculi. In the last twenty years, Veloso et al. have studied a series of so-called
graph calculi, where first-order relations are represented by graphs in the sense of graph
theory, and inference rules as graph transformations. The first graph calculus was introduced
informally by Curtis and Lowe in 1996 [16], as a graphical notation supposedly capturing
both relational calculus, and the sequential calculus of Karger and Hoare [63]. Veloso et
al. gave sound and complete syntax and semantics to the calculus in [17], showing that it
captures positive first-order logic on binary relations. They then extended their formalism
to support relational complementation (negation) [18] as well as various modal [62, 60] and
dynamic logics [61].

Graph calculi only handle binary relations and classical logic, while EGs and the flower
calculus support relations of arbitrary arity and intuitionistic logic. We conjecture that the
relationship between graph calculi and EGs is similar to that between commutative diagrams
and string diagrams in category theory: the former represent relations/morphisms as edges
between individuals/objects, while the latter represent them dually as points related by lines.
EGs could then be understood as a hypergraph generalization of graph calculi, where lines of
identity are hyperedges connecting multiple predicate vertices.

Development calculi. Through their backward reading, the rules of the flower calculus
can be understood as primitive tactics for building proofs interactively. In [2, Chapter 3],
Ayers calls such systems development calculi. In particular, he presents his own development
calculus inspired by McBride’s OLEG system [42] and Ganesalingam & Gowers’s prover [24]
called the Box calculus, where goals are represented by a so-called Box data structure very
similar to flowers. In particular, Boxes have so-called disjunctive pairs to reduce backtracking,
that correspond to the petals of flowers. The main difference is that the Box calculus is based
on dependent type theory instead of FOL: this allows to store the partial proof terms inside
of the Boxes themselves, while this information is lost during the construction of flowers.
However, there is no completeness nor analyticity result for the Box calculus. It would be
interesting to investigate further connections, in order to develop a dependently-typed version
of the flower calculus.

References
1 Samson Abramsky and Achim Jung. Domain Theory. Oxford University Press, Inc., USA,

1995.
2 Edward W. Ayers. A Tool for Producing Verified, Explainable Proofs. PhD thesis, University

of Cambridge, 2021.
3 Edward W. Ayers, Mateja Jamnik, and W. T. Gowers. A Graphical User Interface Framework

for Formal Verification. In Liron Cohen and Cezary Kaliszyk, editors, 12th International
Conference on Interactive Theorem Proving (ITP 2021), volume 193 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 4:1–4:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ITP.2021.4.

FSCD 2024

https://doi.org/10.4230/LIPIcs.ITP.2021.4

5:18 The Flower Calculus

4 Yves Bertot, Gilles Kahn, and Laurent Théry. Proof by pointing. In Masami Hagiya and
John C. Mitchell, editors, Theoretical Aspects of Computer Software, volume 789, pages
141–160. Springer Berlin Heidelberg, 1994. Series Title: Lecture Notes in Computer Science.
doi:10.1007/3-540-57887-0_94.

5 Marc Bezem and Thierry Coquand. Automating Coherent Logic. In Geoff Sutcliffe and
Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and Reasoning,
Lecture Notes in Computer Science, pages 246–260, Berlin, Heidelberg, 2005. Springer. doi:
10.1007/11591191_18.

6 Filippo Bonchi, Alessandro Di Giorgio, Nathan Haydon, and Pawel Sobocinski. Diagrammatic
Algebra of First Order Logic, January 2024. arXiv:2401.07055 [cs, math]. doi:10.48550/
arXiv.2401.07055.

7 Geraldine Brady and Todd H. Trimble. A categorical interpretation of C.S. Peirce’s pro-
positional logic Alpha. Journal of Pure and Applied Algebra, 149(3):213–239, June 2000.
doi:10.1016/S0022-4049(98)00179-0.

8 Geraldine Brady and Todd H. Trimble. A String Diagram Calculus for Predicate Logic
and C. S. Peirce’s System Beta, June 2000. URL: https://ncatlab.org/nlab/files/
BradyTrimbleString.pdf.

9 Taus Brock-Nannestad and Danko Ilik. An Intuitionistic Formula Hierarchy Based on High-
School Identities. Mathematical Logic Quarterly, 65(1):57–79, May 2019. arXiv: 1601.04876.
doi:10.1002/malq.201700047.

10 Paola Bruscoli and Alessio Guglielmi. On Analyticity in Deep Inference. Mathematical
Structures in Computer Science, 29(Special Issue 8: A special issue on structural proof theory,
automated reasoning and computation in celebration of Dale Miller’s 60th birthday), 2019.
doi:10.1017/S0960129519000136.

11 Gianluca Caterina and Rocco Gangle. A New Syntax for Diagrammatic Logic: A Generic
Figures Approach. In Yaroslav D. Sergeyev and Dmitri E. Kvasov, editors, Numerical
Computations: Theory and Algorithms, Lecture Notes in Computer Science, pages 43–58,
Cham, 2020. Springer International Publishing. doi:10.1007/978-3-030-40616-5_4.

12 Kaustuv Chaudhuri. Subformula linking as an interaction method. In Sandrine Blazy, Christine
Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving, volume 7998,
pages 386–401. Springer Berlin Heidelberg, 2013. Series Title: Lecture Notes in Computer
Science. doi:10.1007/978-3-642-39634-2_28.

13 Kaustuv Chaudhuri. Subformula linking for intuitionistic logic with application to type
theory. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction - CADE 28 -
28th International Conference on Automated Deduction, Virtual Event, July 12-15, 2021,
Proceedings, volume 12699 of Lecture Notes in Computer Science, pages 200–216. Springer,
2021. doi:10.1007/978-3-030-79876-5_12.

14 Kaustuv Chaudhuri, Sonia Marin, and Lutz Straßburger. Modular focused proof systems for
intuitionistic modal logics. In International Conference on Formal Structures for Computation
and Deduction, 2016.

15 Ranald Clouston, Jeremy Dawson, Rajeev Goré, and Alwen Tiu. Annotation-Free Sequent
Calculi for Full Intuitionistic Linear Logic. In Simona Ronchi Della Rocca, editor, Computer
Science Logic 2013 (CSL 2013), volume 23 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 197–214, Dagstuhl, Germany, 2013. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.CSL.2013.197.

16 Sharon Curtis and Gavin Lowe. Proofs with graphs. Science of Computer Programming,
26(1):197–216, May 1996. doi:10.1016/0167-6423(95)00025-9.

17 Renata De Freitas, Paulo A. S. Veloso, Sheila R. M. Veloso, and Petrucio Viana. On
graph reasoning. Information and Computation, 207(10):1000–1014, October 2009. doi:
10.1016/j.ic.2008.11.004.

https://doi.org/10.1007/3-540-57887-0_94
https://doi.org/10.1007/11591191_18
https://doi.org/10.1007/11591191_18
https://doi.org/10.48550/arXiv.2401.07055
https://doi.org/10.48550/arXiv.2401.07055
https://doi.org/10.1016/S0022-4049(98)00179-0
https://ncatlab.org/nlab/files/BradyTrimbleString.pdf
https://ncatlab.org/nlab/files/BradyTrimbleString.pdf
https://doi.org/10.1002/malq.201700047
https://doi.org/10.1017/S0960129519000136
https://doi.org/10.1007/978-3-030-40616-5_4
https://doi.org/10.1007/978-3-642-39634-2_28
https://doi.org/10.1007/978-3-030-79876-5_12
https://doi.org/10.4230/LIPIcs.CSL.2013.197
https://doi.org/10.1016/0167-6423(95)00025-9
https://doi.org/10.1016/j.ic.2008.11.004
https://doi.org/10.1016/j.ic.2008.11.004

P. Donato 5:19

18 Renata De Freitas, Paulo A. S. Veloso, Sheila R. M. Veloso, and Petrucio Viana. A Calculus
for Graphs with Complement. In Ashok K. Goel, Mateja Jamnik, and N. Hari Narayanan,
editors, Diagrammatic Representation and Inference, volume 6170, pages 84–98. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2010. Series Title: Lecture Notes in Computer Science.
doi:10.1007/978-3-642-14600-8_11.

19 Pablo Donato. flowers-metatheory, November 2022. Software, swhId:
swh:1:dir:290076a847ca95e93c17fb66659086d7f68be014 (visited on 2024-06-20). URL:
https://github.com/Champitoad/flowers-metatheory.

20 Pablo Donato. flower-prover, October 2023. Software, swhId:
swh:1:dir:fcc934cae3a75692c031dc82ffdab138084a472d (visited on 2024-06-20). URL:
https://github.com/Champitoad/flower-prover.

21 Pablo Donato. The Flower Calculus. Preprint, April 2024. URL: https://arxiv.org/abs/
2402.15174.

22 Pablo Donato, Pierre-Yves Strub, and Benjamin Werner. A drag-and-drop proof tactic. In
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2022, pages 197–209, New York, NY, USA, 2022. Association for Computing
Machinery. doi:10.1145/3497775.3503692.

23 Melvin Fitting. Nested Sequents for Intuitionistic Logics. Notre Dame Journal of Formal
Logic, 55(1):41–61, 2014. doi:10.1215/00294527-2377869.

24 M. Ganesalingam and W. T. Gowers. A Fully Automatic Theorem Prover with Human-Style
Output. Journal of Automated Reasoning, 58(2):253–291, February 2017. doi:10.1007/
s10817-016-9377-1.

25 Marianna Girlando, Roman Kuznets, Sonia Marin, Marianela Morales, and Lutz Straßburger.
Intuitionistic S4 is decidable. In 2023 38th Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–13, June 2023. arXiv:2304.12094 [cs]. doi:10.1109/
LICS56636.2023.10175684.

26 Nicolas Guenot. Nested Deduction in Logical Foundations for Computation. PhD
thesis, Ecole Polytechnique X, April 2013. URL: https://pastel.archives-ouvertes.fr/
pastel-00929908.

27 Nathan Haydon and Paweł Sobociński. Compositional Diagrammatic First-Order Logic. In
Ahti-Veikko Pietarinen, Peter Chapman, Leonie Bosveld-de Smet, Valeria Giardino, James
Corter, and Sven Linker, editors, Diagrammatic Representation and Inference, volume 12169,
pages 402–418. Springer International Publishing, Cham, 2020. Series Title: Lecture Notes in
Computer Science. doi:10.1007/978-3-030-54249-8_32.

28 Olivier Hermant. Semantic Cut Elimination in the Intuitionistic Sequent Calculus. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C.
Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, and Paweł Urzyczyn,
editors, Typed Lambda Calculi and Applications, volume 3461, pages 221–233. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005. Series Title: Lecture Notes in Computer Science.
doi:10.1007/11417170_17.

29 John Howse, Gem Stapleton, and John Taylor. Spider Diagrams. LMS Journal of Computation
and Mathematics, 8:145–194, January 2005. Publisher: Cambridge University Press. doi:
10.1112/S1461157000000942.

30 Predrag Janičić and Julien Narboux. Automated generation of illustrated proofs in geometry
and beyond. Annals of Mathematics and Artificial Intelligence, July 2023. doi:10.1007/
s10472-023-09857-y.

31 Peter T. Johnstone. Sketches of an Elephant: A Topos Theory Compendium, volume 2 of
Oxford Logic Guides. Clarendon Press, Oxford, England, September 2002.

32 Roman Kuznets and Lutz Straßburger. Maehara-style modal nested calculi. Archive for
Mathematical Logic, 58(3-4):359–385, May 2019. doi:10.1007/s00153-018-0636-1.

FSCD 2024

https://doi.org/10.1007/978-3-642-14600-8_11
https://archive.softwareheritage.org/swh:1:dir:290076a847ca95e93c17fb66659086d7f68be014;origin=https://github.com/Champitoad/flowers-metatheory;visit=swh:1:snp:4e8e9db020ad62996ea53e2f7aa11a1293700d6c;anchor=swh:1:rev:9fad86b89037ce4aca7ffefc9a964a39ee3e473d
https://github.com/Champitoad/flowers-metatheory
https://archive.softwareheritage.org/swh:1:dir:fcc934cae3a75692c031dc82ffdab138084a472d;origin=https://github.com/Champitoad/flower-prover;visit=swh:1:snp:25cb9a170bf72700948f6d30840e8593c52316a5;anchor=swh:1:rev:a14d2f0c6b4ff596eb5169115ef454b86080361b
https://github.com/Champitoad/flower-prover
https://arxiv.org/abs/2402.15174
https://arxiv.org/abs/2402.15174
https://doi.org/10.1145/3497775.3503692
https://doi.org/10.1215/00294527-2377869
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1007/s10817-016-9377-1
https://doi.org/10.1109/LICS56636.2023.10175684
https://doi.org/10.1109/LICS56636.2023.10175684
https://pastel.archives-ouvertes.fr/pastel-00929908
https://pastel.archives-ouvertes.fr/pastel-00929908
https://doi.org/10.1007/978-3-030-54249-8_32
https://doi.org/10.1007/11417170_17
https://doi.org/10.1112/S1461157000000942
https://doi.org/10.1112/S1461157000000942
https://doi.org/10.1007/s10472-023-09857-y
https://doi.org/10.1007/s10472-023-09857-y
https://doi.org/10.1007/s00153-018-0636-1

5:20 The Flower Calculus

33 Marie La Palme Reyes, Gonzalo E. Reyes, and Houman Zolfaghari. Generic figures and their
glueings. Polimetrica, International Scientific Publisher, 2008.

34 C. I. Lewis. A survey of symbolic logic. Journal of Philosophy, Psychology and Scientific
Methods, 17(3):78–79, 1920. doi:10.2307/2940631.

35 Sven Linker, Jim Burton, and Mateja Jamnik. Tactical Diagrammatic Reasoning. Electronic
Proceedings in Theoretical Computer Science, 239:29–42, January 2017. doi:10.4204/EPTCS.
239.3.

36 Tim Lyon. Refining Labelled Systems for Modal and Constructive Logics with Applications.
PhD thesis, Vienna University of Technology, July 2021. doi:10.48550/arXiv.2107.14487.

37 Tim S. Lyon. Nested Sequents for Intuitionistic Modal Logics via Structural Refinement.
In Anupam Das and Sara Negri, editors, Automated Reasoning with Analytic Tableaux and
Related Methods, Lecture Notes in Computer Science, pages 409–427, Cham, 2021. Springer
International Publishing. doi:10.1007/978-3-030-86059-2_24.

38 Thomas Långbacka, Rimvydas Rukšėnas, and Joakim von Wright. TkWinHOL: A tool for
Window Inference in HOL. In E. Thomas Schubert, Philip J. Windley, and James Alves-Foss,
editors, Higher Order Logic Theorem Proving and Its Applications, Lecture Notes in Computer
Science, pages 245–260, Berlin, Heidelberg, 1995. Springer. doi:10.1007/3-540-60275-5_69.

39 Minghui Ma and Ahti-Veikko Pietarinen. Proof Analysis of Peirce’s Alpha System of Graphs.
Studia Logica, 105(3):625–647, June 2017. doi:10.1007/s11225-016-9703-y.

40 Minghui Ma and Ahti-Veikko Pietarinen. A graphical deep inference system for intuitionistic
logic. Logique et Analyse, 245:73–114, January 2019. doi:10.2143/LEA.245.0.3285706.

41 Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms to synthetic
inference rules via focusing. Annals of Pure and Applied Logic, 173(5):103091, May 2022.
doi:10.1016/j.apal.2022.103091.

42 Conor McBride. Dependently Typed Functional Programs and their Proofs. PhD thesis,
University of Edinburgh, July 2000. URL: https://era.ed.ac.uk/handle/1842/374.

43 Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction of Lawvere’s presheaf
hyperdoctrine. arXiv:1601.06098 [cs, math], August 2016. arXiv:1601.06098.

44 Robin Milner. The use of machines to assist in rigorous proof. Philosophical Transactions of
the Royal Society of London. Series A, Mathematical and Physical Sciences, 312(1522):411–422,
1984. doi:10.1098/rsta.1984.0067.

45 Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming
Language. In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28,
pages 625–635, Cham, 2021. Springer International Publishing.

46 Arnold Oostra. Los gráficos Alfa de Peirce aplicados a la lógica intuicionista. Number 2 in
Cuadernos de Sistemática Peirceana. Centro de Sistemática Peirceana, 2010.

47 Arnold Oostra. Gráficos existenciales Beta intuicionistas. Number 3 in Cuadernos de Sis-
temática Peirceana. Centro de Sistemática Peirceana, 2011.

48 Arnold Oostra. Equivalence proof for intuitionistic existential alpha graphs. In Diagram-
matic Representation and Inference: 12th International Conference, Diagrams 2021, Virtual,
September 28–30, 2021, Proceedings, pages 188–195, Berlin, Heidelberg, 2021. Springer-Verlag.
doi:10.1007/978-3-030-86062-2_16.

49 Arnold Oostra. Advances in Peircean Mathematics: The Colombian School, chapter Intuition-
istic and Geometrical Extensions of Peirce’s Existential Graphs, pages 105–180. De Gruyter,
2022.

50 Charles Sanders Peirce. Prolegomena to an Apology for Pragmaticism. The Monist, 16(4):492–
546, 1906. Publisher: Oxford University Press. URL: https://www.jstor.org/stable/
27899680.

51 Brian Ritchie. The Design and Implementation of an Interactive Proof Editor. PhD thesis, The
University of Edinburgh, 1988. Accepted: 2013-04-02T15:18:04Z Publisher: The University of
Edinburgh. URL: https://era.ed.ac.uk/handle/1842/6607.

https://doi.org/10.2307/2940631
https://doi.org/10.4204/EPTCS.239.3
https://doi.org/10.4204/EPTCS.239.3
https://doi.org/10.48550/arXiv.2107.14487
https://doi.org/10.1007/978-3-030-86059-2_24
https://doi.org/10.1007/3-540-60275-5_69
https://doi.org/10.1007/s11225-016-9703-y
https://doi.org/10.2143/LEA.245.0.3285706
https://doi.org/10.1016/j.apal.2022.103091
https://era.ed.ac.uk/handle/1842/374
https://arxiv.org/abs/1601.06098
https://doi.org/10.1098/rsta.1984.0067
https://doi.org/10.1007/978-3-030-86062-2_16
https://www.jstor.org/stable/27899680
https://www.jstor.org/stable/27899680
https://era.ed.ac.uk/handle/1842/6607

P. Donato 5:21

52 Don D. Roberts. The Existential Graphs of Charles S. Peirce. De Gruyter Mouton, Berlin,
Boston, 1973. doi:doi:10.1515/9783110226225.

53 Benoit Rognier and Guillaume Duhamel. Présentation de la plateforme edukera. In Vingt-
septièmes Journées Francophones des Langages Applicatifs (JFLA 2016), 2016.

54 Sun-Joo Shin. The Iconic Logic of Peirce’s Graphs. The MIT Press, May 2002. doi:
10.7551/mitpress/3633.001.0001.

55 Thoralf Skolem. Logisch-kombinatorische untersuchungen Über die erfüllbarkeit oder bewies-
barkeit mathematischer sätze nebst einem theorem Über dichte mengen. In Thoralf Skolem,
editor, Selected Works in Logic. Universitetsforlaget, 1920.

56 John Sowa. Peirce’s Tutorial on Existential Graphs. Semiotica, 186:345–394, 2011. doi:
10.1515/semi.2011.060.

57 M. H. Stone. Topological representations of distributive lattices and Brouwerian logics. In
Časopis pro pěstování matematiky a fysiky, volume 067, pages 1–25, 1938. ISSN: 1802-114X
Issue: 1 Journal Abbreviation: Časopis Pěst. Mat. Fys. doi:10.21136/CPMF.1938.124080.

58 The Coq Development Team. The Coq Proof Assistant, 2022. doi:10.5281/zenodo.7313584.
59 Alwen Tiu. A Local System for Intuitionistic Logic. In Miki Hermann and Andrei Voronkov,

editors, Logic for Programming, Artificial Intelligence, and Reasoning, Lecture Notes in
Computer Science, pages 242–256, Berlin, Heidelberg, 2006. Springer. doi:10.1007/11916277_
17.

60 Paulo Veloso, Sheila Veloso, and Mario Benevides. On Graph Calculi for Multi-modal Logics.
Electronic Notes in Theoretical Computer Science, 312, April 2015. doi:10.1016/j.entcs.
2015.04.014.

61 Paulo A. S. Veloso, Sheila R. M. Veloso, and Mario R. F. Benevides. PDL for structured
data: a graph-calculus approach. Logic Journal of the IGPL, 22(5):737–757, October 2014.
doi:10.1093/jigpal/jzu011.

62 Paulo A. S. Veloso, Sheila R. M. Veloso, and Mario R. F. Benevides. On a graph calculus for
modalities. Theoretical Computer Science, 685:83–103, July 2017. doi:10.1016/j.tcs.2016.
11.037.

63 Burghard Von Karger and C. A. R. Hoare. Sequential calculus. Information Processing Letters,
53(3):123–130, February 1995. doi:10.1016/0020-0190(94)00205-D.

64 Fernando Zalamea. Lógica topológica. una introducción a los gráficos existenciales de peirce.
Memorias del XIV Coloquio Distrital de Matemáticas y Estadística, 1997.

65 Fernando Zalamea. Pragmaticismo, gráficos y continuidad. hacia el lugar de c. s. peirce en la
historia de la lógica. Mathesis 13, pp. 147–156, 1997.

66 Fernando Zalamea. Peirce’s logic of continuity: Existential graphs and non-Cantorian con-
tinuum. Review of Modern Logic, 9(1-2):115–162, January 2003. Publisher: The Review
of Modern Logic. URL: https://projecteuclid.org/journals/review-of-modern-logic
/volume-9/issue-1-2/Peirces-logic-of-continuity–Existential-graphs-and-non-
Cantorian/rml/1081173838.full.

67 J.J. Zeman. The Graphical Logic of C. S. Peirce. PhD thesis, University of Chicago, 1964.
URL: https://books.google.fr/books?id=E0AqAQAAMAAJ.

68 Bohua Zhan, Zhenyan Ji, Wenfan Zhou, Chaozhu Xiang, Jie Hou, and Wenhui Sun. Design
of point-and-click user interfaces for proof assistants. In Formal Methods and Software
Engineering: 21st International Conference on Formal Engineering Methods, ICFEM 2019,
Shenzhen, China, November 5–9, 2019, Proceedings, pages 86–103, Berlin, Heidelberg, 2019.
Springer-Verlag. doi:10.1007/978-3-030-32409-4_6.

FSCD 2024

https://doi.org/doi:10.1515/9783110226225
https://doi.org/10.7551/mitpress/3633.001.0001
https://doi.org/10.7551/mitpress/3633.001.0001
https://doi.org/10.1515/semi.2011.060
https://doi.org/10.1515/semi.2011.060
https://doi.org/10.21136/CPMF.1938.124080
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.1007/11916277_17
https://doi.org/10.1007/11916277_17
https://doi.org/10.1016/j.entcs.2015.04.014
https://doi.org/10.1016/j.entcs.2015.04.014
https://doi.org/10.1093/jigpal/jzu011
https://doi.org/10.1016/j.tcs.2016.11.037
https://doi.org/10.1016/j.tcs.2016.11.037
https://doi.org/10.1016/0020-0190(94)00205-D
https://projecteuclid.org/journals/review-of-modern-logic/volume-9/issue-1-2/Peirces-logic-of-continuity--Existential-graphs-and-non-Cantorian/rml/1081173838.full
https://projecteuclid.org/journals/review-of-modern-logic/volume-9/issue-1-2/Peirces-logic-of-continuity--Existential-graphs-and-non-Cantorian/rml/1081173838.full
https://projecteuclid.org/journals/review-of-modern-logic/volume-9/issue-1-2/Peirces-logic-of-continuity--Existential-graphs-and-non-Cantorian/rml/1081173838.full
https://books.google.fr/books?id=E0AqAQAAMAAJ
https://doi.org/10.1007/978-3-030-32409-4_6

5:22 The Flower Calculus

δ1

δ2

δ3 δn−1

δn
γ

. . .

poll↓−−−→ poll↑−−−→

δ1

δ2

δ3 δn−1

δn
γ

. . .

Φ epis−−→ Φ
δi+1

δn δ1

δi
γ

...
...

epet−−−→

δ1

δ2

δ3 δn−1

δnx y
Φ

. . .

ipis−−→

σ(δ1)

σ(δ2)

σ(δ3) σ(δn−1)

σ(δn)x
σ(Φ)

. . .

δ1

δ2

δ3 δn−1

δnx y
Φ

. . .

x y
Φ

δi+1

δn δ1

δi
γ

...
...

ipet−−→

x y
Φ

x
σ(Φ)

δi+1

δn δ1

δiγ

...
...

δ1

δ2

δ3 δn−1

δn

x Φ
. . .

. . .

γ1

γ2

γ3 γm−1

γm
srep−−−→

x Φ

γ1

γ2

γ3 γm−1

γm

. . .

. . .

. . .

.

. . .

δ1

δ2

δ3 δn−1

δn

δ1

δ2

δ3 δn−1

δn

δ1

δ2

δ3 δn−1

δn

δ1

δ2

δ3 δn−1

δn

δ1

δ2

δ3 δn−1

δn

Figure 8 Graphical presentation of natural rules ❀.

P. Donato 5:23

grow−−−→

δ1

δ2

δ3 δn−1

δn
γ

. . .

δ1

δ2

δ3 δn−1

δn
γ

. . .

crop−−−→

δ

δi+1

δn δ1

δi
γ

...
...

pull−−→ δi+1

δn δ1

δi
γ

...
...

δi+1

δn δ1

δi
γ

...
...

glue−−−→

δ

δi+1

δn δ1

δi
γ

...
...

σ(δ1)

σ(δ2)

σ(δ3) σ(δn−1)

σ(δn)x
σ(Φ)

. . .

apis−−−→

δ1

δ2

δ3 δn−1

δnx y
Φ

. . .

x
σ(Φ)

δi+1

δn δ1

δi
γ

...
...

apet−−−→

x y
Φ

δi+1

δn δ1

δi
γ

...
...

Figure 9 Graphical presentation of cultural rules ✂.

FSCD 2024

5:24 The Flower Calculus

(x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ z · q(z))
→ipet (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ q(y))
→poll↑ (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y), (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ q(y))
→ipis (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y), (⫐ (p(y) ⫐) ; q(y)) ⫐ q(y))
→srep (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ ((p(y) ⫐) ⫐ q(y)), (q(y) ⫐ q(y)))
→2

poll↓ (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ ((⫐) ⫐ q(y)), (q(y) ⫐ ·))
→srep (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ (⫐ ·), (q(y) ⫐ ·))
→2

epet (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ ·)
→epet (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ ·
→epet

(a) Textual presentation.

xp(x) q(x)
y p(y)

z q(z)

→ipet xp(x) q(x)
y p(y)

q(y)

→poll↑ xp(x) q(x)
xp(x) q(x)

y p(y)

q(y)

→ipis xp(x) q(x)
p(y) q(y)

y p(y)

q(y)

→srep xp(x) q(x)

y p(y)

p(y)

q(y)

q(y)

q(y)

→2
poll↓ xp(x) q(x)

y p(y)

q(y)

q(y)

→srep xp(x) q(x)

y p(y)

q(y)

→2
epet xp(x) q(x) y p(y)

→epet xp(x) q(x) →epet

(b) Graphical presentation.

Figure 10 A natural proof in the flower calculus.

	1 Introduction
	2 Existential graphs
	3 Flowers
	4 Gardens
	5 Syntax
	6 Calculus
	7 Semantics
	8 Completeness
	9 Related works

