
Mechanized Subject Expansion in Uniform
Intersection Types for Perpetual Reductions
Andrej Dudenhefner #

TU Dortmund University, Germany

Daniele Pautasso #

University of Turin, Italy

Abstract
We provide a new, purely syntactical proof of strong normalization for the simply typed λ-calculus.
The result relies on a novel proof of the equivalence between typability in the simple type system and
typability in the uniform intersection type system (a restriction of the non-idempotent intersection
type system). For formal verification, the equivalence is mechanized using the Coq proof assistant.

In the present work, strong normalization of a given simply typed term M is shown in four steps.
First, M is reduced to a normal form N via a suitable reduction strategy with a decreasing measure.
Second, a uniform intersection type for the normal form N is inferred. Third, a uniform intersection
type for M is constructed iteratively via subject expansion. Fourth, strong normalization of M is
shown by induction on the size of the type derivation.

A supplementary contribution is a family of perpetual reduction strategies, i.e. strategies which
preserve infinite reduction paths. This family allows for subject expansion in the intersection type
systems of interest, and contains a reduction strategy with a decreasing measure in the simple type
system. A notable member of this family is Barendregt’s F∞ reduction strategy.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases lambda-calculus, simple types, intersection types, strong normalization,
mechanization, perpetual reductions

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.8

Supplementary Material
Software (Source Code): https://github.com/tudo-seal/uniform-intersection

archived at swh:1:dir:724ed6c1181e635ae0d7992cbe344798d0e7457b

Acknowledgements The authors are grateful to Simona Ronchi Della Rocca for many insightful
discussions, and to the anonymous referees for their careful reading and suggestions.

1 Introduction

Simple Types and Strong Normalization. Strong normalization (SN) of the simply typed
λ-calculus (STLC) is arguably one of the cornerstones of Type Theory. Many proofs of this
fundamental property have been proposed during the past decades; some are achieved by
semantical means, while others adopt syntactic (inductive) approaches. On the semantical
side, many SN results for typed calculi, including Gödel’s system T, system F, and STLC,
are obtained using reducibility models: these are essentially variations of the classical method
due to Tait [28], or of the subsequent refinements based on Girard’s reducibility candidates
[15, 29, 13]. Due to their general nature, such methods often do not take into account
specificities of the problem at hand, which could entail more direct and instructive SN proofs.

An alternative line of work [20, 19, 25, 26, 32, 1] focuses instead on a fine-grained analysis
of combinatorial properties of term rewriting and type assignment systems. Such syntactical
approaches do not always scale to more expressive calculi, but they provide insights on the

© Andrej Dudenhefner and Daniele Pautasso;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrej.dudenhefner@cs.tu-dortmund.de
https://orcid.org/0000-0003-1104-444X
mailto:daniele.pautasso@unito.it
https://orcid.org/0009-0008-8865-7942
https://doi.org/10.4230/LIPIcs.FSCD.2024.8
https://github.com/tudo-seal/uniform-intersection
https://archive.softwareheritage.org/swh:1:dir:724ed6c1181e635ae0d7992cbe344798d0e7457b;origin=https://github.com/tudo-seal/uniform-intersection;visit=swh:1:snp:4a1049ab684cb244ab6c0173251b9b88d26d557e;anchor=swh:1:rev:31a02d2e29e43d0b4f3971a432354b4f571b2f66
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Subject Expansion in Uniform Intersection Types

reduction process, allowing for decreasing measures for typed terms. The proposal at hand is
a further step in this direction: our goal is to provide an accessible inductive proof of SN for
STLC, capitalizing on results about intersection type systems.

Uniform Intersection Types. Pioneered by Coppo and Dezani in the late ’70s [5, 6, 7],
intersection type systems can assign to terms more than one type: writing M : A ∩ B

intuitively means that the term M is assigned an intersection of the types A and B. The
intersection connective ∩ can be understood as a notation for a set of types; if the idempotency
of ∩ is dropped, i.e. A ∩ A ̸= A, intersection becomes a notation for a multiset of types,
yielding the so called non-idempotent intersection types (also known as quantitative types).
As their name suggests, non-idempotent type systems have been extensively used to study
quantitative properties of programs, such as the number of reduction steps needed to reach a
normal form [14, 10, 4]. It is well known that intersection type systems characterize various
forms of termination, i.e. a term can be assigned an intersection type if and only if it is
(strongly) normalizing [24, 8]; consequently, the type inference problem for such systems is
inherently undecidable. An exception to this general rule is obtained by considering uniform
intersection types, a particular restriction of non-idempotent intersection types; indeed, it
is possible to design a decidable system assigning a quantitative type to all and only the
simply typable terms [23]. The correspondence between the simple and uniform systems was
originally established via a type inference algorithm for the uniform case: however, even if
the procedure shares many similarities with the classical unification algorithm, the proof
of termination in the quantitative setting relies precisely on strong normalization of simply
typed terms. This makes such an approach not viable for the purposes of the present work.

Related work and contributions of this paper. Even when restricted to work adopting a
syntax-oriented viewpoint, the literature about SN of STLC is quite extensive. We cannot
hope to provide a detailed account here: we just point out some of the most influential
contributions exploring ways to infer strong normalization of one notion of reduction from
weak normalization of a finer notion of reduction, possibly after performing a translation into
a suitable calculus. Some seminal ideas can be tracked back to Nederpelt [20] and Klop [19];
their techniques can be directly applied to STLC, and have been (more or less implicitly)
the starting point for a number of remarkable investigations [25, 26, 32]. One of the most
delicate aspects in relating weak and strong normalization is the treatment of term-erasing
reductions (see [16] for a study of the connections between different proof techniques and
translations into the λI-calculus, where no erasure can occur): Nederpelt and Klop’s idea
is to retain the subterm that would have been discarded; another solution is to delay the
erasing steps as much as possible. In this sense, of great inspiration has been the research
carried out by Kfoury and Wells [18], from which we borrow the notion of γ-reduction (see
also [17] for a brief comparison with other methods, most notably one by de Groote [11]).
Lastly, we mention recent work [1], which suggests that the search for decreasing measures
for STLC is far from over.

Our contributions to this line of research are three-fold. First, the present work shows that
proving SN of STLC boils down to proving that all simply typable terms are uniformly typable.
This correspondence, whose novel proof is of some interest in itself, greatly simplifies the
arguments commonly used when going from weak to strong normalization. In particular, we do
not need to show that normalization w.r.t. the newly introduced notions of reduction implies
β-strong normalization: this result comes for free thanks to the properties of quantitative
type systems.



A. Dudenhefner and D. Pautasso 8:3

The second contribution is the identification of a family of perpetual reduction strategies,
that is, strategies that diverge whenever possible [31]. We do so by carefully designing
reductions for which it is easy to obtain inductive proofs of subject expansion in intersection
type systems. Remarkably, this family contains Barendregt’s F∞ strategy, which was used to
show that all strongly normalizing terms can be typed by a rigid intersection (i.e. not enjoying
associativity, commutativity nor idempotency) type system without nullary intersection [22];
our approach may also be understood as an extension of such a proof method.

Third, all new results we present are mechanically verified: indeed, being fully constructive,
our technique is well-suited to be formalized in a proof assistant. Experience tells that the
syntactical study of term rewriting and quantitative type systems, when done exclusively
by hand, is particularly error-prone; we believe that, by getting rid of this eventuality, the
mechanization constitutes a valuable addition.

Paper organization. The present work is structured as follows:
Section 2: Preliminaries on the λ-calculus, definition of the IγK′-reduction.
Section 3: Measure-based weak IγK′-normalization of simply typed terms (Theorem 15).
Section 4: Uniform intersection type system (Definition 21), uniform typability of β-normal

forms (Lemma 24), subject expansion for the IγK′-reduction (Lemma 27, Lemma 30, and
Lemma 31), and consequently, strong normalization of simply typed terms (Theorem 34).

Section 5: Family of perpetual reduction strategies (Corollary 40) via generalization of sub-
ject expansion properties to the non-idempotent intersection type system (Theorem 39).

Section 6: Overview over the mechanization in the Coq proof assistant.
Section 7: Concluding remarks.

2 Preliminaries on Calculus and Reductions

Let us fix the basic notation for the remainder of the paper (following standard literature [2]).
Terms of the λ-calculus are generated by the following grammar:

M, N ::= x | λx.M | MN

where x ranges over a countable set of term variables. FV(M) denotes the set of free variables
of the term M .

The β-reduction, denoted →β , is the contextual closure of the rule

(λx.M)N 7→β M [N/x]

where M [N/x] denotes the capture-free substitution of x by N in M . A term of shape
(λx.M)N is called a β-redex. Such β-redexes are partitioned into I-redexes and K-redexes,
depending on whether the variable x occurs free in M or not; this distinction is of central
importance in the subsequent sections. Formally, the reductions →I and →K are, respectively,
the contextual closure of the rules:

(λx.M)N 7→I M [N/x] if x ∈ FV(M) (λx.M)N 7→K M if x ̸∈ FV(M)

Given a binary relation →r, we denote its reflexive, transitive closure with →∗
r . Given two

binary relations →r1 and →r2 , we write →r1r2 for →r1 ∪ →r2 ; clearly →β = →IK = →I ∪ →K.
A term is in r-normal form when it does not contain any r-redex; it is (weakly) r-normalizing
if it can be reduced to a term in r-normal form by a r-reduction sequence; it is strongly
r-normalizing if every r-reduction sequence starting from it eventually stops.

FSCD 2024



8:4 Subject Expansion in Uniform Intersection Types

We introduce the following reduction →K′ (Definition 1) as a refinement of the K-reduction.
The reduction →K′ can only contract K-redexes in specific positions, motivated by two goals.
First, K′-expansion should preserve strong normalization, allowing for subject expansion in
suitable intersection type systems. Second, a term in IK′-normal form should be β-normal,
otherwise IK′-reduction would get stuck on β-reducible terms.

▶ Definition 1 (→K′).
1. If N is in β-normal form and x ̸∈ FV(M), then (λx.M)N →K′ M .
2. If M →K′ N , then λx.M →K′ λx.N .
3. If N1 →K′ N2, then xM1 . . . MnN1 →K′ xM1 . . . MnN2, where n ≥ 0.
4. If N1 →K′ N2 and x ̸∈ FV(M), then (λx.M)N1 →K′ (λx.M)N2.
5. If M1M2 →K′ M3, then (M1M2)N →K′ M3N .

The following Example 2, Remark 3, and Remark 4 give insight into the relationship
between →K′ and perpetual reduction strategies.

▶ Example 2. Consider the term ω = λz.zz and the term M = (λx.(λy.x)(xx))ω, which is not
strongly β-normalizing because of the sequence M →β (λy.ω)(ωω) →β (λy.ω)(ωω) →β . . .

The term M K-reduces to (λx.x)ω for which the infinite β-reduction sequence is lost. However,
the term M cannot be K′-reduced.

▶ Remark 3. By proving subject expansion for K′-reduction in suitable intersection type
systems, we obtain that any IK′-reduction strategy is perpetual, thanks to the characterization
of strongly normalizing terms via typability (see for example [2, Theorem 17.2.15] for the
idempotent case, and [4, Corollary 8.4] for the non-idempotent one).
▶ Remark 4. The IK′-reduction admits the F∞ perpetual reduction strategy [31, Defini-
tion 3.21].

The following Lemma 5 shows that →IK′ cannot get stuck on →β-reducible terms.

▶ Lemma 5. If M →β N then there exists N ′ such that M →IK′ N ′.

Proof. If M contains at least one I-redex, the result is immediate. Otherwise, M can contain
K-redexes only, and we proceed by induction on M . Case M = x vacuously holds, while case
M = λx.P follows by inductive hypothesis and point (2) of Definition 1. Lastly, consider the
case M = PQ is an application.

If P = x then by inductive hypothesis and point (3) of Definition 1 we can reduce Q.
If P = λx.S then PQ is a K-redex and we distinguish two subcases:

if Q is in normal form, by point (1) of Definition 1 we can reduce PQ;
if Q is not in normal form, by inductive hypothesis and point (4) of Definition 1 we
can reduce Q.

If P = S1S2 we distinguish two subcases:
if P is in normal form, then Q is not in normal form; by inductive hypothesis and
point (3) of Definition 1 we can reduce Q;
if P is not in normal form, by inductive hypothesis and point (5) of Definition 1 we
can reduce P . ◀

The last essential ingredient of the present work is the commutation rule

(λx.λy.M)N 7→γ λy.(λx.M)N,

whose contextual closure we denote →γ [18, Definition 3.1].



A. Dudenhefner and D. Pautasso 8:5

A γ-reduction step can be understood as the combination of one β-reduction step and
one β-expansion step, rearranging the structure of a term, without altering its “meaning”.
The idea is that γ-reduction can be used to postpone K-redexes, possibly exposing I-redexes,
as illustrated by the following Example 6.

▶ Example 6. Consider the term M = (λy.λx.x)wz. Using the IK′-reduction, the term M is
reduced to a normal form as follows: M →K′ (λx.x)z →I z. Using γ-reduction, the K′-redex
can be postponed: M →γ (λx.(λy.x)w)z →I (λy.z)w →K′ z.

3 Simple Types and a Decreasing Measure

In this section we show that simply typed terms are IγK′-normalizing. Similarly to the
approach by Kfoury and Wells [18], we proceed in two steps. First, given a simply typed
term we construct an Iγ-normal form using a decreasing measure for rightmost Iγ-redex
contraction. The decreasing measure is different from the one by Kfoury and Wells [18,
Lemma 4.3], and does not require a specific interleaving of I-reductions and γ-reductions
(cf. ⋆-reduction [18, Definition 3.8]). Second, we iteratively contract K′-redexes in order to
construct a β-normal form.

Let us briefly recollect the simple type assignment system.

▶ Definition 7 (Simple Types). The set TS of simple types is defined by the grammar
σ, τ ::= a | σ → τ , where a ranges over a countable set of type variables.

A type environment is a finite, functional set of pairs x : σ, where x is a term variable
and σ a simple type; environments are ranged over by Γ, ∆, Φ, Ψ. If x : σ ∈ Γ, then Γ(x) = σ;
the domain of an environment Γ is dom(Γ) = {x | x : A ∈ Γ}; Γ and ∆ agree, written
Γ ⌣ ∆, if Γ(x) = ∆(x) for all x ∈ dom(Γ) ∩ dom(∆). The writing Γ, ∆ is short for Γ ∪ ∆
in case dom(Γ) ∩ dom(∆) = ∅; the writing Γ, x : σ is a special case of such notation when
x ̸∈ dom(Γ).

▶ Definition 8 (Simple Type Assignment System). The simple type assignment system S
derives judgments of shape Γ ⊢ M : σ, where Γ is an environment, M is a term, and σ is a
simple type. The rules of S are as follows:

Γ, x : σ ⊢ x : σ
(var) Γ, x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
(→I)

Γ ⊢ M : σ → τ ∆ ⊢ N : σ Γ ⌣ ∆
Γ ∪ ∆ ⊢ MN : τ

(→E)

Type derivations are ranged over by Π, Σ, Θ. We often write Γ ⊢ M : σ as a shorthand
for the existence of a derivation proving Γ ⊢ M : σ, and when we want to name a particular
derivation with such conclusion we write Π ▷ Γ ⊢ M : σ. Additionally, each subterm N of M

is associated with exactly one judgment ∆ ⊢ N : τ in Π, and we may annotate the assigned
simple type τ onto N , by writing Nτ .

▶ Lemma 9. If Γ ⊢ M : σ and M →IγK′ N , then Γ ⊢ N : σ.

Proof. For →IK′ ⊆ →β the property follows by subject reduction ([2, Proposition 1.2.6]).
For →γ the property follows from the generation lemma ([2, Proposition 1.2.3]). ◀

The measure meas(M) of a simply typed term M is a multiset of pairs (m, n) of natural
numbers, where m carries information about the size of involved types, and n is the depth of
the redex w.r.t. abstraction. Multisets are written in square brackets, and multiset union is
denoted ⊎, taking multiplicities into account.

FSCD 2024



8:6 Subject Expansion in Uniform Intersection Types

Each pair in the multiset meas(M) is associated with one Iγ-redex in M , and is called
rank of the redex. If a subterm (λx.λy.M)σ1→σ2→τ N is both a γ-redex and an I-redex, then
its rank is that of the I-redex. Correspondingly, we prefer I-redexes in case of ambiguity for
the rightmost redex.

▶ Definition 10 (Measure of a simply typed λ-term).
The size of a simple type is defined as:

size(a) = 1 size(σ → τ) = 1 + size(σ) + size(τ)

The measure of a simply typed term with corresponding simple type annotations is:

meas(x) = [ ]
meas(λx.M) = [(k, n + 1) | (k, n) ∈ meas(M)]
meas((λx.M)σ→τ N) = meas(λx.M) ⊎ meas(N) ⊎

[(size(σ → τ), 0)] if x ∈ FV(M)
meas((λx.λy.M)σ1→σ2→τ N) = meas(λx.λy.M) ⊎ meas(N) ⊎

[(1 + size(σ2 → τ), 0)] if x ̸∈ FV(M)
meas(MN) = meas(M) ⊎ meas(N) otherwise

Pairs are ordered lexicographically and multisets are ordered by the multiset ordering [12].
The following Lemma 11 shows that rightmost Iγ-redex contraction is measure-decreasing.

▶ Lemma 11. If M, N are simply typed terms such that M →Iγ N by contracting the
rightmost (in the textual presentation) redex, then meas(N) < meas(M) by the multiset order.

Proof. Since we reduce the rightmost Iγ-redex, no Iγ-redex is duplicated. Therefore, it
suffices to show that each new Iγ-redex created by the reduction is of smaller rank than that
of the contracted redex.

First, we consider cases in which the contraction of an I-redex (as the rightmost Iγ-redex)
may create new redexes [21].

Case (λx.M)σ→τ N →I M [N/x] and there is a subterm xP of M .
In case N = λy.Q and y ∈ FV(Q) we have that σ = σ1 → σ2 for some σ1, σ2 and
size(σ1 → σ2) < size(σ → τ). Therefore, the created I-redex (λy.Q)σ1→σ2P is of
smaller rank (regardless of its depth in M).
In case N = λy.λz.Q and y ̸∈ FV(Q) we have that σ = σ1 → σ2 → σ3 for some
σ1, σ2, σ3 and 1 + size(σ2 → σ3) < size(σ → τ). Therefore, the created γ-redex
(λy.λz.Q)σ1→σ2→σ3P is of smaller rank.

Case (λx.x)(σ→τ)→(σ→τ)NP →I NP .
In case N = λy.Q and y ∈ FV(Q) the created I-redex (λy.Q)σ→τ P is of smaller rank.
In case N = λy.λz.Q and y ̸∈ FV(Q) the created γ-redex (λy.λz.Q)σ→τ P is of smaller
rank.

Case (λx.λy.M)σ1→σ2→τ NP →I (λy.M [N/x])σ2→τ P and y ∈ FV(M).
Since size(σ2 → τ) < size(σ1 → σ2 → τ), the created I-redex is of smaller rank.
Case (λx.λy.λz.M)σ1→σ2→σ3→τ NP →I (λy.λz.M [N/x])σ2→σ3→τ P and y ̸∈ FV(M).
Since 1 + size(σ3 → τ) < size(σ1 → σ2 → σ3 → τ), the created γ-redex is of smaller rank.

Second, we consider cases in which the contraction of a γ-redex (as the rightmost Iγ-redex)
may create new redexes. The contracted γ-redex cannot be an (otherwise preferred) I-redex.

Case (λx.λy.λz.M)σ1→σ2→σ3→τ N →γ λy.(λx.λz.M)σ1→σ3→τ N such that x ̸∈ FV(M).
Since 1 + size(σ3 → τ) < 1 + size(σ2 → σ3 → τ), the created γ-redex is of smaller rank.



A. Dudenhefner and D. Pautasso 8:7

Case (λx.λy.M)σ1→σ2→τ NP →γ (λy.(λx.M)N)σ2→τ P such that x ̸∈ FV(M), y ∈
FV(M). Since size(σ2 → τ) < 1 + size(σ2 → τ), the created I-redex is of smaller
rank. The subterm (λx.M)N is not an I-redex because x ̸∈ FV(M); the case in which
(λx.M)N is a new γ-redex is already treated above.
Case (λx.(λy.λz.M)σ2→σ3→τ N)P →γ (λx.λz.(λy.M)N)σ1→σ3→τ P such that y ̸∈ FV(M),
x ̸∈ FV(M) ∪ FV(N). The contracted γ-redex is of rank (1 + size(σ3 → τ), n + 1) for some
n, and the created γ-redex is of smaller rank (1 + size(σ3 → τ), n). ◀

▶ Remark 12. The last case in the above proof of Lemma 11 explains the definition of the
rank of a γ-redex. In particular, the rank of a γ-redex does not depend on the type of the
first abstracted variable, and it does depend on the depth of the γ-redex w.r.t. abstraction.

The following Lemma 13 is a weaker variant of the strong normalization property of
Iγ-normal forms [18, Lemma 3.10].

▶ Lemma 13. If M, N are terms such that M →K′ N by contracting the rightmost K ′-redex
and M is Iγ-normal, then N is Iγ-normal and N has fewer β-redexes than M .

Proof. Consider the K′-redex (λx.P )Q in M . The term P cannot be an abstraction, otherwise
(λx.P )Q would have been a γ-redex, contradicting the assumption that M is in Iγ-normal
form. Therefore, contracting (λx.P )Q to P introduces neither β-redexes nor γ-redexes. ◀

The combination of Lemma 11 and Lemma 13 provides a normalization strategy (Theo-
rem 15) for simply typed terms, which is illustrated in the following Example 14.

▶ Example 14. Consider the annotated term M = (λy.λx.x)b→a→awz from Example 6,
which can be a assigned the type a in the type environment {z : a, w : b}. The term M with
measure meas(M) = [(4, 0)] can be reduced to a normal form as follows:

(λy.λx.x)b→a→awz →γ (λx.(λy.x)b→aw)a→az →I (λy.z)b→aw →K′ z

The initial γ-reduction postpones the top-level K-redex, exposes an I-redex, and decreases
the measure to meas((λx.(λy.x)b→aw)a→az) = [(3, 0)]. The subsequent I-reduction leaves
only K-redexes and the measure decreases to meas((λy.z)b→aw) = [ ]. Finally, the term is
normalized using the K′-reduction.

▶ Theorem 15. Given a simply typed term M , there exists a β-normal form N such that
M →∗

IγK′ N .

Proof. By induction on meas(M), repeatedly contracting the rightmost Iγ-redex we obtain a
Iγ-normal form P by Lemma 11. By induction on the number of K-redexes in P , repeatedly
contracting the rightmost K′-redex (we cannot get stuck by Lemma 5) we obtain a β-normal
form by Lemma 13. ◀

▶ Remark 16. Of course, we can show Theorem 15 using a strong normalization argument
for the simply typed λ-calculus together with Lemma 5. However, it is methodologically
intriguing to utilize measure-based weak normalization in pursuit of typability in a non-
idempotent intersection type system (which constitutes a strong normalization proof).
▶ Remark 17. The advantage of the additional γ-reduction is apparent in the design of a
type-based decreasing measure for IK′-normalization. Consider the term (λx.uxx)σ1→τ1(vM)
where M = (λy.λz.N)σ2→σ2→τ2ww such that y ̸∈ FV(N) and z ∈ FV(N). Since x ∈ FV(uxx)
we cannot contract the K-redex occurring in M using K′-reduction. However, contracting
the I-redex (λx.uxx)σ1→τ1(vM) →I u(vM)(vM) duplicates M . Contracting each redex

FSCD 2024



8:8 Subject Expansion in Uniform Intersection Types

copy in M results in two new I-redexes (λz.N)σ2→τ2w. In sum, contracting an I-redex
with the associated type σ1 → τ1 results in two copies of an I-redex with the associated
(arbitrary large) type σ2 → τ2. For reference, the F∞ [31, Definition 3.21] perpetual
reduction strategy also involves the described duplication. In comparison, by γ-reduction
(λy.λz.N)ww →γ (λz.(λy.N)w)w the K-redex (λy.N)w is delayed and the I-redex is exposed
for contraction (without duplication).

4 Uniform Intersection Types

As previously mentioned, uniform intersection types are a restriction of non-idempotent
intersection types based on the notion of uniform multiset. From now on we will frequently
use indexed types, where indexes are natural numbers: the symbols I, J will denote sets of
indexes. For the sake of simplicity we adopt the same notation for types and uniform types
(resp. multisets and uniform multisets), as the intended meaning can be easily inferred from
the context.

▶ Definition 18.
Non-idempotent intersection types (TI) are inductively defined by the grammar:

Intersection Types A, B, C ::= a | µ → A

Multisets µ, ν ::= [A1, . . . , An] (n ≥ 1)

Equivalence relation ∼ on intersection types (uniformity):

a ∼ a for all type variables a

µ → A ∼ ν → B iff µ ∼ ν and A ∼ B

[Ai]i∈I ∼ [Bj ]j∈J iff Ai ∼ Bj for all i ∈ I, j ∈ J

Uniform intersection types (TU ) are inductively defined by the grammar:

Unif. Int. Types A, B, C ::= a | µ → A

Unif. Multisets µ, ν ::= [A1, . . . , An] ∀i, j ∈ {1, . . . , n}.Ai ∼ Aj

Remark that in both grammars the empty multiset is not allowed. The types A =
[[a, a, a] → b, [a] → b] → c and B = [[a, a] → b] → c are uniform, whereas [a, [a] → b] → c is
not; moreover, observe that A ∼ B. The intuition is that uniform types are the quantitative
version of simple types; two uniform types are equivalent if they correspond to the same
underlying simple type. Given a uniform type, the underlying simple type can be easily
recovered by means of a translation that “forgets” non-idempotency.

▶ Definition 19. The collapse translation c : TI → TS is a partial function recursively
defined as:

c(a) = a

c([A1, . . . , An] → B) = σ → c(B) if c(A1) = · · · = c(An) = σ

▶ Lemma 20.
The collapse translation c(·) is a total function on TU .
If A, B ∈ TU , then A ∼ B if and only if c(A) = c(B).

Proof. The two points are proved at the same time, by mutual induction on the structure of
uniform types and the definition of collapse translation. ◀



A. Dudenhefner and D. Pautasso 8:9

We are now ready to introduce the uniform intersection type assignment system U . In this
setting, we say that a type environment Γ is uniform if it associates each term variable to a
uniform multiset. If Γ and ∆ are two such environments, Γ ∼ ∆ means that Γ(x) ∼ ∆(x) for
all x ∈ dom(Γ)∩dom(∆). The union of environments is defined as (Γ0⊎Γ1)(x) = Γ0(x)⊎Γ1(x)
if x ∈ dom(Γ0) ∩ dom(Γ1), while (Γ0 ⊎ Γ1)(x) = Γi(x) if x ∈ dom(Γi) and x ̸∈ dom(Γ1−i).

▶ Definition 21. The uniform intersection type assignment system U , assigning types in
TU ⊂ TI to terms, consists of the following rules:

A ∈ µ Γ and µ uniform
Γ, x : µ ⊢u x : A

(var) Γ, x : µ ⊢u M : A

Γ ⊢u λx.M : µ → A
(→I)

Γ0 ⊢u M : [A1, . . . , An] → B (Γi ⊢u N : Ai)1≤i≤n ∀i, j ∈ {0, . . . , n}.Γi ∼ Γj⊎n
i=0 Γi ⊢u MN : B

(→E)

The full non-idempotent intersection type assignment system, which we call system I, is
easily obtained from system U by removing the uniformity constraint on multisets. It is clear
that each derivation in system U is also a valid derivation in system I; we use the symbol ⊢i

to explicitly distinguish judgments in system I.
The collapse translation is naturally extended to uniform multisets and uniform type

environments, so that the translation of a derivation in system U is a derivation in system S.

▶ Definition 22. The collapse translation c(Π) of a derivation Π ▷ Γ ⊢u M : A is the simple
type derivation inductively defined as follows:

If Π ends with a (var) rule, i.e. Π ▷ Γ ⊢u x : A, then c(Π) ▷ c(Γ) ⊢ M : c(A).
If Π ends with a (→I) rule, i.e. has shape:

Π0 ▷ Γ, x : µ ⊢u N : B

Π ▷ Γ ⊢u λx.N : A = µ → B then
c(Π0) ▷ c(Γ), x : c(µ) ⊢ N : c(B)

c(Π) ▷ c(Γ) ⊢ λx.N : c(A) = c(µ) → c(B)

If Π ends with a (→E) rule, i.e. has shape:

Π0 ▷ Γ0 ⊢u P : [B1, . . . , Bn] → A (Πi ▷ Γi ⊢u Q : Bi)1≤i≤n

Π ▷ Γ ⊢u PQ : A

then, letting c(Πi) ▷ c(Γi) ⊢u Q : c(Bi) and recalling that c(Bi) = τ for all 1 ≤ i ≤ n:

c(Π0) ▷ c(Γ0) ⊢ P : τ → c(A) (
⋃n

i=1 c(Γi)) ⊢ Q : τ

c(Π) ▷ c(Γ) ⊢ PQ : c(A) where c(Γ) =
⋃n

i=0 c(Γi)

▶ Lemma 23 ([23, Theorem 34]). Π ▷ Γ ⊢u M : A implies c(Π) ▷ c(Γ) ⊢ M : c(A).

Showing the converse, namely that all simply typable terms can also be assigned a
uniform intersection type, is not as easy. In what follows we provide an alternative proof of
this claim, adopting a dual approach w.r.t. previous work [23]: instead of reasoning about
term reduction, we reason about term expansion. Additionally, strong normalization is a
consequence in our case, and not a prerequisite [23, Theorem 25].

4.1 Uniform Typability of Normal Forms
As a first step, we show that system U can assign a uniform type to all simply typable terms
in β-normal form.

FSCD 2024



8:10 Subject Expansion in Uniform Intersection Types

▶ Lemma 24. If Σ ▷ Γ ⊢ M : σ and M is in β-normal form, then there exists Π ▷ Γ′ ⊢u M : A

such that c(Π) = Σ.

Proof. By induction on the term M . Recall that β-normal forms are defined by the grammar:
M, N ::= λx.M | xM1 . . . Mn where n ≥ 0.

Case M = x is immediate, and case M = λx.N follows by inductive hypothesis. Lastly,
consider the case M = xM1 . . . Mn such that n ≥ 1 and we have Σ ▷

⋃n
i=0 Γi ⊢ xM1 . . . Mn : σ.

Then there exist Σ0 ▷ Γ0 ⊢ x : τ1 → . . . → τn → σ and Σi ▷ Γi ⊢ Mi : τi (1 ≤ i ≤ n) such
that Γi ⌣ Γj for all i, j ∈ {0, . . . , n}. By inductive hypothesis there are Πi ▷ Γ′

i ⊢u Mi : Bi

such that c(Πi) = Σi, and consequently c(Γ′
i) = Γi and c(Bi) = τi (1 ≤ i ≤ n). Moreover, it

is easy to build Π0 ▷ Γ′
0 ⊢u x : [B1] → . . . → [Bn] → A such that c(Γ′

0) = Γ0 and c(A) = σ,
thus satisfying c(Π0) = Σ0. Remark that

c([B1] → . . . → [Bn] → A) = c(B1) → . . . → c(Bn) → c(A) = τ1 → . . . → τn → σ

Since c(Γ′
i) = Γi and Γi ⌣ Γj , we know that Γ′

i(y) ∼ Γ′
j(y) for all y ∈ dom(Γ′

i) ∩ dom(Γ′
j)

(i, j ∈ {0, . . . , n}). Therefore, we can use the various Πi (0 ≤ i ≤ n) to build a derivation
Π ▷

⊎n
i=0 Γ′

i ⊢u xM1 . . . Mn : A such that c(Π) = Σ. ◀

4.2 Typability-preserving Expansions
Now that we know that simply typable β-normal forms are uniformly typable, the crucial
step is showing that (simply typed) subject expansion w.r.t. →I, →γ and →K′ preserves
typability in system U . The fact that I-expansion preserves typability in system I is folklore;
here we need to specialize the result to the particular case of system U .

▶ Notation 25. Given Π ▷ Γ ⊢u M : A and ∆ ∼ Γ, we write Π(∆) ▷ Γ ⊎ ∆ ⊢u M : A for the
derivation obtained from Π by weakening.

▶ Notation 26. Let Σ ▷ Γ ⊢ M : σ. If M →β N , we write Σ ⇝ Σ′ ▷ Γ ⊢ N : σ meaning
that Σ′ is obtained from Σ by mimicking the β-reduction on the simple type derivation.1

▶ Lemma 27. Let ΠN ▷ Γ ⊢u N : A. If M →I N and there is Σ ▷ Φ ⊢ M : σ such that
Σ⇝ c(Π(∆)

N ) ▷ Φ ⊢ N : σ for some ∆ ∼ Γ, then Γ ⊢u M : A.

Proof. By induction on the reduction context. Remark that Σ⇝ c(Π(∆)
N ) ▷ c(Γ ⊎ ∆) = Φ ⊢

N : c(A) = σ for some ∆ ∼ Γ implies c(Γ) ⊆ Φ. For the base case, let M = (λx.P )Q →I
P [Q/x] = N and, wlog, assume x ̸∈ FV(Q). We show how to build ΠM ▷ Γ ⊢u M : A starting
from ΠN . The derivation ΠN contains a finite number of subderivations with subject Q: let
them be Θi ▷ Γi ⊢u Q : Bi (i ∈ I = {1, . . . , n}), and let Γ = Γ0 ⊎i∈I Γi. Since Σ⇝ c(Π(∆)

N ),
it must be the case that c(Bi) = c(Bj) for all i, j ∈ I. By Lemma 20 this implies Bi ∼ Bj for
all i, j ∈ I, hence the multiset [Bi]i∈I is uniform. Substituting in ΠN each subderivation Θi

with an axiom x : [Bi] ⊢u x : Bi yields a derivation with conclusion Γ0, x : [Bi]i∈I ⊢u P : A.
Therefore we can build:

Γ0, x : [Bi]i∈I ⊢u P : A
(→I)Γ0 ⊢u λx.P : [Bi]i∈I → A (Γi ⊢u Q : Bi)i∈I (→E)

ΠM ▷ Γ ⊢u (λx.P )Q : A

For the inductive step, consider the contexts in which a reduction may take place:

1 That is: given a subderivation typing (λx.P )Q, substitute the axioms typing x in the subderivation for
P by the subderivation typing Q, so to obtain a subderivation with subject P [Q/x].



A. Dudenhefner and D. Pautasso 8:11

Case M = λx.P →I λx.Q = N . Letting σ = τ1 → τ2 and A = µ → B, the derivations Σ
and ΠN have shape:

Σ0 ▷ Φ, x : τ1 ⊢ P : τ2 (→I)Σ ▷ Φ ⊢ λx.P : τ1 → τ2

Π0 ▷ Γ, x : µ ⊢u Q : B
(→I)ΠN ▷ Γ ⊢u λx.Q : µ → B

Σ⇝ c(Π(∆)
N ) means that Σ0 ⇝ c(Π(∆)

0 ). Therefore by inductive hypothesis there exists
Γ, x : µ ⊢u P : B, from which one obtains ΠM ▷ Γ ⊢u λx.P : µ → B.
Case M = PQ is an application. Let Σ be:

Σ1 ▷ Φ1 ⊢ P : τ → σ Σ2 ▷ Φ2 ⊢ Q : τ
(→E)

Σ ▷ Φ ⊢ PQ : σ

First, consider the case M = PQ →I PR = N . Letting I = {1, . . . , n}, the derivation
ΠN has shape:

Π0 ▷ Γ0 ⊢u P : [Bi]i∈I → A (Πi ▷ Γi ⊢u R : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u PR : A

Σ⇝ c(Π(∆)
N ) means that, for each i ∈ I, Σ2 ⇝ c(Π(∆i)

i ) for some ∆i ∼ Γi. Therefore by
inductive hypothesis there exist Γi ⊢u Q : Bi (i ∈ I), and we conclude.
Now consider the case M = PQ →K′ RQ = N . The derivation ΠN has shape:

Π0 ▷ Γ0 ⊢u R : [Bi]i∈I → A (Πi ▷ Γi ⊢u Q : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u RQ : A

Similarly to the previous scenario, Σ⇝ c(Π(∆)
N ) implies Σ1 ⇝ c(Π(∆0)

0 ) for some ∆0 ∼ Γ0.
Therefore by inductive hypothesis there is Γ0 ⊢u P : [Bi]i∈I → A, and we conclude. ◀

The following Example 28 illustrates subject expansion w.r.t. the I-reduction.

▶ Example 28. Consider M = (λx.yxx)P →I yPP = N . Assuming N is uniformly typable,
let ΠN be the uniform type derivation:

Γ0 ⊢u y : [B1] → [B2] → A Γ1 ⊢u P : B1

Γ0 ⊎ Γ1 ⊢u yP : [B2] → A Γ2 ⊢u P : B2

ΠN ▷ Γ ⊢u yPP : A

Its collapse translation is the simple type derivation c(ΠN ):

c(Γ0) ⊢ y : c(B1) → c(B2) → c(A) c(Γ1) ⊢ P : c(B1)
c(Γ0 ⊎ Γ1) ⊢ yP : c(B2) → c(A) c(Γ2) ⊢ P : c(B2)

c(ΠN ) ▷ c(Γ) ⊢ yPP : c(A)

Saying that there is Σ ▷ Φ ⊢ M : σ such that Σ⇝ c(ΠN ), implies that Σ has shape:

c(Γ0) ⊢ y : τ → τ → c(A) c(Γ1), x : τ ⊢ x : τ

c(Γ0 ⊎ Γ1), x : τ ⊢ yx : τ → c(A) c(Γ2), x : τ ⊢ x : τ

c(Γ), x : τ ⊢ yxx : c(A)
c(Γ) ⊢ λx.yxx : τ → c(A) c(Γ1) ∩ c(Γ2) ⊢ P : τ

Σ ▷ c(Γ) ⊢ (λx.yxx)P : c(A)

where c(Γ) = Φ, c(A) = σ, and c(B1) = c(B2) = τ . In turn, this entails B1 ∼ B2; therefore
the multiset [B1, B2] is uniform, and we can build the uniform derivation ΠM as follows:

FSCD 2024



8:12 Subject Expansion in Uniform Intersection Types

Γ0 ⊢u y : [B1] → [B2] → A x : [B1] ⊢u x : B1

Γ0, x : [B1] ⊢u yx : [B2] → A x : [B2] ⊢u x : B2

Γ0, x : [B1, B2] ⊢u yxx : A

Γ0 ⊢u λx.yxx : [B1, B2] → A Γ1 ⊢u P : B1 Γ2 ⊢u P : B2

ΠM ▷ Γ ⊢u (λx.yxx)P : A

It might not be obvious why one needs the condition Σ⇝ c(Π(∆)
N ) in the statement of

Lemma 27 (and, similarly, in the later Lemma 31). Given ΠN ▷ Γ ⊢u N : A and a term M

such that M →I N , the reader may wonder if a weaker hypothesis, e.g. only requiring
Σ ▷ c(Γ ⊎ ∆) ⊢ M : c(A), would suffice to prove ΠM ▷ Γ ⊢u M : A. The following Example 29
shows that such a formulation would not work in the inductive case, specifically when N is
an application: in order to use the inductive hypothesis, one must relate the structures of Σ
and ΠN .

▶ Example 29. Let ∆ = ∅ and consider a closed, simply typable term P such that P →I Q

(for instance, P = (II)I →I II = Q where I = λx.x). For N = (λz.y)Q let ΠN be the
uniform derivation:

z : [B], y : [A] ⊢u y : A

y : [A] ⊢u λz.y : [B] → A ΠQ ▷ ⊢u Q : B

ΠN ▷ y : [A] ⊢u (λz.y)Q : A

Assume there is Σ ▷ y : c(A) ⊢ (λz.y)P : c(A). We would like to exploit the information about
Σ to build a derivation ΠM ▷ y : [A] ⊢u (λz.y)P : A; however, there is no guarantee that
there exists a simple derivation ΣP ▷ ⊢ P : c(B), so we cannot use the inductive hypothesis
to get ΠP ▷ ⊢u P : B. On the other hand, if we know Σ⇝ c(ΠN ), we can deduce that Σ has
shape:

z : c(B), y : c(A) ⊢ y : c(A)
y : c(A) ⊢ λz.y : c(B) → c(A) ΣP ▷ ⊢ P : c(B)

Σ ▷ y : c(A) ⊢ (λz.y)P : c(A)
where ΣP ⇝ c(ΠQ). Thus, by inductive hypothesis there exists ΠP ▷ ⊢u P : B, from which
it is possible to build the desired ΠM .

Proving that typability in U is preserved by γ-expansion is straightforward. Notice that,
as opposed to Lemma 27, the term M is not explicitly required to be simply typable.

▶ Lemma 30. If Γ ⊢u N : A and M →γ N , then Γ ⊢u M : A.

Proof. The proof proceeds by induction on the reduction context. For the base case, let
M = (λx.λy.P )Q →γ λy.(λx.P )Q = N ; observe that by α-conversion we can freely assume
y ̸∈ FV(Q). Thus, the derivation ΠN ▷ Γ ⊢u N : A has shape:

∆, x : [Bi]i∈I , y : [Cj ]j∈J ⊢u P : D
(→I)∆, y : [Cj ]J∈j ⊢u λx.P : [Bi]i∈I → D (∆i ⊢u Q : Bi)i∈I (→E)

Γ, y : [Cj ]J∈j ⊢u (λx.P )Q : D
(→I)ΠN ▷ Γ ⊢u λy.(λx.P )Q : [Cj ]j∈J → D

By rearranging the derivation rules we can easily build ΠM ▷ Γ ⊢u M : A:
∆, x : [Bi]i∈I , y : [Cj ]j∈J ⊢u P : D

(→I)∆, x : [Bi]i∈I ⊢u λy.P : [Cj ]j∈J → D
(→I)∆ ⊢u λx.λy.P : [Bi]i∈I → [Cj ]j∈J → D (∆i ⊢u Q : Bi)i∈I (→E)

ΠM ▷ Γ ⊢u (λx.λy.P )Q : [Cj ]j∈J → D

The inductive cases immediately follow using the inductive hypothesis. ◀



A. Dudenhefner and D. Pautasso 8:13

Before moving on to K′-expansion, we briefly discuss why dealing with arbitrary K-
expansion would be quite problematic, even in the unrestricted system I. Assume two
derivations Θ ▷ Γ ⊢i M : A and ∆ ⊢i N : B, where x ̸∈ FV(M). It is straightforward to
build Θ′ ▷ Γ ⊎ ∆ ⊢i (λx.M)N : A, thus reversing the K-reduction step (λx.M)N →K M .
However, notice that in general Γ ⊎ ∆ contains bigger multisets than the ones originally
found in Γ; therefore, if Θ is a subderivation of a larger derivation Π, simply replacing Θ
by Θ′ may not result in a correct derivation. In order to be consistent with the enlarged
multisets, it may be necessary to globally update the structure of Π: this means introducing
new subderivations and/or replicating existing ones (along with their type environments),
which in turn may lead to further inconsistencies.

On the other hand, restricting the focus to K′-expansions has the great advantage of
keeping the required modifications local, thus allowing for an elegant inductive reasoning.
The proof of the following Lemma 31 clearly illustrates this point.

▶ Lemma 31. Let ΠN ▷ Γ ⊢u N : A. If M →K′ N and there is Σ ▷ Φ ⊢ M : σ such that
Σ⇝ c(Π(∆)

N ) ▷ Φ ⊢ N : σ for some ∆ ∼ Γ, then:
if M is not an abstraction, then Γ′ ⊢u M : A for some Γ′ such that c(Γ′) ⊆ Φ;
if M is an abstraction, then Γ′ ⊢u M : A′ for some Γ′ and A′ such that c(Γ′) ⊆ Φ and
A′ ∼ A.

Proof. By induction on the reduction context. Remark that Σ⇝ c(Π(∆)
N ) ▷ c(Γ ⊎ ∆) = Φ ⊢

N : c(A) = σ for some ∆ ∼ Γ implies c(Γ) ⊆ Φ. We show how to build a derivation ΠM with
the desired properties starting from ΠN . For the base case, consider M = (λx.N)P →K′ N ,
where P is in β-normal form. The derivation Σ has shape:

Φ1, x : τ ⊢ N : σ
(→I)Σ1 ▷ Φ1 ⊢ λx.N : τ → σ Σ2 ▷ Φ2 ⊢ P : τ (→E)

Σ ▷ Φ ⊢ (λx.N)P : σ

By Lemma 24 there exists Π2 ▷ Γ2 ⊢u P : B such that c(Π2) = Σ2, which entails c(Γ2) =
Φ2 ⊆ Φ and c(B) = τ . Note that c(Γ) ⊆ Φ guarantees Γ ∼ Γ2. Starting from ΠN , it is easy to
exploit weakening in the axioms and obtain a derivation with conclusion Γ, x : [B] ⊢u N : A.
Hence we can build:

Γ, x : [B] ⊢u N : A
(→I)Γ ⊢u λx.N : [B] → A Γ2 ⊢u P : B

(→E)
ΠM ▷ Γ′ = Γ ⊎ Γ2 ⊢u (λx.N)P : A

satisfying the requirements. Indeed, c(Γ) ⊆ Φ and c(Γ2) = Φ2 ⊆ Φ imply c(Γ′) ⊆ Φ.
For the inductive step, consider the reduction contexts in which a K′-reduction may take

place:
Case M = λx.P →K′ λx.Q = N . Letting σ = τ1 → τ2 and A = µ → B, the derivations
Σ and ΠN have shape:

Σ0 ▷ Φ, x : τ1 ⊢ P : τ2 (→I)Σ ▷ Φ ⊢ λx.P : τ1 → τ2

Π0 ▷ Γ, x : µ ⊢u Q : B
(→I)ΠN ▷ Γ ⊢u λx.Q : µ → B

Σ⇝ c(Π(∆)
N ) means that Σ0 ⇝ c(Π(∆)

0 ). Therefore, if P is an abstraction, by inductive
hypothesis there are Γ′, µ′ and B′ such that c(Γ′, x : µ′) ⊆ (Φ, x : τ1), B′ ∼ B and
Γ′, x : µ′ ⊢u P : B′. From this we obtain ΠM ▷ Γ′ ⊢u λx.P : µ′ → B′ satisfying the
requirements. If P is not an abstraction, the reasoning is similar.

FSCD 2024



8:14 Subject Expansion in Uniform Intersection Types

Case M = xM1 . . . MmP →K′ xM1 . . . MmQ = N , where m ≥ 0. The derivation Σ has
shape:

Σ1 ▷ Φ1 ⊢ xM1 . . . Mm : τ → σ Σ2 ▷ Φ2 ⊢ P : τ (→E)
Σ ▷ Φ ⊢ xM1 . . . MmP : σ

Letting I = {1, . . . , n}, the derivation ΠN has shape:

Ψ ⊢u x : µ1 → . . . → µm → [Bi]i∈I → A (ΨC ⊢u M1 : C)C∈µ1 (→E)
...

Π0 ▷ Γ0 ⊢u xM1 . . . Mm : [Bi]i∈I → A (Πi ▷ Γi ⊢u Q : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u xM1 . . . MmQ : A

Σ ⇝ c(Π(∆)
N ) means that, for each i ∈ I, Σ2 ⇝ c(Π(∆i)

i ) for some ∆i ∼ Γi. Therefore,
if P is an abstraction, by inductive hypothesis there are Π′

i ▷ Γ′
i ⊢u P : B′

i such that
c(Γ′

i) ⊆ Φ2 ⊆ Φ and B′
i ∼ Bi (i ∈ I). Note that c(Γ′

i) ⊆ Φ for all i ∈ I guarantees
Γ′

i ∼ Γ′
j and Γ0 ∼ Γ′

i for all i, j ∈ I. Hence to obtain ΠM it suffices to replace Πi by Π′
i,

and change the type of the axiom introducing x into µ1 → . . . → µm → [B′
i]i∈I → A. In

case P is not an abstraction, the reasoning is similar.
Case M = (λx.P )Q →K′ (λx.P )R = N , where x ̸∈ FV(P ). The derivation Σ has shape:

Σ1 ▷ Φ1 ⊢ λx.P : τ → σ Σ2 ▷ Φ2 ⊢ Q : τ
(→E)

Σ ▷ Φ ⊢ (λx.P )Q : σ

Letting I = {1, . . . , n}, the derivation ΠN has shape:

Π0 ▷ Γ0 ⊢u λx.P : [Bi]i∈I → A (Πi ▷ Γi ⊢u R : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u (λx.P )R : A

Σ⇝ c(Π(∆)
N ) means that, for each i ∈ I, Σ2 ⇝ c(Π(∆i)

i ) for some ∆i ∼ Γi. Therefore, if
Q is an abstraction, by inductive hypothesis there exists Π′

i ▷ Γ′
i ⊢u Q : B′

i such that
c(Γ′

i) ⊆ Φ2 ⊆ Φ and B′
i ∼ Bi (i ∈ I). As in the previous case, from c(Γ′

i) ⊆ Φ (i ∈ I) we
deduce Γ′

i ∼ Γ′
j and Γ0 ∼ Γ′

i (i, j ∈ I). Thus, in order to build ΠM , it suffices to replace
Πi by Π′

i and change the multiset associated to the dummy variable x, so that it matches
the new types B′

i. The case in which Q is not an abstraction is similar.
Case M = (PQ)R →K′ SR = N . The derivation Σ has shape:

Σ1 ▷ Φ1 ⊢ PQ : τ → σ Σ2 ▷ Φ2 ⊢ R : τ
(→E)

Σ ▷ Φ ⊢ (PQ)R : σ

Letting I = {1, . . . , n}, the derivation ΠN has shape:

Π0 ▷ Γ0 ⊢u S : [Bi]i∈I → A (Πi ▷ Γi ⊢u R : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u SR : A

Σ ⇝ c(Π(∆)
N ) implies Σ1 ⇝ c(Π(∆0)

0 ) for some ∆0 ∼ Γ0. Therefore, as PQ is not an
abstraction, by inductive hypothesis there is Π′

0 ▷ Γ′
0 ⊢u PQ : [Bi]i∈I → A such that

c(Γ′
0) ⊆ Φ1 ⊆ Φ. Since c(Γi) ⊆ Φ, it holds that Γ′

0 ∼ Γi for all i ∈ I. The derivation ΠM

is obtained by replacing Π0 by Π′
0. ◀

Finally, we have all prerequisites in order to prove that if a term is typable by S, then it
is also typable by U .



A. Dudenhefner and D. Pautasso 8:15

▶ Theorem 32. Σ ▷ Γ ⊢ M : σ implies there is Π ▷ Γ′ ⊢u M : A such that c(Π) = Σ.

Proof. Consider a IγK′-reduction sequence s from M to a β-normal form, which exists by
Theorem 15. We reason by induction on the length n of the sequence s. If n = 0, i.e. M is
in β-normal form, the result immediately follows from Lemma 24. For the inductive part of
the proof, we rely on Lemma 27 for I-reduction steps, on Lemma 30 for γ-reduction steps,
and on Lemma 31 for K′-reduction steps. ◀

4.3 From Uniform Typability to Strong Normalization
It is notoriously easy to show that all terms which are typable in system I (and, consequently,
all terms which are typable in system U) are strongly β-normalizing. Intuitively, this is
because non-idempotent intersection type systems internalize the reduction process: if M is
a term containing a subterm N , a quantitative derivation for M requires (at least) as many
subderivations for N as there are copies of N that can be produced during any β-reduction
sequence from M to its normal form. Since all the required copies are already there to begin
with, mimicking β-reduction on the quantitative derivation necessarily decreases its total
size: indeed, I-reduction steps simply rearrange the derivation structure, replacing axioms by
subderivations, while K-reduction steps erase subderivations. Formally, writing size(Π) for
the number of rules in a derivation Π, one has that:

▶ Theorem 33 (Weighted Subject Reduction [3, Theorem 4.2]). If ΠM ▷ Γ ⊢i M : A and
M →β N , then there exists ΠN ▷ Γ ⊢i N : A such that size(ΠN ) < size(ΠM ).

Finally, we can state the following.

▶ Theorem 34. Γ ⊢ M : σ implies M is strongly β-normalizing.

Proof. Immediate consequence of Theorem 32 and Theorem 33. ◀

5 A Family of Perpetual Reductions

This brief section shows that IγK′-expansion also holds in the general system I. Actually,
the proof is simpler, because there are no requirements concerning simple typability. Such a
result, together with the fact that all I-typable terms are strongly normalizing, allows us to
identify a family of perpetual reduction strategies.

We begin by pointing out that Lemma 24 and Lemma 27 are the system U counterparts
of the following well-known properties of system I:

▶ Lemma 35. If M is in β-normal form, then Γ ⊢i M : A.

Proof. Essentially as in Lemma 24. ◀

▶ Lemma 36 ([4, Theorem 4.3]). If Γ ⊢i N : A and M →I N , then Γ ⊢i M : A.

Similar considerations can be made for the other typability-preserving expansions.

▶ Lemma 37. If Γ ⊢i N : A and M →γ N , then Γ ⊢i M : A.

Proof. By observing that the proof of Lemma 30 never mentions uniformity. ◀

One needs to be careful with the statement of subject expansion w.r.t. the K′-reduction
(the counterpart of Lemma 31): the case in which the contracted term is an abstraction does
not preserve the assigned type.

FSCD 2024



8:16 Subject Expansion in Uniform Intersection Types

▶ Lemma 38. If Γ ⊢i N : A and M →K′ N , then:
if M is not an abstraction, then Γ′ ⊢i M : A for some Γ′;
if M is an abstraction, then Γ′ ⊢i M : A′ for some Γ′ and A′.

Proof. By induction on the reduction context. The proof is analogous to that of Lemma 31,
without the conditions on simple typability. The base case, namely M = (λx.N)P →K′ N

where P is in β-normal form, relies on Lemma 35. ◀

We now have all the ingredients to state the following:

▶ Theorem 39. If M is IγK′-normalizing, then it is strongly β-normalizing.

Proof. Lemmas 35, 36, 37 and 38 guarantee that there exists Γ ⊢i M : A. Then the result
immediately follows from Theorem 33. ◀

▶ Corollary 40. Any IγK′-reduction strategy is perpetual.

6 Mechanization

This section provides an overview over the mechanization2 of uniform typability of simply
typed terms (Theorem 32) using the Coq proof assistant [30]. The mechanization is axiom-free
and spans approximately 2000 lines of code, consisting of the following four parts:

stlc.v and stlc_facts.v contain definitions and facts (such as subject reduction and
substitution lemmas) for the simple type system.
stlc_nf.v proves that simply typed terms are IγK ′-normalizing (Theorem 15).
nitlc.v and nitlc_facts.v contain definitions and facts (such as weakening) for the
uniform intersection type system.
nitlc_typ.v proves the equivalence between simple type typability and uniform inter-
section type typability (Lemma 23 and Theorem 32).

Simple types and annotated λ-terms are mechanized in stlc.v as sty and tm respectively.
Variable binding is addressed via the unscoped de Bruijn approach [9], with infrastructure
partially generated by Autosubst 2 [27].
Inductive sty : Type :=

| satom (x : nat) (* type variable *)
| sarr (s t : sty ). (* function type *)

Inductive tm : Type :=
| var (n : nat) (* term variable *)
| app (M N : tm) (* application *)
| lam (t : sty) (M : tm). (* type - annotated abstraction *)

In congruence with Section 3, the annotation t in the abstraction constructor lam is the
simple type assigned to the whole term (not just the bound variable).

The proposition stlc Gamma M t mechanizes that the term M is assigned the simple
type t in the simple type environment Gamma. IγK ′-normalization (Theorem 15) of simply
typed terms is mechanized in stlc_nf.v as follows.
Theorem stlc_nf M Gamma t : stlc Gamma M t -> exists N, steps M N /\ nf N.

In the above, steps M N mechanizes M →∗
IγK′ N, and nf N mechanizes that the term N is

β-normal.

2 https://github.com/tudo-seal/uniform-intersection

https://github.com/tudo-seal/uniform-intersection


A. Dudenhefner and D. Pautasso 8:17

Non-idempotent intersection types are mechanized in nitlc.v as nity.

Inductive nity : Type :=
| niatom (x : nat) (* type variable *)
| niarr (u : list nity) (A : nity ). (* function type *)

The proposition nitlc Gamma M A mechanizes that the term M is assigned the uniform
intersection type A in the uniform intersection type environment Gamma. Simple type typability
of terms which can be assigned a uniform intersection type (Lemma 23) is mechanized in
nitlc_typ.v as follows.

Theorem nitlc_stlc Gamma0 M Gamma A :
nitlc Gamma M A ->
env_ssim Gamma0 Gamma ->
allfv (fun x => nth_error Gamma0 x <> None) M ->
exists t, stlc Gamma0 M t /\ ssim t A.

In the above, the pointwise collapse of the uniform intersection type environment Gamma to the
simple type environment Gamma0 is mechanized by env_ssim Gamma0 Gamma together with
allfv (fun x => nth_error Gamma0 x <> None) M. The proposition ssim t A mecha-
nizes that the non-idempotent type A is uniform and collapses to the existentially quantified
simple type t (cf. Definition 19).

Finally, uniform typability of simply typed terms (Theorem 32) is mechanized in
nitlc_typ.v as follows.

Theorem nitlc_type_inference M Gamma0 t : stlc Gamma0 M t ->
exists Gamma A,

nitlc Gamma M A /\
Forall2 (fun s u => u <> [] /\ Forall (ssim s) u) Gamma0 Gamma /\
ssim t A.

In the above, if a term M is assigned a simple type t in the simple type environment
Gamma0, then there exists a uniform intersection type environment Gamma and a uniform
intersection type A such that the following conditions hold:

The term M is assigned the type A in the environment Gamma.
Each multiset u in Gamma is nonempty and collapses to the corresponding simple type s
in Gamma0.
The type A collapses to the simple type t.

The proof structure of the above Theorem nitlc_type_inference relies on the mechaniza-
tion of typability preserving expansion, namely Theorem stepI_expansion (Lemma 27),
Theorem stepG_expansion (Lemma 30), and Theorem stepK_expansion (Lemma 31).

There are three interdependent aspects of the proof of Theorem nitlc_type_inference
which highlight the utility of the Coq proof assistant.

The definition of the K′-reduction (Definition 1) allows for an expansion lemma.
The inductive hypothesis for the expansion lemma (cf. Lemma 31) is chosen carefully.
The particular inductive proof involves extensive, nested case analyses for the chosen
definition and inductive hypothesis.

In all three aspects the development of the proof was guided by the proof assistant: the
technical details listed by the tool motivated the particular definition of the K′-reduction. In
fact, the proof was developed via interaction with the mechanized statement prior to being
transcribed into a traditional written format.

FSCD 2024



8:18 Subject Expansion in Uniform Intersection Types

7 Conclusion

By providing an alternative proof that all simply typable terms can be assigned a quantitative
type by system U (Theorem 32), we are able to easily infer strong normalization of STLC
(Theorem 34). The presented typability proof, fully formalized in Coq, is constructive: this
means that an actual type inference algorithm for system U can be extracted from it. Such an
algorithm is conceptually dual to the one proposed by [23]; indeed, the technique presented
in the work at hand focuses on term expansion rather than on term reduction.

Inductive proofs of subject expansion in both systems U and I (most notably Lemma 31
and Lemma 38) are achieved by means of the introduced IγK′-reduction, for which we show
that simply typed terms are normalizing (Theorem 15). In addition, our perspective on SN
leads to the discovery of an interesting family of perpetual reduction strategies (Corollary 40).

The present work also highlights the role of Coq as a proof assistant: its contribution
was crucial in the design of the IγK′-reduction and the mechanical verification of technical
details of the aforementioned results.

References
1 Pablo Barenbaum and Cristian Sottile. Two decreasing measures for simply typed λ-terms. In

Marco Gaboardi and Femke van Raamsdonk, editors, 8th International Conference on Formal
Structures for Computation and Deduction, FSCD 2023, July 3-6, 2023, Rome, Italy, volume
260 of LIPIcs, pages 11:1–11:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.FSCD.2023.11.

2 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus
with Types. Perspectives in logic. Cambridge University Press, 2013. URL: http:
//www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/
lambda-calculus-types.

3 Antonio Bucciarelli, Delia Kesner, and Simona Ronchi Della Rocca. Inhabitation for non-
idempotent intersection types. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/
LMCS-14(3:7)2018.

4 Antonio Bucciarelli, Delia Kesner, and Daniel Ventura. Non-idempotent intersection types for
the lambda-calculus. Log. J. IGPL, 25(4):431–464, 2017. doi:10.1093/JIGPAL/JZX018.

5 Mario Coppo and Mariangiola Dezani-Ciancaglini. A new type assignment for λ-terms. Arch.
Math. Log., 19(1):139–156, 1978. doi:10.1007/BF02011875.

6 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the lambda-calculus. Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.
doi:10.1305/ndjfl/1093883253.

7 Mario Coppo, Mariangiola Dezani-Ciancaglini, and Betti Venneri. Functional characters
of solvable terms. Mathematical Logic Quarterly, 27(2-6):45–58, 1981. doi:10.1002/malq.
19810270205.

8 René David. Normalization without reducibility. Ann. Pure Appl. Log., 107(1-3):121–130,
2001. doi:10.1016/S0168-0072(00)00030-0.

9 Nicolaas Govert De Bruijn. Lambda calculus notation with nameless dummies, a tool for auto-
matic formula manipulation, with application to the Church-Rosser theorem. In Indagationes
Mathematicae (Proceedings), volume 75, pages 381–392. North-Holland, 1972.

10 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018. doi:10.1017/S0960129516000396.

11 Philippe de Groote. The conservation theorem revisited. In Marc Bezem and Jan Friso
Groote, editors, Typed Lambda Calculi and Applications, International Conference on Typed
Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands, March 16-18, 1993,
Proceedings, volume 664 of Lecture Notes in Computer Science, pages 163–178. Springer, 1993.
doi:10.1007/BFB0037105.

https://doi.org/10.4230/LIPICS.FSCD.2023.11
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.23638/LMCS-14(3:7)2018
https://doi.org/10.1093/JIGPAL/JZX018
https://doi.org/10.1007/BF02011875
https://doi.org/10.1305/ndjfl/1093883253
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1002/malq.19810270205
https://doi.org/10.1016/S0168-0072(00)00030-0
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1007/BFB0037105


A. Dudenhefner and D. Pautasso 8:19

12 Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. Commun.
ACM, 22(8):465–476, 1979. doi:10.1145/359138.359142.

13 Jean H. Gallier. On Girard’s “Candidats de Reductibilité”. University of Pennsylvania, 1989.
URL: https://api.semanticscholar.org/CorpusID:14688391.

14 Philippa Gardner. Discovering needed reductions using type theory. In Masami Hagiya and
John C. Mitchell, editors, Theoretical Aspects of Computer Software, International Conference
TACS ’94, Sendai, Japan, April 19-22, 1994, Proceedings, volume 789 of Lecture Notes in
Computer Science, pages 555–574. Springer, 1994. doi:10.1007/3-540-57887-0_115.

15 Jean-Yves Girard. Une extension de l’interpretation de Gödel a l’analyse, et son application
a l’elimination des coupures dans l’analyse et la theorie des types. In J.E. Fenstad, editor,
Proceedings of the Second Scandinavian Logic Symposium, volume 63 of Studies in Logic and
the Foundations of Mathematics, pages 63–92. Elsevier, 1971. doi:10.1016/S0049-237X(08)
70843-7.

16 Inge Li Gørtz, Signe Reuss, and Morten Heine Sørensen. Strong normalization from weak
normalization by translation into the lambda-I-calculus. High. Order Symb. Comput., 16(3):253–
285, 2003. doi:10.1023/A:1025693307470.

17 Assaf J. Kfoury and Joe B. Wells. Addendum to “New notions of reduction and non-
semantic proofs of strong beta-normalization in typed lambda calculi”, 1995. URL: https:
//open.bu.edu/handle/2144/1568.

18 Assaf J. Kfoury and Joe B. Wells. New notions of reduction and non-semantic proofs of beta-
strong normalization in typed lambda-calculi. In Proceedings, 10th Annual IEEE Symposium
on Logic in Computer Science, San Diego, California, USA, June 26-29, 1995, pages 311–321.
IEEE Computer Society, 1995. doi:10.1109/LICS.1995.523266.

19 Jan Willem Klop. Combinatory reduction systems. PhD thesis, Univ. Utrecht, 1980.
20 Robert Pieter Nederpelt Lazarom. Strong normalization in a typed lambda calculus with lambda

structured types. PhD thesis, TU Eindhoven, 1973.
21 Jean-Jacques Lévy. Réductions correctes et optimales dans le lambda-calcul. PhD thesis,

Université de Paris 7, 1978.
22 Peter Møller Neergaard. Theoretical pearls: A bargain for intersection types: a sim-

ple strong normalization proof. J. Funct. Program., 15(5):669–677, 2005. doi:10.1017/
S0956796805005587.

23 Daniele Pautasso and Simona Ronchi Della Rocca. A quantitative version of simple types. In
Marco Gaboardi and Femke van Raamsdonk, editors, 8th International Conference on Formal
Structures for Computation and Deduction (FSCD 2023), volume 260 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 29:1–29:21, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.FSCD.2023.29.

24 Garrel Pottinger. A type assignment for the strongly normalizable λ-terms. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, pages 561–577, 1980.

25 Helmut Schwichtenberg. An upper bound for reduction sequences in the typed λ-calculus.
Arch. Math. Log., 30(5-6):405–408, 1991. doi:10.1007/BF01621476.

26 Morten Heine Sørensen. Strong normalization from weak normalization in typed lambda-calculi.
Inf. Comput., 133(1):35–71, 1997. doi:10.1006/INCO.1996.2622.

27 Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with multi-sorted de
Bruijn terms and vector substitutions. In Assia Mahboubi and Magnus O. Myreen, editors,
Proceedings of the 8th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 166–180. ACM, 2019.
doi:10.1145/3293880.3294101.

28 William W. Tait. Intensional interpretations of functionals of finite type I. Journal of Symbolic
Logic, 32(2):198–212, 1967. doi:10.2307/2271658.

29 William W. Tait. A realizability interpretation of the theory of species. In Rohit Parikh,
editor, Logic Colloquium, pages 240–251, Berlin, Heidelberg, 1975. Springer Berlin Heidelberg.

FSCD 2024

https://doi.org/10.1145/359138.359142
https://api.semanticscholar.org/CorpusID:14688391
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1016/S0049-237X(08)70843-7
https://doi.org/10.1023/A:1025693307470
https://open.bu.edu/handle/2144/1568
https://open.bu.edu/handle/2144/1568
https://doi.org/10.1109/LICS.1995.523266
https://doi.org/10.1017/S0956796805005587
https://doi.org/10.1017/S0956796805005587
https://doi.org/10.4230/LIPIcs.FSCD.2023.29
https://doi.org/10.1007/BF01621476
https://doi.org/10.1006/INCO.1996.2622
https://doi.org/10.1145/3293880.3294101
https://doi.org/10.2307/2271658


8:20 Subject Expansion in Uniform Intersection Types

30 The Coq Development Team. The Coq proof assistant, July 2023. doi:10.5281/zenodo.
8161141.

31 Femke van Raamsdonk, Paula Severi, Morten Heine Sørensen, and Hongwei Xi. Perpetual
reductions in lambda-calculus. Inf. Comput., 149(2):173–225, 1999. doi:10.1006/INCO.1998.
2750.

32 Hongwei Xi. Weak and strong beta normalisations in typed lambda-calculi. In Philippe
de Groote, editor, Typed Lambda Calculi and Applications, Third International Conference
on Typed Lambda Calculi and Applications, TLCA ’97, Nancy, France, April 2-4, 1997,
Proceedings, volume 1210 of Lecture Notes in Computer Science, pages 390–404. Springer,
1997. doi:10.1007/3-540-62688-3_48.

https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.5281/zenodo.8161141
https://doi.org/10.1006/INCO.1998.2750
https://doi.org/10.1006/INCO.1998.2750
https://doi.org/10.1007/3-540-62688-3_48

	1 Introduction
	2 Preliminaries on Calculus and Reductions
	3 Simple Types and a Decreasing Measure
	4 Uniform Intersection Types
	4.1 Uniform Typability of Normal Forms
	4.2 Typability-preserving Expansions
	4.3 From Uniform Typability to Strong Normalization

	5 A Family of Perpetual Reductions
	6 Mechanization
	7 Conclusion

