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Preface

This volume contains the proceedings of the 9th International Conference on Formal Structures
for Computation and Deduction (FSCD 2024), which was held July 10-13, 2024 in Tallinn,
Estonia. FSCD 2024 was co-located with the 51st EATCS International Colloquium on
Automata, Languages, and Programming (ICALP), which was held July 8-12, 2024 in Tallinn,
Estonia, and with the 39th Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), which was held July 8-11, 2024 in Tallinn, Estonia.

The conference FSCD (https://fscd-conference.org/) covers all aspects of formal
structures for computation and deduction, from theoretical foundations to applications.
Building on two communities, RTA (Rewriting Techniques and Applications) and TLCA
(Typed Lambda Calculi and Applications), FSCD embraces their core topics and broadens
their scope to include closely related areas in logic and proof theory, new emerging models of
computation, as well as semantics and verification in new and challenging areas.

The FSCD 2024 program featured five invited talks, two of which were joint between
ICALP, LICS, and FSCD. The joint invited speakers were Edith Elkind (University of Oxford,
UK) and Stephanie Weirich (University of Pennsylvania, USA). The FSCD invited speakers
were Delia Kesner (Université Paris Cité, France), Bettina Könighofer (Graz University of
Technology, Austria), and Sebastian Ullrich (Lean Focused Research Organisation, USA).
The contributions of the FSCD invited speakers are included in these proceedings.

The Program Committee of FSCD 2024 consisted of 28 members from 14 countries.
FSCD 2024 received 57 submissions with contributing authors from 19 countries. Every
submitted paper was reviewed by at least three PC members with the help of in total 75
external reviewers. The reviewing process, which included a rebuttal phase, took place over
a period of nine weeks. A total of 30 papers were accepted for publication and are included
in these proceedings. The EasyChair conference management system has been a very useful
tool in all phases of the work of the Program Committee.

The Program Committee awarded the FSCD 2024 Best Paper Award by Junior Researchers
to Victor Sannier from Univ. Lille, CNRS, Inria, France for his paper ‘A Linear Type System
for Lp-Metric Sensitivity Analysis’.

In addition to the main conference, nine workshops were held before the conference:
AATG 2024: Algorithmic Aspects of Temporal Graphs VII
GETCO 2024: 13th International Workshop on Geometric and Topological Methods in
Computer Science
ITRS 2024: 11th Workshop on Intersection Types and Related Systems
IWC 2024: 13th International Workshop on Confluence
LearnAut 2024: Learning and Automata
LFMTP 2024: Logical Frameworks and Meta Languages: Theory and Practice
LMW 2024: 11th Logic Mentoring Workshop
MSFP 2024: Mathematically Structured Functional Programming
PAAW 2024: Parameterized Approximation Algorithms Workshop
PACS 2024: Parameterized Algorithms and Constraint Satisfaction
SmP 2024: Structure meets Power
TAT 2024: Trends in Arithmetic Theories
TLLA 2024: Eighth International Workshop on Trends in Linear Logic and Applications
Women in Logic 2024
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Editor: Jakob Rehof
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0:x Preface

This volume of FSCD 2024 is published in the LIPIcs series under a Creative Commons
license: online access is free to all papers and authors retain rights over their contributions.
We thank the Leibniz Center for Informatics at Schloss Dagstuhl, and in particular Michael
Wagner and Michael Didas, for their prompt and helpful replies to our questions regarding
the production of these proceedings, for their flexibility, and for their user-friendly submission
system.

A succesful conference is the result of joint work of many people. On behalf of the
Program Committee, I sincerely thank all authors of submitted papers for considering FSCD
as a venue for their work. I thank the Program Committee and the external reviewers for their
indispensable contribution, providing careful and constructive review and evaluation of the
submitted papers. I thank all invited speakers for enriching ICALP, LICS, and FSCD with
their talks. On behalf of the FSCD Program Committee, I thank all workshop organizers for
making an essential contribution to the program and atmosphere of the meeting, and I thank
the Steering Committee Workshop Chair Cynthia Kop and the Conference Workshop Chair
Luigi Liquori for their efforts. Warm thanks to the Conference Chair of FSCD 2024, Niccolò
Veltri and his colleagues at Tallinn University of Technology for the excellent organization of
the conference. I also wish to thank Pawel Sobocinski (Tallinn University of Technology) for
his support in the joint organization of ICALP, LICS, and FSCD in Tallinn.

I am very grateful to all the members of the Steering Committee of FSCD for their
valuable and helpful guidance in setting up the meeting, and for ensuring that FSCD will
remain a succesful conference. Let me thank in particular the Steering Committee chair
Herman Geuvers and the Steering Committee Publicity Chair Carsten Fuhs for their support
during the preparation of the conference. I am grateful to previous Program Chairs of FSCD
for sharing their experience with me at various stages, including Sandra Alves, Amy Felty,
Delia Kesner, Naoki Kobayashi, and Femke van Raamsdonk. Finally, I thank all participants
of the conference for creating a lively and interesting event.

Jakob Rehof
Program Chair of FSCD 2024
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Abstract
This paper studies the notion of meaningfulness for a unifying framework called dBang-calculus, which
subsumes both call-by-name (dCBN) and call-by-value (dCBV). We first define meaningfulness in dBang
and then characterize it by means of typability and inhabitation in an associated non-idempotent
intersection type system previously appearing in the literature. We validate the proposed notion of
meaningfulness by showing two properties: (1) consistency of the smallest theory, called H, equating
all meaningless terms, and (2) genericity, stating that meaningless subterms have no bearing on
the significance of meaningful terms. The theory H is also shown to have a unique consistent and
maximal extension H∗, which coincides with a well-known notion of observational equivalence. Last
but not least, we show that the notions of meaningfulness and genericity in the literature for dCBN
and dCBV are subsumed by the corresponding ones proposed here for the dBang-calculus.
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1 Introduction

A common line of research in logic and theoretical computer science is to find unifying
frameworks that subsume different paradigms, systems or calculi. Examples are call-by-push-
value [54, 55], polarized system LU [45], linear calculi [57, 58, 72], bang-calculus [38, 39, 23, 24],
system L [62, 35], ecumenical systems [68], monadic calculus [60, 61], and others [71, 40, 73].

The relevance of these unifying frameworks lies in the range of properties and models
they encompass. Finding unifying and simple primitives, tools and techniques to reason
about properties of different systems is challenging, and provides a deeper and more abstract
understanding of these properties. The advantages of this kind of approach are numerous, for
instance the several-for-one deal : study a property in a unifying framework gives appropriate
intuitions and hints for free for all the subsumed systems. The aim of this paper is to go
beyond the state of the art in a framework subsuming the call-by-name and call-by-value
evaluation mechanisms, by unifying their notions of meaningful (and meaningless) programs.

Call-by-name and call-by-value. Every programming language implements a particular
evaluation strategy, specifying when and how parameters are evaluated during function calls.
For example, in call-by-value (CBV), the argument is evaluated before being passed to the
function, while in call-by-name (CBN) the argument is passed immediately to the function
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body, so that it may never be evaluated, or may be re-evaluated several times. These models
of computation serve as the basis for many theoretical and practical studies in programming
languages and proof assistants, such as OCaml, Haskell, Coq, Isabelle, etc.

The CBN strategy has garnered significant attention in the literature on theoretical studies
and is generally perceived as well-established. In contrast, the CBV strategy has received
limited attention. Despite their similarities, CBN and CBV strategies have predominantly been
studied independently, leading to a fragmented research. This approach not only duplicates
research efforts – once for CBN and once again for CBV – but also generally results in ad-hoc
methods for dealing with the CBV case that are naively adapted from the CBN one.

Understanding the (logical) duality between CBN and CBV (e.g. [34]) marked a significant
step towards properly unifying these models. It paved the way for the emergence of Call-by-
Push-Value (CBPV), a unifying framework introduced by P.B. Levy [54, 55] which subsumes,
among others, CBN and CBV denotational and operational semantics thanks to the distinction
between computations and values, according to the slogan “a value is, a computation does”.
This framework attracts growing attention: proving advanced properties of a single unifying
paradigm, and subsequently instantiate them for a wide range of computational models.

The distant Bang-calculus. Drawing inspiration from Girard’s Linear Logic (LL) [44] and
the interpretation of CBPV into LL [38], Ehrhard and Guerrieri [39] introduced an (untyped)
restriction of CBPV, named Bang-calculus, already capable of subsuming both CBN and CBV. It
is obtained by enriching the λ-calculus with two modalities ! and its dual der. The modality !
actually plays a twofold role: it freezes the evaluation of subterms (called thunk in CBPV), and
it marks what can be duplicated or erased during evaluation (i.e. copied an arbitrary number
of times, including zero). The modality der annihilates the effect of !, effectively restoring
computation and eliminating duplicability. Embedding CBN or CBV into the Bang-calculus via
Girard’s translations simply consists in decorating λ-terms with ! and der, thereby forcing
one model of computation or the other one. Thanks to these elementary modalities and
embeddings, the Bang-calculus eases the identification of shared behaviors and properties of
CBN and CBV, encompassing both syntactic and semantic aspects of them.

The original Bang-calculus [39] uses some permutation rules, similar to the ones used
in [70, 30], that unveil hidden redexes and unblock reductions that otherwise would be stuck.
These permutation rules make the calculus adequate, preventing some normal forms from
being observationally equivalent to non-terminating terms. A major drawback is that the
resulting combined reduction is not confluent (Page 6 in [39]). The distant Bang-calculus
(dBang) [23, 24] was proposed as an adequate and confluent alternative. This is achieved by
enriching the syntax with explicit substitutions, in the vein of Accattoli and Kesner’s linear
substitution calculus [7, 9, 1, 2] (generalizing in turn Milner’s calculus [59, 51]), thanks to
rewrite rules that act at a distance, so that permutation rules are no longer needed.

In this paper, we focus on dBang, and its relations with dCBN [9, 1] and dCBV [11], which
are distant adequate variants of the CBN and CBV λ-calculi. This unifying framework is
fruitful, subsuming numerous dCBN and dCBV properties through their associated embedding,
as for instance big step semantics: evaluating the result from the dCBN/dCBV embedding of a
given program t with the dBang model actually corresponds to the embedding of the result
of evaluating the original program t with the dCBN/dCBV model. In other words, dBang is a
language that breaks down the dCBN and dCBV paradigms into elementary primitives.

Let us now review the state of the art by discussing some advanced properties of
programming languages that have been studied in the literature by using the unifying
approach dBang. Some of these results, including this work, strongly rely on semantical tools
such as quantitative types. To ensure clarity regarding the state of the art, let us briefly
discuss in first place the main ideas behind quantitative types.
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Quantitative Type Systems. Intersection type systems [31, 32] increase the typability power
on λ-terms with respect to simple types by introducing a new intersection type constructor
∧ that is associative, commutative and idempotent (i.e. σ ∧ σ = σ). Intersection types allow
terms to have different types simultaneously, e.g. a term has type σ ∧ τ whenever it has
both types σ and τ . They constitute a powerful tool to reason about qualitative properties
of programs. For example, different notions of normalization can be characterized using
intersection types [67, 33], in that a term t is typable in a given system if and only if t is
normalizing (as a consequence, typability in these systems is undecidable). An alternative
version of intersection type systems for the λ-calculus, called non-idempotent [43, 36], is
obtained by dropping idempotence. In such a setting, a term of type σ ∧ σ ∧ τ can be
seen as a resource used exactly once as a data of type τ and twice as a data of type σ.
Interestingly, such type systems provide not only qualitative characterizations of different
operational properties, but also quantitative ones: e.g. a term t is still typable if and only if t

is normalizing, moreover any type derivation of t gives an upper bound to the execution time
for t (the number of steps to reach a normal form) [37]. These upper bounds can be further
refined into exact measure using tight non-idempotent typing systems, as pioneered in [4].

State of the Art. This paper contributes to a broader initiative aimed at consolidating the
theory of dCBN and dCBV, by unifying them into dBang. Several results have already been
factorized and generalized in this framework, we now revisit some of them.

In [46], it is shown that the interpretation of a term t in any denotational model of
CBN/CBV obtained from LL is included in the interpretation of the CBN/CBV translation of t in
any denotational model of Bang obtained from LL. The reverse inclusion also holds for CBN
but not for CBV. In particular, these results apply to typability in non-idempotent intersection
type systems inspired by LL. Indeed, typing is preserved by Girard’s translations, meaning
that if a term is typable in the CBN/CBV type system, then its CBN/CBV translation is typable
in the type system B for Bang, using the same types. The converse holds for CBN but not for
CBV. In [23, 24], the CBV typing system is modified so that the reverse implication also holds.
Moreover, an extension of Girard’s CBN translation to dCBN and a new CBV translation for
dCBV are proposed. Similar typing preservation results have been obtained in [52] for the
translations in [23, 24], but for the more precise notion of tight typing introduced in [4].

Retrieving dynamic properties from Bang into CBN and CBV turns out to be a more
intricate task, especially in their adequate (distant) variant [23, 41, 24].

In [46] it is shown that CBN and CBV can be simulated by reduction in Bang through
Girard’s original translations. But the CBV translation fails to preserve normal forms, as some
CBV normal forms translate to reducible terms in Bang. This issue is solved in dBang [23, 24],
thanks to the new CBV translation for dCBV previously mentioned. In the end, reductions
and normal forms are preserved by both the CBN and the new CBV translations.

Even if dCBN and dCBV can be both simulated by reduction in dBang, the converse, known
as reverse simulation, holds for dCBN but fails for dCBV [24, 14]: a dBang reduction sequence
from a term in the image of the dCBV embedding may not correspond to a valid reduction
sequence in dCBV. Yet another new dCBV translation is proposed in [14] so that simulation
and reverse simulation are now recovered.

Another major contribution concerns the inhabitation problem: given an environment Γ
(a type assignment for variables) and a type σ, decide whether there is a term t that can be
typed with σ under the environment Γ. While inhabitation was shown [74] to be undecidable
in CBN for idempotent intersection type systems, it turns out to be decidable [25, 28] in the
non-idempotent setting. Decidability of the inhabitation problem leads to the development
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of automatic tools for type-based program synthesis [56, 21], whose goal is to construct a
program – the term t – that satisfies some high-level formal specification, expressed as a type
σ with some assumptions described by the environment Γ. It has been proved in [13] that
the algorithms deciding the inhabitation problem for dCBN and dCBV can be inferred from
the corresponding one for dBang, thus providing a unified solution to this relevant problem.

Meaningfulness and Genericity. In this work, we aim to unify the notions of meaningfulness
and genericity in dCBN and dCBV so as to derive them from the respective ones in dBang.

A naive approach to set a semantics for the pure untyped λ-calculus is to define the
meaning of a β-normalizing λ-term as its normal form, and equating all λ-terms that do not
β-normalize. The underlying idea is that, as β-reduction represents evaluation and a normal
form stands for its outcome, all non-β-normalizing λ-terms (i.e. diverging programs) are
then considered as meaningless. However, this simplistic approach is flawed, as thoroughly
discussed in [20]. For example, any λ-theory equating all non-β-normalizing λ-terms is
inherently inconsistent – it effectively equates all λ-terms, not just the meaningless ones!

Alternatively, during the 70s, Wadsworth [75, 76] and Barendregt [17, 18, 19, 20] showed
that the meaningful (CBN) λ-terms can be identified with the solvable ones. Solvability
is defined in a rather technical way: a λ-term t is solvable if there is a special kind of
context, called head context H, sending t to the identity function I = λz.z, meaning that H⟨t⟩
β-reduces to I. Roughly, a solvable λ-term t may be divergent, but its diverging subterms
can be eliminated by supplying the right arguments to t via an appropriate interaction with
a suitable head context H. For instance, in CBN, xΩ is divergent but solvable using the head
context H = (λx.⋄)(λy.I). It turns out that unsolvable λ-terms constitutes a strict subset
of the non-β-normalizing ones. Moreover, the smallest λ-theory that equates all unsolvable
λ-terms is consistent (i.e. it does not equate all terms). In Barendregt’s book [20], these
results rely on a keystone property known as (full) genericity, which states that meaningless
subterms are computationally irrelevant – in the sense that they do not play any role – in
the evaluation of β-normalizing terms. Formally, if t is unsolvable and C⟨t⟩ β-reduces to
some β-normal term u for some context C, then C⟨s⟩ β-reduces to u for every λ-term s. This
property stands as a fool guard that the choice of meaningfulness is adequate. A variant of
genericity [16], called surface in [15] and light in [10], states that any meaningless subterm t

is irrelevant in a meaningful term C⟨t⟩ in that C⟨s⟩ is still meaningful, for every term u.
Meaningfulness was also studied for first order rewriting systems [48] and other strategies

of the λ-calculus [71]. Notably, finding the correct notion of meaningfulness for CBV has
been a challenge [5, 6, 15]. Similarly, an extension of the dCBN was studied [29, 26] in the
framework of a λ-calculus equipped with pattern matching for pairs. The use of different data
structures in the language – functions and pairs – makes meaningfulness more challenging.
Indeed, it was shown that meaningfulness cannot be characterized only by means of typability
alone, as in CBN and CBV, but also requires some additional conditions stated in terms of
the inhabitation problem previously mentioned. This result for the λ-calculus with patterns
inspired the characterization of meaningfulness for dBang that we provide in this paper.
Genericity for dCBN and the more subtle case of dCBV was recently proved in [15].

Our Contributions. We first define meaningfulness for dBang, for which we provide a
characterization by means of typability and inhabitation. As a second contribution, we
validate this notion of meaningfulness twofold: meaningless terms enjoy surface genericity,
and the smallest λdBang-theory HdBang obtained by equating all the meaningless terms is
consistent. Moreover, we show that HdBang admits a unique maximal consistent extension
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H∗
dBang and show that it coincides with the well-known notion of observational equivalence.

Last but not least, as a third contribution, we show that the notions of meaningfulness in
the literature for dCBN and dCBV are subsumed by the one proposed here for dBang. We also
obtain surface genericity for dCBN and dCBV as a consequence of the genericity property for
dBang, and relate the theories HdBang and H∗

dBang (in dBang) to the corresponding ones in
dCBN and dCBV. Detailed proofs of our results can be found in [50].

Roadmap. Section 2 recalls dBang and its quantitative type system B. Section 3 defines
meaningfulness for dBang, and characterizes it in terms of typability and inhabitation in the
type system B. Section 4 addresses surface genericity and the construction of the theories
HdBang and H∗

dBang, while Section 5 establishes a precise relationship between meaningless
and genericity in dCBN/dCBV and their corresponding notions in dBang. Section 6 discusses
future and related work and concludes.

2 The dBang-Calculus

2.1 Syntax and Operational Semantics
We introduce the syntax of the distant Bang-calculus (dBang) [23, 24]. Given a countably
infinite set X of variables x, y, z, . . . , the set Λ! of terms is inductively defined as follows:

(Terms) t, u, s := x ∈ X | t u | λx.t | t[x\u] | !t | der(t)

The set Λ! includes variables x, abstractions λx.t and applications tu (as in the
λ-calculus), and three other constructors: a closure t[x\u] representing a pending explicit
substitution (ES) [x\u] on a term t, a bang !t to freeze the execution of t, and a dereliction
der(t) to fire again the frozen term t. The argument of an application t u (resp. a closure
t[x\u]) is the subterm u. From now on, we set I! := λz.!z, ∆! := λx.x!x, and Ω! := ∆!!∆!.

Abstractions λx.t and closures t[x\u] bind the variable x in the term t. Free and bound
variables are defined as expected, in particular fv(λx.t) := fv(t) \ {x} and fv(t[x\u]) :=
fv(u) ∪ (fv(t) \ {x}). The usual notion of α-conversion [20] is extended to Λ!, and terms are
identified up to α-conversion. We denote by t{x\u} the usual (capture avoiding) meta-level
substitution of the term u for all free occurrences of the variable x in the term t.

List contexts (L), surface contexts (S) and full contexts (F), which can be seen as
terms containing exactly one hole ⋄, are inductively defined as follows:

(List Contexts) L ::= ⋄ | L[x\t]
(Surface Contexts) S ::= ⋄ | S t | t S | λx.S | der(S) | S[x\t] | t[x\S]

(Full Contexts) F ::= ⋄ | F t | t F | λx.F | der(F) | F[x\t] | t[x\F] | !F

List and surface contexts are special cases of full contexts. The hole can occur everywhere
in full contexts, while it is forbidden under ! in surface contexts. For example, y (λx.⋄) is a
surface context hence a full context, while (!⋄)[x\I!] is a full context but not a surface one.
We write F⟨t⟩ for the term obtained by replacing the hole in F with the term t.

The following rewrite rules are the base components of the reduction system of dBang.
Any term having the shape of the left-hand side of one of these three rules is called a redex.

L⟨λx.t⟩ u 7→dB L⟨t[x\u]⟩ t[x\L⟨!u⟩] 7→s! L⟨t{x\u}⟩ der(L⟨!t⟩) 7→d! L⟨t⟩

Rule dB (resp. s!) is assumed to be capture free: no free variable of u (resp. t) is captured
by the list context L. The rule dB fires a β-redex and generates an ES. The rule s! operates
a substitution provided its argument is a bang: only bang terms can be erased or duplicated,
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1:6 Meaningfulness and Genericity in a Subsuming Framework

and they lose their bang when the substitution is performed. The rule d! opens a bang. All
these rewrite rules act at a distance [7, 9, 2]: the main constructors involved in the rule can
be separated by a finite – possibly empty – list context L of ES. This mechanism unblocks
redexes that would otherwise be stuck, e.g. (λx.x)[y\w]!z 7→dB x[x\!z][y\w] fires a β-redex
where L = ⋄[y\w] is the list context in between the abstraction λx.x and the argument !z.

The surface reduction →S is the surface closure of the three rewrite rules dB, s! and d!,
i.e. →S only fires redexes in surface contexts (not under bang). Similarly, the full reduction
→F is the full closure of the three rewrite rules dB, s! and d!, i.e. →F fires redexes in any
full contexts and thus the bang loses its freezing behavior. For example,

(λx.!der(!x))!y →S (!der(!x))[x\!y] →S !(der(!y)) →F !y

The first two →S-steps are →F-steps too, the last one is not a →S-step. We denote by →∗
S

the reflexive-transitive closure of →S, and similarly for →F. A reduction →R is confluent if
for all t, u1, u2 such that t →∗

R u1 and t →∗
R u2, there is s such that u1 →∗

R s and u2 →∗
R s.

▶ Theorem 1. The reductions →S and →F are confluent.

Proof. For →S see [23], for →F see [50]. ◀

A term t is a surface (resp. full) normal form if there is no u such that t →S u (resp.
t →F u). A term t is surface (resp. full) normalizing if t →∗

S u (resp. t →∗
F u) for some

surface (resp. full) normal form u. Since →S ⊊→F, some terms may be surface-normalizing
but not full-normalizing, e.g. λx.!(der(!Ω!)).

As a matter of fact, some ill-formed terms are not redexes but neither represent a desired
computation result. They are called clashes and have one of the following forms:

L⟨!t⟩ u t[x\L⟨λx.u⟩] der(L⟨λx.t⟩) t(L⟨λx.u⟩) if t ̸= L′⟨λy.s⟩

This static notion of clash is lifted to a dynamic level. A term t is surface (resp. full)
clash-free if it does not surface (resp. full) reduce to a term with a clash in surface (resp. full)
position, i.e. if there are no surface (resp. full) context S (resp. F) and clash c such that
t →∗

S S⟨c⟩ (resp. t →∗
F F⟨c⟩). For example, x!(y(λz.z)) is surface clash-free but not full

clash-free as it has a clash y(λz.z) under a bang. Both notions are stable under reduction.
Finally, some terms contain neither redexes nor clashes. A surface (resp. full) clash-

free normal form is a surface (resp. full) normal form which is also surface (resp. full)
clash-free, as e.g. the term xx. These are the results of the computation, and they can even
be syntactically characterized by the grammar noS below.

neS := x ∈ X | neS naS | der(neS) | neS[x\neS] naS := !t | neS | naS[x\neS]
nbS := neS | λx.noS | nbS[x\neS] noS := naS | nbS

▶ Lemma 2 ([23]). Let t ∈ Λ!, then t ∈ noS iff t is a surface clash-free normal form.

2.2 Quantitative Typing System
We present the quantitative typing system B [23], based on [43, 36], for dBang. It contains
arrow and intersection types. Intersections are associative, commutative but not idempotent,
thus an intersection type is represented by a (possibly empty) finite multiset [σi]i∈I . Given a
countably infinite set T V of type variables α, β, γ, . . . , we define by mutual induction:

(Types) σ, τ, ρ := α ∈ T V | M | M ⇒ σ

(Multitypes) M, N := [σi]i∈I where I is a finite set
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(var)
x : [σ] ⊢ x : σ

Γ ⊢ t : M ⇒ σ ∆ ⊢ u : M
(app)

Γ + ∆ ⊢ t u : σ

(Γi ⊢ t : σi)i∈I I finite
(bg)

+i∈IΓi ⊢ !t : [σi]i∈I

Γ, x : M ⊢ t : σ
(abs)

Γ ⊢ λx.t : M ⇒ σ

Γ, x : M ⊢ t : σ ∆ ⊢ u : M
(es)

Γ + ∆ ⊢ t[x\u] : σ

Γ ⊢ t : [σ]
(der)

Γ ⊢ der(t) : σ

Figure 1 Type System B for the dBang-calculus.

A (type) environment, noted Γ or ∆, is a function from variables to multitypes,
assigning the empty multitype [ ] to all variables except a finite number (possibly zero).
The empty environment, noted ∅, maps every variable to [ ]. The domain of Γ is
dom(Γ) = {x ∈ X | Γ(x) ̸= [ ]}, the image of Γ is im(Γ) = {Γ(x) | x ∈ dom(Γ)}. Given the
environments Γ and ∆, Γ + ∆ is the environment mapping x to Γ(x) ⊎ ∆(x), where ⊎ denotes
multiset union; and +i∈I∆i (with I finite) is its n-ary extension, in particular +i∈I∆i = ∅
if I = ∅. An environment Γ is denoted by x1 :M1, . . . , xn :Mn when the xi’s are pairwise
distinct variables and Γ(xi) = Mi for all 1 ≤ i ≤ n, and Γ(y) = [ ] for y /∈ {x1, . . . , xn}.

A typing is a pair (Γ; σ), where Γ is an environment and σ is a type. A (typing)
judgment is a tuple of the form Γ ⊢ t : σ, where (Γ; σ) is a typing and t is a term (the
subject of the judgment). The typing system B for dBang is defined by the rules in Figure 1.
The axiom rule (var) is relevant, i.e. there is no weakening. Rules (abs), (app) and (es)
are standard. Rule (bg) has as many premises as elements in the finite (possibly empty)
index set I, and its conclusion types !t with a multitype gathering all the (possibly different)
types in the premises typing t. In particular, when I = ∅, the rule has no premises, and it
types any term !t with [ ], leaving the subterm t untyped. Rule (der) forces the argument of a
dereliction to be typed by a multitype of cardinality 1.

A (type) derivation in system B is a tree obtained by applying the rules in Figure 1. The
judgment at the root of the type derivation Π is the conclusion of Π. We write Π▷B Γ ⊢ t : σ

when Π is a derivation in system B with conclusion Γ ⊢ t : σ, and ▷B Γ ⊢ t : σ if there exists
some derivation Π ▷B Γ ⊢ t : σ. A term t is B-typable if ▷B Γ ⊢ t : σ for some typing (Γ; σ).

System B enjoys subject reduction and expansion with respect to →F, and characterizes
surface-normalizing clash-free terms.

▶ Theorem 3 ([23, 13]). Let t, u ∈ Λ!.
1. If t →F u, then for any typing (Γ; σ), one has ▷B Γ ⊢ t : σ if and only if ▷B Γ ⊢ u : σ.
2. t is B-typable if and only if t surface-reduces to a surface clash-free normal form.

3 Meaningfulness = Typability + Inhabitation

In this section, we introduce the notion of meaningfulness for dBang and we establish a
logical characterization of meaningfulness via system B. Intuitively, a term t is meaningful if
it can be supplied by some arguments (possibly binding some free variables of t) so that it
reduces to some observable term. In dBang, the observables are the bang terms since they
are the only terms enabling substitution to be fired.

▶ Definition 4. A term t is dBang-meaningful if there are a testing context T and u ∈ Λ! such
that T⟨t⟩ →∗

S !u, where testing contexts are defined by the grammar T := ⋄ | Ts | (λx.T)s.1 A
term t is dBang-meaningless if it is not dBang-meaningful.

1 Thanks to a factorization theorem for dBang [14], in our definition of dBang-meaningfulness →∗
S can

equivalently be replaced by →∗
F. For the same reason, the same remark also applies to Definition 14.
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(var)
x : [M ⇒ σ] ⊢ x : M ⇒ σ

(var)
x : [M] ⊢ x : M

(app)
x : [M ⇒ σ, M] ⊢ xx : σ

Figure 2 A type derivation of xx in system B.

(var)
x : [α] ⊢ x : α

(bg)
x : [α] ⊢ !x : [α]

(abs)
∅ ⊢ λx.!x : [α] ⇒ [α]

Figure 3 Inhabitation of [α] ⇒
[α] in system B.

For example, I! is dBang-meaningful, take the testing context T = ⋄ !u. Both Ω! and xΩ!
are dBang-meaningless: every testing context they are plugged in cannot erase Ω!, which
is not normalizing and does not reduce to a bang term. Note that all testing contexts are
surface, and that the hole in a testing context is always in the functional position of an
application, in particular if the hole is in the scope of some λ, then this λ must be applied.

Readers familiar with the advanced theory of λ-calculus may wonder about the relevance
of our notion of dBang-meaningfulness. In particular, we could have just naively extended the
well-known notion of call-by-name solvability: a term t is dBang-solvable if there are a testing
context T such that T⟨t⟩ →∗

S I!. We found at least two reasons to not use dBang-solvability:
the first one is that we would lose consistency of the smallest λdBang-theory generated by
equating all dBang-unsolvable terms (see discussion after Proposition 8), while the second
one is that we would lose genericity (see discussion after Corollary 11).

In an adequate calculus, meaningfulness is usually characterized both operationally
(normalizability) and logically (typability): a term is meaningful iff it is normalizing for a
suitable subreduction of the calculus iff it is typable in a suitable type system. Surprisingly,
these characterizations are subtler in dBang, because the language has two (incompatible)
data structures: abstractions (playing the role of functions) and bangs (playing as values).

A natural idea to operationally characterize dBang-meaningfulness would be normaliz-
ability by surface reduction, but this fails, even if we require the obtained surface normal
form to be clash-free. For instance, the term xx is dBang-meaningless despite being a surface
clash-free normal form. Indeed, for xx to be dBang-meaningful, a testing context T would
need to provide a term u to substitute the variable x, so that T⟨xx⟩ would eventually reduce
to a bang. However, achieving this requires the term u to reduce to both an abstraction and
a bang, which is impossible. Hence, dBang-meaningfulness is not only the ability to produce
a surface clash-free normal form, but also to transform this result into an observable.

Concerning a logical characterization of dBang-meaningfulness, typability is not enough,
at least in system B, since it just characterizes surface clash-free normalization (Theorem 3.2).
For instance, the dBang-meaningless term xx seen above is typable in system B. Every type
derivation of xx has the form of that in Figure 2, which reveals the conflict when assigning
to x both an arrow type M ⇒ σ (the type of terms eventually reducing to abstractions) and
a multitype M (the type of terms eventually reducing to bangs). The inhabitation problem
can be used to detect such conflicts, allowing for a handy characterization of meaningfulness.
Indeed, the multitype [M ⇒ σ, M] assigned to the variable x in Figure 2 is not inhabited.
Other (naive and unsuccessful) alternatives are discussed in Section 6.

While it seems complex to syntactically establish operational conditions such as (not)
reducing to abstractions or bangs, this is easily achieved semantically. Indeed, we establish
a logical characterization of dBang-meaningfulness based on typability and inhabitation in
system B, similarly to what happens in the λ-calculus with pairs [12, 29, 26]. Intuitively,
suppose that a term t is dBang-meaningful, so there is a testing context T such that T⟨t⟩
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reduces to an observable, i.e. a bang, which can be (trivially) typed with the typing (∅; [ ]) in
system B. By Theorem 3.1, T⟨t⟩ must also be typable by the same typing (∅; [ ]), meaning that
t is typable by some environment x1 :M1, . . . , xn :Mm and some type N1 ⇒ . . . ⇒ Nn ⇒ [ ],
where each of the Mi’s and Ni’s is inhabited, i.e. there is a term with such a type.

A similar argument holds for other type systems and calculi [29, 26] with their own
notions of meaningfulness and observable. The point is to identify the set of types T obs

S
associated with the observables. In any type system S whose types are those of Section 2.2,
given a set of types T obs

S for observable terms, the set of arguments argsS(σ) of a type σ is
the set of multitypes appearing to the left of arrows, until reaching the type of an observable.
Formally, if σ ∈ T obs

S then argsS(σ) := ∅, otherwise argsS(α) := ∅, argsS(M ⇒ σ) :=
{M} ∪ argsS(σ), and argsS(M) = ∅. In system B, we set T obs

B := {M | M multitype},
because bang terms – the observables in dBang – can be only typed by multisets. For
example, argsB([τ ] ⇒ (M ⇒ [α])) = {[τ ] , M}. The cases of dCBN and dCBV type systems
are discussed in Section 5, this is why our definitions deal with a generic type system S.

▶ Definition 5. Let S be a type system and inhS(·) be a predicate on the types of S. A
set S of types is inhabited, noted inhS(S), if inhS(σ) for all σ ∈ S. We write inhS(Γ)
if inhS(im(Γ)). A typing (Γ; σ) or a judgment Γ ⊢ t : σ is S-testable if inhS(Γ) and
inhS(argsS(σ)). A term t is S-testable if ▷S Γ ⊢ t : σ for some S-testable typing (Γ; σ).

A type σ is inhabited in system B, noted inhB(σ), if Π▷B ∅ ⊢ t : σ for some Π and t. For
instance, in system B, the type [ ] is inhabited by any bang, use rule (bg) with no premises;
the environment ∅ is trivially inhabited; the type [α] ⇒ [α] is inhabited, see Figure 3. The
term λx.!x is B-testable because ▷B ∅ ⊢ λx.!x : [ ] ⇒ [ ] and (∅, [ ] ⇒ [ ]) is B-testable.

▶ Lemma 6. Let t ∈ Λ! and T be a testing context. If ▷B ∅ ⊢ T⟨t⟩ : [ ], then ▷BΓ ⊢ t : σ with
inhB(Γ) and inhB(argsB(σ)).

Inhabitation serves as a crucial tool to produce an observable from a typable term. As
said before, any multitype assigned to a variable x by the environment Γ in the derivation
of a meaningful term t should be inhabited. Hence, the environment Γ has to be inhabited.
However, relying solely on the inhabitation of Γ is not sufficient, as illustrated by the typable
term ▷B ∅ ⊢ λx.xx : [[M] ⇒ τ, M] ⇒ τ , which, despite having a trivially inhabited environ-
ment, is dBang-meaningless. We thus also test the inhabitation of type arguments of the type
σ of t. This therefore means that B-testability is sufficient to ensure dBang-meaningfulness.
Surprisingly, this actually provides a characterization of dBang-meaningfulness.

▶ Theorem 7 (Logical Characterization). Let t ∈ Λ!: t is dBang-meaningful iff t is B-testable.

Now that we have a logical characterization of dBang-meaningfulness, we can reason
about the consequences of equating all dBang-meaningless terms in a λdBang-theory, that
is, in a quotient of Λ! that roughly equates all terms with the same semantics. Formally,
a λdBang-theory is an equivalence ≡ on Λ! containing →F and closed under full contexts.
Let HdBang (also noted ≡HdBang) be the smallest λdBang-theory equating all dBang-meaningless
terms. Theorem 7 entails that HdBang is consistent, that is, it does not equate all terms.

▶ Proposition 8 (Consistency of HdBang). There exist t, u ∈ Λ! such that t ̸≡HdBang u.

Replacing dBang-meaningfulness by dBang-solvability would result in the loss of consist-
ency. Indeed, take an arbitrary term t ∈ Λ! and the two dBang-unsolvable terms !Ω! and
Ω! that the resulting (alternative) theory, written Hsolv

dBang, would equate. By contextuality,
we would have (λx.t) !Ω! ≡Hsolv

dBang
(λx.t) Ω!, and by reduction t ≡Hsolv

dBang
(λx.t) !Ω! (suppose
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x /∈ fv(t)) . Notice that (λx.t) Ω! is also dBang-unsolvable since the term Ω! cannot be erased,
thus (λx.t) Ω! ≡Hsolv

dBang
Ω!. By transitivity t ≡Hsolv

dBang
(λx.t) !Ω! ≡Hsolv

dBang
(λx.t) Ω! ≡Hsolv

dBang
Ω!. Since

t is arbitrary, we easily conclude that all terms are equated in Hsolv
dBang, making it inconsistent.

We also corroborate our definition of meaningfulness by proving that it fulfills a pair of
genericity properties, and show that HdBang admits a unique maximal consistent extension
H∗

dBang (Section 4). Finally, we also show that dBang-meaningfulness, HdBang and H∗
dBang

subsume the well-established corresponding notions for dCBN and dCBV (Section 5).

4 Typed and Surface Genericity in dBang

In Section 3, we proved that dBang-meaningfulness is captured by typability in system B with
some B-testable typing. While this concise characterization formulated as “meaningfulness =
typability + inhabitation” [26] provides a high level understanding, its practical manipulation
might pose some challenges. Suppose we study some properties of a dBang-meaningful term t

through the logical characterization (Theorem 7), thus having a type derivation Π▷B Γ ⊢ t : σ

with (Γ; σ) B-testable. If we proceed by induction on Π, then there is no guarantee that
all the judgments appearing in Π have B-testable typings as well, which would make the
reasoning awkward and the logical characterization of Theorem 7 difficult to exploit. But this
is not the case. Upcoming Lemma 9 states that B-testability propagates bottom-up: if the
conclusion of a derivation Π has a B-testable typing, then so does every other judgment in Π.

We write Π ▷Bm Γ ⊢ t : σ if Π ▷B Γ ⊢ t : σ and each judgment in Π is B-testable, and
Π ▷Bm t if Π ▷Bm Γ ⊢ t : σ holds for some typing (Γ; σ).

▶ Lemma 9. Let t ∈ Λ!. Then Π ▷B Γ ⊢ t : σ with (Γ; σ) B-testable iff Π ▷Bm Γ ⊢ t : σ.

Proof. (⇐): Trivial. (⇒): By an induction on Π. ◀

We can therefore easily use the logical characterization of dBang-meaningfulness to prove
the following first genericity result for dBang: in a dBang-meaningful term s, a dBang-
meaningless subterm can be replaced by any term, without impacting the typing of s.

▶ Theorem 10 (Typed Genericity). Let t ∈ Λ! be dBang-meaningless and F be a full context.
If ▷Bm Γ ⊢ F⟨t⟩ : σ, then ▷Bm Γ ⊢ F⟨u⟩ : σ for all u ∈ Λ!.

Proof. By induction on F, using both Theorem 7 and Lemma 9. ◀

This proof relies on the fact that the dBang-meaningless subterm t cannot be explicitly
typed in any of the judgments of Π, as typing t in Bm is equivalent to being dBang-meaningful
(by Theorem 7 and Lemma 9). Thus, typed genericity fails when weakening the hypothesis
from Bm-typability to B-typability. For example, given the dBang-meaningless term t = xx

and the context F = y ⋄, F⟨t⟩ is B-typable as witnessed by ▷B y : [N ⇒ α] , x : [M ⇒ N , M] ⊢
F⟨t⟩ : α – note that the type of x is not inhabited – while F⟨Ω!⟩ = y Ω! is not B-typable.

As a consequence of typed genericity, we can now prove a qualitative surface genericity
result, stating that dBang-meaningless subterms have no bearing on the significance of
dBang-meaningful terms: in a dBang-meaningful term s, a dBang-meaningless subterm can
be replaced by any term, still keeping s dBang-meaningful. We call this genericity result
surface, despite it universally quantifies over full contexts, as dBang-meaningful is defined
in terms of surface reduction. The corresponding results for dCBN and dCBV are also called
surface in [15] and light in [10], they are both later generalized to a stratified notion in [15].

▶ Corollary 11 (Qualitative Surface Genericity). Let F be a full context. If F⟨t⟩ is dBang-
meaningful for some dBang-meaningless t ∈ Λ!, then F⟨u⟩ is dBang-meaningful for all u ∈ Λ!.
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Proof. Let u∈Λ!. As F⟨t⟩ is dBang-meaningful, then Π▷Bm F⟨t⟩ holds for some Π by Theorem 7
and Lemma 9. As t is dBang-meaningless, then Π′ ▷Bm F⟨u⟩ holds for some Π′ by Theorem 10,
and hence F⟨u⟩ is dBang-meaningful by Theorem 7 and Lemma 9. ◀

As for consistency, surface genericity fails when replacing dBang-meaningfulness with
dBang-solvability. Indeed, consider the full context F := (λy.x) ⋄ and the two dBang-unsolvable
terms t = !Ω! and u = Ω!. One then has that F⟨t⟩ = (λy.x) !Ω! →∗

S x is trivially dBang-
solvable, while F⟨u⟩ = (λy.x) Ω! is not, as the term Ω! cannot be erased.

Genericity is a sanity check on meaningfulness: it holds only if all dBang-meaningless
terms are truly meaningless. Still, some truly meaningless terms might be misinterpreted as
dBang-meaningful. Indeed, when crafting a notion of dBang-meaningless that would satisfy
genericity, one might not take all truly meaningless terms. The λdBang-theory H∗

dBang is
introduced to avoid that. Let H∗

dBang, also noted ≡H∗
dBang

, be the relation on Λ! defined by:

H∗
dBang := {(t, u) | ∀ F full context, F⟨t⟩ dBang-meaningful ⇔ F⟨u⟩ dBang-meaningful}

The theory H∗
dBang equates more than HdBang. For example, let t = x[x\z][y\z] and

u = x[y\z][x\z]: it can be shown that t ̸≡HdBang u while t ≡H∗
dBang

u due to Theorem 7 since t

and u (and so F⟨t⟩ and F⟨u⟩ for any full context F) are B-typable by exactly the same typings.
▶ Remark 12. In H∗

dBang, a term reducing to a bang will only be equated to terms which also
reduce to bangs. This can be formally proved using a property stating that neutral normal
forms can create clashes via a single substitution, technical details can be found in [50].

We expect H∗
dBang to extend the theory HdBang. Moreover, to check that all truly meaning-

less terms are actually dBang-meaningless, we also want this theory to be maximal, meaning
that no more terms can additionally be equated without compromising consistency.

▶ Theorem 13. H∗
dBang is the unique maximal consistent λdBang-theory containing HdBang.

We now show that the theory H∗
dBang coincides with the well-known notion of observational

equivalence in the literature. Observational equivalence roughly equates terms having the
same operational behavior (i.e. reduction to an observable) in any context. The fact that
H∗

dBang and observational equivalence coincide means that two different approaches to define
a semantics in dBang actually coincide. This further backs up the idea that what we call
dBang-meaningfulness appropriately represents meaningfulness in dBang.

▶ Definition 14 (Observational Equivalence). Let t, u ∈ Λ!, then t and u are open-
observational equivalent (resp. observational equivalent), noted t ∼=o u (resp. t ∼= u) if
for every full context F (resp. full context F such that F⟨t⟩ and F⟨u⟩ are closed), F⟨t⟩ →∗

S !t′

for some t′ ∈ Λ! iff F⟨u⟩ →∗
S !u′ for some u′ ∈ Λ!.

Note that, differently from ∼=, ∼=o quantifies over all full contexts and not only on closing
full contexts, hence ∼=o⊆ ∼=. Finally, we now prove that the λdBang-theory H∗

dBang actually
coincides with the observational equivalences ∼= and ∼=o.

▶ Theorem 15. Let t, u ∈ Λ!, then (1) t ∼= u iff (2) t ∼=o u iff (3) t ≡H∗
dBang

u.

Proof. Let t, u ∈ Λ!. Let us show that (3) ⇒ (2) ⇒ (1) ⇒ (3).
(3) ⇒ (2): Let t ≡H∗

dBang
u. Suppose F is an arbitrary full context such that F⟨t⟩ →∗

S !t′

for some t′ ∈ Λ!. Since H∗
dBang is a λdBang-theory (Theorem 13) then it is contextual and

hence F⟨t⟩ ≡H∗
dBang

F⟨u⟩. By Remark 12, F⟨u⟩ →∗
S !u′ for some u′ ∈ Λ!. Therefore, t ∼= u.

(2) ⇒ (1): Immediate.
(1) ⇒ (3): We can easily prove that ∼= is a consistent λdBang-theory. As (3) ⇒ (2) ⇒ (1),
we have ∼= ⊇ H∗

dBang ⊇ HdBang (the last inclusion holds by Theorem 13). By maximality of
H∗

dBang (Theorem 13), then necessarily ∼= ⊆ H∗
dBang. ◀
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5 Subsuming CBN and CBV Meaningfulness

In this section we show that the notions of meaningfulness for dCBN and dCBV in the
literature [15] are subsumed by the one proposed in Section 3 for dBang. We also deduce
surface genericity for dCBN and dCBV as a consequence of surface genericity for dBang.

5.1 dCBN and dCBV Calculi
Both dCBN [7, 8, 1] and dCBV [11] are specified using ES and action at a distance, as explained
in Section 2.1 for dBang. Both dCBN and dCBV share the same term syntax. The sets Λ of
terms and Υ of values are inductively defined below.

(Terms) t, u ::= v | t u | t[x\u] (Values) v ::= x | λx.t

From now on, we set I := λz.z, ∆ := λx.xx, and Ω := ∆∆. Note that the syntax contains
neither der nor !. The distinction between terms and values is irrelevant in dCBN but crucial
in dCBV. The two calculi also share the same list contexts LN, LV and full contexts FN, FV,
but use specialized surface contexts SN and SV for dCBN and dCBV, respectively. Again,
contexts can be seen as terms with exactly one hole ⋄ and are inductively defined below.

(List Contexts) LN, LV ::= ⋄ | LN[x\t]
(dCBN Surface Contexts) SN ::= ⋄ | SN t | λx.SN | SN[x\t]
(dCBV Surface Contexts) SV ::= ⋄ | SV t | t SV | SV[x\t] | t[x\SV]

(Full Contexts) FN, FV ::= ⋄ | FN t | t FN | λx.FN | FN[x\t] | t[x\FN]

We now consider the following rewrite rules:

LN⟨λx.t⟩ u 7→dB LN⟨t[x\u]⟩ t[x\u] 7→s t{x\u} t[x\LV⟨v⟩] 7→sV LV⟨t{x\v}⟩

Rules dB and sV are both capture-free: no free variable of u (resp. t) is captured by the
list context LN (resp. LV). The differences between dCBN and dCBV are in the previous notions
of surface contexts, and in the rewrite rules. The dCBN surface reduction →SN is the union
of the dCBN surface closure of rewrite rules dB and s, while the dCBV surface reduction
→SV is the union of the dCBV surface closure of the rewrite rules dB and sV. Finally, we use
→∗

SN
(resp. →∗

SV
) to denote the reflexive-transitive closure of the relation →SN (resp. →SV).

▶ Example 16. For example, t0 := (λx.yxx)(II) →SN (yxx)[x\II] →SN y(II)(II) =: t1 and
t0 = (λx.yxx)(II) →SV (yxx)[x\II] →SV (yxx)[x\z[z\I]] →SV (yxx)[x\I] →SV yII =: t2.

The dCBN surface reduction is (a non-deterministic diamond variant of) the well-known head
reduction [20], and dCBV surface reduction is the weak reduction not reducing under λ’s.

The quantitative type systems N for dCBN and V for dCBV are presented in Figures 4
and 5, respectively. Types and judgments are the same as for system B. A derivation Π in
system N with conclusion Γ ⊢ t : σ is noted Π ▷N Γ ⊢ t : σ; we write ▷N Γ ⊢ t : σ if there is
a derivation Π ▷N Γ ⊢ t : σ. We use similar notations for system V.

The salient property of type systems N and V is characterizing normalization in dCBN
and dCBV, respectively.

▶ Lemma 17 ([23, 24]). Let t ∈ Λ, then:
t is dCBN surface normalizing iff it is N -typable.
t is dCBV surface normalizing iff it is V-typable.



D. Kesner, V. Arrial, and G. Guerrieri 1:13

(var)
x : [σ] ⊢ x : σ

Γ ⊢ t : [τi]i∈I ⇒ σ (∆i ⊢ u : τi)i∈I I finite
(app)

Γ +i∈I ∆i ⊢ t u : σ

Γ, x : M ⊢ t : σ
(abs)

Γ ⊢ λx.t : M ⇒ σ

Γ, x : [τi]i∈I ⊢ t : σ (∆i ⊢ u : τi)i∈I I finite
(es)

Γ +i∈I ∆i ⊢ t[x\u] : σ

Figure 4 Type System N for the dCBN-calculus.

(var)
x : M ⊢ x : M

Γ ⊢ t : [M ⇒ σ] ∆ ⊢ u : M
(app)

Γ + ∆ ⊢ t u : σ

(Γi, x : Mi ⊢ t : σi)i∈I I finite
(abs)

+i∈IΓi ⊢ λx.t : [Mi ⇒ σi]i∈I

Γ, x : M ⊢ t : σ ∆ ⊢ u : M
(es)

Γ + ∆ ⊢ t[x\u] : σ

Figure 5 Type System V for the dCBV-calculus.

Both dCBN and dCBV can be embedded into dBang by decorating each term with the !
and der modalities. The embedding ·n for dCBN is standard, while various embeddings ·v
for dCBV have been proposed in the literature [44, 57, 58, 46, 23, 24, 14], each with its own
strengths and weaknesses. In this work, we use the embeddings from [23, 24] defined below:

xn := x xv := !x
(λx.t)n := λx.tn (λx.t)v := !λx.tv

(tu)n := tn !un (tu)v :=
{

L⟨s⟩ uv if tv = L⟨!s⟩
der(tv) uv otherwise

(t[x\u])n := tn[x\!un] (t[x\u])v := tv[x\uv]

These translations are extended to contexts as expected by setting ⋄n := ⋄ and ⋄v := ⋄.

▶ Example 18. Recalling Example 16, one has tn
0 = (λx.y !x !x) !(I!!I!), tn

1 = y !(I!!I!) !(I!!I!),
tv
0 = (λx.(der(y !x) !x))(I! !I!) and tv

2 = der(y !I!) !I!.

Let us give some intuition on these embeddings. In dCBN, any argument (right-hand side
of application or substitution) can be erased/duplicated, just as bang terms in the dBang-
calculus, so that arguments must be translated to bang terms. In dCBV, only values can
be erased/duplicated so that values – and only values – must be translated to bang terms.
However, this remark alone is not sufficient to achieve a dCBV embedding enjoying good
properties, and in particular to translate dCBV-normal forms to dBang-normal forms. The
translation of applications is precisely designed in order to guarantee this property.

These embeddings preserve reductions, which will allows us to show that meaningfulness
if preserved through embedding (Theorems 25 and 30).

▶ Lemma 19 (Simulation [23, 24]). Let t, u ∈ Λ.
1. If t →∗

SN
u then tn →∗

S un.
2. If t →∗

SV
u then tv →∗

S uv.

▶ Example 20. In Example 16, we showed that t0 →∗
SN

t1 and t0 →∗
SV

t2. Recalling
Example 18, one has tn

0 →S (y !x !x)[x\!(I!!I!)] →S tn
1 and tv

0 →S (der(y !x) !x)[x\I! !I!] →S
(der(y !x) !x)[x\(!z)[z\!I!]] →S (der(y !x) !x)[x\!I!] →S tv

2.
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As the dCBV-embedding uses der, some d!-step might be needed in the simulation process.
These embeddings also preserve typing, which will make possible to project dBang

meaningfulness and surface genericity onto dCBN and dCBV. More precisely, the two embeddings
are proven to be sound and complete with respect to system B.

▶ Proposition 21 ([23, 24]). Let t ∈ Λ and (Γ; σ) be a typing.
1. One has ▷N Γ ⊢ t : σ if and only if ▷B Γ ⊢ tn : σ.
2. One has ▷V Γ ⊢ t : σ if and only if ▷B Γ ⊢ tv : σ.

A straightforward corollary is that dCBN and dCBV inhabitation properties are well
subsumed in dBang, as illustrated in [13]. In simpler words, any type inhabited in dCBN (resp.
dCBV) is also inhabited in dBang. As expected, the converse is false.

In dCBV and dBang, typing an arbitrary term and typing an argument is similar, as it can
be seen in the right premise ∆ ⊢ u : M of the typing rules (app) and (es) of systems V and
B. This is not the case in dCBN, as the right premise of the (app) and (es) rules of system
N requires, not a single derivation, but a finite set (∆i ⊢ u : τi)i∈I of typing derivation for
the same term u. In the logical characterization (Theorem 7), we check that arguments of
a given type can be inhabited. We therefore need to reflect the typability of arguments –
rather than typability of arbitrary terms – in the definition of dCBN inhabitation.

▶ Definition 22. In system N , a non-multitype σ is inhabited, noted inhN (σ), if Π ▷N ∅ ⊢
t : σ for some Π and t. A multitype [τi]i∈I is inhabited in system N , noted inhN

(
[τi]i∈I

)
if there exists u ∈ Λ such that for each i ∈ I, ▷N ∅ ⊢ u : τi.

In system V, a type σ is inhabited, noted inhV(σ), if Π ▷V ∅ ⊢ t : σ for some Π and t.

In particular, the type [ ] is inhabited in both dCBN and dCBV (i.e. inhN ([ ]) and inhV([ ])).
Similarly, the environment ∅ is also trivially inhabited in both (i.e. inhN (∅) and inhV(∅)).

5.2 dCBN Meaningfulness and Surface Genericity
In this subsection, our attention shifts towards the dCBN-calculus, where we show that its
notion of meaningfulness is subsumed by that of dBang. This observation enables us to project
the surface genericity theorem accordingly. We start by introducing dCBN-meaningfulness.

▶ Definition 23. A term t ∈ Λ is dCBN-meaningful if there is a testing context TN such that
TN⟨t⟩ →∗

SN
I, where testing contexts are defined by TN ::= ⋄ | TN u | (λx.TN) u.2

For example t = x(λy.Ω) is dCBN-meaningful as TN⟨t⟩ →∗
SN

I for TN = (λx.⋄)(λz.I), while Ω
and λx.Ω are dCBN-meaningless as for whatever testing context Ω and λx.Ω are plugged into,
Ω will not be erased. According to the definition of dCBN-meaningfulness, it is natural to define
the types of observable terms in dCBN as the identity types, i.e. T obs

N := {[σ] ⇒ σ | σ type}.
Unlike dBang, dCBN-meaningfulness can be characterized both operationally, through

surface normalizability, and logically, through typability in system N . Moreover, this logical
characterization turns out to be equivalent to N -testability, meaning that dCBN-meaningfulness
can also be characterized via typability and inhabitation, as already observed in [27].

2 Usually, dCBN-meaningfulness (aka solvability) is defined using contexts of the form
(λx1 . . . xm.⋄)N1 . . . Nn (m, n ≥ 0) [19, 20, 71], instead of testing contexts. It is easy to check
that the two definitions are equivalent in dCBN. The benefit of our definition is that the same testing
contexts are also used to define dCBV-meaningfulness (Section 5.3).
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▶ Theorem 24 (Characterizations of dCBN-Meaningfulness [29, 27, 23]). Let t ∈ Λ.
1. (Operational) t is dCBN-meaningful iff t is dCBN surface-normalizing.
2. (Logical) (1) t is dCBN-meaningful iff (2) t is N -typable iff (3) t is N -testable.

Thanks to the specific shape of dCBN-normal forms, we can always type a dCBN-meaningful
term t by a typing (Γ; σ) such that the non-empty multitypes in Γ and argsN (σ) are of
the form [[ ] ⇒ · · · [ ] ⇒ [α] ⇒ α]. These types are trivially inhabited by erasers of the form
λx1. · · · λxn.I, used to prove that N -typability implies dCBN-meaningfulness.

Having an operational characterization of meaningfulness seems to point out that trans-
forming a result into something observable is a trivial operation in dCBN. Indeed, using
simulation (Lemma 19.2), we easily show that dCBN-meaningful is preserved by the dCBN-
embedding, thus confirming this intuition. Moreover, and thanks to the logical characteriza-
tion (Theorem 24.2), we show that the converse also holds, yielding the following result.

▶ Theorem 25. Let t ∈ Λ, then t is dCBN-meaningful iff tn is dBang-meaningful.

Proof.
(⇒) We present here an operational proof. Let t be dCBN-meaningful, thus TN⟨t⟩ →∗

SN
I for

some testing context TN. By induction on TN, one has that (TN⟨t⟩)n = Tn
N⟨tn⟩. By simulation

(Lemma 19.1), one deduces that Tn
N⟨tn⟩ →∗

S λx.x thus Tn
N⟨tn⟩ !!y →∗

S (λx.x)!!y →∗
S !y. Notice

that Tn
N!!y is a dBang-testing context. We thus conclude that tn is dBang-meaningful.

(⇐) Let tn be dBang-meaningful, then using Theorem 7, it is B-testable and thus B-typable.
By Proposition 21.1, t is N -typable and hence t is dCBN-meaningful by Theorem 24. ◀

Observe for example that I and In = I! are both dCBN/dBang-meaningful while Ω and
Ωn = Ω! are both dCBN/dBang-meaningless.

Theorem 25 states that dCBN-meaningfulness precisely aligns with dBang-meaningfulness
on its image via ·n, strengthening the idea that these two notions are adequately chosen.
Thanks to Theorem 25, we can now project surface genericity from dBang to dCBN.

▶ Theorem 26 (dCBN Qualitative Surface Genericity). Let FN be a full context. If FN⟨t⟩ is dCBN-
meaningful for some dCBN-meaningless t ∈ Λ, then FN⟨u⟩ is dCBN-meaningful for every u ∈ Λ.

Proof. Let t ∈ Λ be dCBN-meaningless and FN be a full context. Suppose that FN⟨t⟩ is
dCBN-meaningful: by Theorem 25 and since (FN⟨t⟩)n = Fn

N⟨tn⟩ (simple induction on FN), Fn
N⟨tn⟩

is dBang-meaningful, and tn is dBang-meaningless. By Corollary 11, for any u ∈ Λ, Fn
N⟨un⟩ =

(FN⟨u⟩)n is dBang-meaningful, and hence FN⟨u⟩ is dCBN-meaningful using Theorem 25. ◀

We now discuss some crucial consequences of our previous results, captured by the use
of λdCBN-theories. A λdCBN-theory is an equivalence ≡ on Λ containing →FN and closed
under full contexts. Let HdCBN (also noted ≡HdCBN) be the smallest λdCBN-theory equating all
dCBN-meaningless terms, and let H∗

dCBN be defined as follows:

H∗
dCBN := {(t, u) | ∀ FN full context, FN⟨t⟩ dCBN-meaningful ⇔ F⟨u⟩ dBang-meaningful}

As for dBang, H∗
dCBN is the maximal consistent λdCBN-theory containing HdCBN and it coincides

with observational equivalence in dCBN (see [15]). Thanks to the preservation of meaningful-
ness via the dCBN-embedding ·n (Theorem 25), we can actually relate the theories HdBang and
H∗

dBang (in dBang) to the corresponding ones in dCBN, that is, HdCBN and H∗
dCBN respectively.

▶ Theorem 27. Let t, u ∈ Λ.
1. If t ≡HdCBN u then tn ≡HdBang un.
2. If tn ≡H∗

dBang
un then t ≡H∗

dCBN
u.
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Proof.
1. Immediate consequence of Theorem 25 and Lemma 19.1.
2. Let t, u ∈ Λ such that tn ≡H∗

dBang
un. Let FN be a full context and suppose that FN⟨t⟩ is dCBN-

meaningful. Using Theorem 25, one deduces that (FN⟨t⟩)n = Fn
N⟨tn⟩ is dBang-meaningful.

Since tn ≡H∗
dBang

un, one has that Fn
N⟨un⟩ = (FN⟨u⟩)n is dBang-meaningful. Using Theorem 25,

one concludes that FN⟨u⟩ is dCBN-meaningful and therefore t ≡H∗
dCBN

u. ◀

We strongly conjecture that the converse of Theorem 27.1 also holds. Perhaps unexpec-
tedly, the converse of Theorem 27.2 is actually false. Indeed, η-expansion is included in H∗

dCBN
(see [20]) but not in H∗

dBang thus x ≡H∗
dCBN

λy.xy but xn = x ̸≡H∗
dCBN

λy.x!y = (λy.xy)n: the
context F = ⋄[x\!!w] separates x and λy.x!y. However, through Theorem 15, this phenomenon
is not so surprising as it tells us that the dCBN observational equivalence does not coincide
with dBang observational equivalence on the image of ·n, since dBang is a finer language than
dCBN, with more contexts to separate terms operationally.

5.3 dCBV Meaningfulness and Surface Genericity
We now move to the dCBV-calculus, where we show that its notion of meaningfulness is sub-
sumed by that of the dBang-calculus, and then project surface genericity theorem accordingly.

Adapting meaningfulness from dCBN to dCBV by replacing dCBN-reduction with dCBV-
reduction may seem initially promising. This notion, known as dCBV-solvability, has appealing
properties [64, 71, 11, 30, 47, 6]. Unfortunately, Accattoli and Guerrieri showed that genericity
fails in such setting [6], and that equating unsolvable terms yields an inconsistent theory
(see e.g. [6]). Consequently, dCBV-meaningfulness cannot be identified with dCBV-solvability.
Identifying appropriate notions to capture dCBV meaningful λ-terms and formally validating
these notions has been a longstanding and challenging open question.

Paolini and Ronchi Della Rocca [64, 71] introduced the notion of potentially valuability for
CBV, also studied in [63, 11, 30, 42] and renamed (dCBV) scrutability in [6]. This notion, which
we introduce below, proves to be suitable dCBV-meaningfulness. Notably, it aligns seamlessly
with dBang-meaningfulness through the dCBV-embedding and thus enjoys a genericity theorem.

▶ Definition 28. A term t ∈ Λ is dCBV-meaningful if there exists a testing context TV and a
value v such that TV⟨t⟩ →∗

SV
v, where testing contexts are defined by TV ::= ⋄ | TV u | (λx.TV) u.

For example t = x(λy.z) is dCBV-meaningful as TV⟨t⟩ →∗
SV

λy.z for TV = (λx.⋄)(λz.z),
while Ω and xΩ are dCBV-meaningless as for whatever testing context Ω and xΩ are plugged
into, Ω will not be erased. Note that the set of testing contexts is the same as those of dCBN.

Notice that this definition closely mirrors that of dBang-meaningfulness, with the primary
difference being the replacement of dBang values for those of dCBV. Since values are typed
with multitypes, it is natural to take them as types of the observable terms in dCBV (i.e.
T obs

V := {M | M multitype}). Consequently, and thanks to the preservation of typing
(Proposition 21.2), one easily shows that testability is preserved through the dCBV translation:
if a term t is V-testable, then its image tv is B-testable.

As in dCBN and unlike dBang, dCBV-meaningfulness can actually be characterized both
operationally, through surface normalizability, and logically, through typability in system V .
Moreover, the logical characterization turns out to be equivalent to V-testability, meaning
that dCBV-meaningfulness is also characterized by means of typability and inhabitation.

▶ Theorem 29 (Characterizations of dCBV-Meaningfulness [11, 6, 23]). Let t ∈ Λ.
1. (Operational) t is dCBV-meaningful iff t is dCBV surface-normalizing.
2. (Logical) (1) t is dCBV-meaningful iff (2) t is V-typable iff (3) t is V-testable.
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The notion of observable aligns in dCBV and dBang, at least from the type perspective.
This yields a simple fully semantical proof of the preservation of dCBV-meaningfulness.

▶ Theorem 30. Let t ∈ Λ, then t is dCBV-meaningful iff tv is dBang-meaningful.

Proof.
(⇒) We present here a semantical proof. Let t be dCBV-meaningful, then using Theorem 29,

one has that t is V-testable thus, by preservation of testability, tv is B-testable and one
concludes that tv is dBang-meaningful according to Theorem 7.

(⇐) Let tv be dBang-meaningful, then using Theorem 7, it is B-testable thus B-typable. By
Proposition 21.2, t is V-typable and thus t is dCBV-meaningful by Theorem 29. ◀

Observe for example that I and Iv = !I! are both dCBV/dBang-meaningful while Ω and
Ωv = Ω! are both dCBV/dBang-meaningless.

Theorem 30 states that dCBV-meaningfulness precisely aligns with dBang-meaningfulness
on its image, strengthening the idea that these two notions are adequately chosen. Thanks
to Theorem 30, we can now project surface genericity from dBang to dCBV.

▶ Theorem 31 (dCBV Qualitative Surface Genericity). Let FV be a full context. If FV⟨t⟩ is dCBV-
meaningful for some dCBV-meaningless t ∈ Λ, then FV⟨u⟩ is dCBV-meaningful for every u ∈ Λ.

Proof. Let t ∈ Λ be dCBV-meaningless and FV be a full context. Suppose that FV⟨t⟩ is dCBV-
meaningful, then using Theorem 30, (FV⟨t⟩)v is dBang-meaningful, and tv is dBang-meaningless.
By induction on FV, (FV⟨t⟩)v = Fv

V⟨tv⟩ thus Fv
V⟨tv⟩ is dBang-meaningful. By Corollary 11,

for any u ∈ Λ, Fv
V⟨uv⟩ is dBang-meaningful. So, by typing preservation (Proposition 21.2),

(FV⟨u⟩)v is dBang-meaningful, and hence FV⟨u⟩ is dCBV-meaningful using Theorem 30. ◀

We now discuss some crucial consequences of our previous results, captured by the use
of λdCBV-theories. A λdCBV-theory is an equivalence ≡ on Λ containing →FV and closed
under full contexts. Let HdCBV (also noted ≡HdCBV) be the smallest λdCBV-theory equating all
dCBV-meaningless terms, and let H∗

dCBV be defined as follows:

H∗
dCBV := {(t, u) | ∀ FV full context, FV⟨t⟩ dCBV-meaningful ⇔ F⟨u⟩ dBang-meaningful}

As for dBang and dCBN, H∗
dCBV is the maximal consistent λdCBV-theory containing HdCBV and

coincides with observational equivalence in dCBV (see [15]). Again, thanks to the preservation
of meaningfulness via the dCBV-embedding ·v (Theorem 30), we can relate the theories HdBang

and H∗
dBang (in dBang) to the corresponding ones in dCBV, that is, HdCBN and H∗

dCBV.

▶ Theorem 32. Let t, u ∈ Λ.
1. If t ≡HdCBV u then tv ≡HdBang uv.
2. If tv ≡H∗

dBang
uv then t ≡H∗

dCBV
u.

Proof.
1. Immediate consequence of Theorem 30 and Lemma 19.2
2. Let t, u ∈ Λ such that tv ≡H∗

dBang
uv. Let FV be a full context and suppose that FV⟨t⟩

is dCBV-meaningful. By Theorem 30, (FV⟨t⟩)v is dBang-meaningful, and by Theorem 7
(FV⟨t⟩)v is B-testable. As (FV⟨t⟩)v →∗

F Fv
V⟨tv⟩ (see [14]) and typing is preserved by reduction

(Theorem 3.1), we deduce that Fv
V⟨tv⟩ is also dBang-meaningful. Since tv ≡H∗

dBang
uv, one

has that Fv
V⟨uv⟩ is dBang-meaningful and so is (FV⟨u⟩)v, thanks to Theorem 3.1 and since

(FV⟨u⟩)v →∗
F Fv

V⟨uv⟩. By Theorem 30, FV⟨u⟩ is dCBV-meaningful and hence t ≡H∗
dCBV

u. ◀
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As in the dCBN-case, we strongly conjecture that the converse of Theorem 32.1 also
holds. As in the dCBN-case again, the converse of Theorem 32.2 is actually false. Indeed, the
ηv-expansion is included in H∗

dCBV (see [66, 53, 22, 3]) but not in H∗
dBang, i.e. x ≡H∗

dCBV
λy.xy

but xv = !x ̸≡H∗
dCBV

!λy.x!y = (λy.xy)v: the context F = der(⋄) [x\!!w] separates the two.
Again, from the viewpoint of Theorem 15, this phenomenon is not so surprising as it tells us
that the dCBV and dBang observational equivalence does not coincide on the image of ·v, since
dBang is a finer language than dCBV, with more contexts to separate terms operationally.

6 Conclusion and Future Work

We defined a notion of meaningful term, in a unifying well-established framework dBang that
is able to capture both dCBN and dCBV calculi. We validated this notion of meaningfulness
by providing a (high-level) characterization based on both typability and inhabitation, and
showing a (surface) genericity result. All these results in dBang are perfectly analogous to
well-known results for dCBN and dCBV [15]. Furthermore, both meaningfulness and genericity
in dBang are shown to capture their respective notions in dCBN and dCBV. This suggests that
there is a sort of canonicity in our definition of dBang-meaningfulness.

It is natural to wonder why this work is not conducted on the usual CBN and CBV calculi
but rather their distant version dCBN and dCBV, which make use of explicit substitutions.
The main reason is the non-adequacy of Plotkin’s CBV calculus [66], meaning that some
observational equivalent terms have different operational behaviors. Indeed, take the term
t := (λx.∆) (yy) ∆ which is observationally equivalent to the prototypical diverging term
Ω. Since λx.∆ is applied to yy – which is not a value and cannot reduce to a value
– it makes t a normal form in Plotkin’s CBV. This mismatch complicates the study of
dCBV-meaningfulness. Notice that this issue is solved in dCBV as the term t now diverges:
t →SV ∆[x\yy]∆ →SV (zz)[z\∆][x\yy] →SV Ω[x\yy] →SV . . ., as expected. Furthermore, the
observational equivalences generated by Plotkin’s CBV and dCBV coincide, making the calculus
switch harmless. Since adequacy for CBV is recovered thanks to ES and action at a distance, it
is then natural to adopt a similar specification for CBN, knowing that standard CBN λ-calculus
and dCBN are operationally and semantically equivalent.

While the logical characterization of meaningfulness for dBang (Theorem 7) requires
additional hypotheses (typability and inhabitation) compared to those for dCBN (Theorem 24)
and dCBV (Theorem 29), which only require typability, this dissimilarity should not be
mistakenly interpreted as a weakness of our approach.

Firstly, the inhabitation condition becomes trivial in the case of dCBN and dCBV, as test-
ability and typability coincide in both cases. Consequently, our approach to meaningfulness
for dBang clearly provides a conservative extension of those for dCBN and dCBV.

Secondly, the use of distinct term constructors to specify data that cannot be intermingled
seems unavoidable to embed both call-by-name and call-by-value calling paradigms within a
single unifying framework. In the case of dBang, a clear distinction must be made between
functions (represented by abstractions) and duplicable terms (represented by bang). This
syntactic distinction, absent in both call-by-name and call-by-value, results in a unifying
framework containing (at least) two built-in primitives that capture incompatible data. Then,
the use of intersection types enable, in principle, such mismatch to exists even though a term
cannot actually be a bang and a function at the same time. To address this issue, it may
seem tempting to explore some syntactical restriction of intersection type systems such as
uniformity [65] or compatibility [29], but both these cases result in a loss of completeness.
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Finally, the characterization of meaningfulness through typability and inhabitation in a
language equipped with incompatible data structures was initially studied in [29, 26], in the
context of a λ-calculus with pair patterns. Clearly, functions cannot be pattern-matched by
pair patterns, and pairs cannot be applied to arguments.

Besides that, several questions remain to be explored. First of all, we aim to show that
our notion of meaningfulness for dBang allows us to prove a full genericity result in dBang in
Barendregt’s sense as mentioned in Section 1 (meaningless subterms are computationally
irrelevant in the evaluation of full normalizing terms). A notion of stratified reduction, a finer
operational semantics generalizing surface reduction to different levels, has been recently
defined for dCBN and dCBV [15]. Stratified reduction is a key tool to show a full genericity
result for both dCBN and dCBV. We plan to transfer these techniques to the more general
framework of dBang, so that full genericity for dCBN and dCBV can be simply obtained by
projecting the more general notion of full genericity for dBang via CBN/CBV translations.

It has been observed [69] that dBang can be embedded in this pattern language. Never-
theless, these two languages are not semantically equivalent, as dBang allows only duplication
of values (bang terms), whereas the pattern language allows duplication of arbitrary terms.

We also plan to further study the properties of the smallest theory HdBang generated by
equating all the meaningful terms in dBang. We strongly conjecture that HdBang restricted to
the image of the embedding ·n (resp. ·v) is equivalent to HdCBN in dCBN (resp. HdCBV in dCBV).

We would like to extend our study to other natural objects in the theory of programming,
such as Böhm trees for dBang and their related theorems (e.g. approximation and separability).
Böhm trees for dBang are expected to encompass both dCBN [20] and dCBV [49] ones.

Unifying frameworks such as dBang should also provide other general results for dCBN
and dCBV, such as standardization, separability, etc. All this is left to future work. Finally, a
more ambitious goal would be to generalize these results to models of computations with
effects, such as global memory, non-determinism, exceptions, etc. This would approach our
study on dBang to a more general unifying framework such as call-by-push-value [54, 55].
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1 Introduction

Sequential decision-making is a core algorithmic task in many AI-based planning and control
problems with uncertain environments. The environment produces a sequence of inputs one
at a time, and the decision-making agent needs to produce outputs on each of the inputs
as soon as they arrive – without having seen the inputs from the future. We consider the
finite-horizon setting, where the decision horizon, i.e., the total number of inputs to appear,
is finite and fixed apriori.

The problem of computing an optimal decision-making agent in the sequential setting is
known to be PSPACE-hard. Our contribution is to introduce a class of statistical properties
for which the same problem can be solved in polynomial time. A property is called statistical
if its satisfaction can be measured by keeping track of small statistics, typically a fixed set of
states and a fixed set of counter values. The class of statistical properties not only includes
every regular property but also includes richer quantitative properties like maximum and
average response times. We present a new synthesis algorithm for sequential decision-makers
whose constraint, objective function, and environment model can all be captured using
statistical properties. The complexity of our algorithm, which is based on a notion of
statistical abstraction, grows only polynomially with respect to the considered horizon.

The problem setting. The inputs to our synthesis algorithm are a probabilistic model of
the environment generating a random sequence of inputs, a horizon length, a qualitative
constraint function, and a quantitative objective function over the generated input-output
sequence. The environment model, the constraint, and the objective function are required to
be given as statistical properties, which guarantee that their outputs depend only on some
small statistics about the past sequence of inputs and outputs. Since our statistical properties
include regular properties, the qualitative constraint can be any finite-state constraint.
Henceforth, we will refer to the constraint and the objective function as cost constraint and
reward, respectively. We propose a synthesis procedure to compute a decision maker that,
at each step, reads the current environment input and computes an output such that the
expected reward is maximized over all possible futures that satisfy the cost constraint up to
the given horizon. If no such future is possible, the decision maker outputs “fail.”

Example – Synthesis of responsive servers. We consider a simple client-server model,
inspired by online advertisements [10], where multiple clients (i.e., the advertisers) compete
via a bidding mechanism to access a certain service (i.e., the act of putting up the ads)
hosted by the server (i.e., the advertisement publisher). A greedy server would always accept
the highest bidder to maximize its profit, but this could potentially starve the weaker clients,
monopolize the market, and ultimately result in overall bad ratings that are harmful to its
business in the long run. We consider three different synthesis problems for designing servers
that strike a balance between profit-making and maintaining acceptable service quality for
all clients – both aspects being representable as statistical properties.

Synthesis problem I: Balanced servers. We say that a server is balanced if the individual
frequencies of the clients getting access are similar. A balanced server ensures that no client
experiences a significantly lower number of server accesses compared to the other clients.
Given a time horizon t, a constant probability distribution over the prices that the clients
will offer, and given a bound on the “imbalance,” how do we compute a server policy that
will maximize the expected profit while keeping the imbalance within bounds in time t?
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Synthesis problem II: Maximally responsive servers. While the balanced server guarantees
that each client would get a similar total number of accesses by the end of the horizon, the
clients may end up waiting for longer periods. Maximally responsive servers minimize the
maximal waiting time for each client. As a trade-off, the server may need to occasionally
select the client offering a lower price. We quantify this trade-off using the opportunity cost,
defined as the extra profit the server could make by selecting the client offering the highest
price at a given stage. Given a time horizon t, a constant distribution over prices that the
clients will offer, and a bound k on the total opportunity costs, how do we compute a server
policy that is maximally responsive while making sure that the sum of opportunity costs
after time t does not exceed k?

Synthesis problem III: Clientele-aware servers. So far, the probability distribution over
the offer prices by the clients was assumed to remain constant. The more realistic setting
is when the clients adjust their prices based on their past experiences with the service: a
dissatisfied client would lower the offer prices in the future whereas a satisfied client would
be willing to pay more. Therefore, a far-sighted server policy should limit its initial rejection
rates to keep up the expected offer prices in the future – even if this may need sacrificing the
profit in the beginning. We consider the setting with just one client and assume that the
server has a budget of N on the number of times the client can be accepted. Given a time
horizon t and a model of how the past decisions affect the future price distributions, how
do we compute a server policy that will maximize the expected profit while accepting the
client’s request for at most N times?

Algorithmic solution and complexity. We present synthesis algorithms for the case that
the probability distribution of the environment, the reward, and the cost constraint are all
provided as statistical properties. For the general class of properties, the optimal decision of
the agent at any point may need to consider every possible sequence of future inputs and
outputs. This causes an expensive blow-up that is unavoidable in general, as the problem is
known to be PSPACE-hard [12].

Our key insight is that for properties we call statistical, such as the maximum response
time of a server, the computational blow-up can be avoided by using a statistical abstraction of
the history. Such an abstraction of the observed input-output sequences combines statistically
indistinguishable sequences into the same equivalence classes. For properties for which the
number of equivalence classes grows polynomially with time, we obtain a polynomial-time
algorithm for computing the optimal decision maker. Any property that can be described
using a constant number of counters (like the maximum response time in the aforementioned
client-server examples) and a constant number of states (like regular languages) falls into
this category. In contrast, any order-dependent property (like a discounted sum) would have
an exponentially growing number of equivalence classes. Note, that there are other common
“statistics,” such as variance, which are more complicated to compute and do not lie within
our class of statistical properties.

We show how to adapt the standard dynamic programming algorithm to work on the
abstracted domain, rather than on the full history. We also show a correspondence between
the size of the abstraction and the size of the representation of statistical properties using
counter automata.

Experiments. We evaluated our method on the three examples described above. For
each example, we compared the computational performances of the dynamic programming
algorithm with and without using a statistical abstraction. Without the abstraction, the
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algorithm runs out of memory (with a memory limit of 200 GB) for horizon lengths less than
10 in all cases. With the abstraction, however, the algorithm manages much larger instances,
exceeding 400 in all cases and reaching up to 60000 for the balanced server.

Furthermore, we demonstrate how our decision-makers fare in simulations. For balanced
servers, we demonstrate that our synthesized policy maintains balance while achieving
performance similar to that of a greedy policy. Additionally, it significantly outperforms
a policy synthesized to be balanced on expectation. For maximally responsive servers, we
show how our method produces policies that can significantly reduce maximum waiting time,
paying a comparatively small price in opportunity cost. Finally, we analyse the policies
synthesized for clientele-aware servers for different budgets.

2 Sequential Decision Making for Statistical Properties

2.1 The Sequential Decision Making Problem
We first formulate a general problem statement for sequential decision making involving
arbitrary quantitative properties. Afterwards, we will identify the important subclass of the
problem where all the quantitative properties are actually statistical in nature, like the ones
we described in Sec. 1.

We consider the alternating turn-based interaction of the decision maker with its uncertain
environment. At each interaction phase, called a stage, the environment samples an action
from a known probability distribution over the input alphabet X , and the decision maker
responds by generating an action from the output alphabet Y , and both actions may depend
on the past stages. Formally, the environment is modeled as stochastic generators of
the form θ : (X × Y)∗ → ∆(X ), and the system is modeled as transducers of the form
γ : (X × Y)∗ × X → Y. Let Θ be the set of every stochastic generator and Γ be the set of
every transducer. The interaction between θ and γ induces a probability distribution Pθ,γ

over the space of finite input-output sequences – called traces – as follows. For every stage
t > 0 and for every trace z⃗t = z1 . . . zt ∈ (X × Y)t,

Pθ,γ(z⃗t) :=
t∏

i=1
Pθ,γ(zi | z⃗i−1),

where

Pθ,γ(zi | z⃗i−1) :=
{

θ(z⃗i−1)(xi) if γ(z⃗i−1, xi) = yi,

0 otherwise,

with the convention that z⃗0 represents the empty word. We will write Dom(Pθ,γ) to denote
the domain of Pθ,γ , i.e., the set of traces with positive probabilities. Sometimes, we will call
traces as histories to stress that the given input-output sequence consists of concrete inputs
and outputs as observed in the past.

We consider a lexicographic specification for the transducer, formalized as follows. We
consider the real-valued reward function rew : (X × Y)∗ → R, and the binary cost func-
tion cost : (X × Y)∗ → {0, 1} (where “1” could represent that the cost is below a given
threshold). We define the expected value of the reward after stage t as Et

θ,γ [rew] :=∑
z⃗t∈(X ×Y)t rew(z⃗t) · Pθ,γ(z⃗t). The lexicographic specification requires the cost to be 1 for

every probable input sequence of the environment (“hard” objective) and the expected reward
is maximized (“soft” objective), at the end of a given number of stages.
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▶ Problem 1. Let T ∈ N be the given horizon length (i.e., the last stage index), θ be the
given stochastic generator, rew be the given reward function, and cost be the given cost
function. Let Γθ

feas ⊆ Γ be the set of feasible transducers fulfilling the cost constraint in the
presence of θ, i.e.,

Γθ
feas := {γ ∈ Γ | ∀z⃗T ∈ Dom(Pθ,γ) . cost(z⃗T ) = 1}. (1)

Compute the optimal transducer γ∗ that is feasible and is reward-optimal, i.e.,

γ∗ = arg max
γ∈Γθ

feas

ET
θ,γ [rew] . (2)

We will call the tuple ⟨X ,Y, θ, rew, cost, T ⟩ a problem instance.

The finiteness of the horizon length is a standard choice in the literature on sequential
decision making problems [9, 2] and is a natural choice in many practical situations. Naïvely
lifting this finite-horizon restriction is technically tricky because it is unclear how Γθ

feas will
be defined in the first place.

It follows from known results [12] that Prob. 1 is PSPACE-hard in general; see Sec. 3.1
for details. We present a PTIME algorithm for the special case where the functions θ, rew,
and cost depend only on some particular statistics of histories.

2.2 Statistical Properties
In many practical instances of Prob. 1, including the motivating examples in Sec. 1, the
functions rew, cost, and θ depend only on some aggregated statistic of the history, and the
exact order of the inputs and outputs is unimportant. We formalize this in the following.

▶ Definition 2 (Statistics). Let W be an alphabet and S be an output domain. An S-statistic
over W is a function µ : W∗ → S.

We will omit W or S whenever they are either clear from the context or are unimportant.
Following is the key property of statistics that will be useful to us.

▶ Definition 3 (Well-behaved statistics). A statistic µ over W is called well-behaved if for
every u⃗, v⃗, w⃗ ∈ W∗, µ(u⃗) = µ(v⃗) implies µ(u⃗w⃗) = µ(v⃗w⃗).

These concepts are illustrated using the following example.

▶ Example 4. Suppose we are given a sequence of the toss outcomes of a given coin, where
heads and tails are represented as “1” and “0,” respectively. Following are examples of
statistics over {0, 1}: total number of heads µ1(·), largest number of consecutive tails between
any two heads µ2(·), average number of heads µ3(·), the mode statistic µ4(·), etc. Among
these, it can be easily verified that µ1 and µ2 are well-behaved. The average statistic µ3 is not
well-behaved: The sequences 10 and 1010 have the same averages (which is 1/2), but extending
them with the sequence 11 gives us different averages (3/4 and 2/3, respectively). The mode
statistic µ4 is also not well-behaved: the sequences 110 and 1110 have the same mode 1, but
extending them with the sequence 00 gives us different modes (0 and 1, respectively).

Let µ be an S-statistic over the alphabet W. For every t > 0, the statistic µ induces
an equivalence relation ≡µ,t on the set Wt, defined as follows: w⃗t ≡µ,t z⃗t iff µ(w⃗t) = µ(z⃗t).
For instance, for the statistic µ1 from Ex. 4 and for t = 3, we have 110 ≡µ1,3 101 ≡µ1,3 011,
because µ1(110) = µ1(101) = µ1(011) = 2 and each of them have length 3.
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In the subsequent sections, the equivalence relation ≡µ,t will give way to a small abstraction
of the set Wt, where all the words in a given equivalence class will be abstracted by a
single representative word from that equivalence class. Therefore, the larger the number of
equivalence classes, the larger and more complex will be the abstraction. We formalize this
as a measure of the complexity of statistics.

▶ Definition 5 (Size of statistics). Let µ : W∗ → S be a statistic. The size of µ is the function
sizeµ : N → N mapping every t to the number of equivalence classes in Wt induced by the
equivalence relation ≡µ,t.

Consider the statistics µ1 and µ4 from Ex. 4. For any given t, it is easy to see that
sizeµ1(t) = t + 1 (because there can be 0, 1, . . . , t number of “1”-s) and sizeµ4(t) = 2 (because
the mode of any sequence can be either 0 or 1).

For a given t ∈ N, let St ⊆ S be the set of every valuation of µ on every word of length t,
i.e., St = µ(Wt). A t-reconstructor of µ is any function κt : St →Wt such that if κt(s) = w⃗t

then µ(w⃗t) = s. Observe that κt is not unique. For the statistic µ1 in Ex. 4, we have
St = {0, 1, 2}, and one possible 2-reconstructor is given as κ2(0) = 00, κ2(1) = 01, and
κ2(2) = 11. The following claim follows immediately.

▶ Proposition 6. Let µ : W → S be a statistic and κt be a t-reconstructor of µ. Then for
every w⃗ ∈ Wt, µ(w⃗) = µ(κt ◦ µ(w⃗)).

We will now use well-behaved statistics to define the class of problem instances that are
amenable to efficient computations and are our subject of study.

▶ Definition 7 (µ-representability of functions). Let µ be a S-statistic over W. The function
f : W∗ → U is µ-representable, if there exists a function f̂ : S → U such that for every
w⃗ ∈ W∗, f(w⃗) = f̂(µ(w⃗)).

We will later show that Prob. 1 can be efficiently solved if we can identify a well-behaved
statistic µ such that θ, rew, and cost are µ-representible and µ is “small” in size. How
to determine a small, well-behaved µ such that a given property f is µ-representible is a
problem on its own. In Sec. 2.4, we present a pragmatic approach to quickly identify µ and
its size when f is specified as a counter automaton. The problem of finding a small µ for f

then boils down to the problem of finding a small counter automaton representing f .

2.3 Examples: Synthesis of Responsive Servers
Below, we describe how the examples from Sec. 1 can be formalized. We first introduce some
common notation for the client-server model. Suppose that there are two clients, A and B,
competing to access a resource hosted by a server. At each stage t, A and B concurrently
submit their offer prices, at and bt respectively, indicating the amount they are willing to
pay for the service. Let at and bt be non-negative integers, both less than or equal to C,
where zero indicates that the respective client does not request the service at that stage. The
server responds with the decision dt ∈ Y = {A, B}, representing whether client A or B get
access. We model the pair of clients as the environment and the server as the system, i.e.,
X = [0; C]× [0; C] and Y = {A, B}.

▶ Example 8 (Balanced server). Recall that the objective of the balanced server is to
maximize profit while ensuring an even allocation of resources to its clients by the end
of a given horizon. If the server initially acts greedily and accepts whoever offers the
higher price, then it may later need to pay high opportunity costs (i.e., sacrifice profits to
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balance out the past imbalances). We formulate the synthesis problem for the balanced
server problem as follows. We assume that the distribution θ is known and remains fixed
over time and that we have given an arbitrary trace z⃗t = (a1, b1)d1 . . . (at, bt)dt ∈ (X ×
Y)t. We define the profit at stage i, denoted as Profit(ai, bi, di), to be equal to ai if
di = A and else equal to bi (if di = B). Furthermore, we define the imbalance over z⃗t,
denoted as Imbalance(z⃗t), as the absolute difference of acceptance rates between the two
clients, i.e., Imbalance(z⃗t) :=

∣∣∣∑t
i=1 1(di = A ∧ ai ̸= 0)−

∑t
i=1 1(di = B ∧ bi ̸= 0)

∣∣∣. Then,
the synthesis problem for balanced servers can be encoded using Prob. 1 by assigning
rew(z⃗t) =

∑t
i=1 Profit(ai, bi, di) and cost(z⃗t) = 1 iff Imbalance(z⃗t) ≤ δ for a given

tolerance δ > 0.

▶ Example 9 (Maximally responsive server). The objective of the maximally responsive server
is to minimize the maximum waiting time for each client while paying a bounded total amount
of the sum of opportunity costs. As for the balanced server problem, we assume that the
distribution θ is known and does not change over time and we have given an arbitrary trace
z⃗t = (a1, b1)d1 . . . (at, bt)dt ∈ (X × Y)t. We define the maximum waiting time, denoted as
MaxWait(d1 . . . dt), to be equal to the length of the largest subsequence of consecutive A’s or
B’s in the sequence d1 . . . dt. Additionally, we define the opportunity cost at stage i, denoted
as OppCost(ai, bi, di), to be equal to |ai − bi| if ai > bi but di = B or if ai < bi but di = A.
Then, the synthesis problem for maximally responsive servers can be encoded using Prob. 1
by assigning rew(z⃗t) = −MaxWait(d1 . . . dt) and cost(z⃗t) = 1 iff

∑t
i=1 OppCost(ai, bi, di) ≤ k

for a given budget k > 0, and is 0 otherwise.

▶ Example 10 (Clientele-aware server). Clientele-aware servers account for the loss of clients
due to dissatisfied clients who were rejected in the past. For simplicity, we assume that only
client A is active and B is inactive; this can be achieved by simply setting bi = 0 always. For
simplicity, we will write (ai, ·) to denote (ai, bi = 0). The critical component in this example
is the environment θ. We assume θ(ε), for the empty word ε, is the given initial distribution
P0 over X such that the probability of seeing the price a from the client A conditioned on
a ̸= 0 is fixed as PA, i.e., P0((a, ·) | a ̸= 0) = PA(a). We assume that a constant δ ∈ (0, 1) is
given such that for every z⃗i = (a1, ·)d1 . . . (ai, ·)di ∈ (X × Y)i, we have:

θ(z⃗i)((a = 0, ·)) = P0((a0 = 0, ·))

+ max

0, min

1, δ ·
i−1∑
j=1

(1(aj ̸= 0 ∧ dj = A)− 1(aj ̸= 0 ∧ dj ̸= A))


 ,

and θ(z⃗i)((a, ·) | a ̸= 0) = PA(a) for every a ∈ [1; C]. Intuitively, the probability of
seeing “a = 0” increases or decreases by δ for every rejection or acceptance of A, respectively.
Conditioned on “a ̸= 0” being true, the probability of seeing a price a from A is fixed to PA(a).
The reward and cost functions are: rew(z⃗t) =

∑t
i=1 Profit(ai, ·, di) =

∑t
i=1 ai · 1(di = A)

and cost(z⃗t) = 1 iff
∑t

i=1 1(di = A) ≤ N for a given N .

2.4 Specifications using Counter Automata
Counter automaton is a rich framework for modeling functions that has access to both states
and a finite set of counters. When rew, cost, and θ are given as counter automata, we show
that there is a systematic procedure to extract the statistical complexity and the witness
statistic µ with theor respective µ-representations r̂ew, ĉost, and θ̂.
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2:8 Abstraction-Based Decision Making for Statistical Properties

Our counter automata are adoptions of counter monitors introduced by Ferrère et al. [6].
A counter is an integer variable, which can be read and written according to relations and
functions in the signature S = ⟨0, +1,−1,≤⟩. In particular, a test is a conjunction of atomic
formulas over S and their negation, and an update is a mapping from variables to terms over
S. The sets of tests and updates over a set of counters X are denoted as Φ(X) and Γ(X),
respectively.

▶ Definition 11 (Counter automata). Let Σ be a given input alphabet and D be an output
domain. A counter automaton A on Σ and D is a tuple ⟨Σ, D, R, Q, λ, qinit, δ⟩, where R is
a finite set of registers, Q is a finite set of states, λ : Q × NR → D is an output function,
qinit ∈ Q is the initial state, and δ ⊆ Q× Σ× Φ(R)× Γ(R)×Q is a transition relation such
that for every state q ∈ Q, input σ ∈ Σ, and valuation v : R→ N, there exists a unique edge
(q, σ, ϕ, γ, q′) ∈ δ with v |= ϕ satisfied.

A run of the automaton on a given finite word w = w0w1 . . . wn ∈ Σ∗ is the unique sequence
of transitions (q0, v0) w0−−→ (q1, v1) w1−−→ . . .

wn−−→ (qn, vn) such that q0 = qinit, v0(r) = 0 for every
r ∈ R, and we write (q, v) σ−→ (q′, v′) when there exists an edge (q, σ, ϕ, γ, q′) ∈ δ such that
v |= ϕ and v′(r) = v(γ(r)) for every r ∈ R. We write finalA(w) to denote the last configuration
(qn, vn). The semantics of a counter automaton A is given as JAK(w) = λ(finalA(w)) ∈ D

where (q, v) is the final configuration of the run of A on w.

▶ Proposition 12. Suppose φ : Σ∗ → D is a function and Aφ is the equivalent counter
automaton on Σ such that φ(w) = JAφK(w) for every w ∈ Σ∗. The function φ is µ-
representible for the statistic µ defined as µ(w) := finalAφ

(w), and the µ-representation of φ

is given by the output function of Aφ.

When θ, rew, and cost are expressed using counter automata, Prop. 12 outlines a simple
syntactic approach to extract the well-behaved statistic µ and the respective µ-representation.
The output domains of the counter-automata for θ, rew, and cost are, respectively, R,
{0, 1}, and ∆(X ). Fig. 1 shows examples of counter automata representations of some of the
statistical properties from Ex. 8–10.

For any given counter automaton A = ⟨Σ, D, R, Q, λ, qinit, δ⟩, the size of the underlying
statistic µ as defined in Prop. 12 is given by:

sizeµ(t) = |{finalA(w) | w ∈ Σt}| = |Q| × t× |R|︸ ︷︷ ︸
P

, (3)

where P is the total number of counter values, obtained by using the fact that each counter
will have a value in [0; t− 1] after t stages.

3 Policy Synthesis Algorithms

3.1 Dynamic Programming
Prob. 1 can be solved using dynamic programming, whose time and space complexities would
unfortunately grow exponentially with respect to the horizon T . Let z⃗t be a given trace of
length t ∈ [0; T ] and x ∈ X be an input; z⃗0 is the empty word. We write vt(z⃗t) and wt(z⃗t, x)
to denote the maximum expected rewards achievable in the remaining T − t stages, while
fulfilling the cost constraint, before and after revealing the next input x, respectively. We
can compute the functions {vt(·)}t∈[0;T ] and {wt(·, ·)}t∈[1;T ] recursively as below:
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qstart

(a, b, A) : a > 0 ? ra ++

(a, b, B) : b > 0 ? rb ++

qstart

(·, ·, A) : true ?
[

db ++

da ← 0

]
(·, ·, B) : true ?

[
da ++

db ← 0

]

ε : db > d ? d← dbε : da > d ? d← da

q0start

(a, ·, B) : a > 0 ? r −−

(a, ·, A) : a > 0 ? r ++

q0start q1

(a, ·, B) : a > 0 ? rb ++

(a, ·, A) : a > 0 ? ra ++

ε : ra > N ? ∅

Figure 1 Counter automata representation of several properties used in Ex. 8, 9, and 10. TOP-
LEFT represents Imbalance from Ex. 8: The counters ra and rb count the total numbers of accepted
nonzero price requests from the clients A and B, respectively. For Imbalance, we use the output
function λ(q, ra, rb) = 1 if |ra − rb| ≤ δ and λ(q, ra, rb) = 0 otherwise. TOP-RIGHT represents
MaxWait from Ex. 9: The counters da and db count the total numbers of stages since requests
from, respectively, clients A and B were accepted (i.e., the current waiting times). The counter
d keeps track of the current maximum waiting times for both clients. For MaxWait, we use the
output function λ(q, da, db, d) = d. BOTTOM-LEFT represents the environment from Ex. 10: The
counter r represents the difference between the numbers of acceptances and rejections of offers by A

that were positive. For the environment, we use the output function λ(q, r) that is a probability
distribution over [0; C] such that λ(q, r)(0) = P0((a = 0)) + max{0, min{1, r}}. BOTTOM-RIGHT
represents the cost function from Ex. 10: The counters ra and rb represent the numbers of times A

and B were accepted, respectively, given the price offered by A was positive. For the constraint, we
use the output function λ(q0, ra, rb) = 1 and λ(q1, ra, rb) = 0.

t ∈ [0; T − 1] : vt(z⃗t) =
∑
x∈X

wt(z⃗t, x) · θ(z⃗t)(x),

wt(z⃗t, x) = max
y∈Y

vt+1(z⃗txy),

t = T : vt(z⃗t=T ) =
{
−∞ if cost(z⃗T ) = 0,

rew(z⃗T ) otherwise.

(standard-DP)

The sought optimal transducer γ∗ of Prob. 1 is then obtained as: for every t ∈ [0; T − 1]
and for every z⃗t ∈ (X × Y)t, if vt(z⃗t) ̸= −∞ then γ(z⃗tx) = arg maxy∈Y vt+1(z⃗txy), and else
γ(z⃗tx) = FAIL. Note that even if v0(ε) ̸= −∞, for the empty word ε, the environmental
uncertainty may force the system to a stage from where the cost constraint can no longer be
satisfied, which is when γ would output FAIL.

As we unroll the recursion tree in (standard-DP) forward, we observe that every vt node
has |X | children and every wt node has |Y| children. Therefore, the size of the entire tree
will be O(|X |T · |Y|T ), causing an exponential blow-up in time and space complexities. In
fact, from a classical result by Papadimitriou [12], it follows that Prob. 1 is PSPACE-hard.
Note that the paper considers the setting without the cost function cost, which is a special
case of our setting. The paper has proven this special case to be PSPACE-complete.
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2:10 Abstraction-Based Decision Making for Statistical Properties

The difficulty of Prob. 1 stems from the history dependence of the stochastic generator θ,
the reward function rew, and the cost function cost. Take for example the case where the
output symbol selected at a given stage affects the distribution of θ at a future stage, for
which building the entire recursion tree is unavoidable [12]. A similar situation arises when
the reward and the cost are affected by all the past inputs and outputs and their exact order.

3.2 Simple Problem Instances
We take a slight detour and present a subclass of problem instances for which a PTIME
algorithm exists; ideas from this algorithm will be useful in Sec. 3.4 when we will present
special optimizations of our algorithm. We call the problem instance ⟨X ,Y, θ, rew, cost, T ⟩
simple if the following hold:
Additive reward and cost: For every t ∈ [1; T ], let there be functions rt, ct : X × Y → R≥0,

assigning constant, history-independent reward and cost to each individual input-output
pair, such that for every z⃗ = x1y1x2y2 . . ., rew(z⃗) =

∑
t rt(xtyt) and cost(z⃗) = 1 iff∑

t ct(xtyt) ≤ B for a given budget B.
History-independent environment: For every t ∈ [0; T − 1], let θ̄t be a fixed probability

distribution such that θ(w⃗t) = θ(z⃗t) = θ̄t for every w⃗t, z⃗t ∈ (X × Y)t.
Then we can modify the dynamic programming algorithm in (standard-DP) by replacing
the history z⃗ with just the cost b incurred in z⃗, and define the respective counterparts
v′

t(b), w′
t(b, x) of vt(z⃗), wt(z⃗, x) as below:

t ∈ [0 : T − 1] : v′
t(b) =

∑
x∈X

w′
t(b, x) · θ̄t(x),

w′
t(b, x) = max

y∈Y

[
v′

t+1(b + ct(x, y)) + rt(x, y)
]

,

t = T : v′
t(b) =

{
−∞ if b > B,

0 otherwise.

(simple-DP)

The sought optimal transducer γ∗ of Prob. 1 is obtained as follows: for every t ∈ [0; T −
1] and for every z⃗t ∈ (X × Y)t with b =

∑t
i=1 ci(xiyi), if v′

t(b) ̸= −∞ then γ(z⃗tx) =
arg maxy∈Y v′

t+1(b + ct(xy)), and else γ(z⃗tx) = FAIL, where FAIL is defined as for the case
of standard-DP, and indicates that the cost constraint cannot be satisfied in any possible
future extension of the current trace.

Let us analyze the size of the recursion tree of (simple-DP). At every stage t, the number
of v′

t(b) nodes is B and the number of w′
t(b, x) nodes is B · |X |, implying that the tree’s size

is O(T ·B · |X |), establishing the PTIME complexity.
In general, if even one of the three functions rew, cost, and θ is history-dependent, like

in the examples of Sec. 2.3, the PTIME algorithm is not applicable. In the next section, we
show a sub-class of Prob. 1 with statistical properties – with the dependence being only on a
small statistic over the history instead of the exact history – for which efficient algorithms
exist.

3.3 Statistical Abstraction
We now present the main contribution of this paper. Suppose we are given a problem instance
⟨X ,Y, θ, rew, cost, T ⟩ such that there exists a well-behaved S-statistic µ on (X × Y)∗ for
which θ, rew, and cost are µ-representible. In this case, we no longer need to consider
each history z⃗t while using standard-DP, but rather we can combine histories that are
statistically indistinguishable, i.e., equivalent with respect to ≡µ,t for a given t. This way
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we obtain an abstraction-based implementation of standard-DP– called statistical-DP,
where, for each stage t, (X × Y)t serves as the concrete domain of histories, S serves as its
abstraction, µ serves as the abstraction function, and κt serves as the concretization function.
Following we give a key consistency property of the abstraction, whose proof follows from
the well-behavedness of µ.

▶ Proposition 13. For a fixed stage t < T and an arbitrary history z⃗t ∈ (X × Y)t with
µ(z⃗t) = s, it holds that for every x ∈ X and y ∈ Y, we have µ(z⃗txy) = µ(κt(s)xy).

The above claim suggests that the statistic µ of an input-output trace can be computed
sequentially and efficiently, without keeping track of the entire history but only from the
value of the statistic in the last step. This enables us to only keep track of the value of the
statistic µ in each recursive call, instead of the full histories and lets us lift the functions
vt and wt to their abstract counterparts, respectively, v̂t and ŵt as follows. For every stage
t ∈ [0; T ], we define v̂t : S → R and ŵ : S → {0, 1} as below:

t ∈ [0; T − 1] : v̂t(s) =
∑
x∈X

ŵt(s, x) ·

I︷ ︸︸ ︷
θ̂(s)(x),

ŵt(s, x) = max
y∈Y

II︷ ︸︸ ︷
v̂t+1 (µ(κt(s)xy)),

t = T : v̂t(s) =


−∞ if ĉost(s) = 0 ←← IV
r̂ew(s)︸ ︷︷ ︸

III

otherwise.

(statistical-DP)

We use the annotations I, II, III, and IV in Sec. 3.4 to present further optimizations.
The sought optimal transducer γ∗ of Prob. 1 is obtained as follows: for every t ∈ [0; T −1]

and every z⃗t ∈ (X × Y)t, if v̂t(µ(z⃗t)) ̸= −∞ then γ(z⃗tx) = arg maxy∈Y v̂t+1(µ(z⃗txy)), and
else γ(z⃗tx) = FAIL, where FAIL is as defined for the case of standard-DP, and indicates that
the cost constraint cannot be satisfied in any possible future extension of the current trace.

Next we compare statistical-DP from above with the general dynamic programming
scheme standard-DP for Prob. 1. The highlight of statistical-DP is that the functions v̂t

and ŵt do not depend on the history z⃗t (unlike vt and wt in standard-DP) anymore; rather
they only depend on the statistical values of histories. If we interpret each v̂t(·) and ŵt(·, x)
as vectors Vt and Wt, respectively, then the sizes of Vt and Wt are equal to the size sizeµ(t)
of the statistic µ on t, and not on the size of (X × Y)t. Usually, sizeµ(t) is substantially
smaller than |(X ×Y)t|, and the computational savings with statistical-DP are significant.
For instance, in Ex. 8 and Ex. 9, when the property is specified using the counter automata
in Fig. 1, it follows from (3) that sizeµ(t) = 1× t× 4 = 4t, which is significantly smaller than
|(X × Y)t| = (|G| × |C| × |E|)t = (2× 2c× 2)t = (8c)t for sufficiently large t.

Theorem 14 demonstrates the correctness and the complexity of statistical-DP.

▶ Theorem 14. Let ⟨X ,Y, θ, rew, cost, T ⟩ be a problem instance and µ be a well-behaved
statistic on (X×Y)∗ such that θ, rew, and cost are µ-representible. For every stage t ∈ [0; T ],
and every z⃗t ∈ (X ×Y)t with µ(z⃗t) = s we have vt(z⃗t) = v̂t(s). Furthermore, the computation
of {v̂t(·)}t∈[0;T ] requires O

(
|X | · |Y| ·

∑T
t=1 sizeµ(t)

)
time and O

(∑T
t=1 sizeµ(t)

)
space.

▶ Remark 15 (Product statistic). If θ, rew, and cost are represented using individual well-
behaved statistics µθ, µrew, and µcost, respectively, the common statistic µ of Thm. 14
can be obtained by computing a product statistic as follows: For every z⃗t, µ(z⃗t) :=
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2:12 Abstraction-Based Decision Making for Statistical Properties

(µθ(z⃗t), µrew(z⃗t), µcost(z⃗t). If θ, rew, and cost are provided as counter automata, then
µ can be extracted from their product automaton. Consequently, we obtain sizeµ(t) =
sizeµθ

(t)× sizeµrew(t)× sizeµcost(t).

Proof of Thm. 14. The first part of the proof is via backward induction on the stages.
Throughout, we will use the trace z⃗t ∈ (X × Y)t for which µ(z⃗t) = s. To make the proof
easy to follow, we show that both (i) vt(z⃗t) = v̂t(s) and (ii) wt(z⃗t, x) = ŵt(s, x) hold.

For the base case t = T , from Prop. 6 and the µ-representability of rew and cost, it
follows that rew(z⃗t) = rew(κt ◦ µ(z⃗t)) = r̂ew(s) and cost(z⃗t) = cost(κt ◦ µ(z⃗t)) = ĉost(s).
Therefore, vT (z⃗T ) = v̂T (s) holds as the base case for Claim (i). From the base case and
Prop. 13 we obtain that, for every t ∈ [0; T − 1], it holds that:

wt(z⃗t, x) = max
y∈Y

vt+1(z⃗txy) = max
y∈Y

v̂t+1(µ(z⃗txy))

= max
y∈Y

v̂t+1(µ(κt(s)xy)) = ŵt(s, x). (4)

By using t = T − 1, we obtain wT −1(z⃗T −1, x) = ŵT −1(µ(z⃗T −1), x), which serves as the base
case for Claim (ii).

Now suppose Claim (i) holds for an arbitrary stage t + 1 ≤ T . Then the same derivation
(4) can be used to show that Claim (ii) holds for the stage t. These two statements serve as
the induction steps, and we will show that Claim (i) holds for stage t and Claim (ii) holds
for stage t− 1. The following is the proof of the induction step for Claim (i) which holds due
to the base case and the µ-representibility of θ:

vt(z⃗t) =
∑
x∈X

wt(z⃗t, x) · θ(z⃗t)(x) =
∑
x∈X

ŵt(s, x) · θ̂(s)(x) = v̂t(s). (5)

We can use the same derivation (4) by only substituting t + 1 with t, where the second
inequality will now follow from (5), and obtain the proof of induction step for Claim (ii).

The time and space complexity bounds are established as follows. It follows from (3) that
for each stage t, there are at most sizeµ(t) distinct values of s ∈ S which can represent the
whole set (X × Y)t. Then, v̂t(·) will have at most sizeµ(t) arguments. Therefore, there are
O(

∑T
t=1 sizeµ(t)) elements in {v̂t(·)}t∈[1;T ], for which we will need O(

∑T
t=1 sizeµ(t)) space

in total. On the other hand, for every distinct element in {v̂t}t∈[1;T ], the recursion will have
|X | × |Y| branchings (|X | branchings for the sum operator and |Y| branchings for the max).
Therefore, we will need O(|X | · |Y| ·

∑T
t=1 sizeµ(t)) time in total for the computation. ◀

3.4 Additional Optimizations for Special Cases
We identify three special cases with potentially additional complexity improvements. We
highlight conditions under which we can disregard each individual size, sizeµθ

, sizeµrew , and
sizeµcost , one by one, when computing sizeµ, as outlined in Remark 15. This optimization
potentially reduces sizeµ, providing synthesis algorithms with improved complexity.

Independent environmental distributions. Suppose θ has the property that for every
t ∈ [0; T − 1] and for every w⃗t, z⃗t ∈ (X × Y)t, we have θ(w⃗t) ≡ θ(z⃗t) (in distribution), which
we write as θt. We can replace θ̂(s)(x) in (I) in statistical-DP with θt(x). Removing θ̂

from statistical-DP means that we can ignore sizeµθ
while computing sizeµ of the product

statistic µ as in Rem. 15 (i.e., set sizeµθ
(t) = 1 for all t).
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Figure 2 Top row: plots of computation time (in log-scale) versus horizon length for Ex. 8, 9,
and 10 (left to right). Bottom row: plots of memory usage (in log-scale) versus horizon length for
Ex. 8, 9, and 10 (left to right).

Additive reward. Suppose rew has the property that for every z⃗t = x1y1 . . . xtyt ∈ (X ×Y)t,
we can express the reward as rew(z⃗t) =

∑t
i=1 r(x1y1) for some positive, stage-invariant

reward r : X × Y → R≥0. In statistical-DP, we can replace v̂t+1(µ(κt(s)xy)) in (II) with
v̂t+1(µ(κt(s)xy))+r(xy) and replace r̂ew(s) in (III) with “0,” like in the simple case described
in Sec. 3.2. Removing r̂ew from statistical-DP means that we can ignore sizeµrew while
computing sizeµ of the product statistic µ as in Rem. 15. Both Ex. 8 and Ex. 10 have
additive rewards, which helped us to obtain faster computations in our experiments; see
Sec. 4.1.

Cost is a safety constraint. Suppose cost is a stateless, boolean safety property, specified
using a function c : X × Y → {0, 1} such that cost(x1y1 . . . xtyt) = 0 iff there exists an
i ∈ [1; t] for which c(xiyi) = 1. In statistical-DP, we can replace (II) with “0” if c(xy) = 1,
and remove (IV). Removing ĉost from statistical-DP means that we can ignore sizeµcost

while computing sizeµ of the product statistic µ as in Rem. 15.

4 Experiments

4.1 Comparison of Computational Performances
We considered problem instances with varying time horizons for all three of our examples,
namely synthesis of balanced, maximally responsive, and clientele-aware servers, formalized
in Ex. 8, 9, and 10, respectively. For each example, we compared the computational
performances between standard-DP and statistical-DP, and for Ex. 8 and Ex. 10, we also
compared the hybrid approach discussed in Sec. 3.4 for when the reward is additive. Fig. 2
compares the time and memory usage of our synthesis tool to solve each problem instance
using different approaches. For all reported results we use a time limit of 1 hour and a
memory limit of 200 GB. As expected, the time and memory usage for standard-DP grows
exponentially with T in all cases, and the memory limit is reached way earlier compared to
the statistical-DP approach. The hybrid approach, when available, performs even better
than statistical-DP.
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4.2 Analysis of Synthesized Policies

We demonstrate the quality of the policies synthesized using statistical-DP for each of
the three examples that we consider. Tab. 1 summarizes the problem instances and Fig. 3
summarizes the aggregated outcomes of 100 simulations in each case.

Example – Balanced server. We compare the quality of the synthesized balanced server
policy, formalized in Ex. 8 and from hereon referred to as the balanced-by-construction policy,
with two baseline policies. The first baseline is a greedy policy, that always accepts the
client with the highest price, and in the case of a tie, accepts the client that would make the
imbalance smaller. The second baseline maximizes the expected profit, constrained to having
a balanced execution in expectation. We call this the balanced-on-average policy. Fig. 3a
shows that the balanced-by-construction policy is balanced on every run, whereas both the
greedy policy and the balanced-on-average policy are unbalanced in the worst case. Besides,
the average profit of the balanced-by-construction policy remains competitive (not shown
in figures). In particular, on average the profit for the balanced-by-construction policy, the
greedy policy, and the balanced-on-average policy were, respectively: 10719, 10723, and 8267.
In this setting, the balanced-by-construction policy obtains almost the same profit as the
greedy policy, while maintaining the balance constraint. The balanced-on-average policy
obtains worse results both in terms of profit and balance.

Example – Maximally responsive server. We compare the performance of a maximally
responsive server, formalized in Ex. 9, with the same input distribution and different budgets.
As a baseline, we use a greedy policy that accepts the client offering the highest price. Fig. 3b
shows the average and standard deviation of the maximal response time achieved by policies
with different bounds on the total opportunity costs. In the experiments illustrated in Fig. 3b,
the greedy policy obtains an average maximum response time of 24.4 time steps after a
horizon length of 100 time steps. Our maximally responsive server with budgets 5, 15, and 25,
respectively, achieves average maximum waiting time of 12.35, 7.94, and 5.55 while obtaining
98.75%, 96.25%, and 93.81% of the profit obtained by the greedy policy. Intuitively, the
higher the budget on opportunity costs is, the more freedom the server gets to reduce the
waiting time, though this impacts the overall profit.

Example – Clientele-aware server. We compare the performances of four different clientele-
aware server policies (from Ex. 10) with four different constraints on the maximum number
N of accepted requests. From the plot in Fig. 3c, we observe that the higher the value of
N is, the lower is the initial price threshold, i.e., the higher is the acceptance rate in the
beginning. This happens because for a higher value of N , the server has more freedom to
initially accept more requests from the client (by lowering the threshold) to improve the
chances of seeing better offer prices in future.

Table 1 Where qn,k is the centered Binomialn,k/n, i.e. X −E(X) ∼ qn,k with X ∼ Binomialn,k/n.

Example Horizon Price A PDF Price B PDF Objective Constraint
8 1000 Binomial20,0.49 Binomial20,0.51 profit imbalance (δ = 5)
9 100 Binomial6,0.3 Binomial6,0.75 wait time budget (k ∈ {5, 15, 25})
10 500 q6,1 - profit budget (N ∈ {50, 150, 250, 350})
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Figure 3 Fig. 3a depicts the minimal and maximal imbalance values over 100 simulations for
the balanced-by-construction policy ( ), the greedy policy ( ), and the balanced-on-average
policy ( ). Fig. 3b depicts the maximal wait time values obtained over 100 simulations after
deploying the maximally responsive server for a budget of 5 ( ), 10 ( ), and 25 ( ). We also
show for comparison, the maximal response time obtained by a server with a greedy policy ( ).
Fig. 3c depicts mean and standard deviation of the acceptance thresholds of the synthesized policy
for various budget constraints: 50 ( ), 150 ( ), 250 ( ), and 350 ( ).

5 Related Work

The literature on bounded-horizon sequential decision-making broadly distinguishes between
model-free and model-based instances of the problem, based on whether a model of the
environment is available [14]. In this paper, we study the model-based problem.

For model-based problems, a common assumption is that the environment can be modeled
with a Markov Decision Process (MDP) [14]. Hence, the synthesis problem reduces to finding
the optimal policy in a finite MDP [13], for which extensive literature is available [7]. The
size of the MDP can however be exponential in the horizon length, and solving the derived
optimization problem is known to be PSPACE-hard [12]. Our statistical abstraction can be
viewed as a small abstraction over the state space of this exponentially large MDP, which is
only implicitly built and explored via statistical-DP. A large body of work on model-based
sequential decision-making falls under the term optimal stopping problems [15]. The theory
of optimal stopping revolves around the problem of choosing the ideal time to take a specific
action to either maximize an expected reward or minimize an expected cost.Among those
works, a variety of environment models – both Markovian [15] and non-Markovian [3] –
and a variety of properties [1, 4, 11, 8] have been studied. To the best of our knowledge,
the history-dependent statistical properties that we consider are beyond the reach of the
existing algorithms in the optimal stopping literature. Moreover, due to the generality of
our assumptions, common analytical tools, like competitive ratios [16], would fail to provide
anything beyond trivial bounds.

For model-free problems, optimal policy synthesis algorithms are predominantly data-
driven and rely on learning [18]. Under the assumption that the unknown state space is finite,
PAC-style guarantees are possible [17]. The quality of algorithms in this area is often assessed
using regret where the performance is compared against the model-based setting [5, 19]. We
plan to consider this direction for future work, with an unknown environment and the goal
to compute policies that fulfill the objectives with high probabilities.

6 Conclusion

We considered the sequential decision-making problem with uncertain environments where
the objective of the decision-maker includes fulfillment of a statistical property over a finite
horizon of a given length. Although the problem was known to be PSPACE-hard for general
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properties (possibly non-stochastic), for statistical properties, we present a solution whose
complexity grows only polynomially with respect to the horizon length. The crux of our
approach is a novel statistical abstraction that clusters statistically indistinguishable traces
of the system. Using a prototype implementation, we demonstrated the computational
performance and effectiveness of our approach on three examples of designing server policies
that need to act fairly towards its clients.

Several future directions exist. Firstly, the unbounded-horizon setting presents an
interesting and non-trivial extension, given the inherent challenge of defining the feasible
set of policies (Eq. 1) within this setting. Secondly, it will be valuable to consider the
multi-objective problem where both cost and rew need to be optimized. The goal here will
be to compute a Pareto-optimal solution. In contrast, our approach is currently limited
to unconditionally fulfilling the qualitative constraint cost. Finally, our work establishes
only the sufficient requirements on the properties (µ-representibility for a well-behaved
statistic µ) which admit efficient abstractions. Determining the necessary requirements will
be an interesting theoretical quest, which may improve our understanding of the complexity
landscape of sequential decision-making problems.
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Abstract
The Lean programming language and theorem prover project is celebrating its tenth birthday this
year, having been started by Leonardo de Moura at Microsoft Research and first release as Lean
0.1 in 2014. In this invited talk, I will review Lean’s history and unique features and discuss our
roadmap for its bright future.

Corresponding to its major versions ranging from Lean 0.1 to the current version of Lean 4, the
focus of the Lean project has evolved over the years. Initially intended as a platform for developing
white-box automation, in contrast to the usual black-box approach of stand-alone SMT solvers [2], the
system gathered more conventional features of dependently-typed interactive theorem provers as well
as an initial crowd of interested mathematicians and computer scientists with its first official release
as Lean 2 in 2015 [1]. Lean 3 in 2017 introduced user-extensible automation by extending Lean
from a specification language to an accessible metaprogramming language [4], further accelerating
growth of its mathematical library that was spun out into the separate Mathlib project [5]. Spurred
by the success but also limitations of this extensibility, we started work on the next version Lean 4
in 2018 [3] with the goal of turning Lean into a general-purpose programming language that would
allow us to reimplement Lean in Lean itself and thereby make many more aspects of the system
user-extensible, in a more efficient manner [6]. This to date largest rework of Lean’s implementation
was completed in 2023 with the official release of Lean 4.0.0, further supporting Mathlib’s growth to
more than 1.5 million lines of code at the time of writing as well as improving support for many
other applications such as software verification.

In 2023, Lean also saw its largest organizational change when Leo and I created the Lean
Focused Research Organization (FRO)1 to bundle and support development of Lean in a dedicated
organization for the first time. Thanks to gracious support from philanthropic sponsors, an
unprecedented number of currently twelve people now work on the evolution of Lean at the Lean
FRO. And there is much left to do: with our new team size, we can now support development on
much more than only core features, such as documentation, a robust standard library, and user
interfaces and experience as well as a return to the original topic of advanced proof automation.
The Lean FRO is committed to ensuring and extending Lean’s applicability in education, research,
and industry and to leading it into the next decade of Lean development and beyond.
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Univalent Enriched Categories and the Enriched
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Abstract
Enriched categories are categories whose sets of morphisms are enriched with extra structure.
Such categories play a prominent role in the study of higher categories, homotopy theory, and the
semantics of programming languages. In this paper, we study univalent enriched categories. We
prove that all essentially surjective and fully faithful functors between univalent enriched categories
are equivalences, and we show that every enriched category admits a Rezk completion. Finally, we
use the Rezk completion for enriched categories to construct univalent enriched Kleisli categories.
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1 Introduction

Over the years, category theory [16] has established itself as a powerful mathematical
framework with a wide variety of applications. The applications of category theory range
from pure mathematics [9, 35] to computer science [21, 23, 24, 25]. This study resulted in
the development of various notions of categories.

One of these notions is given by enriched categories. Enriched categories are categories
whose morphisms are equipped with additional structure. Examples of such categories are
plentiful. For instance, in the study of the semantics of effectful programming languages,
one uses categories enriched over directed complete partial orders (DCPOs) [23, 24, 25]. The
type of morphisms in categories enriched over DCPOs is given by a DCPO, and thus fixpoint
equations of morphisms can be solved in such categories [34]. For similar purposes, categories
enriched over partial orders have been used [19]. Other applications of enriched categories
appear in homological algebra [35] where one is interested in categories enriched over abelian
groups, abstract homotopy theory [9] where one looks at categories enriched over simplicial
sets, and higher category theory [14] where one consider categories enriched over categories.

Univalent Foundations. Throughout this paper, we work in univalent foundations [27, 31].
Univalent foundations is an extension of dependent Martin-Löf Type Theory [17] with the
univalence axiom. This axiom says that the identity of types is the same as equivalences
between them. More specifically, we have a map that sends identities A = B to equivalences
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A ≃ B, and the univalence axiom states that this map is an equivalence. Concretely, this
means that properties of types are invariant under equivalence and that two types share the
same properties whenever we have an equivalence between them.

Univalent foundations is especially interesting for the study of category theory. In category
theory, objects are viewed up to isomorphism: whenever there is an isomorphism between
two objects, they share the same categorical properties. This is known as the principle of
equivalence, and this principle is made precise using univalent categories.

Univalent Categories. In univalent foundations, the “correct” notion of category is given
by univalent categories. Given two objects x and y in a category, we have a map sending
identities x = y to isomorphisms x ∼= y. In a univalent category, this mapping is required to
be an equivalence: identities between objects are thus the same as isomorphisms. Hence,
whenever two objects are isomorphic, they satisfy the same properties. Semantically, this
is the correct notion of category, because in the simplicial set model, univalent categories
correspond to set-theoretic categories [11].

There are several consequences of univalence for categories. For instance, we have a
structure identity principle for univalent categories. This principle says that the identity type
of two categories is equivalent to the type of adjoint equivalences between them [2]. As a
consequence, one gets that whenever two categories are equivalent, then they have the same
properties. Another consequence is that every essentially surjective fully faithful functor is
an adjoint equivalence as well. Usually, one uses the axiom of choice to prove this principle,
but if the domain is univalent, then one can constructively prove this fact. Finally, every
category is weakly equivalent to a univalent one, which is called its Rezk completion [2].

While most categories that one encounters in practice are univalent (e.g., Eilenberg-Moore
categories and functor categories), some are not. An example is given by the Kleisli category.
Usually, the Kleisli category K(T) of a monad T on a category C is defined to be the category
whose objects are objects of C and whose morphisms from x to y are morphisms x→ T y

in C. However, this does not give rise to a univalent category in general. One can give
an alternative presentation of the Kleisli category as a full subcategory Kleisli(T) of the
Eilenberg-Moore category to obtain a univalent category [4]. To prove the desired theorems
about Kleisli(T), one uses that it is the Rezk completion of K(T) [36].

Univalent Enriched Categories. In this paper, we develop enriched category theory in
univalent foundations. More specifically, we define univalent enriched categories, and we
prove analogous theorems for univalent enriched categories as for univalent categories. We
show that univalent enriched categories satisfy a structure identity principle, that every
essentially surjective fully faithful functor is an adjoint equivalence, and that every enriched
category admits a Rezk completion. We also use these theorems to construct univalent
enriched Kleisli categories.

Related work. While there are numerous libraries that contain a formalization of categories,
enriched categories have gotten less attention. Several libraries, such as Agda categories [10]
using Agda [22], mathlib [18] using Lean, and the category-theory library [38] in Coq [29],
contain a couple of basic definitions. In UniMath, Satoshi Kura also formalized several basic
concepts of enriched categories. However, none of the aforementioned formalizations consider
much of the theory of enriched categories, and they do not consider univalent enriched
categories. In addition, we use enrichments (Definition 2.2), while the other formalizations
use the definition as given by Kelly [12]. Enrichments have been used in the setting of
skew-enriched categories [5], and, with a slightly different definition, in the study of strong
monads [20, Definition 5.1].

https://coq.inria.fr
https://github.com/UniMath/UniMath
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Formalization. The results in this paper are formalized in the Coq [29] proof assistant using
the UniMath library [33]. We use the UniMath library in this work, because we frequently
use notions from bicategory theory that have only been formalized in UniMath up to now.
Definitions and theorems are accompanied with links to their corresponding identifier in the
formalization, and these links are underlined. The tool coqwc reports the following number
of lines of code in the formalization.

spec proof comments
17855 9242 520 total

Beside what is discussed in this paper, the formalization also contains (weighted) limits and
colimits in enriched categories and models of the enriched effect calculus [7].

Contributions and Overview. The contributions of this paper are as follows.
A construction of the bicategory of univalent enriched categories (Definition 2.6) and a
proof that this bicategory is univalent (Theorem 2.7);
a construction of the image factorization system of enriched categories (Construction 4.7);
a proof that all fully faithful and essentially surjective enriched functors are adjoint
equivalences (Theorem 4.8);
a construction of the Rezk completion for enriched categories (Construction 5.4) and a
proof of its universal property (Theorem 5.5);
a construction of Kleisli objects (Construction 6.9) in the bicategory of univalent enriched
categories.

In Section 3, we discuss numerous examples of enriched categories.

2 The Bicategory of Enriched Categories

In the remainder of this paper, we study univalent enriched categories, and in this section,
we discuss a structure identity principle for univalent enriched categories, which says that
identity of univalent enriched categories is the same as equivalence. Before we do so, we
briefly recall monoidal categories to fix the notation for the remainder of the paper [3, 16].

▶ Definition 2.1. A monoidal category consists of a category V together with
an object 1V : V;
a bifunctor −⊗− : V × V→ V;
isomorphisms lx : 1V ⊗ x→ x, rx : x⊗ 1V → x, and ax,y,z : (x⊗ y)⊗ z → x⊗ (y ⊗ z);

such that l−, r−, and a−,−,− are natural and such that the triangle and pentagon laws hold.
A symmetric monoidal category is a monoidal category V together with morphisms

sx,y : x⊗ y → y ⊗ x, such that sx,y and sy,x are inverses, s−,− is natural, and satisfies the
hexagon law.

A symmetric monoidal closed category is a symmetric monoidal category V such
that for every x : V the functor x⊗− has a right adjoint.

If we have a symmetric monoidal closed category, then we have internal homs x ⊸ y. We
also have evaluation morphisms ϵx,y : (x ⊸ y)⊗ x→ y, and an internal lambda abstraction
operation λ(f) : x→ y ⊸ z for every f : x⊗ y → z.

Usually, a V-enriched category consists of a collection objects together with a hom-object
E(x, y) in V for all x and y, such that we have appropriate identity morphisms and a
composition operation [12]. Every enriched category E has an underlying category, which has
the same collection of objects and whose morphisms from x to y are the same as morphisms
1 → E(x, y) in V.
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However, we take a slightly different approach: we use enrichments. An enrichment
for a category C consists of a hom-object E(x, y) in V for all x and y, such that we have
the appropriate identity and composition morphisms and such that C is equivalent to the
underlying category of the corresponding enriched category. As such, we view an enriched
category as a category together with extra structure. This viewpoint also determines our
notion of univalence for enriched categories: a univalent enriched category is an enriched
category such that its underlying category is univalent. Note that our notion of univalence is
similar to completeness for enriched ∞-categories [8]. Using enrichments, we can equivalently
phrase univalent enriched categories as a univalent category together with an enrichment.

▶ Definition 2.2. Let V be a monoidal category and let C be a category. A V-enrichment
E for C consists of

for all objects x, y : C an object E(x, y) : V;
for every object x : C a morphism ide

E(x) : 1V → E(x, x);
for all objects x, y, z : C a morphism compE(x, y, z) : E(y, z)⊗ E(x, y)→ E(x, z);
for all morphisms f : x→ y in C a morphism

−→
f : 1V → E(x, y);

for every morphism f : 1V → E(x, y) a morphism
←−
f : x→ y in C.

In addition, we require that
−→←−
f = f and

←−−→
f = f and that the following diagrams commute.

1 ⊗ E(x, y) E(y, y)⊗ E(x, y)

E(x, y)

ide(y)⊗id

comp(x,y,y)
lE(x,y)

E(x, y)⊗ 1 E(x, y)⊗ E(x, x)

E(x, y)

id ⊗ide(x)

comp(x,x,y)
rE(x,y)

(E(y, z)⊗ E(x, y))⊗ E(w, x) E(y, z)⊗ (E(x, y)⊗ E(w, x))

E(y, z)⊗ E(w, y)

E(x, z)⊗ E(w, x) E(w, z)

a

id ⊗comp(w,x,y)

comp(w,y,z)

comp(x,y,z)⊗id

comp(w,x,z)

When it is clear from the context, we leave the arguments of comp and ide implicit. In
addition, note that the morphism ide is redundant in Definition 2.2, since we have that
ide

E(x) = −→id . However, we decided to keep ide in the definition, because then it is slightly
more convenient to prove Proposition 2.3.

In the remainder, we use the following operations for V-enrichments E for a category C.
Given an object w and a morphism f : x→ y, we define fpre as the following composition.

E(w, x) 1 ⊗ E(w, x) E(x, y)⊗ E(w, x) E(w, y)l−1 −→
f ⊗id comp

For objects z and morphisms f : x→ y, we define fpost as the following composition.

E(y, z) E(y, z)⊗ 1 E(y, z)⊗ E(x, y) E(x, z)r−1 id ⊗
−→
f comp

Note that a category together with a V-enrichment is the same as an enriched category
as defined by Kelly [12].

▶ Proposition 2.3. For a monoidal category V, the type of categories together with a
V-enrichment is equivalent to the type of V-enriched categories.

https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Enrichment.html#enrichment
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Enriched.EnrichmentEquiv.html#enriched_precat_weq_cat_with_enrichment
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The reason why we use enrichments over the usual definition, is because it simplifies the
proof of the structure identity principle for enriched categories. A structure identity principle
is already present for univalent categories [2, Theorem 6.17], which can be reused directly if
we define enriched categories as pairs of univalent categories together with an enrichment.
However, if we would use the definition in [12] instead, then reusing this principle would be
more cumbersome and thus the desired proof would be more involved.

To phrase the structure identity principle for enriched categories, we use univalent
bicategories. More specifically, this principle for enriched categories is expressed by saying
that the bicategory of enriched categories is univalent. We define the bicategory of enriched
categories using displayed bicategories [1]. A displayed bicategory over a bicategory B
represents structures and properties to be added to objects, 1-cells, and 2-cells in B. In our
case, we define a displayed bicategory dEnrichCatV over the bicategory UnivCat of univalent
categories, and then EnrichCatV is total bicategory of dEnrichCatV. The displayed objects
over a univalent category C are V-enrichments for C, the displayed 1-cells over a functor are
enrichments for functors, and the displayed 2-cells over a natural transformation are proofs
that this transformation is enriched.

Note that from the machinery of displayed bicategories, we get a pseudofunctor UndV :
EnrichCatV → UnivCat, which sends every enriched category to its underlying category. Using
this pseudofunctor, we can understand an enrichment for C to be an object in the fiber of C
along UndV.

▶ Definition 2.4. Suppose that we have V-enrichments E1 and E2 for C1 and C2 respectively.
A V-enrichment F for a functor F : C1 → C2 from E1 to E2 is a family of morphisms
F(x, y) : E1(x, y)→ E2(F x, F y) such that the following diagrams commute

1 E1(x, x)

E2(F x, F x)

ide

F(x,x)ide

E1(y, z)⊗ E1(x, y) E1(x, z)

E2(F y, F z)⊗ E2(F x, F y) E2(F x, F z)comp

F(x,z)F(y,z)⊗F(x,y)

comp

In addition, we require that
−→
F f =

−→
f · F(x, y).

▶ Definition 2.5. Let F1 and F2 be V-enrichments for functors F1, F2 : C1 → C2 from E1
to E2. A natural transformation τ : F1 ⇒ F2 is called V-enriched whenever the following
diagram commutes

E1(x, y)⊗ 1 E2(F2 x, F2 y)⊗ E2(F1 x, F2 x)

E1(x, y) E2(F1 x, F2 y)

1 ⊗ E1(x, y) E2(F1 y, F2 y)⊗ E2(F1 x, F1 y)

r−1

F2⊗−→τ x

comp

l−1

−→τ y⊗F1

comp

Note that the condition for V-enriched natural transformations can equivalently formulated
by saying that the following diagram commutes.

E1(x, y) E2(F1 x, F1 y)

E2(F2 x, F2 y) E2(F1 x, F2 y)

F1

F2

(τ x)pre

(τ y)post (1)

FSCD 2024
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Now we have everything in place to define the bicategory of enriched categories.

▶ Definition 2.6. Let V be a monoidal category. We define the displayed bicategory
dEnrichCatV of enrichments over UnivCat as follows.

The displayed objects over a category C are V-enrichments for C;
the displayed 1-cells over a functor F : C1 → C2 from E1 to E2 are V-enrichments for F
from C1 to C2;
the displayed 2-cells over a natural transformation τ : F1 ⇒ F2 from F1 to F2 are proofs
that τ is V-enriched.

The bicategory of enriched categories is defined to be the total bicategory of dEnrichCatV,
and we denote it by EnrichCatV. Its objects are univalent V-enriched categories, and we
call the 1-cells and 2-cells of EnrichCatV enriched functors and enriched transformations
respectively.

Note that by construction a univalent V-enriched category is the same as a univalent
category together with a V-enrichment. In addition, our univalence condition for V-enriched
categories has no local variant in contrast to univalence for bicategories [1], since we only
look at enrichments over monoidal 1-categories.

To show that Definition 2.6 actually gives rise to a displayed bicategory, one also needs
to construct enrichments for the identity and composition, and one needs to prove that the
identity transformation is enriched and that enriched transformations are preserved under
composition and whiskering. Details on this construction are left to the formalization.

▶ Theorem 2.7. If V is a univalent monoidal category, then the bicategory EnrichCatV is
univalent.

▶ Proposition 2.8. Let τ : F1 ⇒ F2 be a 2-cell in EnrichCatV. Then τ is invertible if the
underlying natural transformation of τ is a natural isomorphism.

3 Examples of Enriched Categories

Before we continue our study of univalent enriched categories, we first look at numerous
examples of enrichments that we use in the remainder of this paper. In Section 3.2, we
characterize enrichments over a large class of structures.

3.1 General Examples
▶ Example 3.1. Let V be a symmetric monoidal closed category. We define a V-enrichment
for V, which we call the self-enrichment and denote by self(V), as follows.

We define self(V)(x, y) to be x ⊸ y.
The enriched identity ide(x) : 1 → x ⊸ x is defined to be λ(lx).
The composition comp(x, y, z) : y ⊸ z ⊗ x ⊸ y → x ⊸ z is the exponential transpose of
the following composition of morphisms.

((y ⊸ z)⊗ (x ⊸ y))⊗ x (y ⊸ z)⊗ ((x ⊸ y)⊗ x) (y ⊸ z)⊗ y za id ⊗ϵ ϵ

Given f : x→ y, we define
−→
f : 1 → x ⊸ y to be λ(lx · f).

For f : 1 → x ⊸ y, we define
←−
f to be the following composition of morphisms.

x 1 ⊗ x (x ⊸ y)⊗ x y
l−1
x f⊗idx ϵ

If we assume that V is univalent, then self(V) is a univalent enriched category.

https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.DisplayedBicats.Examples.EnrichedCats.html#disp_bicat_of_enriched_cats
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.DisplayedBicats.Examples.EnrichedCats.html#disp_bicat_of_enriched_cats
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.DisplayedBicats.Examples.EnrichedCats.html#bicat_of_enriched_cats
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.DisplayedBicats.Examples.EnrichedCats.html#is_univalent_2_bicat_of_enriched_cats
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.DisplayedBicats.Examples.EnrichedCats.html#make_is_invertible_2cell_enriched
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.SelfEnriched.html#self_enrichment
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▶ Example 3.2. Let C be a category together with a V-enrichment E , and let P be a predicate
on the objects of C. From all of this, we obtain a V-enrichment FSube(P) for the full
subcategory FSub(P), such that FSube(P)(x, y) := E(x, y). If C is univalent, then the full
subcategory of C is also univalent, and in that case, this construction gives rise to a univalent
enriched category.

▶ Example 3.3. Suppose that V is a symmetric monoidal category, and let C be a category
together with a V-enrichment E. We define the V-enrichment Eop, called the opposite
enrichment, for Cop as follows.
Eop(x, y) := E(y, x);
ide

Eop(x) := ide
E(x);

compEop(x, y, z) := E(z, y)⊗ E(y, x) E(y, x)⊗ E(z, y) E(z, x)s comp

The operations
−→
f and

←−
f in Eop are inherited from E. In addition, Eop gives rise to a

univalent enriched category if C is univalent.

In fact, using Example 3.3 one can construct a duality involution on EnrichCatV.

▶ Example 3.4. Suppose that V is a symmetric monoidal category that has equalizers,
and suppose that we have two enriched functors F1,F2 : E1 → E2. We have the category
Dialg(F1,F2) of dialgebras whose objects are pairs (x, f) consisting of an object x : E1 together
with a morphism f : F1 x→ F2 x. Morphisms from (x, f) to (y, g) are morphisms h : x→ y

such that the following diagram commutes.

F1 x F1 y

F2 x F2 y

f g

F1 h

F2 h

We define a V-enrichment Dialge(F1,F2) for Dialg(F1,F2). Suppose that we have objects
(x, f) and (y, g) in Dialg(F1,F2). We define the object Dialge(F1,F2)((x, f), (y, g)) as the
equalizer of the following diagram.

E2(F1 x,F1 y)

Dialge(F1,F2)((x, f), (y, g)) E1(x, y) E2(F1 x,F2 y)

E2(F2 x,F2 y)

F1

F2

gpost

fpre

To define the enriched identity and composition morphisms, one uses the universal property
of equalizers. If C is univalent, then so is the category of dialgebras, and in that case,
Dialge(F1,F2) is a univalent enriched category.

Using Example 3.4, one can show that the bicategory EnrichCatV has inserters.

▶ Example 3.5. Let V be a complete symmetric monoidal category, and suppose that we
have enriched categories E1 and E2. Note that we have a category [E1, E2] whose objects are
given by enriched functors from E1 to E2, and whose morphisms are given by enriched natural
transformations. We define a V-enrichment EFunctor(E1, E2) for [E1, E2] as the equalizer
of the morphisms displayed below.

∏
x:E1
E2(F1 x,F2 x)

∏
x,y:E1

E1(x, y) ⊸ E2(F1 x,F2 y)
g

f
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Here f is defined to be the following composition of morphisms∏
x:E1
E2(F1 x,F2 x) E2(F1 y,F2 y) E1(x, y) ⊸ E2(F1 x,F2 y)πy φ

where φ is the exponential transpose of

E2(F1 y,F2 y)⊗ E1(x, y) E2(F1 y,F2 y)⊗ E2(F1 x,F1 y) E2(F1 x,F2 y).id ⊗F1 comp

We define g analogously. The fact that [E1, E2] is univalent, follows from the fact that
EnrichCatV is univalent (Theorem 2.7).

Inspired by Example 3.5, we can refine Example 3.1. More specifically, given a small
category C, we define a V-enrichment for the functor category from C to V. The construction
is analogous to Example 3.5, and details can be found in the formalization.

Finally, we look at the change of base operation for enriched categories, and for this
operation, a subtlety arises. Given a lax monoidal functor F : V1 → V2, our goal is to define a
pseudofunctor EnrichCatV1 → EnrichCatV2 . On objects, this operation acts as follows: given
a univalent category C together with an enrichment E , then we get an enriched category
F∗(E) whose objects are objects in C and such that F∗(E)(x, y) = F (E(x, y)). However, the
underlying category of this enriched category is not necessarily univalent. For instance, if
we take F to be the unique monoidal functor from Set to the terminal category, then the
underlying category of F∗(E) would have sets as objects, and inhabitants of the unit type as
the morphisms. For this reason, we add a restriction to F in order to define the change of
base of enriched categories.

▶ Definition 3.6. Let F : V1 → V2 by a lax monoidal functor. We say that F preserves
underlying categories if for all x : V1 the function that sends morphisms f : 1V1 → x to
1V2 F 1V1 F x

ϵF F f is an equivalence of types. If we have f : 1V2 → F x, then we
denote the action of the inverse by ζF(f).

The requirement in Definition 3.6 says that the underlying category is preseerved by
change of base along F. With this additional assumption, we define the change of base of
enriched categories.

▶ Example 3.7. Let F : V1 → V2 by a lax monoidal functor that preserves underlying
categories, and let C be a category together with a V-enrichment E. We define the change-
of-base enrichment F∗(E) for C as follows. The hom-object F∗(E)(x, y) is defined to be
F (E(x, y)), and the enriched identity ide(x) is defined as the composition

1V2 F 1V1 F (E(x, x))ϵF F (ide(x))

Composition is defined similarly.

F (E(y, z))⊗ F (E(x, y)) F (E(y, z)⊗ E(x, y)) F (E(x, y))F compµF

If we have a morphism f : x→ y, then we define
−→
f to be

1V2 F 1V1 F (E(x, x)).ϵF F (
−→
f )

Finally, for a morphism f : 1V2 → F (E(x, x)), we define
←−
f to be

←−−−
ζF(f). Note that here we

use that F preserves underlying categories. In addition, if we assume that C is univalent,
then we get a univalent enriched category F∗(E).

https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.ChangeOfBase.html#preserve_underlying
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.ChangeOfBase.html#preserve_underlying
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.ChangeOfBase.html#change_of_base_enrichment
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.ChangeOfBase.html#change_of_base_enrichment
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3.2 Enrichments over Structures
Next we characterize two classes of enrichments. First, we characterize enrichments for the
category Set of sets equipped with its cartesian monoidal structure.

▶ Proposition 3.8. Let C be a category. The type of Set-enrichments for C is contractible.

From Proposition 3.8, we can conclude that the type of categories is equivalent to the
type of Set-enriched categories. Second, we characterize enrichments for structured sets with
a cartesian monoidal structure. To do so, we first define a general notion of structured sets.

▶ Definition 3.9. A cartesian notion of structure S consists of
a set PS X of structures on X for every set X;
a proposition H(pX,pY)(f) which represents that f is a structure preserving map from pX to
pY, for all functions f : X→ X and structures pX : PS X and pY : PS Y;
an inhabitant punit : PS unit;
a structure pX × pY : PS (X × Y) for all pX : PS X and pY : PS Y,.

This data is required to satisfy the following axioms.
For every set X and structure pX : PS X, we have H(pX,pX)(idX);
for all functions f : X→ Y and g : Y → Z such that H(PS X,PS Y)(f) and H(PS Y,PS Z)(g),
we have H(PS X,PS Z)(g ◦ f);
given structures pX, p′

X : PS X such that H(pX,pX′ )(idX) and H(pX′ ,pX)(idX), we have pX = p′
X;

given a structure pX : PS X on a set X, we have H(pX,punit)(λ(x : X).tt) where tt is the
unique element of unit;
given structures pX : PS X and pY : PS Y on sets X and Y respectively, we have
H(pX×pY,pX)(π1) and H(pX×pY,pY)(π2);
for all functions f : X→ Y and g : X→ Z such that H(PS X,PS Y)(f) and H(PS X,PS Z)(g),
we have H(PS X,pY×pZ)(λ(x : X).(f x, g x)).

Note that Definition 3.9 is extension of standard notions of structures defined in [31,
Definition 9.8.1]: the added data and axioms guarantee that the resulting category has binary
products and a terminal object.

▶ Problem 3.10. Given a cartesian notion of structure S, to construct a univalent cartesian
category Str(S).

▶ Construction 3.11 (for Problem 3.10). In [31, Section 9.8], it is shown how every standard
notion of structure gives rise to a univalent category. The terminal object is given by
(unit, punit), and the product of (X, pX) and (Y, pY) is given by (X × Y, pX × pY). ⌟

▶ Proposition 3.12. Let C be a category and let S be a cartesian notion of structure. Then
the type of Str(S)-enrichments for C is equivalent to a structure hom(x,y) : PS (x→ y) for all
objects x, y : C such that for all x, y, z : C we have H(hom(y,z)×hom(x,y),hom(x,z))(λf.π2 f · π1 f).

As such, to give a Str(S)-enrichment for C one needs to endow every hom-set of C with
an S-structure such that the composition operation is a structure preserving map.

▶ Example 3.13. We have a cartesian notion of structure DCPO of directed complete
partial orders structures (DCPOs) such that PDCPO X is the set of DCPOs on X and
such that H(pX,pY)(f) expresses that f is a Scott continuous map. As such, a DCPO-enriched
category is given by a category whose hom-sets are directed complete partial orders, and whose
composition operation is a Scott-continuous map.
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We also have a cartesian notion of structure DCPPO of pointed directed complete
partial orders structures (DCPPOs) such that PDCPPO X is the set of DCPPOs on X and
such that H(pX,pY)(f) expresses that f is a Scott continuous map. Hence, DCPPO-enriched
categories are categories whose hom-sets are pointed directed complete partial orders, and
whose composition operation is a Scott-continuous map.

▶ Remark 3.14. In Example 3.13, we defined a cartesian notion of structure by pointed
DCPOs and Scott continuous maps without requiring these maps to be strict. For pointed
DCPOs and strict Scott continuous maps, one can also define such a structure. However,
in applications, one is often interested in a different monoidal structure for pointed DCPOs
with strict maps, namely the one given by the smash product. Note that one can construct
this symmetric monoidal category constructively [30, Theorem 2.9.1].

The formalization contains a further extension of Definition 3.9, called a structure
supporting smash products, and a proof that every such structure gives rise to a symmetric
monoidal closed category. For such structures, the smash product is constructed a quotient of
types, and one can instantiate this notion using pointed sets and pointed partial orders.

4 Image Factorization

We continue our study of univalent enriched categories by proving that every essentially
surjective and fully faithful (enriched) functor is an adjoint equivalence. Classically, one
would use the axiom of choice to prove this fact: to define the inverse, one needs to pick
preimages and those are only guaranteed to be unique up to isomorphism. One can give a
constructive proof of this fact if one assumes that the domain of the functor in question is
univalent.

The way we approach this result, is via orthogonal factorization systems in bicategories.
More specifically, we show that the essentially surjective and the fully faithful enriched
functors form an orthogonal factorization system [15, Lemma 4.3.5]. From this fact, one
directly obtains that every essentially surjective and fully faithful functor is an adjoint
equivalence. The proof is similar to how in orthogonal factorization systems in categories
the intersection of the left and right class of maps are precisely the isomorphisms.

We start by defining orthogonal maps in bicategories.

▶ Definition 4.1. Let B be a bicategory and let f : x1 → x2 and g : y1 → y2 be 1-cells. Then
we say that f is orthogonal to g, written f ⊥ g, if the following diagram of categories is a
weak pullback in the bicategory of categories.

B(x2, y1) B(x1, y1)

B(x2, y2) B(x1, y2)

fpre

gpostgpost

fpre

where the functors fpre and gpost are given by precomposition with f and postcomposition
with g respectively.

Let us reflect on Definition 4.1. Weak pullbacks of categories are given by iso-comma
categories. The objects in the iso-comma category F/∼=G of functors F : C1 → C3 and
G : C2 → C3 are given by triples (x, y, f) of objects x : C1 and y : C2 together with an
isomorphism f : F x ∼= G y. Note that we have a functor O(f,g) : B(x2, y1) → fpre/∼=gpost.
The functor O(f,g) maps 1-cells h : x2 → y1 to the triple (h · g, f · h, αf,h,g) where α is the

https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.DisplayedCats.Examples.PointedDCPOStructures.html#cartesian_closed_struct_dcppo
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.DisplayedCats.Examples.PointedDCPOStructures.html#cartesian_closed_struct_dcppo
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.DisplayedCats.Structures.StructuresSmashProduct.html#hset_struct_with_smash_closed
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.DisplayedCats.Structures.StructuresSmashProduct.html#hset_struct_with_smash_closed
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.OrthogonalFactorization.Orthogonality.html#orthogonal
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associator of B. Orthogonality can equivalently be phrased by saying that the functor O(f,g)
is an adjoint equivalence. Essential surjectivity of O(f,g) says that every square has a diagonal
filler as follows.

x1 y1

x2 y2

gf

h1

h2

l

More concretely, given the diagram above, there is a lift l : x2 → y1 making the two triangles
commute up to invertible 2-cell. Fully faithfulness of O(f,g) says that whenever we have two
lifts l1, l2 : x2 → y1 together with 2-cells τ1 : l1 · g ⇒ l2 · g and τ2 : f · l1 ⇒ f · l2, we have a
unique 2-cell ζ : l1 ⇒ l2 such that ζ ▷ g = τ1 and f ◁ ζ = τ2.

▶ Definition 4.2. Let B be a bicategory. An orthogonal factorization system on B
consists of two classes of maps, which we denote by L and R, such that
L and R are closed under invertible 2-cells;
for all 1-cells f and g such that L f and R g, we have f ⊥ g;
for every 1-cell f , we have a factorization f ∼= l · r such that L l and R r.

In this section, we are interested in a particular factorization system on EnrichCatV, which
is given by the fully faithful and the essentially surjective enriched functors.

▶ Definition 4.3. Let F : E1 → E2 be an enriched functor.
We say that F is fully faithful if for all objects x, y : E1 the morphism F(x, y) is an
isomorphism.
We say that F is essentially surjective if its underlying functor is essentially surjective.
That is to say, for all y : E2 we have an inhabitant of ∥

∑
(x : E1),F x ∼= y∥.

We say that F is a weak equivalence if F is both fully faithful and essentially surjective.

Every enriched functor can be factorized as an essentially surjective functor followed by a
fully faithful functor by taking the full image.

▶ Example 4.4. Let F : E1 → E2 be an enriched functor. We define a predicate P on the
objects of E2 such that P y := ∥

∑
(x : E1),F x ∼= y∥. The full image Im(F) of F is defined

to be the full subcategory of E2 with respect to P.

▶ Proposition 4.5. Suppose that we have univalent enriched categories E1, E2, E3, and E4. If
we have enriched functors F : E1 → E2 and G : E3 → E4 such that F is essentially surjective
and G is fully faithful, then F ⊥ G.

▶ Problem 4.6. To construct an orthogonal factorization system on EnrichCatV.

▶ Construction 4.7 (for Problem 4.6). The classes L and R are given by the essentially
surjective and the fully faithful enriched functors respectively. The desired factorization is
given by Example 4.4, and the proof of orthogonality is given in Proposition 4.5. It remains to
show that essentially surjective and fully faithful enriched functors are closed under enriched
natural isomorphisms, and the details for that is given in the formalization. ⌟

From this factorization system, we directly obtain that weak equivalence are actually
adjoint equivalences.

▶ Theorem 4.8. Every fully faithful and essentially surjective enriched functor F : E1 → E2
is an adjoint equivalence.
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Proof. Suppose that F : E1 → E2 is fully faithful and essentially surjective. Consider the
following diagram

E1 E1

E2 E2

F F

id

id

l

Due to the orthogonality of fully faithful and essentially surjective morphisms, this diagram
has a lift l such that both triangles commute up to invertible 2-cell. From this, we get that
f is an equivalence, and since equivalences can be refined to adjoint equivalences, f is an
adjoint equivalence. ◀

▶ Remark 4.9. For the proof of Theorem 4.8, we require both the domain and codomain of F
to be univalent. This restriction is a consequence of the bicategorical machinery, because we
phrase everything in the bicategory EnrichCatV whose objects are univalent enriched categories.
In the case that only the domain of F is univalent, one could still use the same construction
as in Construction 4.7.

5 The Rezk Completion

The next aspect in our study of univalent enriched categories, is the enriched Rezk completion.
There are two features to a suitable Rezk completion for enriched categories. First of all,
one needs to show that every enriched category is weakly equivalent to a univalent one
(Construction 5.4). This construction is similar to the Rezk completion of categories [2]: in
both cases, we construct the enriched Rezk completion as the image of the Yoneda embedding.
Note that for Construction 5.4 we assume that V is a complete symmetric monoidal closed
category to guarantee that we have an enrichment for the desired presheaf category. Second
of all, one needs to prove a universal property (Theorem 5.5). This property says that every
enriched functor from an enriched category E to some univalent enriched category can be
extended to the Rezk completion of E .

Our construction of the enriched Rezk completion makes use of the Yoneda lemma [12].
As such, we first define representable presheaves and the Yoneda embedding, and we prove
the Yoneda lemma.

▶ Definition 5.1. Let V be a complete symmetric monoidal closed category, and let E be
an V-enriched category. Given an object y : E, we define the representable functor
r0(y) : [Eop, self(V)] as follows.

For objects x : E, we define r0(y) x := E(x, y);
for morphisms f : x1 → x2, we define r0(y) f to be fpre : E(x2, y)→ E(x1, y).

Given a morphism f : y1 → y2 in E , we define the representable natural transformation
r1(f) : r0(y1)→ r0(y2) to be fpost : E(x, y1)→ E(x, y2) for every x : E.

Finally, the enriched Yoneda embedding yE : E → [Eop, self(V)] is defined to be r0(y)
on objects y : E and r1(f) on morphisms f : y1 → y2.

Note that in Definition 5.1, one also needs to construct V-enrichments for r0(y) and
yE , and prove that r1(f) is V-enriched. The details for that can be found in [12] and the
formalization.

▶ Proposition 5.2. The enriched Yoneda embedding is fully faithful.

https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.Yoneda.html#enriched_repr_presheaf
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.Yoneda.html#enriched_repr_nat_trans
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.Examples.Yoneda.html#enriched_yoneda
https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.YonedaLemma.html#fully_faithful_enriched_yoneda
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▶ Problem 5.3. Given a category E enriched over a univalent complete symmetric monoidal
category V, to construct a univalent enriched category R(E) and a weak equivalence P : E →
R(E).

▶ Construction 5.4 (for Problem 5.3). We define R(E) to be the image of the Yoneda
embedding yE . The enriched functor P : E → R(E) is essentially surjective by construction
(Example 4.4). By the Yoneda lemma (Proposition 5.2), P is fully faithful as well. ⌟

Note that Construction 5.4 might increase the universe level. Let us assume that the
type of objects of E and V live in U and V respectively. Since objects of R(E) are enriched
presheaves from E to self(V) that are in the image of yE , the type of objects of R(E) lives in
U ⊔ V . In many examples, V is a larger universe that U , because we require the category V
to have all products indexed by the objects in E .

In addition, we can extend Construction 5.4 to the case where V is not necessarily
univalent. To do so, we first take the Rezk completion of monoidal categories [40] of V to
obtain a weak equivalence P : V→ R(V). Since P is fully faithful, it preserves underlying
categories. Hence, if we have a category E enriched over V, we obtain a category P∗(E)
enriched over R(V) using Example 3.7. Then we use Construction 5.4 to obtain the Rezk
completion.

Finally, we verify the universal property of the Rezk completion. This property is
formulated using the precomposition functor.

▶ Theorem 5.5. Suppose that we have a enriched functor F : E1 → E2 and a univalent
enriched category E3. Then the precomposition functor Fpre : [E2, E3]→ [E1, E3] is an adjoint
equivalence of categories.

To verify Theorem 5.5, we use that E3 is univalent. This implies that the categories [E2, E3]
and [E1, E3] are both univalent, and thus it suffices to check that Fpre : [E2, E3] → [E1, E3]
is essentially surjective and fully faithful. The proofs of Lemmata 5.6 and 5.7 have some
overlap with the ordinary categorical case [2, Theorem 8.4]. However, here we must also
check that the obtained functors and natural transformations actually are enriched.

▶ Lemma 5.6. Suppose that we have a enriched functor F : E1 → E2 and a univalent
enriched category E3. The functor Fpre : [E2, E3]→ [E1, E3] is fully faithful.

Proof. The proof that Fpre : [E2, E3] → [E1, E3] is faithful, is in essence the same as for
ordinary categories [2, Lemma 8.1], so we only show that Fpre is full. Let G1,G2 : [E2, E3] be
two enriched functors, and suppose that we have an enriched transformation τ : F ·G1 ⇒ F·G2.
We show how to construct the desired enriched natural transformation θ : G1 ⇒ G2.

For all objects x : E2 the following type is contractible.∑
(f : G1 x→ G2 x),

∏
(w : E1)(i : F w ∼= x), τ w · G2 i = G1 i · f

The contractibility of this type follows from our assumption that F is essentially surjective.
From this, we obtain the data of the the desired transformation θ. The fact that θ is
V-enriched is shown by using Equation (1) and the fact that F is essentially surjective. ◀

▶ Lemma 5.7. The functor Fpre : [E2, E3]→ [E1, E3] is essentially surjective.

Proof. Suppose that we have an enriched functor G : [E1, E3]. We only demonstrate how to
construct the desired enriched functor H : [E2, E3].

Suppose that we have x : E2. Then there is a unique object y : E3 and function
φ :

∏
(w : E1)(i : F x ∼= y),G w ∼= y such that for all objects w1, w2 : E1, isomorphisms

i1 : F w1 ∼= x and i2 : F w2 ∼= x, and morphisms k : w1 → w2 satisfying F k · i2 = i1, we
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have G k · φ w2 i2 = φ w1 i1. Uniqueness follows from the fact that F is fully faithful, and
the desired element is constructed by using that F is essentially surjective. One can show
that the obtained action on objects gives rise to a functor H from the underlying category of
E2 to that of E3. We also have isomorphisms φ w i : G w ∼= H x for all w : E1 and i : F x ∼= y.

Next we construct an enrichment for this functor. Suppose, that we have two objects
x, y : E2. Then there is a unique morphism f : E2(x, y) → E3(H x, H y) in V such that for
all objects w1, w2 : E2 and isomorphisms i1 : F w1 ∼= x and i2 : F w2 ∼= x, f is equal to the
following composition of morphisms

E2(x, y) E2(F w1, y) E2(F w1,F w2) E1(w1, w2)

E3(G w1,G w2) E3(H x,G w2) E3(H x, H y)

ipre
1 (i−1

2 )pre (F)−1

G

((φ w1 i1)−1)pre φ w2 ipost
2

This follows from the fact that F is a weak equivalence. As such, we get the desired enriched
functor H : [E2, E3]. ◀

6 Enriched Monads

We end our study of univalent enriched categories by looking at enriched monads. More
specifically, we discuss Kleisli objects (Construction 6.9) in the bicategory of enriched
categories. At first glance, it might not seem that univalence plays an interesting role, but
upon closer look, this question is rather subtle.

Usually, the Kleisli category of a monad T on a category C is defined to be the category
whose objects are objects of C and whose morphisms from x to y are morphisms x→ T y in
C. We denote this category by K(T). In general, this category is not univalent (for example
the constant monad on the unit set). This situation can be rectified by defining the Kleisli
category in a slightly different way [4], namely as the image of the free algebra functor from
C to the Eilenberg-Moore category EM(T) of T. The resulting univalent category is denoted
by Kleisli(T). To derive the usual theorems about Kleisli categories, one can instantiate
the formal theory of monads [13, 28, 36], meaning that it suffices to prove the universal
property for Kleisli objects. Proving the desired universal property is a nice exercise using
the universal property of the Rezk completion (Theorem 5.5).

The key notion of this section, enriched monads, can be defined concisely as monads
internal to EnrichCatV. Recall that monads in bicategories are defined as follows.

▶ Definition 6.1. Let B be a bicategory. A monad m in B is given by
an object obm : B;
a 1-cell morm : obm → obm;
a 2-cell ηm : idobm

⇒ m;
a 2-cell µm : m ·m⇒ m.

such that the following diagrams commute.

morm morm · id x morm ·morm id ·morm morm

morm

µm

morm◁ηmρ−1

id

λ−1ηm▷morm

id

https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.DisplayedBicats.Examples.MonadsLax.html#mnd
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morm · (morm ·morm) morm ·morm

(morm ·morm) ·morm morm ·morm morm

µm

µmµm▷morm

α

morm◁µm

Here λ and ρ are the left and right unitors of B, and α is the associator of B.

For enriched categories, one can further unfold this definition and phrase it in terms of
enrichments. This results in the notion of enrichments for monads.

▶ Definition 6.2. Suppose that we have a category C, a monad T on C, and a V-enrichment
for C. Then a V-enrichment for T consists of a V-enrichment for the endofunctor T such
that the unit ηT and multiplication µT are V-enriched natural transformations.

When we say enriched monad, we mean a monad together with an enrichment. In the
remainder of this section, we are concerned with Kleisli objects in the bicategory of enriched
categories. To define Kleisli objects, we first define their cocones. Note that for these
definitions, we talk about arbitrary bicategories B and monads internal to B.

▶ Definition 6.3. Let B be a bicategory and let m be a monad in B. A Kleisli cocone
k for m in B consists of an object obk : B, a 1-cell mork : obm → obk, and a 2-cell
cellk : m ·mork ⇒ mork such that the following diagrams commute.

id obm ·mork m ·mork

mork

ηm▷mork

cellk
λ

(m ·m) ·mork m · (m ·mork) m ·mork

m ·mork mork

µm▷mork

α−1 m◁cellk

cellk

cellk

▶ Definition 6.4. A Kleisli cocone k is universal if the following conditions are satisfied.
For every Kleisli cocone q there is a 1-cell Klmor(q) : obk → obq and an invertible 2-cell
Klcom(q) : mork · Klmor(q)⇒ morq such that the following diagram commutes.

m · (mork · Klmor(q)) m ·morq

(m ·mork) · Klmor(q) mork · Klmor(q) morq

m◁Klcom(q)

α

cellk▷Klmor(q) Klcom(q)

cellq

Suppose that we have an object x : B, two 1-cells g1, g2 : obk → x, and a 2-cell τ :
mork · g1 ⇒ mork · g2 such that the following diagram commutes.

m · (mork · g1) (m ·mork) · g1 mork · g1

m · (mork · g2) (m ·mork) · g2 mork · g2

α cellk▷g1

τm◁τ

α cellk▷g2

Then there is a unique 2-cell Klcell(τ) : g1 ⇒ g2 such that cellk ◁ Klcell(τ) = τ .
We say that a bicategory has Kleisli objects if there is a universal Kleisli cocone for every
monad m.

FSCD 2024

https://nmvdw.github.io/EnrichedCats/UniMath.CategoryTheory.EnrichedCats.EnrichmentMonad.html#monad_enrichment
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.Colimits.KleisliObjects.html#kleisli_cocone
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.Colimits.KleisliObjects.html#has_kleisli_ump
https://nmvdw.github.io/EnrichedCats/UniMath.Bicategories.Colimits.KleisliObjects.html#has_kleisli


4:16 Univalent Enriched Categories and the Enriched Rezk Completion

As discussed before, there are multiple ways to define Kleisli categories. We first define
an enrichment for K(T).

▶ Example 6.5. Let T be an enriched monad on an enriched category E. We define a
V-enrichment Ke(T) for K(T) as follows.

We define Ke(T)(x, y) to be E(x, T y).
We define ide(x) to be −−→ηT x.
We define comp(x, y, z) as the following composition of morphisms.

E(y, T z) ⊗ E(x, T y) E(T y, T (T z)) ⊗ E(x, T y) E(x, T (T z)) E(x, T z)compT⊗id (µT z)post

The operations
−→
f and

←−
f in Ke(T) are inherited from E.

Next we define an enrichment for Kleisli(T). Since Kleisli(T) is defined as a full subcategory
of the Eilenberg-Moore category EM(T), we define an enrichment for EM(T) first.

▶ Example 6.6. Suppose that V has equalizers, and let T be an enriched monad on an
enriched category E. Note that we can define the Eilenberg-Moore category of T as a full
subcategory of Dialg(T, id). By Examples 3.2 and 3.4 we obtain the desired V-enrichment
EMe(T) on EM(T).

Using Example 6.6 one can show that EnrichCatV has Eilenberg-Moore objects. In general,
we have an enriched functor FreeAlgT : E → EMe(T). This functor sends every object x to
the free algebra T x. Now we define an enrichment for Kleisli(T).

▶ Example 6.7. Suppose that V is a monoidal category with equalizers, and let T be an
enriched monad on an enriched category E. Note that Kleisli(T) is constructed as a full
subcategory of the Eilenberg-Moore category, and thus by Example 6.6 we obtain the V-
enrichment Kleislie(T) for Kleisli(T).

The category defined in Example 6.7 is univalent if we assume E to be univalent. This is
because the Eilenberg-Moore category of a monad on a univalent category is always univalent
and because univalence is preserved under full subcategories. In addition, note that in
Example 6.7 we assume that V has equalizers, whereas in Example 6.5, we do not.

We finish this section by showing that Kleislie(T) satisfies the required universal property.
The main idea behind the proof is that we have a weak equivalence inclT : Ke(T)→ Kleislie(T),
and this weak equivalence allows use to instantiate Theorem 5.5.

▶ Problem 6.8. Given a monoidal category V with equalizers, to construct Kleisli objects in
the bicategory EnrichCatV.

▶ Construction 6.9 (for Problem 6.8). Given an enriched monad T on E , the Kleisli object of
T in EnrichCatV is given by Kleislie(T). The main work lies in verifying the universal property.
This check happens in three steps.

First, we define a weak equivalence inclT : Ke(T) → Kleislie(T). This enriched functor
sends every object x to the free algebra on x. The action on morphisms is given by the
following composition

E(x, T y) E(T x, T (T y)) E(T x, T y)T (µy)post

Second, we check that Ke(T) gives rise to Kleisli objects in the bicategory of (not necessarily
univalent) enriched categories. For this, one can use the same proof as used, for example, by
Street [28, Theorem 15].
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Third, we conclude that the universal property also holds for Kleislie(T), and we only
show how to construct 1-cells arising from the mapping property. Suppose, that we have
some Kleisli cocone q in EnrichCatV. We get an enriched functor F : Ke(T) → obq. From
Theorem 5.5, we get the desired 1-cell F̃ : Kleislie(T)→ obq. ⌟

Note the similarities between Construction 6.9 and the construction of Kleisli objects for
univalent categories [36, Construction 6.10].

7 Conclusion

In this paper, we studied univalent enriched categories, and we discussed several aspects
of their study. Our notion of univalent enriched category was based on enrichments, and
we viewed enriched categories as a category together with an enrichment. First, we proved
a structure identity principle for univalent enriched categories, which we formulated using
univalent bicategories. The proof used displayed bicategories. Second, we showed that all
weak equivalences between univalent enriched categories are adjoint equivalences. Here we
made use of orthogonal factorization systems. Third, we discussed the Rezk completion of
enriched categories, which we constructed using the Yoneda lemma. We also used the Rezk
completion to construct Kleisli objects in the bicategory of univalent enriched categories.

Along the way, we saw a couple of interesting points where univalence interacted with
enrichment. When we defined the change-of-base operation in Example 3.7, we restricted
ourselves to lax functors that preserve underlying categories. This was to guarantee that
the resulting category would remain univalent. In addition, we assumed that the monoidal
category V has equalizers in the construction of the univalent Kleisli category (Example 6.7).

There are several ways to extend the results in this paper. A wide variety of notions in
category theory can be defined internally to a bicategory. However, for enriched categories,
these internal notions are not always the correct ones. For example, the notion of a fully
faithful 1-cell can be defined internally to a bicategory using a representable definition, but
the obtained notion does not correspond to the one given in Definition 4.3. To obtain the
desired notions, one could use the theory of equipments [39], and one interesting extension of
this work would be to develop the equipment of enriched categories. Such work would build
forth upon recent work on univalent double (bi)categories [26, 37, 32]. Another interesting
extension would be formalizing applications of enriched categories, such as models of the
enriched effect calculus [7] or enriched profunctor optics [6].
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Abstract
We introduce the flower calculus, a deep inference proof system for intuitionistic first-order logic
inspired by Peirce’s existential graphs. It works as a rewriting system over inductive objects
called “flowers”, that enjoy both a graphical interpretation as topological diagrams, and a textual
presentation as nested sequents akin to coherent formulas. Importantly, the calculus dispenses
completely with the traditional notion of symbolic connective, operating solely on nested flowers
containing atomic predicates. We prove both the soundness of the full calculus and the completeness
of an analytic fragment with respect to Kripke semantics. This provides to our knowledge the first
analyticity result for a proof system based on existential graphs, adapting semantic cut-elimination
techniques to a deep inference setting. Furthermore, the kernel of rules targetted by completeness is
fully invertible, a desirable property for both automated and interactive proof search.
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1 Introduction

Graphical proof building. Proof assistants – also called interactive theorem provers (ITPs)
– provide a set of tools to ease the process of formalizing mathematical developments. This
includes languages to specify definitions and statements conveniently, but also interfaces to
build proofs interactively without having to fill in all the details. The dominant paradigm for
these interfaces is that of tactic languages [44]: the user is exposed with a set of goals that
remain to be proved, constituting the proof state, and modifies these goals through textual
commands, called tactics, until there is no goal left. This is currently what is implemented
in mainstream proof assistants such as Coq [58] and Lean [45].

In recent years, there have been several efforts to replace or complement textual tactic
languages with graphical user interfaces (GUIs) [51, 4, 38, 12, 53, 35, 68, 3]. The hope is
to make proof assistants more intuitive and accessible to beginners and non-specialists, but
also, to some extent, more productive and ergonomic even for experts.

The initial motivation for this work was to design a proof calculus well-suited to direct
manipulation in such a graphical setting. The idea is that the user should be able to interact
directly with the graphical representation of the proof state, using a pointing device such as
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a mouse or fingers on a touch screen. In previous work [22], we proposed a way to synthesize
complex logical inferences through drag-and-drop actions between two formulas of the current
goal/sequent, based on the subformula linking (SFL) methodology [12, 13].

Diagrammatic reasoning. In this work, we show that (single-conclusion) sequents and
symbolic formulas built from binary connectives and unary quantifiers are not mandatory
for representing the proof state. Other authors have defended the idea of using diagrams as
a more user-friendly frontend for ITPs. In particular, Linker et al. showed how to integrate
tactic-based automation in an ITP based on spider diagrams [35], which are equivalent in
expressive power to classical monadic first-order logic (FOL) [29].

We introduce a new data structure for goals inspired by an earlier invention in the history
of diagrammatic logic: the existential graphs (EGs) of C. S. Peirce [52]. We noticed that
our structure could be drawn and manipulated metaphorically in the form of nested flowers,
and thus chose to name flower calculus the proof system for full intuitionistic FOL that we
built around it. Our focus in this paper will be to introduce the flower calculus to readers
unfamiliar with EGs, and to study its fundamental properties through the lens of modern
structural proof theory.

Implementation. We have formalized in Coq a bidirectional simulation between the flower
calculus and cut-free sequent calculus, yielding a soundness theorem and a weak completeness
theorem for an analytic fragment of the flower calculus [19]. In this paper, we follow a
semantic rather than syntactic approach, avoiding translations to and from symbolic formulas
to obtain a stronger completeness result.

While currently at an early stage, we are also developing the Flower Prover, a prototype
of direct-manipulation GUI for ITPs based on the flower calculus [20]. The interested reader
can try a publicly available version of the prototype online1. We leave a detailed account of
the Flower Prover and its connection to the flower calculus for future work.

Outline. The article is organized as follows: in Section 2 we give a brief overview of
the original diagrammatic syntax of EGs used by Peirce in his system Alpha for classical
propositional logic. In Section 3 we retrace the origin of an intuitionistic variant of EGs
first introduced by Oostra in [46], that directly inspired our flower metaphor. In Section 4
we illustrate quickly the original mechanism of lines of identity used by Peirce to express
first-order quantifiers in his Beta system, and show how to recast it in a more traditional
binder-based syntax. In Section 5 we introduce our inductive syntax for flowers, and in
Section 6 we give the full set of inference rules of the flower calculus as well as our notion of
proof. In Section 7 we give a direct Kripke semantics to flowers, and in Section 8 we show
that a restricted fragment of analytic and invertible rules is complete with respect to the
semantics. Finally we conclude in Section 9 by a comparison with some related works.
▶ Note. The full version of this paper with complete appendices is available on arXiv [21].
The proof of soundness of the flower calculus is given in [21, Appendix B]. Contrary to
the completeness proof, it is mostly routine work that does not require much insight.
Detailed proofs for the deduction and completeness theorems are given respectively in [21,
Appendix C.1] and [21, Appendix C.2]. Readers already familiar with EGs can find a detailed
comparison of the rules of the flower calculus with Peirce’s illative transformations in [21,
Appendix A].

1 https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/

https://www.lix.polytechnique.fr/Labo/Pablo.DONATO/flowerprover/
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2 Existential graphs

Peirce designed in total three systems of EGs, which he called respectively Alpha, Beta
and Gamma. They were invented chronologically in that order, which also captures their
relationship in terms of complexity: Alpha is the foundation on which the other systems are
built, and can today be understood as a diagrammatic calculus for classical propositional
logic. As we will see in Section 4, Beta corresponds to a variable-free representation of
first-order logic without function symbols. The last system Gamma is more experimental,
with various unfinished features that have been interpreted as attempts to capture modal [67]
and higher-order logics.

Sheet of Assertions. The most fundamental concept of Alpha is the sheet of assertion,
denoted by SA thereafter. It is the space where statements are scribed by the reasoner,
typically a sheet of paper, a blackboard, or a computer display. As its name indicates,
scribing a statement on SA amounts to asserting its truth. Thus naturally, the empty SA
where nothing is scribed will denote vacuous truth, traditionally signified by the symbol ⊤.

Juxtaposition. As we know from natural deduction, asserting the truth of the conjunction
a∧ b of two propositions a and b, amounts to asserting both the truth of a and the truth of b.
In Alpha, there is no need to introduce the symbolic connective ∧, since one can just write
both a and b at distinct locations on SA:

a b

More generally, one might consider any two portions G and H of SA, and interpret their
juxtaposition G H as signifying that we assert the truth of their conjunction.

Cuts. Asserting the truth of the negation ¬ a of a proposition a, amounts to denying the
truth of a. This is done in Alpha by enclosing a in a closed curve like so:

a

Peirce called such curves cuts2, because they ought to be seen as literal cuts in the paper
sheet that embodies SA. Note that they do not need to be circles: all that matters is that a
is in a separate area from the rest of SA. This is precisely the content of the Jordan curve
theorem in topology, and thus we can take cuts to be arbitrary Jordan curves. This entails
in particular that cuts cannot intersect each other, but can be freely nested. Then as for
juxtaposition, one can replace the proposition a in the interior of the cut by any graph G –
i.e. any portion of SA – as long as the cut does not intersect other cuts in G.

Relationship with formulas. With just these two icons, juxtaposition and cuts, one can
therefore assert the truth of any proposition made up of conjunctions and negations and
built from atomic propositions. Importantly, the only symbols needed for doing so are letters
a, b, c . . . denoting atomic propositions, that is “pure” symbols that do not have any logical
meaning associated to them.

2 Not to be confused with the name given to instances of the cut rule in sequent calculus.
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a a
Iteration−−−−−−→ a

Insertion−−−−−−→ Double−cut−−−−−−−−→

Figure 1 Proof of the law of excluded middle in Alpha.

Now, it is well-known that {∧,¬} is functionally complete, meaning that any boolean truth
function can be expressed as the composition of conjunctions and negations. In particular,
the symbolic definitions of falsehood ⊥ ≜ ¬ ⊤, classical disjunction A ∨ B ≜ ¬(¬A ∧ ¬B)
and classical implication A⊃B ≜ ¬(A∧ ¬B) can be expressed by the following three graphs:

A B A B

Thus one can easily encode any propositional formula into a classically equivalent graph.
Conversely, one can translate any graph into a classically equivalent formula, as has been
shown for instance in [54]. In fact, there are usually many possible formula readings of a
given graph. One reason is that juxtaposition of graphs is a variadic operation, as opposed
to conjunction of formulas which is dyadic: thus formulas that only differ up to associativity
are associated to the same graph. Also, thanks to the topological nature of SA, juxtaposition
is naturally commutative: the locations of two juxtaposed graphs do not matter, as long as
they live in the same area delimited by a cut. The combination of these properties is called
the isotropy of SA in [40], and is captured in traditional proof theory through the use of
(multi)sets for modelling contexts in sequents.

Illative transformations. In order to have a proof system, one needs a collection of inference
rules for deducing true statements from other true statements. In Alpha, inference rules are
implemented by what Peirce called illative transformations on graphs. In modern terminology,
they correspond to rewriting rules that can be applied to any subgraph. By measuring the
depth of a subgraph as the number of cuts in which it is enclosed, we thus have that the
rules of Alpha are applicable on subgraphs of arbitrary depth. This makes Alpha deserving of
the title of deep inference system.

Figure 1 shows a proof of the law of excluded middle a ∨ ¬ a in Alpha. The first step
consists in applying the illative transformation of Iteration to erase the subgraph a . More
generally, Iteration allows to erase any subgraph G as long as G already occurs “higher” in
SA, i.e. in an area that encloses the erased occurrence of G. The second step of Insertion
allows to erase the other occurrence of a because it is scribed in a negative area, i.e. an
area enclosed in an odd number of cuts – 1 in this case3. The last step of Double−cut allows
to collapse the two remaining cuts, because there is nothing but empty space in between
them. This leaves us with the empty SA, having thus reduced the initial goal to trivial truth.

3 It might be quite confusing that we call “Insertion” a transformation that erases information. This is
because we use Peirce’s original terminology, despite the fact that we adopt a backward reading of rules
where the conclusion that we want to prove is reduced to a sufficient premiss.
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(a) Peirce’s scroll.
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d

(b) Oostra’s curl.
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(c) Inside-out curl.
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e d
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(d) Flower.

Figure 2 From scrolls to flowers.

3 Flowers

The scroll. In [50, pp. 533–535], Peirce explains that he did not immediately come up
with the idea of juxtaposition and cuts as diagrammatizations of conjunction and negation.
Instead, they arose as the natural development of a more primitive icon that he called the
scroll. Figure 2a shows Peirce’s drawing of the scroll as it appears in [50, Fig. 5]. He defines
its intended meaning as that of a “conditional de inesse”, which corresponds to the material
implication of classical logic. Then the graph of Figure 2a is interpreted as the formula
(A ∧B) ⊃ (C ∧D). This agrees with the encoding of implication given in Section 2, if one
sees the outer boundary enclosing the antecedent A B and the inner boundary enclosing the
consequent C D as nested cuts.

It is no coincidence that Peirce based his most fundamental icon on implication: according
to Lewis [34, p. 79], he was the one who introduced the “illative relation” of implication into
symbolic logic in the first place, by giving it a distinguished symbol and studying extensively
the algebraic laws that govern it (e.g. Peirce’s law ((A⊃B) ⊃A) ⊃A).

The n-ary scroll. In order to interpret the scroll as an intuitionistic implication, Oostra
proposed in [46] to reify the scroll as a primitive icon of EGs, distinguished from the nesting
of two cuts. In fact he went further, by generalizing both the cut and the scroll into an
n-ary construction called the curl, where n is the number of inner boundaries, called loops.
Figure 2b shows an example of curl with five loops, where the unique intersection points
between inner and outer boundaries are highlighted in orange4. In [40], the curl is simply
called n-ary scroll, the outer boundary outloop, and the inner boundaries inloops. Then cuts
and scrolls are indeed special cases of n-ary scrolls, respectively with n = 0 and n = 1.

Like the unary scroll, the n-ary scroll is to be read as an implication whose antecedent is
the content of the outloop, and consequent the content of the inloops. The generalization
consists in taking the disjunction of the contents of all inloops: this reflects nicely the
etymological meaning of the word “disjunction”, since the inloops enclose disjoint areas of
the outloop to which they are attached. Then the 5-ary scroll of Figure 2b can be read as
the formula a⊃ (b∨ c∨ d∨ e∨ f); and the 0-ary scroll obtained by removing all inloops from
the latter as a⊃ ⊥, since a 0-ary disjunction is naturally evaluated to its neutral element ⊥.
This coincides with the intuitionistic reading of negation ¬A ≜ A⊃ ⊥.

Continuity. With this interpretation of the n-ary scroll, the Alpha encodings of disjunction
and implication as nested cuts given in Section 2 are no longer valid, because they are not
intuitionistically equivalent to the associated binary and unary scrolls. This is illustrated in

4 We also shade the negative area delimited by the outer boundary in gray.
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A B A B

A ∨B A⊃B

̸= A B A B

¬(¬A ∧ ¬B) ¬(A ∧ ¬B)

Figure 3 Continuity, disjunction and implication in intuitionistic EGs.

Figure 3, where the closeness in meaning is reflected iconically (but not symbolically) in the
fact that the graphs only differ in the continuity (or lack thereof) between inloops and their
outloop.
▶ Remark 3.1. This might be related to other manifestations of the notion of continuity in
the semantics of intuitionistic logic, such as the well-known Stone-Tarski interpretation of
formulas as topological spaces [57], and the interpretation of proofs as continuous maps in
the denotational semantics of Dana Scott5 [1].

Blooming. In terms of ergonomy, the n-ary scroll has one notable flaw, also shared with the
classical cut-based syntax: it quickly induces heavy nestings of curves in the plane, making
even relatively simple graphs hard to read for an untrained eye. Our solution is to turn
inloops inside-out, as illustrated in Figure 2c. In this way, we effectively divide the amount
of curve-nesting in scrolls by two. And as an added bonus, the new icon is reminiscent of a
flower, as if it had bloomed from its curled bud; or as if the pistol cylinder from Figure 2b
had transformed into a pistil, and its bullet chambers into petals.

From that point onwards, we chose to fully embrace the flower metaphor: first in our
drawing style as witnessed in Figure 2d, but also in our syntactic terminology, to be introduced
in the next pages. Negative (resp. positive) outloops are now drawn as yellow (resp. white)
pistils for a slightly more colorful experience, and inloops as transparent petals, i.e. of the
same color as the area on which they are scribed.

4 Gardens

Lines of identity. To express first-order quantification, Peirce introduced in Beta the icon
of lines of identity (LoIs). In short, the usual binders and variables of predicate calculus are
replaced by lines that connect the occurrences of bound variables in predicate arguments to
their binding point. For instance, the formulas ∃x.P (x) ∧Q(x) and ∀x.R(x) ⊃ S(x) can be
represented in Beta by the graphs of Figure 4a.

The kind of quantification is determined by the location of the binding point, which is
taken to be the outermost point in the line: if it is in a positive area as in the upper graph,
then the quantifier is existential; otherwise if it is in a negative area as in the lower graph,
the quantifier is universal. This is justified by De Morgan’s laws: the lower graph can also
be read as the classically equivalent formula ¬ ∃x.R(x) ∧ ¬S(x).

5 Before the advent of Oostra’s intuitionistic EGs, Zalamea gave a detailed analysis of Peirce’s philosophy
of the continuum, how it relates to modern developments in mathematics, and how it is embodied
in EGs [66]. Actually according to Oostra [49, p. 162], “the possibility of developing intuitionistic
existential graphs was first suggested by Zalamea in the 1990s [64, 65]”.
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P Q
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(a) EGs with LoIs.

QP

SR

(b) Flowers with LoIs.

Q(x)P (x)
x

S(x)
R(x)
x

(c) Flowers with variables.

Figure 4 From LoIs to variables.

Intuitionistic quantification. In intuitionistic logic however, De Morgan’s laws do not hold
anymore. Thus in the flower calculus we need a different way to interpret LoIs as quantifiers.
Our key insight is to adopt a polarity-invariant viewpoint: a LoI now has existential (resp.
universal) force when its outermost point is located in a petal (resp. pistil). In particular,
this implies that LoIs cannot occur at the top-level of SA anymore, but only inside flowers.
Thus the two previous Beta graphs are transformed into the single-petal flowers of Figure 4b.

Variables. Quine experimented with a notation similar to LoIs, but deemed it “too cum-
bersome for practical use” [52, p. 125]. While his lines connected locations inside symbolic
formulas written in linear notation, it is true that having a line for each occurrence of bound
variable can quickly lead to unreadable diagrams ridden with overlapping lines. This is not
a problem in the context of Peirce’s work, because his aim was “to separate [relational]
reasoning into its smallest steps, [...] not to facilitate reasoning, but to facilitate the study of
reasoning” [52, p. 111]; and recent formalizations of the algebra of LoIs in category theory
support the pertinence of Peirce’s approach [27, 6].

However, keeping in mind our goal of laying the basis for a calculus well-suited to practical
reasoning in ITPs, we chose to replace LoIs by a more traditional syntax based on binders
and variables. The idea is to substitute every LoI with a variable binder scribed in the area
of its outermost point, so that the two flowers of Figure 4b transform into those of Figure
4c. Areas delimited by pistils and petals now comprise both flowers and binders, which can
be seen metaphorically as sprinklers that irrigate the leaves (atomic predicates) of flowers
through invisible LoIs, imagined as underground hoses. Hence we call these areas gardens.

5 Syntax

We are now going to distill the syntactic essence of flowers into an inductive, (multi)set-
based data structure. This will allow for a more compact textual notation, that is better
suited to proof-theoretical study. We previously illustrated how flowers allow to represent
purely relational statements without function symbols. Since functions are just deterministic
relations, one can in principle formalize any first-order theory in this syntax6.

▶ Definition 5.1. A first-order signature is a pair Σ = (P, ar), where P is the countable set
of predicate symbols of Σ, and ar : P → N gives an arity to each symbol.

6 Conversely, every relation can be faithfully encoded as its characteristic function, which is the basis for
the formalization of mathematics in type theories.
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5:8 The Flower Calculus

Kind Letters
Variables (V) x, y, z

Flowers (F) ϕ, ψ, ξ

Gardens (G) γ, δ

Sprinklers x,y, z
Variable vectors x⃗, y⃗, z⃗

Substitutions σ, τ

Bouquets Φ,Ψ,Ξ
Corollas Γ,∆
Contexts Φ̂, Ψ̂, Ξ̂
Theories T ,U

(a) Conventions for meta-variables.

∀x1∀x2.(p(x1, x2) ⊃ (∃y1.q(x1, y1) ∧ (r(x2) ⊃ s(y1))) ∨ (∃y2.q(x2, y2)))

x1, x2 · p(x1, x2) ⫐ y1 · q(x1, y1), (r(x2) ⫐ s(y1)) ; y2 · q(x2, y2)

y2

q(x2, y2)

x1 x2

p(x1, x2)

y1 q(x1, y1)

r(x2) s(y1)

(b) Interpreting flowers.

Figure 5 Notations.

In the following, we fix a countable set of variables V and a first-order signature Σ.

▶ Definition 5.2. The sets of flowers F and gardens G are defined by mutual induction:

Atom If p ∈ P and x⃗ ∈ Var(p), then p(x⃗) ∈ F;

Garden If x ⊂ V is a finite set and Φ ⊂ F a finite multiset, then x · Φ ∈ G;

Flower If γ ∈ G and ∆ ⊂ G is a finite multiset, then γ ⫐ ∆ ∈ F.
Similarly to nested sequents, the syntax of flowers ϕ, ψ and gardens γ, δ can be expressed
succinctly with the following grammar:

ϕ, ψ ⩴ p(x1, . . . , xn) | γ ⫐ δ1 ; . . . ; δn γ, δ ⩴ x1, . . . , xn · ϕ1, . . . , ϕn

Building on our botanical metaphor, any finite set x ⊂ V of variables is called a sprinkler,
finite multiset Φ ⊂ F of flowers a bouquet, and finite multiset Γ ⊂ G of gardens a corolla.
Following the grammar presentation, we will often write gardens as x1, . . . , xn · ϕ1, . . . , ϕm,
where the xi are called binders; and non-atomic flowers as γ ⫐ δ1 ; . . . ; δn, where γ is the
pistil and the δi are the petals. We write {Ei}ni to denote a finite (multi)set of size n with
elements Ei indexed by 1 ≤ i ≤ n. We also omit writing the empty (multi)set, accounting
for it with blank space as is done in sequent notation; in particular, · stands for the empty
garden ∅ · ∅, γ ⫐ for the flower with no petals γ ⫐ ∅, and γ ⫐ · for the flower with one
empty petal.

Note that the order of precedence of operators is , < · < ; < ⫐: this is illustrated in
Figure 5b, where a flower expression is parsed into the corresponding flower drawing, and
then translated as a formula. Also to improve readability, we will most of the time omit the
garden dot “·” when the sprinkler is empty, writing Φ instead of · Φ.

▶ Remark 5.3. In some places the choice of letter for meta-variables will be important to
disambiguate the kind of syntactic object we denote. Table 5a summarizes our chosen
notational conventions in this respect.

We now proceed with routine definitions for handling variables.
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▶ Definition 5.4. The sets of free variables fv(−) and bound variables bv(−) of a
flower/bouquet/garden are defined recursively by:

fv(p(x⃗)) = x⃗ fv(Φ) =
⋃
ϕ∈Φ

fv(ϕ) fv(x · Φ) = fv(Φ) \ x

fv(x · Φ ⫐ ∆) = fv(x · Φ) ∪
⋃

y·Ψ∈∆

fv(x,y · Ψ)

bv(p(x⃗)) = ∅ bv(Φ) =
⋃
ϕ∈Φ

bv(ϕ) bv(x·Φ) = x∪bv(Φ) bv(γ ⫐ ∆) = bv(γ)∪
⋃
δ∈∆

bv(δ)

To avoid reasoning about α-equivalence, we adopt in this work the so-called Barendregt
convention that all variable binders are distinct, both among themselves and from free
variables. Formally, we assume that for any bouquet Φ the two following conditions hold:
1. computing bv(Φ) as a multiset gives the same result as computing it as a set;
2. bv(Φ) ∩ fv(Φ) = ∅.

To define substitutions, we introduce a general notion of function update, which will be
useful for the semantic evaluation of flowers in Section 7.

▶ Definition 5.5. Let A,B be two sets, f, g : A → B two functions and R ⊆ A some subset
of their domain. The update of f on R with g is the function defined by:

(f |R g)(x) =
{
g(x) if x ∈ R

f(x) otherwise

− |− − is left-associative, that is f |R g |S h = (f |R g) |S h. Also if f or g is the identity
function 1 we omit writing it, i.e. f |R = f |R 1 and |R g = 1 |R g.

▶ Definition 5.6. A substitution is a function σ : V → V with a finite support supp(σ) =
{x | σ(x) ̸= x}. We write σ : x to denote a substitution σ whose support is x. The domain
of substitutions is extended to flowers, bouquets and gardens mutually recursively by:

σ(p(x1, . . . , xn)) = p(σ(x1), . . . , σ(xn)) σ(ϕ1, . . . , ϕn) = σ(ϕ1), . . . , σ(ϕn)

σ(x · Φ) = x · σ |x(Φ) σ(x · Φ ⫐ δ1 ; . . . ; δn) = σ(x · Φ) ⫐ σ |x(δ1) ; . . . ; σ |x(δn)

We say that a substitution σ : x is capture-avoiding in a bouquet Φ if σ(x) ∩ bv(Φ) = ∅.

6 Calculus

Equipped with an inductive syntax, we can now express formally the inference rules of the
flower calculus. First we need a notion of context to apply rules at arbitrarily deep locations:

▶ Definition 6.1 (Context). Contexts Φ̂ are defined inductively by the following grammar:

Φ̂, Ψ̂, Ξ̂ ⩴ Ψ, ϕ̂ ϕ̂, ψ̂, ξ̂ ⩴ □ | x · Φ̂ ⫐ ∆ | γ ⫐ x · Φ̂ ; ∆

Informally, a context can be seen as a bouquet with exactly one occurrence of a special flower
□ called its hole. The filling of a context Φ̂ with a bouquet Ψ (resp. context Ψ̂) is the bouquet
Φ̂{Ψ} (resp. context Φ̂{Ψ̂}) equal to Φ̂ where □ has been substituted with Ψ (resp. Ψ̂).
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5:10 The Flower Calculus

(a) Cross-pollination. (b) Self-pollination.

Figure 6 Pollination in flowers.

▶ Definition 6.2 (Polarity). The number of inversions inv(Φ̂) of a context Φ̂ is:

inv(□) = 0 inv(Ψ, ϕ̂) = inv(ϕ̂) inv(x · Φ̂ ⫐ ∆) = 1 + inv(Φ̂) inv(γ ⫐ x · Φ̂ ; ∆) = inv(Φ̂)

We say that a context Φ̂ is positive if inv(Φ̂) is even, and negative otherwise. We denote
positive and negative contexts respectively by Φ̂+ and Φ̂−.

In order to formulate the equivalent of the Iteration rule of EGs for flowers, we introduce
a pollination relation that captures the availability of a flower in a given context:

▶ Definition 6.3 (Pollination). We say that a flower ϕ can be pollinated in a context Φ̂,
written ϕ ≻ Φ̂, when there exists a bouquet Ψ with ϕ ∈ Ψ and contexts Ξ̂ and Ξ̂0 s.t. either:
Cross-pollination Φ̂ = Ξ̂{Ψ, Ξ̂0};
Self-pollination Φ̂ = Ξ̂{x · Ψ ⫐ y · Ξ̂0 ; ∆} for some x,y,∆.
A bouquet Φ can be pollinated in Φ̂, written Φ ≻ Φ̂, if ϕ ≻ Φ̂ for all ϕ ∈ Φ.

Figure 6 illustrates the meaning of pollination as a relation of justification between
locations: the blue dot marks the location of the justifying/pollinating occurrence of ϕ, and
the red dots all the areas that it justifies/pollinates, and thus where ϕ is available for use. We
distinguish two cases of cross-pollination and self-pollination, as botanists do when describing
the reproduction of flowers. This distinction does not exist in classical EGs, because pistils
and petals are both identified as instances of cuts7.
▶ Remark 6.4. Incidentally, the pollination relation also explains the scope of variables.
Indeed, one can interpet red dots in Figure 6 as the allowed usage points for the variable
bound at the linked blue dot. This hints at a possible type-theoretic variant of the flower
calculus where variables are also used for higher-order individuals, including flowers.

Proofs. The inference rules of the flower calculus are presented in Figure 7. Read from top
to bottom, they correspond to traditional inference rules deducing a necessary conclusion
from a valid premiss. But we will prefer their backward, bottom-up reading: then they can be
seen as rewriting rules that reduce a goal to a sufficient premiss, just like in our illustration
of the illative transformations of EGs in Figure 1. Also, all rules manipulate bouquets: this
is seen more clearly in the graphical presentation of the rules in appendix (Figures 8 and 9).

7 The same phenomenon is at work in SFL: cross-pollination and self-pollination can be seen as generalizing
the forward and backward interaction connectives ⚪ and ▹ of intuitionistic SFL [13, 22], while the
original formulation of SFL for classical linear logic had only one interaction connective ∗ [12]. Through
the Curry-Howard-Lambek correspondence, this is also reminiscent of the adjunction between products
(⚪) and exponentials (▹) in cartesian closed categories, as opposed to the natural isomorphism (−)∗ of
∗-autonomous categories.
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Nature ❀

Ξ̂{}
poll↓

Ξ̂{Φ}

Ξ̂{Φ}
poll↑

Ξ̂{}

· ⫐ · Φ
epis

Φ
epet

γ ⫐ · ; ∆

x · Φ ⫐ · {γi ⫐ ∆}n
i srep

x · Φ, ( · ⫐ {γi}n
i ) ⫐ ∆

(x · σ(Φ) ⫐ σ(∆)), (x,y · Φ ⫐ ∆)
ipis

x,y · Φ ⫐ ∆

γ ⫐ x · σ(Φ); x,y · Φ; ∆
ipet

γ ⫐ x,y · Φ; ∆

Culture ✂

Ξ̂+{Φ}
grow

Ξ̂+{}

Ξ̂−{}
crop

Ξ̂−{Φ}

Ξ̂+{γ ⫐ ∆}
pull

Ξ̂+{γ ⫐ Γ; ∆}

Ξ̂−{γ ⫐ Γ; ∆}
glue

Ξ̂−{γ ⫐ ∆}

Ξ̂+{x,y · Φ ⫐ ∆}
apis

Ξ̂+{x · σ(Φ) ⫐ σ(∆)}

Ξ̂−{γ ⫐ x,y · Φ; ∆}
apet

Ξ̂−{γ ⫐ x · σ(Φ); ∆}

In the rules poll↓ and poll↑, we assume that Φ ≻ Ξ̂.
In the rules ipis, apis (resp. ipet, apet), we assume some substitution σ : y that is

capture-avoiding in · Φ ⫐ ∆ (resp. Φ).

Figure 7 Rules of the flower calculus.

We partition the rules into two sets: the natural rules denoted by ❀ that apply in
arbitrary contexts, and the cultural rules denoted by ✂ that apply exclusively in positive or
negative contexts. In particular, every ❀-rule is both analytic (i.e. every atom in the premiss
already appears in the conclusion) and invertible (see [21, Lemma B.17]); on the contrary, all
✂-rules are non-invertible, and they will be shown to be admissible in Section 8.

▶ Definition 6.5 (Derivation). Given a set of rules R, we write Φ →R Ψ to indicate a rewrite
step in R, that is an instance of some r ∈ R with Ψ as premiss and Φ as conclusion. We
just write Φ → Ψ to mean Φ →❀∪✂ Ψ. A derivation Φ →n

R Ψ is a sequence of rewrite
steps Φ0 →R Φ1 . . . →R Φn with Φ0 = Φ, Φn = Ψ and n ≥ 0. Generally the length n of
the derivation does not matter, and we just write Φ →∗

R Ψ. Finally, natural derivations are
closed under arbitrary contexts: for every context Ξ̂, Φ →❀ Ψ implies Ξ̂{Φ} →❀ Ξ̂{Ψ}. We
write Φ ⇀❀ Ψ to denote a shallow natural step, i.e. an instance of a ❀-rule in the empty
context □.

▶ Definition 6.6 (Proof). A proof of a bouquet Φ is a derivation Φ →∗ ∅.

In Peircean terms, the empty bouquet is the blank SA. Then proving a bouquet amounts
to erasing it completely from SA, thus reducing it to trivial truth as in Figure 1. Figure 10 in
appendix shows an example of ❀-proof in the flower calculus, both in textual and graphical
syntax. Note that we used a non-duplicating version of the rules ipis and ipet, in order to
save some space in the graphical presentation.

If we want to reason about relative truth, i.e. Φ is true under the assumption that Ψ
is, we can simply rely on the existence of a derivation Φ →∗ Ψ in the full flower calculus.
This will be justified by the soundness of all rules ([21, Theorem B.20]) as well as a strong
completeness result (Corollary 8.8), that relies on the following strong deduction theorem:
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5:12 The Flower Calculus

▶ Theorem 6.7 (Strong deduction). Φ →∗ Ψ if and only if Ψ ⫐ Φ →∗ ∅.

Contrary to full derivability, natural derivability Φ →∗
❀ Ψ is too weak to satisfy a strong

deduction theorem. This is a consequence of the fact that ❀-rules are invertible, and thus
can only relate equivalent bouquets. Indeed, as soon as Ψ ⫐ Φ is ❀-provable but the converse
Φ ⫐ Ψ is not, it follows from the completeness of ❀-rules that Φ and Ψ are not equivalent:
thus Φ ↛∗

❀ Ψ, contradicting the strong deduction statement.
A trivial way to circumvent this is to define directly the relation of hypothetical provability

Ψ ⊢ Φ as Ψ ⫐ Φ →∗ ∅. This is closer to what one would find in sequent calculus, where
hypothetical proofs are closed derivations of hypothetical sequents, not open derivations. The
difference is that sequents capture only the first-order8 implicative structure of logic, while
flowers capture the full structure of intuitionistic FOL. This allows for a nice generalization
of the notion of hypothetical provability, which will be useful in our completeness proof:

▶ Definition 6.8. We say that Φ is hypothetically provable from Ψ in a fragment R of rules,
written Ψ ⊢R Φ, if Ξ̂{Φ} →∗

R Ξ̂{} for every context Ξ̂ such that Ψ ≻ Ξ̂. We write Ψ ⊢ Φ to
denote hypothetical provability in the full flower calculus.

▶ Theorem 6.9 (Deduction). Ψ ⊢❀ Φ if and only if ⊢❀ Ψ ⫐ Φ.

7 Semantics

We now give a semantics to flowers in Kripke structures. We recall the standard definitions:

▶ Definition 7.1. A first-order structure is a pair (M, ⟦·⟧) where M is a non-empty set
called the domain, and ⟦·⟧ is a map called the interpretation that associates to each predicate
symbol p ∈ P a relation ⟦p⟧ ⊆ M ar(p).

▶ Definition 7.2. A Kripke structure is a triplet K = (W,≤, (Mw)w∈W ), where W is the set
of worlds, ≤ is a pre-order on W called accessibility, and (Mw)w∈W is a family of first-order
structures indexed by W . Furthermore, we require the following monotonicity conditions to
hold whenever w ≤ w′: 1. Mw ⊆ Mw′ ; 2. for every p ∈ P, ⟦p⟧w ⊆ ⟦p⟧w′ .

▶ Definition 7.3. Given a Kripke structure K and a world w in K, a w-evaluation is a
function e : V → Mw. The interpretation map of Mw is extended to variables and substitutions
with respect to any w-evaluation e as follows:

⟦x⟧e = e(x) ⟦σ⟧e(x) = ⟦σ(x)⟧e

The crux of Kripke semantics is the forcing relation, that captures the truth-conditions of
statements in Kripke structures. While it is usually defined on formulas, here we adapt the
definition to flowers, which in our opinion makes it simpler and more uniform since flowers
can be seen as built from essentially one big constructor:

▶ Definition 7.4. The depth |−| of a flower/garden is defined by mutual recursion:

|p(x⃗)| = 0 |x · Φ| = max
ϕ∈Φ

|ϕ| |γ ⫐ ∆| = 1 + max(|γ|,max
δ∈∆

|δ|)

▶ Definition 7.5. Given some Kripke structure K, the forcing relation w ⊩ ϕ [e] between a
world w, a flower ϕ and a w-evaluation e is defined by induction on |ϕ| as follows:

8 As opposed to higher-order, in the sense of having negatively nested implications.
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Atom w ⊩ p(x⃗) [e] iff ⟦x⃗⟧e ∈ ⟦p⟧w;
Flower w ⊩ x · Φ ⫐ {xi · Φi}ni [e] iff for every w′ ≥ w and every w′-evaluation e′, if w′ ⊩

Φ [e |x e′] then there is some 1 ≤ i ≤ n and w′-evaluation e′′ such that w′ ⊩ Φi [e |x e′ |xi e
′′].

Bouquet w ⊩ Φ [e] iff w ⊩ ϕ [e] for every ϕ ∈ Φ.

Lastly, we define the notion of semantic entailment Φ ⊨ Ψ on bouquets, mirroring the
syntactic entailment Φ ⊢ Ψ of the last section:

▶ Definition 7.6. Let K be a Kripke structure, and Φ,Ψ some bouquets. We say that Φ
semantically entails Ψ in K, written Φ ⊨K Ψ, when w ⊩ Φ [e] implies w ⊩ Ψ [e] for every
world w ∈ W and w-evaluation e. This entailment is valid if it holds for any Kripke structure
K, and in that case we simply write Φ ⊨ Ψ. We say that Φ is semantically equivalent to Ψ,
written Φ

⊨

⊨ Ψ, when Φ ⊨ Ψ and Ψ ⊨ Φ.

8 Completeness

We now outline a direct completeness proof for the natural fragment ❀ of the flower calculus:
every true flower ϕ is naturally provable, i.e. ⊨ ϕ implies ⊢❀ ϕ. Since this fragment is
analytic, we cannot reuse most completeness proofs from the literature, because they usually
rely on a non-analytic principle like the cut rule of sequent calculus. Our insight was to
adapt techniques from the semantic cut-elimination proof given by Hermant in [28], which is
nonetheless relatively close to the original completeness proof of Gödel. A novelty of our
proof is that it dispenses completely with the need for Henkin witnesses.

First we need to generalize our notions of syntactic and semantic entailment to possibly
infinite sets of flowers, so-called theories:

▶ Definition 8.1. Any set T ⊆ F of flowers is called a theory. In particular, a bouquet can
be regarded as a finite theory, by forgetting the number of repetitions of its elements. We
say that a bouquet Φ is provable from a theory T , written T ⊢ Φ, if there exists a bouquet
Ψ ⊆ T such that Ψ ⊢ Φ. Given a Kripke structure K, a world w in K and a w-evaluation e,
we say that T is forced by w under e, written w ⊩ T [e], if w ⊩ ϕ [e] for all ϕ ∈ T . Then Φ
is a consequence of T , written T ⊨K Φ, if w ⊩ T [e] implies w ⊩ Φ [e] for every world w in
K and w-evaluation e.

▶ Definition 8.2. A theory T is said to be ψ-consistent when T ⊬❀ ψ, and ψ-complete when
for all ϕ ∈ F, either T , ϕ ⊢❀ ψ or ϕ ∈ T .

Intuitively, a theory T is ψ-consistent when one cannot deduce ψ from it, and ψ-complete
when it decides any formula ϕ relatively to ψ. This is better understood by considering the
special case where ψ = ( ⫐ ) is the absurd flower: then consistency means that one cannot
derive any contradiction from T ; and completeness that T either refutes ϕ syntactically with
a proof of Φ, ϕ ⫐ ( ⫐ ) for some Φ ⊆ T , or already validates it “semantically”, i.e. without
the need for a proof since ϕ ∈ T .

The next two propositions constitute the central argument that allows the completeness
proof to go through despite the analyticity of ❀-rules. They are a direct adaptation of [28,
Proposition 7], which Hermant identifies as “an important property of any A-consistent,
A-complete theory, [...] that it enjoys some form of the subformula property”.

Roughly, the first proposition captures the intuitionistic truth-conditions that make a
flower valid (i.e. true in every model) by modelling them on material implication, just like
Peirce would do with his scroll (see Section 3): ϕ is true if the content Φi of one of its petals
(consequents) is, or if the content Φ of its pistil (antecedent) is not.
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▶ Proposition 8.3 (Analytic truth). Let ψ ∈ F, T some ψ-consistent and ψ-complete theory,
and ϕ = x · Φ ⫐ ∆ with ∆ = {δi}ni = {xi · Φi}ni such that ϕ ∈ T . Then for every substitution
σ : x, either σ(Φi) ⊆ T for some 1 ≤ i ≤ n, or T ⊬❀ σ(Φ).

Proof. Suppose the contrary, i.e. there is a substitution σ such that T ⊢❀ σ(Φ) and for all
1 ≤ i ≤ n, there is some ϕi ∈ Φi ① such that σ(ϕi) ̸∈ T . Thus by ψ-completeness of T ,
we get T , σ(ϕi) ⊢❀ ψ. So there are Ψ ⊆ T and Ψi ⊆ T ∪ σ(ϕi) such that Ψ ⊢❀ σ(Φ) ②

and Ψi ⊢❀ ψ ③. Now it cannot be the case that Ψi ⊆ T , otherwise by weakening and
ψ-consistency of T we would have Ψi ⊬❀ ψ. So there must exist Ψ′

i ⊆ T such that
Ψi = Ψ′

i ∪ σ(ϕi) ④. Again by weakening and ψ-consistency of T , we get Ψ,
⋃n
i=1 Ψ′

i, ϕ ⊬❀ ψ.
Now we derive a contradiction by showing Ψ,

⋃n
i=1 Ψ′

i, ϕ ⊢❀ ψ. Let Ξ̂ be a context such that
Ψ,

⋃n
i=1 Ψ′

i, ϕ ≻ Ξ̂ ⑤. Then Ξ̂{ψ} →∗
❀ Ξ̂{} with the following derivation:

Ξ̂{ψ} →epis Ξ̂{ · ⫐ · ψ}
→poll↑ Ξ̂{ · ϕ ⫐ · ψ} (⑤)
→ipis Ξ̂{ · ( · σ(Φ) ⫐ σ(∆)), ϕ ⫐ · ψ}
→poll↓ Ξ̂{ · (· ⫐ σ(∆)), ϕ ⫐ · ψ} (②, ⑤)
→srep Ξ̂{ · ϕ ⫐ · {σ(δi) ⫐ · ψ}ni }
= Ξ̂{ · ϕ ⫐ · {xi · σ(Φi) ⫐ · ψ}ni }
→n

poll↓ Ξ̂{ · ϕ ⫐ · {xi · σ(Φi) ⫐ · }ni } (①, ③, ④, ⑤)
→n

epet Ξ̂{ · ϕ ⫐ · }
→epet Ξ̂{}

◀

Dually, the second proposition captures the grounds on which a flower can be deemed
invalid (i.e. false in at least one model): ϕ is not true if assuming that its pistil Φ is true is
not sufficient to conclude that one of its petals Φi is.

▶ Proposition 8.4 (Analytic refutation). Let ψ ∈ F, T some ψ-consistent and ψ-complete
theory, and ϕ = x · Φ ⫐ ∆ with ∆ = {δi}ni = {xi · Φi}ni such that T ⊬❀ ϕ. Then for every
1 ≤ i ≤ n and substitution σ : xi, there is some ϕi ∈ Φi such that T ,Φ ⊬❀ σ(ϕi).

Proof. Suppose the contrary, i.e. there are some 1 ≤ i ≤ n and σ : xi such that T ,Φ ⊢❀ σ(Φi).
Therefore there must exist Ψ ⊆ T and Φ0 ⊆ Φ ① such that Ψ,Φ0 ⊢❀ σ(Φi) ②. By
hypothesis, for every Φ′ ⊆ T there is a context Ξ̂ such that Φ′ ≻ Ξ̂ and Ξ̂{ϕ} ↛∗

❀ Ξ̂{}. We
now derive a contradiction by showing Ξ̂{ϕ} →∗

❀ Ξ̂{} for all Ξ̂ such that Ψ ≻ Ξ̂ ③:

Ξ̂{ϕ} →ipet Ξ̂{x · Φ ⫐ · σ(Φi) ; ∆}
→poll↓ Ξ̂{x · Φ ⫐ · ; ∆} (①, ②, ③)
→epet Ξ̂{}

◀

Next, we define the so-called universal Kripke structure ✿(ψ) relative to a flower ψ:

▶ Definition 8.5. Let ψ ∈ F. The universal Kripke structure ✿(ψ) has:
The set of ψ-consistent and ψ-complete theories as its worlds;
Set inclusion ⊆ as its accessibility relation;
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For each world T , a first-order structure whose domain is the set of variables V, and
whose interpretation map is given by ⟦p⟧T = {x⃗ | p(x⃗) ∈ T }.

One can easily check that the monotonicity conditions of Kripke structures hold for ✿(ψ).

We are now equipped to formulate the main adequacy lemma, which relates forcing in
✿(ψ) to ψ-consistency and ψ-completeness:

▶ Lemma 8.6 (Adequacy). Let ϕ, ψ ∈ F, T a ψ-consistent and ψ-complete theory, and σ a
substitution. Then 1. σ(ϕ) ∈ T implies T ⊩ ϕ [σ], and 2. T ⊬❀ σ(ϕ) implies T ⊮ ϕ [σ].

Proof. The proof goes by induction on |ϕ|. We only give an informal sketch, see [21,
Appendix C.2] for the detailed proof. There are just two cases to consider:
Base case ϕ = p(x⃗). The first statement is trivial. The second statement is immediate from

reflexivity and weakening lemmas on the hypothetical provability relation ⊢.
Recursive case ϕ = γ ⫐ ∆. The first statement follows from Proposition 8.3. The second

statement follows from Proposition 8.4, as well as the existence and properties of the
completion procedure. ◀

We get the completeness theorem as a near-direct consequence:

▶ Theorem 8.7 (Completeness). Φ ⊨ Ψ implies Φ ⊢❀ Ψ.

Combined with strong deduction (Theorem 6.7), this also yields a strong completeness
theorem for the full flower calculus9:

▶ Corollary 8.8 (Strong completeness). Φ ⊨ Ψ implies Ψ →∗ Φ.

Finally, the composition of the soundness, completeness and deduction theorems ([21,
Theorem B.20], Theorem 8.7 and Theorem 6.9) gives the admissibility of ✂-rules, and thus
the analyticity of the flower calculus:

▶ Corollary 8.9 (Cult-elimination). If Φ ⊢ Ψ then Φ ⊢❀ Ψ.

9 Related works

Intuitionistic EGs. We have already mentioned the seminal work of Oostra, who introduced
in [46] an intuitionistic version of Alpha. In [47] he describes its natural extension with LoIs to
get an intuitionistic version of Beta, and in [48] he gives formal soundness and completeness
proofs for intuitionistic Alpha, based on a linear notation for graphs. Ma and Pietarinen
have developed in [40] their own system of intuitionistic EGs for propositional logic, with
a different set of inference rules than Oostra’s. They give a more systematic proof theory,
including deduction, soundness and completeness theorems with respect to Heyting algebras.

Our work brings several new contributions on top of those:
Variadicity Our multiset-based definition of flowers captures faithfully the variadic nature

of juxtaposition and n-ary scrolls in the diagrammatic syntax. In contrast, previous
formalizations rely on a restricted inductive syntax which only captures graphs that are
isomorphic to formulas built with binary connectives.

Intuitionistic binders While replacing LoIs with binders and variables has already been done
by Sowa in the context of classical EGs [56], it seems like we are the first to adapt the
idea to the intuitionistic setting.

9 Actually it already works for the fragment ❀ ∪ {grow}, thanks to the proof of the strong deduction
theorem (see [21, Appendix C.1]).
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Analyticity To our knowledge, we are the first to give a Kripke semantics to a syntax based
on EGs, and to use this to obtain an analyticity result10.

Invertibility The natural fragment of the flower calculus appears to be the first proof system
based on EGs where all rules are invertible.

Deep inference. While the deep inference literature is most furnished with systems for
classical logic, a few works tackle intuitionistic logics: the seminal work of Tiu, who proposed a
calculus of structures for intuitionistic FOL [59], was followed by computational interpretations
of the implicative fragment in Guenot’s thesis [26]. There are also nested sequent systems for
(propositional) full intuitionistic linear logic [15], standard and constant-domain intuitionistic
FOL [23], and intuitionistic modal logics [14, 32, 37]. The flower calculus is closer to Guenot’s
nested sequent calculi for implicative logic which also function as rewriting systems, but
extends them to full intuitionistic FOL.

Labelled sequent calculi. For a long time, it was believed that there could not be fully
invertible proof systems for intuitionistic logics, even in the propositional case. While this
might be true in standard Gentzen formalisms, recent works have shown that it is possible
in the context of labelled sequent calculi : first with Lyon’s G3IntQ calculus for FOL [36,
Section 3.3], and then with the calculus labIS4≤ of Girlando et al. for the modal logic S4 [25].
In these systems, invertibility is made possible by the addition of semantic information to
sequents, in the form of so-called labels and relational atoms that respectively encode the
worlds and accessibility relations of Kripke structures. The flower calculus follows instead a
purely syntactic approach, by relying on deep inference to retrieve what would normally be
semantic information from the context Ξ̂ in the pollination rules poll↑ and poll↓.

Categorical EGs. Since the seminal work of Brady and Trimble in 2000 on the formalization
of EGs in category theory [7, 8], there have been various efforts to find rich categorical
axiomatizations of Beta. The first approach – initiated in [8] – is based on string diagrams,
and has recently enabled strong connections with Frobenius algebras and bicategories or
relations [43, 27, 6]. A second approach makes use of the concept of generic figure [11],
introduced by Reyes as a basic building block for topos theory [33]. We do not know however
of any attempt to uncover the categorical structures underlying intuitionistic EGs. The
flower calculus might be an interesting candidate, in that the invertibility of the natural
fragment could enable a purely equational approach.

Coherent logic. We noticed a formal connection between flowers and coherent logic, a
subset of the formulas of FOL discovered by Skolem in 1920 [55] that is capable of expressing
many mathematical theories, and has close connections to topos theory [31, Section D3.3].
Indeed, the interpretation ⌊x · Φ ⫐ ∆⌋ of a generic flower is given by the following formula,
which has exactly the shape of a coherent formula as described e.g. in [5]:

∀x.

 ∧
ϕ∈Φ

⌊ϕ⌋ ⊃
∨

y·Ψ∈∆

∃y.
∧
ψ∈Ψ

⌊ψ⌋


10 Ma and Pietarinen claim in [39] that Alpha is analytic because it can simulate the cut rule of sequent

calculus. This is a misinterpretation, since this supports precisely the contrary: the ability to simulate
the cut rule with a constant number of rules implies the non-analyticity of one the rules involved (namely,
Peirce’s Deletion rule). Still, the notion of analyticity is not yet fully understood in deep inference
systems, as discussed in [10].
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The only difference is that flowers can be nested, while coherent formulas (also called coherent
sequents) are first-order, in the sense that ϕ and ψ must be atoms. Coherent formulas
appear in the theory of focusing in sequent calculi [41], and they lend themselves to simple
proof search procedures that allow for explainable proof automation in ITPs [5, 30]. A
higher-order variant of coherent formulas that is almost isomorphic to flowers has also been
used to construct an intuitionistic version of the arithmetical hierarchy, as well as a fully
non-invertible proof system for propositional intuitionistic logic [9].

Graph calculi. In the last twenty years, Veloso et al. have studied a series of so-called
graph calculi, where first-order relations are represented by graphs in the sense of graph
theory, and inference rules as graph transformations. The first graph calculus was introduced
informally by Curtis and Lowe in 1996 [16], as a graphical notation supposedly capturing
both relational calculus, and the sequential calculus of Karger and Hoare [63]. Veloso et
al. gave sound and complete syntax and semantics to the calculus in [17], showing that it
captures positive first-order logic on binary relations. They then extended their formalism
to support relational complementation (negation) [18] as well as various modal [62, 60] and
dynamic logics [61].

Graph calculi only handle binary relations and classical logic, while EGs and the flower
calculus support relations of arbitrary arity and intuitionistic logic. We conjecture that the
relationship between graph calculi and EGs is similar to that between commutative diagrams
and string diagrams in category theory: the former represent relations/morphisms as edges
between individuals/objects, while the latter represent them dually as points related by lines.
EGs could then be understood as a hypergraph generalization of graph calculi, where lines of
identity are hyperedges connecting multiple predicate vertices.

Development calculi. Through their backward reading, the rules of the flower calculus
can be understood as primitive tactics for building proofs interactively. In [2, Chapter 3],
Ayers calls such systems development calculi. In particular, he presents his own development
calculus inspired by McBride’s OLEG system [42] and Ganesalingam & Gowers’s prover [24]
called the Box calculus, where goals are represented by a so-called Box data structure very
similar to flowers. In particular, Boxes have so-called disjunctive pairs to reduce backtracking,
that correspond to the petals of flowers. The main difference is that the Box calculus is based
on dependent type theory instead of FOL: this allows to store the partial proof terms inside
of the Boxes themselves, while this information is lost during the construction of flowers.
However, there is no completeness nor analyticity result for the Box calculus. It would be
interesting to investigate further connections, in order to develop a dependently-typed version
of the flower calculus.
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(x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ z · q(z))
→ipet (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ q(y))
→poll↑ (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y), (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ q(y))
→ipis (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y), (⫐ (p(y) ⫐) ; q(y)) ⫐ q(y))
→srep (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ ((p(y) ⫐) ⫐ q(y)), (q(y) ⫐ q(y)))
→2

poll↓ (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ ((⫐) ⫐ q(y)), (q(y) ⫐ ·))
→srep (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ (⫐ ·), (q(y) ⫐ ·))
→2

epet (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ (y · p(y) ⫐ ·)
→epet (x· ⫐ (p(x) ⫐) ; q(x)) ⫐ ·
→epet

(a) Textual presentation.

xp(x) q(x)
y p(y)

z q(z)

→ipet xp(x) q(x)
y p(y)

q(y)

→poll↑ xp(x) q(x)
xp(x) q(x)

y p(y)

q(y)

→ipis xp(x) q(x)
p(y) q(y)

y p(y)

q(y)

→srep xp(x) q(x)

y p(y)

p(y)

q(y)

q(y)

q(y)

→2
poll↓ xp(x) q(x)

y p(y)

q(y)

q(y)

→srep xp(x) q(x)

y p(y)

q(y)

→2
epet xp(x) q(x) y p(y)

→epet xp(x) q(x) →epet

(b) Graphical presentation.

Figure 10 A natural proof in the flower calculus.
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Introduction

Homotopy type theory was introduced around 2010 [27]. It is based on Martin-Löf type
theory [20], starting from the idea that types in logic should be interpreted not only as sets,
as traditionally done in semantics of logic, but rather as spaces considered up to homotopy.
Namely, the identities between two elements of a type can be thought of as paths between
points corresponding to the elements, identities on identities as homotopies between paths,
and so on. Moreover, this correspondence can be made to work precisely, by postulating the
univalence axiom [14], which states that identities between types coincide with equivalences.
This opens the way to the implementation of geometric constructions in a synthetic way, by
performing operations on types, which will semantically correspond to the desired operations
on spaces. In this setting, we are interested in providing ways to construct models of groups
which are concise in order to allow for simple proofs, but also to make the meta-theoretic
reasoning easier.
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Delooping groups. Following a well-known construction due to Poincaré at the end of
the 19th century [22], to any type A which is pointed, i.e. equipped with a distinguished
element ⋆, we can associate its fundamental group π1(A) := ∥⋆ = ⋆∥0 whose elements are
homotopy classes of paths from ⋆ to itself, with composition given by concatenation and
identity by the constant path. Moreover, when the type A is a groupoid, in the sense that
any two homotopies between paths are homotopic, this fundamental group coincides with the
loop space ΩA := (⋆ = ⋆), defined similarly but without quotienting paths up to homotopy.
Once this observation made, it is natural to wonder whether every group G arises as the loop
space of some groupoid. It turns out that this is the case: to every group one can associate a
pointed connected groupoid type BG, called its delooping, whose loop space is G. Moreover,
there is essentially only one such type, thus justifying the notation.

Internal and external points of view. The delooping construction, which can be found
in various places [2, 5], and will be recalled in the article, induces an equivalence between
the type of groups and the type of pointed connected groupoids (Theorem 20). This thus
provides us with two alternative descriptions of groups in homotopy type theory. The one as
(loop spaces of) pointed connected groupoids can be thought of as an internal one, since the
structure is deduced from the types without imposing further axioms; by opposition, the
traditional one as groups (sets equipped with multiplication and unit operations) is rather
an external one (some also use the terminology concrete and abstract instead of internal
and external [2]). We should also say here that pointed connected types (which are not
necessarily groupoids) can be thought of as higher versions of groups, where the axioms only
hold up to higher identities which are themselves coherent, and so on.

Two ways to construct deloopings. Two generic ways are currently known in order to
construct the delooping BG of a group G, which we both refine in this article. The first one
is a particular case of the definition of Eilenberg-MacLane spaces in homotopy type theory
due to Finster and Licata [17]. It consists in constructing BG as a higher inductive type with
one point (so that it is pointed), one loop for each element of G, one identity for each entry
in the multiplication table of G, and then truncating the resulting type as a groupoid. One
can imagine that the resulting space has the right loop space “by construction”, although
the formal proof is non-trivial.

The second one is the torsor construction which originates in algebraic topology [12] and
can be adapted in homotopy type theory [2, 5, 29]. One can consider the type of G-sets,
which are sets equipped with an action of G. Among those, there is a canonical one, called
the principal G-torsor PG, which arises from the action of the group G on itself by left
multiplication. It can be shown that the loop space of the type of G-sets, pointed on the
principal G-torsor PG, is the group G. Moreover, if one restricts the type of G-sets to the
connected component of the principal G-torsor, one obtains the type of G-torsors, which is a
delooping of G.

Smaller deloopings of groups. In this article, we are interested in refining the above two
constructions in order to provide ones which are “simpler” (in the sense that we have less
constructors, or the definition requires to introduce less material), when a presentation by
generators and relation is known for the group.

For the first construction (as a higher inductive type), we show here the we can con-
struct BG as the higher inductive type generated by one point, one loop for each generator of
the presentation (as opposed to every element of the group), one identity for each relation of
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the presentation and taking the groupoid truncation (Theorem 2). This has the advantage of
resulting in types are simpler to define, require handling less cases when reasoning with those
by induction, and are closer to the usual combinatorial description of groups. Moreover, we
claim that the traditional methods based on rewriting [13, 1] in order to compute invariants
such as homology or coherence can be applied to those. Namely, a first important step in
this direction was obtained by Kraus and von Raummer’s adaptation of Squier’s coherence
theorem in homotopy type theory [16].

For the second construction (based on G-torsors), we show that a simpler definition
can be achieved when a generating set X is known for G. Namely, we show that one can
perform essentially the same construction, but replacing G-gets by what we call here X-sets
(Theorem 11), where we only need to consider the action for the generators (as opposed to
the whole group). As an illuminating example, consider the case G = Z, whose delooping is
known to be the circle BZ = S1. The type U⟲ of all endomorphisms, on any type, contains,
as a particular element, the successor function s : Z → Z. Our results imply that the
connected component of s in U⟲ is a delooping of Z. This description is arguably simpler
than the one of Z-torsors: indeed, morphisms of Z-sets are required to preserve the action
of every element of Z, while morphisms in U⟲ are only required to preserve the action of 1
(which corresponds to the successor). The above description is the one which is used in
UniMath in order to define the circle S1 [3]: the reason why they use it instead of more
traditional one [27] is that they do not allow themselves to use higher inductive types because
those are not entirely clear from a meta-theoretic point of view (there is no general definition,
even though there are proposals [18], the semantics of type theory [14] has not been fully
worked out in their presence, etc.). Our result thus give an abstract explanation about why
this construction works and provides a generic way to easily define many more deloopings
without resorting to higher inductive types, if one is not disposed to do so.

Cayley graphs. As a last aspect of our study of generated groups in homotopy type theory,
we provide here a pleasant abstract description of Cayley graphs, which is a well-known
construction in group theory [9, 19]. We show that, given a group G with a set X of generators,
the Cayley graph can be obtained as the kernel of the canonical map BX∗ → BG, where X∗
is the free group on X (Theorem 16). This establishes those graphs as a measure of the
difference between deloopings and their approximations, and suggests higher dimensional
versions of those.

Formalization. Most of the results presented in this article have been formalized in the
cubical variant of the Agda proof assistant [28] using the “standard library” which has been
developed for it [26]. Our developments are publicly available [10], and we provide pointers
to the formalized results.

Plan of the paper. We begin by briefly recalling the fundamental notions of homotopy
type theory which will be used throughout the paper (Section 1), as well as the notion of
delooping for a group (Section 2). We first present the construction of deloopings using
higher inductive types, and explain how those can be simplified when a presentation is known
for the group (Section 3). We then present the other approach for defining delooping of
groups based on the torsor construction (Section 4) and show how it can be simplified when
a generating set is known for the group (Section 5). Finally, we investigate the construction
of Cayley graphs in homotopy type theory (Section 6) and conclude, presenting possible
extensions of this work (Section 7).
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1 Homotopy type theory

We unfortunately do not have enough space here to provide an introduction from scratch to
dependent type theory and homotopy type theory, so we refer the reader to the reference
book for an in depth presentation [27]. The main purpose of this section is to fix some
terminology and notations for classical notions.

Universe. We write U for the universe, i.e. the large type of all small types, which we suppose
to be closed under dependent sums and products. We write Π(x : A).B or (x : A) → B for
Π-types, and A → B for the case where B is non-dependent. Similarly, we write Σ(x : A).B
for Σ-types, and A×B for the non-dependent version. The two projections from a Σ-type
are respectively written π and π′.

Paths. Given a type A : U and two elements a, b : A, we write a =A b for the type of
identities, or paths, between a and b: its elements are proofs of equality between a and b. In
particular, for any a : A, the type a = a contains the term refla witnessing for reflexivity
of equality. We sometimes write x := t to indicate that x and t are equal by definition.
The elimination principle of identities, aka path induction and often noted J , roughly states
that, given a : A, in order to show a property P : (x : A) → (a = x) → U for every x : A
and p : a = x it is enough to show it in the case where x := a and p := refla. By path
induction, the following can be shown. Given a type A and a type family B : A → U , a
path p : x = y in A induces a function B→p : B(x) → B(y) witnessing for the fact that
equality is substitutive. As a special case, any path p : A = B between two types A,B : U
induces a function p→ : A → B, called the transport along p, as well as an inverse function
p← : B → A. Finally, given a function f : A → B, any path p : x = y in A induces a path
f=(p) : f(x) = f(y) witnessing for the fact that equality is a congruence.

Higher inductive types. Many functional programming languages allow the definition of
inductive types, which are freely generated by constructors. For instance, the type S0 of
booleans is generated by two elements (true and false). In the context of homotopy type
theory, languages such as cubical Agda feature a useful generalization of such types, called
higher inductive types. They allow, in addition to traditional constructors for elements of
the type, constructors for equalities between elements of the type. For instance, the type
corresponding to the circle S1 can be defined as generated by two points a and b and two
equalities p, q : a = b between those points. Higher-dimensional spheres Sn can be defined in
a similar way.

Univalence. A map f : A → B is an equivalence when it admits both a left and a right
inverse. In particular, every isomorphism is an equivalence. We write A ≃ B for the type of
equivalences from A to B. The identity is clearly an equivalence and we thus have, by path
induction, a canonical map (A = B) → (A ≃ B) for every types A and B: the univalence
axiom states that this map is itself an equivalence. In particular, every equivalence A ≃ B

induces a path A = B. It is known that univalence implies the function extensionality
principle [27, Section 2.9]: given functions f, g : A → B, if f(x) = g(x) for any x : A then
f = g (and the expected generalization to dependent function types is also valid).

Homotopy levels. A type A is contractible when the type Σ(x : A).(y : A) → (x = y) is
inhabited: this means that we have a “contraction point” a0 : A, and a continuous family
of paths from a0 to every other point in A. A type A is a proposition (resp. a set, resp. a
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groupoid) when (x = y) is contractible (resp. a proposition, resp. a set) for every x, y : A.
Intuitively, a contractible type is a point (up to homotopy), a proposition is a point or is
empty, a set is a collection of points and a groupoid is a space which bears no non-trivial 2-
dimensional (or higher) structure. We write Set for the type of sets. Given a type A, we write
isSet(A) (resp. isGroupoid(A)) for the predicate indicating that A is a set (resp. groupoid).

Truncation. Given a type A, its propositional truncation turns it into a proposition in
a universal way. It consists of a type ∥A∥−1, which is a proposition, equipped with a
map |−|−1 : A → ∥A∥−1 such that, for any proposition B, the map (∥A∥−1 → B) → (A → B)
induced by precomposition by | − |−1 is an equivalence. Intuitively, the type ∥A∥−1 behaves
like A, except that we do not have access to its individual elements: the elimination principle
for propositional truncation states that in order to construct an element of B from an element
of ∥A∥−1, we can only assume that we have an element of A if B itself is a proposition. The
set truncation ∥A∥0 of a type A is defined similarly, as the universal way of turning A into a
set, and we write |x|0 for the image of x : A in the truncation; and we can similarly define
the groupoid truncation ∥A∥1.

Fibers. Given a function f : A → B, we write fibf b for the type Σ(a : A).(f a = b), called
the fiber of f at b. The function f is said to be surjective when the type (b : B) → ∥ fibf b∥−1
is inhabited, i.e. when every element of B merely admits a preimage.

2 Delooping groups

The external point of view. A group consists of a set A, together with an operation
m : A → A → A (the multiplication), an element e : A (the unit), and an operation
i : A → A (the inverse) such that multiplication is associative, admits e as unit, and i(x) is
the two-sided inverse of any element x : A. We write Group for the type of all groups, and
G →Grp H for the type of group morphisms between groups G and H. In the following, we
use the traditional notations for groups: given two elements x, y : G, we simply write xy
instead of m(x, y), 1 instead of e, and x−1 instead of i(x).

The internal point of view. A pointed type consists of a type A together with a distinguished
element, often written ⋆ and sometimes left implicit. Given a pointed type (A, ⋆), its loop
space ΩA is defined as the type of paths from ⋆ to itself: ΩA := (⋆ = ⋆). The elements of
this type are called loops. By path induction one can construct, for every two paths p : a = b

and q : b = c, a path in a = c called their concatenation and written p · q. Similarly, every
path p : a = b, admits an inverse path p− : b = a. When A is a pointed groupoid, ΩA is a
set, and these operations canonically equip this set with a structure of group [27, Section 2.1].

Delooping groups. A delooping of a group G is a pointed connected groupoid BG together
with an identification dG : Ω BG = G (we recall that a type A is connected when the
type ∥A∥0 is contractible, i.e. A has one connected component). The notation is justified by
the fact that deloopings are unique. For instance, it is known that the circle is a delooping
of Z: indeed, S1 is a connected groupoid, and its fundamental group is Z [27, Section 8.1].
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3 Delooping using higher inductive types

Delooping as a higher inductive type. Given a group G, its delooping should have a
point ⋆ and a loop for every element of the group. Moreover, we should ensure that the
multiplication of G coincides with the concatenation operation on the loop space, and that
the type we obtain is a (pointed connected) groupoid. This suggests considering a higher
inductive type, noted K(G, 1), with the following constructors

⋆ : K(G, 1)
loop : G → ⋆ = ⋆

loop-comp : (x, y : G) → loopx · loop y = loop(xy)
trunc : isGroupoid(K(G, 1))

This construction was first proposed by Finster and Licata. They also showed, using the
encode-decode method, that it is a delooping of the original group, i.e. Ω K(G, 1) = G,
see [17, Theorem 3.2]. Note that we only ask here that loop preserves multiplication (with
loop-comp), because it can be shown that this implies preservation of unit and inverses. In
particular, preservation of unit (see EM.loop-id) renders superfluous one of the constructors
present in the original definition [17].

In the following, we will define a variant of this higher inductive type when the group G is
presented, which is smaller and gives rise to computations closer to traditional group theory.

Presentations of groups. Given a set X, we write X∗ for the free group over X [27,
Theorem 6.11.6]. There is an inclusion function ι : X → X∗ which, by precomposition,
induces an equivalence between morphisms of groups X∗ → G and functions X → G. We
write f∗ : X∗ → G for the group morphism thus induced by a function f : X → G. The
elements of X∗ can be described as formal composites a1 . . . an where each ai is an element
of X or a formal inverse of an element of X (such that an element with an adjacent formal
inverse cancel out).

Any free group X∗ admits a delooping as a wedge of an X-indexed familly of circles. The
corresponding type

∨
X S1 can be described as the coequalizer

X 1
∨

X S1 (1)

or, equivalently, as the higher inductive type generated by the two constructors ⋆ :
∨

X S1

and loop : X → ⋆ = ⋆.

▶ Proposition 1. We have Ω
∨

X S1 = X∗, i.e. the above type is a BX∗.

Proof. The fact that
∨

X S1 is a delooping of X∗ is not too difficult to show when X has
decidable equality, see [27, Exercise 8.2] and [15], but the general case is more involved and
was recently proved in [30]: the main issue is to show that this type is a groupoid. ◀

A group presentation ⟨X | R⟩ consists of a set X of generators, a set R of relations, and
two functions π, π′ : R → X∗ respectively associating to a relation its source and target.
We often write r : u ⇒ v for a relation r with u as source and v as target. Given such a
presentation P , the corresponding presented group [P ] is the set quotient X∗/R of the free
group on X under the smallest congruence identifying the source and the target of every
relation r : R. This type can be described as the type [P ] := ∥X∗//R∥0 obtained by taking
the set truncation of the coequalizer

R X∗ X∗//R
π

π′

κ
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From this also follows a description of [P ] as a higher inductive type:

word : X∗ → [P ]
rel : (r : R) → word(π(r)) = word(π′(r))
trunc : isSet([P ])

A smaller delooping. Suppose given a group G along with a presentation P := ⟨X | R⟩,
i.e. such that G = [P ]. We define the type BP as the following higher inductive type:

⋆ : BP
gen : X → (⋆ = ⋆)
rel : (r : R) → (gen∗(π(r)) = gen∗(π′(r)))
trunc : isGroupoid(BP )

This type is generated by a point ⋆, then the constructor gen adds a loop a : ⋆ = ⋆ for
every generator a, the constructor rel adds an equality a1 · a2 · . . . · an = b1 · b2 · . . . · bm for
each relation a1 . . . an ⇒ b1 . . . bm, and the constructor trunc formally takes the groupoid
truncation of the resulting type. Note that, because of the presence of gen∗ : X∗ → (⋆ = ⋆)
in the type of rel, the above inductive type is not accepted as is in standard proof assistants
such as Agda. However, a definition can be done in two stages, by first considering

∨
X S1

(i.e. the type generated only by ⋆ and gen), and then defining a second inductive type further
quotienting this type (i.e. adding the constructors rel and trunc), see EM.Delooping. Also,
the definition of gen∗ requires the group structure on

∨
X S1: the group operations are easily

defined from operations on paths (reflexivity, concatenation, symmetry), but the fact that
it is a groupoid is non-trivial (see Proposition 1). Our main result in this section is the
following:

▶ Theorem 2 (EM.theorem). Given a presentation P := ⟨X | R⟩, the type BP is a delooping
of the group [P ].

Proof. By induction on BP , we can define a function f : BP → K([P ], 1) such that
f⋆ := ⋆, and f(gen a) := loop[a] for all a : X. It can be shown that f is then such that
f=(gen∗ u) = loop[u], for any u : X∗. We can therefore define the image f=(r) on a relation
r : u ⇒ v as the composite of equalities

f=(gen∗ u) = loop[u] = loop[v] = f=(gen∗ v)

where the equality in the middle follows from the fact that we have [u] = [v] because of the
relation r.

In the other direction, the group morphism gen∗ : X∗ → Ω BP preserves relations (by rel),
and thus induces a quotient morphism g′ : [P ] → Ω BP . We can thus consider the function
g : K([P ], 1) → BP such that g(⋆) = ⋆, for x : [P ] we have g=(loopx) = g′(x), and for
x, y : [P ] the image of loop-compx y is canonically induced by the fact that g′ preserves
group multiplication.

Since K([P ], 1) is a groupoid, in order to show that f(g(x)) = x for every x : K([P ], 1), it
is enough to show that it holds for x := ⋆, which is the case by definition of f and g, and that
this property is preserved under loopx for x : [P ], which follows from the fact that we have
f=(g′(x)) = loopx for any x : [P ] (this is easily shown by induction on x). Conversely, we
have to show that g(f(x)) = x holds for x : BP . Again, this is shown by induction on x. ◀

As an interesting remark, the careful reader will note that the fact that the types X and R

are sets does not play a role in the proof: in fact, those assumptions can be dropped here.
Also, note that we do not need the choice of a representative in X∗ for every element of [P ]
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in order to define the function g from gen∗ in the above proof: intuitively, this is because
the induced function g does not depend on such a choice of representatives. Finally, we
should mention here that a similar result is mentioned as an exercise in [27, Example 8.7.17];
the proof suggested there is more involved since it is based on a generalized van Kampen
theorem.

▶ Example 3. The dihedral group D5, see Example 13, admits the presentation

⟨r, s | r4 = srs, sr2s = r3, rsr = s, r3s = sr2, sr3 = r2s, s2 = 1⟩

Hence, by Theorem 2 we can construct a delooping of D5 as an higher inductive type
generated by two loops (corresponding to r and s) and six 2-dimensional cells (corresponding
to the relations). Note that this is much smaller than K(D5, 1) (it has 2 instead of 10
generating loops, and 6 instead of 100 relations), thus resulting in shorter proofs when
reasoning by induction.

▶ Example 4. Any group G admits a presentation, the standard presentation, with one
generator a for every element a : G, and relations a b = ab for every pair of generators, as
well as 1 = 1. By applying Theorem 2, we actually recover the inductive type K(G, 1) as
delooping of G.

4 Delooping with torsors

In this section, we recall the other classical approach to constructing deloopings of groups by
using G-torsors, which originates in classical constructions of algebraic topology [12]. Most of
the material of the section is already known, for which reason proofs are not much detailed.
A more in-depth presentation can be found in recent works such as [2, 5].

Group actions. Given a group G and a set A, an action of G on A is a group morphism
from G to A ≃ A, that is a map α : G → (A ≃ A) such that

α(xy) = α(x) ◦ α(y) α(1) = idA (2)

for all x, y : G.
A G-set is a set equipped with an action of G, and we write SetG for the type of G-sets.

We often simply denote a G-set by the associated action α and write dom(α) for the set on
which G acts.

▶ Lemma 5 (GSetProperties.isGroupoidGSet). The type SetG is a groupoid.

Proof. The type of sets is a groupoid [27, Theorem 7.1.11]. Given a set A, the type of
functions A → A is a set [27, Theorem 7.1.9] and thus a groupoid. Finally, the axioms (2)
of actions are propositions (because A is a set) and thus groupoids. We conclude since
groupoids are closed under Σ-types [27, Theorem 7.1.8]. ◀

Given G-sets α and β, a morphism between them consists of a function f : domα → dom β

which preserves the group action, in the sense that for every x : G and a : domα, we have

β(x)(f(a)) = f(α(x)(a)). (3)

A morphism which is also an equivalence is called an isomorphism and we write α ≃SetG β for
the type of isomorphisms between α and β. We write Aut(α) for the type of automorphisms
α ≃SetG α, which is a group under composition. The equalities between G-sets can be
conveniently characterized as follows.
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▶ Proposition 6 (GSetProperties.GSet≡Decomp). Given two G-sets α and β, an equality
between them consists of an equality p : domα = dom β such that the function induced by
transport along p, namely p→ : domα → dom β, is a morphism of G-sets.

Proof. The characterization of equalities between Σ-types [27, Theorem 2.7.2] entails
that an equality between (domα, α) and (dom β, β) is a pair consisting of an equality
p : domα = dom β and an equality q : p→(α) = β (we can forget about the equality between
the components expressing the properties required for group actions since those are proposi-
tions). By [27, Lemma 2.9.6] and function extensionality, we finally have that the type of q
is equivalent to the type β(x) ◦ p→ = p→ ◦ α(x). ◀

It easily follows from this proposition that any equality between G-sets induces an isomorphism
of G-sets, as customary for equalities between algebraic structures [27, Section 2.14]. In fact,
this map from equalities to isomorphisms can itself be shown to be an equivalence:

▶ Proposition 7 (GSetProperties.GSetPath). Given G-sets α and β, the canonical function

(α = β) → (α ≃SetG β)

is an equivalence. Moreover, given a G-set α, the induced equivalence

(α = α) ≃ (α ≃SetG α)

is compatible with the canonical group structures on both types.

Proof. This is actually an instance of a more general correspondence between equalities
and isomorphisms of algebraic structures, which is known under the name of structure
identity principle, see [11] and [27, Section 9.8], and can be understood as a generalisation of
univalence for types having an algebraic structure. ◀

Torsors. For any group G, there is a canonical G-set called the principal G-torsor and
noted PG, corresponding to the action of G on itself by left multiplication. Moreover, its
group of automorphisms is precisely the group G:

▶ Proposition 8 (Deloopings.PGloops). Given a group G, we have an equality of groups

(PG ≃SetG PG) = G

Proof. The two functions ϕ : Aut PG → G and ψ : G → Aut PG, respectively defined by
ϕ(f) := f(1) and ψ(x)(y) := yx are mutually inverse group morphisms, see Appendix A. ◀

The type SetG is thus “almost” a delooping of G. Namely, it is a groupoid (Lemma 5),
which is pointed by PG and satisfies Ω SetG = G by Propositions 7 and 8. It only lacks
being connected, which can easily be addressed. Given a pointed type A, its connected
component CompA is the type Σ(x : A).∥⋆ = x∥−1. It is well-known that this type is pointed
by (⋆, | refl |−1), connected and has the same loop space as the original type, i.e. we have
Ω CompA = ΩA, see Appendix C. We thus have:

▶ Theorem 9 (Deloopings.torsorDeloops). The connected component of PG in SetG,
i.e. the type Comp(SetG,PG), is a delooping of G.

The elements of the connected component of the principal G-set are usually called G-torsors.
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5 Generated torsors

Fix a group G. Given a set X and a map γ : X → G, we say that X generates G (with
respect to γ) when γ∗ : X∗ → G is surjective. From now on, we suppose that we are in such
a situation. We now provide a variant for the construction of a delooping of G by G-torsors
described in the previous section, taking advantage of the additional data of a generating set
in order to obtain smaller and simpler constructions. Note that here, contrarily to Section 3,
we only need a set of generators, not a full presentation.

Actions of sets. Given a type A, we write EndA for its type of endomorphisms, i.e. maps
A → A. An action of the set X on a set A is a morphism X → EndA, i.e. a family of
endomorphisms of A indexed by X. We write SetX for the type

SetX := Σ(A : Set).(X → EndA)

of actions of X. An element α of this type consists in a set domα with a function
α : X → End(domα) and is called an X-set. A morphism between X-sets α and β is
a function f : domα → dom β satisfying (3) for every x : X. The identities between X-sets
can be characterized in a similar way as for G-sets, see Proposition 6, and Proposition 7 also
extends in the expected way.

Precomposition by γ induces a function U : SetG → SetX which can be thought of as a
forgetful functor from G-sets to X-sets. Note that U depends on γ but we leave it implicit
for concision.

Applications of the generated delooping. We have seen in the previous section that the
connected component of the principal G-torsor PG in G-sets is a delooping of G. Our aim in
this section is to show here that this construction can be simplified by taking the connected
component of the restriction of PG to X-sets.

Before proving this theorem, which is formally stated as Theorem 11 below, we shall
first illustrate its use on a concrete example. Consider Zn, the cyclic group with n elements.
We write s : Zn → Zn for the successor (modulo n) function, which is an isomorphism. By
Theorem 9, we know that the type

Σ(A : SetZn).∥ PZn = A∥−1

of Zn-torsors is a model of BZn. This type is the connected component of the principal
Zn-torsor PZn

in the universe SetZn
of sets with an action of Zn, i.e. sets A equipped with

a morphism α : Zn → AutA. Such a set A is thus comes with one automorphism α(k) for
every element k : Zn, therefore k automorphisms in this case. However, most of them are
superfluous: 1 generates all the elements of Zn by addition, so α(1) generates all the α(k) by
composition because α(k) = α(1)k. The useful data of a Zn-set thus boils down to a set A
together with one automorphism α : AutA such that αn = idA.

Indeed, writing Set⟲ := Σ(A : Set).EndA for the type of all endomorphisms (on any set),
our theorem will imply that the type

Σ((A, f) : Set⟲).∥(Zn, s) = (A, f)∥−1 (4)

(the connected component of the successor modulo n in the universe of set endomorphisms)
is still a delooping of Zn. Note that we didn’t assume that f is an isomorphism nor that it
should verify fn = id. This is because both properties follow from the fact that f is in the
connected component of the successor (which satisfies those properties). Similarly, we do not
need to explicitly assume that the domain of the endomorphism is a set.
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Our theorem thus allows to define, in a relatively simple way, types corresponding to
deloopings of groups. As recalled in the introduction, this is particularly useful when one
is not disposed to use higher inductive types (e.g. because their definition, implementation
and semantics are not entirely mature). This is in fact the reason why this approach was
used in UnitMath to define the circle [3], and we provide a generic way to similarly define
other types. We expect that it can be used to reason about groups and compute invariants
such as their cohomology [8, 6, 4]. On a side note, one might be worried by the fact that we
are “biased” (by using a particular set of generators), which allows us to be more concise
but might make more difficult generic proofs compared to G-torsors: we expect that this is
not the case because in order to define the group G itself, one usually needs to resort to a
presentation, and thus is also biased in some sense...

The generated delooping. In the following, we write PX for U PG.

▶ Proposition 10 (XSetProperties.theorem). We have a group equivalence Ω PG ≃ Ω PX .

Proof. From Proposition 6, an element of ΩPG consists of an equality p : G = G in U such
that

PG(x) ◦ p→ = p→ ◦ PG(x)

for every x : G. By function extensionality and the definition of the action PG, this is
equivalent to requiring, for every g, z : G that

g(p→(z)) = p→(gz) (5)

Note that the above equality is between elements of G, which is a set, and is thus a proposition.
Similarly, an element of Ω PX consists of an equality p : G = G in U satisfying

γ(x)(p→(z)) = p→(γ(x)z) (6)

for every x : X and z : G.
Clearly, any equality p : G = G in Ω PG also belongs to Ω PX since the condition (6) is a

particular case of (5). We thus have a function ϕ : Ω PG → Ω PX . Conversely, consider an
element p : G = G of Ω PX , i.e. satisfying (6) for every x : X and z : G. Our aim is to show
that it belongs to Ω PG. Given g, z : G, we thus want to show that (5) holds. Since γ∗ is
surjective, because X generates G, we know that there merely exists an element u of X∗
such that γ∗(u) = x. Since (5) is a proposition, by the elimination principle of propositional
truncation, we can actually suppose given such a u, and we have

x(p→(y)) = γ∗(u)(p→(y)) since γ∗(u) = x

= p→(γ∗(u)y) by repeated application of (6)
= p→(xy) since γ∗(u) = x.

The second equality essentially corresponds to the commutation of the following diagram,
where u := x1x2 . . . xn with xi : X:

G G G . . . G G

G G G . . . G G

p→

γ(x1)

p→

γ(x2)

p→ p→

γ(xn)

p→

γ(x1) γ(x2) γ(xn)

This thus induces a function ψ : Ω PX → Ω PG. The functions ϕ and ψ clearly preserve the
group structure (given by concatenation of paths) and are mutually inverse of each other,
hence we have the equivalence we wanted. ◀
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▶ Theorem 11. The type Comp PX is a delooping of G.

Proof. Since taking the connected component preserves loops spaces (Proposition 23), we
have that Ω Comp PX is equal to Ω PX , which in turn is equal to Ω PG by Proposition 10,
and thus to G by Theorem 9. ◀

The delooping of G constructed in previous theorem is the component of PX in X-sets:

Σ(A : U).Σ(S : isSetA).Σ(f : X → EndA).∥ PX = (A,S, f)∥−1

Since for any type A, the type isSetA is a proposition [27, Theorem 7.1.10], and the underlying
type of PX is a set, the underlying type of any X-set in the connected component of PX will
also be a set. As a consequence, the above type can slightly be simplified, by dropping the
requirement that A should be a set:

▶ Proposition 12. The type Σ(A : U).Σ(f : X → EndA).∥ PX = (A, f)∥−1 is a delooping
of G.

For instance, the delooping (4) of Zn can slightly be simplified as

Σ((A, f) : U⟲).∥(Zn, s) = (A, f)∥−1

where U⟲ := Σ(A : U).EndA is the type of all endomorphisms of the universe.

▶ Example 13. Theorem 11 applies to every group for which a generating set is known
(and, of course, the smaller the better). For instance, given a natural number n, the dihedral
group Dn is the group of symmetries of a regular polygon with n sides. It has 2n elements
and is generated by two elements s (axial symmetry) and r (rotation by an angle of 2π/n).
Hence the connected component of the symmetry and the rotation in the type of pairs of set
endomorphisms, i.e.

Σ(A : Set).Σ(f, g : EndA× EndA).∥(Dn, s, r) = (A, f, g)∥−1

is a delooping of the dihedral group Dn.

Alternative proof. We would like to provide another proof Proposition 10, which was sug-
gested by an anonymous reviewer. It is based on the idea that in order to show Ω PX ≃ Ω PG,
it is enough to show that U : SetG → SetX is an embedding, i.e. that for every α, β : SetG

the induced function U= : (α = β) → (Uα = Uβ) between path spaces is an equivalence [27,
Definition 4.6.1]. It relies on the following result whose proof can be found in Appendix A.

▶ Lemma 14. Given a type A : U , type families P,Q : A → U and f : (a : A) → P a → Qa,
the map ΣA.f : ΣA.P → ΣA.Q is an embedding if and only if f a : P a → Qa is an embedding
for every a : A.

▶ Proposition 15. The map U : SetG → SetX is an embedding.

Proof. Given a morphism of groups f : H → K, we write Setf : SetK → SetH for the
function induced by precomposition. In particular, by definition, we have U := Setγ . The
function γ : X → G can be decomposed as γ∗ ◦ ι, and therefore Setγ can be decomposed as
Setι ◦ Setγ∗ :

SetX∗

SetG SetX

SetιSetγ∗

U

Both maps are embeddings so that U is an embedding by composition. Namely,
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Setγ∗ is an embedding. Consider the map

F : (A : Set) → (G →Grp AutA) → (X∗ →Grp AutA)

obtained by precomposition by γ∗. Since γ∗ is surjective we have that F A is an embedding
for every set A [27, Lemma 10.1.4]. By Lemma 14, we deduce that Σ Set .F , which is
Setγ∗ , is an embedding.
Setι is an embedding. By universal property of X∗, given a set A, the map

(X∗ →Grp AutA) → (X → AutA)

obtained by precomposition by ι is an equivalence, and thus an embedding. Moreover,
the property of being an isomorphism is a proposition, hence the forgetful map

(X → AutA) → (X → EndA)

is an embedding because its fibers are propositions. Since embeddings are stable under
composition, we deduce that the induced map

F : (A : Set) → (X∗ →Grp AutA) → (X → EndA)

is such that F A is an embedding for every set A. By Lemma 14, the map Σ Set .F , which
is Setι, is thus an embedding. ◀

6 Cayley graphs

We have seen in Section 3 that a delooping of G can be obtained by further homotopy
quotienting a delooping of X∗. The kernel of the map γ∗ : X∗ → G measures the defect
of X∗ from being G, which corresponds to the relations of the group. We show here that, under
the delooping operation, those relations are precisely encoded by the Cayley graph [9, 19], a
classical and useful construction in group theory which can be associated to any generated
group.

The Cayley graph of G, with respect to the generating set X, is the directed graph whose
vertices are the elements of G, and such that for every vertex g : G and generator x : X,
we have an edge g → gx. In homotopy type theory, it is thus natural to represent it as the
higher inductive type C(X,G) defined as

vertex : G → C(X,G)
edge : (g : G)(x : X) → vertex g = vertex(gx)

For instance, the Cayley graphs associated to Z5 (with 2 as generator) and D5 (with r and s
as generators) are respectively

0

1

2 3

4

r

r
s

sr r
s

s

r

rs
s

r

r
ss

rr
s

s

Our main result in this section is that this type satisfies the following property. We recall
that the delooping operation is functorial, see Appendix B and [29]: in particular, we can
deloop morphisms. We also recall that the kernel of a map f : A → B with B pointed is its
fiber at the distinguished element ⋆ of B.

▶ Theorem 16 (Cayley.Cayley-ker). The type C(X,G) is the kernel of the function
B γ∗ : BX∗ → BG induced by γ, i.e. we have

C(X,G) = Σ(x : BX∗).(⋆ = B γ∗(x)).
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Proof. We define the type family P : BX∗ → U by P (x) = (⋆ = B γ∗(x)). Remember
that BX∗ admits a description as a coequalizer, see (1) and Proposition 1. Hence, by
the flattening lemma for coequalizers (see Lemma 25 and [27, Section 6.12]), we have a
coequalizer of total spaces

ΣX.P (⋆) Σ1.P (⋆) Σ BX∗.P
(x,p) 7→(⋆,p)

(x,p)7→(⋆,P →
p (x))

By using the properties of transport in path spaces [27, Theorem 2.11.3], it can be shown
that the bottom map sends (x, p) to (⋆, p · B γ∗(x)). Moreover, B γ∗ is pointed, so P (⋆) is
equal to Ω BG, i.e. G, and we have the following coequalizer:

X ×G G Σ BX∗.P
(x,g)7→g

(x,g) 7→gx

If follows that Σ BX∗.P consists in |G| points and a path g = gx for each pair (x, g) : X ×G,
and is therefore equal to the Cayley graph C(X,G). ◀

The above result can be interpreted as stating that we have a fiber sequence (see [27,
Section 8.4])

C(X,G) BX∗ BG

which encodes the fact that we have an action of G on its Cayley graph, whose homotopy
quotient C(X,G)//G is BX∗, see [21, Proposition 16]. Hence, we recover the canonical action
of G on its Cayley graph.

Relations. The long exact sequence of homotopy groups induced by the above fiber se-
quence [27, Theorem 8.4.6] implies in particular that we have the following short exact
sequence of groups

0 Ω C(X,G) X∗ G 0

which shows that Ω C(X,G) is the (free) group encoding relations of G with respect to X.
Indeed, we have that C(X,G) = BR∗ where R is a choice of |G| × (|X| − 1) + 1 relations:
those are the loops in the Cayley graph after contracting |G| − 1 edges to obtain a wedge of
circles. In some sense, Theorem 16 provides an internalization of the fact that G is presented
by ⟨X | R⟩, contrasting with the point of view developed in Section 3.

The Cayley complex and higher variants. We now briefly explain that we can extend the
previous construction in higher dimensions in order to define internally a type corresponding
to the classical Cayley complex [19]. Suppose given a presentation P := ⟨X | R⟩ for G and
write B2 P for the 2-skeleton of the type BP defined in Section 3 (i.e. the type generated
by ⋆, gen, and rel, but without the truncation trunc). As in previous section, this type can
be considered as an approximation of BP (lacking the truncation) and we would like to
measure the difference between the two types. The Cayley complex CP associated to the
presentation P is the inductive type defined by

vertex : G → CP

edge : (g : G)(x : X) → vertex g = vertex(gx)
cell : (g : G)(r : R) → (edge g)∗(π(r)) = (edge g)∗(π′(r))

where, given g : G and u := x1x2 . . . xn : X∗, we have that (edge g)∗ u is the path

v g v(gx1) v(gx1x2) · · · v(gx1 . . . xn−1) v(gx1 . . . xn)e g x1 e(gx1) x2 ... ... e g(x1...xn−1) xn
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where v (resp. e) is a short notation for vertex (resp. edge). We will detail in future works
the proof of the following result, which can be performed using the flattening lemma for
pushouts, as in Theorem 16:

▶ Theorem 17. We have a fiber sequence CP B2 P BG.

In fact, this resolution-like process can be iterated in order to obtain better and better
approximations Bn P of BG, and higher Cayley complexes as the fibers of the canonical
maps Bn P → BG. Moreover, the join construction [23, 24] provides a way to automate this
task, see for instance [7, 21].

7 Future works

We have presented two ways to improve in practice the known constructions of deloopings of
groups when we have a presentation of the group. This work is part of a larger investigation
of “efficient” models of groups deloopings, in the sense that we can compute effectively
with those. In particular, the construction of the infinite real projective space performed by
Buchholtz and Rijke [7], provides a cellular description of BZ2 (which is better than the usual
ones obtained by generic methods because it consists in a non-recursive higher inductive
type). In other current work, we refine their approach in order to construct lens spaces
and thus obtain a cellular version of BZn for every natural number n, as well as efficient
representations of deloopings of other classical groups [21]. More generally, the formalization
of group theory in univalent foundations is still under heavy investigation [2], and we aim at
developing general techniques to construct efficient representations of (internal) groups in
homotopy type theory, which would open the way to cohomological computations [8, 6, 4] or
the definition of group actions on higher types (as a generalization of group actions on sets).
On another note, higher-inductive types play a role in homotopy type theory analogous to
the one of polygraphs for strict higher categories: numerous techniques have been developed
for those [1], notably based on rewriting, and we plan to adapt them in this setting, following
first developments of [16].

References
1 Dimitri Ara, Albert Burroni, Yves Guiraud, Philippe Malbos, François Métayer, and Samuel

Mimram. Polygraphs: From rewriting to higher categories. To appear, 2023. arXiv:2312.
00429.

2 Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas, and Daniel R. Grayson.
Symmetry. URL: https://github.com/UniMath/SymmetryBook.

3 Marc Bezem, Ulrik Buchholtz, Daniel R Grayson, and Michael Shulman. Construction of
the circle in UniMath. Journal of Pure and Applied Algebra, 225(10):106687, 2021. doi:
10.1016/j.jpaa.2021.106687.

4 Guillaume Brunerie, Axel Ljungström, and Anders Mörtberg. Synthetic integral cohomology
in cubical Agda. In 30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.11.

5 Ulrik Buchholtz, J Daniel Christensen, Jarl G Taxerås Flaten, and Egbert Rijke. Central
H-spaces and banded types. Preprint, 2023. arXiv:2301.02636.

6 Ulrik Buchholtz and Kuen-Bang Hou. Cellular cohomology in homotopy type theory. Logical
Methods in Computer Science, 16, 2020. doi:10.23638/LMCS-16(2:7)2020.

7 Ulrik Buchholtz and Egbert Rijke. The real projective spaces in homotopy type theory. In
2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–8.
IEEE, 2017. doi:10.5555/3329995.3330081.

FSCD 2024

https://arxiv.org/abs/2312.00429
https://arxiv.org/abs/2312.00429
https://github.com/UniMath/SymmetryBook
https://doi.org/10.1016/j.jpaa.2021.106687
https://doi.org/10.1016/j.jpaa.2021.106687
https://doi.org/10.4230/LIPIcs.CSL.2022.11
https://arxiv.org/abs/2301.02636
https://doi.org/10.23638/LMCS-16(2:7)2020
https://doi.org/10.5555/3329995.3330081


C. Champin, S. Mimram, and É. Oleon 6:16

8 Evan Cavallo. Synthetic cohomology in homotopy type theory. PhD thesis, MA thesis, 2015.
9 Arthur Cayley. Desiderata and suggestions. No. 2 – The theory of groups: graphical represen-

tation. American journal of mathematics, 1(2):174–176, 1878.
10 Camil Champin and Samuel Mimram. Delooping generated groups in homotopy type theory.

Software, swhId: swh:1:dir:4fc863802e40f99733703893622a7aa23c50c308 (visited on 2024-
06-20). URL: https://github.com/smimram/generated-deloopings-agda.

11 Thierry Coquand and Nils Anders Danielsson. Isomorphism is equality. Indagationes Mathe-
maticae, 24(4):1105–1120, 2013. doi:10.1016/j.indag.2013.09.002.

12 Michel Demazure and Pierre Gabriel. Groupes Algébriques, Tome 1. North-Holland Publishing
Company, 1970.

13 John RJ Groves. Rewriting systems and homology of groups. In Groups—Canberra 1989:
Australian National University Group Theory Program 1989, pages 114–141. Springer, 2006.
doi:10.1007/BFb0100735.

14 Krzysztof Kapulkin and Peter LeFanu Lumsdaine. The simplicial model of Univalent Foun-
dations (after Voevodsky). Journal of the European Mathematical Society, 23(6):2071–2126,
2021. doi:10.4171/jems/1050.

15 Nicolai Kraus and Thorsten Altenkirch. Free higher groups in homotopy type theory. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, pages
599–608, 2018. doi:10.1145/3209108.3209183.

16 Nicolai Kraus and Jakob von Raumer. A rewriting coherence theorem with applications in
homotopy type theory. Mathematical Structures in Computer Science, 32(7):982–1014, 2022.
doi:10.1017/S0960129523000026.

17 Daniel R Licata and Eric Finster. Eilenberg-MacLane spaces in homotopy type theory. In
Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–9, 2014. doi:10.1145/2603088.2603153.

18 Peter LeFanu Lumsdaine and Michael Shulman. Semantics of higher inductive types.
Mathematical Proceedings of the Cambridge Philosophical Society, 169(1):159–208, 2020.
doi:10.1017/S030500411900015X.

19 Roger C Lyndon and Paul E Schupp. Combinatorial group theory, volume 188. Springer, 1977.
20 Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in proof theory. Bibliopolis,

1984.
21 Émile Oleon and Samuel Mimram. Delooping cyclic groups with lens spaces in homotopy type

theory. Accepted at LICS 2024 conference, 2024.
22 Henri Poincaré. Analysis situs. Gauthier-Villars Paris, France, 1895.
23 Egbert Rijke. The join construction. Preprint, 2017. arXiv:1701.07538.
24 Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, July 2018. arXiv:

1906.09435.
25 Egbert Rijke. Introduction to homotopy type theory. Preprint, 2022. arXiv:2212.11082.
26 The Agda Community. Cubical Agda Library, July 2023. URL: https://github.com/agda/

cubical.
27 The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of

Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/
book/.

28 Andrea Vezzosi, Anders Mörtberg, and Andreas Abel. Cubical Agda: A dependently typed
programming language with univalence and higher inductive types. Journal of Functional
Programming, 31, 2021. doi:10.1145/3341691.

29 David Wärn. Eilenberg–maclane spaces and stabilisation in homotopy type theory. Journal of
Homotopy and Related Structures, 18(2):357–368, 2023. doi:10.1007/s40062-023-00330-5.

30 David Wärn. Path spaces of pushouts. Preprint, 2023. arXiv:2402.12339.

FSCD 2024

https://archive.softwareheritage.org/swh:1:dir:4fc863802e40f99733703893622a7aa23c50c308;origin=https://github.com/smimram/generated-deloopings-agda;visit=swh:1:snp:209bea02bef97c56fbcc2da7af07f6b27e89b12c;anchor=swh:1:rev:6b457f58ef54a2ef8e7338fbe7d56a893cc79831
https://github.com/smimram/generated-deloopings-agda
https://doi.org/10.1016/j.indag.2013.09.002
https://doi.org/10.1007/BFb0100735
https://doi.org/10.4171/jems/1050
https://doi.org/10.1145/3209108.3209183
https://doi.org/10.1017/S0960129523000026
https://doi.org/10.1145/2603088.2603153
https://doi.org/10.1017/S030500411900015X
https://arxiv.org/abs/1701.07538
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/2212.11082
https://github.com/agda/cubical
https://github.com/agda/cubical
https://homotopytypetheory.org/book/
https://homotopytypetheory.org/book/
https://doi.org/10.1145/3341691
https://doi.org/10.1007/s40062-023-00330-5
https://arxiv.org/abs/2402.12339


C. Champin, S. Mimram, and É. Oleon 6:17

A Omitted proofs

Proof of Proposition 8. The two functions

ϕ : Aut PG → G ψ : G → Aut PG

f 7→ f(1) x 7→ y 7→ yx

are group morphisms. Namely, given f, g : Aut PG, we have

ϕ(g ◦ f) = g ◦ f(1) = g(f(1)1) = f(1)g(1) = ϕ(f)ϕ(g) ϕ(id) = id(1) = 1

and given x, y : G, we have for every z : G,

ψ(xy)(z) = z(xy) = (zx)y = ψ(y) ◦ ψ(x)(z) ψ(1)(x) = x1 = id(x)

Moreover, they are mutually inverse. Namely, given f : Aut PG and x : G, we have

ψ ◦ ϕ(f)(x) = xf(1) = f(x1) = f(x) ϕ ◦ ψ(x) = 1x = x

We thus have Aut PG ≃ G and we conclude by univalence. ◀

Proof of Lemma 14. By definition, the map ΣA.f is an embedding iff for every (a, x) and
(a′, x′) in ΣAX, the induced map

(a, x) = (a′, x′) → (a, f a x) = (a′, f a′ x′)

is an equivalence. By the characterization of equalities in Σ-types [27, Theorem 2.7.2], this
map corresponds to a map

(Σ(p : a = a′).P→p (x) = x′) → (Σ(p : a = a′).Q→p (f a x) = f a′ x′)

By [27, Theorem 4.7.7], this is an equivalence if and only if the fiber map

(P→p (x) = x′) → (Q→p (f a x) = f a′ x′)

is an equivalence for every p : a = a′. By path induction, this is true if and only if

(f a)= : x = x′ → f a x = f a x′

is an equivalence for all a : A, and x, x′ : Xa. By definition, this is the requirement that f a
is an embedding for all a : A. ◀

B Equivalence between internal and external groups

Functoriality of delooping. One of the main properties of the delooping operation is that
it is a “local inverse” to taking loop spaces in the following sense:

▶ Proposition 18. Given pointed connected groupoids A and B and a group morphism
f : ΩA → ΩB, there is a unique pointed morphism g : A → B such that Ω g = f .

Proof. By [29, Corollary 12], with n = 0, we have that the type Σ(g : A → B).Ω g = f is
equivalent to (p, q : ⋆A = ⋆A) → f(p · q) = f(p) · f(q). This type is a proposition because
ΩB is a set (because B is a groupoid), and inhabited (because f is a morphism of groups),
and thus contractible. ◀

As an immediate consequence of the above lemma, deloopings are unique:

▶ Proposition 19. Given two deloopings BG and B′G of a group G, we have BG = B′G.
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Given a group morphism f : G → H such that both G and H admit deloopings (and this
actually always holds by Theorem 9), the delooping of f is the morphism

B f : BG → BH

associated, by Proposition 18, to the morphism d←H ◦f ◦ d→G : Ω BG → Ω BH. By Propo-
sition 18, this operation is functorial in the sense that that it preserves identities and
composition.

Equivalence between the two points of view. Although this is not central in this article,
we shall mention here the fundamental equivalence provided by the above constructions;
details can be found in [2]. We write IntGroup for the type of internal groups, i.e. pointed
connected groupoids.

▶ Theorem 20. The maps Ω : IntGroup → Group and B : Group → IntGroup form an
equivalence of types.

Proof. Given a group G, we have Ω BG = G by definition of BG. Given an internal group A,
we have B ΩA ≃ A by Proposition 19. ◀

The above theorem thus states looping and delooping operators allow us to go back and
forth between the external and the internal point of view of group theory in homotopy type
theory. Note that the torsor construction only gives a delooping in a larger universe than the
original group unless one makes additional assumptions such as the replacement axiom [25,
Axiom 18.1.8].

Internal group actions. In a similar way that the traditional notion of group admits an
internal reformulation (Section 2), the notion of action also admits an internal counterpart
which can be defined as follows. Given a group G, an internal action of G on a set A is a
function

α : BG → Set

such that α(⋆) = A. Since Set is a groupoid [27, Theorem 7.1.11], by Theorem 20, we have
equivalences of types

(BG → Set) ≃ (Ω BG → Ω(Set, A)) ≃ (G → AutA)

which show that internal group actions correspond to external ones: the delooping operator
internalizes an external group action, and the looping operator externalizes an internal group
action.

C Connected components

We define the connected component of the pointed type A as the type of points which are
merely connected to the distinguished point of A. This type is noted CompA (or Comp(A, ⋆)
when we want to specify the distinguished element ⋆). Formally,

CompA := Σ(x : A).∥⋆ = x∥−1

This type is canonically pointed by (⋆, | refl |−1). This construction deserves its name because
it produces a connected space, whose geometry is the same as the original space around the
distinguished point, as shown in the following two lemmas.

▶ Lemma 21 (Comp.isConnectedComp). The type CompA is connected.
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Proof. It can be shown that a type X is connected precisely when both ∥X∥−1 and
(x, y : X) → ∥x = y∥−1 are inhabited, i.e. when X merely has a point and any two
points are merely equal [27, Exercise 7.6]. In our case, the type CompA is pointed and thus
∥ CompA∥−1 holds. Moreover, suppose that there are two points (x, p) and (y, q) in CompA
with x, y : A, p : ∥⋆ = x∥−1 and q : ∥⋆ = y∥−1. Our goal is to show that ∥(x, p) = (y, q)∥−1
holds, which is a proposition, so by elimination of propositional truncation, we can therefore
assume that p (resp. q) has type ⋆ = x (resp. ⋆ = y). Hence, we can construct a path p− · q
of type x = y, and therefore (x, p) = (y, q) because the second components belong to a
proposition by propositional truncation. We conclude that ∥(x, p) = (y, q)∥−1 and finally
that CompA is connected. ◀

▶ Lemma 22 (Comp.loopCompIsLoop). We have Ω CompA = ΩA.

Proof. We begin by showing that the type

Σ((x, t) : CompA).(⋆ = x) (7)

is contractible. In order to do so, observe that we have the following equivalence of types:

Σ((x, t) : CompA).(⋆ = x) ≃ Σ((x, t) : Σ(x : A).∥⋆ = x∥−1).(⋆ = x)
≃ Σ(x : A).(∥⋆ = x∥−1) × (⋆ = x)
≃ Σ((x, p) : Σ(x : A).(⋆ = x)).∥⋆ = x∥−1

using classical associativity and commutativity properties of Σ-types. Moreover, the type
Σ(x : A).(⋆ = x) is contractible [27, Lemma 3.11.8], therefore the whole type on the last line
is a proposition (as a sum of propositions over a proposition), and therefore also the original
type (7). We write ⋆′ for the element (⋆, ∥ refl⋆ ∥−1) of CompA. The type (7) is pointed by
the canonical element (⋆′, refl) and thus contractible as a pointed proposition.

We have a morphism
F : ((x, t) : CompA) → (⋆′ = (x, t)) → (⋆ = x)

(x, t) p 7→ π=(p)
sending a path p to the path obtained by applying the first projection. It canonically induces
a morphism

Σ((x, t) : CompA).(⋆′ = (x, t)) → Σ((x, t) : CompA).(⋆ = x)
((x, t), p) 7→ ((x, t), π=(p))

between the corresponding total spaces. Since the left member is contractible (by [27,
Lemma 3.11.8] again) and the right member is contractible (as shown above), this is an
equivalence. By [27, Theorem 4.7.7], for every x : CompA, the fiber morphism Fx is also an
equivalence. In particular, with x being ⋆′, we obtain Ω CompA ≃ ΩA (as a type) and we
can conclude by univalence. Note that the equivalence preserves the group structure so that
the equality also holds in groups. ◀

As a direct corollary of the two above lemmas, we have:

▶ Proposition 23. Given a pointed groupoid A, CompA is a delooping of ΩA.

▶ Remark 24. Some people write AutA for ΩA and the above proposition states that we
have B AutA = CompA. For this reason, the (confusing) notation BAutA is also found in
the literature for CompA.
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D The flattening lemma

We recall here the classical flattening lemma, see [27, Section 6.12] for a more detailed
presentation and proof.

▶ Lemma 25 (Flattening for coequalizers). Suppose given a coequalizer

A B C
f

g

h

with p : h ◦ f = h ◦ g, and a type family P : C → U . Then the diagram

ΣA.(P ◦ h ◦ f) ΣB.(P ◦ h) ΣC.P
Σf.(λ_. id )

Σg.e

Σh.(λ_. id )

is a coequalizer, where the map

e : (a : A) → P (h(f(a))) → P (h(g(a)))

is induced by transport along p by

e a x := P→p(a)(x).

Note that there is a slight asymmetry: we could have formulated a similar statement with
ΣA.(P ◦ h ◦ g) as left object.
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1 Introduction

Abstract nonsense, a non derogatory expression attributed to Steenrod, usually refers to the
incursion of categorical methods for a proof step deemed both technical and little informative,
and therefore often succinctly described. Diagrams are typically drawn in this case, so as to
guide the intuition of the audience, and help visualize the existence of certain morphisms or
objects, identities between composition of morphisms, etc.

Formally, a categorical diagram is a functor F : J → C, with J a small category called the
shape of the diagram [20]. Diagrams are depicted as directed multi-graphs, also called quivers,
whose vertices are decorated with the objects of C and whose arrows each represent a certain
morphism, between the objects respectively decorating its source and its target. A directed
path in the diagram is hence associated with a chain of composable arrows and a diagram
commutes when all directed paths with same source and target lead to equal compositions.
Equalities between compositions of morphisms thus correspond to the commutativity of
certain sub-diagrams of a larger diagram. Chasing commutative sub-diagrams in a larger
diagram provides an elegant alternative to equational reasoning, when the latter becomes
overly technical. Diagrams actually play a central role in category theory, for they provide
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7:2 Machine-Checked Categorical Diagrammatic Reasoning

such an efficient way of delivering convincing enough proofs. Some classical textbooks
introduce diagrams as early as in their introduction chapter [17], while others devote an
entire section to diagrammatic categorical reasoning [23, Section 1.6] [14, Session 17]. The
following diagrammatic proof of Lemma 1 provides a toy illustrative example of this technique.

▶ Lemma 1. Let C be a category. For any morphism f and g such that g ◦ f ∈ Hom(C), if
g ◦ f is a monomorphism, then so is f .

Proof. Consider f : A → B, g : B → C and g ◦ f : A ↣ C morphisms in a category C. Here
is a very detailed diagrammatic proof, taking place in the diagram of Figure 1.

B

D A C

g

k

h

j

g◦j

f

g◦f

Figure 1 Diagrammatic proof that if g ◦ f is a monomorphism, then so is f .

We need to prove that for any two other morphisms h, k : D ⇒ A in Hom(C) such that
f ◦ h = f ◦ k, we have h = k, i.e., that the two-arrow diagram h, k commutes. By hypothesis
on h and k, there is an arrow j such that the triangle diagrams respectively formed by arrows
h, f, j and k, f, j both commute. By definition of composition, the triangle diagrams formed
by arrows f, g, g ◦ f and j, g, g ◦ j also commute. As a consequence, both triangle diagrams
formed by h, g ◦ f, g ◦ j and k, g ◦ f, g ◦ j commute. The conclusion follows because g ◦ f is a
monomorphism. ◀

Diagram chasing actually refers to a central technique to homological algebra [16, 20],
operating on diagrams over Abelian categories and used for proving the existence, injectivity,
surjectivity of certain morphisms, the exactness of some sequences, etc. Classic examples
of proofs by diagram chasing include that of the five lemma or of the snake lemma [16].
However, complex diagram chases (see, e.g., [22, p.338]) only remain readable at the price of
hiding non-trivial technical arguments and are, in practice, challenging to rigorously verify
by hand. Typically, the reader of a diagrammatic proof is asked to solve instances of variable
difficulty of a decision problem hereafter referred to as the commerge problem: Given a
collection of sub-diagrams of a larger diagram which commute, must the entire diagram
commute? In addition, proofs may resort to non-trivial duality arguments, in which the
reader has to believe a certain property about diagrams in any Abelian category remains
true after reversing all the involved arrows.

The long-term objective of the present work is thus to build a computer-aided instrument
for devising both fluent and reliable categorical diagrammatic reasoning, for 1-categories.
The present article describes the implementation of the core of such a tool, as a library for
the Coq proof assistant [24]. The design of this library follows two main design principles.
First, it aims at being independent from any specific library of formalized category theory or
abstract algebra, but rather usable as a helper for any existing one. This independence is
achieved by formulating the propositions about diagrams as formulas of a deep-embedded
language. Specific libraries then lead to specific interpretation functions, turning deep-
embedded formulas into actual statements. Second, it strives to feature enough automation
tools for synthesizing the bureaucratic parts of proofs “by abstract nonsense”, and formal
proofs thereof. The main contributions presented here are thus:
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a formalization of a deep-embedded first-order language for category theory, geared
towards diagrammatic proofs, together with a generic formalized definition of categorical
diagrams. This formalized material is based on a variant of the paper definitions introduced
in a previous work by two of the authors [18];
automation support for proofs by duality in the corresponding reified proof system, that
we compare with another method to deal with duality that was introduced in [18];
automation support for the commerge problem.

The corresponding code is available at the following url [10].
The rest of the article is organized as follows. Section 2 fixes some vocabulary and

describes the corresponding formal definitions. Section 3 describes the deep-embedded
formalization of the first-order language, and of the related reified proof system. Section 4
explains the algorithms involved in automating commutativity proofs. The formalized version
of the proof of Lemma 1 is explained in detail in Section 5. We conclude in Section 6 by
discussing related work and a few perspectives.

2 Preliminaries

This section fixes some definitions and notations, and introduces their formalized counterpart
when relevant. Some of them coincide with the preliminaries of our previous text [18], for
the purpose of being self-contained. Their formalized counterpart is novel. Throughout this
article, we use the word category for 1-categories. By default, we do not display implicit
arguments in Coq terms.

In all what follows, N := {0, 1, . . . } refers to the set of non-negative integers, represented
in Coq by the type nat , from its standard library. We also use the standard polymorphic
type list for finite sequences, equipped with the library on sequences distributed by the
Mathematical Components [19] library. Some names thus slightly differ from those present in
the standard library. For instance, the size |l| of a finite sequence l, formalized as l : list T ,
is size l , instead of the standard length l . We document in comments the definitions we
use from this library when their names are not self-explanatory. We recall that b1 && b2
is the standard notation for the (boolean) conjunction of two boolean values b1 b2 : bool .
If n ∈ N, then [n] denotes the finite collection {0, . . . , n − 1}, which is implemented by the
sequence iota 0 n : list nat .

▶ Definition 2 (General quiver, dual). A general quiver Q is a quadruple (VQ, AQ, sQ : AQ →
VQ, tQ : AQ → VQ) where VQ and AQ are two sets. The element of VQ are called the vertices
of Q and the element of AQ are called arrows. If a ∈ AQ, sQ(a) is called the source of a

and tQ(a) is called its target. The dual of a quiver Q is the quiver Q† := (VQ, AQ, tQ, sQ),
which swaps the source and the target maps of Q.

From now on, we casually call quivers the special case of quivers with VQ a finite subset of
N and with a finite number of arrows. The formal definition moreover assumes that vertices
are labelled in order:

(* Data of a quiver *)
Record quiver : Type := quiver_Build {

quiver_nb_vertex : nat; (* number of vertices *)
quiver_arc : list (nat * nat); (* sequence of arrows *) }.

(* Well-formedness condition for quivers :
all arrows involved in A have a source and target in bound *)

Definition quiver_wf '(quiver_Build n A) : bool :=
all (fun a => (a.1 < n) && (a.2 < n)) A.
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(* The dual quiver of a quiver, with same vertices and reversed arrows *)
Definition quiver_dual '(quiver_Build n A) : quiver :=

quiver_Build n (map (fun a => (a.2,a.1)) A).

An arrow of a quiver q : quiver is thus given by an element in the sequence quiver_arc q ,
itself a pair of integers giving its source and target respectively. Note that the index in the
sequence matters, as the sequence may have duplicate. A formalized quiver is well-formed
when the sources and targets of its arrows are in bound.

For the sake of readability, we use drawings to describe some quivers, as for instance:

. . .

For a quiver Q denoted by such a drawing, the convention is that VQ = [card(VQ)] and
AQ = [card(AQ)], where card(A) denotes the cardinal of a finite set A. From left to right,
the drawn vertices correspond to 0, 1, . . . , card(VQ)−1. Arrows are then numbered by sorting
pairs (sQ, tQ) in increasing lexicographical order, as in:

. . .0 1 20
1

2
3

▶ Definition 3 (Morphism, embedding). A morphism of quivers m : Q → Q′, is the data
of two maps mV : VQ → VQ′ and mA : AQ → AQ′ such that mV ◦ sQ = sQ′ ◦ mA and
mV ◦ tQ = tQ′ ◦ mA. Such a morphism is called an embedding of quivers if moreover both
mV and mA are injective. In this case we write m : Q ↪→ Q′.

We also use drawings to denote embeddings. The black part represents the domain of the
morphism, the union of black and gray parts represents its codomain. Here is an example of
an embedding of the quiver . . into the quiver drawn above.

. . .

For the purpose of this work, we actually only need to define formally embedding
morphisms, called sub-quivers, which select the relevant vertices and arrows from a quiver:

Record subquiver := subquiver_Build {
subquiver_vertex : list nat; (* labels of the selected vertices *)
subquiver_arc : list nat; (* indices of the selected arrows *) }.

(* Performs the expected selection of vertices and arrows *)
Definition quiver_restr '(subquiver_Build sV sA) : quiver -> quiver := (...)

Here as well, restrictions of quiver only make sense under well-formedness conditions:

(* Indices of the arrows to be selected are in bound *)
Definition quiver_restr_A_wf sA '(quiver_Build n A) : bool :=

all (gtn (size A)) sA.

Definition quiver_restr_V_wf sV '(quiver_Build n A) : bool :=
uniq sV && (* sV is duplicate-free *)
all (gtn n) sV && (* all elements of sV are smaller than n *)
all (fun a => (a.1 \in sV) && (a.2 \in sV)) A. (* any vertex involved in A is in sV*)

(* Well-formed condition on the restriction of a quiver *)
Definition quiver_restr_wf '(subquiver_Build sV sA) Q :=

quiver_restr_A_wf sA Q && quiver_restr_V_wf sV (quiver_restr_A sA Q).
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▶ Definition 4 (Path-quiver). The path-quiver of length k, denoted by PQk, is the quiver
with k + 1 vertices and k arrows ([k + 1], [k], id, (i 7→ i + 1)).

A path-quiver can be drawn as:

. . . .. . .

with at least one vertex. Such a path-quiver is called nontrivial if it has at least two vertices.
If Q is a general quiver, a morphism of the form p : PQk → Q, for some k, is called a path

of Q from u to v of length k, where u := p(0) and v := p(k). A general quiver is acyclic if
any path of this quiver is an embedding.

If P is a nontrivial path-quiver, we define stP : .. ↪→ P to be the embedding mapping the
first vertex on the leftmost vertex of P and the second vertex on the rightmost vertex of P .
Two paths p1 : P1 → Q, p2 : P2 → Q of Q have the same extremities if p1 ◦ stP1 = p2 ◦ stP2 .
We denote by BPQ the set of pairs of paths of Q having the same extremities. Such a pair is
called a bipath.

Paths in a formalized quivers are defined as a ternary relation between two vertices and a
sequence of arrows:

(* Operations on lists:
- (_ == _) is a generic boolean comparison test, in this case for lists of integers
- rcons l x is the list l followed by x
- unzip[1 | 2] l is the list of fst (resp snd) elements of the list of pairs l
- sub p A is the list of elements of A with index in p, in order *)

Definition path (A : list (nat * nat)) (u : nat) (p : list nat) (v: nat) : bool :=
(* all elements in p are in bound *)
all (gtn (size A)) p &&
(* p selects in A a list of adjacent arrows from u to v *)
(u :: unzip2 (sub p A) == rcons (unzip1 (sub p A)) v).

A path p from a vertex u to a vertex v can thus be concatenated to a path q from vertex
v to a vertex w: when endpoints are obvious, we just write p·q the resulting path from u to
w. We sometimes abuse notations and write e·p and p·e when one of the paths contains a
single arrow e.

We now introduce a special case of binary relation on paths with same extremities in
a quiver, called path relations. A path relation is an equivalence relation induced from a
congruence on the corresponding free category to the quiver. Conversely, in a small category,
the composition axiom induces a path relation on the underlying quiver. The formalized
definition of path relations is actually independent from that of quiver. A path relation is
just a family of equivalence relations on sequences of integers (the paths), indexed by pairs
of integers (the endpoints), that are compatible with the concatenation of paths:

Record path_relation := {
pi_r :> forall u v : nat, relation (list nat) ;
pi_equiv : forall u v, equivalence _ (pi_r u v) ;
pi_cat_stable : forall u v w p p' q q',

pi_r u v p p' -> pi_r v w q q' -> pi_r u w (p ++ q) (p' ++ q') }.

Given a quiver and a path relation r : path_relation , (pi_r r u v) is expected to be a
relation on the paths from vertex u to vertex v . Note that the path relation induced by
a certain category on its underlying quiver only induces a partial collection of equivalence
relations, indexed by the pairs of vertices in this quiver. The full relation on sequences,
which relates any two sequences, can be used to complete this collection, so as to define a
term of type forall u v : nat, relation (list nat) , and to avoid the need for otherwise
cumbersome dependent types.
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Inductive term :=
| Var of nat (* variable, named with an integer, $k denotes term (Var k) *)
| Restr of subquiver & term. (* the 'restr' symbol *)

Inductive formula :=
| Forall of quiver & formula
| Exists of quiver & formula
| Imply of formula & formula (* Denoted with infix symbol -=> *)
| And of formula & formula
| FTrue (* Top atom *)
| Commute of term (* the 'commute' predicate symbol *)
| EqD of term & term. (* the equality predicate symbol*)

Listing 1 Terms and formulas.

3 A two-level approach

3.1 Formulas and diagrams
Paraphrasing Mac Lane [17], many properties of category theory can be “unified and simplified
by a presentation with diagrams of arrows”. Categorical diagrammatic reasoning consists
in transforming a proof of category theory into a proof about some quivers, decorated with
the data of a certain category. Actually, once the appropriate quivers are drawn, the data
themselves can be forgotten, but for the induced path relation, which is the only relevant
information for a diagrammatic proof. In [18], we proposed a multi-sorted first-order language
for category theory, geared towards diagrammatic reasoning: following the structure of a
formula in this language constructs the quivers associated with the corresponding statement
of category theory, encoded in the sorts of the variables. We recall the definition of this
language:

▶ Definition 5. We define a many-sorted signature Σ with sorts the collection of finite
acyclic quivers. Signature Σ has one function symbol restrm : Q′↪→Q, of arity Q → Q′, per
each injective quiver morphism m : Q′ ↪→ Q between two quivers Q and Q′, and one predicate
symbol commuteQ, on sort Q, for each finite acyclic quiver Q.

▶ Example 6. Writing the sorts of quantified variables as a subscript of the quantifier, here
is for instance a predicate of arity . . × . . × . . describing composite of arrows:

Comp(x, y, z) : ∃.
.

. w, restr .
.

. (w) ≈ x ∧ restr.
.

.(w) ≈ y

∧ restr .
. .(w) ≈ z ∧ commute(w)

▶ Example 7. Here is a predicate of arity . . describing monomorphisms:

Mono(x) : ∀. . . w, restr. . .(w) ≈ x ⇒ commute(restr. . .(w))

⇒ commute( restr. . .(w)) ⇒ commute(restr ... (w))

Listing 1 is the formalized counterpart of Definition 5. A term t : term is thus either a
variable Var n , named with a natural number n , or of the form Restr m t for t a term
and m a sub-quiver, seen as a morphism of quivers. Observe that the source quiver of this
morphism is left undefined – it only becomes explicit when the term is evaluated. Type
formula defines a first-order logic whose atoms stand for equality, commutativity or true.

Quantifiers bind de Bruijn indexes and are annotated with a quiver, the sort of the bound
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variable. Note that theory Σ enforces the use of acyclic quivers. Computing the sort of
a term thus requires first annotating each of its variables with a sort. The sort of a term
Restr m t is the quiver obtained by restricting the sort of term t using m .

Given a list l of quivers, providing a sort to each of its variable, a term t : term is
well-formed in this context, written term_wf l t , if l is long enough and if every subterm
of t has a well-formed sort. In a closed formula, the sort of a variable is read on the
corresponding quantifier. More generally, a formula f : formula is well-formed in a context
l , written formula_wf l f , if l is long enough to provide a sort to each free variable in f

and if every term appearing in f has a well formed sort.
Here is the corresponding formalized predicate to Example 7.

Definition monoQ := quiver_Build 3 [:: (0,1);(0,1);(0,2);(1,2)]. (* This is . . .*)
Definition mapQ := quiver_Build 2 [:: (0,1)]. (* This is . . *)

(* Lambda_arc constructs a predicate from a sequence of quivers and a formula, the first
argument is the arity, providing sorts for the free variables of the second, in order.*)
Definition monoF : predicate :=

Lambda_arc [:: mapQ] (* the one-element arity sequence *)
(Forall monoQ (

EqD (Restr {sA [:: 3]} $0) $1
-=> Commute (Restr {sA [:: 0 ; 2 ; 3]} $0)
-=> Commute (Restr {sA [:: 1 ; 2 ; 3]} $0)
-=> Commute (Restr {sA [:: 0 ; 1]} $0))) .

The interpretation of a term f : formula as a Coq statement, in sort Prop , is relative to
a formal diagram, which is by definition an instance of the following structure diagram_type :

Record diagram_package (diagram : Type) := diagram_Pack {
diagram_to_quiver : diagram -> quiver; (* underlying quiver of a diagram *)
diagram_restr : subquiver -> diagram -> diagram; (* restriction *)
eqD : equivalence diagram; (* setoid relation on type diagram *)
eq_comp : diagram -> path_relation; (* path relation *) }.

Structure diagram_type := diagram_type_Build {
diagram_sort :> Type; (* a diagram_type coerces to its carrier type *)
diagram_to_package :> diagram_package diagram_sort; }.

A diagram is thus a term in the carrier type of an instance of structure diagram_type ,
which can be seen as a model of theory Σ. A diagram commutes when the associated path
relation is full, i.e., any two paths in the underlying quiver with same source and target are
related:

Definition commute (d : diagram_type) (D : d) :=
path_total (diagram_to_quiver D) (eq_comp D).

Formalized diagrams can be defined from a formalization of categories, but not only. For
instance, one can define an instance of diagram_type with the following carrier type:

Record zmod_diagram : Type := ZModDiagram {
zmob : nat -> zmodType; (* labels of vertices *)
zmmap : forall u v : nat, nat -> {additive zmob u -> zmob v}; (* labels of arrows *)
zmdiag_to_quiver : quiver (* underlying quiver *) }.

where zmodType is a structure for Abelian groups in the Mathematical Components library,
and {additive A -> B} is the type of morphisms between two Abelian groups A and B .
Labelling functions zmob and zmap , respectively for vertices and for arrows, are total and
thus require a default values for irrelevant arguments, albeit an arbitrary one. We can now
explain how to turn a term f : formula into a Coq statement, given a sequence of diagrams:
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Fixpoint formula_eval (d : diagram_type) (stack : list d) (f : formula) : Prop :=
match f with
| Forall Q f => forallD D :: diagram_on Q, formula_eval d (D :: stack) f
| Exists Q f => existsD D :: diagram_on Q, formula_eval d (D :: stack) f
| Imply f1 f2 => formula_eval d stack f1 -> formula_eval d stack f2
| And f1 f2 => formula_eval d stack f1 /\ formula_eval d stack f2
| FTrue => True
| Commute t => if term_oeval stack t is Some D then commute D else False
| EqD t1 t2 =>

match term_oeval stack t1, term_oeval stack t2 with
| Some DG1, Some DG2 => eqD DG1 DG2
| _, _ => False
end

end.

where the notations forallD D :: diagram_on Q, P and existsD D :: diagram_on Q, P bind
variable D in P , so as to quantify P over diagrams D : d with underlying quiver
diagram_to_quiver D equal to Q . The evaluation term_oeval stack t : option d of a term
t in context stack defaults to None when the context stack is too small and otherwise com-

putes, when possible, the prescribed restriction of the diagrams. Observe that the type annota-
tion stack : list d actually hides a coercion, and is actually stack : list (diagram_sort d) .

3.2 Structural duality
As briefly alluded to in the conclusion of our previous article [18], it is possible to prove a
duality theorem at the meta-level of the deep-embedded first-order language. The variant
presented below is updated to the current, bundled, representation of diagram types, and to
a slightly different, albeit equivalent, definition of models.1 For any formula f : formula , we
define its dual formula formula_dual f by structural induction on its argument f , dualizing
all the quivers involved in f . For the sake of readability, the code uses a few notations and
coercions:

(* We fix a type for diagrams until the end of the section. *)
Variable d : Type.

(* A few local notations to ease reading *)
Local Notation model := diagram_package.
Local Notation model_dual := dual_diagram_Pack.

(* Coercion "conflating" a model with carrier type d and its associated
diagram_package. *)
Local Coercion diagram_type_of := (@diagram_type_Build d).

Any model of diagrams M : model d has a dual model_dual M : model d , obtained from
M by keeping the same data, but dualizing its quiver and reversing its path relation. We

can now prove the property formula_eval_duality , stated in Listing 2, characterizing the
evaluation of this dual formula in the dual of a diagram. Observe that type d is the common
carrier type of M and model_dual M , which allows for the same context ctx to be used in
both sides of the equivalence.

As a corollary, if a formula holds for all diagrams in a certain diagram type, then so
does its dual. The variant duality_theorem_with_theory is equally direct but slightly more
interesting, as dependent type P shall be used to describe a specific class of models, e.g.,
models of a given theory, provided that their description is “auto-dual”, cf. Listing 2.

1 Both files, the one attached to [18], and the one updated to fit the new definition of models, can be
found in the folder duality_theorem.
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Theorem formula_eval_duality (M : model d) (ctx : list d) (f : formula) :
@formula_eval (model_dual M) ctx (formula_dual f) <-> @formula_eval M ctx f.

(* If a formula is valid in every model, then so is the dual formula *)
Corollary duality_theorem (ctx : list d) (f : formula) :

(forall M : model d, @formula_eval M ctx f) ->
forall M : model d, @formula_eval M ctx (formula_dual f).

(* Relativized variant to a specific class P of models *)
Corollary duality_theorem_with_theory (ctx : list d) (f : formula) (P : model d -> Prop) :

(forall M, P M -> P (model_dual M)) -> (forall M, P M -> @formula_eval M ctx f)
-> forall M, P M -> @formula_eval M ctx (formula_dual f).

Listing 2 Duality theorems.

3.3 Proofs
The deep-embedded level also features a data-structure valid_proof for (deep-embedded)
proofs of deep-embedded formulas, and implements a checker check_proof for these proofs.
A correctness theorem ensures that for any well-formed deep-embedded formula f : formula ,
a positive answer of the proof checker entails the provability of the interpretation of f in
any model d :

Theorem check_proof_valid (d : diagram_type) (f : formula) (pf : valid_proof) :
formula_wf [::] f -> check_proof f pf = true -> formula_eval d [::] f.

The deep-embedded level also features a data-structure sequent , used to reify a proof in
progress, and a type tactic for actions making progress in a proof:

Inductive sequent := sequent_Build {
context : list quiver;
premises : list formula;
goal : formula; }.

Definition tactic := sequent -> option sequent.

Note that there is only one goal attached to a sequent, as formulas are disjunction-free. To a
sequent with context [:: Q_1 ; ... ; Q_n ] , premises [:: H_1 ; ... ; H_m ] and goal G ,
one can associate the following term in type formula :

Forall Q_1 ( ... ( Forall Q_n (
Imply (And H_1 ( ... (And H_m Ftrue) ... )) G )) ... )

The sequent is well-formed if the corresponding formula is a well-formed formula. In the
other direction, to any f : formula , one can associate the sequent with goal f and with
empty context and no premise. A tactic τ is valid when for any well-formed sequent s, if τ s

is some s′, then s′ is also well-formed and the evaluation of s′ implies the evaluation of s. In
this context, a valid proof is just a list of valid tactics.

To check that a valid proof actually provides a proof of some given formula f , one can
perform the following steps. First, compute the sequent associated to the formula. Then, for
each tactic in the proof, apply the tactic. If at some point the tactic returns None the proof
is not correct. Otherwise, check that the goal of the final sequent is FTrue . In this case, the
evaluation of f is valid. In the implementation, the verification is performed by the function
check_proof , and the conclusion is proven in Theorem check_proof_valid .
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The next step is to implement a set of useful tactics, and to prove that they are valid.
Note that in this text, tactics refer to commands operating on deep-embedded proofs, and not
on actual Coq goals. Basic tactics like introduction and elimination rules are available, but
also for more involved tactics like the Rewrite tactic, or the Comauto tactic, for automating
the proof of commerge problems. Starting from the rules of the proof system, more complex
tactics provide relevant combinations of the existing building blocks, so as to considerably
reduce the size of the proofs. Note that, in theory, the validity of certain tactics may depend
on assumptions from the model used for interpreting formulas.

Here is for instance the statement of the formula corresponding to Lemma 1:

Definition compQ := quiver_Build 3 [:: (0,1);(0,2);(1,2)]. (* This is .
.

.*)

(* when the quiver of a formula have no isolated vertex, formula_fill_vertices
allows for a shorter description of sub-quivers, only by the arcs they select. *)
Definition mono_monomPF : formula :=
formula_fill_vertices [::] (
Forall compQ

(Commute $0 -=> monoF App (Restr {sA [:: 1]} $0) -=> monoF App (Restr {sA [:: 0]} $0))).

The reified proof of this statement is detaild in Section 5.

3.4 Duality for reified proofs
In fact, duality arguments are currently implemented by instrumenting proofs so as to check
that they are amenable to duality arguments, which is more convenient in practice than the
structural argument described in Section 3.2. Indeed, this avoids the need to prove that
theories are self-dual. We thus gather a tactic τ and its dual tactic τ∗ such that for any
sequent s, the dual of τs is equal to τ∗ applied to the dual of s. Very often, a tactic and its
dual are just identical. A second theorem duality_theorem , not to be confused with that of
Section 3.2, ensures that, indeed, if every tactic of a proof of some formula comes with such
a dual tactic, then the proof obtained by taking the dual tactics will be a proof of the dual
formula.2

(* Biproofs are pairs of proofs of same size *)
Structure biproof := biproof_Build {

biproof_primal : proof;
biproof_dual : proof;
biproof_eq_size : size biproof_primal == size biproof_dual; }.

Theorem duality_theorem f (bpf : biproof) :
(* assuming that the tactics in the pair of proofs bpf are pairwise dual *)

biproofD bpf ->
(* then the primal proof proves a formula iff the dual proof proves its dual *)

check_proof (formula_dual f) (biproof_dual bpf) =
check_proof f (biproof_primal bpf).

Each of the tactics currently implemented has a dual tactic. A duality argument can for
instance be used to prove the dual statement to Lemma 1, and we provide the corresponding
deep-embedded formula.3

▶ Lemma 8. Let C be a category. For any morphism f and g such that g ◦ f ∈ Hom(C), if
g ◦ f is an epimorphism, then so is g.

Proof. From Lemma 1, by duality. ◀

2 See file diagram_chasing/FanL.v
3 See file tests_and_examples/mono_monom.v.
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Definition epiF :=
Lambda_arc [:: mapQD]
(Forall monoQD (

EqD (Restr {sA [:: 3]} $0) $1
-=> Commute (Restr {sA [:: 0 ; 2 ; 3]} $0)
-=> Commute (Restr {sA [:: 1 ; 2 ; 3]} $0)
-=> Commute (Restr {sA [:: 0 ; 1]} $0))).

Definition epi_mepiPF : formula :=
formula_fill_vertices [::] (
Forall compQD (

Commute $0 -=> epiF App (Restr {sA [:: 1]} $0) -=> epiF App (Restr {sA [:: 0]} $0))).

which is similar to term monoF and formula mono_monomPF except that quivers mapQ , monoQ
and compQ have been dualized, respectively into mapQD , monoQD and compQD . Observe that
instead of being explicitly written, definitions epiF and epi_mepiPF can also be computed,
respectively from monoF and mono_monomPF , by applying the function dual_formula . The
reified proof of epi_mepiPF takes a single tactic, which dualizes the proof of the statement
on monomorphisms.

4 Automating commutativity proofs

In order to apply most lemmas obtained by diagram chasing, one first has to prove that
a certain diagram is commutative. For instance, the so-called five lemma, which allows to
prove that some map is an isomorphism, requires to have a commutative diagram over the
quiver of Figure 2. Yet proving that such a diagram is commutative by checking one equality
per bipaths in this diagram would be excessively tedious. Commutativity of a larger diagram
is typically obtained from the commutativity of certain sub-diagrams, and the proof of this
implication is often little detailed, or not at all. For instance, in the case of Figure 2, it
actually suffices to check four equalities, one for each sub-square of the quiver. More precisely,
each pair of paths going from the top-left corner to the bottom-right corner of a square must
correspond to equal morphisms. Once these four equalities has been proven, we infer that
each square commutes.4

A B C D E

A′ B′ C ′ D′ E′

Figure 2 The five-lemma diagram.

In section 4.1, we describe an algorithm for deciding the commerge problem for diagrams
with acyclic underlying quivers, so as for instance to automate the proof that the diagram of
Figure 2 commutes as soon as the aforementioned four bipaths commute. In section 4.2, we
describe a heuristic for discovering a collection of sub-diagrams whose commutativity entails
that of a larger one.

4 See file diagram_chasing/Bipath.v for a formal proof that the commutativity of a square follows from
the equality of the mentioned two morphisms.
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4.1 Decision procedure for the commerge problem
In [18], we provided a pen-and-paper proof of the decidability of the commerge problem
for diagrams with acyclic underlying quiver, and the undecidability of its generalization to
possibly cyclic underlying quivers. In this section, we describe the more practical algorithm
implemented by the tactic Comauto . In particular, this implementation comes with a formal
proof of correctness, which is the main ingredient in the validity proof of the corresponding
tactic.

The algorithm operates on an acyclic quiver Q and a finite collection Q1, . . . , Qk of
sub-quivers of Q, representing the commutativity assumptions. Denote by l the union⋃

i BPQi , slightly abusing notations by denoting Qi the quiver induced by the corresponding
sub-quiver. The algortithm checks whether the smallest path relation cℓQ(l) induced by l is
full, that is cℓQ(l) = BPQ. Without loss of generality, we can assume that the acyclic quiver
Q is topologically sorted in reverse order, that is, that any path in Q follows a sequence of
vertices with decreasing labels. The implementation actually performs a topological sort of
the quiver5 and updates the representation of cℓQ(l) accordingly.

For any given vertices u and v in VQ, we introduce Au,v ⊂ AQ the set of incident arrows
of u starting a path to v in Q and Av,u ⊂ AQ that of incident arrows of v ending a path
from u in Q:

Au,v ≜ {e ∈ AQ | ∃p, e·p is a path from u to v}
Av,u ≜ {e ∈ AQ | ∃p, p·e is a path to v from u}

We define Gu,v the multigraph whose vertices are the elements of Eu,v ≜ Au,v ∪ Av,u. An arc
of Gu,v relates vertices e1, e2 ∈ Eu,v when:

either there is a path in Q from u to v containing both e1 and e2;
or there exists i and p1, p2 paths in Qi from u to v such that e1 (resp. e2) appears in p1
(resp. p2).

We moreover introduce the binary relation Ru,v, on the elements of E : for any e1, e2 ∈ E ,
Ru,v(e1, e2) holds if and only if any path p1 from u to v containing e1 is related by cℓQ(l) to
any path p2 from u to v containing e2. If Ru,v is full, then cℓQ(l) contains all the pairs of
paths from u to v.

▶ Lemma 9. For any vertices u, v ∈ VQ, if Gu,v is connected, then Ru,v is full.

The decision procedure constructs the multigraphs Gu,v for any pair of vertices, and checks
that they are all connected. If so, then cℓQ(l) contains BPQ.

Proof. We prove Lemma 9 for vertices respectively labelled u + n and u, for a vertex u ∈ VQ,
by induction on n. When n = 0, then the result holds because paths are empty.

We now assume that the result holds for any vertex and any k < n, and that Gu+n,u is
connected. Observe first that as a consequence of the induction hypothesis, and because the
graph is topologically sorted in reverse order, any two paths from u + n to u sharing their
initial or their final arrow are in cℓQ(l). We now fix u ∈ VQ and e1, e2 ∈ Eu+n,u and we need
to prove that Ru+n,u(e1, e2). We proceed by induction on the length of a path in Gu+n,u

relating e1 and e2. If this path is empty, then e1 = e2 is either an element of Au,v or of
Av,u and we can conclude using the initial observation. We now suppose that there is an arc
e ∈ Eu+n,u and a path t in Gu+n,u such that (e1, e) is an edge of Gu+n,u and t is a path from

5 See diagram_chasing/TopologicalSort.v.
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e to e2 in Gu+n,u. Let p1 (resp. p2) be a path in Q containing e1 (resp. e2). If there is a
path p in Q from u to v containing both e and e1 then p is related to p1, by the observation,
as the two paths share either their initial or their final arrow. But p is also related to p2 by
the (second) induction hypothesis as p contains e and p2 contains e2. The conclusion follows
by transitivity of the path relation. Now suppose that e and e1 respectively belong to q and
q1, paths from u + n to u in some Qi. Paths q1 and q are related, by definition of cℓQ(l). But
q and p2 are also related by the (second) induction hypothesis, as they respectively contain e

and e2. The conclusion follows by transitivity. ◀

4.2 Finding sufficient commutativity conditions
In fact, one can even use the computer to guess a sufficient list of equalities entailing that a
certain diagram commutes, instead of providing it explicitly by hand. In this section, we
explain how to do so in practice. The corresponding algorithm has been implemented under
the name comcut. Although not strictly needed for the purpose of producing formal proofs
of commerge problems, its correctness has been proven formally.6

Let Q be a quiver with vertices V = [n], for some n ∈ N, and arcs AQ. Moreover, we
assume that Q is topologically sorted in a reversed order, i.e., if an arc goes from u to v,
then u > v. From such an input, comcut returns a list of bipaths l ⊆ BPQ such that cℓQ(l),
that is the smallest path relation in Q containing l, is equal to BPQ.

The algorithm works by induction on the size of Q. Let u0 := n − 1 be the top vertex. If
there is no arc whose source is u0, then we just have to apply comcut to Q deprived from
the vertex u0 (note that u0 cannot be a target). Otherwise, let a0 ∈ A be an arc with source
u0. Denote by v0 the target of a0. Consider the quiver Q′ obtain from Q by removing the
arc a0. Applying the algorithm to Q′, we get a list l′ ⊂ BPQ′ such that cℓQ′(l′) = BPQ′ .
We complete this list to a list l as follows. Let W̃ := acc(u0) ∩ acc(v0) be the set of vertices
accessible both from u0 and from v0 in Q′. Set

W := {w ∈ W̃ | ∀w′ ∈ W̃ \ {w}, w /∈ acc(w′)}.

For each w ∈ W , select a path pw from u0 to w in Q′ and a path qw from v0 to w in Q′. Set
l := l′ ∪ {(pw, a0 ·qw) | w ∈ W}.

▶ Proposition 10. The list l constructed above verifies cℓQ(l) = BPQ.

Before proving the proposition, let us quickly explain how to get an effective implementa-
tion from the above description. To be able to compute accessibility and to reconstruct the
different paths, one computes a square matrix indexed by vertices whose (u, v) entry is either
empty if there is no nontrivial path from u to v, or contains an arc a such that there is a
path from u to v which starts by a. To update such a matrix for the quiver Q′ into a matrix
corresponding to the quiver Q, it suffices to set a0 to all the entries of the form (u0, v) for
v ∈ acc(v0). The rest of the algorithm is easy to write down.

Proof. Let p, q be paths from u to v in Q. Note that the arc a can only appear as the first
element of p and q. If a does not appear in p nor in q, or if it appears in both, then (p, q) was
already in cℓQ(l′). Hence, up to symmetry, it remains the case where u = u0, p belongs to
Q′ and q = a0·q′ with q′ a path of Q′. By definition of W̃ , v ∈ W̃ . Let w ∈ W such that v is
accessible from w. Let r be a path from w to v (cf. Figure 3). Then, (p, pw ·r) and (qw ·r, q′)

6 See the folder comcut.
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u0

v0

w
va0

p

pw

q′

qw
r

Figure 3 Decomposition of the relation between two paths thanks to an element w ∈ W .

both belong to BPQ′ , and (pw, a0 ·qw) belongs to l. Hence we get the following sequence of
relations in cℓQ(l).

p ∼ pw ·r ∼ a0 ·qw ·r ∼ a0 ·q′ = q,

which proves the proposition. ◀

▶ Remark 11. Note that it may happen that l is not minimal, see Figure 4 for a counterexample.

3

4

0

1
2

Figure 4 Counterexample to the minimality of the comcut algorithm. Before adding the arc
(4, 3), we need four equalities to ensure the commutativity. Adding (4, 3) forces to add two more
relations, but one of the previous relations becomes useless.

5 Formal proof of Lemma 1

In this section, we explain in detail the formal proof of Lemma 1 obatined using our
framework7. This proof actually requires diagrams to be instances of a structure called
category_diagram_type . This structure describe models which verify some compatibility

conditions that we do not precise, and three more axioms. The first axiom is the existence of
the composition:

CompE: ∀. .x, y, restr. .(x) ≈ restr .. (y) → ∃. .z, Comp(x, y, z). (1)

The last two axioms correspond to the existence and uniqueness of pushout of diagrams.
Intuitively, if two diagrams coincide on a sub-quiver, we can “glue” them along this sub-quiver.
For an example, see Step 2 in the proof below. See also [18] for more details on the models
of these axioms.

The proof is given in Listing 3. In order to improve readability, we replaced quivers
and sub-quivers by drawings. The heart of the proof is contained in mono_monom_pf . Before
describing it in detail, we comment the rest of the code. Tactic validify is a custom Coq
tactic which triggers Coq’s unification hints [1, 24] to infer a valid proof from the proof

7 See mono_monom_pf in file tests_and_examples/mono_monom.v.
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Definition mono_monom_pf : proof := [::
IntroAll;
Merge 2;
ApplyEFT Comp [:: aT (Restr ..

.
. (Var 2))];

Merge 7;
Comauto 4 . .

.
. ;

Comauto 4 . .
.

. ;

Comauto 4
.

.. . ;

Comauto 4
.

.. . ;

ApplyEFT (EqD_refl . . ) [:: aT (Restr .
.

. . (Var 4))];

ApplyFT [:: aT (Restr
.

.. . (Var 4)); aP 15; aP 14; aP 13] 1;
ExactN 16

].

Definition mono_monom_vpf (diagram : category_diagram_type) : valid_proof diagram.
Proof. validify mono_monom_pf. Defined.

Lemma mono_monom (diagram : category_diagram_type) :
@formula_eval diagram [::] mono_monomPF.

Proof.
apply: (check_proof_valid (pf := mono_monom_vpf diagram)) ; first by [].
vm_compute ; done.

Qed.

Definition epi_mepi_vpf (diagram : category_diagram_type) : valid_proof diagram.
Proof. dualify mono_monom_pf. Defined.

Lemma epic_mepic (diagram : category_diagram_type) :
@formula_eval diagram [::] epi_mepiPF.

Proof.
apply: (check_proof_valid (pf := epi_mepi_vpf diagram)) ; first by [].
vm_compute ; done.

Qed.

Listing 3 A formal proof of Lemmas 1 and 8.

mono_monom_pf . This can be achieved because every tactic we use in our proof is canonically
associated to a valid tactic. In the same way, the dualify Coq tactic infers dual valid proofs.
Then Lemmas 1 and 8 can be proven by applying check_proof_valid with the corresponding
valid proof. Observe that we make use of the vm_compute reduction machine: the default
one used by Coq’s type-checker is not efficient enough for executing the commerge algorithm
on this nature of problems.

We now detail the list of the tactics that, when applied to the initial sequent with goal
mono_monomPF , empty context and no premise, return a sequent of goal FTrue .

1. First, the tactic IntroAll acts as the Coq tactic intros : it repeats the following
modifications until this is not possible anymore. If the goal is of shape Forall Q f , then
the new goal will be f , while the quiver Q is added to the context. If the goal is of
shape f1 -=> f2 , then the new goal will be f2 , and the formula f1 is added to the
premises. The tactic also destructs conjunctions and existential quantifiers in the new
premises.
Let us detail the sequent obtained after applying this first tactic in our case. The first
quiver added to the context is .

.
. . We denote by D0 the associated variable. Next, the

two formulas commute(D0) and Mono(restr .
. .(D0)) are added to the premises and are

FSCD 2024



7:16 Machine-Checked Categorical Diagrammatic Reasoning

denoted by H0 and H1 respectively. At this point, the goal is Mono(restr .
.

. (D0)), whose
full expression is written in Example 7. Then, the quiver . . . is added to the context;
let us denote by D1 the associated variable. Finally, the three formulas restr. . .(D1) ≈
restr .

.
. (D0), commute(restr. . .(D1)) and commute(restr. . .(D1)) are added to

the premises, and the final goal is commute(restr ... (D1)).
2. From the premise restr. . .(D1) ≈ restr .

.
. (D0), we can derive the existence of another

variable D2, of sort . .
.

. which verifies

restr ..
.

. (D2) ≈ D1 and restr. .
.

.(D2) ≈ D0.

The tactic Merge adds the new variable D2 and the two above equalities to the sequent.
Its validity is proven using the axiom of existence of pushouts of diagrams that comes
from the category_diagram_type structure. In addition, the tactic substitutes all the
occurences of D0 and D1 in the current sequent (including the goal) to restrictions of D2.
Thus, D0 and D1 can be forgotten until the end of the proof.

3. Following the diagrammatic proof of Lemma 1, we need to introduce the composition
of the two arrows corresponding to the sub-quiver ..

.
. . It suffices to specialize the

axiom of composition with these morphisms. The tactic ApplyEFT aims to specialize a
formula, here the formula Comp corresponding to CompE in (1), to certain arguments,
before simplifying the premises (in particular by eliminating conjunctions and existential
quantifiers). After applying this tactic, we get a new variable of sort .

.
. , say D3, and

a new premise: restr ..
.

.(D2) ≈ restr .
.

. (D3).

4. Once again, thanks to this premise, we can use the Merge tactic to merge D2 and D3

and to gather all the data in one variable, say D4, of sort . .
.

. .
5-8. At this point of the proof, the goal is: commute(restr .

.
.. (D4)). The premises contain

the commutativity of the restrictions of D4 to the following sub-quivers: . .
.

. , ..
.

.
, ..

.
. and ..

.
. . In order to conclude, we have to use the premise expressing that

restr.
.

. .(D4) is a monomorphism, together with the commutativity of restr .
.. .(D4)

and of restr .
.. .(D4). To obtain the latter, we shall use the tactic Comauto .

This tactic has two arguments: a variable D of sort Q, for some quiver Q, and a sub-quiver
Q0 of Q. Its purpose is to add the premise commute(restrQ0(D)) to the sequent after
checking its correctness. It relies on the algorithm described in Section 4.1 which allows us
to get the commutativity of a diagram from the commutativity of some of its subdigrams.
The tactic looks for every premise of the form commute(restrQ′(D)) for some sub-quiver
Q′ of Q (actually the premise might contain a composition of several restrictions) and
deduces from it that restrQ0(D) restricted to Q0 ∩ Q′ commutes. It then tries to deduce
the commutativity of restrQ0(D) by applying the decision procedure of the commerge
problem.
From this description of the tactic, we see that we cannot directly get the commutativity
of restr .

.. .(D4) and of restr .
.. .(D4). This is why we begin with checking the

commutativity of restr. .
.

.(D4) and of restr. .
.

.(D4) thanks to two calls of the

tactic Comauto . Then, two more calls of Comauto suffice to get the commutativity of
restr .

.. .(D4) and of restr .
.. .(D4).

9-12. The final step of the proof consists in using the premise H1, that is, the fact that
restr .

. .(restr. .
.

.(restr. .
.

.(D4))) is a monomorphism. This long list of restrictions
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has been automatically produced by the Merge tactics. Following the notations of
Example 7, we will apply this premise to w := restr .

.. .(D4)
. The first thing we need

to check is

restr. . .(restr .
.. .(D4)) ≈ restr .

. .(restr. .
.

.(restr. .
.

.(D4))).

Fortunately, the tactic ApplyFT automatically put the formula H1 into a normal form,
that is, each term is simplified as a single restriction of a variable to a certain sub-quiver.
Hence, after normalization, the above formula just follows from the reflexivity of equality.
This formula is added to premises using the tactic ApplyEFT on the reflexivity axiom.
All the assumptions to complete the proof are in the premises, and the tactic ApplyFT
specializes the premise Mono(restr. . .(D4)) to the right arguments. Finally, the tactic
ExactN ends the proof, acting just as the standard exact Coq tactic.

6 Conclusion

We have described a first step towards the implementation of a generic library for writing
reliable categorical diagrammatic proofs, available online [10]. Such a library can serve two
purposes. The first one is to assist mathematician authors in writing reliable proofs, the other
is to provide the mandatory infrastructure for expanding the existing corpus of formalized
category theory, but also of formalized algebraic topology, and homological algebra. As
expressed by the Mathlib community [15], the lack for such a tool is major showstopper for
the latter. However, the current state of the present library arguably only provides a low
level language for categorical statements and the next steps should enrich the collection of
formula combinators, e.g. for limits, pullbacks, etc. as well as the gallery of diagram models,
in particular for existing Coq formal libraries of category theory [3, 8, 27, 26]. In parallel, we
would develop a interactive graphical interface so as to make the tools more user-friendly.

Independence from any library of category theory is achieved by hosting a dedicated proof
system inside that of a proof assistant, Coq in this case, following the classic formalization
technique of deep-embedding [4]. Dependent tuples allow for a structural duality property
for this language. We are not aware of any comparable formal-proof-producing automation
tactics for proving the commutativity of diagrams, nor for performing duality arguments.
However, some existing libraries of formalized category theory, notably Mathlib [6], for the
Lean proof assistant, and Unimath [26], a Coq library for univalent mathematics, provide
some tools to ease proofs by diagram chasing, either with brute-force rewrite-based tactics,
or with a graphical editor for generating proof scripts [13]. Gross et al.’s experience report [9]
advocates the use of definitional equality for duality arguments, although without employing
deep embeddings or quivers nor discussing diagrammatic reasoning. The other experience
reports we are aware of on formalizing category theory, e.g., Carette and Hu’s one in Agda [12]
or Jacobs and Timany’s one in Coq [25], do not include any specific support for diagrammatic
proofs either. We refer the interested reader to the later article for a survey of existing
libraries of formalized category theory, which remains quite relevant for the purpose of
this discussion. A notable more recent endeavor is the Mathlib chapter on category theory.
The later serves as a basis for Himmel’s formalization of abelian categories in Lean [11],
including proofs of the five lemma and of the snake lemma, and proof (semi-)automation
tied to this specific formalization. Duality arguments are not addressed. Also in the Mathlib
ecosystem, Monbru [21] also discusses algorithmic issues related to the automation of diagram
chases, and provides incomplete heuristics for generating automatically proofs expressed in a
pseudo-language.
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7:18 Machine-Checked Categorical Diagrammatic Reasoning

Other computer-aided tools exist for diagrammatic categorical reasoning, with a specific
emphasis on the graphical interface. Notably, the accomplished Globular/homotopy.io proof
assistant [2, 7] stems from similar concerns about the reliability of diagrammatic reasoning,
but for higher category theory. It is geared towards graphical representation rather than
formal verification and implements various efficient algorithms for constructing and comparing
diagrams in higher categories. Barras and Chabassier have designed a graphical interface for
diagrammatic proofs which also provides a graphical interface for generating Coq proof scripts
of string diagrams, and visualizing Coq goals as diagrams [5]. But up to our knowledge, this
tool does not include any specific automation.
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Abstract
We provide a new, purely syntactical proof of strong normalization for the simply typed λ-calculus.
The result relies on a novel proof of the equivalence between typability in the simple type system and
typability in the uniform intersection type system (a restriction of the non-idempotent intersection
type system). For formal verification, the equivalence is mechanized using the Coq proof assistant.

In the present work, strong normalization of a given simply typed term M is shown in four steps.
First, M is reduced to a normal form N via a suitable reduction strategy with a decreasing measure.
Second, a uniform intersection type for the normal form N is inferred. Third, a uniform intersection
type for M is constructed iteratively via subject expansion. Fourth, strong normalization of M is
shown by induction on the size of the type derivation.

A supplementary contribution is a family of perpetual reduction strategies, i.e. strategies which
preserve infinite reduction paths. This family allows for subject expansion in the intersection type
systems of interest, and contains a reduction strategy with a decreasing measure in the simple type
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1 Introduction

Simple Types and Strong Normalization. Strong normalization (SN) of the simply typed
λ-calculus (STLC) is arguably one of the cornerstones of Type Theory. Many proofs of this
fundamental property have been proposed during the past decades; some are achieved by
semantical means, while others adopt syntactic (inductive) approaches. On the semantical
side, many SN results for typed calculi, including Gödel’s system T, system F, and STLC,
are obtained using reducibility models: these are essentially variations of the classical method
due to Tait [28], or of the subsequent refinements based on Girard’s reducibility candidates
[15, 29, 13]. Due to their general nature, such methods often do not take into account
specificities of the problem at hand, which could entail more direct and instructive SN proofs.

An alternative line of work [20, 19, 25, 26, 32, 1] focuses instead on a fine-grained analysis
of combinatorial properties of term rewriting and type assignment systems. Such syntactical
approaches do not always scale to more expressive calculi, but they provide insights on the
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8:2 Subject Expansion in Uniform Intersection Types

reduction process, allowing for decreasing measures for typed terms. The proposal at hand is
a further step in this direction: our goal is to provide an accessible inductive proof of SN for
STLC, capitalizing on results about intersection type systems.

Uniform Intersection Types. Pioneered by Coppo and Dezani in the late ’70s [5, 6, 7],
intersection type systems can assign to terms more than one type: writing M : A ∩ B

intuitively means that the term M is assigned an intersection of the types A and B. The
intersection connective ∩ can be understood as a notation for a set of types; if the idempotency
of ∩ is dropped, i.e. A ∩ A ̸= A, intersection becomes a notation for a multiset of types,
yielding the so called non-idempotent intersection types (also known as quantitative types).
As their name suggests, non-idempotent type systems have been extensively used to study
quantitative properties of programs, such as the number of reduction steps needed to reach a
normal form [14, 10, 4]. It is well known that intersection type systems characterize various
forms of termination, i.e. a term can be assigned an intersection type if and only if it is
(strongly) normalizing [24, 8]; consequently, the type inference problem for such systems is
inherently undecidable. An exception to this general rule is obtained by considering uniform
intersection types, a particular restriction of non-idempotent intersection types; indeed, it
is possible to design a decidable system assigning a quantitative type to all and only the
simply typable terms [23]. The correspondence between the simple and uniform systems was
originally established via a type inference algorithm for the uniform case: however, even if
the procedure shares many similarities with the classical unification algorithm, the proof
of termination in the quantitative setting relies precisely on strong normalization of simply
typed terms. This makes such an approach not viable for the purposes of the present work.

Related work and contributions of this paper. Even when restricted to work adopting a
syntax-oriented viewpoint, the literature about SN of STLC is quite extensive. We cannot
hope to provide a detailed account here: we just point out some of the most influential
contributions exploring ways to infer strong normalization of one notion of reduction from
weak normalization of a finer notion of reduction, possibly after performing a translation into
a suitable calculus. Some seminal ideas can be tracked back to Nederpelt [20] and Klop [19];
their techniques can be directly applied to STLC, and have been (more or less implicitly)
the starting point for a number of remarkable investigations [25, 26, 32]. One of the most
delicate aspects in relating weak and strong normalization is the treatment of term-erasing
reductions (see [16] for a study of the connections between different proof techniques and
translations into the λI-calculus, where no erasure can occur): Nederpelt and Klop’s idea
is to retain the subterm that would have been discarded; another solution is to delay the
erasing steps as much as possible. In this sense, of great inspiration has been the research
carried out by Kfoury and Wells [18], from which we borrow the notion of γ-reduction (see
also [17] for a brief comparison with other methods, most notably one by de Groote [11]).
Lastly, we mention recent work [1], which suggests that the search for decreasing measures
for STLC is far from over.

Our contributions to this line of research are three-fold. First, the present work shows that
proving SN of STLC boils down to proving that all simply typable terms are uniformly typable.
This correspondence, whose novel proof is of some interest in itself, greatly simplifies the
arguments commonly used when going from weak to strong normalization. In particular, we do
not need to show that normalization w.r.t. the newly introduced notions of reduction implies
β-strong normalization: this result comes for free thanks to the properties of quantitative
type systems.
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The second contribution is the identification of a family of perpetual reduction strategies,
that is, strategies that diverge whenever possible [31]. We do so by carefully designing
reductions for which it is easy to obtain inductive proofs of subject expansion in intersection
type systems. Remarkably, this family contains Barendregt’s F∞ strategy, which was used to
show that all strongly normalizing terms can be typed by a rigid intersection (i.e. not enjoying
associativity, commutativity nor idempotency) type system without nullary intersection [22];
our approach may also be understood as an extension of such a proof method.

Third, all new results we present are mechanically verified: indeed, being fully constructive,
our technique is well-suited to be formalized in a proof assistant. Experience tells that the
syntactical study of term rewriting and quantitative type systems, when done exclusively
by hand, is particularly error-prone; we believe that, by getting rid of this eventuality, the
mechanization constitutes a valuable addition.

Paper organization. The present work is structured as follows:
Section 2: Preliminaries on the λ-calculus, definition of the IγK′-reduction.
Section 3: Measure-based weak IγK′-normalization of simply typed terms (Theorem 15).
Section 4: Uniform intersection type system (Definition 21), uniform typability of β-normal

forms (Lemma 24), subject expansion for the IγK′-reduction (Lemma 27, Lemma 30, and
Lemma 31), and consequently, strong normalization of simply typed terms (Theorem 34).

Section 5: Family of perpetual reduction strategies (Corollary 40) via generalization of sub-
ject expansion properties to the non-idempotent intersection type system (Theorem 39).

Section 6: Overview over the mechanization in the Coq proof assistant.
Section 7: Concluding remarks.

2 Preliminaries on Calculus and Reductions

Let us fix the basic notation for the remainder of the paper (following standard literature [2]).
Terms of the λ-calculus are generated by the following grammar:

M, N ::= x | λx.M | MN

where x ranges over a countable set of term variables. FV(M) denotes the set of free variables
of the term M .

The β-reduction, denoted →β , is the contextual closure of the rule

(λx.M)N 7→β M [N/x]

where M [N/x] denotes the capture-free substitution of x by N in M . A term of shape
(λx.M)N is called a β-redex. Such β-redexes are partitioned into I-redexes and K-redexes,
depending on whether the variable x occurs free in M or not; this distinction is of central
importance in the subsequent sections. Formally, the reductions →I and →K are, respectively,
the contextual closure of the rules:

(λx.M)N 7→I M [N/x] if x ∈ FV(M) (λx.M)N 7→K M if x ̸∈ FV(M)

Given a binary relation →r, we denote its reflexive, transitive closure with →∗
r . Given two

binary relations →r1 and →r2 , we write →r1r2 for →r1 ∪ →r2 ; clearly →β = →IK = →I ∪ →K.
A term is in r-normal form when it does not contain any r-redex; it is (weakly) r-normalizing
if it can be reduced to a term in r-normal form by a r-reduction sequence; it is strongly
r-normalizing if every r-reduction sequence starting from it eventually stops.
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8:4 Subject Expansion in Uniform Intersection Types

We introduce the following reduction →K′ (Definition 1) as a refinement of the K-reduction.
The reduction →K′ can only contract K-redexes in specific positions, motivated by two goals.
First, K′-expansion should preserve strong normalization, allowing for subject expansion in
suitable intersection type systems. Second, a term in IK′-normal form should be β-normal,
otherwise IK′-reduction would get stuck on β-reducible terms.

▶ Definition 1 (→K′).
1. If N is in β-normal form and x ̸∈ FV(M), then (λx.M)N →K′ M .
2. If M →K′ N , then λx.M →K′ λx.N .
3. If N1 →K′ N2, then xM1 . . . MnN1 →K′ xM1 . . . MnN2, where n ≥ 0.
4. If N1 →K′ N2 and x ̸∈ FV(M), then (λx.M)N1 →K′ (λx.M)N2.
5. If M1M2 →K′ M3, then (M1M2)N →K′ M3N .

The following Example 2, Remark 3, and Remark 4 give insight into the relationship
between →K′ and perpetual reduction strategies.

▶ Example 2. Consider the term ω = λz.zz and the term M = (λx.(λy.x)(xx))ω, which is not
strongly β-normalizing because of the sequence M →β (λy.ω)(ωω) →β (λy.ω)(ωω) →β . . .

The term M K-reduces to (λx.x)ω for which the infinite β-reduction sequence is lost. However,
the term M cannot be K′-reduced.

▶ Remark 3. By proving subject expansion for K′-reduction in suitable intersection type
systems, we obtain that any IK′-reduction strategy is perpetual, thanks to the characterization
of strongly normalizing terms via typability (see for example [2, Theorem 17.2.15] for the
idempotent case, and [4, Corollary 8.4] for the non-idempotent one).
▶ Remark 4. The IK′-reduction admits the F∞ perpetual reduction strategy [31, Defini-
tion 3.21].

The following Lemma 5 shows that →IK′ cannot get stuck on →β-reducible terms.

▶ Lemma 5. If M →β N then there exists N ′ such that M →IK′ N ′.

Proof. If M contains at least one I-redex, the result is immediate. Otherwise, M can contain
K-redexes only, and we proceed by induction on M . Case M = x vacuously holds, while case
M = λx.P follows by inductive hypothesis and point (2) of Definition 1. Lastly, consider the
case M = PQ is an application.

If P = x then by inductive hypothesis and point (3) of Definition 1 we can reduce Q.
If P = λx.S then PQ is a K-redex and we distinguish two subcases:

if Q is in normal form, by point (1) of Definition 1 we can reduce PQ;
if Q is not in normal form, by inductive hypothesis and point (4) of Definition 1 we
can reduce Q.

If P = S1S2 we distinguish two subcases:
if P is in normal form, then Q is not in normal form; by inductive hypothesis and
point (3) of Definition 1 we can reduce Q;
if P is not in normal form, by inductive hypothesis and point (5) of Definition 1 we
can reduce P . ◀

The last essential ingredient of the present work is the commutation rule

(λx.λy.M)N 7→γ λy.(λx.M)N,

whose contextual closure we denote →γ [18, Definition 3.1].
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A γ-reduction step can be understood as the combination of one β-reduction step and
one β-expansion step, rearranging the structure of a term, without altering its “meaning”.
The idea is that γ-reduction can be used to postpone K-redexes, possibly exposing I-redexes,
as illustrated by the following Example 6.

▶ Example 6. Consider the term M = (λy.λx.x)wz. Using the IK′-reduction, the term M is
reduced to a normal form as follows: M →K′ (λx.x)z →I z. Using γ-reduction, the K′-redex
can be postponed: M →γ (λx.(λy.x)w)z →I (λy.z)w →K′ z.

3 Simple Types and a Decreasing Measure

In this section we show that simply typed terms are IγK′-normalizing. Similarly to the
approach by Kfoury and Wells [18], we proceed in two steps. First, given a simply typed
term we construct an Iγ-normal form using a decreasing measure for rightmost Iγ-redex
contraction. The decreasing measure is different from the one by Kfoury and Wells [18,
Lemma 4.3], and does not require a specific interleaving of I-reductions and γ-reductions
(cf. ⋆-reduction [18, Definition 3.8]). Second, we iteratively contract K′-redexes in order to
construct a β-normal form.

Let us briefly recollect the simple type assignment system.

▶ Definition 7 (Simple Types). The set TS of simple types is defined by the grammar
σ, τ ::= a | σ → τ , where a ranges over a countable set of type variables.

A type environment is a finite, functional set of pairs x : σ, where x is a term variable
and σ a simple type; environments are ranged over by Γ, ∆, Φ, Ψ. If x : σ ∈ Γ, then Γ(x) = σ;
the domain of an environment Γ is dom(Γ) = {x | x : A ∈ Γ}; Γ and ∆ agree, written
Γ ⌣ ∆, if Γ(x) = ∆(x) for all x ∈ dom(Γ) ∩ dom(∆). The writing Γ, ∆ is short for Γ ∪ ∆
in case dom(Γ) ∩ dom(∆) = ∅; the writing Γ, x : σ is a special case of such notation when
x ̸∈ dom(Γ).

▶ Definition 8 (Simple Type Assignment System). The simple type assignment system S
derives judgments of shape Γ ⊢ M : σ, where Γ is an environment, M is a term, and σ is a
simple type. The rules of S are as follows:

Γ, x : σ ⊢ x : σ
(var) Γ, x : σ ⊢ M : τ

Γ ⊢ λx.M : σ → τ
(→I)

Γ ⊢ M : σ → τ ∆ ⊢ N : σ Γ ⌣ ∆
Γ ∪ ∆ ⊢ MN : τ

(→E)

Type derivations are ranged over by Π, Σ, Θ. We often write Γ ⊢ M : σ as a shorthand
for the existence of a derivation proving Γ ⊢ M : σ, and when we want to name a particular
derivation with such conclusion we write Π ▷ Γ ⊢ M : σ. Additionally, each subterm N of M

is associated with exactly one judgment ∆ ⊢ N : τ in Π, and we may annotate the assigned
simple type τ onto N , by writing Nτ .

▶ Lemma 9. If Γ ⊢ M : σ and M →IγK′ N , then Γ ⊢ N : σ.

Proof. For →IK′ ⊆ →β the property follows by subject reduction ([2, Proposition 1.2.6]).
For →γ the property follows from the generation lemma ([2, Proposition 1.2.3]). ◀

The measure meas(M) of a simply typed term M is a multiset of pairs (m, n) of natural
numbers, where m carries information about the size of involved types, and n is the depth of
the redex w.r.t. abstraction. Multisets are written in square brackets, and multiset union is
denoted ⊎, taking multiplicities into account.
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8:6 Subject Expansion in Uniform Intersection Types

Each pair in the multiset meas(M) is associated with one Iγ-redex in M , and is called
rank of the redex. If a subterm (λx.λy.M)σ1→σ2→τ N is both a γ-redex and an I-redex, then
its rank is that of the I-redex. Correspondingly, we prefer I-redexes in case of ambiguity for
the rightmost redex.

▶ Definition 10 (Measure of a simply typed λ-term).
The size of a simple type is defined as:

size(a) = 1 size(σ → τ) = 1 + size(σ) + size(τ)

The measure of a simply typed term with corresponding simple type annotations is:

meas(x) = [ ]
meas(λx.M) = [(k, n + 1) | (k, n) ∈ meas(M)]
meas((λx.M)σ→τ N) = meas(λx.M) ⊎ meas(N) ⊎

[(size(σ → τ), 0)] if x ∈ FV(M)
meas((λx.λy.M)σ1→σ2→τ N) = meas(λx.λy.M) ⊎ meas(N) ⊎

[(1 + size(σ2 → τ), 0)] if x ̸∈ FV(M)
meas(MN) = meas(M) ⊎ meas(N) otherwise

Pairs are ordered lexicographically and multisets are ordered by the multiset ordering [12].
The following Lemma 11 shows that rightmost Iγ-redex contraction is measure-decreasing.

▶ Lemma 11. If M, N are simply typed terms such that M →Iγ N by contracting the
rightmost (in the textual presentation) redex, then meas(N) < meas(M) by the multiset order.

Proof. Since we reduce the rightmost Iγ-redex, no Iγ-redex is duplicated. Therefore, it
suffices to show that each new Iγ-redex created by the reduction is of smaller rank than that
of the contracted redex.

First, we consider cases in which the contraction of an I-redex (as the rightmost Iγ-redex)
may create new redexes [21].

Case (λx.M)σ→τ N →I M [N/x] and there is a subterm xP of M .
In case N = λy.Q and y ∈ FV(Q) we have that σ = σ1 → σ2 for some σ1, σ2 and
size(σ1 → σ2) < size(σ → τ). Therefore, the created I-redex (λy.Q)σ1→σ2P is of
smaller rank (regardless of its depth in M).
In case N = λy.λz.Q and y ̸∈ FV(Q) we have that σ = σ1 → σ2 → σ3 for some
σ1, σ2, σ3 and 1 + size(σ2 → σ3) < size(σ → τ). Therefore, the created γ-redex
(λy.λz.Q)σ1→σ2→σ3P is of smaller rank.

Case (λx.x)(σ→τ)→(σ→τ)NP →I NP .
In case N = λy.Q and y ∈ FV(Q) the created I-redex (λy.Q)σ→τ P is of smaller rank.
In case N = λy.λz.Q and y ̸∈ FV(Q) the created γ-redex (λy.λz.Q)σ→τ P is of smaller
rank.

Case (λx.λy.M)σ1→σ2→τ NP →I (λy.M [N/x])σ2→τ P and y ∈ FV(M).
Since size(σ2 → τ) < size(σ1 → σ2 → τ), the created I-redex is of smaller rank.
Case (λx.λy.λz.M)σ1→σ2→σ3→τ NP →I (λy.λz.M [N/x])σ2→σ3→τ P and y ̸∈ FV(M).
Since 1 + size(σ3 → τ) < size(σ1 → σ2 → σ3 → τ), the created γ-redex is of smaller rank.

Second, we consider cases in which the contraction of a γ-redex (as the rightmost Iγ-redex)
may create new redexes. The contracted γ-redex cannot be an (otherwise preferred) I-redex.

Case (λx.λy.λz.M)σ1→σ2→σ3→τ N →γ λy.(λx.λz.M)σ1→σ3→τ N such that x ̸∈ FV(M).
Since 1 + size(σ3 → τ) < 1 + size(σ2 → σ3 → τ), the created γ-redex is of smaller rank.
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Case (λx.λy.M)σ1→σ2→τ NP →γ (λy.(λx.M)N)σ2→τ P such that x ̸∈ FV(M), y ∈
FV(M). Since size(σ2 → τ) < 1 + size(σ2 → τ), the created I-redex is of smaller
rank. The subterm (λx.M)N is not an I-redex because x ̸∈ FV(M); the case in which
(λx.M)N is a new γ-redex is already treated above.
Case (λx.(λy.λz.M)σ2→σ3→τ N)P →γ (λx.λz.(λy.M)N)σ1→σ3→τ P such that y ̸∈ FV(M),
x ̸∈ FV(M) ∪ FV(N). The contracted γ-redex is of rank (1 + size(σ3 → τ), n + 1) for some
n, and the created γ-redex is of smaller rank (1 + size(σ3 → τ), n). ◀

▶ Remark 12. The last case in the above proof of Lemma 11 explains the definition of the
rank of a γ-redex. In particular, the rank of a γ-redex does not depend on the type of the
first abstracted variable, and it does depend on the depth of the γ-redex w.r.t. abstraction.

The following Lemma 13 is a weaker variant of the strong normalization property of
Iγ-normal forms [18, Lemma 3.10].

▶ Lemma 13. If M, N are terms such that M →K′ N by contracting the rightmost K ′-redex
and M is Iγ-normal, then N is Iγ-normal and N has fewer β-redexes than M .

Proof. Consider the K′-redex (λx.P )Q in M . The term P cannot be an abstraction, otherwise
(λx.P )Q would have been a γ-redex, contradicting the assumption that M is in Iγ-normal
form. Therefore, contracting (λx.P )Q to P introduces neither β-redexes nor γ-redexes. ◀

The combination of Lemma 11 and Lemma 13 provides a normalization strategy (Theo-
rem 15) for simply typed terms, which is illustrated in the following Example 14.

▶ Example 14. Consider the annotated term M = (λy.λx.x)b→a→awz from Example 6,
which can be a assigned the type a in the type environment {z : a, w : b}. The term M with
measure meas(M) = [(4, 0)] can be reduced to a normal form as follows:

(λy.λx.x)b→a→awz →γ (λx.(λy.x)b→aw)a→az →I (λy.z)b→aw →K′ z

The initial γ-reduction postpones the top-level K-redex, exposes an I-redex, and decreases
the measure to meas((λx.(λy.x)b→aw)a→az) = [(3, 0)]. The subsequent I-reduction leaves
only K-redexes and the measure decreases to meas((λy.z)b→aw) = [ ]. Finally, the term is
normalized using the K′-reduction.

▶ Theorem 15. Given a simply typed term M , there exists a β-normal form N such that
M →∗

IγK′ N .

Proof. By induction on meas(M), repeatedly contracting the rightmost Iγ-redex we obtain a
Iγ-normal form P by Lemma 11. By induction on the number of K-redexes in P , repeatedly
contracting the rightmost K′-redex (we cannot get stuck by Lemma 5) we obtain a β-normal
form by Lemma 13. ◀

▶ Remark 16. Of course, we can show Theorem 15 using a strong normalization argument
for the simply typed λ-calculus together with Lemma 5. However, it is methodologically
intriguing to utilize measure-based weak normalization in pursuit of typability in a non-
idempotent intersection type system (which constitutes a strong normalization proof).
▶ Remark 17. The advantage of the additional γ-reduction is apparent in the design of a
type-based decreasing measure for IK′-normalization. Consider the term (λx.uxx)σ1→τ1(vM)
where M = (λy.λz.N)σ2→σ2→τ2ww such that y ̸∈ FV(N) and z ∈ FV(N). Since x ∈ FV(uxx)
we cannot contract the K-redex occurring in M using K′-reduction. However, contracting
the I-redex (λx.uxx)σ1→τ1(vM) →I u(vM)(vM) duplicates M . Contracting each redex
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8:8 Subject Expansion in Uniform Intersection Types

copy in M results in two new I-redexes (λz.N)σ2→τ2w. In sum, contracting an I-redex
with the associated type σ1 → τ1 results in two copies of an I-redex with the associated
(arbitrary large) type σ2 → τ2. For reference, the F∞ [31, Definition 3.21] perpetual
reduction strategy also involves the described duplication. In comparison, by γ-reduction
(λy.λz.N)ww →γ (λz.(λy.N)w)w the K-redex (λy.N)w is delayed and the I-redex is exposed
for contraction (without duplication).

4 Uniform Intersection Types

As previously mentioned, uniform intersection types are a restriction of non-idempotent
intersection types based on the notion of uniform multiset. From now on we will frequently
use indexed types, where indexes are natural numbers: the symbols I, J will denote sets of
indexes. For the sake of simplicity we adopt the same notation for types and uniform types
(resp. multisets and uniform multisets), as the intended meaning can be easily inferred from
the context.

▶ Definition 18.
Non-idempotent intersection types (TI) are inductively defined by the grammar:

Intersection Types A, B, C ::= a | µ → A

Multisets µ, ν ::= [A1, . . . , An] (n ≥ 1)

Equivalence relation ∼ on intersection types (uniformity):

a ∼ a for all type variables a

µ → A ∼ ν → B iff µ ∼ ν and A ∼ B

[Ai]i∈I ∼ [Bj ]j∈J iff Ai ∼ Bj for all i ∈ I, j ∈ J

Uniform intersection types (TU ) are inductively defined by the grammar:

Unif. Int. Types A, B, C ::= a | µ → A

Unif. Multisets µ, ν ::= [A1, . . . , An] ∀i, j ∈ {1, . . . , n}.Ai ∼ Aj

Remark that in both grammars the empty multiset is not allowed. The types A =
[[a, a, a] → b, [a] → b] → c and B = [[a, a] → b] → c are uniform, whereas [a, [a] → b] → c is
not; moreover, observe that A ∼ B. The intuition is that uniform types are the quantitative
version of simple types; two uniform types are equivalent if they correspond to the same
underlying simple type. Given a uniform type, the underlying simple type can be easily
recovered by means of a translation that “forgets” non-idempotency.

▶ Definition 19. The collapse translation c : TI → TS is a partial function recursively
defined as:

c(a) = a

c([A1, . . . , An] → B) = σ → c(B) if c(A1) = · · · = c(An) = σ

▶ Lemma 20.
The collapse translation c(·) is a total function on TU .
If A, B ∈ TU , then A ∼ B if and only if c(A) = c(B).

Proof. The two points are proved at the same time, by mutual induction on the structure of
uniform types and the definition of collapse translation. ◀
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We are now ready to introduce the uniform intersection type assignment system U . In this
setting, we say that a type environment Γ is uniform if it associates each term variable to a
uniform multiset. If Γ and ∆ are two such environments, Γ ∼ ∆ means that Γ(x) ∼ ∆(x) for
all x ∈ dom(Γ)∩dom(∆). The union of environments is defined as (Γ0⊎Γ1)(x) = Γ0(x)⊎Γ1(x)
if x ∈ dom(Γ0) ∩ dom(Γ1), while (Γ0 ⊎ Γ1)(x) = Γi(x) if x ∈ dom(Γi) and x ̸∈ dom(Γ1−i).

▶ Definition 21. The uniform intersection type assignment system U , assigning types in
TU ⊂ TI to terms, consists of the following rules:

A ∈ µ Γ and µ uniform
Γ, x : µ ⊢u x : A

(var) Γ, x : µ ⊢u M : A

Γ ⊢u λx.M : µ → A
(→I)

Γ0 ⊢u M : [A1, . . . , An] → B (Γi ⊢u N : Ai)1≤i≤n ∀i, j ∈ {0, . . . , n}.Γi ∼ Γj⊎n
i=0 Γi ⊢u MN : B

(→E)

The full non-idempotent intersection type assignment system, which we call system I, is
easily obtained from system U by removing the uniformity constraint on multisets. It is clear
that each derivation in system U is also a valid derivation in system I; we use the symbol ⊢i

to explicitly distinguish judgments in system I.
The collapse translation is naturally extended to uniform multisets and uniform type

environments, so that the translation of a derivation in system U is a derivation in system S.

▶ Definition 22. The collapse translation c(Π) of a derivation Π ▷ Γ ⊢u M : A is the simple
type derivation inductively defined as follows:

If Π ends with a (var) rule, i.e. Π ▷ Γ ⊢u x : A, then c(Π) ▷ c(Γ) ⊢ M : c(A).
If Π ends with a (→I) rule, i.e. has shape:

Π0 ▷ Γ, x : µ ⊢u N : B

Π ▷ Γ ⊢u λx.N : A = µ → B then
c(Π0) ▷ c(Γ), x : c(µ) ⊢ N : c(B)

c(Π) ▷ c(Γ) ⊢ λx.N : c(A) = c(µ) → c(B)

If Π ends with a (→E) rule, i.e. has shape:

Π0 ▷ Γ0 ⊢u P : [B1, . . . , Bn] → A (Πi ▷ Γi ⊢u Q : Bi)1≤i≤n

Π ▷ Γ ⊢u PQ : A

then, letting c(Πi) ▷ c(Γi) ⊢u Q : c(Bi) and recalling that c(Bi) = τ for all 1 ≤ i ≤ n:

c(Π0) ▷ c(Γ0) ⊢ P : τ → c(A) (
⋃n

i=1 c(Γi)) ⊢ Q : τ

c(Π) ▷ c(Γ) ⊢ PQ : c(A) where c(Γ) =
⋃n

i=0 c(Γi)

▶ Lemma 23 ([23, Theorem 34]). Π ▷ Γ ⊢u M : A implies c(Π) ▷ c(Γ) ⊢ M : c(A).

Showing the converse, namely that all simply typable terms can also be assigned a
uniform intersection type, is not as easy. In what follows we provide an alternative proof of
this claim, adopting a dual approach w.r.t. previous work [23]: instead of reasoning about
term reduction, we reason about term expansion. Additionally, strong normalization is a
consequence in our case, and not a prerequisite [23, Theorem 25].

4.1 Uniform Typability of Normal Forms
As a first step, we show that system U can assign a uniform type to all simply typable terms
in β-normal form.
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▶ Lemma 24. If Σ ▷ Γ ⊢ M : σ and M is in β-normal form, then there exists Π ▷ Γ′ ⊢u M : A

such that c(Π) = Σ.

Proof. By induction on the term M . Recall that β-normal forms are defined by the grammar:
M, N ::= λx.M | xM1 . . . Mn where n ≥ 0.

Case M = x is immediate, and case M = λx.N follows by inductive hypothesis. Lastly,
consider the case M = xM1 . . . Mn such that n ≥ 1 and we have Σ ▷

⋃n
i=0 Γi ⊢ xM1 . . . Mn : σ.

Then there exist Σ0 ▷ Γ0 ⊢ x : τ1 → . . . → τn → σ and Σi ▷ Γi ⊢ Mi : τi (1 ≤ i ≤ n) such
that Γi ⌣ Γj for all i, j ∈ {0, . . . , n}. By inductive hypothesis there are Πi ▷ Γ′

i ⊢u Mi : Bi

such that c(Πi) = Σi, and consequently c(Γ′
i) = Γi and c(Bi) = τi (1 ≤ i ≤ n). Moreover, it

is easy to build Π0 ▷ Γ′
0 ⊢u x : [B1] → . . . → [Bn] → A such that c(Γ′

0) = Γ0 and c(A) = σ,
thus satisfying c(Π0) = Σ0. Remark that

c([B1] → . . . → [Bn] → A) = c(B1) → . . . → c(Bn) → c(A) = τ1 → . . . → τn → σ

Since c(Γ′
i) = Γi and Γi ⌣ Γj , we know that Γ′

i(y) ∼ Γ′
j(y) for all y ∈ dom(Γ′

i) ∩ dom(Γ′
j)

(i, j ∈ {0, . . . , n}). Therefore, we can use the various Πi (0 ≤ i ≤ n) to build a derivation
Π ▷

⊎n
i=0 Γ′

i ⊢u xM1 . . . Mn : A such that c(Π) = Σ. ◀

4.2 Typability-preserving Expansions
Now that we know that simply typable β-normal forms are uniformly typable, the crucial
step is showing that (simply typed) subject expansion w.r.t. →I, →γ and →K′ preserves
typability in system U . The fact that I-expansion preserves typability in system I is folklore;
here we need to specialize the result to the particular case of system U .

▶ Notation 25. Given Π ▷ Γ ⊢u M : A and ∆ ∼ Γ, we write Π(∆) ▷ Γ ⊎ ∆ ⊢u M : A for the
derivation obtained from Π by weakening.

▶ Notation 26. Let Σ ▷ Γ ⊢ M : σ. If M →β N , we write Σ ⇝ Σ′ ▷ Γ ⊢ N : σ meaning
that Σ′ is obtained from Σ by mimicking the β-reduction on the simple type derivation.1

▶ Lemma 27. Let ΠN ▷ Γ ⊢u N : A. If M →I N and there is Σ ▷ Φ ⊢ M : σ such that
Σ⇝ c(Π(∆)

N ) ▷ Φ ⊢ N : σ for some ∆ ∼ Γ, then Γ ⊢u M : A.

Proof. By induction on the reduction context. Remark that Σ⇝ c(Π(∆)
N ) ▷ c(Γ ⊎ ∆) = Φ ⊢

N : c(A) = σ for some ∆ ∼ Γ implies c(Γ) ⊆ Φ. For the base case, let M = (λx.P )Q →I
P [Q/x] = N and, wlog, assume x ̸∈ FV(Q). We show how to build ΠM ▷ Γ ⊢u M : A starting
from ΠN . The derivation ΠN contains a finite number of subderivations with subject Q: let
them be Θi ▷ Γi ⊢u Q : Bi (i ∈ I = {1, . . . , n}), and let Γ = Γ0 ⊎i∈I Γi. Since Σ⇝ c(Π(∆)

N ),
it must be the case that c(Bi) = c(Bj) for all i, j ∈ I. By Lemma 20 this implies Bi ∼ Bj for
all i, j ∈ I, hence the multiset [Bi]i∈I is uniform. Substituting in ΠN each subderivation Θi

with an axiom x : [Bi] ⊢u x : Bi yields a derivation with conclusion Γ0, x : [Bi]i∈I ⊢u P : A.
Therefore we can build:

Γ0, x : [Bi]i∈I ⊢u P : A
(→I)Γ0 ⊢u λx.P : [Bi]i∈I → A (Γi ⊢u Q : Bi)i∈I (→E)

ΠM ▷ Γ ⊢u (λx.P )Q : A

For the inductive step, consider the contexts in which a reduction may take place:

1 That is: given a subderivation typing (λx.P )Q, substitute the axioms typing x in the subderivation for
P by the subderivation typing Q, so to obtain a subderivation with subject P [Q/x].
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Case M = λx.P →I λx.Q = N . Letting σ = τ1 → τ2 and A = µ → B, the derivations Σ
and ΠN have shape:

Σ0 ▷ Φ, x : τ1 ⊢ P : τ2 (→I)Σ ▷ Φ ⊢ λx.P : τ1 → τ2

Π0 ▷ Γ, x : µ ⊢u Q : B
(→I)ΠN ▷ Γ ⊢u λx.Q : µ → B

Σ⇝ c(Π(∆)
N ) means that Σ0 ⇝ c(Π(∆)

0 ). Therefore by inductive hypothesis there exists
Γ, x : µ ⊢u P : B, from which one obtains ΠM ▷ Γ ⊢u λx.P : µ → B.
Case M = PQ is an application. Let Σ be:

Σ1 ▷ Φ1 ⊢ P : τ → σ Σ2 ▷ Φ2 ⊢ Q : τ
(→E)

Σ ▷ Φ ⊢ PQ : σ

First, consider the case M = PQ →I PR = N . Letting I = {1, . . . , n}, the derivation
ΠN has shape:

Π0 ▷ Γ0 ⊢u P : [Bi]i∈I → A (Πi ▷ Γi ⊢u R : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u PR : A

Σ⇝ c(Π(∆)
N ) means that, for each i ∈ I, Σ2 ⇝ c(Π(∆i)

i ) for some ∆i ∼ Γi. Therefore by
inductive hypothesis there exist Γi ⊢u Q : Bi (i ∈ I), and we conclude.
Now consider the case M = PQ →K′ RQ = N . The derivation ΠN has shape:

Π0 ▷ Γ0 ⊢u R : [Bi]i∈I → A (Πi ▷ Γi ⊢u Q : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u RQ : A

Similarly to the previous scenario, Σ⇝ c(Π(∆)
N ) implies Σ1 ⇝ c(Π(∆0)

0 ) for some ∆0 ∼ Γ0.
Therefore by inductive hypothesis there is Γ0 ⊢u P : [Bi]i∈I → A, and we conclude. ◀

The following Example 28 illustrates subject expansion w.r.t. the I-reduction.

▶ Example 28. Consider M = (λx.yxx)P →I yPP = N . Assuming N is uniformly typable,
let ΠN be the uniform type derivation:

Γ0 ⊢u y : [B1] → [B2] → A Γ1 ⊢u P : B1

Γ0 ⊎ Γ1 ⊢u yP : [B2] → A Γ2 ⊢u P : B2

ΠN ▷ Γ ⊢u yPP : A

Its collapse translation is the simple type derivation c(ΠN ):

c(Γ0) ⊢ y : c(B1) → c(B2) → c(A) c(Γ1) ⊢ P : c(B1)
c(Γ0 ⊎ Γ1) ⊢ yP : c(B2) → c(A) c(Γ2) ⊢ P : c(B2)

c(ΠN ) ▷ c(Γ) ⊢ yPP : c(A)

Saying that there is Σ ▷ Φ ⊢ M : σ such that Σ⇝ c(ΠN ), implies that Σ has shape:

c(Γ0) ⊢ y : τ → τ → c(A) c(Γ1), x : τ ⊢ x : τ

c(Γ0 ⊎ Γ1), x : τ ⊢ yx : τ → c(A) c(Γ2), x : τ ⊢ x : τ

c(Γ), x : τ ⊢ yxx : c(A)
c(Γ) ⊢ λx.yxx : τ → c(A) c(Γ1) ∩ c(Γ2) ⊢ P : τ

Σ ▷ c(Γ) ⊢ (λx.yxx)P : c(A)

where c(Γ) = Φ, c(A) = σ, and c(B1) = c(B2) = τ . In turn, this entails B1 ∼ B2; therefore
the multiset [B1, B2] is uniform, and we can build the uniform derivation ΠM as follows:
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Γ0 ⊢u y : [B1] → [B2] → A x : [B1] ⊢u x : B1

Γ0, x : [B1] ⊢u yx : [B2] → A x : [B2] ⊢u x : B2

Γ0, x : [B1, B2] ⊢u yxx : A

Γ0 ⊢u λx.yxx : [B1, B2] → A Γ1 ⊢u P : B1 Γ2 ⊢u P : B2

ΠM ▷ Γ ⊢u (λx.yxx)P : A

It might not be obvious why one needs the condition Σ⇝ c(Π(∆)
N ) in the statement of

Lemma 27 (and, similarly, in the later Lemma 31). Given ΠN ▷ Γ ⊢u N : A and a term M

such that M →I N , the reader may wonder if a weaker hypothesis, e.g. only requiring
Σ ▷ c(Γ ⊎ ∆) ⊢ M : c(A), would suffice to prove ΠM ▷ Γ ⊢u M : A. The following Example 29
shows that such a formulation would not work in the inductive case, specifically when N is
an application: in order to use the inductive hypothesis, one must relate the structures of Σ
and ΠN .

▶ Example 29. Let ∆ = ∅ and consider a closed, simply typable term P such that P →I Q

(for instance, P = (II)I →I II = Q where I = λx.x). For N = (λz.y)Q let ΠN be the
uniform derivation:

z : [B], y : [A] ⊢u y : A

y : [A] ⊢u λz.y : [B] → A ΠQ ▷ ⊢u Q : B

ΠN ▷ y : [A] ⊢u (λz.y)Q : A

Assume there is Σ ▷ y : c(A) ⊢ (λz.y)P : c(A). We would like to exploit the information about
Σ to build a derivation ΠM ▷ y : [A] ⊢u (λz.y)P : A; however, there is no guarantee that
there exists a simple derivation ΣP ▷ ⊢ P : c(B), so we cannot use the inductive hypothesis
to get ΠP ▷ ⊢u P : B. On the other hand, if we know Σ⇝ c(ΠN ), we can deduce that Σ has
shape:

z : c(B), y : c(A) ⊢ y : c(A)
y : c(A) ⊢ λz.y : c(B) → c(A) ΣP ▷ ⊢ P : c(B)

Σ ▷ y : c(A) ⊢ (λz.y)P : c(A)
where ΣP ⇝ c(ΠQ). Thus, by inductive hypothesis there exists ΠP ▷ ⊢u P : B, from which
it is possible to build the desired ΠM .

Proving that typability in U is preserved by γ-expansion is straightforward. Notice that,
as opposed to Lemma 27, the term M is not explicitly required to be simply typable.

▶ Lemma 30. If Γ ⊢u N : A and M →γ N , then Γ ⊢u M : A.

Proof. The proof proceeds by induction on the reduction context. For the base case, let
M = (λx.λy.P )Q →γ λy.(λx.P )Q = N ; observe that by α-conversion we can freely assume
y ̸∈ FV(Q). Thus, the derivation ΠN ▷ Γ ⊢u N : A has shape:

∆, x : [Bi]i∈I , y : [Cj ]j∈J ⊢u P : D
(→I)∆, y : [Cj ]J∈j ⊢u λx.P : [Bi]i∈I → D (∆i ⊢u Q : Bi)i∈I (→E)

Γ, y : [Cj ]J∈j ⊢u (λx.P )Q : D
(→I)ΠN ▷ Γ ⊢u λy.(λx.P )Q : [Cj ]j∈J → D

By rearranging the derivation rules we can easily build ΠM ▷ Γ ⊢u M : A:
∆, x : [Bi]i∈I , y : [Cj ]j∈J ⊢u P : D

(→I)∆, x : [Bi]i∈I ⊢u λy.P : [Cj ]j∈J → D
(→I)∆ ⊢u λx.λy.P : [Bi]i∈I → [Cj ]j∈J → D (∆i ⊢u Q : Bi)i∈I (→E)

ΠM ▷ Γ ⊢u (λx.λy.P )Q : [Cj ]j∈J → D

The inductive cases immediately follow using the inductive hypothesis. ◀
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Before moving on to K′-expansion, we briefly discuss why dealing with arbitrary K-
expansion would be quite problematic, even in the unrestricted system I. Assume two
derivations Θ ▷ Γ ⊢i M : A and ∆ ⊢i N : B, where x ̸∈ FV(M). It is straightforward to
build Θ′ ▷ Γ ⊎ ∆ ⊢i (λx.M)N : A, thus reversing the K-reduction step (λx.M)N →K M .
However, notice that in general Γ ⊎ ∆ contains bigger multisets than the ones originally
found in Γ; therefore, if Θ is a subderivation of a larger derivation Π, simply replacing Θ
by Θ′ may not result in a correct derivation. In order to be consistent with the enlarged
multisets, it may be necessary to globally update the structure of Π: this means introducing
new subderivations and/or replicating existing ones (along with their type environments),
which in turn may lead to further inconsistencies.

On the other hand, restricting the focus to K′-expansions has the great advantage of
keeping the required modifications local, thus allowing for an elegant inductive reasoning.
The proof of the following Lemma 31 clearly illustrates this point.

▶ Lemma 31. Let ΠN ▷ Γ ⊢u N : A. If M →K′ N and there is Σ ▷ Φ ⊢ M : σ such that
Σ⇝ c(Π(∆)

N ) ▷ Φ ⊢ N : σ for some ∆ ∼ Γ, then:
if M is not an abstraction, then Γ′ ⊢u M : A for some Γ′ such that c(Γ′) ⊆ Φ;
if M is an abstraction, then Γ′ ⊢u M : A′ for some Γ′ and A′ such that c(Γ′) ⊆ Φ and
A′ ∼ A.

Proof. By induction on the reduction context. Remark that Σ⇝ c(Π(∆)
N ) ▷ c(Γ ⊎ ∆) = Φ ⊢

N : c(A) = σ for some ∆ ∼ Γ implies c(Γ) ⊆ Φ. We show how to build a derivation ΠM with
the desired properties starting from ΠN . For the base case, consider M = (λx.N)P →K′ N ,
where P is in β-normal form. The derivation Σ has shape:

Φ1, x : τ ⊢ N : σ
(→I)Σ1 ▷ Φ1 ⊢ λx.N : τ → σ Σ2 ▷ Φ2 ⊢ P : τ (→E)

Σ ▷ Φ ⊢ (λx.N)P : σ

By Lemma 24 there exists Π2 ▷ Γ2 ⊢u P : B such that c(Π2) = Σ2, which entails c(Γ2) =
Φ2 ⊆ Φ and c(B) = τ . Note that c(Γ) ⊆ Φ guarantees Γ ∼ Γ2. Starting from ΠN , it is easy to
exploit weakening in the axioms and obtain a derivation with conclusion Γ, x : [B] ⊢u N : A.
Hence we can build:

Γ, x : [B] ⊢u N : A
(→I)Γ ⊢u λx.N : [B] → A Γ2 ⊢u P : B

(→E)
ΠM ▷ Γ′ = Γ ⊎ Γ2 ⊢u (λx.N)P : A

satisfying the requirements. Indeed, c(Γ) ⊆ Φ and c(Γ2) = Φ2 ⊆ Φ imply c(Γ′) ⊆ Φ.
For the inductive step, consider the reduction contexts in which a K′-reduction may take

place:
Case M = λx.P →K′ λx.Q = N . Letting σ = τ1 → τ2 and A = µ → B, the derivations
Σ and ΠN have shape:

Σ0 ▷ Φ, x : τ1 ⊢ P : τ2 (→I)Σ ▷ Φ ⊢ λx.P : τ1 → τ2

Π0 ▷ Γ, x : µ ⊢u Q : B
(→I)ΠN ▷ Γ ⊢u λx.Q : µ → B

Σ⇝ c(Π(∆)
N ) means that Σ0 ⇝ c(Π(∆)

0 ). Therefore, if P is an abstraction, by inductive
hypothesis there are Γ′, µ′ and B′ such that c(Γ′, x : µ′) ⊆ (Φ, x : τ1), B′ ∼ B and
Γ′, x : µ′ ⊢u P : B′. From this we obtain ΠM ▷ Γ′ ⊢u λx.P : µ′ → B′ satisfying the
requirements. If P is not an abstraction, the reasoning is similar.
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Case M = xM1 . . . MmP →K′ xM1 . . . MmQ = N , where m ≥ 0. The derivation Σ has
shape:

Σ1 ▷ Φ1 ⊢ xM1 . . . Mm : τ → σ Σ2 ▷ Φ2 ⊢ P : τ (→E)
Σ ▷ Φ ⊢ xM1 . . . MmP : σ

Letting I = {1, . . . , n}, the derivation ΠN has shape:

Ψ ⊢u x : µ1 → . . . → µm → [Bi]i∈I → A (ΨC ⊢u M1 : C)C∈µ1 (→E)
...

Π0 ▷ Γ0 ⊢u xM1 . . . Mm : [Bi]i∈I → A (Πi ▷ Γi ⊢u Q : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u xM1 . . . MmQ : A

Σ ⇝ c(Π(∆)
N ) means that, for each i ∈ I, Σ2 ⇝ c(Π(∆i)

i ) for some ∆i ∼ Γi. Therefore,
if P is an abstraction, by inductive hypothesis there are Π′

i ▷ Γ′
i ⊢u P : B′

i such that
c(Γ′

i) ⊆ Φ2 ⊆ Φ and B′
i ∼ Bi (i ∈ I). Note that c(Γ′

i) ⊆ Φ for all i ∈ I guarantees
Γ′

i ∼ Γ′
j and Γ0 ∼ Γ′

i for all i, j ∈ I. Hence to obtain ΠM it suffices to replace Πi by Π′
i,

and change the type of the axiom introducing x into µ1 → . . . → µm → [B′
i]i∈I → A. In

case P is not an abstraction, the reasoning is similar.
Case M = (λx.P )Q →K′ (λx.P )R = N , where x ̸∈ FV(P ). The derivation Σ has shape:

Σ1 ▷ Φ1 ⊢ λx.P : τ → σ Σ2 ▷ Φ2 ⊢ Q : τ
(→E)

Σ ▷ Φ ⊢ (λx.P )Q : σ

Letting I = {1, . . . , n}, the derivation ΠN has shape:

Π0 ▷ Γ0 ⊢u λx.P : [Bi]i∈I → A (Πi ▷ Γi ⊢u R : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u (λx.P )R : A

Σ⇝ c(Π(∆)
N ) means that, for each i ∈ I, Σ2 ⇝ c(Π(∆i)

i ) for some ∆i ∼ Γi. Therefore, if
Q is an abstraction, by inductive hypothesis there exists Π′

i ▷ Γ′
i ⊢u Q : B′

i such that
c(Γ′

i) ⊆ Φ2 ⊆ Φ and B′
i ∼ Bi (i ∈ I). As in the previous case, from c(Γ′

i) ⊆ Φ (i ∈ I) we
deduce Γ′

i ∼ Γ′
j and Γ0 ∼ Γ′

i (i, j ∈ I). Thus, in order to build ΠM , it suffices to replace
Πi by Π′

i and change the multiset associated to the dummy variable x, so that it matches
the new types B′

i. The case in which Q is not an abstraction is similar.
Case M = (PQ)R →K′ SR = N . The derivation Σ has shape:

Σ1 ▷ Φ1 ⊢ PQ : τ → σ Σ2 ▷ Φ2 ⊢ R : τ
(→E)

Σ ▷ Φ ⊢ (PQ)R : σ

Letting I = {1, . . . , n}, the derivation ΠN has shape:

Π0 ▷ Γ0 ⊢u S : [Bi]i∈I → A (Πi ▷ Γi ⊢u R : Bi)i∈I (→E)
ΠN ▷ Γ ⊢u SR : A

Σ ⇝ c(Π(∆)
N ) implies Σ1 ⇝ c(Π(∆0)

0 ) for some ∆0 ∼ Γ0. Therefore, as PQ is not an
abstraction, by inductive hypothesis there is Π′

0 ▷ Γ′
0 ⊢u PQ : [Bi]i∈I → A such that

c(Γ′
0) ⊆ Φ1 ⊆ Φ. Since c(Γi) ⊆ Φ, it holds that Γ′

0 ∼ Γi for all i ∈ I. The derivation ΠM

is obtained by replacing Π0 by Π′
0. ◀

Finally, we have all prerequisites in order to prove that if a term is typable by S, then it
is also typable by U .
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▶ Theorem 32. Σ ▷ Γ ⊢ M : σ implies there is Π ▷ Γ′ ⊢u M : A such that c(Π) = Σ.

Proof. Consider a IγK′-reduction sequence s from M to a β-normal form, which exists by
Theorem 15. We reason by induction on the length n of the sequence s. If n = 0, i.e. M is
in β-normal form, the result immediately follows from Lemma 24. For the inductive part of
the proof, we rely on Lemma 27 for I-reduction steps, on Lemma 30 for γ-reduction steps,
and on Lemma 31 for K′-reduction steps. ◀

4.3 From Uniform Typability to Strong Normalization
It is notoriously easy to show that all terms which are typable in system I (and, consequently,
all terms which are typable in system U) are strongly β-normalizing. Intuitively, this is
because non-idempotent intersection type systems internalize the reduction process: if M is
a term containing a subterm N , a quantitative derivation for M requires (at least) as many
subderivations for N as there are copies of N that can be produced during any β-reduction
sequence from M to its normal form. Since all the required copies are already there to begin
with, mimicking β-reduction on the quantitative derivation necessarily decreases its total
size: indeed, I-reduction steps simply rearrange the derivation structure, replacing axioms by
subderivations, while K-reduction steps erase subderivations. Formally, writing size(Π) for
the number of rules in a derivation Π, one has that:

▶ Theorem 33 (Weighted Subject Reduction [3, Theorem 4.2]). If ΠM ▷ Γ ⊢i M : A and
M →β N , then there exists ΠN ▷ Γ ⊢i N : A such that size(ΠN ) < size(ΠM ).

Finally, we can state the following.

▶ Theorem 34. Γ ⊢ M : σ implies M is strongly β-normalizing.

Proof. Immediate consequence of Theorem 32 and Theorem 33. ◀

5 A Family of Perpetual Reductions

This brief section shows that IγK′-expansion also holds in the general system I. Actually,
the proof is simpler, because there are no requirements concerning simple typability. Such a
result, together with the fact that all I-typable terms are strongly normalizing, allows us to
identify a family of perpetual reduction strategies.

We begin by pointing out that Lemma 24 and Lemma 27 are the system U counterparts
of the following well-known properties of system I:

▶ Lemma 35. If M is in β-normal form, then Γ ⊢i M : A.

Proof. Essentially as in Lemma 24. ◀

▶ Lemma 36 ([4, Theorem 4.3]). If Γ ⊢i N : A and M →I N , then Γ ⊢i M : A.

Similar considerations can be made for the other typability-preserving expansions.

▶ Lemma 37. If Γ ⊢i N : A and M →γ N , then Γ ⊢i M : A.

Proof. By observing that the proof of Lemma 30 never mentions uniformity. ◀

One needs to be careful with the statement of subject expansion w.r.t. the K′-reduction
(the counterpart of Lemma 31): the case in which the contracted term is an abstraction does
not preserve the assigned type.

FSCD 2024
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▶ Lemma 38. If Γ ⊢i N : A and M →K′ N , then:
if M is not an abstraction, then Γ′ ⊢i M : A for some Γ′;
if M is an abstraction, then Γ′ ⊢i M : A′ for some Γ′ and A′.

Proof. By induction on the reduction context. The proof is analogous to that of Lemma 31,
without the conditions on simple typability. The base case, namely M = (λx.N)P →K′ N

where P is in β-normal form, relies on Lemma 35. ◀

We now have all the ingredients to state the following:

▶ Theorem 39. If M is IγK′-normalizing, then it is strongly β-normalizing.

Proof. Lemmas 35, 36, 37 and 38 guarantee that there exists Γ ⊢i M : A. Then the result
immediately follows from Theorem 33. ◀

▶ Corollary 40. Any IγK′-reduction strategy is perpetual.

6 Mechanization

This section provides an overview over the mechanization2 of uniform typability of simply
typed terms (Theorem 32) using the Coq proof assistant [30]. The mechanization is axiom-free
and spans approximately 2000 lines of code, consisting of the following four parts:

stlc.v and stlc_facts.v contain definitions and facts (such as subject reduction and
substitution lemmas) for the simple type system.
stlc_nf.v proves that simply typed terms are IγK ′-normalizing (Theorem 15).
nitlc.v and nitlc_facts.v contain definitions and facts (such as weakening) for the
uniform intersection type system.
nitlc_typ.v proves the equivalence between simple type typability and uniform inter-
section type typability (Lemma 23 and Theorem 32).

Simple types and annotated λ-terms are mechanized in stlc.v as sty and tm respectively.
Variable binding is addressed via the unscoped de Bruijn approach [9], with infrastructure
partially generated by Autosubst 2 [27].
Inductive sty : Type :=

| satom (x : nat) (* type variable *)
| sarr (s t : sty ). (* function type *)

Inductive tm : Type :=
| var (n : nat) (* term variable *)
| app (M N : tm) (* application *)
| lam (t : sty) (M : tm ). (* type - annotated abstraction *)

In congruence with Section 3, the annotation t in the abstraction constructor lam is the
simple type assigned to the whole term (not just the bound variable).

The proposition stlc Gamma M t mechanizes that the term M is assigned the simple
type t in the simple type environment Gamma. IγK ′-normalization (Theorem 15) of simply
typed terms is mechanized in stlc_nf.v as follows.
Theorem stlc_nf M Gamma t : stlc Gamma M t -> exists N, steps M N /\ nf N.

In the above, steps M N mechanizes M →∗
IγK′ N, and nf N mechanizes that the term N is

β-normal.

2 https://github.com/tudo-seal/uniform-intersection

https://github.com/tudo-seal/uniform-intersection
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Non-idempotent intersection types are mechanized in nitlc.v as nity.

Inductive nity : Type :=
| niatom (x : nat) (* type variable *)
| niarr (u : list nity) (A : nity ). (* function type *)

The proposition nitlc Gamma M A mechanizes that the term M is assigned the uniform
intersection type A in the uniform intersection type environment Gamma. Simple type typability
of terms which can be assigned a uniform intersection type (Lemma 23) is mechanized in
nitlc_typ.v as follows.

Theorem nitlc_stlc Gamma0 M Gamma A :
nitlc Gamma M A ->
env_ssim Gamma0 Gamma ->
allfv (fun x => nth_error Gamma0 x <> None) M ->
exists t, stlc Gamma0 M t /\ ssim t A.

In the above, the pointwise collapse of the uniform intersection type environment Gamma to the
simple type environment Gamma0 is mechanized by env_ssim Gamma0 Gamma together with
allfv (fun x => nth_error Gamma0 x <> None) M. The proposition ssim t A mecha-
nizes that the non-idempotent type A is uniform and collapses to the existentially quantified
simple type t (cf. Definition 19).

Finally, uniform typability of simply typed terms (Theorem 32) is mechanized in
nitlc_typ.v as follows.

Theorem nitlc_type_inference M Gamma0 t : stlc Gamma0 M t ->
exists Gamma A,

nitlc Gamma M A /\
Forall2 (fun s u => u <> [] /\ Forall (ssim s) u) Gamma0 Gamma /\
ssim t A.

In the above, if a term M is assigned a simple type t in the simple type environment
Gamma0, then there exists a uniform intersection type environment Gamma and a uniform
intersection type A such that the following conditions hold:

The term M is assigned the type A in the environment Gamma.
Each multiset u in Gamma is nonempty and collapses to the corresponding simple type s
in Gamma0.
The type A collapses to the simple type t.

The proof structure of the above Theorem nitlc_type_inference relies on the mechaniza-
tion of typability preserving expansion, namely Theorem stepI_expansion (Lemma 27),
Theorem stepG_expansion (Lemma 30), and Theorem stepK_expansion (Lemma 31).

There are three interdependent aspects of the proof of Theorem nitlc_type_inference
which highlight the utility of the Coq proof assistant.

The definition of the K′-reduction (Definition 1) allows for an expansion lemma.
The inductive hypothesis for the expansion lemma (cf. Lemma 31) is chosen carefully.
The particular inductive proof involves extensive, nested case analyses for the chosen
definition and inductive hypothesis.

In all three aspects the development of the proof was guided by the proof assistant: the
technical details listed by the tool motivated the particular definition of the K′-reduction. In
fact, the proof was developed via interaction with the mechanized statement prior to being
transcribed into a traditional written format.

FSCD 2024
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7 Conclusion

By providing an alternative proof that all simply typable terms can be assigned a quantitative
type by system U (Theorem 32), we are able to easily infer strong normalization of STLC
(Theorem 34). The presented typability proof, fully formalized in Coq, is constructive: this
means that an actual type inference algorithm for system U can be extracted from it. Such an
algorithm is conceptually dual to the one proposed by [23]; indeed, the technique presented
in the work at hand focuses on term expansion rather than on term reduction.

Inductive proofs of subject expansion in both systems U and I (most notably Lemma 31
and Lemma 38) are achieved by means of the introduced IγK′-reduction, for which we show
that simply typed terms are normalizing (Theorem 15). In addition, our perspective on SN
leads to the discovery of an interesting family of perpetual reduction strategies (Corollary 40).

The present work also highlights the role of Coq as a proof assistant: its contribution
was crucial in the design of the IγK′-reduction and the mechanical verification of technical
details of the aforementioned results.
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Abstract
In a differential category and in Differential Linear Logic, the exponential conjunction ! admits struc-
tural maps, characterizing quantitative operations and symmetric co-structural maps, characterizing
differentiation. In this paper, we introduce the notion of a Laplace distributor, which is an extra
structural map which distributes the linear negation operation (_)∗ over ! and transforms the co-
structural rules into the structural rules. Laplace distributors are directly inspired by the well-known
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1 Introduction

Differential Linear Logic (DiLL) [11], introduced by Ehrhard and Regnier [12], introduces the
concept of differentiation in Linear Logic (LL), as introduced by Girard [15], by symmetrizing
three out of the four rules for the aptly called exponential connective !. So LL features four
exponential structural rules which dictate the use of !A; they are: the weakening rule w, the
contraction rule c, the dereliction rule d, and the promotion rule P1.

Γ⊢∆ w
Γ, !A ⊢∆

Γ, !A, !A ⊢∆ c
Γ, !A ⊢ ∆

Γ, A ⊢∆
dΓ, !A ⊢∆

!Γ⊢ A P!Γ⊢ !A
It is worth mentioning that the promotion rule can be equivalently replaced by two rules:
the functorial promotion rule !f and the digging rule p.

Γ ⊢A !f!Γ ⊢ !A
Γ, !!A ⊢ ∆ p
Γ, !A ⊢ ∆

1 These rules are presented with bilateral sequent for simplicity, but they could also be made monolateral
by using the exponential disjunction ?, which is the dual of !.
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DiLL then adds the co-structural rules which are the co-weakening rule w, the co-contraction
rule c, and the co-dereliction rule d.

⊢ w⊢ !A
⊢ Γ, !A ⊢ ∆, !A

c⊢ Γ,∆, !A
⊢ Γ, A

d⊢ Γ, !A

The co-dereliction rule d expresses differentiation, while the co-contraction rule c and the
co-weakening rule w are necessary for cut-elimination purposes. This beautifully results in a
symmetry between the structural rules and co-structural rules, that has however never been
properly explained. In this paper, we explain this symmetry using the Laplace transform.

1.1 Differentiation on proofs
Before diving into the Laplace transform and its interpretation in categorical models of DiLL,
let us give more intuitions on the co-structural rules of DiLL. The core intuition of LL is
that a proof of a sequent A ⊢ B will be a linear proof, making use of A exactly once and
not allowing contraction nor weakening on A. This is opposed to a proof of !A ⊢ B, which
can make a non-linear usage of A by using contraction or weakening. The basic rule of LL is
that you can forget about linearity. Hence, the dereliction rule d transforms a linear proof
into a non-linear proof, which intuitively is done so by just forgetting about the linearity
property. DiLL takes the reverse path by introducing a co-dereliction rule d, which, after a
cut, allows the transformation of a non-linear proof !A ⊢ B into a linear proof A ⊢ B. From
a semantical point of view, linearizing a non-linear function (which interprets a proof) is
done so via differentiation. This analogy is made precise by introducing new cut-elimination
rules between d and structural rules. The cut-elimination between d and d results in a cut
between their premises, and this represents the fact that differentiating at 0 a linear function
returns the same linear function. The cut-elimination between promotion p and d is more
intricate and uses c and w: it represents the chain rule, which is the formula expressing how
to differentiate a composition of functions.

Rules of DiLL can also be understood through the notions of functions and distributions.
Naively, distributions are linear scalar maps which are computed on smooth functions. Let
us for now suggestively denote C∞(A,B) := L(!A,B) the set of smooth maps from A to B,
and A⊸ B := L(A,B) the set of linear maps from A to B. Now, in Classical DiLL, elements
of !A can be interpreted as distributions, so we may suggestively write !A ⊆ C∞(A, I) ⊸ I.
In most models, I is often interpreted as the field of real or complex numbers. Now, for
each element x of A, the dereliction rule gives us the Dirac distribution at x, which is
the distribution δx ∈ !A which evaluates a smooth function at x, so δx(f) = f(x). For
finite-dimensional vector spaces, or in the model of convenient vector spaces [1] (which we
discuss in Ex 14), it is sufficient to define what a non-linear map does on Dirac distributions.
So, on Dirac distributions, the structural maps, which correspond to the structural rules of
LL and the co-structural rules of DiLL, are given as follows:

pA(δx) = δδx
dA(δx) = x cA(δx) = δx ⊗ δx wA(δx) = 1

dA(x) = D0(_)(x) cA(δx ⊗ δy) = δx+y wA(1) = δ0
(1)

where for the co-dereliction d, the D is the differential operator, that is, for a smooth function
f , Dx(f)(y) is the derivative of f at point x along the vector y. We highlight that on the
whole space !A, the co-contraction c : !A ⊗ !A → !A is interpreted as the convolution of
distributions:

cA(ϕ⊗ ψ) = ϕ ∗ ψ := f 7→ ϕ(x 7→ ψ(y 7→ f(x+ y)).
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Moreover, the structural rules of LL can also be naturally expressed on functions. Indeed,
in Classical DiLL, we have an involutive duality ∗ where A∗ is the linear dual of A, that is,
A∗ = A⊸ I. Using the linear dual, one also introduces the connector ?A = (!A∗)∗, which is
interpreted as a space of smooth functions, ?A ⊆ C∞(A∗, I). We also get the multiplicative
disjunction A`B = (A∗ ⊗B∗)∗, which we may think of as a completed tensor product. Then
the contraction c?

A : ?A` ?A → ?A is interpreted by the pointwise multiplication of scalar
functions, the weakening w?

A : K → ?A maps scalars r to constant functions cstr : x 7→ r,
and the dereliction d?

A : A → ?A maps elements of A to their evalutation at a point x:

c?
A (f ⊗ g) = f · g w?

A(r) = cstr d?
A(x) = (ℓ ∈ A∗ 7→ ℓ(x)) (2)

All these intuitions can be made formal in specific models of DiLL; see Section 6.

1.2 A higher-order Laplace transform
The categorification of functional analysis and differential geometry entertains close links
with the semantics of the sequent calculus for LL and DiLL. Differential categories were
introduced by Blute, Cocket, and Seely [3], and originated from the semantics of DiLL. Since
their introduction, differential categories now have a rich mathematical literature and have
been quite successful in categorifying various important concepts from differential calculus
and differential geometry, as well as various other aspects of differentiation throughout
mathematics and computer science. This paper follows this line of research. Following the
categorification of the exponential functions in a differential category by the second named
author in [20], and the completion of DiLL by the addition of a co-digging rule by the authors
in [18], here we give a categorical interpretation of the Laplace transform and study its
properties. We explain why it is the reason behind the symmetry in DiLL rules, which we
exploit categorically.

The Laplace transform is a central component of calculus and engineering, as it changes
differential equations into polynomial equations. As such, the Laplace transform is a very
useful tool for solving differential equations. In its first-order version, the Laplace transform
takes a function f : R → R to a function L(f) : C → R, defined as:

L(f)(s) =
∫ ∞

0
f(t)e−st dt

However, this first-order version does not necessarily fit well with the categorical semantics of
DiLL. Instead of using integration to make functions act on functions, one can use distributions
by following the general idea of interpreting distributions as generalized functions. Consider
a distribution ϕ with compact support, that is, ϕ ∈ C∞(R,R)′ is a linear form on the space
of smooth functions (where F ′ := L(F,R) is the space of linear scalar functions on a vector
space F ). Then we may write:

L(ϕ)(s) = ϕ(t 7→ e−st)

So for a higher-order distribution ϕ ∈ C∞(E,R)′, where E stands for a possibly infinite-
dimensional vector space, we get:

L :

C∞(E,R)′ −→ C∞(E′,R)

ϕ 7−→
(
x∗ 7→

(
ϕ
(
t 7→ ex∗(t)

))) (3)

FSCD 2024



9:4 Laplace Distributors and Laplace Transformations for Differential Categories

Following the intuitions developed above, this gives us a new understanding of the Laplace
transformation in terms of connectives of LL, resulting in a natural transformation of type
LA : !A → ?A. This idea was only recently noticed in the context of DiLL, thanks to the
higher-order presentation of the Laplace transform in a specific polarized model of DiLL
discussed in [18, Prop V.8].

1.3 Laplace transformation from co-structural to structural rules
Since we have a categorical understanding of higher-order distribution theory, we, therefore,
have all the ingredients in hand to axiomatize L categorically in a suitable differential
category. Differential categories are reviewed in Section 2. For now, we simply state that we
categorify the Laplace transform as a natural transformation of type L : !A → ?A, which we
call a Laplace transformation (Def 8). Semantically, the axioms say that L transforms
the interpretation of co-structural rules into the interpretation of structural rules:

L : !A 7→ ?A; w 7→ w; c 7→ c; d 7→ d.

These are all analogues of very well-known facts in calculus. For example, the Laplace
transform converts convolution into multiplication, which is recaptured by the fact that
our Laplace transformation L turns c into c?. It may be useful to redo these well-known
computations, which will help clearly show how L, as given in (3), computes on co-structural
morphisms, as given in (1). Here x∗ is an element of A∗ = L(A,R), ans as such acts on
elements t of A.

L(wA(r)) = x∗ 7→ r · δ0(t 7→ ex∗(t)) = x∗ 7→ r · e0 = x∗ 7→ r = w?
A(r)

L(dA(y)) = x∗ 7→ D0(t 7→ ex∗(t))(y) = x∗ 7→ x∗(y) = d?
A(y)

L(cA(ϕ⊗ ψ)) = x∗ 7→ (ϕ ∗ ψ)(t 7→ ex∗(t)) = x∗ 7→ ϕ
(
s 7→ ψ(t 7→ ex∗(t+s))

)
= x∗ 7→ ϕ

(
s 7→ ψ(t 7→ ex∗(t)+x∗(s)))

)
(x∗ is linear)

= x∗ 7→ ϕ
(
s 7→ ψ(t 7→ ex∗(t)ex∗(s))

)
= x∗ 7→ ϕ(s 7→ ex∗(s) · ψ(t 7→ ex∗(t))) (ψ is linear)

= x∗ 7→ ϕ(s 7→ ex∗(s)) · ψ(t 7→ ex∗(t)) (ϕ is linear)
= c?

A∗(L(ϕ) ⊗ L(ψ))

Observe how all these equations are intrinsically linked with the basic properties of the
exponential function ex. We will make this precise in Section 4. Indeed, generalizations of
the exponential function in a differential category were defined by the second named author
in [20], and are axiomatized by analogues of three fundamental properties of the exponential
function: that ex+y = exey and e0 = 1, and also that ex is its own derivative. We will explain
how the notion of a Laplace transformation is fundamentally linked to that of a generalized
exponential function on the monoidal unit I (Def 3).

Moreover, since we are in the monoidal closed, we may uncurry the Laplace transformation
to get an extranatural transformation

ℓ

A : !A∗ ⊗ !A → I, which we call a Laplace evaluator
(Def 2), or take the dual to get a natural transformation ℓA : !A∗ → (!A)∗, which we call a
Laplace distributor (Def 1).
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1.4 Content and Outline
This paper starts in Section 2 with a review of differential categories, the categorical
semantics of DiLL, in which we will categorify L. In Section 3, we introduce the concept
of a Laplace distributor, which we axiomatize as a natural transformation operating in
differential linear closed categories which transforms co-structural rules into structural rules.
In Section 4, we show that the presence of a Laplace distributor in a differential linear
closed category is equivalent to the presence of a generalized exponential function e : !I ⊸ I

on the monoidal unit. Laplace distributors in the context of isomix star-autonomous
categories are studied in Section 5, where we show that we obtain our desired Laplace
transformation L in a differential linear isomix category. In Section 6, we give examples of
Laplace distributors/evaluators/transformations in well-known differential categories. We
then conclude in Section 7 with a discussion of future work.

2 Background: Differential Categories

In this section, we quickly review differential categories, mostly to set terminology and
notation. We will follow the same terminology and notation used in [18]. For a more in-depth
introduction to the basics of monoidal categories and the overall categorical semantics of
linear logic, we refer the reader to see [22], and for an in-depth introduction to differential
categories and examples, we refer them to see [2, 11].

The underlying categorical structure of a differential category is that of an additive
symmetric monoidal category. Recall that a symmetric monoidal category [22, Sec 4.4]
interprets the multiplicative fragment of LL. So for an arbitrary symmetric monoidal category,
we denote the underlying category as C, the monoidal product as ⊗, the monoidal unit as I,
the natural associativity isomorphism as αA,B,C : A⊗ (B ⊗ C) → (A⊗B) ⊗ C, the natural
right unital isomorphism as ρA : A ⊗ I → A, and the natural symmetry isomorphism as
σA,B : A ⊗ B → B ⊗ A. So then an additive symmetric monoidal category [2, Def
3] is a symmetric monoidal category C which is enriched over the category of commutative
monoids, that is, each homset C(A,B) is a commutative monoid, with addition operation +
and zero 0 : A → B, and such that composition and the monoidal product ⊗ are compatible
with the additive structure. This extra structure of additive enrichment for a differential
category is necessary to express the famous Leibniz rule from differential calculus.

The categorical interpretation of the exponential fragment of LL is given by a monoidal
coalgebra modality. So for a symmetric monoidal category C, a coalgebra modality [2,
Def 1] is a comonad ! : C → C with comultiplication pA : !A → !!A called the digging
and counit dA : !A → A called the dereliction, which comes equipped with two other
natural transformations: cA : !A → !A⊗ !A called the contraction and wA : !A → I called
the weakening, making each !A a cocommutative comonoid and the digging a comonoid
morphism. Then a monoidal coalgbera modality [2, Def 2] is a coalgebra modality !
which furthermore comes equipped with a natural transformation µA,B : !A⊗ !B → !(A⊗B)
and a map µI : I → !I which makes ! into a lax monoidal functor; p, d, c, and w into
monoidal transformations; and c, and w into !-coalgebra morphisms.

For an additive symmetric monoidal category, a monoidal coalgebra modality can equival-
ently be described in terms of an additive bialgebra modality [2, Def 5]. So in particular,
for a monoidal coalgebra modality ! on an additive symmetric monoidal category, we can build
natural transformations cA : !A⊗ !A → !A called the co-contraction and wA : I → !A called
the co-weakening, which in particular makes every !A a commutative monoid, and in fact
a bimonoid [2, Prop 1]. Then a monoidal differential modality is a monoidal coalgebra
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9:6 Laplace Distributors and Laplace Transformations for Differential Categories

modality (equiv. additive bialgebra modality) ! on an additive symmetric monoidal category
which comes equipped with a natural transformation dA : A → !A called a co-dereliction
[2, Def 9], whose axioms are analogues of the fundamental rules of differential calculus such
as the Leibniz rule and chain rule. Then a differential linear category [2, Sec 6] is an
additive symmetric monoidal category equipped with a monoidal differential modality. One
could also consider differential linear categories with finite products ×, which are called
differential storage categories. In particular, in such a setting, we have the all-important
Seely isomorphisms !(A×B) ∼= !A⊗ !B [2, Def 10]. However, since products don’t necessarily
play a role in the story of this paper, we will not review them here and invite the reader to
see [2, Sec 7] for details. Then a categorical model of (Classical) DiLL is a differential storage
category that is also monoidal closed (resp. star-autonomous), which we discuss in Section 3
(resp. Section 5).

3 Laplace Distributor

In this section, we introduce the notion of a Laplace distributor, which is an extra structural
natural transformation in a differential linear category that is also closed. To properly define
a Laplace distributor, we will first have to set up some notation in the closed setting.

So for a symmetric monoidal closed category [22, Sec 4.7], we denote the internal
homs by A ⊸ B and the evaluation map by ϵA,B : (A ⊸ B) ⊗ A → B. Explicitly,
recall that closed means that for every map f : C ⊗ A → B, there exists a unique map
λ(f) : C → A⊸ B, called the curry of f , such that2:

(λ(f) ⊗ 1A); ϵA,B = f (4)

Now for every map f : X → A and g : B → Y , we denote by f ⊸ g : A⊸ B → X ⊸ Y to
be the unique map such that:

((f ⊸ g) ⊗ 1X) ; ϵX,Y = (1A⊸B ⊗ f); ϵA,B ; g (5)

We note that for a monoidal coalgebra modality ! on a symmetric monoidal category, we
have canonical maps ξA,B : !(A⊸ B) → !A⊸ !B defined as the unique map such that:

(ξA,B ⊗ 1!A) ; ϵ!A,!B = µA⊸B,A; !ϵA,B (6)

Then by a differential linear closed category we mean a differential linear category
whose underlying symmetric monoidal category is closed.

Now, a Laplace distributor is a natural transformation that transforms the co-structural
rules of the modality into its structural rule. This is expressed in terms of dual objects. In a
symmetric monoidal closed category, the dual of an object A is the object A∗ := A ⊸ I.
It is important to note that in an arbitrary symmetric monoidal closed category, the dual
operation is not necessarily involutive, that is, A∗∗ is not necessarily always equal/isomorphic
to A. This will be a situation we discuss later in Section 5 below. We do however have a
canonical isomorphism υI : I → I∗ which is defined as the unique map such that:

(υI ⊗ 1I); ϵI,I = ρI υ−1
I = ρ−1

I∗ ; ϵI,I (7)

2 In a category, we write identity maps as 1A : A → A, and we write composition diagrammatically, that
is, the composition of maps f : A → B and g : B → C is denoted f ; g : A → C.
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as well another canonical isomorphism νA,B : (A ⊗ B)∗ → A ⊸ B∗ defined as the unique
map such that:

((νA,B ⊗ 1A) ⊗ 1B) ; (ϵA,B∗ ⊗ 1B); ϵB,I = α−1
(A⊗B)∗,A,B ; ϵA⊗B,I(

ν−1
A,B ⊗ 1A⊗B

)
; ϵA⊗B,I = αA⊸B∗,A,B ; (ϵA,B∗ ⊗ 1B); ϵB,I

(8)

Moreover, we also get canonical maps ΘA,B : A∗ ⊗B∗ → (A⊗B)∗ (which is not necessarily
an isomorphism) defined as the unique map such that:

(ΘA,B ⊗ 1A⊗B) ; ϵA⊗B,I = τA∗,B∗,A,B ; (ϵA,I ⊗ ϵB,I); ρI (9)

where τA,B,C,D : (A⊗B)⊗(C⊗D) → (A⊗C)⊗(B⊗D) is the canonical natural isomorphism
which swaps the middle two terms. The dual operation also induces a contravariant functor,
where in particular for every map f : A → B, we also have a map of dual type f∗ : B∗ → A∗

which is defined as the unique map such that:

(f∗ ⊗ 1A); ϵA,I = (1B∗ ⊗ f); ϵB,I (10)

Then a Laplace distributor is a natural transformation which distributes ∗ over !, hence the
name, and associates the co-structural maps to the dual of their mirror structural map.

▶ Definition 1. For a differential linear closed category, a Laplace distributor is a natural
transformation ℓA : !A∗ → (!A)∗ such that the following diagrams commute:

!A∗ ⊗ !A∗ cA∗ //

ℓA⊗ℓA

��

!A∗

ℓA

��

I

υI

��

wA∗ //

(ℓ.w.1)

!A∗

ℓA

��

A∗

d∗
A ++

dA∗ // !A∗

(ℓ.d.1) ℓA

��
(!A)∗ ⊗ (!A)∗

Θ!A,!A
��

(ℓ.c.1) I∗
w∗

A

// (!A)∗ (!A)∗

(!A⊗ !A)∗
c∗

A

// (!A)∗

!(A⊗B)∗

!νA,B

��
(ℓ.µ)

ℓA⊗B // (!(A⊗B))∗

µ∗
A,B

��

! (A⊸ B∗)
ξA,B∗

��
!A⊸ !B∗

1!A⊸ℓB

// !A⊸ (!B)∗
ν−1

!A,!B

// (!A⊗ !B)∗

Examples of Laplace distributors can be found in Section 6. Let us provide some intuition
for a Laplace distributor using our distribution analogy. First, for every linear functional
x∗ : A⊸ I, we have the Dirac distribution δx∗ ∈ !A∗. So the Laplace distributor produces a
linear functional ℓA(δx∗) : !A∗ ⊸ I, which through the call-by-name translation of Linear
Logic in Intuitionistic Logic corresponds to a smooth function A ⇒ I. Then for z ∈ A and
x∗, y∗ ∈ A, the first three axioms of a Laplace distributor say that:

ℓA(δx∗+y∗)(δz) = ℓA(δy∗)(δz) · ℓA(δx∗)(δz) (ℓ.c.1)
ℓA(δ0)(δz) = 1 (ℓ.w.1)
ℓA(D0(_)(x∗))(δz) = x∗(z) (ℓ.d.1)
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9:8 Laplace Distributors and Laplace Transformations for Differential Categories

Note the similarities with some of the basic identities the exponential function ex satisfies.
We will make this connection precise in Section 4 when we show how Laplace distributors
correspond to a generalized version of the exponential function in a differential linear category.
The last axiom (ℓ.µ) essentially tells us that every Laplace distributor can indeed be described
as one of these generalized exponential functions. Somewhat surprisingly, we also get that the
Laplace distributor also “co-transforms” the structural rules into their mirror co-structural
rules, as we will see in Lemma 7 below.

Now the keen eyed-reader will note that in an arbitrary differential linear closed category,
there are always two possible natural transformations of type !A∗ → (!A)∗ given by the
following composites:

!A∗ wA∗ // I
υI // I∗ w∗

A // (!A)∗ !A∗ dA∗ // A∗ d∗
A // (!A)∗

However, since by [2, Lemma 2] we have that w; d = 0, the first map won’t satisfy (ℓ.d.1),
while by [2, Def 9] we have that d; w = 0, so the second map won’t satisfy (ℓ.w.1). So a
Laplace evaluator does not always necessarily exists, and is indeed extra structure. To further
justify this fact, in Ex 13 we give an example of a differential linear closed category which
does not have a Laplace distributor.

Moreover, note that given the type of a Laplace distributor ℓA : !A∗ → (!A)∗, we can
uncurry it to get a map of type !A∗ ⊗ !A → I, which we call the Laplace evaluator.

▶ Definition 2. In a differential linear closed category with a Laplace distributor ℓ, the
Laplace evaluator is the extranatural transformation

ℓ

A : !A∗ ⊗ !A → I defined as the
composite:

ℓ

A : = !A∗ ⊗ !A ℓA⊗1!A // (!A)∗ ⊗ !A
ϵ!A,I // I (11)

By extranaturality, we mean that for all maps f : A → B, the following equality holds:

(!f∗ ⊗ 1A); ℓA = (1!B∗ ⊗ !f);

ℓ

B (12)

Of course, since the currying operation is an isomorphism, we could have alternatively and
equivalently written this story in terms of the Laplace evaluator and defined the Laplace
distributor as its curry, ℓA = λ(

ℓ

A).

4 Exponential Map

In this section, we show that Laplace distributors correspond precisely to a generalized
version of the exponential function ex on the monoidal unit. The generalization of ex in
a differential category was introduced by the second named author in [20] and was called
an !-differential exponential map. An !-differential exponential map can be defined for any
commutative monoid in a differential category and is axiomatized by analogues of the fact
that ex is its own derivative and is a monoid morphism from addition to multiplication.
Since the monoidal unit I in a symmetric monoidal category is canonically a monoid, we can
consider an !-differential exponential map on I, which we call an I-exponential map for short.

▶ Definition 3. In a differential linear category, an I-exponential map [20, Def 14] is a
map e : !I → I such that the following diagrams commute:

!I ⊗ !I
(e.c)e⊗e

��

cI // !I
e

��

I
wI // !I
(e.w) e

��

I
dI // !I
(e.d) e

��
I ⊗ I

ρI

// I I I
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Using our distribution analogy, let us explain why an I-exponential map is indeed the
correct generalization of the exponential function ex : R → R. Note that by its type, an
I-exponential map e is a smooth map from I to I, just like how ex is a smooth function from
R to R. Then the axioms of an I-exponential map are:

e(δx+y) = e(δx)e(δy) (e.c)
e(δ0) = 1 (e.w)
e(D0(_)(x)) = x (e.d)

Now suggestively writing e(δx) = ex, the three axioms of an I-exponential map give us
precisely the well-known identities of the exponential function which are:

ex+y = exey e0 = 1 D0(ex)(x) = x

Recall that in the previous section, we suggested that the axioms of a Laplace distributor
also corresponded to these three ex identities. Here, we make this precise by showing that
there is a bijective correspondence between Laplace distributors and I-exponential maps.

Starting from a Laplace distributor, we get an I-exponential map by considering the
Laplace distributor at I and the fact that I ∼= I∗:

▶ Proposition 4. In a differential linear closed category with a Laplace distributor ℓ, define
the map eℓ : !I → I as the following composite:

eℓ := !I !υI // !I∗ ℓI // (!I)∗ µ∗
I // I∗ υ−1

I // I (13)

Proof. The key to this proof is using the part from the definition of a monoidal coalgebra
modality [2, Def 1] which says that d, c, and w are compatible with µI since they are monoidal
transformations. So, by definition, we have:

µI ; dI = 1I µI ; wI = 1I µI ; cI = ρ−1
I ; (µI ⊗ µI) (14)

More precisely, for the calculations in this proof, we will need the dualized versions of the
above identities:

d∗
I ;µ∗

I = 1I∗ w∗
I ;µ∗

I = 1I∗ c∗
I ;µ∗

I = (µI ⊗ µI)∗; (ρ−1
I )∗ (15)

So we first compute (e.w):

wI ; eℓ (13)= wI ; !υI ; ℓI ;µ∗
I ; υ−1

I
nat.= wI∗ ; ℓI ;µ∗

I ; υ−1
I

(ℓ.w.1)= υI ; w∗
I ;µ∗

I ; υ−1
I

(15)= υI ; υ−1
I = 1I

So wI ; eℓ = 1I . Next we compute (e.d):

dI ; eℓ (13)= dI ; !υI ; ℓI ;µ∗
I ; υ−1

I
nat.= υI ; dI∗ ; ℓI ;µ∗

I ; υ−1
I

(ℓ.d.1)= υI ; d∗
I ;µ∗

I ; υ−1
I

(15)= υI ; υ−1
I = 1I

So dI ; eℓ = 1I . Lastly, using that Θ is natural and:

ΘI,I ; (ρ−1
I )∗; υ−1

I = (υ−1
I ⊗ υ−1

I ); ρI (16)

which we leave to the reader to check for themselves, we compute (e.c):

cI ; eℓ (13)= cI ; !υI ; ℓI ;µ∗
I ; υ−1

I
nat.= (!υI ⊗ !υI); cI∗ ; ℓI ;µ∗

I ; υ−1
I
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(ℓ.c.1)= (!υI ⊗ !υI); (ℓI ⊗ ℓI); Θ!I,!I ; c∗
I ;µ∗

I ; υ−1
I

(15)= (!υI ⊗ !υI); (ℓI ⊗ ℓI); Θ!I,!I ; (µI ⊗ µI)∗; (ρ−1
I )∗; υ−1

I

nat.= (!υI ⊗ !υI); (ℓI ⊗ ℓI); (µ∗
I ⊗ µ∗

I); ΘI,I ; (ρ−1
I )∗; υ−1

I

(16)= (!υI ⊗ !υI); (ℓI ⊗ ℓI); (µ∗
I ⊗ µ∗

I); (υ−1
I ⊗ υ−1

I ); ρI
(13)= (eℓ ⊗ eℓ); ρI

So cI ; eℓ = (eℓ ⊗ eℓ); ρI . Therefore, we conclude that eℓ is an I-exponential map. ◀

It is worthwhile to remark that we did not need (ℓ.µ) to show that eℓ is an I-exponential
map. This axiom will be used in Thm 6 when we prove the bijective correspondence. Before
that, we must explain how from an I-exponential map we obtain a Laplace distributor, which
is constructed using the evaluation map as well.

▶ Proposition 5. In a differential linear closed category, if e : !I → I is an I-exponential
map then define the map ℓe

A : !A∗ → (!A)∗ as the curry of the following composite:

!A∗ ⊗ !A
µA∗,A // !(A∗ ⊗A)

!ϵA,I // !I e // I (17)

In other words, ℓe
A is the unique map such that the following equality holds:

(ℓe
A ⊗ 1!A); ϵ!A,I = µA∗,A; !ϵA,I ; e (18)

Then ℓe is a Laplace distributor. Moreover, its induced Laplace evaluator

ℓe : !A∗ ⊗ !A → I is
precisely the composite (17).

Proof. In this proof, for readability, we omit the subscripts. The key to this proof is that in
a symmetric monoidal closed category, the evaluation map is monic in its first argument,
that is, if (f ⊗ 1); ϵ = (g ⊗ 1); ϵ then f = g.

We must first show naturality. So we compute that:

(!f∗ ⊗ 1); (ℓe ⊗ 1); ϵ (18)= (!f∗ ⊗ 1);µA∗,A; ϵ; e nat.= µ; !(f∗ ⊗ 1); !ϵA,I ; e
(10)= µ; !(1 ⊗ f); !ϵ; e nat.= (1 ⊗ !f);µ; !ϵ; e (18)= (1 ⊗ !f); (ℓe ⊗ 1); ϵ

= (ℓe ⊗ 1); (1 ⊗ !f); ϵ (10)= (ℓe ⊗ 1); ((!f)∗ ⊗ 1); ϵ

Thus we get that !f∗; ℓe = ℓe; (!f)∗, and therefore ℓe is indeed a natural transformation.
To prove the first three axioms of a Laplace distributor, we will need the following

compatibility relation between µ and the co-structural maps from [2, Prop 2 & Prop 5]:

(w ⊗ 1) ;µ = ρ; w; w
(
d ⊗ 1

)
;µ = (1 ⊗ d); d (c ⊗ 1) ;µ = (1 ⊗ 1 ⊗ c); τ ; (µ⊗ µ); c (19)

So for (ℓ.w.1), we compute that:

(w ⊗ 1); (ℓe ⊗ 1); ϵ (18)= (w ⊗ 1) ;µ; !ϵ; e (19)= ρ; w; w; !ϵ; e nat.= ρ; w; w; e (e.w)= ρ; wA

nat.= (1 ⊗ w); ρ (7)= (1 ⊗ w); (υ ⊗ 1); ϵ = (υ ⊗ 1); (1 ⊗ w); ϵ (10)= (υ ⊗ 1); (w∗ ⊗ 1); ϵ

Thus we get that w; ℓe = υ; w∗. Then for (ℓ.d.1), we compute that:

(d ⊗ 1); (ℓe ⊗ 1); ϵ (18)=
(
d ⊗ 1

)
;µ; !ϵ; e (19)= (1 ⊗ d); d; !ϵ; e

nat.= (1 ⊗ d); ϵ; d; e (e.d)= (1 ⊗ d); ϵ (10)= (d∗ ⊗ 1); ϵ
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Thus we get that dA∗ ; ℓe
A = d∗

A. Now for (ℓ.c.1), we compute that:

(c ⊗ 1); (ℓe ⊗ 1); ϵ!A,I
(18)= (c ⊗ 1) ;µ; !ϵ; e (19)= (1 ⊗ c) ; τ ; (µ⊗ µ); c; !ϵ; e

nat.= (1 ⊗ c) ; τ ; (µ⊗ µ); (!ϵ⊗ !ϵ); c; e (e.c)= (1 ⊗ c) ; τ ; (µ⊗ µ); (!ϵ⊗ !ϵ); (e ⊗ e)
(18)= (1 ⊗ c) ; τ ; ((ℓe ⊗ 1) ⊗ (ℓe ⊗ 1)) ; (ϵ⊗ ϵ) nat.= (1 ⊗ c) ; ((ℓe ⊗ ℓe) ⊗ 1) ; τ ; (ϵ⊗ ϵ)
(9)= ((ℓe ⊗ ℓe) ⊗ 1) ; (Θ ⊗ 1) ; (1 ⊗ c) ; ϵ (10)= ((ℓe ⊗ ℓe) ⊗ 1) ; (Θ ⊗ 1) ; (c∗ ⊗ 1) ; ϵ

Thus we get that cA∗ ; ℓe
A = (ℓe

A ⊗ ℓe
A); Θ!A,!A; c∗

A. Lastly, for (ℓ.µ), we will need the monoidal
associativity axiom from the definition of a monoidal coalgebra modality [2, Def 2]:

α; (µ⊗ 1);µ = (1 ⊗ µ);µ; !α (20)

Then we compute that:

(!ν ⊗ 1); (ξ ⊗ 1); ((1 ⊸ ℓe) ⊗ 1);
(
ν−1 ⊗ 1

)
; ϵ

(8)= (!ν ⊗ 1); (ξ ⊗ 1); ((1 ⊸ ℓe) ⊗ 1);α; (ϵ⊗ 1); ϵ
nat.= α; ((!ν ⊗ 1) ⊗ 1) ; ((ξ ⊗ 1) ⊗ 1) ; (((1 ⊸ ℓe) ⊗ 1) ⊗ 1) ; (ϵ⊗ 1); ϵ
(5)= α; ((!ν ⊗ 1) ⊗ 1) ; ((ξ ⊗ 1) ⊗ 1) ; (ϵ⊗ 1) ; ℓe; ϵ
(8)= α; ((!ν ⊗ 1) ⊗ 1) ; (µ⊗ 1) ; (!ϵ⊗ 1) ; ℓe; ϵ
nat.= α; (µ⊗ 1) ; (!(ν ⊗ 1) ⊗ 1) ; (!ϵ⊗ 1) ; ℓe; ϵ
(18)= α; (µ⊗ 1) ; (!(ν ⊗ 1) ⊗ 1) ; (!ϵ⊗ 1) ;µ; !ϵ; e
nat.= α; (µ⊗ 1) ;µ; ! ((ν ⊗ 1) ⊗ 1)) ; !(ϵ⊗ 1); !ϵ; e
(20)= (1 ⊗ µ) ;µ; !α; ! ((ν ⊗ 1) ⊗ 1)) ; !(ϵ⊗ 1); !ϵ; e (8)= (1 ⊗ µ) ;µ; !ϵ; e
(18)= (1 ⊗ µ) ; (ℓe ⊗ 1) ; ϵ = (ℓe ⊗ 1) ; (1 ⊗ µ) ; ϵ (10)= (ℓe ⊗ 1) ; (µ∗ ⊗ 1) ; ϵ

Thus we get that !νA,B ; ξA,B∗ ; 1!A ⊸ ℓe
B ; ν−1

!A,!B = ℓe
A⊗B ;µ∗

A,B . Therefore, we conclude that
ℓe is a Laplace distributor. By definition, we then get that (17) is indeed the induced Laplace
evaluator. ◀

The constructions from the above two propositions are inverses of each other, thus giving
us our desired bijective correspondence.

▶ Theorem 6. For a differential linear closed category, there is a bijective correspondence
between Laplace distributors and I-exponential maps.

Proof. To show that the constructions from Prop 4 and Prop 5 are invereses of each other,
we must show that eℓe = e and ℓeℓ = ℓ. For the former, we will need the monoidal unital
axiom from the definition of a monoidal coalgebra modality [2, Def 2]:

(1!A ⊗ µI);µA,I = ρ!A; !(ρ−1
A ) (21)

So we first compute that:

(eℓe
⊗ 1I); (υI ⊗ 1); ϵI,I

(13)= (!υI ⊗ 1I); (ℓe
I ⊗ 1I); (µ∗

I ⊗ 1I); (υ−1
I ⊗ 1I); (υI ⊗ 1); ϵI,I

(!υI ⊗ 1I); (ℓe
I ⊗ 1I); (µ∗

I ⊗ 1I); ϵI,I
(10)= (!υI ⊗ 1I); (ℓe

I ⊗ 1I); (1(!I)∗ ⊗ µI); ϵ!I,I
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9:12 Laplace Distributors and Laplace Transformations for Differential Categories

= (!υI ⊗ 1I); (1!I∗ ⊗ µI); (ℓe
I ⊗ 1!I); ϵ!I,I

(18)= (!υI ⊗ 1I); (1!I∗ ⊗ µI);µI∗,I ; !ϵI∗,I ; e
(21)= (!υI ⊗ 1I); ρ!I∗ ; !(ρ−1

I∗ ); !ϵI∗,I ; e nat.= ρ!I ; !υI ; !(ρ−1
I∗ ); !ϵI∗,I ; e (7)= ρ!I ; !υI ; !υ−1

I ; e = ρ!I ; e
nat.= (e ⊗ 1I); ρI

(7)= (e ⊗ 1I); (υI ⊗ 1); ϵI,I

So we get that eℓe ; υI = e; υI , and since υI is an isomorphism, we get that eℓe = e. On the
other hand, we leave it as an exercise for the reader to check that when taking B = I in (ℓ.µ)
it follows that the following diagram commutes:

!A∗

ξA,I ��
(ℓ.µI )

ℓA // (!A)∗

!A⊸ !I
1!A⊸!υI ��

!A⊸ !I∗
1!A⊸ℓI

// !A⊸ (!I)∗
1!A⊸µ∗

I

// !A⊸ I∗

1!A⊸υ−1
I

OO

From this, we compute that:

(ℓeℓ

A ⊗ 1!A); ϵ!A,I
(18)= µA∗,A; !ϵA,I ; eℓ (13)= µA∗,A; !ϵA,I ; !υI ; ℓI ;µ∗

I ; υ−1
I

(6)= (ξA,I ⊗ 1!A); ϵ!A,!I ; !υI ; ℓI ;µ∗
I ; υ−1

I

(5)= (ξA,I ⊗ 1!A); ((1!A ⊸ !υI) ⊗ 1!A) ; ((1!A ⊸ ℓI) ⊗ 1!A) ;
((1!A ⊸ !υI) ⊗ µ∗

I) ;
(
(1!A ⊸ υ−1

I ) ⊗ 1!A
)

; ϵ!A,I

(ℓ.µI )= (ℓA ⊗ 1!A); ϵ!A,I

So we get that ℓeℓ

A = ℓA. ◀

So now that we have proven that Laplace distributors do indeed correspond precisely to
generalized versions of the exponential functions, let us revisit our distribution intuition for
the axioms of a Laplace distributor. So suppose we have an I-exponential map, which recall
we wrote as e(δx) = ex. Then for every linear functional x∗ : A⊸ I and z ∈ A, the induced
Laplace distributor is given as follows, which also corresponds to the axiom (ℓ.µ):

ℓA(δx∗)(δz) = ex∗(z) (ℓ.µ)

Then the three other axioms of a Laplace distributor do indeed correspond to the three main
identities of the exponential function:

ex∗(z)+y∗(z) = ex∗(z)ey∗(z) (ℓ.c.1)

e0(z) = 1 (ℓ.w.1)
D0(ex)(x∗(z)) = x∗(z) (ℓ.d.1)

We can also describe the Laplace evaluator on Dirac distributions as:

ℓ

A(δx∗ ⊗ δz) = ex∗(z) (22)

Moreover, we are also in a position to show that the Laplace distributor also “co-transforms”
the structural rules into their mirror co-structural rules in the following sense:
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▶ Lemma 7. In a differential linear closed category with a Laplace distributor, the following
diagrams commute:

!A∗ ℓA //

cA∗

��

(!A)∗

c∗
A

��

!A∗

(ℓ.w.2)wA∗

��

ℓA // (!A)∗

w∗
A��

!A∗ ℓA //

dA∗ ++

(!A)∗

d∗
A��

(ℓ.d.2)

!A∗ ⊗ !A∗

ℓA⊗ℓA

��

(ℓ.c.2) I
υI

// I∗ A∗

(!A)∗ ⊗ (!A)∗
Θ!A,!A

// (!A⊗ !A)∗

Proof. By Thm 6, we now know that ℓA : !A∗ → (!A)∗ is the unique map such that:

(ℓA ⊗ 1!A); ϵ!A,I = µA∗,A; !ϵA,I ; eℓ (23)

So by using this to our advantage, we can use the same techniques as in the proof of Prop 5
as well as the right side versions of (19), which recall were the compatibility relations between
µ and the co-structural maps [2, Prop 2 & Prop 5], to then show that the desired identities
hold. Indeed, for (ℓ.d.2), we compute that (omitting subscripts for readability again):

(ℓ⊗ 1); (d∗ ⊗ 1); ϵ (10)= (ℓ⊗ 1); (1 ⊗ d); ϵ = (1 ⊗ d); (ℓ⊗ 1); ϵ (18)= (1 ⊗ d);µ; !ϵ; eℓ

(19)= (d ⊗ 1); d; !ϵ; eℓ nat.= (d ⊗ 1); ϵ; d; eℓ (e.d)= (d ⊗ 1); ϵ

So we get that ℓ; d∗ = d. We can also compute (ℓ.c.2) and (ℓ.w.2) via similar computations. ◀

Using our distribution intuition, we see that these identities for the Laplace distributor
correspond again to the three main identities of the exponential function, but expressed in a
slightly different manner. So for y, z ∈ A and x∗ ∈ A, we get that:

ex∗(z+y) = ex∗(z)ex∗(y) (ℓ.c.2)

ex∗(0) = 1 (ℓ.w.2)

D0(ex∗(_))(x∗(z)) = x∗(z) (ℓ.d.2)

5 Laplace Transformation

Laplace distributors are also particularly interesting when considered in the isomix star-
autonomous setting. Recall that a star-autonomous category [22, Sec 4.8] is a symmetric
monoidal category with a chosen object ⊥, called the dualizing object, such that for every
object A, writing A⊥ := A ⊸⊥, the canonical map ϱA : A → A⊥⊥ is an isomorphism. A
star-autonomous category whose dualizing object is the monoidal unit ⊥= I is called isomix
[6, Def 6.5]. So in an isomix star-autonomous category, A⊥ = A∗ and therefore we have the
isomorphism A ∼= A∗∗, and thus every object is reflexive. Then by a differential linear
isomix category we mean a differential linear closed category whose underlying symmetric
monoidal closed category is an isomix star-autonomous category. This is a natural setting to
consider since many important categorical models of Classical DiLL are isomix.

Now in an isomix star-autonomous category, we can define a new monoidal product `
defined as A`B : = (A∗ ⊗B∗)∗ [22, Sec 4.8], where I still acts as a unit for `. Moreover
there is also a canonical natural transformation mA,B : A⊗B → A`B called the mixor [6,
Def 6.2] and can be defined as the following composite:

A⊗B
ρA⊗ρB // A∗∗ ⊗B∗∗ ΘA∗,B∗

// (A∗ ⊗B∗)∗ = A`B (24)
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9:14 Laplace Distributors and Laplace Transformations for Differential Categories

The mixor is the categorical interpretation of the mix rule [13]. Moreover, in a differential
linear isomix category C, we can also define the functor ? : C → C as ?(_) = (!_∗)∗, and
it comes equipped with dual versions of the structural maps of !. So we have natural
transformations p?

A : ??A → ?A, d?
A : A → ?A, c?

A : ?A ` ?A → ?A, w?
A : I → ?A,

µ?
A,B : ?(A ` B) → ?A ` ?B, µ?

I : ?I → I, c?
A : ?A → ?A ` ?A, w?

A : ?A → I, and
d?

A : ?A → A. For example, d?
A : A → ?A and d?

A : ?A → A are defined as the following
composites:

d?
A := A

ρA // A∗∗ d∗
A∗ // (!A∗)∗ = ?A d?

A := ?A = (!A∗)∗ d∗
A∗ // A∗∗ ρ−1

A // A (25)

In particular, this makes Cop a differential linear isomix category as well with monoidal
product ` and with ? its monoidal differential modality.

Now suppose that we have a Laplace distributor ℓA : !A∗ → (!A)∗, and consider its induced
Laplace evaluator

ℓ

A : !A∗ ⊗ !A → I. Currying the !A gives us back the Laplace distributor.
On the other hand, if we curry the !A∗ instead, we obtain a map of type !A → (!A∗)∗ = ?A,
which we call the Laplace transformation. Alternatively, the Laplace transformation is the
dual of the Laplace distributor, up to the reflexivity isomorphism. Moreover, where the
mixor gave a mix rule from the multiplicative conjunction ⊗ to the multiplicative disjunction
`, the Laplace transformation provides a mix rule from the exponential conjunction ! to the
exponential disjunction ?.

▶ Definition 8. In a differential linear isomix category with a Laplace distributor ℓ, its
associated Laplace transformation is the natural transformation LA : !A → ?A defined as:

LA : = !A ϱ!A // (!A)∗∗ ℓ∗
A // (!A∗)∗ = ?A (26)

or equivalently, as the unique map such that the following equality holds:

(LA ⊗ 1!A∗); ϵ!A∗,I = σ!A,!A∗ ;

ℓ

A (27)

Using our distribution intuition, an element of ?A is a smooth map A∗ → I. Then for
every z ∈ A, L(δz) : A∗ → I is the smooth map defined as:

L(δz)(x∗) = ex∗(z) (28)

The induced I-exponential map can also nicely be described in terms of the Laplace trans-
formation:

▶ Lemma 9. For a differential linear isomix category with a Laplace distributor, its induced
Laplace transformation is equal to the following composite:

LA : = !A !ϱA // !A∗∗ ℓA∗ // (!A∗)∗ = ?A (29)

and furthermore, the induced I-exponential map is equal to the following composite:

eℓ := !I LI // ?I
µ?

I // I (30)

Proof. It is straightforward to check that (26) and (29) both satisfy (27), and therefore must
be equal. Then (30) follows from the fact that µ?

I = !(υ∗
I );µ∗

I ; υ−1
I and that !ρI ; !(υ∗

I ) = !υI . ◀

Moreover, the analogues of the diagrams of a Laplace distributor in Def 1 and Lemma 7
have nice representations for the Laplace transformation, which is proven easily through the
reflexivity isomorphism.
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▶ Proposition 10. In a differential linear isomix category with a Laplace distributor, the
following diagrams commute:

!A⊗ !A cA //

m!A,!A
��

!A

LA

��

I

w?
A ,,

wA // !A
(L.w.1) LA

��

A

d?
A ,,

dA // !A
(L.d.1) LA

��
!A` !A

LA`LA
��

(L.c.1) ?A ?A

?A` ?A
c?

A

// ?A

!A cA //

LA

��

!A⊗ !A
m!A,!A

��

!A LA //

wA ,,

?A
(L.w.2) w?

A��

!A LA //

dA ,,

?A
(L.d.2) d?

A��
(L.c.2) !A` !A

LA`LA
��

I A

?A
c?

A

// ?A` ?A

Proof. Clearly, (L.c.1), (L.w.1), etc. are precisely the duals (in the sense of applying the
contravariant functor ∗) of (ℓ.c.1), (ℓ.w.1), etc. up to the reflexivity isomorphism. ◀

So we clearly see how the Laplace transformation does indeed transform the co-structural
rules of ! into the structural rules of ?, where the latter are the dual of the structural rules of
!. Moreover, we note that (L.c.1 & 2) and (L.w.1 & 2) say that the Laplace transformation is
a morphism from a ⊗-(co)monoid to a `-(co)monoid. This is a key idea for the exponential
modality in dagger linear logic [8].

Another natural question to ask is if from a Laplace distributor ℓ, we can get isomix
star-autonomy. To answer this, note that the functor ? can be defined for any symmetric
monoidal closed category. However, ? will not have all the structural maps above since `
is no longer necessarily a monoidal product. Nevertheless, for any differential linear closed
category with a Laplace distributor, we can always get a natural transformation of type
LA : !A → ?A. If there is also a map of dual type which agrees on the A parts of !A and ?A
then we do get isomix star-autonomy. This is particularly the case when LA : !A → ?A is an
isomorphism. In calculus, that the Laplace transform is reversible is particularly important:
this makes it a tool to go from the differential world to the polynomial world and back.

▶ Proposition 11. Let C be a differential linear closed category with a Laplace distributor ℓ
and induced natural transformation LA : !A → ?A as defined in (29). If there is a natural
transformation L• : ?A → !A such that the following equalities hold:

dA;LA;L•
A; dA = 1A d∗

A∗ ;L•
A;LA; d∗

A∗ = 1A∗∗ (31)

then C is isomix star-autonomous. In particular, if L is an isomorphism, then C is isomix
star-autonomous.

Proof. The key to this proof is that by definition of the co-dereliction [2, Def 9], we have
that d; d = 1. From this, naturality, (L.d.1), and (ℓ.d.1), we get that ρ = d;L; d∗. Then
define ρ−1 = d∗;L•; d. Then from (31) and (ℓ.d.1 & 2), one easily checks that ρ; ρ−1 = 1 and
ρ−1; ρ = 1. So we conclude that C is isomix star-autonomous as desired. Now if L was an
isomorphism to begin with, setting L• = L−1, it follows from (ℓ.d.1 & 2) that (31) holds. ◀
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6 Examples

In this section, we give examples of Laplace distributors/evaluators, I-exponential maps, and
Laplace transformations in well-known and important examples of differential categories.

▶ Example 12 (Relations). An important model of DiLL is the relational model. So let REL
be the category whose objects are sets X and where a map R : X → Y is a relation, that is,
a subset R ⊆ X × Y . REL is a differential linear isomix category; for full details, see [18, Sec
IV.A]. In particular, for a set X, !X = Mf (X) is the set of finite multisets of X. Moreover,
the monoidal unit is a chosen singleton I = {∗}, and (up to isomorphism) we may associate
X∗ = X. From this point of view ?X = !X, and we trivially see that the identity:

1!X = {(B,B)|∀B ∈ !X} ⊆ !X × !X

is a Laplace distributor and its induced Laplace transformation. Moreover, the induced
{∗}-exponential map is the one that relates every bag to the single element, in other words:

e = !{∗} × {∗}

REL is also an example of both the more general settings described in Ex 15 and Ex 16 below.

▶ Example 13 (Weighted Relations). The relation model can be generalized by consider-
ing weighted relations [23, Sec III] over a complete commutative semiring. Recall that a
commutative semiring R is complete if sums of elements of R indexed by arbitrary sets are
well-defined in R, and these sums satisfy natural distributivity and partition axioms [23,
Sec III.C]. For a complete commutative semiring R, define the category RΠ whose objects
are sets X, and where a map from X to Y is a function f : X × Y → R. Composition
of f : X × Y → R and g : Y × Z → R is defined as (f ; g)(x, z) =

∑
y∈Y f(x, y)g(y, z),

which is well-defined since R is complete. The identity is the Kronecker delta function
δX : X ×X → R defined as δX(x, y) = 0 if x ̸= y and δX(x, x) = 1. Then RΠ is a differential
linear isomix category; for full details, see [18, Sec IV.B]. In particular, as in Ex 12, the
modality is !X = Mf (X), the monoidal product is the Cartesian product of sets × (which is
not the categorical product), and the monoidal unit is I = {∗}. However, in general, RΠ

will not have an {∗}-exponential map. Suppose that we do have an {∗}-exponential map, so
a function e : !{∗} × {∗} → R. First note that elements of !{∗} can be associated with the
natural numbers: so for every n ∈ N, let [n] be the finite multiset with n copies of ∗. Now
the co-dereliction is:

d{∗}(∗, [n]) = δN(1, n)

Then (e.d) would give us that: e([1], ∗) = 1. On the other hand, the co-contraction is:
c{∗}(([n], [m]), [k]) =

(
n+m

m

)
δN(n+m, k). So (e.c) would give us that:(

n+m

m

)
e([n+m], ∗) = e([n], ∗)e([m], ∗)

Now, taking n = m = 1 in this last equality, we would get that 2e([2], ∗) = 1, which says
that e([2], ∗) is an inverse of 2 in R. However, 2 is not always a unit in an arbitrary semiring.
For example, R = N ⊔ {∞} is a complete commutative semiring for which 2 is not invertible.
Therefore, (N ⊔ {∞})Π is a differential linear closed/isomix category which does not have an
{∗}-exponential map. Now if every n is invertible in R, then RΠ does have a {∗}-exponential
map given by the function e : !{∗} × {∗} → R defined as: e([n], ∗) = 1

n! . That is indeed an
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{∗}-exponential map follows from the fact that RΠ is an example of the general settings
described in Ex 15 and Ex 16. Moreover, this example also recaptures Ex 12 since by taking
the Boolean semiring B = {0, 1}, we get back BΠ ∼= REL, and since 1 + 1 = 1 in B, the factor
1
n! disappears in the descriptions of the {∗}-exponential map in REL.

▶ Example 14 (Convenient Vector Spaces). Throughout the paper, we used distributions for
intuition. We can make this precise by considering the differential category of convenient
spaces, introduced by Blute, Ehrhard, and Tasson in [1]. Briefly, a convenient vector
space [1, Def 2.9] is a special kind of locally convex vector space which in particular has a
bornology for which it is Mackey complete. This allows us to define smooth functions (in the
usual analysis sense) between convenient vector spaces E and F . Let C∞(E,F ) be the set of
smooth functions between them, which is itself a convenient vector space. Also, the reals R
is a convenient vector space, and for a convenient vector space E, we let E∗ be the vector
space of linear smooth functions E → R, which is again a convenient vector space. Now,
for every convenient vector space E, we have a smooth function δ : E → C∞(E,R)∗ which
maps x ∈ E to its associated Dirac distribution δx ∈ C∞(E,R)∗. Then CON, the category
of convenient vector spaces and linear smooth functions between them, is a differential
linear closed category, where !E is the Mackey completion of δ(E) ⊆ C∞(E,R)∗ [1, Def 5.2].
Moreover, for every smooth function f : E → F there is a unique linear smooth function
f ♯ : !E → F such that f(x) = f ♯(δx) [1, Thm 5.5]. Now the monoidal unit in CON is R and
since the classical exponential function ez : R → R is smooth, there exists a unique linear
smooth function e : !R → R such that:

ez = e(δz)

From this, it immediately follows that e : !R → R is an R-exponential map. Therefore, the
Laplace distributor and Laplace evaluator are precisely the unique linear smooth functions
such that:

ℓE(δx∗) = ex∗(−) ℓ

A(δx∗ ⊗ δz) = ex∗(z)

As such, this is the model which properly interprets the Laplace transform as operating on
Dirac distributions as discussed in Section 3.

▶ Example 15 (Countable Sums). In calculus, the exponential function can be written out
as the power series:

ex =
∑
n∈N

xn

n!

In a setting where we have countable sums and can scalar multiply by positive rationals Q≥0,
the same formula holds for constructing an I-exponential map. So suppose that we are in
a QΣ

≥0-differential linear closed/isomix category as was considered in [18, Sec III.E],
which means that each homset is a countably complete Q≥0-module. Now for every n ∈ N,
let cn

A : !A → !A⊗n be the map which co-multiplies !A into n-copies of !A, and then define
dn

A : !A → A⊗n as the composite:

dn
A := !A

cn
A // !A⊗ . . .⊗ !A dA⊗...⊗dA // A⊗ . . .⊗A

With these maps, we can construct an I-exponential map defined as follows:

e :=
∞∑

n=0

1
n! ·

(
!I

dn
I // I⊗n ∼= // I

)
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Checking that this is an I-exponential map is the same proof that checking that ex satisfies
the analogue identities using its power series. Then, the induced Laplace distributor, Laplace
evaluator, and Laplace transformation are given as follows:

ℓA :=
∞∑

n=0

1
n! ·

(
!A∗ dn

A∗ // A∗ ⊗ . . .⊗A∗ ΘA,...,A // (A⊗ . . .⊗A)∗ dn
A

∗
// (!A)∗

)

ℓ

A :=
∞∑

n=0

1
n! ·

 !A∗ ⊗ !A
dn

A∗ ⊗dn
A // (A∗)⊗n ⊗A⊗n ∼= // (A∗ ⊗A)⊗n ϵ⊗n

A,I // I⊗n = I


LA :=

∞∑
n=0

1
n! ·

(
!A

dn
A // A⊗ . . .⊗A

mA,...,A // A` . . .`A
d?n

A // ?A
)

▶ Example 16 (Co-digging). In [18], the authors introduced the notion of co-digging for
differential categories, which is the co-structural version of digging. Briefly, co-digging
[18, Def III.3] for a differential linear category is a natural transformation of dual type
of the digging, pA : !!A → !A, which satisfies the dual axioms of the digging. Using our
distribution intuition, the co-digging corresponds to the notion of convolution exponential
for distributions:

pA(δδz
) =

∑
n∈N

δnx

n! (32)

See [18, Sec III.C] for more details. The co-digging always induces an I-exponential map
µI : !I → I [18, Lemma III.4] defined as the composite:

µI := !I !wI // !!I
pI // !I wI // I (33)

Therefore, every differential linear closed/isomix category with co-digging has a Laplace
distributor/transformation. Furthermore, if p and µ are compatible in the sense that the
following diagram commutes:

!!A⊗ !B

pA⊗1!B

��

1!A⊗pB // !!A⊗ !!B
µ!A,!B // ! (!A⊗ !B)

!(µA,B) // !!(A⊗B)

p!A,!B

��
!A⊗ !B

µA,B

// A⊗B

(34)

which is the same kind of compatiblity as those in (19) – then using the same techniques
as in the proof of Prop 5, we also get that the Laplace distributor/transformation also
(co-)transforms the co-digging into the digging:

!!A∗

!(ℓA)
��

pA∗ //

(ℓ.p.1)

!A∗

ℓA

��

!A∗

pA∗

��

ℓA //

(ℓ.p.2)

(!A)∗

p∗
A

��

!!A
!(LA)

��

pA //

(L.p.1)

!A

LA

��

!A
pA

��

L //

(L.p.2)

?A

p?
A

��

!(!A)∗

ℓ!A
��

!!A∗

!(ℓA)
��

!?A
L?A

��

!!A
!(LA)

��
(!!A)∗

p∗
A

// (!A)∗ !(!A)∗
ℓ!A

// (!!A)∗ ??A
p?

A

// ?A !?A
L?A

// ??A
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These diagrams amount to interpreting the exponential function of the exponential function,
eez . So, in particular, in terms of the Laplace distributor:

eex∗(z)
=
∑
n∈N

enx∗(z)

n! (ℓ.p.1)

eex∗(z)
=
∑
n∈N

ex∗(nz)

n! (ℓ.p.2)

Interesting examples of models with co-digging can be found in [18, Sec IV], which include
the (weighted) relational model described above.

▶ Example 17 (Finiteness Spaces). Finiteness spaces [10] are a well-known refinement of REL,
giving a vectorial model of DiLL [11]. For a set X, and a subset of its powerset F ⊆ P(X),
we denote by F⊥ ⊆ P(X) the subsets of U ⊆ X such that for all V ∈ F , U ∩ V is finite.
Then a finiteness space [10, Sec 1] is a pair X = (|X |,F(X )) of a set |X | and a subset
F(X ) ⊆ P (|X |) which verifies the finiteness condition F(X )⊥⊥ = F(X ). Given a field k,
every finiteness space X generates a linear topological k-vector space k⟨X ⟩ defined as the
set of all families x ∈ k|X | such that supp(x) = {a ∈ |X||xa ̸= 0} ∈ F(X) [10, Sec 3]. Then
let FINk be the category whose objects are finiteness spaces and where a map from X to Y
is a linear continuous function M : k⟨X ⟩ → k⟨Y⟩, which can be described as an |X | × |Y|
matrix Mx,y. Then FINk is a differential linear isomix category; see [11, Sec 5] for full details.
The finiteness space !X has as carrier |!X | := Mf (|X |), the finite multisets over |X |, and as
finiteness structure F(!X ) ⊆ P(Mf (|X |)) the collection of all sets of multisets on |X| whose
union is in F(X ) [10, Sec 1.1]. On the other hand, the monoidal unit is I = ({∗},P(∗)).
Then FINk has an I-exponential map given by the exponential function described by Ehrhard
in [10, Lemma 19], that is, the linear continuous function e : k⟨!I⟩ → k⟨I⟩ whose associated
matrix is:

en,∗ = 1
n!

Now for a finiteness space X , its dual is the finiteness space X ∗ = (|X |,F(X )⊥). Then
both the induced Laplace distributor ℓX : k⟨!X ∗⟩ → k⟨(!X)∗⟩ and Laplace transformation
LX : k⟨!X⟩ → k⟨?X ⟩ have the same associated matrix with coefficients indexed by multisets
m,m′ ∈ Mf (|X |):

(ℓX )m,m′ = (LX )m,m′ = em′(m) = e

∑
x∈|X |

m(x)m′(x)

which is well-defined thanks to the orthogonality condition.

▶ Example 18 (Köthe Spaces). Köthe spaces [9] are a model of DiLL based on spaces of
sequences. They are studied independently in functional analysis and correspond to a non-
discrete version of finiteness spaces. Let k be the field of real or complex numbers. For a
denumerable set X, for sequences a, b ∈ kX define the orthogonality relation a⊥b if and only
if
∑

x∈X |axbx| converges. A Köthe space is pair X = (|X |, EX ) of a carrier set |X | and a
subspace EX ⊆ k|X |, such that E⊥⊥

X = EX . Then we get a differential linear isomix category
of Köthe spaces, which is similar to the finiteness space model described above. In particular,
the exponential function corresponds to taking a converging sequence a ∈ kN to

∑
n∈N

1
n!an.

The Laplace distributor/transformation is expressed similarly to finiteness spaces.

▶ Example 19 (Fréchet and DF spaces). Fréchet spaces are metrizable and complete locally
convex topological vector spaces. They enjoy a nice duality theory with DF-spaces. When
adding the constraint that these spaces must be nuclear [16], one obtains a model of polarized
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first-order DiLL [17]: the tensor product of two nuclear DF -space is a nuclear DF -space;
nuclear DF or Fréchet spaces are isomorphic to their double duals; ?Rn = C∞(Rn,R) is
nuclear DF; and !Rn = C∞(Rn,R)′ is nuclear Fréchet. A nuclear Fréchet spaces N is, in
fact, a projective limit of Banach Spaces N =

⋂
n Np. This construction is taken to the

higher-order level in [14], using functions whose exponential growth is bounded. For a
Young function θ and for a Banach space B, let Exp(B, θ,m) denote the Banach space of
holomorphic functions from B to C such that |f(z)| ≤ Keθ(m||z||). Then, one defines the space
of functions with exponential growth of minimal order on N as the inductive limit Gθ∗(N)
of spaces Exp(θ,m, p), and also the space of functions with exponential growth of arbitrary
order on N ′ =

⋃
p(Np)′ =

⋃
p N

′
−p as the projective limit Fθ(N ′) of spaces Exp(θ,m,−p).

In this higher-order setting, the Laplace transform has a finer meaning than in the other
examples. Indeed, it transforms distributions on one type of function into another type of
function and makes the index θ change:

L :
{

F′
θ(N ′) ≃ Gθ∗(N)
ϕ 7→

(
ℓ ∈ N ′ 7→ ϕ(x ∈ N ′ 7→ eℓ(x) ∈ C)

)
where θ∗ := supt≥0(tx− θ(t)) is the convex conjugate of θ. Details about this construction
can be found in [18, Sec V]. This opens up fascinating questions on Laplace transforms in
polarized differential linear categories [4] or even graded differential linear categories [21].

7 Future Work

In this paper, we gave a new point of view on exponential functions in differential categories,
and on the exponential connectives ! and ? in DiLL, thanks to the categorification of
the Laplace transform. We defined the Laplace distributor as a transformation from the
exponential !A to its dual which transforms co-structural rules into structural rules. We
related this new distributor to the presence of an exponential scalar function, and to the
involutivity of the duality. We presented several examples, as well as one counter-example.
We conclude this paper with a brief discussion of interesting potential future work.

A natural path to consider is generalizing this story from isomix star-autonomous cat-
egories to linearly distributive categories [5]. Indeed, the diagrams in Prop 10 can easily be
written down in a linearly distributive category with the proper notion of exponentials [7, 8].
So one could study Laplace transformations in a linearly distributive setting. However, the
linearly distributive generalization of differential categories has not yet been properly defined
or studied. So hopefully the story of this paper will motivate the development of such a
theory.

Work is also needed on concrete models of Laplace transforms. The original intuition
for the categorification of the Laplace transform came from higher-order work in functional
analysis [14, 18], in which two kinds of functions with different exponential growth model the
two types of exponential connectives, applying to formulas with different polarities [19]. The
Laplace transformation then changes distributions on one type of function into distributions
on the other type of function. Understanding the categorical interplay between the Laplace
transformation and polarity might lead to a better axiomatization of differential linear
star-autonomous linear categories.
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Abstract
Programming languages can be defined from the concrete to the abstract by abstract syntax trees,
well-scoped syntax, well-typed (intrinsic) syntax, algebraic syntax (well-typed syntax quotiented by
conversion). Another aspect is the representation of binding structure for which nominal approaches,
De Bruijn indices/levels and higher order abstract syntax (HOAS) are available. In HOAS, binders
are given by the function space of an internal language of presheaves. In this paper, we show how to
combine the algebraic approach with the HOAS approach: following Uemura, we define languages
as second-order generalised algebraic theories (SOGATs). Through a series of examples we show
that non-substructural languages can be naturally defined as SOGATs. We give a formal definition
of SOGAT signatures (using the syntax of a particular SOGAT) and define two translations from
SOGAT signatures to GAT signatures (signatures for quotient inductive-inductive types), based on
parallel and single substitutions, respectively.
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1 Introduction

The traditional way of defining a programming language comprises of a BNF-style description
of abstract syntax trees, a typing relation and a reduction or conversion relation [48, 49, 53].
If instead the syntax is defined using well-scoped syntax trees [34, 27, 3], bound names do
not matter: for example, one cannot distinguish 𝜆𝑥.𝑥 and 𝜆𝑦.𝑦 anymore. A higher level
representation is given by intrinsic (well-typed) terms [9, 53] where one merges the syntax
and the typing relation: non well-typed terms are not expressable in such a representation.
The next level of abstraction is when well-typed terms are quotiented by the conversion
relation: this is especially convenient for dependently typed languages where typing depends
on conversion [7]. Here one can only define functions on the syntax that preserve conversion:
a simple printing function is not definable, but normalisation [6, 20], typechecking [35] or
parametricity [7] preserve conversion, so they can be defined on the well-typed quotiented
syntax. The well-typed quotiented syntax is also concordant with the semantics: there is no
reason to have a separate definition of syntax and a different notion of semantics, but the
syntax can be simply defined as the initial model, which always exists for any generalised
algebraic theory (GAT) [39]. Thus, abstractly, a language is simply a GAT.
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Another aspect of the definition of a language is the treatment of bindings and variables:
one can use De Bruijn indices to make sure that choices of names do not matter, but
then substitution has to be part of the syntax, for example in the form of a category with
families [19]. Logical frameworks [29, 47] and higher-order abstract syntax (HOAS) [32]
provide another way to implement bindings and variables: they use the function space of the
metatheory. For example, the type of the lambda operation in the pure lambda calculus is
simply the second-order function space (Tm → Tm) → Tm. The justification of HOAS is the
type-theoretic internal language of presheaves over the category of contexts and syntactic
substitutions [32]. In this internal language, lambda indeed has the above type. This internal
language viewpoint can also be used to define languages: in this case a language with
bindings is not a GAT, but a second-order generalised algebraic theory (SOGAT), which
allows second-order (but not general higher-order) operations. While untyped or simply typed
languages were defined as second-order theories before [23, 21, 2], SOGATs were first used
by Uemura [52] for defining languages with bindings. The step from second-order algebraic
theories to SOGATs is a big one: it is analogous to the step from inductive types to inductive-
inductive types [40]. The SOGAT definition of a language can be even more abstract than
the well-typed quotiented definition: the SOGAT does not mention contexts or substitutions:
these can be seen as boilerplate that should be automatically generated. SOGATs are not
well-behaved algebraic theories, for example, there is no meaningful notion of homomorphism
of second-order models. To describe first order models, homomorphisms or the notion of
syntax for a SOGAT, we turn it into a GAT. In this process we introduce new sorts for
contexts and substitutions, we index every operation with its context, and the second-order
function spaces become first order using this context indexing. The thus obtained GAT has
some “correctness by construction” properties, for example, every operation automatically
preserves substitution. For complicated theories, this property is not trivial if we do not
start from a SOGAT, but try to work with the lower level GAT presentation directly.

Cubical type theory [51] and a type theory with internal parametricity [5] have been
presented as SOGATs, and methods were developed to prove properties of type theories at
the SOGAT level of abstraction [50, 16]. Substructural (e.g. linear or modal) type theories
are not definable as SOGATs using the method described in this paper, but sometimes
presheaves over a substructural theory provide a substructural internal language which can
be used to describe the theory, as in the case of multi-modal type theory [26].

Simple algebraic theories can be presented using signatures and equations, or presentation-
independently as Lawvere theories. GATs have syntactic signatures defined using preterms
and well-formedness relations [18], and they can be described presentation-independently
as contextual categories [18], categories with families (CwFs) or clans [24]. The “theory of
signatures” (ToS) approach [39] is halfway between the syntactic and presentation-independent
approaches: here signatures are defined by the syntax of a particular GAT, which is a domain-
specific type theory designed for defining signatures. Signatures look exactly as we write
inductive datatype definitions in a proof assistant like Agda: a list (telescope) of the curried
types of sorts and constructors. A signature in the ToS is a concrete presentation of a theory,
but it is given at the level of abstraction of well-typed quotiented syntax. This allows elegant
semantic constructions [43], while still working directly with signatures. SOGATs again can
be defined syntactically [52] or presentation-independently as representable map categories
[52] or CwFs with locally representable types [14]. The current paper contributes the ToS
style definition of SOGATs (we leave the proof of equivalence with the former definitions as
future work). The theory of SOGAT signatures is itself a SOGAT which can describe itself.
Circularity is avoided because we bootstrap the theory of SOGAT signatures by first defining
it as a GAT, and the theory of GAT signatures (which is the syntax of a GAT) can itself be
bootstrapped using a Church-encoding [42].
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Contributions. The main takeaway of this paper is that structural languages are SOGATs.
We justify this claim through several examples. Our technical contributions are the following:

The theory of SOGAT signatures (ToS+), a domain-specific type theory in which every
closed type is a SOGAT signature. As it is a structural type theory, it can be defined as
a SOGAT itself. Signatures can be formalised in ToS+ without encoding overhead.
A translation from SOGAT signatures to GAT signatures based on a parallel substitution
calculus. Thus, for every SOGAT, we obtain all of the semantics of GATs: a category of
models with an initial object, (co)free models, notions of displayed models and sections,
the fact that induction is equivalent to initiality, and so on. The GAT descriptions that
we obtain are readable, do not contain occurrences of Yoneda as in usual presheaf function
spaces. Correctness of the translation is showed by proving that internally to presheaves
over a model of the GAT, a second-order model of the SOGAT is available.
We define an alternative translation producing a single substitution calculus.

Structure of the paper. In Section 2, we walk through examples of languages defined as
second-order algebraic theories (SOGATs) including (simply typed) combinator calculus,
(simply typed) lambda calculus, first-order logic, System F(𝜔), Martin-Löf type theory.
We list more examples in Appendix A including the lambda cube. We explain what the
SOGAT → GAT translation will give for each example. In Section 3, we define languages
for describing algebraic theories, culminating in the theory of SOGAT signatures (ToS+).
A SOGAT is simply a closed type in the syntax of ToS+. Then we define the SOGAT →
GAT translation in three iterations: Section 4 presents a naive notion of model which is
obviously correct, but has lots of encoding overhead. Section 5 defines an isomorphic notion
of model with less encoding overhead. The final translation is defined in Section 6. Section 7
discusses open and infinitary signatures, and explains the single substitution calculus variant.
Section 8 concludes.

Related work. The “theory of signatures” (ToS) approach was introduced by Kaposi and
Kovács [38] for a higher variant of GATs (higher inductive-inductive types), and was used to
describe ordinary [39] and infinitary [42] GATs (quotient inductive-inductive types). The
thesis of Kovács [43] summarises and generalises these results, in particular, it provides
semantics internal to any category with families (CwF) using the semantic setting of two-level
type theory [4, 10]. The current paper extends this work with second-order operations.
The ToS that we use differs from the one in Kovács’ thesis by including Σ types and being
presented as a SOGAT itself. This has the advantage that we do not have to deal with De
Bruijn indices when giving formal signatures. A version of ToS+ with two fixed sorts of types
and terms was given in the HoTTeST talk by Kaposi [36].

Direct precursors of our work are Hofmann’s analysis of higher-order abstract syntax
(HOAS) [32] and Capriotti’s rule framework [17]. Syntactic definitions of SOGATs are given
in Uemura’s thesis [52] and Harper’s equational logical framework [28]. A syntactic definition
of type theories (SOGATs with two fixed sorts: types and terms) is described by Bauer
and Haselwarter [30] based on earlier work [13]. Presentation-independent definitions of
SOGATs are representable map categories by Uemura [52] and CwFs with a sort of locally
representable types (CwF+) [15]. The presentation-independent ways define models using
functorial semantics, while the ToS approach defines semantics of GATs by induction on
the signature. Functorial semantics for our SOGAT signatures is as follows: every SOGAT
signature Ω gives rise to the free CwF+ over Ω (the slice of the theory of SOGAT signatures
over Ω). Now a model is a category C together with a CwF+-morphism from this CwF+ to
the CwF+ of presheaves over C.
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Our two different ways of translating SOGATs to GATs roughly correspond to Voevodsky’s
two different descriptions of the substitution calculus for dependent type theory: B-systems
correspond to single substitutions, C-systems to parallel substitutions. B-systems and C-
systems are equivalent [1], however our single substitution calculus is more minimalistic, and
has more models than the parallel substitution calculus.

In this paper we explain how to define languages as SOGATs and then translate them
into GATs. Then, the induction principle of the GAT can be used to prove properties of
the syntax. However, certain metatheoretic proofs can be described at the level of SOGATs
avoiding mentioning contexts or substitutions. Synthethic Tait computability [50] and
internal sconing [16] are techniques for this. We leave adapting them to ToS+ as future work.

Metatheory and notation. Our metatheory is extensional type theory with uniqueness of
identity proofs, we use Agda-like notation with implicit arguments sometimes omitted. We
write function application as juxtaposition, the universe of types is denoted Set𝑖, we usually
omit the level subscripts. We use infix Σ type notation using ×, the single element of the
singleton type 𝟙 is denoted ★. Sometimes we work in the internal language of a presheaf
category using the same notations, in the style of two-level type theory [4, 10].

2 Classes of algebraic theories through examples

In this section, we walk through examples of logic and programming languages defined as
algebraic theories: we define a single-sorted algebraic theory (AT), a generalised algebraic
theory (GAT), a second-order algebraic theory (SOAT) and multiple second-order generalised
algebraic theories (SOGATs). GATs include typing information compared to ATs, SOATs
include binders, while SOGATs combine these two aspects.

2.1 Algebraic theories

Combinator calculus is an algebraic theory (AT) with a single sort of terms, one binary,
two nullary operations and two equations. We denote its signature as follows (unlike usual
presentations of algebraic theories, we include the equations in the notion of signature,
because for generalised algebraic theories separation is not possible).

▶ Definition 1 (Schönfinkel’s combinator calculus).

Tm : Set K : Tm K𝛽 : K · 𝑢 · 𝑓 = 𝑢
– · – : Tm → Tm → Tm S : Tm S𝛽 : S · 𝑓 · 𝑔 · 𝑢 = 𝑓 · 𝑢 · (𝑔 · 𝑢)

The notion of algebra/model is evident from this signature. The quotiented syntax of
combinator calculus is the initial model, which always exists. Notions of homomorphism,
displayed/dependent model, induction, products and coproducts of models, free models, and
so on, are derivable from the signature, as described in any book on universal algebra. The
initial algebra of an AT is called a quotient inductive type [22].

Single-sorted algebraic theories from logic are classical (or intuitionistic) propositional
logic defined as the theory of Boolean algebras (or Heyting algebras). Examples from algebra
are monoids, groups, rings, lattices, and so on.
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2.2 Generalised algebraic theories

Generalised algebraic theories (GATs) allow sorts indexed by other sorts. Examples are
typed combinator calculus and propositional logic with Hilbert-style proof theory, theories of
graphs, preorders, categories, and so on.

▶ Definition 2 (Typed combinator calculus).

Ty : Set K : Tm (𝐴⇒ 𝐵 ⇒ 𝐴)
Tm : Ty → Set S : Tm

(
(𝐴⇒ 𝐵 ⇒ 𝐶) ⇒ (𝐴⇒ 𝐵) ⇒ 𝐴⇒ 𝐶

)
𝜄 : Ty K𝛽 : K · 𝑢 · 𝑓 = 𝑢
– ⇒ – : Ty → Ty → Ty S𝛽 : S · 𝑓 · 𝑔 · 𝑢 = 𝑓 · 𝑢 · (𝑔 · 𝑢)
– · – : Tm (𝐴⇒ 𝐵) → Tm 𝐴→ Tm 𝐵

We have a sort of types, and for each type, a separate sort of terms of that type. Now the K
and S operations are nullary only in the sense that they don’t take Tm arguments, but they
still take two and three Ty arguments, respectively. For readability, these are given implicitly.
Similarly, application – · – takes the arguments 𝐴 and 𝐵 implicitly.

The above mentioned universal algebraic features of ATs generalise to GATs [43]. In
particular, each GAT has a syntax given by a quotient inductive-inductive type [39], we have
free models [43] and cofree models [45].

If the language has variables or binders, we will define it as a second-order theory.

2.3 Second-order algebraic theories

The SOAT of lambda calculus is the following.

▶ Definition 3 (Lambda calculus).

Tm : Set lam : (Tm → Tm) → Tm – · – : Tm → Tm → Tm 𝛽 : lam 𝑓 · 𝑢 = 𝑓 𝑢

The type of lam is not first-order (not strictly positive), hence this is not an algebraic theory
anymore. It is clear what a second-order model is (a set with a binary operation and a
second-order function with the type of lam satisfying the equation 𝛽). However, we do not
have a usable notion of homomorphism between second-order models 𝑀 and 𝑁: this would be
a function 𝛼 : Tm𝑀 → Tm𝑁 such that 𝛼 (𝑡 ·𝑀 𝑢) = 𝛼 𝑡 ·𝑁 𝛼 𝑢 and 𝛼 (lam𝑀 𝑓 ) = lam𝑁 (𝛼◦ 𝑓 ◦?),
but we don’t know what to put in place of the ?. To talk about homomorphisms or the
syntax, we translate the SOAT to a first-order GAT: we add contexts, substitutions, index
Tm and all operations by contexts and then lam becomes a first order function taking a term
in an extended context as input. The resulting GAT is the following.
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▶ Definition 4 (Lambda calculus as a first-order GAT).

Con : Set [id] : 𝑡 [id] = 𝑡
Sub : Con → Con → Set – ⊲ : Con → Con
– ◦ – : Sub ∆ Γ → Sub Θ ∆ → Sub Θ Γ – , – : Sub ∆ Γ → Tm ∆ → Sub ∆ (Γ ⊲)
ass : (𝛾 ◦ 𝛿) ◦ 𝜃 = 𝛾 ◦ (𝛿 ◦ 𝜃) p : Sub (Γ ⊲) Γ
id : Sub Γ Γ q : Tm (Γ ⊲)
idl : id ◦ 𝛾 = 𝛾 ⊲𝛽1 : p ◦ (𝛾, 𝑡) = 𝛾
idr : 𝛾 ◦ id = 𝛾 ⊲𝛽2 : q[𝛾, 𝑡] = 𝑡
⋄ : Con ⊲𝜂 : 𝜎 = (p ◦ 𝜎, q[𝜎])
𝜖 : Sub Γ ⋄ lam : Tm (Γ ⊲) → Tm Γ
⋄𝜂 : (𝜎 : Sub Γ ⋄) → 𝜎 = 𝜖 lam[] : (lam 𝑡) [𝛾] = lam (𝑡 [𝛾 ◦ p, q])
Tm : Con → Set – · – : Tm Γ → Tm Γ → Tm Γ
– [– ] : Tm Γ → Sub ∆ Γ → Tm ∆ ·[] : (𝑡 · 𝑢) [𝛾] = 𝑡 [𝛾] · (𝑢[𝛾])
[◦] : 𝑡 [𝛾 ◦ 𝛿] = 𝑡 [𝛾] [𝛿] 𝛽 : lam 𝑡 · 𝑢 = 𝑡 [id, 𝑢]

We explain in more detail how we obtained the GAT of Definition 4 from the SOAT of
Definition 3: the GAT starts with a category with a terminal object (Con, . . . , ⋄𝜂), then
there is a sort Tm which is now indexed by Con and comes with an instantiation operation
– [– ] which is functorial ([◦], [id]). There is a context extension – ⊲ which makes contexts
a natural number algebra (with zero ⋄ and successor – ⊲). Substitutions are lists of terms,
this is expressed by the components – , –, . . . , ⊲𝜂, which can be grouped together into an
isomorphism p ◦ – , q[– ] : Sub ∆ (Γ ⊲) � Sub ∆ Γ × Tm ∆ : – , –. Now variables are definable
as De Bruijn indices: 0 = q, 1 = q[p], 2 = q[p] [p], and so on. The operations lam and
– · – are also (implicitly) indexed by contexts and come equipped with substitution laws
(lam[] and ·[]). The function in the input of the SOAT presentation of lam becomes a Tm
in an extended context. In lam[], the substitution (𝛾 ◦ p, q) : Sub (∆ ⊲) (Γ ⊲) is the lifting of
𝛾 : Sub ∆ Γ which does not touch the last variable bound by lam. Finally, the metatheoretic
function application on the right hand side of the 𝛽 law in the SOAT presentation becomes
an instantiation of the last variable by (id, 𝑢) : Sub Γ (Γ ⊲).

In the special case of the lambda calculus, there are equivalent simpler GATs, but this
is the one which is generated by the translation of Section 6. Our translation will work
generically for any SO(G)AT, hence it does not necessarily give the most minimal GAT
presentation.

By the syntax of lambda calculus, we mean the syntax for the GAT of Definition 4.
However, we still prefer to define lambda calculus as a SOGAT: it is a shorter definition,
does not include boilerplate, and ensures that once translated to its first-order version, all
operations respect substitution by construction. Also, we can do programming using the
second-order representation in the style of logical frameworks. This means that using the
second-order presentation, we can define derivable operations and prove derivable equations
as opposed to admissible ones for which we would need induction. An example of a derivable
operation is the Y combinator: we assume a second-order model of the lambda calculus given
by Tm, lam, – · –, 𝛽, and define Y := lam𝜆 𝑓 .

(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
. We prove

that this is indeed a fixpoint combinator as follows.
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Y · 𝑓 =
(
lam𝜆 𝑓 .

(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

) )
· 𝑓 = (𝛽)(

lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)
)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

)
= (𝛽)

𝑓 ·
( (

lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)
)
·
(
lam𝜆𝑥. 𝑓 · (𝑥 · 𝑥)

) )
= 𝑓 · (Y · 𝑓 )

This kind of reasoning makes sense for any second-order model, and any first-order model
gives rise to a second-order model in the internal language of presheaves over the first-order
model, see Corollary 28.

2.4 Second-order generalised algebraic theories

SOGATs combine the two previous classes: sorts can be indexed over previous sorts and
second-order operations are allowed. In the following examples, we write f : A ↔ B : g for
f : A → B and g : B → A, we write f : A � B : g for f : A ↔ B : g with two equations
𝛽 : g (f 𝑎) = 𝑎 and 𝜂 : f (g 𝑏) = 𝑏. We write A : Prop for A : Set together with an equation
irr : (𝑎 𝑎′ : A) → 𝑎 = 𝑎′. We list the theories as SOGATs, and discuss the interesting aspects
of their first-order models.

▶ Definition 5 (Simply typed lambda calculus).

Ty : Set Tm : Ty → Set
– ⇒ – : Ty → Ty → Ty lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –

An alternative popular description of simply typed lambda calculus is when we omit Ty
and Tm, write a horizontal line or ⊢ for function space, give names to every input of a
function (i.e. we write (𝑎 : Tm 𝐴) → Tm 𝐵 instead of Tm 𝐴→ Tm 𝐵) and use named function
application written using square brackets (i.e. we write 𝑡 [𝑥 ↦→ 𝑎] instead of 𝑡 𝑎, where
𝑡 : (𝑥 : 𝐴) → 𝐵[𝑥 ↦→ 𝑎], where 𝐵 : (𝑥 : 𝐴) → Set). Note that there are no rules for typing
variables as they are handled by the metatheory.

𝐴 𝐵

𝐴⇒ 𝐵

𝑥 : 𝐴 ⊢ 𝑏 : 𝐵
lam 𝑥.𝑏 : 𝐴⇒ 𝐵

𝑓 : 𝐴⇒ 𝐵 𝑎 : 𝐴
𝑓 · 𝑎 : 𝐵 (lam 𝑥.𝑏) · 𝑎 = 𝑏[𝑥 ↦→ 𝑎]

𝑓 : 𝐴⇒ 𝐵

𝑓 = lam 𝑥. 𝑓 · 𝑥

A first-order model of the simply typed lambda calculus contains a category with a terminal
object (Con, Sub and the empty context ⋄), two sorts Ty and Tm which are both indexed by
contexts, and there are context extension operations both for types and terms (we omit the
types of some operations and equations which are the same as in Definition 4):
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▶ Definition 6 (Simply typed lambda calculus as a GAT with both type and term variables).

Con, Sub, – ◦ – , id, ass, idl, idr,⋄, 𝜖 ,⋄𝜂
Ty : Con → Set
– [– ]Ty : Ty Γ → Sub ∆ Γ → Ty ∆
[◦]Ty, [id]Ty

– ⊲Ty : Con → Con
pTy ◦ – , qTy [– ] : Sub ∆ (Γ ⊲Ty) � Sub ∆ Γ × Ty ∆ : – ,Ty –
Tm : (Γ : Con) → Ty Γ → Set
– [– ]Tm : Tm Γ 𝐴→ (𝛾 : Sub ∆ Γ ) → Tm ∆ (𝐴[𝛾]Ty)
[◦]Tm, [id]Tm

– ⊲Tm – : (Γ : Con) → Ty Γ → Con
pTm ◦ – , qTm [– ] : Sub ∆ (Γ ⊲Tm 𝐴) � (𝛾 : Sub ∆ Γ ) × Tm ∆ (𝐴[𝛾]Ty) : – ,Tm –
– ⇒ – : Ty Γ → Ty Γ → Ty Γ
⇒[] : (𝐴⇒ 𝐵) [𝛾] = (𝐴[𝛾]) ⇒ (𝐵[𝛾])
lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]) → Tm Γ (𝐴⇒ 𝐵)
lam[] : (lam 𝑡) [𝛾] = lam (𝑡 [𝛾 ◦ pTm ,Tm qTm])
– · – Tm Γ (𝐴⇒ 𝐵) → Tm Γ 𝐴→ Tm Γ 𝐵

·[] : (𝑡 · 𝑢) [𝛾] = 𝑡 [𝛾] · (𝑢[𝛾])
⇒𝛽 : lam 𝑡 · 𝑢 = 𝑡 [id, 𝑢]
⇒𝜂 : 𝑡 = lam (𝑡 [pTm] · qTm)

The context extension operations take as arguments the index of the corresponding sort: Ty is
not indexed, so ⊲Ty does not take any arguments, ⊲Tm takes a Ty argument. In simply typed
lambda calculus, none of the operations (or sorts) use type variables, hence it is not necessary
to include the operation ⊲Ty and the type variables qTy, qTy [p], qTy [p] [p], and so on. In
the formal version of signatures (Definition 13), we will distinguish those sorts which have
variables and those which do not, so this optimisation can be handled by our setup. The fact
that all types are closed (don’t depend on term variables, hence do not depend on the context
at all) will not be handled by our translation, so the generated theory will include unnecessary
dependencies, and a by hand optimisation step is needed to replace Ty : Con → Set by Ty : Set
and removing the – [– ]Ty operation. The operations in the notion of first-order model are
the typed versions of the operations in Definition 4. Lambda and application could have been
presented by an isomorphism lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]) � Tm Γ (𝐴 ⇒ 𝐵) : app, using
a unary app application operation instead of the binary – · –. Our setup allows choosing
between the two versions, see the discussion after Definition 13. This concludes the typed
lambda calculus example.

The following definition of first-order logic has minimal amount of logical connectives,
but illustrates the general idea. The proof theory that comes with it is natural deduction
style, it can be also written following the above conventions using horizontal lines and ⊢.
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▶ Definition 7 (Minimal intuitionistic first-order logic).

For : Set Pf : For → Prop
Tm : Set intro⊃ : (Pf 𝐴→ Pf 𝐵) ↔ Pf (𝐴 ⊃ 𝐵) : elim⊃

– ⊃ – : For → For → For intro∀ :
(
(𝑡 : Tm) → Pf (𝐴 𝑡)

)
↔ Pf (∀𝐴) : elim∀

∀ : (Tm → For) → For introEq : Pf (Eq 𝑡 𝑡)
Eq : Tm → Tm → For elimEq : (𝐴 : Tm → For) → Pf (Eq 𝑡 𝑡′) →

Pf (𝐴 𝑡) → Pf (𝐴 𝑡′)

A first-order model contains a category of contexts and substitutions equipped with three
different kinds of context extension corresponding to three different kinds of variables. This
means that there are three different 0 De Bruijn indices (qFor, qTm, qPf), nine different 1
De Bruijn indices (qFor [pFor]For, qFor [pTm]For, qFor [pPf ]For, . . . , qPf [pPf ]Pf). In general, De
Bruijn index 𝑛 has 3𝑛+1 variants. We list the types of the binders:

∀ : For (Γ ⊲Tm) → For Γ
intro⊃ : Pf (Γ ⊲Pf 𝐴) (𝐵[pPf ]For) → Pf Γ (𝐴 ⊃ 𝐵)
intro∀ : Pf (Γ ⊲Tm) 𝐴→ Pf Γ (∀𝐴)
elimEq :

(
𝐴 : For (Γ ⊲Tm)

)
→ Pf Γ (Eq 𝑡 𝑡′) → Pf Γ (𝐴[id ,Tm 𝑡]For) → Pf Γ (𝐴[id ,Tm 𝑡

′]For)

The GAT presentation of first-order logic can be simplified by removing For variables as
no operations bind formulas. Another post-hoc simplification is separating the Tm-variable
contexts and the Pf-variable contexts which depend on the former. After such a separation,
it is possible to define [11] the syntax of first-order logic simply using inductive types and
avoiding quotienting (with the exception of Pf where we use a full quotient which can be
implemented by SProp of Agda or Coq [25]). One reason for being able to do this is that the
above SOGAT does not have any equations, but this is not enough in general. For example, if
we do not have quotients, it does not seem to be possible to define the syntax of a Martin-Löf
type theory without computation rules.

Next we show the SOGAT definition of the polymorphic lambda calculus.

▶ Definition 8 (System F).

Ty : Set
Tm : Ty → Set
– ⇒ – : Ty → Ty → Ty
lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –
∀ : (Ty → Ty) → Ty
Lam :

(
(𝑋 : Ty) → Tm (𝐴 𝑋)

)
� Tm (∀ 𝐴) : – • –

The first order version is Definition 6 extended with the following operations and equations for
∀. Now we really need both type and term variables. We use a unary application operation
for ∀, see discussion after Definition 13.

∀ : Ty (Γ ⊲Ty) → Ty Γ Lam : Tm (Γ ⊲Ty) 𝐴 � Tm Γ (∀ 𝐴) : App
∀[] : (∀ 𝐴) [𝛾] = ∀ (𝐴[𝛾 ◦ pTy ⊲Ty qTy]) Lam[] : (Lam 𝑡) [𝛾] = Lam (𝑡 [𝛾 ◦ pTy ⊲Ty qTy])

The next language is interesting because its sorts and operations are interleaved: the typing
of the sort Tm depends on the operation ∗.
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▶ Definition 9 (System F𝜔).

□ : Set Tm : Ty ∗ → Set
Ty : □ → Set ∀ : (Ty𝐾 → Ty ∗) → Ty ∗
– ⇛ – : □ → □ → □ Lam : ((𝑋 : Ty𝐾) → Tm (𝐴 𝑋)) �
LAM : (Ty𝐾 → Ty 𝐿) � Tm (∀ 𝐴) : – • –

Ty (𝐾 ⇛ 𝐿) : –  – – ⇒ – : Ty ∗ → Ty ∗ → Ty ∗
∗ : □ lam : (Tm 𝐴→ Tm 𝐵) � Tm (𝐴⇒ 𝐵) : – · –

In the first-order version (minimised by removing □ (kind) variables), we have sorts □ : Set,
Ty : Con → □ → Set, an operation ∗ : □, and a sort Tm : (Γ : Con) → Ty Γ ∗ → Set. We
have three operations binding Ty-variables and one operation binding a term-variable:

LAM : Ty (Γ ⊲Ty 𝐾) 𝐿 → Ty Γ (𝐾 ⇛ 𝐿) Lam : Tm (Γ ⊲Ty 𝐾) 𝐴→ Tm Γ (∀𝐴)
∀ : Ty (Γ ⊲Ty 𝐾) ∗ → Ty Γ ∗ lam : Tm (Γ ⊲Tm 𝐴) (𝐵[pTm]Ty) → Tm Γ (𝐴⇒ 𝐵)

Our next example is a theory with dependent types featuring Π types, a Coquand-universe
(which forces types to be indexed by levels) and a lifting operation. This is an open signature
which means that it refers to some external types, in this case a natural number algebra (we
can make it closed by adding N as a new sort and 0 and 1 + – as new operations).

▶ Definition 10 (Minimal Martin-Löf type theory).

Ty : N → Set U : (𝑖 : N) → Ty (1 + 𝑖)
Tm : Ty 𝑖 → Set c : Ty 𝑖 � Tm (U 𝑖) : El
Π : (𝐴 : Ty 𝑖) → (Tm 𝐴→ Ty 𝑖) → Ty 𝑖 Lift : Ty 𝑖 → Ty (1 + 𝑖)
lam : ((𝑎 : Tm 𝐴) → Tm (𝐵 𝑎)) � Tm (Π 𝐴 𝐵) : – · – mk : Tm 𝐴 � Tm (Lift 𝐴) : un

The first-order translation of this theory results in a category with families (CwF [19]), more
precisely, a category with N-many families equipped with familywise Π-types, universes and
a one-step upwards lifting between the families. The sorts are Ty : Con → N → Set and
Tm : (Γ : Con) → Ty Γ 𝑖 → Set, the 𝑖 argument is implicit in the latter.

Instead of a Coquand-universe with c and El, we could have defined a Russell universe
where we have a sort equality Ty 𝑖 = Tm (U 𝑖), and we also have the option to do this for lifting
and Π types. The first-order semantics of such a theory has the following equalities where
the second one makes sense because of the first one: Ty Γ 𝑖 = Tm Γ (U 𝑖), 𝐴[𝛾]Ty = 𝐴[𝛾]Tm.
Having strict Π types means Tm (Γ ⊲ 𝐴) 𝐵 = Tm Γ (Π 𝐴 𝐵) and 𝑡 [𝛾] = 𝑡 [𝛾 ◦ p, q] where the
left hand side 𝑡 is in Tm Γ (Π 𝐴 𝐵).

3 Theories of signatures as SOGATs

In this section we define three languages which describe signatures for ATs, GATs and
SOGATs, respectively. All three languages are given as SOGATs.

The theory of signatures for ATs is a dependent type theory without a universe, it has
one base type Srt for the (single) sort, Σ types, a Π type with fixed Srt domain, and an
equality type. Π types are equipped with application, but the Σ and Eq types don’t have
constructors or destructors, because those are not needed when defining signatures.
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▶ Definition 11 (Signatures for single-sorted algebraic theories).

Ty : Set ΠSrt : (Tm Srt → Ty) → Ty
Tm : Ty → Set – · – : Tm (ΠSrt 𝐵) → (𝑥 : Tm Srt) → Tm (𝐵 𝑥)
Σ : (𝐴 : Ty) → (Tm 𝐴→ Ty) → Ty Eq : Tm Srt → Tm Srt → Ty
Srt : Ty

A first-order model of this theory is a CwF with type formers Σ, Srt, ΠSrt, Eq and a term
former – · – : Tm Γ (ΠSrt 𝐵) → (𝑥 : Tm Γ Srt) → Tm Γ (𝐵[id, 𝑥]). An element of Ty in the
syntax of this language is an AT signature. We introduce abbreviations Srt⇒ 𝐴 := ΠSrt𝜆_.𝐴
and 𝐴 × 𝐵 := Σ 𝐴𝜆_.𝐵. The signature for combinator calculus is the following Ty:

Σ (Srt⇒ Srt⇒ Srt) 𝜆app.Σ Srt𝜆𝐾.Σ Srt𝜆𝑆.
(
ΠSrt𝜆𝑢.ΠSrt𝜆 𝑓 .Eq

(
app · (app · 𝐾 · 𝑢) · 𝑓

)
𝑢

)
×
(
ΠSrt𝜆 𝑓 .ΠSrt𝜆𝑔.ΠSrt𝜆𝑢.Eq

(
app ·

(
app · (app · 𝑆 · 𝑓 ) · 𝑔

)
· 𝑢

)
(
app · (app · 𝑓 · 𝑢) · (app · 𝑔 · 𝑢)

))
This can be seen as a more explicit version of Definition 1: we use Σ types instead of a
newline-separated list, we use the metatheoretic 𝜆 binder to give names to operations, we
use an explicit · operation for application and write Eq instead of =. Moreover, we don’t
have infix operators or implicit arguments, the three arguments of equation K𝛽 and the four
arguments of equation S𝛽 have to be introduced using ΠSrt explicitly. Being more explicit is
needed to make sure that we describe an algebraic theory: for example, the fact that the
domain of Π is fixed ensures strict positivity.

The theory of GAT signatures (ToS) is a type theory with an empty universe (a type and
a family over it), ⊤ and Σ types, equality with reflection, and a Π type with U-domain.

▶ Definition 12 (ToS: the theory of GAT signatures).

Ty : Set Σ : (𝐴 : Ty) → (Tm 𝐴→ Ty) → Ty
Tm : Ty → Set (– , – ) : (𝑎 : Tm 𝐴) × Tm (𝐵 𝑎) � Tm (Σ 𝐴 𝐵) : fst, snd
U : Ty Π : (𝑎 : Tm U) → (Tm (El 𝑎) → Ty) → Ty
El : Tm U → Ty lam :

(
(𝑥 : Tm (El 𝑎)) → Tm (𝐵 𝑥)

)
� Tm (Π 𝑎 𝐵) : – · –

⊤ : Ty Eq : (𝐴 : Ty) → Tm 𝐴→ Tm 𝐴→ Ty
tt : 𝟙 � Tm⊤ refl : (𝑢 = 𝑣) � Tm (Eq 𝐴 𝑢 𝑣) : reflect

The first-order version is Definition 14. A (presentation of a) GAT is defined as a closed
type in the syntax of ToS. The base type U is for declaring sorts, so a signature has to start
with a sort, and then we can declare elements of the sort using El or functions where the
input is a sort. For example, part of typed combinator calculus (Definition 2) is given by the
following signature. We use the abbreviations 𝑎 ⇒ 𝐵 := Π 𝑎 𝜆_.𝑏 and 𝐴 × 𝐵 = Σ 𝐴𝜆_.𝐵. We
left out the S combinator and its 𝛽 rule for reasons of space.
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ΣU𝜆Ty .Σ (Ty ⇒ U) 𝜆Tm.El Ty × Σ (Ty ⇒ Ty ⇒ El Ty) 𝜆arr .Σ(
Π Ty 𝜆𝐴.Π Ty 𝜆𝐵.Tm · (arr · 𝐴 · 𝐵) ⇒ Tm · 𝐴⇒ El (Tm · 𝐵)

)
𝜆app.Σ(

Π Ty 𝜆𝐴.Π Ty 𝜆𝐵.El
(
Tm ·

(
arr · 𝐴 · (arr · 𝐵 · 𝐴)

) ))
𝜆𝐾.Σ(

Π Ty 𝜆𝐴.Π Ty 𝜆𝐵.Π (Tm · 𝐴) 𝜆𝑢.Π (Tm · 𝐵) 𝜆 𝑓 .Eq
(
El (Tm · 𝐴)

)
(
app · (arr · 𝐵 · 𝐴) · 𝐵 · (app · (arr · 𝐴 · (arr · 𝐵 · 𝐴)) · 𝐴 · 𝐾 · 𝑢) · 𝑓

)
𝑢

)
× . . .

This type is a very explicit version of Definition 2: we use Σ, explicit application ·, no infix
operators, no implicit arguments, and explicit El turning terms in U into types. We expect
that an elaboration algorithm can turn Definition 2 into such an explicit version.

For the theory of SOGAT signatures (ToS+), we add a new universe U+ of sorts for which
variables are allowed: with the help of these we can write second order functions. U+ is a
subuniverse of U (witnessed by el+) and has a Π type with U+-domain and U-codomain.

▶ Definition 13 (ToS+: the theory of SOGAT signatures). We extend ToS with the following.

U+ : Ty 𝜋+ : (𝑎+ : Tm U+) →
(
Tm

(
El (el+ 𝑎+)

)
→ Tm U

)
→ Tm U

el+ : Tm U+ → Tm U lam+ :
(
𝑥 : El (el+ 𝑎+)

)
→ Tm (El (𝑏 𝑥)) � Tm

(
El (𝜋+ 𝑎+ 𝑏)

)
: – ·+ –

The first-order version is Definition 15. A (presentation of a) GAT is defined as a closed
type in the syntax of ToS+. The signature for lambda calculus (Definition 3) is the following
element of Ty.

ΣU+ 𝜆Tm.Σ
(
(Tm ⇒+ el+ Tm) ⇒ El (el+ Tm)

)
𝜆lam.Σ

(
el+ Tm ⇒ el+ Tm ⇒ El (el+ Tm)

)
𝜆app.

Π (Tm ⇒+ el+ Tm) 𝜆𝑡.Π (el+ Tm) 𝜆𝑢.Eq
(
El (el+ Tm)

) (
app · (lam · 𝑡) · 𝑢

)
(𝑡 ·+ 𝑢)

We have one sort Tm for which variables are allowed, application app uses ordinary function
space ⇒ where Tm has to be lifted by el+ from U+ to U. Lambda lam is defined as a
second-order function where ⇒+ can appear on the left hand side of an ⇒. When stating
the 𝛽 equation, note the two different application operators (· vs. ·+): ·+ is used when giving
value to a variable. This becomes clear if we look at the first-order presentation of the 𝛽 law
(last line in Definition 4, we write app instead of · to avoid confusion): app (lam 𝑡) 𝑢 = 𝑡 [id, 𝑢].
So the semantics of · should be simply function application, while the semantics of ·+ is
instantiation with a substitution. We give another illustration of this difference: in the
above signature, the type of app is el+ Tm ⇒ el+ Tm ⇒ El (el+ Tm), and this is translated to
Tm Γ → Tm Γ → Tm Γ in the GAT version (see Definition 4). But we could have defined
app as having type El (Tm ⇒+ Tm ⇒+ Tm). In this case the GAT version of app would be
in Tm (Γ ⊲ ⊲). Both variants are meaningful, and ToS+ allows the user to make a choice if
she wants an operation with arguments, or an operation returning in an extended context.
Note that both function spaces in the type of lam are forced to be ⇒+ and ⇒, respectively.

Analogously, all SOGATs in Sections 2, 3 and Appendix A can be reified into SOGAT
signatures (with the exception of Martin-Löf type theory which is an open signature, but we
will rectify this in Section 7). This includes ToS+ itself.
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4 Naive semantics of SOGAT signatures

In this section, for any SOGAT signature, we define a notion of first-order model. The idea
is that a model is a category together with the presheaf interpretation of the signature over
that category: the category of presheaves supports a universe, Π types, and so on, so we
directly use these when interpreting the type formers of ToS+. We assume basic working
knowledge of categories with families (CwFs [19]).

▶ Definition 14 (First-order model of ToS). A first-order model of ToS is a CwF (sorts
are denoted Con, Sub, Ty, Tm, the empty context is ⋄, the empty substitution is 𝜖 : Sub Γ ⋄,
context extension is – ⊲ – : (Γ : Con) → Ty Γ → Con with p ◦ – , q[– ] : Sub ∆ (Γ ⊲ 𝐴) � (𝛾 :
Sub ∆ Γ ) × Tm ∆ (𝐴[𝛾]) : – , –) equipped with:

⊤ and Σ types given by isomorphisms
tt : 𝟙 � Tm Γ ⊤, (– , – ) : (𝑎 : Tm Γ 𝐴) ×Tm Γ (𝐵[id, 𝑎]) � Tm Γ (Σ 𝐴 𝐵) : fst, snd.
A universe given by U : Ty Γ and El : Tm Γ U → Ty Γ .
A function space with domain in U, that is Π : (𝑎 : Tm Γ U) → Ty (Γ ⊲El 𝑎) → Ty Γ , with
an isomorphism lam : Tm (Γ ⊲El 𝑎) 𝐵 � Tm Γ (Π 𝑎 𝐵) : app.
A strict equality type Eq with reflection and uniqueness of identity proofs.
All the operations listed above are natural in Γ .

▶ Definition 15 (First-order model of ToS+). A first-order model of ToS+ is a first-order
model of ToS equipped with:

Another universe U+ : Ty Γ that is a subuniverse of U i.e. el+ : Tm Γ U+ → Tm Γ U.
U is closed under functions with U+-domain, i.e. 𝜋+ : (𝑎+ : Tm Γ U+) →
Tm

(
Γ ⊲El (el+ 𝑎+)

)
U → Tm Γ U with lam+ : Tm

(
Γ ⊲El (el+ 𝑎)

)
(El 𝑏) �

Tm Γ
(
El (𝜋+ 𝑎+ 𝑏)

)
: app+.

All the operations listed above are natural in Γ .

▶ Problem 16 (PSh). Presheaves over a category 𝐶 form a CwF equipped with ⊤, Σ types, an
equality type with reflection, Π types and a Coquand-universe U with c : Ty Γ � Tm Γ U : El.
Unlike in Definition 10, we omit writing universe indices for readibility.

Construction. We recall the main parts of the construction [31] for fixing notations. Γ : Con
is a presheaf, that is a family of sets Γ : C → Set with reindexing 𝛾𝐼 [ 𝑓 ]Γ : Γ 𝐽 for 𝛾𝐼 : Γ 𝐼 and
𝑓 : C(𝐽, 𝐼) such that 𝛾𝐼 [ 𝑓 ◦ 𝑔]Γ = 𝛾𝐼 [ 𝑓 ]Γ [𝑔]Γ and 𝛾𝐼 [id]Γ = 𝛾𝐼 . A 𝜎 : Sub ∆ Γ is a function
𝜎 : ∆ 𝐼 → Γ 𝐼 such that (𝜎 𝛿𝐼 ) [ 𝑓 ]Γ = 𝜎 (𝛿𝐼 [ 𝑓 ]∆). A type 𝐴 : Ty Γ is a dependent presheaf
containing a family 𝐴 : (𝐼 : C) → Γ 𝐼 → Set with reindexing 𝑎𝐼 [ 𝑓 ]𝐴 : 𝐴 𝐽 (𝛾𝐼 [ 𝑓 ]Γ ) for
𝑎𝐼 : 𝐴 𝐼 𝛾𝐼 and 𝑓 : C(𝐽, 𝐼) satisfying functoriality. Type substitution is 𝐴[𝛾] 𝐼 𝛿𝐼 := 𝐴 𝐼 (𝛾 𝛿𝐼 ).
A term 𝑎 : Tm Γ 𝐴 is a function 𝑎 : (𝛾𝐼 : Γ 𝐼) → 𝐴 𝐼 𝛾𝐼 such that (𝑎 𝛾𝐼 ) [ 𝑓 ]𝐴 = 𝑎 (𝛾𝐼 [ 𝑓 ]Γ ).
Term substitution is 𝑎[𝛾] 𝛿𝐼 := 𝑎 (𝛾 𝛿𝐼 ). The empty context is constant unit: ⋄ 𝐼 := 𝟙.
Context extension is pointwise: (Γ ⊲ 𝐴) 𝐼 := (𝛾𝐼 : Γ 𝐼) × 𝐴 𝐼 𝛾𝐼 , its universal property is given
by projections and pairing for metatheoretic Σ types. ⊤, Σ and Eq are pointwise. We have
the functor Yoneda y : C → PSh(C) defined by y 𝐼 𝐽 := C(𝐽, 𝐼), and we use this to define the
universe by U 𝐼 𝛾𝐼 := Ty (y 𝐼). We observe that 𝛾𝐼 [– ]Γ : Sub (y 𝐼) Γ (forward part of Yoneda
lemma), and define Π 𝐴 𝐵 𝐼 𝛾𝐼 := Tm (y 𝐼 ⊲ 𝐴[𝛾𝐼 [– ]Γ ]) (𝐵[𝛾𝐼 [– ]Γ ◦ p, q]). ◀

▶ Problem 17 (Locally representable types). The CwF of presheaves can be extended to a
CwF+, which means a CwF with a subsort of Ty called Ty+ and a Π+ type with domain in Ty+,
i.e. Π+ : (𝐴 : Ty+ Γ ) → Ty (Γ ⊲ 𝐴) → Ty Γ with lam+ : Tm (Γ ⊲ 𝐴) 𝐵 � Tm Γ (Π+ 𝐴 𝐵) : app+,
natural in Γ . Ty+ is classified by the Coquand universe U+.
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Construction. An element 𝐴 : Ty+ Γ is an 𝐴 : Ty Γ together with – ⊲𝐴 – : (𝐼 : C) → Γ 𝐼 → C
and an isomorphism p𝐴◦– , q𝐴[– ]𝐴 : C(𝐽, 𝐼 ⊲𝐴 𝛾𝐼 ) � ( 𝑓 : C(𝐽, 𝐼))×𝐴 𝐽 (𝛾𝐼 [ 𝑓 ]Γ ) : – ,𝐴 – natural
in 𝐽. So p𝐴 : C(𝐼 ⊲𝐴 𝛾𝐼 , 𝐼) and q𝐴 : 𝐴 (𝐼 ⊲𝐴 𝛾𝐼 ) (𝛾𝐼 [p𝐴]Γ ). Substitution is given by 𝐼 ⊲𝐴[𝛾 ] 𝛿𝐼 :=
𝐼 ⊲𝐴 𝛾 𝛿𝐼 and we have C(𝐽, 𝐼 ⊲𝐴[𝛾 ] 𝛿𝐼 ) = C(𝐽, 𝐼 ⊲𝐴 𝛾 𝛿𝐼 ) � ( 𝑓 : C(𝐽, 𝐼)) × 𝐴 𝐽 (𝛾 𝛿𝐼 [ 𝑓 ]Γ ) =

( 𝑓 : C(𝐽, 𝐼)) × 𝐴[𝛾] 𝐽 (𝛿𝐼 [ 𝑓 ]∆). We define Π+ using the ⊲𝐴 operator which comes with
𝐴, i.e. Π+ 𝐴 𝐵 𝐼 𝛾𝐼 := 𝐵 (𝐼 ⊲𝐴 𝛾𝐼 ) (𝛾𝐼 [p𝐴]Γ , q𝐴), 𝑏𝐼 ′ [ 𝑓 ]Π+ 𝐴𝐵 := 𝑏𝐼 ′ [ 𝑓 ◦ p𝐴 ,𝐴 q𝐴], lam+ 𝑏 𝛾𝐼 :=
𝑏 (𝛾𝐼 [p𝐴]Γ , q𝐴) and app+ 𝑡 (𝛾𝐼 , 𝑎𝐼 ) := (𝑡 𝛾𝐼 ) [id𝐼 ,𝐴 𝑎𝐼 ]𝐵. Like U, U+ 𝐼 𝛾𝐼 := Ty+ (y 𝐼). ◀

▶ Definition 18 (Naive semantics). Given a category C, PSh(C) is a model of ToS+ choos-
ing U := U, El 𝑎 := El 𝑎, Π 𝑎 𝐵 := Π (El 𝑎) 𝐵, U+ := U+, el+ 𝑎+ := c (El+ 𝑎+), 𝜋+ 𝑎+ 𝑏 :=
c
(
Π+ (El+ 𝑎+) (El 𝑏)

)
. Recall that a SOGAT signature Ω is an element of Ty⋄ in the syn-

tax of ToS+. A naive model of Ω is a category with a terminal object ⋄ together with the
interpretation of Ω in presheaves over this category, i.e. (C : Cat⋄) × TmPSh(C) ⋄ ⟦Ω⟧PSh(C) .

This definition immediately implies that internally to presheaves over a naive first-order
model, we have a second order model.

For illustration, we compute the naive semantics for the signature of untyped lambda
calculus without the equations. The informal signature is Tm : U, lam : (Tm → Tm) →
Tm, – · – : Tm → Tm → Tm, the second-order formal version is ΣU+ 𝜆Tm.

(
(Tm ⇒+

el+ Tm) ⇒ El (el+ Tm)
)
× (el+ Tm ⇒ el+ Tm ⇒ El (el+ Tm)), and we interpret the first-order

version of this. We assume a C : Cat⋄, write D := PSh(C), and use TmD ⋄⟦Ω⟧D � ⟦Ω⟧D ⋄C ★.�
ΣU+

( (
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

) )�
D

⋄C ★ =

(Tm : Ty+D (y⋄)) × TmD
(
y ⋄ ⊲(Tm ⇒+

D Tm)
) (

Tm [p]
)
× TmD (y ⋄ ⊲Tm) (Tm ⇒ Tm [p]) =

(Tm : (𝐼 : C) → C(𝐼,⋄) → Set) × (– [– ]Tm : Tm 𝐼 𝜖 → C(𝐽, 𝐼) → Tm 𝐽 𝜖) × . . . ×
(– ⊲Tm – : (𝐼 : C) → C(𝐼,⋄) → C) × · · · ×

(
𝑙𝑎𝑚 : C(𝐼,⋄) × Tm (𝐼 ⊲Tm 𝜖) → Tm 𝐼 𝜖

)
× · · · ×

(app : C(𝐼,⋄) × Tm 𝐼 𝜖 → ({𝐽 : C} → C(𝐽, 𝐼) × Tm 𝐽 𝜖 → Tm 𝐽 𝜖) × . . . ) × . . .

As we can see, the naive semantics produces some encoding overhead: the above definition
differs from Definition 4 in the following ways: the operations are uncurried, have several
extra C(𝐼,⋄) arguments (which can be all filled by 𝜖), and the type of app quantifies over
another object of C for each argument. This is the result of using the usual presheaf universe
and function space for interpreting U and Π. We will rectify this in the next section.

5 Direct semantics of SOGAT signatures

In this section, we define first-order models of SOGATs using a more careful version of the
presheaf model. We make sure that no Yoneda-encodings are present in the semantics using
the idea of two-level type theory [4, 10] where presheaves over a CwF include a universe
of “inner types” coming from the CwF. We extend two-level type theory with a separate
function space where the domain is an inner type. This function space is isomorphic to the
usual presheaf function space, but has a simpler semantics.

▶ Problem 19 (Presheaves over a CwF). If C is a CwF, then PSh(C) models ToS without
using the usual presheaf U and Π.

Construction. We interpret ⊤, Σ, Eq as in Problem 16, but define U, El and Π by
TyC, TmC and ⊲C, respectively: U 𝐼 𝛾𝐼 := TyC 𝐼, El 𝑎 𝐼 𝛾𝐼 := TmC 𝐼 (𝑎 𝛾𝐼 ), Π 𝑎 𝐵 𝐼 𝛾𝐼 :=
𝐵 (𝐼 ⊲C 𝑎 𝛾𝐼 ) (𝛾𝐼 [pC]Γ , qC) with lam 𝑏 𝛾𝐼 := 𝑏 (𝛾𝐼 [pC]Γ , q𝐶 ) and app 𝑡 (𝛾𝐼 , 𝑎𝐼 ) := 𝑡 𝛾𝐼 [id𝐼 ,C
𝑎𝐼 ]𝐵. ◀
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▶ Problem 20 (Presheaves over a CwF+). If the category C is a CwF+, then the previous
model extends to a model of ToS+ (Definition 15).

Construction. We interpret U+, el+ and 𝜋+ by Ty+C, identity and Π+
C, respectively:

U+ 𝐼 𝛾𝐼 := Ty+C 𝐼, el+ 𝑎 𝛾𝐼 := 𝑎 𝛾𝐼 , 𝜋+ 𝑎 𝑏 𝛾𝐼 := Π+ (𝑎 𝛾𝐼 )
(
𝑏 (𝛾𝐼 [pC]Γ , qC)

)
, lam+ 𝑡 𝛾𝐼 :=

lam+
C
(
𝑡 (𝛾𝐼 [pC]Γ , qC)

)
, app+ 𝑡 (𝛾𝐼 , 𝑎𝐼 ) := app+C (𝑡 𝛾𝐼 ) [id𝐼 ,C 𝑎𝐼 ]TmC . ◀

▶ Definition 21 (Direct semantics). A direct model of a SOGAT signature Ω is a category C
with a terminal object together with the interpretation of Ω in presheaves over presheaves
over C, evaluated at the terminal presheaf: (C : Cat⋄) × ⟦Ω⟧PSh(PSh(C) ) ⋄PSh(C) ★. Note that
this makes sense because PSh(C) : CwF+, hence PSh

(
PSh(C)

)
is a model of ToS+.

We revisit the example from the end of the previous section. We again assume a C : Cat⋄
and write D := PSh(C) and E := PSh(D).�

ΣU+
( (
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

) )�
E
⋄D ★ =

(Tm : Ty+D ⋄D) × TmD
(
⋄ ⊲(Tm ⇒+

D Tm)
)
(Tm [p]) × TmD (⋄ ⊲Tm ⊲Tm [p]) (Tm [p] [p]) =

(Tm : C → 𝟙 → Set) × (– [– ]Tm : Tm 𝐼 ★→ C(𝐽, 𝐼) → Tm 𝐽 ★) × . . . ×
(– ⊲Tm – : C → 𝟙 → C) × · · · ×

(
lam : 𝟙 × Tm (𝐼 ⊲Tm ★) → Tm 𝐼 ★

)
× · · · ×

(app : 𝟙 × Tm 𝐼 ★× Tm 𝐼 ★→ Tm 𝐼 ★) × . . .

This translation is closer to computing Definition 4 from Definition 3: the only remaining
noise is that the types of Tm, lam and app include extra 𝟙 components and app is uncurried.
In the next section, we will remove the extra 𝟙s and make the type of application curried.

▶ Theorem 22. For any signature, the naive and direct semantics result in isomorphic
notions of models.

Proof. We fix a C : Cat⋄, and denote D := PSh(C) and E := PSh(D). D is a model of ToS+

via Definition 18 and E is a model via Definition 21, and Yoneda navigates between them
(it is not only a functor, but a CwF pseudomorphism [37]). By induction on the syntax of
ToS+, we define 𝛼 for contexts, substitutions, types and terms: 𝛼Γ : SubE ⟦Γ⟧E (y ⟦Γ⟧D),
𝛼𝛾 : 𝛼Γ ◦⟦𝛾⟧E = y ⟦𝛾⟧D◦𝛼∆, 𝛼𝐴 : ⟦𝐴⟧E � y ⟦𝐴⟧D [𝛼Γ ], 𝛼𝑎 : 𝛼𝐴[id, ⟦𝑎⟧E] = y ⟦𝑎⟧D [𝛼Γ ]. For
a signature Ω : Ty⋄, we thus obtain ⟦Ω⟧E ⋄D ★ � y ⟦Ω⟧D [𝛼Γ ] ⋄D ★ = TmD ⋄D ⟦Ω⟧D . ◀

Note that there is no size issue when stating the isomorphism because even if E is one level
up compared to D, we only use small components from E when evaluating into it.

6 GAT signature semantics of SOGAT signatures

In this section we translate SOGAT signatures into GAT signatures. The idea is the same as
in the previous two sections: the GAT signature will start with a category with terminal
object and then contain the presheaf interpretation of the SOGAT signature over that
category. However now the presheaf model is not expressed in the metatheory, but internally
to the theory of GAT signatures. This is challenging because this language is quite limited:
there are no higher-order functions, no real universe, and so on.

In this section we work internally to presheaves over the syntax of ToS. Another way to say
this is that we work in two-level type theory where the inner model is the syntax of ToS. Hence,
we have the components Ty : Set, Tm : Ty → Set, . . . , refl : (𝑢 = 𝑣) � Tm (Eq 𝐴 𝑢 𝑣) : reflect
of Definition 12 available (these are the inner types and type formers). We will build a
first-order model of ToS+, and the final result of the translation will be an element of Ty.
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▶ Construction 23 (Curried Π). By induction-recursion, we define the Σ-closure of U.

U∗ : Set El∗ : U∗ → Ty
⊤∗ : U∗ El∗ ⊤∗ := ⊤
Σ∗ : (as : U∗) →

(
Tm (El∗ as) → Tm U

)
→ U∗ El∗ (Σ∗ as 𝑏) := Σ (El∗ as) 𝜆𝑥.El (𝑏 𝑥)

By induction on U∗, we define the curried function space with U∗ domain.

Π∗ : (as : U∗) → (Tm (El∗ as) → Ty) → Ty
Π∗ ⊤∗ 𝐵 := 𝐵 tt
Π∗ (Σ∗ as 𝑐) 𝐵 := Π∗ as

(
𝜆xs.Π (𝑐 xs) 𝜆𝑦.𝐵 (xs, 𝑦)

)
Π∗ comes with lam∗, ·∗, and 𝛽, 𝜂 laws all defined by induction on U∗ providing the following
isomorphism.

lam∗ :
(
(xs : Tm (El∗ as)) → Tm (𝐵 xs)

)
� Tm (Π∗ as 𝐵) : – ·∗ –

We define the signature for categories with a terminal object by Cat⋄ : Ty := ΣU𝜆Ob.Σ (Ob ⇒
Ob ⇒ U) 𝜆Hom . . . We assume a C : Tm Cat⋄, we refer to its components by Ob, Hom, . . .

▶ Problem 24 (A CwF+ D of presheaves over C). There is a notion of CwF+ where the sorts
of types and terms are Ty-valued. We construct such a CwF+ D of presheaves over C.

Construction. The category part is given by U∗-valued presheaves and natural trans-
formations where ConD :=

(
Γ : Tm (El Ob) → U∗) ×

(
– [– ]Γ : Tm

(
El∗ (Γ 𝐼)

)
→

Tm
(
El (Hom ·𝐽 ·𝐼)

)
→ Tm

(
El∗ (Γ 𝐽)

) )
×(functoriality) and SubD ∆ Γ :=

(
𝛾 : Tm

(
El∗ (∆ 𝐼)

)
→

Tm
(
El∗ (Γ 𝐼)

) )
× (naturality). Recall that Ty and Tm are those of the syntax of ToS. We

make sure that Ty, Tm have enough structure to define U-valued presheaves. For example,
we define TyD : ConD → Ty by

TyD Γ := Σ (Π Ob 𝜆𝐼.Γ 𝐼 ⇒∗ U) 𝜆𝐴.Σ(
Π Ob 𝜆𝐼.Π∗ (Γ 𝐼) 𝜆𝛾𝐼 .𝐴 · 𝐼 ·∗ 𝛾𝐼 ⇒ Π Ob 𝜆𝐽.Π (Hom · 𝐽 · 𝐼) 𝜆 𝑓 .El

(
𝐴 · 𝐽 ·∗ (𝛾𝐼 [ 𝑓 ]Γ )

) )
. . .

We define TmD : (Γ : ConD) → Tm (TyD Γ ) → Ty as TmD Γ 𝐴 := Σ
(
Π Ob 𝜆𝐼.Π∗ (Γ 𝐼) 𝜆𝛾.

El (𝐴 · 𝐼 ·∗ 𝛾)
)
. . . Context extension ⊲D is Σ∗, Ty+D is the same as TyD extended with an ⊲𝐴

operator in Π Ob 𝜆𝐼.Γ 𝐼 ⇒∗ El Ob, and its universal property. We define the first component
of Π+

D :
(
𝐴 : Tm (Ty+D Γ )

)
→ Tm

(
TyD (Γ ⊲D 𝐴)

)
→ Tm (TyD Γ ) by Π+

D 𝐴 𝐵 · 𝐼 ·∗ 𝛾𝐼 :=
𝐵 · (⊲𝐴 ·𝐼 ·∗ 𝛾𝐼 ) ·∗ (𝛾𝐼 [p𝐴]Γ , q𝐴) where ⊲𝐴, p𝐴 and q𝐴 are components in the input 𝐴. Note
the careful distinguishing of metatheoretic function application, ·s and ·∗s. The full details
are given as Supplementary Material. ◀

▶ Problem 25 (E := PSh(D)). The Ty-valued presheaves over D are a first-order model of
ToS+. We name this model E.

Proof. ConE is defined as (Ψ : ConD → Ty) × (– [– ]Ψ : Tm (ΨΓ ) → SubD ∆ Γ →
Tm (Ψ∆)) × (functoriality). Types are Ty-valued dependent presheaves, terms are sec-
tions, context extension ⊲E and ΣE are given by Σ. UE , ElE , ΠE are given by TyD , TmD , ⊲D ,
respectively. EqE is pointwise Eq, its restriction operation and reflectE use reflect. U+

E , el+E ,
𝜋+E are defined by Ty+D , identity and Π+

D , respectively. ◀
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▶ Construction 26 (SOGAT → GAT translation). Given an Ω : Ty⋄ in the first-order syntax
of ToS+, its GAT translation is Σ Cat⋄ 𝜆C.⟦Ω⟧E(C) ⋄D(C) tt where we explicitly marked that
D and E depend on C.

Now we can reuse the semantics of GATs [43, Chapter 4] for any SOGAT, e.g. there is a
category of models with an initial object, notions of dependent/displayed models, sections,
induction is equivalent to initiality, free models, cofree models [45].

Our running example assuming C : Tm Cat⋄ (its first two components named Ob, Hom):�
ΣU+

( (
(q ⇒+ el+ q) ⇒ El (el+ q)

)
×
(
el+ q ⇒ el+ q ⇒ El (el+ q)

) )�
E
⋄D tt =

Σ (Ty+D ⋄D) 𝜆Tm.TmD
(
⋄ ⊲(Tm ⇒+

D Tm)
)
(Tm [p]) × TmD (⋄ ⊲Tm ⊲Tm [p]) (Tm [p] [p]) =

Σ

(
Σ (Ob ⇒ U) 𝜆Tm.Σ

(
Π Ob 𝜆𝐼.Tm · 𝐼 ⇒ Π Ob 𝜆𝐽.Hom · 𝐽 · 𝐼 ⇒ El (Tm · 𝐽)

)
. . .

Σ (Ob ⇒ El Ob) . . .
)
𝜆(Tm, . . . , ⊲Tm , . . . ).Σ

(
Σ (Π Ob 𝜆𝐼.Tm · (⊲ ·𝐼) ⇒ El (Tm · 𝐼)

)
. . . )

𝜆lam.Σ
(
Π Ob 𝜆𝐼.Tm · 𝐼 ⇒ Tm · 𝐼 ⇒ El (Tm · 𝐼)

)
. . .

The second line is the same as for the direct semantics, but now D is defined using the curried
function space, which removes the extra 𝟙s and makes application curried when we unfold
even more. As we now compute a formal signature in Ty, we do not use implicit arguments,
and use 𝜆 for binders. The only difference from Definition 4 is that the components for Cat⋄,
Tm and lam are separate (flat) Σ types, rather than one flat iterated Σ.

We implemented the SOGAT → GAT translation in Agda using partial deep embeddings
of ToS and ToS+. It computes the expected GAT signatures for a number of SOGAT examples.
It is available as Supplementary Material.

The GAT semantics was defined relative to the syntax of ToS. However, it works for any
model of ToS: if we use the standard model of ToS (set model, metacircular interpretation
where Con = Set, Ty Γ = Γ → Set, Tm Γ 𝐴 = (𝛾 : Γ ) → 𝐴 𝛾) instead of the syntax, we obtain
another notion of model for each SOGAT signature. We show that this notion of model is
isomorphic to the direct semantics from the previous section.

▶ Theorem 27. For any SOGAT signature, the direct semantics and the GAT semantics
over the standard model yield isomorphic notions of models.

Proof. We work in presheaves over the standard model of ToS. We observe that in this
model U and Ty are Russell-universes and are closed under type formers Σ, Π, Eq without
the restrictions we have in the syntax of ToS. We reformulate Definition 21 in this internal
language: the category C becomes an element of Tm Cat⋄, the D′ := PSh(C) is a CwF+

with Ty-valued types and terms. We compare this D′ and the D given by Problem 24:
we define 𝛼 : D → D′ as a strict CwF+-morphism which is bijective on Ty, Ty+ and Tm.
The content of 𝛼 is mapping in and out of the inductive-recursive universe U∗. We denote
E := PSh(D) and E′ := PSh(D′). Precomposition with 𝛼 is 𝛼∗ : PSh(D′) → PSh(D) which
is a strict CwF-morphism. Now, by induction on the syntax of ToS+, we define 𝛽 for contexts,
substitutions, types and terms: 𝛽Γ : SubE ⟦Γ⟧E (𝛼∗ ⟦Γ⟧E′ ), 𝛽𝛾 : 𝛽Γ ◦ ⟦𝛾⟧E = 𝛼∗ ⟦𝛾⟧E′ ◦ 𝛽∆,
𝛽𝐴 : ⟦𝐴⟧E � 𝛼∗ ⟦𝐴⟧E′ [𝛽Γ ], 𝛽𝑎 : 𝛽𝐴[id, ⟦𝑎⟧E] = 𝛼∗ ⟦𝑎⟧E′ [𝛽Γ ]. Now for a signature Ω : Ty⋄,
from 𝛽Ω we have ⟦Ω⟧E ⋄D ★ � 𝛼∗ ⟦Ω⟧E′ [𝛽⋄] ⋄D ★ = ⟦Ω⟧E′ ⋄D′ ★. ◀

▶ Corollary 28. By combining the isomorphisms of Theorems 22 and 27: for any SOGAT
signature, in presheaves over any of its first-order models, a second-order model is available.

This corollary formalises the diagonal internalisation arrow S ↦−→ S in [16, page 3].

FSCD 2024
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7 Extensions and variants

In this section, we sketch some extensions of ToS+ and the alternative single substitution
calculus semantics, see the Supplementary Material for details.

Open and infinitary SOGATs. The SOGAT→GAT translation also works in the case when
signatures are open (can refer to external types like N in Definition 10) or infinitary. In this
case the theory of signatures is defined in the outer layer of a two-level type theory where
the inner layer is any chosen CwF, and signatures can refer to the universe Set◦ of inner
types [43, Chapter 3]. The theory of possibly open signatures includes a type former Π̂ : (𝐴 :
Set◦) → (𝐴 → Ty) → Ty, with the universal property

(
(𝑎 : 𝐴) → Tm (𝐵 𝑎)

)
� Tm (Π̂ 𝐴 𝐵).

For example, Definition 10 is formalised as Σ (N⇒̂U)𝜆Ty .Σ (Π̂N𝜆𝑖.Ty ·̂ 𝑖 ⇒ U)𝜆Tm . . . where
N : Set◦. Similarly, for infinitary signatures, we have a type former 𝜋 : (𝐴 : Set◦) → (𝐴 →
Tm U) → Tm U with the universal property

(
(𝑎 : 𝐴) → Tm (El (𝑏 𝑎))

)
� Tm (El (𝜋 𝐴 𝑏)).

When supporting infinitary operations, we have to replace the general Eq type by an equality
of types in U. This is because the semantics of infinitary GATs is not compatible with sort
equations [43, Chapter 5].

Semantics using single substitution calculus. Our translation from SOGAT to GAT is not
canonical: for example, we could have used semicategories instead of categories. There is
also a minimalistic version of the translation which results in a single substitution calculus
(SSC), which does not involve a category (single substitutions are not composable). For the
SOGAT given by the signature ΣU𝜆𝑇𝑦.𝑇𝑦 ⇒ U+, the parallel translation results in the GAT
known as CwF. The SSC translation for the same SOGAT gives a smaller theory: there is
no composition of substitutions, no identity substitution, no empty substitution 𝜖 and no
– , – operator for building substitutions into extended contexts. We have single weakening
p : Sub (Γ ⊲ 𝐴) Γ , single substitution ⟨–⟩ : Tm Γ 𝐴→ Sub Γ (Γ ⊲ 𝐴) and a lifting operation on
substitutions –+ : (𝛾 : Sub ∆ Γ ) → Sub (∆ ⊲ 𝐴[𝛾]) (Γ ⊲ 𝐴). There are four equations for types:
𝐴[p] [𝛾+] = 𝐴[𝛾] [p], 𝐴[p] [⟨𝑏⟩] = 𝐴, 𝐴[⟨𝑏⟩] [𝛾] = 𝐴[𝛾+] [⟨𝑏[𝛾]⟩], 𝐴[p+] [⟨q⟩] = 𝐴 and four
equations for terms: q[⟨𝑏⟩] = 𝑏, q[𝛾+] = q, 𝑏[p] [𝛾+] = 𝑏[𝛾] [p], 𝑏[p] [⟨𝑎⟩] = 𝑏. The resulting
theory is a minimalistic variant of B systems [1]. CwFs are models of the resulting theory,
but not the other way.1 The syntaxes are however equivalent [41]. This situation is analogous
to the relationship of lambda calculus and combinatory logic [8], where combinatory logic
has more models, but the sets of syntactic terms are isomorphic.

With small modifications, the translation described in Section 6 can be used to obtain
the SSC translation of a GAT. We only change the construction for Problem 24: C is not a
category, just a graph with a vertex ⋄; ConD and TyD do not include functoriality equations;
𝐴 : Ty+D Γ includes ⊲𝐴, but not the usual universal property; instead we have p𝐴, q𝐴, ⟨–⟩𝐴,
–+𝐴 operations and the above described 8 equations.

8 Conclusions and further work

In this paper we described SOGAT signatures and translations from SOGAT signatures to
GAT signatures. Correctness of our parallel substitution-based translation was shown by
constructing an isomorphism with the naive semantics, and was validated by several examples.

1 We can restrict any CwF to be only an SSC: we build a new sort of substitutions out of a single term or
a single weakening inductively. These substitutions do not compose, so they do not form a category,
but they form a model of the above described SSC.



A. Kaposi and Sz. Xie 10:19

In the future we would like to show equivalence with Uemura’s semantic definition of SOGATs.
We would like to computer check our constructions possibly using strict presheaves [46]. It
would be interesting to understand the exact relationship between our parallel and single
substitution calculi: we conjecture that for any SOGAT, they yield equivalent syntaxes.

We hope that our paper makes a step towards proof assistants with SOGAT support.
In such a system, the user could specify the signature for a SOGAT using a built-in ToS+,
and would automatically obtain notions of first-order and second-order models, morphisms,
iterators, induction principles (also for second-order displayed models [16]), and so on.
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A More examples of languages as SOGATs

▶ Definition 29 (Hindley–Milner type system).

MTy : Set – ⇒ – : MTy → MTy → MTy
Ty : Set lam :

(
Tm (i 𝐴) → Tm (i 𝐵)

)
� Tm (i (𝐴⇒ 𝐵)) : – · –

i : MTy → Ty ∀ : (MTy → Ty) → Ty
Tm : Ty → Set Lam :

(
(𝐴 : MTy) → Tm (𝐵 𝐴)

)
� Tm (∀ 𝐵) : – • –

The language of fine-grain call by value is to Freyd categories [44] as simply typed lambda
calculus is to cartesian closed categories. Here we add some type formers and a fixpoint
operator for illustration. All variables are values (in Val).
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▶ Definition 30 (Fine-grain call by value).

Ty : Set – ⇒ – : Ty → Ty → Ty
Val : Ty → Set lam : (Val 𝐴→ Tm 𝐵) → Val (𝐴⇒ 𝐵)
Tm : Ty → Set – · – : Val (𝐴⇒ 𝐵) → Val 𝐴→ Tm 𝐵

return : Val 𝐴→ Tm 𝐴 ⇒𝛽 : lam 𝑓 · 𝑎 = 𝑓 𝑎

– ≫= – : Tm 𝐴→ (Val 𝐴→ Tm 𝐵) → Tm 𝐵 – × – : Ty → Ty → Ty
idl : return 𝑎≫= 𝑓 = 𝑓 𝑎 – , – : Val 𝐴→ Val 𝐵 → Val (𝐴 × 𝐵)
idr : 𝑚 ≫= return = 𝑚 case× : Val (𝐴 × 𝐵) →
ass : (𝑚 ≫= 𝑓 ) ≫= 𝑔 = (Val 𝐴→ Val 𝐵 → Tm𝐶) → Tm𝐶

𝑚 ≫= (𝜆𝑎. 𝑓 𝑎≫= 𝑔) ×𝛽 : case× (𝑎, 𝑏) 𝑓 = 𝑓 𝑎 𝑏

T : Ty → Ty fix : (Val (T 𝐴) → Tm 𝐴) → Tm 𝐴

thunk : Tm 𝐴 � Val (T 𝐴) : force fix𝛽 : fix 𝑓 = 𝑓
(
thunk (fix 𝑓 )

)
The following definition shows that all the languages in the lambda cube [12] can be

given as SOGATs. The simply typed lambda calculus (STLC) only includes Π∗,∗, and the
edges in each dimension add one of the other three Π types, respectively. The calculus of
constructions (CC) includes all four Π types.

• CC

LF •

• F𝜔

STLC F

Π∗,□

Π□,□

Π□,∗

We don’t give names to the maps in the universal properties.

▶ Definition 31 (CC).

□ : Set
Ty : □ → Set
∗ : □
Tm : Ty ∗ → Set
Π∗,∗ : (𝐴 : Ty ∗) → (Tm 𝐴→ Ty (∗)) → Ty ∗ Tm (Π∗,∗ 𝐴 𝐵) � (𝑎 : Tm 𝐴) → Tm (𝐵 𝑎)
Π∗,□ : (𝐴 : Ty ∗) → (Tm 𝐴→ □) → □ Ty (Π∗,□ 𝐴 𝐿) � (𝑎 : Tm 𝐴) → Ty (𝐿 𝑎)
Π□,∗ : (𝐾 : □) → (Ty𝐾 → Ty ∗) → Ty ∗ Tm (Π□,∗ 𝐾 𝐵) � (𝐴 : Ty𝐾) → Tm (𝐵 𝐴)
Π□,□ : (𝐾 : □) → (Ty𝐾 → □) → □ Ty (Π□,□, 𝐾 𝐿) � (𝐴 : Ty𝐾) → Ty (𝐿 𝐴)

The next definition adds Σ, 0, 1, 2 and W-types to minimal Martin-Löf type theory,
which is enough to encode all inductive types [33].

▶ Definition 32 (Martin-Löf type theory with inductive types). We extend Definition 10 with
the following.

FSCD 2024
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Σ : (𝐴 : Ty 𝑖) → (Tm 𝐴→ Ty 𝑖) → Ty 𝑖
(– , – ) : (𝑎 : Tm 𝐴) × Tm (𝐵 𝑎) � Tm (Σ 𝐴 𝐵) : fst, snd
⊥ : Ty 0
exfalso : Tm⊥ → Tm 𝐴

⊤ : Ty 0
tt : ⊤ � Tm⊤
Bool : Ty 0
true : Tm Bool
false : Tm Bool
indBool : (𝐶 : Tm Bool → Ty 𝑖) → Tm (𝐶 true) → Tm (𝐶 false) →

(𝑏 : Tm Bool) → Tm (𝐶 𝑏)
Bool𝛽1 : indBool 𝑡 𝑓 true = 𝑡

Bool𝛽2 : indBool 𝑡 𝑓 false = 𝑓

Id : (𝐴 : Ty 𝑖) → Tm 𝐴→ Tm 𝐴→ Ty 𝑖
refl : (𝑎 : Tm 𝐴) → Tm (Id 𝑎 𝑎)
J :

(
𝐶 : (𝑥 : Tm 𝐴) → Tm (Id 𝐴 𝑎 𝑥) → Ty 𝑖

)
→

Tm
(
𝐶 𝑎 (refl 𝑎)

)
→ (𝑥 : Tm 𝐴) (𝑒 : Tm (Id 𝐴 𝑎 𝑥)) → Tm (𝐶 𝑥 𝑒)

Id𝛽 : J𝐶 𝑤 𝑎 (refl 𝑎) = 𝑤
W : (𝑆 : Ty 𝑖) → (Tm 𝑆 → Ty 𝑖) → Ty 𝑖
sup : (𝑠 : Tm 𝑆) → (Tm (𝑃 𝑠) → Tm (W 𝑆 𝑃)) → Tm (W 𝑆 𝑃)
indW : (𝐶 : Tm (W 𝑆 𝑃) → Ty 𝑖) →( (

(𝑝 : Tm (𝑃 𝑠)) → Tm (𝐶 ( 𝑓 𝑝))
)
→ Tm

(
𝐶 (sup 𝑠 𝑓 )

) )
→

(𝑤 : Tm (W S P)) → Tm
(
𝐶 𝑤

)
W𝛽 : indW𝐶 ℎ (sup 𝑠 𝑓 ) = ℎ (𝜆𝑝.indW𝐶 ℎ ( 𝑓 𝑝))

In the following example, we add a new sort of telescopes to type theory. This can also be
seen as an inductive-recursive definition internally to presheaves over the syntax (or any
model; it shows that any CwF with ⊤ and Σ can be extended with telescopes).

▶ Definition 33 (Telescopes in Martin-Löf type theory). We extend Definition 32 with the
following.

Tys : Set ⋄ : Tys – ⊲ – : (𝐴 : Tys) → (Tms 𝐴→ Ty) → Tys

⌜–⌝ : Tys → Ty ⋄𝛽 : ⌜⋄⌝ = ⊤ ⊲𝛽 : ⌜𝐴 ⊲ 𝐴⌝ = Σ ⌜𝐴⌝ 𝐴

The next SOGAT has both telescopes and telecopic terms, it does not rely on the presence
of Σ types.

▶ Definition 34 (Telescopes and telescopic terms in Martin-Löf type theory). We extend
Definition 10 or Definition 32 with the following.

Tys : Set ⋄ : Tys – ⊲ – : (𝐴 : Tys) → (Tms 𝐴→ Ty) → Tys

Tms : Tys → Set ★ : Tms⋄ � 𝟙 : 𝜖 (𝜋1, 𝜋2) : Tms (𝐴 ⊲ 𝐴) � (𝑎 : Tms 𝐴) × Tm (𝐴 𝑎)

We can turn the above two isomorphisms into equalities if U in the theory of SOGAT
signatures was closed under unit and Σ, and had sort equations at the same time. Note that
these are not featured at the same time in the semantics of GATs [43].
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Non-deterministic abstract machine (NDAM) is a recent implementation model for programming
languages where one must choose among several redexes at each reduction step, like process calculi.
These machines can be derived from a zipper semantics, a mix between structural operational
semantics and context-based reduction semantics. Such a machine has been generated also for the
λ-calculus without a fixed reduction strategy, i.e., with the full non-deterministic β-reduction.

In that machine, substitution is an external operation that replaces all the occurrences of
a variable at once. Implementing substitution with environments is more low-level and more efficient
as variables are replaced only when needed. In this paper, we define a NDAM with environments for
the λ-calculus without a fixed reduction strategy. We also introduce other optimizations, including
a form of refocusing, and we show that we can restrict our optimized NDAM to recover some of
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1 Introduction

Abstract machines are first-order tail-recursive transition systems for term reduction. Known
examples of machines for languages based on the λ-calculus include SECD [39], CEK [32],
and the KAM [38]. They serve as an operational semantics [39, 32, 31] or an implementation
model [36, 41] of programming languages, but are also relevant in proof theory [38], higher-
order model checking [46], or as cost models [10], to name but a few applications.

Abstract machines for the λ-calculus usually implement a deterministic strategy which
selects a specific redex at each step [27, 31]. In contrast, a Non-Deterministic Abstract
Machine (NDAM) [14] may choose any of the available redexes: it explores the term, making
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an arbitrary choice when several are possible, e.g., going left or right of an application. If
the machine focuses on a subterm which cannot be further reduced, it annotates it and
backtracks to make a different choice. Annotations prevent the machine from visiting an
already explored subterm.

NDAMs have been originally developed as an implementation model for non-deterministic
languages, in particular, for process calculi. However, considering an NDAM for the λ-calculus
without a fixed reduction strategy is worthwhile too, at least from the theoretical point of
view – one can expect that such an NDAM should subsume various deterministic reduction
strategies or abstract machines, and, therefore, play a role of a unifying framework in which
one can study and compare them. Moreover, such an abstract machine should be readily
adjustable to account for the λ-calculus extended with concurrency primitives.

Defining an NDAM can be hard, so the framework in [14] comes with a sound and complete
automatic derivation procedure from another semantics format called zipper semantics, which
is a middle ground between a Structural Operational Semantics (SOS) [44] and a context-
based reduction semantics [32, 26]. Like an SOS, a zipper semantics explores a term with
structural rules, but it remembers its position in the term using an evaluation context, i.e., a
term with a hole [32]. Zipper semantics and their derived NDAMs have been presented for
process calculi [47, 40], but also for the λ-calculus without a fixed reduction strategy.

As a result of the generic derivation procedure, the NDAM for the λ-calculus cannot be
perfectly tailored for it, and, moreover, it inherits some of the artifacts from the underlying
zipper semantics. In particular, it relies on substitution, an external operation which replaces
all the occurrences of a variable at once, traversing the entire term. A more elementary and
efficient implementation of β-reduction that is traditionally used in abstract machines uses
environments, i.e., delayed substitutions, where a variable is looked up only when needed,
and closures are built [39]. The goal of this work is to obtain an environment-based NDAM
for the λ-calculus without a fixed reduction strategy.

To this end we first define a zipper semantics with environments for the λ-calculus
without a fixed reduction strategy. It is inspired by λσ⇑, a classic calculus with explicit
substitutions [25]. It turns out that we only need to implement a small subset of the rewrite
rules of Curien et al.’s calculus in our zipper semantics. Then, the NDAM automatically
derived from the zipper semantics itself uses environments.

Unfortunately, the derived NDAM still suffers from performance issues. For example, it is
not in refocused form [27, 28]: after a β-reduction, the NDAM reconstructs the whole term
before looking for the next redex. The reason is that an NDAM should be able to find any
redex, even the ones next to the root. As a compromise between efficiency and completeness,
we let the machine reconstruct an arbitrary part of the term from the contraction site. It does
not reconstruct the whole term after each β-reduction, but it may still reconstruct enough of
it so that it can find β-redexes closer to the root. We also propose other optimizations, in
particular related to the way the NDAM manages annotations.

The end product is an optimized NDAM for the λ-calculus with environments. By
restricting its behavior, we are then able to express some of the existing λ-calculus machines
or strategies, as we expected. For example, if we forbid the exploration step which goes under
a λ-abstraction, we restrict ourselves to weak strategies. In addition, if we always go left
of an application, we simulate the KAM [38]. We can also encode more complex strategies
like full normal order by enforcing priorities on the machine steps of the optimized NDAM.
We thus demonstrate that NDAMs can be brought closer to usual, more efficient abstract
machines designed for a specific reduction strategy.
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Contributions. Our contributions are as follows:
We define a zipper semantics with environments for the λ-calculus, using a subset of a
known calculus with explicit substitutions.
From the zipper semantics we derive a correct-by-construction non-deterministic abstract
machine for the λ-calculus with environments and without a fixed reduction strategy.
We optimize, in a provably-correct way, the derived NDAM with optimization techniques
that we devise to improve the performance of NDAMs in general, which are either generic,
like a form of refocusing, or language-specific, like a better management of annotations.
We provide an OCaml implementation of the optimized machine to experiment with.
We show that the optimized NDAM we obtain is able to express many of the existing
machines designed for a specific reduction strategy.

Structure of the paper. Section 2 recalls the definition of the zipper semantics with
substitution, which we characterize with a zipper semantics with environments. In Section 3,
we first present the NDAM derived from the environment-based zipper semantics, and then
define a more optimized machine. In Section 4, we show how to obtain previously known
machines from the optimized NDAM. Section 5 discusses related work and Section 6 concludes
the paper. The accompanying report [15] contains the proofs missing from the paper.

2 Zipper Semantics

We present the zipper semantics of the λ-calculus with environments and prove its equivalence
with the substitution-based variant.

2.1 Syntax and Substitution-based Zipper Semantics
We present the syntax of the λ-calculus where variables are represented with de Bruijn
indices. We let n, m, p range over indices, i.e., natural numbers, and define the syntax of
λ-calculus terms, ranged over with t and s, as follows.

t, s ::= λ.t | n | t s

A de Bruijn index counts how many λ-abstractions separate the variable from its binder. For
example, using more familiar named variables, λ.0 stands for λx.x, and λ.λ.1 for λx.λy.x. We
use a de Bruijn representation for the environment-based calculus (Section 2.2), to prevent
unwanted name captures when moving an environment inside a λ-abstraction. We write
t{s/n} for the capture-avoiding substitution of n with s in t, defined as follows, using the
auxiliary renaming operation on indices ⟨t⟩n

p [29].

(t1 t2){s/n} ∆= t1{s/n} t2{s/n} ⟨t1 t2⟩n
p

∆= ⟨t1⟩n
p ⟨t2⟩n

p

(λ.t){s/n} ∆= λ.t{s/n + 1} ⟨λ.t⟩n
p

∆= λ.⟨t⟩n
p+1

m{s/n} ∆=


m − 1 if m > n

⟨s⟩n
0 if m = n

m if m < n

⟨m⟩n
p

∆=
{

m + n if m ≥ p

m if m < p

The goal of zipper semantics is to go through a term looking for a redex, using an
evaluation context to remember the current focus in the term. We represent evaluation
contexts E, F as stacks of elementary contexts F, called frames.

E,F ::= F ::E | ■ F ::= □ t | t □ | λ

FSCD 2024
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appL
t

□ s :: E−−−−→ev t′

t s
E−→ev t′

appR
s

t □ :: E−−−−→ev s′

t s
E−→ev s′

lam
t

λ :: E−−−→ev t′

λ.t
E−→ev t′

lamβ

λ.t
□ s :: E−−−−→ev E⟨t{s/0}⟩

Figure 1 Zipper semantics of the substitution-based lambda-calculus.

In defining the zipper semantics, it is convenient to interpret contexts inside-out: the topmost
frame represents the innermost construct. We define a plugging operation for frames F⟨t⟩
and contexts E⟨t⟩ as follows.

(□ s)⟨t⟩ ∆= t s (s □)⟨t⟩ ∆= s t λ⟨t⟩ ∆= λ.t

■⟨t⟩ ∆= t (F ::E)⟨t⟩ ∆= E⟨F⟨t⟩⟩

The definition of the zipper semantics is in Figure 1. Informally, t
E−→ev t′ means that E⟨t⟩

reduces to t′. The rules appL, appR, and lam are going through the term looking for a redex.
For example in appL, t s reduces to t′ in E if t reduces to t′ in □ s ::E. We see that the focus
changes from t s to t, resulting in pushing □ s on top of E. When we focus on a λ-abstraction
inside a context □ s ::E, we recognize a redex, and we can β-reduce with the axiom lamβ.

A reduction step is defined as a transition t
■−→ev t′. The semantics of Figure 1 is a slight

optimization of the original zipper semantics for the λ-calculus [14], where the axiom lamβ

is split in two rules. It is however straightforward to prove that the two zipper semantics
coincide, and therefore our semantics also characterizes the usual context-based reduction
semantics of the λ-calculus [14].

2.2 Environment-based Zipper Semantics
Our goal is to replace substitution with environments, while still being able to reduce
an arbitrary β-redex, including under a λ-abstraction. To this end, we take inspiration
from λσ⇑ [25], a calculus with explicit substitutions and strong reduction. The syntax of
environments ϵ, ϕ and of closures c, d are as follows.

ϵ, ϕ ::= id | ↑ | l · ϵ | ϵ ◦ ϕ | ⇑ϵ c, d ::= l[ϵ] | λ.c | c d l, k ::= t | c

Closures extend terms by pairing them with an environment t[ϵ]. Environments are like
explicit substitutions in λσ⇑. An environment l · ϵ maps 0 to l and the variables n ≥ 1 are
mapped by ϵ. The identity environment id maps variables to themselves. The composition
ϵ ◦ ϕ is such that ϵ is applied first, and then ϕ.

Whenever an environment ϵ is applied to the body of a λ-abstraction λ.l, it is lifted ⇑ϵ to
avoid index clashes. Informally, ϵ should not be applied to 0 in l, as 0 is bound by the λ, and
the occurrences of 0 in the image of ϵ should not be captured by that λ. To avoid this, we
shift (↑) the result of the application of ϵ. To summarize, ⇑ϵ acts like 0 · ϵ ◦ ↑: the variable 0
is mapped to 0, and any n ≥ 1 is mapped by ϵ and the result is then shifted. This reminds
that the lift construct is not mandatory in calculi with explicit substitutions, as its behavior
can be expressed with the other constructs [1, 25]: we use it because it is more convenient in
proofs, in particular to prove termination results.

The zipper semantics for the environment-based λ-calculus is defined in Figure 2. It takes
as source a term or a closure l, but always results in a closure c. As in the substitution-
based calculus, we use a context to remember the current position when exploring l. With
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env
l

E,ϵ • E−−−−→ev c

l[ϵ] E,E−−→ev c

appL

l
□ (k[E]) :: E,E−−−−−−−−→ev c

l k
E,E−−→ev c

appR

k
(l[E]) □ :: E,E−−−−−−−−→ev c

l k
E,E−−→ev c

lam
l

λ :: E,⇑E−−−−−→ev c

λ.l
E,E−−→ev c

var
ϵ

E,n,⋆−−−→var c

n
E,!ϵ−−→ev c

lamβ

λ.l
□ k :: E,E−−−−−→ev E⟨l[k · E ]⟩

consN
ϵ

E,n,E−−−→var c

l · ϵ
E,n+1,E−−−−−→var c

consZ
l

E,E−−→ev c

l · ϵ
E,0,E−−−→var c

id!
ϵ

E,n,⋆−−−→var c

id
E,n,!ϵ−−−→var c

shift
ϵ

E,n+1,⋆−−−−−→var c

↑ E,n,!ϵ−−−→var c

liftN
ϵ

E,n,↑ • E−−−−−→var c

⇑ϵ
E,n+1,E−−−−−→var c

liftZ
ϕ

E,0,⋆−−−→var c

⇑ϵ
E,0,!ϕ−−−−→var c

comp

ϵ
E,n,ϕ • E−−−−−→var c

ϵ ◦ ϕ
E,n,E−−−→var c

Figure 2 Zipper semantics for the environment-based λ-calculus.

environments, context frames are built from terms or closures: F ::= □ l | l □ | λ. An evaluation
context E, F is still a stack of frames interpreted inside-out, and we plug terms or closures
inside a frame or a context. The plugging operation is defined as in Section 2.1.

The zipper semantics uses an extra argument to record what the current environment is
while exploring l. To this end, we define an option type E , F , which we call local environment,
signalling whether the environment is defined or not.

E , F ::= ⋆ | !ϵ

When E = ⋆, the local environment is not (yet) defined. Although ⋆ could be seen as id,
we distinguish the two to make explicit the absence or presence of an environment. We
extend the following constructs to local environments and overload some of the symbols.
The rationale behind these definitions is explained when we detail the rules of the zipper
semantics.

l[⋆] ∆= l l · ⋆
∆= l · id ϵ • ⋆

∆= !ϵ ⇑⋆
∆= ⋆

l[!ϵ] ∆= l[ϵ] l · !ϵ ∆= l · ϵ ϵ1 • !ϵ2
∆= !ϵ1 ◦ ϵ2 ⇑!ϵ ∆= !⇑ϵ

Zipper semantics transitions are of two kinds: l
E,E−−→ev c means that l with local environ-

ment E inside E is reducing to c, i.e., E⟨l[E ]⟩ is β-reducing to c. The transition ϵ
E,n,E−−−→var c

means that solving n in the environment ϵ • E results in a term or closure which itself reduces
within E to c: E⟨n[ϵ • E ]⟩ is β-reducing to c. The rules defining the semantics implement
some of the rewriting rules of λσ⇑.

The transition l
E,E−−→ev c is going through l until it finds a β-redex, keeping track of the

current environment E while doing so. We start with an empty context and an undefined
environment l

■,⋆−−→ev c. When we focus on a construct l[ϵ] (rule env), we set the local
environment to !ϵ if it was undefined; otherwise, we compose it with ϵ. The definition of •
reflects these two cases.

In the application case (rules appL and appR), we pack the local environment with the
term or closure pushed on the context. In the body of a λ-abstraction, the local environment
becomes ⇑E (rule lam): if it is undefined (E = ⋆), it remains so in the body of the abstraction,
which explains why ⇑⋆ is defined as ⋆. Otherwise, E = !ϵ, and ϵ is lifted. For a variable n
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Jl[ϵ1]K(ϵ2) ∆= JJlK(ϵ1)K(ϵ2) J0K(l · ϵ) ∆= JlK Jn + 1K(l · ϵ) ∆= JnK(ϵ)

Jl1 l2K(ϵ)
∆= Jl1K(ϵ) Jl2K(ϵ) J0K(⇑ϵ) ∆= 0 Jn + 1K(⇑ϵ) ∆= JnK(ϵ ◦ ↑)

Jλ.lK(ϵ) ∆= λ.JlK(⇑ϵ) JnK(id) ∆= n

JnK(ϵ1 ◦ ϵ2) ∆= JJnK(ϵ1)K(ϵ2) JnK(↑) ∆= n + 1

Figure 3 Translation from closures to terms.

(rule var), E should be defined as !ϵ for some ϵ, so that we can resolve n in ϵ using the var
transition, explained below. Finally, if we focus on a λ-abstraction λ.l in the appropriate
context □ k ::E, we can β-reduce, which consists in pushing k on top of E ; if E = ⋆, then this
operation creates the environment k · id (rule lamβ).

The transition ϵ
E,n,E−−−→var c resolves n in ϵ, using E to handle compositions. Initially in

rule var, E is set to ⋆. If ϵ = ϵ1 ◦ ϵ2, then we focus on ϵ1 and remember ϵ2 in E (rule comp).
More generally, the transition ϵ

E,n,⋆−−−→var c is solving n in ϵ, while ϵ
E,n,!ϕ−−−−→var c is solving n

in ϵ ◦ ϕ. For example, the rule shift says that resolving n in ↑ ◦ ϕ consists in resolving n + 1
in ϕ. Similarly, solving n in id ◦ ϕ requires solving n in ϕ (rule id!).

As explained before, ⇑ϵ maps 0 to 0 (rule liftZ) and any n ≥ 1 is solved in ϵ and then
shifted (rule liftN). The rules consN and consZ deal with environments l · ϵ as expected: if
n ≥ 1, then we look for n − 1 in ϵ. Otherwise, l is the expected result, and we switch to a ev
transition to continue the search for a redex.

The var transition is not defined when E = ⋆ and the environment is id, ↑, or ⇑ϵ with
n = 0, i.e., in the cases producing a variable (respectively n, n + 1, and 0). The zipper
semantics is solving a variable to find a β-redex, and turning a variable into another variable
does not help in that regard.

2.3 Properties of the Environment-based Zipper Semantics
We state the main properties of the environment-based zipper semantics. We first show
it corresponds to the substitution-based semantics. To this end, in Figure 3 we define a
translation JlK(ϵ) from closures to terms: JlK(ϵ) = t means that the term or closure l under
environment ϵ translates into the term t. The translation is defined first by case analysis on
the term or closure l, to push the environment ϵ to the leaves of l. At the level of variables,
it then computes how an index n is translated by case analysis on the environment.

We write JlK as a shorthand for JlK(id). The equations defining the translation contain the
rewrite rules we need from the ones defining λσ⇑. We can derive some of the remaining rules
of λσ⇑ as properties of the translation: for example, we can show that JlK(⇑id) = JlK(id) [15,
Lemma 7] or that JlK(ϵ ◦ ϕ) = JJlK(ϵ)K(ϕ) [15, Lemma 12]. The proofs are usually by induction
on the size of pairs (l, ϵ), strictly decreasing between the left-hand side and right-hand side
of each equation defining the translation [15, Appendix A]. The size is the same as in the
proof of termination of rewriting in λσ⇑ [25, Proposition 4.2], and relies on the fact that we
use lift; the proof would be more complex without lift [1].

The main result relates β-redexes on both sides.

▶ Lemma 1. For all l, k, ϵ, Jl[k · ϵ]K = JlK(⇑ϵ){JkK/0}.
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Curien et al. prove a similar result when relating λσ⇑ to the plain λ-calculus [25, Proposition
4.11]: rephrased in our setting, they prove that given two terms t and s, Jt[s · id]K = t{s/0}.
We generalize their result to any closures l, k and any environment ϵ. With this result, we
can relate the two zipper semantics.

▶ Theorem 2. If l
■,⋆−−→ev c, then JlK ■−→ev JcK.

For all t
■−→ev s, there exists c such that t

■,⋆−−→ev c and JcK = s.

The environment-based semantics is equivalent to the substitution-based one, which itself
characterizes a context-based semantics of the λ-calculus [14].

The environment-based zipper semantics also satisfies the properties required so it can be
derived into an NDAM [14]. In particular, it must be machine constructive: in each rule, it
is possible to construct the terms in the premise from those of the conclusion. The semantics
must also be terminating, ensuring that the search for a redex in the abstract machine does
not loop infinitely. To prove it, it is enough to exhibit a strictly decreasing size of transitions
such that the size of the premise of each inductive rule is smaller than that of its conclusion.
The definition of such a size is already necessary to prove Theorem 2 [15, Appendix A]. We
point out that the size is strictly decreasing because we distinguish ⋆ from id, which allows
us to give different sizes for both. Replacing ⋆ with id would make the zipper rule id! in
Figure 2 not terminating.

The original theory [14] requires the zipper semantics to be reversible, which is the reverse
of being machine constructive: for each rule, the terms in the conclusion can be deduced from
those in the premise. This property makes it easier to design the backtracking mechanism
of the derived machine. The zipper semantics of Figure 2 is not reversible: in rules consN
and consZ, respectively l and ϵ in the conclusion do not occur in the premise. We also need
to inverse the operator • in rules env, liftN, and comp. We show in Section 3.1 that we
only need a small change in the derivation procedure to allow backtracking for these rules.
However, we argue that the derivation procedure could easily be adapted to account for
non-reversible zipper semantics in many cases.

3 Non-Deterministic Abstract Machines

We discuss the shortcomings of the NDAM derived from the environment-based semantics,
and present an optimized abstract machine dealing with these issues.

3.1 Derived Abstract Machine
A zipper semantics is not yet an implementation, as it does not explain what to do when
several rules can be applied during the search for a redex, like in the application or λ-
abstraction cases. The automatically derived abstract machine (DAM in short) augments
the zipper semantics with a backtracking mechanism and annotations to handle these cases.

Roughly, each zipper rule becomes a forward step, which focuses on a subterm. When
several rules can be applied, the machine chooses arbitrarily one of them, e.g., going left or
right of an application. Because of this non-determinism, it can make a wrong choice and
focus on a subterm which cannot reduce. In such a case, the machine annotates the subterm
as a normal form, and then switches to a backward mode, in which it undoes enough steps to
return to the last configuration it made a choice, to make a different one if possible. The
forward steps may focus only on subterms without annotations, ensuring that the machine
cannot make the same (wrong) choice twice. The DAM relies on a stack π to remember in
which order the forward steps have been applied. The backward mode then uses this stack
to undo the steps in the reverse order.
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11:8 Optimizing a Non-Deterministic Abstract Machine with Environments

Formally, we let Σ, ∆ range over annotations, and we extend the syntax of terms, closures,
and environments with annotations.

Σ, ∆ ::= ∅ | ev | var t, s ::= nΣ | λΣ.t | t @Σ s

ϵ, ϕ ::= idΣ | ↑Σ | l
Σ· ϵ | ϵ

Σ◦ ϕ | ⇑Σϵ c, d ::= l[ϵ]Σ | λΣ.c | c @Σ d

We use l and k to range over (annotated) terms and closures. The machine annotates
a term or closure with ev and an environment with var. We write an(l) or an(ϵ) for the
topmost annotation of l or ϵ: for instance an(l @Σ k) = Σ. We write l+ev and ϵ+var for the
operation of annotating the topmost construct of l or ϵ: for example, (l @Σ k)+ev = l @ev k

independently of Σ. Contexts in machine configurations are built of annotated terms, closures,
and environments.

The syntax of the stack π is of the shape π ::= ρ(ẽ) :: π | ▲ where ▲ represents the empty
stack, ρ ranges over the names of the zipper rules in Figure 2, and ẽ represents information
stored in the stack, which might be needed to make backtracking possible. In most cases, ẽ

is empty.
The DAM is defined in Figure 4; we discuss some of the steps here. Machine configurations

⟨l |E, E , π⟩ev and ⟨ϵ |E, n, E , π⟩var reflect the transitions of the zipper semantics. Each zipper
rule is turned into a forward step, where the conclusion and premise of the rule are respectively
the source and target of the step. The stack π also records the rule being applied. For
example, the rules appL, lam and consN translate as steps D1, D3, and D14, respectively.
Each forward step has a side condition which checks that the new subterm under focus is
not annotated, thus ensuring it has not already been visited.

If no forward step applies to the current term, then a switching step annotates it
and changes to the backward mode bev or bvar. The configurations ⟨π | l,E, E⟩bev and
⟨π | ϵ,E, n, E⟩var then discriminate on π to undo the last applied rule. Each forward step has
a mirroring backward step to undo it. The switching steps are steps D7 and D21 for the ev
and var modes respectively, and the backward steps corresponding to appL, lam and consN
are steps D8, D11, and D22, respectively.

Finally, when the machine finds a redex, it applies the axiom lamβ (step D6). The machine
constructs the result of the β-reduction plugged inside E. After reduction, some annotations
may no longer be valid, so to be safe, the DAM erases all of them: the operation |l| sets
every annotation in l to ∅.

Reversibility. In the the original derivation procedure [14], the role of π is mainly to record
which rules are being applied, to know in which order to undo them if needed. We go beyond
that design in this paper, and use π to also store some information to be able to backtrack
even in the case of non-reversible zipper rules. We argue that what we do is generic enough
to be added to the original derivation procedure.

The rules consN, consZ, and liftZ are not reversible because some entities of the conclusion
of the rule do not occur in its premise. It is easy to automatically collect such missing entities,
and record them in the stack π. For example, the steps D14 and D15 – corresponding to
consN and consZ – remember in π the part of the environment which is discarded, either its
head or its tail.

A rule may be not reversible also because it relies on an external operator which is not
injective, like •. In that case, we need to provide extra operations and remember some
information in the stack to be able to invert it. By its definition, ϵ • E = !ϵ1 ◦ ϵ2 because either
ϵ = ϵ1 and E = !ϵ2, or ϵ = ϵ1 ◦ ϵ2 and E = ⋆. To distinguish between the two possibilities, we
remember in the stack π a boolean b defined by an operation E ?= ⋆ which evaluates to ⊤
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⟨l1 @∅ l2 |E, E , π⟩ev → ⟨l1 | □ (l2[E ]) ::E, E , appl :: π⟩ev if an(l1) = ∅ (D1)

⟨l1 @∅ l2 |E, E , π⟩ev → ⟨l2 | (l1[E ]) □ ::E, E , appr :: π⟩ev if an(l2) = ∅ (D2)

⟨λ∅.l |E, E , π⟩ev → ⟨l | λ ::E, ⇑E , lam :: π⟩ev if an(l) = ∅ (D3)

⟨l[ϵ]∅ |E, E , π⟩ev → ⟨l |E, ϵ • E , env(E ?= ⋆) :: π⟩ev if an(l) = ∅ (D4)

⟨n∅ |E, !ϵ, π⟩ev → ⟨ϵ |E, n, ⋆, var :: π⟩var if an(ϵ) = ∅ (D5)

⟨λ∅.l | □ k ::E, E , π⟩ev → ⟨|E⟨l[k ∅· E ]∅⟩| | ■, ⋆,▲⟩ev (D6)
⟨l |E, E , π⟩ev → ⟨π | l+ev,E, E⟩bev otherwise (D7)

⟨appl :: π | l1, □ (l2[E ]) ::E, E⟩bev → ⟨l1 @∅ l2 |E, E , π⟩ev (D8)

⟨appr :: π | l2, (l1[E ]) □ ::E, E⟩bev → ⟨l1 @∅ l2 |E, E , π⟩ev (D9)

⟨env(b) :: π | l,E, E ′⟩bev → ⟨l[ϵ]∅ |E, E , π⟩ev if •−1(b, E ′) = (ϵ, E) (D10)

⟨lam :: π | l, λ ::E, ⇑E⟩bev → ⟨λ∅.l |E, E , π⟩ev (D11)

⟨var :: π | ϵ,E, n, ⋆⟩bvar → ⟨n∅ |E, !ϵ, π⟩ev (D12)
⟨▲ | l, ■, E⟩bev → ⟨l[E ]⟩nf (D13)

⟨l ∅· ϵ |E, n + 1, E , π⟩var → ⟨ϵ |E, n, E , consN(l) :: π⟩var if an(ϵ) = ∅ (D14)

⟨l ∅· ϵ |E, 0, E , π⟩var → ⟨l |E, E , cons0(ϵ) :: π⟩ev if an(l) = ∅ (D15)

⟨id∅ |E, n, !ϵ, π⟩var → ⟨ϵ |E, n, ⋆, id! :: π⟩var if an(ϵ) = ∅ (D16)

⟨↑∅ |E, n, !ϵ, π⟩var → ⟨ϵ |E, n + 1, ⋆, shift :: π⟩var if an(ϵ) = ∅ (D17)

⟨⇑∅ϵ |E, n + 1, E , π⟩var → ⟨ϵ |E, n, ↑∅ • E , liftN(E ?= ⋆) :: π⟩var if an(ϵ) = ∅ (D18)

⟨⇑∅ϵ |E, 0, !ϕ, π⟩var → ⟨ϕ |E, 0, ⋆, lift0(ϵ) :: π⟩var if an(ϵ2) = ∅ (D19)

⟨ϵ1
∅◦ ϵ2 |E, n, E , π⟩var → ⟨ϵ1 |E, n, ϵ2 • E , comp(E ?= ⋆) :: π⟩var if an(ϵ1) = ∅ (D20)

⟨ϵ |E, n, E , π⟩var → ⟨π | ϵ+var,E, n, E⟩bvar otherwise (D21)

⟨consN(l) :: π | ϵ,E, n, E⟩bvar → ⟨l ∅· ϵ |E, n + 1, E , π⟩var (D22)

⟨cons0(ϵ) :: π | l,E, E⟩bev → ⟨l ∅· ϵ |E, 0, E , π⟩var (D23)

⟨id! :: π | ϵ,E, n, ⋆⟩bvar → ⟨id∅ |E, n, !ϵ, π⟩var (D24)

⟨shift :: π | ϵ,E, n + 1, ⋆, ⟩bvar → ⟨↑∅ |E, n, !ϵ, π⟩var (D25)

⟨liftN(b) :: π | ϵ,E, n, E ′⟩bvar → ⟨⇑∅ϵ |E, n + 1, E , π⟩var if •−1(b, E ′) = (↑∅, E) (D26)

⟨lift0(ϵ1) :: π | ϵ2,E, 0, ⋆⟩bvar → ⟨⇑∅ϵ1 |E, 0, !ϵ2, π⟩var (D27)

⟨comp(b) :: π | ϵ1,E, n, E ′⟩bvar → ⟨ϵ1
∅◦ ϵ2 |E, n, E , π⟩var if •−1(b, E ′) = (ϵ2, E) (D28)

Figure 4 Derived Abstract Machine.
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⟨l1 @Σ l2 |E, E⟩ev → ⟨l1 | □ (l2[E ]) ::E, E⟩ev if E , ⊤ ̸⊢ l1 (O1)
⟨l1 @Σ l2 |E, E⟩ev → ⟨l2 | (l1[E ]) □ ::E, E⟩ev if E , ⊥ ̸⊢ l2 (O2)

⟨λΣ.l |E, E⟩ev → ⟨l | λ ::E, ⇑E⟩ev if ⇑E , ⊥ ̸⊢ l (O3)
⟨l[ϵ]Σ |E, E⟩ev → ⟨l |E, ϵ • E⟩ev (O4)

⟨n |E, !ϵ⟩ev → ⟨ϵ |E, n, ⋆, (n, ϵ)⟩var (O5)

⟨λΣ.l | □ k ::E, E⟩ev → ⟨E | l[k · E ]∅⟩rec (O6)
⟨n |E, ⋆⟩ev → ⟨E | n[id]ev⟩bev (O7)
⟨c |E, ⋆⟩ev → ⟨E | c+ev⟩bev otherwise (O8)

⟨□ l ::E | c⟩bev → ⟨c @∅ l |E, ⋆⟩ev (O9)

⟨l □ ::E | c⟩bev → ⟨l @∅ c |E, ⋆⟩ev (O10)

⟨λ ::E | c⟩bev → ⟨λ∅.c |E, ⋆⟩ev (O11)
⟨■ | c⟩bev → ⟨c⟩nf (O12)

⟨l · ϵ |E, n + 1, E , P ⟩var → ⟨ϵ |E, n, E , P ⟩var (O13)
⟨l · ϵ |E, 0, E , P ⟩var → ⟨l |E, E⟩ev if E , infun(E) ̸⊢ l (O14)
⟨id |E, n, !ϵ, P ⟩var → ⟨ϵ |E, n, ⋆, P ⟩var (O15)
⟨↑ |E, n, !ϵ, P ⟩var → ⟨ϵ |E, n + 1, ⋆, P ⟩var (O16)

⟨⇑ϵ |E, n + 1, E , P ⟩var → ⟨ϵ |E, n, ↑ • E , P ⟩var (O17)
⟨⇑ϵ |E, 0, !ϕ, P ⟩var → ⟨ϕ |E, 0, ⋆, P ⟩var (O18)

⟨ϵ1 ◦ ϵ2 |E, n, E , P ⟩var → ⟨ϵ1 |E, n, ϵ2 • E , P ⟩var (O19)
⟨ϕ |E, m, E , (n, ϵ)⟩var → ⟨E | n[ϵ]ev⟩bev otherwise (O20)

⟨□ l ::E | c⟩rec → ⟨E | c @∅ l⟩rec (O21)

⟨l □ ::E | c⟩rec → ⟨E | l @∅ c⟩rec (O22)

⟨λ ::E | c⟩rec → ⟨E | λ∅.c⟩rec (O23)
⟨E | c⟩rec → ⟨c |E, ⋆⟩ev (O24)

Figure 5 Optimized Abstract Machine.

if E = ⋆, and to ⊥ otherwise (cf steps D4, D18, and D20). We then define the invert of •,
written •−1, such that •−1(⊤, !ϵ1 ◦ ϵ2) = (ϵ1 ◦ ϵ2, ⋆) and •−1(⊥, !ϵ1 ◦ ϵ2) = (ϵ1, !ϵ2), and use it
in the backtracking steps D10, D26, and D28. Defining •−1 or ?= cannot be done for any
non injective operator, but if they exist, such operations could be provided to the automatic
derivation procedure with the zipper semantics.

3.2 Optimized Abstract Machine

Being the result of a generic procedure, the DAM is not optimized for the particular case of
the λ-calculus with environments. We explain how to optimize it, resulting in the Optimized
Abstract Machine, defined in Figure 5.
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Figure 6 Differences between the DAM and OAM when backtracking.

Bypassing the bvar mode. The DAM does not exploit the fact that solving n in ϵ is
syntax-directed: at most one zipper rule applies to a given n and ϵ. Suppose the machine
configuration D = ⟨nΣ |E, !ϵ, π⟩ev initiates a sequence of steps D →m D′

var such that no
forward step applies to D′

var. The DAM then backtracks: starting with D′
var and for each

step, it applies the switching step to add the annotation, and then a backward step. In the
end, we need 2m steps to add the annotations and get back to D. Instead, the switching
step from Dm

var could restore D directly, meaning that we no longer need backtracking steps
for the var mode, nor annotations for environments.

To implement this change, whenever we start solving n inside ϵ in the OAM, we remember
the initial values of the variable and the environment as a pair (n, ϵ) in the var mode (step O5).
We let P range over such pairs. The pair is passed along in steps O13 to O19, and is discarded
if the variable can in fact be solved in step O14. If variable resolution fails, the “otherwise”
step restores the initial values as a closure n[ϵ]ev annotated as a normal form (step O20).

Refocusing. The DAM is not in refocused form: after β-reduction, it plugs the resulting
closure into E before looking for the next redex. This is necessary for the machine to be
complete w.r.t. the zipper semantics, so that it is able to reach any available redex, including
those in E. A middle ground between performance and completeness is to reconstruct an
arbitrary part of the context E, while still having the possibility to recreate it completely.

In the OAM, β-reduction produces a closure in the context E (step O6). The OAM then
enters the rec mode dedicated to partially reconstruct the full closure using E. The steps O21
to O23 push the current top frame of the context on the closure. At any point, step O24
may conclude the reconstruction and restart the machine in the ev mode to find the next
redex. The reconstruction being non-deterministic itself, the machine may reconstruct fully
using the whole context, meaning that any redex in E is still reachable, and the machine is
still complete w.r.t. the zipper semantics.

Removing the stack π. The stack π is used for backtracking, mainly to remember in which
order to undo forward steps. To simplify the machine, we would like to use the context E for
that role, as it uniquely changes when the rules appL, appR, and lam are applied. However,
it stays the same when env or var are applied (cf. Figure 2). The idea is then to undo the
former steps, but not the latter ones. Such a change entails significant differences in the
behavior of the OAM compared to the DAM, that we illustrate on an example in Figure 6.
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11:12 Optimizing a Non-Deterministic Abstract Machine with Environments

The first picture represents a possible exploration path in a closure, which goes through
several constructs l1[ϵ1] . . . lm[ϵm]. Along this path, the two machines collect ϵ1 . . . ϵm and
combine them into an environment ϵ (second picture).

If solving n in ϵ produces a normal form d, the DAM restores the closure in its original
shape while adding annotations, up to some application where it stops backtracking and
starts exploring another path. Concretely, the DAM undoes the variable resolution steps,
annotates n as a normal form, and puts back the environments (ϵi . . . ϵm) at their original
position. The OAM backtracks up to the same application, annotating all the constructs on
the way, but without undoing the variable resolution steps – leaving d in place – or restoring
(ϵi . . . ϵm).

In practice, the OAM does not feature the stack π, and there are only three backtracking
steps (O9 to O11) which mirror the steps O1 to O3. The steps O4 and O5 cannot be reversed.
A construct l[ϵ]Σ in the OAM is therefore either yet to be traversed, or is of the form n[ϵ]ev

after a failed variable resolution. If we go through a plain term (without any l[ϵ]Σ), we might
reach a variable n with the local environment ⋆. To be uniform, we create an annotated
closure n[id]ev (step O7), turning the plain term itself into a closure. Unlike in the DAM,
plain terms cannot be annotated in the OAM: only closures are annotated.

Keeping annotations. Instead of erasing all the annotations after β-reduction as in the
DAM, we would like to keep as much of them as possible. Suppose the β-redex is (λ∅.l) @∅ k

in some context E and current environment E . The normal forms in E are still normal
form after the β-reduction, so if any of them are annotated as such, we should keep these
annotations. In contrast, the annotations in the body of the λ-abstraction l may no longer
be valid: a term 0ev @ev t is no longer a normal form if the β-reduction replaces 0 with a
λ-abstraction. As an approximation, we ignore all the annotations inside l.

We therefore need a way to know if an annotation is in the body of a β-redex. We
notice that if solving a variable in a local environment E produces a normal form, then the
machine adds an annotation and resets E in the configuration to ⋆ (steps O20 or O7). We
then propagate the annotation upward from the leaves with the combinations of step O8
and steps O9 to O11. In that process, the local environment remains ⋆. We have E ̸= ⋆

only when we explore a closure for which we do not know yet if it is a normal form. This
observation is enough to know if an annotation is meaningful after a β-reduction. Let c such
that an(c) = ev in some environment E ; the annotation is valid only if E = ⋆. Otherwise, the
environment has changed after c has been annotated and c is in the body of a β-redex.

On top of that, we need to consider a particular case. Suppose we look for a re-
dex in (λ∅.0 @∅ l) @∅ λ∅.k, starting with the λ-abstraction on the right, annotating it as
(λ∅.0 @∅ l) @∅ λev.k. After β-reduction and solving 0, we get (λev.k) @∅ l[ϵ]∅ in the envir-
onment ⋆ (with ϵ = λev.k · id); according to the previous criterion, the annotation of the
λ-abstraction is valid, preventing the machine to β-reduce further. For a λ-abstraction, to be
a normal form means it is not in the function position of an application. If a λ-abstraction
ends up in such a position after a β-reduction, we need to ignore its annotation.

Consider a local environment E and a term or closure l. We use booleans ⊤, ⊥, ranged over
by b, to indicate whether l is in the function position of an application. Given a context E,
the function infun(E) returns ⊤ if the hole of the context is in function position (E = □ l ::E′),
and ⊥ otherwise. We write E , b ⊢ l if the annotation of l is still valid, i.e., with E = ⋆, and l

is a closure c such that an(c) = ev, and in the case where l is a λ-abstraction, with b = ⊥.
Otherwise, we write E , b ̸⊢ l. We use this predicate as a side condition of the steps O1 to O3
and step O14, meaning that we can take these steps if the new subterm under focus is not
annotated, or its annotation is meaningless. There is no side condition for step O4, because
for this step, the local environment ϵ • E cannot be ⋆ by definition of •.
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Example. We show a machine run starting from t = (λ∅.0 @∅ λ∅.1) @∅(λ∅.0) @∅ 1, i.e.,
(λx.x λy.x) (λx.x) z. To simplify, we omit empty annotations and the symbol @ if it is not
annotated, writing for instance t as (λ.0 λ.1) (λ.0) 1

The machine may go right of the topmost application, focusing on an unsolvable variable,
since E is ⋆ for now. The machine annotates it and backtracks.

⟨t | ■, ⋆⟩ev
O2→ ⟨1 | (λ.0 λ.1) (λ.0) □ :: ■, ⋆⟩ev

O7→ ⟨(λ.0 λ.1) (λ.0) □ :: ■ | 1[id]ev⟩bev

O10→ ⟨(λ.0 λ.1) (λ.0) 1[id]ev | ■, ⋆⟩ev
∆= O1

The machine has no choice but to go left of the application. Then it might go left again, and
inside the body of the λ-abstraction.

O1
O1→O1→O3→ ⟨0 λ.1 | λ :: □ λ.0 :: □ 1[id]ev :: ■, ⋆⟩ev

∆= O2

The term 0 λ.1 is a normal form, so the machine annotates it and backtracks.

O2 →∗O8→ ⟨λ :: □ λ.0 :: □ 1[id]ev :: ■ | 0[id]ev @ev λev.1[id]ev⟩bev

O11→ ⟨λ.0[id]ev @ev λev.1[id]ev | □ λ.0 :: □ 1[id]ev :: ■, ⋆⟩ev
∆= O3

At this point, the machine β-reduces and switches to the rec mode, in which it may decide
to reconstruct the frame in the context. It then restarts in ev mode to find the next redex.

O3
O6→ ⟨□ 1[id]ev :: ■ | (0[id]ev @ev λev.1[id]ev)[λ.0 · id]⟩rec

O22→ ⟨■ | (0[id]ev @ev λev.1[id]ev)[λ.0 · id] 1[id]ev⟩rec

O24→ ⟨(0[id]ev @ev λev.1[id]ev)[λ.0 · id] 1[id]ev | ■, ⋆⟩ev
∆= O4

The machine cannot go right of the application, because we have ⋆, ⊥ ⊢ 1[id]ev: the annotation
is still valid. The machine therefore has to go left.

O4
O1→ ⟨(0[id]ev @ev λev.1[id]ev)[λ.0 · id] | □ 1[id]ev :: ■, ⋆⟩ev

O4→ ⟨0[id]ev @ev λev.1[id]ev | □ 1[id]ev :: ■, !λ.0 · id⟩ev
∆= O5

Because the local environment is no longer ⋆, the annotations of the subterm under focus
are not valid and can be ignored. For instance, we can go right of the application and under
the λ-abstraction to reach the variable.

O5
O2→O3→O4→ ⟨1 | λ :: 0[id]ev[λ.0 · id] □ :: □ 1[id]ev :: ■, !id ◦ ⇑(λ.0 · id)⟩ev

∆= O6

Solving the variable in the var mode produces λ.0, a normal form, annotated as such by the
machine, which then goes back to the first application in the context.

O6 →∗⟨λ.0 | λ :: 0[id]ev[λ.0 · id] □ :: □ 1[id]ev :: ■, ! ↑⟩ev

→∗⟨λ.0[⇑↑]ev | λ :: 0[id]ev[λ.0 · id] □ :: □ 1[id]ev :: ■, ⋆⟩ev

→∗⟨0[id]ev[λ.0 · id] λev.λev.0[⇑↑]ev | □ 1[id]ev :: ■, ⋆⟩ev
∆= O7

The machine has no choice but to go left of the application, until it reaches the variable,
which can be solved.

O7
O1→O4→O4→⟨0 | □ λev.λev.0[⇑↑]ev :: □ 1[id]ev :: ■, !id ◦ (λ.0 · id)⟩ev

O5→O19→ O15→ O14→ ⟨λ.0 | □ λev.λev.0[⇑↑]ev :: □ 1[id]ev :: ■, ⋆⟩ev
∆= O8
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11:14 Optimizing a Non-Deterministic Abstract Machine with Environments

The machine may then β-reduce and not reconstruct anything from the context.

O8
O6→O24→ ⟨0[λev.λev.0[⇑↑]ev · id] | □ 1[id]ev :: ■, ⋆⟩ev

∆= O9

The variable can be solved immediately, producing a λ-abstraction. A β-reduction is then
possible, without any reconstruction because the context is empty.

O9 →∗ ⟨λev.λev.0[⇑↑]ev | □ 1[id]ev :: ■, ⋆⟩ev →∗ ⟨(λev.0[⇑↑]ev)[1[id]ev · id] | ■, ⋆⟩ev

The machine has to go through the resulting closure to annotate it as a normal form, pushing
the environment 1[id]ev · id in the body of the λ-abstraction while doing so. The run ends
with ⟨λev.0[⇑(1[id]ev · id) ◦ ⇑↑]ev⟩nf .

Implementation. We have implemented the OAM as a skeletal semantics [20] from which we
extract an OCaml program that evaluates all possible reductions from a starting term. The
implementation is very close to the formal definition of the OAM and is available online [13].

3.3 Correspondence between the DAM and the OAM
To relate the OAM and the DAM, we define an equivalence ≈ between OAM and DAM
machine states, and prove that from a sequence of OAM steps, we can build a sequence of
equivalent DAM steps and conversely. We let O and D range over the machines states of
the optimized and the derived machines, respectively. We informally explain the ingredients
needed to define ≈; the formal definitions and proofs are in the report [15, Appendix B].

Consider two similar runs of the OAM and DAM from the same starting point: after
doing the same β-reductions, they are at the same position in the closure. As explained in
Figure 6 some environments may be pushed to the leaves and some variables may be solved
in the OAM, but not in the DAM. Besides the closures on the OAM side may contain more
annotations than on the DAM one, but some of these annotations could be meaningless.

We relate two states O and D by pushing all the environments to the leaves, and then
solving all the variables, which is exactly what the translation J·K of Figure 3 is doing. We
define two similar translations on annotated closures or terms J·Ko (for the OAM) and J·Kd
(for the DAM) which produce annotated terms. The translation J·Ko also removes meaningless
annotations, by using the same criterion as in Section 3.2. We then compare the results ro
and rd of these translations using a predicate ▷, which checks that the two annotated terms
are the same, except that ro may contain more annotations than rd.

We extend J·Ko, J·Kd and ▷ to contexts frame by frame, and we write O ≈ D if either:
O = ⟨l |E, E⟩ev, D = ⟨k |F, F , π⟩ev, JlKo(E) ▷ JkKd(F), and JEKo ▷ JFKd;
O = ⟨E | c⟩bev, D = ⟨π | k,F, F⟩bev, JcKo(⋆) ▷ JkKd(F), and JEKo ▷ JFKd;
O = ⟨c⟩nf , D = ⟨d⟩nf , and JcKo(⋆) ▷ JdKd(⋆).

The equivalence is defined only on the modes which are common to both machines. Equivalent
machine states can be considered as synchronization points between the OAM and DAM
machine runs. In particular, the contexts E and F of two equivalent states have the same
shape, so the machines are at the same position in the term or closure being explored.

We extend the equivalence to sequences of machines states, writing (O0, O1 . . . Oi) ≈
(D0, D1 . . . Di) if O0 = ⟨l, ■, ⋆⟩ev, D0 = ⟨l, ■, ⋆,▲⟩ev for the same l, Oj →∗ Oj+1 and Dj →∗

Dj+1 for all 0 ≤ j < i, and Oj ≈ Dj for all 0 ≤ j ≤ i. The correspondence theorems then
state that given two equivalent sequences, if one of the machines is doing a step, then we can
find equivalent states to continue the sequences.
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▶ Theorem 3 (OAM implies DAM). If (O0, O1 . . . Oi) ≈ (D0, D1 . . . Di) and Oi → O′, there
exist Oi+1 and Di+1 such that O′ →∗ Oi+1, Di →∗ Di+1, and Oi+1 ≈ Di+1.

▶ Theorem 4 (DAM implies OAM). If (O0, O1 . . . Oi) ≈ (D0, D1 . . . Di) and Di → D′, there
exist Oi+1 and Di+1 such that D′ →∗ Di+1, Oi →∗ Oi+1, and Oi+1 ≈ Di+1.

We sketch some of the cases of Theorem 3, the proofs for Theorem 4 are similar. Step O20
of the OAM (Figure 5) is matched in the DAM by a sequence of bvar steps which produces
an equivalent configuration. Applying the axiom (step O6) leads to the rec mode, in which
a number m of frames of E are reconstructed. If E contains n frames in total, the DAM
matches by applying its β-reduction step (step D6 in Figure 4), which rebuilds the whole
context, and then it gets to the same position as in the OAM with n − m forward steps.

A backward step of the OAM, e.g. step O9, is not necessarily matched by the corresponding
step in the DAM – step D8 in Figure 4 – because the DAM may have to undo steps
corresponding to the applications of the rules env or var. We prove that we can undo them
first and then apply step D8 in the DAM. Finally, suppose a valid annotation in the OAM
has been erased at the same position in the DAM. The subterm under focus is still a normal
form, so the sequence which added the annotation on the DAM side before its erasure can
still be applied to that subterm to restore the annotation.

4 Recovering Known Strategies and Abstract Machines

The OAM can be used to obtain specialized abstract machines that implement various
reduction strategies. A reduction strategy can be seen as a way to choose a particular redex.
In the OAM, the transitions O1, O2, O3 are navigating through the term or closure by going
left (↙) or right (↘) of the application, or down under the lambda (↓), respectively. By
controlling which of these navigation rules to apply and in which order, we can define various
deterministic or non-deterministic strategies. To define reduction strategies succinctly, we use
the phased format of strategies [18]. For example, the call-by-name strategy can be defined
as cbn = ↙cbn; β, a strategy that navigates to the left of an application as much as possible
(iterating itself), and then tries to perform β-reduction. Formally, a strategy can be defined
as a set of term decompositions. The sequence of strategies r; s is a strategy containing any
decomposition in r, or a r-normal form that is in s. Furthermore, r ∪ s is a strategy that
contains any decomposition that is in r or in s. If a term admits multiple decompositions,
according to r or to s, the strategy r ∪ s is non-deterministic.

Krivine Abstract Machine. The Krivine Abstract Machine [38] implements exactly call-
by-name evaluation as defined above. In the OAM, it corresponds to restricting navigation
to only ↙, and removing ↘ and ↓. Thus, we go left as much as possible, and if we reach a
λ-abstraction, we try to apply step O6 to β-reduce. If it fails because the context is empty,
we are done, and we apply steps O8 and O12: the (annotated) lambda abstraction will be
returned as the normal form. If, on the other hand, we reach a variable, the machine tries to
solve it by rule O5. If it is a free variable, the machine cannot solve it and backtracks, thus
reconstructing the call-by-name normal form – an application of a (annotated) variable to a
number of closures (possibly none). An inspection of reachable machine configurations reveals
that excluding the two navigation rules further entails that rules O10, O11, and also O16-
O18, O22, O23 are not reachable: environments are constructed using only two operators,
and thus the machine is significantly simplified. Moreover, the call-by-name strategy being
deterministic, the reconstruction transitions can be short-circuited and eliminated altogether.

FSCD 2024



11:16 Optimizing a Non-Deterministic Abstract Machine with Environments

Right-to-left open call by value. We consider a variant of the call-by-value strategy that
operates on open terms, and evaluates arguments in an application from right to left: it is
defined as rcbw = ↘rcbw; ↙rcbw; β. This strategy can be realized in the OAM by keeping
↙ and ↘ and forbidding ↓, but with the priority given to ↘, applying it whenever possible
before we try ↙. Whenever we can apply the β-rule, the argument on top of the stack must
be a value, because of the precedence of ↘ over ↙: the machine only performs a restricted
β-contraction, as in call-by-value. The resulting machine is closest to the variant presented
in [19], or it can be seen as a right-to-left variant of the CEK machine [32].

In contrast, we cannot obtain the left-to-right variant of call-by-value in a similar way.
To do it, we would need to prioritize ↙ over ↘, which in turn requires further inspection of
the top of the stack to make sure that β-contraction is only applied when the argument is a
value. Other similar call-by-value strategies [43, 7] cannot be expressed. It is due to the fact
that OAM only looks at the top-level constructor and no further.

Normal order. The normal-order strategy is a fully reducing strategy that can be seen as
an iteration of call-by-name until no redex is left anywhere in the term. Its phased form
is no = (β; ↙no; ↘no) ∪ ↓no. It is worth noting that in this case the sum of strategies ∪
does not produce a non-deterministic strategy, because (β; ↙no; ↘no) and ↓no each contains
decompositions of structurally different terms. Normal order is an example of a hybrid
strategy that does not behave uniformly, but the navigation steps depend on the context:
the ↓ rule can only be applied when the lambda abstraction is not in the operator position.
A canonical abstract machine that implements normal order is Crégut’s KN machine [23]. In
the OAM, we first try to apply β, then ↙, then ↘. Otherwise, we can try ↓ (only when we
know that β is not applicable). This adjustment of OAM results in a variant of KN.

Weak reduction. A simple restriction that results in a non-deterministic strategy can be
obtained by removing the rule ↓ from the OAM. This strategy can be described in the phased
form as weak = ↙weak ∪ ↘weak ∪ β.

Head reduction. Consider the following two strategies in phased form: head = (β; ↙head) ∪
↓head and ihead = (↙ihead; β) ∪ ↓ihead. They both perform head reduction and compute
head normal forms (i.e., terms of the form λx1. . . . λxn.y t1 . . . tn), but the first strategy is
“outermost”, and the second is “innermost”. The two strategies are deterministic, because for
each term only one of the ∪-substrategies can be used. If we restrict OAM in that we remove
the rule ↘ and order the remaining evaluation rules: first ↙, ↓, and then β, we obtain the
implementation of the ihead strategy. If, on the other hand, we put these rules in the order:
β first, then ↙, then ↓, we obtain the machine for the head strategy. In both cases, we can
further trim the machine by removing all the transitions made unreachable by removing ↘.

Unexpressible strategies. We have remarked above that the left-to-right call by value is
not expressible in an instance of OAM obtained by restriction and prioritization only. The
same is true for any strategy that hinges on the same issue, like the fireball calculus [43, 7],
the non-deterministic variant of CbV where we can reduce freely to the left or to the right of
the application as long as it is possible, and only then we try to β-reduce. This strategy in
phased form is defined as cbw = (↙cbw ∪ ↘cbw); β, but in fact this definition enforces that
β-contraction will be applied only when the argument is a weak normal form. So it is not
possible to directly obtain this kind of behavior in the OAM without further inspection of
the stack in O6, as in the left-to-right call by value.
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5 Related Work

Non-deterministic abstract machines for the λ-calculus. In [14], Biernacka et al. present
a general framework for deriving non-deterministic abstract machines from zipper semantics.
One of the example derivations in their work leads to a non-deterministic abstract machine
for the λ-calculus, where no reduction strategy is imposed and each redex in a given term
can be selected for contraction thanks to a loop-free backtracking mechanism encoded in
the transition system of the machine. The abstract machines of the present work follow the
same principles, but they are optimized crucially in two ways: they replace substitution
with environments and they are in the refocused form. Both these advancements greatly
improve the performance measures of the machines since they influence, respectively, how
substitution is implemented [6] and how term decomposition is resumed after a redex has
been contracted [27, 28].

A lightweight form of non-determinism is present in [3], a recent work by Accattoli and
Barenbaum who introduce an abstract machine for normal-order reduction in the λ-calculus
that has a diamond property. Their machine is non-deterministic in that when dealing with
a partially normalized term of the form x t1 . . . tn, it can choose arbitrarily which argument
ti to reduce next. (The machine can also jump from one job to another when a normal
form has been reached, without a step-by-step backtracking.) The machine is diamond
non-deterministic, i.e., it satisfies the strongest, one-step form of confluence, which implies
that the choice of a reduction site does not affect the result, nor the length of the machine run.
The machines considered in the present work, as more general, obviously are not diamond
non-deterministic in this sense.

Explicit substitutions and environment-based abstract machines. In their pioneering
work on explicit substitutions, Abadi et al. [1] present an abstract machine for weak-head
normalization in the λσ-calculus that generalizes the KAM (originally featuring de Bruijn
indices and closures) to open terms. Full normalization is then achieved as an iteration of the
weakly normalizing machine. Substitutions from the calculus play the role of environments in
the machine, which makes the relationship between the calculus and the machine particularly
explicit. The λσ-calculus is also used by Crégut [23] for designing and establishing the
correctness of his strongly normalizing abstract machines KN and KNL. Call-by-value and
call-by-name reduction strategies and their implementation on an environment-based abstract
machine are discussed in the context of a variant of λσ with names and garbage collection
by Rose [45].

In [24], Curien introduces a minimal weak non-deterministic calculus of closures λρ,
requiring a big-step reduction rule for term application, that allows him to express the
reduction strategies for the KAM and the Categorical Abstract Machine (CAM) [22], taking
advantage of the presence of closures in the calculus. The author also sketches a generalization
of the weak calculus to a strong version that accounts for full β-reduction, and is formalized
in [25] as λσ⇑.

The full power of the λσ⇑-calculus is then used in Hardin et al.’s framework for reasoning
about the correspondence between several weak reduction strategies in λσw, a subcalculus of
λσ⇑, and known abstract machines such as the KAM, SECD, CAM, and Cardelli’s FAM [21].
Curien’s weak calculus of closures is, in turn, studied by Biernacka and Danvy [19] who
introduce its modification λρ̂ that, unlike λρ, makes it possible to define one-step reduction
strategies underlying abstract machines such as the KAM, CEK, and Leroy’s ZINC [41]. It
is shown that λρ̂ and the abstract machines are in an intimate relation established by an
enriched refocusing. The calculus λρ̂ is then used by García-Pérez et al. [35, 34] to reconstruct
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and prove Cregut’s KN correct in a very precise sense. In our case, the underlying small-
step semantics is zipper zemantics, rather than the more traditional structural operational
semantics.

Accattoli et al. [4] study the relationship between the linear substitution calculus (LSC) [11]
and a number of abstract machines for weak normalization, including the KAM, CEK, a
simplified version of SECD, the lazy KAM [23], and Sestoft’s call-by-need machine [48]
(ZINC is also sketched). It is argued that a weak version of LSC, a calculus with an explicit
representation of reduction contexts and a notion of (explicit) substitution at a distance, can
abstractly and effectively represent or distill, in the authors’ words, abstract machines for
weak normalization. Interestingly, the authors also introduce new machines inspired by LSC:
the Milner Abstract Machine (MAM) that uses only one, global environment and therefore
avoids the concept of closure at a cost of explicit α-renaming, and the Milner Abstract
machine by-neeD (MAD) that takes advantage of the single global environment introduced
in the MAM that facilitates sharing of computed values.

In [5], the above ideas are used to design the Strong Milner Abstract Machine, a machine
for normal-order strong normalization that features a single environment and is shown to
have a linear overhead both in the number of steps in a reduction sequence in LSC and in
the size of the initial term – Strong MAM is distilled (decoded) into LSC and analysed for
complexity. Such issues are central in Accattoli’s Useful MAM [2], that is the first reasonable,
i.e., polynomially related to the cost model of RAM or Turing machines, machine for strong
normalization in the λ-calculus in the literature. Useful MAM, however, is not studied
in the context of LSC or another calculus of explicit substitutions. In the same line of
work, Accattoli and Barras provide a thorough complexity analysis and comparison between
machines with local and global environments [6], whereas Accattoli et al. [7, 10], present
reasonable abstract machines for open call-by-value that rely on a global environment.

A special form of environments, called crumbled environments, is introduced in [9],
where Accattoli et al. study call-by-value evaluation of both closed and open λ-terms.
Such environments stem from the representation of terms considered by the authors, i.e., a
representation with explicit sharing or explicit substitutions (in a new formulation), and they
encode evaluation contexts besides storing delayed substitutions. The crumbling technique is
then used by Accattoli et al. to define a reasonable abstract machine, called SCAM, for strong
call-by-value [8]. Their work takes advantage of yet another calculus of explicit substitutions –
the value substitution calculus (VSC) and of the concept of implosive sharing known from the
literature on call-by-need [49]. Other reasonable abstract machines for strong call-by-value
and strong call-by-need have been derived through the functional correspondence [12] from
higher-order evaluators with heap-based sharing and local environments by Biernacka et
al. [16, 17].

In contrast to the above collection of results by Accattoli et al. and Biernacka et al.,
in the present work we do not consider any sharing-oriented optimizations that go beyond
the introduction of local environments, and we focus solely on the interaction of such
environments with non-determinism. Whether such optimizations can be incorporated in
NDAMs is a worthwhile question that requires further research.

6 Conclusion

We present an environment-based abstract machine for the λ-calculus without a fixed
reduction strategy. To this end, we define a zipper semantics – inspired by a calculus of
explicit substitutions [25] – and derive an NDAM from it. We then optimize the NDAM so
that it requires fewer steps to find a redex. In the resulting OAM, we can recognize existing
deterministic machines by restricting and/or prioritizing steps.
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Our work demonstrates that zipper semantics can be defined with environments instead
of substitution. It also shows that the derived machine can be used as a stepping stone
towards more optimized machines. Some optimizations are language specific, like knowing
which annotations to keep after reduction, but others could be made generic in the NDAM
derivation procedure. For example, it is always possible to bypass the backtracking steps of
a deterministic mode of the machine, like we do with the bvar mode in the OAM. Refocusing
is also possible as long as the stack π can be replaced by another element for backtracking,
such as the context E. In fact, the non-deterministic machines for the λ-calculus with
substitution and for HOcore [14] could be automatically derived in the refocused form from
their respective zipper semantics.

We believe that our approach of defining a zipper semantics, optimizing the derived
machine, and possibly restricting it to make it deterministic is generic and can be used to
define non-deterministic and deterministic abstract machines for other calculi. In particular,
we would like to apply this technique to the λ-calculus with futures [33, 42], and see whether
we can recover the different task creation strategies of this calculus, such as the eager
strategy [37] or the lazy one [30].
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Abstract
When working in optimisation or privacy protection, one may need to estimate the sensitivity of
computer programs, i.e., the maximum multiplicative increase in the distance between two inputs
and the corresponding two outputs. In particular, differential privacy is a rigorous and widely
used notion of privacy that is closely related to sensitivity. Several type systems for sensitivity
and differential privacy based on linear logic have been proposed in the literature, starting with
the functional language Fuzz. However, they are either limited to certain metrics (L1 and L∞),
and thus to the associated privacy mechanisms, or they rely on a complex notion of type contexts
that does not interact well with operational semantics. We therefore propose a graded linear type
system – inspired by Bunched Fuzz [27] – called Plurimetric Fuzz that handles Lp vector metrics
(for 1 ≤ p ≤ +∞), uses standard type contexts, gives reasonable bounds on sensitivity, and has good
metatheoretical properties. We also provide a denotational semantics in terms of metric complete
partial orders, and translation mappings from and to Fuzz.
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1 Introduction

The sensitivity of a program is a measure of how much the result of the computation
depends on its inputs, and is defined with respect to some metrics on data. Concretely,
if dX and dY are metrics on the input and output spaces respectively, and if f is the
function computed by the program, its sensitivity is the smallest positive real s such that
dY

(
f(x), f(x′)

)
≤ s · dX(x, x′), for any pairs of inputs (x, x′). This notion is important for

analysing the stability of some machine-learning algorithms, or the privacy properties of a
program [9, 12]. In particular, sensitivity is a key notion for differential privacy [14, 15],
a popular approach to the protection of sensitive data, like medical records, that provides
mathematically-based, rigorous and composable guarantees. The intuition behind differential
privacy is that one can hide the information about whether or not a given individual is
included in the input dataset by perturbating the result of the function. In practice, one adds
a well-calibrated amount of random noise to the result, by means of specific mechanisms:
one should not be able to deduce from the output whether the individual belongs to the
input or not, but the result should still be accurate enough.
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As the analysis of sensitivity and the implementation of differential privacy are delicate
and error-prone tasks, some approaches in the programming languages community have
been developed to assist programmers. They can be categorised into two classes: those
based on Hoare logics [6, 7, 5], which are interactive and suitable for verifying mechanism
implementations, and those based on type systems [23, 16], which are automatisable and
well-suited for verifying functional programs that compose mechanisms. Moreover recent
works [21, 24] on type systems have suggested that the analysis of sensitivity and privacy in
these systems could be handled essentially separately, by using two different classes of typing
judgements.

In this paper, we are interested in the type systems for the analysis of sensitivity. The
seminal work on the Fuzz language by Reed and Pierce [23] has shown how ideas from linear
logic [18, 19] can be used to design a type system for a functional language which statically
bounds the sensitivity of a program by providing connectives which can express two metrics
on vectors: the L1 and the L∞ metrics. However depending on the applications some other
metrics on vectors are relevant. For instance, for many geometric algorithms one is interested
in the Euclidean distance L2, and more generally, in the literature on optimisation and
statistical applications [10, 20], Lp distances with 1 ≤ p ≤ +∞ have been used to advantage.
For this reason, wunder et al. [27] have introduced an extension of Fuzz, called Bunched Fuzz,
which features connectives allowing to handle Lp-metrics (1 ≤ p ≤ +∞) on vectors. The
derivations of this system use generalised typing judgements inspired by the logic of Bunched
Implications [22], where typing contexts have a tree structure. The authors established a
soundness result analogous to that of Fuzz, showing that the functions computed by well-
typed programs admit a certain sensitivity property.

In the following, we will discuss why Bunched Fuzz does not satisfy the desired properties
with respect to an operational semantics, and we will design a type system for Lp metrics
inspired by Bunched Fuzz with the following expectations: (i) sensitivity soundness property,
(ii) substitution and subject-reduction property, (iii) subtyping property, and (iv) express-
iveness. Requirement (iii) refers to the fact that for all p and q, the Lp and Lq-metrics are
related by two inequalities that can be used for coercions between data types convenient for
composing functions. As to (iv), we mean that we want the system to be able to type some
meaningful examples.

Concretely, we keep the same type language as Bunched Fuzz, but we consider a system of
rules that uses standard judgements with list contexts, we call this system Plurimetric Fuzz.
As an additional benefit, we will define (partial) translation mappings from Fuzz to Plurimetric
Fuzz, and vice versa, that we think shed some light on how the new system refines Fuzz.

1.1 Summary of Contributions
We introduce Plurimetric Fuzz, a type system with recursive types and a form of subtyping (see
Section 3.4) for bounding the Lp-sensitivity of vector-valued functions, which subsumes Fuzz
(p = 1). We show that Plurimetric Fuzz enjoys the subject reduction property (Theorem 5.2),
and that it is sound with respect to its denotational semantics (Theorem 4.15). We also show
that it gives significantly lower bounds on sensitivity compared to a naïve extension of Fuzz,
and that it is expressive enough to prove a classification algorithm (ϵ, 0)-private (see Section 6).

2 Background

We first give an overview of the notions and results about sensitivity, differential privacy and
type systems that will be needed in the paper.
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2.1 Metric Spaces and Sensitivity
▶ Definition 2.1. An extended pseudosemimetric space, or metric space for short, is a pair
(X, d) where X is a set and d : X × X → [0, ∞] is a function such that for all x, y, z ∈ X:
(1) d(x, y) = 0 if x = y; and (2) d(x, y) = d(y, x).

Note that we do not require the triangle inequality to hold.
In this paper, we are interested in a family of metrics over Rd, which are defined as

follows, and related by the inequalities of Lemma 2.3.

▶ Definition 2.2. For all parameter p ≥ 1 and for all vectors x = (x1, . . . , xd) and y =
(y1, . . . , yd) in Rd, we define the Lp-distance or the vector metric of parameter p between x
and y by dp(x, y) =

(∑d
i=1
∣∣xi − yi

∣∣p)1/p.

▶ Lemma 2.3. For all parameters p and q such that 1 ≤ p, q ≤ ∞, let c(p, q) = 2|1/p−1/q|.
If p ≤ q, then we have dp ≥ dq ≥ c(p, q) · dp.

The sensitivity of a map between metric spaces is a measure of how much its output
changes when its input changes. This notion is useful for analysing the privacy guarantees of
probabilistic algorithms, as we will see in Section 2.2.

▶ Definition 2.4. A map f between two metric spaces (X, dX) and (Y, dY ) is said to be
s-sensitive, or s-Lipschitz continuous, for s ∈ [0, ∞] if for all points x and x′ in X, we
have dY

(
f(x), f(x′)

)
≤ s · dX(x, x′). The sensitivity of f is the least real s such that f is

s-sensitive. When it is bounded by 1, we say that f is non-expansive.

▶ Remark 2.5. To perform operations on sensitivities, we extend addition to possibly infinite
reals in a straightforward way and multiplication in the same way as [3, Section 2], that is such
that s · ∞ equals ∞, and ∞ · s equals 0 if s = 0 and ∞ otherwise. Note that this operation
is not commutative, see [24, Section 4.2] for a discussion on the soundness of this choice.

For differentiable real functions, sensitivity is related to the magnitude of the derivative.

▶ Lemma 2.6. Let f be a differentiable function from R to R such that for all x ∈ R, we
have |f ′(x)| ≤ s. Then f is s-sensitive.

2.2 Differential Privacy
A strong motivation for studying sensitivity lies in the field of privacy-preserving data analysis.
Informally, differential privacy [14, 15] is a strong statistical notion of privacy, probably the
most widely used and studied, which requires that the outcome of a computation should not
depend too much on the presence or absence of a single record in the input database.

▶ Definition 2.7. A probabilistic algorithm A endowed with an adjacency relation is said to
be (ϵ, δ)-differentially private for some ϵ ≥ 0 and δ ∈ [0, 1] if, for all adjacent inputs x and x′,
and all subsets S of codom(A), we have Pr[A(x) ∈ S] ≤ eϵ Pr[A(x′) ∈ S] + δ.

▶ Remark. Differential privacy can also be defined in terms of a hypothesis-testing problem,
where an adversary attempts to distinguish between two adjacent inputs by observing the
outcome of the algorithm [25].

In practice, X will often be the set of databases, and two databases will be adjacent
if one can be obtained from the other by adding or removing a single record. Moreover,
the codomain will often be of the form Rd and endowed with a vector metric such as the
Manhattan distance (p = 1) or the Euclidean distance (p = 2).
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In order to guarantee differential privacy, it is enough to add noise to the computation,
as long as the noise is sufficiently large compared to the sensitivity of the function being
computed. Let us give more precise statements.

Let f be a vector-valued function from a metric space (X, dX) to Rd. We write ∆pf

for the sensitivity of f when the codomain is endowed with the Lp-distance, that is for the
Lp-sensitivity of f . Recall that the Laplace distribution of parameter b > 0 is the probability
distribution with density function x 7→ 1/2b · e−|x|/b, for x in R.

▶ Theorem 2.8 (Laplace Mechanism [15, Theorem 3.6]). If ∆1f is finite, then for all positive
real number ϵ, the function x 7→ f(x) +

(
Lap(∆1f/ϵ), . . . , Lap(∆1f/ϵ)

)
is ϵ-differentially

private.

However, in some cases, we may prefer to add Gaussian noise instead of Laplace noise. This
way, the noise added to protect privacy is of the same type as other sources of perturbation in
the original data. Moreover, the effects of the privacy mechanism on the statistical analysis
may be easier to account for given that the sum of normally distributed random variables is
itself normally distributed [15, Section 3.5.3]. To do so, we need to bound the L2-sensitivity
of f .

▶ Theorem 2.9 (Gaussian mechanism [15, Theorem 3.22]). If ∆2f is finite, then for all
positive real numbers ϵ and δ, if σ >

√
2 ln(5/4δ) · ∆2f/ϵ, then the function x 7→ f(x) +(

N (0, σ2), . . . , N (0, σ2)
)

is (ϵ, δ)-differentially private.

▶ Remark 2.10. In this paper, we will only consider discrete probability distributions, but
the above two theorems can be adapted to this setting [17, 11].

2.3 Type Systems for Bounding Sensitivity
Reed and Pierce have introduced the Fuzz type system [23] based on the fact that L1-
sensitivity can be viewed as an affine resource (in the sense of linear logic [18, 19]). For
example, the judgement [x : A]2 ⊢ (x, x) : A⊗ A means that the map x 7→ (x, x) is 2-sensitive
(for the L1-distance). See the following tensor rules for an example of Fuzz typing rules:

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ + ∆ ⊢ (a, b) : A ⊗ B

∆ ⊢ e : A ⊗ B Γ, [x : A]s, [y : B]s ⊢ c : C
⊗E

Γ + s∆ ⊢ (let (x, y) = e in c) : C

where the sum of two contexts is the result of adding the sensitivities of the involved variables.
It was subsumed by Bunched Fuzz [27], which allows for the analysis of Lp-sensitivity for

p ∈ [1, ∞] by the introduction of a family of tensor products (⊗p)p∈[1,∞] and affine arrows
(⊸p)p∈[1,∞]. Moreover contexts Γ are no longer represented as lists, but as trees (or bunches).
We reproduce the tensor rules below:

Γ ⊢ a : A ∆ ⊢ b : B ⊗I
Γ ,p ∆ ⊢ (a, b) : A ⊗p B

∆ ⊢ e : A ⊗p B Γ
(
[x : A]s ,p [y : B]s

)
⊢ c : C

⊗E
Γ(s∆) ⊢ (let (x, y) = e in c) : C

where Γ(∆) denotes a composite bunch formed by substituting the bunch ∆ into another
bunch Γ(⋆), which features a unique, distinguished hole ⋆.
▶ Remark 2.11. We write b[a/x] for the capture-avoiding substitution of b for x in a.

The contraction rule enables the identification of variables with the same type in two
different subtrees of a context,

Γ(∆ ,p ∆′) ⊢ a : A ∆ ≈ ∆′
Contr

Γ
(
Contr(p; ∆; ∆′)

)
⊢ a[vars ∆/ vars ∆′] : A
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where Contr(p; Γ; ∆) is defined by induction on the structure of Γ by the following equations,
and where we write · for the sensitivity scaling operation.

Contr(p; ∅; ∅) def= ∅

Contr(p; [x : A]r; [y : A]s) def= [x : A] p
√

rp+sp

Contr(p; Γ1 ,q Γ2; ∆1 ,q ∆2) def= 2|1/p−1/q| ·
(
Contr(p; Γ1; ∆1) ,q Contr(p; Γ2; ∆2)

)
The authors have proved that if types and contexts are interpreted as metric spaces, then

the derivations correspond to non-expansive functions.

▶ Theorem 2.12 ([27, Theorem 7]). Given a derivation π proving Γ ⊢ a : A, the function
JπK : JΓK → JAK is non-expansive.

However, the use of bunches comes at the cost of the loss of the substitution property:
there exists derivations Γ ⊢ a : A and ∆([x : A]s) ⊢ b : B such that ∆(sΓ) ̸⊢ b[a/x] : B.

Proof. To see this, let us look at the following example. Here, we use the algorithmic approach
to the rules, which means we systematically apply a contraction after each typing rule:

+
∅ ⊢ (+) : Nat ⊗1 Nat ⊸1 Nat

var
[a : Nat]1 ⊢ a : Nat

var
[b : Nat]1 ⊢ b : Nat

⊗I
[a : Nat]1 ,1 [b : Nat]1 ⊢ (a, b) : Nat ⊗1 Nat

⊸ E
[a : Nat]1 ,1 [b : Nat]1 ⊢ (+)(a, b) : Nat

If we could substitute (+)(a, b) for x in the derivation

var
[x : Nat]1 ⊢ x : Nat

var
[x : Nat]1 ⊢ x : Nat

⊗I
[x : Nat]√2 ⊢ (x, x) : Nat ⊗2 Nat

we would obtain [a : Nat]√2 ,1 [b : Nat]√2 ⊢
(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat, which is not

derivable. Indeed, a derivation of this judgement would have the following shape:

...
[a : Nat]ra

,1 [b : Nat]rb
⊢ (+)(a, b) : Nat

...
[a : Nat]sa

,1 [b : Nat]sb
⊢ (+)(a, b) : Nat

⊗I
c(2, 1) ·

(
[a : Nat]1 ,1 [b : Nat]1

)
⊢
(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat

=
[a : Nat]√2 ,1 [b : Nat]√2 ⊢

(
(+)(a, b), (+)(a, b)

)
: Nat ⊗2 Nat

where ra, rb, sa and sb would be such that r2
a + s2

a = 1 and r2
b + s2

b = 1. We would have
min{ra, sa} ≤

√
2/2 < 1, which is absurd as (a, b) 7→ a+b is 1-sensitive for the L1-metric. ◀

▷ Claim 2.13. Bunched Fuzz doesn’t meet the subject reduction property when it is given a
standard operational semantics similar to that of Fuzz (see Figure 3).

In addition, the failure to satisfy the substitution property implies that we cannot
meaningfully state certain properties regarding denotational semantics (see Section 5 for the
metatheoretical properties our type system enjoys). This includes the assertion, using the
notations above, that Jb[a/x]K is equal to JbK when partially applied to a, as the first term
may not have a valid derivation, and therefore a well-defined interpretation.

In conclusion, the flexibility provided by representing contexts as trees is offset by the
loss of important syntactic and semantic properties.
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3 Syntax

In a nutshell we will consider the terms of Fuzz, that is to say an extended λ-calculus, with
the types of Bunched Fuzz, but with a new notion of typing context.

3.1 Types and Terms
Types are defined by the following context-free grammar where s and p range over [0, ∞] and
[1, ∞] respectively: A, B, · · · ::= Unit | A ⊕ B | µα. A | ⃝A | !sA | A ⊗p B | A ⊸p B. We
write Bool for the type Unit ⊕ Unit; Listp(A) for the iso-recursive type µα. Unit ⊕ (A ⊗p α);

and
⊗d

p A =
d times︷ ︸︸ ︷

A ⊗p . . . ⊗p A.
On the other hand, the terms of the language are defined by the following grammar, for

c ∈ Const, x, y ∈ Var and A ∈ Typ:

a, b, c, d, e, f, . . . ::= ∗ | c | x | (a, b) | let (x, y) = e in b | πie | λx. e | f e

| inj1 e | inj2 e | case e of x ⇒ a or y ⇒ b | !e | let !x = e in b

| fold
A

e | unfold
A

e | return e | let ⃝x = e in b

(1)

▶ Remark 3.1. In examples, we write terms in an ML-like syntax instead of the one described
in Section 3. In particular, we may write x |> f for f x, we may use pattern matching
and let bindings (let x = e in b is syntactic sugar for (λx. b) e), and we may omit the
Y combinator (see Remark 3.5) when defining recursive functions.

3.2 Precontexts and Contexts
We refer to elements of the set defined by the grammar Γ ::= ∅ | [x : A]s, Γ – where s, x and A

range over [0, ∞], Var and Type respectively – as precontexts. In addition, we define the
scaling sΓ of a precontext Γ by a sensitivity s by s · ∅ def= ∅ and s · ([x : A]r, Γ) def= [x : A]rs, sΓ
for all s ∈ [0, ∞].

▶ Definition 3.2. Two precontexts Γ and ∆ are said to be compatible if they do not assign
different types to the same variable. The p-contraction of two compatible precontexts Γ and ∆
is defined by induction on the structure of Γ by the following equations:

Cp
(
∅; ∆

) def= ∆

Cp
(
[x : A]r, Γ; ∆

) def= [x : A]r, Cp (Γ; ∆) if x /∈ ∆

Cp
(
[x : A]r, Γ; [x : A]s, ∆

) def= [x : A] p
√

rp+sp , Cp (Γ; ∆)

(2)

We write Γ + ∆ for C1 (Γ; ∆). ⌟

▶ Lemma 3.3. For all precontexts Γ and ∆, and all parameters p:
Cp (Γ; ∆) = Cp (∆; Γ);
if Cp (Γ; ∆) = ∅, then Γ = ∅ and ∆ = ∅;
for all sensitivity s, we have s · Cp (Γ; ∆) = Cp (sΓ; s∆).

▶ Definition 3.4. For any two precontexts Γ and ∆, we write Γ ≤ ∆ if every variable of Γ
also occurs in ∆, and with greater or equal sensitivity.

Finally, we define a context as a pair of a parameter and a precontext, which can be
seen as a Bunched Fuzz context where all parameters are equal, and which can therefore be
flattened into a list. More precisely, a context is a pair (p, Γ) written (p) Γ.
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var
(p) [x : A]1 ⊢ x : A

Unit
⊢ ∗ : Unit

(p) Γ ⊢ a : A (p) ∆ ⊢ b : B
⊗I

(p) Cp (Γ; ∆) ⊢ (a, b) : A ⊗p B

(p) Γ ⊢ e : A ⊗p B (p) ∆, [x : A]s, [y : B]s ⊢ c : C
⊗E

(p) Cp (sΓ; ∆) ⊢ (let (x, y) = e in c) : C

(p) Γ ⊢ a : A
⊕I◁

(p) Γ ⊢ inj1 a : A ⊕ B

(p) Γ ⊢ b : B
⊕I▷

(p) Γ ⊢ inj2 b : A ⊕ B

(p) Γ ⊢ e : A ⊕ B (p) ∆, [x : A]s ⊢ c1 : C (p) ∆, [y : B]s ⊢ c2 : C
⊕E

(p) Cp (sΓ; ∆) ⊢ (case e of x ⇒ c1 or y ⇒ c2) : C

(p) Γ ⊢ a : A
!I

(p) sΓ ⊢ !a : !sA

(p) Γ ⊢ e : !rA (p) ∆, [x : A]rs ⊢ c : C
!E

(p) Cp (sΓ; ∆) ⊢ (let x = e in c) : C

(p) Γ, [x : A]1 ⊢ b : B
⊸ I

(p) Γ ⊢ (λx. b) : A ⊸p B

(p) Γ ⊢ f : A ⊸p B (p) ∆ ⊢ a : A
⊸ E

(p) Cp (Γ; ∆) ⊢ f a : B

(p) Γ ⊢ e : A[µα. A/α]
µI

(p) Γ ⊢ fold
µα. A

e : A

(p) Γ ⊢ a : A
µE

(p) Γ ⊢ unfold
µα. A

a : A[µα. A/α]

(1) Γ ⊢ a : A
⃝I

(1) ∞ · Γ ⊢ return a : ⃝A

(1) Γ ⊢ e : ⃝A (1) ∆, [x : A]∞ ⊢ b : ⃝B
⃝E

(1) Γ + ∆ ⊢ (let ⃝x = e in b) : ⃝B

(p) Γ ⊢ a : A Γ ≤ ∆ p ≥ q
≥ W

(q) ∆ ⊢ a : A

(p) Γ ⊢ a : A Γ ≤ ∆ p ≤ q
≤ W

(q) c(p, q) · ∆ ⊢ a : A

Figure 1 Typing Rules for Plurimetric Fuzz.

3.3 Typing Rules
The typing rules and typing rules schemas for Plurimetric Fuzz are given in Figure 1 where
Γ and ∆ range over contexts, A, B, and C range over types, etc.

We omit the →p type constructor, and encode it with ⊸p and !∞ as follows: A →p

B
def= !∞A ⊸p B. Similarly, the & constructor can be encoded by ⊗∞ like in [27, Section 3].

Observe that, as C1 (Γ; ∆) = Γ+∆, all rules but the last two, (≥ W ) and (≤ W ), correspond
to Fuzz rules when p = 1 (by identifying connectives of parameter 1 with the corresponding
Fuzz ones). So all Fuzz type derivations can be seen as Plurimetric Fuzz type derivations (up
to the encoding of &). We will see in Section 7 other ways of translating Fuzz derivations,
by choosing other values of p.

Also note that the weakening rules (≥ W ) and (≤ W ) are the only ones that make the
parameter of the judgement change. One direction (≥ W ) is direct, but the other one (≤ W )
requires a coefficient c(p, q) = 2|1/p−1/q| (see Lemma 2.3). In addition, as a particular case
of these rules, for all parameters p and q, from (p) ∅ ⊢ a : A we can derive (q) ∅ ⊢ a : A. For
this reason, we may simply write ⊢ a : A.

FSCD 2024



12:8 Plurimetric Fuzz

Nat
⊢ n : Nat

Real
⊢ r : Real

(p) Γ ⊢ x : N (p) ∆ ⊢ y : N N ∈ {Nat, Real}
+

(p) c(1, p) · Cp (Γ; ∆) ⊢ x + y : N

(p) Γ ⊢ x : N k ∈ N N ∈ {Nat, Real}
×

(p) kΓ ⊢ k × x : N

(p) Γ ⊢ x : A
Set

(p) ∞ · Γ ⊢ {x} : Set(A)
(p) Γ ⊢ e : Set(A)

card
(p) Γ ⊢ card(e) : Nat ⊕ Unit

setfilter
⊢ setfilter : (A →p Bool) →p Set(A) ⊸p Set(A)

setmap
⊢ setmap : (A →p B) →p Set(A) ⊸p Set(B)

setfold
⊢ setfold : (A ⊸p B ⊸p B) →p B →p Set(A) ⊸p B

Figure 2 Typing Rules for Primitive Operations.

▶ Remark 3.5. As shown in [23, Section 3.1], recursive types let us encode a fix-point
combinator for any two types A and B, and parameters p without a specific rule:

Y
def= λf.

(
λx. λa. f

(
(unfold

A0
x)x
)
a
)(

fold
A0

(
λx. λa. f

(
(unfold

A0
x)x
)
a
))

where A0
def= µα

(
α →p (A ⊸p B)

)
, and Y :

(
(A ⊸p B) →p (A ⊸p B)

)
→p (A ⊸p B). ⌟

We can extend the type system to handle primitive operations on natural and real numbers,
as well as on sets, having extending the syntax of types and terms accordingly in Figure 2.

3.4 Subtyping
For all p and q, the Lp and Lq-metrics are related by two inequalities that can be used for
coercions between data types: if p ≤ q, from (p) Γ ⊢ e : A ⊗p B, we can derive (p) Γ ⊢(
let (x, y) = e in (x, y)

)
: A ⊗q B; and similarly from (q) Γ ⊢ e : A ⊗q B, we can derive

(q) c(p, q) · Γ ⊢
(
let (x, y) = e in (x, y)

)
: A ⊗p B. Let us give the derivation of the first case:

(p) Γ ⊢ e : A ⊗p B

var
(q) [x : A]1 ⊢ x : A

var
(q) [y : B]1 ⊢ y : B

⊗I
(q) [x : A]1, [y : B]1 ⊢ (x, y) : A ⊗q B

≥ W
(p) [x : A]1, [y : B]1 ⊢ (x, y) : A ⊗q B

⊗E
(p) Γ ⊢

(
let (x, y) = e in (x, y)

)
: A ⊗q B

▶ Example 3.6. As an example, say we want to compose a function f : Real ⊸1 Real ⊗2 Real
with a function g : Real ⊗1 Real ⊸1 Real, both typable in an empty context. We can first
apply f to an input x, and then coerce the result to obtain the judgement (1) [x : Real]√2 ⊢
e : Real ⊗1 Real for some term e which is semantically equivalent to the term f(x). At this
point, we can apply g to e, and use the (!I) and (⊸ I) rules to derive the judgement
(1) ∅ ⊢ h : !√2Real ⊸1 Real for some term h which behaves like g ◦ f .
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∗ ⇓ ∗ λx. b ⇓ λx. b

f ⇓ λx. b a ⇓ va b[va/x] ⇓ v

f a ⇓ v

a ⇓ va b ⇓ vb

(a, b) ⇓ (va, vb)
c ⇓ (va, vb) e[va/x][vb/y] ⇓ v

(let (x, y) = c in e) ⇓ v

e ⇓ v

inji e ⇓ inji v

e ⇓ inji v ei[v/x] ⇓ vi

(case e of x ⇒ e1 or x ⇒ e2) ⇓ vi

e ⇓ v

!e ⇓ !v
b ⇓ !vb e[vb/x] ⇓ v

(let !x = b in e) ⇓ v

e ⇓ v

foldA e ⇓ foldA v

e ⇓ foldA v

unfoldA e ⇓ v

e ⇓ v

return e ⇓ (1, v)
d ⇓ (pi, vi)i∈I

i ∈ I

b[vi/x] ⇓ (qij , wij)j∈J

let ⃝x = d in b ⇓ (piqij , wij)i∈I,j∈J

Figure 3 Evaluation rules for (Plurimetric) Fuzz.

4 Semantics

4.1 Operational Semantics
We consider the same big-step operational semantics as for Fuzz [23]. First, values are given
by the following grammar: u, v, · · · ::= ∗ | (u, v) | λx. b | !v | µ | foldA v | inj1 v | inj2 v where
µ ranges over multisets of probability-value pairs.

See Figure 3 for the complete set of evaluation rules, which can be extended with rules
for primitive operations. We will see in the Section 5 that this semantics enjoys the desired
properties such as subject reduction (also known as type preservation).

4.2 Denotational semantics
We also introduce a denotational semantics by interpreting types as metric spaces and type
derivations as non-expansive maps, following the denotational semantics of Bunched Fuzz [27].

Operations on metric spaces

▶ Definition 4.1. Let (X, dX), (Y, dY ) and (Z, dZ) be three metric spaces, p be a parameter,
and s be a sensitivity. The scaling of (X, d) by s is the metric space !sX

def= (X, s · dX).
Moreover, the p-tensor product X ⊗p Y of X and Y is the set X × Y endowed with

dX⊗pY

(
(x, y), (x′, y′)

) def= p
√

dX(x, x′)p + dY (y, y′)p ; (3)

the p-affine arrow X ⊸p Y from X to Y is the set Y X endowed with

dX⊸pY (f, f ′) def= inf
{

r ≥ 0 : ∀x, x′ ∈ X, dY

(
f(x), f ′(x′)

)p ≤ rp + dX(x, x′)p
}

; (4)

and the disjoint union X ⊕ Y of X and Y is the set X ⊔ Y endowed with

dA1⊕A2(e, e′) def=

di(e, e′) if e, e′ ∈ JAiK
∞ otherwise.

(5)

Given two maps f : X → Z and g : Y → Z, the coproduct [f, g] : X ⊕ Y → Z of f and g is
the map defined by [f, g]

(
i1(x)

) def= f(x), and [f, g]
(
i2(y)

) def= g(y). ⌟
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Note that it follows directly from the definitions above that for all p, the operation ⊗p is
commutative and associative up to isomorphism, and that the evaluation map Ev: (X ⊸p

Y ) ⊗p X ⊸p Y is non-expansive. Moreover, we have (X ⊕ Y ) ⊗p Z ≃ (X ⊗p Z) ⊕ (Y ⊗p Z).
We also define probability distributions over metric spaces.

▶ Definition 4.2. A discrete probability distribution over a metric space with countable
support X is a function µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. We write Dist(X) for the set

of such distributions endowed with the following distance, parametrised by a positive real ϵ0:

max div(µ, µ′) def= 1
ϵ0

max
x∈X

∣∣∣∣ ln µ(x)
µ′(x)

∣∣∣∣ (6)

with the convention that 0/0 def= 1 and | ln(0/x)| def= | ln(x/0)| def= ∞ for all x > 0. We write δx

for the Dirac distribution at x: δx(x) = 1 and δx(x′) = 0 for all x′ ̸= x. ⌟

Recall that the support supp µ of a distribution µ over a set X is the set of elements of X

with non-zero probability, and note that if µ and µ′ are two discrete distributions over the
same set X, then max div(µ, µ′) is finite if and only if supp µ = supp µ′. This distance is
“carefully chosen” [23, Section 4.2] to ensure that the following lemma holds.

▶ Lemma 4.3. A non-expansive map from X to Dist(Y ) is exactly an ϵ0-differentially private
random map from X to Y .

To compose probabilistic programs, we define the Kleisli extension of a map.

▶ Definition 4.4. The Kleisli extension f† : Dist(X) → Dist(Y ) of a map f : X → Dist(Y )
is defined by the following formula: f(µ)(y) def=

∑
x∈X µ(x)f(x)(y).

Interpretation of Types, Contexts and Derivations

Let Core Plurimetric Fuzz be the fragment of Plurimetric Fuzz without recursive types. We
interpret its types inductively as metric spaces:

JUnitK def= ({∗}, 0);
JNatK def= (N, (m, n) 7→ |m − n|);
JRealK def= (R, (x, y) 7→ |x − y|);
J!sAK def= !sJAK;
JA ⊗p BK def= JAK ⊗p JBK;

JA ⊸p BK def= JAK ⊸p JBK;

JA ⊕ BK def= JAK ⊕ JBK;
J⃝AK def= Dist JAK;
JSet(A)K def=

(
Pfinite(JAK), card(− △ −)

)
.

where △ is the symmetric difference on sets. Next, we define the interpretation of contexts:
J(p) ∅K def= {∗} and J(p) Γ, x : AK def= J(p) ΓK⊗pJAK. Derivations are seen as non-expansive maps
between metric spaces. More precisely, if π is a derivation whose last rule is R, we write πe for
its premise whose conclusion has term e, and Γ and ∆ for the contexts involved. Moreover, we
write −̂ for the currying map; Ev for the evaluation map; if R is a weakening rule, Ip for the
inclusion map from J(p) ∆K to J(p) ΓK when Γ ≤ ∆, and Iq

p for the natural map from J(p) ΓK
to J(q) ΓK; and if R is binary or ternary, Dp for the diagonal-like map from J(p) Cp (Γ; ∆)K
to J(p) ΓK ⊗p J(p) ∆K. We omit isomorphisms when they are clear from the context.

(Unit) JπK def= Const∗

(var) JπK def= IdJAK

(⊗I) JπK def=
(
JπaK × JπbK

)
◦ Dp

(⊗E) JπK def= JπcK ◦ (Id × r · JπeK) ◦ Dp

(⊸ I) JπK def= ĴπbK

(⊸ E) JπK def= Ev ◦
(
Jπf K × JπaK

)
◦ Dp
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(⊕I◁) JπK def= i1 ◦ JπaK
(⊕I▷) JπK def= i2 ◦ JπbK
(⊕E) JπK def= [Jπc1K, Jπc2K] ◦ (Id × s · JπeK) ◦ Dp

(!I) JπK def= s · JπaK
(!E) JπK def= JπcK ◦

(
Id × r · JπeK

)
◦ Dp

(⃝I) JπK def= δ ◦ ∞ · JπaK

(⃝E) JπK def= Ev ◦
(
(∞ · JπeK) × (·† ◦ ĴπbK)

)
◦ D1

(≤ W ) JπK def= c(p, q) · Ip
q ◦ Iq ◦ JπaK

(≥ W ) JπK def= Ip
q ◦ Iq ◦ JπaK

Soundness of Core Plurimetric Fuzz

Let Core Plurimetric Fuzz be the fragment of Plurimetric Fuzz without recursive types.

▶ Proposition 4.5 (Soundness). If π is a Core Plurimetric Fuzz derivation of (p) Γ ⊢ a : A,
then JπK is a non-expansive map from J(p) ΓK to JAK.

Properties we use repeatedly in the proof of this result are summarised in the following
lemmata. See Appendix A.1 for more details.

▶ Lemma 4.6. For all precontexts Γ, and reals p ≥ 1 and s ≥ 0, we have J(p) sΓK = !sJ(p) ΓK.

▶ Lemma 4.7. For all metric spaces X1, X2, Y1, and Y2, and parameters p, if f : X1 → Y1
and g : X2 → Y2 are non-expansive maps, then so is f × g : X1 ⊗p X2 → Y1 ⊗p Y2.

Proof. The function (x, y) 7→ p
√

xp + yp is increasing in both arguments over R≥0 ×R≥0. ◀

▶ Lemma 4.8 ([27, Proposition 6]). For all metric spaces X and Y , and parameters p and q

such that p ≤ q, the identity map on pairs belongs to the following spaces: X ⊗p Y ⊸ X ⊗q Y

and !c(p,q)(X ⊗q Y ) ⊸ X ⊗p Y .

▶ Lemma 4.9. For all compatible precontexts Γ and ∆, the diagonal-like map Dp from
J(p) Cp (Γ; ∆)K to J(p) ΓK⊗pJ(p) ∆K is non-expansive. Moreover, if Γ ≤ ∆, then the inclusion
map Ip : J(p) ΓK → J(p) ∆K is non-expansive.

Proof. By induction on Γ, using the fact that for all metric spaces X, and sensitivities r

and s, we have a non-expansive map from ! p
√

rp+spX to !rX ⊗p !sX given by x 7→ (x, x). ◀

▶ Lemma 4.10. The bind map defined by bind(f, µ) def= f†(µ) is non-expansive from Dist Y ⊗1
(Y →1 Dist X) to Dist X.

See Appendix A.2 for a proof of the soundness of the typing rule for the primitive
operations. Note that the types of the higher-order primitives setmap, setfilter, and setfold
are not sound when the functional is not guaranteed to converge. Some solutions to this
problem are discussed in [23, Section 3.5].

Recursive types and Recursive functions

In this section, we will show that the introduction of a denotational semantics for interpreting
recursive definitions of both data types and functions for the fragment of Fuzz that does
not include probability distributions [3] can be generalised to our setting. Note that the
interpretation is parametrized by a finite set of type identifiers, that behave as iso-recursive
types, and by a definition environment. This approach slightly diverges from what precedes.

▶ Definition 4.11. A metric complete partial order is a complete partial order X endowed
with a metric d such that for all (xi)i∈N and (x′

i)i∈N two ω-chains in X, if dX(xi, x′
i) ≤ r

for all i ∈ N, then dX

(⊔
i∈N xi,

⊔
i∈N x′

i

)
≤ r.

FSCD 2024
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Equivalently, we may ask that d
(⊔

i∈N xi,
⊔

i∈N x′
i

)
≤ lim infi→∞ d(xi, x′

i) [3, Lemma 4.5].
This framework allows to describe Plurimetric Fuzz recursive types as solutions to domain

equations of the form F (X) = X, and to describe divergence by the least element ⊥.

▶ Theorem 4.12 ([3, Theorem 4.15]). MetCPO⊥ is an algebraically compact CPO-category,
that is for every CPO-endofunctor F , there exists an object µF and an isomorphism i :
F (µF ) ≃ µF such that i is an initial algebra and i−1 is a final coalgebra.

We have to show that MetCPO⊥ is closed under the tensor and arrow constructors.

▶ Lemma 4.13. If X and Y are two metric complete partial orders, then so is X ⊸p Y .

Proof. Let (fi)i∈N and (gi)i∈N be two ω-chains in X ⊸p Y such that for all i ∈ N, we have
dX⊸pY (fi, gi) ≤ r. Let x1 and x2 in X, and i ∈ N.

dY

(
fi(x1), gi(x2)

)
≤ dX⊸1Y (fi, gi) + dX(x1, x2) by Equation (4)
≤ dX⊸pY (fi, gi) + dX(x1, x2) by [27, Theorem 5]
≤ r + dX(x1, x2) ◀

▶ Lemma 4.14. If X and Y are two metric complete partial orders, then so is X ⊗p Y .

Proof. Let (pi)i∈N and (p′
i)i∈N be two ω chains in X ×Y . For all i ∈ N we write pi = (xi, yi)

and p′
i = (x′

i, y′
i). Since X and Y are metric complete partial orders, we have

dX

(⊔
i∈N

xi,
⊔

i∈N

x′
i

)
≤ lim inf

i→∞
dX(xi, x′

i) and dY

(⊔
i∈N

yi,
⊔

i∈N

y′
i

)
≤ lim inf

i→∞
dY (yi, y′

i) .

Therefore, as the function x 7→ xp is increasing, we have

dX

(⊔
i∈N

xi,
⊔

i∈N

x′
i

)p

+ dY

(⊔
i∈N

yi,
⊔

i∈N

y′
i

)p

≤ lim inf
i→∞

dX(xi, x′
i)p + lim inf

i→∞
dY (yi, y′

i)p

≤ lim inf
i→∞

(
dX(xi, x′

i)p + dY (yi, y′
i)p
)

= lim inf
i→∞

dX(xi, x′
i)p + dY (yi, y′

i)p

and by taking the p-th root of both sides, we obtain dX⊗pY

(⊔
i∈N pi,

⊔
i∈N p′

i

)
≤ lim infi→∞ dX⊗pY (pi, p′

i). ◀

From Proposition 4.5 and what precedes, we can deduce the soundness of the deterministic
fragment of Plurimetric Fuzz, which features recursive types and functions.

▶ Theorem 4.15 (Soundness). If π is a derivation in the deterministic fragment of Plurimetric
Fuzz of (p) Γ ⊢ a : A, then JπK is a non-expansive map from J(p) ΓK to JAK.

▶ Remark 4.16. One may notice that if we use recursive types to define Nat as µα. Unit ⊕ α,
then the following implementation of (+) is non-expansive for all p rather than c(1, p)-sensitive:

Listing 1 Non-expansive implementation of the addition.
let rec (+) n m = match n with injl () -> m | injr k -> injr (k + m)

However, in this setting, the sensitivity is calculated with respect to the following distance:
dNat(m, n) equals 0 if m = n, and ∞ otherwise, rather than the usual distance on N. This
justifies the introduction of Nat as a primitive data type and of (+) as a primitive operation. ⌟
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5 Metatheoretical properties

Unless otherwise stated, J−K will refer to one of the two closely-related denotational semantics
we have defined. More specifically, JAK may be either a metric space or a metric complete
partial order (CPO). Furthermore, the terms will be drawn from the appropriate fragment.

In the same way as [3], we call a substitution a finite partial map from variables to values.
We write S(e) for the simultaneous substitution of x by S(x) in e for all x in dom(S) ∩ FV(e).
A substitution S is said to be well-typed by a precontext Γ and we write S : Γ when the
following two assertions are equivalent: ⊢ S(x) : A and [x : A]s ∈ Γ for some s ≥ 0. Finally,
for all parameters p, we naturally define JSK as an element of J(p) ΓK.

▶ Lemma 5.1 (Substitution). For all derivations π of (p) Γ, ∆ ⊢ a : A and for all well-
typed substitutions S : Γ, there exists a derivation π′ of (p) ∆ ⊢ S(a) : A. Moreover,
Jπ′K = JπK(JSK, −).

Types and denotation are preserved by the operational semantics.

▶ Theorem 5.2 (Preservation). For all derivations πa of ⊢ a : A, if a ⇓ v, then there exists a
derivation πv of ⊢ v : A. Moreover, JπaK = JπvK.

Let us now state the main result of this section, that is the metric preservation theorem.

▶ Theorem 5.3 (Metric preservation for Core Plurimetric Fuzz). For all derivations π of
(p) Γ ⊢ a : A and for all well-typed substitutions S, S′ : Γ, then there exists well-typed values
v and v′ such that S(a) ⇓ v and S′(a) ⇓ v′ and dJAK

(
JvK, Jv′K

)
≤ dJΓK

(
JSK, JS′K

)
,

▶ Theorem 5.4 (Metric preservation for Plurimetric Fuzz). For all derivations π of (p) Γ ⊢ a : A

and for all well-typed substitutions S, S′ : Γ, we have dJAK⊥

(
JS(a)K, JS′(a)K

)
≤ dJΓK

(
JSK, JS′K

)
.

By itself, the second formulation of the metric preservation theorem does not constrain
the termination behaviour of the two terms S(a) and S′(a). However, the following lemma
connects termination from both the operational and denotational perspectives. More details
on the implications of this result are given in [3, Section 5].

▶ Lemma 5.5 (Adequacy for Plurimetric Fuzz). If ∅ ⊢ a : A and JaK ̸= ⊥, then there exists a
value v such that a ⇓ v.

The proofs are similar to the one given in [3], given our soundness results (Proposition 4.5
and Theorem 4.15).

6 Expressive power and Precision

Let us now illustrate the usage of our type system with three examples.

Example: Functions with Multiple Arguments

Let us consider the term λc.
(
let (x, y) = c in f(!x, y) + g(x, !y)

)
where f : !2Real⊗2Real ⊸2

Real and g : Real ⊗2 !2Real ⊸2 Real, that is the same example as in [27, Section 5].
...

(2) [x : Real]2, [y : Real]1 ⊢ f(!x, y) : Real

...
(2) [x : Real]1, [y : Real]2 ⊢ g(x, !y) : Real

+
(2)

√
2 · ([x : Real]√5, [y : Real]√5) ⊢ f(!x, y) + g(x, !y) : Real

This typing derivation shows that, by using Plurimetric Fuzz, we manage to obtain the
same sensitivity as with Bunched Fuzz, that is to say

√
10 ≈ 3 + 1/6, while a naïve extension

of Fuzz would overestimate it to 4 [27, Section 5].
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Example: Suboptimal sensitivity analysis

We can without difficulty find a term e and a type A such that ⊢ e : A in Bunched Fuzz,
but ̸⊢ e : A in Plurimetric Fuzz. For example, let e = λx.

(
(x, x), ∗

)
and A = !2B ⊸2

(B ⊗1 B)⊗2 Unit for any type B. (Plurimetric Fuzz would require the exponential constructor
to be annotated with at least 2

√
2.) However, such cases do not seem to appear in practical

programs.

Example: Neighbour classification

Let us consider an example using the Euclidean distance L2. Say that given a database of
labelled points in the Euclidean plane, we want to predict the label of a new point x by a
majority vote weighted by the distance d to its neighbours (approximately 1 when d < r for a
given radius r, and 0 otherwise). Here, we choose the function weight : x 7→ 1−1/(1+e−4(x−r)).
This is the complement of a shifted and scaled function (widely used as an activation function
in machine learning), which can be soundly added to the language as a primitive of type
Real ⊸1 Real (see Lemma 2.6).

A row of the database is represented by the following type: Row = Point ⊗1 Label where
Point = Real ⊗2 Real, and Label = Unit ⊕ · · · ⊕ Unit. We assume that the coordinates are
precise enough so that no two different points have the same coordinates, and that x = (0, 0)
(we lose nothing in generality by doing this, since translation is a non-expansive operation
on the Euclidean plane).

The algorithm is implemented as follows (where = is an ∞-sensitive primitive):

Listing 2 Implementation of the neighbour classification algorithm.
let get_pos (r : row) : point = let (pos , _) = r in pos
let get_label (r : row) : label = let (_, label) = r in label

let score (l : label) (db : database ) : real = db
|> setfilter (fun r -> get_label r = l)
|> setmap (fun r -> distance (0, 0) ( get_pos r))
|> setfold (fun acc x -> acc + weight x) 0

let predict (db : database ) : label = exp_noise labels score db

Informally, score computes the score of a label by: (1) filtering the database to keep only
the points with the given label; (2) computing the distance of each point to the origin (the
Euclidean distance distance is non-expansive on elements of type Point); (3) computing
the sum of the weights of the points. Moreover, exp_noise is a specialised version of the
exponential mechanism presented in [16, Equation 1] for the case s = 1 and ϵ = 1, which has
type Set(Label) →1 (Label →1 Database ⊸1 Real) →1 Set(Row) ⊸1 ⃝Label.

We can derive the following types for the above functions: score : Label →1 Database ⊸1
Real, and predict : Set(Row) ⊸1 ⃝Label. First, by applying the tensor-elimination and
arrow-introduction rules, we can show that the helper functions get_pos and get_label
have type Row ⊸1 Point and Row ⊸1 Bool respectively. Then we type the three anonymous
functions that appear in our implementation:

fun r -> get_label r = l has type Row →1 Bool in the context [l : Label]∞;
fun r -> distance (0, 0) (get_pos r) has type Row ⊸1 Real as the Euclidean
distance distance has type Point ⊸1 Point ⊸1 Real;
fun acc x -> acc + weight x has type Real ⊸1 Real ⊸1 Real.

This way, we show that score has the following type Label →1 Database ⊸1 Real and we
can apply the exp_noise function to conclude.

In particular, by Lemma 4.3, this classification algorithm is 1-differentially private.
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7 Translation Mappings

In order to better understand the relationships between Fuzz and Plurimetric Fuzz we will
now investigate some translations between the two systems. We consider a presentation of
Fuzz with a weakening rule (W ), rather than axioms with an arbitrary context. Moreover,
we extend Plurimetric Fuzz by adding a & type constructor to simplify the presentation. Its
introduction and elimination rules are given in Appendix B.

Let Der(Fuzz) be the set of derivations in Fuzz endowed with the following partial order:
for all derivations π of Γ ⊢ a : A and π′ of ∆ ⊢ b : B, we have π ≤ π′ iff Γ ≤ ∆ (see
Definition 3.4) and (a, A) = (b, B). Similarly, we define Der(PFuzz) for Plurimetric Fuzz.

7.1 Translation from Fuzz to Plurimetric Fuzz
For all parameters p, we define a mapping P p

type from Fuzz types to Plurimetric Fuzz types
by structural induction as follows:

P p
type(Unit) = Unit

P p
type(A ⊕ B) = P p

type(A) ⊕ P p
type(B)

P p
type(A & B) = P p

type(A) & P p
type(B)

P p
type(A ⊗ B) = P p

type(A) ⊗p P p
type(B)

P p
type(A ⊸ B) = P p

type(A) ⊸p P p
type(B)

P p
type(!sA) = !s1/pP p

type(A)
P p

type(⃝A) = ⃝P p
type(A)

P p
type(µα. A) = µα. P p

type(A)

(7)

Note that Fuzz lists are mapped to p-lists in Plurimetric Fuzz, i.e., for all type A, we have
P p

type
(
List(A)

)
= Listp

(
P p

type(A)
)
. The distance on the latter type is given by dListp(A)(l, l′) =

p
√∑n

i=1 dA(li, l′
i)p if length(l) = length(l′) = n, and ∞ otherwise.

We also define a mapping P p
ctx from Fuzz contexts to Plurimetric Fuzz precontexts by

P p
ctx(∅) = ∅, and P p

ctx(Γ, [x : A]s) = P p
ctx(Γ), [x : P p

type(A)]s1/p , and a mapping P p
der on

derivations. For unary and binary rules, we have for instance:

P
p
der

( var
[x : A]1 ⊢ x : A

)
=

var
(p) [x : P p

type(A)]1 ⊢ x : P p
type(A)

P
p
der

 .... πa

Γ ⊢ a : A

.... πb

∆ ⊢ b : B
⊗I

Γ + ∆ ⊢ (a, b) : A ⊗ B

 =

......
P p

der(πa)

(p) P p
ctx(Γ) ⊢ a : P p

type(A)

......
P p

der(πb)

(p) P p
ctx(∆) ⊢ b : P p

type(B)
⊗I

(p) Cp
(

P p
ctx(Γ); P p

ctx(∆)
)

⊢ (a, b) : P p
type(A) ⊗p P p

type(B)
= W

(p) P p
ctx(Γ + ∆) ⊢ (a, b) : P p

type(A ⊗ B)

▶ Definition 7.1. A derivable judgement Γ ⊢ e : A is said to be minimal in a (Plurimetric)
Fuzz if for all contexts ∆ such that ∆ ⊢ e : A, we have Γ ≤ ∆.

We can now prove the main result of this section, that is to say that the translation of a
valid derivation is valid (see Appendix B for a proof).

▶ Lemma 7.2. For all precontexts Γ and ∆, sensitivities s, and parameters p, we have the
following equality: Cp

(
P p

ctx(Γ); s1/p · P p
ctx(∆)

)
= P p

ctx(Γ + s∆).

▶ Corollary 7.3. For all parameters p, the image by P p
der of the derivation π of a (minimal)

judgement Γ ⊢ a : A in Fuzz is a valid derivation of a (minimal) judgement (p) P p
ctx(Γ) ⊢ a :

P p
type(A) in Plurimetric Fuzz.
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In particular, all examples in [23] that only use structural and logical rules can be
translated to Plurimetric Fuzz for any parameter p. This includes elementary operations on
lists such as binary and iterated concatenation, length, but also higher-order combinators such
as map, foldl, foldr (see [23, Section 3.2]). More generally, this means that the L1 sensitivity
properties obtained by typing in Fuzz for these programs can be for free transposed into Lp

sensitivity properties obtained by typing in Plurimetric Fuzz. However, Corollary 7.3 does
not extend to primitive operations (the ones presented in Figure 2), which do not behave
uniformly with respect to the metric chosen on the pairs and functions.

▷ Claim 7.4 (No miracle). We cannot soundly extend Pder to the derivations involving
primitive operations such as addition on numbers.

Proof. For instance, we cannot soundly translate the following (+) rule for p = 2:

Γ ⊢ a : Real ∆ ⊢ b : Real +
Γ + ∆ ⊢ a + b : Real

P 2
der−−−→

(2) P 2
ctx(Γ) ⊢ a : Real (2) P 2

ctx(∆) ⊢ b : Real
+

(2) P 2
ctx(Γ + ∆) ⊢ a + b : Real

as the following function is not non-expansive: (+): R ⊗2 R → R (its sensitivity is
√

2). ◁

7.2 Translation from Plurimetric Fuzz to Fuzz

Conversely, we can define partial mappings F p
type, F p

ctx and F p from Plurimetric Fuzz to
Fuzz. We only give the most interesting cases:

F p
type(A ⊗q B) = F p

type(A) ⊗ F p
type(B) if q ≤ p

F p
type(A ⊸q B) = F p

type(A) ⊸ F p
type(B) if q ≤ p

F p
type(!sA) = !spF p

type(A)
F p

ctx([x : A]s, Γ) = [x : F p
type(A)]sp , F p

ctx(Γ)

F p
der

( var
(q) [x : A]1 ⊢ x : A

)
=

var
[x : F p

type(A)]1 ⊢ x : F p
type(A) if q ≤ p

▶ Lemma 7.5. For all precontexts Γ and ∆, for all sensitivities s, we have the following
inequality: spF p

ctx(Γ) + F p
ctx(∆) ≤ F p

ctx
(
Cp (Γ; s∆)

)
.

It follows from the definition above that the image F p
der(π) of a Plurimetric Fuzz derivation π

is defined iff any parameter q occurring in a judgement of π is inferior or equal to p.

▶ Corollary 7.6. For all parameters p, if the image by the mapping F p
der of a derivation π in

Plurimetric Fuzz is defined, then it is a valid derivation in Fuzz.

Finally, we obtain the following property relating the two translations:

▶ Theorem 7.7. For all parameters p, we have F p
der ◦ P p

der = IdDer(Fuzz). In other words, the
following diagram commutes:

Der(Fuzz) Der(PFuzz)Id

P p
der

F p
der
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8 Conclusion and Future Work

We have shown that Plurimetric Fuzz extends the Fuzz language by handling Lp distance,
using the types of Bunched Fuzz but with classical typing judgements. This system can be
seen as a subsystem of Bunched Fuzz which satisfies type safety. Among its other benefits
are the facts that it includes subtyping which relates distances Lp and Lq, and it supports
recursive types. We have also investigated translations between Plurimetric Fuzz and Fuzz.

Type checking and type inference for systems based on linear logic have been the object of
several works, e.g., [4, 1, 13]. While type checking for Fuzz is straightforward (for DFuzz [16],
which is a variant of Fuzz that incorporates dependent types, see [2]), we anticipate that type
checking for Plurimetric Fuzz will be significant more challenging to the non-linear nature
of the sensitivity constraints. If solved, it would allow us to replace Fuzz by Plurimetric
Fuzz in [26], and obtain a type system for adaptive differential privacy with respect to vector
metrics.

In addition, one may work on improving the sensitivity obtained by typing in Plurimetric
Fuzz. One the one hand, we do not know whether a generalisation of the monad elimination
rule to any parameter p, which would be finer than the one presented in this paper, is sound.

Finally, the question of whether one can combine recursive types and functions with
probability distributions is still open, both in the case of Fuzz and of its extensions like
Plurimetric Fuzz.
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Appendix

A Semantics

A.1 Proof of the Soundness of the Typing Rules
▶ Lemma A.1. For all metric spaces X1, X2, Y1, and Y2, and parameters p, if f : X1 → Y1
and g : X2 → Y2 are non-expansive maps, then so is f × g : X1 ⊗p X2 → Y1 ⊗p Y2.

Proof. Let (x1, x2) and (x′
1, x′

2) be two elements of X1 ⊗p X2.

dY1⊗pY2

(
(f × g)(x1, x2), (f × g)(x′

1, x′
2)
)

= dY1⊗pY2

(
(f(x1), g(x2)), (f(x′

1), g(x′
2))
)

= p

√
dY1

(
f(x1), f(x′

1)
)p + dY2

(
g(x2), g(x′

2)
)p

≤ p

√
dX1(x1, x′

1)p + dX2(x2, x′
2)p

= dX1⊗pX2

(
(x1, x2), (x′

1, x′
2)
)

◀

Let us show that bind is non-expansive. We first need the following lemmata.

▶ Lemma A.2. For all finite sequences of positive reals (xi)1≤i≤n and (yi)1≤i≤n, we have∑n
i=1 xi∑n
i=1 yi

≤ max
1≤i≤n

xi

yi
and therefore

∣∣∣∣∣ln
∑n

i=1 xi∑n
i=1 yi

∣∣∣∣∣ ≤ max
1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
Proof. Let us show the first inequality by induction on n.

If n = 1, then the inequality becomes x1/y1 ≤ max{x1/y1} which is true.
If n = 2, then we have∑n

i=1 xi∑n
i=1 yi

= x1

y1 + y2
+ x2

y1 + y2

= 1
1 + y2

y1

· x1

y1
+ 1

1 + y1
y2

· x2

y2
=

1
y1

1
y1

+ 1
y2

· x1

y1
+

1
y2

1
y1

+ 1
y2

· x2

y2
.

Let u =
1

y1
1

y1
+ 1

y2
and v =

1
y2

1
y1

+ 1
y2

. We have∑n
i=1 xi∑n
i=1 yi

≤ u · max
{

x1

y1
,

x2

y2

}
+ v · max

{
x1

y1
,

x2

y2

}
= (u + v) · max

{
x1

y1
,

x2

y2

}
which is the desired inequality since u + v = 1.
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If n ≥ 3 and if the result has been proved up to n − 1, then we write∑n
i=1 xi∑n
i=1 yi

=
x1 +

∑n
i=2 xi

y1 +
∑n

i=2 yi
≤ max

{
x1

y1
,

∑n
i=2 xi∑n
i=2 yi

}

≤ max
{

x1

y1
, max

2≤i≤n

xi

yi

}
= max

1≤i≤n

xi

yi
.

Now, let us show the second inequality. Let X = ln(
∑n

i=1 xi) and Y = ln(
∑n

i=1 yi) so
that we have X − Y = ln

(∑n
i=1 xi

)
− ln

(∑n
i=1 yi

)
= ln

(∑n
i=1 xi/

∑n
i=1 yi

)
.

If X ≥ Y , then |X − Y | = X − Y . Moreover, by the first inequality, we have

X − Y = ln
∑n

i=1 xi∑n
i=1 yi

≤ ln
(

max
1≤i≤n

xi

yi

)
= max

1≤i≤n

(
ln xi

yi

)
≤ max

1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
If X ≤ Y , then |X − Y | = Y − X, and we have

Y − X = ln
∑n

i=1 yi∑n
i=1 xi

≤ max
1≤i≤n

∣∣∣∣ln yi

xi

∣∣∣∣ = max
1≤i≤n

∣∣∣∣ln xi

yi

∣∣∣∣ .
In both cases, we get |X − Y | ≤ max1≤i≤n | ln(xi/yi)| as desired. ◀

▶ Lemma A.3. The following map is non-expansive:

bind : Dist Y ⊗1 (Y →1 Dist X) −→ Dist X

(µ, f) 7−→ t 7→
∑

s∈Y f(s)(t) µ(t) .

We present an elementary proof of this result (which also follows from the work of Barthe
and Olmedo [8]).

Proof. Let µ and µ′ be two distributions over Y and let f and f ′ be two maps from Y

to Dist X.
For all t ∈ X, we have∣∣∣∣∣ln

∑
s∈Y f(s)(t)µ(s)∑

s∈Y f ′(s)(t)µ′(s)

∣∣∣∣∣ ≤ max
s∈Y

∣∣∣∣ln f(s)(t)µ(s)
f ′(s)(t)µ′(s)

∣∣∣∣
≤ max

s∈Y

(∣∣∣∣ln µ(s)
µ′(s)

∣∣∣∣+
∣∣∣∣ln f(s)(t)

f ′(s)(t)

∣∣∣∣
)

.

Therefore, we have

max
t∈X

∣∣∣∣∣ln
∑

s∈Y f(s)(t)µ(s)∑
s∈Y f ′(s)(t)µ′(s)

∣∣∣∣∣ ≤ max
s∈Y

∣∣∣∣ln µ(s)
µ′(s)

∣∣∣∣+ max
s∈Y

max
t∈X

∣∣∣∣ln f(s)(t)
f ′(s)(t)

∣∣∣∣
which is equivalent to the desired inequality:

dDist X

(
f†(µ), f ′†(µ′)

)
≤ dDist Y (µ, µ′) + max

s∈Y
dDist X(f(s), f ′(s))

= dDist Y (µ, µ′) + dY →1Dist X(f, f ′)
= dDist Y ⊗1(Y →1Dist X)

(
(µ, f), (µ′, f ′)

)
. ◀
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A.2 Proof of the Soundness of the Rules for Primitive Operations
▶ Lemma A.4. The following rules are sound with respect to the denotational semantics:

(p) Γ ⊢ x : A
Set

(p) ∞ · Γ ⊢ {x} : Set(A)
(p) Γ ⊢ n : Nat

SetNat
(p) 2Γ ⊢ {n} : Set(Nat)

Proof. For all set X, the sensitivity of the map x 7→ {x} is bounded by ∞. Therefore, on
can soundy introduce the following rule:

⊢ λx. {x} : !∞A ⊸1 Set(A)

which is equiderivable with the (Set) rule.
If X = N, then the map n 7→ {n} is 2-sensitive. Indeed for n and n′ in N,
if n = n′, then {n} = {n′} and therefore dSet(N)({n}, {n′}) = 0;
otherwise, we have dSet(N)({n}, {n′}) = 2, and dN(n, n′) ≥ 1.

In both cases, we get the inequality dSet(N)({n}, {n′}) ≤ 2 ·dN(n, n′), and for all parameters p,
we can soundly introduce the following rule:

⊢ λn. {n} : !2Nat ⊸p Set(Nat)

which is equiderivable with the (SetNat) rule. ◀

▶ Remark. Given a metric space X containing at least one limit point (such as R with the
usual distance), the map x 7→ {x} is ∞-sensitive, and the factor ∞ above is optimal.

B Translation mappings

Below are the typing rules for the & connective that we use in the translation of Fuzz to
Plurimetric Fuzz.

(p) Γ ⊢ a : A (p) Γ ⊢ b : B
&I

(p) Γ ⊢ (a, b) : A & B

(p) Γ ⊢ c : A & B
&E◁

(p) Γ ⊢ π1(c) : A

(p) Γ ⊢ c : A & B
&E▷

(p) Γ ⊢ π2(c) : B

▶ Lemma B.1. For all precontexts Γ, sensitivities s and parameters p, we have:
s1/p · P p

ctx(∆) = P p
ctx(s∆);

sp · F p
ctx(∆) = F p

ctx(s∆).

Proof. By induction on the structure of ∆. ◀

▶ Lemma B.2. For all precontexts Γ and ∆, for all sensitivities s and parameters p, we
have the following equality: Cp

(
P p

ctx(Γ); s1/p · P p
ctx(∆)

)
= P p

ctx(Γ + s∆).

Proof. Let us prove this equality by induction on the structure of Γ.
If Γ = ∅, then the equality becomes s1/p · P p

ctx(∆) = P p
ctx(s∆).

If Γ = Γ0, [x : A]r, then we write ∆ = ∆0, [x : A]t (with t being possibly zero) and we have

Cp
(

P p
ctx(Γ); s1/p · P p

ctx(∆)
)

= Cp
(

P p
ctx(Γ0, [x : A]r); s1/p · P p

ctx(∆0, [x : A]t)
)

= Cp
(
P p

ctx(Γ0, [x : A]r); P p
ctx(s∆0, [x : A]st)

)
= Cp

(
P p

ctx(Γ0), [x : P p
type(A)]r1/p ; P p

ctx(s∆0), [x : P p
type(A)](st)1/p

)
= Cp

(
P p

ctx(Γ0); s1/p · P p
ctx(∆0)

)
, [x : P p

type(A)] p√r+st

= P p
ctx(Γ0 + s∆0), [x : P p

type(A)] p√r+st

= P p
ctx(Γ0 + s∆0, [x : A]r+st)

= P p
ctx(Γ + s∆)

as desired. ◀
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▶ Lemma B.3. For all precontexts Γ and ∆, for all sensitivities s, for all parameters p and q

such that p ≥ q, we have the following inequality: spF p
ctx(Γ) + F p

ctx(∆) ≤ F p
ctx
(
Cq (Γ; s∆)

)
.

Proof. Let us prove this inequality by induction on the structure of Γ.
If Γ = ∅, then the inequality becomes spF p

ctx(∆) ≤ F p
ctx(s∆).

If Γ = Γ0, [x : A]r, then we write ∆ = ∆0, [x : A]t (with t being possibly zero) and we have

spF p
ctx(Γ) + F p

ctx(∆) = spF p
ctx(Γ0, [x : A]r) + F p

ctx(∆0, [x : A]t)
= sp

(
F p

ctx(Γ0), [x : F p
type(A)]rp

)
+ F p

ctx(∆0), [x : F p
type(A)]tp

= spF p
ctx(Γ0) + F p

ctx(∆0), [x : F p
type(A)](rs)p+tp

≤ F p
ctx
(
Cq (Γ0; s∆0)

)
, [x : F p

type(A)](rs)p+tp

≤ F p
ctx
(
Cq (Γ0; s∆0)

)
, [x : F p

type(A)](
(rs)q+tq

)p/q

≤ F p
ctx

(
Cq (Γ0; s∆0) , [x : F p

type(A)](
(rs)q+tq

)1/q

)
≤ F p

ctx
(
Cq (Γ; s∆)

)
as desired. ◀
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Abstract
We show that termination proofs by a version of the dependency pair method can be simulated by
semantic labeling plus multiset path orders. By incorporating a flattening technique into multiset
path orders the simulation result can be extended to the dependency pair method for relative
termination, introduced by Iborra et al. This result allows us to improve applicability of their
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1 Introduction

Arts and Giesl’s dependency pair method [4] and Zantema’s semantic labeling [29] are powerful
techniques for analyzing termination of term rewrite systems (TRSs). In this paper we show
that the former can be simulated by the latter combined with a restricted version of multiset
path orders [8, Definition 5] (also known as recursive path orders).

Let us give an informal outlook of the idea by means of examples. The first example is a
termination proof by the dependency pair method. Dependency pairs are rewrite rules that
represent dependencies of recursive function calls in a TRS. Termination of the TRS boils
down to the problem of finding a suitable well-founded algebra with interpretations that
weakly orient all rules in the TRS and strictly orient all dependency pairs.

▶ Example 1. We show the termination of the TRS for division of Peano numbers:

x − 0 → x s(x) − s(y) → x − y 0 ÷ s(y) → 0 s(x) ÷ s(y) → s((x − y) ÷ s(y))

There are three dependency pairs:

s(x) −♯ s(y) → x −♯ y s(x) ÷♯ s(y) → x −♯ y s(x) ÷♯ s(y) → (x − y) ÷♯ s(y)

Here −♯ and ÷♯ are fresh function symbols. Consider the algebra A comprising polynomial
interpretations over natural numbers:

0A = 0 sA(a) = a + 1 a −A b = a −♯
A b = a ÷A b = a ÷♯

A b = a

© Teppei Saito and Nao Hirokawa;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 13; pp. 13:1–13:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:saito@jaist.ac.jp
https://orcid.org/0009-0001-9786-0044
mailto:hirokawa@jaist.ac.jp
https://orcid.org/0000-0002-8499-0501
https://doi.org/10.4230/LIPIcs.FSCD.2024.13
https://www.jaist.ac.jp/project/saigawa/24fscd/
https://www.jaist.ac.jp/project/saigawa/24fscd/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Simulating Dependency Pairs by Semantic Labeling

Under the interpretations, all rules in the TRS are weakly oriented, and all dependency
pairs are strictly oriented. For instance, orientation of the last dependency pair is verified as
follows: sA(a) ÷♯

A sA(b) = a + 1 > a = (a −A b) ÷♯
A sA(b). Hence the termination is concluded

by the dependency pair method.

Semantic labeling is a transformation method that labels function symbols in rewrite
rules with values of their function arguments. Termination of the resulting TRS is equivalent
to that of the original TRS.

▶ Example 2 (continued from Example 1). The termination of the TRS R can also be shown
by semantic labeling. We use the same algebra A to label − and ÷ with values of their first
arguments. The resulting labeled TRS consists of the rewrite rules

x −a 0 → x 0 ÷0 s(y) → 0
s(x) −a+1 s(y) → x −a y s(x) ÷a+1 s(y) → s((x −a y) ÷a s(y))

for all a ∈ N and the auxiliary rules x −a y → x −b y and x ÷a y → x ÷b y for all a, b ∈ N
with a > b. For instance, the label a + 1 in s(x) ÷a+1 s(y) is the value of s(x) in A when x is
assigned to a. The termination of this TRS is easily verified by the multiset path order with
the (quasi-)precedence ÷a+1 ≈ −a+1 ≻ ÷a ≈ −a ≻ s ≻ 0 for all a ∈ N.

In this paper we show that any termination proof by the dependency pair method can
be effectively simulated by the combination of semantic labeling and a multiset path order.
By incorporating a flattening technique (cf. [6]) in multiset path orders, this simulation
result can be extended to Iborra et al.’s dependency pair method for relative termination [15].
Exploiting the simulation result, we improve applicability of this method.

An obstacle to the simulation results is a discrepancy between the two formalisms: the
basic theorem of the dependency pair method is based on order pairs called reduction pairs,
while Zantema’s semantic labeling is based on well-founded algebras. We overcome this by
reformulating semantic labeling and multiset path orders in forms suited for order pairs.

Interestingly, prior to the seminal paper [4], Arts [3] proved a restricted version of
the dependency pair method by using Zantema’s semantic labeling [29]. This is the first
simulation result, and our work can be considered a revisit of the earlier attempt. This time
we use Geser’s generalized version [12]. Simulations by semantic labeling are not only of
theoretical/historical interest but also of practical interest. In fact, based on the simulation
result we relax a precondition of the result of Iborra et al. In addition, having proofs of the
dependency pair method in a different route might ease formalization in proof assistants or
extension to different rewrite formats.

The remaining part of the paper is organized as follows: In Section 2 we recall basic
notions for term rewriting and multiset path orders based on order pairs. In order to simulate
dependency pairs by Iborra et al. we introduce a variant of semantic labeling for relative
termination in Section 3. In Section 4 we show how Arts and Giesl’s dependency pair
method can be simulated by the combination of semantic labeling and multiset path orders.
In Section 5 we do the same for Iborra et al.’s dependency pair method, using a relative
termination criterion that originates from multiset path orders and flattening. Correctness
of the criterion is proved in Section 6. Exploiting this simulation result, we improve the
applicability of the dependency pair method by Iborra et al. in Section 7. Section 8 concludes
the paper by discussing experimental results and related work.
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2 Preliminaries

Throughout the paper, we assume familiarity with term rewriting [5, 23].

Term Rewriting

Let F be a signature and V a countable set of variables with F ∩ V = ∅. The set of all
terms built from F and V is referred to as T (F , V). When we need to indicate the arity of
a function symbol f , we write f (n) for f . A term t is a function application if t is of the
form f(t1, . . . , tn), and the root symbol f is denoted by root(t). The size |t| of a term t is
the number of function symbols and variables occurring in t. The set of function symbols or
variables occurring in a term t is denoted by Fun(t) or Var(t), respectively.

Let □ be a constant with □ /∈ F . Contexts are terms over F ∪ {□} that contain exactly
one □. The term resulting from replacing □ in a context C by a term t is denoted by C[t].
We write s Q t if there is a context C with s = C[t]. The strict part of Q is denoted by ▷. A
substitution is a mapping σ from variables to terms such that {x ∈ V | σ(x) ̸= x} is finite.
The application tσ of a substitution σ to a term t is inductively defined as follows:

tσ =
{

σ(t) if t is a variable
f(tσ1, . . . , tσn) if t = f(t1, . . . , tn)

We say that a substitution σ is grounding for a set T of terms if tσ is ground for all t ∈ T .
The grounding target T may be omitted when T is clear from the context. A pair (ℓ, r)
of terms is said to be a rewrite rule if ℓ is not a variable and every variable in r occurs in
ℓ. Rewrite rules (ℓ, r) are written as ℓ → r. A set of rewrite rules is called a term rewrite
system (TRS). Let R be a TRS. The relation →R is defined on terms as follows: s →R t if
there exist a rewrite rule ℓ → r ∈ R, a context C, and a substitution σ such that s = C[ℓσ]
and t = C[rσ] hold. In particular, when C = □ we may write s

ϵ−→R t, which indicates that
the rewriting happens at the root position. A term s is called a normal form with respect
to a relation ⇝ if there is no term t with s ⇝ t. The set of normal forms is denoted by
NF(⇝). The TRS R is said to be terminating if →R is well-founded. Relative termination
is a generalized notion of termination [11]. Given TRSs R and S, we write →R/S for the
relation →∗

S · →R · →∗
S . If →R/S is well-founded, we say that R is (relatively) terminating

with respect to S (or R/S is terminating).
A pair (≳, >) of a preorder and a strict order on the same set is called an order pair if

a > b holds whenever a ≳ · > · ≳ b. Here > need not be the strict pair of ≳. The order pair is
well-founded if > is well-founded. Relative termination is often shown by using well-founded
order pairs on terms. A relation ⇝ on terms is closed under contexts (or monotone) if
C[s]⇝ C[t] holds whenever s⇝ t and C is a context, and it is closed under substitutions if
sσ ⇝ tσ holds whenever s⇝ t and σ is a substitution. We say ⇝ has the subterm property
if s⇝ t whenever s▷ t. A relation closed under contexts and substitutions is called a rewrite
relation. A rewrite relation ≳ is a rewrite preorder if it is a preorder. A rewrite relation
> is a reduction order if it is a well-founded order. Moreover, the pair (≳, >) is called a
monotone reduction pair if in addition they form an order pair. Reduction pairs (≳, >) are
akin to monotone reduction pairs, but the only difference is that > may lack monotonicity.

▶ Proposition 3. Let R, S be TRSs. Then R/S is terminating if and only if there exists a
monotone reduction pair (≳, >) such that S ⊆ ≳ and R ⊆ >. ◀

FSCD 2024



13:4 Simulating Dependency Pairs by Semantic Labeling

Ordered Algebras

Ordered algebras are key ingredients for constructing orders including ones for reduction
pairs. An F-algebra (or simply an algebra) is a pair A = (A, {fA}f∈F ), where A is a set
called a carrier, and fA is an n-ary function on A, called the interpretation function of a
function symbol f (n) ∈ F . A mapping from V to A is called an assignment for A. The
interpretation [α]A(t) of a term t under an assignment α is inductively defined as follows:

[α]A(t) =
{

α(t) if t is a variable
fA([α]A(t1), . . . , [α]A(tn)) if t = f(t1, . . . , tn)

In this paper we are interested in algebras equipped with order pairs. Let A = (A, {fA}f∈F )
be an algebra with A a non-empty set and (≳, >) an order pair on A. The triple (A,≳, >)
is called an ordered algebra. We say that the ordered algebra is

weakly monotone if fA(a1, . . . , ai, . . . , an) ≳ fA(a1, . . . , b, . . . , an) for all f (n) ∈ F , argu-
ment positions 1 ⩽ i ⩽ n, and a1, . . . , an, b ∈ A with ai ≳ b;
well-founded if > is well-founded.

Remark that monotonicity with respect to > is not imposed on the interpretations fA. We
write s ≳A t if [α]A(s) ≳ [α]A(t) holds for all assignments α. Similarly, we write s >A t if
[α]A(s) > [α]A(t) for all assignments α. The following facts are known:

(≳A, >A) is an order pair and both ≳A and >A are closed under substitutions;
if A is weakly monotone then ≳A is closed under contexts; and
if A is well-founded then >A is well-founded.

Therefore, if A is weakly monotone and well-founded then (≳A, >A) is a reduction pair.

Multiset Path Orders

We use multiset path orders (MPOs) [8, Definition 5] based on precedence pairs, namely
order pairs on the signature. The definition employs multiset extensions of order pairs [25]
in a recursive way.

Let (≳, >) be a pair of relations. For multisets X and Y we write X ≳mul Y if there
are partitions X = {x1, . . . , xn} ⊎ X ′ and Y = {y1, . . . , yn} ⊎ Y ′ such that xi ≳ yi for all
1 ⩽ i ⩽ n, and for every y ∈ Y ′ there exists x ∈ X ′ with x > y. Furthermore, if in addition
X ′ ̸= ∅, we write X >mul Y . If (≳, >) is an order pair, so is (≳mul, >mul). Moreover, if > is
well-founded, so is >mul.

▶ Definition 4. Let (≿, ≻) be a precedence pair on F . The order pair (≿mpo, ≻mpo) of the
multiset path orders is inductively defined on terms over F as follows:

s ≻mpo t if s = f(s1, . . . , sm) and one of the following conditions holds.
1. si ≿mpo t for some 1 ⩽ i ⩽ m.
2. t = g(t1, . . . , tn), f ≻ g, and s ≻mpo tj for all 1 ⩽ j ⩽ n.
3. t = g(t1, . . . , tn), f ≿ g, and {s1, . . . , sm} ≻mul

mpo {t1, . . . , tn}.
s ≿mpo t if either s and t are the same variable, or s = f(s1, . . . , sm) and one of the
following conditions holds.

1. si ≿mpo t for some 1 ⩽ i ⩽ m.
2. t = g(t1, . . . , tn), f ≻ g, and s ≻mpo tj for all 1 ⩽ j ⩽ n.
3. t = g(t1, . . . , tn), f ≿ g, and {s1, . . . , sm} ≿mul

mpo {t1, . . . , tn}.
Here (≿mul

mpo, ≻mul
mpo) stands for the multiset extension of (≿mpo, ≻mpo).

A small remark is that the definition above is based on mutual recursion (cf. [26, Defini-
tion 4]). Basic properties of MPOs are readily proved.

▶ Theorem 5. For every well-founded precedence pair the induced order pair (≿mpo, ≻mpo)
is a monotone reduction pair. ◀



T. Saito and N. Hirokawa 13:5

3 Semantic Labeling for Relative Termination

We introduce semantic labeling for relative termination. As stated in the introduction, the
original version of semantic labeling [29, Theorem 8] (see also [23, Section 6.5.4]) employs
a well-founded algebra and labeling functions to reduce termination of a given TRS into
termination of the labeled TRS. Using the notion of relative rewriting, Geser [12] got rid of
the well-foundedness requirement from employed ordered algebras. Our variant of semantic
labeling is a straightforward adaptation of his result to our setting.

Let A = (A, {fA}f∈F ) be an algebra, {Lf }f∈F a family of non-empty subsets of A, and
{labf }f∈F a family of functions where labf is a mapping from An to Lf for each f (n) ∈ F .
The pair ({Lf }f∈F , {labf }f∈F ) (denoted by L in this paper) is called a labeling for A.
Elements in Lf are called labels. For each f (n) ∈ F and a ∈ Lf we introduce a fresh function
symbol fa if |Lf | > 1, and if Lf = {a} we reuse the original symbol, namely define fa = f .
The labeled signature {f

(n)
a | f (n) ∈ F and a ∈ Lf } is denoted by Flab. Note that, in our

formulation, symbols f not subject to labeling (i.e., |Lf | = 1) are still included in Flab. The
labeling function lab for terms t ∈ T (F , V) under an assignment α : V → A is defined as

lab(t, α) =
{

t if t is a variable
fa(lab(t1, α), . . . , lab(tn, α)) if t = f(t1, . . . , tn)

where in the second case a = labf ([α]A(t1), . . . , [α]A(tn)). The resulting term lab(α, t) is a
term over Flab. Let R be a TRS over F . The labeled TRS Rlab is defined as follows:

Rlab = {lab(ℓ, α) → lab(r, α) | ℓ → r ∈ R and α is an assignment}

▶ Example 6. Consider the one-rule TRS R = {f(f(x)) → f(g(f(x)))} and also consider the
following algebra A = ({0, 1}, {fA, gA}) and labeling L = ({Lf , Lg}, {labf , labg}):

fA(x) = 1, gA(x) = 0 Lf = {0, 1}, Lg = {0} labf(x) = x, labg(x) = x

The labeling results in the TRS Rlab = {f1(f0(x)) → f0(g(f0(x))), f1(f1(x)) → f0(g(f1(x)))}.

Our variant of semantic labeling employs weakly monotone algebras and weakly monotone
labelings. Let (A,≳, >) be an ordered algebra. We say that a labeling ({Lf }f∈F , {labf }f∈F )
is weakly monotone if labf (a1, . . . , ai, . . . , an) ≳ labf (a1, . . . , b, . . . , an) for all f (n) ∈ F ,
argument positions 1 ⩽ i ⩽ n, and a1, . . . , an, b ∈ A with ai ≳ b. We define the TRS of
decreasing rules with respect to a binary relation ⇝ on L as follows:

Dec(⇝) = {fa(x1, . . . , xn) → fb(x1, . . . , xn) | f (n) ∈ F and a, b ∈ Lf with a⇝ b}

Here x1, . . . , xn are pairwise different variables.
We are ready to state the main theorem of semantic labeling for relative termination. The

theorem speaks about weakly monotone algebras (A,≳, >) but actually their strict orders >

are irrelevant for this theorem. In other words, the theorem holds regardless of how > is
like. Therefore, for brevity we may write (A,≳) instead of (A,≳, >). The proof is found in
Appendix A.

▶ Theorem 7. Let R and S be TRSs and (A,≳) a weakly monotone algebra with R∪S ⊆ ≳A,
and let L be a weakly monotone labeling for (A,≳). Then R/S is terminating if and only if
Rlab/(Slab ∪ Dec(≳)) is terminating.
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Note that until Section 4 we only use the theorem with S = ∅, which coincides with
Geser’s semantic labeling [12, Corollary 1]. With a small example we illustrate a termination
proof based on the theorem.

▶ Example 8 (continued from Example 6). Let ≳ be the quasi-order on {0, 1} with 1 ≳ 0. Then
(A,≳) and L are weakly monotone. Since the inequality fA(fA(a)) = 1 ≳ 1 = fA(gA(fA(a)))
holds for all a ∈ {0, 1}, the inclusion R ⊆ ≳A follows. The TRS Dec(≳) consists of the
four rules: Dec(≳) = {f0(x) → f0(x), f1(x) → f0(x), f1(x) → f1(x), g(x) → g(x)}. By
taking the MPO with the precedence f1 ≻ f0 ≻ g we obtain the inclusions Rlab ⊆ ≻mpo and
Dec(≳) ⊆ ≿mpo. Therefore, Rlab/Dec(≳) is terminating by Theorem 5. Hence, by applying
Theorem 7 we conclude termination of R.

The original statement of (quasi-model based) semantic labeling [29, Theorem 8] can
be seen as a special case of Theorem 7, which relies on termination rather than relative
termination. To see this, recall that a term rewrite system R ∪ S is terminating if and only
if R/S and S are terminating [11].

▶ Corollary 9 ([29, Theorem 8]). Let (A,⩾) be a weakly monotone well-founded algebra with
⩾ a partial order, L a weakly monotone labeling for (A,⩾), and R a TRS with R ⊆ ⩾A.
Then R is terminating if and only if Rlab ∪ Dec(>) is terminating.

Proof. By Theorem 7 termination of R is equivalent to that of Rlab/Dec(⩾). Because
→Dec(⩾) and →=

Dec(>) coincide, the latter is equivalent to termination of Rlab/Dec(>). Since
> is well-founded, Dec(>) is terminating. Therefore, Rlab/Dec(>) is terminating if and only
if Rlab ∪ Dec(>) is terminating. ◀

4 Simulating Dependency Pairs for Termination

We recall a basic form of Arts and Giesl’s dependency pair method. Let G be a subset of the
signature F . Given an n-ary function symbol f in G, we introduce a fresh n-ary function
symbol f ♯ called a marked symbol. The set of marked symbols is denoted by G♯. Given a
term t = f(t1, . . . , tn), we write t♯ for the term f ♯(t1, . . . , tn). For a TRS R the set DR of
defined symbols are defined by DR = {f | f(t1, . . . , tn) → r ∈ R}. The difference F \ DR is
denoted by CR, and the symbols in CR are called constructor symbols or just constructors.

▶ Definition 10. Let R be a TRS over the signature F and let G ⊆ F . The TRS DPG(R) over
F ∪ G♯ is defined by DPG(R) = {ℓ♯ → t♯ | ℓ → r ∈ R, r Q t, root(ℓ), root(t) ∈ G, and ℓ ⋫ t}.
The TRS DPDR(R) is abbreviated to DP(R), and its rules are called dependency pairs of R.

Note that the non-subterm condition ℓ ⋫ t is due to Dershowitz [9], and it was not
included in the original definition of DP(R) [4].

▶ Theorem 11 ([4, 13]). A TRS R is terminating if and only if R ⊆ ≳ and DP(R) ⊆ > for
some reduction pair (≳, >).

▶ Remark 12. Today the termination condition in the theorem is stated as finiteness of
(DP(R), R); see [13] for the definition. Whenever (P, R) is finite, the relation →∗

R and the
restriction of →+

P/R to R-terminating terms form a reduction pair; the restriction takes care
of the so-called minimality condition of chains. So finiteness and existence of a suitable
reduction pair are equivalent.
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For any weakly monotone well-founded algebra (A,≳, >) the induced order pair (≳A, >A)
forms a reduction pair. Conversely, for every reduction pair (≳, >) the ordered algebra
(A,≳, >) fulfills the desired properties where A is the term algebra (T (F ∪ D♯

R, V), {fA}f∈F )
defined by fA(t1, . . . , tn) = f(t1, . . . , tn). Therefore, in the remaining part of the paper we
investigate Corollary 13 below instead of Theorem 11.

▶ Corollary 13. A TRS R is terminating if and only if R ⊆ ≳A and DP(R) ⊆ >A for some
weakly monotone well-founded (F ∪ D♯

R)-algebra (A,≳, >). ◀

▶ Example 14. Example 1 is an example of termination proofs by Corollary 13. The algebra
A uses the standard orders on N, and its interpretations are weakly monotone. Therefore
(⩾A, >A) is a reduction pair. Since R ⊆ ⩾A and DP(R) ⊆ >A we conclude the termination
by Corollary 13.

We exemplify how proofs based on the dependency pair method can be simulated by
semantic labeling with MPOs, introducing a few necessary definitions.

▶ Definition 15. Let R be a TRS over the signature F and (A,≳, >) an ordered (F ∪ D♯
R)-

algebra on a carrier A. Fix an arbitrary element • ∈ A. We define the A-induced labeling
LA = ({Lf }f∈F , {labf }f∈F ) as follows:

Lf =
{

A if f ∈ DR

{•} otherwise
labf (a1, . . . , an) =

{
f ♯

A(a1, . . . , an) if f ∈ DR

• otherwise

We also define the precedence pair (≿, ≻), called A-induced precedence pair, on the labeled
signature as follows:

fa ≿ gb if either f, g ∈ DR and a ≳ b, or g ∈ CR
fa ≻ gb if either f, g ∈ DR and a > b, or f ∈ DR and g ∈ CR

So in the precedence pair, constructors are smaller than (labeled) defined symbols.

▶ Example 16 (continued from Example 14, see also Example 2). The A-induced labeling
gives the labeled TRS Rlab consisting of the rules

x −a 0 → x 0 ÷0 s(y) → 0
s(x) −a+1 s(y) → x −a y s(x) ÷a+1 s(y) → s((x − y) ÷a s(y))

for all a ∈ N. The TRS Dec(⩾) is also the infinite set consisting of the rules

x −a y → x −b y x ÷a y → x ÷b y

for all a, b ∈ N with a ⩾ b. By Theorem 7 the termination of R follows if we show that of
Rlab/Dec(⩾). The A-induced precedence pair (≿, ≻) satisfies ÷a+1 ≈ −a+1 ≻ ÷a ≈ −a ≻
s ≻ 0 for all a ∈ N. Here f ≈ g stands for f ≿ g and g ≿ f . It is easy to see Rlab ⊆ ≻mpo
and Dec(⩾) ⊆ ≿mpo. Hence, R is terminating by Theorem 5.

Although a multiset path order is used in the last example, other path orders such as
lexicographic path orders (LPOs) [17] can also be used for showing termination of Rlab/Dec(≳).
In order to manifest this fact, we introduce a minimalistic termination criterion, inspired by
precedence termination (cf. [20, Lemma 1]).

▶ Definition 17. Let (≿, ≻) be a precedence pair and G ⊆ F . The relation ≻G on terms
is inductively defined as follows: s ≻G t if s = f(s1, . . . , sm), f ∈ F \ G, and one of the
following two conditions holds.
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(1) s▷ t.
(2) t = g(t1, . . . , tn), f ≻ g, and s ≻G tj for all 1 ⩽ j ⩽ n.
The relation ≿G on terms is defined as follows: s ≿G t if s = f(t1, . . . , tn), t = g(t1, . . . , tn),
f ∈ F \ G, and f ≿ g.

Due to the minimalistic definition, rules like commutativity f(x, y) → f(y, x) cannot be
ordered by ≿G .

▶ Lemma 18. If s ≻G t or s ≿G t then s ≻mpo t or s ≿mpo t, respectively. ◀

In general, ≻G and ≿G do not form a monotone reduction pair. However, they give the
following simple criterion for relative termination.

▶ Proposition 19. Let (≿, ≻) be a well-founded precedence pair. Then R/S is terminating
if there exists a subset G of F such that R ⊆ ≻G and S ⊆ ≿G.

Proof. By Lemma 18 and Theorem 5. ◀

We establish the main result of this section, using Proposition 19 with G = CR. Note
that CR is included in Flab because LA do not label constructor symbols of R.

▶ Lemma 20. Suppose DP(R) ⊆ >A and G = CR, and consider the A-induced labeling and
the A-induced precedence (≿, ≻). If ℓ → r ∈ R then lab(ℓ, α) ≻G lab(t, α) for all subterms t

of r and assignments α.

Proof. Suppose ℓ → r ∈ R and r Q t. Let α be an assignment. We show lab(ℓ, α) ≻G lab(t, α)
by structural induction on t. Because ℓ → r is a rewrite rule, ℓ must be of form f(ℓ1, . . . , ℓm)
with f ∈ DR. If ℓ▷ t then lab(ℓ, α)▷ lab(t, α) and thereby lab(ℓ, α) ≻G lab(t, α). Otherwise,
t is not a variable because ℓ ▷ t follows from t ∈ Var(r) ⊆ Var(ℓ) and ℓ /∈ V. So suppose
t = g(t1, . . . , tn). By the induction hypothesis lab(ℓ, α) ≻G lab(tj , α) for all j ∈ {1, . . . , n}.
We have lab(ℓ, α) = fa(lab(ℓ1, α), . . . , lab(ℓm, α)) where a = f ♯

A([α]A(ℓ1), . . . , [α]A(ℓm)). We
distinguish two cases, depending on g.

If g /∈ DR then fa ≻ g. Therefore lab(ℓ, α) ≻G g(lab(t1, α), . . . , lab(tn, α)) = lab(t, α).
If g ∈ DR then ℓ♯ → t♯ ∈ DP(R) because of ℓ ⋫ t. From DP(R) ⊆ >A we obtain ℓ♯ >A t♯.
So by the definition of >A we obtain a > b for b = g♯

A([α]A(t1), . . . , [α]A(tn)), and thus
fa ≻ gb follows. Therefore lab(ℓ, α) ≻G gb(lab(t1, α), . . . , lab(tn, α)) = lab(t, α). ◀

▶ Theorem 21. Let R be a TRS and (A,≳, >) a weakly monotone well-founded algebra with
R ⊆ ≳A. The following statements hold for G = CR.
1. The A-induced labeling is a weakly monotone labeling for (A,≳).
2. The A-induced precedence pair (≿, ≻) is well-founded.
3. If DP(R) ⊆ >A then Rlab ⊆ ≻G.
4. Dec(≳) ⊆ ≿G.

Proof. The third claim follows from Lemma 20. The other claims are straightforward. ◀

Theorem 21 states that, given any termination proof by the basic dependency pair method
(Corollary 13), one can construct a corresponding termination proof by semantic labelling
(Theorem 7) and precedence-based termination (Proposition 19). This simulation result is
conceivable as an alternative proof for Theorem 11. While the standard correctness proof of
the dependency pair method relies on the notion of minimal non-terminating term [4], the
one via semantic labeling directly captures the decreasing measure (i.e., labels of defined
symbols) by recursive path orders such as MPOs and LPOs.
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We conclude the section by stating why we adopted Geser’s version of semantic labeling.
Since the original semantic labeling (Corollary 9) employs a weakly monotone well-founded
algebra, from a given reduction pair (≳, >) we need to construct a single well-founded partial
order that plays both roles of ≳ and >. Geser’s version resolves this discrepancy, hiding >

behind the relative termination condition of labeled systems.

5 Simulating Dependency Pairs for Relative Termination

Iborra et al. [15] developed a natural extension of the dependency pair method to relative
termination. We show that this extension can also be simulated by semantic labeling. First
we recall their main theorem.

▶ Definition 22. Let R and S be TRSs. We say that R dominates S if Fun(r) ∩ DR = ∅
for all ℓ → r ∈ S. Let |t|x denote the number of occurrences of a variable x in a term t.
A pair (ℓ, r) of terms is called non-duplicating if |ℓ|x ⩾ |r|x for all variables x, and a rule
ℓ → r is non-duplicating if (ℓ, r) is so. Finally, a TRS R is non-duplicating if every rule in
R is non-duplicating.

▶ Theorem 23 ([15, Theorem 2]). Suppose that a TRS R dominates a non-duplicating TRS
S. Then R/S is terminating if and only if DP(R) ⊆ >A and R ∪ S ⊆ ≳A for some weakly
monotone well-founded algebra (A,≳, >).

Theorem 23 is a generalization of the basic dependency pair method (Corollary 13), since
the empty TRS is non-duplicating and dominated by any TRS.

▶ Example 24. Recall the TRS R of division from Example 1. We show the relative
termination of R with respect to the TRS S = {rand(x) → x, rand(x) → rand(s(x))}.
Since the TRS S is non-duplicating and R dominates S, we may use Theorem 23 to show
termination of R/S. The set DP(R) consists of the three rules, see Example 1. Let (A,⩾, >)
be the weakly monotone well-founded algebra, where the carrier consists of ordinal numbers
below ω2 and the interpretations are given by the equations:

0A = 0 sA(a) = a + 1 randA(a) = a + ω a −A b = a −♯
A b = a ÷A b = a ÷♯ b = a

It is easy to verify R ∪ S ⊆ ⩾A and DP(R) ⊆ >A. For instance, the last rules in DP(R) and
S are oriented as the inequalities

sA(a) ÷♯
A sA(b) = a + 1 > a = (a −A b) ÷♯

A sA(b)
randA(a) = a + ω = a + 1 + ω = randA(sA(a))

hold for all ordinals a, b < ω2. Hence, R is terminating.

For showing an analog of Theorem 21 in a relative termination setting, from a given
reduction pair (⩾A, >A) we construct the A-induced labeling and precedence in the same way.
However, existing syntactical termination methods, such as precedence-based termination
(Proposition 19) and MPOs, are still incapable of showing termination of labeled systems
due to problematic rules in relative systems like rand(x) → rand(s(x)).

▶ Example 25 (continued from Example 24). Following the construction of Theorem 21, we
obtain the TRS Rlab consisting of

x −a 0 → x 0 ÷0 s(y) → 0
s(x) −a+1 s(y) → x −a y s(x) ÷a+1 s(y) → s((x − y) ÷a s(y))
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for all ordinals a < ω2. The TRS Slab is the same as S since we do not label constructors,
and the TRS Dec(⩾) consists of

x −a y → x −b y x ÷a y → x ÷b y

for all ordinals a, b < ω2 with a ⩾ b. The inclusions Rlab ⊆ ≻mpo and Dec(⩾) ⊆ ≿mpo hold,
but Slab ⊆ ≿mpo does not. Actually, any monotone reduction pair (≳, >) satisfying the
subterm property ▷ ⊆ > is unable to orient Slab.

We overcome this problem by flattening inspired by [6] and [15, Definition 3]. For each
k ∈ N we introduce a fresh k-ary function symbol ck, called compound symbols. The set of
all compound symbols is referred to as Fc.

▶ Definition 26. Let G be a set of function symbols in F . The flattening TRS F(G) over the
signature F ∪ Fc consists of the rules f(x1, . . . , xn) → cn(x1, . . . , xn), c1(x) → x and

ck+n+1(x1, . . . , xk, cm(y1, . . . , ym), z1, . . . , zn) → ck+m+n(x1, . . . , xk, y1, . . . , ym, z1, . . . , zn)

for all k, m, n ∈ N and f (n) ∈ G. Since the TRS is terminating and confluent, every term t

admits exactly one normal form, which we denote by t↓G. Such a normal form is called a
flattened term. We abbreviate t↓G to t↓ whenever G is clear from the context.

▶ Example 27 (continued from Example 25). Let G = CR = {0, s, rand}. For example, the
term t = s(rand(0)) −ω+1 s(0) admits the following rewrite sequence of F(G):

s(rand(0)) −ω+1 s(0) → c1(rand(0)) −ω+1 s(0) → rand(0) −ω+1 s(0) →∗ c0 −ω+1 c0

Thus, we obtain t↓ = c0 −ω+1 c0.

▶ Example 28. To see what happens if binary symbols and constant symbols are flattened,
let us consider the signature F = {a(0), b(0), f(2)} and its subset G = {a, f} of F . The terms
f(f(a, x), a), f(f(a, x), b), f(f(b, x), b) are flattened into x, c2(x, b), c3(b, x, b), respectively.

Since flattening introduces compound symbols in Fc, we extend the A-induced precedence
pair (≿, ≻) on Flab by adjoining all compound symbols as minimal elements. To be precise,
the extended precedence pair (≿′, >′) is given by the following conditions:

f ≿′ g if f ≿ g or g ∈ Fc.
f ≻′ g if f ≻ g, or f ∈ Flab and g ∈ Fc.

Obviously, the pair (≿′, ≻′) is a precedence pair satisfying ≿ ⊆ ≿′ and ≻ ⊆ ≻′, and
well-founded if (≿, ≻) is so.

The key observation is that, any rewrite sequence of Rlab/Slab gives rise to a corresponding
rewrite sequence of (≿′

mpo, ≻′
mpo).

▶ Example 29 (again continued from Example 25). Consider the rewrite sequence:

s(rand(0)) −ω+1 s(0) →Rlab rand(0) −ω 0 →Slab rand(s(0)) −ω 0

Let G = CR = {rand, s, 0}. Flattening turns the rewrite sequence into the descending sequence
of MPO, namely c0 −ω+1 c0 ≻′

mpo c0 −ω c0 ≿′
mpo c0 −ω c0.

For formally discussing the correspondence above, we introduce a relative termination
criterion akin to Proposition 19 in Section 4. This criterion exploits the fact that s ≻G t

implies s↓G ≻′
mpo t↓G when R ⊆ ≻G . The proof is discussed in the next section.
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▶ Theorem 30. Let R and S be TRSs over a signature F . Then R/S is terminating if
there exist a well-founded precedence pair (≻,≿) and a subset G of F such that R ⊆ ≻G, S
is non-duplicating, and we have ℓ ≿G r or r ∈ T (G, V) for all ℓ → r ∈ S.

We arrive at the simulation result for the relative version of the dependency pair method.

▶ Theorem 31. Let R be a TRS and (A,≳, >) a weakly monotone well-founded algebra with
R ∪ S ⊆ ≳A. The following statements hold for G = CR.
1. The A-induced labeling is a weakly monotone labeling for (A,≳).
2. The A-induced precedence pair (≿, ≻) is well-founded.
3. If DP(R) ⊆ >A then Rlab ⊆ ≻G.
4. If S is non-duplicating then so is Slab.
5. If R dominates S then Rlab also dominates Slab.
6. Dec(≳) ⊆ ≿G.

Proof. Analogous to the proof of Theorem 21. ◀

Theorem 31 is indeed an analog of Theorem 21. Suppose that relative termination
is shown by the dependency pair method with a reduction pair (Theorem 23). Relative
termination of the labeled systems resulting from semantic labeling is shown by the precedence-
based termination criterion (Theorem 30). The employed labeling and precedence pair are
constructible from the reduction pair (Definition 15).

6 Multiset Path Orders with Flattening

This section is devoted to proving Theorem 30, which is obtained as a corollary of two
key theorems. Let (≿, ≻) be a well-founded precedence pair on F , (≿′, ≻′) the extended
precedence pair (introduced in Section 5), and G a set of function symbols that are flattened.
Hereafter, we consider the signature F ∪ Fc until the end of the section. For example,
substitutions are those of terms over F ∪ Fc. Moreover, for brevity we omit the prime
symbol ′ from ≿′ and ≻′.

The first key theorem states that s →R t implies s↓ ≻mpo t↓, when R ⊆ ≻G . To this
end, we show that the relation ≻G is closed under substitutions and flattening. The point is
that, in contrast to MPOs, Definition 17 demands a greater term to be headed by a function
symbol that is not flattened. For example, when σ = {x 7→ a} and f(2), a(0) ∈ G, it holds
that f(x, y) >mpo y by any MPO >mpo but f(x, y)σ↓ = y = yσ↓.

▶ Lemma 32. If s ≻G t then sσ ≻G tσ for all substitutions σ.

Proof Sketch. Show sσ ≻mpo tσ by induction on the derivation of s ≻G t. ◀

▶ Lemma 33. If s ≻G t then s↓ ≻mpo t↓.

The proof of Lemma 33 is in Appendix B.
The implication s↓ ≻G t↓ =⇒ C[s]↓ ≻G C[t]↓ does not hold in general, as witnessed

by f(x) ≻G x but g(f(x)) ̸≻G g(x) for G = ∅. However, its super-relation ≻mpo satisfies the
corresponding property s↓ ≻mpo t↓ =⇒ C[s]↓ ≻mpo C[t]↓. Note that ≻mpo is closed under
contexts but not flattening (consider c1(x) ≻mpo x). We prepare auxiliary lemmata.

▶ Lemma 34. The inequality t ≿mpo t↓ holds for all terms t.

Proof. It follows immediately from the fact that ≿mpo is a rewrite relation (Theorem 5) and
ℓ ≿mpo r holds for all ℓ → r ∈ F(G). ◀
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We say that a term t is root-rigid if t is a variable or t = f(t1, . . . , tn) with f ∈ F \ G. It
is easy to see that if t↓ = cn(t1, . . . , tn) then t1, . . . , tn are root-rigid.

▶ Lemma 35. Let C = f(u1, . . . , ui−1,□, ui+1, . . . , un). If s↓ ≻mpo t↓ then C[s]↓ ≻mpo C[t]↓.

Proof. Suppose s↓ ≻mpo t↓. We show C[s]↓ ≻mpo C[t]↓ by well-founded induction on C[s]
with respect to →+

F(G). If f ∈ F \ G then the claim immediately follows by mpo (3). So
assume f ∈ G ∪Fc. The case when C↓ = □ is trivial. If C is F(G)-reducible, we can construct
a context C ′ such that C[s] →+

F(G) C ′[s], and the induction hypothesis yields the desired
inequality C[s]↓ = C ′[s]↓ ≻mpo C ′[t]↓ = C[t]↓. Otherwise, C is already a flattened context,
namely C = cn(u1, . . . ,□, . . . , un) with n ⩾ 2 and u1, . . . , un root-rigid. An easy case is
when C[s]↓ = C[s↓], which can be easily handled by Lemma 34 and closure under contexts
of ≻mpo. The remaining case is when s↓ = cm(s1, . . . , sm). Since c0 is minimal with respect
to ≻mpo and c1(s1) is not flattened, we have m ⩾ 2, which leads to m + n − 1 ⩾ 2. Since
s1, . . . , sm are root-rigid, C[s]↓ = cm+n−1(u1, . . . , ui−1, s1, . . . , sm, ui+1, . . . , un) is obtained.
We further distinguish three cases.
1. If s↓ ≻mpo t↓ is derived by mpo (1), si ≿mpo t↓ holds for some 1 ⩽ i ⩽ m. Because m ⩾ 2,

we have {s1, . . . , sm} ≻mul
mpo {t↓}. So we obtain

{u1, . . . , ui−1, s1, . . . , sm, ui+1, . . . , un} ≻mul
mpo {u1, . . . , ui−1, t↓, ui+1, . . . , un}

from which C[s]↓ ≻mpo C[t↓] follows by mpo (3).1 Because C[t↓] ≿mpo C[t]↓, the compati-
bility of ≿mpo and ≻mpo entails the claim.

2. If s↓ ≻mpo t↓ is derived by mpo (2), the root symbol of t is smaller than cm. This
contradicts the minimality of cm.

3. If s↓ ≻mpo t↓ is derived by mpo (3), t↓ is of the form ck(t1, . . . , tk) and the inequality
{s1, . . . , sm} ≻mpo {t1, . . . , tk} holds. So C[s]↓ = cn+m−1(u1, . . . , s1, . . . , sm, . . . , un) and
C[t]↓ = cn+k−1(u1, . . . , t1, . . . , tk, . . . , un). Thus, C[s]↓ ≻mpo C[t]↓ follows by mpo (3). ◀

▶ Lemma 36. If s↓ ≻mpo t↓ then C[s]↓ ≻mpo C[t]↓ for all contexts C.

Proof. The claim is shown by straightforward structural induction on C using Lemma 35. ◀

Combining these properties, we obtain the first key theorem.

▶ Theorem 37. Let R be a TRS with R ⊆ ≻G and let s and t be terms. If s →R t then
s↓ ≻mpo t↓.

Proof. Let s →R t. There exist a rule ℓ → r ∈ R, a substitution σ, and a context C such
that s = C[ℓσ] and t = C[rσ]. Since ℓ ≻G r holds by assumption, we obtain the implications:

ℓ ≻G r
32=⇒ ℓσ ≻G rσ

33=⇒ ℓσ↓ ≻mpo rσ↓ 36=⇒ C[ℓσ]↓ ≻mpo C[rσ]↓

Here the numbers indicate the employed lemmata. Thus, s↓ ≻mpo t↓ holds. ◀

The second key theorem states that s →S t implies s↓ ≿mpo t↓, provided that S is
non-duplicating and ℓ ≿G r or r ∈ T (G, V) holds for all ℓ → r ∈ S. To this end we show
that, if ℓ → r ∈ S then ℓσ↓ ≿mpo rσ↓. The next lemma addresses the case when s →S t

employs a rule ℓ → r with ℓ ≿G r.

1 For example, consider C = c2(□, y), s = c2(x, x), and t = x. The inequality s↓ = c2(x, x) ≻mpo x = t↓
is derived by mpo (1), while C[s]↓ = c3(x, x, y) ≻mpo c2(x, y) = C[t]↓ is derived by mpo (3).
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▶ Lemma 38. If ℓ ≿G r then ℓσ↓ ≿mpo rσ↓ for all substitutions σ.

Proof. The proof is analogous to Lemma 32 and Lemma 33. ◀

The other case when s →S t uses a rule ℓ → r with r ∈ T (G, V) is more difficult. Actually
s↓ ≿mpo t↓ does not hold in general. Consider the case that s = ℓ = f(x, a) and t = r = a with
f, a ∈ G. Because s↓ = x and t↓ = c0, the inequality s↓ ≿mpo t↓ does not hold. Fortunately,
the claim holds when s is ground.

▶ Lemma 39. If s is ground and s Q t then s↓ ≿mpo t↓.

The proof is in Appendix B. It is essential for Lemma 39 that s is ground, as seen by the
example above.

▶ Lemma 40. Let t = f(t1, . . . , tn). If Fun(t) ∩ G = ∅ and t ∈ NF( ϵ−→F(G)) then t↓ =
f(t1↓, . . . , tn↓). ◀

▶ Lemma 41. Let (s, t) be a non-duplicating pair with t ∈ T (G ∪ Fc, V) and σ a grounding
substitution for s and t. The relation sσ↓ ≿mpo tσ↓ holds.

Proof. We show the claim by induction on sσ with respect to →+
F(G). The case when t↓ is a

variable is routine. So suppose t↓ = cn(x1, . . . , xn). Depending on reducibility of sσ by F(G),
we distinguish several cases.
1. If s is not flattened then sσ →+

F(G) s↓σ. Since |s↓|x = |s|x ⩾ |t|x for all variables x, the
induction hypothesis yields sσ↓ = (s↓σ)↓ ≿mpo tσ↓.

2. If xσ is not flattened for some x ∈ Var(s) then sσ →+
F(G) sτ , where τ is given by τ(y) = yσ↓

for each variable y. By the induction hypothesis sσ↓ = sτ↓ ≿mpo tτ↓ = tσ↓ follows.
3. If the last two conditions are not satisfied and sσ /∈ NF( ϵ−→F(G)) then s = cm(s1, . . . , sm)

with si a variable and siσ↓ = ck(u1, . . . , uk). Recall t↓ = cn(x1, . . . , xn).
If si = xj for some 1 ⩽ j ⩽ n then consider the terms

s′ = cm+k−1(s1, . . . , si−1, y1, . . . , yk, si+1, . . . , sm)
t′ = cn+k−1(x1, . . . , xj−1, y1, . . . , yk, xj+1, . . . , xn)

and the substitution τ given by τ(yh) = uh for h ∈ {1, . . . , k} and τ(z) = σ(z) for other
variables z, where y1, . . . , yk are fresh variables. Since sσ →+

F(G) s′τ and |s′|x ⩾ |t′|x
for all variables x, by the induction hypothesis we obtain sσ↓ = s′τ↓ ≿mpo t′τ↓ = tσ↓.
Otherwise, consider the term s′ = cm+k−1(s1, . . . , si−1, u1, . . . , uk, si+1, . . . , sm). We
have sσ →+

F(G) s′σ and |s′|x ⩾ |t|x for all variables x. By the induction hypothesis
sσ↓ = s′σ↓ ≿mpo tσ↓ follows.

4. Otherwise, s and xσ for all x ∈ Var(s) are flattened, and sσ ∈ NF( ϵ−→F(G)). Since the
former condition guarantees Fun(sσ)∩G = ∅, Lemma 40 yields sσ↓ = f(s1σ↓, . . . , smσ↓).
Recalling t↓ = cn(x1, . . . , xn), we further distinguish two cases.
(a) If f ∈ F \ G then f ≻ cn. In addition, s↓ ≻G xj holds for all j. Since ≻G is closed

under substitutions and flattening (Lemmata 32 and 33), sσ↓ ≻G xjσ↓ is obtained.
Thus, sσ↓ ≻mpo xjσ↓. Hence, mpo (2) entails the claim.

(b) Otherwise, f = cm and siσ are root-rigid for all i. Let Yi denote the multiset of
variables in si. Since |s|x ⩾ |t|x for all variables x, the multiset {x1, . . . , xn} can be
represented by X1 ⊎ · · · ⊎ Xm with Xi ⊆ Yi for each 1 ⩽ i ⩽ m. First we show the
subgoal {siσ↓} ≿mul

mpo {xσ↓ | x ∈ Xi}:
If Xi = ∅ then the claim is trivial.
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If Xi = {x} for some variable x then si Q x, and thus siσ Q xσ. By Lemma 39
the claim follows.
Otherwise, |Yi| ⩾ |Xi| ⩾ 2. As si contains at least two variables, si is not a
variable. So for every x ∈ Xi we have si ▷ x. As root(si) ∈ F \ G, the relation
si ≻G x holds. As in Case (a), we can deduce siσ↓ ≻mpo xσ↓. Thus, the claim
holds.

The subgoal results in {s1σ↓, . . . , smσ↓} ≿mul {x1σ↓, . . . , xnσ↓}. Thus, the inequali-
ties

sσ↓ = cm(s1σ↓, . . . , smσ↓) ≿mpo cn(x1σ↓, . . . , xnσ↓) ≿mpo tσ↓

are obtained by mpo (3) and Lemma 34. ◀

As in the case of ≻mpo (Lemmata 35 and 36), one can verify that ≿mpo is preserved under
the combination of context application and flattening.

▶ Lemma 42. If s↓ ≿mpo t↓ then C[s]↓ ≿mpo C[t]↓ for all contexts C. ◀

We arrive at the second key theorem for S-steps.

▶ Theorem 43. Let S be a non-duplicating TRS such that ℓ ≿G r or r ∈ T (G, V) for all
ℓ → r ∈ S. Let s and t be ground terms. If s →S t then s↓ ≿mpo t↓.

Proof. Let s →S r. There exist a rule ℓ → r ∈ S, a grounding substitution σ for s and t,
and a context C such that s = C[ℓσ] and t = C[rσ]. We have the following implications:

ℓ → r ∈ S =⇒ ℓσ↓ ≿mpo rσ↓ 42=⇒ C[ℓσ]↓ ≻mpo C[rσ]↓

The first implication follows from Lemma 38 or Lemma 41. Thus, s↓ ≿mpo t↓ holds. ◀

Theorem 30 is a consequence of Theorems 37 and 43.

Proof of Theorem 30. It suffices to show termination of R/S under the extended signature
F ∪ Fc. Since Fc contains the constant c0, every infinite rewrite sequence of terms can turn
into an infinite rewrite sequence of ground terms by instantiating variables to c0. Therefore,
our task boils down to proving termination on ground terms. Consider ground terms s and t.
By Theorems 37 and 43 we obtain the implications:

s →R/S t =⇒ s →∗
S · →R · →∗

S t =⇒ s↓ ≿mpo · ≻mpo · ≿mpo t↓ =⇒ s↓ ≻mpo t↓

As ≻mpo is well-founded, →R/S is terminating on ground terms. ◀

7 Improving Applicability

Theorem 23 is a simple and elegant adaptation of the original method (Theorem 11). However,
the dominance condition can be a severe restriction, for example, in confluence analysis based
on relative termination.

▶ Example 44. Consider the confluence problem of the following TRS:

1: x + s(y) → s(x) + y 6: x × s(y) → x + (x × y)
2 : s(x) + y → x + s(y) 7 : s(x) × y → (x × y) + y

3: x + y → y + x 8: x × y → y × x

4: (x + y) + z → x + (y + z) 9 : sq(x) → x × x

5: x + (y + z) → (x + y) + z 10: sq(s(x)) → (x × x) + s(x + x)
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By the rule labeling technique by Zankl et al. (see [28, Example 17]) the confluence problem
boils down to the relative termination problem of R/S, where R is the set of all duplicating
rules in the above TRS and S is the set of the non-duplicating rules; namely R = {6, 7, 9, 10}
and S = {1, 2, 3, 4, 5, 8}. In order to use Theorem 23 it is necessary that S is non-duplicating
and R dominates S. The former is satisfied, but the latter does not hold. In fact, DR =
{×, sq} and × occurs in the right-hand side of rule 8. So Theorem 23 is not applicable to
this example.

Multiset path orders are capable of dealing with termination modulo commutative (or
permutative) axioms, where Theorem 23 fails due to absence of dominance. Using our
simulation technique, we incorporate this advantage into the dependency pair method for
relative termination.

We introduce a generalized notion of dominance. We say that a rule is transitional if it
is of the form f(x1, . . . , xn) → f(y1, . . . , yn) with x1, . . . , xn, y1, . . . , yn variables. Note that
the variables need not be different from each other.

▶ Definition 45. Let R and S be TRSs over the same signature and G = CR. We say that R
almost dominates S if for every ℓ → r ∈ S either r ∈ T (CR, V) or ℓ → r↓G is a transitional
rule with root(ℓ) ∈ DR.

We incorporate DPDR(S) (see Definition 10) into Theorem 23. We denote this set by
DP(S). When a rule ℓ → r ∈ S satisfies the second condition in Definition 45, it gives rise to
exactly one dependency pair.

▶ Theorem 46. Suppose that a TRS R almost dominates a non-duplicating TRS S. Then
R/S is terminating if there is a reduction pair (≳, >) with DP(R) ⊆ > and R∪S∪DP(S) ⊆ ≳.

▶ Remark 47. As discussed in Remark 12, if Theorem 46 is applicable, relative termination
follows from finiteness of (DP(R), R ∪ S ∪ DP(S)). So all methods for the dependency pair
framework [13], including the iterative use of reduction pairs [14] and dependency graph
techniques [4], are available for showing relative termination.

For proving the theorem we need an improved version of Theorem 30.

▶ Theorem 48. Let R and S be TRSs over a signature F . Then R/S is terminating if
there exist a well-founded precedence pair (≿, ≻) and a subset G of F such that R ⊆ ≻G, S
is non-duplicating, and every ℓ → r ∈ S satisfies one of the following alternatives:
1. ℓ ≿G r

2. r ∈ T (G, V)
3. ℓ = f(x1, . . . , xm) ≿mpo g(y1, . . . , yn) = r↓G for some variables x1, . . . , xm, y1, . . . , yn and

f, g ∈ F \ G
Here ≻G, ≿G and ≿mpo are the relations induced by the precedence pair (≿, ≻).

Proof. The proof is analogous to that of Theorem 30, but we need to extend Theorem 43
to cover the case when ℓ → r ∈ S satisfies the third condition. This is archived by showing
ℓσ↓ ≿mpo rσ↓ for all substitutions σ. The inequality is verified by easy case distinction. ◀

Proof of Theorem 46. The proof follows the simulation result of Section 5. Given a reduction
pair (⩾A, >A), we label R and S with the A-induced labeling. By taking the A-induced
precedence and G = CR termination of Rlab/(Slab ∪ Dec(⩾A)) follows from Theorem 48.
Hence the claim holds. Note that DP(S) ⊆ ⩾A guarantees fa ≿ gb in the case of transitional
rules in Definition 45, and therefore handled by the third case of Theorem 48. ◀

FSCD 2024



13:16 Simulating Dependency Pairs by Semantic Labeling

▶ Example 49 (continued from Example 44). Now we switch from Theorem 23 to Theorem 46.
Recalling DR = {×, sq}, we can easily see that R almost dominates S. The set DP(R) of
dependency pairs consists of the four rules

x ×♯ s(y) → x ×♯ y s(x) ×♯ y → x ×♯ y sq♯(x) → x ×♯ x sq♯(s(x)) → x ×♯ x

and DP(S) = {x ×♯ y → y ×♯ x}. Take the following weakly monotone algebra A on N:

sA(x) = x + 1 x +A y = 0 x ×A y = x ×♯
A y = x + y sqA(x) = sq♯

A(x) = 2x + 1

The reduction pair (⩾A, >A) satisfies DP(R) ⊆ >A and R ∪ S ∪ DP(S) ⊆ ⩾A, and therefore
R/S is terminating. Observe that the proof via Theorem 46 only uses linear polynomials,
but a termination proof of R/S by polynomial interpretation over N demands quadratic
ones.

8 Conclusion

We conclude the paper by discussing experimental results and related work.

Evaluation by experiments. In order to assess practicality we have implemented a prototype
tool for relative termination based on the improved dependency pair method (Theorem 46).2
Following Remark 47, the tool attempts to prove finiteness of the corresponding dependency
pair problem by iterative application of reduction pairs based on ordinal interpretations below
ω3 as in Example 24. The tool shows relative termination of 48 problems in the TRS_Relative
category of TPDB 11.3 [24], which consists of 98 problems. There are 8 problems that satisfy
the relaxed preconditions (non-duplicatingness and almost dominance) of Theorem 46 but
not dominance of Theorem 23 due to Iborra et al. Among them, 6 problems are proved
terminating. While all the 6 problems are solved by at least one of existing tools, the use
of the dependency pair method (Theorem 46) often makes proofs easier. For example, the
problem Relative_05/rt2-1 asks to show the relative termination of {T(I(x), y) → T(x, y)}
with respect to {T(x, y) → T(x, I(y))}. Since the almost dominance condition holds, the
dependency pair method with the linear polynomial interpretation TA(x, y) = T♯

A(x, y) = x

and IA(x) = x + 1 proves the relative termination. In contrast, the 2023 version of AProVE
and TTT2 solve this problem by using two- and five-dimensional matrix interpretations,
respectively.

Correctness proofs for dependency pairs. Using a model-based version of semantic label-
ing [29, Theorem 4], Arts showed correctness of an earlier version of the dependency pair
method [3, Theorem 9]. In contrast to Theorem 21, this proof is involved and restricted to
constructor TRSs. Later, the proof was simplified by switching to a direct proof based on
the notion of minimal non-terminating term [4]. This became the standard proof method. In
the presented work we re-introduced semantic labeling. A key difference is that our work
adopts the one based on quasi-models ([29, Theorem 8] and [12, Corollary 1]).

Potential future work is to extend the presented simulation methodology to dependency
pair methods for other rewriting formats. We anticipate that, with suitable semantic labeling,
AC-dependency pairs [1, 27] can be simulated by Rubio’s AC-RPO [21] and that dependency

2 The tool and the experimental data (including comparison to existing termination tools) are available
at: https://www.jaist.ac.jp/project/saigawa/24fscd/.
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pairs based on strong computability [18, 10] can be simulated by higher-order RPO [16].
This is not only of theoretical interest, since thus-obtained proofs might ease formalization in
proof assistants, provided signatures extension (caused by labeling) can be smoothly handled,
see [2, 7, 22] for related discussions.

Completeness of semantic labeling and precedence termination. It is known that semantic
labeling with precedence termination (cf. Proposition 19) is a complete method for showing
termination of TRSs [19, Theorem 4], meaning that if a TRS is terminating then the
termination is shown by semantic labeling and a simpler version of precedence termination.
We remark that the combination of Theorems 11 and 21 yields a similar result. As for
relative termination, the combination of Theorems 23 and 31 shows completeness of semantic
labeling for TRSs with dominance and non-duplicatingness. It is future work to extend this
result to a wider class of TRSs.
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Proof. We show the statement by induction on |s| + |t|. Let s →R t and let α be an
assignment. Depending on the rewrite position of s →R t, we distinguish two cases.

If the rewrite position is root then there exist ℓ → r ∈ R and a substitution σ such that
s = ℓσ and t = rσ. From Lemma 50 we obtain lab(s, α) →Rlab lab(t, α) as follows:

lab(s, α) = lab(ℓσ, α) = lab(ℓ, β)τ →Rlab lab(r, β)τ = lab(rσ, α) = lab(t, α)

Suppose that s = f(s1, . . . , si, . . . , sn) and the i-th argument si is rewritten. In this
case, we have t = f(s1, . . . , t′, . . . , sn) and si →R t′. The induction hypothesis yields
lab(si, α) →Rlab/Dec(≳) lab(t′, α). Let a = labf ([α]A(s1), . . . , [α]A(si), . . . , [α]A(sn)) and
b = labf ([α]A(s1), . . . , [α]A(t′), . . . , [α]A(sn)). From R ⊆ ≳A and that ≳A is a rewrite
preorder, we have si ≳A t′. Moreover, since L is weakly monotone, the inequality a ≳ b

holds. So fa(x1, . . . , xn) → fb(x1, . . . , xn) ∈ Dec(≳). Finally, we obtain the claim as
follows:

lab(s, α) = fa(lab(s1, α), . . . , lab(si, α), . . . , lab(sn, α))
→Rlab/Dec(≳) fa(lab(s1, α), . . . , lab(t′, α) . . . , lab(sn, α))
→Dec(≳) fb(lab(s1, α), . . . , lab(t′, α), . . . , lab(sn, α))
= lab(t, α)

This case concludes the proof. ◀

▶ Lemma 52. If s →S t then lab(s, α) →Slab/Dec(≳) lab(t, α) for all assignments α.

Proof. The same argument as Lemma 51 goes through. ◀

Proof of Theorem 7. The “if” direction follows from Lemmata 51 and 52. In order to show
the “only if” direction we consider the contraposition. Suppose that Rlab/(Slab ∪ Dec(≳))
has an infinite rewrite sequence. Unlabeling each term in the sequence, we obtain an infinite
rewrite sequence of R/S. ◀

B Omitted Proofs in Section 6

Lemma 33 claims that if s ≻G t then s↓ ≻mpo t↓. This follows from that s Q t and
root(t) ∈ F \ G imply s↓ Q t↓.

▶ Lemma 53. If root(t) ∈ F \ G, s →F(G) s′, and s Q t then root(t′) ∈ F \ G, t →=
F(G) t′,

and s′ Q t′ for some t′.

Proof. Suppose s
p−→F(G) s′ and s Q t. We perform induction on p.

If s = t then p > ϵ because of root(t) ∈ F \ G. By taking t′ = s′ the claim holds.
If p = ϵ then s = ℓσ and s′ = rσ for some rule ℓ → r ∈ F(G). By assumption we have
root(t) /∈ Fun(ℓ), so there exists x ∈ Var(ℓ) such that xσ Q t. Since Var(ℓ) = Var(r)
holds, we obtain s′ Q xσ.
Otherwise, s is of form f(s1, . . . , sn), si Q t, and p = jq for some indexes 1 ⩽ i, j ⩽ n

and position q.
If i = j then by the induction hypothesis we obtain t →=

F(G) t′ and s′|i Q t′ for some t′.
If i ̸= j then by setting t′ = t we have t →=

F(G) t′ and s′|i = si Q t′.
In either case t′ is a subterm of s′. Therefore, the claim holds. ◀

▶ Lemma 54. If s Q t and root(t) ∈ F \ G then s↓ Q t↓.

FSCD 2024
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Proof. Suppose s Q t and s →n
F(G) s↓. By using Lemma 54 n times we derive s↓ Q t′ for

some term t′ with t →∗
F(G) t′. Since subterms of flattened terms are flattened, t′ is flattened.

Hence, s↓ Q t′ = t′↓ = t↓. ◀

Proof of Lemma 33. Suppose s ≻G t with s = f(s1, . . . , sm). We have f ∈ F \ G and
s↓ = f(s1↓, . . . , sn↓). By induction on the derivation of s ≻G t we show s↓ ≻mpo t↓.
(1) If s ≻G t is derived by Definition 17(2) then t = g(t1, . . . , tn), f ≻ g, and s ≻G tj for all

j. Since f ≻ g guarantees f ∈ F \ G, the identity s↓ = f(s1↓, . . . , sm↓) holds. Moreover,
the induction hypothesis yields s↓ ≻G tj↓ for all j. Thus, the inequalities

s↓ = f(s1↓, . . . , sm↓) ≻mpo g(t1↓, . . . , tn↓) ≿mpo t↓

follow by mpo (2) and Lemma 34.
(2) If s ≻G t is derived by Definition 17(1) then si Q t. We distinguish three subcases on

the shape of t.
If t is a variable then t ∈ Var(si) = Var(si↓). As we have s↓ ▷ t↓. Thus, the claim
follows by Definition 17(1).
If t = g(t1, . . . , tn) and g ∈ F \ G then Lemma 54 yields si↓ Q t↓, which leads to
s↓▷ t↓. Thus, the claim follows by Definition 17(1).
If t = g(t1, . . . , tn) and g ∈ G ∪ Fc then s ▷ tj for all j. So s ≻G tj holds for all j.
Therefore, the proof for case (1) goes through. ◀

Lemma 39 claims that if s is ground and s Q t then s↓ ≿mpo t↓. To facilitate its inductive
proof, we show the following lemma.

▶ Lemma 55. Let C = f(s1, . . . , si−1,□, si+1, . . . , sn). If C[t] is ground then C[t]↓ ≿mpo t↓.

Proof. Suppose C[t] is ground. We perform induction on C[t] with respect to →+
F(G). If

t↓ = c0 then C[t]↓ ≿mpo t↓ holds because C[t]↓ is ground and c0 is the minimum ground
term. Suppose t↓ ̸= c0. We proceed with analyzing f and whether sj are flattened.
1. If f ∈ F \G then C[t]↓ = f(s1↓, . . . , t↓, . . . , sn↓). So C[t]↓ ≿mpo t↓ is obtained by mpo (1).
2. If f ∈ G then take D = cn(s1, . . . , si−1,□, si+1, . . . , sn). We have C[t] →F(G) D[t]. Thus,

we obtain C[t]↓ = D[t]↓ ≿mpo t↓ by the induction hypothesis.
3. Similarly, if sj →+

F(G) sj↓ for some j ̸= i, take D = cn(s1↓, . . . , si−1↓,□, si+1↓, . . . , sn↓).
The same argument applies.

4. If f ∈ Fc and sj = cm(u1, . . . , un) for some j ̸= i, by taking the context

D =
{

cn(s1, . . . , sj−1, u1, . . . , um, sj+1, . . . , si−1, C ′, si+1, . . . , sn) if j < i

cn(s1, . . . , si−1, C ′, . . . , si+1, sj−1, u1, . . . , um, sj+1, . . . , sn) if j > i

the claim is verified as in the last two cases.
5. Otherwise, f = cn and sj↓ = sj for all 1 ⩽ i ⩽ m. If n = 1, we immediately obtain

C[t]↓ = t↓. So hereafter we assume n ⩾ 2. Furthermore we distinguish two cases,
depending on t↓.

If t↓ = cm(t1, . . . , tn) then m ̸= 1. As t↓ ≠ c0, we have m ⩾ 2. Thus, m + n − 1 > m

holds. Therefore, by mpo (3) the inequality

C[t]↓ = cm+n−1(s1, . . . , si−1, u1, . . . , um, si+1, . . . , sn) ≻mpo t↓

is derived.
Otherwise, C[t]↓ = cm+n−1(s1, . . . , t↓, . . . , sn) ≻mpo t↓ follows by mpo (1). ◀

Proof of Lemma 39. The claim is shown by induction on s together with Lemma 55. ◀
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1 Introduction

The development of modal logic has undergone many phases [23, 15, 46, 98]. It is widely
accepted that one of the most important developments was the relational semantics of Kripke
[68, 69, 70] [15, §1] [46, §4.8]. Kripke semantics has proven time and again that it is intuitive
and technically malleable, thereby exerting sustained influence over Computer Science.

However, over the last 30 years another way of studying modalities has evolved: looking
at modal logic through the prism of the Curry-Howard-Lambek correspondence [72, 93, 99]
yields new computational intuitions, often with surprising applications in both programming
languages and formal proof. The tools of the trade here are type theory and category theory.

Up to now these two ways of looking at modalities have been discussed in isolation. The
purpose of this paper is to establish a connection: I will show that the Kripke and categorical
semantics of modal logic are part of a duality. It is well-known that dualities between Kripke
and algebraic semantics exist: the Jónsson-Tarski duality is one of the cornerstones of classical
modal logic [15, §5]. The main contribution of this paper is to show that such dualities can
be elevated to the level of proofs. The punchline is that a profunctor R : Cop × C → Set,
considered as a proof-relevant relation on a category C, uniquely corresponds to a categorical
model of modal logic on the category of presheaves on C.

There are two obstacles to overcome to get to that result. The first is that we must work
over an intuitionistic substrate: most research on types and categories is forced to do so, for
unavoidable reasons [72, §8]. We must therefore first develop a duality for intuitionistic modal
logic. However, there is no consensus on what intuitionistic modal logic is! The problem is
particularly acute in the presence of ♢ [27]. I will avoid this problem by making canonical
choices at each step. First, I will formulate a Kripke semantics based on bimodules, i.e.
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relations that are canonically compatible with a poset. Then, I will show how Kan extension
uniquely determines two adjoint modalities, ♦ and □, from any bimodule. The fact these
arise automatically is evidence that they are the canonical choice of intuitionistic modalities.

The second obstacle stems from considering proofs. The jump from algebraic to categorical
semantics involves adding an extra “dimension” of proofs. Consequently, in order to re-
establish a duality, an additional dimension must be added to Kripke semantics as well. I call
the result a two-dimensional Kripke semantics. Category theorists will find it anticlimactic:
it amounts to the folklore observation that a proof-relevant Kripke semantics is essentially a
semantics in a presheaf category.

Indeed, a sizeable proportion of this paper consists of folklore results that are well-known
to experts. However, many of them are drawn from related but distinct areas: logic, order
theory, category theory, and topos theory. As a result, it does not appear that all of them
are well-known by a single expert. Thus, the synthesis presented here appears to be new.

The results I present in this paper show that there are deep connections between modal
logic and presheaf categories. This is important, as the latter are ubiquitous in logic and
related fields: presheaf models are used in fields as disparate as categorical homotopy theory
[87, 24], type theory [57], concurrency [65, 21, 22], memory allocation [81, 82], synthetic
guarded domain theory [14], second-order syntax and algebraic theories [34, 53, 35, 36, 37],
higher-order abstract syntax [58], and so on. As a result, the connections presented here may
enable synthetic reasoning via modalities in a variety of logical settings.

In Section 2 I recall the Kripke and algebraic semantics of intuitionistic logic, and outline
the duality between Kripke semantics and certain complete Heyting algebras, the prime
algebraic lattices. Then I extend this duality to intuitionistic modal logic in Section 3 by
showing how a relation that is compatible with the intuitionistic order – a bimodule – gives
rise to modalities through Kan extension. In Section 4 I add proofs to intuitionistic logic,
and elevate the duality to one between “two-dimensional frames” and presheaf categories. I
then repeat this exercise for intuitionistic modal logic in Section 5 by promoting bimodules
to profunctors on the relational side, and adding an adjunction on the categorical side.

For general background in orders please refer to the book by Davey and Priestley [28].
Given a poset (D,⊑D) let the opposite poset Dop be given by reversing the partial order; that
is, x ⊑Dop y iff y ⊑D x. A lattice has all finite meets and joins. A complete lattice has arbitrary
ones. A complete lattice is infinitely distributive just if the law a ∧

∨
i bi =

∨
i a ∧ bi holds.

Such lattices are variously called frames, locales, or complete Heyting algebras [61, 76, 84].

2 Intuitionistic Logic I

There are many types of semantics for intuitionistic logic, including Kripke, Beth, topological,
and algebraic semantics. Bezhanishvili and Holliday [11] argue that these form a strict
hierarchy, with Kripke being the least general, and algebraic the most general. I will briefly
review the elements of these extreme points of the spectrum.

The Kripke semantics of intuitionistic logic are given by Kripke frames, i.e. partially-
ordered sets (W,⊑) [23, §2.2]. W is referred to as the set of possible worlds, and ⊑ as the
information order. A world w ∈ W is a “state of knowledge”, and w ⊑ v means that moving
from w to v potentially entails an increase in the amount of information.

Let Up(W ) be the set of upper sets of W , i.e. the subsets S ⊆ W such that w ∈ S and
w ⊑ v implies v ∈ S. A Kripke model M = (W,⊑, V ) consists of a Kripke frame (W,⊑) as
well as a function V : Var → Up(W ). The valuation V assigns to each propositional variable
p ∈ Var an upper set V (p) ⊆ W , which is the set of worlds in which p is true. The idea is
that, once a proposition becomes true, it must remain true as information increases.
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We are now able to inductively define a relation M, w ⊨ φ with the meaning that φ is
true in world w of model M. The only interesting clause is that for implication:

M, w ⊨ φ → ψ
def≡ ∀w ⊑ v. M, v ⊨ φ implies M, v ⊨ ψ

This definition is famously monotonic: if M, w ⊨ φ and w ⊑ v then M, v ⊨ φ. Kripke
semantics is sound and complete for intuitionistic logic [23, 15].

The algebraic semantics of intuitionistic logic consist of Heyting algebras. These are
lattices such that every map − ∧ x : L → L has a right adjoint, i.e. for x, y ∈ L there is an
element x ⇒ y ∈ L such that c ∧ x ⊑ y iff c ⊑ x ⇒ y. Such lattices are always distributive.
Assuming that one has an interpretation JpK ∈ L of each proposition p, each formula φ of
intuitionistic logic is inductively mapped to an element JφK ∈ L using the corresponding
algebraic structure. I will not expound further on Heyting algebras; see [23, §7.3] [16, §1.1]
[76, §I.8]. But I note that they are sound and complete for intuitionistic logic.

2.1 Prime algebraic lattices
Let (W,⊑) be any Kripke frame, and let 2

def= {0 ⊑ 1}. Consider the poset [W, 2] of monotonic
functions from W to 2, ordered pointwise. This poset has a number of curious properties.

First, the monotonicity of p : W → 2 means that if p(w) = 1 and w ⊑ v, then p(v) = 1.
Hence, the subset U def= p−1(1) of W is an upper set. Conversely, every upper set U ⊆ W

gives rise to a monotonic pU : W → 2 by setting pU (w) = 1 if w ∈ U , and 0 otherwise.
Consequently, there is an order bijection

Up(W ) ∼= [W, 2]

with the order on Up(W ) being inclusion. I will liberally treat upper sets and elements of
[W, 2] as the same, but prefer the latter notation for reasons that will become clear later.

Second, given any w ∈ W , consider its principal upper set ↑w def= {v ∈ W | w ⊑ v} ∈ [W, 2].
This set consists of worlds with potentially more information than that found in world w. A
simple argument shows that w ⊑ v iff ↑ v ⊆ ↑w.1 Thus, this gives an order embedding

↑ : W op → [W, 2]

which can be shown to preserve meets and exponentials.
Third, the poset [W, 2] is a complete lattice: arbitrary joins and meets are given pointwise.

Viewing the elements of [W, 2] as upper sets, these joins and meets correspond to arbitrary
unions and intersections of upper sets, which are also upper. Moreover, this lattice satisfies
the infinite distributive law, so it is a complete Heyting algebra – synonymously a frame or
locale [61, 84]. Given two upper sets X,Y ⊆ W their exponential is given by [29, §1.9]

X ⇒ Y
def= {w ∈ W | ∀w ⊑ v. v ∈ X implies v ∈ Y }

Fourth, the principal upper sets ↑w are special, in that they are prime.2 An element d of
a complete lattice L is prime just if

d ⊑
⊔
X implies ∃x ∈ X. d ⊑ x

1 This is an order-theoretic consequence of the Yoneda lemma.
2 Such elements are variously called completely join-irreducible [86], supercompact [8] [84, §VII.8], com-

pletely (join-)prime [100], or simply join-prime [41, §1.3].
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This says that d contains a tiny, indivisible fragment of information: as soon as it approximates
a supremum, it must approximate something in the set that is being upper-bounded. The
prime elements of [W, 2] are exactly the principal upper sets ↑w for some w ∈ W .

Fifth, the complete lattice [W, 2] is prime algebraic. This means that all its elements
can be reconstructed by “multiplying” or “sticking together” prime elements. In symbols, a
complete lattice L is prime algebraic whenever for every element d ∈ L we have

d =
⊔

{p ∈ L | p ⊑ d, p prime }

Such lattices are variously called completely distributive, algebraic lattices [28, §10.29] or
superalgebraic lattices [84, §VII.8]. In fact, it can be shown that any such lattice is essentially
of the form [W, 2], i.e. a lattice of upper sets; this was shown by Raney in the 1950s [86], and
independently by Nielsen, Plotkin and Winskel in the 1980s [80]. See the paper by Winskel
for the use of prime algebraic lattices in semantics [100].

Finally, the fact every element can be reconstructed as a supremum of primes means that it
is possible to canonically extend any monotonic f : W → W ′ to a monotonic [W op, 2] → W ′,
as long as W ′ is a complete lattice. Diagrammatically, in the situation

W [W op, 2]

W ′

↑

f
f! ⊣ f⋆

(1)

there exists a unique f! which preserves all joins and satisfies f!(↑w) = f(w). It is given by

f!(S) def=
⊔

{f(w) | w ∈ S}

f! is called the (left) Kan extension of f along ↑. As f! preserves all joins and [W, 2] is
complete it has a right adjoint f⋆, by the adjoint functor theorem [28, §7.34] [61, §I.4.2]. For
any complete lattice W ′ this situation amounts to a bijection

HomPos(W,W ′) ∼= HomCSLatt([W op, 2],W ′)

where CSLatt is the category of complete lattices and join-preserving maps.
Suppose then that we have a Kripke model (W,⊑, V ). The construction given above

induces a Heyting algebra [W, 2]. Defining JpK def= V (p) we obtain an algebraic model of
intuitionistic logic, which interprets every formula φ as an upper set JφK ∈ [W, 2]. This is
the upper set of worlds in which a formula is true [23, Theorem 7.20]:

▶ Theorem 1. w ⊨ φ if and only if w ∈ JφK.

Thus, every Kripke semantics corresponds to a prime algebraic lattice.
▶ Remark 2. This shows that a Kripke semantics is a particular kind of algebraic semantics.
Thus, we can deduce the completeness of the latter from the completeness of the former: if a
formula is valid in all Heyting algebras, it must be valid in all prime algebraic lattices, and
hence valid in all Kripke semantics. If the Kripke semantics is complete, then the formula
must be provable. Therefore, the algebraic semantics is then complete as well.

The opposite direction – viz. proving the completeness of Kripke semantics from com-
pleteness of the algebraic semantics – cannot be shown constructively. The reason is that it
requires the construction of prime filters, which is a weak form of choice. I will investigate
the details of this mismatch in a sequel paper.
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2.2 Morphisms
The simplest kind of morphism between Kripke frames is a monotonic map f : W → W ′.
Frames and monotonic maps form the category Pos of posets. Given a monotonic f : W → W ′

we can define a monotonic f∗ : [W ′, 2] → [W, 2] by taking p : W ′ → 2 to p ◦ f : W → 2.
Viewing the elements of [W ′, 2] as upper sets, f∗ maps the upper set S ⊆ W ′ to the set
{v ∈ W ′ | f(v) ∈ S} ⊆ W , which is upper by the monotonicity of f . f∗ preserves arbitrary
joins and meets. It is thus the morphism part of a functor [−, 2] : Posop −→ PrAlgLatt to
the category PrAlgLatt of prime algebraic lattices and complete lattice homomorphisms.

Moreover, the functor [−, 2] is an equivalence! By the adjoint functor theorem any
complete lattice homomorphism f∗ : L′ → L has a left and right adjoint:

L L′
f∗

f∗

f!

⊣
⊣

(2)

Given a prime algebraic lattice L, let Prm(L) ⊆ L be the sub-poset of prime elements. It can
be shown that the left adjoint f! maps primes to primes [41, Lemma 1.23]. We can thus restrict
it to a function Prm(L) → Prm(L′). This defines a functor Prm(−) : PrAlgLatt −→ Posop

with the property that Prm([W, 2]) ∼= W . All in all, this amounts to a duality

Posop ≃ PrAlgLatt (3)

However, monotonic maps are not particularly well-behaved from the perspective of logic,
as they do not preserve nor reflect “local” truth. This is the privilege of open maps.

▶ Definition 3. Let i0 : 1 → 2 map the unique point of 1
def= {∗} to 0 ∈ 2. A monotonic map

f : W → W ′ of Kripke frames is open just when it has the right lifting property with respect
to i0 : 1 → 2, i.e. when every commuting diagram of the form

1

2

i0

W

W ′

f

in Pos has a diagonal filler (dashed) that makes it commute.

In other words, f is open if whenever f(w) ⊑ v′ there exists a w′ ∈ W with w ⊑ w′ and
f(w′) = v′.3 Open maps send upper sets to upper sets [23, Prop. 2.13]. Thus

▶ Lemma 4. Let M = (W,⊑, V ) and N = (W ′,⊑, V ′) be Kripke models, and f : W → W ′ be
open. Suppose V = f−1 ◦V ′, i.e. w ∈ V (p) iff f(w) ∈ V ′(p). Then M, w ⊨ φ iff N, f(w) ⊨ φ.

Write W ⊨ φ to mean that (W,⊑, V ), w ⊨ φ for any valuation V and w ∈ W . Then

▶ Lemma 5. If f : W → W ′ is open and surjective, then W ⊨ φ implies W ′ ⊨ φ.

3 Such morphisms are often called p-morphisms [23, §2.3] or bounded morphisms [15, §2.1]. According to
Goldblatt [46] open maps were introduced by de Jongh and Troelstra [29] in intuitionistic logic, and
by Segerberg [91] in modal logic. More rarely they are called functional simulations, and led us to
bisimulations [90, §3.2]. The name is chosen because such maps are open with respect to the Alexandrov
topology on a poset, whose open sets are the upper sets [61, §1.8].
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Recall now the induced map f∗ : [W ′, 2] → [W, 2] for a monotonic f : W → W ′. The
following lemma allows us to characterise the openness and surjectivity of f in terms of f∗.

▶ Lemma 6.
1. f : W → W ′ is open iff f∗ : [W ′, 2] → [W, 2] preserves exponentials.
2. f : W → W ′ is surjective iff f∗ : [W ′, 2] → [W, 2] is injective.

Consequently, the duality (3) may be restricted to two wide subcategories:

Posop
open ≃ PrAlgLatt⇒ Posop

open,surj ≃ PrAlgLatt⇒,inj (4)

The morphisms of the categories to the left of ≃ are open (resp. and surjective) maps,
and the morphisms of the categories to its right are complete Heyting homomorphisms, i.e.
complete lattice homomorphisms that preserve exponentials (resp. and are injective).

Finally, let us consider the classical case – as a sanity-check. This amounts to restricting
Pos to its subcategory of discrete orders, i.e. Set. In this case every map is open. The
corresponding restriction on the other side is to the category CABA of complete atomic
Boolean algebras, yielding the usual Tarski duality Setop ≃ CABA [67].

2.3 Related work

The origins of the construction of a Heyting algebra from a Kripke frame seems to be lost in
the mists of time. The earliest occurrence I have located is in the book by Fitting [39, §1.6],
where it is attributed to an exercise in the book by Beth [10].

The duality (3) appears to be folklore – folklore enough to be included as an exercise in
new textbooks [41, Ex. 1.3.10]; see also Erné [31]. However, I have not been able to find any
mention of the dualities of (4) in the literature.

Both the dualities (3) and (4) involve just prime algebraic lattices, which is a far cry from
encompassing all Heyting algebras. It is possible to do so, by enlarging the category Pos
to a class of ordered topological spaces called descriptive frames [23, §8.4]. The resulting
duality is called Esakia duality [32] [41, §4.6] [12, §2.3].

A survey on dualities for classical modal logic is given by Kishida [67].

3 Modal Logic I

The task now is to extend the results of Section 2 to intuitionistic modal logic.
There is disagreement on what a minimal intuitionistic modal logic is. This arises no

matter the methodology we choose – be it relational, algebraic, or proof-theoretic. The
situation becomes even more complex if we include a diamond modality (♢): see Das and
Marin [27] and Wolter and Zakharyaschev [103] for a discussion.

In this paper I will adopt the intuitionistic propositional logic with Galois connections
of Dzik, Järvinen, and Kondo [30], for reasons that will become clear in a moment. This
extends intuitionistic logic with modalities ♦ and □, and the two inference rules

♦φ → ψ

φ → □ψ
and

φ → □ψ

♦φ → ψ
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These rules correspond to a Galois connection [28, §7.23], i.e. an adjunction ♦ ⊣ □ between
posets. They imply the derivability of the following rules, amongst others [30, Prop. 2.1].

φ → ψ

□φ → □ψ

φ

□φ □⊤
♦⊥
⊥

φ → ψ

♦φ → ♦ψ ♦(φ ∨ ψ) ↔ ♦φ ∨ ♦ψ

□(φ ∧ ψ) ↔ □φ ∧ □ψ

The notation of the “black diamond” modality ♦ may appear unusual. However, I will argue
that this logic is, in a way, the canonical intuitionistic modal logic.

The Kripke semantics of classical modal logic is given by a modal frame (W,R), which
consists of a set W and an arbitrary accessibility relation R ⊆ W ×W [15, §1]. If the same
set of worlds W is already part of an intuitionistic Kripke frame (W,⊑) we must take care to
ensure that ⊑ and R are compatible. There are many compatibility conditions that one can
consider [85] [92, §3.3]. However, I will take a hint from the category theory literature, and
seek a canonical definition of what it means for a relation to be compatible with a poset.

Recall that relations can be presented as functions R : W ×W → 2 which map a pair of
worlds (w, v) to 1 iff w R v. I will ask that R is such function, but with a twist:

▶ Definition 7. A bimodule R : W1 −7→ W2 is a monotonic map R : W op
1 ×W2 → 2.

Thus, a relation R ⊆ W1 ×W2 is a bimodule just if w′ ⊑ w R v ⊑ v′ implies w′ R v′. This
means that R can absorb changes in information on either side: contravariantly on the first
component, and covariantly on the second. This is a standard, minimal way to define what it
means to be “a relation in Pos”. It is strongly reminiscent of bimodules in abstract algebra.

We can then define a modal Kripke frame (W,⊑, R) to be a Kripke frame (W,⊑) equipped
with a bimodule R : W −7→ W . A modal Kripke model M = (W,⊑, R, V ) adds to this a
function V : Var → Up(W ). We extend M, w ⊨ φ to modal formulae:

M, w ⊨ ♦φ
def≡ ∃v. v R w and M, v ⊨ φ

M, w ⊨ □φ
def≡ ∀v. w R v implies M, v ⊨ φ

There are a number of things to note about this definition. First, there is a deep duality
between the clauses: not only do we exchange ∀ for ∃, but we also flip the variance of R.
As a result, ♦ uses the relation in the opposite variance to the more traditional ♢ modality
(hence the change in notation). Second, the clause for the □ modality is the traditional one;
some streams of work on intuitionistic modal logic adopt a slightly different one [85, 92],
which is equivalent to this in the presence of the bimodule condition. Finally, this definition
is monotonic: the bimodule conditions on R suffice to show that if M, w ⊨ φ and w ⊑ v then
M, v ⊨ φ. Dzik et al. [30, §5] prove that this semantics is sound and complete.

The algebraic semantics of this logic is given by a Heyting algebra H equipped with two
monotonic maps ♦,□ : H → H which form an adjunction ♦ ⊣ □, i.e. a Galois connection.
Dzik et al. [30, §4] prove that this semantics is also sound and complete.

We are now in a position to relate the Kripke and algebraic semantics of this intuitionistic
modal logic. Let (W,⊑, R) be a modal Kripke frame, and consider the map λR : W op → [W, 2]
obtained by cartesian closure of Pos. This map takes w ∈ W to the upper set {v ∈ W | w R v}
of worlds accessible from w. Putting λR in (1) we obtain through Kan extension the diagram
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W op [W, 2]

[W, 2]

↑

λR
♦R ⊣ □R

(5)

where we write ♦R for λR! and □R for λR⋆. It can be shown that these maps are given by

♦R(S) def= {w ∈ W | ∃v. v R w and v ∈ S}

□R(S) def= {w ∈ W | ∀v. w R v implies v ∈ S}

Thus, any bimodule R defines an adjunction ♦R ⊣ □R on [W, 2]. Correspondingly, any
adjunction ♦ ⊣ □ on [W, 2] yields a monotonic map ♦ ◦ ↑(−) : W op → [W, 2], which uniquely
corresponds to a bimodule W op ×W → 2 by the cartesian closure of Pos.

Thus, starting from a bimodule, i.e. a relation that is compatible with the information
order, we have canonically obtained a model of intuitionistic modal logic on [W, 2] through
Kan extension: [W, 2] is a complete Heyting algebra, and we define J♦φK = ♦RJφK and
J□φK = □RJφK. We immediately obtain a modal analogue to Theorem 1:

▶ Theorem 8. For any modal formula φ, w ⊨ φ if and only if w ∈ JφK.

3.1 Morphisms
We define a category Bimod with bimodules R : W1 −7→ W2 as objects. A bimodule morphism
from R : W1 −7→ W2 to R′ : W ′

1 −7→ W ′
2 is a pair (f, g) of monotonic maps f : W1 → W ′

1 and
g : W2 → W ′

2 such that R(w, v) ⊑ R′(f(w), g(v)). Stated in terms of relations, it must be
that w R v implies f(w)R′ g(v).

We define the subcategory EBimod to consist of (endo)bimodules R : W −7→ W and
pairs of maps (f, f). Thus, objects are bimodules on a single poset W , and morphisms are
monotonic maps f : W → W ′ that preserve the relation, i.e. w R v implies f(w) R f(v).
In other words, the objects of EBimod are modal Kripke frames, and the morphisms are
monotonic, relation-preserving maps.

Recall the adjunctions and modalities induced by a monotonic f : W → W ′:

[W, 2] [W ′, 2]
f∗

f∗

f!

⊣
⊣

□R □R′ (6)

▶ Lemma 9. f : W → W ′ is a morphism of bimodules f : R → R′ iff f∗□R′ ⊆ □Rf
∗.

This constitutes a duality

EBimodop ≃ PrAlgLattO (7)

where PrAlgLattO is the category with objects (L,□L), where L is a prime algebraic lattice
and □L : L → L is an operator that preserves all meets. By the adjoint functor theorem,
such operators always have a left adjoint ♦L : L → L. Thus, this category contains algebraic
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models of intuitionistic modal logic (but not all of them). By the preceding section each
such adjunction corresponds uniquely to a bimodule. The morphisms of PrAlgLattO are
complete lattice homomorphisms h : L → L′ such that h□L ⊑ □L′h. By the preceding
lemma they correspond precisely to morphisms of bimodules.

However, as with monotone maps, morphisms of bimodules do not preserve local truth;
for that we need a notion of modally open maps.

▶ Definition 10. Let (W,⊑, R) and (W ′,⊑, R′) be modal Kripke frames. A bimodule morph-
ism f : R → R′ is modally open just if whenever f(w)R′ v then there exists a w′ ∈ W with
w R w′ and f(w′) ⊑ v.

This is similar to Definition 3, but ever so slightly weaker: instead of requiring f(w′) = v′, it
requires that the information in f(w′) can be increased to v′. Like Definition 3, it can also be
written homotopy-theoretically, but that requires some ideas from double categories that are
beyond the scope of this paper. We have the analogous result about preservation of truth:

▶ Lemma 11. Let M = (W,⊑, R, V ) and N = (W ′,⊑, R′, V ′) be modal Kripke models,
f : W → W ′ be open and modally open, and V = f−1 ◦ V ′. Then M, w ⊨ φ iff N, f(w) ⊨ φ.

▶ Lemma 12. Let f : W → W ′ be open, modally open, and surjective. If W ⊨ φ then W ′ ⊨ φ.

The following result relates the modal openness of f to f∗.

▶ Lemma 13. f : R → R′ is modally open iff □Rf
∗ = f∗□R′ iff f!♦R = ♦R′f!.

Thus, the duality (7) may be restricted to dualities between wide subcategories:

EBimodop
moo ≃ PrAlgLattO⇒o EBimodop

moo, surj ≃ PrAlgLattO⇒o,inj (8)

The morphisms to the left of ≃ are open and modally open (resp. and surjective); and the to
the right of it preserve exponentials and commute with operators (resp. and are injective).

Let us consider the restriction of this duality to the classical setting – as a sanity check.
A bimodule on a discrete poset is just a relation on a set. The corresponding restriction on
the right is to CABAs with operators, and complete homomorphisms which commute with
operators. We thus obtain the Thomason duality MFrmop

open ≃ CABAO between Kripke
frames and modally open maps on the left, and CABAs with operators to the right [96, 67].

3.2 Related work
Many works have presented a Kripke semantics for intuitionistic modal logic. All such
semantics assume two accessibility relations: a preorder for the intuitionistic dimension, and
a second relation for the modal dimension. What varies is their compatibility conditions.

The first work to present such a semantics appears to be that of Fischer Servi [38]. One
of the required compatibility conditions is (⊑) ◦R ⊆ R ◦ (⊑). This is weaker than having a
bimodule, but sufficient to prove soundness.

The first work to recognise the importance of bimodules was Sotirov’s 1979 thesis. His
results are summarised in a conference abstract [94, §4]: they include the completeness
of a minimal intuitionistic modal logic with a □, the K axiom, and the necessitation rule.
Božić and Došen [19] repeat the study for the same logic, but for a semantics based on the
Fischer Servi compatibility conditions. However, they note that their completeness proof
actually constructs half a bimodule (a “condensed” relation). They also point out that
bimodules, which they call “strictly condensed” relations, are sound and complete for their
logic. Wolter and Zakharyaschev [101, §2] argue that bimodule and Fischer Servi semantics
are equi-expressive.
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Plotkin and Stirling [85] attempt to systematise the Kripke semantics of intuitionistic
modal logic. Their frame conditions allow “transporting a modal relation upwards” along
any potential increases of information on either side. This paper and all its descendants –
notably the thesis of Simpson [92, §3.3] – adopt a different satisfaction clause for □ which
uses both ⊑ and R. In the presence of the bimodule conditions this satisfaction clause is
equivalent to the classical one, which I use here.

The bimodule condition and the complex algebra construction (or fragments thereof) have
made scattered appearances in the literature: in the early work of Sotirov [94] and Božić
and Došen [19]; in the work of Wolter and Zakharyaschev [102, 101, 103], Hasimoto [54, §4],
and Orłowska and Rewitzky [83]; and of course in Dzik et al. [30, §7]. With the exception
of the last one, none of these references discuss the ♦ modality. Moreover, in none of these
references are the categorical aspects of this construction discussed.

As mentioned before, dualities between frames and algebras have played a significant
role in modal logic. Thomason [96] and Goldblatt [45] also considered morphisms of frames,
respectively obtaining Thomason duality and (categorical) Jónsson-Tarski duality between
descriptive frames and Boolean Algebras with Operators (BAOs) [46, §6.5]. Kishida [67]
surveys a number of dualities for classical modal logic.

The duality (7) is stated by Gehrke [40, Thm. 2.5] who attributes it to Jónnson [64],
even though no such theorem appears in that paper.

The dualities of (8) are the direct intuitionistic analogues to that of Thomason. I have
not been able to find them anywhere in the literature.

According to the extensive survey of Menni and Smith [78], the idea that the commonly-
used modalities □ and ♢ are often part of adjunctions ♦ ⊣ □ and ♢ ⊣ ■ is implicitly present
throughout the development of modal logic. However, these were not made explicit in a
logic until the 2010s, when they appeared in the work of Dzik et al. [30] and Sadrzadeh and
Dyckhoff [89]. The same perspective plays a central rôle in the exposition of Kishida [67].

The ♦ modality has appeared before in tense logics as a “past” modality [33, 47].

4 Intuitionistic Logic II

In the rest of this paper we will categorify [7] the notion of Kripke semantics. The main idea
is to replace posets by categories, so that the order w ⊑ v is replaced by a morphism w → v.
As there might be multiple morphisms w → v, this allows the recording of not just the
fact v may signify more information than w, but also the manner in which it does so. The
reflexivity and transitivity of the poset are then replaced by the identity and composition
laws of the category. This adds a dimension of proof-relevance to Kripke semantics.

A corresponding change in our algebraic viewpoint will be that of replacing the set 2
of truth values with the category Set. This is a classic Lawverean move [73]. Notice that
this is lopsided, as is usual in intuitionistic logic: while the falsity 0 is only represented by
one value, viz. the empty set, the truth 1 can be represented by any non-empty set X. The
elements of X can be thought of as a proofs of a true statement.

Let us then trade the frame (W,⊑) for an arbitrary category C. It remains to define what
it means to have a proof that the formula φ holds at a world w ∈ C. We denote the set of all
such proofs by JφKw. Assuming we are given a set JpKw for each proposition p and world w,
here is a first attempt:

J⊥Kw
def= ∅ J⊤Kw

def= {∗} Jφ ∧ ψKw
def= JφKw × JψKw Jφ ∨ ψKw

def= JφKw + JψKw

Jφ → ψKw
def= (v : C) → HomC(w, v) → JφKv → JψKv
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where for a family of sets (Ba)a∈A we let

(a : A) → Ba
def=

{
f : A →

⋃
a∈A

Ba

∣∣∣∣ ∀a ∈ A.f(a) ∈ Ba

}
This closely follows the usual Kripke semantics, but adds proofs. For example, a proof in
Jφ1 ∧ φ2Kw is a pair (x, y) of a proof x ∈ Jφ1Kw and a proof y ∈ Jφ2Kw. Similarly, a proof
F ∈ Jφ → ψKw is a function which maps a proof of “increase in information” f : w → v to a
function F (v)(f) : JφKv → JψKv. In turn, this function maps proofs in JφKv to proofs in JψKv.

To show that this definition is monotonic we have to demonstrate it on proofs: given a
proof x ∈ JφKw and a morphism f : w → v we have to define a proof f · x ∈ JφKv. Assuming
that we are given this operation for propositions, we can extend it by induction; e.g.

f · (x, y) def= (f · x, f · y) ∈ Jφ ∧ ψKv

f · F def= (z : C) 7→ (g : HomC(v, z)) 7→ (x : JφKz) 7→ F (z)(g ◦ f)(x) ∈ Jφ → ψKv

Moreover, this definition is compatible with C, in the sense that g · (f · x) = (g ◦ f) · x and
idw · x = x. We thus obtain a (covariant) presheaf JφK : C −→ Set for each formula φ.

It is well-known that the proofs of intuitionistic logic form a bicartesian closed category
(biCCC), i.e. a category with finite (co)products and exponentials [71]. A biCCC can be
seen as a categorification of a Heyting algebra: formulae are objects of the category, and
proofs are morphisms. We will not expound on this further; see [72, 26, 4].

It should therefore be the case that the semantics described above form a biCCC. Indeed,
it is a well-known fact of topos theory that the category of presheaves [C,Set] is a biCCC. In
fact, the construction of exponentials [76, §I.6] reveals that our definition above is deficient:
we should restrict Jφ → ψKw to contain only those functions F that satisfy a naturality
condition, i.e. those which for any f : w → v1, g : v1 → v2, and x ∈ JφKv1 satisfy

g · F (v1)(f)(x) = F (v2)(g ◦ f)(g · x)

From this point onwards I will identify two-dimensional Kripke semantics with categorical
semantics in a category of presheaves [C,Set].

4.1 Presheaf categories
The category [C,Set] of covariant presheaves is eerily similar to prime algebraic lattices. In a
sense they are just the same; but, having traded 2 for Set, they have become proof-relevant.

First, letting P ∈ [C,Set], an element x ∈ P (w) is a proof that P holds at a “world”
w ∈ C. A morphism f : w → v of C then leads to a proof f · x def= P (f)(x) ∈ P (v) that P
holds at v. Thus, the presheaf P is very much like an upper set.

Second, the representable presheaves y(w) def= HomC(w,−) : C → Set are the proof-relevant
analogues of the principal upper set. By the Yoneda lemma they constitute an embedding

y : Cop −→ [C,Set]

which moreover preserves limits and exponentials [4].
Third, the category [C,Set] is both complete and cocomplete, with limits and colimits

computed pointwise [76, §I]. It is also “distributive” in an appropriate sense [3, §3.3], which
makes it into a Grothendieck topos. It is thus a cartesian closed category, with exponential

(P ⇒ Q)(w) def= Hom(P × y(w), Q)

which is essentially the two-dimensional semantics of implication I gave above.
Fourth, the representables y(w) are special, in that they are tiny [104].
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▶ Definition 14. An object d ∈ D is tiny just if Hom(d,−) : D → Set preserves colimits.4

Tininess is a proof-relevant version of primality: it implies that for any f : w → lim−→i
vi there

exists an i such that f is equal to the composition of a morphism w → vi with the injection
vi → lim−→i

vi. By the Yoneda lemma it follows that all representables y(w) are tiny, as they
satisfy the above definition for D def= [C,Set] and d

def= y(w).
Fifth, the so-called co-Yoneda lemma [75, §III.7] shows that every P ∈ [C,Set] is a colimit

of representables. This means that it can be reconstructed by sticking together tiny elements:

P ∼= lim−→(w,x)∈el P
y(w)

Like with prime algebraic lattices, there is a converse to this result: every category which is
generated by sticking together tiny elements is in fact a presheaf category:

▶ Theorem 15 (Bunge [20]). A category which is cocomplete and strongly generated by a
small set of tiny objects is equivalent to [C,Set] for some small category C.

A textbook presentation of this result can be found in the book by Kelly [66, §5.5].
Finally, the fact every element can be reconstructed as a colimit of representables means

that it is possible to uniquely extend any functor f : C −→ D to a cocontinuous functor
[Cop, 2] −→ D, as long as D is cocomplete. Diagrammatically, in the situation

C [Cop,Set]

D

y

f
f! ⊣ f⋆ (9)

there exists an essentially unique cocontinuous f! with f!(y(w)) = f(w). It is given by

f!

(
lim−→(w,x)∈el P

y(w)
)

def= lim−→(w,x)∈el P
f(w)

f! is called the left Kan extension of f along y. It has a right adjoint f⋆ which is explicitly
given by f⋆(d) def= Hom(f(−), d). This amounts to an isomorphism

HomCat(C,D) ∼= HomCocont([Cop,Set],D)

where Cat is the category of categories, and Cocont is the category of cocomplete categories
and cocontinuous functors: see [4, Prop. 9.16] [88, Cor. 6.2.6, Rem. 6.5.9] and [75, § X.3,
Cor. 2] [66, Th. 4.51].

All in all, presheaf categories are the categorification of prime algebraic lattices.

4.2 Cauchy-complete and spacelike categories
Replacing posets with categories does not come for free: the extra dimension of morphisms
leads to situations that have no analogues in poset. Some of these are problematic when
thinking of C as a two-dimensional Kripke frame. Perhaps the most bizarre is the presence
of idempotents, i.e. morphisms e : w → w with the property that e ◦ e = e. Such morphisms
represent a non-trivial increase in information which confusingly leaves us in the same world.

4 In the literature this property is often referred to as external tininess (cf. internal tininess).
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Table 1 Categorification of Kripke semantics.

poset category
monotonic map functor

upper sets presheaves
principal upper set representable presheaf

prime element tiny object
prime algebraic lattice presheaf category

bimodule profunctor

The presence of idempotents causes issues. For example, recall that, in prime algebraic
lattices, primes and principal upper sets coincide. The astute reader will have noticed we
did not claim the analogous result in presheaf categories: tiny objects are not necessarily
representable in [C,Set]. For that, we need C to be Cauchy-complete [18, 17].

▶ Definition 16. A category is Cauchy-complete just if every idempotent splits, i.e. if every
idempotent is equal to s ◦ r for a section-retraction pair s and r.

Note that every complete category is Cauchy-complete, including Set and [C,Set].
This leads us to another troublesome situation, namely that of having section-retraction

pairs, i.e. s : w → v and r : v → w with r ◦ s = idw. In this case w and v contain no more
information than each other, but are not isomorphic. We may ask that this does not arise.

▶ Definition 17. A category satisfies the Hemelaer condition [55, Prop. 5.8] just if every
section-retraction pair is an isomorphism.

Combining these two conditions is equivalent to the following definition.

▶ Definition 18. A category is spacelike if every idempotent is an identity.

Lawvere has identified this condition as having particular importance in recognising petit
toposes [77]. We will not use it much, as it restricts the dualities we wish to develop.

In the rest of this paper we will assume that our base categories C are Cauchy-complete,
so that tiny objects coincide with representables.

4.3 Morphisms
The simplest kind of morphism between categories is a functor. Given a f : C −→ D we can
define a functor f∗ : [D,Set] −→ [C,Set] that takes P : D −→ Set to P ◦ f : C −→ Set.
This functor has left and right adjoints, which are given by Kan extension [62, A4.1.4]:

[C,Set] [D,Set]
f∗

f∗

f!

⊣
⊣

(10)

Therefore f∗ preserves all limits and colimits, i.e. it is (co)continuous. In short, the presheaf
construction gives a functor [−,Set] : Catop

cc −→ PshCat, where Catcc is the category of
small Cauchy-complete categories and functors; and PshCat is the category of presheaf
categories (over Cauchy-complete base categories) and (co)continuous functors.
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Moreover, this functor is an equivalence. Given a presheaf category we can obtain its
base as the subcategory of tiny objects [62, A1.1.10]. But how can we extract f : C −→ D
from any (co)continuous functor f∗ : [D,Set] −→ [C,Set]? First, as presheaf categories are
locally presentable, the adjoint functor theorem implies that f∗ has left and right adjoints,
as in (10) [1, §1.66]. This gives what topos theorists call an essential geometric morphism.
Johnstone [62, §A4.1.5] shows that every such morphism is induced by a f : C −→ D, as f!
preserves representables (when D is Cauchy-complete). We thus obtain a duality

Catop
cc ≃ PshCat (11)

As with posets, functors here fail to preserve truth; for that we need a notion of openness.

▶ Definition 19. f : C −→ D is open just if f∗ : [D,Set] −→ [C,Set] preserves exponentials.

▶ Lemma 20. If f : C −→ D is open then there is a natural isomorphism θw : JφKw
∼= JφKf(w).

Definition 19 is somewhat underwhelming, as it does not give explicit conditions that one
can check – unlike Definition 3. However, obtaining such a description appears difficult.

Some information may be gleaned by considering (f∗, f∗) : [C,Set] −→ [D,Set] as a
geometric morphism. Such a morphism is open [60] [63, C3.1] just if both the canonical
maps f∗(c ⇒ d) → f∗(c) ⇒ f∗(d) and f∗(Ω) → Ω are monic. Johnstone [63, C3.1] proves
that (f∗, f∗) is open iff for any β : f(w) → v′ in D there exists an α : w → w′ in C
and a section-retraction pair s : v′ → f(w′) and r : f(w′) → v′ with s ◦ β = f(α). This
superficially seems like a categorification of Definition 3. However, it only guarantees that
f∗ is sub-cartesian-closed, whereas we need an isomorphism for Lemma 20 to hold.

A stronger condition is to ask that (f∗, f∗) be locally connected, i.e. that f∗ commute
with dependent products [63, C3.3]. All such morphisms are open geometric morphisms.
This is stronger than what we need, but sufficient conditions on f can be given [63, C3.3.8].

Finally, an even stronger condition is to ask that (f∗, f∗) be atomic, i.e. that f∗ is a
logical functor. This means it preserves exponentials and the subobject classifier [63, A2.1,
C3.5]. All atomic geometric morphisms are locally connected. This is again stronger than
what we need, and a characterisation in terms of f is elusive: see MathOverflow [95].

It is easier to characterise when (f∗, f∗) is a surjective geometric morphism, i.e. when f∗

is faithful [62, A2.4.6]. This happens exactly when f is retractionally surjective, i.e. whenever
every d ∈ D is the retract of f(c) for some c ∈ C [62, A2.4.7]. If D satisfies the Hemelaer
condition this reduces to f being essentially surjective.

Write C ⊨ φ to mean that JφKw is non-empty for any w ∈ C and any interpretation of JpK.

▶ Lemma 21. Let f : C → D be open and retractionally surjective. If C ⊨ φ then D ⊨ φ.

We may thus restrict the duality (11) to dualities

Catop
cc, open ≃ PshCat⇒ Catop

cc, open, rs ≃ PshCat⇒,f (12)

In the first instance the category to the left of ≃ is that of small Cauchy-complete categories
and open functors; and to the right of ≃ it is presheaf categories and (co)complete, cartesian
closed functors. In the second instance the category to the left of ≃ is that of small Cauchy-
complete categories and open, retractionally surjective functors; and to the right of ≃ it is
presheaf categories and (co)complete, faithful, cartesian closed functors.
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5 Modal Logic II

To make a two-dimensional Kripke semantics for modal logic we have to categorify relations.
We took the first step by considering bimodules, i.e. information-order-respecting relations.
The second step can be taken by replacing 2 with Set; this leads us to the notion of a relation
between categories, also known as a profunctor or distributor [9] [17, §7].

▶ Definition 22. A profunctor R : C −7→ D is a functor R : Cop × D → Set.

To formulate a two-dimensional Kripke semantics for modal logic we replace modal Kripke
frames with a small Cauchy-complete category C with an (endo)profunctor R : Cop ×C → Set.
To obtain the modalities we can now play the same trick: putting λR : Cop → [C,Set] into
(9) we canonically obtain the following diagram by Kan extension:

Cop [C,Set]

[C,Set]

y

λR
♦R ⊣ □R

(13)

Conversely, any adjunction ♦ ⊣ □ on [C,Set] corresponds to the (endo)profunctor on C given
by (c1, c2) 7→ HomC(c1,♦c2).

We may then define J♦φK def= ♦RJφK : C −→ Set and J□φK def= □RJφK : C −→ Set. It is
worth unfolding what a proof of □φ at a world w is to obtain an explicit description:

J□φKw = (□RJφK)(w) = Hom[C,Set](λR(w), JφK) = Hom[C,Set](R(w,−), JφK) (14)

Thus, a proof that φ holds at w is a natural transformation α : R(w,−) ⇒ JφK. This has the
expected shape of Kripke semantics for □: for each v ∈ C and proof x ∈ R(w, v) that v is
accessible from w it gives us a proof αv(x) ∈ JφKv that φ holds at v.

It is a little harder to see what a proof of ♦φ at a world w is. It becomes more perspicuous
if we use the coend formula for the left Kan extension [74, §2.3]:

J♦φK = λR!JφK ∼=
∫ v∈C

Hom[C,Set](y(v), JφK) × λR(v) ∼=
∫ v∈C

JφKv ×R(v,−) (15)

Hence, a proof that ♦φ holds at w consists of a world v ∈ C, a proof that R(v, w), and a
proof that φ holds at v – which is exactly what one would expect. The difference is that the
coend quotients some of these pairs according to the action of C. See Mac Lane and Moerdijk
[76, §VII.2] for a textbook exposition on why this is a tensor product of JφK and λR.

How well does this fit the categorical semantics of modal logic? As with intuitionistic
modal logic, there is also a number of proposals of what that might be. A fairly recent idea
is to define it as the semantics of a Fitch-style calculus, as studied by Clouston [25]. This is
exactly a bicartesian closed category C equipped with an adjunction:

C C

□

♦

⊣ (16)

The left adjoint ♦ is often written as lock. It does not commonly appear as a modality, but as
an operator on contexts that corresponds to “opening a box” in Fitch-style natural deduction
[59, §5.4]. The modality □ is a right adjoint, so that it automatically preserves all limits,
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including products. This idea has proven remarkably robust: variations on it have worked
well for modal dependent type theories [13, 51, 52, 50, 49]. The fact that an adjunction on
a presheaf category corresponds precisely to a two-dimensional Kripke semantics is further
evidence that this is the correct notion of categorical model of modal logic.

Finally, note that (14) and (15) look suspiciously similar to the modal structure of
Normalization-by-Evaluation models for modal type theories. This is explicitly visible in the
paper by Valliappan et al. [97, §2], and also implicitly present in the paper by Gratzer [48].

5.1 Morphisms
Define the category Prof to have as objects profunctors. A morphism (f, g, α) : R → S

from R : C −7→ D to S : C′ −7→ D′ consists of functors f : C −→ C′ and g : D −→ D′, and a
natural transformation α : R(−,−) ⇒ S(f(−), g(−)). The subcategory EProf consists of
endoprofunctors R : C −7→ C, and triples of the form (f, f, α). I will synecdochically refer to
α : R(−,−) ⇒ S(f(−), f(−)) as a morphism of EProf. Thus, objects are two-dimensional
Kripke frames, and morphisms are functors that proof-relevantly preserve the relation.

▶ Lemma 23. Morphisms of endoprofunctors α : R(−,−) ⇒ S(f(−), f(−)) are in bijection
with natural transformations γ : f∗□S ⇒ □Rf

∗.

Proof. Unfolding the definitions, γ : Hom(S(f(−),−),−) ⇒ Hom(R(−,−), f∗(−)). As
f! ⊣ f∗ this is exactly a transformation Hom(S(f(−),−),−) ⇒ Hom

(
f!R(−,−),−

)
. By

the Yoneda lemma, any such transformation arises by precomposition with a unique trans-
formation f!R(−,−) ⇒ S(f(−),−). By f! ⊣ f∗ again, this uniquely corresponds to a
transformation α : R(−,−) ⇒ f∗S(f(−),−) = S(f(−), f(−)). ◀

We thus obtain a duality

EProfop
cc ≃ PshCatO (17)

where PshCatO is the category of presheaf categories [C,Set] equipped with a continuous
□ : [C,Set] −→ [C,Set]. Note that, as presheaf categories are locally finitely presentable,
□ always has a left adjoint ♦. Thus, the objects are categorical models of modal logic.
Morphisms are pairs (f, γ) of a (co)continuous f : C −→ D and a natural transformation
γ : f∗□ ⇒ □f∗.

As before, open functors do not preserve truth; for that we need a notion of modal
openness. Let α : R(−,−) ⇒ S(f(−), f(−)). As pointed out in the proof of Lemma 23 such
an α uniquely corresponds to a transformation tα : f!R(−,−) ⇒ S(f(−),−). Its components

tα,c,v :
∫ w∈V

R(c, w) × HomD(f(w), v) → S(f(c), v)

map x ∈ R(c, w) and k : f(w) → v to S(idf(c), k)(αc,v(x)). We can then say that

▶ Definition 24. α : R(−,−) ⇒ S(f(−), f(−)) is modally open just if tα is an isomorphism.

This asks that for every proof y ∈ S(f(c), v) we should be able to find an object w ∈ C, a
proof x ∈ R(c, w), and a morphism k : f(w) → v, so that y = S(idf(c), k)(αc,v(x)). This is
clearly a categorification of Definition 10, and leads to the following lemma:

▶ Lemma 25. α is modally open iff the corresponding f∗□S ⇒ □Rf
∗ is an isomorphism.

Proof. The proof of Lemma 23 precomposes with tα to get γ. Thus γ is iso iff tα is. ◀



G. A. Kavvos 14:17

Thus, the duality (17) may be restricted to dualities between the wide subcategories

EProfop
cc, moo ≃ PshCatO⇒o EProfop

cc, moo, rs ≃ PshCatO⇒of (18)

The morphisms to the left of ≃ are modally open, open maps (resp. and retractionally
surjective); and the morphisms to the right of ≃ are (f, γ) where f is cartesian closed (resp.
and faithful) and γ : f∗□ ∼= □f∗ is a natural isomorphism.

6 Other related work

Perhaps the work most closely related to this paper is that on Kripke-style lambda models by
Mitchell and Moggi [79]. These amount to elaborating the first-order definitions of applicative
structure and λ-model in the internal language of a presheaf category, with the base category
being a partial order. In practice this means that the interpretation of function types is only
a subfunctor of the exponential of presheaves [79, §8]. However, Mitchell and Moggi prove
that these models are sound and complete for the (× →) fragment, even in the presence
of empty types. They also use some general theorems about open geometric morphisms to
prove that any cartesian closed category can be presented as such a model.

Another piece of work that bears kinship with the present one is Hermida’s fibrational
account of relational modalities [56]. Hermida shows that both the relational modalities ♢
and □ can be obtained canonically as extensions of predicate logic to relations, with the
modalities arising as compositions of adjoints. The black diamond ♦ makes a brief cameo as
the induced left adjoint to □, as does the dual black box [56, §3.3]. While the decompositions
obtained by Hermida seem more refined than the results here, Kan extension does not make
an explicit appearance. As such, the relationship to the present work is yet to be determined.

Awodey and Rabe [6] give a Kripke semantics for extensional Martin-Löf type theory
(MLTT), in which contexts are posets and types are presheaves over them. They use topos-
theoretic machinery to prove that every locally cartesian closed category can be embedded in
a presheaf category over a poset; this result seems similar to one of Mitchell and Moggi, but
the proof appears entirely different. As a consequence, they show that presheaf categories
over posets form a complete class of models for extensional MLTT, in fact a subclass of
locally cartesian closed categories.

Alechina et al. [2] present dualities between Kripke and algebraic semantics for construct-
ive S4 and propositional lax logic. Their interpretation of □ follows that of Plotkin, Stirling
and Simpson [85, 92].

Ghilardi and Meloni [42] explore a presheaf-like interpretation of (predicate) modal logic,
which is similar to ours, albeit non-proof-relevant. They work over the identity profunctor
Hom(−,−). They are hence forced to weaken the definition of presheaf. See also [43, 44].

Awodey, Kishida and Kotzsch [5] give a topos-theoretic semantics for a higher-order
version of intuitionistic S4 modal logic. They also briefly survey much previous work on
presheaf-based and topos-theoretic semantics for first-order modal logic. Their work is not
proof-relevant.

Finally, there is clear methodological similarity between the results obtained here and the
results of Winskel and collaborators on open maps and bisimulation [65, 22]. One central
difference is that Winskel et al. are mainly concerned with open maps between presheaves
themselves, whereas I only consider open maps between (two-dimensional) frames.
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Abstract
Adjoint logic is a general approach to combining multiple logics with different structural properties,
including linear, affine, strict, and (ordinary) intuitionistic logics, where each proposition has an
intrinsic mode of truth. It has been defined in the form of a sequent calculus because the central
concept of independence is most clearly understood in this form, and because it permits a proof of
cut elimination following standard techniques.

In this paper we present a natural deduction formulation of adjoint logic and show how it is
related to the sequent calculus. As a consequence, every provable proposition has a verification
(sometimes called a long normal form). We also give a computational interpretation of adjoint logic
in the form of a functional language and prove properties of computations that derive from the
structure of modes, including freedom from garbage (for modes without weakening and contraction),
strictness (for modes disallowing weakening), and erasure (based on a preorder between modes).
Finally, we present a surprisingly subtle algorithm for type checking.
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1 Introduction

A substructural logic provides fine control over the use of assumptions during reasoning. It
usually does so by denying the general sequent calculus rules of contraction (which permits
an antecedent to be used more than once) and weakening (which permits an antecedent not
to be used). Instead, these rules become available only for antecedents of the form !A. Ever
since the inception of linear logic [23], researchers have found applications in programming
languages, for example, to avoid garbage collection [24], soundness of imperative update [53],
the chemical abstract machine [2], and session-typed communication [12, 54], to name just a
few.

Besides linear logic, there are other substructural logics and type systems of interest. For
example, affine logic denies general contraction but allows weakening and is the basis for
the type system of Alms [51] (an affine functional language) and Rust [50] (an imperative
language aimed at systems programming).
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If we deny weakening but accept contraction we obtain strict logic (a variant of relevance
logic) where every assumption must be used at least once. On the programming language side,
this corresponds to strictness, which allows optimizations in otherwise nonstrict functional
languages such as Haskell [39]. Interestingly, Church’s original λI calculus [18] was also strict
in this sense.

The question arises how we can combine such features, both in logics and in type systems.
Recently, this question has been tackled through graded or quantitative type systems (see
for example, [37, 5, 38, 17, 55, 1]). The essential idea is to track and reason explicitly about
the usage of a given assumption through grades. This provides very fine-grained control and
allows us to, for example, model linear, strict, and unrestricted usage of assumptions through
graded modalities. In this paper, we pursue an alternative, taking a proof-theoretic view
with the goal of building a computational interpretation. There are three possible options
that emerge from existing proof-theoretic explorations that could serve as a foundation of
such a computational interpretation. The first one is by embedding. For example, we can
embed (structural) intuitionistic logic in linear logic writing !A ⊸ B for A → B. Similarly,
we can embed affine logic in linear logic by mapping hypotheses A to A N 1 so they do not
need to be used. The difficulties with such embeddings is that, often, they neither respect
proof search properties such as focusing [4] nor do they achieve a desired computational
interpretation.

A second approach is taken by subexponential linear logic [20, 41, 30] that defines multiple
subexponential modalities !mA, where each mode m has a specific set of structural properties.
As in linear logic, all inferences are carried out on linear formulas, so while it resolves some
of the issues with embeddings, it still requires frequent movement into the linear layer using
explicit subexponentials.

We pursue a third approach, pioneered by Benton [7] who symmetrically combined
(structural) intuitionistic logic with (purely) linear intuitionistic logic. He employs two
adjoint modalities that switch between the two layers and works out the proof theoretic
and categorical semantics. This approach has the advantage that one can natively reason
and compute within the individual logics, so we preserve not only provability but the fine
structure of proofs and proof reduction from each component. This has been generalized
in prior work [49, 46] by incorporating from subexponential linear logic the idea to have
a preorder between modes m ≥ k that must be compatible with the structural properties
of m and k (explained in more detail in Section 2). This means we can now also model
intuitionistic S4 [42] and lax logic [9], representing comonadic and monadic programming,
respectively. We hence arrive at a unifying calculus firmly rooted in proof theory that is
more general than previous graded modal type systems in that we can construct monads
as well as comonads. We will briefly address dependently typed variations of the adjoint
approach in Section 7.

Most substructural logics and many substructural type systems are most clearly formulated
as sequent calculi. However, natural deduction has not only an important foundational role
[22, 44, 21], it also has provided a simple and elegant notation for functional programs through
the Curry-Howard correspondence [27]. We therefore develop a system of natural deduction
for adjoint logic that, in a strong sense, corresponds to the original sequent formulation. It
turns out to be surprisingly subtle because we have to manage not only the substructural
properties that may be permitted or not, but also respect the preorder between modes. We
show that our calculus satisfies some expected properties like substitution and has a natural
notion of verification that corresponds to proofs in long normal form, satisfying a subformula
property.
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In order to illustrate computational properties, we give an abstract machine and show
the consequences of the mode structure: freedom from garbage for linear modes (that is,
modes admitting neither weakening nor contraction), strictness for modes that do not admit
weakening, and erasure for modes that a final value may not depend on, based on the
preorder of modes. We close with an algorithmic type checker for our language which, again,
is surprisingly subtle.

2 Adjoint Sequent Calculus

We briefly review the adjoint sequent calculus from [46]. We start with a standard set of
possibly substructural propositions, indexing each with a mode of truth, denoted by m, k, n, r.
Propositions are perhaps best understood by using their linear meaning as a guide, so we
uniformly use the notation of linear logic. Also, for programming convenience, we generalize
the usual binary and nullary disjunction (A ⊕ B and 0) and conjunction (A N B and ⊤)
by using labeled disjunction ⊕{ℓ : Aℓ

m}ℓ∈L and conjunction N{ℓ : Aℓ
m}ℓ∈L. From the linear

logical perspective, these are internal and external choice, respectively; from the programming
perspective they are sums and products. We write Pm for atomic propositions of mode m.

Propositions Am, Bm ::= Pm | Am ⊸ Bm | N{ℓ : Aℓ
m}ℓ∈L | ↑m

k Ak (negative)
| Am ⊗ Bm | 1m | ⊕{ℓ : Aℓ

m}ℓ∈L | ↓n
mAn (positive)

Contexts Γ ::= · | Γ, x : Am (unordered)

Each mode m comes with a set σ(m) ⊆ {W, C} of structural properties, where W stands for
weakening and C stands for contraction. We further have a preorder m ≥ r that specifies
that a proof of the succedent Cr may depend on an antecedent Am. This is enforced
using the presupposition that in a sequent Γ ⊢ Cr, every antecedent Am in Γ must satisfy
m ≥ r, written as Γ ≥ r. We have the additional stipulation of monotonicity, namely that
m ≥ k implies σ(m) ⊇ σ(k). This is required for cut elimination to hold. Furthermore, we
presuppose that in ↑m

k Ak we have m ≥ k and for ↓n
mAn we have n ≥ m. Also, contexts may

not have any repeated variables and we will implicitly apply variable renaming to maintain
this presupposition. Finally, we abbreviate ·, x : A as just x : A.

In preparation for natural deduction, instead of explicit rules of weakening and contraction
(see [46] for such a system) we have a context merge operation Γ1 ; Γ2. Since, as usual in the
sequent calculus, we read the rules bottom-up, it actually describes a nondeterministic split
of the context that is pervasive in the presentations of linear logic [4].

(Γ1, x : Am) ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am provided C ∈ σ(m)
(Γ1, x : Am) ; Γ2 = (Γ1 ; Γ2), x : Am provided x ̸∈ dom(Γ2)

Γ1 ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am provided x ̸∈ dom(Γ1)
(·) ; Γ2 = Γ2
Γ1 ; (·) = Γ1

Note that the context merge is a partial operation, which prevents, for example, the use of
an antecedent without contraction in both premises of the ⊗R rule.

The complete set of rules can be found in Figure 1. In the rules, we write ΓW for a
context in which weakening can be applied to every antecedent, that is, W ∈ σ(m) for every
antecedent x : Am. Also, as is often the case in presentations of the sequent calculus, we omit
explicit variable names that tag antecedents. We only discuss the rules for ↓n

mAn because
they illustrate the combined reasoning about structural properties and modes.
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15:4 Adjoint Natural Deduction

ΓW ; Am ⊢ Am

id
Γ ≥ m ≥ r Γ ⊢ Am Γ′, Am ⊢ Cr

Γ ; Γ′ ⊢ Cr

cut

Γ, Am ⊢ Bm

Γ ⊢ Am ⊸ Bm

⊸R
Γ ≥ m Γ ⊢ Am Γ′, Bm ⊢ Cr

Γ ; Γ′ ; Am ⊸ Bm ⊢ Cr

⊸L

Γ ⊢ Aℓ
m (∀ℓ ∈ L)

Γ ⊢ N{ℓ : Aℓ
m}ℓ∈L

NR
Γ, Aℓ

m ⊢ Cr (ℓ ∈ L)

Γ ; N{ℓ : Aℓ
m}ℓ∈L ⊢ Cr

NL

Γ ⊢ Ak

Γ ⊢ ↑m
k Ak

↑R
k ≥ r Γ, Ak ⊢ Cr

Γ ; ↑m
k Ak ⊢ Cr

↑L

Γ ⊢ Am Γ′ ⊢ Bm

Γ ; Γ′ ⊢ Am ⊗ Bm

⊗R
Γ, Am, Bm ⊢ Cr

Γ ; Am ⊗ Bm ⊢ Cr

⊗L

ΓW ⊢ 1m

1R
Γ ⊢ Cr

Γ ; 1m ⊢ Cr

1L

Γ ⊢ Aℓ
m (ℓ ∈ L)

Γ ⊢ ⊕{ℓ : Aℓ
m}ℓ∈L

⊕R
Γ, Aℓ

m ⊢ Cr (∀ℓ ∈ L)

Γ ; ⊕{ℓ : Aℓ
m}ℓ∈L ⊢ Cr

⊕L

Γ′ ≥ n Γ′ ⊢ An

ΓW ; Γ′ ⊢ ↓n
mAn

↓R
Γ, An ⊢ Cr

Γ ; ↓n
mAn ⊢ Cr

↓L

Figure 1 Implicit Adjoint Sequent Calculus.

First, the ↓R rule.

Γ′ ≥ n Γ′ ⊢ An

ΓW ; Γ′ ⊢ ↓n
mAn

↓R

Because we presuppose the conclusion is well-formed, we know ΓW ; Γ′ ≥ m since ↓n
mAn

has mode m. Again, by presupposition n ≥ m and we have to explicitly check that Γ′ ≥ n

because it doesn’t follow from knowing that ΓW ; Γ′ ≥ m. There may be some antecedents
Ak in the conclusion such that k ̸≥ n. If the mode k admits weakening, we can sort them
into ΓW. If it does not, then the rule is simply not applicable.

On to the ↓L rule:
Γ, An ⊢ Cr

Γ ; ↓n
mAn ⊢ Cr

↓L

By presupposition on the conclusion, we know Γ ; ↓n
mAn ≥ r which means that Γ ≥ r and

m ≥ r. Since n ≥ m we have n ≥ r by transitivity, so Γ, An ≥ r and we do not need any
explicit check. The formulation of the antecedents in the conclusion Γ ; ↓n

mAn means that if
mode m admits contraction, then the antecedent ↓n

mAn may also occur in Γ, that is, it may
be preserved by the rule. If m does not admit contraction, this occurrence of ↓n

mAn is not
carried over to the premise.
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This implicit sequent calculus satisfies the expected theorems, due to [49, 46] and, most
closely reflecting the precise form of our formulation, [45]. They follow standard patterns,
modulated by the substructural properties and the preorder on modes.

▶ Theorem 1 (Admissibility of Weakening and Contraction). The following are admissible:

ΓW ≥ m Γ ⊢ Am

ΓW ; Γ ⊢ Am

weaken
C ∈ σ(m) Γ, Am, Am ⊢ Cr

Γ, Am ⊢ Cr

contract

▶ Theorem 2 (Admissibility of Cut and Identity).
(i) In the system without cut, cut is admissible.
(ii) In the system with identity restricted to atoms Pm, the general identity is admissible.

We call a proof cut-free if it does not contain cut and long if the identity is restricted to
atomic propositions P . It is an immediate consequence of Theorem 2 that every derivable
sequent has a long cut-free proof. The subformula property of cut-free proofs directly implies
that a cut-free proof of a sequent Γm ⊢ Am where all subformulas are of mode m is directly a
proof in the logic captured by the mode m. Moreover, an arbitrary proof can be transformed
into one of this form by cut elimination. These strong conservative extension properties are
a hallmark of adjoint logic.

Since our main interest lies in natural deduction, we consider only three examples.

▶ Example 3 (G3). We obtain the standard sequent calculus G3 [31] for intutionistic logic
with a single mode U. All side conditions are automatically satisfied since U ≥ U.

▶ Example 4 (LNL and DILL). By specializing the rules to two modes, U and L with the order
U > L, we obtain a minor variant of Linear/Non Linear Logic (LNL) in its parsimonious
presentation [8]. Our notation is FX = ↓U

L X and GA = ↑U
L A. Significant here is that we do

not just model provability, but the exact structure of proofs except that our structural rules
remain implicit.

We obtain the sequent calculus formulation of dual intuitionistic linear logic (DILL)
[6, 15] by restricting the formulas of mode U so that they only contain ↑U

L AL. In this version
we have !A = ↓U

L ↑U
L A. Again, the rules of dual intuitionistic linear logic are modeled precisely.

▶ Example 5 (Intuitionistic Subexponential Linear Logic). Subexponential linear logic [40, 41]
also uses a preorder of modes, each of which permits specific structural rules. We obtain a
formulation of intuitionistic subexponential linear logic by adding a new distinguished mode
L with m ≥ L for all given subexponential modes m, retaining all the other relations. We
further restrict all modes m except for L to contain only ↑m

L AL, forcing all logical inferences
to take place at mode L.

Compared to [16] our system does not contain ?A and is not focused; compared to [29],
our base logic is linear rather than ordered. Also, all of our structural rules are implicit.

3 Adjoint Natural Deduction

Substructural sequent calculi have recently found interesting computational interpretations
[12, 54, 13, 43, 48], including adjoint logic [47]. In this paper, we look instead at functional
interpretations, which are most closely related to natural deduction. Some guide is provided
by natural deduction systems for linear logic (see, for example, [2, 10, 52]), but already they
are not entirely straightforward. For example, some of these calculi do not satisfy subject
reduction. The interplay between modes and substructural properties creates some further
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15:6 Adjoint Natural Deduction

complications. The closest blueprint to follow is probably Benton’s [8], but his system does
not exhibit the full generality of adjoint logic and is also not quite “parsimonious” in the
sense of the LNL sequent calculus.

In the interest of economy, we present the calculus with proof terms and two bidirectional
typing judgments, ∆ ⊢ e ⇐= Am (expression e checks against Am) and ∆ ⊢ s =⇒ Am

(expression s synthesizes Am). The syntax for expressions is summarized in Figure 2. The
bidirectional nature will allow us to establish a precise relationship to the sequent calculus
(Section 4), but it does not immediately yield a type checking algorithm since the context
merge operation is highly nondeterministic when used to split contexts. An algorithmic
system can be found in Section 6.

We obtain the vanilla typing judgment by replacing both checking and synthesis judgments
with ∆ ⊢ e : A, dropping the rules ⇒/⇐ and ⇐/⇒, and removing the syntactic form (e : Am).
We further obtain a pure natural deduction system by removing the proof terms, although
uses of the hypothesis rule then need to be annotated with variables in order to avoid any
ambiguities.

Checkable Exps.
e ::= λx. e (⊸)

| {ℓ ⇒ eℓ}ℓ∈L (N)
| susp e (↑)

| (e1, e2) (⊗)
| ( ) (1)
| ℓ(e) (⊕)
| down e (↓)

| match s M

| s

Synthesizable Exps.
s ::= x

| s e (⊸)
| s.ℓ (N)
| force s (↑)
| (e : Am)

Matches
M ::= (x1, x2) ⇒ e′ (⊗)

| ( ) ⇒ e′ (1)
| (ℓ(x) ⇒ eℓ)ℓ∈L (⊕)
| down x ⇒ e′ (↓)

Figure 2 Expressions for Bidirectional Natural Deduction.

The rules maintain a few important invariants, particularly independence:
(i) ∆ ⊢ e ⇐= Am presupposes ∆ ≥ m (ii) ∆ ⊢ s =⇒ Am presupposes ∆ ≥ m

This is somewhat surprising because we think of the synthesis judgment s =⇒ Am as
proceeding top-down rather than bottom-up. Indeed, there are other choices with dependence
and structural properties being checked in different places. We picked this particular form
because we want general typing e : Am to arise from collapsing the checking/synthesis
distinction. This means that the two rules ⇒/⇐ and ⇐/⇒ should have no conditions
because those would disappear. The algorithmic system in Section 6 checks the conditions in
different places.

As an example of interesting rules we revisit ↓n
mAn (where n ≥ m is presupposed). The

introduction rule of natural deduction mirrors the right rule of the sequent calculus, which is
the case throughout.

Γ′ ≥ n Γ′ ⊢ An

ΓW ; Γ′ ⊢ ↓n
mAn

↓R
∆′ ≥ n ∆′ ⊢ e ⇐= An

∆W ; ∆′ ⊢ down e ⇐= ↓n
mAn

↓I

As is typical for these translations, the elimination rules turns the left rule “upside down”
because (like all rules in natural deduction) the principal formula is on the right-hand side of
judgment, not the left as in the sequent calculus. This means we now have some conditions
to check.
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∆ ⊢ s =⇒ Am

∆ ⊢ s ⇐= Am

⇒/⇐
∆ ⊢ e ⇐= Am

∆ ⊢ (e : Am) =⇒ Am

⇐/⇒
∆W ; x : Am ⊢ x =⇒ Am

hyp

∆, x : Am ⊢ e ⇐= Bm

∆ ⊢ λx. e ⇐= Am ⊸ Bm

⊸I
∆ ⊢ s =⇒ Am ⊸ Bm ∆′ ⊢ e ⇐= Am

∆ ; ∆′ ⊢ s e =⇒ Bm

⊸E

∆ ⊢ eℓ ⇐= Aℓ
m (∀ℓ ∈ L)

∆ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ
m}ℓ∈L

NI
∆ ⊢ s =⇒ N{ℓ : Aℓ

m}ℓ∈L (ℓ ∈ L)

∆ ⊢ s.ℓ =⇒ Aℓ
m

NE

∆ ⊢ e ⇐= Ak

∆ ⊢ susp e ⇐= ↑m
k Ak

↑I
∆′ ≥ m ∆′ ⊢ s =⇒ ↑m

k Ak

∆W ; ∆′ ⊢ force s =⇒ Ak

↑E

∆ ⊢ e1 ⇐= Am ∆′ ⊢ e2 ⇐= Bm

∆ ; ∆′ ⊢ (e1, e2) ⇐= Am ⊗ Bm

⊗I

∆ ⊢ s =⇒ Am ⊗ Bm ∆ ≥ m ≥ r ∆′, x1 : Am, x2 : Bm ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s ((x1, x2) ⇒ e′) ⇐= Cr

⊗E

∆W ⊢ ( ) ⇐= 1m

1I
∆ ⊢ s =⇒ 1m ∆ ≥ m ≥ r ∆′ ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s (( ) ⇒ e′) ⇐= Cr

1E

∆ ⊢ e ⇐= Aℓ
m

∆ ⊢ ℓ(e) ⇐= ⊕{ℓ : Aℓ
m}ℓ∈L

⊕I

∆ ⊢ s =⇒ ⊕{ℓ : Aℓ
m}ℓ∈L ∆ ≥ m ≥ r ∆′, x : Aℓ

m ⊢ eℓ ⇐= Cr (∀ℓ ∈ L)

∆ ; ∆′ ⊢ match s (ℓ(x) ⇒ eℓ)ℓ∈L ⇐= Cr

⊕E

∆′ ≥ n ∆′ ⊢ e ⇐= An

∆W ; ∆′ ⊢ down e ⇐= ↓n
mAn

↓I
∆ ⊢ s =⇒ ↓n

mAn ∆ ≥ m ≥ r ∆′, x : An ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s (down x ⇒ e′) ⇐= Cr

↓E

Figure 3 Implicit Bidirectional Natural Deduction.

Γ, An ⊢ Cr

Γ ; ↓n
mAn ⊢ Cr

↓L
∆ ⊢ s =⇒ ↓n

mAn ∆ ≥ m ≥ r ∆′, x : An ⊢ e′ ⇐= Cr

∆ ; ∆′ ⊢ match s (down x ⇒ e′) ⇐= Cr

↓E

∆ ≥ m is needed to enforce independence on the first premise. m ≥ r together with
n ≥ m enforces independence on the second premise. Similar restrictions appear in the other
elimination rules for the positive connectives (⊗, 1, ⊕).

We often say a natural deduction is normal, which means that it cannot be reduced, but
under which collection of reductions? The difficulty here is that rewrite rules that reduce
an introduction of a connective immediately followed by its elimination are not sufficient to
achieve deductions that are analytic in the sense that they satisfy the subformula property.
To obtain analytic deductions, we have to add permuting conversions.
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15:8 Adjoint Natural Deduction

We follow a different approach by directly characterizing verifications [21, 36], which
are proofs that can be seen as constructed by applying introduction rules bottom-up and
elimination rules top-down. By definition, verifications satisfy the subformula property and
are therefore analytic and a suitable “normal form” even without defining a set of reductions.

How does this play out here? It turns out that if ∆ ⊢ e ⇐= Am then the corresponding
proof of Am (obtained by erasure of expressions) is a verification if the ⇐/⇒ rule is disallowed
and the ⇒/⇐ rule is restricted to atomic propositions P . As we will see in Section 4, this
corresponds precisely to a cut-free sequent calculus derivation where the identity is restricted
to atomic propositions. Proof-theoretically, the meaning of a proposition is determined by its
verifications, which, by definition, only decompose the given proposition into its components.
Compare this with general proofs that do not obey such a restriction.

In the next section we will prove that every proposition that has a natural deduction also
has a verification by relating the sequent calculus and natural deduction.

▶ Example 6 (Church’s λI calculus). Church [18] introduced the λI calculus in which each
bound variable requires at least one occurrence. We obtain the simply-typed λI calculus
with one mode S with σ(S) = {C} and using AS ⊸ BS as the only type constructor.

Similarly, we obtain the simply-typed λ-calculus with a single mode U with σ(U) = {W, C}
and the simply-typed linear λ-calculus with a single mode L with σ(L) = { }, using AL ⊸ BL

as the only type constructor.

▶ Example 7 (Intuitionistic Natural Deduction). We obtain (structural) intutionistic natural
deduction with a single mode U with σ(U) = {W, C}, where we can define A ∨ B = ⊕{inl :
A, inr : B} and ⊥ = ⊕{ }, A ∧ B = N{π1 : A, π2 : B} and ⊤ = N{ } and A → B = A ⊸ B.

▶ Example 8 (Intuitionistic S4). We obtain the fragment of intuitionistic S4 in its dual
formulation [42] without possibility (♢A) with two modes V and U with V > U and σ(V) =
σ(U) = {W, C}. As in the DILL example of the adjoint sequent calculus, the mode V is
inhabited only by types ↑V

UAU and we define □AU = ↓V
U↑V

UAU, which is a comonad. The
judgment ∆ ; Γ ⊢ C true with valid hypotheses ∆ and true hypothesis Γ is modeled by
∆V, ΓU ⊢ CU.

The structure of verifications is modeled almost exactly with one small exception: we
allow the form ∆V ⊢ CV. Because any proposition BV = ↑V

UAU, there is only one applicable
rule to construct a verification of this judgment: ↑I (which, not coincidentally, is invertible).

▶ Example 9 (Lax Logic). We obtain natural deduction for lax logic [9, 42] with two modes,
U and X, with U > X and σ(U) = σ(X) = {W, C}. The mode X is inhabited only by ↓U

XAU.
We define ⃝AU = ↑U

X↓U
XAU, which is a strong monad [9].

We model the rules of Pfenning and Davies [42] exactly, except that we allow hypotheses
BX, which must have the form ↓U

XAU. We can eagerly apply ↓E to obtain AU, which again
does not lose completeness by the invertibility of ↓L in the sequent calculus. We can also
obtain linear versions of these relationships following [11], although the term calculi do not
match up exactly.

4 Relating Sequent Calculus and Natural Deduction

Rather than trying to find a complete set of proof reductions for natural deduction, we
translate a proof to the sequent calculus, apply cut and identity elimination, and then translate
the resulting proof back to natural deduction. This is not essential, but it simultaneously
proves the soundness and completeness of natural deduction for adjoint logic and the
completeness of verifications. This allows us to focus on the computational interpretation in
Section 5 that is a form of substructural functional programming.
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In general we see the following patterns in the correctness proofs:
The identity corresponds to ⇒/⇐
Cut corresponds to ⇐/⇒
Right rules correspond to introduction rules
Left rules correspond to upside-down elimination rules

For negative connectives (⊸, N, ↑) they are just reversed
For positive connectives (⊗, 1, ⊕, ↓) in addition a new hypothesis is introduced in a
second premise

The last point justifies reading a hypothesis x : Am as x =⇒ Am.
For completeness of natural deduction, one might expect to prove that Γ ⊢ C in the

sequent calculus implies Γ ⊢ e ⇐= C in natural deduction. While this holds, a direct proof
would not generate a verification from a cut-free proof. Intuitively, the way the proof proceeds
instead is to take a sequent x1 : A1, . . . , xn : An ⊢ C (ignoring modes for the moment) and
annotate each antecedent with a synthesizing term and the succedent with an expression
s1 =⇒ A1, . . . , sn =⇒ An ⊢ e ⇐= C. This means we have to account for the variables in si,
and we do this with a substitution θ assigning synthesizing terms to each antecedent in Γ.
We therefore define substitutions as mapping from variables to synthesizing terms.

Substitutions θ ::= · | θ, x 7→ s

We type substitutions with the judgment ∆ ⊢ θ =⇒ Γ, where ∆ contains the free variables in
θ. This judgment must respect independence and the structural properties of each antecedent
in Γ, as defined by the following rules:

· ⊢ (·) =⇒ (·)

∆ ⊢ θ =⇒ Γ ∆′ ≥ m ∆′ ⊢ s =⇒ Am

∆ ; ∆′ ⊢ (θ, x 7→ s) =⇒ (Γ, x : Am)

We will use silently that if ∆ ⊢ θ =⇒ Γ and Γ ≥ m then ∆ ≥ m.
We write e(x) and s′(x) for terms with (possibly multiple, possibly no) occurrences of x

and e(s) and s′(s) for the result of substituting s for x, respectively. Because variables x : A

synthesize their types x =⇒ A, the following admissible rules are straightforward assuming
the premises satisfy our presuppositions.

▶ Theorem 10 (Substitution Property). The following properties are admissible:
(i) If ∆ ⊢ s =⇒ Am and ∆′, x : Am ⊢ e(x) ⇐= Cr then ∆ ; ∆′ ⊢ e(s) ⇐= Cr

(ii) If ∆ ⊢ s =⇒ Am and ∆′, x : Am ⊢ s′(x) =⇒ Bk then ∆ ; ∆′ ⊢ s′(s) =⇒ Bk

Proof. By a straightforward simultaneous rule induction on the second given derivation. In
some cases we need to apply monotonicity. For example, if m admits contraction and ∆ ≥ m,
then each hypothesis in ∆ must also admit contraction. ◀

Now we have the pieces in place to prove the translation from the sequent calculus to natural
deduction.

▶ Lemma 11 (Context Split). If ∆ ⊢ θ =⇒ (Γ; Γ′) then there exists θ1 and θ2 and ∆1 and
∆2 such that ∆ = ∆1; ∆2 and ∆1 ⊢ θ1 =⇒ Γ and ∆2 ⊢ θ2 =⇒ Γ′.

Proof. By case analysis on the definition of context merge operation and induction on
∆ ⊢ θ =⇒ (Γ; Γ′). We rely on associativity and commutativity of context merge. We show
two cases.
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Case: (Γ1, x : Am) ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am and C ∈ σ(m)

∆ ⊢ θ12 =⇒ Γ1 ; Γ2 ∆′ ≥ k ∆′ ⊢ s =⇒ Am

∆ ; ∆′ ⊢ (θ12, x 7→ s) =⇒ (Γ1 ; Γ2), x : Am

∆1 ⊢ θ1 =⇒ Γ1 and
∆2 ⊢ θ2 =⇒ Γ2 and
∆ = ∆1 ; ∆2 by IH
∆1 ; ∆′ ⊢ θ1, x 7→ s =⇒ Γ1, x : Am by rule
∆2 ; ∆′ ⊢ θ2, x 7→ s =⇒ Γ2, x : Am by rule
since C ∈ σ(m) and ∆′ ≥ m, we have C ∈ σ(k) for any Bk ∈ ∆′ by monotonicity
(∆1 ; ∆′) ; (∆2 ; ∆′) = (∆1 ; ∆2) ; ∆′ = ∆ ; ∆′ by previous line

Case: Γ1 ; (Γ2, x : Am) = (Γ1 ; Γ2), x : Am and x ̸∈ dom(Γ1)

∆ ⊢ θ12 =⇒ Γ1 ; Γ2 ∆′ ≥ k ∆′ ⊢ s =⇒ Am

∆ ; ∆′ ⊢ (θ12, x 7→ s) =⇒ ((Γ1 ; Γ2), x 7→ Am)

∆1 ⊢ θ1 =⇒ Γ1 and
∆2 ⊢ θ2 =⇒ Γ2 and
∆ = ∆1 ; ∆2 by IH
∆2 ; ∆′ ⊢ θ2, x 7→ s =⇒ Γ2, x 7→ Am by rule
∆1 ; (∆2 ; ∆′) = (∆1 ; ∆2) ; ∆′ = ∆ ; ∆′ by associativity of context merge

◀

▶ Theorem 12 (From Sequent Calculus to Natural Deduction). theoremseqtond
If Γ ⊢ Ar and ∆ ⊢ θ =⇒ Γ then ∆ ⊢ e ⇐= Ar for some e.

Proof. By rule induction on the derivation D of Γ ⊢ Ar and applications of inversion on the
definition of substitution. We present several indicative cases. In this proof we write out the
variables labeling the antecedents in sequents to avoid ambiguities.

Case: D ends in the identity.

D = ΓW ; x : Am ⊢ Am

id

∆ ⊢ θ =⇒ (ΓW ; x : Am) Given
θ = (θW, x 7→ s) By inversion
∆ = (∆W ; ∆′) with ∆W ⊢ θW =⇒ ΓW and ∆′ ⊢ s =⇒ Am By context split
∆W satisfies weakening By monotonicity
∆′ ⊢ s ⇐= Am By rule ⇒/⇐
∆W ; ∆′ ⊢ s ⇐= Am By weakening
∆ ⊢ s ⇐= Am Since ∆ = (∆W ; ∆′)

Case: D ends in cut.

D =

Γ1 ≥ m ≥ r
D1

Γ1 ⊢ Am

D2
Γ2, x : Am ⊢ Cr

Γ1 ; Γ2 ⊢ Cr

cut
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∆ ⊢ θ =⇒ (Γ1 ; Γ2) Given
∆ = (∆1 ; ∆2), θ = (θ1, θ2) with ∆1 ⊢ θ1 =⇒ Γ1 and ∆2 ⊢ θ2 =⇒ Γ2 By context split
∆1 ⊢ e1 ⇐= Am By IH on D1
∆1 ⊢ (e1 : Am) =⇒ Am by rule ⇐/⇒
∆2, x : Am ⊢ (θ2, x 7→ x) =⇒ (Γ2, x : Am) By subst. rule
∆2, x : Am ⊢ e2(x) ⇐= Cr By IH on D2
∆1 ; ∆2 ⊢ e2(e1 : Am) ⇐= Cr By substitution (Theorem 10)

◀

While there are no substitutions involved, the other direction has to take care to introduce
a cut only for uses of the ⇐/⇒ rule, and identity only for uses of the ⇒/⇐ rule. This
requires a generalization of the induction hypothesis so that the elimination rules can be
turned “upside down”.

▶ Theorem 13 (From Natural Deduction to Sequent Calculus). theoremndtoseq
(i) If ∆ ⊢ e ⇐= Cr then ∆ ⊢ Cr

(ii) If ∆ ⊢ s =⇒ Am and ∆′, x : Am ⊢ Cr then ∆ ; ∆′ ⊢ Cr

Proof. By simultaneous rule induction on ∆ ⊢ e ⇐= Cr and ∆ ⊢ s =⇒ Am. We provide
several sample cases.
Case: The derivation ends in ⇒/⇐.

D =

D′

∆ ⊢ s =⇒ Am

∆ ⊢ s ⇐= Am

⇒/⇐

x : Am ⊢ Am By identity rule
∆ ⊢ Am By IH(ii) with ∆′ = (·)

Case: The derivation ends in ⇐/⇒.

D =

D′

∆ ⊢ e ⇐= Am

∆ ⊢ (e : Am) =⇒ Am

⇐/⇒

∆′, x : Am ⊢ Cr and ∆ ≥ r Assumption
∆ ⊢ Am By IH(i) on D′

∆ ; ∆′ ⊢ Cm By rule of cut
◀

As mentioned above, verifications are the foundational equivalent of normal forms in
natural deduction. Using the two translations above we can show that every provable
proposition has a verification. While we have not written the translations out as functions,
they constitute the computational contents of our constructive proof of Theorem 12 and
Theorem 13.

▶ Theorem 14. If ∆ ⊢ e ⇐= Am then there exists a verification of ∆ ⊢ e ⇐= Am.

Proof. Given an arbitrary deduction of ∆ ⊢ e ⇐= Am, we can use Theorem 13 (i) to
translate it to a sequent derivation of ∆ ⊢ Am. By the admissibility of cut and identity
(Theorem 2), we can obtain a long cut-free proof of ∆ ⊢ Am. We observe that the translation
of Theorem 12 translates only cut to ⇐/⇒ and only identity to ⇒/⇐. Using the translation
back to natural deduction from a long cut-free proof therefore results in a verification. ◀
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5 Dynamics

As mentioned in Section 3, we obtain a simple typing judgment ∆ ⊢ e : A by collapsing the
distinction between e ⇐= A and s =⇒ A, using e as a universal notation for all expressions.
Furthermore, the annotation (e : Am) is removed and the rules ⇒/⇐ and ⇐/⇒ are also
removed. The resulting rules remain syntax-directed in the sense that for every form of
expression there is a unique typing rule.

We further annotate the mode-changing constructors with the mode of their subject,
which in each case is uniquely determined by the typing derivation. Some of these annotations
are necessary, because the computation rules depend on them; other information is redundant
but kept for clarity.

suspm
k e : ↑m

k Ak if e : Ak

downn
m e : ↓n

mAn if e : An

forcem
k e : Ak if e : ↑m

k Ak

matchm e Mr : Cr if e : Am

We give a sequential call-by-value semantics similar to the K machine (e.g., [26]), but
maintaining a global environment similar to the Milner Abstract Machine [3]. There are two
forms of state in the machine:

η ; K ▷m e (evaluate e of mode m under continuation stack K and environment η)
η ; K ◀m v (pass value v of mode m to continuation stack K in environment η)

In the first, e is an expression to be evaluated and K is a stack of continuations that the
value of e is passed to for further computation. The second then passes this value v to the
continuation stack.

The global environment η maps variables to values, but these values may again reference
other variables. In this way it is like Launchbury’s [32] heap. We can exploit this to model
the call-by-need evaluation strategy, which can be found in our extended version (link in
preamble). Because we maintain a global environment, we do not need to build closures, nor
do we need to substitute values for variables. Instead, we only (implicitly) rename variables
to make them globally unique. This form of specification allows us to isolate the dynamic use
of variables, which means we can observe the computational consequences of modes and their
substructural nature. We could also use the translation to the sequent calculus and then
observe the consequence with an explicit heap [48, 43], but in this paper we study natural
deduction and functional computation more directly.

The syntax for continuations, environments, values, and machine states is summarized in
Figure 4. Although not explicitly polarized (as in [33]), values of negative type (⊸, N, ↑)
are lazy in the sense that they abstract over unevaluated expressions, while values of positive
types (⊗, 1, ⊕, ↓) are constructed from other values. This will be significant in our analysis
of the computational properties of modes. Continuation frames just reflect the left-to-right
call-by-value nature of evaluation.

Values are typed as expressions. Frames are typed with Γ ⊢ f : Bk < Am, which means
f takes a value of type Am and passes a value of type Bk further up the continuation stack.
We show the rules for continuations. Note that the non-empty continuation rule has a mode
k in the premises that doesn’t appear in the conclusion.

∆W ⊢ ϵ : Am < Am

∆ ⊢ K : Cr < Bk ∆′ ⊢ f : Bk < Am

∆ ; ∆′ ⊢ K · f : Cr < Am

Regarding environments we face a fundamental choice. One possibility is to extend the
term language of natural deduction with explicit constructs for weakening and contraction.
Then, similar to Girard and Lafont [24], no garbage collection would be required during
evaluation since uniqueness of references to variables would be maintained.
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Frames
f ::= _ e2 | v1 _ (⊸)

| _.ℓ (N)
| forcem

k _ (↑)

| (_, e2) | (v1, _) (⊗)
| ℓ(_) (⊕)
| downn

m _ (↓)
| matchm _ Mr (⊗, 1, ⊕, ↓)

Continuations
K ::= ϵ | K · f

Environments
η ::= · | η, x 7→ v | η, [x 7→ v]

States
S ::= η ; K ▷m e

| η ; K ◀m v

Values
v ::= λx. e(x) (⊸)

| {ℓ ⇒ eℓ}ℓ∈L (N)
| suspm

k e (↑)

| (v1, v2) (⊗)
| ( ) (1)
| ℓ(v) (⊕)
| downn

m v (↓)

Figure 4 Machine States.

We pursue here an alternative that leads to slightly deeper properties. We leave the
structural rules implicit as in the rules so far. This means that variables of linear mode (that
is, a mode that allows neither weakening nor contraction) have uniqueness of reference and
their bindings can be deallocated when dereferenced. Variables of structural mode (that is, a
mode that allows both weakening and contraction) are simply persistent in the dynamics
and therefore could be subject to an explicit garbage collection algorithm.

A difficulty arises with variables that only admit contraction but not weakening. After
they are dereferenced the first time, they may or may not be dereferenced again. That is,
they could be implicitly weakened after the first access. In order to capture this we introduce
a new form of typing [x : Am] and binding [x 7→ v] we call provisional. A provisional binding
does not need to be referenced even if m does not admit weakening. The important new
property is that an “ordinary” variable y : Ak that does not admit weakening can not appear
in a binding [x 7→ v]. In addition, all the usual independence requirements have to be
observed.

The rules for typing expressions, continuations, etc. are extended in the obvious way,
allowing variables [x : Am] to be used or ignored (as a part of some ∆W ). We extend the
context merge operation as follows, keeping in mind that x : Am may require an occurrence
of x (depending on σ(m)), while [x : Am] does not.

(∆1, [x : Am] ; (∆2, [x : Am]) = (∆1 ; ∆2), [x : Am] provided C ∈ σ(m)
(∆1, x : Am) ; (∆2, [x : Am]) = (∆1 ; ∆2), x : Am provided C ∈ σ(m)
(∆1, [x : Am] ; (∆2, x : Am) = (∆1 ; ∆2), x : Am provided C ∈ σ(m)

(∆1, [x : Am]) ; ∆2 = (∆1 ; ∆2), [x : Am] provided x ̸∈ dom(∆2)
∆1 ; (∆2, [x : Am]) = (∆1 ; ∆2), [x : Am] provided x ̸∈ dom(∆1)

We have the following typing rules for environments. ∆W now means that every declaration
in ∆ can be weakened, either explicitly because its mode allows weakening, or implicitly
because it is provisional.

(·) : (·)

η : (∆ ; ∆′) ∆′ ≥ m ∆′ ⊢ v : Am

(η, x 7→ v) : (∆, x : Am)

η : (∆ ; ∆′
W) ∆′

W ≥ m ∆′
W ⊢ v : Am

(η, [x 7→ v]) : (∆, [x : Am])
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As an example, consider η0 = (x 7→ ( ), y 7→ λf. f x) where the mode of variables is
immaterial, but let’s fix them to be L with σ(L) = { }.

(·) : (·) · ⊢ ( ) : 1L

(x 7→ ( )) : (x : 1L)

...
x : 1L ⊢ λf. f x : (1L ⊸ AL) ⊸ AL

(x 7→ ( ), y 7→ λf. f x) : (y : (1L ⊸ AL) ⊸ AL)

We observe that the binding of x 7→ ( ) does not contribute a declaration x : 1 to the result
context due to the occurrence of x in the value of y.

Now consider a slightly modified version where the mode of both x and y is S with
σ(S) = {C}, and the binding of y 7→ . . . becomes provisional. This modified example is no
longer well-typed.

(·) : (·) · ⊢ ( ) : 1S

(x 7→ ( )) : (x : 1S)

...
x : 1S ⊢ λf. f x : (1S ⊸ AS) ⊸ AS

(x 7→ ( ), [y 7→ λf. f x]) : (y : [(1S ⊸ AS) ⊸ AS)]
??

The problem is at the rule application marked by ??. The variable y does not need to be
used, despite its mode, because the binding is provisional. This means that x might also not
be used because its only occurrence is in the value of y. But that is not legal, since the mode
of x does not admit weakening and the binding is not provisional.

We type abstract machine states with the type of their final answer, that is S : Cr.

η : (∆ ; ∆′) ∆ ⊢ K : Cr < Am ∆′ ⊢ e : Am

(η ; K ▷m e) : Cr

η : (∆ ; ∆′) ∆ ⊢ K : Cr < Am ∆′ ⊢ v : Am

(η ; K ◀m v) : Cr

We now continue with the computational rules for our abstract machine. The full set of
rules can be found in Figure 5. We factor out passing a value to a match, η ; v ▶m M = η′ ; e′

that produces a (possibly extended) environment η′ and expression e′. In all cases below, we
presuppose the variable names are chosen so the extended environment has unique bindings
for each variable. For an extension with mutual recursion, see our extended version (link in
preamble).

We obtain the following expected theorems of preservation and progress.

▶ Theorem 15 (Preservation). theorempreservation If S : A and S −→ S′ then S′ : A.

Proof. By cases on S −→ S′, applying inversion to the typing of S and assembling a typing
derivation of S′ from the resulting information.

The trickiest case involves dereferencing a variable x 7→ v admitting contraction. It is
sound because every variable y occurring in v must also admit contraction by monotonicity
and, furthermore, such variables still have an occurrence in the value v that is being returned.
Therefore in the typing of the environment we can now type [x 7→ v] with [x : Am]. ◀

A machine state is final if it has the form η ; ϵ ◀m v, that is, if a value is returned to the
empty continuation in some global environment η. In order to prove progress, we need to
characterize values of a given type using a canonical forms property. Note that we allow a
context ∆ to provide for the variables that may be embedded in a value of negative type
(⊸, N, ↑), but that a variable by itself does not count as a value.
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η ; ( ) ▶m (( ) ⇒ e′) = η ; e′

η ; (v1, v2) ▶m ((x1, x2) ⇒ e′(x1, x2)) = η, x1 7→ v1, x2 7→ v2 ; e′(x1, x2)
η ; ℓ(v) ▶m (ℓ(x) ⇒ e′

ℓ(x))ℓ∈L = η, x 7→ v ; e′
ℓ(x)

η ; downn
m v ▶m (down(x) ⇒ e′(x)) = η, x 7→ v ; e′(x)

η, x 7→ v, η′ ; K ▷m x −→ η, η′ ; K ◀m v (C ̸∈ σ(m))
η, x 7→ v, η′ ; K ▷m x −→ η, [x 7→ v], η′ ; K ◀m v (C ∈ σ(m))

η ; K ▷r matchm e Mr −→ η ; K · (matchm _ Mr) ▷m e (⊗, 1, ⊕, ↓)
η ; K · (matchm _ Mr) ◀m v −→ η′ ; K ▷r e′ where η ; v ▶m Mr = η′ ; e′

η ; K ▷m λx. e(x) −→ η ; K ◀m λx. e(x) (⊸)
η ; K ▷m (e1 e2) −→ η ; K · (_ e2) ▷m e1
η ; K · (_ e2) ◀m v1 −→ η ; K · (v1 _) ▷m e2
η ; K · (λx. e(x), _) ◀m v2 −→ η, x 7→ v ; K ▷m e(x)

η ; K ▷m {ℓ ⇒ eℓ}ℓ∈L −→ η ; K ◀m {ℓ ⇒ eℓ}ℓ∈L (N)
η ; K ▷m e.ℓ −→ η ; K · (_.ℓ) ▷m e

η ; K · (_.ℓ) ◀m {ℓ ⇒ eℓ}ℓ∈L −→ η ; K ▷m eℓ (ℓ ∈ L)

η ; K ▷m suspm
k e −→ η ; K ◀m suspm

k e (↑)
η ; K ▷k forcem

k e −→ η ; K · (forcem
k _) ▷m e

η ; K · (forcem
k _) ◀m suspm

k e −→ η ; K ▷k e

η ; K ▷m (e1, e2) −→ η ; K · (_, e2) ▷m e1 (⊗)
η ; K · (_, e2) ◀m v1 −→ η ; K · (v1, _) ▷m e2
η ; K · (v1, _) ◀m v2 −→ η ; K ◀m (v1, v2)

η ; K ▷m ( ) −→ η ; K ◀m ( ) (1)

η ; K ▷m ℓ(e) −→ η ; K · ℓ(_) ▷m e (⊕)
η ; K · ℓ(_) ◀m v −→ η ; K ◀m ℓ(v)

η ; K ▷m downn
m e −→ η ; K · downn

m _ ▷n e (↓)
η ; K · (downn

m _) ◀n v −→ η ; K ◀m downn
m v

Figure 5 Computation Rules.

▶ Lemma 16 (Canonical Forms). If ∆ ⊢ v : Am then one of the following applies:
(i) if Am = Bm ⊸ Cm then v = λx. e(x) for some e

(ii) if Am = N{ℓ : Aℓ
m}ℓ∈L then v = {ℓ ⇒ eℓ}ℓ∈L for some set eℓ

(iii) if Am = ↑m
k Bk then v = suspm

k e

(iv) if Am = Bm ⊗ Cm then v = (v1, v2) for values v1 and v2

(v) if Am = 1 then v = ( )
(vi) if Am = ⊕{ℓ : Bℓ

m}ℓ∈L then v = ℓ(v′) for some ℓ ∈ L and value v′

(vii) if Am = ↓n
mAn then v = downn

mv′ for some value v′

Proof. As usual, by inversion on typing and the possible forms of values, remembering that
variables do not count as values. ◀
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▶ Theorem 17 (Progress). theoremprogress If S : Cr then either S is final or S 7→ S′ for
some S′

Proof. By cases on the typing derivation for the configuration and inversion on the typing
of the embedded frames, values, and expressions. We apply the canonical forms theorem
when we need the shape of a value. ◀

Purely positive types play an important role because we view values of these types as
directly observable, while values of negative types can only be observed indirectly through
their elimination forms.

Purely positive types A+, B+ ::= A+ ⊗ B+ | 1 | ⊕{ℓ : A+
ℓ }ℓ∈L | ↓A+

Values of purely positive types are closed, even if values of negative types may not be.

▶ Lemma 18 (Positive Values). If ∆ ⊢ v : A+
r then · ⊢ v : A+

r and all declarations in ∆
admit weakening (either due to their mode or because they are provisional).

Proof. By induction on the structure of the typing derivation, recalling that variables are
not values. ◀

We call a variable x : Am linear if σ(m) = { }, that is, the mode m admits neither
weakening or contraction. We extend this term to types, bindings in the environment, etc.
in the obvious way.

▶ Theorem 19 (Freedom from Garbage). theoremfreedom If · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ;

ϵ ◀r v, then η does not contain a binding x 7→ v with σ(m) = { } where m is the mode of x.

Proof. Because A+
r is purely positive, we know by Lemma 18 that v is closed.

When the continuation K is empty, the typing rule for valid states implies that η : ∆ and
∆ ⊢ v : A+

r for some ∆. Since v is closed, ∆ cannot contain any linear variables.
Then we prove by induction on the typing of η that none of variables in η can be linear.

In the inductive case
η′ : (∆ ; ∆′) ∆′ ≥ m ∆′ ⊢ v : Am

(η′, x 7→ v) : (∆, x : Am)

we know that m must admit weakening or contraction or both. Since ∆′ ≥ m, by monotonicity,
∆′ must also admit weakening or contraction and we can apply the induction hypothesis to
η′ : (∆ ; ∆′). ◀

We call a variable xm, an expression e : Am, or a binding x 7→ v strict if σ(m) ⊆ {C},
that is, m does not admit weakening.

▶ Theorem 20 (Strictness). theoremstrictness If · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ; ϵ ◀r v,

then every strict binding in η is of the form [x 7→ v].

Proof. Because A+
r is purely positive, we know by Lemma 18 that v is closed.

When the continuation K is empty, the typing rule for valid states implies η : ∆ and
∆ ⊢ v : A+

r for some ∆. Since v is closed, ∆ contains strict variables only in the form
[x : Am].

We prove by induction on the typing of η all strict variables in η have the form [x 7→ w].
There are two inductive cases.

η′ : (∆ ; ∆′) ∆′ ≥ m ∆′ ⊢ w : Am

(η′, x 7→ w) : (∆, x : Am)
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Since m is not strict, it must admit weakening. Since ∆′ ≥ m, every variable in ∆′ must
also admit weakening by monotonicity, so we can apply the induction hypothesis to ∆ ; ∆′.

η′ : (∆ ; ∆′
W) ∆′

W ≥ m ∆′
W ⊢ w : Am

(η′, [x 7→ v]) : (∆, [x : Am])

Any declaration in ∆′
W either directly admits weakening or is of the form [y : Ak] for a strict

k so we can apply the induction hypothesis to η′ : (∆ ; ∆′
W). ◀

In this context of call-by-value, this property expresses that every strict variable will
be read at least once, since a binding [x 7→ v] arises only from reading the value of x. In
call-by-need it means that the value is indeed needed.

▶ Theorem 21 (Dead Code). theoremdeadcode If · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ; ϵ ◀r v

then every state during the computation either evaluates ▷m or returns ◀m for m ≥ r.

Proof. Most rule do not change the subject’s mode. Several rules potentially raise the mode,
name evaluating a match, a force, or a down. For each of these there is a corresponding
rule lowering the mode back to its original, namely return a value to a match, to a force,
or to a down.

We say the mode of a frame f is the mode of the following state after a value is returned
to f . We prove by induction over the computation that in all states, all continuation frames
and subjects have modes m ≥ r. ◀

▶ Theorem 22 (Erasure). corollaryerasure Assume · ⊢ e : A+
r and · ; ϵ ▷r e −→∗ η ; ϵ ◀r v.

Let Ω be a new term of every type and no transition rule.
If we obtain e′ by replacing all subterms of type Bk for k ̸≥ r with Ω, then evaluation

e′ still terminates in a final state. This final state differs from v in that subterms of mode
k ̸≥ r are also replaced by Ω.

Proof. The computation of e′ parallels that of e. It would only get stuck for a state
η′ ; K ′ ▷k Ω, but that is impossible by the preceding dead code theorem since k ̸≥ r. ◀

6 Algorithmic Type Checking

The bidirectional type system of Section 3 is not yet algorithmic, among other things because
splitting a given context into ∆ = (∆1 ; ∆2) is nondeterministic. One standard solution
is to track which hypotheses are used in one premise (which ends up ∆1), subtract them
from the available ones, and pass the remainder into the second premise (which ends up ∆2
together with an overall remainder) [14]. This originated in proof search, but here when
we actually have a proof terms available to check, other options are available. Additive
resource management computes the used hypotheses (rather than the unused ones) and
merges (“adds”) them [37, 5], which is conceptually slightly simpler and also has been shown
to be more efficient [28].

The main complication in the additive approach are internal and external choice, more
specifically, the NR and ⊕L rules when the choice is empty. For example, while checking
∆ ⊢ { } ⇐= N{ } any subset of ∆ could be used. We reuse the idea from the dynamics
to have provisional hypotheses [x : Am]. In the additive approach, the context merge for
provisional hypotheses then no longer requires contraction since such variables do not occur
(but could be considered as used). There are a plethora of different judgments, but it is not
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clear how to simplify them. In defining the additive approach, the main two judgments are
Γ ⊢ s =⇒ Am / Ξ and Γ ⊢ e ⇐= Am / Ξ which we summarize as Γ ⊢ e ⇐⇒ Am / Ξ where Γ
is a plain (that is, free of provisional hypotheses) context containing all variables that might
occur in e (regardless of mode or structural properties) and Ξ is a context that may contain
provisional hypotheses. We maintain the mode invariant Ξ ≥ m (even if it may be the case
that Γ ̸≥ m). The rules can be found in Figure 6. We show some of the crucial properties to
understand the rules, defining some of these operations later with these properties in mind.

Because we keep the contexts ∆ free of provisional hypotheses, we define the relation
Ξ ⊒ ∆ which may remove or keep provisional hypotheses.

(Ξ, x : Am) ⊒ (∆, x : A) if Ξ ⊒ ∆
(Ξ, [x : Am]) ⊒ (∆, x : A) if Ξ ⊒ ∆
(Ξ, [x : Am]) ⊒ ∆ if Ξ ⊒ ∆

(·) ⊒ (·)

With this relation, we can state the soundness of algorithmic typing.

▶ Theorem 23 (Soundness of Algorithmic Typing).
If Γ ⊢ e ⇐⇒ Am / Ξ and Ξ ⊒ ∆ then ∆ ⊢ e ⇐⇒ Am.

Proof. By rule induction on the algorithmic typing derivation and inversion of the Ξ ⊒ ∆
judgment. ◀

For completeness we need a different relation ∆ ≥ Ξ which means that Ξ contains a
legal subset of the hypotheses in ∆. This means hypotheses in ∆ might be in Ξ (possibly
provisional) or not, but then only if they can be weakened.

(∆, x : Am) ≥ (Ξ, x : Am) if ∆ ≥ Ξ
(∆, x : Am) ≥ (Ξ, [x : Am]) if ∆ ≥ Ξ
(∆, x : Am) ≥ Ξ if ∆ ≥ Ξ provided W ∈ σ(m)

(·) ≥ (·)

With this relation we can state the completeness of algorithmic typing.

▶ Theorem 24 (Completeness of Algorithmic Typing).
If ∆ ⊢ e ⇐⇒ Am then ∆ ⊢ e ⇐⇒ Am / Ξ for some Ξ with ∆ ≥ Ξ

Proof. By rule induction on the given bidirectional typing. ◀

For the algorithm itself we need several operations. Some key properties of these operations
that are needed in the soundness and completness proof can be found in the extended version
of this paper (link in preamble).

The first, Ξ \ x : A removes x : A from Ξ if this is legal operation. Its prototypical use is
in the ⊸I rule. For the rule application to be correct the new variable x : Am must either
have been used and therefore occur in Ξ, or the mode m must allow weakening.

(Ξ, x : Am) \ x : Am = Ξ
(Ξ, [x : Am]) \ x : Am = Ξ

(Ξ, y : Bk) \ x : Am = (Ξ \ x : Am), y : Bk provided y ̸= x

(Ξ, [y : Bk]) \ x : Am = (Ξ \ x : Am), [y : Bk] provided y ̸= x

(·) \ x : Am = (·) provided W ∈ σ(m)
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We also need two forms of context restriction. The first Ξ∥m removes all hypotheses whose
mode is not greater or equal to m to restore our invariant. It fails if Ξ contains a used
hypothesis Br with r ̸≥ m. It is used only in the ↑I rule to restore the invariant.

The second form of context restriction occurs in the case of an empty internal or external
choice. All of the hypothesis that are allowed by the independence principle could be
considered used, but they might also not. We write [Γ|m]. It is used only in the nullary case
for internal and external choice.

(Ξ, x : Ak)∥m = Ξ∥m, x : Ak (k ≥ m) [(Γ, x : Ak)|m] = [Γ|m], [x : Ak] (k ≥ m)
(Ξ, [x : Ak])∥m = Ξ∥m, [x : Ak] (k ≥ m)
(Ξ, [x : Ak])∥m = Ξ∥m (k ̸≥ m) [(Γ, x : Ak)|m] = [Γ|m] (k ̸≥ m)

(·)∥m = (·) [(·)|m] = (·)

We come to the final operation Ξ1 ⊔ Ξ2 which is needed for NI and ⊕E. Variables used
in one branch must also be used in all other branches, or be available for weakening, either
because they are provisional or because their mode admits weakening. This idea is captured
formally by the definition of ⊔.

(Ξ1, x : Am) ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, [x : Am]) ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, x : Am) ⊔ (Ξ2, [x : Am]) = (Ξ1 ⊔ Ξ2), x : Am

(Ξ1, [x : Am]) ⊔ (Ξ2, [x : Am]) = (Ξ1 ⊔ Ξ2), [x : Am]
(Ξ1, x : Am) ⊔ Ξ2 = (Ξ1 ⊔ Ξ2), x : Am for x ̸∈ dom(Ξ2), W ∈ σ(m)

Ξ1 ⊔ (Ξ2, x : Am) = (Ξ1 ⊔ Ξ2), x : Am for x ̸∈ dom(Ξ1), W ∈ σ(m)
(Ξ1, [x : Am]) ⊔ Ξ2 = Ξ1 ⊔ Ξ2 for x ̸∈ dom(Ξ2)

Ξ1 ⊔ (Ξ2, [x : Am]) = Ξ1 ⊔ Ξ2 for x ̸∈ dom(Ξ1)
(·) ⊔ (·) = (·)

7 Conclusion

We have presented a natural deduction formulation of adjoint logic. By carefully constructing
these rules and the translations to and from the sequent calculus, we automatically obtained
the presence of long normal forms for the proofs in natural deduction. We then presented a
computational interpretation in the form of a state machine with a global context which leads
to proofs of some properties of programs that come directly from having a mode hierarchy.
Lastly, we presented an algorithmic type checking system, that due to the empty sum and
(positive) product constructors requires a somewhat complicated approach.

There have been recent proposals to extend the adjoint approach to combining logics
to dependent types. Licata et al. [34, 35] permit dependent types and richer connections
between the logics that are combined, but certain properties such as independence are no
longer fundamental and have to be proved in each case where they apply. While they mostly
stay within a sequent calculus, they also briefly introduce natural deduction. They further
provide a categorical semantics. Hanukaev and Eades [25] also permit dependent types and
use the graded/algebraic approach to defining their system. However, their approach to
dependency appears incompatible with control of contraction, so their adjoint structure is
not nearly as general as ours. They also omit empty internal choice (and external choice
altogether), which created some of the trickiest issues in our system. Curien et al. [19]
investigate call-by-push-value [33] and provide a semantic foundation for the adjunction
properties that is flexible enough to accommodate effects. It also incorporates Benton’s mixed

FSCD 2024



15:20 Adjoint Natural Deduction

Γ ⊢ s =⇒ Am / Ξ

Γ ⊢ s ⇐= Am / Ξ
⇒/⇐

Γ ⊢ e ⇐= Am / Ξ

Γ ⊢ (e : Am) =⇒ Am / Ξ
⇐/⇒

x : Am ∈ Γ

Γ ⊢ x =⇒ Am / (x : Am)
hyp

Γ, x : Am ⊢ e ⇐= Bm / Ξ

Γ ⊢ λx. e ⇐= Am ⊸ Bm / (Ξ \ x : Am)
⊸I

Γ ⊢ s =⇒ Am ⊸ Bm / Ξ Γ ⊢ e ⇐= Am / Ξ′

Γ ⊢ s e =⇒ Bm / Ξ ; Ξ′
⊸E

Γ ⊢ { } ⇐= Nm{ } / [Γ|m]
NI0

Γ ⊢ eℓ ⇐= Aℓ
m / Ξℓ (∀ℓ ∈ L ̸= ∅)

Γ ⊢ {ℓ ⇒ eℓ}ℓ∈L ⇐= N{ℓ : Aℓ
m}ℓ∈L / ⊔ℓ∈LΞℓ

NI

Γ ⊢ e =⇒ N{ℓ : Aℓ
m}ℓ∈L / Ξ (ℓ ∈ L)

Γ ⊢ e.ℓ =⇒ Aℓ
m / Ξ

NE

Γ ⊢ e ⇐= Ak / Ξ

Γ ⊢ susp e ⇐= ↑m
k Ak / Ξ∥m

↑I
Γ ⊢ s =⇒ ↑m

k Ak / Ξ

Γ ⊢ force s =⇒ Ak / Ξ
↑E

Γ ⊢ e1 ⇐= Am / Ξ Γ ⊢ e2 ⇐= Bm / Ξ′

Γ ⊢ (e1, e2) ⇐= Am ⊗ Bm / Ξ ; Ξ′
⊗I

Γ ⊢ s =⇒ Am ⊗ Bm / Ξ m ≥ r Γ, x1 : Am, x2 : Bm ⊢ e′ ⇐= Cr / Ξ′

Γ ⊢ match s ((x1, x2) ⇒ e′) ⇐= Cr / Ξ ; (Ξ′ \ x1 : Am \ x2 : Bm)
⊗E

Γ ⊢ ( ) ⇐= 1m / (·)
1I

Γ ⊢ s =⇒ 1m / Ξ m ≥ r Γ ⊢ e′ ⇐= Cr / Ξ′

Γ ⊢ match s (( ) ⇒ e′) ⇐= Cr / Ξ ; Ξ′
1E

Γ ⊢ e ⇐= Aℓ
m / Ξ (ℓ ∈ L)

Γ ⊢ ℓ(e) ⇐= ⊕{ℓ : Aℓ
m}ℓ∈L / Ξ

⊕I
Γ ⊢ s =⇒ ⊕m{ } / Ξ m ≥ r

Γ ⊢ match s ( ) ⇐= Cr / Ξ ; [Γ|r]
⊕E0

Γ ⊢ s =⇒ ⊕{ℓ : Aℓ
m}ℓ∈L / Ξ m ≥ r Γ, x : Aℓ

m ⊢ eℓ ⇐= Cr / Ξ′
ℓ (∀ℓ ∈ L ̸= ∅)

Γ ⊢ match s (ℓ(x) ⇒ eℓ)ℓ∈L ⇐= Cr / Ξ ; ⊔ℓ∈L(Ξ′
ℓ \ x : Aℓ

m)
⊕E

Γ ⊢ e ⇐= An / Ξ

Γ ⊢ down e ⇐= ↓n
mAn / Ξ

↓I
Γ ⊢ s =⇒ ↓n

mAn / Ξ m ≥ r Γ, x : An ⊢ e′ ⇐= Cr / Ξ′

Γ ⊢ match s (down x ⇒ e′) ⇐= Cr / Ξ ; (Ξ′ \ x : An)
↓E

Figure 6 Algorithmic Typing for Natural Deduction.

linear/nonlinear calculus [7] in the form of a sequent calculus but does not consider a general
preorder of modes or more flexible structural properties. None of these propose an algorithm
for type checking or an operational semantics that would exploit the substructural and mode
properties to obtain “free theorems” about well-typed programs as in our dynamics.

We are pursuing several avenues building on the results of this paper. On the foundational
side, we are looking for a direct algorithm to convert an arbitrary natural deduction into a
verification. On the programming side, we are considering mode polymorphism: type-checking
the same expression against multiple different modes to avoid code duplication. On the
application side, we are considering staged computation, quotation, and metaprogramming,
decomposing the usual type □A or its contextual analogue along the lines of Example 8.
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Abstract
Motivated by an application where we try to make proofs for Description Logic inferences smaller
by rewriting, we consider the following decision problem, which we call the small term reachability
problem: given a term rewriting system R, a term s, and a natural number n, decide whether there
is a term t of size ≤ n reachable from s using the rules of R. We investigate the complexity of
this problem depending on how termination of R can be established. We show that the problem is
NP-complete for length-reducing term rewriting systems. Its complexity increases to N2ExpTime-
complete (NExpTime-complete) if termination is proved using a (linear) polynomial order and to
PSpace-complete for systems whose termination can be shown using a restricted class of Knuth-
Bendix orders. Confluence reduces the complexity to P for the length-reducing case, but has no
effect on the worst-case complexity in the other two cases.
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1 Introduction

Term rewriting [7, 28] is a well-investigated formalism, which can be used both for computation
and deduction. A term rewriting system R consists of rules, which describe how a term s

can be transformed into a new term t, in which case one writes s →R t. In the computation
setting, where term rewriting is akin to functional programming [12], a given term (the input)
is iteratively rewritten into a normal form (the output), which is a term that cannot be
further rewritten. Termination of R prevents infinite rewrite chains, and thus ensures that a
normal form can always be reached, whereas confluence guarantees that the output is unique,
despite the nondeterminism inherent to the rewriting process (which rule to apply when
and where). In the deduction setting, which is, e.g., relevant for first-order theorem proving
with equality [25], one is interested in whether a term s can be rewritten into a term t by
iteratively applying the rules of R in both directions. If R is confluent and terminating, this
problem can be solved by computing normal forms of s and t, and then checking whether
they are equal. In the present paper, we want to employ rewriting for a different purpose:
given a term s, we are interested in finding a term t of minimal size that can be reached from
s by rewriting (written s

∗→R t), but this term need not be in normal form. To assess the
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16:2 The Small Term Reachability Problem

R1 A ⊑ B B ⊑ C

A ⊑ C
R2 A ⊑ B

∃r.A ⊑ ∃r.B
R3 A ⊑ ∃r.A1 A1 ⊑ B1 ∃r.B1 ⊑ B

A ⊑ B

Figure 1 Three proof rules for EL.

complexity of this computation problem, we investigate the corresponding decision problem:
given a term rewriting system R, a term s, and a natural number n, decide whether there is
a term t of size ≤ n such that s

∗→R t. We call this the small term reachability problem.
Our interest in this problem stems from the work on finding small proofs [3, 4] for

Description Logic (DL) inferences [6], which are then visualized in an interactive explanation
tool [2]. For the DL EL [5], we employ the highly-efficient reasoner ELK [20] to compute
proofs. However, the proof calculus employed by ELK is rather fine-grained, and thus
produces relatively large proofs. Our idea was thus to generate smaller proofs by rewriting
several proof steps into a single step. As a (simplified) example, consider the three proof rules
in Figure 1. It is easy to see that one needs one application of R2 followed by two of R1 to
produce the same consequence as a single application of R3. Thus, if one looks for patterns in
a proof that use R1 and R2 in this way, and replaces them by the corresponding applications
of R3, then one can reduce the size of a given proof. Given finitely many such proof rewriting
rules and a proof, the question is then how to use the rules to rewrite the given proof into
one of minimal size. Since tree-shaped proofs as well as DL concept descriptions can be
represented as terms, this question can be seen as an instance of the small term reachability
problem introduced above.

In this paper, we investigate the complexity of the small term reachability problem on the
general level of term rewriting systems (TRSs). It turns out that this complexity depends on
how termination of the given TRS can be shown. The paper contains the following main
contributions:

1. Small term reachability for length-reducing TRSs

If the introduced rewrite rules are length-reducing, i.e., each rewrite step decreases the size of
the term (proof), like the rule in our example, then termination of all rewrite sequences is
guaranteed. In general, it may nevertheless be the case that one can generate two normal
forms of different sizes. Confluence prevents this situation, i.e., then it is sufficient to generate
only one rewrite sequence to produce a term (proof) of minimal size. In Section 4 we
show that the small term reachability problem for length-reducing term rewriting systems is
NP-complete in general, but becomes solvable in polynomial time if we restrict ourselves to
confluent systems.

2. Small term reachability for TRSs whose termination is shown by polynomial orders

It also makes sense to consider sets of rules where not every rule is length-reducing, e.g., if
one first needs to reshape a proof before a length-reducing rule can be applied, or if one
translates between different proof calculi. In this extended setting, termination is no longer
trivially given, and thus one first needs to show that the introduced set of rules is terminating,
which can be achieved with the help of a reduction order [7, 28]. We show in this paper that
the complexity of the small term reachability problem depends on which reduction order is
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used for this purpose. More precisely, in Section 5 we consider term rewriting systems that
can be proved terminating using a polynomial order [22], and show that in this case the small
term reachability problem is N2ExpTime-complete, both in the general and the confluent
case. If the definition of the polynomial order employs only linear polynomials, then the
complexity of the problem is reduced to NExpTime, where again hardness already holds
for confluent systems. Here, as usual, NExpTime (N2ExpTime) is the class of all decision
problems solvable by a nondeterministic Turing machine in O(2p(n)) (O(22p(n))) steps, where
n is the size of the problem and p(n) is a polynomial in n.

3. Small term reachability for TRSs whose termination is shown by KBO

In Section 6, we investigate the impact that using a Knuth-Bendix order (KBO) [21] for
the termination proof has on the complexity of the small term reachability problem. In the
restricted setting without unary function symbols of weight zero, the problem is PSpace-
complete, again both in the general and the confluent case. The complexity class PSpace
consists of all decision problems solvable by a deterministic Turing machine in O(p(n)) space,
where n is the size of the problem and p(n) is a polynomial in n.

Our proofs of the results mentioned above strongly depend on work on the derivational
complexity of term rewriting systems, which links the reduction order employed for the
termination proof with the maximal length of reduction sequences as a function of the
size of the start term (see e.g., [14, 15, 16, 23]). To obtain reasonable complexity classes,
we restricted ourselves to reduction orders where the resulting bound on the derivational
complexity is not “too high”. In particular, we use the results of the seminal paper by
Hofbauer and Lautemann [16], which show that termination proofs with a (linear) polynomial
order yield a double-exponential (exponential) upper bound on the length of derivation
sequences whereas termination proofs with a KBO without unary function symbols of weight
zero yield an exponential such bound. We also make use of the term rewriting systems
employed in the proofs showing that these bounds are tight. A connection between the
derivational complexity of term rewriting systems and complexity classes has been established
in [9] for polynomial orders and in [10] for Knuth-Bendix orders. While this work considers a
different problem since it views term rewriting systems as devices for computing functions by
generating a normal form, and uses them to characterize complexity classes, the constructions
utilized in the proofs in [9, 10] are similar to the ones we use in our hardness proofs. A
notable difference between the two problems is the impact that confluence has on the obtained
complexity class: while in our setting confluence only reduces the complexity in the case of
length-reducing systems, in [9] it also reduces the complexity (from the nondeterministic to
the respective deterministic class) for the case of systems shown terminating with a (linear)
polynomial order.

In the next section, we briefly recall basic notions from term rewriting, including the
definitions of polynomial and Knuth-Bendix orders. In Section 3, we introduce the small term
reachability problem and show that it is undecidable in general, but decidable for terminating
systems. Sections 4, 5, and 6 respectively consider the length-reducing, polynomial order,
and Knuth-Bendix order case. We conclude with a brief discussion of possible future work.

2 Preliminaries

We assume that the reader is familiar with basic notions and results regarding term rewriting.
In this section, we briefly recall the relevant notions, but refer the reader to [7, 28] for details.
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16:4 The Small Term Reachability Problem

Given a finite set of function symbols with associated arities (called the signature) and a
disjoint set of variables, terms are built in the usual way. Function symbols of arity 0 are
also called constant symbols. For example, if x, y are variables, c is a constant symbol, and f

a binary function symbol, then c, f(x, c), f(f(x, c), c) are terms. The size |t| of a term t is
the number of occurrences of functions symbols and variables in t (e.g., |f(f(x, c), c)| = 5).
If f is a function symbol or variable, then |t|f counts the number of occurrences of f in t

(e.g., |f(f(x, c), c)|f = 2). As usual, nested applications of unary function symbols are often
written as words. For example, g(g(h(h(g(x))))) is written as gghhg(x) or g2h2g(x).

A rewrite rule (or simply rule) is of the form l → r where l, r are terms such that l is not
a variable and every variable occurring in r also occurs in l. In this paper, a term rewriting
system (TRS) is a finite set of rewrite rules, and thus we do not mention finiteness explicitly
when formulating our complexity results. A given TRS R induces the binary relation →R

on terms. Basically, we have s →R t if there is a rule l → r in R such that s contains
a substitution instance σ(l) of l as subterm, and t is obtained from s by replacing this
subterm with σ(r). Recall that a substitution is a mapping from variables to terms, which is
homomorphically extended to a mapping from terms to terms. For example, if R contains
the rule hh(x) → g(x), then f(hhh(c), c) →R f(gh(c), c) and f(hhh(c), c) →R f(hg(c), c).
The reflexive and transitive closure of →R is denoted as ∗→R, i.e., s

∗→R t holds if there are
n ≥ 1 terms t1, . . . , tn such that s = t1, t = tn, and ti →R ti+1 for i = 1, . . . , n − 1.

Two terms s1, s2 are joinable with R if there is a term t such that si
∗→R t holds for i = 1, 2.

The relation →R is confluent if s
∗→R si for i = 1, 2 implies that s1 and s2 are joinable

with R. It is terminating if there is no infinite reduction chain t0 →R t1 →R t2 →R . . .. If
→R is confluent (terminating), then we also call R confluent (terminating). The term t is
irreducible if there is no term t′ such that t →R t′. If s

∗→R t and t is irreducible, then we
call t a normal form of s. If R is confluent and terminating, then every term has a unique
normal form. If R is terminating, then its confluence is decidable [21]. Termination can be
proved using a reduction order, which is a well-founded order ≻ on terms such that l ≻ r for
all l → r ∈ R implies s ≻ t for all terms s, t with s →R t. Since ≻ is well-founded, this then
implies termination of R. If l ≻ r holds for all l → r ∈ R, then we say that R can be shown
terminating with the reduction order ≻. The following is a simple reduction order.

▶ Example 1. If we define s ≻ t if |s| > |t| and |s|x ≥ |t|x for all variables x, then ≻ is
a reduction order (see Exercise 5.5 in [7]). For example, hh(x) ≻ g(x), and thus the TRS
R = {hh(x) → g(x)} is terminating. As illustrated in Example 5.2.2 in [7], the condition on
variables is needed to obtain a reduction order.

This order can only show termination of length-reducing TRSs R, i.e., where s →R t implies
|s| > |t|. We now recapitulate the definitions of more powerful reduction orders [7, 28].

Polynomial orders

To define a polynomial order, one assigns to every n-ary function symbol f a polynomial Pf

with coefficients in the natural numbers N and n indeterminates such that Pf depends on all
these indeterminates. To ensure that this implies (strong) monotonicity of the polynomial
order, we require that constant symbols c must be assigned a polynomial of degree 0 whose
coefficient is > 0. Such an assignment also yields an assignment of polynomials Pt to terms t.

▶ Example 2. Assume that + is binary, s, d, q are unary, and 0 is a constant. We assign
the polynomial P+ = x + 2y + 1 to +, Ps = x + 2 to s, Pd = 3x + 1 to d, Pq = 3x2 + 3x + 1
to q, and P0 = 3 to 0. For the terms l = q(s(x)) and r = q(x) + s(d(x)) we then
obtain the associated polynomials Pl = 3(x + 2)2 + 3(x + 2) + 1 = 3x2 + 15x + 19 and
Pr = 3x2 + 3x + 1 + 2(3x + 1 + 2) + 1 = 3x2 + 9x + 8.
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The polynomial order induced by such an assignment is defined as follows: t ≻ t′ if
Pt evaluates to a larger natural number than Pt′ for every assignment of natural numbers
> 0 to the indeterminates of Pt and Pt′ . In our example, the evaluation of Pl is obviously
always larger than the evaluation of Pr, and thus l ≻ r. As shown, e.g., in Section 5.3 of [7],
polynomial orders are reduction orders, and thus can be used to prove termination of TRSs.

Knuth-Bendix orders

To define a Knuth-Bendix order (KBO), one must assign a weight w(f) to all function
symbols and variables, and define a strict order > on the function symbols (called precedence)
such that the following is satisfied:

All weights w(f) are non-negative real numbers, and there is a weight w0 > 0 such that
w(x) = w0 for all variables x and w(c) ≥ w0 for all constant symbols c.
If there is a unary function symbol h with w(h) = 0, then h is the greatest element w.r.t.
>, i.e., h > f for all function symbols f ̸= h. Such a unary function symbol h is then
called a special symbol. Obviously, there can be at most one special symbol.

Since in this paper we only consider KBOs without special symbol, we restrict our definition
of KBOs to this case. A given weight function w and strict order > without special symbol
induces the following KBO ≻: s ≻ t if |s|x ≥ |t|x for all variables x and

w(s) > w(t), where w(u) :=
∑

f occurs in u w(f)·|u|f for all terms u, or
w(s) = w(t) and one of the following two conditions is satisfied:

s = f(s1, . . . , sm), t = g(t1, . . . , tn), and f > g.
s = f(s1, . . . , sm), t = f(t1, . . . , tm), and there is i, 1 ≤ i ≤ m, such that
s1 = t1, . . . , si−1 = ti−1, and si ≻ ti.

A proof of the fact that KBOs are reduction orders can, e.g., be found in Section 5.4.4 of [7].

▶ Example 3. Let 0, 1, 1′ be unary function symbols and c a constant symbol, and consider
the following TRS, which is similar to the one introduced in the proof of Lemma 7 in [10]:

R = {1(c) → 0(c), 0(c) → 1′(c), 0(1′(x)) → 1′(1(x)), 1(1′(x)) → 0(1(x))}.

Basically, this TRS realizes a binary down counter, and thus it is easy to see that, starting
with the binary representation 10n(c) of the number 2n, the TRS R can make ≥ 2n reduction
steps to arrive at the term 0n+1(c). For example, 100(c) →R 101′(c) →R 11′1(c) →R

011(c) →R 010(c) →R 011′(c) →R 001(c) →R 000(c). Termination of R can be shown using
the following KBO: assign weight 1 to all function symbols and variables, and use the
precedence order 1 > 0 > 1′.

3 Problem definition and (un)decidability results

In this paper, we investigate the complexity of the following decision problem.

▶ Definition 4. Given a TRS R, a term s, and a natural number n, the small term reachability
problem asks whether there exists a term t such that s

∗→R t and |t| ≤ n.

The name “small term reachability problem” is motivated by the fact that we want to use the
TRS R to turn a given term s into a term whose size is as small as possible. The introduced
problem is the decision variant of this computation problem. A solution to the computation
problem, which computes a term t of minimal size reachable with R from s, of course also
solves the decision variant of the problem. Thus, complexity lower bounds for the decision
problem transfer to the computation problem.
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It is easy to see that this problem is in general undecidable, but decidable for terminating
TRSs. For non-terminating systems, confluence is not sufficient to obtain decidability.

▶ Proposition 5. The small term reachability problem is in general undecidable for confluent
TRSs, but is decidable for systems that are terminating.

Proof. Undecidability in the general case follows, e.g., from the fact that TRSs can simulate
Turing machines (TMs) [17]. (We will also use Turing machines for the proofs of the
hardness results in the remainder of the paper.) More precisely, the reduction introduced in
Section 5.1.1 of [7] transforms a given TM M into a TRS RM such that (among other things)
the following holds: there is an infinite run of M on the empty input iff there is an infinite
reduction sequence of RM starting with the term s0 that encodes the initial configuration
of M for the empty input. In addition, if M is deterministic, then RM is confluent. We
can now add rules to RM that apply to all terms encoding a halting configuration of M,
and trigger further rules that reduce such a term to one of size 1. Since the term s0 has size
larger than one and the rules of RM never decrease the size of a term, this yields a reduction
of the (undecidable) halting problem for deterministic TMs to the small term reachability
problem for confluent TRSs.

Given a terminating TRS R and a term s, we can systematically generate all terms
reachable from s by iteratively applying →R. Since R is finite, →R is finitely branching.
Together with termination, this means (by König’s Lemma) that there are only finitely many
terms reachable with R from s (see Lemma 2.2.4 in [7]). We can then check whether, among
them, there is a term of size at most n. ◀

In the following, we study the complexity of the small term reachability problem for
terminating TRSs, depending on how their termination can be shown.

4 Length-reducing term rewriting systems

In this section, we investigate the complexity of the small term reachability problem for
length-reducing TRSs, i.e., TRSs where each rewrite step decreases the size of the term.

We start with showing an NP upper bound. Let R, s, n be an instance of the small term
reachability problem, where R is assumed to be length-reducing. This assumption implies
that the length k of any rewrite sequence s →R s1 →R s2 →R . . . →R sk issuing from s is
bounded by |s|. In addition, for each term si there are only polynomially many terms s′ (in
the size of s and R) such that si →R s′. Thus, the following yields an NP procedure for
deciding the small term reachability problem:

guess a rewrite sequence s →R s1 →R s2 →R . . . →R sk of length k ≤ |s|;
check whether |sk| ≤ n holds. If the answer is “yes” then accept, and reject otherwise.

▶ Lemma 6. The small term reachability problem is in NP for length-reducing TRSs.

If the length-reducing system R is confluent, then it is sufficient to generate an arbitrary
terminating (i.e., maximal) rewrite sequence starting in s, i.e., a sequence s →R s1 →R

s2 →R . . . →R sk such that sk is irreducible. Obviously, we have k ≤ |s|, and thus such a
sequence can be generated in polynomial time. We claim that there is a term t of size ≤ n

reachable from s iff |sk| ≤ n. Otherwise, the smallest term t reachable from s is different
from sk. But then t and sk are both reachable from s, and thus must be joinable due to the
confluence of R. As sk is irreducible, this implies t →∗

R sk and thus, |t| ≥ |sk|, i.e., t is not
smaller than sk.
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▶ Proposition 7. For confluent length-reducing TRSs, the small term reachability problem
can be decided in deterministic polynomial time.

In general, however, the problem is NP-hard. We prove NP-hardness by showing that
any polynomially time bounded nondeterministic Turing machine can be simulated by a
length-reducing TRS. Thus, assume that M is such a TM and that its time-bound is given
by the polynomial p. As in [7] we assume that in every step M either moves to the left or to
the right, where the tape of the TM is infinite in both directions. In addition, we assume
without loss of generality that M has exactly one accepting state q̂. We view the tape
symbols of M as unary function symbols and the states of M as binary function symbols.
We assume that q0 is the initial state of M and that b is the blank symbol. Furthermore, let
# be a constant symbol and f be a unary function symbol different from the tape symbols.

Given an input word w = a1 . . . aℓ for M, we construct the term

t(w) := bp(ℓ)(q0(a1 . . . aℓb
p(ℓ)−ℓ(#), fp(ℓ)(#))).

Intuitively, the starting b symbols together with the first argument of q0 in t(w) provide a
tape that is large enough for a p(ℓ)-time bounded TM to run on for the given input w of
length ℓ. The first argument of a state symbol represents the part of the tape that starts at
the position of the head. Thus, in t(w), a1 is the tape symbol at the position of the head
and a2 . . . aℓ are the symbols to the right of it. The second argument of a state symbol is
a unary down counter from which one f is removed in every step that M makes. This is
needed to ensure that the constructed TRS is length-reducing. This counter is large enough
to allow M to make the maximal possible number of p(ℓ) steps.

Basically, we now express the transitions of M as usual by rewrite rules (as, e.g., done in
Definition 5.1.3 of [7]), but with three differences:

since the term t(w) provides enough tape for a TM that can make at most p(ℓ) steps, the
special cases that treat a situation where the end of the represented tape is reached and
one has to add a blank are not needed;
since we fix as start term t(w) a configuration term (i.e., a term that encodes a configur-
ation of the TM), the additional effort expended in [7] to deal with non-configuration
terms (by using copies of symbols with arrows to the left or right) is not needed;
we have the additional counter in the second argument, which removes one f in every
step, and thus ensures that rule application is length-reducing.

The TRS RM that simulates M has the following rewriting rules:
For each transition (q, a, q′, a′, r) of M it has the rule q(a(x), f(y)) → a′(q′(x, y)). Thus,
the tape symbol a is replaced by a′ and the head of the TM is now at the position to the
right of it.
For each transition (q, a, q′, a′, l) of M it has the rule c(q(a(x), f(y))) → q′(ca′(x), y) for
every tape symbol c of M. Thus, a is replaced by a′ and the head of the TM is now at
the position to the left of it.

Note that the blank symbol b is also considered as a tape symbol of M.
In addition, we add rules to RM that can be used to generate the term #, which has

size 1, whenever q̂ is reached:
a(q̂(x, y)) → q̂(x, y) for every tape symbol a of M,
q̂(x, y) → #.

The following is now easy to see.

▶ Lemma 8. The term t(w) can be rewritten with RM to a term of size 1 iff M accepts the
word w.
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Proof. It is easy to see that RM simulates M in the sense that there is a run of M on input
w = a1 . . . aℓ that reaches the accepting state q̂ iff there is a rewrite sequence of RM starting
with t(w) that reaches a term of the form u(q̂(t, t′)), where u is a word over the tape symbols
of M and t, t′ are terms. Note that the assumption that M is p(ℓ)-time bounded together
with the construction of t(w) ensures that there is enough tape space and the counter is
large enough for the simulation of M to run through completely.

Thus, if M accepts w = a1 . . . aℓ, then we can rewrite t(w) with RM into a term of the
form u(q̂(t, t′)), and this term can then be further rewritten into #, which has size 1. If M
does not accept w = a1 . . . aℓ, then the state q̂ cannot be reached by any run of M starting
with this word. Thus, all terms reachable from t(w) with the rules of RM that simulate M
are of the form u(q(t, t′)) for states q different from q̂. The rules of RM of the second kind
are thus not applicable, and the terms of the form u(q(t, t′)) clearly have size > 1. ◀

We are now ready to show the corresponding complexity lower bound.

▶ Lemma 9. The small term reachability problem for length-reducing TRSs is NP-hard.

Proof. We show that every problem Π in NP can be reduced in polynomial time to our
problem. Let M be the nondeterministic Turing machine that is an NP decision procedure
for Π, and let p be the polynomial that bounds the length of runs of M. We can construct the
length-reducing TRS RM as described above. Given a word w = a1 . . . aℓ, we can compute
the term t(w) in polynomial time, and Lemma 8 implies that this yields a reduction function
from Π to the small term reachability problem for the length-reducing TRS RM. ◀

Combining the obtained upper and lower bounds, we thus have determined the exact
complexity of the problem under consideration.

▶ Theorem 10. The small term reachability problem is NP-complete for length-reducing
TRSs.

To show that a given TRS R is length-reducing, one can, for example, use the reduction
order of Example 1. This order also applies to the TRS RM introduced above.

5 Term rewriting systems shown terminating with a polynomial order

An interesting question is whether similar results can be obtained for TRSs whose termination
can be shown using a reduction order from a class of such orders that provides an upper
bound on the length of reduction sequences. For example, it is known that a proof of
termination using a polynomial order yields a double-exponential upper bound on the length
of reduction sequences [16]. One possible conjecture could now be that, for TRSs whose
termination can be shown using a polynomial order, the small term reachability problem is
N2ExpTime-complete.

The upper bound is easy to show since, again, one just needs to guess a reduction sequence,
but now of double-exponential length, and then check the size of the obtained term. This
yields a nondeterministic double-exponential time procedure for solving the small term
reachability problem for TRSs whose termination can be shown using a polynomial order.

▶ Lemma 11. The small term reachability problem is in N2ExpTime for TRSs whose
termination can be shown using a polynomial order.

Regarding the lower bound, the idea is now to use basically the same approach as employed
in Section 4, but generate a double-exponentially large tape and a double-exponentially large
counter with the help of a TRS whose termination can be shown using a polynomial order.
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For this, we want to re-use the original system introduced by Hofbauer and Lautemann
showing that the double-exponential upper bound is tight (see Example 5.3.12 in [7]).

▶ Example 12. Let RHL be the TRS consisting of the following rules:

x + 0 → x, x + s(y) → s(x + y), d(0) → 0, d(s(x)) → s(s(d(x))),
q(0) → 0, q(s(x)) → q(x) + s(d(x)).

The TRS RHL intuitively defines the arithmetic functions addition (+), double (d), and
square (q) on non-negative integers. Thus, it is easy to see that the term tn := qn(s2(0)) can
be reduced to s22n

(0). The polynomial order in Example 2 shows termination of RHL.

Now, assume that M is a double-exponentially time bounded nondeterministic TM and
that its time-bound is 22p(ℓ) for a polynomial p, where ℓ is the length of the input word.
Given an input word w = a1 . . . aℓ for M, we construct the term

t(w) := q
p(ℓ)
1 (bb(q0(a1 . . . aℓq

p(ℓ)
2 (bb(#)), q

p(ℓ)
3 (ff(#))))).

The idea underlying this definition is that the term q
p(ℓ)
1 (bb(q0(·)) can be used to generate

a tape segment before the read-write head of the TM (marked by the state q0) with 22p(ℓ)

blanks using the following modified version of RHL:

R1 := { q0(y1, y2) +1 q0(z1, z2) → q0(y1, y2), b(x) +1 q0(z1, z2) → b(x), x +1 b(y) → b(x +1 y),
d1(q0(z1, z2)) → q0(z1, z2), d1(b(x)) → b(b(d1(x))),
q1(q0(z1, z2)) → q0(z1, z2), q1(b(x)) → q1(x) +1 b(d1(x))}.

Here b plays the rôle of the successor function s in RHL, terms of the form q0(·) play the rôle
of the zero 0 in RHL, and +1, d1, and q1 correspond to addition, double, and square. Instead
of the rule x +1 q0(z1, z2) → x we considered two rules for the case where x is built with q0
or with b, respectively. The reason will become clear later when we consider the restriction
to confluent TRSs. Lemma 13 is an easy consequence of our observations regarding RHL.

▶ Lemma 13. For any two terms t1, t2, we can rewrite the term q
p(ℓ)
1 (bb(q0(t1, t2))) with R1

into the term b22p(ℓ)

(q0(t1, t2)).

Next, we define a copy of RHL that allows us to create a tape segment with 22p(n) blanks
to the right of the input word:

R2 := {# +2 # → #, b(y) +2 # → b(y), x +2 b(y) → b(x +2 y),
d2(#) → #, d2(b(x)) → b(b(d2(x))),
q2(#) → # q2(b(x)) → q2(x) +2 b(d2(x))}.

▶ Lemma 14. The term q
p(ℓ)
2 (bb(#)) rewrites with R2 to the term b22p(ℓ)

(#).

The double-exponentially large counter can be generated by the following copy of RHL:

R3 := {# +3 # → #, f(y) +3 # → f(y), x +3 f(y) → f(x +3 y),
d3(#) → #, d3(f(x)) → f(f(d3(x))),
q3(#) → # q3(f(x)) → q3(x) +3 f(d3(x))}.

▶ Lemma 15. The term q
p(ℓ)
3 (ff(#)) rewrites with R3 to the term f22p(ℓ)

(#).
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We now add to these three TRSs the system RM, which can simulate M and then make
the term small in case the accepting state q̂ is reached. For the following lemma we assume,
as before, that q̂ is the only accepting state. In addition, we assume without loss of generality
that the initial state q0 is not reachable, i.e., as soon as the machine has made a transition,
it is in a state different from q0 and cannot reach state q0 again.

▶ Lemma 16. The term t(w) can be rewritten with RM ∪ R1 ∪ R2 ∪ R3 to a term of size 1
iff M accepts the word w.

Proof. First, assume that M accepts the word w. Then there is a run of M on input w

such that the accepting state q̂ is reached. We can simulate this run, starting with t(w) by
first using R1 ∪ R2 ∪ R3 to generate the term

b22p(ℓ)

(q0(a1 . . . aℓb
22p(ℓ)

(#), f22p(ℓ)

(#))).

Since the tape and counter generated this way are large enough, RM can then simulate the
accepting run of M, and the last two rules of RM can be used to generate the term #, which
has size 1.

For the other direction, we first note that a term of size 1 can only be reached from
t(w) using RM ∪ R1 ∪ R2 ∪ R3 if a term is reached that contains q̂. This function symbol
can only be generated by performing transitions of M, starting with the input w. In fact,
while the simulation of M can start before the system R1 ∪ R2 ∪ R3 has generated the tape
and the counter in full size, rules of RM can only be applied if the TM locally sees a legal
tape configuration. This means that blanks generated by R1 and R2 can be used even if the
application of these systems has not terminated yet. But if one of the auxiliary symbols
employed by these systems is encountered, then no rule simulating a transition of M is
applicable. These systems cannot generate tape symbols other than blanks, and these blanks
are also available to M in its run. Thus, RM ∪ R1 ∪ R2 ∪ R3 can only generate a term
containing q̂ if there is a run of M on input w that reaches q̂. ◀

To conclude from this lemma that the small term reachability problem is N2ExpTime-hard
for TRSs whose termination can be shown using a polynomial order, it is enough to prove
the following result.

▶ Lemma 17. Termination of RM ∪ R1 ∪ R2 ∪ R3 can be shown using a polynomial order.

Proof. Termination of RM ∪ R1 ∪ R2 ∪ R3 can be shown using the following polynomial
interpretation of the function symbols:

a(x) is mapped to x + 2, for all tape symbols a of the TM (where a can also be the blank
symbol b),
# is mapped to 3,
q(x, y) is mapped to x + y + 3, for all states q of the TM, in particular also for q0 and q̂,
f(x) is mapped to x + 2,
+1(x, y), +2(x, y), and +3(x, y) are mapped to x + 2y + 1,
d1(x), d2(x), and d3(x) are mapped to 3x + 1,
q1(x), q2(x), and q3(x) are mapped to 3x2 + 3x + 1.

It remains to show that the polynomial order ≻ induced by this polynomial interpretation
satisfies g ≻ d for all rules g → d of RM ∪ R1 ∪ R2 ∪ R3. First, we consider RM:

for the rule q̂(x, y) → #, the left-hand side is mapped to x + y + 3, and the right-hand
side to 3, which is smaller that x + y + 3 for all instantiations of x, y with numbers > 0,
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for rules of the form a(q̂(x, y)) → q̂(x, y), the left-hand side is mapped to x + y + 5, and
the right-hand side to x + y + 3,
for all rules of RM of the form q(a(x), f(y)) → a′(q′(x, y)), the left-hand side is mapped to
(x+2)+(y+2)+3 = x+y+7, and the right-hand side is mapped to (x+y+3)+2 = x+y+5,
for all rules of RM of the form c(q(a(x), f(y))) → q′(ca′(x), y), the left-hand side is
mapped to ((x + 2) + (y + 2) + 3) + 2 = x + y + 9, and the right-hand side is mapped to
((x + 2) + 2) + y + 3 = x + y + 7.

Next, we consider R1:
for the rule q0(y1, y2) +1 q0(z1, z2) → q0(y1, y2) of R1, the left-hand side is mapped to
y1 + y2 + 3 + 2(z1 + z2 + 3) + 1 = y1 + y2 + 2z1 + 2z2 + 10, and the right-hand side to
y1 + y2 + 3,
for the rule b(y) +1 q0(z1, z2) → b(y) of R1, the left-hand side is mapped to y + 2 + 2(z1 +
z2 + 3) + 1 = y + 2z1 + 2z2 + 9, and the right-hand side to y + 2,
for the rule x +1 b(y) → b(x +1 y) of R1, the left-hand side is mapped to x + 2(y + 2) + 1 =
x + 2y + 5, and the right-hand side to (x + 2y + 1) + 2 = x + 2y + 3,
for the rule d1(q0(z1, z2)) → q0(z1, z2) of R1, the left-hand side is mapped to 3(z1 + z2 +
3) + 1 = 3z1 + 3z2 + 10, and the right-hand side to z1 + z2 + 3,
for the rule d1(b(x)) → b(b(d1(x))) of R1, the left-hand side is mapped to 3(x + 2) + 1 =
3x + 7, and the right-hand side to (3x + 1 + 2) + 2 = 3x + 5,
for the rule q1(q0(z1, z2)) → q0(z1, z2) of R1, the left-hand side is mapped to 3(z1 + z2 +
3)2 + 3(z1 + z2 + 3) + 1, and the right-hand side to z1 + z2 + 3,
for the rule q1(b(x)) → q1(x)+1 b(d1(x)) of R1, the left-hand side is mapped to 3(x+2)2 +
3(x+2)+1 = 3x2 +15x+19, and the right-hand side to 3x2 +3x+1+2(3x+1+2)+1 =
3x2 + 9x + 8, as in Example 2.

The rules of R2 and R3 can be treated in a similar way. ◀

Combining the results obtained so far in this section, we thus have determined the exact
complexity of the small term reachability problem for the class of TRSs considered here.

▶ Theorem 18. The small term reachability problem for TRSs whose termination can be
shown with a polynomial order is N2ExpTime-complete.

In the setting considered in this section, restricting the attention to confluent TRSs does
not reduce the complexity. Regarding the upper bound, the argument used in the proof of
Proposition 7 does not apply since it is no longer the case that normal forms are of smallest
size. Thus, one cannot reduce the complexity from N2ExpTime to 2ExpTime by only looking
at a single rewrite sequence that ends in a normal form. However, our N2ExpTime-hardness
proof does not directly work for confluent TRSs whose termination can be shown with a
polynomial order. The reason is that, for a given nondeterministic Turing machine M, the
rewrite system RM ∪ R1 ∪ R2 ∪ R3 need not be confluent. In fact, for a given input word,
there may be terminating runs of the TM that reach the accepting state q̂, but also ones
that do not reach this state. Using the former runs, our rewrite system can then generate
the term #, whereas this is not possible if we use one of the latter runs.

We can, however, modify the system RM ∪ R1 ∪ R2 ∪ R3 such that it becomes confluent.
To this end, we introduce two new function symbols #1 and #0 of arity 1 and 0, respectively.
Moreover, we add the following rules Rc:

g(x1, . . . , xn) → #1(#0) for all function symbols g of arity > 0 except #1,

#1(#1(#0)) → #1(#0),
# → #1(#0).
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Clearly, RM ∪ R1 ∪ R2 ∪ R3 ∪ Rc is confluent, because any term that is not in normal form
(i.e., any term except variables, #0, #1(#0), and terms of the form #1(x) for variables x)
has the only normal form #1(#0) of size two. (This is the reason why we could not use a
rule like x +1 q0(z1, z2) → x in R1, because then x +1 q0(z1, z2) would have the two normal
forms x and #1(#0).) However, the term # of size one is still only reachable from t(w) if
the final state of the TM is reached by a simulation of an accepting computation of M. We
extend the polynomial interpretation in the proof of Lemma 9 as follows:

#1(x) is mapped to x + 1,
#0 is mapped to 1.

Then the polynomial order induced by this polynomial interpretation also orients the rules
of Rc from left to right, i.e., termination of the resulting system can still be shown using a
polynomial order.

▶ Corollary 19. For confluent TRSs whose termination can be shown with a polynomial
order, the small term reachability problem is N2ExpTime-complete.

As shown in [16], if termination of a TRS can be shown with a linear polynomial order
(i.e., where all polynomials have degree at most 1), then this implies an exponential bound on
the lengths of reduction sequences. Again, this bound is tight and one can use the example
showing this to obtain a TRS that generates an exponentially large tape and an exponentially
large counter, similarly to what we have done in the general case.

▶ Example 20. Let Rd consist of just the two d-rules from Example 12. Then the term
dℓ(s(0)) can be reduced to s2ℓ(0).

▶ Corollary 21. The small term reachability problem is NExpTime-complete for TRSs whose
termination can be shown with a linear polynomial order. NExpTime-hardness already holds
if only confluent systems are considered.

Proof. The upper bound can be shown as before, i.e., one just needs to guess a reduction
sequence (of exponential length) and then check the size of the obtained term.

For the lower bound, we proceed as in the proof of N2ExpTime-hardness for the case
of general polynomial orders. Thus, we assume that M is an exponentially time bounded
nondeterministic TM whose time-bound is 2p(ℓ) for a polynomial p, where ℓ is the length of
the input word. Given such an input word w = a1 . . . aℓ for M, we now construct the term

t′(w) = d
p(ℓ)
1 (b(q0(a1 . . . aℓd

p(ℓ)
2 (b(#)), d

p(ℓ)
3 (f(#)))).

Instead of R1, R2, R3, we now only need their rules for d1, d2, and d3; let R′
d denote this

system of 6 rules. As above, we can show that the term t′(w) can be rewritten with RM ∪ R′
d

to a term of size 1 iff M accepts the word w. Moreover, termination of RM ∪ R′
d can be

proved by the linear polynomial order obtained from the one in the proof of Lemma 17 by
removing the (non-linear) interpretations of q1, q2, q3.

Similarly to the proof of Corollary 19, we can prove that NExpTime-hardness also holds
for confluent TRSs whose termination can be shown with a linear polynomial order. The
reason is that termination of the modified confluent TRS RM ∪ R′

d ∪ Rc can be shown by
the linear polynomial order that results from the one employed in the proof of Corollary 19
by removing the (non-linear) interpretations of q1, q2, q3. ◀
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6 Term rewriting systems shown terminating with a Knuth-Bendix
order without special symbol

Without any restriction, there is no primitive recursive bound on the length of derivation
chains for TRSs whose termination can be shown using a Knuth-Bendix order [16], but a
uniform multiple recursive upper bound is shown in [15]. Here, we restrict the attention
to KBOs without a special symbol, i.e., without a unary symbol of weight zero. For such
KBOs, an exponential upper bound on the derivation length was shown in [16].1 Given the
results proven in the previous section, one could now conjecture that in this case the small
term reachability problem is NExpTime-complete. However, we will show below that the
complexity is actually only PSpace. In fact, the TRSs yielding the lower bounds for the
derivation length considered in the previous section have not only long reduction chains
(of double-exponential or exponential length), but are also able to produce large terms (of
double-exponential or exponential size). For KBOs without special symbol, this is not the
case. The following lemma provides us with a linear bound on the sizes of reachable terms.
It will allow us to show a PSpace upper bound for the small term reachability problem.

▶ Lemma 22. Let R be a TRS whose termination can be shown using a KBO without special
symbol, and s0, s1 terms such that s0

∗→R s1. Then the size of s1 is linearly bounded by the
size of s0, i.e., there is a constant c such that that |s1| ≤ c·|s0| whenever s0

∗→R s1.

Proof. Fix a KBO with weight function w showing termination of R such that all symbols of
arity 1 have weight > 0. Let wmin be the minimal weight > 0 of a function symbol occurring
in R or a variable,2 i.e.,

wmin := min{w(f) | w(f) > 0 and f is a function symbol in R or a variable},

and let wmax be the maximal weight of a function symbol in R or a variable. As the weights
of function symbols not occurring in R have no influence on the orientation of the rules in R

with the given KBO, we can assume without loss of generality that their weight is wmin .
Let t be a term and ni(t) for i = 0, . . . , k the number of occurrences of symbols of

arity i in t, where k is the maximal arity of a symbol occurring in t.3 Note that |t| =
n0(t) + n1(t) + . . . + nk(t). The following fact, which can easily be shown by induction on
the structure of t, is stated in [21]:

n0(t) + n1(t) + . . . + nk(t) = 1 + 1·n1(t) + 2·n2(t) + . . . + k·nk(t).

In particular, this implies that n0(t) ≥ n2(t) + . . . + nk(t). Since symbols of arity 0 and 1
have weights > 0, we know that

w(t) ≥ wmin ·(n0(t) + n1(t)) ≥ wmin ·n0(t) ≥ wmin ·(n2(t) + . . . + nk(t)).

Consequently, 2·w−1
min ·w(t) ≥ n0(t) + n1(t) + . . . + nk(t) = |t|. This shows that the size of a

term is linearly bounded by its weight. Conversely, it is easy to see that the weight of a term
is linearly bounded by its size: w(t) ≤ wmax ·|t|.

Now, assume that s0
∗→R s1. Since termination of R is shown with our given KBO,

we know that w(s0) ≥ w(s1), and thus wmax ·|s0| ≥ w(s1) ≥ 1/2·wmin ·|s1|. This yields
|s1| ≤ 2·w−1

min ·wmax ·|s0|. ◀

1 Actually, this result was shown in [16] only for KBOs using weights in N, but it also holds for KBOs
with non-negative weights in R. This is an easy consequence of our Lemma 22.

2 Recall that all variables have the same weight w0 > 0.
3 Variables have arity 0.
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In particular, this means that the terms encountered during a rewriting sequence starting
with a term s can each be stored using only polynomial space in the size of s. Given that the
length of such a sequence is exponentially bounded, we can decide the small term reachability
problem by the following NPSpace algorithm:

guess a rewrite sequence s →R s1 →R s2 →R . . . and always store only the current term;
in each step, check whether |si| ≤ n holds. If the answer is “yes” then stop and accept.
Otherwise, guess the next rewriting step; if this is not possible since si is irreducible, then
stop and reject.

This algorithm needs only polynomial space since, by Lemma 22, the size of each term si is
linearly bounded by the size of s. It always terminates since R is terminating. If there is a
term of size ≤ n reachable from s, then the algorithm is able to guess the sequence leading
to it, and thus it has an accepting run. Otherwise, all runs are terminating and rejecting.
Since, by Savitch’s theorem [27], NPSpace = PSpace, we obtain the following complexity
upper bound.

▶ Lemma 23. The small term reachability problem is in PSpace for TRSs whose termination
can be shown with a KBO without special symbol.

It remains to prove the corresponding lower bound. Let M be a polynomial space bounded
TM, and p the polynomial that yields the space bound. Then there is a polynomial q such
that any run of M longer than 2q(ℓ) on an input word w of length ℓ is cyclic. Thus, to
check whether M accepts w, it is sufficient to consider only runs of length at most 2q(ℓ).
However, in contrast to the reduction used in the previous section, we cannot generate an
exponentially large unary down counter using a TRS whose termination can be shown with
a KBO without special symbol. Instead, we use a polynomially large binary down counter
that is decremented, starting with the binary representation 10q(ℓ) of 2q(ℓ) (see Example 3).
For example, if q(ℓ) = 3, then we represent the number 2q(ℓ) = 23 = 8 as the binary number
10q(ℓ) = 1000. The construction of the TRS RM

bin simulating M given below is very similar
to the construction given in the proof of Lemma 7 in [10].

As signature for RM
bin we again use the tape symbols of M as unary function symbols, but

now also the states are treated as unary symbols. In addition, we need the unary function
symbols 0 and 1 to represent the counter, as well as primed versions a′, q′, 1′ of the tape
symbols a, the states q, and the symbol 1. For a given input word w = a1 . . . aℓ of M, we
now construct a term that starts with the binary representation of 2q(ℓ) and is followed by
enough tape space for a p(ℓ) space bounded TM to work on:

t(w) := 10q(ℓ)(bp(ℓ)(q0(a1 . . . aℓ(bp(ℓ)−ℓ(#))))).

Clearly, t(w) can be constructed in polynomial time.
The TRS RM

bin is now constructed as follows. The first part decrements the counter (as
in Example 3) and by doing so “sends a prime” to the right:

1(a(x)) → 0(a′(x)) and 0(a(x)) → 1′(a′(x)) for all tape symbols a,
0(1′(x)) → 1′(1(x)), 1(1′(x)) → 0(1(x)).

The prime can go to the right on the tape until it reaches a state, which it then turns into
its primed version:

a′g(x) → ag′(x) for tape symbols a and tape symbols or states g.
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Only primed states can perform a transition of the TM:

q′
1(a1(x)) → a2(q2(x)) for each transition (q1, a1, q2, a2, r) of M,

c(q′
1(a1(x)) → q2(c(a2(x))) for each transition (q1, a1, q2, a2, l) of M

and tape symbol c.

Again, the blank symbol b is also considered as a tape symbol of M. Note that the rôle of
the counter is not to restrict the number of transition steps simulated by RM

bin. Instead it
produces enough primes to allow the simulation of at least 2q(ℓ) steps, while termination can
still be shown using a KBO without special symbol.

Once the unique final accepting state q̂ is reached, we remove all symbols other than #:

a(q̂(x)) → q̂(x) where a is a tape symbol or 0 or 1,

q̂(x) → #.

▶ Lemma 24. The term t(w) can be rewritten with RM
bin to a term of size 1 iff M accepts

the word w.

Proof. If M accepts the word w, then there is a run of M on input w that ends in the
state q̂, uses at most p(ℓ) space, and requires at most 2q(ℓ) steps. This run can be simulated
by RM

bin by decrementing the counter, sending a prime to the state, applying a transition,
decrementing the counter, etc. Since the counter can be decremented 2q(ℓ) times, we can use
this approach to simulate a run of length at most 2q(ℓ). Once the accepting state is reached,
we can use the last two rules to reach the term #, which has size 1.

Conversely, we can only reach a term of size one, if these cancellation rules are applied.
This is only possible if first the accepting state has been reached by simulating an accepting
run of M. ◀

To conclude from this lemma that the small term reachability problem is PSpace-hard
for TRSs whose termination can be shown using a KBO without special symbol, it is enough
to show the following result.

▶ Lemma 25. Termination of RM
bin can be shown with a KBO without special symbol.

Proof. It is easy to see that the KBO that assigns weight 1 to all function symbols and to
all variables, and uses the precedence order 1 > 0 > 1′ and q′ > a′ > a > q for states q and
tape symbols a, orients all rules of RM

bin from left to right.4 ◀

Combining the results obtained so far in this section, we thus have determined the exact
complexity of the small term reachability problem for our class of TRSs.

▶ Theorem 26. The small term reachability problem is PSpace-complete for TRSs whose
termination can be shown with a KBO without special symbol.

As in the case of the TRSs considered in the previous section, confluence does not reduce
the complexity of the small term reachability problem for TRSs shown terminating with a
KBO without special symbol. In fact, we can again extend the TRS RM

bin such that it becomes
confluent. To this purpose, we add two new function symbols #1 and #0 of respective arity
1 and 0, and two new rules:

g(x) → #1(#0) for all unary function symbols g different from #1,

# → #1(#0).

4 This KBO is similar to the one introduced in Example 10 of [10].
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With this addition, every non-variable term built using the original signature of RM
bin can be

reduced to #1(#0), which shows confluence. To show termination of the extended TRS, we
modify and extend the KBO from the proof of Lemma 25 as follows. All function symbols in
the original signature of RM

bin (including #) now get weight 2, and the symbols #1 and #0
as well as the variables get weight 1. The precedence order is extended by setting g > #1
for all function symbols g in the original signature of RM

bin. It is easy to see that the KBO
defined this way shows that the extended TRS is terminating.

▶ Corollary 27. For confluent TRSs whose termination can be shown with a KBO without
special symbol, the small term reachability problem is PSpace-complete.

7 Conclusion

The results of this paper show that the complexity of the small term reachability problem is
closely related to the derivational complexity of the class of term rewriting systems considered.
Interestingly, restricting the attention to confluent TRSs reduces the complexity only for the
class of length-reducing systems, but not for the other two classes considered in this paper.
The investigations in this paper were restricted to classes of TRSs defined by reduction orders
(restricted form of KBO and polynomial orders) that yield relatively low bounds on the
derivational complexity of the TRS. The derivational complexity of TRSs shown terminating
by KBOs with a unary function symbol of weight zero or by recursive path orders is much
higher [14, 15, 23, 24, 29]. From a theoretical point of view, it would be interesting to see
whether using such reduction orders or other more powerful techniques [13] for showing
termination also results in a very high complexity of the small term reachability problem. In
fact, as we have seen in this paper, the complexity of this problem not only depends on the
length of reduction sequences, but also on whether one can use long sequences to generate
large terms.

On the practical side, up to now we have only used length-reducing rules to shorten DL
proofs. Basically, these rules are generated by finding frequent proof patterns (currently by
hand) and replacing them by a new “macro rule”. The results of Section 4 show that, in this
case, confluence of the rewrite system is helpful. When translating between different proof
calculi, length-reducing systems will probably not be sufficient. Therefore, we will investigate
with what kinds of techniques proof rewriting systems (e.g., translating between different
proof calculi for EL) can be shown terminating. Are polynomial orders or KBOs without
unary function symbol of weight zero sufficient, or are more powerful approaches for showing
termination needed? In this context, it might also be interesting to consider rewriting modulo
equational theories [8, 18] and associated approaches for showing termination [1, 11, 19, 26].
For example, it makes sense not to distinguish between proof steps that differ only in the order
of the prerequisites. Hence, rewriting such proofs could be represented via term rewriting
modulo associativity and commutativity.
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1 Introduction

Conditional independence (CI) is a fundamental concept that can be traced back to the
pioneer work on probabilities in Bayes [6] and Laplace [25]. In modern days, this notion is
formalised and applied across various fields of science. For instance, CI is a central concept
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in the first formal definition of secrecy by Shannon [37], and remains crucial in various
subsequent works in cryptography [26, 30]; graphical models leverage CI relations to have
efficient representations of probabilistic phenomenons [32, 21, 13]. The core idea of CI is
straightforward: events A and B are “independent” when information about one does not
convey information about the other; events A and B are “conditionally independent” given
event C if, with knowledge of event C, events A and B become independent. Albeit intuitive,
reasoning about conditional independence is intricate, leading to extensive research aimed at
formalising such reasoning [32, 14].

For probabilistic programs, an extension of standard programs with constructs to sample
from distributions, formal methods for (conditional) independence have emerged as powerful
tools for program verification. For instance, Barthe et al. [5] introduced Probabilistic
Separation Logic (PSL) to formalise several cryptography protocols, where the independence
of variables guarantees no leakage of information and thus security of the algorithms. A follow-
up work from Bao et al. [4] proposed the logic of Dependence and Independence Bunched
Implications (DIBI), which enhances PSL with the ability to reason about conditional
independence. Syntactically, DIBI extends the logic of Bunched Implications (BI) [28, 34],
which is the assertion logic underpinning Separation Logic (SL) [35] and PSL, with a non-
commutative conjunction # and its adjoints. Semantically, as in BI, the separating conjunction
∗ is interpreted through a partial operation ⊕ on states, regarded as the parallel composition.
In addition, they define a sequential composition ⊙ to interpret P # Q. Informally, P ∗ Q says
that P and Q hold in states that can be separated, and P #Q expresses a possible dependency
of Q on P . Section 3 will review the logic in more details.

Bao et al. [4] introduced two kinds of semantic models for DIBI logic: the probabilistic
DIBI models for reasoning about CI of variables in discrete probabilistic computation, and
the relational DIBI models for expressing the CI notion in relational databases called join
dependency. These two models are defined analogously, yielding similar conditions for one
to laboriously check to ensure that they are models. Such similarity led the authors to
conjecture a family of categorical DIBI models that induce these concrete models as instances.

We believe that such categorical models would facilitate the construction of new models
and set out to solve the conjecture with a simple observation: in both the probabilistic and
relational DIBI models, the states resemble Markov kernels – maps from input elements to
distributions/powersets over output elements. Such DIBI states can be identified categorically
as morphisms in the Kleisli categories associated to the discrete distribution monad D
(Definition 36) or the nonempty powerset monad Pi (Definition 37). However, giving a
categorical definition for the parallel compositions ⊕ is difficult. The previous work [4]
gives Figure 1a as a pictorial intuition for the parallel composition. The states are drawn as
trapezoids, with the short and long vertical sides representing the input and output domains,
respectively. There, given a blue map f1 and a red map f2, their parallel composition f1 ⊕ f2
takes as input the union of their inputs. Then, each fi takes its counterpart in the combined
input domain and generates an output. Finally these two outputs are combined to be the
output of f1 ⊕ f2. This parallel composition is partial because the combination of their
outputs is allowed only when the variables overlap in particular ways. This creates a challenge
to capture DIBI models categorically because, in a categorical setting, the domains and
codomains of DIBI states are objects, and it is not obvious how to define the overlap of
objects.

Our solution stems from a formalisation of this graphical intuition through string diagrams,
a pictorial formalism for monoidal categories. String diagrams are widely adopted as intuitive
yet mathematically rigorous reasoning tools across different areas of science, see [33] for
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⊕ 7→

f1 f2 f1 ⊕ f2

(a) Parallel composition depicted in [4].

f ′
1

f ′
2 7→

f ′
1

f ′
2

⊕

f1 f2 f1 ⊕ f2

(b) A diagrammatic representation.

Figure 1 Intuition for parallel composition.

an overview. We formalise the trapezoids intuition in Figure 1a into string diagrams in
Figure 1b. The maps previously embodied as trapezoids now have a fork shape, with some
branches being straight lines and some other branches going through boxes. The boxes
represent arbitrary morphisms in the underlying category, and the straight lines represent
the identity morphisms. Whereas composition of two DIBI states were hand-waved as two
trapezoids tiled together in Figure 1a, the string diagram defines it precisely: the overlap of
the two trapezoids is witnessed by the grey wires, and the composition joins two diagrams
side-by-side with the grey wires shared. We show in Section 4 that this string diagram
representation yields DIBI models in any category with enough structure to interpret ,
namely, Markov categories [9, 12]. We then derive existing and new concrete DIBI models as
instances in Section 5.

This framework also enables a comparison between different characterisations of condi-
tional independence (CI). While Bao et al. [4] show that probabilistic or relational CI are
both captured by some DIBI formulas, it is unclear if these formulas generalise to CI in
other models and how they compare to other abstract notions of CI. Since we can construct
categorical DIBI models based on any Markov categories, we define a logical notion of CI
for morphisms in Markov categories as satisfaction of those DIBI formulas. In Section 6,
we investigate the relationship between our “logical” CI and various CI notions based on
categorical structures from literature in synthetic statistics [9, 12] and identify the conditions
that make them equivalent.

Throughout the paper we fix a countably infinite set of variables Var, use x, y, z, . . . for
elements of Var, and use W, X, Y, . . . for finite subsets of Var.

2 Category Theory Preliminaries

Unless specified, all monoidal categories we consider are strict and we write dom(f) and
cod(f) for the domain and codomain of any morphism f . We write ⟨C, ⊗, I⟩ for a (strict)
monoidal category, where ⊗ is the monoidal product and I the unit object of C. If it is also
symmetric, we write σA,B : A ⊗ B → B ⊗ A for the symmetry natural transformation indexed
by objects A and B.

As detailed for instance in [36, 33, 11], morphisms of symmetric monoidal categories have
a graphical presentation as string diagrams, where sequential composition and monoidal
product are depicted as concatenation and juxtaposition of diagrams, respectively: given
morphisms f : X → Y, g : Y → Z, h : U → V,

g ◦ f = f gX Z g ⊗ h =
g

h

Y

V

Z

U

FSCD 2024
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We read string diagrams from left to right, and tensor products from top to bottom. Object
labels in the diagrams are omitted when they are evident or irrelevant to the context.
Symmetries are indicated with the string diagram . We call string diagrams consisting
solely of combinations of s rewirings: intuitively, they permute the order of the objects.

We use the notion of a Markov category, which suitably generalises categories of probab-
ilistic processes [12]. First, a copy-delete category (CD category) is a symmetric monoidal
category (SMC) ⟨C, ⊗, I⟩ with “copy” copyC and “delete” delC morphisms for each object C,
drawn diagrammatically as and respectively, that form a commutative comonoid:

= = = =

Because of the leftmost equation above, we sometimes write a “trident” for either side
of it. Moreover, both copy and del need to be compatible with the monoidal structure:

A⊗B = A
B

A⊗B = A
B

We say del is natural if f = for every morphism f . A Markov category is a CD
category in which del is natural. A CD category C has conditionals if for each morphism
f : A → X⊗Y, there exist (not necessarily unique) morphisms fX : A → X (called the marginal)

and f|X : X → Y (called the conditional) such that fA X
Y = fX

f|XA

X

Y
. When

C is a Markov category, such marginal fX is unique given X by the naturality of del:

fX = fX
f|X

= f

3 DIBI Logic and its Probabilistic Model

In this section we review the logic of Dependence and Independence Bunched Implications
(DIBI). For space reasons, we focus on the discrete probabilistic model for DIBI. Interested
readers may refer to [4] for the relational model, whose construction follows similar steps.

DIBI formulas (based on a set AP of atomic formulas) are defined inductively as follows:

P, Q ::= p ∈ AP | ⊤ | I | P ∧ Q | P → Q | P ∗ Q | P −∗ Q | P # Q | P ⊸ Q | P ⊸Q

The additive conjunction ∧ is the standard Boolean conjunction. The multiplicative conjunc-
tion ∗ states that P and Q are independent. Both are already present in BI. DIBI extends BI
with the non-commutative conjunction #1, where P # Q states that Q may depend on P . The
operation −∗ is adjoint to ∗, → is adjoint to ∧, and ⊸, ⊸are adjoints to #. DIBI formulas
are interpreted on DIBI models, each consisting of a DIBI frame on a set of states A and a
valuation function V : AP → P(A) that maps an atomic proposition to the set of states on
which it is true. While a BI frame is based on a partial commutative monoid [10], a DIBI
frame consists of two monoids (one commutative and one not) on the same underlying set,
taking care of the two non-additive conjunctions ∗ and #, respectively.

1 Not to be confused with the additive context constructor which is also denoted as # in the standard BI
literature such as [28, 34].
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a ⊕ b
.= b ⊕ a (⊕-Com)

∃e ∈ E : a = e ⊕ a (⊕-UnitExist)
(a ⊕ b) ⊕ c

.= a ⊕ (b ⊕ c) (⊕-Assoc)

∃e ∈ E : a = e ⊙ a (⊙-UnitExistL)
∃e ∈ E : a = a ⊙ e (⊙-UnitExistR)
(a ⊙ b) ⊙ c

.= a ⊙ (b ⊙ c) (⊙-Assoc)
e ∈ E & (a ⊕ e)⇓ =⇒ (a ⊕ e) ⊒ a (⊕-UnitCoh)
e ∈ E & (a ⊙ e)⇓ =⇒ (a ⊙ e) ⊒ a (⊙-UnitCohR)
e ∈ E & e′ ⊒ e =⇒ e′ ∈ E (UnitClosure)
(a ⊕ b)⇓ & a ⊒ a′ & b ⊒ b′ =⇒ (a′ ⊕ b′)⇓ & (a ⊕ b) ⊒ (a′ ⊕ b′) (⊕-DownClosed)
(a ⊙ b)⇓ & (a ⊙ b) ⊑ c′ =⇒ ∃a′, b′ : a′ ⊒ a & b′ ⊒ b & c′ = (a′ ⊙ b′) (⊙-UpClosed)
(a1 ⊙ a2) ⊕ (b1 ⊙ b2) .= (a1 ⊕ b1) ⊙ (a2 ⊕ b2) (RevExchange)

Figure 2 DIBI frame conditions (with implicit outermost universal quantifiers), where ⇓ stands
for “is defined”, .= means “equal when either side is defined”.

▶ Definition 1 ([4]). A DIBI frame is a tuple A = ⟨A, ⊑, ⊕, ⊙, E⟩, where A is a set of states,
⊑ is a preorder on A, E ⊆ A are units, and ⊕, ⊙ : A × A ⇀ A are partial binary operations2,
satisfying the frame conditions in Figure 2.

The operations ⊙ and ⊕ are referred to as the sequential and parallel compositions of states.
Intuitively, a ⊑ b says that a can be extended to b, and E is the set of states that act as
units for these operations. For capturing conditional independence, atomic propositions AP
have the form S ▷ [T ], for finite sets of variables S, T . Roughly, S ▷ [T ] means the values of
variables in T only depend on that of S. We now present the semantics of DIBI formulas,
restricting to the fragment needed for the current work.

▶ Definition 2. Given a DIBI model ⟨A, V⟩, satisfaction ⊨V of DIBI{∧,∗,#}-formulas at
A-states is inductively defined as follows:

a ⊨V I iff a ∈ E a ⊨V ⊤ always
a ⊨V (A ▷ [B]) iff a ∈ V(A ▷ [B])
a ⊨V P ∧ Q iff a ⊨V P and a ⊨V Q

a ⊨V P ∗ Q iff ∃b1, b2 ∈ A such that b1 ⊕ b2 ⊑ a, b1 ⊨V P , b2 ⊨V Q

a ⊨V P # Q iff ∃b1, b2 ∈ A such that b1 ⊙ b2 = a, b1 ⊨V P , b2 ⊨V Q

For a concrete example of DIBI models, we review the probabilistic models on program
memories. Let Val be a set of values, to which variables in Var are assigned. A memory
over a finite set of variables X is a function m : X → Val, and the memory space over X is
the set of all memories over X, denoted as M[X; Val], or M[X] when Val is clear. Given
a memory m ∈ M[X] and a subset U ⊆ X, the memory mU : U → Val is the restriction
of m to the domain U . To express probabilistic features, we use DS to denote the set
of discrete distributions over S; that is, the set of all µ : S → [0, 1] such that the support
supp(µ) = {s ∈ S | µ(s) > 0} is finite, and

∑
s∈S µ(s) = 1. A dirac distribution δs on an

outcome s is the distribution such that δs(s) = 1, and δs(s′) = 0 for any s′ ≠ s. Given a
distribution µ in DM[X], if Y ⊆ X, we define the marginalisation of µ to DM[Y ], written
as πY µ, by letting (πY µ)(m′) =

∑
m∈M[X]|mY =m′ µ(m).

2 Note that, even though ⊙, ⊕ are also partial in the models considered in [4], they have type A×A → P(A)
in that work. This is because the authors obtain completeness of DIBI logic using a method developed
by Docherty [10], which only works for the more general type. Because the operations are actually
partial rather than non-deterministic, and we are not interested in completeness here, we stick to the
more accurate type.

FSCD 2024
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We are now ready to introduce the notion of probabilistic input-preserving kernels. In
words, a probabilistic kernel f maps a memory m on X to a distribution of memories on
Y ⊇ X whose support contains only memories m′ that faithfully extend m (thus the name
“input-preserving”). Alternatively, f can be seen as a conditional distribution Pr(Y | X)
where Y ⊇ X, such that Pr(Y = B |X = A) is nonzero only if B restricted to X equals A.

▶ Definition 3 ([4]). A probabilistic input-preserving kernel (or probabilistic kernel for
short) is a function f : M[X] → DM[Y ] satisfying:

(i) X ⊆ Y ,
(ii) πX ◦ f = ηD

M[X], where ηD
M[X](m) returns the dirac distribution over m.

The set of all probabilistic kernels is denoted ProbKer.

The probabilistic model is a structure based on the carrier set ProbKer.

▶ Definition 4 (Probabilistic model, [4]). The probabilistic frame based on Val PrFr[Val]
(or simply PrFr when Val is evident) is a tuple ⟨ProbKer, ⊑, ⊕, ⊙, ProbKer⟩ where ⊙, ⊕, ⊑
are defined for arbitrary f : M[X] → DM[Y ] and g : M[Z] → DM[W ] as:

the sequential composition f ⊙ g is defined iff Y = Z. In this case, f ⊙ g is of the
form M[X] → DM[W ], and given m ∈ M[X], (f ⊙ g)(m) maps n ∈ M[W ] to∑

ℓ∈supp(f(m)) (f(m)(ℓ) · g(ℓ)(n));
the parallel composition f ⊕ g is defined iff X ∩ Z = Y ∩ W . In this case, f ⊕ g is of the
form M[X ∪ Z] → DM[Y ∪ W ] such that given ℓ ∈ M[X ∪ Z] and m ∈ M[Y ∪ W ], we
have (f ⊕ g)(ℓ)(m) = f(ℓX)(mY ) · g(ℓZ)(mW );
the subkernel relation f ⊑ g holds if there exist a finite set of variables S and h ∈ ProbKer
such that g =

(
f ⊕ ηD

M[S]

)
⊙ h.

The probabilistic model based on Val consists of the probabilistic frame PrFr[Val] and the
following natural valuation Vnat : AP → P(ProbKer): given (S ▷ [T ]) and f : M[X] →
DM[Y ], f ∈ Vnat(S ▷ [T ]) iff there exists a probabilistic kernel f ′ : M[X ′] → DM[Y ′] such
that f ′ ⊑ f , X ′ = S and T ⊆ Y ′.

Next we give examples of probabilistic kernels and how they compose. We write a map
from a variable x to a value c as cx and use the ket notation a|ω⟩ to denote a probabilistic
outcome ω of probability a.

▶ Example 5. Consider variables x, y, z that take values in Val = {0, 1}. We define a map
f : M[{z}] → DM[{x, y, z}] by:

f(0z) = 1
4 |0x, 0y, 0z⟩ + 1

4 |0x, 1y, 0z⟩ + 1
4 |1y, 0y, 0z⟩ + 1

4 |1y, 1y, 0z⟩

f(1z) = 1
16 |0x, 0y, 1z⟩ + 3

16 |0x, 1y, 1z⟩ + 3
16 |1y, 0y, 1z⟩ + 9

16 |1y, 1y, 1z⟩

Each input memory (coloured) is preserved by f so it is a probabilistic kernel. Then define
g1 : M[{z}] → DM[{x, z}] and g2 : M[{z}] → DM[{y, z}] as:

g1(0z) = 1
2 |0x, 0z⟩ + 1

2 |1y, 0z⟩ g1(1z) = 1
4 |0x, 1z⟩ + 3

4 |1y, 1z⟩

g2(0z) = 1
2 |0y, 0z⟩ + 1

2 |1y, 0z⟩ g2(1z) = 1
4 |0y, 1z⟩ + 3

4 |1y, 1z⟩

Both g1 and g2 are probabilistic kernels as well. The parallel composition g1 ⊕ g2 is defined
since {z} ∩ {z} = {x, z} ∩ {y, z}; in fact, it is easy to verify that g1 ⊕ g2 = f . Moreover, g1
and g2 can be obtained by projecting the output of f on {x, z} and {y, z}, respectively, and
we can show g1 ⊑ f and g2 ⊑ f .
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4 DIBI models in Markov categories

In this section we construct more abstract DIBI models based on categorical structures. The
starting point of our approach is a categorical characterisation of the concrete probabilistic
models given above. In the following, we begin by showing examples of how elements in that
model can be reformulated in categorical terms and then formally present our categorical
construction of DIBI models.

As we noted in Section 1, the probabilistic DIBI kernels can be identified as morphisms
in the Kleisli category for the distribution monad Kℓ(D) (Definition 36); however, not all
morphisms in Kℓ(D) are probabilistic DIBI kernels, so we need to define the extra conditions
categorically. First, we identify the Kℓ(D) morphisms operating on memories. Let MemPr be
the subcategory of Kℓ(D) where objects are restricted to memory spaces over Val. That is, the
objects are memory spaces m : X → Val, and the morphisms are maps f : M[X] → DM[Y ]
(or f : M[X] _ M[Y ] using the Kleisli category notation). Then, probabilistic kernels
are exactly those morphisms in the MemPr that satisfy the input-preserving condition
in Definition 3. So next, we need to express the input-preserving condition categorically.
To do that, we depict MemPr morphisms using string diagrams, which is possible because
MemPr is a subcategory of the monoidal category Kℓ(D) We also observe that the codomain
of an input-preserving kernel f : M[X] _ M[Y ] can be decomposed as M[X] × M[Y \ X].
Recall the probabilistic kernel f from Example 5. Since its codomain M[{x, y, z}] can be
decomposed as M[{x}] × M[{y}] × M[{z}], we can draw it as follows:

f ′

M[{z}]
M[{z}]

M[{y}]
M[{x}]

Intuitively, M[{z}] produces two copies of the value of z, and the values of x and y are
computed from that of z via f ′M[{z}] M[{y}]

M[{x}], while the value of z gets preserved through
a straight wire in the bottom. As in this example, such copy structure of Kℓ(D) enables us
to capture the “input-preserving” condition of probabilistic kernels generally.

Next we want to express the sequential (⊙) and parallel (⊕) compositions of probabilistic
kernels categorically. The former is exactly the sequential composition in Kℓ(D). The parallel
composition, however, is not the monoidal product ⊗ in Kℓ(D). By definition, the monoidal
product is total, while the parallel composition is partial. Even when the parallel composition
is defined, the types of the resulting morphisms do not match. Suppose that the parallel
composition of f : M[X] _ M[Y ] and g : M[U ] _ M[V ] is defined, we have

f ⊕ g : M[X ∪ U ] _ M[Y ∪ V ] f ⊗ g : M[X] × M[U ] _ M[Y ] × M[V ]

The key difference is that parallel composition considers a single memory that can be
projected into two pieces, while the monoidal product considers the cartesian product of
two pieces of memory, no matter if they agree or not on overlapped variables. To define
the parallel composition, we need to combine M[X] and M[U ] into M[X ∪ U ] categorically.
Thus, we use the fact that for disjoint Z1, Z2, M[Z1 ∪ Z2] ∼= M[Z1] × M[Z2], which implies
that M[X ∪ U ] ∼= M[X \ U ] × M[X ∩ U ] × M[U \ X]. We illustrate the parallel composition
of two probabilistic kernels from Example 5 in the following example.

▶ Example 6. A first way of describing parallel composition of probabilistic kernels g1 and
g2 from Example 5 category-theoretically is by seeing them as Kℓ(D)-morphisms. In this
setting, we may define g1 ⊕ g2 as the composite
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M[{z}] (DM[{z}] × DM[{x}]) × DM[{y}]

D((M[{z}] × M[{x}]) × M[{y}]) DM[{x, y, z}]

⟨⟨η,g′
1⟩,g′

2⟩

dst◦⟨dst,id⟩

D∼=

(1)

where dst is the double strength of the monad D, and g′
1 : M[{z}] _ M[{x}], g′

2 : M[{z}] _
M[{y}] represent the conditional distributions obtained by suitable projections of g1 and g2
respectively. Now consider an alternative presentation: we draw kernels g1 and g2 respectively
as the first and second string diagrams below. The parallel composition g1 ⊕ g2 is then given
by the rightmost string diagram below.

g′
1M[{z}]

M[{z}]
M[{x}] g′

2M[{z}]
M[{z}]
M[{y}] g′

1

g′
2

M[{z}] M[{z}]
M[{x}]

M[{y}]
(2)

The formulation (2), which we adopt in our work, has two advantages over (1). First, string
diagrams make for a cleaner presentation, abstracting away most “bureaucratic” steps in (1).
Second, for kernels of larger sizes, the use of diagrams drastically simplifies calcu lations,
see, e.g., the verification of frame conditions in proving Theorem 12 below. e Therefore, we
will define categorical DIBI models and their compositions using string diagrams, though (1)
exists as an alternative formulation.

We give the formal string diagrammatic definitions of the compositions later in Definition 10,
as part of the generic construction of DIBI models.

While we simply use the concept of memory spaces M[X] to define the subcategory
MemPr, that concept of memory spaces is customised for reasoning about probabilistic
programs and relational databases and has potential to be parameterised. We observe that
the side conditions of the parallel and sequential compositions are all based on comparing the
set of variables in the (co)domains, so they only depend on the variable part (i.e., X) in M[X].
This motivates us to define DIBI states as morphisms in a category whose objects are made
of variables (see Definition 7) and abstracts the map between variables and corresponding
memory spaces through an assignment θ : Var → ob(C), for some Markov category ⟨C, ⊗, I⟩.

Finally, we need to express finite sets of variables and the union of disjoint such sets in a
monoidal category, where the monoidal products of objects do not take care of deduplication.
To address that, we impose a linear order ⪯ on Var such that indexed variables inherit the
order of their indices, e.g., x1 ⪯ x2 ⪯ x3. Let x ≺ y abbreviate for x ⪯ y and x ̸= y. Then,
finite sets of variables can be represented as finite lists of variables ordered by ≺, via a
translation that we write as J·K. For instance, J{x3, x1, x3, x4}K = [x1, x3, x4]. This will be
realised in two steps: we first define a category whose objects are finite lists of variables
(Definition 7), and then we restrict the objects to finite lists without duplicates that respect
the linear order (Definition 9).

Now we are ready to define a symmetric monoidal category C[θ] that has enough structure
to support our categorical characterisation of DIBI models. The category C[θ] is parameterised
by C, whose objects abstract the concept of memory spaces. For simplicity, we fix a Markov
category C throughout the rest of the section.

▶ Definition 7. Let C[θ] be the symmetric monoidal category whose objects are finite lists of
variables, and morphisms [x1, . . . , xm] → [y1, . . . , yn] are C-morphisms θ(x1)⊗· · ·⊗θ(xm) →
θ(y1) ⊗ · · · ⊗ θ(yn). Sequential composition is defined as in C. The identity on [x1, . . . , xm]
is idθx1⊗···⊗θxm . The monoidal product in C[θ] – which we also write as ⊗ with abuse of
notation – is list concatenation on objects, and monoidal product in C on morphisms.
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The SMC and Markov category structure of C[θ] follow from those of C. In particular, the sym-
metric map [x1, . . . , xm]⊗[y1, . . . , yn] → [y1, . . . , yn]⊗[x1, . . . , xm] is the symmetry morphism
(θ(x1) ⊗ · · · ⊗ θ(xm)) ⊗ (θ(y1) ⊗ · · · ⊗ θ(yn)) → (θ(y1) ⊗ · · · ⊗ θ(yn)) ⊗ (θ(x1) ⊗ · · · ⊗ θ(xm))
in C. The copy map [x1, . . . , xm] → [x1, . . . , xm] ⊗ [x1, . . . , xm] = [x1, . . . , xm, x1, . . . , xm] is
the copy map copyθ(x1)⊗···⊗θ(xm) : θ(x1) ⊗ · · · ⊗ θ(xm) → (θ(x1) ⊗ · · · ⊗ θ(xm)) ⊗ (θ(x1) ⊗
· · · ⊗ θ(xm)) in C. The tensor unit in C[θ] is the empty list [ ], and θ maps it to the
tensor unit I of the SMC C. The delete map [x1, . . . , xm] → [ ] is then the delete map
delθ(x1)⊗···⊗θ(xm) : θ(x1) ⊗ · · · ⊗ θ(xm) → I in C.

Sometimes we restrict ourselves to a uniform assignment θ; that is, for some fixed
C ∈ ob(C), θ(x) = C for all x ∈ Var. This is in line with the scenario where a fixed value
space Val is used for all variables (see Definition 3). In this case, we write C[θ] as C[C]
to emphasise the uniform value of the assignment. This category can be seen as the full
subcategory of C freely generated by C, but with each occurrence of the generating object
named by a variable. The next example shows how the construction in Definition 7 selects
morphisms of Kℓ(D) that act on memory spaces, among which we have all the probabilistic
kernels.

▶ Example 8. Let C be Kℓ(D), and θ : Var → ob(Kℓ(D)) be the constant function x 7→ Val
for all x ∈ Var. Then there is a full and faithful embedding functor ι : MemPr → Kℓ(D)[θ]:
on objects, given a set X, ι(M[X]) = JXK; on morphisms, given f : M[X] → DM[Y ]
with X = {x1, . . . , xm} and Y = {y1, . . . , yn}, its image ι(f) : JXK → JY K is the composed
map Valm

∼=−→ M[X] f−→ DM[Y ] D∼=−−→ DValn, where the isomorphisms are, e.g., M[Y ]
∼=−→

M[{y1}] × · · · × M[{yn}]
∼=θ

−−→ Valn, using the valuation θ(yj) = Val.

Just as the states of the probabilistic models are exactly input-preserving morphisms in
MemPr, we define the notion of input-preserving kernels in C[θ], written Ker(C[θ]) and use
them as the states of our categorical DIBI models.

▶ Definition 9. A C[θ]-morphism f : [x1, . . . , xm] → [y1, . . . , yn] is a C[θ] input-preserving
kernel (or C[θ]-kernel for short) if x1 ≺ · · · ≺ xm, y1 ≺ · · · ≺ yn, and f can be decomposed
as follows, where σ is a rewiring:

f
...

yn

...
y1

xm

x1
=

f ′

...

...

...
x1

xm

y1

yn

...σ
u1

uk

(3)

In words, a C[θ]-kernel is a morphism whose interfaces are essentially finite sets of variables,
such that the input is preserved as part of the output (through the upper leg of those s).
The map f ′ in (3) is referred to as the nontrivial part of the input-preserving kernel. It
follows from Definition 9 that, for a C[θ]-kernel, its codomain [y1, . . . , yn] always subsumes
its domain [x1, . . . , xm]; also, u1, . . . , uk are precisely those yjs that are not among these xis.
Since the (co)domains of C[θ]-kernel are list presentation of sets, we also write the types of
C[θ]-kernels using the corresponding sets, e.g., in (3), f : {x1, . . . , xm} → {y1, . . . , yn}.

Next we define compositions on input-preserving kernels, generalising what we have seen
in Example 6 for the probabilistic models.

▶ Definition 10 (Compositions). Given arbitrary C[θ]-kernels f : X → Y and g : U → V

as in Figure 3a, their sequential composition f ⊙ g is defined iff cod(f) = dom(g), in
which case f ⊙ g = g ◦ f . Their parallel composition f ⊕ g is defined iff X ∩ U = Y ∩ V .
Assume L = JX ∩ UK, L1 = JX \ (X ∩ U)K, L2 = JU \ (X ∩ U)K, K1 = JY \ (Y ∩ V )K, and
K2 = JV \ (Y ∩ V )K, then f ⊕ g : X ∪ U → Y ∪ V is defined as in Figure 3b, where all the
σis are rewiring morphisms for making the input and output variables ≺-ordered.
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f ′

...

...

...
x1

xk

y1

yℓ

...σ1

g′

...

...

...
u1

um

v1

vn

...σ2

(a) C[θ]-kernels f and g.

f ′

g′

σ3

σ4 σ6
...σ5

...

L1

L2

L

K1

K2

(b) f ⊕ g.

Figure 3 Parallel composition of C[θ].

Note here a benefit of the diagrammatic representation: we can easily identify the memory
overlap M[X ∩ Y ], as it is depicted a separate wire; with traditional syntax, we would need
to apply associativity and commutativity to extract it from M[X ∪ Y ]. It is easy to see
that kernels are closed under compositions. Also, for curious readers, C[θ]-kernels with their
parallel compositions form a partially monoidal category [2]. Next we define the subkernel
relation.

▶ Definition 11 (Subkernel). Given two C[θ]-kernels f and g, we say f is a subkernel of g –
denoted as f ⊑ g – if there exist z1, . . . , zn ∈ Var, a C[θ]-kernel h, and rewiring morphisms
σ1, σ2 such that g can be expressed as follows:

g =

... f

...

σ2z1

zn

σ1
...

...

...
h

...

The subkernel relation is transitive and reflexive, which can be shown simply by manipu-
lations of the string diagram. We are finally able to state the main result of this section:
C[θ]-kernels and their compositions form a DIBI frame.

▶ Theorem 12. Fr(C[θ]) = ⟨Ker(C[θ]), ⊑, ⊕, ⊙, Ker(C[θ])⟩ is a DIBI frame.

Also, under the natural valuation Vnat, a C[θ]-kernel f : X → Y satisfies S ▷ [T ] iff there is a
subkernel (f ′ : X ′ → Y ′) ⊑ f such that X ′ = S and Y ′ ⊇ T . Thus:

▶ Corollary 13. (Fr(C[θ]), Vnat) is a DIBI model.

We will see in Section 5 how to use this categorical construction to derive a wide range of
DIBI models. Moreover, it also enables us to extract the conditions needed for a specific
feature of a DIBI model as properties of the underlying category. Here is an example.

▶ Proposition 14. If C further satisfies that for arbitrary morphisms f, g and object D,
f ⊗ delD = g ⊗ delD implies f = g, then a subkernel is unique given its type in the following
sense: if C[θ]-kernels f1, f2 : U → V are both subkernels of g, then f1 = f2.

Note that the uniqueness of subkernels has been observed already in the context of
probabilistic and relational models, see [4, Sect. IV]. Proposition 14 reveals the general
conditions under which this uniqueness holds for a wider class of DIBI models.

5 Examples

In this section we provide concrete instances of the categorical construction in Section 4.
The first example recovers the probabilistic DIBI models. The remaining examples are new
DIBI models. Some of them have been suggested in the DIBI paper [4], yet not materialised
due to the complexity involved in stating each component and verifying the frame conditions.
Within our framework, these steps become much easier to perform.
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5.1 Probabilistic (and Relational) DIBI Models
As we sketched in Example 6 and Example 8, the probabilistic DIBI kernels and
⟨Fr(Kℓ(D)), Vnat⟩ input-preserving kernels correspond to each other. We now formally
show that the probabilistic DIBI model in Definition 4 can be recovered from the categorical
DIBI model ⟨Fr(Kℓ(D)), Vnat⟩. Since both models are equipped with the natural valuation
Vnat, we focus on the frame part. To make the correspondence precise, we introduce the
category of DIBI frames, as hinted in [4, Sect. III].

▶ Definition 15. In the category of DIBI frames DibiFr, objects are DIBI frames; morphisms
f : ⟨S, ⊑S , ⊕S , ⊙S , ES⟩ → ⟨T, ⊑T , ⊕T , ⊙T , ET ⟩ are functions f : S → T that respect all the
relations and partial operations: for arbitrary s, s′ ∈ S,

s ⊑S s′ implies f(s) ⊑T f(s′);
if s ⋆S s′ is defined, then f(s) ⋆S f(s′) is defined, and f(s) ⋆T f(s′) = f(s ⋆S s′), for
⋆ ∈ {⊕, ⊙};
s ∈ ES implies f(s) ∈ ET .

It turns out that the function ι introduced in Example 8 extends to an isomorphism of
DIBI frames from PrFr[Val] to Fr(Kℓ(D)[Val]).

▶ Proposition 16. PrFr[Val] ∼= Fr(Kℓ(D)[Val]).

▶ Example 17. The probabilistic kernel g1 : M[{z}] → DM[{x, z}] from Example 5 cor-
responds to the following Kℓ(D)[{0, 1}]-kernel h1 : [z] → [x, z] – i.e., a Kℓ(D)-morphism
{0, 1} _ {0, 1}2 – where: 0 7→ 1

2 |0, 0⟩ + 1
2 |1, 0⟩, 1 7→ 1

4 |0, 1⟩ + 3
4 |1, 1⟩. Diagrammatically, h1

is of the form
h′

1
z

x
, where h′

1 : [z] → [x] is the map such that 0 7→ 1
2 |0⟩ + 1

2 |1⟩ and
1 7→ 1

4 |0⟩ + 3
4 |1⟩

Similarly, the relational DIBI model from [4] with the value space Val can be shown to
be isomorphic to Fr(Kℓ(Pi)[Val]), where Pi is the nonempty powerset monad A.

5.2 Stochastic DIBI Models
Using our categorical construction, we can derive a notion of DIBI model for continuous
probabilistic (stochastic) processes, not previously considered. This is of interest because, as
we show in Section 6, it allows to capture conditional independence for continuous probability
using DIBI formulas. We take as underlying category Stoch of stochastic processes, defined
as the Kleisli category Kℓ(G) for the Giry monad on measurable spaces – see Appendix A for
a full definition. Since G is an affine symmetric monoidal monad, Stoch is a Markov category.
Applying Theorem 12 to C = Stoch, we get DIBI frames based on stochastic processes.

▶ Proposition 18. Given an arbitrary map θ : Var → ob(Meas), Fr(Stoch[θ]) =
⟨Ker(Stoch[θ]), ⊑, ⊕, ⊙, Ker(Stoch[θ])⟩ is a DIBI frame.

We call Fr(Stoch[θ]) the stochastic DIBI frame based on θ and elements in Ker(Stoch[θ])
stochastic kernels.

▶ Example 19. We show a representation of the Box-Muller transformation using stochastic
kernels. Consider θ that maps all variable names to the Borel σ-algebra over reals (R, B(R)).
Define stochastic kernels g1 : ∅ → {u} and g2 : ∅ → {w} – both standing for Stoch-morphisms
(1, {∅, 1}) → (R, B(R)), or equivalently, a probabilistic measure on (R, B(R)) – by gi(•) =
Unif(0, 1) for i = 1, 2, where Unif(0, 1) is the uniform measure over the interval (0, 1). Such

FSCD 2024



17:12 A Categorical Approach to DIBI Models

a uniform measure over infinite outcomes is not possible in the discrete probabilistic DIBI
model. Define another stochastic kernel f : {u, w} → {u, w, x, y} where the value of x, y are
determined by the value of u, w:

f(u 7→ vu, w 7→ vw) = δvu,vw,(√
−2 ln u·cos(2πw))

x
,(√

−2 ln u·sin(2πw))
y

.

Then h = (g1 ⊕ g2) ⊙ f gives a stochastic kernel ∅ → {u, w, x, y}. Box-Muller transformation
says that x and y are independent in h(⟨⟩) despite their seemingly dependence on u and w.

Comparison with Lilac [24]. Our stochastic DIBI models can be used to reason about
independence and conditional probabilities in continuous distributions. A recent work Lilac
by Li et al. [24] proposed a BI model for the same goal, yet with some crucial differences in
the set-up.

First, the states in Lilac’s BI model are probabilistic space fragments of a fixed sample
space, and their variables are mathematical random variables that deterministically map
elements in the sample space to values. In comparison, we treat variables as names that
can be associated to values or distributions. Our stochastic kernels – though not using an
ambient sample space – can encode their set-up: we can devise a special variable Ω for “the
sample space”, and deterministic kernels from Ω to other variables encode random variables.

Second, to reason about conditional probabilities, Lilac want probability spaces to be
disintegrable with respect to well-behaved random variables. To achieve that, they require
probability spaces in their model to be extensible to Borel spaces, since disintegration
works nicer in Borel spaces. By working with kernels, which already represent conditional
probability spaces, we do not need to impose disintegratability on our DIBI states to reason
about conditional probabilities. For instance, while disintegration is not always possible in
the category Stoch, we can still construct a DIBI model based on Stoch.

Other measure-theoretic probabilistic DIBI models. The category Stoch is not the only
Markov category for measure-theoretic probability. Another choice is BorelStoch, a sub-
category of Stoch obtained by restricting to standard Borel spaces as objects. It has some
nice properties that Stoch does not satisfy, such as having conditionals as mentioned above.
BorelStoch is also a Markov category and we can easily instantiate a DIBI model.

▶ Proposition 20. Given any map θ : Var → ob(BorelStoch), Fr(BorelStoch[θ]) defined as
⟨Ker(BorelStoch[θ]), ⊑, ⊕, ⊙, Ker(BorelStoch[θ])⟩ is a DIBI frame.

The study of measure theory is also intertwined with topology, and another category
for measure-theoretic probability is the Kleisli category of the Radon monad R based on
the category of compact Hausdorff spaces CHaus and continuous maps, which we denote as
KℓCHaus(R). KℓCHaus(R) is also a Markov category [12], so Theorem 12 applies.

▶ Proposition 21. Given any map θ : Var → ob(KℓCHaus(R)), Fr(KℓCHaus(R)[θ]) defined as
⟨Ker(KℓCHaus(R)[θ]), ⊑, ⊕, ⊙, Ker(KℓCHaus(R)[θ])⟩ is a DIBI frame.

A measure-theoretic Markov category not formed as Kleisli categories is the Gaussian
probability category Gauss [12]. Its objects are natural numbers, and a morphism n → m is a
tuple (M, σ2, µ) representing the function f : Rn → Rm with f(v) = M · v + ξ, where ξ is the
Gaussian noise with mean µ and covariance matrix σ2. Its monoidal product is addition +
on the objects and vector concatenation on morphisms. Gauss differs from Stoch, BorelStoch
and KℓCHaus(R) in that it does not arise as the Kleisli category associated to some monad.
But since it is a Markov category, we can again instantiate DIBI models based on Gauss.
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▶ Proposition 22. Given any map θ : Var → ob(Gauss), Fr(Gauss[θ]) defined as
⟨Ker(Gauss[θ]), ⊑, ⊕, ⊙, Ker(Gauss[θ])⟩ is a DIBI frame.

5.3 Syntactic DIBI Models
The DIBI models defined so far all have kernels defined by some processes over memory
spaces. It is worth considering a different flavour: purely formal, syntactically generated
DIBI models. We start by defining the underlying category.

▶ Definition 23. SynVar is the Markov category freely generated as follows:
the generating objects are variables in Var;
there is exactly one generating morphism of type [u1, . . . , um] → [v1, . . . , vn] for distinct
variables u1 ≺ · · · ≺ um and v1 ≺ · · · ≺ vn, written as string diagrams of the form

...
...

u1

um

v1

vn

.

In words, SynVar-objects are finite lists of variables (without the requirements of duplicate-
free or ⪯-ordered); morphisms are diagrams freely concatenated using , , , ,

and ...
...

u1

um

v1

vn

(quotiented by the Markov category equations). The syntactic DIBI frame

is based on the category SynVar[id], where id : Var → ob(SynVar) maps x ∈ Var to the
singleton list [x].

▶ Proposition 24. SynFr = ⟨Ker(SynVar[id]), ⊑, ⊕, ⊙, Ker(SynVar[id])⟩ is a DIBI frame.

Equipped with the natural valuation Vnat, one obtains a DIBI model ⟨SynFr, Vnat⟩. We
postpone an example of SynVar[id]-kernels till Section 6, Example 33, in which SynVar[id]-
kernels are used to distinguish two notions of conditional independence in Markov categories.

An interesting question for future work is how to extend the syntactic DIBI model to a term
model. Typically being initial objects in categories of models, term models can help proving
completeness and defining categorical semantics for formal systems, including algebraic
theories [23], logics [38] (e.g., Lindenbaum–Tarski algebras) and type theories [19, 18]. A
term model for DIBI could lead to a sound and complete axiomatisation of the specific
version of DIBI logic in this paper, whose atomic propositions take the form of S ▷ [T ].

6 Conditional independence

DIBI logic is designed for reasoning about conditional independence (CI). The prior work [4]
shows that, CI in the discrete probabilistic models and join dependency in the relational
models can be characterised by the same class of DIBI formulas. Generalising this result,
in this section we define a notion of CI on C[θ]-kernels based on formula satisfaction. Since
C[θ] is a Markov category, we can compare our logical notion of CI with existing categorical
definitions of CI in Markov categories [9, 12].

Fix a Markov category C and a map θ : Var → ob(C). We define CI in the DIBI model
⟨Fr(C[θ]), Vnat⟩.

▶ Definition 25 (Conditional Independence). For any mutually disjoint finite sets of variables
W, X, Y, U , X and Y are DIBI conditionally independent given W in a C[θ]-kernel3f : ∅ →
W ∪ X ∪ Y ∪ U (denoted as X ⊥⊥L Y |W ) if

f ⊨Vnat (∅ ▷ [W ]) # ((W ▷ [X]) ∗ (W ▷ [Y ])). (4)

3 Note that C[θ]-kernels with domain ∅ are not to be thought of as maps with empty domains. For
instance, Kℓ(D)[θ]-kernels of the form ∅ → {x, y} corresponds to Kℓ(D)-morphisms 1 _ θ(x) × θ(y),
which denote distributions over x, y.
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Let us unfold what (4) means. Under the natural valuation Vnat, the atomic proposition
S ▷ [T ] encodes the dependence of T on S: formally, a C[θ]-kernel f : X → Y satisfies S ▷ [T ]
iff f contains some subkernel f ′ : S → Y ′ such that T ⊆ Y ′. So the formula in (4) requires
that the kernel f has empty domain and can be decomposed as f ⊒ f0 ⊙ (f1 ⊕ f2), where f0
determines the value on W , f1 and f2 determine the value on X and Y given the value on
W , respectively, and f1 and f2 do so independently of each other. We illustrate the formula
with examples in the discrete probabilistic DIBI model and the stochastic DIBI model.

▶ Example 26. In the setting of Example 5, consider the probabilistic kernel h : M[∅] →
DM[{x, y, z}] such that :

h(∅) =1
8 |0x, 0y, 0z⟩ + 1

8 |0x, 1y, 0z⟩ + 1
8 |1y, 0y, 0z⟩ + 1

8 |1y, 1y, 0z⟩

+ 1
32 |0x, 0y, 1z⟩ + 3

32 |0x, 1y, 1z⟩ + 3
32 |1y, 0y, 1z⟩ + 9

32 |1y, 1y, 1z⟩

Then h ⊨Vnat (∅ ▷ [{z}])#(({z} ▷ [{z, x}])∗({z} ▷ [{z, y}])), because h = h0⊙f = h0⊙(g1⊕g2),
where h0 denotes the uniform distribution 1

2 |0z⟩ + 1
2 |1z⟩.

▶ Example 27. Define g1, g2, f, h as in Example 19. We want to assert that variables x and
y are independent in the distribution constructed by Box-Muller Transform. Independence
is a special case of conditional independence in which the set of conditioned variables is
empty. Thus, the goal is to assert (∅ ▷ [∅]) # ((∅ ▷ [{x}]) ∗ (∅ ▷ [{y}])) – equivalently,
(∅ ▷ [{x}]) ∗ (∅ ▷ [{y}]).

Define h1 : ∅ → {x} and h2 : ∅ → {y} both as the standard normal distribution N (0, 1).
Clearly h1 ⊨Vnat ∅ ▷ [{x}] and h2 ⊨Vnat ∅ ▷ [{y}]. Moreover, some non-trivial calculations
show that (h1 ⊕ h2) ⊑ h, and consequently h ⊨Vnat (∅ ▷ [{x}]) ∗ (∅ ▷ [{y}]) by definition.

Since the categorical DIBI models are based on Markov categories, we compare our logical
notion of CI on kernels with the canonical notion of CI in Markov categories, which defines
CI as decomposability of morphisms. Fix a Markov category X in Definitions 28, 31, and 34.

▶ Definition 28. An X-morphism s : I → W ⊗ X ⊗ Y displays the conditional independence
of X and Y given W if there exist X-morphisms sW : I → W, gX : W → X, gY : W → Y such
that the following equation holds. We write this as X⊥Y |W.

W
X
Y

s = sW

W
X

Y

gX

gY

In the context of DIBI models, Definition 28 restricts to stating the conditional independ-
ence of X and Y given W in C[θ]-kernels of the form ∅ → W ∪ X ∪ Y . In particular, no
extra variable (as that U in Definition 25) in the kernel’s codomain is allowed.

▶ Example 29. We show an example of this notion of CI in the Markov category Gauss.
Consider a morphism s : ∅ → {w, x, y} specified by the tuple

(
!, σ2 =

[
1 1 1
1 2 1
1 1 2

]
, µ =

[
0
0
0

])
,

where ! denotes the trivial map from empty domain. That is, s takes a length 0 vector and
generates a length 3 vector, holding the values of w, x and y, with the normal distribution
N (µ, σ2). This s can be decomposed as in Definition 28 with sw = (!, 0, 1), gx = (1, 0, 1),
and gy = (1, 0, 1): composing sw, gx and gy, we get E(w) = E(ξw) = 0, E(x) = E(w + ξx) =
0 + 0 = 0 , and E(y) = E(w + ξy) = 0, justifying the noise’s mean µ being a zero vector.
For the covariance matrix, let v = (w, x, y) − (E(w), E(x), E(y)). Then σ2 = E(v · vT ) =
E((w, x, y) · (w, x, y)T ), and one may show that σ2 is equal to the matrix above.
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W
X
Ys

U

= sW

W
X

Y

gX

gY

(a) Markov CI.

W
X
Ys
U

= s0

W
X

Y

g1

g2
U0

U1

U2

(b) superset CI.

Figure 4 Two possible extension of plain CI.

▶ Proposition 30. For any C[θ]-kernel s : ∅ → W ∪ X ∪ Y where W, X, Y are mutually
disjoint, X ⊥Y |W iff X ⊥⊥L Y |W .

In order to extend Proposition 30 to the scenario in Definition 25 where a kernel f might
contain some U that does not appear in the CI statement in its codomain, we need to modify
the notion of CI from Definition 28 – referred to as plain CI – to allow objects that do
not appear in the CI statement to occur in the codomain of s. We suggest two sensible
extensions.

▶ Definition 31. Given an X-morphism s : I → W ⊗ X ⊗ Y ⊗ U,
s displays Markov CI, denoted X⊥M Y |W, if there exist sW, gX, gY satisfying 4a.
s displays superset CI, denoted X⊥S Y |W, if there exist s0, g1, g2 satisfying 4b.

These two notions differ regarding to the treatment of the extra object U. In Figure 4a,
we project out the extra object U and reduce the situation to that of Definition 28. In
Figure 4b, U is kept and passed along through s0, g1, g2. Clearly, both reduce to Definition 28
when no such U appears. We can now state that DIBI CI coincides with Markov CI, but is
weaker than superset CI.

▶ Theorem 32. Given the C[θ]-kernel f : ∅ → W ∪ X ∪ Y ∪ U from Definition 25,
1. f satisfies X ⊥M Y |W if and only if it satisfies X ⊥⊥L Y |W ;
2. if f satisfies X ⊥S Y |Z, then it also satisfies X ⊥⊥L Y |Z.

Item 1 follows straightforwardly by unpacking the definitions. Item 2 follows from Item 1
and that X⊥S Y |W implies X⊥M Y |W: simply apply U on both sides of Figure 4b, and
Figure 4a follows via naturality of . The converse of Item 2 does not hold in general, as
demonstrated below.

▶ Example 33. Consider the syntactic DIBI model ⟨SynFr, Vnat⟩ from Section 5.3. Define
the SynVar[id]-kernel f as follows, where c0, c1, c2, d are all generating morphisms, i.e., not
further decomposable:

c0

w

c1

c2 d

x
y

u

Then f satisfies the DIBI CI x⊥⊥L y |w, but not the superset CI x⊥S y |w: one cannot
rewrite the diagram in the dotted box into a juxtaposition of two diagrams with output
wires containing x and y, respectively; in other words, it cannot be rewritten as the style in
Figure 4b.

Example 33 gives some hint at how to weaken the superset CI to match DIBI CI: one
needs to allow some morphism d following the morphism witnessesing x⊥S y |z. We formalise
this idea and show the resulting notion is indeed equivalent to both Markov and DIBI CI.

FSCD 2024
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▶ Definition 34. An X-morphism s : I → W ⊗ X ⊗ Y ⊗ U displays the extended superset
conditional independence – denoted as X⊥S+ Y |W – if there exist X-morphisms s0, g1, g2, h

such that s can be decomposed as follows:

s0

W
X
Y

g1

g2

V0

V1
V2

h V3 (5)

Compared with Figure 4b, here one allows an extra morphism h to appear after the original

superset CI diagrams in Figure 4b; in fact, modulo rewiring, (5) is exactly s1
h

W⊗X⊗V1⊗Y⊗V2

V0

V3
,

where s1 = s0

W
X

Y
g1

g2
V0

V1

V2

. One intuitive way to think of the extended superset CI is to

view the morphisms as certain computational processes [31]: X and Y are independent given
W in s if s could be obtained via a computation in which X and Y are computed independently
from W (using g1 and g2 in (5) respectively), after which some further computation may
apply (for which stands the h part in (5)).

▶ Proposition 35. In Markov categories with conditionals, extended superset CI and Markov
CI are equivalent. Therefore, in the context of Theorem 32, if C has conditionals, then the
three notions of CI – DIBI CI, Markov CI, and extended superset CI – coincide.

7 Conclusion

In this paper we provide a general recipe to construct models for DIBI logic, generalising the
previously studied probabilistic and relational models. We adopt string diagrams to best
visualise the “input-preserving” property that characterises the states in the models, as well
as the compositions and subkernel relations, whose definition would be quite convoluted in
non-diagrammatic syntax. Then, we derive various new classes of DIBI models of interest. In
addition, we define an abstract notion of conditional independence in terms of DIBI formulas.
Since our approach can construct DIBI models based on any Markov categories, we are then
able to compare the logical CI notion with other definitions of CI proposed in the literature.

There are many promising directions for future work. On the logic side, DIBI logic –
interpreted in the probabilistic models – was designed to be the assertion logic of Conditional
Probabilistic Separation Logic (CPSL). Our categorical construction of a wide class of DIBI
models suggests a generalisation of CPSL to obtain program logics in various scenarios
beyond probabilistic programs, in the spirit of Moggi [27].

The notion of CI we propose can be straightforwardly generalised from Markov categories
to copy-delete categories (see Section 2). This would allow us to encompass models such as
relations with bag semantics in databases [8, 16], sub-probability measures [20]. However, to
the best of the authors’ knowledge, Proposition 30 fails for generic CD categories. Hence,
finding appropriate notions of CI in this more general setting remains an open question.

From a categorical perspective, the definition of the category C[θ] deserves further
exploration, from at least three angles. First, the C[θ]-morphisms may be seen as a “bundle”
of the images of some syntactic categories of variables and renaming (similar to SynVar from
Section 5.3) under suitable functors – usually referred to as “models” in functorial semantics.
We would like to make the connection with functorial semantics rigorous in terms of the
categorical structures involved [23, 7]. Second, while the current work represents finite sets
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of variables using deduplicated finite ⪯-ordered lists, towards a more principled treatment, it
is worth exploring using nominal string diagrams, a diagrammatic calculus for variables and
renaming [2, 3, 1], to represent sets of variables. Third, our categorical treatment of variables
seems related to prior work on internalising variables in categories; this problem has been
studied since the early days of categorical logic, which led to the construction of polynomial
categories [22], later extended to the monoidal setting [29, 17]. It is worth exploring potential
connection with this line of work.
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A Background on Monads

We first recall the basic definition of monads. We refer to [12, Sect. 3] for an overview
of the material in this section. An endofunctor T : C → C is a monad if it has a unit
ηT : 1C → T and a multiplication µT : T 2 → T natural transformations satisfying certain
compatibility conditions. Every monad T : C → C induces a Kleisli category Kℓ(T ), whose
objects are exactly C-objects, and morphisms X → Y are C morphisms of type X → T Y, with
compositions of f : X → T Y and g : Y → T Z given by X f−→ T Y T g−−→ T T Z µT

Z−−→ T Z. We will
write the morphisms in Kℓ(T ) as X _ Y to distinguish them from their counterpart X → T Y
in C. Importantly, if C is a SMC and T is a commutative monad, then Kℓ(T ) is also an
SMC [19]. If T is affine symmetric monoidal, then Kℓ(T ) is a Markov category [15, 9].

In the remainder of this section, we recall the monads used in this paper: the distribution
monad D, the powerset monad P (and Pi), the Giry monad G, and the Radon monad R.

▶ Definition 36 (Discrete Distribution Monad). The discrete distribution monad D is an
endofunctor on Set. It maps a countable set X to the set of distributions over X, i.e., the
set containing all functions µ over X is satisfying

∑
x∈X µ(x) = 1, and maps a function

f : X → Y to D(f) : D(X) → D(Y ), given by D(f)(µ)(y) :=
∑

f(x)=y µ(x).
For the monadic structure, define the unit η by ηX(x) := δx, where δx denotes the Dirac

distribution on x: for any y ∈ X, we have δx(y) = 1 if y = x, otherwise δx(y) = 0. Further,
define bind : D(X) → (X → D(Y )) → D(Y ) by bind(µ)(f)(y) :=

∑
p∈D(Y ) D(f)(µ)(p) · p(y).

▶ Definition 37 (Powerset monad). The powerset monad P is an endofunctor on Set. It
maps every set to the set of its subsets P(X) = {U | U ⊆ X}. We define ηX : X → P(X)
mapping each x ∈ X to the singleton {x}, and bind : P(X) → (X → P(Y )) → P(Y ) by
bind(U)(f) := ∪{y | ∃x ∈ U.f(x) = y}. When restricted to nonempty powersets, the resulting
functor Pi is still a monad, called the nonempty powerset monad.

The next monad is defined on the category Meas of measurable spaces, which consists of
measurable spaces (A, ΣA) as objects, and measurable functions as morphisms. Meas is a
monoidal category, where the monoidal product on objects and morphisms are given by
the product of measurable spaces and measurable functions, respectively. In particular, the
monoidal unit consists of the singleton measurable space (1 = {•}, {∅, 1}).

▶ Definition 38 (Giry Monad). The giry monad G maps a measurable space (X, ΣX) to
another measurable space (G(X), ΣG(X)), where G(X) is the set of probability measures over X,
and the σ-algebra ΣG(X) is the coarsest σ-algebra over G(X) making the evaluation function
evA : G(X) → [0, 1], defined by evA(ν) = ν(A), measurable for any A ∈ ΣX . For each
measurable function f : X 7→ Y , Gf : GX → GY is defined by (Gf)(ν)(B) = ν(f−1(B)) for
B ∈ ΣY . For the monadic structure, define the unit η by ηX(x) = δx; define the bind operator
bindX,Y : GX → ((X → GY ) → GY ) by bind(ν)(f)(B) =

∫
X

f(X)(B)dν for B ∈ ΣGY .

▶ Definition 39 (Radon Monad). The Radon monad R is a measure monad on the category
of compact Hausdorff spaces. If maps a compact Hausdorff space X to the set of Radom
measures µ on X such that µ(X) ≤ 1. It maps a continuous map between compact Hausdorff
spaces f : X → Y to the push-forward measure R(f) : RX → RY given by D(f)(µ)(y) :=
µ(f−1(y)).

For the monadic structure: we define the unit η to take a point x ∈ X to the diract
distribution δx solely supported at x. We also define the bind operator bindX,Y : RX →
((X → RY ) → RY ) by bind(ν)(f)(B) =

∫
X

f(X)(B)dν.
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The category of stochastic processses Stoch is the Kleisli category of the Giry monad G.
It is helpful to explicate its structure.

▶ Definition 40. The symmetric monoidal category of stochastic processses Stoch has the
following components:

objects are measurable spaces (A, ΣA);
morphisms (A, ΣA) → (B, ΣB) are maps f : ΣB × A → [0, 1] satisfying: for arbitrary
T ∈ ΣB, f(T, −) : A → [0, 1] is measurable, and for arbitrary a ∈ A, f(−, a) : ΣB → [0, 1]
is a probability measure;
compositions of f : (A, ΣA) → (B, ΣB) and g : (B, ΣB) → (C, ΣC) is the map g ◦ f : ΣC ×
A → [0, 1] mapping (U, a) to

∫
b∈B

g(U, b) · f(db, a);
id(A,ΣA) maps (S, a) ∈ ΣA × A to 1 if a ∈ S, and to 0 if a ̸∈ S;
the monoidal product ⊗ acts on objects as (A, ΣA) ⊗ (B, ΣB) = (A × B, ΣA ⊗ ΣB), where
ΣA ⊗ ΣB is the smallest sigma-algebra containing ΣA × ΣB);
the monoidal product ⊗ acts on morphisms to obtain product measures. That is, (U, V ) ∈
ΣB × ΣD as follows: given f : (A, ΣA) → (B, ΣB) and g : (C, ΣC) → (D, ΣD), f ⊗ g : ΣB ⊗
ΣD × A × C → [0, 1] maps (U, V, a, c) to f(U, a) · g(V, b).
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18:2 Representation of Peano Arithmetic in Separation Logic

of separation logic becomes such a strong logic even if we only add 0 and s, because the
fragment of separation logic with only ↪→ is known to be decidable for the validity in the
standard interpretation [4].

Our main theorem in this paper is a representation theorem which states that there is a
translation of Π0

1 formulas in Peano arithmetic to formulas in the separation logic with only
the intuitionistic points-to predicate and numbers such that a formula in Peano arithmetic is
valid in the standard model if and only if its translation in the separation logic with numbers
is valid in the standard interpretation. Namely, the translation preserves the validity and
the non-validity. The undecidability result is obtained as a corollary of this theorem.

The main technique of the proof of our representation theorem is to have an operation
table for addition, multiplication, and inequality in a heap, and to remove x + y = z,
x × y = z and x ≤ y by referring to the value z or the truth of x ≤ y. For this, we will code
the operation table by the consecutive heap cells that contain 0, x + 3, y + 3, x + y + 3 or
1, x + 3, y + 3, x × y + 3 or 2, x + 3, y + 3 where 3 is an offset and 0, 1 and 2 are tags for
addition, multiplication, and inequality, respectively. In order to define the translation, we
will introduce normal form of a bounded formula of Peano arithmetic.

Our translation can be extended to arbitrary formulas of Peano arithmetic, but the
representation theorem does not hold for formulas beyond Π0

1. We will give some Σ0
1 formula

as a counterexample.
Our result shows that discussion about properties described by Π0

1 formulas such as
consistency of logical systems and strong normalization properties for reduction systems in
Peano arithmetic can be simulated in the separation logic with numbers. The undecidability
of the validity in the separation logic with numbers itself can be proved in a simpler way, by
using a similar idea to [7]. We will also give a proof in that way.

There are some undecidability results about the validity of separation logic and some of
them use some translations. The separation logic with the 1-field points-to predicate and
the separating implication is known to be undecidable for its validity [4]. The separation
logic with the 2-field points-to predicate is also known to be undecidable for its validity [7].
It is proved by translating formulas in a first-order logic with one binary relation into the
separation logic with the 2-field points-to predicate. On the other hand, there are some
decidability results about the validity of separation logic. The separation logic with the
1-field points-to predicate and without the separating implication is known to be decidable
for its validity [4]. The quantifier-free separation logic is known to be decidable [6]. It is
proved by translating the separation logic into a first-order logic with empty signature. We
do not know any work on a translation from some fragment of arithmetic into such a weak
separation logic with only {↪→, 0, s}.

If we restrict ourselves to symbolic heaps in separation logic with arithmetic or inductive
definitions, there are some decidability results. Symbolic heap entailment with Presburger
arithmetic [15], bounded-treewidth symbolic heap entailment [10], symbolic heap entailment
with cone inductive definitions [16, 11], and symbolic heap entailment with lists [2, 3, 8, 1] are
known to be decidable for their validity. Even for symbolic heaps, if we weaken conditions,
they easily become undecidable. Symbolic heap entailment with unrestricted inductive
definitions [10], and symbolic heap entailment with bounded-treewidth inductive definitions
and implicit existentials [14] are known to be undecidable for their validity.

This paper is organized as follows: Section 2 defines Peano arithmetic. Section 3 defines
the separation logic with numbers SLN. Section 4 defines the translation of normal formulas
in Peano arithmetic to formulas in SLN and shows the preservation property of the translation.
In Section 5 we define an auxiliary translation to normal form and prove the main theorem
for the preservation of the translation for Π0

1 formulas from PA to SLN. Section 6 gives
another proof of undecidability for the validity of SLN. Section 7 concludes.
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2 Peano arithmetic

In this section, we define Peano arithmetic PA and its standard model.
Let Vars = {x, y, . . .} be the set of variables. The terms of PA are defined by:

t ::= x | 0 | s(t) | t + t | t × t.

The formulas of PA are defined by:

A ::= t = t | t ≤ t | ¬A | A ∧ A | A ∨ A | ∃xA | ∀xA.

We will write A → B for ¬A ∨ B.

We write sn(t) for
n︷ ︸︸ ︷

s(. . . (s(t)) . . .). We use the abbreviation n = sn(0). We write A[x := t]
for the formula obtained by capture-free substitution of t for x in A.

Let N be the standard model of PA, namely, its universe |N | is N = {0, 1, 2, . . .}, 0N =0,
sN (x) = x + 1, +N (x, y) = x + y, ×N (x, y) = x × y, (≤)N (x, y) iff x ≤ y. Let σ : Vars → N
be a variable assignment. We extend σ to terms in a usual way. We write σ[x := n] for the
variable assignment that assigns n to x and σ(y) to y other than x.

We write σ |= A when A is true in N under the variable assignment σ. This relation is
defined in a usual way. If σ |= A for every variable assignment σ, A is defined to be valid. If
A does not contain free variables, A is called closed.

A formula ∀x ≤ t.A is an abbreviation of ∀x(x ≤ t → A), where t does not contain x.
A formula ∃x ≤ t.A is an abbreviation of ∃x(x ≤ t ∧ A), where t does not contain x. We
call ∀x ≤ t and ∃x ≤ t bounded quantifiers. A formula A is defined to be bounded if every
quantifier in A is bounded. If A ≡ ∀xB and B is bounded, A is called a Π0

1 formula.

3 Separation logic with numbers

In this section, we define a small fragment SLN of separation logic with numbers. We will
also define the standard interpretation of SLN.

Let Vars = {x, y, . . .} be the set of variables. The terms of SLN are defined by:

t ::= x | 0 | s(t).

The formulas of SLN are defined by:

A ::= t = t | t ↪→ t | ¬A | A ∧ A | A ∨ A | ∃xA | ∀xA.

We will write A → B for ¬A ∨ B.
The predicate t1 ↪→ t2 is the intuitionistic points-to predicate and means that there is

some cell of address t1 which contains t2 in the heap.
We use the same abbreviation n and substitution A[x := t] as in PA. For simplicity,

we write (t ↪→ t1, . . . , tn) for t ↪→ t1 ∧ . . . ∧ sn−1(t) ↪→ tn. We sometimes write only one
quantifier for consecutive quantifiers in a usual way like ∀xy∃zw for ∀x∀y∃z∃w.

Now we define the standard interpretation [[·]] of SLN. Let N be {0, 1, . . .}. We use N for
both the sets of addresses and values. Let [[0]] = 0, [[s]](x) = x + 1. Let σ : Vars → N be a
variable assignment. The extension of σ to terms and the variable assignment σ[x := n] are
defined similarly to those in PA. A heap is a finite function h : N →fin N. A heap represents
a state of the memory.
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18:4 Representation of Peano Arithmetic in Separation Logic

For a formula A of SLN, we define σ, h |= A by:

σ, h |= t1 = t2 iff σ(t1) = σ(t2),
σ, h |= t1 ↪→ t2 iff h(σ(t1)) = σ(t2),
σ, h |= ¬A iff σ, h ̸|= A,

σ, h |= A1 ∧ A2 iff σ, h |= A1 and σ, h |= A2,

σ, h |= A1 ∨ A2 iff σ, h |= A1 or σ, h |= A2,

σ, h |= ∃xA iff for some n ∈ N, σ[x := n], h |= A,

σ, h |= ∀xA iff for all n ∈ N, σ[x := n], h |= A.

σ, h |= A means that A is true under the variable assignment σ and the heap h. A formula
A is defined to be valid if σ, h |= A for all σ and h. If a formula does not contain atoms
t ↪→ u, the truth of the formula does not depend on heaps.

The validity defined in this section is the validity in the standard interpretation of SLN,
and it is different from the ordinary validity for separation logic, since the interpretations
depend on the set of addresses in the definition of the ordinary validity.

4 Translation of Normal Formulas in PA into SLN

In this section, we define the translation (·)◦ of bounded formulas in PA to formulas in SLN,
and prove that the translation preserves the validity and the non-validity.

The key of the translation is to keep an operation table for addition, multiplication and
inequality in a heap, and a resulting formula in SLN refers to the table instead of using the
addition, multiplication and inequality symbols. To state that a heap keeps the operation
table, we will use a table heap condition. For proving the preservation of the translation, we
will use a simple table heap, which is a heap that contains all the operation entries of some
size. Since the table in a heap is finite, to estimate the necessary size of the operation table
for translating a given formula, we will use the upper bound of arguments in the formula.

We will first define normal form of a bounded formula in PA, which we will translate
into a formula in SLN. Next we will define a table heap condition, which guarantees that a
heap has an operation table for addition, multiplication and inequality. Then we will define
the translation of a normal formula in PA into a formula in SLN. Then we will define a
simple table heap and the upper bound of arguments in a formula. Finally we will prove the
preservation of the translation.

We write ∃(x = t)A for an abbreviation of ∃x(x = t ∧ A), where t does not contain x.
Our translation is defined for only normal formulas. This does not lose the generality

since any bounded formula can be transformed into a normal formula in Section 5. In a
normal formula, + and × appear only in t of ∃(x = t). Moreover, this t is of the form a + b

or a × b where a, b do not contain + or ×.

▶ Definition 4.1 (Normal form). Normal forms of PA are given by A in the following grammar:

A ::= B | ∀x ≤ t.A | ∃x ≤ t.A | ∃(x = t)A

satisfying the following conditions: (1) B is a disjunctive normal form of a formula in PA
without quantifiers, +, ×, and formulas of the form ¬(t ≤ u), (2) each t in ∀x ≤ t and ∃x ≤ t

does not contain +, ×, and (3) each t in ∃(x = t) is of the form a + b or a × b for some terms
a and b that do not contain + or ×.

The table heap condition is defined as the formula H in the next definition. It guarantees
that a heap that satisfies H contains a correct operation table for +, × and ≤. The formulas
Add, Mult and Ineq in the following definition refer to the operation table when a heap satisfies
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the table heap condition. The normal formula enables us to represent each occurrence of +,
× and ≤ by Add, Mult and Ineq, respectively. We will write [t] for s3(t) for readability, since
the offset is 3.

▶ Definition 4.2 (Table Heap Condition). H , Add(x, y, z), Mult(x, y, z) and Ineq(x, y) are the
formulas defined by:

HAdd1 ≡ ∀ay((a ↪→ 0, [0], [y]) → s3(a) ↪→ [y]),
HAdd2 ≡ ∀axy((a ↪→ 0, [s(x)], [y])

→ ∃bz((b ↪→ 0, [x], [y], [z]) ∧ s3(a) ↪→ [s(z)])),
HMult1 ≡ ∀ay((a ↪→ 1, [0], [y]) → s3(a) ↪→ [0]),
HMult2 ≡ ∀axy((a ↪→ 1, [s(x)], [y]) → ∃bz((b ↪→ 1, [x], [y], [z])∧

∃cw((c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w]))),
HIneq1 ≡ ∀axy((a ↪→ 2, [s(x)], [y]) → ∃zb(y = s(z) ∧ (b ↪→ 2, [x], [z]))),
HIneq2 ≡ ∀axy((a ↪→ 2, [s(x)], [y]) → ∃b(b ↪→ 2, [x], [y])),

H ≡ HAdd1 ∧ HAdd2 ∧ HMult1 ∧ HMult2 ∧ HIneq1 ∧ HIneq2,

Add(x, y, z) ≡ ∀a((a ↪→ 0, [x], [y]) → s3(a) ↪→ [z]),
Mult(x, y, z) ≡ ∀a((a ↪→ 1, [x], [y]) → s3(a) ↪→ [z]),

Ineq(x, y) ≡ ∃a(a ↪→ 2, [x], [y]).

The formula H forces a heap to have a table that contains results of addition, multiplication
and inequality for some natural numbers. Each entry for addition and multiplication consists
of four cells, and each entry for inequality consists of three cells. If the first cell contains 0,
then the entry is for addition. If the first cell contains 1, then the entry is for multiplication.
If the first cell contains 2, then the entry is for inequality. The second and third cells of
an entry represent arguments of addition, multiplication or inequality. The entries for +, ×
have the forth cells, which contain the results of addition or multiplication. For inequality,
if there is an entry for two arguments x and y, then x ≤ y holds. Since 0, 1 and 2 have a
special meaning, arguments and results are stored by adding three. The definition of H uses
the following inductive definitions of addition and multiplication: s(x) + y = s(x + y) and
(x + 1) × y = x × y + x. The formulas HAdd1 and HMult1 force the base cases of addition and
multiplication, respectively, and HAdd2 and HMult2 force the induction steps of addition and
multiplication, respectively. HIneq1 means that if there is an entry for x + 1 ≤ y, then the
entry for x ≤ y − 1 exists in the heap. HIneq2 means that if there is an entry for x + 1 ≤ y,
then the entry for x ≤ y exists in the heap.

We will show that the formula H actually forces the heap to have a correct table for
addition, multiplication and inequality (the claims (1), (2) and (3) below). The claim (4)
below says that H ensures that if a heap contains an entry for u ≤ u, then it contains all the
entries for t ≤ u.

▶ Lemma 4.3. Let σ be a variable assignment and h be a heap.
(1) If σ, h |= H, h(m) = 0, h(m+1) = n+3 and h(m+2) = k +3, then h(m+3) = n+k +3.

(2) If σ, h |= H, h(m) = 1, h(m+1) = n+3 and h(m+2) = k +3, then h(m+3) = n×k +3.

(3) If σ, h |= H, h(m) = 2, h(m + 1) = n + 3, h(m + 2) = k + 3, then n ≤ k.

(4) If σ, h |= H, σ(t) ≤ σ(u), σ, h |= Ineq(u, u), then σ, h |= Ineq(t, u).
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18:6 Representation of Peano Arithmetic in Separation Logic

Proof.

(1) We will show the claim by induction on n.
(Base case) Let n = 0. Since h(m) = 0, h(m + 1) = 3, h(m + 2) = k + 3 and
σ, h |= HAdd1, we have σ[a := m, x := n, y := k], h |= s3(a) ↪→ [y]. Hence, we have
h(m + 3) = σ[a := m, x := n, y := k]([y]) = k + 3 = n + k + 3.
(Induction step) Let n > 0. Then, n − 1 ≥ 0. Let σ′ = σ[a := m, x := n − 1, y := k].
Since h(m) = 0, h(m + 1) = n + 3, h(m + 2) = k + 3 and σ, h |= HAdd2, we have
σ′, h |= ∃bz((b ↪→ 0, [x], [y], [z]) ∧ s3(a) ↪→ [s(z)]). There exist q and ℓ such that σ′[b :=
q, z := ℓ], h |= (b ↪→ 0, [x], [y], [z])∧s3(a) ↪→ [s(z)]. That is, h(q) = 0, h(q+1) = (n−1)+3,
h(q + 2) = k + 3, h(q + 3) = ℓ + 3 and h(m + 3) = ℓ + 4. By induction hypothesis, we
have h(q + 3) = (n − 1) + k + 3 = n + k + 2. That is, ℓ = n + k − 1. Thus, we have
h(m + 3) = ℓ + 4 = n + k − 1 + 4 = n + k + 3.

(2) We will show the claim by induction on n.
(Base case) Let n = 0. Since h(m) = 1, h(m + 1) = 3, h(m + 2) = k + 3 and
σ, h |= HMult1, we have σ[a := m, x := n, y := k], h |= s3(a) ↪→ [0]. Hence, we have
h(m + 3) = σ[a := m, x := n, y := k]([0]) = 3 = n × k + 3.
(Induction step) Let n > 0. Then, n − 1 ≥ 0. Let σ′ = σ[a := m, x := n − 1, y := k].
Since h(m) = 1, h(m + 1) = n + 3, h(m + 2) = k + 3 and σ, h |= HMult2, we have
σ′, h |= ∃bz((b ↪→ 1, [x], [y], [z]) ∧ ∃cw((c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w])). There exist
q and ℓ such that σ′[b := q, z := ℓ], h |= (b ↪→ 1, [x], [y], [z]) ∧ ∃cw((c ↪→ 0, [z], [y], [w]) ∧
s3(a) ↪→ [w]). That is, h(q) = 1, h(q + 1) = (n − 1) + 3, h(q + 2) = k + 3, h(q + 3) = ℓ + 3.
So by induction hypothesis, h(q + 3) = (n − 1) × k + 3. Thus ℓ = (n − 1) × k.
Furthermore, since σ′[b := q, z := ℓ], h |= ∃cw((c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w]), we
have σ′[b := q, z := ℓ, c := r, w := p], h |= (c ↪→ 0, [z], [y], [w]) ∧ s3(a) ↪→ [w] for some
r and p. That is, h(r) = 0, h(r + 1) = ℓ + 3, h(r + 2) = k + 3, h(r + 3) = p + 3 and
h(m+3) = p+3. By (1) of this Lemma, we have p = ℓ+k. With this and ℓ = (n−1)×k,
we have p = (n − 1) × k + k = n × k. Hence, h(m + 3) = p + 3 = n × k + 3.

(3) We will show the claim by induction on n.
(Base case) Let n = 0. We immediately have n ≤ k.
(Induction step) Let n > 0. Then, n − 1 ≥ 0. Let σ′ = σ[a := m, x := n − 1, y := k].
Since h(m) = 2, h(m + 1) = n + 3, h(m + 2) = k + 3 and σ, h |= HIneq1, we have
σ′, h |= ∃zb(y = s(z) ∧ (b ↪→ 2, [x], [z])). Thus, there exist ℓ and q such that σ′[z :=
ℓ, b := p], h |= y = s(z) ∧ (b ↪→ 2, [x], [z]), that is, h(p) = 2, h(p + 1) = (n − 1) + 3,
h(p + 2) = ℓ + 3 = (k − 1) + 3. By induction hypothesis, n − 1 ≤ k − 1, that is, n ≤ k.

(4) We will show the claim by induction on σ(u) − σ(t).
(Base case) Let σ(u) − σ(t) = 0, i.e. σ(t) = σ(u). By assumption, we have σ, h |=
Ineq(u, u). Since σ(t) = σ(u), we have the claim.
(Induction step) Let σ(u) − σ(t) > 0, i.e. σ(t) < σ(u). Since σ(u) − (σ(t) + 1) <

σ(u) − σ(t), we have σ, h |= Ineq(s(t), u) by induction hypothesis. That is, σ, h |=
∃a(a ↪→ 2, [s(t)], [u]). Since σ, h |= HIneq2, we have σ, h |= ∃b(b ↪→ 2, [t], [u]), that is,
σ, h |= Ineq(t, u). ◀

Now we define the translation of normal formulas in PA into formulas in SLN. In the
translation, +, × and ≤ are replaced by Add, Mult and Ineq with the table heap condition.
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▶ Definition 4.4 (Translation (·)◦). Let A be a normal formula in PA. We define SLN formula
(∀xA)◦ as:

B◦ ≡ B≤ if B is quantifier-free,

(∃x ≤ t.B)◦ ≡ H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦),
(∀x ≤ t.B)◦ ≡ H → ∀x(¬Ineq(x, t) ∨ B◦),

(∃(x = t + u)B)◦ ≡ H → ∃x(Add(t, u, x) ∧ B◦),
(∃(x = t × u)B)◦ ≡ H → ∃x(Mult(t, u, x) ∧ B◦),

(∀xA)◦ ≡ ∀xA◦,

where B≤ is obtained from B by replacing each positive occurrence of t ≤ u by H →
¬Ineq(u, t) ∨ t = u.

Example. For a normal formula

A ≡∃(x1 = x + s(x))∃(x2 = x + x1)∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5),

its translation A◦ is

A◦ ≡H → ∃x1(Add(x, s(x), x1) ∧ (H → ∃x2(Add(x, x1, x2) ∧ (H → ∀y(¬Ineq(y, x2)∨
(H → ∃x3(Add(x, y, x3) ∧ (H → ∃x4(Mult(y, x3, x4)∧
(H → ∃x5(Add(x, x4, x5) ∧ (H → ¬Ineq(x5, 0) ∨ 0 = x5)))))))))))).

Our goal is to show that for any Π0
1 formula A of PA, A is valid in PA if and only if A◦ is

valid in SLN. Therefore, A◦ should hold for every heap h. By the definition of (·)◦, x = t + u

and x = t × u are translated into H → Add(t, u, x) and H → Mult(t, u, x), respectively. Thus,
if a heap h does not have a sufficiently large table for x = t + u and x = t × u, the translated
formulas are trivially true. Since we demand that A◦ hold for all heaps, there is h that
contains a sufficiently large table. Furthermore, if the addition and multiplication in the
formula are correct in such a sufficiently large heap, they must be correct in every heap,
because addition and multiplication are numeric properties and do not depend on heaps.
The same is true for inequality. This is the key idea to prove our goal. That is, σ |= A if
and only if σ, h |= A◦ for sufficiently large h if and only if σ, h |= A◦ for all h. We will prove
them in Lemmas 4.10 and 4.11 later.

Since we demand that A◦ hold for all heaps, we define the translation of t ≤ u to be
H → ¬Ineq(u, t) ∨ t = u and we do not straightforwardly define it to be H → Ineq(t, u),
because Ineq(t, u) demands the heap to contain the entry for t ≤ u, which is not possible
if the heap is not sufficiently large. Furthermore, the translation of ∃x ≤ t.B is not simply
H → ∃x(Ineq(x, t) ∧ B) but rather seemingly tricky H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦). If
we adopt the simple translation, we may not be able to find x such that the entry for x ≤ t is
in the heap when it is not sufficiently large. Our idea is to let such a case be true. Therefore,
we allow the case ¬Ineq(t, t), which is true if the heap may not contain some entries for · ≤ t.

First, we estimate the necessary size of the operation table for a given formula and a
given variable assignment. This size is defined in the next definition.
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▶ Definition 4.5. Let A be prenex and disjunctive normal form of a bounded formula in PA
and σ be a variable assignment. We define the number max(σ, A) by:

max(σ, t ≤ u) = max{σ(t), σ(u)},

max(σ, t = u) = {0},

max(σ, ¬B) = max(σ, B)
max(σ, B ∧ C) = max{max(σ, B), max(σ, C)}
max(σ, B ∨ C) = max{max(σ, B), max(σ, C)}
max(σ, ∀x ≤ t.B) = max{σ(t), max(σ, B[x := t])},

max(σ, ∃x ≤ t.B) = max{σ(t), max(σ, B[x := t])},

max(σ, ∃(x = t)B) = max{σ(t), max(σ, B[x := t])}.

Example. By using the above definition one by one, we have

max(σ, ∃(x1 = x + s(x))∃(x2 = x + x1)∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5))
= max{σ(x + s(x)), max(σ, ∃(x2 = x + (x + s(x)))∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5))}
= max{σ(x + s(x)), max{σ(x + (x + s(x))), max(σ, ∀y ≤ x + (x + s(x)).

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5))}}
= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),

max(σ, ∃(x3 = x + (x + (x + s(x))))∃(x4 = (x + (x + s(x))) × x3)
∃(x5 = x + x4)(0 ≤ x5))}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max(σ, ∃(x4 = (x + (x + s(x))) × (x + (x + (x + s(x)))))∃(x5 = x + x4)(0 ≤ x5))}}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max{σ((x + (x + s(x))) × (x + (x + (x + s(x))))),
max(σ, ∃(x5 = x + (x + (x + s(x))) × (x + (x + (x + s(x)))))(0 ≤ x5))}}}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max{σ((x + (x + s(x)) × (x + (x + (x + s(x))))),
max{σ(x + (x + (x + s(x))) × (x + (x + (x + s(x))))),
max(σ, 0 ≤ x + (x + (x + s(x))) × (x + (x + (x + s(x)))))}}}}}}

= max{σ(x + s(x)), max{σ(x + (x + s(x))), max{σ(x + (x + s(x))),
max{σ(x + (x + (x + s(x)))),
max{σ((x + s(x)) × (x + (x + (x + s(x))))),
max{σ(x + (x + s(x)) × (x + (x + (x + s(x))))),
max{0, σ(x + (x + (x + s(x))) × (x + (x + (x + s(x)))))}}}}}}}

= σ(x) + (3σ(x) + 1)(4σ(x) + 1).

Next, for a given size n we will define a heap that covers addition of arguments ≤ n2 and
multiplication and inequality of arguments ≤ n. We call it a simple table heap.
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▶ Definition 4.6. For a number n, we define a heap hn as the heap defined by:

hn(x) =



0 (x = 4i, i < (n2 + 1)2)
i mod (n2 + 1) + 3 (x = 4i + 1, i < (n2 + 1)2)
⌊i/(n2 + 1)⌋ + 3 (x = 4i + 2, i < (n2 + 1)2)
hn(x − 2) + hn(x − 1) − 3 (x = 4i + 3, i < (n2 + 1)2)
1 (x = c1 + 4i, i < (n + 1)2)
i mod (n + 1) + 3 (x = c1 + 4i + 1, i < (n + 1)2)
⌊i/(n + 1)⌋ + 3 (x = c1 + 4i + 2, i < (n + 1)2)
(hn(x − 2) − 3) × (hn(x − 1) − 3) + 3 (x = c1 + 4i + 3, i < (n + 1)2)
2 (x = c2 + 3i, i < (n + 1)2)
i mod (n + 1) + 3 (x = c2 + 3i + 1, i < (n + 1)2)
n + 3 (x = c2 + 3i + 2, i < (n + 1)2,

⌊i/(n + 1)⌋ < i mod (n + 1))
⌊i/(n + 1)⌋ + 3 (x = c2 + 3i + 2, i < (n + 1)2,

⌊i/(n + 1)⌋ ≥ i mod (n + 1))
undefined otherwise

where c1 = 4(n2 + 1)2 and c2 = c1 + 4(n + 1)2.

hn has the operation table that has entries of + for arguments ≤ n2 and the entries
of × and ≤ for arguments ≤ n. The i-th entry for + contains the result of addition of
x = i mod (n2 +1) and y = ⌊i/(n2 +1)⌋, that is, h(4i) = 0, h(4i+1) = x+3, h(4i+2) = y +3
and h(4i + 3) = x + y + 3. The i-th entry for × contains the result of multiplication of
x = i mod (n + 1) and y = ⌊i/(n + 1)⌋, that is, h(c1 + 4i) = 0, h(c1 + 4i + 1) = x + 3,
h(c1 +4i+2) = y +3 and h(c1 +4i+3) = x×y +3. The i-th entry for ≤ signifies inequality of
x = i mod (n + 1) and y = ⌊i/(n + 1)⌋ or y = n, where h(c2 + 4i) = 2, h(c2 + 4i + 1) = x + 3,
and h(c2 + 4i + 2) = y + 3 if x ≤ y and h(c2 + 4i + 2) = n + 3 if x > y.

The next lemma shows that the simple table heap hn satisfies the table heap condition H .

▶ Lemma 4.7. For a variable assignment σ, we have σ, hn |= H.

Proof. hn clearly satisfies H. ◀

The next lemma shows that the truth of t + u = v, t × u = v and t ≤ u in PA for
the standard model is equivalent to the truth of their translations in SLN for the standard
interpretation for the simple table heap.

▶ Lemma 4.8. For n ≥ max{σ(t), σ(u)}, the following hold.
(1) σ |= t + u = v if and only if σ, hn |= Add(t, u, v).
(2) σ |= t × u = v if and only if σ, hn |= Mult(t, u, v).
(3) σ |= t ≤ u if and only if σ, hn |= Ineq(t, u).

Proof.
(1) Only-if-direction: Since n ≥ max{σ(t), σ(u)}, by the definition of hn, there exists p such

that σ[a := p], hn |= (a ↪→ 0, [t], [u]). That is, hn(p) = 0, hn(p+1) = σ(t)+3, hn(p+2) =
σ(u) + 3. By the definition of hn, we have hn(p + 3) = σ(t) + σ(u) + 3. By assumption,
σ(t) + σ(u) = σ(v). Therefore, hn(p + 3) = σ(v) + 3. Thus, σ[a := p], hn |= s3(a) ↪→ [v].
Hence, σ, hn |= Add(t, u, v).
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If-direction: Since n ≥ max{σ(t), σ(u)}, by the definition of hn, there exists p such that
σ[a := p], hn |= (a ↪→ 0, [t], [u], [v]). Thus, hn(p) = 0, hn(p + 1) = σ(t) + 3, hn(p + 2) =
σ(u) + 3, hn(p + 3) = σ(v) + 3. By the definition of hn, we have hn(p + 3) = (hn(p + 1) −
3) + (hn(p + 2) − 3) + 3. Since hn(p + 1) = σ(t) + 3 and hn(p + 2) = σ(u) + 3, we have
hn(p + 3) = σ(t) + σ(u) + 3. Thus, we have σ(t) + σ(u) = σ(v). Hence, σ |= t + u = v.

(2) The claim can be shown similarly to (1).
(3) Only-if-direction: Suppose σ(t) ≤ σ(u). Let i = σ(t) · (n + 1) + σ(u). Since n ≥

max{σ(t), σ(u)}, we have i < (n + 1)2. Furthermore, σ(t) = ⌊i/(n + 1)⌋ and σ(u) =
i mod (n+1). For p = 4(n2 +1)2 +4(n+1)2 +3i, we have hn(p) = 2, hn(p+1) = σ(t)+3
by the definition of hn. Since σ(t) ≤ σ(u), we have hn(p + 2) = σ(u) + 3 by the definition
of hn. From this, we have σ, hn |= ∃a(a ↪→ 2, [t], [u]), that is, σ, hn |= Ineq(t, u).
If-direction: Suppose σ, hn |= Ineq(t, u). Since n ≥ max{σ(t), σ(u)}, there exists p such
that hn(p) = 2, hn(p + 1) = σ(t) + 3, hn(p + 2) = σ(u) + 3. By Lemma 4.3 (3), we have
hn(p + 1) ≤ hn(p + 2), that is, σ(t) ≤ σ(u). ◀

The next lemma shows that if Add, Mult and ¬Ineq are true for a sufficiently large simple
table heap, they are also true for all heaps.

▶ Lemma 4.9. For n ≥ max{σ(t), σ(u)}, the following hold.
(1) σ, hn |= Add(t, u, v) if and only if σ, h |= H → Add(t, u, v) for all h.
(2) σ, hn |= Mult(t, u, v) if and only if σ, h |= H → Mult(t, u, v) for all h.
(3) σ, hn |= ¬Ineq(t, u) if and only if σ, h |= H → ¬Ineq(t, u) for all h.

Proof. The if-direction is obvious. We will show the only-if-direction.
(1) Since σ, hn |= Add(t, u, v) by assumption, we have σ(t) + σ(u) = σ(v) by Lemma 4.8 (1).

We fix h in order to show σ, h |= H → Add(t, u, v).
Case 1. If σ, h ̸|= H, the claim follows trivially.
Case 2. Assume σ, h |= H.

Case 2.1 If σ, h |= ∀a¬(a ↪→ 0, [t], [u]), the claim follows trivially, because σ, h |=
∀a((a ↪→ 0, [t], [u]) → s3(a) ↪→ [u]).

Case 2.2 Assume σ, h |= ∃a(a ↪→ 0, [t], [u]). We assume h(p) = 0, h(p + 1) = σ(t) +
3, h(p + 2) = σ(u) + 3 for arbitrary p. Since σ, h |= H, we have h(p + 3) =
(h(p + 1) − 3) + (h(p + 2) − 3) + 3 by Lemma 4.3 (1). Therefore, h(p + 3) =
σ(t) + σ(u) + 3. That is, h(p + 3) = σ(v) + 3. Thus σ, h |= s3(a) ↪→ [v]. Then, we
have σ[a := p], h |= (a ↪→ 0, [t], [u]) → s3(a) ↪→ [v] for all p.

Hence in both cases σ, h |= H → Add(t, u, v).
(2) The claim can be shown similarly to (1) (except it uses Lemma 4.3 (2)).
(3) By Lemma 4.8 (3), we have σ |= ¬(t ≤ u). We fix h in order to show σ, h |= H →

¬Ineq(t, u).
Case 1. If σ, h ̸|= H, the claim follows trivially.
Case 2. Assume σ, h |= H. Assume σ, h |= Ineq(t, u) for contradiction. Then, there is q

such that h(q) = 2, h(q + 1) = σ(t) + 3, h(q + 2) = σ(u) + 3. By Lemma 4.3 (3), we
have σ(t) ≤ σ(u), a contradiction. ◀

The next lemma says that the truth in PA is equivalent to the truth of the translation in
SLN for a large simple table heap.

▶ Lemma 4.10. For a normal formula A in PA and n ≥ max(σ, A), σ |= A if and only if
σ, hn |= A◦.
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Proof. We will show the claim by induction on A.
Case 1. A is quantifier-free. We will only show the cases for A ≡ (t ≤ u) since the cases t = u

and t ̸= u are obvious and the cases A∧B and A∨B follow from the induction hypothesis.
σ |= t ≤ u is equivalent to σ |= ¬(u ≤ t) ∨ t = u. Since n ≥ max{σ(t), σ(u)}, by Lemma
4.8 (3), σ |= ¬(u ≤ t) is equivalent to σ, hn |= ¬Ineq(u, t). Hence, σ |= t ≤ u is equivalent
to σ, hn |= ¬Ineq(u, t)∨ t = u. Since σ, hn |= H by Lemma 4.7, σ, hn |= ¬Ineq(u, t)∨ t = u

is equivalent to σ, hn |= H → ¬Ineq(u, t) ∨ t = u.
Case 2. A ≡ ∃x ≤ t.B.

Only-if-direction: By assumption, there is k such that σ[x := k] |= x ≤ t ∧ B. That is,
σ[x := k] |= x ≤ t and σ[x := k] |= B. Thus, we have k ≤ σ(t). Since n ≥ max(σ[x :=
k], B), by induction hypothesis, we have σ[x := k], hn |= B◦. Furthermore, by Lemma
4.8 (3), σ[x := k], hn |= Ineq(x, t). Thus, we have σ[x := k], hn |= Ineq(x, t) ∧ B◦. Hence,
σ[x := k], hn |= ¬Ineq(t, t) ∨ (Ineq(x, t) ∧ B◦).
If-direction: Suppose σ[x := k], hn |= H → ¬Ineq(t, t) ∨ (Ineq(x, t) ∧ B◦) for some k.
Since σ[x := k], hn |= H, we have σ[x := k], hn |= ¬Ineq(t, t) ∨ (Ineq(x, t) ∧ B◦). Since
n ≥ max(σ, A) ≥ σ(t), by the definition of hn, σ[x := k], hn |= Ineq(t, t). Thus, we
have σ[x := k], hn |= Ineq(x, t) ∧ B◦. Since σ[x := k], hn |= Ineq(x, t), by Lemma 4.8
(3), we have k ≤ σ(t). Then, since k ≤ σ(t) ≤ n, by the induction hypothesis for B,
σ[x := k] |= x ≤ t ∧ B.

Case 3. A ≡ ∀x ≤ t.B. We will show the claim: for all k, σ[x := k] |= ¬(x ≤ t) ∨ B if
and only if σ[x := k], hn |= ¬Ineq(x, t) ∨ B◦. If k ≤ n, then by Lemma 4.8 (3) and
the induction hypothesis for B, the claim holds. If k > n, then since k > n ≥ σ(t),
we have σ[x := k] |= ¬(x ≤ t). On the other hand, by the definition of hn, we have
σ[x := k], hn |= ¬Ineq(x, t). So the claim holds.

Case 4. A ≡ ∃(x = t + u)B. σ |= ∃(x = t + u)B is equivalent to σ[x := k] |= x =
t + u and σ[x := k] |= B for some k. Since n ≥ max{σ(t), σ(u)}, by Lemma 4.8 (1),
σ[x := k] |= x = t + u is equivalent to σ[x := k], hn |= Add(t, u, x). Furthermore, since
n ≥ max(σ[x := k], B), by induction hypothesis for B, σ[x := k] |= B is equivalent to
σ[x := k], hn |= B◦. Therefore, σ |= A is equivalent to σ[x := k], hn |= Add(t, u, x) ∧ B◦

for some k, which is equivalent to σ, hn |= ∃x(Add(t, u, x) ∧ B◦).
Case 5. A ≡ ∃(x = y × z)B. This case can be shown similarly to Case 4 (except it uses

Lemma 4.8 (2)). ◀

The next lemma says that for the translation of a normal formula in PA, the truth for a
large simple table heap is the same as the truth for all heaps in the standard interpretation
of SLN.

▶ Lemma 4.11. Let A be a normal formula in PA and n ≥ max(σ, A). Then, σ, hn |= A◦ if
and only if σ, h |= A◦ for all h.

Proof. The if-direction is trivial. We will show the only-if-direction by induction on A.
Case 1. A is quantifier-free. We will only show the cases for A ≡ (t ≤ u) since the cases

t = u and t ̸= u are obvious and the cases A ∧ B and A ∨ B follow from the induction
hypothesis. Since σ, hn |= H by Lemma 4.7, σ, hn |= H → ¬Ineq(u, t) ∨ t = u is
equivalent to σ, hn |= ¬Ineq(u, t) ∨ t = u. Since n ≥ max{σ(t), σ(u)}, by Lemma 4.9 (3),
σ, hn |= ¬Ineq(u, t) is equivalent to σ, h |= H → ¬Ineq(u, t) for all h. Clearly, σ, hn |= t = u

is equivalent to σ, h |= t = u for all h. Therefore, we have σ, h |= (H → ¬Ineq(u, t))∨t = u

for all h, which is equivalent to σ, h |= H → ¬Ineq(u, t) ∨ t = u for all h.
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Case 2. A ≡ ∃x ≤ t.B. Suppose σ, hn |= H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦). Since
σ, hn |= H and σ, hn |= Ineq(t, t), we have σ, hn |= ∃x(Ineq(x, t) ∧ B◦), that is, for
some k, σ[x := k], hn |= Ineq(x, t) ∧ B◦. Let this fact be (a). We fix h in order to
show σ, h |= H → ¬Ineq(t, t) ∨ ∃x(Ineq(x, t) ∧ B◦). Assume σ, h |= H. If σ, h |=
¬Ineq(t, t), the claim trivially holds. Consider the case σ, h |= Ineq(t, t). By (a), we have
σ[x := k], hn |= Ineq(x, t). Thus, by Lemma 4.8 (3), k ≤ σ(t). By the case condition,
σ, h |= Ineq(t, t). Then, by Lemma 4.3 (4), we have σ[x := k], h |= Ineq(x, t). Moreover,
since n ≥ max(σ[x := k], B), by induction hypothesis, we have σ[x := k], h′ |= B◦ for all
h′. Therefore, we have σ[x := k], h |= B◦. Thus, we have σ[x := k], h |= Ineq(x, t) ∧ B◦,
that is, σ, h |= ∃x(Ineq(x, t) ∧ B◦).

Case 3. A ≡ ∀x ≤ t.B. Suppose σ, hn |= H → ∀x(¬Ineq(x, t) ∨ B◦). Since σ, hn |= H, we
have σ, hn |= ∀x(¬Ineq(x, t)∨B◦). We fix h in order to show σ, h |= H → ∀x(¬Ineq(x, t)∨
B◦). Assume σ, h |= H. We fix k in order to show σ[x := k], h |= ¬Ineq(x, t) ∨ B◦. We
consider the cases for σ[x := k], h |= Ineq(x, t) and σ[x := k], h |= ¬Ineq(x, t) separately.
Case 3.1. The case σ[x := k], h |= Ineq(x, t). Then, there is p such that h(p) = 2,

h(p + 1) = σ[x := k](x) + 3 = k + 3, h(p + 2) = σ[x := k](t) + 3 = σ(t) + 3. By Lemma
4.3 (3), we have k ≤ σ(t). Hence, by Lemma 4.8 (3), we have σ[x := k], hn |= Ineq(x, t).
Then, σ[x := k], hn |= B◦ must be the case. Since k ≤ σ(t) ≤ n, we apply the
induction hypothesis to B and obtain σ[x := k], h′ |= B◦ for all h′. Hence, we have
σ[x := k], h |= B◦. Then, we have the desired result σ[x := k], h |= ¬Ineq(x, t) ∨ B◦.

Case 3.2. If σ[x := k], h |= ¬Ineq(x, t), then σ[x := k], h |= ¬Ineq(x, t) ∨ B◦ trivially
holds.

Hence in both cases, we have σ[x := k], h |= ¬Ineq(x, t) ∨ B◦.
Case 4. A ≡ ∃(x = t + u)B. Then, A◦ ≡ H → ∃x(Add(t, u, x) ∧ B◦). We fix h and assume

σ, h |= H in order to show σ, h |= ∃x(Add(t, u, x)∧B◦). Since σ, hn |= H , we have σ, hn |=
∃x(Add(t, u, x) ∧ B◦). That is, there exists k such that σ[x := k], hn |= Add(t, u, x) ∧ B◦,
which is equivalent to σ[x := k], hn |= Add(t, u, x) and σ[x := k], hn |= B◦. By Lemma
4.9 (1), σ[x := k], hn |= Add(t, u, x) is equivalent to σ[x := k], h′ |= H → Add(t, u, x) for
all h′. Since we assumed σ, h |= H, we have σ[x := k], h |= Add(t, u, x). Moreover, since
n ≥ max(σ[x := k], B), by induction hypothesis for B, we have σ[x := k], h′ |= B◦ for all
h′. Thus, we have σ[x := k], h |= B◦. Therefore, we have σ[x := k], h |= Add(t, u, x) ∧ B◦,
that is, σ, h |= ∃x(Add(t, u, x) ∧ B◦).

Case 5. A ≡ ∃(x = y × z)B. This case can be shown similarly to Case 4 (except it uses
Lemma 4.9 (2)). ◀

Now we have the main lemma, which says that the truth of a normal formula with ∀ in
PA for the standard model is the same as the truth of its translation in SLN for the standard
interpretation for all heaps.

▶ Lemma 4.12. If A is a normal formula in PA, σ |= ∀xA if and only if σ, h |= (∀xA)◦ for
all h.

Proof. σ |= ∀xA is equivalent to σ[x := k] |= A for all k ∈ N. We fix k. Let n ≥ max(σ[x :=
k], A). By Lemma 4.10, σ[x := k] |= A is equivalent to σ[x := k], hn |= A◦. Then, by
Lemma 4.11, this is equivalent to σ[x := k], h |= A◦ for all h. Therefore, σ[x := k] |= A is
equivalent to σ[x := k], h |= A◦ for all h. Hence, σ[x := k] |= A for all k is equivalent to
σ[x := k], h |= A◦ for all h for all k. Thus, σ |= ∀xA is equivalent to σ, h |= ∀xA◦ for all h,
that is, σ, h |= (∀xA)◦ for all h. ◀
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5 Translation from PA into SLN

In this section, we will present the translation of a Π0
1 formula in PA to a formula in SLN

and prove that the translation preserves the validity and the non-validity. In order to define
the translation, first we will define a translation of a Π0

1 formula in PA into an equivalent
normal formula with one universal quantifier in PA. Finally we will define the translation by
combining the two translations and will present the main theorem, which says a Π0

1 formula
in PA can be simulated in the weak fragment SLN of separation logic. We also discuss a
counterexample for the translation when we extend it to Σ0

1 formulas.
First we will transform a Π0

1 formula in PA into a normal formula with one universal
quantifier in PA. For simplicity, we use vector notation −→e for a sequence e1, ..., en of objects.

▶ Proposition 5.1. If A is a bounded formula in PA, there is a normal formula B such that
A ↔ B is valid.

Proof. First, transform A into a prenex normal form and replace ¬(t ≤ u) by u ≤ t∧u ≠ t to
obtain A′ ≡

−−−−→
Qx ≤ t.C, where C is a quantifier-free disjunctive normal form without formulas

of the form ¬(t ≤ u). Choose the leftmost occurrence among the innermost occurrences of
u + v or u × v in A′ and explicitly denote it by A′[u + v] or A′[u × v].

Let A′[z] be the formula obtained from A′[u + v] or A′[u × v] by replacing the occurrence
of u + v or u × v in A′ by a fresh z. Define

−−−−−→
Qx′ ≤ t′.D by A′[z] ≡

−−−−−→
Qx′ ≤ t′.D where

−−−−−→
Qx′ ≤ t′

is the longest prefix such that z is not in t′, namely, it has the longest
−−−−−→
Qx′ ≤ t′ among such−−−−−→

Qx′ ≤ t′’s. We transform D into ∃(z = u + v)D or ∃(z = u × v)D.
We repeat this process until we have the form

−−−−−−−−−−−−−−→
{Qx ≤ y, ∃(x = t)}A′′, where t is of the

form a + b or a × b for some terms a, b that do not contain + or ×, and A′′ and u do not
contain +, ×. Define B as this result. ◀

We define the translation A✷ by using the proof of the previous proposition.

▶ Definition 5.2 (Translation (·)□). Let A ≡ ∀xB be a Π0
1 formula in PA, where B contains

only bounded quantifiers. Let B′ be a normal form of B obtained by the procedure described
in the proof of Proposition 5.1. We define A□ ≡ ∀xB′.

Example. For a formula

A ≡ ∀y ≤ x + (x + s(x)).(0 ≤ x + (y × (x + y))),

its translation A✷ is

A✷ ≡∃(x1 = x + s(x))∃(x2 = x + x1)∀y ≤ x2.

∃(x3 = x + y)∃(x4 = y × x3)∃(x5 = x + x4)(0 ≤ x5).

Now, we have the main theorem which says that Π0
1 formulas can be translated into SLN

formulas preserving the validity and the non-validity.

▶ Theorem 5.3. For a Π0
1 formula A in PA, A is valid in the standard model of PA if and

only if A□◦ is valid in the standard interpretation of SLN.

Proof. By Proposition 5.1 and Lemma 4.12. ◀

As a by-product of the above theorem, we have the undecidability of SLN.
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▶ Corollary 5.4. The validity of SLN formulas is undecidable.

Proof. Given a Turing machine, its halting problem statement P is Σ0
1, since it can be

expressed as ∃z.T (e, e, z), where e is the index of the given Turing machine and T is Kleene’s
T-predicate which is primitive recursive (for rigorous definition, see e.g. [13]). Thus, ¬P is
Π0

1. By Theorem 5.3, ¬P is valid in PA if and only if (¬P )□◦ is valid in SLN. If the validity in
SLN is decidable, we can decide whether P is true in the standard model and this contradicts
the undecidability of the halting problem. Hence the validity in SLN is undecidable. ◀

We have just proved that Π0
1 formulas can be translated preserving the validity and

the non-validity. We might extend the translation (·)◦ by (∃xA)◦ ≡ ∃xA◦. However, the
extended translation does not preserve the validity and the non-validity, which is shown in
the next proposition.

▶ Proposition 5.5. There is some Σ0
1 closed formula A such that A is not valid in PA but

A□◦ is valid in SLN.

Proof. Consider the formula A ≡ ∃x(x + 0 ̸= x). This sentence is clearly not valid in
PA. However, we can prove that σ, h |= A□◦ for all σ, h as follows. By the procedure
in the proof of Proposition 5.1, A□ ≡ ∃x∃(z = x + 0)(z ̸= x). Thus, A□◦ ≡ ∃x(H →
∃z(Add(x, 0, z) ∧ z ≠ x)). We fix σ, h in order to prove σ, h |= A□◦. Let n = max{k | h(p) =
0, h(p + 1) = k + 3, h(p + 2) = 3} + 1, and m = n + 1. Let σ′ = σ[x := n, z := m].
We will show σ′, h |= Add(x, 0, z) ∧ z ̸= x assuming σ′, h |= H. By choice of n, we have
σ′, h |= ∀a¬(a ↪→ 0, s3(n), 3). Thus, σ′, h |= Add(n, 0, m) holds, because the premise of
Add(n, 0, m) is false. Therefore, σ′, h |= Add(x, 0, z). Furthermore, clearly σ′, h |= z ̸= x.
Hence, σ, h |= A□◦ for all h. ◀

6 Another undecidability proof

In this section, we will give another proof of the undecidability of the validity of SLN given
in Corollary 5.4, where it can be proved in a way similar to that in [7]. This proof is simpler
than the proof of Theorem 5.3, but this proof cannot show the representation of Peano
arithmetic in the separation logic SLN with numbers.

A first-order language L is defined as that with a binary predicate symbol P and without
any constants or function symbols. Namely,

Terms t ::= x.
Formulas A ::= t = t | P (t, t) | ¬A | A ∧ A | ∃x.A.
A finite structure is defined as (U, R) where U ⊆ N and U is finite and R ⊆ U2. σ is a

variable assignment of (U, R) if σ : Vars → U . We define σ0 as σ0(x) = 0 for all variables x.
We write M, σ |= A to denote that a formula A is true by a variable assignment σ of a

structure M .
The idea of this proof is to encode a finite structure (U, R) for the language L by a heap

h such that
n ∈ U iff h has some entry of 0, n + 2, and

(n, m) ∈ R iff h has some entry of 1, n + 2, m + 2.
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▶ Definition 6.1. For a given finite structure M = (U, R) of L, we define the heap hM by

Dom(h) = {0, 1, . . . , 2k + 3l − 1},

hM (x) = 0 (x = 2i, i < k),
hM (x) = pi + 2 (x = 2i + 1, i < k),
hM (x) = 1 (x = 2k + 3i, i < l),
hM (x) = ni + 2 (x = 2k + 3i + 1, i < l),
hM (x) = mi + 2 (x = 2k + 3i + 2, i < l),

where U = {pi | i < k} and R = {(ni, mi) | i < l}.

The heap hM has information of a given structure M .

▶ Definition 6.2. For a given heap h, if σ0, h |= ∃ax(a ↪→ 0, s2(x)), we define a structure
Mh = (Uh, Rh) by

Uh = {n | σ0[x := n], h |= ∃a(a ↪→ 0, s2(x))},

Rh = {(n, m) | σ0[x := n, y := m], h |= ∃a(a ↪→ 1, s2(x), s2(y))}.

The structure Mh is a structure represented by a given heap h.
We define a translation (·)△ from L into SLN.

▶ Definition 6.3. For a formula A in the language L, we define the formula A△ in SLN by

(x = y)△ ≡ x = y ∧ ∃a(a ↪→ 0, s2(x)),
(P (x, y))△ ≡ ∃a(a ↪→ 1, s2(x), s2(y)) ∧ ∃b(b ↪→ 0, s2(x)) ∧ ∃c(c ↪→ 0, s2(y)),
(∃x.A)△ ≡ ∃x(∃a(a ↪→ 0, s2(x)) ∧ A△),
(¬A)△ ≡ ¬A△,

(A ∧ B)△ ≡ A△ ∧ B△.

The next is a well-known theorem for finite structures [9].

▶ Theorem 6.4 (Trakhtenbrot). The validity of formulas in the language L for every finite
structure is undecidable.

The next lemma shows the equivalence for any formulas.

▶ Lemma 6.5. M, σ |= A for all finite M for all variable assignments σ of M iff σ, h |=
∃ax(a ↪→ 0, s2(x)) →

∧
x∈FV(A)

∃a(a ↪→ 0, s2(x)) → A△ for all h and all variable assignments

σ.

Proof. If-direction: For a given finite structure M , we can construct the heap hM and by
induction on A we can show that σ, hM |= A△ iff M, σ |= A, for every variable assignment σ

of M .
Only-if-direction: For a given heap h such that σ0, h |= ∃ax(a ↪→ 0, s2(x)), we can

construct the finite structure Mh and by induction on A we can show that Mh, σ |= A iff
σ, h |= A△, for every variable assignment σ of Mh. To show the only-if-direction in the
statement of the lemma by using this claim, from the assumption σ0, h |= ∃ax(a ↪→ 0, s2(x)),
we have p, q such that h(p) = 0 and h(p + 1) = q + 2, and for a given σ we apply this
claim with the variable assignment σ′ of Mh such that σ′(x) = σ(x) (x ∈ FV(A)) and
σ′(x) = q (otherwise). ◀

FSCD 2024
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Another proof of Corollary 5.4. Taking a closed formula A in Lemma 6.5, we have the
equivalence: A is true in all finite structure M iff ∃ax(a ↪→ 0, s2(x)) → A△ is valid in the
standard interpretation of SLN.

By Theorem 6.4, the validity of SLN for the standard interpretation is undecidable. ◀

7 Conclusion

We have presented the translation from Π0
1 formulas in PA into formulas in the fragment

SLN of separation logic with numbers, which has only ↪→, 0 and the successor function, and
proved that this translation preserves the validity and the non-validity for the standard model
of PA and the standard interpretation of SLN. By this, we have shown that Π0

1 formulas in
Peano arithmetic can be simulated by SLN. As a corollary, we have proved the validity of
SLN is undecidable. We have also given a counterexample when we extend this translation
to Σ0

1 formulas.
Future work would be to present a translation from other logical systems into SLN, and

prove the preservation of the validity and the non-validity by extending our technique used in
this paper. Another future work would be to try to show the validity of SLN is Π0

1-complete.
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Abstract
This paper is concerned with the expressivity and denotational semantics of a functional higher-order
reversible programming language based on Theseus. In this language, pattern-matching is used to
ensure the reversibility of functions. We show how one can encode any Reversible Turing Machine
in said language. We then build a sound and adequate categorical semantics based on join inverse
categories, with additional structures to capture pattern-matching and to interpret inductive types
and recursion. We then derive a notion of completeness in the sense that any computable, partial,
first-order injective function is the image of a term in the language.
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1 Introduction

Originally, reversible computation has emerged as an energy-preserving model of computation
in which no data is ever erased. This comes from Laundauer’s principle which states that
the erasure of information is linked to the dissipation of energy as heat [30, 5]. In reversible
computation, given some process f , there always exists an inverse process f−1 such that their
composition is equal to the identity: it is always possible to “go back in time” and recover
the input of your computation. Although this can be seen as very restrictive, non-reversible
computation can be emulated in a reversible setting by keeping track of intermediate results.
As discussed in [4], the simulation of standard computation with reversible computation can
be understood as a notion of Turing completeness – provided we accept that the final result
comes together with auxiliary, intermediate computation.
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Reversible computation has since been shown to be a versatile model. In the realm of
quantum computation, reversible computing is at the root of the construction of oracles,
subroutines describing problem instances in quantum algorithms [34]. Most of the research
in reversible circuit design can then been repurposed to design efficient quantum circuits. On
the theoretical side, reversible computing serves the main ingredient in several operational
models of linear logic, whether through token-based Geometry of Interaction [32] or through
the Curry-Howard correspondence for µMALL [8, 6].

Reversible programming has been approached in two different ways. The first one,
based on Janus and later R-CORE and R-WHILE [31, 40, 15, 39], considers imperative and
flow-chart languages. The other one follows a functional approach [38, 37, 20, 19, 36, 8]: a
function A→ B in the language represents a function – a bijection – between values of type
A and values of type B. In this approach, types are typically structured, and functional
reversible languages usually feature pattern-matching to discriminate on values.

One of the issues reversible programming has to deal with is non-termination: in general,
a reversible program computes a partial injective map. This intuition can be formalised
with the concept of inverse categories [27, 9, 10, 11]: categories in which every morphism
comes with a partial inverse, for which the category PInj of sets and partial injective maps
is the emblematic concrete instance. This categorical setting has been successfully used in
the study of reversible programming semantics, whether based on flow-charts [14, 22], with
recursion [2, 24, 23, 26], with side effects [18, 17], etc.

Although much work has been dedicated to the categorical analysis of reversible com-
putation, the adequacy of the developed categorical constructs with reversible functional
programming languages has only recently been under scrutiny, either in concrete categories
of partial isomorphisms [26, 25], or for simple, non Turing-complete languages [7]. A formal,
categorical analysis of a (reversible) Turing-complete, reversible language is still missing.

Contributions. In this paper, we aim at closing this gap: we propose a Turing-complete
(understood as in the reversible setting), reversible language, together with a categorical
semantics. In particular, the contributions of this paper are as follows.

A (reversible) Turing-complete, higher-order reversible language with inductive types.
Building on the Theseus-based family of languages studied in [36, 7, 8, 6], we consider an
extension with inductive types, general recursion and higher-order functions.
Sound and adequate categorical semantics. We show how the language can be interpreted
in join inverse rig categories. The result relies on the DCPO-enrichments of join inverse
rig categories.
A notion of completeness. We finally discuss how the interpretation of the language in the
category PInj is complete in the sense that any first-order computable, partial injective
function on the images of types is realisable within the language.

2 Language

In this section, we present a reversible language, unifying and extending the Theseus-based
variants presented in the literature [36, 7, 8]. In particular, the language we propose features
higher-order (unlike [7]), pairing, injection, inductive types (unlike [36]) and general recursion
(unlike [8]). Functions in the language are based on pattern-matching, following a strict
syntactic discipline: term variables in patterns should be used linearly, and clauses should
be non-overlapping on the left and on the right (therefore enforcing non-ambiguity and
injectivity). In [36, 7, 8] one also requires exhaustivity for totality. In this paper, we drop
this condition in order to allow non-terminating behaviour.
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Table 1 Grammar for terms and types.

(Base types) A,B ::= 1 | A⊕B | A⊗B | µX.A | X
(Isos) T ::= A↔ B | T1 → T2

(Values) v ::= () | x | injℓ v | injr v | ⟨v1, v2⟩ | fold v

(Patterns) p ::= x | ⟨p1, p2⟩
(Expressions) e ::= v | let p1 = ω p2 in e

(Isos) ω ::= {v1 ↔ e1 | · · · | vn ↔ en} | fix ϕ.ω | λψ.ω | ϕ | ω1 ω2

(Terms) t ::= () | x | injℓ t | injr t | ⟨t1, t2⟩ |
fold t | ω t | let p = t1 in t2

The language is presented in Table 1. It consist of two layers.
Base types: The base types consist of the unit type 1 along with its sole constructor
(), coproduct A ⊕ B and tensor product A ⊗ B with their respective constructors,
injℓ (t), injr (t) and ⟨t1, t2⟩. Finally, the language features inductive types of the form
µX.A where X is a type variable occurring in A and µ is its binder. Its associated
constructor is fold (t). The inductive type µX.A can then be unfolded into A[µX.A/X],
i.e., substituting each occurrence of X by µX.A in A. Typical examples of inductive
types that can be encoded this way are the natural number, as nat = µX.(1⊕X) or the
lists of types A, noted [A] = µX.1⊕ (A⊗X). Note that we only work with closed types.
We shall denote term-variables with x, y, z.
Isos types: The language features isos, denoted ω, higher order reversible functions whose
types T consist either of a pair of base type, noted A ↔ B or function types between
isos, T1 → T2. Note that the word iso comes from isomorphism. However, in this paper,
we have freed some constraints; in our case, isos are forward deterministic and backward
deterministic, meaning that each value has at most one image and at most one value
that has the former as image. A first-order iso of type A↔ B consists of a finite set of
clauses, written v ↔ e where v is a value of type A and e an expression of type B. An
expression consists of a succession of applications of isos to some argument, described
by let constructions: let (x1, . . . , xn) = ω (y1, . . . , yn) in e. Isos can take other isos
as arguments through the λϕ.ω construction. Finally, isos can also represent recursive
computation through the fix ϕ.ω construction, where ϕ is an iso-variable. In general, we
shall denote iso-variable by ϕ1, ϕ2, . . . and we use the shorthands fix

−→
ϕ or fix ϕ1, . . . , ϕn

and λ
−→
ϕ or λϕ1, . . . , ϕn for fix ϕ1.fix ϕ2. . . . fix ϕn. and λϕ.λϕ2. . . . λϕn.

Convention. We write (t1, . . . , tn) for ⟨t1, ⟨. . . , tn⟩⟩ and
⊕n

A (resp.
⊗n

A) for A⊕· · ·⊕A
(resp. A⊗ · · · ⊗ A) n times and ω1 . . . ωnt for a succession of let constructions applying ωn

to ω1. We also consider constructors to be right-associative, meaning that fold injr ⟨x, y⟩
should be read as fold (injr (⟨x, y⟩)). To avoid conflicts between variables, we will always
work up to α-conversion and use Barendregt’s convention [3, p.26], which consists of keeping
the names of all bound and free variables distinct, even when this remains implicit.

Typing judgements. Both base terms and isos feature their typing judgements, given
in Table 2 and Table 3. Term typing judgements are of the form Ψ; ∆ ⊢ t : A where ∆ is a
context of term-variables of type A and Ψ is a context of iso-variables of type T and isos
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Table 2 Typing rules for terms.

Ψ; ∅ ⊢ () : 1 Ψ;x : A ⊢ x : A
Ψ; ∆ ⊢ t : A

Ψ; ∆ ⊢ injℓ t : A⊕B
Ψ; ∆ ⊢ t : B

Ψ; ∆ ⊢ injr t : A⊕B
Ψ; ∆1 ⊢ t1 : A Ψ; ∆2 ⊢ t2 : B
Ψ; ∆1,∆2;⊢ ⟨t1, t2⟩ : A⊗B

Ψ; ∆ ⊢ t : A[µX.A/X]
Ψ; ∆ ⊢ fold t : µX.A

Ψ ⊢ω ω : A↔ B Ψ; ∆ ⊢ t : A
Ψ; ∆ ⊢ ω t : B

Ψ; ∆1 ⊢ t1 : A1 ⊗ · · · ⊗ An Ψ; ∆2, x1 : A1, . . . , xn : An ⊢ t2 : B
Ψ; ∆1,∆2 ⊢ let (x1, . . . , xn) = t1 in t2 : B

Table 3 Typing rules for isos.

Ψ, ϕ : T ⊢ω ϕ : T
Ψ, ϕ : T ⊢ω ω : T
Ψ ⊢ω fix ϕ.ω : T

Ψ ⊢ω ω1 : T1 Ψ ⊢ω ω2 : T1 → T2
Ψ ⊢ω ω2 ω1 : T2

Ψ, ϕ : T1 ⊢ω ω : T2
Ψ ⊢ω λϕ.ω : T1 → T2

Ψ; ∆1 ⊢ v1 : A . . . Ψ; ∆n ⊢ vn : A ∀i ̸= j, vi ⊥ vj

Ψ; ∆1 ⊢ e1 : B . . . Ψ; ∆n ⊢ en : B ∀i ̸= j, ei ⊥ ej

Ψ ⊢ω {v1 ↔ e1 | · · · | vn ↔ en} : A↔ B.

typing judgements are of the form Ψ ⊢ω ω : T . While ∆ is a linear context, Ψ is not, as an
iso represents a closed computation, and can be duplicated or erased at will. In the last rule
of Table 3, the term variables in ∆ are bound by the pattern-matching construction: they
are not visible outside of the term, thus not appearing anymore in the typing context of the
conclusion.

While [8] and [36] require isos to be exhaustive (i.e. to cover all the possible values of
their input types) and non-overlapping (i.e. two clauses cannot match the same value),
we relax the exhaustivity requirement in this paper, in the spirit of what was done in [7].
Non-overlapping is formalised by the notion of orthogonality between values, noted v1 ⊥ v2.

▶ Definition 1 (Orthogonality). We introduce a binary relation ⊥ on terms. Given two terms
t1, t2, t1 ⊥ t2 holds if it can be derived inductively with the rules below; we say that t1 and t2
are orthogonal. The relation ⊥ is defined as the smallest relation such that:

injℓ t1 ⊥ injr t2 injr t1 ⊥ injℓ t2

t1 ⊥ t2
C⊥[t1] ⊥ C⊥[t2],

where the contexts C⊥ are defined using the following grammar:

C⊥ ::= [−] | injℓ C⊥ | injr C⊥ | ⟨C⊥, t⟩ | ⟨t, C⊥⟩ | fold C⊥ | let p = t in C⊥

Operational semantics. The language comes equipped with a rewriting system → on terms,
defined in Table 4. As usual, we write →∗ for the reflexive transitive closure of →. The
evaluation contexts C→ are defined by the grammar [ ] | injℓ C→ | injr C→ | {v1 ↔
e1 | · · · | vn ↔ en} C→ | let p = C→ in t | ⟨C→, v⟩ | ⟨v, C→⟩ | C→ t | fold C→. Note
how the rewriting system follows a call-by-value strategy on terms and values, requiring that
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Table 4 Evaluation relation →.

fix ϕ.ω → ω[fix ϕ.ω/ϕ] (λϕ.ω1)ω2 → ω1[ω2/ϕ]
ω1 → ω′

1
ω1ω2 → ω′

1ω2

ω → ω′

ω t→ ω′ t

σ(vi) = v′

{v1 ↔ e1 | · · · | vn ↔ en} v′ → σ(ei)
t1 → t2

C→[t1]→ C→[t2]
σ(p) = v

let p = v in t→ σ(t)

the argument of an iso be fully evaluated to a value before firing the substitution. On the
contrary, we follow a call-by-name strategy to simplify the manipulation of the fixpoint. Note
that unlike [8, 36], we do not require any form of termination and isos are not required to be
exhaustive: the rewriting system can diverge or be stuck. The evaluation of an iso applied to
a value is dealt with by pattern-matching: the input value will try to match one of the values
from the clauses and potentially create a substitution if the two values match, giving the
corresponding expression as an output under that substitution. A substitution σ is a mapping
from a set of variables to terms. The substitution of σ on an expression t, written σ(t), is
defined in the usual way by σ(()) = (); σ(x) = v if {x 7→ v} ⊆ σ; σ(injr (t)) = injr (σ(t));
σ(injℓ (t)) = injℓ (σ(t)); σ(fold (t)) = fold (σ(t)) σ(⟨t, t′⟩) = ⟨σ(t), σ(t′)⟩; σ(ω t) = ω σ(t)
and σ(let p = t1 in t2) = (let p = σ(t1) in σ(t2)). The support of a substitution, written
supp(σ), is defined as {x | (x 7→ v) ∈ σ}.

▶ Lemma 2 (Subject Reduction). If Ψ; ∆ ⊢ t : A and t→ t′, then Ψ; ∆ ⊢ t′ : A. ⌟

The proof is similar to what has been done in [8]. As the rewriting system is deterministic,
confluence is direct; meanwhile, as we are concerned with partial functions, progress is not
guaranteed: a term can be stuck, for example, {injℓ (x)↔ e} injr (v) does not reduce.

Inversion. Finally, any iso ω : T can be inverted into an iso ω−1 : T−1, such that their
composition makes up the identity. Intuitively, if ω is of type A ↔ B, then ω−1 will be
of type B ↔ A. Inversion is defined as follows. Given an iso-type T , we define its inverse
T−1 as: (A ↔ B)−1 = B ↔ A and (T1 → T2)−1 = T−1

1 → T−1
2 . Given an iso ω, we

define its dual ω−1 as: ϕ−1 = ϕ; (fix ϕ.ω)−1 = fix ϕ.ω−1; (ω1 ω2)−1 = (ω1)−1(ω2)−1;
(λϕ.ω)−1 = λϕ.(ω)−1 and {(vi ↔ ei)i∈I}−1 = {((vi ↔ ei)−1)i∈I} and v1 ↔ let p1 = ω1 p

′
1 in

· · ·
let pn = ωn p′

n in v′
1

−1

:=

 v′
1 ↔ let p′

n = ω−1
n pn in

· · ·
let p′

1 = ω−1
1 p1 in v1

 .

▶ Property 3 (Inversion is an involution). For any well-typed iso ω, we have (ω−1)−1 = ω.

Proof. By a straightforward induction on ω, notice that if ω = {v1 ↔ e1 | · · · | vn ↔ en}
then by definition we swap twice the order of the let construction, hence recovering the
original term. ◀

▶ Lemma 4 (Inversion is well-typed). If ϕ1 : A1 ↔ B1 . . . ϕn : An ↔ Bn ⊢ω ω : T , then
ϕ1 : B1 ↔ A1 . . . ϕn : Bn ↔ An ⊢ω ω

−1 : T−1. ⌟

▶ Lemma 5 (Inversion is preserved by evaluation). If ω → ω′ then ω−1 → ω′−1. ⌟

▶ Theorem 6 (Semantics of isos and their inversions [8]). For all well-typed isos ⊢ω ω : A↔ B,
and for all well-typed values ⊢ v : A, if (ω (ω−1 v))→∗ v′ then v = v′. ⌟

FSCD 2024
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▶ Example 7. Remember that [A] = µX.1⊕ (A⊗X). One can define the map operator on
lists with an iso of type (A↔ B)→ [A]↔ [B], defined as

λψ.fix ϕ. {[ ] ↔ [ ] | h :: t ↔ leth′ = ψ h in let t′ = ϕ t in h′ :: t′} ,

with the terms [ ] = fold (injℓ (())), representing the empty list, while the head and tail of
the list is represented with h :: t = fold (injr (⟨h, t⟩)). Its inverse map−1 is

λψ.fix ϕ. {[ ] ↔ [ ] | h′ :: t′ ↔ let t = ϕ t′ in leth = ψ h′ in h :: t} .

Note that in the latter, the variable ψ has type B ↔ A. If we consider the inverse of the
term (map ω) we would obtain the term (map−1 ω−1) where ω−1 would be of type B ↔ A.

▶ Example 8 (Cantor Pairing). One can encode the Cantor Pairing between N ⊗ N ↔ N.
First recall that the type of natural number nat is given by µX.1⊕X, then define n as the
encoding of natural numbers into a closed value of type nat as 0 = fold (injℓ ()) and given
a variable x of type nat, its successor is S(x) = fold (injr (x)). Omitting the · operator
for readability, the pairing is then defined as:

ω1 : nat⊗ nat↔ (nat⊗ nat)⊕ 1

=


⟨S(i), j⟩ ↔ injℓ (⟨i, S(j)⟩)
⟨0, S(S(j))⟩ ↔ injℓ (⟨S(j), 0⟩)
⟨0, S(0)⟩ ↔ injℓ (⟨0, 0⟩)
⟨0, 0⟩ ↔ injr (())

 ,

ω2 : (nat⊗ nat)⊕ 1↔ nat

=
{

injℓ (x) ↔ let y = ϕ x in S(y)
injr (()) ↔ 0

}
,

CantorPairing : nat⊗ nat↔ nat

= fix ϕ.
{
x ↔ let y = ω1 x in

let z = ω2 y in z

}
,

where the variable ϕ in ω2 is the one being bound by the fix of the CantorPairing iso.
Intuitively, ω1 realises one step of the Cantor Pairing evaluation while ω2 checks if we reached
the end of the computation and either applies a recursive call, or stops.

For instance, CantorPairing ⟨1, 1⟩ will match with the first clause of ω1, evaluating into
injℓ ⟨0, 2⟩, and then, inside ω2 the reduction CantorPairing ⟨0, 2⟩ will be triggered through
the recursive call, evaluating the second clause of ω1, reducing to injℓ ⟨1, 0⟩, etc.

3 Expressivity

This section is devoted to assessing the expressivity of the language. To that end, we rely on
Reversible Turing Machine (RTM) [1]. We describe how to encode an RTM as an iso, and
prove that the iso realises the string semantics of the RTM.

3.1 Recovering duplication, erasure and manipulation of constants
Although the language is linear and reversible, since closed values are all finite, and one can
build isos to encode notions of duplication, erasure, and constant manipulation thanks to
partiality.

▶ Definition 9 (Duplication). We define DupS
A the iso of type A↔ A⊗A which can duplicate

any closed value of type A by induction on A, where S is a set of pairs of a type-variable X
and an iso-variable ϕ, such that for every free-type-variable X ⊆ A, there exists a unique
pair (X,ϕ) ∈ S for some ϕ.

The iso is defined by induction on A: DupS
1 = {()↔ ⟨(), ()⟩}, and

DupS
A⊗B =

{
⟨x, y⟩ ↔ let ⟨x1, x2⟩ = DupS

A x in let ⟨y1, y2⟩ = DupS
B y in

⟨⟨x1, y1⟩, ⟨x2, y2⟩⟩

}
;
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DupS
A⊕B =

{
injℓ (x) ↔ let ⟨x1, x2⟩ = DupS

A x in ⟨injℓ (x1), injℓ (x2)⟩

injr (y) ↔ let ⟨y1, y2⟩ = DupS
B y in ⟨injr (y1), injr (y2)⟩

}
;

If (X,_) ̸∈ S: DupS
µX.A = fix ϕ.

{
fold (x) ↔ let ⟨x1, x2⟩ = Dup

S∪{(X,ϕ)}
A[µX.A/X] x in

⟨fold (x1), fold (x2)⟩

}
;

If (X,ϕ) ∈ S: DupS
µX.A = {x↔ let ⟨x1, x2⟩ = ϕ x in ⟨x1, x2⟩}.

Remember that bound variables are assumed distinct following Barendregt’s convention,
allow for the well-definition of the isos above.

▶ Lemma 10 (Properties of Duplication). Given a closed type A, then Dup∅
A is well-defined,

and the iso Dup∅
A is well typed of type A↔ A⊗A. ⌟

▶ Lemma 11 (Semantics of Duplication). Given a closed type A and a closed value v of type
A, then Dup∅

A v →∗ ⟨v1, v2⟩ and v = v1 = v2. ⌟

▶ Definition 12 (Constant manipulation). We define erasev : A⊗ ΣT ↔ A which erases its
second argument when its value is v as {⟨x, v⟩ ↔ x}. Reversed, it turns any x into ⟨x, v⟩.

3.2 Definition of Reversible Turing Machine
▶ Definition 13 (Reversible Turing Machine [1]). Let M = (Q,Σ, δ, b, qs, qf ) be a Turing
Machine, where Q is a set of states, Σ = {b, a1, . . . , an} is a finite set of tape symbols (in the
following, ai and b always refer to elements of Σ), δ ⊆ ∆ = (Q× [(Σ× Σ) ∪ {←, ↓,→}]×Q)
is a partial relation defining the transition relation such that there must be no transitions
leading out of qf nor into qs, b a blank symbol and qs and qf the initial and final states. We
say that M is a Reversible Turing Machine (RTM) if it is:

forward deterministic: for any two distinct pairs of triples (q1, a1, q
′
1) and (q2, a2, q

′
2) in δ,

if q1 = q2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s1 ̸= s2.

Backward deterministic: for any two distinct pairs of triples (q1, a1, q
′
1) and (q2, a2, q

′
2) in

δ, if q′
1 = q′

2 then a1 = (s1, s
′
1) and a2 = (s2, s

′
2) and s′

1 ̸= s′
2.

▶ Definition 14 (Configurations [1]). A configuration of a RTM is a tuple (q, (l, s, r)) ∈
Conf = Q× (Σ∗×Σ×Σ∗) where q is the internal state, l, r are the left and right parts of the
tape (as string) and s ∈ Σ is the current symbol being scanned. A configuration is standard
when the cursor is on the immediate left of a finite, blank-free string s ∈ (Σ \ {b})∗ and the
rest is blank, i.e. it is in configuration (q, (ϵ, b, s)) for some q, where ϵ is the empty string,
representing an infinite sequence of blank symbols b.

▶ Definition 15 (RTM Transition [1]). An RTM M in configuration C = (q, (l, s, r)) goes
to a configuration C ′ = (q′, (l′, s′, r′)), written T ⊢ C ⇝ C ′ in a single step if there exists a
transition (q, a, q′) ∈ δ where a is either (s, s′), and then l = l′ and r = r′ or a ∈ {←, ↓,→},
and we have for the case a =←: l′ = l · s and for r = x · r2 we have s′ = x and r′ = r2,
similarly for the case a =→ and for the case a =↓ we have l′ = l and r′ = r and s = s′.

The semantics of an RTM is given on standard configurations of the form (q, (ϵ, b, s))
where q is a state, ϵ is the finite string standing for a blank-filled tape, and s is the blank-free,
finite input of the RTM.

▶ Definition 16 (String Semantics [1]). The semantics of a RTM M , written Sem(M) is
defined on standards configurations and is given by the set Sem(M) = {(s, s′) ∈ ((Σ\{b})∗ ×
(Σ\{b})∗) |M ⊢ (qs, (ϵ, b, s))⇝∗ (qf , (ϵ, b, s′))}.

FSCD 2024
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▶ Theorem 17 (Properties of RTM [1]). For all RTM M , Sem(M) is the graph of an injective
function. Conversely, all injective computable functions (on a tape) are realisable by a RTM.
Finally, any Turing Machine can be simulated by a Reversible Turing Machine. ⌟

3.3 Encoding RTMs as Isos
A RTM configuration is a set-based construction that we can model using the type constructors
available in our language. Because the transition relation δ is backward and forward
deterministic, it can be encoded as an iso. Several issues need to be dealt with; we discuss
them in this section.

Encoding configurations. The set of states Q = {q1, . . . , qn} is modeled with the type
QT = 1⊕ · · · ⊕ 1 (n times). The encoding of the state qi is then a closed value qT

i . They are
pairwise orthogonal. The set Σ of tape symbols is represented similarly by ΣT = 1⊕ · · · ⊕ 1,
and the encoding of the tape symbol a is aT . We then define the type of configurations in
the obvious manner: a configuration C = (q, (l, s, r)) corresponds to a closed value isos(C)
of type QT ⊗ ([ΣT ]⊗ ΣT ⊗ [ΣT ]).

▶ Definition 18 (Encoding of Configurations). We define the type of configurations as CT =
(QT ⊗ ([ΣT ]⊗Σ⊗ [ΣT ])). Given a configuration C = (q, ((ϵ, a1, . . . , an), a, (a′

1, . . . , a
′
m, ϵ))), it

is encoded as isos(C) = (qT , ([aT
n , . . . , a

T
1 ], aT , [a′T

1 , . . . , a
′T
m ])). For example, the standard con-

figuration C = (qs, (ϵ, b, [a1, . . . , an])) is represented as isos(C) = (qT
s , ([], bT , [aT

1 , . . . , a
T
n ])).

Encoding the transition relation δ. A limitation of our language is that every sub-
computation has to be reversible and does not support infinite data structures such as
streams. In the context of RTMs, the empty string ϵ is identified with an infinite string of
blank symbols. If this can be formalised in set theory, in our limited model, we cannot emit
blank symbols out of thin air without caution.

In order to simulate an infinite amount of blank symbols on both sides of the tape during
the evaluation, we provide an iso that grows the size of the two tapes on both ends by
blank symbols at each transition step. The iso growth is shown in Table 5. It is built
using three auxiliary functions, written in a Haskell-like notation. len sends a closed value
[v1, . . . , vn] to ⟨[v1, . . . , vn], n⟩. snoc′ sends ⟨[v1, . . . , vn], v, n⟩ to ⟨[v1, . . . , vn, v], v, n⟩. snoc
sends ⟨[v1, . . . , vn], v⟩ to ⟨[v1, . . . , vn, v], v⟩. Finally, growth sends ⟨[aT

1, . . . , a
T
n ], [a′T

1 , . . . , a
′T
m ]⟩

to ⟨[aT
1 , . . . , a

T
n , b

T ], [a′T
1 , . . . , a

′T
m , b

T ]⟩.
Now, given a RTM M = (Q,Σ, δ, b, qs, qf ), a relation (q, r, q′) ∈ δ is encoded as a clause

between values iso(q, r, q′) = v1 ↔ v2 of type CT ↔ CT . These clauses are defined by case
analysis on r as follows. When x, x′, z, y and y′ are variables:

iso(q,→, q′) = (qT , (x′, z, y :: y′))↔ let (l, r) = growth (x′, y′) in (q′T , (z :: l, y, r)),
iso(q,←, q′) = (qT , (x :: x′, z, y′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, x, z :: r)),
iso(q, ↓, q′) = (qT , (x′, z, x′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, z, r)),
iso(q, (s, s′), q′) = (qT , (x′, sT , y′))↔ let (l, r) = growth (x′, y′) in (q′T , (l, s′T , r)).

The encoding of the RTM M is then the iso isos(M) whose clauses are the encoding of each
rule of the transition relation δ, of type ConfT ↔ ConfT .

Encoding successive applications of δ. The transition δ needs to be iterated until the final
state is reached. This behavior can be emulated in our language using the iso It, defined in
Table 5. The iso Itω is typed with (A↔ A⊗ nat). Fed with a value of type A, it iterates ω
until ff is met. It then returns the result together with the number of iterations.
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Table 5 Some useful isos for the encoding.

len : [A] ↔ [A] ⊗ nat
len [ ] ↔ ([ ], 0)
lenh :: t ↔ let (t′, n) = len t in

(h :: t′, S(n))

snoc′ : [A] ⊗A⊗ nat ↔ [A] ⊗A⊗ nat
snoc′ ([ ], x, 0) ↔ let (x1, x2) = Dup∅

A x in
([x1], x2, 0)

snoc′ (h :: t, x, S(n)) ↔ let (t′, x′, n′) = snoc′(t, x, n) in
(h :: t′, x′, S(n′))

snoc : [A] ⊗A ↔ [A] ⊗A

snoc (x, y) ↔ let (x′, n) = len x in
let (x′′, y′, n′) = snoc′ (x′, y, n) in
letn′′ = {x ↔ Sx} n′ in
let z = len−1 (x′′, n′′) in (z, y′)

growth : [ΣT ] ⊗ [ΣT ] ↔ [ΣT ] ⊗ [ΣT ]
growth (l, r) ↔ let ⟨l′, b1⟩ = snoc⟨l, bT ⟩ in

let ⟨r′, b2⟩ = snoc⟨r, bT ⟩ in
let l′′ = eraseb⟨l′, b1⟩ in
let r′′ = eraseb⟨r′, b2⟩ in (l′′, r′′)

It : (A ↔ A⊗ (1 ⊕ 1)) → (A ↔ A⊗ nat)
Itψ x ↔ let y = ψ x in

let z =
{

(y, tt) ↔ let (z, n) = (Itψ) y in (z, S n)
(y, ff) ↔ (y, 0)

}
y in z

rmBlank : [Σ] ↔ [Σ] ⊗ N
rmBlank [] ↔ ([], 0)
rmBlank bT :: t ↔ let (t′, n) = rmBlank t in (t′, S(n))
rmBlank aT

1 :: t ↔ ((aT
1 :: t), 0)

...
...

...
...

rmBlank aT
n :: t ↔ ((aT

n :: t), 0)

revaux : [A] ⊗ [A] ↔ [A] ⊗ [A]
revaux ([], y) ↔ ([], y)
revaux (h :: t, y) ↔ let (h1, h2) = Dup∅

A h in
let (t1, t2) = ϕ(t, h2 :: y) in
(h1 :: t1, t2)

rev : [A] ↔ [A] ⊗ [A]
rev = {x ↔ let (t1, t2) = revaux (x, []) in (t1, t2)}

cleanUp : CT ⊗ nat ↔ CT ⊗ nat ⊗ nat ⊗ nat ⊗ [ΣT ]
cleanUp ((x, (l, y, r)), n) ↔ let (l′, n1) = rmBlank l in

let (rori, rrev) = rev r in
let (r′, n2) = rmBlank rrev in
((x, (l′, y, r′)), n, n1, n2, rori)
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f1 f−1
1 f2 f−1

2

χ

in

∅
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∅
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∅

Figure 1 Reversibly removing additional garbage from some process.

To iterate iso(M), we then only need to modify iso to return a boolean stating whether
qf was met. This can be done straightforwardly, yielding an iso isosB(M)) of type ConfT ↔
ConfT ⊗(1 ⊕ 1). With such an iso, given M be a RTM such that M ⊢ (qs, (ϵ, b, s)) ⇝n+1

(qf , (ϵ, b, (a1, . . . , an))), then It(isosB(M)) (qT
s , ([bT ], bT , sT )) reduces to the encoding term

((qT
f , ([bT , . . . , bT ], bT , [aT

1 , . . . , a
T
n , b

T , . . . , bT ])), n). If it were not for the additional blank
tape elements, we would have the encoding of the final configuration.

Recovering a canonical presentation. Removing blank states at the beginning of a list is
easy: for instance, it can be done with the iso rmBlank, shown in Table 5. Cleaning up the
tail of the list can then be done by reverting the list, using, e.g. rev in the same table. By
abuse of notation, we use constants in some patterns: an exact representation would use
Definition 12. Finally, we can define the operator cleanUp, solving the issue raised in the
previous paragraph. In particular, given a RTM M and an initial configuration C such that
M ⊢ C ⇝ C ′ = (q, (ϵ, b, (a1, . . . , an))), then we have that cleanUp (It(isosB(M))CT ) →∗

((qT , ([], bT , [aT
1 , . . . , a

T
n ])), v), where v is of type nat⊗ nat⊗ nat⊗ [ΣT ]. If we want to claim

that we indeed capture the operational behaviour of RTMS, we need to get rid of this value v.

Getting rid of the garbage. To discard this value v, we rely on Bennett’s trick [4], shown
in Figure 1. Given two Turing machines f1 and f2 and some input in such that if f1(in) =
out⊗ garbage and f2(out) = in⊗ garbage′, then the process consists of taking additional
tapes in the Turing Machine in order to reversibly duplicate (represented by the ⊕) or
reversibly erase some data (represented by the χ) in order to recover only the output of f1,
without any garbage.

Given an iso ω : A↔ B ⊗ C and ω′ : B ↔ A⊗ C ′ where C,C ′ represent garbage, we can
build an iso from A↔ B as follows, where the variables x, y, z (and their indices) respectively
correspond to the first, second, and third wire of Figure 1. This operator makes use of the
iso Dup discussed in Section 3.1.

GarbRem(ω, ω′) x1 ↔ let ⟨x2, y⟩ = ω x1 in let ⟨x3, z⟩ = Dup∅
B x2 in

letx4 = ω−1 ⟨x3, y⟩ in let ⟨z2, y2⟩ = ω′ z in
let z3 = (Dup∅

B)−1 ⟨z2, x4⟩ in let z4 = ω′−1 ⟨z3, y2⟩ in z4.

▶ Theorem 19 (Capturing the exact semantics of a RTM). For all RTM M with standard
configurations C = (qs, (ϵ, b, s)) and C ′ = (qf , (ϵ, b, s′)) such that M ⊢ C ⇝∗ C ′, we have

GarbRem(cleanUp(It(isosB(M))), cleanUp(It(isosB(M−1)))) isos(C)→∗ isos(C ′)

The behavior of RTMs is thus captured by the language. ⌟
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4 Categorical Background

We aim at providing a denotational semantics for the programming language introduced
above, meaning a mathematical interpretation abstract to the syntax. Our approach is
categorical, in the spirit of many others before us. Programs are compositional by design,
making it natural to interpret in a framework ruled by compositionality. Types are usually
interpreted as objects in a category C, and terms as morphisms in this category. We have
seen that the main feature of our programming language is reversibility and its terms can
be seen as partial isomorphisms, or partial injections. We want this property to be carried
on the interpretation, and we present in this section the proper categories to do so. The
category of sets and partial injective functions, written PInj, will be the recurring example
throughout this section to help the intuition.

4.1 Join inverse rig category
The axiomatisation of join inverse rig categories gives the conditions for the morphisms of a
category to be partial injections. First, the notion of restriction allows to capture the actual
domain of a morphism through a partial identity function. Historically, inverse categories
[27] were introduced before restriction categories, but the latter are more convenient to
introduce the subject.

▶ Definition 20 (Restriction [9]). A restriction structure is an operator that maps each
morphism f : A → B to a morphism f : A → A such that for all g and h such that the
domain of g is A and the domain of h is B we have f ◦ f = f , f ◦ g = g ◦ f , f ◦ g = f ◦ g and
h ◦ f = f ◦ h ◦ f . A morphism f is said to be total if f = 1A. A category with a restriction
structure is called a restriction category. A functor F : C → D is a restriction functor if
F (f) = F

(
f

)
for all morphism f of C. The definition is canonically extended to bifunctors.

When unambiguous, we write gf for the composition g ◦ f .

▶ Example 21. Given sets A,B and a partial function f : A→ B defined on A′ ⊆ A and
undefined on A \A′, the restriction of f is f : A→ A, the identity on A′ ⊆ A and undefined
on A \A′. This example shows that PInj is a restriction category.

To interpret reversibility, we need to introduce a notion of reversed process, a process
that exactly reverses another process. This is given by a generalised notion of inverse.

▶ Definition 22 (Inverse category [24]). An inverse category is a restriction category where
all morphisms are partial isomorphisms; meaning that for f : A→ B, there exists a unique
f◦ : B → A such that f◦ ◦ f = f and f ◦ f◦ = f◦.

▶ Example 23. In PInj, let us consider the partial function f : {0, 1} → {0, 1} as f(0) = 1
and undefined on 1. Its restriction f is undefined on 1 also but f(0) = 0. Its inverse f◦ is
undefined on 0 and such that f◦(1) = 0.

The example above generalises and PInj is an actual inverse category. Even more, it is
the inverse category: [27] proves that every locally small inverse category is isomorphic to a
subcategory of PInj.

▶ Definition 24 (Restriction compatible [24]). Two morphisms f, g : A→ B in a restriction
category C are restriction compatible if fg = gf . The relation is written f ⌣ g. If C is an
inverse category, they are inverse compatible if f ⌣ g and f◦ ⌣ g◦, noted f ≍ g. A set S of
morphisms of the same type A→ B is restriction compatible (resp. inverse compatible) if all
elements of S are pairwise restriction compatible (resp. inverse compatible).
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▶ Definition 25 (Partial order [9]). Let f, g : A → B be two morphisms in a restriction
category. We then define f ≤ g as gf = f .

▶ Definition 26 (Joins [16]). A restriction category C is equipped with joins if for all
restriction compatible sets S of morphisms A→ B, there exists

∨
s∈S s : A→ B morphism of

C such that, whenever t : A→ B and whenever for all s ∈ S, s ≤ t, s ≤
∨

s∈S s,
∨

s∈S s ≤ t,∨
s∈S s =

∨
s∈S s, f ◦

(∨
s∈S s

)
=

∨
s∈S fs,

(∨
s∈S s

)
◦ g =

∨
s∈S sg. Such a category is called

a join restriction category. An inverse category with joins is called a join inverse category.

Building up from Definition 20, a join restriction functor is a restriction functor that
preserves all thus constructed joins.

▶ Definition 27 (Zero [24]). Since ∅ ⊆ HomC(A,B), and since all of its elements are
restriction compatible, there exists a morphism 0A,B

.=
∨

s∈∅ s, called zero. It satisfies the
following equations: f0 = 0, 0g = 0, 0◦

A,B = 0B,A, 0A,B = 0A,A.

▶ Definition 28 (Restriction Zero). A restriction category C has a restriction zero object 0 iff
for all objects A and B, there exists a unique morphism 0A,B : A→ B that factors through 0
and satisfies 0A,B = 0A,A.

▶ Definition 29 (Disjointness tensor [13]). An inverse category C is said to have a disjointness
tensor if it is equipped with a symmetric monoidal restriction bifunctor . ⊕ . : C × C → C,
with as unit a restriction zero 0 and morphisms ιl : A→ A⊕B and ιr : B → A⊕B that are
total, jointly epic, and such that their inverses are jointly monic and ι◦l ι

◦
r = 0A⊕B .

▶ Definition 30 ([25]). Let us consider a join inverse category equipped with a symmetric
monoidal tensor product (⊗, 1) and a disjointness tensor (⊕, 0) that are join preserving,
and such that there are isomorphisms δA,B,C : A ⊗ (B ⊕ C) → (A ⊗ B) ⊕ (A ⊗ C) and
νA : A⊗ 0→ 0. This is called a join inverse rig category.

4.2 DCPO-category
We use the vocabulary of enriched category theory to shorten the discussion in this section.
The notions of enrichment required to understand the semantics later is basic and should not
frighten the reader. Categories in computer science are usually locally small, meaning that
given two objects A and B, there is a set of morphisms A→ B. Enrichment is the study of
the structure of those sets of morphisms, which could be vector spaces or topological spaces
for example, more details can be found in [28, 29, 33]. It turns out that homsets in join inverse
rig categories are dcpos – directed-complete partial orders, i.e. a partial-ordered set with
all directed joins. This allows us to consider fixpoints in homsets. DCPO is the category
of directed complete partial orders and Scott-continuous functions – monotone functions
preserving joins. Dcpos are often used for the denotational interpretation of different sorts of
λ-calculi, and more generally, to interpret recursive functions or indefinite loops.

▶ Definition 31 ([12]). A category enriched over DCPO, also called a DCPO-category, is
a locally small category whose hom-sets are directly partial ordered and where composition
is a continuous operation (i.e. a morphism in DCPO).

It is proven in [24] that a join inverse category can be considered enriched in DCPO
without loss of generality.

▶ Lemma 32. Let C be a join inverse rig category. The functors: − ⊗ − : C × C → C,
−⊕− : C × C → C, −◦ : Cop → C are DCPO-functors, meaning that they preserve the dcpo
structure of homsets.
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4.3 Compactness
Inductive data types are written in the syntax as some least fixed point. As said earlier, types
are represented as objects in the category, and thus a type judgement is an object mapping,
or rather an endofunctor. Here, we show how to consider fixed points of endofunctors in our
categorical setting.

▶ Definition 33 (Initial Algebra). Given an endofunctor F : C → C, an F -algebra is a pair
of an object A and a morphism f : FA→ A. F -algebras form a category with F -algebras
homomorphisms. An initial F -algebra is an initial object in the category of F -algebras.

▶ Theorem 34 (Lambek’s theorem). Given an endofunctor F : C → C and an F -initial
algebra (X,α : FX → X), α is an isomorphism. ⌟

With Lambek’s theorem, we know that an initial algebra provides an object X such that
X ∼= FX; X is a fixed point of the endofunctor F , as requested. The existence of such fixed
points is given by the next theorem [12, Corollary 7.2.4].

▶ Definition 35 (Ep-pair). Given a DCPO-category C, a morphism e : X → Y in C is called
an embedding if there exists a morphism p : Y → X such that p ◦ e = idX and e ◦ p ≤ idY .
The morphisms e and p form an embedding-projection pair (e, p), also called ep-pair.

We recall that an ep-zero [12, Definition 7.1.1], is an initial object such that every
morphism with it as source is an embedding, and is also a terminal object such that every
morphism with it as target is a projection.

▶ Theorem 36. A DCPO-category with an ep-zero and colimits of ω-chains of embeddings
is parametrised DCPO-algebraically ω-compact; meaning that for every DCPO-functor
F : C × D → D, there is a pair consisting of a DCPO-functor F々: C → D and an indexed
family αF = {αF

A : F (A,F々A) → F々A} of initial F (A,−)-algebras. This pair is called a
parametrised initial algebra. ⌟

The hypotheses of the theorem above are verified by the categories we want to work with,
without loss of generality.

▶ Proposition 37 ([24]). Any join inverse rig category can be faithfully embedded in a rig
join inverse category with colimits of ω-chains of embeddings. ⌟

5 Denotational semantics

We now show how to build a denotational semantics for the language we presented thus far.
The semantics is akin to the one presented in [7] but with extra structure to handle inductive
types and recursive functions. While the semantics is sound and adequate w.r.t. a notion of
operational equivalence between terms, the main interest of the semantics rest in showing
that, given some RTM M whose semantics is a function f , we show that the semantics of
isos(M) is the same as f . This would provide us with a formal proof that any computable
reversible function can be captured by an iso.

Types. Let us consider C a join inverse rig category (Definition 30). We can assume without
loss of generality that C satisfies the hypothesis of Theorem 36. In order to deal with
open types, we make use an auxiliary judgement for types, of the form X1, . . . , Xn ⊨ A,
where {Xi}i is a subset of the free type variables appearing in A. We interpret this
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kind of judgement as a DCPO-functor C|Θ| → C written JΘ ⊨ AK. This can be formally
defined as a (simple) inductive relation, and the semantics is defined similarly to what is
done in [12, 21]. JΘ ⊨ 1K is the constant functor that maps to the tensor product unit.
JΘ, X ⊨ XK is a projection. The other judgements are obtained by induction: if JΘ ⊨ AK = f

and JΘ ⊨ BK = g, then JΘ ⊨ A⊕BK = ⊕ ◦ ⟨f, g⟩ and JΘ ⊨ A⊗BK = ⊗ ◦ ⟨f, g⟩. Finally,
JΘ ⊨ µX.AK = (JΘ, X ⊨ AK)々. All this is summed up in Table 6.

Table 6 Interpretation of types.

JΘ ⊨ AK : C|Θ| → C
JΘ, X ⊨ XK = Π

JΘ ⊨ IK = K1

JΘ ⊨ A⊕BK = ⊕ ◦ ⟨JΘ ⊨ AK , JΘ ⊨ BK⟩
JΘ ⊨ A⊗BK = ⊗ ◦ ⟨JΘ ⊨ AK , JΘ ⊨ BK⟩

JΘ ⊨ µX.AK = (JΘ, X ⊨ AK)々

Lemma 32 and Theorem 36 ensure that this is well-defined. For closed types, we have
J1K = 1, JA⊕BK = JAK⊕ JBK, JA⊗BK = JAK⊗ JBK and JµX.AK ∼= JA[µX.A/X]K. Ground
iso types are represented by dcpos of morphisms in C, written JA↔ BK = HomC(JAK , JBK).
The type of iso functions T1 → T2 is interpreted by the dcpo of Scott continuous maps between
the two dcpos JT1K and JT2K, written [JT1K→ JT2K]. The terms used to build isos are dependent
in two contexts: variables in ∆ and isos in Ψ. In general, if ∆ = x1 : A1, . . . , xm : Am and
Ψ = ϕ1 : T1, . . . , ϕn : Tn, then we set J∆K = JA1K⊗ · · · ⊗ JAmK and JΨK = JT1K× · · · × JT2K,
with ⊗ being the monoidal product in C and × the cartesian product in DCPO.

Terms. A well-formed term judgement Ψ; ∆ ⊢ t : A has for semantics a Scott continuous
map JΨ; ∆ ⊢ t : AK ∈ DCPO(JΨK , C(J∆K , JAK)), defined as in Table 7 when g ∈ JΨK. All
this is well-defined in DCPO provided that JΨ ⊢ω ω : A↔ BK is. This last point is the focus
of the next section.

▶ Lemma 38. Given two judgements Ψ; ∆1 ⊢ t1 : A and Ψ; ∆2 ⊢ t2 : A, such that t1 ⊥ t2,
we have for all g ∈ JΨK the equality Jt1K (g)◦ ◦ Jt2K (g) = 0J∆2K,J∆1K. ⌟

Isos. Isos do only depend on function variables, but they are innately morphisms, so their
denotation will be similar to terms – a Scott continuous map. We define the denotation of
an iso by induction on the typing rules. The interpretation of an iso-variable is direct, it is
the projection on the last component. The interpretations of evaluations and λ-abstractions
are usual in a cartesian closed category, in our case, DCPO. All the rules apart for the iso-
abstraction are found in Table 7. The remaining rule, building an iso abstraction {vi ↔ ei}i∈I ,
needs more details.

▶ Lemma 39. Given a well-formed iso abstraction Ψ ⊢ω {vi ↔ ei}i∈I : A ↔ B, for all
g ∈ JΨK, the morphisms in C given by JΨ; ∆i ⊢ ei : BK (g) ◦ JΨ; ∆i ⊢ vi : AK (g)◦, with i ∈ I
are pairwise inverse compatible. ⌟

Each clause vi ↔ ei of an iso abstraction is given an interpretation JeiK ◦ JviK
◦. The

previous lemma shows that in the case of an iso abstraction, the interpretations of all clauses
can be joined (in the sense of Definition 26). This join also generalises to the join in DCPO
as shown by the lemma below.
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Table 7 Denotational semantics of the language in a join inverse rig DCPO-category.

JΨ; ∆ ⊢ t : AK (g) ∈ C(J∆K , JAK)
JΨ; ∅ ⊢ ∗ : IK (g) = idJIK

JΨ;x : A ⊢ x : AK (g) = idJAK

JΨ; ∆ ⊢ injℓ t : A⊕BK (g) = ιl ◦ JΨ; ∆ ⊢ t : AK (g)
JΨ; ∆ ⊢ injr t : A⊕BK (g) = ιr ◦ JΨ; ∆ ⊢ t : BK (g)

JΨ; ∆1,∆2 ⊢ t1 ⊗ t2 : A⊗BK (g) = JΨ; ∆1 ⊢ t1 : AK (g)⊗ JΨ; ∆2 ⊢ t2 : BK (g)

JΨ; ∆ ⊢ fold t : µX.AK (g) = αJX⊨AK ◦ JΨ; ∆ ⊢ t : A[µX.A/X]K (g)

JΨ ⊢ω ω : T K ∈ DCPO(JΨK , JT K)
JΨ, ϕ : T ⊢ω ϕ : T K = πJT K

JΨ ⊢ω ω2ω1 : T2K = eval ◦ ⟨JΨ ⊢ω ω2 : T1 → T2K , JΨ ⊢ω ω1 : T1K⟩
JΨ ⊢ω λϕ.ω : T1 → T2K = curry(JΨ, ϕ : T1 ⊢ω ω : T2K)

JΨ ⊢ω fix ϕ.ω : T K = fix (JΨ, ϕ : T ⊢ω ω : T K)

▶ Lemma 40. Given a dcpo Ξ, two objects X and Y of C, a set of indices I and a family of
Scott continuous maps ξi : Ξ→ C(X,Y ) that are pairwise inverse compatible, the function∨

i∈I ξi : Ξ→ C(X,Y ) defined by x 7→
∨

i∈I ξi(x) is Scott continuous. ⌟

The interpretation of an iso abstraction is then given by:

JΨ ⊢ω {vi ↔ ei}i∈I : A↔ BK =
∨
i∈I

(comp ◦ ⟨JΨ; ∆i ⊢ ei : BK , JΨ; ∆i ⊢ vi : AK◦⟩)

The semantics is well-defined, in the sense that the interpretation of Ψ ⊢ω {vi ↔ ei}i∈I : A↔
B is a Scott continuous map between the dcpos JΨK and C(JAK , JBK).

6 Adequacy

We show a strong relationship between the operational semantics and the denotational
semantics of the language. First, we fix a mathematical interpretation J−K in a join inverse
rig category C, that is DCPO-enriched and whose objects 0 and 1 are distinct.

Since the language handles non-termination, our adequacy statement links the denotational
semantics to the notion of termination in the operational semantics: Given ⊢ t : A, t is said
to be terminating if there exists a value v such that t→∗ v. We either write t ↓, or t ↓ v.

▶ Theorem 41 (Adequacy). Given ⊢ t : A, t ↓ iff J⊢ t : AK ̸= 0JAK.

Soundness. We start by showing the simple implication in Theorem 41 amount to soundness:
the denotational semantics is stable w.r.t. computation.

▶ Proposition 42 (Soundness). Given a valid term judgement ⊢ t : A, provided that t→ t′,
then we have J⊢ t : AK = J⊢ t′ : AK . ⌟

We can conclude that if ⊢ t : A with t ↓, we have J⊢ t : AK ≠ 0JAK. This shows one of the
implications in Theorem 41. For the proof of the other implication, we follow a syntactic
approach, inspired by the proof in [35].
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Proof of Adequacy. Our proof of adequacy involves a finitary sublanguage, where the
number of recursive calls is controlled syntactically: instead of general fixpoints, we introduce
a family of finitary fixpoints fixn ϕ.ω, unfolding n times before reducing to the empty iso
{}, corresponding to the diverging iso.

We show the adequacy result for the finitary terms thanks to strong normalisation, and
then show that it implies adequacy for the whole language; this is achieved by observing
that a normalising finitary term is also normalising in its non-finitary form.

7 Semantics preservation

In this section, we fix the interpretation J−K of the language in PInj, the category of sets and
partial injections. This choice comes without any loss of generality (see [27]), and allows us to
consider computable functions. In this section, we show that given a computable, reversible
function f : JAK → JBK, there exists an iso ω : A ↔ B such that JωK = f . In order to do
that, we fix a canonical flat representation of our types.

7.1 A Canonical Representation
We define a canonical representation of closed values of some type A into a new type
Enc = B⊕ 1⊕ 1⊕ 1⊕ 1⊕ nat (recall that B = 1⊕ 1 and nat = µX.1⊕X). For simplicity
let us name each the following terms of type Enc : tt = injℓ (injℓ ()), ff = injℓ (injr ()),
S = injr (injℓ ()), D⊕ = injr (injr (injℓ ())), D⊗ = injr (injr (injr (injℓ ()))), Dµ =
injr (injr (injr (injr (injℓ ())))), and for every natural number n, we write ñ for the term
injr (injr (injr (injr (injr (injr (n)))))), where n is the encoding of natural numbers, as
given in Example 8. Now, given some closed type A, we can define ⌊−⌋A : A↔ [Enc] the iso
that transform any close value of type A into a list of Enc. The iso is defined inductively
over A: ⌊−⌋1 = {()↔ [S]}, and

⌊−⌋A⊕B =
{

injℓ (x) ↔ let y = ⌊x⌋A in D⊕ :: ff :: y
injr (x) ↔ let y = ⌊x⌋B in D⊕ :: tt :: y

}
,

⌊−⌋A⊗B =
{
⟨x, y⟩ ↔ letx′ = ⌊x⌋A in let y′ = ⌊y⌋B in

let ⟨z, n⟩ = + + ⟨x′, y′⟩ in D⊗ :: ñ :: z

}
,

⌊−⌋µX.A =
{

fold x ↔ let y = ⌊x⌋A[µX.A/X] in Dµ :: y
}
,

where the iso ++: [A]⊗ [A]↔ [A]⊗ nat which concatenate two lists is defined as:

fix f.
{
⟨[], x⟩ ↔ ⟨x, 0⟩
⟨h :: t, x⟩ ↔ let ⟨y, n⟩ = f ⟨t, x⟩ in ⟨h :: y, S(n)⟩

}
.

7.2 Capturing every computable injection
With this encoding, every iso ω : A↔ B can be turned into another iso ⌊ω⌋ : [Enc]↔ [Enc] by
composing ⌊−⌋A, followed by ω, followed by ⌊−⌋−1

B . This is in particular the case for isos that
are the images of a Turing Machine. We are now ready to see how every computable function
f from JAK → JBK can be turned into an iso whose semantics is f . Given a computable
function f : JAK → JBK, call Mf the RTM computing f . Since f is in PInj, its output
uniquely determines its input. Following [4], given the output of the machine Mf there exists
another Turing Machine M ′

f which takes this output and recover the original input of Mf . In
our encoding of a RTM, the iso will have another additional garbage which consist of a natural
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number, i.e. the number of steps of the RTM Mf . Using GarbRem(isos(Mf ), isos(M ′
f )) we

can obtain a single iso, from the encoding of A to the encoding of B, without any garbage
left. This also ensures that

r
GarbRem(isos(Mf ), isos(M ′

f ))
z

(x) = (Jisos(Mf )K (x))1, for any
input x.

▶ Theorem 43 (Computable function as Iso). Given a computable function f : JAK→ JBK, let
g : J[Enc]⊗ [Enc]K→ J[Enc]⊗ [Enc]K be defined as g = J⌊−⌋BK◦f ◦

q
⌊−⌋−1

A

y
, and let ω : A↔

B be defined as {x ↔ let y = ⌊x⌋A in let y′ = GarbRem(isos(Mg), isos(M ′
g)) y in let z =

⌊y′⌋−1
B in z}. Then JωK = f . ⌟

8 Conclusion

In this paper, we built upon the language presented in [7, 8, 36] in order to represent any
partial injective function which can manipulate inductive types. We showed how one can
encode any Reversible Turing Machine, hence the (reversible) Turing Completeness, and we
gave a denotational semantics based on join inverse rig categories, together with a soundness
and adequacy theorem. Most notably, we showed that for any computable function f from
PInj, there exists an iso whose semantics is f , thus our language fully characterises all of
the computable morphisms in PInj.
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Abstract
Discrete probabilistic programming languages provide an expressive tool for representing and
reasoning about probabilistic models. These languages typically define the semantics of a program
through its posterior distribution, obtained through exact inference techniques.

While the semantics of standard programming constructs in this context is well understood,
there is a gap in extending these languages with tools to reason about the asymptotic behaviour of
programs. In this paper, we introduce unbounded iteration in the context of a discrete probabilistic
programming language, give it a semantics, and show how to compute it exactly. This allows us
to express the stationary distribution of a probabilistic function while preserving the efficiency of
exact inference techniques. We discuss the advantages and limitations of our approach, showcasing
their practical utility by considering examples where bounded iteration poses a challenge due to the
inherent difficulty of assessing the proximity of a distribution to its stationary point.
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1 Introduction

Probabilistic Programming Languages (PPLs) combine the expressive power of classical
programming constructs with the ability to draw random values from probability distributions
and condition on the variables declared [18]. Unlike traditional programming languages,
where evaluation leads to executing a routine, evaluating a probabilistic program results in
computing the posterior probability distribution it specifies, a task called inference.

Inference can be either approximate [9, 17, 44], typically performed via sampling, or
exact [7, 16, 35, 37], where the aim is to compute the exact posterior specified by the
program. While most PPLs emphasise the use of continuous random variables, discrete
random variables lend themselves to exact inference techniques. Moreover, they are better
suited to several application domains, from cryptography [1, 33] to networks [14, 15, 42] or
graphs [39]. These appealing properties have sparked renewed interest in discrete PPLs.
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20:2 On Iteration in Discrete Probabilistic Programming

While finiteness of the discrete setting permits the computation of an exact posterior,
exact inference is known to be undecidable for programs with an unbounded domain and
#P-complete for programs which make use of Boolean variables only [40]. To tackle this
difficulty, PPL compilers use data structures that exploit independence between variables,
leading to efficient and scalable exact inference [24, 7].

Even though the semantics of probabilistic languages have been extensively studied ever
since the seminal work of Kozen [29], and the standard programming constructs are well-
understood for discrete distributions, their extension to unbounded iteration in the presence
of exact inference has been mostly absent. Possibly, due to the fact that unbounded iteration
is seen to introduce non-termination, which can take the language semantics and inference
capabilities outside the domain of discrete probabilities. As we show in this paper, this does
not have to be the case: we extend a discrete PPL with unbounded iteration, while retaining
the ability to perform exact inference.

Unbounded iteration is important to model probability distributions arising as the
asymptotic behaviour of a (discrete-time) stochastic process, which are the natural object of
study in a multitude of applications: given a ciphertext, we can construct a Markov chain
to represent the posterior distribution of encryption keys [12]; in molecular physics, protein
trajectories can be modeled using discrete-time Markov Chains (DTMCs), providing insights
into the protein’s biological function through their stationary distribution [38]; random
walks on the symmetric group offer various applications such as diffusion models or shuffling
schemes, where stationarity ensures reaching some optimal state [31]. From a probabilistic
perspective, these can be seen as the outcome of iterating a program which models the
one-step dynamics of the chain. Of course, one can always iterate such process a fixed number
of times or until some condition is met. As we will see, this is often insufficient, and does not
lead to the desired asymptotic behaviour in general. To reach the asymptotic limit, dedicated
programming constructs for unbounded iteration are required.

The language we chose to extend is Dice [24], a functional PPL designed to handle discrete
random variables and perform exact inference. Dice has a mature implementation and a very
efficient exact inference engine. Before delving into our contributions, we provide a simple
example that further motivates the use of unbounded iteration in probabilistic programming.

▶ Example 1. Consider the following probabilistic model which simulates a die using repeated
throws of a coin c [28]. Starting at the root vertex, s0, the model iteratively flips c and
branches with a solid line whenever it lands heads, and with a dashed line when it results in
tails. The coin-flipping procedure continues until a leaf is reached, i.e., until the value of the
die is determined. We can write this as a probabilistic program:

fun knuth_yao (s) {
if s == 0 then (if flip 1/2 then 1 else 2) else
if s == 1 then (if flip 1/2 then 3 else 4) else
if s == 2 then (if flip 1/2 then 5 else 6) else
if s == 3 then (if flip 1/2 then else 1) else
if s == 4 then (if flip 1/2 then else ) else
if s == 5 then (if flip 1/2 then else ) else
if s == 6 then (if flip 1/2 then else 2) else s }

1

2

3

4

5

6

0

The proposed model has 13 possible states: {0, . . . , 6, , . . . , }. The transition from the
current state s is dependent upon both s and the result of a fair coin flip. For instance,
starting from 0, we transition to either 1 or 2 based on the outcome of a coin flip, and it
takes at least three consecutive runs to reach a , . . . , state. Each function call yields not
a single state but a probability distribution on the 13 potential states. While careful analysis
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of this and similar programs make it clear that in the limit the model indeed simulates a
six-side fair die [26, 27], it is not immediately apparent that by iteratively applying this
function, we will attain each possible die outcome with a probability of 1

6 .

Contributions. We extend Dice [24], a discrete PPL, with an unbounded iteration operator,
give it a semantics that remains within the discrete realm, and show how to compute it
exactly. Furthermore, we also consider an alternative form of iteration, which is more closely
related to probabilistic while-loops and whose semantics is given by a least fixpoint.

We begin in Section 2 by formalizing the semantics of Dice. In Section 3 we highlight the
difficulties encountered when attempting to use bounded iteration to obtain the asymptotic
behaviour of some stochastic process. We then introduce the syntax and semantics for our
proposed unbounded iteration operator in Section 4. An alternative form of iteration is then
presented in Section 5, followed by a discussion of the implementation of both iterators,
and an empirical evaluation of their performance in Section 6. Finally, we conclude with a
discussion of related work and a few suggestions for future research in Section 7.

2 Dice: An Efficient Discrete PPL

In this section we review the syntax and semantics of Dice [24], a first-order non-recursive
functional language featuring the essential characteristics of a discrete PPL. It supports
Bernoulli distributions and has first-class observations which allow for Bayesian inference,
while it offers an efficient approach to probabilistic inference by exploiting the internal
representation of its programs.

2.1 Syntax

Dice supports Boolean and product types, as well as common branching and customary
Boolean operators. The language features two probabilistic constructs: one for defining
Bernoulli distributions (flip) and one for Bayesian evidence (observe). The first of these takes
a real number as a parameter θ ∈ [0, 1] and denotes a distribution that evaluates to true with
probability θ and false with probability 1 − θ, while the second takes an atomic expression
a as a parameter and incorporates it as evidence that a evaluates to true throughout the
program. This effectively changes the probability of all program paths where a does not hold
to 0. The type of a Dice program is a product of Booleans, determined by the rules in Fig. 1.

A Dice program consists of a sequence of non-recursive functions followed by a main
expression. We will later see that these expressions can be interpreted as discrete distributions
on the declared values. Furthermore, it supports syntactic sugar for logical operations
(∧,∨,¬), bounded loops, bounded-size integers, and discrete distributions over k integers.

▶ Example 2. Consider the following straightforward setting: we have observed that trains
to the nearest city experience delays with a 0.7 chance when it is raining and 0.3 otherwise.
On any given day, there is a 0.1 probability of rain. If we observe that the trains are running
late, what is the probability that it is raining? We can write down this in Dice as follows:

let x = flip 0.1 in
let y = if x then flip 0.7 else flip 0.3 in
let z = observe (y) in x

FSCD 2024
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2.2 Semantics

Recall that a function p : X → [0, 1] is a probability distribution whenever
∑
x∈X p(x) = 1,

and is called a subprobability distribution when
∑
x∈X p(x) < 1. Closed Dice expressions can

be viewed as a means of representing a subprobability distribution over the set of values
attainable by the variables declared. The distributions expressible in Dice are furthermore
finitely supported. That is, the set supp(p) := {x ∈ X | p(x) > 0} is finite.

We can define well-typed expressions Γ ⊢ e : τ and these will represent a (sub)probability
distribution over the tuple of variables τ conditional on the value of the free variables that
appear in Γ. To give a compositional interpretation of Dice expressions, we will interpret
conditional distributions in a category of certain linear maps represented as matrices. In
this sense, our presentation of the semantics of Dice is superficially different from that of the
original paper, though the two are equivalent.

A nonnegative matrix is stochastic if each column sums to 1 and substochastic if the
total of each column falls between 0 and 1. We write RX for the vector space of real-valued
functions on R which we equip with its Dirac basis {δx |x ∈ X} where δx(y) = 1 if x = y

and 0 otherwise. Conditional (sub)distributions p(y|x) can be thought of as linear maps
φp : RX → RY where φp is given by extending the mapping x 7→

∑
y p(y|x)δy linearly. The

map φp then has the additional property that its matrix representation in the Dirac bases for
RX and RY is (sub)stochastic. We also call such maps (sub)stochastic maps. More generally,
in what follows, we will speak of linear maps and matrices interchangeably, since all of our
vector spaces are equipped with a chosen basis. We will use ◦ to denote composition of linear
maps or simply juxtaposition to denote the product of matrices.

Since the product of substochastic matrices is substochastic, substochastic maps form
a category Stoch with finite sets as objects and morphisms X → Y substochastic maps
RX → RY . This is the category in which we interpret Dice programs. To interpret tuples,
we also need to equip Stoch with the monoidal product given by the Cartesian product of
sets on objects, and the usual tensor product on linear maps or, alternatively, the Kronecker
product ⊗ on matrices. Note that the set of Diracs {δx ⊗ δy | (x, y) ∈ X × Y } forms a basis
of RX×Y ∼= RX ⊗ RY . This defines a monoidal structure over the category Stoch, which is
moreover symmetric monoidal by equipping it with swapX,Y : X × Y → Y × X given by
extending the mapping δx ⊗ δy 7→ δy ⊗ δx linearly.

▶ Remark 3. For the categorically-minded reader, the interpretation of Dice could also
be given in the Kleisli category of the (sub)probability monad, which is equivalent to the
category of (sub)stochastic linear maps. Therefore, most of the subsequent development
could be phrased in this more categorical setting. We prefer a straightforward linear algebraic
presentation, because our treatment of iteration in the coming sections makes use of standard
results about Markov chains, which are usually formulated in a less abstract setting.

The type of the Booleans can be interpreted in Stoch as JBK = B = {true, false} and
extends J·K to arbitrary types and contexts J()K = 1 ∼= {0}, Jτ × τ ′K = JτK× Jτ ′K, Jτ, . . . , τ ′K =
JτK × · · · × Jτ ′K. To define the semantics of open terms, we will need the following stochastic
maps for variable management.

To discard a variable we will use the linear map disX obtained by extending δx 7→ 1 for
all x ∈ X linearly; for a single Boolean variable disB is given by the stochastic matrix/row
vector

(
1 1

)
.

To use a variable more than once, we use the linear map copyX obtained by extending
δx 7→ δx ⊗ δx linearly, for each x ∈ X; for a single Boolean variable copyB is represented

by the stochastic matrix
(

1 0 0 0
0 0 0 1

)⊤

.
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(true)Γ ⊢ true : B (false)Γ ⊢ false : B (flip)Γ ⊢ flip θ : B
Γ ⊢ x : B (obs)Γ ⊢ observe x : B

(var)
Γ, x : τ, Γ′ ⊢ x : τ

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ1 (tup)
Γ ⊢ (e1, e2) : τ1 × τ2

Γ ⊢ e : τl × τr (π1)Γ ⊢ fst e : τl

Γ ⊢ e : τl × τr (π2)Γ ⊢ snd e : τr

Γ ⊢ e0 : τ0 Γ, x : τ0 ⊢ e1 : τ (let)Γ ⊢ let x = e0 in e1 : τ
Γ ⊢ g : B Γ ⊢ eT : τ Γ ⊢ eF : τ (ite)Γ ⊢ if g then eT else eF : τ

Γ, x 7→ τ ⊢ e : τ ′
(fn)

Γ ⊢ fun f(x : τ) : τ ′ {e} : τ → τ ′

Γ ⊢ f : τ → τ ′ Γ ⊢ z : τ (call)
Γ ⊢ f(z) : τ ′

Figure 1 Dice typing rules.

In general a typing statement Γ ⊢ t : τ is interpreted as a substochastic map JtK : JΓK → JτK,
where the semantics J·K of an open term Γ ⊢ t : τ is given recursively on the structure of the
typing rules of Fig. 1.

By convention, the Booleans are represented as the following column vectors: JtrueK =
δtrue =

(
1 0

)⊤ and JfalseK = δfalse =
(
0 1

)⊤.
Jflip θK is given by the Bernoulli distribution that assigns true with probability θ and

false with probability 1 − θ. This is interpreted as the map JΓK
disJΓK−−−→ 1 [θ 1−θ]T

−−−−−→ JBK.
Notice that JfalseK and JtrueK can be obtained as flip θ (in the empty context) where
θ takes values 0 and 1, respectively.

JΓ, τ,Γ′K ∼= JΓK × JτK × JΓ′K
disJΓK⊗idJτK⊗disJΓ′K−−−−−−−−−−−−→ 1 × JτK × I ∼= JτK

Variables are introduced through let-expressions, which are interpreted as the map

JΓK
copyJΓK−−−−→ JΓK × JΓK

Je0K⊗idJΓK−−−−−−−→ Jτ0K × JΓK
Je1K−−→ JτK

Tuples (e1, e2) are interpreted as a joint distribution over the expressions involved, given
by the map JΓK

copyJΓK−−−−→ JΓK × JΓK
Je1K⊗Je2K−−−−−−→ Jτ1K × Jτ2K ∼= Jτ1 × τ2K.

The projections Jfst eK and Jsnd eK correspond to the marginalisation of joint dis-
tributions, given by applying disJτK to the component over which we wish to margin-

alise, i.e., Jfst eK = JΓK JeK
−−→ JτlK × JτrK

idJτlK⊗disJτrK
−−−−−−−−−→ JτlK and Jsnd eK = JΓK

JeK−−→

JτlK × JτrK
disJτlK⊗idJτrK−−−−−−−−→ JτrK.

Conditionals Jif g then eT else eF K take an expression g as guard whose truth value
determines which of the branchings will be selected; its semantics is given by the map

JΓK
copyJΓK−−−−→ JΓK×JΓK

idJΓK⊗copyJΓK−−−−−−−−→ JΓK×(JΓK×JΓK) JgK⊗(JeF K⊗JeT K)
−−−−−−−−−−−→ B×(JτK×JτK)

joinJτK−−−−→ JτK

where joinX : B×X×X → X is the linear map obtained by extending the following map-
ping linearly: joinX(δtrue, x, y) = x and joinX(δfalse, x, y) = y. For simple Boolean expres-

sions, i.e., for JτK = B, the corresponding 2-by-8 matrix is
(

1 0 1 0 1 1 0 0
0 1 0 1 0 0 1 1

)
.

Observe statements Jobserve xK incorporate evidence by assigning a 0 probability to
executions where x does not hold. The interpretation of observations is given by the map

B observe−−−−→ B, defined as the 2-by-2 matrix
(

1 0
0 0

)
. Note that this is the only substochastic

map which is not stochastic of all the Dice constructs.

FSCD 2024
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Functions are simply interpreted by keeping an environment mapping names to the
semantics of the corresponding term: the (fn) rule then creates a new name for a given
function, and (call) is interpreted as function application (note that Dice does not allow
higher-order functions). This aspect of the semantics is not of much relevance to the
development below, so we refer the interested reader to the original paper on Dice [24].

▶ Example 4. The semantics of the program in Example 2 is (idB ⊗ (disB ◦ observe)) ◦ (idB ⊗

joinB)◦ (copyB ⊗ idB ⊗ idB) ◦ (Jflip 0.1K ⊗ Jflip 0.7K ⊗ Jflip 0.3K) which computes to
(

0.07
0.27

)
.

Notice that the use of observe in the program makes this an unnormalised subprobability
distribution. To interpret the outcome of a computation, the user needs a bona fide probability
distribution. Hence, the Dice compiler automatically normalises the result at the end of a
computation. From a denotational perspective, there is not much difference between the two,
since one can always renormalise a nonzero subprobability. Note however that normalising is
an expensive operation in principle. For this reason, the Dice compiler keeps track of the
subprobability distribution that a given term denotes and of its associated normalisation
constant as well. See Appendix A for a discussion of Dice’s implementation details.

3 Iteration in PPLs: Existing Approaches and Challenges

It is straightforward to extend a discrete PPL with an operation for bounded iteration. In
Dice, this problem was already addressed in [24] through the introduction of bounded loops,
iterate(f, i, k), where f is a function name, i an initialization expression and k an integer
specifying the number of times the function f : τ → τ should be iterated with a starting
value i. While this allows for denoting a loop that terminates after a known number of
iterations, it does not allow us to obtain the limiting behaviour of f . In this section, we
review these limitations, thus justifying the need for unbounded iteration in general.

From Section 2.2, every Dice function of type f : τ → τ denotes a substochastic matrix
and in turn, defines a DTMC. Conversely, every DTMC over a finite state-space can be
encoded as a Dice program of type τ → τ . The semantics of the Dice program f then defines
a Markov chain on the state space JτK. For a Markov chain with underlying transition
matrix P , a vector π is a stationary distribution vector if Pπ = π. In many applications,
Markov chains are useful when it can be shown that their behaviour closely approximates
a given target within a reasonable number of steps in its time evolution. It is then useful
to have a measure of how close a chain is from stationarity. For this purpose, the mixing
time of a DTMC X with transition kernel P and stationary distribution π is often defined
as min{t : maxx∈Ω ∥P t(x, ·) − π∥TV ≤ 1/4}, where ∥ · ∥TV is the total variation distance.
Intuitively, the mixing time gives the minimum amount of steps X must be iterated in order
to be reasonably close to its limiting behaviour.

It may be tempting to sidestep the lack of an unbounded iteration operator by using
iterate(f, i, k) for some sufficiently large k in order to approximate the stationary distribu-
tion π of some program f . However, determining the mixing time of an arbitrary expression
f remains a challenging task. While classic Markov chain theory asserts that iterates of a
chain with distribution P approach its stationary distribution subject to mild conditions on
its internal structure (such as non-periodicity), it does not provide bounds on the number of
steps required to be sufficiently close. This makes the naïve approach to iteration – using a
bounded loop – unsatisfactory, as it does not allow the user to ascertain whether the posterior
is close enough to stationarity. Or rather, such an approach offsets the burden of knowing
the mixing time to the user, rather than the compiler.



M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:7

Moreover, if empirical exploration of the distribution obtained by iterate(f, i, k) for
different values of k can give an indication of progress towards stationarity, there are DTMCs
where the convergence rate in total-variation undergoes an abrupt change over a negligible
period of time [11]. This phenomenon, called cutoff, makes it infeasible to rely on heuristics
based on statistical distances between successive iterations to determine when to stop the
computation in the hope of getting a distribution that is sufficiently close to stationarity.

▶ Example 5 (Limitations of finite iteration). To illustrate the challenges in determining the
stationary distribution of a DTMC, we examine the Bernoulli-Laplace model of diffusion.
This model can be depicted using two urns containing n balls each. Initially, the left and
right urns contain n red balls and n blue balls, respectively. In each step, a ball is chosen at
random from each urn, and they are exchanged. After sufficiently many exchanges, urns will
be mixed, each of them containing approximately equal proportions of red and blue balls.

This process is fully determined by the number of blue (red) balls in one of the urns.
Call this set Ω = {1, . . . , n}. The transition matrix of this model can be built by considering
how many blue balls will be in the left urn given that there are b ≤ n currently. There are
three possibilities: either a blue ball or a red ball is grabbed from both urns (Pb,b = 2 b(n−b)

n2 ),
a red ball is grabbed from the left urn and a blue ball is grabbed from the right urn
(Pb,b+1 =

(
n−b
n

)2
), a blue ball is grabbed from the left urn and a red ball is grabbed from

the right urn (Pb,b−1 =
(
b
n

)2
). This process can be encoded in the following Dice program:

fun bernoulli_laplace ( blues_in_urn : int) {
let urn =
if blues_in_urn == 0 then (0, 1, 0, 0, ...)
else if blues_in_urn == 1 then

(1/n2 , (2*(n -1))/ n2 , (n -1)2/n2 , 0, ...)
else if blues_in_urn == 2 then

(0, 22/n2 , (2*(n -2)*2)/ n2 , (n -2)2 , ...)
...
else (... , 0, 0, 1, 0) in urn

}
let ith_trial = iterate ( bernoulli_laplace , 0, i) in ith_trial

Note that this idealized encoding of the Bernoulli-Laplace model assumes a fixed urn size n,
where “. . . ” indicates a distribution that ought to follow above’s model. Concrete instances
of this program can be found in the tests provided in our implementation.

Consider the problem of determining the convergence of the above program to its stationary
state. To assess the number of iterations required for the distribution to reach a sufficiently
close approximation to the stationary state, we can conduct multiple experiments using
various urn sizes. Analysis of the model [13] yields that for any finite state space Ω, for any
b ∈ Ω, the stationary distribution is given by

π(b) =
(
n

b

)(
n

n− b

)/(2n
n

)
, 0 ≤ b ≤ n.

We can measure the time it takes to become reasonably close to this distribution by
calculating the total-variation between the distribution of the urn at each iteration step and
its stationary state for different urn sizes. Note how the distance between the distribution and
its stationary state remains close to its maximum value before dropping to near zero during
a short period of time. This cutoff phenomenon shows the impracticality of approximate
heuristics to determine the optimal number of iterations required for a probabilistic function
to converge to a distribution that accurately represents its limiting behaviour.
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Indeed, it has been proven that the Bernoulli-Laplace diffusion model exhibits a cutoff at
time 1

4n log n [13]. While a cutoff is not present in every DTMC, there are various families
where it has been proven to exist [2, 11]. Furthermore, it remains a challenging task to
determine if a chain has a cutoff window. For these reasons, a form of unbounded iteration
is genuinely needed.

4 Introducing Unbounded Iteration

At first glance, it seems like unbounded iteration should force us out of the discrete probability
setting by introducing nonterminating behaviour. How can potentially infinite execution runs
be given a semantics with finitely-supported probability distributions? Perhaps surprisingly,
we will now see that unbounded iteration can be accommodated in this setting.

If we think of a probabilistic program t : τ → τ as encoding the dynamics of some
Markov chain, iterating t should give us the limiting behaviour of the chain, limn→∞JtKn.
However, this limit does not always exist, as is the case for example for chains that exhibit
periodic behaviour. Thus, we cannot use it to define the semantics of unbounded iteration in
general. Nonetheless, we can guarantee the existence of a limit by considering the average
time spent on each of the possible states defined by the probabilistic function to be iterated:
indeed, while the powers of an arbitrary stochastic matrix P need not have a limit, its
Cesàro sum limn→∞

1
n

∑n
k=1 P

k always exists [34, Section 8.4]. This is what we propose as
semantics here. Note that this is not the first time that this is suggested as a reasonable
semantics of iteration: in [8], the authors mention it in passing in the context of continuous
probability. Here, we show that it gives a suitable semantics to iteration even in the discrete
case. A precise way to compute it, together with a benchmark of our implementation against
approximations that use bounded iteration are provided in Section 6.

Given a program t : τ → τ , we want the program iterate t to denote a distribution that
represents the average time spent on each element of JτK by all finite iterations of t. The
typing rule for this iterator is given by

Γ ⊢ t : τ → τ
Γ ⊢ iterate t : τ

Operationally, we can think of iterate t as unfolding to the program if flip 1
n then (iterate t)

else tn, assuming n is a runtime variable keeping track of the current execution step.
Denotationally, the semantics of iterate t, is given by the Cesàro sum of t : τ → τ , i.e.,

Jiterate tK :=
(

lim
n→∞

1
n

n∑
k=1

JtKk
)

0

, where A0 denotes the first column of the matrix A.
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The choice of 0 here is arbitrary since, as we will see, all the columns of the Cesàro sum are
equal. If we think of t as encoding the transition kernel of some Markov chain, this limit
characterises the fraction of time the underlying Markov chain spends in each of its possible
states, and its value is independent of the initial distribution we consider. The intuition is
that the averaging of the Cesàro sum removes any oscillatory behaviour that could prevent
the sequence of iterated powers to converge. The following example illustrates this point.

▶ Example 6. Consider the following program, one of the simplest programs exhibiting
periodic behaviour (note that the exclamation mark denotes negation).

fun swap_state (a : bool) : bool { !a }
iterate swap_state

This program denotes a Markov chain that jumps between its only two states at every step.
It is not hard to see that this chain has stationary distribution

(
1/2 1/2

)T . Intuitively, if
we distribute the total weight equally between the two states, then swapping them does not
change the distribution. It should be noted that the periodic behaviour of the program makes
it impossible to arrive at such distribution through successive iterations. Indeed, iterating
the chain will simply shift the weight back and forth between the two states, while its Cesàro
sum is equal to the stationary distribution.

4.1 Exact Inference
It is clear that to obtain Jiterate tK, we could simply compute 1

n

∑n
k=1JtK

k for successive
values of n. However, the compiler would then need to decide when the approximation is
sufficiently close to the limit to stop the computation. There are several possible heuristics
to decide when a given approximation is satisfactory. For example, one could decide to stop
when the distance between a given approximation and the previous one differ only by a small
value ε in KL divergence. As we aim for exact inference, this approach would be insufficient,
not to mention that it suffers from the same drawbacks as bounded iteration, highlighted
in Section 3. It is in general a hard problem to determine whether the underlying Markov
chain exhibits cutoff and when, thereby making it difficult to decide when we are reasonably
close to the asymptotic behaviour of the chain. We can however sidestep these challenges by
leveraging standard results from linear algebra that suggest a different–and most importantly,
exact–way to compute the semantics of iteration, which we now explain.

Given any scalar sequence (an)n∈N, there is an associated Cesàro sequence of its averages,
(bn)n∈N, where bn = 1

n

∑n−1
k=0 ak; we say that the sequence (an)n∈N is summable to s (or

just summable) whenever limk→∞ bk = s. The same idea can easily be transported to the
setting of matrices: given a sequence (An)n∈N of powers of some square matrix A, we say
that A is convergent when limk→∞ Ak exists and that A is summable whenever its sequence
of averages

(
1
n

∑n−1
k=0 A

k
)
n∈N

converges. Note that matrices that do not converge can be
summable. Indeed, the averaging of a Cesàro sequence smooths away any periodic behaviour
the chain could have. Furthermore, whenever a matrix A converges, its limit coincides with
that of its Cesàro sequence [34]. In order for the Cesàro sum to be a suitable candidate for
the semantics of iterate t, we must first make sure that this limit always exists for the
family of matrices we are interested in. It is a well-known fact that this is always the case
for (sub)stochastic matrices.

The following result about substochastic matrices is a mild generalisation of a theorem
appearing in [34, Section 8.4] for stochastic ones. We will use it in Section 6, where we explain
how our implementation computes the relevant projection and evaluate its performance.
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▶ Proposition 7. Every substochastic matrix M is summable and its sum is equal to the
projection onto Ker(I −M) along Im(I −M).

Interestingly, when the limit limnM
n exists, it is also equal to the projection onto

Ker(I − M) along Im(I − M) and is therefore equal to the Cesàro sum [34, Section 7.10].
While we do not use this fact, it lends further support to the intuition that the Cesàro sum
provides a generalised semantics for iteration, even in the context when the limit of finite
iterations does not exist.

We make use of Proposition 7 when explaining how our implementation computes the
relevant projection and evaluate its performance in Section 6.

5 An Alternative: Least Fixpoint Iterator

We can give an alternative form of iteration which is more closely related to imperative
while-loops in the style of [29]. This follows the approach taken in [43], where iteration is
defined by exploiting coproducts: starting from a program t : A → A+ B, iterate t from u

repeatedly calls t (starting from some value u) until the output of t is of type B, signalling
the stopping condition for iteration, and returning the last output of t.

Although Dice does not have explicit sum types, the same procedure can be mimicked
using products and the fact that B = 1 + 1. We can represent the repeated application
of some expression t : τ → B × τ that depends on an argument x : τ through an iterator
that repeatedly calls t starting from some initial value u, in each step consuming a Boolean
variable (that acts as a guard) until this variable evaluates to false, in which case the value
of the last evaluation is output. The derived typing rule for this iterator is given by

Γ ⊢ u : τ Γ ⊢ t : τ → B × τ
Γ ⊢ iterate0 t from u : τ

The operational intuition given above suggests that iterate0 t from u unfolds once to
let (b, v) = t(u) in (if b then (iterate0 t from v) else v). In plain language, we apply t once
to u, getting a pair (b, v) of a Boolean guard and a new value v; we then examine b to decide
whether to apply t again or to return v.

We can think of this process in two ways: as iterating t from u or, equivalently, as
iterating t and applying the resulting operation to u. With the latter perspective, we want
to find a (sub)stochastic matrix M such that MJuK = Jiterate0 t from uK. Then,

MJuK = Jiterate0 t from uK

= Jlet (b, v) = t(u) in (if b then (iterate0 t from v) else v)K
= joinτ ◦ (idB ⊗M ⊗ idτ ) ◦ (idB ⊗ copyτ ) ◦ JtKJuK

Since u can denote an arbitrary distribution, we are looking for a matrix M that is a solution
of the equation above. This equation might have several solutions. However, in the presence
of an order, it is traditional in programming language semantics to take the smallest solution
as the canonical semantics of iteration [46]. For this purpose, we equip the set of substochastic
maps with the pointwise order, i.e., A ≤ B for two substochastic matrices if Ax ≤ Bx for
all nonnegative x ∈ Rn. With this order, we want the semantics of iterate0 t to be the
least fixpoint of the map φ given by φ(M) = joinτ ◦ (idB ⊗M ⊗ idτ ) ◦ (idB ⊗ copyτ ) ◦ JtK for
M : JτK → JτK. Note that idB = JtrueKJtrueKT + JfalseKJfalseKT , so that

φ(M) = joinτ ◦
((

JtrueKJtrueKT + JfalseKJfalseKT
)

⊗M ⊗ idτ
)

◦ (idB ⊗ copyτ ) ◦ JtK

= joinτ ◦
((

JtrueKJtrueKT
)

⊗M ⊗ idτ
)

◦ (idB ⊗ copyτ ) ◦ JtK

+ joinτ ◦
((

JfalseKJfalseKT
)

⊗M ⊗ idτ
)

◦ (idB ⊗ copyτ ) ◦ JtK
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Since joinX(δtrue, x, y) = x and joinX(δfalse, x, y) = y, we can simplify the previous expression
considerably: φ(f) = M ◦ (JtrueKT ⊗ idτ ) ◦ JtK + (JfalseKT ⊗ idτ ) ◦ JtK. Thus, φ is an affine
transformation over the vector space of linear maps RJτK → RJτK (which is isomorphic
to RJτK ⊗ RJτK), given by φ(M) = MB + A, where A := (JfalseKT ⊗ idτ ) ◦ JtK and B :=
(JtrueKT ⊗ idτ )◦ JtK. Moreover, φ maps substochastic maps to substochastic maps, since φ(M)
can also be expressed as joinτ ◦ (idB ⊗M ⊗ idτ ) ◦ (idB ⊗ copyτ ) ◦ JtK, which is a composition
of substochastic maps, and therefore substochastic.

In the literature [8, 29], the problem of characterising this fixpoint is usually approached
by showing that φ is order-continuous – then, its least fixpoint can be obtained by taking the
suprema of successive iteration of φ starting from the bottom of the order, i.e., the uniform
zero distribution:∨

n≥0
φn(0) = lim

n→∞

n∑
k=0

A ◦Bk

However, in general, this only gives a recipe to approximate the desired least fixpoint. In
the discrete setting that is ours, we want to compute it exactly. We lay out the details on
how we accomplish this to Section 6, where we elucidate the internal implementation of this
iterator and evaluate its performance.

6 Implementation and Empirical Evaluation

We now extend the core syntax of Dice by incorporating the two iterators described in
Sections 4 and 5 [45]. We evaluate their performance by comparing the average time required
to attain the stationary distribution of a specific probabilistic function using these, contrasted
with the time needed to approximate the same distribution through bounded iteration.

Dice is implemented in OCaml and uses rsdd [22], a Rust-based implementation for
building and handling decision diagrams, as its backend for compiling binary decision
diagrams (BDDs). To extend Dice, we employ py.ml [32], an OCaml library that facilitates
the dynamic binding of Python modules, to harness efficient and extensively used linear
algebra tools for the computation of linear operators corresponding to the semantics given
by the iterators. While at compile time a Dice program is encoded as a weighted BDD,
we obtain its matrix representation by evaluating its action on the canonical Dirac basis.
This matrix is subsequently sent through py.ml to a Python library, where the distribution
associated to either iterate or iterate0 is obtained. Subsequently, we obtain the weighted BDD
representation of this distribution by leveraging Dice’s internal encoding [24, Section 5.1] to
define a distribution over a finite set of states. All our experiments were ran single-threaded
on the same machine with a 2.7GHz CPU and 15GB of RAM. Timings were recorded using
time, the standard GNU utility.

6.1 Cesàro Iterator
For computing the semantics of iterate t we work with the matrix representation of JtK.
From the discussion in Section 4 and Proposition 7, we know that the semantics of iterate t
is any column of the projection onto Ker(I − JtK) along Im(I − JtK).

There are several ways to compute this projection. We have chosen to use a full-rank
factorisation of I − JtK. A full-rank factorisation of a n× n matrix M is a pair of of an n× r

matrix B and a r×n matrix C such that M = BC, where r is the rank of B,C, and M . Given
such a factorisation, the projection onto ImM along KerM is given by P = B(CB)−1C, a
result which can be found in § 7.10 of [34]. Since I − P is the complementary projector of P ,
the projection onto KerM along ImM is therefore I −B(CB)−1C.
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In practice, we obtain a full rank factorisation from the singular value decomposition (SVD)

of M , by taking M = U

(
Σ 0
0 0

)
V T = (U0|U1)

(
Σ 0
0 0

)(
V0
V1

)
, making (U0Σ)V0 = U0(ΣV0)

a full-rank factorisation of M , where U0 corresponds to the matrix made by the first n columns
of U where n is the number of non-zero singular values of Σ and, similarly, V0 corresponds
to the first n rows of V . Thus, Jiterate tK is (say) the first column of I − U0(V0U0)−1V0,
where U0, V0 come from the full-rank factorisation of I − JtK given by its SVD (note that
the singular values are not needed, since they cancel out for these choices of B = U0Σ and
C = V0).

▶ Example 8. Consider the transition kernel JtK of the program that simply swaps two states

(Example 6). An SVD of M = I − JtK gives M = UΣV T where U = V =

− 1√
2

1√
2

1√
2

1√
2


and Σ =

(
2 0
0 0

)
. Thus, Jiterate tK is any column of I − U0(V0U0)−1V0, which gives the

distribution
( 1

2
1
2
)⊤. This witnesses the fact that the program oscillates between its only

two states, spending equal time on each. Note that this gives a stationary distribution of the
corresponding Markov chain which cannot be obtained by successive iterations.
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Figure 2 Comparative graph depicting the required time for various simulations of the Bernoulli-
Laplace model to converge to a posterior distribution within 0 + ϵ, 1

4 , 1
2 , 3

4 and 1 in total variation
distance (drawn as points “•” in the above graph) from the stationary distribution, and the time it
takes for Jiterate tK to compute the stationary distribution for an instance of the Bernoulli-Laplace
model with equal number of states (drawn as triangles “▲”). Different colors represent distinct
instances of the Bernoulli-Laplace model with different urn size. We extend the time line with a
timeout data point (to) for the cases in which no posterior could be retrieved.

Empirical Evaluation. We now evaluate the time performance of iterate. Note that a direct
comparison of our iterative operator with other existing forms of iteration in Dice is not
feasible. This is because while our iterator obtains the exact posterior distribution of some
function t : τ → τ , Dice can only approximate this distribution by simulating the underlying
transition kernel of t by unfolding its BDD representation a fixed number of times.

To empirically evaluate the performace of JiterateK, we compare the time it takes for
Jiterate tK to obtain the stationary distribution π for t an instance of the Bernoulli-Laplace
diffusion model described in Section 3, with urns of various sizes |Ω| = {3, 7, 10, 20}, and
the time it takes for an iterative simulation to obtain a posterior distribution B at distances
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of 1, 3
4 ,

1
2 ,

1
4 and 0 + ε in total variation from the stationary distribution π. Already for urns

as small as |Ω| = 7 it is not possible to obtain a posterior that is within ε = 0.001 distance
from π in any reasonable amount time. Moreover, for models with an urn size of 10 or more,
it becomes practically infeasible to achieve a posterior distribution beyond the mixing time
of t. For this reason, we have decided to set ϵ = 0.005 for the above experiments.

Colored dots in the graph in Fig. 2 represent the time it takes for the bounded iterative
method to initially produce a posterior B that is within y-axis distance from π, while the
colored triangles placed along the x-axis indicate the time required for Jiterate tK to compute
the exact posterior, π. It can be observed that even in experiments with small urn sizes,
achieving a reasonably close approximation to the stationary distribution (reaching its mixing
time) is not feasible through existing means.

6.2 Least Fixpoint Iterator
As introduced in Section 5, the semantics of iterate0 t from u is given by the fixpoint of
equation (??). One way to compute this fixpoint exactly is with linear programming. Every
fixpoint M of φ will satisfy MA + B = M so we are looking for M ∈ RJτK ⊗ RJτK that
satisfies M(I −A) = B and M ≥ 0. We also need a linear form to minimise such that the
solution to the corresponding linear program is the desired least fixpoint. In other words,
we are looking for C ∈ RJτK ⊗ RJτK such that the minimum of CTM subject to the linear
constraints M(I −A) = B and M ≥ 0 is the least fixpoint of φ. Which C should we choose?
We claim that any strictly positive C will work.

▶ Proposition 9. Let C be any positive vector of RJτK ⊗ RJτK. The least fixpoint of φ : M 7→
MA+B over the poset of substochastic maps is the solution to the following linear program:
minimise CTM subject to the constraints M(I −A) = B and M ≥ 0.

Empirical Evaluation. Now we compare the efficiency of iterate0 t from u to obtain the
least fixpoint of a probabilistic procedure against the time it takes to approximate the
same distribution through finite iterative means. To this end, we adapt a probabilistic
program that models a packet delivery reliability problem, inspired by Bayonet [15], a
domain-specific language (DSL) focusing in network analysis, which captures the inherent
probabilistic behaviour of computer networks. Similar to Dice, Bayonet allows to define
discrete distributions within its program structure. This is achieved through PSI in its
backend [16], a discrete PPL featuring a symbolic engine that generates concise expressions
for representing distributions. A network topology defines the network nodes which can be
hosts or switches, and the links that interconnect them. Every link between two nodes is
represented by two ports, and each of these nodes has both an input and an output queue,
for received and outgoing packets, respectively. To capture the behaviour of a node, we
specify how the node processes the packets it receives.

s0h0 s3 h1

s1

s2

⟨1 2
,
1
10
⟩

⟨ 1
2 , 110 ⟩

⟨ 3
4 , 120 ⟩

⟨3 4
,
1
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⟩

⟨1 4
,
1
20
⟩

⟨ 1
4 , 120 ⟩

⟨ 116 , 130 ⟩

⟨
1
16
,
1
30
⟩

⟨ 7
8 , 0⟩⟨1, 0⟩

Consider above’s network topology, where some switches si have a non-zero probability
⟨−, q⟩ of dropping a packet at any given moment and forwarding their packet with some
probability ⟨p,−⟩. Host h0 sends a packet to host h1 every clock tick. Switch s0 forwards
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half of h0’s packets to s1 and the other half to s2, with a 1
10 chance of dropping a packet.

Both s1 and s2 forward their packets to s3 with a 3
4 chance and send it back with a 1

4 chance.
At every moment, they have a 1

20 chance of dropping the packet. Finally, s3 has a 7
8 chance

of forwarding its packet to h1 without any inconvenience and a 1
8 chance of sending it back

to either s1 or s2 with equal probability and a 1
30 chance of dropping it.

The problem of packet delivery reliability is defined as the probability that a given packet
(or flow of packets) reaches its intended destination. In our setting, we are interested in
knowing the reliability of the entire network. This is, for any packet sent by h0, what is the
probability that it hits h1. This network’s behaviour is captured by the following program:
fun network (si) {

if s0 then (if flip 1/2 then (s1 , flip 1/10) else (s2 , flip 1/10)) else
if s1 then (if flip 3/4 then (s3 , flip 1/20) else (s0 , flip 1/20)) else
if s2 then (if flip 3/4 then (s3 , flip 1/20) else (s0 , flip 1/20)) else
if flip 7/8 then (s3 , false ) else

(if flip 1/2 then (s1 , flip 1/30) else (s2 , flip 1/30))
}
fun aux(a) { let x = network (a) in (if (π2 t) then (aux (π1 t)) else (π1 t)) }

The network function returns, for any state s, the distribution over the state space that
represents the probability of transitioning to any other state. To evaluate the efficiency of
Jiterate0 t from uK in computing the fixpoint of the transition function implicitly given by
the above program, we compare the time it takes to obtain this distribution via the least
fixpoint iterator against the time it takes to approximate it through successive iterations, by
unrolling the underlying BDD. Since, similar to the previous example, we cannot directly
compare these two times, as one method finds the desired distribution exactly and the other
only approximates it, we also provide how close we are in total variation distance to the
target distribution π at each iteration i.

We denote by f i the distribution given by the first projection of the output provided
by iterate(aux, s0, i). Each column of the following table displays the average time taken
by five different executions of f i to obtain the posterior, along with its proximity to π, the
stationary distribution of the transition given by network:

# iterations 1 3 5 7 9
dT V (f i, π) 0.912627 0.168776 0.023505 0.008805 0.013332
Ellapsed time (s) 0.252 0.266 0.296 1.030 58.32

While the simulation quickly converges to stationary, the oscillatory behaviour of the
model hinders the possibility of establishing any stopping criterion. This naïve iterat-
ive method becomes unwieldy, already taking one minute to simulate only nine steps of
the network. We contrast the times in the above table with the 0.54 seconds that it takes
iterate0 network from s0 to compute the stationary distribution.

7 Conclusion and Future Work

We have shown that it is possible to extend discrete probabilistic programming with unboun-
ded iteration in at least two different ways, without giving up exact inference. Unbounded
iteration is valuable because it allows us to compute the limiting behaviour of probabilistic
programs that encode discrete-time stochastic processes. Since deciding when a stochastic
process is sufficiently close to its limiting distribution is intractable in principle, we have
argued that unbounded iteration and exact inference are both necessary in this setting.
Finally, we have implemented these two different forms of iteration and demonstrated their
performance on simple benchmarks, extending a functional programming language with
discrete probabilistic choices.
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Comparing the two iterators. In this paper, we have given two forms of unbounded
iteration: one based on averaging the behaviour of a term t : τ → τ over all iterations, and
another given by iterating a term t : τ → B × τ from a given initial condition u, while the
Boolean guard of t remains true. The former only makes sense in the context of probabilistic
programming while the latter is a direct translation of while loops into the setting of a
(functional) PPL.

While we have not given the Cesàro iterator as a fixpoint, it can also be characterised
as one. Indeed, it is a well-known corollary of Proposition 7 that the Cesàro sum of
a (sub)stochastic map M always gives a stationary distribution for the Markov chain it
represents, in other words a fixpoint of M . Indeed, if P is the projection onto Ker(I −M)
along Im(I −M), then for all x, Px−MPx = 0 and therefore MPx = Px.

At first sight, comparing these two forms of iteration is not meaningful, since they
take arguments of different types. Therefore, one cannot simply ask when is iterate t =
iterate0 t from u, since the same t cannot be fed to both. Nevertheless, given t : τ → τ ,
one can ask when does iterate t = iterate0 (t, true) from u, for some program u? It
turns out that if the guard is always true, the semantics of iterate0 (t, true) from u is
uniformly 0 (regardless of u), which is not necessarily the case for iterate t. Conversely,
given t : τ → B × τ , one can obtain a program t′ : τ → τ by marginalising over the Boolean
guard. Even in this case, iterate t′ does not necessarily coincide with iterate0 t from u.
There are edge cases for which the two are equal (e.g., when the spectral radius of t′ is strictly
less than 1, see Appendix A.2), but they do not correspond to any meaningful conditions
on the corresponding program. Therefore, the forms of iteration have genuinely distinct
capabilities and use cases: the first is useful to obtain the stationary distribution of some
program encoding the dynamics of a Markov chain, while the second can be used to simulate
while loops.

Related work. As far as we are aware, the only other line of work that combines exact
inference and unbounded iteration is [6]. There, the semantics of programs is given in terms
of probability generating functions and thus rather different from ours, making a direct
comparison with our work more challenging. Moreover, while their language allows some
infinitely-supported distributions, it does not allow conditioning inside of loops. In [7], the
authors present an imperative PPL for discrete random variables, called BernoulliProb.
Notably, BernoulliProb has while-loops and therefore support unbounded iteration. While
the semantics of while-loops is closely related to the one we give to the least fixpoint iterator
of Section 5, in practice, the implementation of [7] only approximates this least fixpoint using
KL-divergence as a measure of convergence. Thus, their implementation suffers from the
limitations we have highlighted in Section 3.

In [16], the authors introduce PSI, a PPL that is able to perform exact symbolic inference
for programs with discrete and continuous random variables. However, the syntax of
their language allows only bounded iteration. There are other general-purpose PPLs and
frameworks including looping constructs with constant bounds [19, 36], leading to approximate
rather than exact inference. These languages do not offer guarantees on the convergence
rates of the associated fixpoint computation, running into the problems outlined in Section 3.

It is also worth comparing our work with the the Probabilistic Model Checking (PMC) tools
[30, 10], which focus on generalising traditional model checking to verify that a probabilistic
system satisfies a particular temporal logic formula. The main difference between Dice
and these tools lies in their approach to probabilistic inference. While Dice utilizes WMC
over BDDs, PMC tools frequently employ ADDs and explicit matrix representations that
are combined with iterative techniques to derive posterior distributions. For discrete-time
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Markov chains, these tools integrate PCTL operators whose semantics is akin to the least
fixed-point operator of this paper [20], allowing for the expression of stationary distributions,
when they exist. Although obtaining the exact stationary distribution is feasible, practical
implementations often resort to iterative methods to address issues stemming from state
space explosion – similar to those faced by Dice – making them prone to the challenges
discussed in Section 3.

Finally, there are domain-specific PPLs that include some form of unbounded iteration
[41, 42], but do so only for their restricted domain of application. In particular, the more
narrow focus of [42] on network specification gives stronger guarantees on the convergence
of the loops that can be specified in the language. This allows for exact inference in the
presence of unbounded iteration, albeit in a setting which is less general than ours.

Future work. As mentioned in Remark 3, our work could be formulated in a more categorical
context. This would enable us to connect the different notions of iteration and their
corresponding fixpoints to traces in monoidal categories. In categories for which the monoidal
product coincides with the categorical product, a trace always defines a notion of fixpoint. This
is not necessarily the case in more general monoidal categories, such as that of (sub)stochastic
maps. Finding a suitable trace would open the possibility of reasoning equationally about
probabilistic programs with iteration.

In a more practical note, one possible avenue for future work is to explore data structures
that enable the representation of discrete probabilistic programs with loops without incurring
in any kind of space explosion. Similarly, efficient transformations from explicit representations
of DTMCs to BDDs have been explored in the context of finite-horizon Markov Chains
[23], a natural next step is to adapt the insights gained for finite iterations to a compact
representation of iterators.
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Table 1 Dice’s core syntax. Metavariable f ranges over function names, x over variable names,
and θ over reals in the range [0, 1].

τ ::= B | τ1 × τ2 (Types)
v ::= true | false | (v, v) (Values)
a ::= x | v (Atomic expressions)
e ::= a | fst a | snd a | (a, a) | let x = e in e

| if a then e else e | flip θ | observe a | f(e) (Expressions)
func ::= fun f(x : τ) : τ {e} (Functions)

p ::= e | func p (Programs)

A Appendix

A.1 Core Dice
Dice programs are compiled into weighted Boolean formulas on top of which exact inference is
performed via weighted model counting to obtain the distribution of densities specified in the
main return expression [5]. To represent these formulas, the compiler internally manipulates
programs by using multi-rooted binary decision diagrams (MRBDDs) [3], allowing it to take
advantage of the conditional independence of the declared variables and the local structure
amenable to efficient MRBDD compilation, making it possible for Dice to handle inference
tasks even in the presence of models with a large number of variables.

Internally, the compiler maintains two Boolean formulas, φ and ψ. These represent all
possible execution paths and only those that satisfy the Bayesian evidence provided by the
observe statements, respectively. A global weighting function w : L → R is employed to
assign weights to literals. This allows for the assignment of weights to all models ω that
satisfy a given formula, and the task of obtaining the posterior distribution of a given program
is then reduced to a weighted model counting problem

∑
ω∈M(φ∧ψ) w(ω)/

∑
ω∈M(φ) w(ω),

where M(α) is the set of models of some Boolean formula α.

▶ Example 10. The internal representation of the program in Example 2 is given by the
following MRBDD, where the solid lines denote the paths where the decision variable is true
and the dashed lines those where it is false.

x

yT yF

T F

0.1 0.9

0.7
0.3 0.3

0.7

where M(φ ∧ ψ) = {xyT } and M(φ) = {xyT , xyF }, evaluating to w(xyT )/(w(xyT ) +
w(xyF )) = (0.1 · 0.7)/(0.1 · 0.7 + 0.9 · 0.3) ≈ .2059.

Dice can compile discrete probabilistic programs with bounded loops into a symbolic
representation using MRBDDs by “unfolding” each iteration step. However, MRBDDs
can only represent finite Boolean functions and thus are not suitable for directly encoding
programs with unbounded loops. There is nevertheless a bijection between matrices and
MRBDDs enabling us to move freely between the two representations as needed and leverage
the diverse results from linear algebra to our advantage [4, 21].
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▶ Example 11. The unfolding action on BDDs of bounded iteration leads to an increase in
the number of nodes on its underlying representation, making it hard to reach sensible bounds
on its approximation to the stationary distribution of the function that is iterated. Consider
the problem of simulating a fair coin given samples from a biased one c with probability
p ∈ (0, 1) of landing heads. This can be done by employing von Neumann’s trick: we flip c

two times, if the outcomes are identical, we select the first sample as our sample, otherwise,
we repeat the process. This procedure can be encode as the following program.

fun flip_biased_coin () {
flip p

}

fun simulate_fair_coin (coin : bool) : (bool , bool) {
snd (coin , coin ⊙ flip_biased_coin ())

}

iterate ( simulate_fair_coin , flip_biased_coin (), k)

While it is clear from the repeated runs of the above program that we converge to the expected
value of Bernoulli( 1

2 ), the number of nodes in its BDD representation grows linearly with
the number of iterations k.

▶ Remark 12 (On normalisation). In general, the semantics of a term t might be a substochastic
map. Nevertheless, eventually, the user would like to recover the normalised probability
distribution encoded by a given program. While this is an expensive operation in general,
the Dice compiler keeps track of an auxiliary formula, which encodes the paths through
the compiled BDD allowed by the observe statements. This formula can be used to recover
the normalisation constant and normalise JtK efficiently before computing Jiterate tK or
iterate0 t from u. In other words, we always normalise before iterating. The Cesàro sum of
a stochastic map is a stochastic map, so Jiterate tK will also be normalised. However, this
is not always the case for iterate0 t from u: for example, if the the guard in t : τ → B × τ

is always true, the semantics of the resulting iteration is uniformly zero. Note that this
subprobability distribution cannot be normalised and interpreted as a genuine probability
distribution. As we saw, this distribution is the bottom for the order over subprobability
distributions and a program whose semantics assigns zero weights to all outcomes is better
thought of as having an undefined value.

A.2 Least Fixpoint Iterator
Proof of Proposition 9. Let us call M∗ the least fixpoint of φ over the poset of substochastic
maps. By definition, it satisfies M∗(I −A) = B and M∗ ≥ 0. Furthermore, if M is any other
nonnegative fixpoint of φ, we have M∗ ≤ X, so that CTM∗ ≤ CTM . Indeed, this holds for
any pair of vectors, since C has all positive entries. Thus, M∗ is indeed the solution to the
linear program given in the statement. ◀

▶ Remark 13. Whenever the spectral radius of B, the transition kernel of a Markov chain
representing some program t : τ → τ , is strictly bellow 1, there is a simpler method to
compute the least fixpoint of φ than the outlined in Section 5. First, recall from 5 that

∨
n≥0

φn(0) = lim
n→∞

n∑
k=0

A ◦Bk



M. Torres-Ruiz, R. Piedeleu, A. Silva, and F. Zanasi 20:21

And that for T an operator Rn → Rn, its Neumann series I+T +T 2 + . . . converges if and
only if ρ(T ) < 1 [25]. Moreover, in this case, (I − T ) is invertible and

∑∞
n=0 T

n = (I − T )−1.
Indeed, if (I−T ) was not invertible, there would be u ∈ Rn different from 0 such that Tu = u

and hence, ρ(T ) ≥ 1 since 1 would necessarily be an eigenvalue of T .

Therefore, when Ker(I −B) = {0}, we have A(I−B)−1 = A lim
n→∞

n∑
k=0

Bk = lim
n→∞

n∑
k=0

ABk,

by continuity of matrix multiplication. We see that, in this case, A(I − B)−1 is the least
fixpoint of φ. Note that whenever Ker(I −B) is not trivial, the series

∑∞
n=0 B

n diverges and
this approach fails.
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1 Introduction

As the number of proof systems grow, it becomes increasingly important to understand the
relationship between their logics and to which extent they can be expressed in a unified
setting. The research project centered around the logical framework Dedukti [7, 16] has
precisely the intent of providing such a setting. By allowing for the encoding of popular
logics such as predicate logic [16], higher-order logic [32, 16], set theory [17] and pure type
systems [18, 22], it provides a common framework in which proofs coming from different
proof systems can be rechecked, increasing the trust in their correctness. Moreover, Dedukti
can then also be used for sharing these proofs with other systems, which has already allowed
for exporting results to tools like Coq [15, 44], Agda [24] and HOL [44, 29].

The correctness of the verification provided by Dedukti relies however on methatheoretic
results stating that the theorems that can be proven by a Dedukti encoding are exactly
the same ones of the encoded logic. In the particular case of the cumulative calculus
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21:2 Impredicativity, Cumulativity and Product Covariance in Dedukti

Table 1 Comparison with previous encodings.

Assaf˚ [5] Assaf et al. [8] Thiré˚ [45] Férey` [26] This work
Confluence ✗ ✓; ✗ ✗ ✓

Soundness ✗: ✗: ✗: ✓ ✓

Conservativity ✗ ✗ ✗ ✗ ✓‹

:: The translation function is ill-defined (see the discussion in Section 9).
;: Requires matching modulo ACU. ‹: Only in a restricted form.
˚: Also handles other cumulative type systems. `: Also supports universe polymorphism.

of constructions, a type theory combining impredicativity and cumulativity with product
covariance, giving an encoding satisfying these properties has remained to this day a challenge.
This issue is made especially relevant by the fact that this theory is quite popular, and is
most notably implemented by the proof assistant Coq.

The current situation regarding encodings of this theory is summarised in Table 1. All
encodings presented until now came with a proof of soundness, meaning that all facts that
can be proven by the encoded logic can also be proven in the encoding. However, the proofs
provided by Assaf, Assaf et al. and Thiré have turned out to be incorrect, as they rely on
ill-defined translation functions – see Section 9 for a detailed explanation. The situation is
even more serious regarding conservativity, the property dual to soundness and which ensures
that the encoding cannot prove more theorems than the encoded system. Indeed, none of
the previous proposals have provided a proof of this fact, which is nevertheless essential to
ensure that a proof checked by Dedukti is indeed correct in the original system.

One of the challenges in proving conservativity is that all known proof methods rely on
confluence – which is moreover also essential to establish subject reduction. However, the
combination of impredicativity, cumulativity and product covariance has proven difficult to
be expressed in a confluent way in Dedukti. Indeed, almost all previous encodings have not
succeeded in proving this property. A notable exception is the impressive work of Assaf et
al. [8], which however relies on matching modulo ACU (assocativity-cumutativity with unit)
a form of matching that is much less efficient and harder to implement than pure syntactical
matching. For instance, the addition of ACU matching to the DkCheck implementation
doubled the size of the kernel [20] (see also the discussion by Blanqui [14]).

In this work we address this unsatisfying state of affairs by giving an encoding of the
cumulative calculus of constructions, featuring cumulativity with product covariance, that
we show to satisfy the necessary metaproperties to be used in practice.

Contrary to the previous proposals, our encoding does not require non-left-linear rewrite
rules, which not only are less efficient but also make confluence proofs much harder [33].
Our proof of confluence then relies on a sophisticated combination of classical results and
techniques [36, 47], and automated checkers developed by the rewriting community [30, 28, 38].

With the confluence of our encoding in hand, we proceed to show soundness. In order
to fix the problem with the translation function made in previous attempts, we contribute
an adaptation of the technique of Winterhalter et al. [48] and Oury [39] in which the well-
typedness of the translation is stated and proved in terms of an inverse translation function.
The direct translation function can then be extracted from our constructive proof of soundness.

We finish by showing that our encoding satisfies a restricted form of conservativity, namely
only for so-called object terms. We argue that, in the encoding, these are the only terms that
one writes in practice, and therefore this restricted result is sufficient.
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EmptyCtx

¨ $

ExtCtx
Γ $ A : Type

Γ, x : A $
x : A P Γ

Var
Γ $

Γ $ x : A
c : A P Σ

Cons
Γ $

Γ $ c : A

Sort
Γ $

Γ $ Type : Kind
A ” B

Conv
Γ $ t : A Γ $ B : s

Γ $ t : B

Pi
Γ $ A : Type Γ, x : A $ B : s

Γ $ px : Aq Ñ B : s

Abs
Γ $ A : Type Γ, x : A $ B : s Γ, x : A $ t : B

Γ $ λx : A.t : px : Aq Ñ B

App
Γ $ t : px : Aq Ñ B Γ $ u : A

Γ $ t u : Bru{xs

Figure 1 Typing rules of Dedukti.

Outline of the paper

We start in Sections 2 and 3 by recalling the definitions of Dedukti and of the variant of
the calculus of constructions we consider. We then proceed in Section 4 to present the theory
used in our encoding, and in Section 5 by proving its desirable properties – in particular its
confluence. We define the translation function we use in Section 6, and in Sections 7 and 8
we establish the soundness and conservativity of our encoding respectively. We finish by
discussing related work in Section 9, before concluding in Section 10.

2 Dedukti

We assume an underlying set c, d, ... P C of constants, x, y, z... P V of variables and
A, B, t, u, ... P M of metavariables equipped with an arity (a natural number). The metaterms
of Dedukti [26] are defined by the following grammar.

Λ̂dk Q t, u, A, B, ... ::“ x | c | Type | Kind | px : Aq Ñ B | λx : A.t | t u | ttt1, ..., tarityptqu

A metavariable application is written ttt1, ..., tku when arityptq “ k, or just t when
arityptq “ 0. The metaterms Type and Kind are called sorts and referred to by the letter s.
We write px : Aq Ñ B for the dependent function type, and whenever x does not appear free
in B we write A Ñ B instead. We define fvptq as the set of free variables of t and mvptq as
the set of metavariables of t. When no ambiguity can arise, we allow ourselves to also write
t, u, A, B for variables. We adopt the convention of writing constants names in blue font.

A substitution θ is a finite set of pairs t{x or px1..xk.tq{t, where k “ arityptq. We write trθs

for the application of a substitution θ to a metaterm t. The main cases of its definition are
xrθs “ t when t{x P θ, and ttu1, ..., ukurθs “ tru1rθs{x1, ..., ukrθs{xks when px1..xk.tq{t P θ –
see for instance Férey [26] for the complete definition. A rewrite system R is a set of rewrite
rules, which are pairs of the form t ÞÝÑ u where t is of the form c t1...tk and fvptq “ fvpuq “ H

and mvpuq Ď mvptq and all occurrences of metavariables in t are of the form ttx1, ..., xku

with x1...xk pairwise disjoint (known as the pattern condition [37]). When convenient, a rule
can be given a name α, in which case we write t

α
ÞÝÑ u.

We write ÝÑR for the closure under context and substitution of R, and ÝÑβR for
ÝÑβ Y ÝÑR where ÝÑβ is the usual β-reduction. Note that all these rewrite relations are
defined over untyped metaterms, and that we do not consider η-reduction or -expansion,
as they behave badly in the context of rewriting. We then write ÝÑ˚

βR for the reflexive-
transitive closure of ÝÑβR, and ”βR for its reflexive-symmetric-transitive closure, usually
called conversion or definitional equality. Most of the time R is clear from the context,
allowing us to write just ÝÑ for ÝÑβR and ” for ”βR.
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Sub
n ď m

n Ď m

Eq
A ” B

A Ď B

Trans
A Ď B B Ď C

A Ď C

ProdCov
A Ď B

Πx : C.A Ď Πx : C.B

EmptyCtx

¨ $CC

ExtCtx
Γ $CC Γ $CC A : n

Γ, x : A $CC

px : Aq P Γ

Var
Γ $CC

Γ $CC x : A

Sort
Γ $CC

Γ $CC n : Apnq

Pi
Γ $CC A : n Γ, x : A $CC B : m

Γ $CC Πx : A.B : Rpn, mq

Lam
Γ $CC A : n Γ, x : A $CC t : B

Γ $CC λx : A.t : Πx : A.B

App
Γ $CC t : Πx : A.B Γ $CC u : A

Γ $CC t u : Bru{xs
A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B

Figure 2 Typing rules for CC.

Metavariables are useful in order to define the notion of rewrite rules, but apart from
this they will have no use for us, and in particular typing will only be defined for metaterms
without metavariables. Because of this, we define the set of Dedukti terms Λdk as the
metaterms t satisfying mvptq “ H. Given that terms will be the main object of study, from
now on we adopt the convention that the letters t, u, A, B, ... refer to terms, unless it is
explicitly said that they refer to metaterms.

A context Γ is a finite sequence of entries of the form x : A. A signature Σ is a (possibly
infinite) sequence of entries of the form c : A. One central notion in Dedukti is that of
theory, which is a pair T “ pΣT, RTq where ΣT is a signature and all constants appearing in
RT are declared in ΣT. Theories are used in Dedukti to define the object logics in which
we work (for instance, predicate logic). Given a theory T, the typing rules of Dedukti are
given in Figure 1, where the signature Σ and the conversion relation ” are the ones defined
by the theory T. Whenever T is not clear from the context, we write T Ż Γ $ t : A.

A signature entry c : A is valid in T when T Ż ¨ $ A : s for some sort s. A theory T is
said to be well typed when each entry c : A P ΣT is valid in pΣ1, R1q, where Σ1 is the prefix of
ΣT preceding c : A, and R1 is the restriction of RT to rules only containing constants in Σ1.

3 The Cumulative Calculus of Constructions with Product Covariance

We recall the definition of the cumulative calculus of constructions with product covariance [35,
31]. It can be seen as the underlying cumulative type system [34, 10] of the Coq proof
assistant [42], omitting the sorts Set and SProp. Its syntax is given by the following grammar.

ΛCC Q t, u, A, B ::“ x | n | Πx : A.B | λx : A.t | t u

Here we have made the choice of representing universes directly by a natural number n.
The universe that is commonly referred to as Prop then corresponds to 0, whereas Typen

corresponds to n ` 1, allowing us to manipulate them in a more uniform way. The typing
rules are then given in Figure 2, and are parametrized by the following axiom and rule
functions, as they are known in the pure type system literature [27, Definition 4.3.2].
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A : N Ñ N R : Nˆ N Ñ N
Ap0q :“ 2 Rpn, 0q :“ 0
Ap1 ` nq :“ 2 ` n Rpn, 1 ` mq :“ maxtn, 1 ` mu

▶ Remark 1. We choose to follow the implementation of Coq in placing 0 (Prop) in the
universe 2 (Type1). Some presentations choose instead to place it in 1 (Type0) [35], a technical
change that would have no impact in the strategy developed in this paper.

Compared with type systems that do not feature cumulativity, the conversion rule for CC
does not only allow to exchange two types A and B when they are convertible, but also to
coerce a term from type A to B when the former is a subtype of the latter. This subtyping
relation, written A Ď B, is defined in the base case as A Ď B when A ” B, or n Ď m when
n ď m. The second rule allows us for instance to coerce a type Γ $ A : 0 to Γ $ A : 1. Then,
what one calls product covariance is the rule allowing to deduce Πx : C.A Ď Πx : C.B from
A Ď B, which lets us for instance to coerce a function Γ $CC f : Nat Ñ 0 to Γ $CC f : Nat Ñ 1.

4 Introducing the theory TCC

We now introduce the Dedukti theory TCC we will use in our encoding. We build it
incrementally in order to motivate as best as possible the choices we have made.

Our first step is declaring a type S along with constants 0 and S for zero and successor,
allowing us to represent the CC sort n by the Dedukti term Sn 0 – which from now on we
write as n. We then define many auxiliary constants that will be useful later, such as addition
` , truncated predecessor P, and also constants A and R to represent the functions A and
R from the definition of CC. We declare the associated rewrite rules so that they have the
expected computational behavior, such as n`m ÝÑ˚ n ` m, n_m ÝÑ˚ maxtn, mu, etc.

S : Type
0 : S
S : S Ñ S

A : S Ñ S

A 0 ÞÝÑ S pS 0q
A pS lq ÞÝÑ S pS lq

P : S Ñ S

P 0 ÞÝÑ 0
P pS lq ÞÝÑ l

´ : S Ñ S Ñ S pinfixq
l1 ´ 0 ÞÝÑ l1

l1 ´pS l2q ÞÝÑ pP l1q´ l2

` : S Ñ S Ñ S pinfixq
0`l2 ÞÝÑ l2

l1`0 ÞÝÑ l1

pS l1q`l2 ÞÝÑ S pl1`l2q

l1`pS l2q ÞÝÑ S pl1`l2q

_ : S Ñ S Ñ S pinfixq
0_ l2 ÞÝÑ l2

l1 _ 0 ÞÝÑ l1

pS l1q_ pS l2q ÞÝÑ S pl1 _ l2q

R : S Ñ S Ñ S

R l1 0 ÞÝÑ 0
R l1 pS l2q ÞÝÑ l1 _pS l2q

Using S we can then encode the universes of CC. This is done by declaring a constant U,
such that the inhabitants of Un can then be thought of as codes for the types of CC in n.
The decoding function El then maps each such code to the Dedukti type of its elements.

U : pl : Sq Ñ Type pwritten Ulq El : pl : Sq Ñ Ul Ñ Type pwritten Ellq

Next we add constants to represent the codes inhabiting such universes. Because in CC
each universe n inhabits Apnq, we add a constant u mapping each l : S to its code in UpA lq.
An associated rewrite rule then ensures that ul decodes to the type Ul as expected.
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21:6 Impredicativity, Cumulativity and Product Covariance in Dedukti

u : pl : Sq Ñ UpA lq pwritten ulq Elp_q ul
Elu
ÞÝÑ Ul

A similar story happens for the function type: we add a constant π mapping a code
a : Ula and a family of codes b : Ella a Ñ Ulb

to a code in UpR la lbq, so that if a represents
A and b represents B, then the result represents the CC type Πx : A.B. However, for reasons
that will become clear later, our constant also allows us to decompose the sorts la and lb
into a common factor l0 to which we apply offsets l1 and l2. In order to equate different
decompositions of la and lb, we also add a rewrite rule which removes two successors of l1
and l2 and compensates it by adding one in l0. Finally, we add a rewrite rule defining the
elements of πl0

l1,l2
a λx.b as the Dedukti functions from the elements of a to the ones of b.

π : pl0 l1 l2 : Sq Ñ pA : Upl0 ` l1qq

Ñ pB : Elpl0 ` l1q A Ñ Upl0 ` l2qq Ñ UpR pl0 ` l1q pl0 ` l2qq pwritten πl0
l1,l2

q

πl0
pS l1q,pS l2q

A B
πS
ÞÝÑ π

pS l0q
l1,l2

A B

Elp_q pπl0
l1,l2 A λx : C.Btxuq

Elπ
ÞÝÑ px : Elpl0 ` l1q Aq Ñ Elpl0 ` l2q Btxu

The theory given until this point is a representation of CC without cumulativity, and
straightforwardly applies well-known techniques from previous Dedukti encodings [18, 16].
The interesting part is for the encoding of cumulativity. The main insight of our proposal
comes from the following simple result regarding the relation Ď. In the following, given a
context ∆ “ x1 : B1..xk : Bk, let us write ∆ ñ A for the CC term Πx1 : B1...xk : Bk.A.

▶ Lemma 2 (Case analysis of Ď). If A Ď B then either A ” B or A ÝÑ˚ ∆ ñ n and
B ÝÑ˚ ∆ ñ m for some context ∆ and natural numbers n, m with n ď m.

Therefore, in order to simulate CC’s cumulativity it suffices to add a lift Ò allowing the
coercion of terms from a type ∆ ñ n to ∆ ñ n` 1. However, to be able to state the type of
Ò we first need to have an internal representation for types of the form ∆ ñ n in Dedukti.
We do this by first defining a type for telescopes whose canonical elements are either the
empty telescope ˛, or the extension A l ◀ λx.D of a telescope D with a code A in universe Ul.
We can then define a function ñ that computes a Dedukti type corresponding to ∆ ñ n.

Tele : Type
˛ : Tele
◀ : pl : Sq Ñ pA : Ulq Ñ pEll A Ñ Teleq

Ñ Tele pinfix, written l ◀ q

ñ : Tele Ñ S Ñ Type pinfixq

˛ ñ l1
ñ˛
ÞÝÑ Ul1

pA l2 ◀ λx : _.Dtxuq ñ l1
ñ◀
ÞÝÑ px : Ell2 Aq Ñ Dtxu ñ l1

With these definitions in place we can finally give the definition of Ò.1

Ò : pl : Sq Ñ pD : Teleq Ñ pD ñ lq Ñ pD ñ pS lqq pwritten Òlq

Because in CC the applications of cumulativity are silent, the main challenge in the
encoding is to ensure that different Dedukti representations of the same CC term are
convertible. The pioneering work of Assaf [4] first identified that, in a setting without
product covariance, it suffices to add the following full reflection equations – here and in the
rest of the article we write Ò

m
n D t as a notation for Òm´1 D p...pÒn D tq...q when n ď m.

1 Note that our lift is single-step, in contrast with some previous encodings [5, 45, 26] which employed a
multi-step lift, taking a type A : Ul1 to Ò

l2
l1

˛ t : Ul2 . The avoidance of the multi-step lift is essential in
order to prevent its associated non-left-linear rules, such as Ò

l
l D t ÞÝÑ t.
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π
0
1`n,m pÒn ˛ aq pλx.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx.bqq

π
0
n,1`m a pλx.Òm ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx.bqq

The main difficulty in implementing these as rewrite rules is that the multistep lift Ò
m
n is

just a notation which computes the correct number of lifts Ò to be inserted only for a given
concrete choice of n and m. For instance, if n ą m ą 0 in the second equation then no lifts
should be inserted in the right hand side, whereas if n ą m “ 0 then we must insert n´1 lifts.
Of course, this could be solved by adding these as infinite schemes of rewrite rules, for all
n, m P N, however we want to keep the rewrite system finitary, so it can actually be used in
practice in the implementation.

If only we could have more information about n and m when applying the rule, we would
be able to calculate the correct amount of lifts. Thankfully, because the sorts of a and b can
be decomposed with the rule πS, we know that for any π

n0
n1,n2 a λx.b in normal form we must

have either n1 “ 0 or n2 “ 0. We can then proceed with a disjunction of cases, where in
each situation we have enough information to apply the right number of lifts.

π0
pS lq,0 pÒ_ ˛ Aq B

Ò1
π

ÞÝÑ π0
l,0 A B

π
pS l1q
0,l2

pÒ_ ˛ Aq B
Ò2

π
ÞÝÑ πl1

0,pS l2q
A B

π
pS l1q
pS l2q,0 pÒ_ ˛ Aq B

Ò3
π

ÞÝÑ ÒpS pl1 ` l2qq ˛ pπ
pS l1q
l2,0 A Bq

ò : pl : Sq Ñ pA : U0q Ñ Ul pwritten òlq

ò0 A ÞÝÑ A

òpS lq A ÞÝÑ Òl ˛ pòl Aq

π
pS pS l1qq
l2,0 A pλx : C.Ò_ ˛ Btxuq

Ò4
π

ÞÝÑ π
pS l1q
pS l2q,0 A pλx : C.Btxuq

πl1
0,pS l2q

A pλx : C.Ò_ ˛ Btxuq
Ò5

π
ÞÝÑ Òpl1 ` l2q ˛ pπl1

0,l2 A pλx : C.Btxuqq

π
pS 0q
l,0 A pλx : C.Ò_ ˛ Btxuq

Ò6
π

ÞÝÑ òpS lq pπ0
pS lq,0 A pλx : C.Btxuqq

Note that in order to state the last rule we also define an auxiliary constant ò which
given a sort l, lifts a type from U0 to Ul. The following proposition then ensures that we
have correctly implemented Assaf’s full reflection equations.

▶ Proposition 3 (Simulation of Assaf’s full reflection rules). We have the following conversions.

π
0
1`n,m pÒl ˛ aq pλx : C.bq ” Ò

Rp1`n,mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (1)

π
0
n,1`m a pλx : C.Òl ˛ bq ” Ò

Rpn,1`mq

Rpn,mq
˛ pπ

0
n,m a pλx : C.bqq (2)

Proof. By a disjunction of cases in which each case corresponds to one of the rules Òi
π. ◀

▶ Remark 4. We note that the rules Òi
π are also very similar to the ones identified by Assaf et

al. [8]. However they also differ in a crucial way by avoiding the use of non-left-linearity and
matching modulo ACU, which are less efficient and render confluence proofs much harder.

The rules given until now would ensure the uniqueness of codes for a version of CC with
“simple” cumulativity. However, in a setting with product covariance we also need to ensure
that Ò properly commutes with abstraction and application. We therefore add the following
two rules, which are variants of similar equations first identified by Thiré [45] and Férey [26].
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Òl p_ p_q ◀ λx : _.Dtxuq λx : A.ttxu
Òλ
ÞÝÑ λx : A.Òl Dtxu ttxu

Òl p_ p_q ◀ λx : _.Dtxuq t u
Ò@
ÞÝÑ Òl Dtuu pt uq

We now have almost finished presenting the theory TCC. The final step is adding the
following rule explaining the relationship between the elements of Òl ˛ A and the ones of A,
which as expected should be the same. Here we have purposely avoided the expected rule
ElpS lq pÒp_q ˛ Aq ÞÝÑ Ell A used in some previous proposals [5, 45]. This subtle difference is
essential in order to allow the critical pairs between Òi

π and Elπ to close. We add a similar
rule for ò, but once again we annotate El with l2 ´ l1 instead of 0 in order to ensure that
critical pairs all close. Finally, we need a last rule similar to ÒEl ensuring the uniqueness of
telescope representations, which will be key when proving the injectivity of ñ.

Ell pÒ_ ˛ Aq
ÒEl
ÞÝÑ ElpP lq A Ell2 pòl1 Aq

òEl
ÞÝÑ Elpl2 ´ l1q A pÒ_ ˛ Aq l ◀ D

Ò◀
ÞÝÑ A pP lq ◀ D

5 Basic properties of TCC

With the definition of the theory TCC in place, we now show that it satisfies the basic properties
one expects, which will be essential for proving soundness and conservativity later. The first
of them is the fact the the theory TCC is well-typed, in the sense defined in Section 2.

▶ Proposition 5 (Well-typedness of TCC). The theory TCC is well typed.

Proof. Checked automatically with Lambdapi – see the artifact [19] for more details. ◀

5.1 Confluence
Unlike all previous proposals, our theory TCC only makes use of left-linear rules. By preventing
the use of non-left-linearity, which interacts very badly with higher-order rewriting, we have
made a first step for proving confluence. Yet, confluence still does not come for free. In
order to show it, we split βRCC into subsystems βR1 and R2, allowing us to apply different
techniques for showing their confluence. Note that the union βR1 Y R2 is not disjoint: the
rule ÒEl, needed for closing critical pairs in both subsystems, is shared between them.

R1 :“ tÒ@, Òλ, Ò◀,ñ˛,ñ◀, ÒElu R2 :“ RCCztÒ@, Òλ, Ò◀,ñ˛,ñ◀u

Confluence of βR1

The hardest part of our proof is showing the confluence of βR1, for two main reasons. First,
even though all critical pairs of βR1 close (as shown in Figure 3), because the β rule is
non-normalizing on untyped terms, we cannot apply Newman’s Lemma to reduce proving
confluence to local confluence. Second, because the critical pairs are neither trivial [47]
nor development closed [46], we cannot apply the classical criteria that avoid the use of
termination. Thankfully, it turns out that we can still employ the well-known technique
of showing that orthogonal rewriting with βR1 satisfies the diamond property, from which
confluence of βR1 will follow as a simple corollary.

Given a rewrite system R, the orthogonal rewriting relation ùñβR [21, 26] (also known
as developments or multi-step reduction [11]) is defined over metaterms by the following
inference rules, where we write θ ùñ θ1 as an abbreviation for dompθq “ dompθ1q and for all
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Òl p_ p_q ◀ λx : C.Dtxuq pλx : A.ttxuq u Òl Dtuu ppλx : A.ttxuq uq

pλx : A.Òl Dtxu ttxuq u Òl Dtuu ttuu

β

β

Òλ

Ò@

Òl ppÒp_q ˛ Bq l1 ◀ λx : C.Dtxuq pλx : A.ttxuq λx : A.Òl Dtxu ttxu

Òl pB pP l1q ◀ λx : C.Dtxuq pλx : A.ttxuq

Òλ
Ò◀

Òλ

Òl ppÒp_q ˛ Bq l1 ◀ λx : C.Dtxuq t u Òl Dtuu pt uq

Òl pB pP l1q ◀ λx : C.Dtxuq t u

Ò@
Ò◀

Ò@

ppÒl2 ˛ Aq l1 ◀ λx : C.Dtxuq ñ l px : Ell1 pÒl2 ˛ Aqq Ñ Dtxu ñ l

pA pP l1q ◀ λx : C.Dtxuq ñ l px : ElpP l1q Aq Ñ Dtxu ñ l
ñ◀

ÒElÒ◀

ñ◀

Figure 3 Critical pairs of βR1.

x⃗.t{t P θ and x⃗.t1{t P θ1 we have t ùñ t1.

Var

x ùñ x

Const

c ùñ c

Sort

s ùñ s

Meta
ti ùñ t1i for all i

ttt1..tku ùñ ttt11..t1ku

App
t ùñ t1 u ùñ u1

t u ùñ t1 u1

Abs
A ùñ A1 t ùñ t1

λx : A.t ùñ λx : A1.t1

Fun
A ùñ A1 B ùñ B1

px : Aq Ñ B ùñ px : A1q ùñ B1

l ÞÝÑ r P R
mvplq “ dompθq

RedR

θ ùñ θ1

lrθs ùñ rrθ1s

Redβ

t ùñ t1 u ùñ u1

pλx : A.tq u ùñ t1ru1{xs

For all R, orthogonal rewriting satisfies the following well-known properties – see for
instance [11].

▶ Proposition 6. We have ÝÑβRĎùñβRĎÝÑ˚
βR, hence ÝÑ˚

βR and ùñ˚
βR are equal.

▶ Proposition 7. If t ùñβR t1 and θ ùñβR θ1 then trθs ùñβR t1rθ1s.

▶ Proposition 8. We have t ùñβR t for all t.

Using these properties, we can now show the following:

▶ Proposition 9. ùñβR1 satisfies the diamond property.

Proof. Given t, u, v with u ðù t ùñ v we show that there is w with u ùñ w ðù v. The
proof is by induction on t ùñ u and t ùñ v. The only interesting case is when t ùñ u (or
dually, t ùñ v) is derived with rules RedR or Redβ . The case Redβ follows by the same
argument as in the proof of confluence for the λ-calculus [9, Lemma 3.2.6], so let us now
consider the case RedR, in which we have t “ lrθs for some l ÞÝÑ r P R1 and u “ rrθ1s with
θ ùñ θ1. There are then three possibilities regarding t ùñ v.
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If all applications of RedR or Redβ in t ùñ v occur inside the substitution θ, then
because l is linear we have v “ lrθ2s with θ ùñ θ2. By i.h. we have θ1 ùñ θ3 ðù θ2 for
some θ3, and thus u “ rrθ1s ùñ rrθ3s ðù lrθ2s “ v using Propositions 7 and 8.
If t ùñ v starts with an application of RedR using the same rule as the one applied in
t ùñ u, then we have v “ rrθ2s with θ ùñ θ2. By i.h. we have θ1 ùñ θ3 ðù θ2 for some
θ3, and thus u “ rrθ1s ùñ rrθ3s ðù rrθ2s “ v using Propositions 7 and 8.
If in t ùñ v there is at least one application of RedR with a rule l1 ÞÝÑ r1 destroying the
redex t “ lrθs (note that this is impossible with Redβ), we consider all such possible cases.
In our case, this turns out to correspond exactly to the critical pairs2 in Figure 3. We
can then conclude each of these cases by appealing to the i.h. and Proposition 7 to close
the diagrams. The following diagram illustrates this for when t ùñ u is derived with Ò@
and t ùñ v destroys its redex with Òλ. In the middle square, X stands for C, D, A, t, u.

Òl p_ p_q ◀ λx : C.Dq pλx : A.tq u Òl1 D1ru1{xs ppλx : A1.t1q u1q

X X 1

i.h.

X2 X3

pλx : A2.Òl2 D2 t2q u2 Òl3 D3ru3{xs t3ru3{xs ◀

Combining Proposition 9 with Proposition 6, we immediately get the following corollary.

▶ Corollary 10. βR1 is confluent.

▶ Remark 11. Alternatively, one can show the confluence of βR1 by applying a recent
criterion by Dowek, Férey, Jouannaud and Liu [21, Theorem 38]. However, the proof we
give is more elementary as it relies neither on orthogonal critical pairs nor on decreasing
diagrams, and therefore we believe that it is accessible to a wider audience.

Confluence of R2

We now move to the proof of confluence of R2, which relies on termination.

▶ Lemma 12. R2 is strongly normalizing.

Proof. We translate from R2 into the first-order rewrite system R̂2 obtained by forgetting
about binders: λx : A.t is translated into λ̂ A1 t1 and Πx : A.B is translated into Π̂ A1 B1,
where A1, B1, t1 are the translations of A, B, t. For instance, the rule Ò4

π is translated into
the rule π

pS pS l1qq
l2,0 A pλ̂ C pÒ_ ˛ Bqq ÞÝÑ π

pS l1q

pS l2q,0 A pλ̂ C Bq. We can easily show that this
interpretation preserves reduction sequences, therefore we reduce SN of R2 to the one of R̂2.
The latter can be shown with the use of the first-order termination checker AProVE [1, 28], and
the proof can be verified by the formally certified tool CeTA [2, 43] – see the artifact [19]. ◀

▶ Proposition 13. R2 is confluent.

Proof. We use the tools CSIho [3, 38] and SOL [30] to verify that all critical pairs of R2 are
joinable – see the artifact [19] for details – so by Mayr and Nipkow’s critical pair criterion [36,
Theorem 4.7] we conclude that R2 is locally confluent.3 Together with Lemma 12, this gives
the confluence of R2 by applying Newman’s Lemma. ◀

2 Although, for arbitrary R, it is not true in general that all such situations arise from simple critical
pairs, and one needs instead to consider the more general notion of orthogonal critical pairs [21].

3 Note that, although Mayr and Nipkow’s criterion was shown for the specific rewrite formalism of Higher-
order Rewrite Systems (HRSs), following Saillard [40, Definition 5.2] we can encode the formalism of
Dedukti as a specific HRS, allowing us to use their result in our setting. Alternatively, we refer to
Férey’s PhD thesis [26], which revisits classic confluence criteria in the rewrite formalism of Dedukti.
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Confluence of βRCC

Putting everything together, we obtain the confluence of βRCC.

▶ Theorem 14. βRCC is confluent.

Proof. By Corollary 10 and Proposition 13 we have the confluence of βR1 and R2, and
moreover the rewrite systems are left-linear and there are no critical pairs between them.
Therefore, we conclude the confluence of their union by applying van Oostrom and van
Raamsdonk’s orthogonal combinations criterion [47, Theorem 3.13].4 ◀

We obtain the following useful corollary, which we implicitly use in the rest of the article.

▶ Corollary 15 (Injectivity of undefined symbols). If c is a constant that does not appear in
the head of a rewrite rule, then c t1...tk ” c u1...uk implies ti ” ui for i “ 1..k.

5.2 Subject reduction
We start with subject reduction for β. Because we have already shown confluence of βRCC,
we obtain directly the injectivity of function types: if px : Aq Ñ B ” px : A1q Ñ B1 then
A ” A1 and B ” B1. This is sufficient in order to ensure that β satisfies subject reduction.

▶ Proposition 16 (SRβ). If Γ $ t : A and t ÝÑβ t1 then Γ $ t1 : A.

Proof. Follows from the injectivity of function types [12, Lemma 31]. ◀

Moving to subject reduction for RCC, the first point we realize is that this property does
not hold unconditionally. For instance, the rule

π
pS l1q
0,l2

pÒ_ ˛ Aq B ÞÝÑ πl1
0,pS l2q

A B

only preserves typing if S pl1rθs_ pl1rθs`l2rθsqq ” l1rθs_S pl1rθs`l2rθsq, yet both sides
are already in normal form. We could try to make the two sides convertible by adding a
rewrite rule, however this rule would not be left-linear and thus make proving confluence
much harder. Nevertheless, the fact that these terms are not convertible is actually not a
problem because whenever l1 and l2 are substituted by terms of the form n for some n P N
then we see that the equation holds. Starting from this insight, we now show that subject
reduction holds in a restricted form, which turns out to be sufficient for our needs.

We say that a term is guarded when all occurrences of ò are of the form òn and all
occurrences of π are of the form π

n0
n1,n2 for some n, n0, n1, n2 P N. The set of guarded terms

satisfies the following basic stability properties.

▶ Proposition 17 (Stability of guarded terms under substitution and reduction).
1. If t, u are guarded then tru{xs is guarded.
2. If t is guarded and t ÝÑ t1 then t1 is guarded.

We can now show that RCC satisfies subject reduction for guarded terms.

▶ Proposition 18 (SRRCC). If t is guarded and Γ $ t : A and t ÝÑRCC t1 then Γ $ t1 : A.

4 The same observation as in Footnote 3 applies here.
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Proof. We use Lambdapi to automatically verify that the rules preserve typing (the cor-
rectness of this verification relies on the confluence of the rewrite system [41, 13], which we
have by Theorem 14). The verification succeeds for all rules l ÞÝÑ r P RCC, except for those
which do not preserve typing unconditionally. For these cases, Lambdapi reports conversion
constraints on the substitution θ under which Γ $ lrθs : A implies Γ $ rrθs : A.

1. Case òEl. Preserves typing if l2rθs´ l2rθs ” 0. But by inversion of typing of the left-hand
side we also get l1rθs ” l2rθs, so the rule preserves typing whenever l1rθs´ l1rθs ” 0.

2. Case Ò2
π. Preserves typing if S pl1rθs_ pl1rθs`l2rθsqq ” l1rθs_S pl1rθs`l2rθsq.

3. Case Ò3
π. Preserves typing if pl1rθs`l2rθsq_ l1rθs ” l1rθs`l2rθs and

S pl1rθs`l2rθsq_ l1rθs ” S pl1rθs`l2rθsq.
4. Case Ò4

π. Preserves typing if S pl1rθs`l2rθsq_ l1rθs ” S ppl1rθs`l2rθsq_ l1rθsq.
5. Case Ò5

π. Preserves typing if l1rθs_S pl1rθs`l2rθsq ” S pl1rθs`l2rθsq and
R l1rθs pl1rθs`l2rθsq ” l1rθs`l2rθs.

Because t is guarded, it follows that l1rθs is a concrete sort in case 1, and both l1rθs

and l2rθs are concrete sorts in the other cases, so the result follows from the fact that these
equations all hold for natural numbers. ◀

▶ Corollary 19 (SRβRCC). If t is guarded and Γ $ t : A and t ÝÑ˚ t1 then Γ $ t1 : A.

▶ Remark 20. Corollary 19 guarantees that the usual type inference algorithm for Dedukti [41]
is sound when Γ and t are guarded. Indeed, by inspection on its definition, if the inputs Γ
and t are guarded then only guarded terms are ever reduced.

6 The translation function

Defining a Dedukti encoding usually requires specifying a translation function from the
syntax of the source system to the one of the framework. However, whereas cumulativity
is implicit in CC, in Dedukti it is made explicit by the use of a lift (Ò). Therefore, when
translating a CC term, the translation function needs to figure out when to insert such lifts,
even though the initial term contains no information about cumulativity. To handle this, a
first idea could be to define this function only for well-typed CC terms and use typing to
retrieve the missing information. However, it is not clear how to define such a function in a
unique and well-founded way – see Section 9 for a detailed discussion on why.

To solve this problem, we adapt the approach of Winterhalter et al. [48] of relying instead
on an inverse translation function | ´ |, defined from a subset of the syntax of the framework
to the syntax of CC. Because the syntax of Dedukti is more explicit than the one of CC,
this function can be straightforwardly defined by structural induction. Then, we can use it
to state and prove soundness and conservativity. Finally, the direct translation function can
then be recovered as the underlying algorithm of our constructive proof of soundness.

We start by carving out a subset of Dedukti’s syntax over which we define | ´ |. These
are the object terms and object contexts, defined by the following grammars, and where n, m

ranges over natural numbers and G ranges over arbitrary guarded terms.

Λo Q t, u, A, B ::“ x | λx : Eln A.t | un | π
0
n,m A λx : G.B | Òn G t | t u

Ctxo Q Γ ::“ ¨ | Γ, x : Eln A
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The inverse translation function can then be defined by structural induction over object
terms and contexts, by the following clauses.

| ´ | : Λo Ñ ΛCC } ´ } : Ctxo Ñ CtxCC

|x| :“ x } ¨ } :“ ¨

|un| :“ n }Γ, x : Eln A} :“ }Γ}, x : |A|

|λx : Eln A.t| :“ λx : |A|.|t|

|π
0
n,m A pλx : G.Bq| :“ Πx : |A|.|B|

|Òn G t| :“ |t|

|t u| :“ |t| |u| pt u not of previous formsq

Crucially, object terms are all guarded, ensuring that whenever they are well typed then
their reducts also are. In addition, object terms are stable under substitution, which moreover
commutes with | ´ |, two basic properties that will be essential to our proofs.

▶ Proposition 21 (Basic properties of Λo and | ´ |).
1. If t P Λo then t is guarded.
2. If t, u P Λo then tru{xs P Λo and |t|r|u|{xs “ |tru{xs|.

7 Soundness

Our proof of soundness requires multiple intermediate steps. We start by showing the
injectivity modulo lifting of El (Proposition 23) and the injectivity of ñ (Proposition 24),
two technical results that are then used in the proof of coherence (Theorem 26), ensuring
that any two different Dedukti representations of the same CC term must be convertible.
With coherence in hand, we can then show that the conversion relation of CC can be reflected
by the inverse translation function into the framework (Proposition 28), which then finally
allow us to show the soundness of our encoding (Theorem 31).

7.1 Injectivity
We start with the following generalization of Assaf’s full reflection equations, used in the
proof of the injectivity of El modulo lifting. From now on, let us write pÒ_ Dqk t for
Òl1 D p...pÒlk

D tq...q where the l1, ..., lk can be any terms.

▶ Lemma 22 (Generalized full reflection). For all k1, k2, n1, n2 P N we have

π
0
k1`n1,k2`n2

ppÒ_ ˛qk1 Aq pλx : C.pÒ_ ˛qk2 Bq ” Ò
Rpn1`k1,n2`k2q

Rpn1,n2q
˛ pπ

0
n1,n2 A pλx : C.Bqq

Proof. By induction on k1 ` k2, using Proposition 3. ◀

In the following, we use the greek letter ρ to refer to rewrite sequences t ÝÑ˚ u. Given a
rewrite sequence ρ, we write ℏρ for the first rewrite rule applied in the head in ρ or ℏρ “ K

if no step takes place at the head, and we write #ρ for the total number of rewrite steps
in ρ. For instance, if ρ denotes the sequence

Ell ppλx.Òl1 ˛ xq u0q ÝÑ Ell pÒl1 ˛ u0q ÝÑ ElpP lq u0 ÝÑ U0

then we have #ρ “ 3 and ℏρ “ ÒEl, which is the rule applied in the middle.
We can now show that the constant El is injective modulo the insertion of some lifts.

FSCD 2024



21:14 Impredicativity, Cumulativity and Product Covariance in Dedukti

▶ Proposition 23 (Injectivity of El modulo lifting). If Ell1 A1 ” Ell2 A2, where both sides are
guarded and well typed, then there are natural numbers k1, k2 such that
(1) A1 ” pÒ_ ˛qk1 A0 and A2 ” pÒ_ ˛qk2 A0 for some term A0.
(2) Sk1 l0 ” l1 and Sk2 l0 ” l2 for some term l0.

Proof. Note that, under the hypotheses of the lemma, (1) implies (2), so we proceed to show
that the hypotheses imply (1), however when applying the i.h. we also obtain (2) for free.

By confluence we have Ell1 A1 ÝÑ˚ B ˚ÐÝ Ell2 A2 for some B. Writing ρ1 for
Ell1 A1 ÝÑ˚ B and ρ2 for Ell2 A2 ÝÑ˚ B, we show the result by induction on #ρ1 ` #ρ2,
and by case analysis on ℏρ1 and ℏρ2. If ℏρ1 or ℏρ2 is ÒEl or òEl then the result is easily
discharged using the induction hypothesis. Otherwise, we must have ℏρ1 “ ℏρ2, and the only
possibilities are K or Elu or Elπ. If ℏρ1 “ ℏρ2 “ K then the result is easily shown, and if
ℏρ1 “ ℏρ2 “ Elu then the result follows by using the injectivity of U (which is an undefined
constant). We now illustrate the more intricate case, when ℏρ1 “ ℏρ2 “ Elπ.

For i “ 1, 2 we can decompose ρi as

Elli
Ai ÝÑ

˚ Ell1
i
pπ

mi

na
i

,nb
i

Aa
i λx : Ci.A

b
i q ÝÑ px : Elpmi `na

i
q Aa

i q Ñ Elpmi `nb
i
q Ab

i

ρ1
i

ÝÑ˚ B

where the first arguments of π must be concrete sorts because these are reducts of guarded
terms. In the following, we write δ for either a or b. Then it must be the case that B is of
the form px : Baq Ñ Bb and that we can decompose ρ1

1 and ρ1
2 into ρa

1 , ρb
1, ρa

2 , ρb
2 given by

Elpm1 `nδ
1q

Aδ
1

ρδ
1

ÝÑ˚ Bδ
ρδ

2
˚ÐÝ Elpm2 `nδ

2q
Aδ

2

We have #ρδ
1 ` #ρδ

2 ă #ρ1 ` #ρ2, therefore by i.h. we deduce that for some terms
Aδ

0, lδ
0 and natural numbers kδ

1, kδ
2 we have (a) Aδ

1 ” pÒ_ ˛qkδ
1 Aδ

0 and Aδ
2 ” pÒ_ ˛qkδ

2 Aδ
0, and

moreover also (b) m1`nδ
1 ” Skδ

1 lδ
0 and m2`nδ

2 ” Skδ
2 lδ

0.
Because m1`nδ

1 ÝÑ˚ m1 ` nδ
1, by confluence it follows that lδ

0 also reduces to a concrete
sort pδ P N. We therefore have m1 ` nδ

1 “ kδ
1 ` pδ and m2 ` nδ

2 “ kδ
2 ` pδ. Together with

the equations from (a), this allows us to show the following for i “ 1, 2.

Ai ” π
mi

na
i

,nb
i

Aa
i λx : Ci.A

b
i ” π

0
mi`na

i
,mi`nb

i

Aa
i λx : Ci.A

b
i

” π
0
ka

i
`pa,kb

i
`pb ppÒ_ ˛qka

i Aa
0q pλx : Ci.pÒ_ ˛qkb

i Ab
0q

” Ò
Rppa

`ka
i ,pb

`kb
i q

Rppa,pbq
˛ pπ

0
pa,pb Aa

0 pλx : Ci.A
b
0qq

where the last equation follows from Lemma 22. It suffices now to show that C1 ” C2. To
see this, note that by typing constraints we must have Ci ” Elmi`na

i
Aa

i and thus

Ci ” Elka
i
`pa ppÒ_ ˛qka

i Aa
0q ” ElpaAa

0

where the right-hand side does not depend on i. ◀

The injectivity of El modulo lifting is then used to establish the injectivity of ñ.
▶ Proposition 24 (Injectivity of ñ ). If D1 ñ l1 ” D2 ñ l2 and both sides are well typed
and guarded, then D1 ” D2 and l1 ” l2.
Proof. The strategy is similar to the one employed in Proposition 23. By confluence we have
D1 ñ l1 ÝÑ˚ B ˚ÐÝ D2 ñ l2 for some B. By writing ρi for Di ñ li ÝÑ

˚ B, we show the
result by induction on #ρ1 and case analysis on ℏρ1 (which must be the same as ℏρ2). The
case ℏρ1 “ K is easy, and ℏρ1 “ ñ˛ follows by injectivity of U. Finally, the case ñ◀ follows
by the induction hypotheses, typing constraints and Proposition 23. ◀
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7.2 Coherence
To show coherence, we first need the following technical lemma, allowing to decompose a
telescope D when D ñ l is convertible to a function type.

▶ Lemma 25 (Telescope decomposition). If D ñ l ” px : P q Ñ Q then D ÝÑ˚ A l1 ◀ λx :
C.D1 for some A, l1, C, D1 with P ” Ell1 A and Q ” D1 ñ l.

Proof. By confluence, we have D ñ l ÝÑ˚ B ˚ÐÝ px : P q Ñ Q. We must have B of the
form px : P 1q Ñ Q1 with P 1 ” P and Q1 ” Q, and we can decompose D ñ l ÝÑ˚ B as

D ñ l ÝÑ˚ pA l1 ◀ λx : C.D1q ñ l2 ÝÑ px : Ell1 Aq Ñ D1 ñ l2 ÝÑ˚ px : P 1q Ñ Q1

We thus have D ÝÑ˚ A l1 ◀ λx : C.D1 and Ell1 A ” P 1 ” P and D1 ñ l ” Q1 ” Q. ◀

We now move to the proof of coherence, the central auxiliary result needed for soundness,
ensuring that any two different Dedukti representations of the same CC term must be
convertible. The actual statement of the theorem is however a bit more intricate.

▶ Theorem 26 (Coherence). Let t1, t2 P Λo with Γ $ t1 : A1 and Γ $ t2 : A2. If |t1| “ |t2|

then at least one of the following holds:
(1) t1 ” t2
(2) Γ $ Ò

m
n D t2 : D ñ m and t1 ” Ò

m
n D t2 for some D guarded

(3) Γ $ Ò
m
n D t1 : D ñ m and t2 ” Ò

m
n D t1 for some D guarded

Proof. The proof is by induction on t1 and t2, following the definition of | ´ |.
Case t1 “ Òn D u. By inversion of typing, uniqueness of type and injectivity of function
types, we have Γ $ D : Tele and Γ $ u : D ñ n. By i.h. on u and t2, we have three cases
to consider.

(a) u ” t2. By confluence, u and t2 have a common reduct w. Using subject reduction we
know w has both types D ñ n and A2 so by uniqueness of type, we know D ñ n ” A2
so we can conclude that Γ $ t2 : D ñ n and thus that Γ $ Òn D t2 : D ñ pS nq.
Knowing that t1 ” Òn D t2 by congruence, we conclude.

(b) Γ $ Ò
m1

n1 D1 t2 : D1 ñ m1 and u ” Ò
m1

n1 D1 t2. Similarly to above, we can show
D ñ n ” D1 ñ m1 by confluence, subject reduction and uniqueness of type. By
injectivity of ñ (Proposition 24) we get D ” D1 and n ” m1 which means n “ m1

given that they are concrete. So t1 “ Òn D u ” Òn D pÒ
n
n1 D t2q “ Ò

1`n

n1 D t2 by folding
notations. Finally, we have Γ $ t2 : D1 ñ n1, so by conversion we get Γ $ t2 : D ñ n1

and thus Γ $ Ò
1`n

n1 D t2 : D ñ 1 ` n.

(c) Γ $ Ò
m1

n1 D1 u : D1 ñ m1 and t2 ” Ò
m1

n1 D1 u. This gives us in particular that
Γ $ u : D1 ñ n1 so by uniqueness of type we get D ñ n ” D1 ñ n1 and thus D ” D1

and n “ n1. If m1 “ n then we have t2 ” u so we proceed as in case (a), otherwise
m1 ě 1 ` n so we can conclude with t2 ” Ò

m1

n D u “ Ò
m1

1`n D pÒn D uq “ Ò
m1

1`n D t1

and Γ $ Ò
m1

1`n D t1 : D ñ m1.

The case t2 “ Òn D u follows by the same reasoning, and for the other cases the definition
of | ´ | imposes that t1 and t2 must have the same head structure. Therefore, to conclude we
consider t1 and t2 of the same form. We illustrate the following case:

Case t1 “ u1 v1 and t2 “ u2 v2. By inversion we have Γ $ ui : px : Aiq Ñ Bi and
Γ $ vi : Ai. By the i.h. applied to u1 and u2, we have three cases to consider:
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(a) u1 ” u2. We thus get A1 ” A2 and B1 ” B2. Looking at the induction hypothesis on
v1 and v2, in all cases we must have v1 ” v2. Indeed, if we are in cases (2) or (3) then
we get A1 ” D ñ p and A2 ” D ñ q, but together with A1 ” A2 this implies p “ q,
meaning that no lifts are inserted between v1 and v2. We thus conclude that t1 ” t2.

(b) Γ $ Ò
m
n D u2 : D ñ m and u1 ” Ò

m
n D u2. Now, px : A1q Ñ B1 ” D ñ m, so

by Lemma 25 we have D ÝÑ˚ a l ◀ λx : C.D1 with Ell a ” A1 and B1 ” D1 ñ m.
Moreover, we also get that Ell a ” A2 and B2 ” D1 ñ n. We are again in a situation
where v1 and v2 share a type, so by the same arguments as in case (a) the i.h. gives
v1 ” v2. Therefore,

t1 “ u1 v1 ” pÒ
m
n pa l ◀ λx : C.D1q u2q v2 ” Ò

m
n D1rv2{xs pu2 v2q “ Ò

m
n D1rv2{xs t2

For typing, we have Γ $ t2 : B2rv2{xs so by conversion we have Γ $ t2 : D1rv2{xs ñ n

and thus Γ $ Ò
m
n D1rv2{xs t2 : D1rv2{xs ñ m.

(c) Γ $ Ò
m
n D u1 : D ñ m and u2 ” Ò

m
n D u1. Symmetric to case (b). ◀

7.3 Reflection of conversion
With coherence in hand, we can show that the conversion relation of CC can be reflected by
the inverse translation function into the framework. As an intermediate lemma, we first need
to show that individual reduction steps of CC can be simulated in Dedukti.

▶ Lemma 27 (Simulation of reduction steps). Let t P Λo with Γ $ t : A and |t| ÝÑ u for
some u P ΛCC. Then, there is some t1 P Λo such that |t1| “ u and t ÝÑ˚ t1.

Proof. By induction on t, following the definition of Λo. Almost all cases are either impossible,
or follow by applying the i.h. to the subterm being reduced. The only interesting case is
when t “ t1 t2 and the reduction happens in the head. Then, the only possibility is that
t1 “ Ònk

Dk p...pÒn1 D1 vq...q with v “ λx : C.s and |t| “ pλx : |C|.|s|q |t2| ÝÑ |s|r|t2|{xs. If
k “ 0 then the result is immediate, as t is a β redex. Otherwise, by typing constraints and
Proposition 24 we can see that we have D1 ” ... ” Dk and ni`1 “ ni ` 1 for i “ 1..k ´ 1, so
by confluence we have some common reduct D0 of all of them so that t1 ÝÑ˚ Ò

nk`1
n1 D0 v.

Then, by inversion of typing, v has both types D0 ñ n1 and px : Cq Ñ A1 for some A1,
hence by uniqueness of types we have D0 ñ n1 ” px : Cq Ñ A1, which by Lemma 25 implies
D0 ÝÑ˚ C 1

l ◀ λx : B.D1 for some C 1, l, B, D1. Abbreviating C 1
l ◀ λx : B.D1 as D1

0,

t ÝÑ˚ Ò
nk`1
n1 D1

0 pλx : C.sq t2 ÝÑ˚ pλx : C.Ò
nk`1
n1 D1 sq t2 ÝÑ Ò

nk`1
n1 D1rt2{xs srt2{xs

and we have Ò
nk`1
n1 D1rt2{xs srt2{xs P Λo, with |Ò

nk`1
n1 D1rt2{xs srt2{xs| “ |s|r|t2|{xs. ◀

▶ Proposition 28 (Reflection of type conversion). Let A, B P Λo with Γ $ A : Un and
Γ $ B : Um. If |A| ” |B| then Eln A ” Elm B.

Proof. Take k :“ maxtn, mu; we have Γ $ Ò
k
n ˛ A : Uk and Γ $ Ò

k
m ˛ B : Uk and

|Ò
k
n ˛ A| “ |A| ” |B| “ |Ò

k
m ˛ B|. By confluence we have |Ò

k
n ˛ A| ÝÑ˚ C ˚ÐÝ |Ò

k
m ˛ B|

for some C. By iterating Lemma 27 with subject reduction, we get Ò
k
n ˛ A ÝÑ˚ A1 and

Ò
k
m ˛ B ÝÑ˚ B1 and |A1| “ C “ |B1| for some A1 and B1. We also have Γ $ A1 : Uk and

Γ $ B1 : Uk, so by Theorem 26 we get A1 ” B1 – note that because A1 and B1 have the same
type, there can be no lifts between them. Therefore, we have Ò

k
n ˛ A ” Ò

k
m ˛ B and thus we

conclude Eln A ” Elk pÒ
k
n ˛ Aq ” Elk pÒ

k
m ˛ Bq ” Elm B. ◀
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7.4 Soundness
We now have almost all auxiliary results needed for showing soundness. As a last step, we
only need the following two easy lemmas.

▶ Lemma 29 (Computing the El of a translation). Let A P Λo with Ell A well typed.
1. If |A| “ n then Ell A ÝÑ˚ Un.
2. If |A| “ Πx : A1.A2 then Ell A ÝÑ˚ px : Eln1 A1

1q Ñ Eln2 A1
2 with |A1

i| “ Ai.

Proof. By definition of | ´ | and typing constraints. ◀

▶ Lemma 30 (Telescope translation). Let A1, A2 P Λo with Γ $ Ai : Uni
. If |Ai| “ ∆ ñ mi

for some m1 ď m2, then we have Elni
Ai ” D ñ mi for some guarded D with Γ $ D : Tele.

Proof. By induction on ∆. ◀

▶ Theorem 31 (Soundness). If Γ $CC t : A then we have Γ1 $ t1 : Eln A1 for some Γ1 P Ctxo

and t1, A1 P Λo and n P N with }Γ1} “ Γ and |t1| “ t and |A1| “ A.

Proof. We instead show the following two points, which together imply the theorem.
If Γ $CC then Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ.
If Γ $CC t : A and Γ1 $ for some Γ1 P Ctxo with }Γ1} “ Γ then Γ1 $ t1 : Eln A1 for some
n P N and A1, t1 P Λo with |A1| “ A and |t1| “ t.

We prove them by induction on the derivation of Γ $CC or Γ $CC t : A, and illustrate here
two interesting cases.

Case
Lam
Γ $CC A : n Γ, x : A $CC t : B

Γ $CC λx : A.t : Πx : A.B

By i.h. and Lemma 29 we have Γ1 $ A1 : Un and |A1| “ A. Therefore we have
Γ1, x : Eln A1 $, so by i.h. we get Γ1, x : Eln A1 $ t1 : Elm B1 for some m and with |t1| “ t

and |B1| “ B. By inversion, we then deduce Γ1, x : Eln A1 $ B1 : Um. We can now
show Γ1 $ λx : Eln A1.t1 : px : Eln A1q Ñ Elm B1 and because its type is convertible to
ElRpn,mq pπ

0
n,m A1 pλx : Eln A1.B1qq, which is well typed, we conclude by applying the

conversion rule.
Case

A Ď B

Conv
Γ $CC t : A Γ $CC B : n

Γ $CC t : B

By induction hypothesis we have Γ1 $ t1 : Elm A1 and Γ1 $ B1 : Un with |t1| “ t, |A1| “ A

and |B1| “ B (using Lemma 29 for the second derivation). By inversion we obtain
Γ1 $ A1 : Um. We now use Lemma 2 to split A Ď B into two cases:

A ” B. We have |A1| ” |B1| so by Proposition 28 we conclude Elm A1 ” Eln B1, and
thus Γ1 $ t1 : Eln B1.
A ÝÑ˚ ∆ ñ p and B ÝÑ˚ ∆ ñ q with p ď q. We apply Lemma 27 on A1 to get some
A2 such that |A2| “ ∆ ñ p and A1 ÝÑ˚ A2. Similarly, we get B2 with |B2| “ ∆ ñ q

and B1 ÝÑ˚ B2. We can then apply Lemma 30 to obtain a guarded term D such that
Γ1 $ D : Tele and Elm A2 ” D ñ p and Eln B2 ” D ñ q. We can now conclude with
Γ1 $ Ò

q
p D t : Eln B1. ◀
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8 Conservativity

Now that we have seen that our encoding is sound, we can move to the proof of conservativity.
The usual statement of conservativity (using direct translation functions r´s : ΛCC Ñ Λdk and
J´K : CtxCC Ñ Ctxdk) would say that, given Γ, A satisfying Γ $CC A : n, if JΓK $ t : Eln rAs

then we have Γ $CC t1 : A for some t1. When rephrasing this statement with the inverse
translation function | ´ |, the full conservativity property would then assert that, for Γ P Ctxo

and A P Λo with }Γ} $ |A| : n, if Γ $ t : Eln A then }Γ} $CC t1 : |A| for some t1.
In the following, we instead show conservativity for object terms, a restricted form of

conservativity in which the witness t of the typing judgment Γ $ t : Eln A is required to be an
object term. We argue that this is enough because in practice the object terms are the only
ones a user of the encoding (or an automatic translator) would write. Nevertheless, it should
be possible to strengthen our result to obtain full conservativity, as discussed in the conclusion.

The first step in our proof is showing that | ´ | preserves definitional equality. This is
however not immediate, because | ´ | does not preserve reduction steps. Fortunately, we can
define an auxiliary function | ´ |‚ extending | ´ | that satisfies this property. We start by
defining the extended object terms Λ‚

o which will be used as the domain of | ´ |‚. Here we
write G, G1 for any guarded terms, and n, n0, n1, n2 for any natural numbers.

Λ‚
o Q t, u, A, B ::“ x | px : Aq Ñ B | λx : A.t | Un | ElG A | un

| π
n0
n1,n2 A λx : G.B | ÒG G1 t | òn t | t u

The function | ´ |‚ is then defined by the following clauses.

| ´ |‚ : Λ‚
o Ñ ΛCC |px : Aq Ñ B|‚ :“ Πx : |A|‚.|B|‚

|x|‚ :“ x |ElG A|‚ :“ |A|‚ |λx : A.t|‚ :“ λx : |A|‚.|t|‚

|un|
‚ :“ n |ÒG G1 t|‚ :“ |t|‚ |π

n0
n1,n2 A pλx : G.Bq|‚ :“ Πx : |A|‚.|B|‚

|Un|
‚ :“ n |òn t|‚ :“ |t|‚ |t u|‚ :“ |t|‚ |u|‚ pt u not of previous formsq

We can show that | ´ |‚ satisfies many desirable properties, among them being the
preservation of reduction steps and thus also of definitional equality by | ´ |‚.

▶ Lemma 32 (Basic properties of Λ‚
o and | ´ |‚).

1. Λ‚
o is a superset of Λo, and | ´ |‚ restricts to | ´ | in Λo.

2. If t P Λ‚
o then t is guarded.

3. If t, u P Λ‚
o then tru{xs P Λ‚

o and |t|‚r|u|‚{xs “ |tru{xs|‚.
4. If t P Λ‚

o and t ÝÑ˚ u then u P Λ‚
o and |t|‚ ÝÑ˚ |u|‚.

5. If t, u P Λ‚
o and t ” u then |t|‚ ” |u|‚.

Using these basic properties, we can now show conservativity.

▶ Theorem 33 (Conservativity for object terms). Let Γ P Ctxo and A P Λo with }Γ} $CC |A| : n

for some n. If Γ $ t : Eln A with t an object term, then we have }Γ} $CC |t| : |A|.

Proof. We instead show the following claim.

▷ Claim 34. Let Γ $ t : A with Γ P Ctxo and }Γ} $CC. If t is an object term, then there
exists A1 P Λ‚

o with A ” A1 and }Γ} $CC |t| : |A1|‚.
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First note that this implies the statement of the theorem. Indeed, by the claim we have
}Γ} $CC |t| : |B|‚ for some B P Λ‚

o with B ” Eln A. Therefore |B|‚ ” |A|‚ “ |A|, so we
conclude }Γ} $CC |t| : |A| by the conversion rule.

We proceed with the proof of the claim, by induction on t, following the definition of Λo.
We illustrate the interesting case of λ-abstraction: t “ λx : Eln A1.u. By inversion we
have Γ $ A1 : Un and Γ, x : Eln A1 $ u : A2 for some A2 with A ” px : Eln A1q Ñ A2.
By i.h. we thus have }Γ} $CC |A1| : |B1|

‚ with B1 ” Un. Therefore, we have |B1|
‚ ” n,

so by conversion we can derive }Γ} $CC |A1| : n, and so }Γ}, x : |A1| $CC. By i.h. once
more, we have }Γ}, x : |A1| $CC |u| : |B2|

‚ for some B2 with B2 ” A2. We can thus derive
}Γ} $CC λx : |A1|.|u| : |px : Eln A1q Ñ B2|

‚ and A ” px : Eln A1q Ñ B2. ◀

9 Related work

The first attempt to encode CC in Dedukti dates back to the work of Assaf. He first
identified the full-reflection equations (discussed in Section 4) in earlier work studying a
variant of the calculus of constructions with explicit cumulativity [4]. There, cumulativity is
made explicit by a family of lifts Òi: Ui Ñ Ui`1, which are sufficient in his setting because
the theory considered lacks product covariance.

These ideas were then employed in encoding a class of cumulative type systems (CTSs)
in Dedukti [5], containing in particular the type system CC. In order to handle product
covariance, he proposed the use of η-expansion at translation time: for instance, a variable
f : Nat Ñ 0 would be translated at type Nat Ñ 1 as λx.Ò0 pf xq. This however turned out to
invalidate conservativity, as observed by Thiré [45, Example 6.6].

Moreover, as mentioned in the introduction, the translation functions used by Assaf for
stating and proving soundness turn out to be ill-defined. He mutually defines functions
r´sΓ and r´sΓ$C and J´K, and among their defining clauses he states rtsΓ$C :“ λx :
JAK.rt xsΓ,x:A$B if C ” Πx : A.B and t has a principal type convertible to Πx : A.B1 with
B1 Ĺ B. However, the term A is only determined up to conversion, yet the function is defined
over unquontiented terms, and the preservation of conversion is only shown at a later stage.
Worse, because A is recovered using typing information, it might not be structurally smaller
than t, and no well-founded order is given to justify the recursive call of J´K on A.

Regarding confluence, Assaf actually relies in his presentation on an axiomatization of the
conversion relation required for the encoding. Because in Dedukti the conversion must be
implemented by rewrite rules, each instantiation of his encoding then also needs to provide a
rewrite system correctly implementing these equational axioms. In the particular case of CC,
Assaf provides rules for implementing them, yet they are not confluent since some critical
pairs are not joinable. This problem was later fixed in his joint work with Dowek, Jouannaud
and Liu [8], though it required the use of rewriting modulo ACU, which is less efficient
and harder to implement than pure syntactic matching. The problems with soundness and
conservativity remained unaddressed.

Some years after the work of Assaf, the problem regained attention and new encodings
were proposed by Thiré [45], also supporting a class of CTSs, and Férey [26], also supporting
universe polymorphism. Starting from Thiré’s observation that η-expanding at translation
time breaks conservativity, they decided to instead rely on a generalized cast operator
mapping a term t : Ella

a to lb

la
Òb

a e t : Ellb
b, where e is a term witnessing the inclusion of a

in b. Unfortunately, the use of a multi-step lift then required non-left-linear rules to ensure
that two consecutive casts can be composed or that identity casts can be removed. Despite
the impressive work of Férey on confluence criteria for non-left-linear systems [25], they were
unable to show the confluence of their encodings.
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The translation function employed by Thiré unfortunately inherited the issue of Assaf’s
function, as it also makes recursive calls on terms obtained through typing information without
giving a decreasing measure. The proposal of Férey uses however a different technique, and
instead defines the translation function over typing derivations. However, because a typing
judgment can be derived in multiple ways, he then needs to show that they are nevertheless
translated to convertible terms in Dedukti, which corresponds in our case to the coherence
property. To show this, he crucially relies on the way terms are represented in his encoding, as
untyped codes annotated with a type. Because of this, it is not clear to us how his technique
could be adapted to our case, which is why we chose to prove soundness using an inverse
translation function, instead of defining a translation function over derivations. Finally,
conservativity is stated only as a conjecture for both of Thiré’s and Férey’s encodings.

10 Conclusion

In this work we have given an encoding of CC in Dedukti satisfying the necessary properties
for being used in practice, solving a longstanding open problem. Our proof of confluence
combines many confluence criteria and heavily uses the automated tools developed by the
community. Yet, at the present moment, none of the available tools are able to fully show
our result by themselves. Proving the confluence of our system automatically can thus be
an interesting challenge for the next generation of today’s confluence checkers. A natural
direction could be trying to automate Dowek et al.’s criterion [21], which is the only one we
are aware of that can show the confluence of βR1 directly.

Our work has also identified a problem with the definition of the translation function
in some previous attempts at encoding CC in Dedukti. To solve this issue, we have then
contributed an adaptation of the technique of Winterhalter et al. [48] in which soundness is
instead stated and proved using an inverse translation function.

Regarding conservativity, we have proven a restricted form concerning only object terms.
Even though we believe that for practical needs our result is sufficient, we conjecture
that full conservativity can be obtained by adapting the logical relations technique of
Assaf [6]. Alternatively, we could modify our encoding and employ the technique described
by Felicissimo [22], which allows for easy conservativity proofs at the cost of increasing the
amount of type annotations in the syntax. There is already ongoing work on removing
these annotations by incorporating bidirectional typing into Dedukti [23], yet the encoding
presented here would not be covered by the presently available framework.

Finally, we believe that our work can be a starting point for incorporating Coq’s universe-
polymorphism. Among previous work, only Férey considers the combination of CC with
universe polymorphism. Combining his ideas with ours is a promising direction to explore.
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Abstract
When working in a proof assistant, automation is key to discharging routine proof goals such as
equations between algebraic expressions. Homotopy Type Theory allows the user to reason about
higher structures, such as topological spaces, using higher inductive types (HITs) and univalence.
Cubical Agda is an extension of Agda with computational support for HITs and univalence. A
difficulty when working in Cubical Agda is dealing with the complex combinatorics of higher
structures, an infinite-dimensional generalisation of equational reasoning. To solve these higher-
dimensional equations consists in constructing cubes with specified boundaries.

We develop a simplified cubical language in which we isolate and study two automation problems:
contortion solving, where we attempt to “contort” a cube to fit a given boundary, and the more
general Kan solving, where we search for solutions that involve pasting multiple cubes together. Both
problems are difficult in the general case – Kan solving is even undecidable – so we focus on heuristics
that perform well on practical examples. We provide a solver for the contortion problem using a
reformulation of contortions in terms of poset maps, while we solve Kan problems using constraint
satisfaction programming. We have implemented our algorithms in an experimental Haskell solver
that can be used to automatically solve goals presented by Cubical Agda. We illustrate this with a
case study establishing the Eckmann-Hilton theorem using our solver, as well as various benchmarks
– providing the ground for further study of proof automation in cubical type theories.
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1 Introduction

Homotopy Type Theory (HoTT) [35] adds new constructs to intensional dependent type
theory [22] reflecting an interpretation of types as homotopy types of topological spaces. This
allows homotopy theory to be developed synthetically inside HoTT; many classical results have
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been reconstructed this way, such as the Hopf fibration [35], Blakers-Massey theorem [16],
Seifert-van Kampen theorem [17], Atiyah-Hirzebruch and Serre spectral sequences [36],
Hurewicz theorem [8], etc. However, as originally formulated, HoTT postulates both the
univalence axiom [38] and the existence of HITs [35] without proper computational content –
to rectify this, cubical type theory [9] replaces the identity type with a primitive path type,
yielding a computationally well-behaved theory which validates the axioms of HoTT.

Inspired by Daniel Kan’s cubical sets [20], cubical type theory represents elements of
iterated identity types as higher-dimensional cubes. Synthetic homotopy theory in cubical
type theory thereby attains a particular “cubical” flavour [23]. A path in a type A connecting
elements a and b can be thought of as a function p : [0, 1] → A from the unit interval into
the “space” A such that p(0) = a and p(1) = b. Paths play the role of equalities in the
theory, and operations on paths encode familiar laws of equality: reflexivity is a constant
path, transitivity is concatenation of paths, and symmetry is following a path in reverse.

Paths can also be studied in their own right. In particular, we can consider equalities
between paths in A, which as functions [0, 1]→ ([0, 1]→ A) can be read as maps from the
unit square (or 2-cube) [0, 1]2 to A; iterating, we find ourselves considering n-cubes in A.
Algebraic laws such as the associativity of path concatenation or identity laws are represented
as squares with certain boundaries.

For instance, a foundational result in algebraic topology is the Eckmann-Hilton argu-
ment [12], which states that concatenation of 2-spheres, i.e., 2-cubes with constant boundaries,
is commutative up to a path. As a path between 2-cubes, the theorem is a 3-cube as shown
in Figure 1(a): on the left we have a gray 2-cube concatenated with a hatched 2-cube, on the
right they are concatenated in the opposite order, and the interior is the path between them.

(a) The theorem. (b) (c) (d)

Figure 1 A cubical Eckmann-Hilton argument in four steps.

In cubical type theory, we can construct such an interior by starting from some 3-cube
we know can be filled, then deforming its boundary via certain basic operations until it has
the desired form. It can be more intuitive to work backwards: deform the “goal” boundary
until we reach a boundary we can fill. Figure 1 shows one solution: we (b) shift the copies of
the hatched 2-cube to the top and bottom faces, (c) further shift them both to the back face,
whereupon they face each other in opposite directions, and then (d) cancel the concatenation
of the hatched 2-cube with its inverse. The boundary in (d) can be filled immediately by the
constant homotopy – i.e., reflexive equality – from the gray 2-cube to itself.

This example illustrates the two main principles we use to build cubes in type theory,
which we call contortion and Kan filling.1 To contort a cube is to reparameterise it, stretching
it into a higher dimension or projecting a face. For example, we fill the cube (d) by taking
the gray 2-cube and stretching it into a degenerate 3-cube, reparameterizing by a projection

1 Because we only reason within individual types in this paper, we encounter only so-called homogeneous
Kan filling. General Kan filling also incorporates transport (or coercion) between different indices of a
dependent type family, but we leave this aspect to future work.
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[0, 1]3 → [0, 1]2. We cannot hope to derive the cube in Figure 1(a) only by contorting the gray
or hatched 2-cube in isolation, of course. Thus the role of Kan filling, which lets us modify a
cube by a continuous deformation of its boundary. Each of the reductions (a) to (b) to (c)
to (d) above is an instance of Kan filling.2 Kan filling admits a second geometric reading: it
states that for every open box, i.e. the boundary of a cube with one face unspecified, there
is a lid for the box for which an interior (“filler”) exists. The two readings agree because a
continuous deformation of the boundary of an n-cube over “time” t ∈ [0, 1] can also be seen
as all but two opposing faces of an (n+ 1)-cube; the cube to be deformed fits into one of the
missing faces, and the lid produced by box filling is then the deformed cube.

Reasoning with contortions and Kan fillings can pose a challenge when formalising
mathematics or computer science in cubical type theory. It is the essence of standalone
theorems such as Eckmann-Hilton, but cubical puzzles also often appear as routine lemmas in
more complex proofs. One may need to relate one arrangement of concatenations and inverses
of paths to another, for example; such coherence conditions often appear in definitions by
pattern-matching on HITs. Just as it is difficult to anticipate all types of equations between
algebraic expressions that one might need in a large formalisation project, it is infeasible to
enumerate every routine cubical lemma in a standard library. The purpose of this paper is
to instead devise an algorithm which can automatically prove such lemmas as needed.

We focus on the type theory of Cubical Agda [37], currently the most widely used cubical
system. The agda/cubical [31] and 1lab [30] libraries each contain ad-hoc collections of
cubical reasoning combinators, providing examples on which we test our solver. However,
some of the techniques developed in the paper also apply to other cubical type theories, in
particular to cartesian cubical type theory [2, 1] as implemented in redtt [32] and cooltt [33].
A particular feature of Cubical Agda that contrasts with cartesian cubical systems is the
richer language of contortions, which has proved interesting to study on its own. Like
fully-featured cubical type theories, the intended denotational semantics of our language is
in cubical sets over any cartesian cube category with connections, following Cohen et al. [9]
or Orton and Pitts [24].

Contributions. This paper constitutes one of the first systematic studies of automated
reasoning for cubical type theory. In it we

formulate a minimal cubical language containing a class of “Dedekind” contortions and a
Kan filling operator and precisely state the automation problems that we consider (§2),
formulate an algorithm based on poset maps for solving problems using contortions (§3),
formulate an algorithm based on constraint satisfaction programming for solving problems
using Kan filling (§4), and
provide a practical Haskell implementation of our algorithms and exhibit its effectiveness
on a selection of theorems and lemmas taken from libraries for Cubical Agda (§5).

2 Boundary problems in cubical type theory

Cubical type theories are complex systems. Besides path types, one has the usual type
formers of type theory – functions, products, inductive types, etc. – not to mention univalence
and HITs. To make automation tractable, we restrict attention to a fragment including

2 The fact that a concatenation of a 2-cube with its inverse can be deformed away, which we use in the
step (c) to (d), is a lemma that can itself be proven with contortion and Kan filling.
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only basic operations on cubical cells in a single type.3 We also restrict attention to the
Dedekind/distributive lattice fragment of Cubical Agda and do not rely on the De Morgan
involution. In the terminology of Cubical Agda, we consider automation for homogeneous
Kan filling (hfill) and connections (∧, ∨).

Rather than use path types to encode cubical cells, as one does in a fully-featured cubical
type theory, we take cells as a primitive notion. A cell is a term parameterised by one or
more dimension variables, which we think of as ranging in the interval [0, 1]; intuitively, a
cell in a type A in n variables is a function [0, 1]n → A. Our contexts are lists of cells each of
which can have a specified boundary. For example, p(i) : [ i = 0 7→ a | i = 1 7→ b ] specifies a
1-dimensional cell p varying in i ∈ [0, 1] such that p(0) = a and p(1) = b, i.e., a path from a

to b. In general, a hypothesis has the form q(Ψ) : [ϕ ] where Ψ is a list of variables and ϕ is
a list of values at faces (i = 0 and i = 1 in the example above). A cell hypothesis is thus a
judgmental analogue of a hypothesis of extension type à la Riehl and Shulman [26, §2.2].

The problems we aim to solve are boundary problems: given a context of cells Γ, a list of
dimension variables Ψ, and a boundary ϕ, can we use the cells in Γ to build a cell varying
in Ψ with boundary ϕ? We write such a problem as “Γ | Ψ ⊢ ? : [ϕ ]”. For example, if we
want to prove that paths are invertible, then we could pose the boundary problem

a : [ ], b : [ ], p(i) : [ i = 0 7→ a | i = 1 7→ b ] | j ⊢ ? : [ j = 0 7→ b | j = 1 7→ a ] (1)

Here Γ has three cells: points a and b, and a path p. Our goal is a path from b to a, written
as a function of j ∈ [0, 1] with fixed endpoints. We can leave the boundary of cells partially
or completely unspecified, so we can formulate the same problem more compactly as

p(i) : [ ] | j ⊢ ? : [ j = 0 7→ p(1) | j = 1 7→ p(0) ] (2)

Now we assume a path p without naming its endpoints and seek a path from p(1) to p(0).
The format extends gracefully to higher cells; the diagonal of a square can be obtained by
posing

s(i, j) : [ ] | k ⊢ ? : [ k = 0 7→ s(0, 0) | k = 1 7→ s(1, 1) ] (3)

Here we assume a 2-dimensional cell s with unspecified boundary and seek a path from s(0, 0)
to s(1, 1). In the remaining section, we introduce boundary problems more formally together
with the two operations used to build solutions: contortions and Kan filling.

2.1 Boundary problems and contortion solving
The problem (3) has a simple solution: ? := s(k, k). That is, we take the hypothesised 2-cube
s and apply a reparameterisation k 7→ (k, k). We call such reparameterisations contortions.
In addition to variables and the constants 0,1, we follow Cohen et al. (CCHM) [9] and
include binary operators ∧ and ∨, conventionally called connections [5], in our language for
contortions. We think of ∧ as taking the minimum of two parameters and ∨ as taking the
maximum; they obey the laws of a bounded distributive lattice with 0 and 1 as bottom and
top element respectively. For example, given a cell context containing a path p, we can define
a square whose value at the coordinate (j, k) is the value of p at their maximum:

p(i) : [ ] | j, k ⊢ p(j ∨ k) :
[
j = 0 7→ p(k) | k = 0 7→ p(j)
j = 1 7→ p(1) | k = 1 7→ p(1)

]
(4)

3 This is similar to the fragments of type theory used to axiomatise higher structures such as weak
ω-groupoids in e.g. [6, Appendix A] and [13].
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Thus one way to solve a boundary problem is by applying a contortion to a hypothesised
cell; searching for such solutions is the first automation problem we consider.

▶ Remark 1. Some cubical type theories, such as that of Angiuli et al. [2, 1], omit connections,
while Cubical Agda also has the De Morgan involution of CCHM which sends i ∈ [0, 1] to
1− i. While removing connections would make it trivial to solve contortion goals, we would
instead be more reliant on the even harder problem of using Kan filling to solve goals. On
the other hand, the poset map representation we use for solving in §3 relies on the absence of
the involution. Thus we choose the distributive lattice contortion theory as a happy medium.

Let us now introduce the formal language of boundary problems and solutions.

▶ Definition 2. A dimension context Ψ is either a list of (unique) dimension variables
(i1, . . . , in) or the inconsistent context ⊥.

We think of a dimension context with n variables as a unit n-cube, while ⊥ is the empty
space; note that the “empty” context () is the unit 0-cube, which does have a unique point.

▶ Definition 3. A dimension term Ψ ⊢ r dim over a dimension context Ψ is a term in the
free bounded distributive lattice over Ψ. All terms are equal in the inconsistent dimension
context. A dimension term r is atomic when it is a variable or endpoint, in which case we
write Ψ ⊢ r atom. We write e for the opposite of an endpoint e, so 0 := 1 and 1 := 0.

▶ Definition 4. A contortion ψ : Ψ′ ⇝ Ψ when Ψ = (i1, . . . , in) is a list ψ = (r1, . . . , rn) of
dimension terms over Ψ′. There is a contortion ψ : Ψ′ ⇝ ⊥ only when Ψ′ = ⊥, in which case
there is a unique one. A substitution ψ : Ψ′ → Ψ is a contortion whose terms are atomic.

A substitution defines an operation on terms in the usual way: given some kind of term t

and a substitution ψ : Ψ′ → Ψ where Ψ = (i1, . . . , in) and ψ = (r1, . . . , rn), we write t[ψ] for
the result of replacing each ik by rk in t. Only some of our syntactic sorts are closed under
application of general contortions, namely dimension terms and contorted cells (Definition 9);
for those sorts we write t⟨ψ⟩ for application of a contortion.

We will need the following operation on dimension contexts to define boundaries.

▶ Definition 5. When Ψ is a dimension context, r is an atomic dimension term, and e is
an endpoint, we define the constrained dimension context Ψ[r = e] by cases:

(Ψ, i,Ψ′)[i = e] := Ψ,Ψ′ Ψ[e = e] := ⊥ Ψ[r = e] := Ψ, otherwise

We have a constraining substitution (r = e) : Ψ[r = e] → Ψ that sends r to e if r is a
variable, is the unique substitution from ⊥ when r is e, and the identity substitution otherwise.

The cell contexts (Γ ctxt), contorted boundaries (Γ | Ψ ⊢c ϕ bdy), and contorted cells
(Γ | Ψ ⊢c t cell and Γ | Ψ ⊢c t : [ϕ ]) are mutually inductively defined as follows.

▶ Definition 6. The cell contexts Γ ctxt are inductively defined by rules

() ctxt
Γ ctxt Γ | Ψ ⊢c ϕ bdy

Γ, a(Ψ) : [ϕ ] ctxt

That is, a cell context is a list of variables each paired with a dimension context and
boundary over that context; the boundary for one variable may mention preceding variables.

FSCD 2024
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▶ Definition 7. The contorted boundaries Γ | Ψ ⊢c ϕ bdy are inductively defined by rules

Γ | Ψ ⊢c () bdy

Γ | Ψ ⊢c ϕ bdy Ψ ⊢ r atom e ∈ {0, 1}
Γ | Ψ[r = e] ⊢c t : [ϕ[r = e] ]
Γ | Ψ ⊢c (ϕ | r = e 7→ t) bdy

Here ϕ[r = e] is the application of the constraining substitution (r = e) to the boundary ϕ.

A contorted boundary is thus a list of entries r = e 7→ t, where t is a contorted cell over
Ψ[r = e], such that each entry agrees with the previous entries when their constraints overlap.
▶ Remark 8. The requirement that the term r in a constraint r = e is atomic is absent in
Cubical Agda. Imposing it simplifies the constrained context operation (Definition 5), while
relaxing it is not particularly useful for practical boundary solving. We distinguish between
substitutions and contortions to make this requirement sensible.

▶ Definition 9. A contorted cell Γ | Ψ ⊢c t cell is an application t = a(ψ) of a variable
a(Ψ′) : [ϕ ] in Γ to some ψ : Ψ⇝ Ψ′. Equality of contorted cells is generated by the rule

(a(Ψ′) : [ϕ ]) ∈ Γ (r = e 7→ t) ∈ ϕ ψ : Ψ⇝ Ψ′ Ψ ⊢ r⟨ψ⟩ = e⟨ψ⟩ dim
Γ | Ψ ⊢c a(ψ) = t⟨ψ⟩ cell

which is to say that a has the boundary assigned in the context. We write Γ | Ψ ⊢c t : [ϕ ]
when t is a cell agreeing with ϕ, i.e., such that t[r = e] = t′ cell for each (r = e 7→ t′) ∈ ϕ.

▶ Remark 10. We normalise a contorted cell by looking at its boundary, if it is specified.
For example, in context (1) the cell p(0) normalises to a. The number of steps necessary to
normalise a contorted cell is bounded by the length of the context.

We can now state the first of the two problems we are interested in solving.

▶ Problem 11 (Contortion). Given Γ | Ψ ⊢c ϕ bdy, the problem Contortion(Γ,Ψ, ϕ) is
to determine if there exists a contorted cell t such that Γ | Ψ ⊢c t : [ϕ ].

The problem Contortion(Γ,Ψ, ϕ) is decidable: there are finitely many cell variables in
Γ, so we could try all possible contortions of each by brute force. On the other hand, it is
certainly not easily solved efficiently. Even restricting to 1-dimensional goals, Contortion
is NP-hard when the contortion language includes connections.

▶ Proposition 12. Contortion(Γ,Ψ, ϕ) is NP-complete for Ψ with one variable.

Proof. First, note that this problem is in NP: when the cardinality of Ψ is fixed, the
normalisation necessary to verify a putative solution can be done in polynomial time. For
completeness, we give a reduction from SAT. Suppose we have a Boolean CNF formula φ
over x⃗ = x1, . . . , xn. Replace each ¬xi in φ by a variable yi to obtain a dimension term r in
variables x⃗, y⃗. Then φ is satisfiable if and only if there is ψ : ()⇝ (x⃗, y⃗) such that r⟨ψ⟩ = 1

and (xk ∧ yk)⟨ψ⟩ = 0 and (xk ∨ yk)⟨ψ⟩ = 1 for each k. Take Γφ to be the context

a : [ ], p(z, j0, j1) : [ ], q(x⃗, y⃗, i) : [ i = 0 7→ a | i = 1 7→ p (r,
∨

k(xk ∧ yk),
∧

k(xk ∨ yk)) ]

and consider the boundary problem Γφ | i ⊢c ? : [ i = 0 7→ a | i = 1 7→ p(1, 0, 1) ]. Any
ψ : ()⇝ (x⃗, y⃗) such that r⟨ψ⟩ = 1 and (xk ∧ yk)⟨ψ⟩ = 0 and (xk ∨ yk)⟨ψ⟩ = 1 for each k yields
a solution Γφ | i ⊢c q(ψ, i) cell. Conversely, any solution to the problem will be of the form
Γφ | i ⊢c q(ψ′, r) cell for some ψ′ : i⇝ (x⃗, y⃗) and i ⊢ r dim, in which case ψ′(1) : ()⇝ (x⃗, y⃗)
induces a satisfying assignment for φ. ◀
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We expect that Contortion is significantly more complex in general and that the
complexity is dominated by the dimensionality of the goal. The number of ways to contort
an m-cube to fit an n-dimensional goal is D(n)m where D(n) is the n-th Dedekind number [4,
App. B]. While the exponential dependence on m is already problematic, the Dedekind
numbers grow even more quickly. There are D(6) = 7 828 354 many ways to contort a 1-cube
into a 6-dimensional cube; the 42-digit D(9) was only recently computed using supercom-
puting [15, 19]. Thus, our focus in this paper is on heuristics that quickly yield solutions to
boundary problems that appear in practice, rather than on worst-case asymptotics.

2.2 Kan filling
Paths in spaces can be concatenated: if there is a path from a to b and a path from b to c,
then there is a path from a to c. Concatenation generalises to higher cells; for example, we
can attach several surfaces at their boundaries to form a new surface. Kan [20] devised a
single property that encompasses all of these operations in the context of cubical sets. In
cubical type theory, it is embodied by the Kan filling (sometimes Kan composition) operator.

We write an application of the filling operator as fille→r j.[ϕ ] u, where u is a cell, j.[ϕ ] is
a boundary varying in a dimension variable j, e is an endpoint, and r is an atomic dimension
term. For the operator to be well-formed u must have boundary ϕ[j 7→ e], while the resulting
cell has boundary ϕ[j 7→ r]; thus we think of fill as deforming the boundary of u from ϕ[j 7→ e]
to ϕ[j 7→ r]. The fact that we fill to a dimension term r means that the operation unifies
hcomp/hfill of [10], while being a special case of the more general hcom of [2, 1].

As an example, consider the context p(i) : [ ], q(j) : [ j = 0 7→ p(1) ] with p and q such that
the 1-endpoint of p lines up with the 0-endpoint of q. Suppose we want to concatenate them
and produce a cell with boundary [ i = 0 7→ p(0) | i = 1 7→ q(1) ]. Observe that the boundary
[ i = 0 7→ p(0) | i = 1 7→ q(j) ] varying in j is the boundary of p at “time” j = 0 and of our
desired concatenation at “time” j = 1. Thus, deforming p with fill can give us our goal:

i

j p(0)

p(i) fill0→1 j.[ i = 0 7→ p(0) | i = 1 7→ q(j) ] p(i)

q(j)

We write (p � q)(i) for the filler above. If we replace the target 1 of the fill with a variable, we
get an interior for the depicted square. One says that this cell fills the open box formed by
the solid paths, hence the name. In general, we have the following rules for building Kan
cells:

▶ Definition 13. The Kan cells Γ | Ψ ⊢ t cell are inductively generated by the rules

Γ | Ψ ⊢c t cell
Γ | Ψ ⊢ t cell

e ∈ {0, 1} Ψ ⊢ r atom Γ | Ψ, i ⊢ ϕ bdy Γ | Ψ ⊢ u : [ϕ[i 7→ e] ]
Γ | Ψ ⊢ fille→r i.[ϕ ] u : [ϕ[i 7→ r], r = e 7→ u ]

The Kan boundaries Γ | Ψ ⊢ ϕ bdy are defined analogously to the contorted boundaries
Γ | Ψ ⊢c ϕ bdy, and we write Γ | Ψ ⊢ t : [ϕ ] to mean that t is a Kan cell agreeing with ϕ.

▶ Remark 14. Note that the r = e 7→ u constraint makes filling in direction e→ e the identity
function. This ensures that the face opposite the missing side in the filler agrees with the
input u to the filling operator.

With this we can now state the second of the two problems we are interested in solving.
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▶ Problem 15 (Kan). Given a Kan boundary Γ | Ψ ⊢ ϕ bdy, the problem Kan(Γ,Ψ, ϕ) is
to determine if there exists a Kan cell t such that Γ | Ψ ⊢ t : [ϕ ].

For example, the problem (2) of inverting a path does not have a solution in Contortion
but does have solutions in Kan, such as fill0→1 i.[ j = 0 7→ p(i) | j = 1 7→ p(0) ] p(0).
▶ Remark 16. We claim that Kan is undecidable, but give only a proof sketch here. Although
the main idea is simple, a fully precise proof would be combinatorially involved. We can
encode the word problem for a finitely presented group G as an instance of Kan. Such a group
can always be presented by a finite set of generators X and relations ab = c where a, b, c ∈ X.
Take the context Γ with a point ⋆ : [ ], a loop â(i) : [ i = 0 7→ ⋆ | i = 1 7→ ⋆ ] for each a ∈ X,
and a square sabc(j, k) : [ j = 0 7→ â(k) | j = 1 7→ ⋆ | k = 0 7→ ĉ(j) | k = 1 7→ b̂(j) ] for
each ab = c. Note that each square sabc expresses that the composite of the loops â and
b̂ is equal up to a path to the loop ĉ. Given arbitrary words w, v over X, we have loops
Γ | i ⊢ ŵ, v̂ : [ i = 0 7→ ⋆ | i = 1 7→ ⋆ ] defined by concatenating generator loops. We claim
that w = v in G if and only if Γ | i, ℓ ⊢ ? : [ i = 0 7→ ⋆ | i = 1 7→ ⋆ | ℓ = 0 7→ ŵ | ℓ = 1 7→ v̂ ]
has a solution in Kan, i.e., if ŵ and v̂ are equal up to a path.

3 Finding contortions

The key to our approach for solving the Contortion problem is a characterisation of
contortions as poset maps by Stone duality [18]. In §3.1, we introduce this characterisation
along with potential poset maps (PPMs), a lossy but space-saving representation of collections
of poset maps. We use PPMs in §3.2 to develop an algorithm for solving Contortion.

3.1 Representing contortions with potential poset maps
Recall the example (4), where we contorted a path p into a square p(i) : [ ] | j, k ⊢ p(j ∨ k) cell.
We can think of ∨ as logical disjunction – if either j or k is 1, the contortion evaluates to 1.
Similarly, we can treat the connection ∧ as logical conjunction, which means that we can
view any contortion as a tuple of propositional formulas. In particular, every contortion has a
corresponding truth table, and in fact a contortion is uniquely determined by its truth table;
for example, the contortion above is determined by the assignment J−K : {0, 1}×{0, 1} → {0, 1}
defined by J00K = 0 and J01K = J10K = J11K = 1. In general, an n-term contortion in m

variables gives a truth function {0, 1}m → {0, 1}n.
Since a contortion ψ contains no negations, its truth function is monotone – we cannot

make ψ false by setting more variables to true. Thus the truth function induced by ψ is in
fact a map of posets Im → In, where Ik is the k-fold power of the poset I := {0 < 1} with
its product ordering. Conversely, any map of posets Im → In determines a unique n-term
contortion in m variables. For example, we can depict the poset map corresponding to j ∨ k
as an assignment between the posets I2 and I1, which we draw as a Hasse diagram:

00

01 10

11

0

1

p(j ∨ k)
p p

p(1) p(1)

p

We can read off the boundary of p(j ∨ k) by looking at the action of the poset map: the edge
from 00 to 01 is sent to the edge from 0 to 1 in the target, so the j = 0 side of p(j ∨ k) is
p(k). Between 01 and 11, we stay at 1, so the boundary at j = 1 is constantly p(1).
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We will in the following freely switch between regarding contortions as tuples of proposi-
tional formulas and as poset maps. We write ψI for the poset map induced by the contortion
ψ and σ∨∧ for the contortion prescribed by the poset map σ. The poset map perspective on
contortions does not only give geometric intuition for the boundary of a contorted cell, but
also allows for concisely representing a collection of contortions: by assigning a set of values
Y ⊆ In to each element of Im, we can at once represent several contortions. The monotonicity
constraint on poset maps entails that only some such assignments are meaningful; we call
these potential poset maps.

▶ Definition 17. A potential poset map (PPM) is a map Σ: Im → P(In) s.t. ∀x ≤ y:

∀u ∈ Σ(y). ∃v ∈ Σ(x). v ≤ u and ∀v ∈ Σ(x). ∃u ∈ Σ(y). v ≤ u

With a PPM, we can represent a collection of contortions with very little data: representing
all D(m)n poset maps Im → In with the total PPM x 7→ In for x ∈ Im requires 2m entries
of 2n values – the memory requirements are therefore independent of the Dedekind numbers
and grow “only” exponentially in m and n. This comes with the trade-off that PPMs are a
lossy representation of sets of poset maps. For example, any PPM containing the two poset
maps σ, σ′ : I1 → I2 defined by σ(0) = (00), σ(1) = (10) and σ′(0) = (01), σ′(1) = (11) also
contains the diagonal map sending 0 7→ (00) and 1 7→ (11).

In the following, we unfold a PPM Σ into the set of poset maps it contains with
UnfoldPPM(Σ). We update a PPM Σ to restrict its values at x to some set vs ⊆ Σ(x)
using UpdatePPM(Σ, x, vs), thereby obtaining a new PPM Σ′ with Σ′(x) = vs. Due to
space constraints we refer to the source code of the solver discussed in §5 for details.

3.2 An algorithm for gradually constructing contortions
We now use PPMs in Algorithm 1 to solve Contortion more efficiently than by brute force.
Given a boundary problem Γ | Ψ ⊢c ? : [ϕ ] and a cell a(Ψ′) : [ϕ′ ] in Γ, we search for a
contortion ψ : Ψ⇝ Ψ′ such that a⟨ψ⟩ has boundary ϕ by gradually restricting a PPM to be
compatible with the faces of ϕ. If a contortion of a appears as one of the faces of ϕ, we can
even reduce the search space significantly before performing any expensive operations.

We first initialize Σ to the total PPM on line 2. We then go through the faces of ϕ, each
of which normalises to the form b⟨ψ⟩ for some variable b and contortion ψ, and use them
to restrict Σ. Crucially, we order the boundary faces by descending dimensionality of the
contorted variable on line 3, as contortions of higher-dimensional variables constrain the
search space more. Given a face i = e 7→ b⟨ψ⟩ of ϕ, we proceed as follows: if b is in fact a,
we can constrain Σ to maps that agree with ψ where i = e on line 5. Otherwise, we iterate
through the poset maps σ contained in the restriction of Σ to Im

i=e on line 8. For each, we
mark its values for retention only when a⟨σ∨∧⟩ matches the face b⟨ψ⟩. Finally, we propagate
our findings to Σ on line 13. After restricting Σ according to all faces of ϕ, we unfold Σ and
brute-force search the results for a valid solution to return. Note that not all poset maps in
Σ need be solutions, as a PPM is a lossy representation of a set of maps. The algorithm is
complete: if a can be contorted by some ψ to solve the goal boundary, then it keeps ψI(x) in
Σ(x) for all x ∈ Im in each iteration of the main loop, whether in line 5 or line 11.

The main expense in Algorithm 1 is unfolding all poset maps from a subposet on line 8.
For an unconstrained PPM, we have to check D(m− 1)n poset maps, and as we are doing
this for up to 2m faces of ϕ, we are unfolding 2m ·D(m− 1)n poset maps in the worst case.
In many boundary problems, the cell to be contorted appears in the boundary, which means
the search space significantly shrinks before any PPM is unfolded. This allows us to compute
many contortions that would have been impossible to find by naïve brute-force.
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Algorithm 1 Constructing a contortion.

Input: Γ | Ψ ⊢c ϕ bdy and a(Ψ′) : [ϕ′ ] ∈ Γ. Let m := |Ψ| and n := |Ψ′|.
Output: ψ : Ψ⇝ Ψ′ s.t. Γ | Ψ ⊢c a⟨ψ⟩ : [ϕ ] if such a ψ exists, Unsolvable otherwise

1: procedure Contort(Γ,Ψ, ϕ, a)
2: Σ := {x 7→ In | x ∈ Im}
3: for (i = e 7→ b⟨ψ⟩) ∈ ϕ with ψ : Ψ[i = e]⇝ Ψ′′, in descending order of |Ψ′′| do
4: if a = b then
5: Θ := {x 7→ {ψI(x)} | x ∈ Im

i=e}
6: else
7: Θ := {x 7→ ∅ | x ∈ Im

i=e}
8: for σ ∈ UnfoldPPM(Σ|Im

i=e
) do

9: if a⟨σ∨∧⟩ = b⟨ψ⟩ then
10: for x ∈ Im

i=e do
11: Θ(x) := Θ(x) ∪ {σ(x)}
12: for x ∈ Im

i=e do
13: UpdatePPM(Σ, x,Θ(x))
14: if ∃σ ∈ UnfoldPPM(Σ) such that Γ | Ψ ⊢c a⟨σ∨∧⟩ : [ϕ ] then
15: return σ∨∧
16: else
17: return Unsolvable

▶ Example 18 (Square to cube contortion). Suppose that we are given the cell context
Γ := a : [ ], s(i, j) : [ i = 0 7→ a | i = 1 7→ a | j = 0 7→ a | j = 1 7→ a ] and want to contort the
square s to match the following 3-cube boundary, which has a contortion of s on one face
and squares which are constantly a otherwise:

Γ | i, j, k ⊢c ? :
[
i = 0 7→ s(j ∧ k, j ∨ k) | j = 0 7→ a | k = 0 7→ a

i = 1 7→ a | j = 1 7→ a | k = 1 7→ a

]
This is a difficult instance of Contortion because most faces of the goal are contortions

of a 0-cell, which can be obtained in many ways. To construct ψ : (i, j, k)⇝ (i, j) such that
s⟨ψ⟩ has boundary ϕ, we search for the equivalent poset map I3 → I2 using Algorithm 1.

On line 2, the total PPM Σ : I3 → P(I2) is initialized with x 7→ I2 for all x ∈ I3. We
then go through all faces of the goal boundary and use them to restrict Σ, starting with
the contortion of s at i = 0. Since s is also the cell that we are contorting, the subposet
I3

i=0 of the domain of Σ is mapped in a unique way to the elements of I2. The monotonicity
restrictions on PPMs further restrict Σ, which only contains 10 poset maps after this first
restriction. In the next iteration of the outer loop, we only have degenerate a faces left in
the goal boundary. Going through each face further restricts Σ, as most induced poset maps
give rise to a contortion of s which is not the constant a square. Afterwards, Σ comprises a
single poset map: Σ(000) = {00}, Σ(001) = Σ(010) = Σ(011) = Σ(100) = Σ(101) = {01} and
Σ(110) = Σ(111) = {11}. Translating this poset map to a contortion gives rise to a solution
for our boundary problem: Γ | i, j, k ⊢c s(i ∧ j, i ∨ j ∨ k) : [ϕ ]

Our algorithm finds this solution quickly since the search space is restricted to only 10
possible contortions after looking at the first face of ϕ. This contrasts with brute-force search,
where we would have to check D(3)2 = 400 contortions. The increase in speed gets apparent
for a larger goal: a 6-dimensional analogue of the above proof goal can be found by unfolding
less than 16000 poset maps. A brute-force search would have to find a solution in a search
space with D(6)2 = 7 828 3542 = 61 283 126 349 316 contortions.
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4 Finding Kan fillers

We now turn to Kan and develop an algorithm for solving general boundary problems. Recall
that a Kan cell is of the form fille→r i.[ϕ ] u, where ϕ and u constitute an “open box” which
is filled in direction e→ r. Searching for such fillers requires a different approach depending
on whether r is a dimension variable or an endpoint. In the former case, fille→j i.[ϕ ] u has
the same dimension as ϕ and has fille→e i.[ϕ ] u as its j = e face. This means that it is easy
to recognise if a boundary problem can be solved by a filler e→ j: we simply have to check if
some face of the goal boundary is an e→ e filler. We hence call the filler in direction e→ j

the “natural filler” for a goal boundary which has fille→e i.[ϕ ] u at side j = e.
In contrast, determining when we have to introduce e→ e fillers is difficult. We focus

our attention on fillers in direction 0→ 1, since such a filler can be constructed if and only if
we can construct a filler in the converse direction. Note that a cell fill0→1 i.[ϕ ] u is of one
dimension less than the open box spanned by ϕ and u – put differently, to solve a given goal
boundary by a 0→ 1 filler, we need to first construct a higher-dimensional cube. We hence
call fillers in direction 0→ 1 “higher-dimensional” fillers. Searching for such cells is difficult
because the goal boundary only partially constrains the faces of ϕ, while u could be any cell
of the correct dimension. In particular, we could again use higher-dimensional fillers as faces
for ϕ or u, leading to infinite search spaces that we have to carefully navigate with heuristics.

In our solver we follow the principle that when solving a boundary problem, it’s best to
use contorted cells and natural fillers if possible, and only construct higher-dimensional fillers
if necessary. We formulate the problem of finding a higher-dimensional filler which only uses
contorted cells as a constraint satisfaction problem (CSP) [21, 34] in §4.1, which allows us to
employ finite domain constraint solvers for this sub-problem of Kan. By carefully calling
this solver, we then give a complete search procedure for Kan in §4.2.

4.1 Kan filling as a constraint satisfaction problem

When constructing a higher-dimensional cell for a goal boundary, the sides of the open box
that we fill need to match up. This suggests a recipe for constructing fillers: we formulate the
search problem as a CSP. In this section, we focus on the problem where all the sides of the
filler are contortions. Since there are only finitely many contortions into a given dimension,
we can use a finite domain constraint solver to solve this CSP. Still, the number of contortions
grows very quickly, making it quickly infeasible to list all contortions. To rectify this, we
again rely on PPMs. By representing a collection of contortions with a PPM, we can quickly
construct our CSP with little memory requirements; a solver such as the one discussed in §5
can then gradually narrow down the PPMs until it arrives at a solution.

Recall that a CSP is given by a set of variables V ar; an assignment of domains to V ar,
i.e., a set DX for each X ∈ V ar; and a set of constraints C ⊆ DX ×DX′ for X,X ′ ∈ V ar.
A solution is a choice of one element of each domain, i.e., tX ∈ DX for all X ∈ V ar, s.t., all
constraints are satisfied, i.e., C(tX , tX′) for all C,X,X ′. We now state the CSP for filling
boundaries via Kan fillers that have only contortions as sides.

▶ Definition 19. Given a boundary Γ | Ψ ⊢ ϕ bdy and a fresh dimension k /∈ Ψ, as well as a
set of indices Ope ⊆ {(k = 0)} ∪ {(i = e) | i ∈ Ψ, e ∈ {0, 1}}, the CSP KanCSP(ϕ,Ope) is
given as follows:

V ar := {X(i=e) | i ∈ Ψ, e ∈ {0, 1}, (i = e) /∈ Ope} ∪ {X(k=0) if (k = 0) /∈ Ope}
D(i=e) := {(p,Σ) | p(Ψ′) : [ . . . ] ∈ Γ,Σ : I|Ψ| → P(I|Ψ′|)}

FSCD 2024



22:12 Automating Boundary Filling in Cubical Agda

and constraints for all Ψ ⊢ i, j atom, e, e′ ∈ {0, 1}:

Γ | Ψ[i = e] ⊢c X(i=e)[k = 1] = ϕ[i = e] cell if (i, e) specified in ϕ

Γ | Ψ[i = e][j = e′] ⊢c X(i=e)[j = e′] = X(j=e′)[i = e] cell

The CSP contains a variable for any side of the boundary that is not left open, the
domains contain all pairs of a cell p and PPM Σ contorting p into the right dimension. The
first set of constraints ensures that all sides agree with the goal boundary, while the second
set of constraints makes sure that all sides have mutually matching boundaries.

If Ope contains only sides which are unspecified in ϕ, a solution KanCSP(ϕ,Ope) is a
solution to the boundary problem ϕ:

Γ | Ψ ⊢ fill0→1 k.[ i = e 7→ t(i,e) for i ∈ Ψ, e ∈ {0, 1}, (i = e) /∈ Ope ] t(k,0) : [ϕ ]

▶ Example 20 (The Eckmann-Hilton cube). We want to fill the cube from Figure 1(b), for
which are given a cell context Γ with a point x : [ ] and two squares p(i, j) and q(i, j) with
boundaries [i = 0 7→ x | i = 1 7→ x | j = 0 7→ x | j = 1 7→ x], and which are assembled into:

Γ | i, j, k ⊢
[
i = 0 7→ p(j, k) | j = 0 7→ q(i, k) | k = 0 7→ x

i = 1 7→ p(j, k) | j = 1 7→ q(i, k) | k = 1 7→ x

]
bdy

We try to solve KanCSP with no open sides. This CSP has 7 variables corresponding to
sides i, j, k and a backside l = 0. After imposing the first set of constraints, the domains for
the i and j sides are significantly reduced, e.g., D(i=0) = {p⟨Σ⟩} for Σ : I3 → P(I2) given by:

000 7→ {00} 001 7→ {00} 010 7→ {00, 01} 011 7→ {01}
100 7→ {00, 10} 101 7→ {10} 110 7→ {00, 01, 10, 11} 111 7→ {11}

The PPM Σ gives rise to 9 contortions of p, which contrasts with D(3)2 = 400 total
contortions of p. The domains for D(k=0), D(k=1), and the back side D(l=0) still contain all
contortions of x, p and q into three dimensions since the k sides of the goal boundary does
not give any indication which contortion could be used for this side of the filler.

The second set of constraints ensures that all sides of the Kan filler have matching
boundaries, after which we find a solution to KanCSP that gives rise to the following filler:

Γ | i, j, k ⊢ fill0→1 l.

[
i = 0 7→ p(j, k ∧ l) j = 0 7→ q(i, k) k = 0 7→ x

i = 1 7→ p(j, k ∧ l) j = 1 7→ q(i, k) k = 1 7→ p(j, l)

]
q(i, k) cell

This filler captures the argument sketched in Figure 1, albeit in a single step: the p sides are
mapped to the k = 1 side such that they cancel out as in Figure 1(c), while the q sides are
constantly mapped to the backside of the filler, which is the cube from Figure 1(d).

4.2 A solver for KAN

We now give an algorithm to construct fillers of open cubes which might have fillers on
their faces, and not only contorted terms as in KanCSP. We can straightforwardly devise a
procedure KanFill(Γ,Ψ, ϕ) which produces fillers with the same dimension as ϕ: we check
for any face of ϕ if it gives rise to a natural filler.

The difficult part of Kan is the construction of higher-dimensional fillers, which might
possibly have fillers on their sides. We introduce a variable d to iteratively deepen the level
of such nested fillers, which effects a sort-of “breadth-first” search for nested fillers.
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Algorithm 2 Finding Kan cells.

Input: Γ | Ψ ⊢ ϕ bdy, depth variable d
Output: Γ | Ψ ⊢ t : [ϕ ], if Kan(Γ,Ψ, ϕ) solvable with ≤ d nested Kan fillers

1: procedure KanSolver(Γ,Ψ, ϕ, d)
2: if d = 0 then
3: return Unsolvable
4: t← KanFill(Γ,Ψ, ϕ) ∪ KanCube(Γ,Ψ, ϕ, d)
5: procedure KanCube(Γ,Ψ, ϕ, d)
6: Ope← P({(i = e) | i ∈ Ψ, e ∈ {0, 1}} ∪ {(k = 0)})
7: ϕ′ ← KanCSP(ϕ,Ope)
8: for (i = e) ∈ Ope do
9: t← KanSolver([ϕ′[i = e] ], d− 1)

10: ϕ′ := [ϕ′ | i = e 7→ t ]
11: return Γ | Ψ ⊢ fill0→1 k.[ϕ′ − (k = 0) ] (ϕ′[k = 0]) : [ϕ ]

Given a goal boundary ϕ, we search for solutions either by natural fillers or by higher-
dimensional fillers constructed with KanCube on line 4. In KanCube, we first select a set of
sides that are left open on line 6 and then pick a solution to the corresponding KanCSP on
line 7, which will fill all sides not left open with contorted cells. Finally, we call KanSolver
recursively on the open sides on line 9, where [ϕ′[i = e] ] denotes the boundary at i = e

induced by the faces already present in ϕ′.
The choices of solutions and open sides on lines 4, 6, 7 and 9 are made non-deterministically,

which is done using the list monad in the solver discussed in §5. In practice, the performance
of the algorithm depends heavily on the choices we make at this point. In our implementation,
we first try to solve KanCSP with Ope = ∅. If contortions are not enough to construct
all sides, it is useful to first use natural fillers which are induced by the goal boundary. In
addition, it is expedient to incrementally increase the number of open sides solutions of
KanCSP, e.g., using the depth-parameter d.

We now embed Algorithms 1 and 2 into a complete search procedure for Kan in Al-
gorithm 3. Our Solver starts by trying to contort some cell of the cell context into the goal
boundary. If this fails, we perform iterative deepening on the level of nested Kan cells.

Algorithm 3 A solver for boundary problems.

Input: Γ | Ψ ⊢ ϕ bdy
Output: Γ | Ψ ⊢ t : [ϕ ], if Kan(Γ,Ψ, ϕ) is solvable

1: procedure Solver(Γ,Ψ, ϕ)
2: for p ∈ Γ do
3: t← Contort(Γ,Ψ, ϕ, p)
4: if t ̸= Unsolvable then
5: return t

6: for d ∈ {1, . . .} do
7: t← KanSolver(Γ,Ψ, ϕ, d)
8: if t ̸= Unsolvable then
9: return t

▶ Example 21 (Sq→Comp). To complete the proof of Eckmann-Hilton, we need to fill the
cube from Figure 1(a) using Figure 1(b). We can do this already at a lower dimension –
which means at greater generality: the cube from Figure 1(b) is captured with a square
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Γ :=


x : [ ],
p(i) : [ i = 0 7→ x | i = 1 7→ x ],
q(i) : [ i = 0 7→ x | i = 1 7→ x ],

α(i, j) :
[
i = 0 7→ p(j) | j = 0 7→ q(i)
i = 1 7→ p(j) | j = 1 7→ q(i)

]
p(j)

q(i) q(i)

p(j)

α

i

j

that we want to turn into a square with both path concatenations on opposite sides:

Γ | i, j ⊢ ? : [ i = 0 7→ (p � q)(j) | i = 1 7→ (q � p)(j) | j = 0 7→ x | j = 1 7→ x ] (5)

Incidentally, Γ is the list of generators of the HIT capturing the Torus in agda/cubical,
while boundary (5) captures T 2, the definition of the torus in the HoTT book [35]. A solution
to this problem thus induces a map from the cubical torus to the HoTT book torus.

We solve (5) using Algorithm 3. After seeing that we cannot solve this goal with a
contortion, the algorithm at some point reaches depth d = 3 and solves KanCSP with open
sides Ope = {(i = 0), (i = 1)}. A solution to this CSP has the constant x square for j = 0,
p(k) for j = 1 and q(j) for k = 0 as depicted in the left cube below.

When calling KanSolver recursively on the two missing sides, we find with KanFill
that the i = 1 side can be solved with the natural filler for q � p. To fill side i = 0, we again
have to construct an open cube. One solution of KanCSP for this open cube is depicted on
the right below. The k = 1 side is filled by the natural filler for p � q. The other sides can be
filled with contortions, where side j = 1 makes use of α.

(p � q)(j)

(q � p)(j)

x x

q(j)

q(j)

x x

x p(k)

p(k)x

⋆

fill0→k

x p(k)q(j)

i

j
k x

p(k)

q(j) (p � q)(j)

x

p(j)x

p(k)

x x

q(l)q(l)

x

α(l, k)

q(j ∧ l) fill0→lp(j ∧ k)

j

k
l

5 A practical solver for Cubical Agda boundary problems

We have implemented the solver in Haskell,4 providing the first experimental solver for
boundary problems coming from Cubical Agda. The implementation of KanCSP is based
on a monadic solver for finite domain constraint satisfaction problems [25]. The user inputs
problems in a .cube file which contains a cell context and boundary problems over that
context. If the solver finds a solution, it is printed in Cubical Agda syntax so that it can be
copied and pasted into proof goals. Proper integration into Cubical Agda that allows the
solver to be called as a tactic from Agda is work in progress.

4 Source code and examples are available at: https://github.com/maxdore/dedekind

https://github.com/maxdore/dedekind
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We have curated a small benchmarking suite of boundary problems, many of which
are from the agda/cubical library. The problems are common proof obligations, such as
associativity of path concatenation, rearrangements of sides of cubes, etc. On a standard
laptop, all problems are quickly solved (often in < 50ms). This means that the solver is fast
enough to fit seamlessly into a formalisation workflow and can be used as a tactic for solving
routine proof goals. It can also solve some more complex goals such as Example 20.

In Cubical Agda, the constant path at x of type x ≡ x is expressed with λ-abstraction as
λ i → x . We can use the PathP type to describe higher-dimensional boundaries, e.g., PathP
(λ j → x ≡ x) (λ i → x) (λ i → x) is the boundary of a square with reflexive paths on its
sides. Given two such squares p and q, The Eckmann-Hilton cube is derived in ∼150ms:

EckmannHilton-Cube : PathP (λ i → q i ≡ q i) p p
EckmannHilton-Cube = λ i j k → hcomp (λ l → λ {

(i = i0) → p j (k ∧ l) ; (j = i0) → q i k ; (k = i0) → x ;
(i = i1) → p j (k ∧ l) ; (j = i1) → q i k ; (k = i1) → p j l }) (q i k)

The Cubical Agda primitive hcomp captures Kan fillers in direction 0→ 1. The solution to
the boundary problem discussed in the Sq→Comp example is found in ∼15ms, its translation
into Cubical Agda looks as follows (manually compressed to not use too much space in the
paper; the actual pretty-printed output is more readable):

Sq→Comp : PathP (λ j → q j ≡ q j) p p → p � q ≡ q � p
Sq→Comp α i j = hcomp (λ k → λ {

(i = i0) → hcomp (λ l → λ {
(j = i0) → x ; (k = i0) → q (j ∧ l) ; (j = i1) → α l k ;
(k = i1) → hfill (λ m → λ { (j = i0) → x ; (j = i1) → q m }) (inS (p j)) l })
(p (j ∧ k)) ;

(i = i1) → hfill (λ l → λ { (j = i0) → x ; (j = i1) → p l }) (inS (q j)) k ;
(j = i0) → x ; (j = i1) → p k })
(q j)

The function hfill ϕ t i is used in agda/cubical to define fillers in direction 0→ i. The term
t has to be embedded into the cube structure using inS, which is inserted automatically by
the Cubical Agda syntax pretty-printer of the solver.

Using these two automatically constructed proofs, we can readily establish by hand the
classical formulation of the Eckmann-Hilton argument in terms of path concatenations:

EckmannHilton : p � q ≡ q � p
EckmannHilton = Sq→Comp p q EckmannHilton-Cube

The boundary problem posed by EckmannHilton can also be passed directly to our
solver, however, it is not yet able to prove this problem within 100s. We have also curated
some further boundary problems which cannot be solved at the moment, these include a
7-dimensional analogue of the Square to cube contortion example and the syllepsis [28], which
establishes a higher coherence property of the Eckmann-Hilton proof.

In summary, while there is room to make the solver more performant, it can quickly
prove technical lemmas for us that would be tedious to prove by hand, taking significant
proof burden from a user of Cubical Agda. Furthermore, some deeper results of synthetic
homotopy theory, like the Eckmann-Hilton argument, can also be proved if the statement is
phrased carefully.
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6 Future and related work

There are many ways in which our work can be extended: the performance of the solver
can be improved by exploring other heuristics and refinements of the algorithms; the solver
should be properly integrated into Cubical Agda; the contortion theory should be extended
to also include the De Morgan involution. The solver could be extended to problems involving
multiple types and functions and to use cubical type theory’s transport primitive.

Early work on proof automation in HoTT is Brunerie’s work on computer-generated
proofs for the monoidal structure of smash products [7] which used path-induction and
metaprogramming in Agda. The problem of deciding equality in the cofibration logic of
cubical type theories has been studied by [27]. Among other things, they also establish
complexity-related results, in particular, that the entailment problems of the cofibration
languages of [1] and [9] are coNP-complete. Another line of related work where the relationship
to our work needs to be better understood is higher-dimensional rewriting, in particular, those
based on ∞-categories [14], operads [29], polygraphs [3] and associative n-categories [11].
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Abstract
Call-by-need evaluation for the λ-calculus can be seen as merging the best of call-by-name and
call-by-value, namely the wise erasing behaviour of the former and the wise duplicating behaviour
of the latter. To better understand how duplication and erasure can be combined, we design a
degenerated calculus, dubbed call-by-silly, that is symmetric to call-by-need in that it merges the
worst of call-by-name and call-by-value, namely silly duplications by-name and silly erasures by-value.

We validate the design of the call-by-silly calculus via rewriting properties and multi types. In
particular, we mirror the main theorem about call-by-need – that is, its operational equivalence with
call-by-name – showing that call-by-silly and call-by-value induce the same contextual equivalence.
This fact shows the blindness with respect to efficiency of call-by-value contextual equivalence. We
also define a call-by-silly strategy and measure its length via tight multi types. Lastly, we prove that
the call-by-silly strategy computes evaluation sequences of maximal length in the calculus.
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1 Introduction

Plotkin’s call-by-value and Wadsworth’s call-by-need (untyped) λ-calculi were introduced
in the 1970s as more application-oriented variants of the ordinary call-by-name λ-calculus
[53, 49]. The simpler call-by-value (shortened to CbV) calculus has found a logical foundation
in formalisms related to classical logic or linear logic [28, 44, 45, 33].

The foundation of call-by-need (CbNeed) is less developed, particularly its logical inter-
pretation. The duality related to classical logic can accommodate CbNeed, as shown by
Ariola et al. [19, 17], but it does not provide an explanation for it. Within linear logic,
CbNeed is understood as a sort of affine CbV, according to Maraist et al. [47]. Such an
interpretation however is unusual, because it does not match exactly with cut-elimination in
linear logic, as for call-by-name (CbN) and CbV, and it is rather connected with affine logic.

CbNeed Optimizes CbN. The main foundational theorem for CbNeed is the operational
equivalence of CbN and CbNeed due to Ariola et al. [18], that is, the fact that they induce
the same contextual equivalence, despite being based on different evaluation mechanisms.
The result formalizes that CbNeed is a semantic-preserving optimization of CbN.

An elegant semantic proof of this result is given by Kesner [38]. She shows that the
CbN multi type system by de Carvalho [30, 31] (considered before his seminal work also by
Gardner [35] and Kfoury [43]), which characterizes termination for CbN (that is, t is typable
⇔ t is CbN terminating), characterizes termination also for CbNeed. Multi types are also
known as non-idempotent intersection types, and have strong ties with linear logic.
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Duplication and Erasure, Wise and Silly. The linear logic interpretation of CbN and
CbV provides some operational insights about CbNeed. By bringing to the fore duplication
and erasure, linear logic underlines a second symmetry between CbN and CbV, which is
independent of classical logic as it can already be observed in an intuitionistic setting. The
idea is that CbN is wise with respect to erasure, because it never evaluates arguments that
might be erased (for instance (λx.I)Ω→CbN I, where I is the identity and Ω is the looping
combinator), while it is silly with respect to duplications, as it repeats possibly many times the
evaluation of arguments that are used at least once (for instance, (λx.xx)(II)→CbN II(II)).
Symmetrically, CbV is silly with respect to erasures, as it reduces in arguments that are not
going to be used (for instance looping on (λx.I)Ω), but it is wise for duplications, as it reduces
only once arguments that shall be used at least once (e.g. (λx.xx)(II)→CbV (λx.xx)I).

CbNeed is Pure Wiseness. In this framework, one can see CbNeed as merging the best of
CbN and CbV, i.e. wise erasure and wise duplication. In [12], this insight guides Accattoli
et al. in extending Kesner’s above-mentioned study of CbNeed via multi types [38]. Starting
from existing multi type systems for CbN and CbV, they pick out the aspects for CbN wise
erasures and CbV wise duplication as to build a CbNeed multi type system. Their system
characterizes CbNeed termination, as does the CbN system in [38]. Additionally, it tightly
characterizes CbNeed evaluation quantitatively: from type derivations one can read the exact
number of CbNeed evaluation steps, which is not possible in the CbN system.

Pure Silliness. This paper studies an unusual – and at first counter-intuitive – combination
of duplication and erasure. The idea is to mix together silly erasure and silly duplication,
completing the following diagram of strategies with its new call-by-silly (CbS) corner:

CbSSilly erasure Silly duplication

CbN
Wise erasure

Silly duplication CbV Silly erasure
Wise duplication

CbNeed Wise erasureWise duplication

DuplicationErasure

Duplication Erasure

(1)

Designing the CbS calculus and a CbS evaluation strategy is of no interest for programming
purposes, as CbS is desperately inefficient, by construction. It is theoretically relevant,
however, because it showcases how modularly duplication and erasure can be combined. As
we shall discuss, the study of CbS also contributes to the understanding of CbV.

Quantitative Goal and Micro Steps. We introduce CbS and provide evidence of its good
design via contributions that mirror as much as possible the theory of CbNeed. Our ultimate
test is to mirror the quantitative study of CbNeed by Accattoli et al. [12], via a new system
of multi types for CbS. It is a challenging design goal because this kind of quantitative results
requires a perfect matching between the operational and the multi types semantics.

As we explain at the end of Sect. 9, such a goal does not seem to be cleanly achievable
within the λ-calculus, where duplication is small-step, that is, arguments are substituted on
all the occurrences of a variable at once. It is instead attainable in a micro-step setting with
explicit substitutions, where one copy at a time is performed. Moreover, in the λ-calculus
duplication and erasure are hard to disentangle as they are both handled by β-reduction.
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Our Framework. A good setting for our purpose is Accattoli and Kesner’s linear substitution
calculus (LSC) [1, 8], a calculus with explicit substitutions which is a variation over a calculus
by Milner [48, 39] exploiting ideas from another work of theirs [13]. A key feature of the
LSC is that it has separate rules for duplication and erasure, and just one rule for each.

The LSC comes in two dialects, CbN and CbV, designed over linear logic proof nets [3, 2].
The further CbNeed LSC is obtained by taking the duplication rule of the CbV LSC and the
erasing rule of the CbN LSC. It was first defined by Accattoli et al. [5] and then studied or
extended by many recent works on CbNeed [38, 21, 6, 7, 41, 23, 12, 40, 22, 15].

Our starting point is the principled definition of the new silly (linear) substitution calculus
(SSC), the variant of the LSC obtained by mirroring the construction for CbNeed, namely by
putting together the CbN rule for duplication and the CbV one for erasure. In this way, all
the corners of the strategy diagram (1) fit into the same framework. Since CbNeed is usually
studied with respect to weak evaluation (that is, not under abstraction), we only consider
weak evaluation for the SSC (and leave the strong, unrestricted case to future work).

Contribution 1: Rewriting Properties. After defining the SSC, we prove some of the
rewriting properties that are expected from every well-behaved calculus. Namely, we provide
a characterization of its normal forms, that reduction is confluent, and that – as it is the
case for all dialects of the LSC – the CbV erasing rule can be postponed.

Via the multi types of the next contribution, we also prove uniform normalization for the
SSC, that is, the fact that a term is weakly normalizing (i.e. it reduces to a normal form) if
and only if it is strongly normalizing (i.e. it has no diverging reductions). This is trivially
true in (weak) CbV, where diverging sub-terms cannot be erased and terms with redexes
cannot be duplicated, and false in CbN and CbNeed, where diverging sub-terms can be
erased. In the SSC, it is true but non-trivial, because terms with redexes can be duplicated.

Contribution 2: Operational Equivalence. Next, we develop the mirrored image of the
main qualitative result for CbNeed, that is, we prove the operational equivalence of CbS and
CbV. We do so by mirroring Kesner’s semantic proof via multi types [38].

To this purpose, we cannot use the existing multi type system for CbV, due to Ehrhard [32],
as Kesner’s proof is based on a system for the slower of the two systems, in her case CbN.
Therefore, we introduce a silly multi type system, designed in a dual way to the one for
CbNeed by Accattoli et al. [12].

Our system is a minor variant over a system for CbN strong normalization by Kesner and
Ventura [42], and it also bears strong similarities with a system for CbV by Manzonetto et al.
[46, 37]. We prove that it characterizes termination for closed terms in both CbV and CbS,
from which it follows the coincidence of their respective contextual equivalences. This result
shows that CbV is a semantic-preserving optimization of CbS, exactly as CbNeed is for CbN.

CbV Contextual Equivalence is Blind to Efficiency. Contextual equivalence is usually
considered as the notion of program equivalence. This paper points out a fundamental
limitation of contextual equivalence for the effect-free untyped CbV λ-calculus. In absence
of effects, contextual equivalence does distinguish between CbV and CbN because of their
different erasing policies (as they change the notion of termination) but it is unable to
distinguish between their duplication policies (which only impact the efficiency of evaluation),
because it is blind to efficiency: it cannot “count” how many times a sub-term is evaluated.
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It is well known that, in richer frameworks with effects, CbV contextual equivalence can
“count”. In presence of state, indeed, more terms are discriminated, as doing once or twice
the same operation can now change the content of a state and contexts are expressive enough
to generate and distinguish these state changes [52, 25]. But it is instead not well known, or
not fully digested, that in the pure setting this is not possible – thus that CbV contextual
equivalence validates silly duplications – as we have repeatedly noted in discussions with
surprised colleagues.

To the best of our knowledge, such a blindness to efficiency has not been properly
established before. Proving contextual equivalence is technically difficult, often leading to
hand-waving arguments. Moreover, figuring out a general characterization of silly duplications
is tricky. We provide here an easy way out to prove CbV contextual equivalence for terms
related by silly duplications: it is enough to reduce them to the same normal form in the
SSC, a calculus qualitatively equivalent to CbV but based on silly duplications.

Note also that the equivalence of CbN and CbNeed is interpreted positively (despite
implying that CbNeed contextual equivalence is blind to efficiency) because it gives a
foundation to CbNeed. Curiously, the mirrored equivalence of CbV and CbS crystallizes
instead a negative fact about pure CbV, since CbV is expected to be efficiency-sensitive.

Contribution 3: The CbS Strategy. Beyond the SSC, we specify a tricky notion of CbS
strategy. CbS contexts are the modification of CbN contexts that also evaluate shared
sub-terms when they are no longer needed, i.e., after all the needed copies have already been
evaluated. The CbS strategy is an extension of the CbN strategy, on non-erasing steps.

We then prove that the CbS strategy is (essentially) deterministic (precisely, it is diamond,
a weakened form of determinism), and that the CbV erasing rule of the strategy can be
postponed. These usually simple results have in our case simple but lengthy proofs, because
of the tricky grammar defining CbS contexts.

Contribution 4: Tight Types and (Maximal) Evaluation Lengths. Lastly, we show that
the quantitative result for CbNeed by Accattoli et al. [12] is also mirrored by our silly type
system. We mimic [12] and we extract the exact length of evaluations for the CbS strategy
from a notion of tight type derivation.

We then use this quantitative result to show that the CbS strategy actually computes a
maximal evaluation sequence in the weak SSC. This is not so surprising, given that maximal
evaluations and strong normalization are related and measured with similar systems of multi
types, as in Bernadet and Lengrand [24], Kesner and Ventura [42], and Accattoli et al. [9].

At the same time, however, the maximality of CbS is specific to weak evaluation and
different from those results in the literature, which concern strong evaluation (that is, also
under abstraction). In particular, CbS would not be maximal in a strong setting (which we
do not treat here), as it would erase a value before evaluating it (as CbV also does). This is
precisely the difference between our type system and that of Kesner and Ventura.

Related Work. The only work that might be vaguely reminiscent of ours is by Ariola et al.
[19, 17], who study CbNeed with respect to the classical duality between CbN and CbV and
control operators. Their work and ours however are orthogonal and incomparable: they do
not obtain inefficient strategies and we do not deal with control operators.

Proofs. A long version with proofs in the Appendix is on ArXiv [14].
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Language Root rules
Terms t, s, u ::= x | λx.t | ts | t[x�s]

Values v, v′ ::= λx.t

Sub. Ctxs S, S′ ::= ⟨·⟩ | S[x�s]

S⟨λx.t⟩s 7→m S⟨t[x�s]⟩
W ⟨⟨x⟩⟩[x�s] 7→eW

W ⟨⟨s⟩⟩[x�s]
t[x�S⟨v⟩] 7→gcv S⟨t⟩ if x /∈ fv(t)

Weak reduction →w

Weak contexts
W ::= ⟨·⟩ |Wt | tW | t[x�W ] |W [x�s]

→wm := W ⟨7→m⟩
→we := W ⟨7→eW

⟩
→wgcv := W ⟨7→gcv⟩
→w := →wm ∪ →we ∪ →wgcv

Figure 1 The (weak) silly (linear) substitution calculus (SSC).

2 The Weak Silly Substitution Calculus

Inception. The SSC is a variant over Accattoli and Kesner’s linear substitution calculus
(LSC) [1, 8], which is a micro-step λ-calculus with explicit substitutions. Micro-step means
that substitutions act on one variable occurrence at a time, rather than small-step, that is,
on all occurrences at the same time. The LSC exists in two main variants, CbN and CbV.
The CbV variant is usually presented with small-step rules, and called value substitution
calculus, the micro-step (or linear) variant of which appears for instance in Accattoli et al.
[5, 12]. The two calculi have similar and yet different duplication and erasing rewriting rules.
We refer to [5, 12] for a uniform presentation of CbN, CbV, and CbNeed in the LSC.

The SSC in Fig. 1 is obtained dually to CbNeed, taking the duplication rule 7→eW
of

the CbN LSC and the erasing rule 7→gcv of the CbV LSC. Its evaluation is micro-step. We
only define its weak evaluation, which does not enter into abstractions, as it is often done in
comparative studies between CbN, CbV, and CbNeed such as [5, 12]. This sections overviews
the definitions in the figure. The SSC deals with possibly open terms. The CbS strategy, to
be defined in Sect. 8, shall instead deal only with closed terms.

Terms. Terms of the SSC are the same as for the LSC and extend the λ-calculus with explicit
substitutions t[x�s] (shortened to ESs), that is a more compact notation for let x = s in t,
but where the order of evaluation between t and s is a priori not fixed. The set fv(t) of free
variables of a term t is defined as expected, in particular, fv(t[x�s]) := (fv(t) \ {x}) ∪ fv(s).
Both λx.t and t[x�s] bind x in t, and terms are considered up to α-renaming. A term t is
closed if fv(t) = ∅, open otherwise. As usual, terms are identified up to α-equivalence. Meta-
level capture-avoiding substitution is noted t{x�s}. Note that values are only abstraction;
this choice shall be motivated in the next section.

Contexts. Contexts are terms with exactly one occurrence of the hole ⟨·⟩, an additional
constant, standing for a removed sub-term. We shall use many different contexts. The most
general ones in this paper are weak contexts W , which simply allow the hole to be anywhere
but under abstraction. To define the rewriting rules, substitution contexts S (i.e. lists of
explicit substitutions) also play a role. The main operation about contexts is plugging W ⟨t⟩
where the hole ⟨·⟩ in context W is replaced by t. Plugging, as usual with contexts, can
capture variables – for instance ((⟨·⟩t)[x�s])⟨x⟩ = (xt)[x�s]. We write W ⟨⟨t⟩⟩ when we want
to stress that the context W does not capture the free variables of t.
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Rewriting Rules. The reduction rules of the SSC are slightly unusual as they use contexts
both to allow one to reduce redexes located in sub-terms, which is standard, and to define the
redexes themselves, which is less standard. This approach is called at a distance and related
to cut-elimination on proof nets (from which the terminology multiplicative and exponential
to be discussed next is also taken), see Accattoli [2, 3].

The multiplicative rule 7→m is essentially the β-rule, except that the argument goes into a
new ES, rather then being immediately substituted, and that there can be a substitution con-
text S in between the abstraction and the argument. Example: (λx.y)[y�t]s 7→m y[x�s][y�t].
One with on-the-fly α-renaming is (λx.y)[y�t]y 7→m z[x�y][z�t].

The exponential rule 7→eW
replaces a single variable occurrence, the one appearing in

the context W . Example: (xx)[x�y[y�t]] 7→eW
(x(y[y�t]))[x�y[y�t]]. The notation 7→eW

stresses that the rule is parametric in a notion of context W , that specifies where the variable
replacements are allowed, and which shall be exploited to define the CbS strategy in Sect. 8.

The garbage collection (GC) rule by value 7→gcv eliminates a value v, keeping the list
of substitutions S previously surrounding the value, which might contain terms that are
not values, and so cannot be erased with v. This rule is the CbV erasing rule. Example:
(λz.yy)[x�I[w�t]] 7→gcv (λz.yy)[w�t], where I is the identity.

The three root rules 7→m, 7→eW
, and 7→gcv are then closed by weak contexts. We shorten

W ⟨t⟩ →wm W ⟨s⟩ if t 7→m s with →wm:= W ⟨7→m⟩, and similarly for the other rules. The
reduction →w encompasses all possible reductions in the weak SSC.

Silliness Check and the Silly Extra Copy. Let us evaluate with the SSC the examples
used in the introduction to explain silly and wise behaviour. About silly erasures, (λx.I)Ω
diverges, as in CbV. One can reduce it to I[x�Ω], but then there is no way of erasing Ω,
which is not a value and does not reduce to a value. About silly duplications, (λx.xx)(II)
can reduce both to II(II) and to (λx.xx)I, as in CbN. The silly aspect is the fact that one
can reduce to II(II), since in CbV this is not possible. The CbS strategy of Sect. 8 shall
always select the silly option.

Note that (λx.xx)(II) reduces to (xx)[x�II] and then three copies of II can be evaluated,
as one can reduce to II(II)[x�II] and the copy in the ES has to be evaluated before being
erased, because it is not a value. Such a further copy would not be evaluated in CbN, as
terms are erased without being evaluated. We refer to this aspect as to the silly extra copy.

3 Basic Rewriting Notions

Given a rewriting relation →r, we write d : t→∗
r s for a →r-reduction sequence from t to s,

the length of which is noted |d|. Moreover, we use |d|a for the number of a-steps in d, for a
sub-relation →a of →r.

A term t is weakly r-normalizing, noted t ∈ WNr, if d : t →∗
r s with s r-normal; and t

is strongly r-normalizing, noted t ∈ SNr, if there are no diverging r-sequences from t, or,
equivalently, if all its reducts are in SNr.

According to Dal Lago and Martini [29], a relation →r is diamond if s1 r←t→r s2 and
s1 ̸= s2 imply s1 →r u r←s2 for some u. If →r is diamond then:
1. Confluence: →r is confluent, that is, s1

∗
r←t→∗

r s2 implies s1 →∗
r u ∗

r←s2 for some u;
2. Length invariance: all r-evaluations to normal form with the same start term have the

same length (i.e. if d : t→∗
r s and d′ : t→∗

r s with s →r-normal then |d| = |d′|);
3. Uniform normalization: t is weakly r-normalizing if and only if it is strongly r-normalizing.
Basically, the diamond captures a more liberal form of determinism.
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4 Rewriting Properties

In this section, we study some rewriting properties of the weak SSC. We give a characterization
of weak normal forms and prove postponement of garbage collection by value and confluence.

Characterization of Normal Forms. The characterization of (possibly open) weak normal
forms requires the following concept.

▶ Definition 1 (Shallow free variables). The set shfv(t) of shallow free variables of t is the
set of variables with occurrences out of abstractions in t:

shfv(x) := {x} shfv(λx.t) := ∅
shfv(ts) := shfv(t) ∪ shfv(s) shfv(t[x�s]) := (shfv(t) \ {x}) ∪ shfv(s)

▶ Proposition 2. t is →w-normal if and only if t is a weak normal term according to the
following grammar:

Weak answers a, a ::= v | a[x�i] with x /∈ shfv(a)
| a[x�a′] with x ∈ fv(a) \ shfv(a)

Inert terms i, i′ ::= x | in | i[x�i′] with x /∈ shfv(i)
| i[x�a] with x ∈ fv(i) \ shfv(i)

Weak normal terms n, n′ ::= a | i

Postponement of GC by Value. As it is usually the case in all the dialects of the LSC, the
erasing rule of the weak SSC, that is →wgcv, can be postponed. Let →w¬gcv:=→wm ∪ →we.

▶ Proposition 3 (Postponement of garbage collection by value). If d : t →∗
w s then

t→k
w¬gcv→h

wgcv s with k = |d|w¬gcv and h ≥ |d|wgcv.

Local Termination. To prepare for confluence, we recall the following crucial property,
which is essentially inherited from the LSC, given that termination for →wgcv is trivial.

▶ Proposition 4 (Local termination). Reductions →wm, →we, and →wgcv are strongly normal-
izing separately.

Confluence. The proof of confluence for the weak SSC given here is a minor variant of what
would be done for the LSC, except that there is no direct proof of confluence in the literature
for the LSC1. Overviewing the proof allows us to explain a design choice of the SSC.

The proof is based on an elegant technique resting on local diagrams and local termination,
namely the Hindley-Rosen method. In our case, it amounts to prove that the three rules →wm,
→we, and →wgcv are confluent separately, proved by local termination and Newman’s lemma,
and commute, proved by local termination and Hindley’s strong commutation. Confluence
then follows by Hindley-Rosen lemma, for which the union of confluent and commuting
reductions is confluent. The Hindley-Rosen method is a modular technique often used for
confluence of extensions of the λ-calculus, for instance in [20, 34, 51, 27, 50, 26, 18, 16, 4].

▶ Lemma 5 (Local confluence). Reductions →wm and →wgcv are diamond, →we is locally
confluent.

1 Confluence of the LSC holds, as it follows from stronger results about residuals in Accattoli et al. [8]
but here we want to avoid the heaviness of residuals.
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In contrast to confluence, commutation of two reductions →1 and →2 does not follow
from their local commutation and strong normalization. In our case, however, the rules verify
a non-erasing form of Hindley’s strong (local) commutation [36] of →1 over →2, here dubbed
strict strong commutation: if s1 1←t→2 s2 then ∃u such that s1 →+

2 u 1←s2, that is, on one
side of the commutation there are no duplications of steps, and on both sides there are no
erasures, because →wgcv can only erase values, which do not contain redexes since evaluation
is weak. Strong commutation and strong normalization do imply commutation.

▶ Lemma 6 (Strict strong local commutations). Reduction →we (resp. →we; resp. →wgcv)
strictly strongly commutes over →wm (resp. →wgcv; resp. →wm).

▶ Theorem 7 (Confluence). Reductions →w and →w¬gcv are confluent.

Proof. By Newman lemma, local confluence (Lemma 5) and local termination (Prop. 4)
imply that →wm, →we, and →wgcv are confluent separately. By a result of Hindley [36], strict
strong local commutation (Lemma 6) and local termination imply that →wm, →we, and
→wgcv are pairwise commuting. By Hindley-Rosen lemma, →w=→wm ∪ →we ∪ →wgcv and
→w¬gcv=→wm ∪ →we are confluent. ◀

▶ Remark 8. The design choice that values are only abstraction is motivated by the commuta-
tion of→we over→wgcv. Indeed, if one considers variables as values (thus allowing the erasure
of variables by →gcv), such a commutation fails, and confluence does not hold, as the fol-
lowing non-commuting (and non-confluent) span shows: x[z�ww] wgcv←x[y�z][z�ww]→eW

x[y�ww][z�ww].
Interestingly, something similar happens in CbNeed, where values are only abstractions

too. Indeed, if one considers variables as values (thus allowing the duplication of variables
in CbNeed), then one has the following non-closable critical pair for the CbNeed strategy,
non-closable because y is not needed in I(λz.wx)[x�y][y�I] (the diagram closes in the
CbNeed calculus but the CbNeed strategy is not confluent):

x(λz.wx)[x�y][y�I] x(λz.wx)[x�I][y�I]

I(λz.wx)[x�I][y�I]y(λz.wx)[x�y][y�I] I(λz.wx)[x�y][y�I]

5 Silly Multi Types

In this section, we introduce multi types and the silly multi type system.

Inception. The design of the silly type system is specular to the one for CbNeed by Accattoli
et al. [12]. The CbNeed one tweaks the CbV system in the literature (due to Ehrhard [32])
by changing its rules for applications and ESs, which are the rules using multi-sets, as to
accommodate CbN erasures. The silly one given here tweaks the CbN system in the literature
(due to de Carvalho [31]) by changing the same rules to accommodate CbV erasures. In both
cases, the underlying system is responsible for the duplication behavior. The desired erasure
behavior is then enforced by changing the rules using multi-sets.

The silly system is in Fig. 2. It is the variant of the system for CbN in [12] (itself a
reformulation of [31] tuned for weak evaluation) obtained by adding “⊎[norm]” in the right
premise of both rules @ and ES. Such an extra typing for these rules captures the silly extra
copy mentioned at the end of Sect. 2. More details are given at the end of this section.
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Linear types L, L′ ::= norm |M→L

Multi types M, N ::= [Li]i∈I where I is a finite set
Generic types T , T ′ ::= L |M

ax
x : [L] ⊢(0,1) x : L

(Γi ⊢(mi,ei) t : Li)i∈I many
⊎i∈IΓi ⊢(

∑
i∈I

mi,
∑

i∈I
ei)

t : [Li]i∈I

axλ

⊢(0,0) λx.t : norm
Γ ⊢(m,e) t : M→L ∆ ⊢(m′,e′) s : M ⊎ [norm]

@
Γ ⊎ ∆ ⊢(m+m′+1,e+e′) ts : L

Γ ⊢(m,e) t : L
λ

Γ \\x ⊢(m,e) λx.t : Γ(x)→L

Γ ⊢(m,e) t : L ∆ ⊢(m′,e′) s : Γ(x) ⊎ [norm]
ES

(Γ \\x) ⊎ ∆ ⊢(m+m′,e+e′) t[x�s] : L

Figure 2 The silly multi type system.

CbS Types and Judgements. Linear types and multi(-sets) types are defined by mutual
induction in Fig. 2. Note the linear constant norm used to type abstractions, which are
normal terms. For conciseness, sometimes we shorten it to n. We shall show that every
normalizing term is typable with norm, hence its name. The constant norm shall also play a
role in our quantitative study in Sect. 9. The empty multi set [ ] is also noted 0.

A multi type [L1, . . . , Ln] has to be intended as a conjunction L1 ∧ · · · ∧ Ln of linear
types L1, . . . , Ln, for a commutative, associative, non-idempotent conjunction ∧ (morally a
tensor ⊗), of neutral element 0. The intuition is that a linear type corresponds to a single
use of a term t, and that t is typed with a multiset M of n linear types if it is going to be
used (at most) n times, that is, if t is part of a larger term s, then a copy of t shall end up
in evaluation position during the evaluation of s.

Judgments have shape Γ ⊢(m,e) t : T where t is a term, m and e are two natural numbers,
T is either a multi type or a linear type, and Γ is a type context, i.e., a total function from
variables to multi types such that dom(Γ) := {x | Γ(x) ̸= 0} is finite, usually written as
x1 : M1, . . . , xn : Mn (with n ∈ N) if dom(Γ) ⊆ {x1, . . . , xn} and Γ(xi) = M i for 1 ≤ i ≤ n.

The indices m and e shall be used for measuring the length of evaluation sequences
via type derivations, namely to measure the number of →wm and →we steps. There is no
index for →wgcv steps in order to stay close to the type systems in Accattoli et al. [12] for
CbN/CbV/CbNeed, that do not have an index for GC either; the reason being that GC (by
value) can be postponed. A quick look to the typing rules shows that m and e are not really
needed, as m can be recovered as the number of app rules, and e as the number of ax rules.
It is however handy to note them explicitly.

We write Γ ⊢ t : T when the information given by m and e is not relevant.

Typing Rules. The abstraction rule λ uses the notation Γ \\x for the type context defined
as Γ on every variable but possibly x, for which (Γ \\x)(x) = 0. It is a compact way to
express the rule in both the cases x ∈ dom(Γ) and x /∈ dom(Γ).

Rules @ and ES require the argument to be typed with M ⊎ [norm], which is necessarily
introduced by rule many, the hypotheses of which are a multi set of derivations, indexed by
a possibly empty set I. When I is empty, the rule has one premises, the one for norm.

Type Derivations. We write π ▷ Γ ⊢ t : L if π is a (type) derivation (i.e. a tree constructed
using the rules in Fig. 2) of final judgment Γ ⊢ t : L.

The size |π| of a derivation π ▷ Γ ⊢⊢⊢(m,e)t : A is the number of non-many rules, which is
always greater or equal to the sum of the indices, that is, |π| ≥ m + e.
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Further Technicalities about Types. The type context Γ is empty if dom(Γ) = ∅, and we
write ⊢ t : L when Γ is empty. Multi-set sum ⊎ is extended to type contexts point-wise, i.e.
(Γ ⊎∆)(x) := Γ(x) ⊎∆(x) for each variable x. This notion is extended to a finite family of
type contexts as expected, in particular ⊎i∈JΓi is the empty context when J = ∅. Given
two type contexts Γ and ∆ such that dom(Γ) ∩ dom(∆) = ∅, the type context Γ, ∆ is defined
by (Γ, ∆)(x) := Γ(x) if x ∈ dom(Γ), (Γ, ∆)(x) := ∆(x) if x ∈ dom(∆), and (Γ, ∆)(x) := 0
otherwise. Note that Γ, x : 0 = Γ, where we implicitly assume x /∈ dom(Γ).

Relevance. Note that no weakening is allowed in axioms. An easy induction then shows:

▶ Lemma 9 (Type contexts and variable occurrences). Let π ▷ Γ ⊢⊢⊢(m,e)t : L be a derivation.
Then shfv(t) ⊆ dom(Γ) ⊆ fv(t).

Lemma 9 implies that derivations of closed terms have empty type context. Note that
free variables of t might not be in dom(Γ), if they only occurr in abstractions typed with axλ.

Typing the Silly Extra Copy. The empty multi type 0 is the type for variables that do
not occur or whose occurrences are unreachable by weak evaluation. A typical example is
λx.y, that can be typed only with arrow types of the form 0→L (plus of course with norm),
because of Lemma 9. Note that in the silly system every term – even diverging ones – can be
typed with 0 by rule many (taking 0 premises). In CbN, an argument for λx.y would only
need to be typed with 0, as typability with 0 means that the term shall be erased. In the
silly system, instead, the application rule @ requires an argument of λx.y to additionally be
typed with [norm], because of the “⊎[norm]” requirement for arguments (and ESs), forcing
the argument to be →w normalizing and capturing silly erasures.

Now, note that the modification ⊎[norm] at work in the silly system concerns all arguments
and ESs, not only those associated to 0. This is what correspond at the type level to the
reduction of the silly extra copy of every argument/ES (out of abstractions).

Relationship with the Literature. Our system is essentially the one used by Kesner and
Ventura to measure CbN strong normalization in the LSC with respect to strong evaluation,
i.e. possibly under abstraction [42]. There are two differences. Firstly, they tweak the @
and ES CbN rules with ⊎[L] rather than with ⊎[norm], that is, they allow an arbitrary linear
type for the additional copy to be evaluated. Secondly, they do not have rule axλ, because
their evaluation is strong. Thus, I[x�λy.Ω] is not typable in [42], while here it is.

The CbV system by Manzonetto et al. [46] is similar to ours in that it tweaks the CbN
system and requires multi-sets to be non-empty.

6 The Weak Calculus, Types, and Strong Normalization

Here, we show that silly multi types characterize strong normalization in the weak SSC.
The proof technique is standard: we prove correctness – i.e. t typable implies t ∈ SNw – via
subject reduction, and completeness – i.e. t ∈ SNw implies t typable – via subject expansion
and typability of normal forms. Note that SN in our weak case is simpler than SN in strong
calculi, since here erasing steps cannot erase divergence. Actually, they cannot erase any step,
as guaranteed by strict commutation in Sect. 4. At the end of the section, we shall indeed
obtain uniform normalization, i.e. that weak and strong normalization for →w coincide.
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Correctness. As it is standard, subject reduction for →we is based on a linear substitution
lemma, in the technical report [14].

▶ Proposition 10 (Quantitative subject reduction for Weak SSC). Let π ▷ Γ ⊢⊢⊢(m,e)t : L be a
derivation.
1. Multiplicative: if t→wm s then m ≥ 1 and there exists ρ ▷ Γ ⊢⊢⊢(m′,e)s : L with m > m′.
2. Exponential: if t→we s then e ≥ 1 and there exists ρ ▷ Γ ⊢⊢⊢(m,e′)s : L with e > e′.
3. GC by value: if t→wgcv s then there exists ρ ▷ Γ ⊢⊢⊢(m,e)s : L with |π| > |ρ|.

Note that →wgcv steps do not change the m and e indices. This is a consequence of rules
@ and ES having been modified for CbS with ⊎[norm] (and not with ⊎[L] as in [42]).

▶ Theorem 11 (Weak SSC correctness). Let t be a term. If π ▷ Γ ⊢⊢⊢(m,e)t : L then t ∈ SNw.
Moreover, if d : t→∗

w n is a normalizing sequence then |d|wm ≤ m and |d|we ≤ e.

Proof. By lexicographic induction on (m + e, |π|) and case analysis on whether t reduces
or not. If t is →w-normal then the statement trivially holds. If t is not →w-normal we show
that all its reducts are SN for →w, that is, t is SN. If t→wm u then by quantitative subject
reduction (Prop. 28) there is a derivation ρ ▷ Γ ⊢⊢⊢(m′,e)u : L with m′ < m. By i.h., u is SN.
If t→we u or t→wgcv u we reason similarly, looking at the e index for →we and to the size |ρ|
of the derivation for →wgcv. The moreover part follows from the fact that →wm (resp. →we)
steps strictly decrease m (resp. e). ◀

Completeness. For completeness, we first need typability of weak normal forms. The two
points of the next proposition are proved by mutual induction. The second point is stronger,
as it has a universal quantification about linear types, crucial for the induction to go through.

▶ Proposition 12 (Weak normal forms are typable).
1. Let a be a weak answer. Then there exists π ▷ Γ ⊢⊢⊢(0,0)a : norm with dom(Γ) = shfv(a).
2. Let i be an inert term. Then for any linear type L there exist a type context Γ such that

dom(Γ) = shfv(i) and a derivation π ▷ Γ ⊢⊢⊢(0,0)i : L.

The rest of the proof of completeness is dual to the one for correctness, with an anti-
substitution lemma (in the technical report [14]) needed for subject expansion for →we. We
omit the indices because for completeness they are irrelevant.

▶ Proposition 13 (Subject expansion for Weak SSC). Let π ▷ Γ ⊢⊢⊢s : L be a derivation. If
t→w s then there exists a derivation ρ ▷ Γ ⊢⊢⊢t : L.

▶ Theorem 14 (Weak SSC completeness). Let t be a term. If t→∗
w n and n is a weak normal

form then there exists π ▷ Γ ⊢⊢⊢t : norm.

Proof. By induction on k = |d|. If k = 0: then t = n and is typable with norm by Prop. 12.
If k > 0 then t→w u→k−1

w n for some u and by i.h. there is a derivation π′ ▷ Γ ⊢⊢⊢u : L. By
subject expansion (Prop. 13), π ▷ Γ ⊢⊢⊢t : L. ◀

▶ Corollary 15 (Weak SSC Uniform normalization). t is weakly →w-normalizing if and only if
t is strongly →w-normalizing.

Proof. The non-obvious direction is⇒. By completeness (Th. 14), t ∈WNw implies typability,
which in turn, by correctness (Th. 11), implies t ∈ SNw. ◀
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Terms t, s, u ::= x | λx.t | ts
Values v, v′ ::= λx.t

CbV contexts V ::= ⟨·⟩ | tV | V t

Rewriting rule
(λx.t)v 7→βv

t{x�v}

→βv
:= V ⟨7→βv

⟩

Figure 3 The call-by-value λ-calculus.

7 Call-by-Value and Operational Equivalence

Here, we show that the silly multi types characterize CbV termination as well, and infer the
operational equivalence of the SSC and CbV.

Closed CbV without ESs. We define the CbV λ-calculus in Fig. 3, mostly following the
presentation of Dal Lago and Martini [29], for which the βv-rule is non-deterministic but
diamond (thus trivially uniformly normalizing, see the rewriting preliminaries). The only
change with respect to [29] is that here values are only abstractions, for uniformity with the
Weak SSC. We shall consider the weak evaluation of closed terms only, for which there is no
difference whether variables are values or not, since free variables cannot be arguments (out
of abstractions) anyway. Closed normal forms are exactly the abstractions.

We discuss only the closed case for CbV because the silly type system is not correct for
CbV with open terms. This point is properly explained after the operational equivalence
theorem. It is also the reason why we do not present CbV via the LSC, as also explained
after the theorem. The problem with open terms does not hinder the operational equivalence
of the SSC and CbV, because contextual equivalence is based on closed terms only.

Judgements for CbV. In this section, the index e of the silly type system does not play
any role, because →βv

steps are bound only by the m index. Therefore, we omit e and write
π ▷ Γ ⊢⊢⊢mt : L instead of π ▷ Γ ⊢⊢⊢(m,e)t : L.

Correctness. The proof technique is the standard one. As usual, subject reduction is proved
via a substitution lemma specified in the technical report [14]. The index m is used as
decreasing measure to prove correctness.

▶ Proposition 16 (Quantitative subject reduction for Closed CbV). Let t be a closed term. If
π ▷ ⊢⊢⊢mt : L and t→βv

s then m ≥ 1 and there exists ρ ▷ ⊢⊢⊢m′
s : L with m > m′.

▶ Theorem 17 (Closed CbV correctness). Let t be a closed term. If π ▷ ⊢⊢⊢mt : L then there
are an abstraction v and a reduction sequence d : t→∗

βv
v with |d| ≤ m.

Completeness. Completeness is also proved in a standard way, omitting the index m

because it is irrelevant.

▶ Proposition 18 (Subject expansion for Closed CbV). If π ▷ ⊢⊢⊢s : L and t→βv
s then and

there exists a typing ρ such that ρ ▷ ⊢⊢⊢t : L.

▶ Theorem 19 (Closed CbV completeness). Let t be a closed λ-term. If there exists a value v

and a reduction sequence d : t→∗
βv

v then π ▷ ⊢⊢⊢t : norm.
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Operational Equivalence. We define abstractly contextual equivalence for a language of
terms and arbitrary contexts which are terms with an additional hole construct.

▶ Definition 20 (Contextual Equivalence). Given a rewriting relation →, we define the
associated contextual equivalence ≃C as follows: t ≃C t′ if, for all contexts C such that C⟨t⟩
and C⟨t′⟩ are closed terms, C⟨t⟩ is weakly →-normalizing iff C⟨t′⟩ is weakly →-normalizing.

Let ≃silly
C and ≃value

C be the contextual equivalences for →w and →βv . The next section
shall show that ≃silly

C can equivalently be defined using the CbS strategy.

▶ Theorem 21 (Operational equivalence of CbS and CbV). On λ-terms, t ≃silly
C s iff t ≃value

C s.

Proof. On closed λ-terms, both →w-termination and →βv
-termination are equivalent to

typability in the silly system (Theorems 11 and 14 for →y and Theorems 17 and 19 for →βv
).

Thus the contextual equivalences coincide. ◀

Call-by-Silly Helps to Prove Contextual Equivalence. As the last theorem says, contextual
equivalences induced by CbV and CbS coincide. Even though they equate the same terms,
CbS reduction sometimes provides a way to prove CbV contextual equivalence in cases where
CbV does not. Consider the following four different terms, where i could be any normal form
that is not of the shape S⟨v⟩, for example i = yI:

(λx.xx) i (λx.xi) i (λx.ii) i ii

These four terms can intuitively be seen as CbV contextually equivalent, as we now
outline. When one of these terms is plugged in a closing context C, reduction shall provide
substitutions on i making it either converge to a value v or diverge. if it diverges, so will
the four terms. If it converges to v, then all four terms will reduce to vv. This reasoning
however cannot easily be made formal.

The easiest way to prove that two terms are contextually equivalent for a reduction →r is
to prove that they are related by =r, the smallest equivalence relation including →r. We shall
now see how the silly calculus helps in equating more terms (than CbV) with its reduction.

The four terms above are not =βv
-related. First, note that the four terms are all →βv

-
normal (assuming that i is→βv -normal). If they were =βv -related, then by the Church-Rosser
property they should have a common reduct. As the four terms are syntactically different
normal forms, they cannot be equated by =βv .

The first three terms are =w-related. The first three terms rewrite in the SSC to ii[x�i],
which is why (λx.xx) i =w (λx.xi) i =w (λx.ii) i =w ii[x�i].

Unfortunately, the fourth term ii is a →w-normal form and hence ii ̸=w ii[x�i]. Thus, not
all CbV contextually equivalent terms are equated by the silly calculus, not even when the
difference amounts to the duplication of a non-value term. The issue has to do with the silly
extra copy that cannot be erased easily. We believe that a small-step silly calculus could help
equating more terms, but we have not managed to work out multi types for such a calculus.

We refer the reader to the technical report [14] for the proof that =w-related terms are
contextually equivalent.

The Issue with Open CbV and the Silly Type System. There is an issue if one considers
the silly type system relatively to CbV with open terms, namely subject reduction breaks.
This point is delicate. In fact, there are no issues if one considers only Plotkin’s βv rule,
except that Plotkin’s rule is not an adequate operational semantics for CbV with open terms,
as it is well-known and discussed at length by Accattoli and Guerrieri [10, 11]. Adequate
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operational semantics for Open CbV do extend Plotkin’s. One such semantics is Carraro
and Guerrieri’s shuffling calculus [27], that extends βv by adding some σ-rules. We briefly
discuss it here; the last paragraph of this section shall explain because we prefer it to the
CbV LSC for the explanation of the issue with open terms.

It turns out that one of the σ rules breaks subject reduction for the silly type system
(while there are no problems if one considers instead Ehrhard’s CbV multi types [32]), as we
now show. Rule 7→σ3 is defined as follows:

z((λx.y)s) 7→σ3 (λx.zy)s

For n ≥ 1, we have the following derivation for the source term z((λx.y)s) in the silly type
system:

πz ▷ . . .

ax
y : [A] ⊢ y : A

λ
y : [A] ⊢ λx.y : 0→A

πs ▷ Γ ⊢ s : norm
many

Γ ⊢ s : [norm]
@

(y : [A], Γ ⊢ (λx.y)s : A)i=1,...,n

ax
y : [norm] ⊢ y : norm

λ
y : [norm] ⊢ λx.y : 0→norm

πs ▷ Γ ⊢ s : norm
many

Γ ⊢ s : [norm]
@

y : [norm], Γ ⊢ (λx.y)s : norm
many

y : [An, norm], Γn+1 ⊢ (λx.y)s : [An, norm]
@

z : [[An, norm]→B], y : [An, norm], Γn+1 ⊢ z((λx.y)s) : B

where πz ▷ . . . stands for:
ax

πz ▷ z : [[An]→B] ⊢ z : [An]→B

The target term (λx.zy)s of rule 7→σ3 , instead, can only be typed as follows, the key
point being that Γn+1 is replaced by Γ:

ax
z : [[An]→B] ⊢ z : [An]→B

ax
(y : [A] ⊢ y : A)i=1,...,n

ax
y : [norm] ⊢ y : norm

many
y : [An, norm] ⊢ y : [An, norm]

@
z : [[An]→B], y : [An, norm] ⊢ zy : B

λ
z : [[An]→B], y : [An, norm] ⊢ λx.zy : 0→B

πs ▷ Γ ⊢ s : norm
many

Γ ⊢ s : [norm]
@

z : [[An]→B], y : [An, norm], Γ ⊢ (λx.zy)s : B

This counter-example adapt the counter-example given by Delia Kesner to subject
reduction for the multi type system by Manzonetto et al. [46, 37], as reported in the long
version on Arxiv of [11], which appeared after the publication of [46, 37], where there is no
mention of this issue. The work in the present paper can be actually seen as a clarification of
the failure of subject reduction for the system in [46, 37]. Essentially, the system in [46, 37]
is a system for CbS, not for CbV, but is therein used to study CbV strong evaluation with
possibly open terms, unaware that the system models a different evaluation mechanism.

We conjecture that the silly type system is adequate for Open CbV (that is, a term is
silly typable if and only if it is CbV terminating) even if it is not invariant for Open CbV
(that is, subject reduction does not hold).

Naturality of the Issue. A first reaction to the shown issue is to suspect that something is
wrong or ad-hoc in our approach, especially given that the operational equivalence of CbN
and CbNeed does not suffer of this issue, that is, the CbN multi type system is invariant
for CbNeed evaluation of open terms. At high-level, however, the issue is natural and to be
expected, as we now explain. The two systems of each pair CbN/CbNeed and CbS/CbV
have different duplicating policies and the same erasing policy. The pair CbN/CbNeed has
no restrictions on erasure, thus open normal forms have no garbage. Therefore, the different
ways in which they duplicate garbage are not observable. For the pair CbS/CbV, instead,
erasure is restricted to values, with the consequence that garbage has to be evaluated before
possibly being erased, and that with open terms some garbage might never be erased. Thus,
the different duplicating policies of CbS/CbV leave different amounts of non-erasable garbage
in open normal forms, which is observable and changes the denotational semantics.
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The Open CbV LSC. Another adequate formalism for Open CbV is the VSC, or its
micro-step variant, the CbV LSC. We now discuss the CbV LSC, but everything we say
applies also to the VSC.

The difference between the shuffling calculus and the CbV LSC is that the latter uses
ESs and modifies the rewriting rules at a distance. In particular, duplication is done by the
following exponential rule:

W ⟨x⟩[x�S⟨v⟩] →ve S⟨W ⟨v⟩[x�v]⟩

Subject reduction breaks also for the CbV LSC, as we can show by adapting Kesner’s
counter-example. Consider the step (zy′)[y′�I[y�s]]→ve (zI)[y′�I][y�s]:

π1 ▷ z : [[An]→B], y′ : [An] ⊢ zy′ : B

πI ⊢ I : A

πs ▷ Γ ⊢ s : norm
many

Γ ⊢ s : [norm]
ES

(Γ ⊢ I[y�s] : A)i=1,...,n

axλ
⊢ I : norm

πs ▷ Γ ⊢ s : norm
many

Γ ⊢ s : [norm]
ES

Γ ⊢ I[y�s] : norm
many

Γn+1 ⊢ I[y�s] : [An, norm]
ES

z : [[An]→B], Γn+1 ⊢ (zy′)[y′�I[y�s]] : B

As for 7→σ3 , the key point is that that Γn+1 gets replaced by Γ in the typing of the reduct:

ax
z : [[An]→B] ⊢ z : [An]→B

(πI ⊢ I : A)i=1,...,n

axλ
⊢ I : norm

many
⊢ I : [An, norm]

ES
z : [[An]→B] ⊢ zI : B

axλ
⊢ I : norm many

⊢ I : [norm]
ES

z : [[An]→B] ⊢ (zI)[y′�I] : B

πs ▷ Γ ⊢ s : norm
many

Γ ⊢ s : [norm]
ES

z : [[An]→B], Γ ⊢ (zI)[y′�I][y�s] : B

What breaks it is the use of the substitution context S in →ve, which can be seen as the
analogous of rule 7→σ3 of the shuffling calculus. The difference is that while 7→σ3 is needed
only for open terms in the shuffling calculus, rule →ve is used also for the evaluation of
closed terms in the CbV LSC. This is why we preferred to avoid using the CbV LSC to
study Closed CbV. In fact, one can prove that in the closed case the modification of rule
→ve without S is enough to reach normal forms. But this fact needs a technical study and a
theorem, which we preferred to avoid.

8 The Call-by-Silly Strategy

In this section, we define the CbS evaluation strategy as a sort of extension of the CbN one.
We then start by recalling the CbN erasing rule and the CbN strategy.

CbN Erasure. The garbage collection (GC) rule 7→gc in Fig. 4 eliminates the ES t[x�s]
when the bound variable x does not occur in t. Rule 7→gc is the CbN form of erasure and it
is not part of the rules of the SSC; it is given here only to be able to define the CbN strategy.
Example: (λz.yy)[x�I[w�t]] 7→gc λz.yy.

Call-by-Name. In Fig. 4, we define the CbN strategy →n of the weak LSC, first appeared in
Accattoli et al. [5]. The CbN strategy uses the CbN GC rule 7→gc. Note that CbN evaluation
contexts N never enter into arguments or ESs. The CbN strategy is almost deterministic: rules
→nm and →ne are deterministic and its erasing rule →ngc is non-deterministic but diamond;
for instance I[z�II] ngc←I[y�I][z�II]→ngc I[y�I], and then I[z�II]→ngc I ngc←I[y�I].
Moreover, →gc is postponable, i.e. if t→∗

n s then t→∗
n¬gc→∗

gc s where →n¬gc:=→nm ∪ →ne,
which is why it is often omitted from the micro-step presentation of CbN.
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Call-by-name strategy →n

Name ctxs N, N ′ ::= ⟨·⟩ | Nt | N [x�t]

Root GC t[x�s] 7→gc t if x /∈ fv(t)

→nm := N⟨7→m⟩
→ne := N⟨7→eN

⟩
→ngc := N⟨7→gc⟩
→n := →nm ∪ →ne ∪ →ngcv

Call-by-silly strategy →y

Answers a, a′ ::= v | a[x�a′]
Aux. ctxs A, A′ ::= ⟨·⟩ | a[x�A] | A[x�t]
Silly ctxs Y, Y ′ ::= A⟨N⟩

→ym := Y ⟨7→m⟩
→ygcv := Y ⟨7→gcv⟩
→yeAY := A⟨7→eY

⟩
→yeYN := Y ⟨7→eN

⟩
→y := →ym ∪ →yeAY ∪ →yeYN ∪ →ygcv

Figure 4 The call-by-name and call-by-silly strategies.

The Call-by-Silly Strategy. The CbS strategy →y is defined in Fig. 4 via silly evaluation
contexts Y – explained next – (we use Y for sillY because S is already used for substitution
contexts) and the CbV erasing rule 7→gcv of the SSC. Letting GC aside, CbS is the extension
of CbN that, once (non-erasing) CbN can no longer reduce, starts evaluating the ESs (out
of abstractions) left hanging by the CbN strategy. Such an extension is specified via the
auxiliary contexts A, whose key production is t[x�A] for evaluation contexts where t is a
CbS normal form: evaluation enters an ESs only when it is sure that it is no longer needed.
There are, however, a few subtleties.

Firstly, no longer needed does not necessarily mean without free occurrences, as occurrences
might be blocked by abstractions, as for instance in (λy.x)[x�s] where x occurs but only
under abstraction, and the CbS has to evaluate inside s. Therefore, no longer needed rather
means without shallow free occurrences (Def. 1, page 7).

Secondly, in order to be sure that no occurrences of x shall become shallow because of
other steps, we shall ask that in t[x�Y ] the sub-term t is a normal form, otherwise in a
case such as ((λy.x)I)[x�s] the reduction of the multiplicative step to x[y�I][x�s] turns a
blocked occurrence of x into a shallow occurrence. Because of rules at a distance, the term
(λy.x)[x�s]I suffers of the same problem but the argument comes on the right of the ES.
For this reason, we forbid the evaluation context to be applied once it enters an ES, that is,
silly contexts Y are defined as A⟨N⟩, that is, rigidly separating the construction that applies
(at work in N) from the one that enters ES (at work in A).

Thirdly, such a rigid separation in the definition of silly contexts forces us to have two
exponential rules. Exponential rules use contexts twice in their definition: to select the
occurrence to replace in the root rule and to extend the applicability of the root rule. The
subtlety is that if both these contexts are silly, then one can nest an A context (selecting an
occurrence) under a N context (extending the rule), which, as explained, has to be avoided.
Therefore there are two silly exponential rules →yeAY and →yeYN carefully designed as to avoid
the dangerous combination (that would be given by N⟨7→eA

⟩).
Fourthly, in order to mimic the property of CbN that GC is postponable, we shall ask

that in t[x�Y ] the sub-term t is a normal form only for the non-erasing CbS, otherwise in a
case such as x[y�I][x�s] the CbS strategy would be forced to erase [y�I] before evaluating s.
Normal forms for non-erasing CbS are characterized below (Prop. 23) exactly as the answers
defined in Fig. 4. We shall also prove that →ygcv steps are postponable (Prop. 3).

The CbS strategy is supposed to be applied to closed terms only, while there is no closure
hypothesis on the weak calculus.
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▶ Example 22. A good example to observe the differences between CbN and CbS is given
by the term t := (λy.λx.x(λw.x))Ω(II) where I := λz.z, Ω := δδ, and δ := λz.zz. In CbN,
it evaluates with 4 multiplicative steps and 3 exponential steps, as follows:

t →nm (λx.x(λw.x))[y�Ω](II) →nm (x(λw.x))[x�II][y�Ω]
→ne ((II)(λw.x))[x�II][y�Ω] →nm (z[z�I](λw.x))[x�II][y�Ω]
→ne (I[z�I](λw.x))[x�II][y�Ω] →nm z′[z′�λw.x][z�I][x�II][y�Ω]
→ne (λw.x)[z′�λw.x][z�I][x�II][y�Ω] =: s

The obtained term s is normal for the multiplicative and exponential rules. Since in CbN
one can erase every term, s then reduces (in CbN) as follows:

s →ngc (λw.x)[z�I][x�II][y�Ω] →ngc (λw.x)[x�II][y�Ω] →ngc (λw.x)[x�II]

The obtained term is now normal for the CbN strategy, since evaluation does not enter into
ESs. Note that t diverges for CbV evaluation (defined in Sect. 7). In CbS, the first part of
the evaluation of t, up to s, is the same as for CbN (where →ne steps become →yeYN steps).
Then, s evaluates differently than in CbN, diverging:

s →ygcv (λw.x)[z�I][x�II][y�Ω] →ygcv (λw.x)[x�II][y�Ω]
→ym (λw.x)[x�z[z�I]][y�Ω] →yeAY (λw.x)[x�I[z�I]][y�Ω]
→ygcv (λw.x)[x�I][y�Ω] →ym (λw.x)[x�I][y�zz[z�δ]] ...

Rewriting Properties of CbS. We start by characterizing normal form for both the CbS
strategy and its non-erasing variant →y¬gcv:=→ym ∪ →yeAY ∪ →yeYN .

▶ Proposition 23. Let t be closed.
1. t is →w¬gcv-normal if and only if t is →y¬gcv-normal if and only if t is an answer.
2. t is →w-normal if and only if t is →y-normal if and only if t is a strict answer:

Strict answers as ::= v | as[x�a′
s] with x ∈ fv(as)

Next, we prove that the CbS strategy is almost deterministic. Its non-erasing rules are
deterministic, while →ygcv is diamond. For instance:
I[z�δ] ygcv←I[y�I][z�δ]→ygcv I[y�I], and then I[z�δ]→ygcv I ygcv←I[y�I].

▶ Proposition 24. Reductions →ym, →yeAY , and →yeYN are deterministic, and →ygcv is
diamond.

Lastly, we prove the linear postponement of →ygcv, that is, the fact that it can be
postponed while preserving the length of the evaluation. The length preservation shall be
used to prove the maximality of →y in the next section.

▶ Proposition 25 (Postponement of →ygcv). If d : t →∗
y s then t →k

y¬gcv→h
ygcv s with

k = |d|y¬gcv and h = |d|ygcv.

9 Tight Derivations, Exact Lengths, and Maximality

Here, we focus on the CbS strategy on closed terms and isolate a class of tight type derivations
whose indices measure exactly the number of non-erasing CbS steps, mimicking faithfully
what was done in call-by-name/value/need by Accattoli et al. in [12]. An outcome shall be
that the CbS strategy actually performs the longest weak evaluation on closed terms.
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Tight Derivations. The basic tool for our quantitative analysis are tight type derivations,
which shall be used to refine the correctness theorem of the weak case (Th. 11) in the case of
closed terms. Tight derivations are defined via a predicate on their last judgement, as in [12].

▶ Definition 26 (Tight types and derivations). A type T is tight if T = norm or T = [norm].
A derivation π ▷ Γ ⊢⊢⊢(m,e)t : T is tight if T is tight.

Tight Correctness. We first show that all tight derivations for answers have null indices.

▶ Proposition 27 (Tight typing of normal forms for non-erasing CbS). Let a be an answer and
π ▷ Γ ⊢⊢⊢(m,e)a : norm be a derivation. Then Γ is empty and m = e = 0.

Next, we refine subject reduction via tight derivations. The key point is that now the
indices decrease of exactly one at each step. Tight correctness then follows.

▶ Proposition 28 (Tight subject reduction for non-erasing CbS). Let π ▷ Γ ⊢⊢⊢(m,e)t : norm be a
tight derivation.
1. Multiplicative: if t→ym s then m ≥ 1 and there is ρ ▷ Γ ⊢⊢⊢(m−1,e)s : norm.
2. Exponential: if t→yeAY s or t→yeYN s then e ≥ 1 and there is ρ ▷ Γ ⊢⊢⊢(m,e−1)s : norm.

▶ Theorem 29 (Tight correctness for CbS). Let t be a closed term and π ▷ ⊢⊢⊢(m,e)t : norm be
a tight derivation. Then there is a weak normal form n such that d : t→∗

y n with |d|ym = m

and |d|yeAY,yeYN = e.

Proof. The proof is exactly as for weak correctness (Th. 11), except that if t is normal then
the fact that m = e = 0 follows from Prop. 27 and that if t is not normal the equality on
the number of steps is obtained by using tight subject reduction (Prop. 28) instead of the
quantitative one. ◀

For tight completeness for closed terms, it is enough to observe that the statement of
weak completeness (Th. 14) already gives a tight derivation Γ ⊢ t : norm, the type context Γ
of which is empty because t is closed (Lemma 9).

▶ Example 30. We illustrate the tightness of multi types for CbS with an example. Consider
the term (λy.yy)(II), the CbS evaluation of which is as follows (the first part coincides with
the CbN evaluation):

CbN evaluation:
(λy.yy)(II)

→ym yy[y�II] →yeYN (II)y[y�II]
→ym (x[x�I])y[y�II] →yeYN (I[x�I])y[y�II]
→ym z[z�y][x�I][y�II] →yeYN y[z�y][x�I][y�II]

→yeYN II[z�y][x�I][y�II]
→ym z′[z′�I][z�y][x�I][y�II] →yeYN I[z′�I][z�y][x�I][y�II]

CbS extension:
→yeAY I[z′�I][z�II][x�I][y�II]

→ym I[z′�I][z�z′[z′�I]][x�I][y�II] →yeYN I[z′�I][z�I[z′�I]][x�I][y�II]
→ym I[z′�I][z�I[z′�I]][x�I][y�z′[z′�I]] →yeYN I[z′�I][z�I[z′�I]][x�I][y�I[z′�I]]

If we consider CbN evaluation, evaluation stops earlier: it would reach a normal form
with I[z′�I][z�y][x�I][y�II], that is after 4 multiplicative and 5 exponential steps. CbS
evaluates more than CbN, hence the rewriting sequence ends only after 6 multiplicative and
8 exponential steps.
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We now show a tight derivation for the term (λy.yy)(II), which is indeed indexed by (6, 8),
as per tight correctness and completeness (Th. 29 and the text after it). For compactness,
we shorten norm as n. Moreover, to fit the derivation in the page, we first give the main
derivation, giving a name to some sub-derivations which are shown after the main one.

Main derivation:

π ⊢⊢⊢(1,3)λy.yy : [[n]→n, n, n]→n

ρ ⊢⊢⊢(1,2)II : [n]→n (ρn ⊢⊢⊢(1,1)II : n)× 3 many
⊢⊢⊢(4,5)II : [[n]→n, n, n] ⊎ [n]

@
⊢⊢⊢(6,8)(λy.yy)(II) : n

Auxiliary ones:

π := y : [[n]→n] ⊢⊢⊢(0,1)y : [n]→n

y : [n] ⊢⊢⊢(0,1)y : n y : [n] ⊢⊢⊢(0,1)y : n many
y : [n, n] ⊢⊢⊢(0,2)y : [n] ⊎ [n]

@
y : [[n]→n, n, n] ⊢⊢⊢(1,3)yy : n

λ
⊢⊢⊢(1,3)λy.yy : [[n]→n, n, n]→n

ρn := πn ⊢⊢⊢(0,1)I : [[n]→n]

axλ

⊢⊢⊢(0,0)I : n
axλ

⊢⊢⊢(0,0)I : n many
⊢⊢⊢(0,0)I : [n] ⊎ [n]

@
⊢⊢⊢(1,1)II : n

ρ :=

ax
z : [[n]→n] ⊢⊢⊢(0,1)z : [n]→n

λ
⊢⊢⊢(0,1)I : [[n]→n]→([n]→n)

πn ⊢⊢⊢(0,1)I : [n]→n
axλ

⊢⊢⊢(0,0)I : n many
⊢⊢⊢(0,1)I : [[n]→n] ⊎ [n]

@
⊢⊢⊢(1,2)II : [n]→n

Maximality of the CbS Strategy. Similarly to how we proved uniform normalization for
→w, we can prove that on closed terms the CbS strategy does reach a weak normal form
whenever one exists – the key point being that →y does not stop too soon. This fact proves
that ≃silly

C can equivalently be defined using →y, as mentioned in Sect. 7. Moreover, by
exploiting tight correctness and some of the rewriting properties of Sect. 4, we prove that
the CbS strategy is maximal.

▶ Proposition 31. Let t be closed and t→h
w as with as a strict answer.

1. CbS is normalizing: t→k
y as for some k ∈ N;

2. CbS is maximal: h ≤ k.

Proof.
1. By completeness (Th. 14), t→h

w as implies typability of t (a strict answer is in particular
a weak normal form), which in turn, by tight correctness (Th. 29), implies t→k

y a′
s for

some k ∈ N. By confluence (Th. 7), as = a′
s.

2. By postponement of →wgcv (Prop. 3) applied to t →h
w as, we obtain a sequence d :

t →h1
w¬gcv s →h2

wgcv as with h1 + h2 ≥ h, for some s. For the strategy sequence t →k
y as

given by Point 1, the moreover part of the postponement property gives us a sequence
e : t →k1

y¬gcv u →k2
ygcv as with, crucially, k1 + k2 = k, for some u. By completeness of

the type system (Th. 14), we obtain a derivation ⊢(m,e) t : norm. By weak correctness
(Th. 11), we obtain h1 ≤ m+ e. By tight correctness (Th. 29), k1 = m+ e. Thus, h1 ≤ k1.

FSCD 2024



23:20 Mirroring Call-By-Need, or Values Acting Silly

Now, note that both s and u are →w¬gcv-normal, because otherwise, by (iterated) strict
commutation of →w¬gcv and →wgcv (Lemma 6), we obtain that as is not →w-normal,
against hypothesis. Since →w¬gcv is confluent (Th. 7), s = u. Since →wgcv is diamond
(Lemma 5), h2 = k2. Then k = k1 + k2 = k1 + h2 ≥ h1 + h2 = h. ◀

Why not the λ-Calculus? In the λ-calculus, it is hard to specify via evaluation contexts
the idea behind the CbS strategy of evaluating arguments only when they are no longer
needed. The difficulty is specific to weak evaluation. For instance, for t := (λy.λx.yy)u the
CbS strategy should evaluate u before substituting it for y, because once u ends up under
λx it shall be unreachable by weak evaluation. For s := (λy.(λx.yy)r)u, instead, the CbS
strategy should not evaluate u before substituting it, because weak evaluation will reach the
two occurrences of y, and one obtains a longer reduction by substituting u before evaluating
it. Note that one cannot decide what to do with u in t and s by checking if y occurs inside
the abstraction, because y occurs under λy in both t and s.

Multi types naturally make the right choices for t (evaluating u before substituting it)
and s (substituting u before evaluating it), so a strategy matching exactly the bounds given
by multi types needs to do the same choices. The LSC allows one to bypass the difficulty, by
first turning β-redexes into explicit substitutions, thus exposing y out of abstractions in s

but not in t, and matching what is measured by multi types. In the λ-calculus, we have not
found natural ways of capturing this aspect (be careful: the example illustrates the problem
but solving the problem requires more than just handling the example).

10 Conclusions

We introduce the weak silly substitution calculus and the CbS strategy by mirroring the
properties of CbNeed with respect to duplication and erasure. Then, we provide evidence of
the good design of the framework via a rewriting study of the calculus and the strategy, and
by mirroring the semantic analyses of CbNeed via multi types by Kesner [38] (qualitative)
and Accattoli et al. [12] (quantitative).

Conceptually, the main results are the operational equivalence of CbS and CbV, mirroring
the one between CbN and CbNeed, and the exact measuring of CbS evaluation lengths via
multi types, having the interesting corollary that CbS is maximal in the Weak SSC. It would
be interesting to show that, dually, the CbNeed strategy computes the shortest reduction in
the CbNeed LSC. We are not aware of any such result.

Our work also shows that CbV contextual equivalence ≃value
C is completely blind to the

efficiency of evaluation. We think that it is important to look for natural refinements of
≃value

C which are less blind, or, in the opposite direction, exploring what are the minimal
extensions of CbV that make ≃value

C efficiency-sensitive.
We would also like to develop categorical and game semantics for both CbS and CbNeed,

to pinpoint the principles behind the wiseness and the silliness of duplications and erasures.
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1 Introduction

One of the advances of the last decade in the theory of λ-calculus is the study of reasonable
cost models carried out by Accattoli, Dal Lago, and co-authors [14, 15, 10, 17, 19], completing
the research program started by Dal Lago and Martini almost 20 years ago [27, 34, 29, 28].

The General Problem. Focusing on time, the underlying problem is whether the number of
β-steps (of a fixed evaluation strategy) can be taken as a measure of time that is polynomially
equivalent to that of random access machines (RAMs); or, equivalently, to that of Turing
machines. This is a priori unclear because there are families of terms suffering of size
explosion: the size of terms grows exponentially with the number of β-steps, independently
of the adopted evaluation strategy. The difficulty is finding a strategy, together with a
simulation on RAMs of the strategy, working within a overhead polynomial in:

Length: the number of steps of the strategy, and
Input: the size of the initial term.

When a strategy admits such a simulation we say that it is a a polynomial cost model. Note
that the number of steps of the strategy can be whatever (it need not be polynomial), it is
the overhead of the simulation that has to be polynomial in the above parameters.

The overhead is required to be polynomial because reasonable frameworks are not
necessarily linearly related; this is the reason why the complexity class P is so important.
For instance, Turing machines simulate RAMs only within a quadratic overhead. When
possible, however, it is interesting to know what is the exact degree of the overhead with
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respect to RAMs, which are the commonly accepted abstraction of modern computers. When
the overhead is linear – which is the optimal situation – then the polynomial cost model is
trustable in practice: it does not hide an acceptable but possibly costly polynomial overhead.

Today, it is well-known that strategies such as weak head, head, and leftmost β-reduction
provide polynomial time cost models, and that the same is true for their call-by-value and
call-by-need variants [24, 42, 34, 14, 15, 10, 17, 22, 20, 23].

LSC and the Sub-Term Property. The key tool for the polynomially bounded simulations
underlying the recent advances is Accattoli and Kesner’s linear substitution calculus (shortened
to LSC) [2, 9], which is an intermediary setting between the λ-calculus and RAMs.

The LSC is a simple λ-calculus with explicit substitutions refining a previous calculus by
Milner [40, 32] and where evaluation is micro-step, that is, substitution acts on a variable
occurrence at a time, rather than on all at once (which is small-step). A distinguished feature
of the LSC is its rewriting rules at a distance, that is, rules where explicit substitutions
do not percolate through the term structure but rather act through some contexts. The
relevance of the LSC for reasonable time is linked to the sub-term property of its standard
strategies [15]: at any point, only sub-terms of the initial term are duplicated, thus allowing
one to bound the cost of each duplication with the size of the input.

No strategy of the λ-calculus has the sub-term property, which, as discussed by Accat-
toli [4], is the essence of the size explosion problem. The LSC crystallizes exactly what is
needed for refining the λ-calculus to retrieve the sub-term property and circumvent size
explosion.

LSC and Abstract Machines. It is also well-known that strategies of the LSC can usually
be implemented with environment-based abstract machines whose overhead is bi-linear, that
is, linear in both the input and length parameters, as shown by Accattoli et al. [6]. Abstract
machines handle three tasks, namely the decomposition of the substitution process, the search
for redexes, and α-renaming. The difference between the LSC and abstract machines is that
the LSC only handles the substitution process, the critical one for avoiding size explosion.
Search and α-renaming, indeed, tend to take only a linear overhead. That said, handling
search and α-renaming provides an in-depth understanding of evaluation and it is mandatory
for obtaining precise bounds from the cost model.

Lifting to Linear Logic. In 2022, Accattoli started a generalization of the mentioned recent
results for the λ-calculus to the wider framework of linear logic [4]. Linear logic can be seen
as a micro-step system with a tight control over duplications, somewhat similar to the LSC.
Accattoli’s starting point is the observation that, despite such similarity, no reasonable cut
elimination strategy for linear logic was available. In particular, no cut elimination strategy
with the sub-term property was known.

In [4], he introduces a generalization of the LSC to intuitionistic multiplicative exponential
linear logic (IMELL). His exponential substitution calculus (ESC) is an untyped calculus
of proof terms for the sequent calculus proofs of IMELL, endowed with cut elimination at
a distance and having IMELL as typing system. He then designs a new cut elimination
strategy, dubbed good strategy, which has the sub-term property and which is a polynomial
cost model for ESC, the first such cost model for an expressive fragment of linear logic.

This Paper. Here, we design an environment-based abstract machine implementing the good
strategy of ESC, show that it has bi-linear overhead, and provide an OCaml implementation.
The result is not surprising, and yet we believe that it is interesting, for various reasons.
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Firstly, it is the first linear overhead result for an expressive fragment of linear logic. It
allows one to extract precise time bounds from the length of cut elimination, and can thus
be useful, for instance, in linear-logic-based implicit computational complexity.

Secondly, our study differs in many details from other environment-based machines. There
are in fact at least two literatures related to our work (surveyed in the next paragraph). A
recent one about cost analyses of machines for λ-calculi and an older one about machines for
linear logic, here referred to as linear machines. The main differences are the following:

Natural deduction vs sequent calculus: machines usually implement calculi based on
natural deduction, while ESC is based on sequent calculus, and some aspects are different.
For instance, our machine has no argument stack (as it is expected, after Herbelin [31]).
Micro-step source and no structural equivalence: the implemented calculus is usually
small-step, while here it is micro-step. In the literature, when the calculus is micro-step
it is usually implemented by the machine up to a notion of structural equivalence. Here,
there is no need of structural equivalence.
Strong vs weak: our machine computes cut-free proofs, while other linear machines in the
literature do not, as they usually only perform weak (or surface) evaluation (that is, they
do not evaluate under abstraction and inside promotions). To our knowledge, ours is the
first strong linear machine.
Strong with no backtracking: machines for strong evaluation usually have transitions for
sequentially backtracking once the evaluation of a sub-term is over. Here, we adopt a
recent new technique for strong machines by Accattoli and Barenbaum [5], that avoids
sequential backtracking. The idea is to assign distinct jobs to each sub-term and simply
jumping to the next job once the current one is over. This approach structures the
machine in a very different way and provides drastically simpler strong machines.
Complexity analysis: the complexity of linear machines is never studied in the literature.
OCaml implementation: linear machines are usually studied theoretically and never
implemented. We provide an OCaml implementation verifying our complexity analysis.
In particular, it is the first implementation of the technique for strong machines of [5].

Summing up, our machine is simple, given the complex setting that it implements, thanks to
the absence of stacks and backtracking. In fact, it uses just one (non-trivial) data structure.

Methodologically, the main difference between our work and the literature on linear
machines is that those machines were developed to provide insights about λ-calculi and
functional programming (such as no garbage collection, in-place updates, and single pointer
property) while here we proceed the other way around, using the recent theory of the
λ-calculus to provide insights about linear logic.

Architecture of the Result. The good strategy that we implement is a non-deterministic
but diamond strategy, where diamond means that the choices do not affect termination nor
evaluation lengths (otherwise the number of steps would not be a well-defined cost model).
Our implementation is in two phases. The first and main one, performed by a deterministic
machine dubbed SESAME (Strong Exponential Substitution Abstract Machine without
Erasure), never erases. The second one is a simple garbage collection pass over the output of
SESAME, that produces a cut-free term. For the correctness of SESAME, we thus need to
relate a non-deterministic strategy and a deterministic machine, which is slightly unusual.
For that, we follow the abstract recipe of Accattoli et al. [12] which is here simplified because
our case is not up to structural equivalence and there is no implosiveness.

FSCD 2024
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Related Work. Accattoli and co-authors studied at length the overhead of machines for
λ-calculi both micro-step [6, 7, 10] and small-step [3, 8, 18, 13, 12, 19, 5]. Biernacka et al.
similarly studied machines for strong call-by-value [22] and strong call-by-need [23].

Lafont considered the first linear logic (LL) machine, based on categorical combinators
for intuitionistic LL (ILL) [33]. Abramsky considered an environment-based machine for ILL
and a chemical-style machine for LL, both doing only weak evaluation [1]. The latter machine
was then studied by Mikami and Akama [39] and Sato and co-authors [43, 38]. Turner and
Wadler study the use of IMELL for memory management and give two machines, one with
the single pointer property and one without it but with a memoization mechanism [45].
Alberti and Ritter also deal with the single pointer property [21]. Bonelli gives a machine
based on an unusual sequent calculus for ILL [25].

The interaction abstract machine (IAM) is an unusual token-based machine for LL proofs
first studied by Danos and Regnier [30] and Mackie [35]. Recent work by Accattoli et al.
showed that the IAM overhead is unreasonable for both time and space [16, 17, 46]. Mackie
also studied interaction nets-based implementations of LL [36, 37].

2 The Exponential Substitution Calculus

In this section, we briefly recall Accattoli’s exponential substitution calculus (ESC) [4] which
is an untyped calculus having IMELL as system of simple types.

For more explanations, we refer the reader to [4]. The main differences with respect to [4]
is that, for lack of space, we omit tensor and we only deal with micro-step rewriting rules
(omitting the small-step exponential rule, which is derivable). In IMELL, linear implication
is “more important” than tensor, as tensors are not needed to simulate the λ-calculus. In
Appendix B of the technical report [11], we explain how to straightforwardly extend our
study to tensor.

Values and Terms. The grammars of ESC are in the upper part of Fig. 1. Variables are of
two disjoint kinds, multiplicative and exponential, and we refer to variables of unspecified
kind using x, y, z. Values are the proof terms associated to axioms or to the right rules and,
beyond variables, are abstractions λx.t and promotions !t. The proof terms decorating left
rules are subtractions [m5v, x]t, derelictions [e?x]t, and cuts [v�x]t, which is in red because
of its special role. Note that cuts and subtractions are split, that is, have values (rather
than terms) as left sub-terms. The constructors λx.t, [m5v, x]t, [e?x]t, and [v�x]t bind x

in t. We identify terms up to α-renaming. Free variables (resp. multiplicative/exponential
variables) are defined as expected, and noted fv(t) (resp. mfv(t) and efv(t)). We use |t|
for the number of constructors in t, and |t|x for the number of free occurrences of x in t.
There is a notion of proper term ensuring the linearity of multiplicative variables and the
exponential boundary of promotions, detailed in Appendix A of the tech report [11]. The
only relevant case is: !t is proper if t is proper and mfv(t) = ∅. In the following, terms are
assumed to be proper.

Contexts and Plugging. The broadest notion of context that we consider is general contexts
C, which simply allow the hole ⟨·⟩ to replace any sub-term in a term. Because of split cuts
and subtractions (that is, the fact that their left sub-term is a value rather than a term),
the definition relies on the auxiliary notion of value context V . The definition also uses left
contexts L, which are contexts under left constructors (or, for binary left constructors, under
the right sub-term) that play a key role in the system – their use in defining C is just to
keep the grammar compact. We also need cut contexts E, which are noted with E because
they shall play the role of machine environments in Sect. 5.
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Mult. values vm ::= m | λx.t Values v, v′ ::= vm | ve

Exp. values ve ::= e | !t Terms t ::= v | [v�x]t | [m5v, x]t | [e?x]t
Cut ctxs E ::= ⟨·⟩ | [v�x]E Left ctxs L ::= ⟨·⟩ | [v�x]L | [m5v, x]L | [e?x]L

Value ctxs V ::= ⟨·⟩ | λx.C | !C Ctxs C ::= V | [V �x]t | [m5V, x]t | L⟨C⟩

Micro-step root multiplicative rules
[vm�m]C⟨⟨m⟩⟩ 7→axm1 C⟨⟨vm⟩⟩

[n�m]C⟨[m5v, x]t⟩ 7→axm2 C⟨[n5v, x]t⟩
[λy.s�m]C⟨[m5v, x]t⟩ 7→⊸ C⟨[v�y]L⟨[v′�x]t⟩⟩ with s = L⟨v′⟩

Micro-step root exponential rules
[ve�e]C⟨⟨e⟩⟩ 7→axe1 [ve�e]C⟨⟨ve⟩⟩

[f�e]C⟨[e?x]t⟩ 7→axe2 [f�e]C⟨[f?x]t⟩
[!s�e]C⟨[e?x]t⟩ 7→! [!s�e]C⟨L⟨[v�x]t⟩⟩ with s = L⟨v⟩

[ve�e]t 7→w t if e /∈ fv(t)

Contextual closure
t 7→a s

C⟨t⟩ →a C⟨s⟩ for a ∈ {axm1, axm2,⊸, axe1, axe2, !, w}

Notations
Multiplicative →m := →axm1 ∪ →axm2 ∪ →⊸

Exponential →e := →axe1 ∪ →axe2 ∪ →! ∪ →w

ESC →ESC := →m ∪ →e

Non-erasing ESC →ESC¬w := →m ∪ →axe1 ∪ →axe2 ∪ →!

Figure 1 The Exponential Substitution Calculus (ESC).

A fact used pervasively is that every term t writes, or splits uniquely as t = L⟨v⟩. For
instance [e?m][v�n]λg.[m5n, f ]f splits as L = [e?m][v�n]⟨·⟩ and v = λg.[m5n, f ]f .

Because of split cuts and subtractions, the definition of plugging C⟨t⟩ (or C⟨D⟩) of a
term t (or a context D) in a context C is slightly tricky, as it has to preserve the split shape.
We refer the reader to [4] for such details, the definition is mostly as expected (the only two
subtle cases are for [⟨·⟩�x]t and [m5⟨·⟩, x]). Plugging can capture variables and we use C⟨⟨t⟩⟩
when we want to prevent it.

Types. The formulas of IMELL, and the deductive rules of the sequent calculus annotated
with ESC terms, are in Fig. 2. They are taken directly from [4]. The typing system for ESC
is exactly the standard sequent calculus for IMELL. Both formulas and rules are standard,
but for the decoration with proof terms and the side conditions about variable names of
the form Γ#∆, which is a shortcut for domΓ ∩ dom∆ = ∅. Linear implication ⊸ is also
referred to as lolli. The only atomic formula that we consider, Xm, is multiplicative. There
is no multiplicative unit because, in presence of the exponentials, 1 can be simulated by
!(Xm ⊸ Xm). We distinguish between multiplicative and exponential axioms, in order to
decorate them with the corresponding kind of variable.

Note that the weakening and contraction rules do not add constructors to terms. This is
crucial in order to keep the calculus manageable. Note also that the decorations of the cut
and ⊸l rules are split, as explained in the previous section. Clearly, typed terms are proper.

In this paper, types are only referred to in Lemma 3 below.

Multiplicative Cut Elimination Rules. The rewriting rules are in Fig. 1. The ESC has
three multiplicative rules, in particular two for axioms, depending on whether they are acted
upon (→axm1) or used to rename another multiplicative (thus linear) variable (→axm2). Rule

FSCD 2024
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Formulas A, B, C ::= Xm | A⊗B | A⊸ B | !A

Multiplicative rules

A ̸= !B axm
m : A ⊢ m : A

x : A, Γ ⊢ t : B
⊸rΓ ⊢ λx.t : A⊸ B

Γ ⊢ L⟨v⟩ : A ∆, x : B ⊢ t : C Γ#(∆, x : B), m fresh
⊸lΓ, ∆, m : A⊸ B ⊢ L⟨[m5v, x]t⟩ : C

Exponential rules
axe

e : !A ⊢ e : !A

Γ, x : A ⊢ t : B e fresh !lΓ, e : !A ⊢ [e?x]t : B

!Γ ⊢ t : A !r!Γ ⊢ !t : !A

Γ ⊢ t : A e fresh w
Γ, e : !B ⊢ t : A

Γ, e : !B, f : !B ⊢ t : A c
Γ, e : !B ⊢ {e�f}t : A

Cut

Γ ⊢ L⟨v⟩ : A ∆, x : A ⊢ t : B Γ#(∆, x : A)
cutΓ, ∆ ⊢ L⟨[v�x]t⟩ : B

Figure 2 IMELL has a type system for ESC.

→axm1 is expressed generically for multiplicative values vm (that is, multiplicative variables
m and abstractions λx.t). In →axm1 , →axm2 , and →⊸, it is silently assumed that C does
not capture m in →axm2 and →⊸ (what is noted C⟨⟨m⟩⟩ in →axm1 , while ⟨⟨·⟩⟩ is not used in
→axm2 , and →⊸ because C might capture other variables in t and v). Note that, since C

cannot capture m in these rules and terms are assumed to be proper, the hole of C cannot
be contained in a !; this kind of context is called a multiplicative context in [4].

In →⊸, the rule has to respect split cuts, which is why, for writing the reduct, the
sub-term s is split on-the-fly. An example of →⊸ step follows:

[λe.[e?m]m�n][n5!f, o]o →⊸ [!f�e][e?m][m�o]o.

Exponential Rules. There are also four exponential rules, with again two rules for axioms.
Replacement of variables (→axe1) and erasure (→w) are expressed generically for exponential
values ve (that is, exponential variables f and promotions !t), interaction with derelictions
(in →axe2 and →!) instead requires inspecting ve. Rule →! removes the dereliction, copies
the promotion body, and puts it in a cut – in proof nets jargon, it opens the box. To preserve
the split shape, the body of the promotion is split and only the value is cut. An example:

[![f�g]g�e]λm.[e?e′][m5e′, n]n →! [![f�g]g�e]λm.[f�g][g�e′][m5e′, n]n.

Note that →! entangles interaction with a dereliction and duplication, which is not what
proof nets usually do (but this is what the LSC does). It is silently assumed that C does not
capture e in →axe2 and →! but it might capture other variables in t.
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Comments about the Rewriting Rules. Unsurprisingly, proper terms are stable by reduc-
tion [4]. We also use a notion of position in terms.

▶ Definition 1 (Positions). A position in a term t is a decomposition t = C⟨s⟩ such that s is
a sub-term of t.

For later defining the good strategy, we identify a redex with its position, which is a
context. Every step t→ESC¬w s reduces a redex of shape t = C⟨[v�x]D⟨tx⟩⟩ where tx is an
occurrence of x, i.e. a sub-term of t of shape x, [x5v, y]s, or [x?y]s. The redex position
of →ESC¬w steps is the context C⟨[ve�x]D⟩. The redex position of →w steps is the context
closing the root step. We write C : t→ESC s for a redex of position C in t.

Clashes. The presence of many constructors in an untyped setting gives rise to clashes,
that is, irreducible cuts.

▶ Definition 2 (Clashing, smooth, clash-free terms). A clash is a term of the form [vm�e]t
or [ve�m]t. A term t is clashing if it has a clash as sub-term. Moreover, t is clash-free if,
co-inductively, t is not clashing and s is clash-free for any step t→ESC s.

Clash-freeness is guaranteed by all forms of types (simple, polymorphic, recursive, and multi
types, for instance), in particular by the IMELL types in Fig. 2, as ensured by the next
lemma. Here, we adopt the untyped calculus but consider only clash-free terms, as in [4].

▶ Lemma 3 ([4]). Let t be a proper term.
1. If t has no clashes and t ̸→ESC then t is cut-free.
2. If t is typable (by the IMELL type system in Fig. 2) then t is clash-free.

Postponement of Garbage Collection. The erasing rule→w, that models garbage collection,
can be postponed. This point shall be crucial for our study.

▶ Proposition 4 (Postponement of garbage collection, [4]). If t→∗
ESC s then t→∗

ESC¬w
→∗

w s.

Basic Evaluation. As an intermediary step towards our results, we consider also a restricted
form of ESC evaluation, forbidding reduction under all constructors but the right sub-terms
of cuts, and dub it basic evaluation. It is one possible ESC analogous of weak evaluation
in the λ-calculus (which forbids evaluation under abstraction). In λ-calculi with explicit
substitutions, weak normal forms of closed terms are answers, i.e. abstractions possibly
surrounded by explicit substitutions. We obtain a similar property for basic evaluation.

▶ Definition 5 (Basic evaluation, answer). A step C : t→ESC s (that is, a redex of position
C in t) is basic if C is a cut context, which is also noted with t →b s, or t →ba s with
a ∈ {axm1, axm2,⊸, axe1, axe2, !, w} if we want to specify the kind of step. Moreover, →b¬w

denotes a non-erasing (that is, not w) basic step. A term t is an answer if t = E⟨v⟩ with E a
cut context and v not a variable.

▶ Lemma 6. Let t be a closed clash-free term. Either t has a →b¬w-step or it is an answer.

Basic evaluation is enough to simulate in ESC the call-by-name/value weak evaluation
of closed λ-terms, via Girard’s translations to linear logic. Moreover, basic non-erasing
evaluation is deterministic (and diamond, a property defined in Sect. 3, when erasing steps
are considered). We omit the proofs of these facts, because neither basic evaluation nor
λ-terms are the focus of the paper.
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Dominating free variables of contexts

dv(⟨·⟩) := ∅
dv(λx.C) := dv(C)\{x}

dv(!C) := dv(C)
dv([v�x]C) := dv(C)\{x}
dv([V �x]t) := dv(V )

dv([m5V, x]t) := {m} ∪ dv(V )

dv([m5v, x]C) :=
{

{m} ∪ (dv(C)\{x}) if x∈dv(C)
dv(C) otherwise.

dv([e?x]C) :=
{

{e} ∪ (dv(C)\{x}) if x∈dv(C)
dv(C) otherwise.

Good value contexts
VG ::= ⟨·⟩ | λx.G | !G

Good contexts
G ::= VG | [m5v, x]G | [m5VG, x]t

| [e?x]G | [v�x]G if x /∈ dv(G)

Figure 3 Definitions for the good strategy: dominating free variables and good contexts.

Out Cuts and Garbage Collection. We shall mainly deal with cuts that are not contained
in any other cut, the out cuts, which induce a notion of out variable.

▶ Definition 7 (Out cuts, out variables). The out cuts of a term t are those cuts in t that
are not contained in any other cut, that is, if t = C⟨[v�x]s⟩ then [v�x]s is an out cut of t if
C cannot be written as C = D⟨[V �y]u⟩ for some D, V , y, and u. The set of out variables
ov(t) of t contains the variables having at least one occurrence out of all cuts of t.

Out variables allow us to define a lax notion of cut-free terms where there are some cuts,
but they can only be garbage collection cuts, or concern variable occurrences contained in
garbage, so that the term becomes cut-free after garbage collection.

▶ Definition 8 (Cut-freeness up to garbage). A term t is cut-free up to garbage if x /∈ ov(s)
for all the out cuts [v�x]s of t.

3 The Good Strategy

Here, we define the good cut elimination strategy →G for ESC, recalling the discussion from [4]
that explains the design of the strategy. The strategy is conceived as to have the sub-term
property, which is crucial for time analyses and which is defined as follows: every duplicated
(or erased) sub-term during a cut elimination sequence is a sub-term of the initial term (up
to variable renamings). See [4] for extensive discussions about the sub-term property.

Breaking the Sub-Term Property. When does the sub-term property not hold? One has
to duplicate an exponential value ve touched by previous steps. In our setting, touched can
mean two things. Either a redex fully contained in ve is reduced, obtaining v′

e, and then v′
e

is duplicated (or erased), as in the step marked with ⋆ in the following diagram (the other,
dashed path of which has the sub-term property):

[ve�e]C⟨⟨e⟩⟩ [v′
e�e]C⟨⟨e⟩⟩

[ve�e]C⟨⟨ve⟩⟩ [v′
e�e]C⟨⟨v′

e⟩⟩[v′
e�e]C⟨⟨ve⟩⟩

ESC

axe1 ⋆axe1

ESC ESC

Preventing these situations from happening, thus forcing evaluation to follow the other
(dashed) side of the diagram, is easy. It is enough to forbid the position of the reduced redex
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to be inside the left sub-term of a cut – we say inside a cut value for short. It is however not
enough, because cuts are also created. Consider:

[λe.e�m][m5ve, x]t →ESC [λe.e�m][m5v′
e, x]t →⊸

[v′
e�e][e�x]t ⋆→axe1 [v′

e�e][v′
e�x]t

Reducing inside the subtraction value ve leads to a later breaking of the sub-term property
by the axe1 step, because the →⊸ step creates a cut with v′

e inside. Preventing these cases
is tricky, because forbidding reducing subtraction values leads to cut elimination stopping
too soon, without producing a cut-free term. In the λ-calculus, it corresponds to forbidding
reducing inside arguments, which leads to head reduction, that does not compute normal
λ-terms. We shall then forbid reducing only subtraction values which are at risk of becoming
cuts. In λ-calculus, leftmost reduction does reduce arguments but only when the left sub-term
of the application is normal and not an abstraction, so that the argument is not involved
in a β-redex. We shall do something similar here, but the sequent calculus formalizes this
constraint differently, by checking that some variables are not captured.

Dominating Variables. The key notion is the one of dominating (free) variables dv(C) of a
context (where C is meant to be the position of a redex), defined in Fig. 3, the base case
of which is for [m5V, x]t. If C is a position and x ∈ dv(C) then [v�x]C turns C into a
dangerous position, that is, a redex of position [v�x]C : t→ESC s might lead to a breaking of
the sub-term property later on during cut elimination. In the example, e belongs to dv(C)
for every context C := [e?m][m5V, x]s of [e?m][m5v, x]s, for every V .

The Good Strategy. These considerations lead to the notion of good contexts in Fig. 3. A
good context forbids the two ways of breaking the sub-term property: its hole cannot be in a
cut value (note the absence of the production [VG�x]t) nor in a subtraction value such that
one of its dominating variables is cut (because of the production [v�x]G if x /∈ dv(G)).

▶ Definition 9 (Good steps, good strategy). A step C : t→ESC s is good if its position C is
good. In such a case, we write t→G s. The good cut elimination strategy is simply →G. We
also use →Ga to stress that the good step is of kind a ∈ {axm1, axm2,⊸, axe1, axe2, !, w}. The
non-erasing good strategy →G¬w is the variant of →G excluding →Gw steps.

The sub-term property in the following theorem captures the quantitative aspect for cost
analyses, i.e. the bound on the size of duplicated values by the size of the initial term.

▶ Theorem 10 (Properties of the good strategy, [4]).
1. Quantitative sub-term property: if e : t→∗

G s and v be a value erased or duplicated along
e, then |v| ≤ |t|.

2. Diamond: if s1 G←t→G s2 and s1 ̸= s2 then s1 →G u G←s2 for some u.
3. Fullness: if t is clash-free and not →ESC-normal then t→G s for some s.
4. Good polynomial cost model: if Γ ⊢ t : A is a typed term then there exist k and a cut-free

term s such that t→k
G s, and such a reduction sequence is implementable on RAMs in

time polynomial in k and |t|.

The algorithmic aspect of Theorem 10.4 is proved in [4] via arguments that do not establish
the degree of the polynomial bound. The aim of this paper is exactly to show that a carefully
designed abstract machine provides a bound that is linear in both k and |t|.

FSCD 2024



24:10 IMELL Cut Elimination with Linear Overhead

The Diamond Property. Let us provide some background about the diamond property.
Following Dal Lago and Martini [34], we say that a relation →r is diamond if s1 r←t→r s2
and s1 ≠ s2 imply s1 →r u r←s2 for some u. The terminology in the literature is inconsistent:
Terese [44, Exercise 1.3.18] dubs this property CR1, and defines the diamond more restrictively,
without requiring s1 ̸= s2 in the hypothesis: s1 and s2 have to join even if s1 = s2.

Standard corollaries of Dal Lago and Martini’s notion are that, if →r is diamond, then:
1. Confluence: →r is confluent, that is, s1

∗
r← t→∗

r s2 implies s1 →∗
r u ∗

r← s2 for some u;
2. Length invariance: all r-evaluations with the same start and r-normal end terms have

the same length (i.e. if e : t→k
r s and e′ : t→h

r s with s r-normal, then h = k);
3. Uniform normalization: t is weakly r-normalizing if and only if it is strongly r-normalizing.
Basically, the diamond property captures a more liberal form of determinism. In particular,
length invariance is essential in order to take the number of steps of a strategy as a cost
model. Without it, indeed, the number of steps of a non-deterministic strategy would be an
ambiguously defined notion of cost.

4 Preliminaries on Abstract Machines

Abstract Machines Glossary. Abstract machines manipulate pre-terms, that is, terms
without implicit α-renaming. In this paper, an abstract machine is a quadruple M =
(States,⇝, · ◁ ·, ·) the components of which are as follows.

States. A state Q ∈ States is composed by the active term t, plus one data structure
which depends on the actual machine. Terms in states are actually pre-terms.
Transitions. The pair (States,⇝) is a transition system with transitions ⇝ partitioned
into principal transitions, whose union is noted ⇝pr and that are meant to correspond to
cut-elimination steps on the calculus, and search transitions, whose union is noted ⇝sea,
that take care of searching for (principal) redexes.
Initialization. The component ◁ ⊆ Λ× States is the initialization relation associating
terms to initial states. It is a relation and not a function because t ◁ Q maps a λ-term
t (considered modulo α) to a state Q having a pre-term representant of t (which is not
modulo α) as active term. Intuitively, any two states Q and Q′ such that t ◁ Q and t ◁ Q′

are α-equivalent. The initializing terms (i.e. those t such that t ◁ Q for some Q) are
always proper and clash-free. A state Q is reachable if it can be reached starting from an
initial state, that is, if Q′ ⇝∗ Q where t ◁ Q′ for some t and Q′, shortened as t ◁ Q′ ⇝∗ Q.
Read-back. The read-back function · : States→ Λ turns reachable states into terms and
satisfies the initialization constraint: if t ◁ Q then Q =α t.

Further Terminology and Notations. A state is final if no transitions apply. A run
r : Q⇝∗ Q′ is a possibly empty finite sequence of transitions, the length of which is noted
|r|; note that the first and the last states of a run are not necessarily initial and final. If a

and b are transitions labels (that is, ⇝a⊆⇝ and ⇝b⊆⇝) then ⇝a,b:=⇝a ∪⇝b and |r|a is
the number of a transitions in r, and |r|¬a is the number of transitions in r that are not ⇝a.

Well-Boundness and Renamings. For the machines at work in this paper, the pre-terms
in initial states shall be well-bound, that is, they have pairwise distinct bound names; for
instance [m5λn.n, e]λf.f is well-bound while [m5λn.n, e]λn.n is not. We shall also write tα

in a state Q for a fresh well-bound renaming of t, i.e. tα is α-equivalent to t, well-bound, and
its bound variables are fresh with respect to those in t and in the other components of Q.
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Implementation Theorem, Abstractly. We now formally define the notion of a machine
implementing a strategy. Since the good strategy is non-deterministically diamond but
the machine that shall implement it is deterministic, we need a slightly unusual form of
implementation theorem. As it is standard, machine transitions shall be mapped to equalities
or steps on the calculus. For the other direction, however, we obtain only a big-step simulation,
that is, if the strategy on the calculus terminates / diverges then the same does the machine,
and with a related number of steps. But there is no step-by-step simulation of the calculus
by the machine, because the non-deterministic strategy might do a step which is not the one
done by the machine. Everything works fine because of the properties of diamond strategies.
The general scheme is inspired by Accattoli et al.’s scheme for strong call-by-value [12], but
it is here simpler because of the absence of structural equivalence and implosive sharing.

It would also be possible to have a more symmetric setting by either designing a more
complex diamond machine, as done by Accattoli and Barenbaum [5], or by designing a
deterministic variant of the good strategy. For the sake of simplicity, we prefer the asymmetric
setting as to keep a simple machine and reuse the notion of good strategy from the literature.

▶ Definition 11 (Big-step implementations). A machine M = (States,⇝, · ◁ ·, ·) is a big-step
implementation of a strategy →str on terms when, given a (proper and clash-free) term t:
1. Runs to evaluations: for any M-run r : t◁Q′ ⇝∗ Q there is a →str-evaluation e : t→∗

str Q

with |r|pr = |e|.
2. Normalizing evaluations to runs: if e : t→∗

str s with s →str-normal then there is a M-run
r : t ◁ Q′ ⇝∗ Q such that Q = s with |r|pr = |e|.

3. Diverging evaluations to runs: if t ◁ Q and →str diverges on t then M diverges on Q doing
infinitely many principal transitions.

Next, we isolate sufficient conditions for big-step implementations.

▶ Definition 12 (Lax implementation system). A lax implementation system is given by a
machine M = (States,⇝, · ◁ ·, ·) and a strategy →str such that for every reachable state Q:
1. Principal projection: if Q⇝pr Q′ then Q→str Q′;
2. Search transparency: if Q⇝sea Q′ then Q = Q′;
3. Search terminates: ⇝sea terminates;
4. Halt: if Q is final then Q is →str-normal;
5. Diamond: →str is diamond.

▶ Theorem 13 (Abstract big-step implementation). Let M and →str form a lax implementation
system. Then, M is a big-step implementation of →str.

Clash-Free and Proper States. Note that we have not taken into account properness and
clashes on states. One can say that a state Q is proper (resp. clash-free) if its decoding Q is.
In this way, these notions are trivially seen to be preserved by runs in a lax implementation
system. Note, indeed, that transitions are mapped via decoding to either equalities or
rewriting steps (and the proofs of these facts shall not need properness nor clash-freeness).
Since states are initialized with proper and clash-free terms, and that these notions on terms
are preserved by reduction (clash-freeness by definition, for properness see [4]), proper and
clash-free states are preserved by transition. Therefore, we shall omit all considerations
about properness and clashes for machines.
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States Q, Q′ ::= (E | t) Initialization t ◁ Q if Q = (⟨·⟩ | tα)
Read back (E | t) := E⟨t⟩

Cut Ctx Active Tm Tran. Cut Ctx Active Tm
E [v�x]t ⇝sea E⟨[v�x]⟨·⟩⟩ t

E⟨[n�m]E′⟩ [m5v, x]t ⇝axm2 E⟨E′⟩ [n5v, x]t
E⟨[λy.L⟨v′⟩�m]E′⟩ [m5v, x]t ⇝⊸ E⟨E′[v�y]⟩ L⟨[v′�x]t⟩

E⟨[f�e]E′⟩ [e?x]t ⇝axe2 E⟨[f�e]E′⟩ [f?x]t
E⟨[!L⟨v⟩�e]E′⟩ [e?x]t ⇝! E⟨[!L⟨v⟩�e]E′⟩ L′⟨[v′�x]t⟩ #

E⟨[vm�m]E′⟩ m ⇝axm1 E⟨E′⟩ vm

E⟨[ve�e]E′⟩ e ⇝axe1 E⟨[ve�e]E′⟩ vα
e

# with L′⟨v′⟩ = L⟨v⟩α

Figure 4 The Basic Abstract Machine (BAM).

5 A Machine for the Closed Basic Case

Here, we study a machine implementing basic evaluation on closed ESC terms. The aim is
to give a gentle introduction to some machine concepts.

BAM. The basic abstract machine (BAM) is defined in Fig. 4. States Q = (E | t) are
simply given by the active (pre-)term t and a cut context E which is a list containing the cuts
encountered so far by the search mechanism, playing the role of the (global) environment in
machines such as Accattoli et al.’s Milner Abstract Machine [6].

The initialization relation t ◁ (⟨·⟩ | tα) pairs (proper and clash-free) terms t with states
composed by an empty cut context ⟨·⟩ and a well-bound renaming tα of t. The BAM has six
principal transitions, mimicking the ESC rewriting rules but for the weakening one (BAM
never erases), plus one search transition ⇝sea, moving cuts from the term to the cut context.

The BAM looks at the topmost constructor of the active term and proceeds applying a
transition belonging to one of the following three groups. If the constructor is:

Search: a cut [v�x], the BAM adds it to the cut context, by applying ⇝sea;
Computation: a subtraction [m5v, x] or a dereliction [e?x], then the BAM looks for the
associated cut in the cut context, it applies the corresponding cut elimination rule, and
goes on to execute the modified active term, by applying ⇝axm2 , ⇝⊸, ⇝axe2 , or ⇝!;
Terminal replacements: a variable m or e, the BAM looks for the associated cut in the cut
context and it applies the matching replacement via ⇝axm1 or ⇝axe1 . Note that terminal
replacements can only be followed by further terminal replacements, hence the name.

Note that in transitions ⇝! and ⇝axe1 some renaming takes place, using names that are
fresh with respect to the whole state. The domain dom(E) of a cut context is defined as
dom(⟨·⟩) := ∅ and dom([v�x]E) := {x} ∪ dom(E).

▶ Lemma 14 (BAM qualitative invariants). Let Q = (E | t) be a BAM reachable state.
1. Closure: fv(t) ⊆ dom(E) and if E = E′⟨[v�x]E′′⟩ then fv(v) ⊆ dom(E′).
2. Well-bound: if λx.s, [e?x]s, [m5v, x]s, or [v�x]s occur in Q and x has any other

occurrence in Q then it is a free variable of s, and if E = E′⟨[v�x]E′′⟩ and x has any
other occurrence in Q then it is a free variable in E′′ or t.

▶ Proposition 15. Let Q be a BAM reachable state and a ∈ {axm1, axm2, axe1, axe2,⊸, !}.
1. Search transparency: if Q⇝sea Q′ then Q = Q′.
2. Principal projection: if Q⇝a Q′ then Q→ba Q′.
3. Search termination: transition ⇝sea terminates.
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Pools P, P ′ ::= ϵ | ⟨t⟩a:P Init. t ◁ Q if Q = (⟨·⟩a | tα)
States Q, Q′ ::= (C | P ) Read back (C | P ) := C⟨t1⟩a1 . . . ⟨tk⟩ak

with P = ⟨t1⟩a1 : . . . :⟨tk⟩ak :ϵ
MCtx Pool Tran. MCtx Pool

C ⟨[v�x]t⟩a:P ⇝sea1 C⟨[v�x]⟨·⟩a⟩a ⟨t⟩a:P
C with m /∈ dom(C) ⟨[m5v, x]t⟩a:P ⇝sea2 C⟨[m5⟨·⟩b, x]⟨·⟩a⟩a ⟨v⟩b:⟨t⟩a:P ∗
C with e /∈ dom(C) ⟨[e?x]t⟩a:P ⇝sea3 C⟨[e?x]⟨·⟩a⟩a ⟨t⟩a:P

C ⟨λx.t⟩a:P ⇝sea4 C⟨λx.⟨·⟩a⟩a ⟨t⟩a:P
C ⟨!t⟩a:P ⇝sea5 C⟨!⟨·⟩a⟩a ⟨t⟩a:P

C with x /∈ dom(C) ⟨x⟩a:P ⇝sea6 C⟨x⟩a P

C⟨[n�m]C′⟩◦ ⟨[m5v, x]t⟩a:P ⇝axm2 C⟨C′⟩◦ ⟨[n5v, x]t⟩a:P
C⟨[λy.L⟨v′⟩�m]C′⟩◦ ⟨[m5v, x]t⟩a:P ⇝⊸ C⟨C′⟩◦ ⟨[v�y]L⟨[v′�x]t⟩⟩a:P

C⟨[f�e]C′⟩◦ ⟨[e?x]t⟩a:P ⇝axe2 C⟨[f�e]C′⟩◦ ⟨[f?x]t⟩a:P
C⟨[!L⟨v⟩�e]C′⟩◦ ⟨[e?x]t⟩a:P ⇝! C⟨[!L⟨v⟩�e]C′⟩◦ ⟨L′⟨[v′�x]t⟩⟩a:P #
C⟨[vm�m]C′⟩◦ ⟨m⟩a:P ⇝axm1 C⟨C′⟩◦ ⟨vm⟩a:P
C⟨[ve�e]C′⟩◦ ⟨e⟩a:P ⇝axe1 C⟨[ve�e]C′⟩◦ ⟨vα

e ⟩a:P
* b is fresh. # with L′⟨v′⟩ = L⟨v⟩α

Figure 5 The Strong Exponential Substitution Abstract Machine without Erasure (SESAME).

4. Halt: if Q is final then Q = (E | v) with v not a variable, and Q is normal for non-erasing
basic evaluation.

▶ Theorem 16. The BAM implements ESC non-erasing basic evaluation on closed terms.

6 SESAME

In this section, we extend the BAM as to perform the analogous of strong evaluation, that
is, as to perform cut-elimination also inside values, and implement the good strategy. The
obtained machine shall ignore garbage collection and – when it terminates – it returns a term
that is cut-free up to garbage (Def. 8). Garbage collection shall be addressed in Sect. 8.

Pools and Jobs. The Strong Exponential Substitution Abstract Machine without Erasure
(SESAME), defined in Fig. 5, relies on a technique for strong evaluation recently introduced
by Accattoli and Barenbaum [5], which we are now going to explain.

When evaluation goes under binders, the closure invariant of the basic case (Lemma 14.1),
for which free variables of the active term are associated to a cut in the cut context, is lost.
Thus, when the active term is a subtraction [m5v, x]t with no associated cut for m, the
subtraction is kept, and the machine has to evaluate v and t. Now, the evaluations of v and
t cannot affect each other, they are independent, but one of the two sub-terms has to be
evaluated first, say v. Usually, strong machines (such as Crégut’s [26]) would run through
v, and if such process does terminate, producing a value v′, then they backtrack to the
subtraction generating the fork by moving sequentially through v′, and then start evaluate t.

Accattoli and Barenbaum’s technique simply circumvents the sequential backtracking
process by directly jumping back to the forking point. For that, the machine is equipped
with a pool P of jobs, each one paired to a unique name a. In our example, there would be
a job ⟨v⟩a for v and a job ⟨t⟩b for t. The idea is that when one job ends then the machine
jumps to the next one, without moving through the structure of the finished job.

In [5], the pool is any data structure satisfying a certain interface. The idea is that
different data structures implementing the interface realize different job scheduling policies,
compactly accounting for different strong strategies within the same framework. We here
omit this abstract aspect and fix the pool to be the simplest such structure, namely a LIFO
list of named jobs. In the λ-calculus, LIFO list pools implement leftmost evaluation [5].
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Another simplification with respect to [5] is that here jobs are simply named terms, while
in [5] they are named pairs of a term and an applicative stack. The change induces a simpler
notion of read back. This difference is not a design choice, it is simply induced by having a
machine for sequent calculus terms (here) rather than natural deduction terms (in [5]).

A crucial point of SESAME is that job forking happens on subtractions only, that is, it
does not happen on cuts [v�x]t: the machine ignores v and goes straight to evaluate t. This
happens in particular to prevent the breaking of the sub-term property.

We write names(P ) for the set of names associated to the jobs in P , that is, if P =
⟨t1⟩a1 : . . . :⟨tk⟩ak

then names(P ) := {a1, . . . , ak}.

Multi-Contexts and Approximants. Another aspect of the technique in [5] is that the parts
of the term that have been evaluated and that shall not be touched again by the machine –
sometimes referred to as stable parts – are accumulated in the approximant A (of the normal
form), which is a multi-context (that is, a context with possibly many holes, possibly none).
The idea is that the name a of a job ⟨t⟩a in the pool is associated to a (unique) named hole
⟨·⟩a in A, and that, whenever a stable piece of term is produced by the job ⟨t⟩a, that piece is
moved to ⟨·⟩a in A, incrementally building the normal form.

We follow this pattern from [5], but our setting induces a few differences. Firstly, in [5]
the machine has also a global environment, akin to the cut context of the BAM. Here, we
include the environment/cut context into the approximant, having only one data structure.
Thus, the approximant shall have cuts, but these cuts bind variables that have non-garbage
occurrences only in the active term, i.e., only out of the approximant itself, where instead
they have only garbage occurrences. At the end of a complete run, the approximant shall be
normal for the non-erasing good strategy, i.e. it shall be cut-free up to garbage (Def. 8).

Secondly, in [5] the machine is defined using approximants, while here we define it
using the weaker notion of multi-contexts, and then prove invariants guaranteeing that the
multi-contexts of reachable states are approximants.

▶ Definition 17 (Multi-contexts and approximants). A (named) multi-context C is an ESC
term in which there might be occurrences of holes ⟨·⟩a indexed with names, as follows:

Names a, b, c, a1, b2, . . . Value multi-ctxs V ::= ⟨·⟩a | x | λx.C | !C
Multi-ctxs C ::= V | [V�x]C | [m5V, x]C | [e?x]C

The plugging C⟨C′⟩a of C′ on a in C, is the capture-allowing substitution of ⟨·⟩a by C′ in
C. We write C⟨C′⟩◦ for when ◦ is an irrelevant name occurring exactly once in C; this
notation is meant to be used for decomposing a multi-context in two, as in C = C′⟨C′′⟩◦. We
write names(C) for the set of names that occur in C. Out variables and out cuts extend to
multi-contexts as expected.

The domain dom(C) = {x1, . . . , xn} of a multi-context C contains the variables on which
there is a cut in C (the formal definition is in Appendix E of the tech report [11]).

An approximant A is a multi-context such that:
1. Unique names: every name a ∈ names(A) has exactly one occurrence in A;
2. Out cuts are hereditary garbage and hole-free: for every out cut [V�x]C′ in A, if

x ∈ fv(C′) then x occurs only inside cut values, i.e. x /∈ ov(C′), and V is a term.

Note that a multi-context C without holes is simply a term, thus the defined notion of
plugging subsumes the plugging C⟨t⟩a of terms in multi-contexts.
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Transitions. The principal transition of SESAME are as for the BAM up to the generalization
of the cut context E to a multi-context C. Note the mute name ◦ for decomposing the
multi-context in the transitions. Clearly, the name ◦ on the LHS and the RHS of each
transition is the same. SESAME has a search transition for each constructor of the calculus.
Note that transitions ⇝axm1 and ⇝axe1 are no longer terminal, because now they might be
followed by a search transition, after which the run might jump to a different job.

Read Back. The read back Q of a state Q = (C | P ) is defined in Fig. 5 and simply plugs
each job ⟨t⟩a of the pool P in the hole of name a of the multi context C. We also write C⟨P ⟩
for Q. Since the holes of C are all independent and jobs contains terms (with no holes), we
have that C⟨P ⟩ = C⟨P ′⟩ for any pool P ′ obtained by permuting the elements of P .

Example of SESAME run. As an example, we show a SESAME run on the following term:

t := [!λm1.m1�e1][e1?m2][e1?m3][m25m3, m4]m4

that just applies an identity function to itself, by making two copies of !λm1.m1 and applying
one to the other via the subtraction. To fit it into the margins, we use the abbreviation
s := [m25m3, m4]m4.

Tr. MCtx Pool
⟨·⟩a ⟨t⟩a : ϵ

⇝sea1 [!λm1.m1�e1]⟨·⟩a ⟨[e1?m2][e1?m3]s⟩a : ϵ

⇝! [!λm1.m1�e1]⟨·⟩a ⟨[λm5.m5�m2][e1?m3]s⟩a : ϵ

⇝sea1 [!λm1.m1�e1][λm5.m5�m2]⟨·⟩a ⟨[e1?m3]s⟩a : ϵ

⇝! [!λm1.m1�e1][λm5.m5�m2]⟨·⟩a ⟨[λm6.m6�m3]s⟩a : ϵ

⇝sea1 [!λm1.m1�e1][λm5.m5�m2][λm6.m6�m3]⟨·⟩a ⟨s⟩a : ϵ

⇝⊸ [!λm1.m1�e1][λm6.m6�m3]⟨·⟩a ⟨[m3�m5][m5�m4]m4⟩a : ϵ

⇝sea1 [!λm1.m1�e1][λm6.m6�m3][m3�m5]⟨·⟩a ⟨[m5�m4]m4⟩a : ϵ

⇝sea1 [!λm1.m1�e1][λm6.m6�m3][m3�m5][m5�m4]⟨·⟩a ⟨m4⟩a : ϵ

⇝axm1 [!λm1.m1�e1][λm6.m6�m3][m3�m5]⟨·⟩a ⟨m5⟩a : ϵ

⇝axm1 [!λm1.m1�e1][λm6.m6�m3]⟨·⟩a ⟨m3⟩a : ϵ

⇝axm1 [!λm1.m1�e1]⟨·⟩a ⟨λm6.m6⟩a : ϵ

⇝sea4 [!λm1.m1�e1]λm6.⟨·⟩a ⟨m6⟩a : ϵ

⇝sea6 [!λm1.m1�e1]λm6.m6 ϵ

Note that in the last state the cut [!λm1.m1�e1] is garbage but it is not removed. This shall
be taken care of by an extra garbage collection phase described in Sect. 8.

7 Analysis of SESAME

Invariants. As for the BAM, we prove some invariants. The first one states that the multi
context of a reachable state is an approximant. A second invariant states that names in the
multi context are exactly those in the pool, where they have exactly one occurrence each.
Then, we need a well-bound invariant about binders, relying on a technical definition in
Appendix E of the tech report [11], along the lines of the invariant of the BAM. Lastly, the
contextual decoding invariant, the most important and sophisticated invariant, states that a
reachable state less the first job reads back to a good context. For the invariant to hold, the
statement has to be generalized in a technical way, analogously to similar invariants in [5].
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▶ Lemma 18 (SESAME qualitative invariants). Let Q = (C | P ) be a SESAME state reachable
from a well-bound initial term t0.
1. Approximant: C is an approximant.
2. Names: jobs in the pool P have pairwise distinct names, and names(C) = names(P ).
3. Well-bound: Q is a well-bound state.
4. Contextual decoding: if P = ⟨t1⟩a1 : . . . :⟨tk⟩ak

has length k ≥ 1 then:

C
Q
s1,...,si−1|ai|si+1,...,sk

:= C⟨s1⟩a1 . . . ⟨si−1⟩ai−1⟨⟨·⟩⟩ai
⟨si+1⟩ai+1 . . . ⟨sk⟩ak

is a good context for i ∈ {1, . . . , k} and any terms s1, . . . , si−1, si+1, . . . , sk such that
C

Q
s1,...,si−1|ai|si+1,...,sk

is a term.

Implementation Theorem. The well-bound and contextual decoding invariants are used to
prove principal projection. The approximant and names invariants are used to prove the
halt property. Search transparency and termination are straightforward. Then we apply the
abstract implementation theorem (Theorem 13), and obtain the implementation theorem.

▶ Proposition 19. Let a ∈ {axm1, axm2, axe1, axe2,⊸, !}.
1. Search transparency: if Q⇝sea Q′ then Q = Q′.
2. Principal projection: if Q⇝a Q′ then Q→Ga Q′.
3. Search termination: transition ⇝sea terminates.
4. Halt: if Q is final then Q = (t | ϵ) and Q = t is cut-free up to garbage.

▶ Theorem 20 (SESAME is good). SESAME is a big-step implementation of the non-erasing
good strategy →G¬w of ESC.

Complexity Analysis
The complexity analysis of SESAME amounts to bound the cost of implementing a run
r : t ◁ Q⇝∗

SESAME Q′ on random access machines (RAMs) as a function of two parameters: the
number |r|pr of principal transitions in r (which are in bijection with the number of →G¬w

steps) and the size |t| of the initial term/state t/Q.

Sub-Term Property. The analysis relies on the sub-term property, ensuring that the du-
plicating principal transitions ⇝! and ⇝axe1 manipulate only sub-terms of the initial term.
Therefore, the cost of duplications is connected to size of the initial term. The property for
SESAME can be inferred by the one for the good strategy, but we prefer to give a direct
simple proof. The statement of the related invariant is about cut values, not duplications,
but note that such values are the only terms duplicated by SESAME.

▶ Lemma 21 (Sub-term). Let r : t ◁ Q⇝∗
SESAME (C | P ) be a SESAME run.

1. Invariant: if v is a cut value in C or a value in P then |v| ≤ |t|.
2. Property: if v is a value duplicated along r (by ⇝! or ⇝axe1) then |v| ≤ |t|.

Since search transitions decrease the number of term constructors in the pool, which is
only increased by principal transitions and of a quantity bounded by |t| (by the sub-term
invariant), we obtain the following bound.

▶ Lemma 22 (Search transitions are bi-linear in number). Let r : t◁Q⇝∗
SESAME Q′ be a SESAME

run. Then |r|sea ≤ |t| · (|r|pr + 1).
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Cost of Single Transitions. For bounding the total cost, we need to make some hypotheses
on how SESAME is going to be itself implemented on RAMs:
1. Variable occurrences, binders, and cuts: a variable is a memory location, a variable

occurrence is a reference to it, and a cut [v�x] is the fact that the location associated
with x contains v;

2. Random access to variables: the cuts in C can be accessed in O(1) by just following the
reference given by the variable occurrence, with no need to search through C;

3. Named holes and jobs: a named hole ⟨·⟩a is again a memory location a, and a job ⟨t⟩a is
a pointer to a and expresses the fact that location a contains t;

4. Sequences of left rules: cuts have a back pointer to the constructors before them (for
instance in [e?m][v�x][m5v′, y]t the cut [v�x] has a pointer to [e?m]) so that the removal
of a cut from the multi context C of a state – needed for the multiplicative transitions
⇝axm1 , ⇝axm2 , and ⇝⊸ – can be performed in O(1).

As it is standard for time analyses, we also assume that pointers can be managed in O(1).
These hypotheses mimic similar ones behind machines for λ-calculi, which are shown to
be implementable in OCaml by Accattoli and Barras [8] and Accattoli et al. [12], and are
followed by the OCaml implementation outlines in Sect. 9. They allow us to consider search
transitions as having constant cost, and principal transitions as having cost bound by the
initial term, by the sub-term property.

▶ Lemma 23 (Cost of single transitions). Let r : t ◁ Q⇝∗
SESAME Q′ be a SESAME run. Search

(resp. principal) transitions of r are implementable in O(1) (resp. O(|t|)).

Summing Up. By putting together the bounds on the number of search transitions with
the cost of single transitions we obtain the complexity of SESAME.

▶ Theorem 24 (SESAME bi-linear overhead bound). Let r : t ◁ Q⇝∗
SESAME Q′ be a SESAME

run. Then r is implementable on RAMs in O
(
|t| · (|r|pr + 1)

)
.

8 Final Garbage Collection and Full Cut Elimination

By the halt property (Proposition 19.4), SESAME stops on final state Q = (A | ϵ) where A
is a (pre-)term t that is cut-free up to garbage. The final garbage collection process turning t

into a cut-free proof term GC(t) is formalized as the following function:

Final garbage Collection
GC(x) := x GC(λx.t) := λx.GC(t) GC(!t) := !GC(t)

GC([v�x]t) := GC(t) GC([m5v, x]t) := [m5GC(v), x]GC(t) GC([e?x]t) := [e?x]GC(t)

Clearly, GC(t) is cut-free. The following proposition states the qualitative and quantitative
properties of garbage collection. Its first point uses the lemma before it, while the second
point rests on the SESAME bi-linear bound.

▶ Lemma 25. Let t be a term that is cut-free up to garbage but not cut-free. Then in t there
is at least an out cut that is a →Gw-redex.

▶ Proposition 26. Let r : t ◁ Q⇝∗
SESAME (s | ϵ) a SESAME run ending on a final state.

1. Good weakening steps simulate GC: s→k
Gw GC(s) where k is the number of out cuts in s;

2. GC is bi-linear: the final garbage collection function s 7→ GC(s) can be implemented on
RAMs in O(|t| · (|r|pr + 1)).
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By simulating good cut-elimination via the SESAME followed by final garbage collection,
we obtain our main result, which – beyond the bi-linear bound – is a further slight (but sort
of obvious) refinement of Accattoli’s result, as it allows one to count only non-erasing good
steps, rather than general good steps.

▶ Theorem 27 (Good cut-elimination is big-step implementable with bi-linear overhead). Let
e : t →∗

G s be a good evaluation sequence with s cut-free. Then s is computable from t on
RAMs in O (|t| · (|e|¬w + 1)).

Proof. If e : t →∗
G s with s cut-free then →G¬w terminates, by the uniform normalization

corollary of the diamond property for→G (see the end of Sect. 3). Then there is an evaluation
e′ : t→∗

G¬w
s′ with s′ cut-free up to garbage. Since SESAME is a big-step implementation

of →G¬w (Theorem 20), we obtain a SESAME run r : t ◁ Q⇝∗
SESAME Q′ with Q′ = s′, of cost

O
(
|t| · (|r|pr + 1)

)
= O (|t| · (|e′|+ 1)). By the halt property of SESAME and cut-freeness

up to garbage of SESAME, we obtain that Q′ is final, that is, Q′ = (u | ϵ) with u =α s′.
Since good weakening steps simulate GC (Proposition 26.1), we obtain e′′ : u→∗

Gw GC(s′)
with GC(s′) cut-free. Concatenating e′ and e′′ we obtain a good and normalizing evaluation
sequence e′′′ : t→∗

G¬w
→∗

Gw GC(s′). The diamond property of the good strategy (Theorem 10.2)
implies confluence and length invariance of →G (see the end of Sect. 3), that is, we obtain
s = GC(s′) and |e| = |e′′′|. Since computing GC is bi-linear (Proposition 26.1), and precisely
costs again O

(
|t| · (|r|pr + 1)

)
= O (|t| · (|e′|+ 1)), we obtain that the total cost of SESAME

followed by GC is 2 · O (|t| · (|e′|+ 1)) = O (|t| · (|e′|+ 1)).
Lastly, the diamond property of the good strategy (Theorem 10.2) as stated in [4] does

not give information about the kinds of steps, but by looking at its proof it is easily seen that
diamond diagrams preserve the kind of steps. Therefore, not only we have |e| = |e′′′|, but also
|e|¬w = |e′′′|¬w. Finally, note that |e′′′|¬w = |e′|, so the cost actually is O (|t| · (|e|¬w + 1)). ◀

9 Implementation in OCaml

An implementation in OCaml can be found on GitHub at https://github.com/sacerdot/
sesame/. All the datatypes and functions of the implementation are documented at https:
//sacerdot.github.io/sesame.

Aim and Design. The implementation is provided to support evidence for the cost of
transitions claimed by Lemma 23. Moreover, it allows one to easily study the computational
behaviour of family of terms by observing their evaluation.

The implementation has not been heavily optimized, in order to keep the code readable
and close to the pen-and-paper presentation. Nevertheless, the employed data structures
are reasonably close to those of an optimized implementation. Advanced recent OCaml
features, like Generalized Algebraic Data Types, could have been used to statically enforce
more invariants. We sticked instead to a simpler subset of OCaml, to make the code readable
to non experts of the language. As a consequence, in several places there are assertions to
abort the program in case the invariants are violated (possible only in case of bugs).

Overview. The implementation consists of a Read-Eval-Print-Loop (REPL) that asks the
user to enter an IMELL term to be reduced, in ESC syntax. The accepted BNF is printed
by the executable before starting the REPL. The term is first checked to be proper, then its
strong normal form up to garbage is computed by the SESAME machine and finally garbage
is removed. All intermediate machine steps are shown.

https://github.com/sacerdot/sesame/
https://github.com/sacerdot/sesame/
https://sacerdot.github.io/sesame
https://sacerdot.github.io/sesame
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Before starting the REPL, a few test terms are reduced and printed (among which the
example at the end of Sect. 6), to check the machine functionalities and as examples of the
input syntax. In particular, the last tests are terms from the exploding family discussed in
the next section.

Data Structures. Terms are encoded at runtime as term graphs, which are Direct Acyclic
Graphs (DAG) augmented with a few back edges. Nodes in the graph are given by constructors
of Algebraic Data Types whose arguments are mutable, to imperatively change the graph
during reduction. All type declarations are given in the termGraphs.ml file. The data
structures used in the implementation are described in Appendix H of the tech report [11].

Machine Runs: Auxiliary Functions and Their Complexity. The code that implements the
runs of SESAME to normal form and the final garbage collection process can be found in
reduction.ml, which is independent from all the remaining files but termGraphs.ml. Both
files together amount to 412 lines of commented OCaml code.

A quick inspection of the code in reduction.ml shows only a few non-trivial functions,
all the others being constant time:
1. copy_{term,value,var,bvar} that copies the DAG in input while visiting it. A O(1)

fresh name generator is used to assign a new name value to copies of variables.
2. alpha and enter_bo, used respectively in the ! and ⊸ transitions, that take the body

of a promotion/abstraction, traverse it to split it into a left context and a value, and
build a new term by glueing together the obtained left context, a new cut that uses the
value, and a remaining term. The two functions differ only in the fact that alpha also
copies (α-renames) the term in input, calling the copy_* functions on the sub-terms,
while enter_bo consumes the given term.

3. steps, the SESAME main loop, that runs until the pool is empty and a normal form is
therefore reached, or it diverges otherwise.

4. gc_{value,term} that traverse in linear time the input to remove all garbage cuts from
a normal form.

Linearity for all the previous functions but steps is easily established observing that
the functions are based on visits of DAGs that never visit a node twice. In particular, the
functions of Point 2 are linear in the size of the given term, which, by the sub-term invariant,
is a (copy of a) sub-term of the initial term.

The only major source of technicalities – which however do not affect the complexity – is
the fact that multiplicative transitions remove the acting cut from the multi context. For
example, consider a multiplicative step [e?f ][v�m][v′�y]t→ [e?f ][v′�y]t′ involving the cut
on m. To implement it, beyond manipulating v, t, and t′, one also has to connect [e?f ] and
[v′�y]. For that, cuts have a back-pointer to the preceding constructor (as mentioned at
Point 4, labeled sequences of left rule, before Lemma 23), which induces inelegant imperative
manipulations of the term graph, in particular in the copy function. The back-pointer on
[v�m] is used to retrieve the dereliction [e?f ] from [v�m], while making the new connection
of [e?f ] and [v′�y] requires changing two pointers: the one from the dereliction to its body,
which has to target [v′�y], plus the back-pointer from [v′�y], which now has to target [e?f ].

The general scheme for addressing this issue is to augment the input t of functions that
take a term with the pointer to the parent node of t, in order to be able to reassign the
back-pointer when t is a cut.
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Parsing, Pretty Printing, and Check for Properness. We have not attempted to achieve
the best asymptotic costs for these functionalities since they are not relevant for the paper
and since in practice we are manipulating small terms in input. To keep the code reproducible
in the long term, we have not used any external library or tool for parsing and pretty-printing.
The printed version of the example run at the end of Sect. 6 is shown in Appendix I of the
tech report [11].

10 What’s Next: an Interesting Family of Terms

We here hint at what we consider the most interesting future work, already mentioned by
Accattoli in the conclusions of [4]. The difference is that here we provide a family of terms
showing that such a future work is challenging.

The Question. One β-step of the λ-calculus is simulated in IMELL by one multiplicative
step (actually a →⊸ step) followed by possibly many exponential steps. Since for many
strategies the number of β-steps is a polynomial cost model, it means that one can count
only the number of multiplicative (or even →⊸) steps, that is, one can count zero for
exponential steps. Such a surprising fact is established easily in the case of weak evaluation
with closed terms (roughly, it can be proved via standard abstract machines), while for strong
evaluation it requires a sophisticated additional technique called useful sharing [15, 12, 20]. A
question naturally arises: is the number of ESC multiplicative/→⊸ good steps a polynomial
time cost model as well? This question – left to future work – is far from obvious. In the
λ-calculus, there is a strong, hardcoded correlation between multiplicatives and exponentials,
not present in IMELL. In the standard call-by-name/value encodings of λ-calculus in IMELL,
indeed, multiplicatives and exponentials connectives rigidly alternate, while IMELL also
has consecutive exponentials, as in !!A, enabling wilder exponential behaviour. A hint that
that question might have a positive answer is given by the strong normalization of untyped
exponentials in ESC/IMELL shown in [4] (while they are not SN in MELL, see [4]).

The Question is Challenging. We here show that the question mentioned above is chal-
lenging, and – surprisingly – it is already challenging in the apparently simple setting of
basic evaluation with closed terms, that is the ESC analogous of weak evaluation for the
λ-calculus, for which instead the question has an easy answer. The challenging aspect is here
shown by building a family of ESC terms σn having size linear in n, whose evaluation is
basic and made out of exponential steps only, and of a number of steps that is exponential
in n. This is impossible in the λ-calculus, and it is crucially related to iterated exponential
terms such as !!t. Since the evaluation of σn uses 0 multiplicative steps, it suggests that the
number of multiplicative steps is not a polynomial cost model. More precisely, it shows that
a smart additional mechanism – akin to useful sharing – is needed in order to circumvent
the exponential number of exponential steps. Useful sharing as it appears in the literature,
however, cannot be the answer, since useful sharing addresses exponential inefficiencies that
are induced by strong evaluation, which is an orthogonal issue.

The Exponential Exploding Family. The family is built in three steps.

1. For k ≥ 1, define πk :=
k︷ ︸︸ ︷

[f?_] . . . [f?_][f?e] e, where _ is an exponential variable with no
occurrences, and whose name is irrelevant. These terms can be composed as to reduce to
(the cut-free term) πk·h via exponential basic evaluation, that is, [!πk�f ]πh →∗

e πk·h.
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2. Define δn :=
n−1︷ ︸︸ ︷

[!π2�f ] . . . [!π2�f ] π2, and note that, by Point 1, one has δn →∗
e π2n .

3. Finally, define the exponential exploding family as σn := [!!λm.m�f ]δn. By Point 2, we
have σn →∗

e [!!λm.m�f ]π2n . Then note that [!!λm.m�f ]π2n →Ω(2n)
e !λm.m.

Summing up, σn is an example of term of size O(n) that reduces in Ω(2n) exponential steps
and 0 multiplicative steps to a cut-free proof using only basic evaluation. As mentioned in
the previous section, the OCaml implementation starts by running some tests, including
examples of the three points above, respectively for k = 3, h = 4, for n = 3, and for n = 3.
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Abstract
We describe a generic construction of non-wellfounded syntax involving variable binding and its
monadic substitution operation.

Our construction of the syntax and its substitution takes place in category theory, notably by
using monoidal categories and strong functors between them. A language is specified by a multi-
sorted binding signature, say Σ. First, we provide sufficient criteria for Σ to generate a language of
possibly infinite terms, through ω-continuity. Second, we construct a monadic substitution operation
for the language generated by Σ. A cornerstone in this construction is a mild generalization of the
notion of heterogeneous substitution systems developed by Matthes and Uustalu; such a system
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1 Introduction

1.1 General Motivation for Non-Wellfounded Syntax With Binders
Non-wellfounded syntax with binders appears in its purest form in the coinductive reading
of untyped λ-calculus. Potentially non-wellfounded λ-terms still consist of variables, λ-
abstractions and applications only, but the construction process with these constructors can
go on forever. Such construction processes can be described through functional programming,
and the host programming language then serves as a meta-language for the description of
those infinitary λ-terms. Instead of taking a programming perspective, one can also ask if
a possibly circular definition of such a non-wellfounded term is well-formed, in the sense
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that it uniquely determines such a structure. Naturally, uniqueness is understood up to
bisimilarity, i. e., two such non-wellfounded λ-terms are considered equal if their infinite
unfoldings have the same labels (indicating the applied constructor) in the same order on each
level, starting at the root. The presence of variable binding presents the extra challenge of
having to consider this bisimilarity modulo renaming of bound variables, i. e., α-equivalence
– a challenge that is amplified by the possibility of having an infinite number of bindings
in a non-wellfounded λ-term. In this paper, we either work on an abstract level that does
not reveal this challenge, or we resort to a representation using nested datatypes that is a
form of de Bruijn representation with well-scopedness guaranteed by the typing system (see,
e. g., [6]), and therefore α-equivalence is just not needed.

There are many uses of coinductive untyped λ-terms (such as Böhm trees), and coinductive
readings of term structures with binding (also with simple types, e. g., as in an automata-
theoretic analysis by Melliès [24]) have a counterpart in infinitary rewriting.

1.2 A Motivational Application Scenario
We have an application scenario in mind for which the “static” part, i. e., the well-typed syntax
itself, is important, even without the aforementioned “dynamics” of infinitary rewriting. It is
more complicated than just λ-calculus, notably by the presence of embedded inductive types.
This in particular motivates our search for datatype-generic constructions for a wide range of
non-wellfounded simply-typed syntax.

The application scenario is as follows: We want to represent the entire search space for
inhabitants in simply-typed λ-calculus (STLC) by a potentially non-wellfounded term of a
suitable calculus. The inhabitation problem itself is the following question: “Given a context
Γ and a type A of STLC, is there a term t of STLC such that Γ ⊢ t : A?”. Taking into
account the entire search space means including infinite runs that arise in a (naive) search
loop. And the term of the “suitable calculus” should again have type A in context Γ but
represent the search space and not only be a single inhabitant. This calculus is informally
given by the following grammar:

(terms) N ::=co λxA.N |E1 + · · ·+ En

(elimination alternatives) E ::=co x⟨N1, . . . , Nk⟩

with one constructor for each n, k ≥ 0, hence we have sums with any finite number of
summands and tuples with any finite number of arguments. We write x in place of x⟨⟩ –
this captures k = 0. The elimination alternatives resemble the neutral terms of λ-calculus of
the form xN1 . . . Nk – we are only searching for inhabitants in normal form. They have this
name because they correspond to repeated implication elimination (as expressed by STLC
typing) and they are summands in E1 + · · ·+ En that indicate a finite choice between those
“alternative” n summands. Search for normal forms in STLC only has finitely many options
at each choice point, even though, e. g., there are infinitely many inhabitants of the type of
Church numerals.

The elements of the syntactic category of terms are also called “forests”. The index co
means that the grammar is read coinductively. There are two clauses that embed (finite)
lists into the codata type. It therefore presents at least the challenges of non-wellfounded
“rose trees”, i. e., finitely-branching unlabeled trees without a bound on the branching width.
The scenario comes from [27, Section 3.2], and we plan to study it with our formalization.
The typing rules for these expressions are given in Figure 1, with Γ ranging over finite(!)
typing contexts. They are the usual implication introduction and a vectorized implication
elimination (down to atomic types p), and the rule for typing alternatives (of the same
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Γ, x : A ⊢ N : B

Γ ⊢ λxA.N : A→ B
co (x : B⃗ → p) ∈ Γ ∀i ≤ k, Γ ⊢ Ni : Bi

Γ ⊢ x⟨Ni⟩i≤k : p
co ∀i ≤ n, Γ ⊢ Ei : p

Γ ⊢
∑

i≤n Ei : p
co

Figure 1 Coinductive typing rules for simple types in the application scenario.

λf (0→0)→0 f@ λy0

+

y f@

λz0

[(y + z)/y]

Figure 2 Forest representation of all inhabitants of THREE.

atomic type) – and all rules are read coinductively, indicated by the co mark. A well-typed
such term hence locally conforms to intuitionistic implicational logic. For illustration, we
give a well-typed forest in graphical form – the much easier example of Church numerals is
found in Appendix A. Let THREE :≡ ((0→ 0)→ 0)→ 0 for an atom 0. This is the simplest
type of rank (i. e., nesting depth) 3. We define a closed forest of type THREE in Figure 2
[27, Example 16]. f@ is short for f⟨N⟩ with N given by where the arrow points to. The
“decontraction operation” in the back link resides on the meta-level and is specific to the
summation in this example grammar: [(y + z)/y] (written [y : 0, z : 0/y : 0] in the cited
paper) is decontraction and says that every occurrence of y has to be replaced by a sum
once with y and once with z in place of the original y. This forest representation can be
seen as a formal approach to the informal concept of “inhabitation machines” [8, pp. 34–38].
All the inhabitants of THREE can be read off this forest: omitting types, they are of the
form λf.f⟨λy1.f⟨λy2.f⟨· · · ⟨λyn.yi⟩ · · ·⟩⟩⟩, with 1 ≤ i ≤ n. The individual inhabitants are
wellfounded, but the forests representing the entire search spaces (for all simple types) are
obtained coinductively in [27]. We use a generic construction of syntax such as the forests of
this scenario that is based on category theory.

1.3 Context and Overview of this Paper

For wellfounded languages with variable binding, categorical semantics are given in [17]. The
importance of monoidal structure for the modelling of substitution is emphasized there; many
of the constructions are given on the level of monoidal categories, and are later instantiated
to a suitable category of contexts. A very extensive overview of work on substitution for
wellfounded syntax with binders, comparing [17] and subsequent work by the same and other
authors, is given by Lamiaux and Ahrens [21]. A categorical semantics of non-wellfounded
syntax with binding appeared in [22] involving the first author. That work is set concretely
in endofunctor categories instead of general monoidal categories.
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In that context, the present paper makes the following contributions. Firstly, the new
definitions and results of the present paper lift the approach of [22] to the abstraction
level of monoidal categories – to reach the same abstraction level as [17]. Secondly, we
provide a full type-theoretic formalization of the results on the abstract level. Using both
of these contributions, by (non-trivial) instantiation, we get a tool chain from multi-sorted
binding signatures to certified monadic substitution for non-wellfounded syntax and thus the
non-wellfounded counterpart to the tool chain described in [5] involving two of the present
authors. Such a tool chain is absent from [22] even on the informal level (neither multi-sorted
binding signatures nor unsorted binding signatures are considered). Our approach is now
general enough so that the monoidal category underlying [17] and its ramifications can also
be studied concerning non-wellfounded syntax and substitution for it.

In more detail, we construct non-wellfounded syntax from final coalgebras in suitable
functor categories, hence based on category theory. Variable binding is modelled through
the use of nested datatypes, as, e.g., in [10, 11]. The structure map of the final coalgebra is,
of course, an isomorphism with its inverse providing an algebra structure. This excludes the
existence of exotic terms. We benefit from that abstract view in order to construct a monadic
substitution operation similar to [7], i. e., a meta-level operation that is not specific to the
application scenario presented above (in contrast to the decontraction operation it features).
The qualifier “monadic” implies that the generic approach includes proving the monad laws.
For the case of wellfounded syntax, this is well-established in the literature (see, e. g., [7]).
For the non-wellfounded case but without types, this has also been done before [20].

Further previewing our technical contributions, our approach is to generalize the notion of
heterogeneous substitution systems [22] from endofunctor categories to monoidal categories.
Those systems (abbreviated HSS) were meant as a tool to construct monadic substitution
both for wellfounded and non-wellfounded syntax – by a common abstraction that serves as a
pivotal structure between initial algebras and final coalgebras, respectively, on the input side
and the substitution monad as output. We call the generalization monoidal heterogeneous
substitution systems (MHSS). All these ingredients have been considered before for the sake
of representation of wellfounded syntax [16, Section I.1.2][19, Section 5.2.1]. Section 3 is
the core contribution of this paper, making the step to non-wellfounded syntax on the more
abstract level of monoidal categories. The results in that section demonstrate the pivotal
role of MHSS: from a final coalgebra, a MHSS is constructed, and from a MHSS, a monoid is
constructed, which abstracts away from monadic substitution. Section 4 applies the results
of Section 3 to the endofunctor scenario – which is hardwired into the definitions in [22].

1.4 Synopsis
The remainder of this paper is structured as follows. In Section 2 we review some prerequisites
from category theory that are used later in the paper. Section 3 presents the construction of
non-wellfounded syntax with substitution on the level of monoidal categories. As promised
above, it generalizes both to monoidal categories and from wellfounded to non-wellfounded
syntax – sloppily construable as “pushout” of these two directions. Section 4 applies the
results of Section 3 to the endofunctor scenario, capturing simply-typed non-wellfounded
syntax (with binding) generically. The appendix contains technical complements. However,
for lack of space, Appendix B and Appendix D are only present in the full version [23].

All of the definitions and results presented in this paper (except for the motivational
application scenario in Section 1.2) are formalized and computer-checked in UniMath [29], a
library of univalent mathematics based on the computer proof assistant Coq [28]. Throughout
this paper, definitions and results are annotated by Coq identifiers for the corresponding
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definitions and results in our library. These identifiers are hyperlinks leading to an HTML
version of the proof code; for instance, clicking on monoidal brings you to the definition of
monoidal category. The formalization is not the main topic of this paper (a discussion of
some formalization aspects is found in Appendix E); we use it mainly to relieve ourselves
from the burden of writing out lengthy and uninteresting proofs, and the reader from the
burden of reading them. Instead, we restrict ourselves to pointing the reader to interesting
aspects of proofs and constructions, and aim to convey the intuition behind – and useful
applications of – our work.

2 Preliminaries

We assume working knowledge of category theory and mostly only point to specific choices of
notation. We write a : C to indicate that a is an object in category C; we write f : a→ b to
indicate that f is a morphism from a to b in C. Following the choice adopted for the UniMath
library, composition is written in “diagrammatic” order, i. e., the composite of f : a→ b and
g : b→ c is denoted f · g : a→ c. We will make use of a category Set of sets; objects of this
category are called “small” sets.

2.1 Monoidal Categories and Actegories
In this section we briefly review the notions of monoidal category and of actegory.

A monoidal category is given by a six-tuple (C,⊗, I, λ, ρ, α) where C is a category,
⊗ : C × C → C, I : C, λ = (λx)x:C (the left unitor) with λx : I ⊗ x→ x, ρ = (ρx)x:C (the right
unitor) with ρx : x⊗I → x and α = (αx,y,z)x,y,z:C (the associator) with αx,y,z : (x⊗y)⊗z →
x⊗ (y ⊗ z). The unitors and the associator are required to be natural isomorphisms, and
are furthermore subject to coherence laws called the “triangle law” and the “pentagon law”,
recalled in Appendix B that is only available in the full version [23]. We will use the letter V
to indicate the first component of a monoidal category and, by slight abuse of language, we
even call V a monoidal category when the other components are left implicit. We can also
just mention (C,⊗, I) or (V,⊗, I).

For the proper understanding of the strength notion and for the construction process of
a strength in our application scenario, we use actions of monoidal categories on categories,
called actegories. For the naming of concepts, we vaguely follow [14].

Given a monoidal category V, a (left) V-actegory is given by a quadruple (C,⊙, λ, act)
where C is a category, ⊙ : V×C → C (the action), λ = (λx)x:C (the unitor) with λx : I⊙x→ x,
and act = (actv,w,x)v,w:V,x:C (the actor) with actv,w,x : (v⊗w)⊙x→ v⊙ (w⊙x). The unitor
and the actor are required to be natural isomorphisms, and are furthermore required to
satisfy coherence laws analogous to the ones for monoidal categories, called also “triangle law”
and “pentagon law” that are found in Appendix B (only in [23]). We consider it as important
that actegories are a kind of widening of the concept of monoidal categories, in the following
sense: Given a monoidal category (V,⊗, I, λ, ρ, α), (V,⊗, λ, α) is a V-actegory, and it is called
the actegory with the canonical self-action (cf. actegory_with_canonical_self_action).

We furthermore consider strong monoidal functors from monoidal category (C,⊗, I) to
monoidal category (D,⊗′, I ′). Such a functor is given by a triple (F, ϵ, µ), where F : C → D
(the underlying functor), ϵ : I ′ → FI (preservation of unit) and µ = (µx,y)x,y:C (preservation
of tensor) with µx,y : Fx⊗′ Fy → F (x⊗y). Here, we assume µ to be a natural transformation,
and ϵ and µ to be isomorphisms (so as to be “strong”), as well as the three well-known (lax)
laws of preservation of left and right unitality and associativity. By abuse of notation, we
even call F a strong monoidal functor when the other components are left implicit.
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I ⊙′ Fx F (I ⊙ x)

Fx

ℓI,x

λ′
F x F λx

(v ⊗ w)⊙′ Fx F ((v ⊗ w)⊙ x)

v ⊙′ (w ⊙′ Fx) F (v ⊙ (w ⊙ x))

v ⊙′ F (w ⊙ x)

ℓv⊗w,x

act′
v,w,F x F actv,w,x

1v⊙′ℓw,x ℓv,w⊙x

Figure 3 Preservation of the unitor and the actor in a linear functor.

For the purposes of syntax representation, we only consider the lax form of morphisms
between actegories, over a common monoidal category V . Given a monoidal category (V,⊗, I),
a lax linear functor from actegory (C,⊙, λ, act) to actegory (D,⊙′, λ′, act′) is given by a pair
(F, ℓ), where F : C → D (the underlying functor) and ℓ = (ℓv,x)v:V,x:C (the lineator) with
ℓv,x : v ⊙′ Fx → F (v ⊙ x). We require the lineator to be a natural transformation (not
necessarily an isomorphism), and furthermore require it to satisfy two laws of preservation
of the unitor and the actor, see Figure 3. Currying away the second index to ℓ and using
that λ and act are isomorphisms, these laws uniquely determine ℓI and give a formula to
calculate ℓv⊗w from ℓv and ℓw. (On this level of generality of the description, this is not
different from the situation for the µ component of a strong monoidal functor.)

2.2 Pointed Strength
Pointed strength is best understood through actegories; this is sketched in [16, Section I.1.2]),
and our presentation here has the same main ingredients (using reindexing and a coslice
category, see below). This abstract view is helpful for creating libraries of functors with
pointed strength, as will be visible in Section 4. Hur uses the notion of pointed strength
extensively but only spells it out concretely [19, Section 5.2.1].

Given monoidal categories W and V, a strong monoidal functor F : W → V and a
V-actegory (C,⊙, λ, act), one can canonically construct a W-actegory (C,⊙′, λ′, act′) over the
same base category – the reindexing of the V-actegory along F . (It seems that it would suffice
that F is an oplax monoidal functor instead of a strong one.) On objects, the action ⊙′ is
constructed as w⊙′ x :≡ Fw⊙ x. We will not spell out the details here; our formalization of
this construction is given in reindexed_actegory.

We need reindexed actegories for one specific situation: the actegory with the canonical
pointed action. We assume a monoidal category V with unit I and construct the monoidal
category of “monoidal-pointed objects”: the underlying category is the coslice category I/V
whose objects are pairs (v, pv) with v : V and pv : I → v (“a point for v”), and the monoidal
category can be easily constructed. Just for the record: Iptd :≡ (I, 1I) is the unit, and the
tensor is defined on objects as (v, pv)⊗ptd (w, pw) :≡ (v ⊗ w, λ−1

I · (pv⊗ pw)).
Given a monoidal category V, the actegory Vptd that we call the actegory with the

canonical pointed action of V is obtained by reindexing: in the definition above, we take
W := I/V , V as given, F the forgetful functor that forgets the points (and is strong monoidal),
and as V-actegory the actegory with the canonical self-action of V introduced above. It
follows that in Vptd , the monoidal-pointed objects of V act on the objects of V.

Given a monoidal category V and an endofunctor F on V, a pointed tensorial strength
for F is a θ so that (F, θ) is a lax endomorphism of actegory Vptd . In other words, θ is the
lineator (following the literature, we use θ for this specific use of lineators) in the situation
where source and target action are Vptd .

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.CategoryTheory.Actegories.ConstructionOfActegories.html#reindexed_actegory
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I ⊗ Fv F (I ⊗ v)

Fv

θ
Iptd ,v

λF v F λv

(v ⊗ w)⊗ Fx F ((v ⊗ w)⊗ x)

v ⊗ (w ⊗ Fx) F (v ⊗ (w ⊗ x))

v ⊗ F (w ⊗ x)

θ(v,pv)⊗ptd (w,pw),x

αv,w,F x F αv,w,x

1v⊗θ(w,pw),x θ(v,pv),w⊗x

Figure 4 Preservation of the unitor and the actor for pointed tensorial strength.

In order to allow for an easy comparison with the literature, we spell out the lineator laws
for pointed tensorial strength θ (besides the requirement of naturality in both arguments):
the components are θ(v,pv),x : v ⊗ Fx → F (v ⊗ x), and the preservation rules are given
in Figure 4. The differences with [19, Section 5.2.1] are all of presentational nature, most
notably that we use left actegories while Hur has the monoidal-pointed objects as second
parameter of his “pointed strength” st.

3 Monoid Structure on Non-Wellfounded Syntax

In this section, we construct a well-behaved substitution operation on non-wellfounded syntax.
We do so on the level of monoidal categories, using the new notion of “monoidal heterogeneous
substitution system”. Already mentioned in the introduction, this notion will have a pivotal
role in this section: as an intermediate step between a given final coalgebra and the monoid
representing substitution on that final coalgebra. The carrier of these structures is one object
t of the given monoidal category V, so t is the representation of all terms as a whole, thus
abstracting away from context/scope and typing details. (In Section 4, V will be instantiated
to an endofunctor category, so that such a t will be a functor whose argument is interpreted
as a typing context.)

▶ Definition 1 (Monoidal heterogeneous substitution system, mhss). Let V be a monoidal
category with unit I, tensor ⊗ and right unitor ρ and H an endofunctor on V with a pointed
tensorial strength θ for H. We consider triples (t, η, τ) with t : V (the “terms”), η : I → t

(representing the injection of variables into terms) and τ : Ht→ t (the H-algebra representing
the domain-specific constructors). Hence (t, η) is a monoidal-pointed object. (t, η, τ) is a
monoidal heterogeneous substitution system (MHSS) for (V, H, θ) if, for all (z, e, f) with
z : V, e : I → z and f : z → t, there is a unique morphism h : z ⊗ t → t such that the
following diagram commutes:

z ⊗ I z ⊗ t z ⊗Ht

H(z ⊗ t)

z t Ht

1z⊗η

ρz h

1z⊗τ

θ(z,e),t

Hh
f τ

(1)

The uniquely existing morphism h is denoted as LfM(z,e).
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Notice that for the considered triples (z, e, f), (z, e) is a monoidal-pointed object. The
morphism f is just a V-morphism and not a “monoidal-pointed” morphism from (z, e) to
(t, η), see Remark 2. The left unitor and the associator of the monoidal category do not enter
this definition directly but through the laws governing θ (cf. Figure 4).

As seen on the right-hand side of Equation (1), the strength θ is an operation that
serves to prepare the arguments that are fed into the “structurally recursive call” Hh, before
applying the domain-specific constructors bundled in τ . In other words, h mostly follows a
homomorphic pattern, except for the rearrangement required by variable binding – implicitly
expressed in functor H – that is taken care of by θ.

This notion of MHSS is not a recursion scheme specifically for the carrier of an initial
algebra (for the functor I + H−). The present notion of MHSS only formulates the “desider-
atum”, not sufficient conditions for its fulfillment. What makes MHSS suitable for dealing
with coinductive syntax as well (when t, η, τ come from a final coalgebra) is the deliberate
restriction of the target type of h to t. (This is already part of the notion of heterogeneous
substitution system (HSS) [22], see Remark 2). There is also the restriction to τ as the
H-algebra in the arrow on the bottom of the diagram, hence the limitation to a notion of
substitution and not some general recursive pattern.

▶ Remark 2. Monoidal heterogeneous substitution systems “almost” generalize the notion of
HSS of [22] from the specific situation where an endofunctor category [C, C] is considered to
the (unrestricted) monoidal category V . The ingredients and stipulations of [22, Definition 5]
are an instance of our notion of MHSS as soon as C has binary coproducts – so as to be able
to speak about an (Id + H−)-algebra – modulo the following:
1. The order of the arguments of strength θ is inverted.
2. We consider all V-morphisms f and not only morphisms f between the monoidal-pointed

objects (z, e) and (t, η), satisfying η = e · f . In our diagram, that is Equation (1), f is
just the V-morphism. However, in the diagram in [22, Definition 5], f is written although
Uf is meant, with U the forgetful functor from pointed endofunctors to endofunctors
forgetting the points.1

For the representation of substitution for non-wellfounded syntax, we will need abstract
counterparts to the construction of a monad out of a HSS [22, Theorem 10] and the
construction of a HSS from a final coalgebra [22, Theorem 17]. It is fair to say that these
results carry over to MHSS without difficulty. We sketch the counterpart to the former
construction in Section 3.1 and detail a different path to obtaining the latter in Section 3.2.

3.1 Construction of a Monoid From a MHSS
Let (V,⊗, I, λ, ρ, α) be a monoidal category. A V-monoid is given by a triple (v, η, µ) where
v : V, η : I → v (the “unit” of the monoid) and µ : v ⊗ v → v (monoid “multiplication”),
such that the left and right unit laws and the associative law hold. We recall the laws in
Appendix B (only in [23]).

Let furthermore H be an endofunctor on V with a pointed tensorial strength θ for H.
An (H, θ)-monoid [17] is a quadruple (v, η, µ, τ) with (v, η, µ) a V-monoid and τ : Hv → v

(thus (v, τ) is an H-algebra), such that the following diagram commutes:

1 This second difference appears to be a conceptual simplification, and has been formalized in 2022 for
endofunctor categories as a “simplified notion of HSS”, serving as a test bed for our definition of MHSS,
cf. SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.v.

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.SimplifiedHSS.SubstitutionSystems.html
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v ⊗Hv H(v ⊗ v) Hv

v ⊗ v v

θ(v,η),v

1v⊗τ

Hµ

τ

µ

(2)

The condition expressed by the diagram is the starting point for the parameterization process
that ends in the definition of MHSS.

▶ Theorem 3 (Construction of a monoid from MHSS, mhss_monoid, mhss_to_sigma_monoid).
We assume the parameters V, H and θ of a MHSS. Let (t, η, τ ) be a MHSS, and let µ := L1tM(t,η)
the uniquely existing morphism for (t, η, 1t). Then (t, η, µ, τ ) is an (H, θ)-monoid.

This generalizes [17, Proposition 3.5] from the construction of an initial (H, θ)-monoid
(under extra sufficient conditions) to the construction of an (H, θ)-monoid from a suitable
H-algebra (without further conditions). On the other hand, it lifts [22, Theorem 10] from
the abstraction level of endofunctor categories to that of monoidal categories. For the proof
of Theorem 3, we can precisely follow the organization of the proof of [22, Theorem 10].
The absence of the pointedness requirement for f in the definition of MHSS gives rise to an
inessential simplification. The defining diagram of an (H, θ)-monoid is just the right-hand
side of Equation (1) for the instance used to define µ. So, we have to establish the monoid
laws, for which we only give an overview (cf. mhss_monoid for the formalization). We define
µ(0) :≡ η : I → t and µ(1) :≡ LηMIptd : I ⊗ t → t. The morphism λt satisfies its defining
diagram, hence µ(1) = λt by uniqueness. The right unit law of a monoid is just the left-hand
side of the defining diagram of µ. The left unit law of a monoid asks for λv to be equal to
a morphism m; since λt = µ(1), it suffices to show that m satisfies the defining diagram of
µ(1). Now, define µ(2) :≡ µ. The morphism µ(2) is even a morphism of the monoidal-pointed
objects (t, η)⊗ptd (t, η) and (t, η); the proof uses that λI = ρI , which holds generally. Define
µ(3) :≡ Lµ(2)M(t,η)⊗ptd(t,η) : (t⊗ t)⊗ t→ t. The associative law of a monoid can now be dealt
with by showing that both sides of that equation satisfy the defining diagram of µ(3) and are
hence equal by uniqueness. The reasoning in both cases is just the monoidal generalization
of the first two items of [22, p. 168].

3.2 Construction of a MHSS From a Final Coalgebra
In this section, we assume the parameters V, H and θ of a MHSS. We require binary
coproducts in the underlying category of V (and use inl and inr without indices for the
left and right injection into the coproduct). We also assume a final coalgebra (t, out) of
the functor (I + H−), i. e., t : V and out : t → I + Ht. By Lambek’s theorem, out is an
isomorphism, with inverse out−1 : I + Ht → t that can be written as out−1 = [η, τ ] with
η : I → t and τ : Ht → t. We also require that binary coproducts distribute over the
tensor of V in its second argument; this means that, for all v, w1 and w2, the morphism
[1v ⊗ inl, 1v ⊗ inr] from v⊗w1 + v⊗w2 to v⊗ (w1 + w2) has an inverse. We call that inverse
δ for “distributor”, without specifying its arguments.

▶ Theorem 4 (Construction of MHSS from final coalgebra, final_coalg_to_mhss_alt). The
triple (t, η, τ) is a MHSS for (V, H, θ).

For clarity, we deviate from the proof of [22, Theorem 17] for HSS, which uses primitive
corecursion. We instead use that out−1 is a completely iterative algebra (abbreviated as
“cia”), which follows from out being a final coalgebra [25]. In particular, we will only use the
definition of cia and not more general corecursion schemes implied by that property.

FSCD 2024

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.html#mhss_monoid
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.SigmaMonoids.html#mhss_to_sigma_monoid
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.GeneralizedSubstitutionSystems.html#mhss_monoid
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ConstructionOfGHSS.html#final_coalg_to_mhss_alt


25:10 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

z ⊗ t (I + H−)(z ⊗ t) + t

z ⊗ (I + Ht)

z ⊗ I + z ⊗Ht z + H(z ⊗ t)

eqm

1z⊗out

δ
ρz+θ(z,e),t

[f ·inr,inr·inl]

Figure 5 Definition of eqm as composition of four morphisms.

Given an endofunctor F on a category C with binary coproducts, an F -algebra (c, α)
is called a cia iff for every x : C and every morphism e : x → Fx + c (“a flat equation
morphism”), there is a unique morphism h : x→ c that is a “solution” of e in c in the sense
that the following diagramm commutes:

x Fx + c

c Fc + c

e

h F h+1c

[α,1c]

This generalizes the intuition when C is Set: the elements of x are the unknowns, and e either
requires a structure in F over the unknowns or directly assigns a value in c. A morphism
h is a solution if, in the first case, applying h inside the structure and then assembling the
structure through α yields the value of h again.

To prove Theorem 4, we apply the cia scheme for F := I + H− and α := out−1. Given a
triple (z, e, f), the following are equivalent:
1. h : z ⊗ t→ t satisfies the defining diagram for LfM(z,e)
2. h satisfies the defining diagram of a solution for the flat equation morphism eqm : z⊗ t→

(I + H−)(z ⊗ t) + t defined in Figure 5.
The details are found in Appendix C. In a nutshell, the two defining diagrams can be
massaged so that the equivalence can be seen for each path in the diagrams individually.

On a general note, there is a whole arsenal of categorical corecursion schemes. For MHSS
(and hence for the representation of substitution in the section to come), we picked the
method of completely iterative algebras. Working with these tools from category theory is
an alternative to intuitive “guarded” definitions and reasoning with observation depths. This
alternative is suitable for formalization, for which the present paper is further evidence.

4 Non-Wellfounded Syntax for Multi-Sorted Binding Signatures

In this section, we start from the notion of multi-sorted binding signature (reviewed in
Section 4.1). Exploiting the high-level results of Section 3 and thus showing their usefulness,
we are going to construct the non-wellfounded syntax specified by such a signature, together
with a well-behaved – monadic – substitution operation on the terms of that syntax.

Our work builds upon previous work [5] involving two of the present authors. There,
categorical semantics of languages of wellfounded terms is developed, and a construction
of the syntax generated by a multi-sorted binding signature is given. In this section, we
construct non-wellfounded syntax based on that very same notion of multi-sorted binding
signatures. Given such a signature, the existence of the generated syntax is guaranteed by
ω-continuity of the associated signature functor – while, for wellfounded terms, [5] establishes
ω-cocontinuity to construct the syntax. For a modular proof of ω-continuity, we decompose
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the construction of the associated signature functor slightly differently. Extensionally, we
arrive at the same functor, but the formalization of that proof is somewhat intricate. We
therefore suggest the new construction of the signature functor as the one to work with also
in the wellfounded case. This makes good sense if one wants to consider the embedding of
wellfounded syntax into non-wellfounded syntax for the same multi-sorted binding signature,
and it is doable since we also formalized a proof of ω-cocontinuity. But there is also an
advantage on the conceptual side: the building blocks of the signature functor are all
endofunctors, unlike previously [5]. A second difference with the previous work is that, for
the strength construction, we systematically refer to results that reside on the abstract level
of monoidal categories. (Aspects of steps 1, 2, and 4 below are also described in [5, Section 2];
we discuss them here again for the sake of being self-contained. The items 5-7 are concretized
in Section 4.4.)

1. We describe simply-typed syntax with variable binding (of finitely many sorted variables
in each constructor argument) as a multi-sorted binding signature, see Section 4.1.

2. Given a multi-sorted binding signature, we construct a signature functor H (deviating
from [5] for technical reasons), see Section 4.2.

3. We prove ω-continuity of (Id + H−) and construct the coinductive syntax as the inverse
of a final coalgebra thereof, see Section 4.3.

4. We construct a “lax lineator” between actions expressing pointed tensorial strength of H ,
see Section 4.4 including a discussion of the case of simply-typed λ-calculus and references
to the appendix for more details on the general case (only in [23]).

5. We construct a MHSS (Definition 1) for (H, θ) by applying Theorem 4.
6. We construct an (H, θ)-monoid by applying Theorem 3.
7. Finally we interpret the obtained monoid as monad (hence as monadic substitution) since,

during the entire section, we are instantiating the monoidal category to the endofunctors.

4.1 Multi-Sorted Binding Signatures: Motivation and Definition
We want to construct syntax of non-wellfounded terms that feature variable binding and
have a simple notion of typing. Such type systems can be specified using “multi-sorted
binding signatures”; this notion was used, in particular, in [5], but appears in almost any
literature about initial semantics for multi-sorted syntax. The prime example is simply-typed
λ-calculus (STLC), whose extension to non-wellfounded well-typed terms is an instance of
our construction. We study this example in some detail in Example 5 before reviewing
multi-sorted binding signatures in Definition 6.

▶ Example 5 (Non-wellfounded simply-typed lambda-calculus). We are now rephrasing [5,
Example 2.2 and Example 2.10]. We assume the types of simply-typed λ-calculus to form
a small set S that is closed under a binary operation ⇒: S → S → S. The elements of S
are called sorts, so as to distinguish them from the types of our ambient type theory. We
model syntax over a base category C (with initial object ⊥, terminal object ⊤, and binary
products and binary coproducts), not necessarily the category Set; however, we motivate the
notions for the special case where C is Set. Let CS be the functor category [S, C] where S is
viewed as a discrete category. In the case when C is Set, objects of this category are simply
functions ξ : S→ Set, and we generally use letter ξ to indicate objects of CS. They represent
the typing contexts since ξs represents the totality of variables of sort s.

For the instantiation of Section 3, we take V as the monoidal category of endofunctors of
CS – with the tensor operation X ⊗ Y :≡ X · Y in diagrammatic order. In Definition 1, we
are looking for one object T of V (i. e., T : [CS, CS]) as representation of all the wellfounded
and non-wellfounded terms, here of simply-typed λ-calculus. On objects, T assigns to ξ : CS

FSCD 2024
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and s : S the object T ξ s of C, a representation of all the wellfounded and non-wellfounded
terms that have sort s in the typing context ξ. The functor H of Section 3 prepares for
the construction of T as a fixed point. Instead of only considering the “solution” T as an
argument to H, we have to abstract over an arbitrary X : V as an object argument to H.
We would like to take H as the pointwise coproduct of one summand for application and one
for abstraction, for each pair (s, t) of sorts that parameterize the respective typing rules, i. e.
H :≡

∑
s,t:S(apps,t + lams,t). Here the summands have to be endofunctors on [CS, CS], and

we only give the definition for objects (in all arguments) – where the defining equation is
between objects of C:

apps,t X ξ u :≡
{

X ξ (s⇒ t)×X ξ s if u = t

⊥ else ,

lams,t X ξ u :≡
{

X ξ′ t if u = (s⇒ t), with ξ′s :≡ ⊤+ ξs and ξ′u′ = ξu′ for u′ ̸= s

⊥ else

These summands represent all well-sorted applications and λ-abstractions made from the
material in the yet arbitrary object X of V , while the variables are dealt with separately from
H through the unit of V (in our case the identity functor) in Section 3. The case distinctions
on equality of sorts in this motivating example can be avoided following [5], and we will do
so in the generic construction in Section 4.2.

We fix a small set S representing the sorts.

▶ Definition 6 ([5, Definition 2.1], MultiSortedSig). A multi-sorted binding signature is
given by a small set I together with an arity function ar : I → (S∗ × S)∗ × S.

Here, we write A∗ for the set of finite lists formed from elements of A. The intuition is as
follows: for any i : I, ar(i) is the signature of a term constructor. The second component of
ar(i) is the sort of the constructed term. The first component is a list of signatures of the
arguments of that constructor. Each such signature is an element of S∗ × S, describing the
sorts of all the (anonymous) variables bound by that argument, together with the sort of
the argument itself. [5] makes no claim on originality of that definition, see the discussion
there. It should be stressed that, while S and I can be infinite sets, each term constructor
described by an ar(i) only has finitely many arguments. Non-wellfounded syntax with these
constructors is therefore still finitary in the sense that terms, when viewed as trees, are
finitely branching.

▶ Example 7 ([5, Example 2.2], STLC_Sig). Assume that S is closed under a binary operation
⇒. We put into I the sort parameters of the typing rules of the term constructors of STLC.
Thus, I is taken to be (S × S) + (S × S). The left summand pertains to the application
operation while the right summand describes λ-abstraction:

ar(inl⟨s, t⟩) :≡
〈
[⟨[], s⇒ t⟩, ⟨[], s⟩], t

〉
ar(inr⟨s, t⟩) :≡

〈
[⟨[s], t⟩], s⇒ t

〉
▶ Example 8 (UntypedForest_Sig). We model the grammar of the untyped version of the
forests described in Section 1.2 as a multi-sorted binding signature. Let S0 := {v, t, e} be a
three-element set, having sorts for the three syntactic categories of term variables (v), terms
(t) and elimination alternatives (e). The first sort seems unavoidable since the elimination
alternative x⟨N1, . . . , Nk⟩ only allows term variables in the head position, not arbitrary
terms. The index set I represents the different forms of expressions that are parameterized
in the elements of the syntactic categories: one for λ-abstraction, one for each index n for
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summation, one for each index k for tupling, hence we set I := (1 + N) + N. We define
ar(inl(inl∗)) :≡

〈
[⟨[v], t⟩], t

〉
, a simplified version of the second case for STLC: a term variable

is being bound in a term, yielding a term. The other forms of expressions do not feature
variable binding:

ar(inl(inr n)) :≡
〈
[⟨[], e⟩, . . . , ⟨[], e⟩︸ ︷︷ ︸

n

], t
〉

ar(inr k) :≡
〈
[⟨[], v⟩, ⟨[], t⟩, . . . , ⟨[], t⟩︸ ︷︷ ︸

k

], e
〉

None of the arities have v as second component, hence term variables will only come from a
given context. Using the pipeline of Section 4.4, we can represent these untyped forests as an
object T of [CS0 , CS0 ], analogously to Example 5. Again analogously to that example, objects
ξ of CS0 represent contexts; in this untyped version they correspond just to a choice of names
for all occurring variables. Then, because of the absence of v as second component of our
arities, we should have that Tξv and ξv are isomorphic for any ξ : CS0 . In our representation,
we are interested in those ξ : CS0 for which ξt and ξe are the initial object of C – empty sets
in the case of C = Set – so that ξ only provides names for term variables. For those ξ, the
untyped forests in the terms category and elimination alternatives category, of the grammar
in Section 1.2, are represented as Tξt and Tξe, respectively.

▶ Example 9 (Forest_Sig). The typed forests of Section 1.2 have as the set of sorts the set
S× S0, with S and S0 from the two previous examples. Moreover, since atomic types play
a specific role in the typing rules in Figure 1, we have to assume a set atom of atoms and
an operation atotype : atom→ S (which should be thought of as an inclusion). The typing
rule for tuples is additionally (as compared to the raw syntax) parameterized by a list of
k elements of S and one element of atom. Accordingly, the index set for this multi-sorted
binding signature is I := (S× S + atom× N) + S∗ × atom, using the set S∗ of finite S-lists
introduced above. We define ar(inl(inl⟨s, t⟩)) :≡

〈
[⟨[⟨s, v⟩], ⟨t, t⟩⟩], ⟨s⇒ t, t⟩

〉
, which combines

the second case of Example 7 and the first case of Example 8. The other definitions are as
follows:

ar(inl(inr ⟨p, n⟩)) :≡
〈
[⟨[], ⟨atotype p, e⟩⟩, . . . , ⟨[], ⟨atotype p, e⟩⟩︸ ︷︷ ︸

n

], ⟨atotype p, t⟩
〉

ar(inr ⟨[B1, . . . , Bk], p⟩) :≡
〈
[⟨[], ⟨B, v⟩⟩, ⟨[], ⟨B1, t⟩⟩, . . . , ⟨[], ⟨Bk, t⟩⟩], ⟨atotype p, e⟩

〉
,

with B := B1 ⇒ . . .⇒ Bk ⇒ atotype p, parenthesized to the right.

A multi-sorted binding signature is just simple syntactic data (of a signature), so rather
the description of a task to define the intended syntax – which in our case will include
non-wellfounded terms. In the next section we discuss how to transform such a signature into
a more “semantic” kind of signature: a functor H such that the semantics of the signature
is given by (Id + H−)-algebras. While we did this “by hand” for STLC in Example 5 (but
limited the description just to object arguments), it should be clear that an automatic
generation for more involved grammars such as Example 9 would be desirable.

4.2 (Modified) Signature Functor for Multi-Sorted Binding Signatures
Here, we associate to any multi-sorted binding signature (I, ar) a suitable functor H , such that
the non-wellfounded syntax generated by (I, ar) is, in particular, an (Id + H−)-(co)algebra.
Definitions 10–13 provide the building blocks for building H modularly from basic con-
structions, following the combinatorial structure of (I, ar) as a family of pairs containing
lists.
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We now use CS generally for the functor category [S, C], not just for the STLC example
in Section 4.1. One can still think of C as being Set, but we keep the category C abstract
and collect requirements on C on the way – that are all fulfilled by Set. As mentioned in
Section 4.1, we instantiate V of Section 3 with the endofunctors on CS and now have to
determine the endofunctor H on [CS, CS].

In order to do this, we assume that C has a terminal object ⊤, binary products, and
set-indexed coproducts (including initial object ⊥ and binary coproducts).

▶ Definition 10 ([5, Definition 2.3], sorted_option_functor). Let s be a sort. The sorted
option functor options : CS → CS is defined (on objects) as options ξ t :≡

∐
(s=t)⊤ + ξ t .

In this definition, we form a coproduct in C of ⊤ over the type of proofs that s = t; i. e., we
form a subsingleton. We thus avoid the use of case distinction: options ξ is an equivalent
replacement for ξ′ in the definition of lam above [5, Remark 2.4, Remark 2.8].

▶ Definition 11 ([5, Definition 2.5], option_list). Given a non-empty list of sorts ℓ ≡
[s1, . . . , sn], option∗ ℓ : CS → CS is defined as option∗ ℓ :≡ options1 · (options2 · . . .) . For an
empty list, it is option∗ [] :≡ Id.

▶ Definition 12 ([5, Definition 2.6], projSortToC). For any s : S the projection functor
prs : CS → C is defined (on objects) as: prs ξ :≡ ξ s .

▶ Definition 13 ([5, Definition 2.7], hat_functor). For any s : S we have a left adjoint to
prs, written ŝ : C → CS, defined on objects as ŝ c t :≡

∐
(s=t) c .

Here, we essentially define ŝ c s = c and ŝ c t = ⊥ otherwise. As above, we avoid the
case analysis for apps,t X ξ u in our STLC example in Section 4.1, hence do not need the
matching of the constructor’s target type.

We now have all the basic building blocks to associate, to a given multi-sorted binding
signature (I, ar), a signature functor H : [CS, CS] → [CS, CS]. We turn to the construction
of the corresponding building blocks for H, involving a formal argument X : [CS, CS] to H.
Intuitively, X is the unknown functor that, after applying our results of Section 3, will be
set to the functor representing the coinductive sorted syntax. For the sake of motivating the
modification of the definition of H compared to [5], we will now work top-down and use the
letter G with upper indices (instead of F with upper indices, used there).

The final step of the construction of H is unchanged from [5]. Assume that we already
have a functor G(a⃗,t) : [CS, CS] → [CS, CS] for all (⃗a, t) : (S∗ × S)∗ × S. Then, for the multi-
sorted binding signature (I, ar), the associated signature functor H : [CS, CS] → [CS, CS] is
given by the (pointwise) coproduct HX :≡

∐
i : I G ar(i)X (MultiSortedSigToFunctor’).

The penultimate step constructs G(a⃗,t) (hat_exp_functor_list’_optimized). It as-
sumes given functors G(a,t) : [CS, CS]→ [CS, CS] for all (a, t) : (S∗×S)×S. Given a non-empty
list a⃗ ≡ [a1, . . . , an], G(a⃗,t) is defined (on objects) as the iterated pointwise binary product
G(a,t)X :≡ G(a1,t)X × (G(a2,t)X × . . .). The corner case G([],t) is given (maybe peculiarly)
by G([],t)X :≡ ⊤[CS,C] · t̂, regardless of X, with ⊤D the terminal object of D. (The terminal
object in functor categories is given by constantly the terminal object of the target category.)
More precisely, G([],t) is the composition (in diagrammatic order) of first ⊤[[CS,CS],[CS,C]] and
second post-composition with t̂ (which is a functor from [CS, C] to [CS, CS]). This view will
be exploited for the construction of a pointed tensorial strength for G([],t).

It remains to construct G(a,t) (hat_exp_functor_list’_piece). It is a refined version
of F a in [5] since it takes into account the “target” sort t. In fact G(a,t), corresponds to
F a · t̂ in terms of that paper, and so the difference between our G(a⃗,t) and F (a⃗,t) in that

https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#sorted_option_functor
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#option_list
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#projSortToC
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.MultiSorted_alt.html#hat_functor
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#MultiSortedSigToFunctor'
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#hat_exp_functor_list'_optimized
https://benediktahrens.gitlab.io/unimathdoc3/7432fee/UniMath.SubstitutionSystems.ContinuitySignature.ContinuityOfMultiSortedSigToFunctor.html#hat_exp_functor_list'_piece


R. Matthes, K. Wullaert, and B. Ahrens 25:15

paper is whether the composition with t̂ is on each component of the product (our solution)
or only on the product itself. That previous solution looks less convoluted but requires the
consideration of non-endofunctors.

Let a ≡ (ℓ, s) with ℓ : S∗. The object part of functor G(a,t) is defined as G(a,t)X :≡
option∗ ℓ ·X · prs · t̂. More precisely, G(a,t) is the composition (in diagrammatic order) of
first the precomposition with option∗ ℓ and second the postcomposition with prs · t̂. This
view will be important to establish ω-continuity of G(a,t).

The instance for STLC can be compared to our introductory example in Section 4.1 –
assuming decidability of the set of sorts, they coincide mathematically.

4.3 Existence of Final Coalgebra for Functor Id + H−
Given a multi-sorted binding signature, we want to apply Theorem 4 with V the endofunctors
on CS and the signature functor H defined in the previous section. Its first requirement is a
final coalgebra of the functor (Id + H−), with Id the identity functor on CS (which is the
unit of V). We get a final coalgebra through the dual of Adámek’s theorem on the existence
of initial algebras for ω-cocontinuous functors on ω-cocomplete categories with initial object.
We now require that C is ω-complete (i. e., C has limits of shape 0← 1← 2← · · · ), whence
V is also ω-complete. (We had already generally required a terminal object ⊤ for C, which
gives one for V .) We argue first that H is ω-continuous, then that (Id + H−) is ω-continuous.

We analyze the building blocks of H. G(a,t) is defined as the composition of two functors,
so it is ω-continuous if both functors are. We prove that postcomposition with prs · t̂ is
ω-continuous (post_comp_with_pr_and_hat_is_omega_cont). For this, we require of C that
ω-limits distribute over sub-singleton coproducts. This means that the canonical morphism
from the coproduct of the respective limits to the limit of the coproducts is an isomorphism.
Precomposition with any fixed functor is ω-continuous, hence in particular for option∗

ℓ .
We move to ω-continuity of G(a⃗,t), which we prove by induction on the length of a⃗. For

an empty a⃗, this is a constant functor; and pointwise binary products preserve ω-continuity.
Moreover, we require of C that ω-limits distribute over I-coproducts, a property that

then also holds of V. Then, ω-continuity of the G ar(i) carries over to their coproduct H.
As a final step, we need to show ω-continuity of (Id + H−) (is_omega_cont_Id_H). In

order to avoid still other hypotheses about distribution of ω-limits over certain colimits,
we use that binary coproducts are (isomorphic) to bool-indexed coproducts. So, the final
assumption on C is that ω-limits distribute also over bool-coproducts (besides over sub-
singleton coproducts and I-coproducts for the index set I of the multi-sorted binding
signature).

For the most interesting case C = Set, all these requirements are met.

4.4 Putting Everything Together
We can now apply the general results of Section 3 for the construction of coinductive syntax
with monadic substitution, as specified by a multi-sorted binding signature. We fix a set
S of sorts and a multi-sorted binding signature (I, ar) over S. This means in particular
that we take as V the endofunctors on CS when instantiating the results of Section 3. We
denote by H : [CS, CS]→ [CS, CS] the signature functor associated to (I, ar) according to the
construction in Section 4.2.

We aim to apply Theorem 4 to the final (Id + H−)-coalgebra obtained in Section 4.3. To
this end, the parameter θ of a MHSS has to be specified, i. e., we have to construct a suitable
pointed tensorial strength θ for the signature functor H . To recall, θ instructs via the notion
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of (H, θ)-monoid (Equation (2)) how the monoid multiplication µ acts on the constructors
(embodied in the H-algebra τ). But in our situation, µ is the monad multiplication expressing
substitution – it is well-known that V-monoids in this case are nothing but monads on CS (cf.
monoid_to_monad_CAT). In other words, we have to define θ so that it describes correctly
the recursive behaviour of substitution (as expressed by µ).

▶ Example 14 (Strength for STLC). A suitable θ for the “hand-written” signature functor
H in Example 5 contains, in particular, operations from Y · (apps,tX) to apps,t(Y ·X) and
from Y · (lams,tX) to lams,t(Y ·X) for any s, t : S, endofunctor Y on CS that has a point
η : Id→ Y , and endofunctor X on CS. The instance relevant in Equation (2) is then with X

and Y the representation T of STLC, and with η the inclusion of variables in terms T . The
operations for application do essentially nothing since µ should just descend into the subtrees.
For abstraction, given a ξ : CS, we need to specify a function of type Tξ + 1s → T (ξ + 1s),
where 1s : CS is defined as 1s(t) := (t = s); that is, X + 1s is X extended by an element of
sort s. In other words, we need to lift Tξ : CS extended by an element ⋆ of sort s to Tξ′,
with ξ′ the extension of ξ by an element ⋆ of sort s (as in Example 5); this will need η for
⋆ in the input. In short, for abstraction, the strength specifies essentially the famous “lift”
operation on a substitution function to avoid capture when descending under a binder.

The construction of a suitable θ for the variant of the generic H considered in [5] could
have been adapted to our H, but we have preferred to give a construction that, although
working on the level of endofunctors, is formed from building blocks that reside on the general
level of monoidal categories. To structure this construction, we propose the notion of relative
lax commutator that generalizes the notion of “pointed distributive law” in [4, Definition 10].
For lack of space, the whole (technical) construction is explained in Appendix D, but only in
[23]. We thus take as θ the pointed tensorial strength for H described in the appendix. For
STLC (Example 7), the strength can be exploited on the abstract level with base category
C (cf. thetaSTLC in the formalization). For forests (Example 8 and Example 9), we only
exploited the situation with C set to Set (cf. thetaUntypedForest and thetaForest in the
formalization).

Theorem 4 provides us with a MHSS that serves as input to Theorem 3, hence we get an
(H, θ)-monoid. This monoid is, in particular, a monad, our (certified) substitution monad for
the non-wellfounded syntax described by the given multi-sorted binding signature. For STLC,
we have formalized this on the abstract level and constructed the finite Church numerals
as well as the infinite Church numeral (cf. SubstitutionSystems.STLC_actegorical_
abstractcat.v).

To be more concrete, we can instantiate the base category C to Set that satisfies
all requirements on C we made during the construction process and get a set of well-
sorted non-wellfounded terms for any sort, given a supply of sets of variables for any
sort, together with a substitution operation that respects sorts and satisfies the monad
laws. We replayed the construction of the finite Church numerals in STLC in this concrete
setting (cf. SubstitutionSystems.STLC_actegorical.v). For forests, we only considered
the Set case and have instantiated the general constructions (cf. SubstitutionSystems.
UntypedForests.v and SubstitutionSystems.Forests.v).

Although this not the topic of this paper, we mention that we also have adapted the
results and the formalization of wellfounded syntax to the present setting: This includes
the construction of a MHSS from an initial (I + H−)-algebra under the proviso it has been
obtained through a Mendler-style construction based on ω-cocontinuity of H (initial_
alg_to_mhss). We further established that this MHSS gives rise to an initial (H, θ)-monoid
SigmaMonoidFromInitialAlgebraInitial, for the given strength θ. These results are on
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the level of a monoidal category, as in our Section 3. The signature functor H constructed
in Section 4.2 is even ω-cocontinuous (based on the proof of the same property for the
variant considered in [5]), under conditions on C that are fulfilled for Set. Thus, (Id + H−)
is ω-bicontinuous, and we get a morphism of (H, θ)-monoids from the inductive to the
coinductive syntax (ind_into_coind for the case Set). The above-mentioned four Coq
vernacular example files in our UniMath library illustrate that, thanks to that actegorical
development, the use of the formalized wellfounded and the formalized non-wellfounded
syntax for those multi-sorted binding signatures can be done in parallel. For example, the
finite Church numerals in STLC are developed independently of the choice for one of these
two options. This conforms to the intuition that every single wellfounded term belonging
to the non-wellfounded syntax already belongs to the wellfounded syntax, even though the
categorical development of these structures is very different.

5 Related Work and Conclusions

We have cited throughout the paper the work we rely on or which initiated a line of thought.
Here, we give additional information on other related work (that may have been also cited
already in the main text). [20] also have codatatypes and define datatype-generic substitution
corecursively, and they even calculate infinitary normal forms for their example of untyped
λ-calculus. However, they do not consider typed systems, and the results are not presented
on the abstraction level of monoidal categories. Instead, they use a concrete “nominal”
presentation of syntax with binders. [6] also have codatatypes and even datatype-generic
programming not only of substitution, but the work is not based on category theory (and
so the approach is rather axiomatic than definitional). That work is implemented in the
Agda system. [30] considers different categorical models of simply-typed wellfounded syntax.
In its Chapter 5, the monoidal category corresponding to the framework of [17] is laid out
in detail for simple types, and its Chapter 7 compares it with the monoidal category of
endofunctors over a slice category. The latter is close to the concrete instance we are studying
in Section 4, but we deal with non-wellfounded syntax. All in all, [30] has a lot on the
strength construction with actegories, including for the typed case, and this for more than one
concrete categorical representation, but non-wellfounded syntax is not considered. [12] have
an approach to codatatypes that is definitionally based on category theory; but it is strongly
tied to set theory through infinite cardinal numbers that appear in the definition of the class of
“bounded natural functors” they consider. This allows them to implement the approach in the
Isabelle system (based on a very small kernel). Popescu [26] compares different corecursors
for syntax with variable binding in nominal style; it is partially formalized in Isabelle/HOL.
[15] also translate multi-sorted binding signatures into signatures with strength. Their notion
of syntax includes “meta-variables”, but they stay within the wellfounded terms and heavily
use inductive families as provided by the Agda system. [13] comes with a UniMath/Coq
formalization of the whole chain even from skew monoidal categories to an initial (H, θ)-
monoid, hence for wellfounded syntax. Beware that swapping of the arguments of the tensor
is not a harmless operation for skew monoidal categories, so our present definition of MHSS
does not fit as a pivotal element in their development. [18] rework the approach of [17], still
using pointed strength and (H, θ)-monoids. They also deal with simple types but do not
consider non-wellfounded syntax.

We have presented, through the notion of monoidal heterogeneous substitution system, a
tool which provides a monadic substitution operation also for non-wellfounded syntax, and
this for the first time on the abstraction level of monoidal categories.
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Our definitions and results unify the construction of both wellfounded and non-wellfounded
syntax with substitution.

We also instantiated monoidal heterogeneous substitution systems to endofunctor cat-
egories and adapted the full chain from multi-sorted binding signatures to substitution for
non-wellfounded syntax. For the sake of this instantiation, we provide modular results
to prove ω-cocontinuity of signature functors and hence obtain both ω-cocontinuity and
ω-continuity for the signature functors we generate from multi-sorted binding signatures.

All the results of this paper have been rigorously formalized with UniMath/Coq. For the
specific category of sets (types of homotopy level 2 according to univalent foundations) as
base category, the hypotheses of the construction of non-wellfounded syntax can be proved.
Hence, for this base category, we have a “concrete” formalization of the tool chain, which
provides in particular a formal construction in univalent foundations of non-wellfounded
syntax with binding, as instructed by a multi-sorted binding signature, and its monadic
substitution operation.

A question we have left open is that of equations on non-wellfounded terms, for instance,
β-equivalence. We anticipate that some definitions could carry over from the wellfounded
setting, like the definition of equations and reductions given in [2, 3]. The construction of
suitable terminal coalgebras, however, seems to require some work.

References
1 Benedikt Ahrens, Paolo Capriotti, and Régis Spadotti. Non-wellfounded trees in homotopy

type theory. In Thorsten Altenkirch, editor, 13th International Conference on Typed Lambda
Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, volume 38 of LIPIcs,
pages 17–30. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.
TLCA.2015.17.

2 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Modular spe-
cification of monads through higher-order presentations. In Herman Geuvers, editor, 4th
International Conference on Formal Structures for Computation and Deduction, FSCD 2019,
June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 6:1–6:19. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.FSCD.2019.6.

3 Benedikt Ahrens, André Hirschowitz, Ambroise Lafont, and Marco Maggesi. Reduction
monads and their signatures. Proc. ACM Program. Lang., 4(POPL):31:1–31:29, 2020. doi:
10.1145/3371099.

4 Benedikt Ahrens, Ralph Matthes, and Anders Mörtberg. From signatures to monads in
UniMath. J. Autom. Reason., 63(2):285–318, 2019. doi:10.1007/s10817-018-9474-4.

5 Benedikt Ahrens, Ralph Matthes, and Anders Mörtberg. Implementing a category-theoretic
framework for typed abstract syntax. In Andrei Popescu and Steve Zdancewic, editors, CPP ’22:
11th ACM SIGPLAN International Conference on Certified Programs and Proofs, Philadelphia,
PA, USA, January 17 - 18, 2022, pages 307–323. ACM, 2022. doi:10.1145/3497775.3503678.

6 Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. A
type- and scope-safe universe of syntaxes with binding: their semantics and proofs. J. Funct.
Program., 31:e22, 2021. doi:10.1017/S0956796820000076.

7 Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms using
generalized inductive types. In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer
Science Logic, 13th International Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer
Science, pages 453–468. Springer, 1999. doi:10.1007/3-540-48168-0_32.

8 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus
with Types. Perspectives in logic. Cambridge University Press, 2013. URL: http:
//www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/
lambda-calculus-types.

https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.4230/LIPIcs.TLCA.2015.17
https://doi.org/10.4230/LIPIcs.FSCD.2019.6
https://doi.org/10.1145/3371099
https://doi.org/10.1145/3371099
https://doi.org/10.1007/s10817-018-9474-4
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1007/3-540-48168-0_32
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types


R. Matthes, K. Wullaert, and B. Ahrens 25:19

9 Henning Basold. Mixed Inductive-Coinductive Reasoning—Types, Programs and Logic. PhD
thesis, Radboud University, Nijmegen, The Netherlands, 2018. URL: https://repository.
ubn.ru.nl/handle/2066/190323.

10 Richard Bird and Lambert Meertens. Nested Datatypes. In Johan Jeuring, editor, Mathematics
of Program Construction, MPC’98, Proceedings, volume 1422 of Lecture Notes in Computer
Science, pages 52–67. Springer, 1998.

11 Richard S. Bird and Ross Paterson. De Bruijn Notation as a Nested Datatype. J. Funct. Pro-
gram., 9(1):77–91, 1999. URL: http://journals.cambridge.org/action/displayAbstract?
aid=44239, doi:10.1017/S0956796899003366.

12 Jasmin Christian Blanchette, Lorenzo Gheri, Andrei Popescu, and Dmitriy Traytel. Bindings
as bounded natural functors. Proc. ACM Program. Lang., 3(POPL):22:1–22:34, 2019. doi:
10.1145/3290335.

13 Peio Borthelle, Tom Hirschowitz, and Ambroise Lafont. A cellular Howe theorem. In Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th Annual
ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11,
2020, pages 273–286. ACM, 2020. doi:10.1145/3373718.3394738.

14 Matteo Capucci and Bruno Gavranović. Actegories for the working amthematician, 2022.
doi:10.48550/arXiv.2203.16351.

15 Marcelo Fiore and Dmitrij Szamozvancev. Formal metatheory of second-order abstract syntax.
Proc. ACM Program. Lang., 6(POPL):1–29, 2022. doi:10.1145/3498715.

16 Marcelo P. Fiore. Second-order and dependently-sorted abstract syntax. In Proceedings
of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008,
24-27 June 2008, Pittsburgh, PA, USA, pages 57–68. IEEE Computer Society, 2008. doi:
10.1109/LICS.2008.38.

17 Marcelo P. Fiore, Gordon D. Plotkin, and Daniele Turi. Abstract syntax and variable binding.
In 14th Annual IEEE Symposium on Logic in Computer Science, Trento, Italy, July 2-5, 1999,
pages 193–202. IEEE Computer Society, 1999. doi:10.1109/LICS.1999.782615.

18 André Hirschowitz, Tom Hirschowitz, Ambroise Lafont, and Marco Maggesi. Variable bind-
ing and substitution for (nameless) dummies. In Patricia Bouyer and Lutz Schröder, ed-
itors, Foundations of Software Science and Computation Structures - 25th International
Conference, FOSSACS 2022, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceed-
ings, volume 13242 of Lecture Notes in Computer Science, pages 389–408. Springer, 2022.
doi:10.1007/978-3-030-99253-8_20.

19 Chung-Kil Hur. Categorical equational systems : algebraic models and equational reasoning.
PhD thesis, University of Cambridge, UK, 2010. URL: http://ethos.bl.uk/OrderDetails.
do?uin=uk.bl.ethos.608664.

20 Alexander Kurz, Daniela Petrisan, Paula Severi, and Fer-Jan de Vries. Nominal coalgebraic
data types with applications to lambda calculus. Log. Methods Comput. Sci., 9(4), 2013.
doi:10.2168/LMCS-9(4:20)2013.

21 Thomas Lamiaux and Benedikt Ahrens. An introduction to different approaches to initial
semantics, 2024. arXiv:2401.09366.

22 Ralph Matthes and Tarmo Uustalu. Substitution in non-wellfounded syntax with variable
binding. Theoretical Computer Science, 327(1-2):155–174, 2004. doi:10.1016/j.tcs.2004.
07.025.

23 Ralph Matthes, Kobe Wullaert, and Benedikt Ahrens. Substitution for non-wellfounded
syntax with binders through monoidal categories. CoRR, abs/2308.05485, 2023.
doi:10.48550/arXiv.2308.05485, minimally version 3.

24 Paul-André Melliès. Higher-order parity automata. In 32nd Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12.
IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005077.

FSCD 2024

https://repository.ubn.ru.nl/handle/2066/190323
https://repository.ubn.ru.nl/handle/2066/190323
http://journals.cambridge.org/action/displayAbstract?aid=44239
http://journals.cambridge.org/action/displayAbstract?aid=44239
https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.48550/arXiv.2203.16351
https://doi.org/10.1145/3498715
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1109/LICS.1999.782615
https://doi.org/10.1007/978-3-030-99253-8_20
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608664
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608664
https://doi.org/10.2168/LMCS-9(4:20)2013
https://arxiv.org/abs/2401.09366
https://doi.org/10.1016/j.tcs.2004.07.025
https://doi.org/10.1016/j.tcs.2004.07.025
https://doi.org/10.48550/arXiv.2308.05485
https://doi.org/10.1109/LICS.2017.8005077


25:20 Substitution for Non-Wellfounded Syntax with Binders Through Monoidal Categories

25 Stefan Milius. Completely iterative algebras and completely iterative monads. Inf. Comput.,
196(1):1–41, 2005. doi:10.1016/j.ic.2004.05.003.

26 Andrei Popescu. Nominal recursors as epi-recursors. Proc. ACM Program. Lang., 8(POPL):425–
456, 2024. doi:10.1145/3632857.

27 José Espírito Santo, Ralph Matthes, and Luís Pinto. A coinductive approach to proof
search through typed lambda-calculi. Ann. Pure Appl. Log., 172(10):103026, 2021. doi:
10.1016/j.apal.2021.103026.

28 The Coq Development Team. The Coq proof assistant, version 8.17, 2023. URL: https:
//zenodo.org/record/8161141.

29 Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. Available at http://unimath.github.io/UniMath/ , 2021.

30 Julianna Zsidó. Typed Abstract Syntax. PhD thesis, University of Nice Sophia Antipolis, 2010.
URL: http://tel.archives-ouvertes.fr/tel-00535944/.

A An Easy Example for the Application Scenario

To ease the understanding of the example given in Section 1, we also show the one of Church
numerals.

λf0→0 λx0 +

x f@

Figure 6 Forest representation of all Church numerals, including infinity.

Let 0 be a base type. We define a closed forest of type (0 → 0) → 0 → 0 in Figure 6
[27, Example 5]. f@ is short for f⟨N⟩ with N given by where the arrow points to. The
back link (in blue and thick) forms a cycle that does not go through a λ-abstraction. Hence,
we get a rational tree (with only a finite number of non-isomorphic subtrees). This is a
representation of all Church numerals, including infinity, and they are all the “solutions”
(including the non-wellfounded ones) for the search for inhabitants in long normal form of
the type (0→ 0)→ 0→ 0. Thus, by infinite unfolding of the just binary choice, an infinite
number of finite solutions and even one infinite solution are obtained. The latter is the only
infinite Church numeral, obtained by looping with f . In naive proof search, this is at least a
potential outcome, and one may want to analyze this phenomenon.

B Recalling Some Notions of the Category-theoretical Background

For reasons of space limitations, this appendix is only available in [23].

C Proof of Theorem 4

This short appendix completes the proof of Theorem 4 in Section 3.2. It also discusses why
the result on final coalgebras is in some sense easier than its counterpart for initial algebras.
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z ⊗ t z ⊗ (I + Ht) z ⊗ I + z ⊗Ht

z + H(z ⊗ t)

(I + H(z ⊗ t)) + t

t (I + Ht) + t

h

1z⊗out−1 [1z⊗inl,1z⊗inr]
ρz+θ(z,e),t

[f ·inr,inr·inl]

(I+H−)h+1t

[out−1,1t]

Figure 7 Diagram characterizing a solution h for eqm.

z ⊗ t z ⊗ I + z ⊗Ht

z + H(z ⊗ t)

t z + Ht

h

[1z⊗η,1z⊗τ ]
ρz+θ(z,e),t

1z+Hh
[f,τ ]

Figure 8 Diagram characterizing morphism h that should be LfM(z,e).

The diagram describing a solution of eqm is given in Figure 7. Of course, the diagram
governing LfM(z,e) can be brought into a single equation over coproducts, as seen in Figure 8.
The chain of morphisms from z ⊗ I + z ⊗Ht to t in both diagrams – Figure 7 and Figure 8 –
is identical on the path to the left, as well as on the path to the right.

We remark that Theorem 4 (and also its proof) is slicker than the case of wellfounded
syntax studied in [5] (however, concretely for endofunctor categories) where extra requirements
beyond being an initial algebra come into play so as to guarantee the applicability of a
categorical Mendler-style recursion scheme. This difference can be motivated as follows:
substitution for functor T is represented by a monadic multiplication operation of type
T · T → T (with T · T self-composition of T ). In the non-wellfounded case, this has the
support T of the final coalgebra as target, which is suitable for using finality. However, in
the wellfounded case, the source type is T · T and not just T that would be the basis for
using initiality.

D Pointed Tensorial Strength for the Signature Functor

For reasons of space limitations, this appendix is only available in [23].

E On the Formalization

Most of the definitions and results presented in this paper are formalized and computer-
checked in UniMath [29], a library of univalent mathematics based on the computer proof
assistant Coq [28]. An exception is the application scenario in Section 1; its formalization
is ongoing work. For this application, we can only offer the instantiation of the general
constructions of this paper but not yet the inhabitation analysis alluded to in Figure 2. Our
HTML documentation is derived from commit 7432fee of the UniMath library. Proof-checking
and creation of the HTML documentation can easily be reproduced at home by following
the UniMath compilation instructions – do try this at home!

FSCD 2024
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Concerning coinductive definitions, Coq features a built-in mechanism for specifying
coinductive types (via the keyword CoInductive) and for defining functions by corecursion.
However, the UniMath library departs from standard use of Coq in that such declarations of
coinductive datatypes are not part of the language used in UniMath. Furthermore, definitions
by corecursion in Coq face numerous issues with guardedness, in particular with so-called
“mixed inductive-coinductive” declarations [9] – declarations where the coinductive type
makes use of a parameterized inductive type whose parameter is built with the coinductive
type. The coinductive calculus of our application scenario (see Section 1), with its lists of
alternatives and arguments, falls into that class. In the formalization of the contents of this
paper, we therefore construct coinductive datatypes from other type constructors, rather than
postulating (a class of) coinductive datatypes using meta-theoretic devices. Our approach is
thus comparable to the one employed for working with coinductive datatypes in the Isabelle
system [12] and of the construction of indexed M-types in univalent foundations [1]; in all of
these cases, a major goal is to keep the “trusted code base” small.

We now discuss some design choices we made in the formalization. When formalizing
mathematics in a formal system, some design choices need to be made that are not of
mathematical significance: different choices lead to (trivially) equivalent mathematical
concepts. Nevertheless, making the right choices can be crucial for the maintainability and
usability of the formal library. An example of such a choice is the following. In Section 2.1, we
said that a monoidal category is given by a six-tuple, with the tensor component a bifunctor.
However, for the sake of our formalization, we have chosen a different but equivalent format
to present the tensor operation that we are calling “whiskered”. Here, the object mapping of
⊗ is replaced by its curried version, and the morphism mapping is replaced by two families
of endofunctors on C that represent the morphism mappings with one of the arguments
fixed to the identity morphism – thus the “whiskerings” of that bifunctor. The whiskered
definition avoids functors on cartesian products of categories. Such functors do not behave
well in practice: the inference of the implicit object arguments – which are pairs of objects
– to the functorial action on morphisms often fails, and thus these arguments need to be
given explicitly. This would make the formalization cumbersome – which is why we adopted
the whiskered format for our work and hence do not suffer from those problems. A third
alternative to the traditional definition and the whiskered definition would be a currying
of the tensor, to be a functor into a functor category. However, this definition would not
provide a clean separation between data and properties – another prerequisite for a library
that scales well, in our experience.
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Abstract
We study the logical structure of Teichmüller-Tukey lemma, a maximality principle equivalent to the
axiom of choice and show that it corresponds to the generalisation to arbitrary cardinals of update
induction, a well-foundedness principle from constructive mathematics classically equivalent to the
axiom of dependent choice.

From there, we state general forms of maximality and well-foundedness principles equivalent to
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choice and bar induction principles given by Brede and the first author is initiated.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases axiom of choice, Teichmüller-Tukey lemma, update induction, constructive
reverse mathematics

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.26

1 Introduction

1.1 Context
The axiom of choice is independent of Zermelo-Fraenkel set theory and equivalent to many
other formulations [4, 5, 6], the most famous ones being Zorn’s lemma, a maximality
statement, and Zermelo’s theorem, a well-ordering thus also well-foundedness theorem, since
well-foundedness and well-ordering are logically dual notions.

In the family of maximality theorems equivalent to the axiom of choice one statement
happens to be particularly concise and general, it is Teichmüller-Tukey lemma, that states
that every non-empty collection of finite character, that is, characterised only by its finite
sets, has a maximal element with respect to inclusion.

The axiom of dependent choice is a strict consequence of the axiom of choice. In the
context of constructive mathematics, various statements classically but non intuitionistically
equivalent to the axiom of dependent choice are considered, such as bar induction, open
induction [3], or, more recently, update induction [1], the last two relying on a notion of open
predicate over functions of countable support expressing that the predicate depends only on
finite approximations of the function.

In a first part of the paper, we reason intuitionistically and show that the notion of finite
character, when specialised to countable sets, is dual to the notion of open predicate, or,
alternatively, that the notion of open predicate, when generalised to arbitrary cardinals is dual
to the notion of finite character. As a consequence, we establish that update induction and
the specialisation of Teichmüller-Tukey lemma to countable sets are logically dual statements,
or, alternatively, that Teichmüller-Tukey lemma and the generalisation of update induction
to arbitrary cardinals are logically dual.
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In a second part of the paper, we show how Teichmüller-Tukey lemma and Zorn’s lemma
can be seen as mutual instances the one of the other.

Finally, in a third part, we introduce a slight variant of Teichmüller-Tukey lemma referring
to functions rather than sets and make some connections with the classification of choice
and bar induction principles studied by Brede and the first author in [2].

The ideas of Section 2 have been developed during an undergraduate internship of
the second author under the supervision of the first author in 2022, leading to the idea
in Section 4.1 of introducing ∃MPCF by the second author. Section 3 contains extra
investigations made in 2023 by the second author. Section 4.2 contains investigations made
jointly in 2024 by the authors.

1.2 The logical system
In this section we describe the logical setting and give definitions that are used throughout
the article. The results we prove do not depend greatly on its structure as they require only
basic constructions, we shall make precise exactly was is necessary and what is left to the
preferences of the reader.

We work in an intuitionistic higher order arithmetic equipped with inductive types like
the type with one element (1, 0 : 1), the type of Boolean values (B, 0B, 1B : B), the type of
natural numbers (N), the product type (A×B), or the coproduct type (A+B). In particular,
we write B⊥ for the coproduct of B and of 1, identifying b : B with inl(b) : B⊥ and ⊥ with
inr(0) where inl and inr are the two injections of the coproduct.

We write Prop for the type of propositions. For all types A, the type P(A) denotes the
type A → Prop, we shall sometimes refer to it as “subsets of A”. We also use the type
N → A⊥, shortly AN

⊥, to represent the countable subsets of A, implicitly referring to the
non-⊥ elements of the image of the function1.

We also require a type for lists: for all types A we denote by A∗ the type of lists of terms
of type A defined as follows:

ε : A∗
u : A∗ a : A

u@a : A∗

We inductively define ⋆ : A∗ → A∗ → A∗, the concatenation of two lists:

u : A∗

u ⋆ ε := u

u : A∗ v : A∗ a : A

u ⋆ (v@a) := (u ⋆ v)@a

We denote by [a1, . . . , an] the list (. . . (ε@a1)@ . . . )@an), since ⋆ is associative we drop the par-
entheses. If n ∈ N and α : AN, we write α|n for the recursively defined list [α(0), . . . , α(n−1)].
We define ∈ : A → A∗ → Prop as: a ∈ u := ∃v, wA∗

, v ⋆ [a] ⋆ w = u.

The symbol ∈ will be used as defined above and also as a notation for P (a). To be
more precise, for all types A, P : P(A) and a : A we will write a ∈ P for P (a) and a /∈ P

for P (a) → ⊥. Continuing with the set-like notations, for P, Q : P(A) we write P ⊆ Q for
∀aA, a ∈ P → a ∈ Q. We require extensional equality for predicates: for all P, Q : P(A),

1 For inhabited A, this is intuitionistically equivalent to considering N → A.
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P = Q ↔ P ⊆ Q ∧ Q ⊆ P 2. The symbol ⊆ will also be used for lists: for all u, v : A∗,
u ⊆ v := ∀aA, a ∈ u → a ∈ v. Note that equipped with this relation, lists behave more like
finite sets than lists. Nevertheless the list structure is not superfluous as will be shown later.

As a convention, we let the scope of quantifiers spans until the end of the sentence, so,
for instance, ∀n, P → Q reads as ∀n, (P → Q) and similarly for ∃.

1.3 Closure operators and partial functions
Let us now define some closure operators and relations on subsets and lists:

▶ Definition 1. Let A be a type, u : A∗, α : P(A), T : P(A∗), P : P(P(A))

u ⊂ α : Prop ⟨T ⟩ : P(P(A))

u ⊂ α := ∀aA, a ∈ u → a ∈ α ⟨T ⟩ := λαP(A).∀uA∗
, u ⊂ α → u ∈ T

⟨T ⟩◦ : P(P(A))

⟨T ⟩◦ := λαP(A).∃uA∗
, u ⊂ α ∧ u ∈ T

⟨u⟩ : P(A) ⌊P ⌋ : P(A∗)

⟨u⟩ := λxA. x ∈ u ⌊P ⌋ := λuA∗
. ⟨u⟩ ∈ P

The symbol ⟨ ⟩ is the translation from “the list world” to “the predicate world”. More
precisely, ⟨u⟩ is the canonical way to see a list as a predicate (u ⊂ α ↔ ⟨u⟩ ⊆ α) and ⟨T ⟩
is an extension of T as a predicate on subsets, α : P(A) is in ⟨T ⟩ if and only if it can be
arbitrarily approximated by lists of T . Dually, ⌊ ⌋ is the translation from predicate to list,
taking predicate of finite domain to all lists of elements in the domain. Note that ⟨T ⟩ is
downward closed, that is, α ⊂ β and β ∈ ⟨T ⟩ implies α ∈ ⟨T ⟩. Note also that ⟨⌊P ⌋⟩ is a
downward closure operator, defining the largest downward closed subset of P . On its side,
⌊⟨T ⟩⌋ builds the downward closure up to permutation and replication of the elements of the
lists of T . Also, symmetrical properties applies to ⟨ ⟩◦ exchanging downward with upward
and largest subset with smallest superset. Finally, notice that ⟨T ⟩ may be empty, in fact ⟨T ⟩
is inhabited if and only if ε ∈ T , and the same for ⟨T ⟩◦.

Examples

Consider T : P(B∗), for simplicity let us use set-like notations when defining T . If T :=
{[1B, 0B], [1B], [0B], ϵ} then ⟨T ⟩ will contain all subsets of B. Now, if T := {[1B, 0B], [1B], [0B]},
⟨T ⟩ will be empty since for all α : P(B), ϵ ⊂ α but ϵ /∈ T . If T := {ϵ, [1B], [1B, 0B]} then
⟨T ⟩ will contain only the empty subset and the singleton containing 1B. Now consider
T ′ := {ϵ, [1B], [1B, 1B], [0B, 1B], [1B, 0B, 1B, 1B]}, notice that ⟨T ⟩ = ⟨T ′⟩. The ⟨ ⟩ operation does
not care for duplications or permutations.
For T := {ϵ, [1B], [1B, 0B]}, ⌊⟨T ⟩⌋ is {ϵ, [1B], [1B, 1B], [1B, 1B, 1B], . . . }. Similarly, for T :=
{ϵ, [1B], [0B], [1B, 0B]}, ⌊⟨T ⟩⌋ is the set of all lists on B.
The ⟨ ⟩◦ operator has the dual behaviour. Consider T : P(N∗), T := {[1]} then, ⟨T ⟩◦ contains
exactly all subsets of N containing 1. Similarly if ϵ ∈ T , then ⟨T ⟩◦ contains all subsets of N.
For T := {[1]},

⌊
⟨T ⟩◦⌋

will contain every list on N that contains at least one 1.

We also give similar definitions relatively to countable subsets, abbreviating (A⊥)∗

into A∗
⊥:

2 Extensionality for predicates is assumed for convenience, it is not fundamentally needed
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▶ Definition 2. Let A be a type, u : A∗
⊥, α : AN

⊥ and T : P(A∗
⊥)

u ⊂N α : Prop ⟨T ⟩N : P(AN
⊥)

u ⊂N α := ∃nN, u = α|n ⟨T ⟩N := λαAN
⊥ .∀uA∗

, u ⊂N α → u ∈ T

⟨T ⟩◦
N : P(AN

⊥)

⟨T ⟩◦
N := λαAN

⊥ .∃uA∗
, u ⊂N α ∧ u ∈ T

We conclude this section defining two different notions of partial functions:

▶ Definition 3 (Relational partial function). Let A, B be types, a relational partial function f

from A to B is a relational functional relation of P(A × B). Formally, a relational partial
function from A to B is a term f : P(A × B) such that ∀aA, ∀b, b′B , ((a, b) ∈ f ∧ (a, b′) ∈
f) → b = b′. Its domain is defined by:

dom(f) : P(A)
dom(f) := λaA.∃bB , (a, b) ∈ f

For all a′ : A, we denote by dom(f) ∪ a′ the predicate λaA.(∃bB , (a, b) ∈ f) ∨ a = a′.

▶ Definition 4 (Decidable partial function). Let A, B be types, a decidable partial function f

from A to B is a total function f : A → B⊥. Its domain and graph are defined by:

dom(f) : P(A) G(f) : P(A × B)
dom(f) := λaA.f(a) ̸= ⊥ G(f) := λ(a, b)A×B .f(a) = inl(b)

For all a′ : A, we denote by dom(f) ∪ a′ the predicate λaA. f(a) ̸= ⊥ ∨ a = a′.

Notation

We write f ∈ A →p B to denote that f is a relational partial function from A to B and
f : A → B⊥ for the type of decidable partial functions from A to B. We will also write
ΘfA→pB , P for ΘfP(A×B), (f ∈ A →p B) → P for Θ ∈ {λ, ∀, ∃}.

The difference between these two definitions is in the decidability of the domain: decidable
partial functions have a decidable domain while it’s not the case of relational partial functions.
The graph operation G allows us to recover a relational partial function from a decidable
partial function. One needs excluded middle to recover a decidable partial function from a
relation partial function, hence decidable partial functions are stronger axiomatically. Notice
that we used the same notation dom in both definitions. Since they both have the same
semantic meaning and we will make clear whether we are using relation partial function or
decidable partial function, it should not cause any confusion.

2 TTL and UI

In this section, we define Teichmüller-Tukey lemma and update induction and emphasise
that they are logically dual, up to the difference that the former is relative to predicates over
subsets of arbitrary cardinals while update induction is relative to predicates over countable
subsets. Underneath, they rely on the dual notions of predicate of finite character and of
open predicate.
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2.1 Predicates of finite character
A set is of finite character if all its information is contained in its finite elements. In our
setting, a predicate P : P(P(A)) is of finite character if all its information is contained in a
predicate over lists. There are two canonical ways to express this:

▶ Definition 5 (Finite character). Let A be a type and P : P(P(A)). We propose two
definitions of finite character:

P ∈ FC1 := ∀αP(A), α ∈ P ↔ ∀uA∗
, u ⊂ α → u ∈ ⌊P ⌋

P ∈ FC2 := ∃T P(A∗), ⟨T ⟩ = P

Rewriting FC1 using the terms just defined:

P ∈ FC1 := P = ⟨⌊P ⌋⟩

FC1 and FC2 are, in essence, paraphrases of one an other, thus there is no reason not to
expect them to be equivalent. First we will need a lemma:

▶ Lemma 6. Let A be a type and T : P(A∗) then ⟨T ⟩ ∈ FC1.

Proof. Let α : P(A). Suppose α ∈ ⟨T ⟩, our goal is to show that α ∈ ⟨⌊⟨T ⟩⌋⟩. Let u : A∗ such
that u ⊂ α, we will show that u ∈ ⌊⟨T ⟩⌋. By definition u ∈ ⌊⟨T ⟩⌋ if and only if ⟨u⟩ ∈ ⟨T ⟩ if
and only if every sublist of u is in T . Since α can be arbitrarily approximated by terms of T

and u ⊂ α, so can u. Hence, u ∈ ⌊⟨T ⟩⌋ thus, α ∈ ⟨⌊⟨T ⟩⌋⟩.
Suppose α ∈ ⟨⌊⟨T ⟩⌋⟩, then for all u : A∗ such that u ⊂ α, u ∈ ⌊⟨T ⟩⌋ which we can rewrite as
⟨u⟩ ∈ ⟨T ⟩. We easily show that ⟨u⟩ ∈ ⟨T ⟩ → u ∈ T thus α ∈ ⟨T ⟩. ◀

We have shown that ⟨T ⟩ = ⟨⌊⟨T ⟩⌋⟩. This means that without loss of generality, we can
require in FC2 that the witness T be of the form ⌊⟨T ′⟩⌋ for some T ′. This is a way to express
that T can be chosen to be minimal. In fact if we are given P and T such as in FC2, it may
happen that T contains a list u that is not closed under ⊆ (i.e.. v ⊆ u ̸→ v ∈ T ). Such an u

will be invisible when looking at ⟨T ⟩, hence we can consider u as a superfluous term. The
⌊⟨ ⟩⌋ operation allows us, without loss of generality, to remove those terms, thus making T

minimal.

▶ Theorem 7. FC1 ↔ FC2

Proof. Let A be a type and P : P(P(A)). From left to right: suppose P ∈ FC1. ⌊P ⌋ is a
witness of P ∈ FC2.
From right to left: suppose P ∈ FC2, let T be the witness of P ∈ FC2. By lemma 6
⟨⌊⟨T ⟩⌋⟩ = ⟨T ⟩ and by hypothesis P = ⟨T ⟩, we can rewrite the first equality as ⟨⌊P ⌋⟩ = P . ◀

Since FC1 and FC2 are equivalent, we will from now on write FC without the indices.

2.2 Open predicates
A notion of open predicates over functions of countable domain was defined in Coquand [3]
and generalised by Berger [1]. Using the definitions of Section 1.3, a predicate over α : AN is
open in the sense of Berger if it has the form α ∈ ⟨T ⟩N → α ∈ ⟨U⟩◦

N for some T, U : P(A∗).
In order to get a closer correspondence with the notion of finite character, we will however
stick to Coquand’s definition. Additionally, to get a closer correspondence with the case of
open predicates used in update induction, we consider open predicates for functions to A⊥.
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▶ Definition 8 (Countably-open predicate, in Coquand’s sense, with partiality). Let A be a type
and P : P(AN

⊥). We define:

P ∈ OPENN := ∃T P(A∗
⊥), ⟨T ⟩◦

N = P

The observations made on predicates of finite character apply to countably-open predicates,
namely that ⟨T ⟩◦

N =
〈⌊

⟨T ⟩◦
N
⌋〉◦

N. Obviously, we can also move from AN
⊥ to P(A) and introduce

a general notion of open predicates which again, will satisfy ⟨T ⟩◦ =
〈⌊

⟨T ⟩◦⌋〉◦:

▶ Definition 9 (Open predicate). Let A be a type and P : P(P(A)). We define:

P ∈ OPEN := ∃T P(A∗), ⟨T ⟩◦ = P

Conversely, we can define a notion of predicate of countably-finite character dual the
notion of countably-open predicate:

▶ Definition 10 (Predicate of countably-finite character). Let A be a type and P : P(AN
⊥). We

define:

P ∈ FCN := ∃T P(A∗
⊥), ⟨T ⟩N = P

This finally results in the following dualities:

Table 1 Predicates of finite character VS Open predicate.

Universal notion Existential notion

Arbitrary subsets Finite character Open

Countable subsets Countably-finite character Countably-open

2.3 Teichmüller-Tukey lemma and Update induction
Before defining Teichmüller-Tukey lemma we need a few definitions:

▶ Definition 11. Let A be a type, P : P(P(A)) and α, β : P(A). We define:

β ≺ α : Prop
β ≺ α := ∃aA, a /∈ α ∧ β = (λxA. x ∈ α ∨ x = a)

α ∈ Max≺(P ) : Prop

α ∈ Max≺(P ) := α ∈ P ∧ ∀βP(A), β ≺ α → β /∈ P

Thus, β ≺ α stands for β extends α (if β is an update of α) while Max≺(P ) is the
predicate of maximal elements of (P, ≻) (≻ is the reverse of ≺).

What we are interested in are predicates of finite character but Theorem 7 allows us to
consider only predicates on lists since there is a correspondence between them. Hence, we
will quantify or instantiate schemas on predicate on lists.

▶ Definition 12 (Teichmüller-Tukey lemma). Let A be a type and T : P(A∗), we define the
Teichmüller-Tukey lemma, TTLAT :

(∃αP(A), α ∈ ⟨T ⟩) → ∃αP(A), α ∈ Max≺(⟨T ⟩)
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Notations

TTL denotes the full schema: for all types A and all T : P(A∗), ∃αP(A), α ∈ ⟨T ⟩ →
∃αP(A), α ∈ Max≺(⟨T ⟩).
TTLAT denotes the schema specialised in this A and this T .
TTLAT denotes the restriction of the full schema TTL to A and T of a particular shape.
For example: TTLNT is the schema: for all T : P(N∗), ∃αP(N), α ∈ ⟨T ⟩ → ∃αP(N), α ∈
Max≺(⟨T ⟩). Moreover, if CA denotes a particular collection of predicates over lists of A (A
is a parameter), then TTLACA

denotes the restrictions of the schema TTL to any A type
and T : P(A∗) that is in CA.

Following an earlier remark, we impose that the finite character predicate we are consid-
ering must be inhabited, without this TTL becomes trivially inconsistent. Having defined
TTL we now show that we can recover an induction principle by using contraposition and
Morgan’s rules:

Unfolding some definitions, TTLAT is

(∃αP(A), α ∈ ⟨T ⟩) → ∃αP(A), α ∈ ⟨T ⟩ ∧ (∀βP(A), β ≺ α → β /∈ ⟨T ⟩)

Contraposing and pushing some negations:

∀αP(A), [¬(α ∈ ⟨T ⟩) ∨ ¬∀βP(A), β ≺ α → β /∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩

We have a sub-formula of the form ¬A ∨ ¬B, we have the choice of writing it as A → ¬B or
B → ¬A. The first choice leads to a principle we will call TTLco

AT :

∀αP(A), [α ∈ ⟨T ⟩ → ∃βP(A), β ≺ α ∧ β ∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩

And the second choice leads to an induction principle:

∀αP(A), [(∀βP(A), β ≺ α → β /∈ ⟨T ⟩) → α /∈ ⟨T ⟩] → ∀αP(A), α /∈ ⟨T ⟩

TTLco is intuitively an opposite formulation of TTL. The induction principle we obtain
seems to express something different. We can push further the negations in order to obtain a
positive formulation of it:

∀αP(A), [(∀βP(A), β ≺ α → β ∈ ⟨T ⟩◦) → α ∈ ⟨T ⟩◦] → ∀αP(A), α ∈ ⟨T ⟩◦

And this can be seen as as a generalisation of Berger’s update induction [1] going from
countably-open predicates to arbitrary open predicates.

To state update induction, we need to focus on partial functions from N to A which we
equip with an order:

▶ Definition 13. Let A be a type, P : P(AN
⊥) and α, β : AN

⊥. We define:

β ≺N α : Prop
β ≺N α := ∃mN, ∃aA, α(m) = ⊥ ∧ β(m) = a ∧ ∀nN, n ̸= m → α(n) = β(n)

Like TTL, update induction is originally defined on open predicates but since any open
predicate comes from a predicate on lists, we can more primitively state it as follows:
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▶ Definition 14 (Update induction). Let A be a type and T : P(A∗
⊥), we define Update

induction, UIAT :

∀αAN
⊥ , [(∀βAN

⊥ , β ≺N α → β ∈ ⟨T ⟩◦
N) → α ∈ ⟨T ⟩◦

N] → ∀αAN
⊥ , α ∈ ⟨T ⟩◦

N

Contrastingly, we now formally state the dual of TTL that we obtained above:

▶ Definition 15 (Generalised update induction). Let A be a type and T : P(A∗), we define
Generalised update induction, GUIAT :

∀αP(A), [(∀βP(A), β ≺ α → β ∈ ⟨T ⟩◦) → α ∈ ⟨T ⟩◦] → ∀αP(A), α ∈ ⟨T ⟩◦

Also, we introduce a countable version of TTL, logically dual to UI:

▶ Definition 16 (Countable Teichmüller-Tukey lemma). Let A be a type and T : P(A∗
⊥), we

define the countable Teichmüller-Tukey lemma, TTLN
AT :

(∃αAN
⊥ , α ∈ ⟨T ⟩N) → ∃αAN

⊥ , α ∈ Max≺N(⟨T ⟩N)

We thus obtain the following table:

Table 2 Maximality principles VS Induction principles.

Finite character Open

Arbitrary subsets TTLAT GUIAT

Countable subsets TTLN
AT UIAT

In particular, since TTL is classically equivalent to the full axiom of choice, GUI is also
classically equivalent to the full axiom of choice.

3 TTL and Zorn’s lemma

In this section we analyse precisely the relationships of TTL with Zorn’s lemma. We go
further than showing their equivalence, we look at which part of TTL (as a schema) is
necessary to prove Zorn’s lemma and reciprocally. This equivalence result is also a proof
that the version of Teichmüller-Tukey lemma we defined captures the full choice.

▶ Definition 17. Let A be a type, < a strict order on A, a : A and E, F : P(A). Define:

E ∈ Ch(A) : Prop
E ∈ Ch(A) := ∀a, bA, a, b ∈ E → (a < b ∨ b < a ∨ a = b)

F ∈ SCh(E) : Prop
F ∈ SCh(E) : F ⊆ E ∧ F ∈ Ch(A)

E ∈ Ind(A) : Prop

E ∈ Ind(A) := (∀F P(A), F ∈ SCh(E) → ∃aA, a ∈ E ∧ ∀bA, b ∈ F → b ≤ a)

a ∈ Max<(E) : Prop
a ∈ Max<(E) := a ∈ E ∧ ∀bA, a < b → b /∈ E

Where ≤ is the reflexive closure of <.
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Ch is the chain predicate, SCh is the subchain predicate, Ind is the inductive “subset”
predicate and Max< is simply the maximal element predicate. We choose to express these
definitions in terms of predicates over types rather than directly in terms of types, to avoid
discussions on proof relevance and stay in a more general setting. If we were proof-irrelevant,
instantiating our schemas on predicates over types would be identical to doing it directly on
types which would simplify notations and yield the same results.
We can now define concisely Zorn’s lemma:

▶ Definition 18 (Zorn lemma). Let A be a type, < a strict order on A, and E a predicate on
A. ZornA<E is the following statement

E ∈ Ind → ∃aA, a ∈ Max<(E)

▶ Theorem 19. TTL ↔ Zorn

The following is an adaptation of a usual set-theoretic proof in our setting.

Proof. From left to right: fix A a type, < a strict order on A and E : P(A) such that
E ∈ Ind(A). We first show that SCh(E) is of finite character:

Let F : P(A) such that F ∈ SCh(E), we show F ∈ ⟨⌊SCh(E)⌋⟩: let u : A∗ such that u ⊂ F ,
⟨u⟩ is thus a chain of E therefore u ∈ ⌊Ch(E)⌋. Let F : P(A) such that F ∈ ⟨⌊SCh(E)⌋⟩,
by choosing lists of length 2 we can show that F is a subchain of E. Hence SCh(E) ∈ FC.

Using TTLA⌊SCh(E)⌋, we get G : P(A) such that G ∈ Max(SCh(E)). G is a subchain of
E, since E is inductive we get g : A such that g ∈ E and ∀aA, a ∈ G → a < g. Suppose we
have h : A such that g < h and h ∈ E . Let G′ := λaA.a ∈ G ∨ a = h, then we have G′ ≺ G,
since G ∈ Max(SCh(E)), G′ /∈ SCh(E). On the other side, G′ is obviously a chain and
G′ ⊆ E, therefore G′ ∈ SCh(E). This is a contradiction, hence g ∈ Max<(E).

From right to left: let T : P(A∗). ⊂ is a strict order on P(P(A)). Since ⟨T ⟩ is of finite
character, a maximal element for ⊂ is also a maximal element for ≻. Hence, what is left
to show is that ⟨T ⟩ is inductive and use ZornP(A)⊂⟨T ⟩ to produce a maximal term. Let
Q : P(P(A)) such that Q ∈ SCh(⟨T ⟩). Let α := λaA.∃βP(A), β ∈ Q∧a ∈ β. By construction,
α is an upper bound of Q, let’s show that it is indeed in ⟨T ⟩. Since ⟨T ⟩ is of finite character
it suffices to show that for all u : A∗, u ⊂ α → u ∈ T . Let u : A∗ such that u ⊂ α. Since
u is a finite list, we can enumerate its elements a0, . . . , an. For all 0 ≤ i ≤ n, let βi : P(A)
be such that ai ∈ βi and βi ∈ Q. Since Q is chain, there exists 0 ≤ i0 ≤ n such that for all
0 ≤ i ≤ n, βi ⊆ βi0 . Thus, u ⊂ βi0 , βi0 ∈ ⟨T ⟩ and so u ∈ ⟨T ⟩. ◀

Looking more closely at this proof we notice that we have proved a finer result than simply
the equivalence. We have shown TTLA⌊SCh(E)⌋ → ZornA<E and ZornP(A)⊂⟨T ⟩ → TTLAT .
We can express for a predicate over lists to be of the form ⌊SCh(E)⌋ in a more syntactic
way.

▶ Definition 20. Let A be a type and T : P(A∗), we say that T is a list of chains, if there
exists T ′ such that:

ϵ ∈ T ′

u@a ∈ T ′ and [a] ⋆ v ∈ T ′ if and only if u ⋆ [a] ⋆ v ∈ T ′

u ⋆ [a] ⋆ v ∈ T ′ implies u ⋆ v ∈ T ′

if a ̸= b and u ⋆ [a] ⋆ v ⋆ [b] ⋆ w ∈ T ′ then for all u′, v′, w′ : A∗, u′ ⋆ [b] ⋆ v′ ⋆ [a] ⋆ w′ /∈ T ′

and T is the downward closure of T ′ by ⊆. We denote by CA the collection of lists of chains
of A.

FSCD 2024



26:10 On the Logical Structure of Some Maximality and Well-Foundedness Principles

▶ Lemma 21. Let A be a type, < a strict order on A and E : P(A), then there exists T ∈ CA

such that SCh(E) = ⟨T ⟩. Reciprocally, let A be a type, then for every T ∈ CA there exist a
strict order < on A and E : P(A) such that SCh(E) = ⟨T ⟩.

Proof. Proof of the first statement: we inductively define a T ′ : P(A∗).

ε ∈ T ′
a ∈ E

[a] ∈ T ′
b ∈ E a < b u@a ∈ T ′

u@a@b ∈ T ′

We easily show that T ′ satisfies the conditions of the above definition. Let T be the downward
closure of T ′. Let F ∈ SCh(E) and u : A∗ such that u ⊂ F . Since F is a chain we can
construct a list u′ of all elements of u such that u′ does not contain twice the same element
and is ordered increasingly relative to <. u′ is thus in T ′ hence u is in T . Let F ∈ ⟨T ⟩ and
a, b : A such that a, b ∈ F . By hypothesis the list [a, b] is in T . There exists u ∈ T ′ such that
[a, b] ⊂ u. Hence a, b ∈ ⟨u⟩ which is a chain. In conclusion F is a subchain of E.

Proof of the reciprocal: suppose given a type A with decidable equality and T ∈ CA.
There exists a T ′ satisfying the aforementioned conditions. Let E := λaA.∃uA∗

, u ∈ T ′ ∧ a ∈
u. We now must define an ordering on A. Define < a binary relation on A such that
a < b := [a, b] ∈ T ′. Using last “axiom” of the definition of T ′ we easily show that it is
irreflexive. For transitivity notice that if [a, b], [b, c] ∈ T ′ then [a, b, c] ∈ T ′ then [a, c] ∈ T ′.
Thus, it is a strict ordering on A. Let F ∈ SCh(E) and u : A∗ such that u ⊂ F . We can
assume that u is sorted increasingly relatively to <. Using the same trick used for proving
transitivity show that u ∈ T . Let F ∈ ⟨T ⟩ and a, b : A such that a, b ∈ F . By hypothesis the
list [a, b] is in T therefore, a < b which means that F is indeed a chain. ◀

▶ Corollary 22. TTLACA
→ Zorn and ZornP(A)⊂⟨T ⟩ → TTL. Hence we deduce the

somewhat surprising results TTL ↔ TTLACA
and Zorn ↔ ZornP(A)⊂⟨T ⟩.

Looking back at the path we took to arrive at this conclusion, the results are quite
expected, but looking only at the definition of a list of chains it is quite surprising that
restricting TTL this much does not change its power.

4 ∃MPCF

In this section we define a choice principle ∃MPCF which stands for “Exists a Maximal
Partial Choice Function” and a weaker version ∃MPCF−. It is weaker in the sense that
∃MPCF implies ∃MPCF− but the equivalence is true if we allow excluded middle. We
show that ∃MPCF− is equivalent in its general form to TTL and link ∃MPCF to the
general class of dependent choice GDC, given by Brede and the first author in [2]. In
particular, ∃MPCF and ∃MPCF− can be seen as refinements of TTL whose strength is
more explicitly controlled.

▶ Definition 23. Let A, B be types, f, g ∈ A →p B and P : P(P(A × B)), define:

g ≺ f : Prop
g ≺ f : ∃aA, a /∈ dom(f) ∧ (dom(g) = dom(f) ∪ a) ∧

(∀xA, x ∈ dom(f) → ∃bB , (x, b) ∈ f ∧ (x, b) ∈ g)
f ∈ Maxrpf (P ) : Prop
f ∈ Maxrpf (P ) := f ∈ P ∧ ∀gA→pB , g ≺ f → g /∈ P
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▶ Definition 24 (∃MPCF−). Let A, B be types and T : P((A × B)∗), ∃MPCF−
ABT is the

statement:

(∃αP(A×B), α ∈ ⟨T ⟩) → ∃fA→pB , f ∈ Maxrpf (⟨T ⟩)

▶ Definition 25. Let A, B be types, f, g : A → B⊥ and P : P(P(A × B)), define:

g ≺ f : Prop
g ≺ f : ∃aA, a /∈ dom(f) ∧ (dom(g) = dom(f) ∪ a) ∧

(∀xA, x ∈ dom(f) → f(x) = g(x))
f ∈ Maxdpf (P ) : Prop
f ∈ Maxdpf (P ) := G(f) ∈ P ∧ ∀gA→B⊥ , g ≺ f → G(g) /∈ P

Since the intuitive meaning is the same we use the symbol ≺ for predicate, for relational
partial functions and decidable partial function.

▶ Definition 26 (∃MPCF). Let A, B be types and T : P((A×B)∗), the theorem of existence
of a maximal partial choice function ∃MPCFABT is the statement:

(∃αP(A×B), α ∈ ⟨T ⟩) → ∃fA→B⊥ , f ∈ Maxdpf (⟨T ⟩)

The difference between ∃MPCF and ∃MPCF− lies solely in the “kind” of partial function
that is used. Hence, as per the above remark on the differences between relation partial
function and decidable partial function, ∃MPCF → ∃MPCF− and assuming excluded
middle ∃MPCF− → ∃MPCF which we denote by ∃MPCF− →cl ∃MPCF.

4.1 ∃MPCF and TTL
Now that we have defined ∃MPCF−, we show that it is equivalent to TTL hence,
∃MPCF → TTL and TTL →cl ∃MPCF.

▶ Theorem 27. Let A be a type, T : P(A∗) and π∗T the operation that maps T to
λu(A×1)∗

. π(u) ∈ T where π is the canonical projection of (A × 1)∗ on A∗. Then,
∃MPCF−

A1π∗T → TTLAT . Let A, B be types and T : P((A × B)∗) then, TTL(A×B)T →
∃MPCF−

ABT .

Proof. ∃MPCF−
A1π∗T → TTLAT : let A a type, T : P(A∗) and π∗T := λu(A×1)∗

. π(u) ∈ T .
From ∃MPCF−

A1π∗T we obtain f ∈ A →p 1 such that f ∈ Maxrpf (⟨π∗T ⟩). Define
α := dom(f) and let’s show that α ∈ Max(⟨T ⟩). By construction, α is in ⟨T ⟩. Suppose
β : P(A × B) such that β ≺ α. We can construct a relational partial function g : A →p 1

such that β = dom(g). Since g ≺ f , g is not in ⟨U⟩ hence β is not in ⟨T ⟩.

TTL(A×B)T → ∃MPCF−
ABT : let A, B types and T : P((A × B)∗). Define

Q := λu(A×B)∗
. (∀aA, ∀b, b′B , (a, b) ∈ u ∧ (a, b′) ∈ u → b = b′) ∧ u ∈ T

Notice that ⟨Q⟩ is not empty, since ⟨T ⟩ is inhabited, ϵ ∈ T . From this, we deduce that ϵ ∈ Q

hence, the empty predicate is in ⟨Q⟩. We can now apply TTL(A×B)Q and get α such that
α ∈ Max(⟨Q⟩). By construction α is a relational partial function. It follows that it’s a
maximal relational partial function, thus proving ∃MPCF−

ABT . ◀

TTL can be seen as a projection of ∃MPCF. The fact that they are so tightly linked
is not surprising as “being a partial function” for a subset of A × B is a property of finite
character.
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4.2 ∃MPCF and GDC
Introduced in [2], Generalised Dependent Choice (GDCABT ) is a common generalisation of
the axiom of dependent choice and of the Boolean prime ideal theorem. Parameterised by a
domain A, a codomain B and a predicate T : P((A × B)∗), it yields dependent choice when
A is countable, the Boolean prime ideal theorem when B is two-valued, and the full axiom
of choice when T comes as the “alignment” of some relation (see below). To the difference
of ∃MPCF, GDC asserts the existence of a total choice function, but this to the extra
condition of a property of “approximability” of T by arbitrary long finite approximations.
To the difference of ∃MPCF whose strength is the one of the full axiom of choice, expecting
a total choice function makes GDC inconsistent in its full generality.

In this section we investigate how restricting ∃MPCF to countable A or two-valued B

impacts its strength to exactly the same extent as it restricts the strength of GDC. Two
such preliminary results are given, but first, let’s translate GDC in our setting:

▶ Definition 28 (A-B-approximable). Let A, B be types and T : P((A × B)∗). For all
X : P((A × B)∗) define

ϕ(X) := λu(A×B)∗
. (u ∈ ⌊⟨T ⟩⌋ ∧ ∀aA, ¬(∃bB , (a, b) ∈ u) → ∃bB , u@(a, b) ∈ X)

The A-B-approximation of T denoted TABap is the greatest fixed point of ϕ. We say that T

is A-B-approximable if ε ∈ TABap.

▶ Definition 29 (A-B-choice function). Let A, B be types and T : P((A × B)∗). T has an
A-B-choice function if:

∃fA→B , ∀u(A×B)∗
, u ⊂ G(f) → u ∈ T

▶ Definition 30 (GDC). Let A, B be types and T : P((A×B)∗), GDCABT is the statement:
if T is A-B-approximable then T has an A-B-choice function.

▶ Theorem 31. GDCNBT →cl ∃MPCFNBT

Proof. Let B be a type and T : P((N × B)∗). In order to use GDC, T must be
N-B-approximable but the T we are given might not be. Thus, we are going to construct
T⊥ : P((N × B⊥)∗) that is N-B⊥-approximable and use GDC to obtain a function that we
will prove maximal.

For all u : P((A × B⊥)∗) define u inductively:

ε := ε

a : A b : B

u@(a, b) := u@(a, b)
a : A

u@(a, ⊥) := u

By induction define T n
⊥ : P((N × B⊥)∗):

T 0
⊥ := λu(N×B⊥)∗

. u = ε

Let T n+1
⊥ be defined inductively

u ∈ Tn b : B u@(n + 1, b) ∈ T

u@(n + 1, b) ∈ T n+1
⊥

u ∈ Tn ∀bB , u@(n + 1, b) /∈ T

u@(n + 1, ⊥) ∈ T n+1
⊥

Now define T⊥ as the ⊆-downward closure of the union of the T n
⊥. We must show that T⊥ is

N-B⊥-approximable. By definition T⊥ = ⌊⟨T⊥⟩⌋. Let n : N, v : (N × B⊥)∗ such that v ∈ T⊥
and ¬(∃cB⊥ , (n, c) ∈ v). By definition, there exists m : N and u ∈ T m

⊥ such that v ⊆ u. If



H. Herbelin and J. Koleilat 26:13

n ≤ m then there exists c : B⊥ such that (n, c) ∈ u, thus v@(n, c) ⊆ u and v@(n, c) ∈ T⊥.
If n > m then there exists u′ ∈ T n

⊥ such that u ⊆ u′. It is in the proof of this statement
that we need excluded middle to show that we always satisfy the hypothesis of one of the
induction steps. Hence, v ⊆ u′ and we now repeat the same argument. T⊥ satisfies ϕ and
contains ε, thus we can apply GDCNB⊥T⊥ and get f : N → B⊥ a choice function.

What is left to show is that f is a maximal partial function. Let n : N such that
n /∈ dom(f) and let g : N → B⊥ extending f with dom(g) = dom(f) ∪ n. Let us write
f<n for the list [(0, f(0)), . . . , (n − 1, f(n − 1))]. f<n ∈ T n

⊥ and since f<n+1 is of the
form f<n@(n, ⊥) by case analysis we deduce that ∀bB , f<n@(n, b) /∈ T . If G(g) ∈ ⟨T⊥⟩
then g<n+1 ∈ T⊥ and g<n+1 = f<n@(n, g(n)) with g(n) : B. f<n@(n, g(n)) is thus in T ,
contradiction. Hence, f is maximal. ◀

Let’s write DC for the axiom of dependent choice. We have:

▶ Corollary 32. Since GDCNBT is equivalent to DC [2] we deduce: DC →cl TTL(N×B)T

▶ Theorem 33. For A a type with decidable equality, ∃MPCFABT → GDCABT

Proof. Let A be a type and T : P((A × B)∗) A-B-approximable. Define U := ⌊⟨TABap⟩⌋,
the A-B-approximable hypothesis guarantees that ⟨U⟩ is inhabited. Using ∃MPCFABU we
get f : A → B⊥ a maximal partial choice function. We show that f must be total, that
is that it is impossible that it takes the value ⊥. Indeed assume f(a) = ⊥ for some a : A

and consider g : A → B⊥ that extends f with g0(a) = 0B. We have g ≺ f , thus G(g) /∈ ⟨U⟩.
Then, there exists u : (A × B)∗ such that u ⊂ G(g) and u /∈ U . Using the decidability of
equality in A, we can find u′ such that u = u′@(a, 0B) where u′ ⊂ G(f). Symmetrically,
by considering the extension g of f obtained by setting g(a) = 1B, there exists v′ ⊂ G(f)
such that v′@(a, 1B) /∈ U . Since u′ ⋆ v′ ⊂ G(f), u′ ⋆ v′ ∈ U . There must be b : B such
that (u′ ⋆ v′)@(a, b) ∈ U . But in both cases (b = 0B or 1B) there is a sublist (u′@(a, 0B) or
v′@(a, 1B)) that is not in U , contradiction. Hence, f is total. ◀

The following definition, taken from [2], describes how to turn a relation on A and B as
a predicate over (A × B)∗ that filters approximations.

▶ Definition 34 (Positive alignment). Let A and B be types and R a relation on A and B.
The positive alignment R⊤ of R is the predicate on (A × B)∗ defined by:

R⊤ := λu.∀(a, b) ∈ u, R(a, b)

Positive alignments can be characterised by the following property.

▶ Definition 35 (Downward prime). Let A and B be types. We say that T : P((A × B)∗) is
downward prime when u ∈ T and v ∈ T implies u ⋆ v ∈ T . We denote by DAB the collection
of downward prime T : P((A × B)∗).

▶ Theorem 36. If R is a relation on A and B, its positive alignment is downward prime.
Conversely, if T is downward prime, it is the positive alignment of the relation |T | defined by

|T |(a, b) := [(a, b)] ∈ T

Proof. This is because u ⋆ v ∈ R⊤, that is ∀(a, b) ∈ u ⋆ v, R(a, b) is equivalent to (∀(a, b) ∈
u, R(a, b)) ∧ (∀(a, b) ∈ v, R(a, b)), that is to u ∈ R⊤ ∧ v ∈ R⊤, and, conversely, because
u ∈ |T |⊤, that is ∀(a, b) ∈ u, [(a, b)] ∈ T , is equivalent, by induction on u, using downward
primality at each step, to u ∈ T . ◀
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Based on the equivalence between ACABR and GDCABR⊤ in [2, Thm 7], we obtain:

▶ Corollary 37. GDCABT for T downward prime characterises the full axiom of choice
ACABR, that is ∀xA, ∃yB , R(a, b) → ∃fA→B , ∀xA, R(a, f(a)).

We now show that GDCABT is also equivalent to ∃MPCFABT for T downward prime.

▶ Theorem 38. For T : P((A × B)∗) downward prime for A with decidable equality,
∃MPCFABT → GDCABT .

Proof. Since T is A-B-approximable, it contains ε, so that ⟨T ⟩ is non-empty. Thus, by
∃MPCFABT , we get f : A → B⊥ a maximal partial choice function. We show that f must
be total. Indeed, assume a : A such that f(a) = ⊥. By A-B-approximability, we can obtain
a b such that [(a, b)] ∈ ⌊⟨T ⟩⌋. Let’s now consider the function g : A → B⊥ defined by setting
g(a′) = b if a = a′ and g(a′) = f(a′) otherwise. We have g ≺ f , thus G(g) /∈ ⟨T ⟩. But this
contradicts that we can also prove that any u ⊂ G(g) is in T , that is G(g) ∈ ⟨T ⟩. Indeed, by
decidability of equality on A, either u has an element of the form (a, b′) or not. In the second
case, u ⊂ G(f) and thus u ∈ T . In the first case, u has the form u′ ⋆ (a, b′) ⋆ u′′ with u′ ∈ G(f)
and u′′ ∈ G(f), thus u′ ∈ T and u′′ ∈ T . Since u ⊂ G(g), we also have b′ = g(a) = b. Then,
by downward primality, we get u′ ⋆ [(a, b)] ⋆ u′′ ∈ T . ◀

▶ Theorem 39. For T : P((A × B)∗) downward prime, GDCABDAB
→ ∃MPCF−

ABDAB
.

Proof. There are two ways to embed a partial function from A to B into a total function:
either restrict A to the domain of the function, or extend B into B⊥, as in Theorem 31. We
give a proof using the first approach.

Let A′ be the subset of A such that ∃bB , [(a, b)] ∈ T . We show coinductively that if A′ is
infinite, the restriction of T on A′ is A′-B-approximable. First, we do have ε ∈ T because
⟨T ⟩ is non empty. Then, assume u ∈ T and a : A′ such that ¬(∃bB , (a, b) ∈ u) (which is
possible since A′ is supposed infinite). Since a is in A′, there is b such that [(a, b)] ∈ T , and
by downward primality, u ⋆ (a, b) ∈ T , hence A′-B-approximable by coinduction.

Thus, there is a total function f : A′ → B such that G(f) ∈ ⟨T ⟩, which induces a partial
function f ′ from A →p B⊥. It remains to show that f ′ is maximal. Let a /∈ dom(f), that is
such that ∀bB , ¬[(a, b)] ∈ T . Then, there is obviously no extension of f ′ on a that would be
in ⟨T ⟩.

It remains to treat the case of A′ finite, which can be obtained by (artificially) reasoning
on the disjoint sum of A′ and N, and setting T [(n, p)] := (n = p) on N. ◀

5 Conclusion

While Brede and the first author [2] investigated the general form of a variety of choice and
bar induction principles seen as contrapositive principles, this paper initiated the investigation
of a general form of maximality and well-foundedness principles equivalent to the axiom of
choice. One of the surprise was that, up to logical duality, two principles such as Teichmüller-
Tukey lemma and Berger’s update induction were actually of the very same nature. By
seeing all these principles as schemes, we could also investigate how to express Zorn’s lemma
and Teichmüller-Tukey lemma as mutual instances the one of the other. Finally, by starting
investigating how maximality, when applied to functions, relates to totality in the presence
of either a countable domain or a finite codomain, we initiated a bridge between maximality
and well-foundedness principles and the general family of choice and bar induction principles
from [2].

The investigation could be continued in at least five directions:
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In the articulation between TTL and ∃MPCF: assuming an alternative definition of
TTL, say TTL+, where P(A) is represented as a characteristic function from A to B, that
is, equivalently, as a function from A to 1⊥, one would get the following identifications:

TTL+
AT = ∃MPCFA1π∗T TTL+

(A×B)T = ∃MPCFABT

TTLAT = ∃MPCF−
A1π∗T TTL(A×B)T = ∃MPCF−

ABT

In the articulation between a sequential definition of countably-finite character and
countably-open predicate, as in TTLN

BT and UIBT , and a non-sequential definition,
as in ∃MPCFNBT and ∃MPCF−

NBT , similar to the connection between DCprod.
BT and

GDCNBT in [2].
In the relation between ∃MPCFABT and ∃MPCF−

ABT on one side and GDCABT on
the other side, verifying that the correspondences between ∃MPCFNBT and GDCNBT ,
and between ∃MPCFABT and GDCABT hold, at least classically, in both directions, the
same way as they do in the case T downward prime.
In the articulation between TTL and GUI, formulating statements dual to ∃MPCF
and ∃MPCF− and connecting them to GBI [2], analysing the role of classical reasoning
and decidability of the equality on the domain in the correspondences.
In the relation between TTL, ∃MPCF, ∃MPCF− and other maximality principles than
Zorn’s lemma, also studying other well-foundedness principles than UI.

In particular, an advantage of ∃MPCF and ∃MPCF− over GDC is that their more
general form is classically equivalent to the axiom of choice while the most general form of
GDC is inconsistent.
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Abstract
Pattern completeness is the property that the left-hand sides of a functional program cover all cases
w.r.t. pattern matching. In the context of term rewriting a related notion is quasi-reducibility, a
prerequisite if one wants to perform ground confluence proofs by rewriting induction.

In order to certify such confluence proofs, we develop a novel algorithm that decides pattern
completeness and that can be used to ensure quasi-reducibility. One of the advantages of the
proposed algorithm is its simple structure: it is similar to that of a regular matching algorithm and,
unlike an existing decision procedure for quasi-reducibility, it avoids enumerating all terms up to a
given depth.

Despite the simple structure, proving the correctness of the algorithm is not immediate. Therefore
we formalize the algorithm and verify its correctness using the proof assistant Isabelle/HOL. To
this end, we not only verify some auxiliary algorithms, but also design an Isabelle library on sorted
term rewriting. Moreover, we export the verified code in Haskell and experimentally evaluate its
performance. We observe that our algorithm significantly outperforms existing algorithms, even
including the pattern completeness check of the GHC Haskell compiler.
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1 Introduction

Consider programs written in a declarative style such as functional programs or term rewrite
systems (TRSs), where evaluation is triggered by pattern matching. In many applications it
is important to ensure that evaluation of a given program cannot get stuck – this property is
called quasi-reducibility [8] in the context of TRSs or pattern completeness in the context
of functional programming. For instance in Isabelle/HOL [14], in a function definition the
patterns must cover all cases (in addition to termination), since HOL is a logic of total
functions. Moreover, automated theorem proving methods that are based on rewriting
induction [1, 15] require similar completeness results, e.g., for proving ground confluence.
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▶ Example 1. Let CN = {true : B, false : B, 0 : N, s : N → N} be the set of constructors to
represent the Booleans and natural numbers in Peano’s notation. We consider a TRS RN
that defines a function even : N→ B to compute whether a natural number is even.

even(0)→ true even(s(0))→ false even(s(s(x)))→ even(x) (1)

This TRS is quasi-reducible, since no matter which number n we provide as argument, one
of the left-hand sides (lhss) will match the term even(n); this fact can easily be seen by a
case-analysis on whether n represents 0, 1, or some larger number. Note the importance of
sorts:1 without them, the evaluation of the (unsorted) term even(s(true)) would get stuck.

Kapur et al. proved the decidability of quasi-reducibility [8]. Their decidability result does
not yield a practical algorithm: it has an exponential best-case complexity, i.e., to ensure
quasi-reducibility, one always has to enumerate exponentially many terms and test whether
their evaluation does not get stuck. Therefore, Lazrek, Lescanne and Thiel developed a more
practical approach. Their complement algorithm [12] is a decision procedure for pattern
completeness in the left-linear case, but it might fail on TRSs that are not left-linear. Note
that in the left-linear case, pattern completeness and quasi-reducibility can also be encoded
into a problem about tree automata.

In this paper, we develop a novel algorithm for pattern completeness with the following
key features.

It is a decision procedure, even in the non-linear case.
The algorithm is syntax directed and it is easy to implement.
In our experiments it outperforms existing implementations of the complement algorithm,
the approach via tree automata, and pattern completeness check by the ghc Haskell
compiler.
Its correctness is fully verified in Isabelle/HOL.

We are aware of two other algorithms to ensure quasi-reducibility in more complex
settings, e.g., where rules may be guarded by arithmetic constraints such as “this rule is only
applicable if x > 0” [5, 9], but both algorithms do not properly generalize the result of Kapur
et al. since they are restricted to linear lhss. Bouhoula and Jacquemard [3] also designed an
algorithm in a more complex setting with conditions and constraints, and a back-end that is
based on constrained tree automata techniques. Since their soundness result is restricted
to ground confluent systems, their algorithm is not applicable in our use case; ultimately
we want to verify ground confluence proofs on methods that rely upon quasi-reducibility.
Moreover, Bouhoula developed an algorithm to verify ground confluence and completeness
at the same time [2], where we are not sure whether it can also be adjusted to an algorithm
that just ensures completeness, e.g., for non-ground confluent systems. Furthermore, there
are proof methods that ensure pattern completeness within proof assistants. These are used
to ensure well-definedness of function definitions. For instance, in Isabelle/HOL there is a
corresponding method pat_completeness [10], but as many other algorithms for pattern
completeness, it is restricted to the left-linear case.

There are also algorithms to compile pattern matching [11, 16], however these have a
different focus: their major aim is not to decide or to ensure completeness, but instead they
generate efficient code for functional programs that are defined by pattern matching.

1 A sort in the TRS context is the same as a type when speaking about functional programs. Since most
of this paper is written using TRS notation, we speak of sorts instead of types in the rest of the paper.
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The paper is organized as follows: In Section 2 on preliminaries we introduce notions
and notations, and recall the core concepts of pattern completeness and quasi-reducibility.
Then in Section 3 we present the first part of our novel algorithm that covers the linear
case. The algorithm is then extended to handle the general case in Section 4. Afterwards we
present details on the Isabelle formalization and on the implementation in Section 5. The
experimental results are provided in Section 6 before we conclude in Section 7.

The formalization, the executable code and details on the experiments are available at:

http://cl-informatik.uibk.ac.at/software/ceta/experiments/pat_complete/

2 Preliminaries

We fix a set S of sorts. A sorted set A is a set where each element a is associated with a sort
ι ∈ S, written a : ι ∈ A. A sorted signature F is a set of function symbols f , each associated
with a nonempty sequence of sorts ι1, . . . , ιn, ι0 ∈ S, written f : ι1 × · · · × ιn → ι0 ∈ F .
Given a sorted signature F and a sorted set V of variables, the sorted set T (F ,V) of terms
is defined as follows: x : ι ∈ T (F ,V) if x : ι ∈ V; and f(t1, . . . , tn) : ι0 ∈ T (F ,V) if
f : ι1 × · · · × ιn → ι0 ∈ F and t1 : ι1, . . . , tn : ιn ∈ T (F ,V). We denote the set of variables
occurring in t by Var(t). By T (F) we denote the sorted set of ground terms, i.e., terms that
do not contain variables. A term is linear, if it does not contain any variable more than once.
A sorted map f from a sorted set A to a sorted set B, written f : A → B, is a map such
that f(a) : ι ∈ B whenever a : ι ∈ A. A substitution is a sorted map σ : X → T (F ,V) for
another sorted set X of variables,2 and the instance is the term tσ ∈ T (F ,V) obtained from
t ∈ T (F ,X ) by replacing all x by σ(x). We write σδ for the composition of two substitutions
σ and δ, and [x 7→ t] is the substitution which substitutes x by t and y[x 7→ t] = y for all
x ̸= y. A term ℓ : ι ∈ T (F ,X ) matches a term t : ι ∈ T (F ,V) if there exists a substitution
σ : X → T (F ,V) such that ℓσ = t.

We consider programs that consist of a set of rules ℓ → r and evaluation is defined
by replacing instances of left-hand sides (lhss) ℓσ by instances of right-hand sides rσ. For
instance a program might be a TRS, or some other first-order functional programming
language that uses pattern matching. We assume that there is a fixed finite signature
F = C ⊎ D, where C contains constructor symbols and D contains defined symbols. Hence,
input values to a function are represented by constructor ground terms. We assume that
there exists a constructor ground term t : ι ∈ T (C) for each sort ι ∈ S. A sort ι is finite if
{t | t : ι ∈ T (C)} is a finite set, otherwise ι is infinite. We say a term f(t1, . . . , tn) is basic if
f : ι1 × · · · × ιn → ι0 ∈ D and t1 : ι1, . . . , tn : ιn ∈ T (C,V), and denote the set of basic terms
by B(C,D,V).

We are now ready to formally describe that evaluation of a program cannot get stuck.

▶ Definition 2 (Pattern Completeness of Programs). A program with lhss L is pattern complete,
if every basic ground term t ∈ B(C,D, ∅) is matched by some ℓ ∈ L.

Pattern completeness is an instance of the cover problem, a notion that appears in the
context of both term rewriting and functional programming [4, 11, 18]: a set L of terms
covers a set T of terms if every constructor ground instance of a term in T is matched by
some term in L. Clearly, pattern completeness of a program with lhss L is exactly the

2 On paper it is not essential to distinguish the sets of variables, while it is convenient in the formalization
that we can use variables different from those used to represent programs.
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property that L covers T := {f(x1, . . . , xn) | f : ι1 × · · · × ιn → ι0 ∈ D} where x1, . . . , xn is
a sequence of distinct variables; and the complement algorithm of Lazrek et al. [12] can be
used to decide whether L covers T if all terms in L are linear.

An alternative notion to pattern completeness is quasi-reducibility [8], where the difference
is that matching can happen for an arbitrary subterm.

▶ Definition 3 (Quasi-Reducibility of Programs). A program with lhss L is quasi-reducible, if
every basic ground term t ∈ B(C,D, ∅) contains a subterm that is matched by some ℓ ∈ L.

Pattern completeness implies quasi-reducibility since t is a subterm of t, and the two
notions coincide if the root symbols of all lhss are in D – as in the functional programming
setting or in Example 1. Example 4 illustrates the difference between the two notions.

▶ Example 4. Consider CZ = {true : B, false : B, 0 : Z, s : Z→ Z, p : Z→ Z} to represent the
Booleans and integers in a successor–predecessor notation, e.g., p(0) represents −1. Now
we consider a TRS RZ that defines a function to compute whether an integer is even, i.e.,
D = {even : Z→ B}. It consists of all rules of RN in Example 1 and the following rules.

even(p(0))→ false even(p(p(x)))→ even(x) (2)
s(p(x))→ x p(s(x))→ x (3)

This TRS is quasi-reducible since every term even(n) with n : Z ∈ T (CZ) has a subterm
that is matched by some lhs: If n contains both s and p then one of the rules (3) is applicable.
Otherwise n is of the form si(0) or pi(0) and then rules (1) or (2) will be applicable.

The TRS is not pattern complete since even(s(p(0))) is not matched by any lhs.

3 Pattern Completeness – The Linear Case

Before we design the new decision procedure for pattern completeness we first reformulate
and generalize this notion, leading to matching problems and pattern problems.

▶ Definition 5 (Matching Problem and Pattern Problem). A matching problem is a finite set
mp = {(t1, ℓ1), . . . , (tn, ℓn)} ⊆ T (F ,V)× T (F ,X ) of pairs of terms. A pattern problem is a
finite set pp = {mp1, . . . , mpk} of matching problems.

A matching problem mp is complete w.r.t. a constructor ground substitution σ : V → T (C)
if there is some substitution γ : X → T (F) such that tσ = ℓγ for all (t, ℓ) ∈ mp. A pattern
problem pp is complete if for each constructor ground substitution σ there is some mp ∈ pp

such that mp is complete w.r.t. σ. A set P of pattern problems is complete if each pp ∈ P is
complete.

When expanding the definition of completeness of a set of pattern problems P we obtain
an alternative definition, which reveals that there are two quantifier alternations.

P is complete iff ∀pp ∈ P. ∀σ : V → T (C). ∃mp ∈ pp. ∃γ : X → T (F). ∀(t, ℓ) ∈ mp. tσ = ℓγ

Pattern problems are quite generic and can express several properties. For instance, L covers
T iff the set of pattern problem P = {{{(t, ℓ)} | ℓ ∈ L} | t ∈ T} is complete. Similarly,
Aoto and Toyama’s notion of strong quasi-reducibility [1] can also be encoded as a pattern
problem: pp = {{(t, ℓ)} | t ∈ {x1, . . . , xn, f(x1, . . . , xn)}, ℓ ∈ L} expresses that one tries
to find a match at the root (t = f(x1, . . . , xn)) or a match for a direct subterm (t = xi).
Finally, the question of whether a program with lhss L and defined symbols D is pattern
complete w.r.t. Definition 2 is expressible as the completeness of the set of pattern problems
P = {{{(f(x1, . . . , xn), ℓ)} | ℓ ∈ L} | f : ι1 × · · · × ιn → ι0 ∈ D}.
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The following inference rules describe a decision procedure to determine the completeness
of linear pattern problems. A matching problem {(t1, ℓ1), . . . , (tn, ℓn)} is linear if each ℓi

is linear and Var(ℓi) ∩ Var(ℓj) = ∅ for i ≠ j. We say a pattern problem is linear if all its
matching problems are linear.

In the inference rules we make use of a special matching problem ⊥mp that represents an
incomplete matching problem. Similarly, we define ⊤pp as a new pattern problem that is
always complete. Finally, ⊥P represents a new incomplete set of pattern problems.

▶ Definition 6 (Inference Rules for Linear Pattern Problems). We define → as the set of the
following simplification rules for matching problems.

{(f(t1, . . . , tn), f(ℓ1, . . . , ℓn))} ⊎mp→ {(t1, ℓ1), . . . , (tn, ℓn)} ∪mp (decompose)
{(t, x)} ⊎mp→ mp if ∀(t′, ℓ) ∈ mp. x /∈ Var(ℓ) (match)

{(f(. . .), g(. . .))} ⊎mp→ ⊥mp if f ̸= g (clash)

On top of this we define the set ⇒ of simplification rules for pattern problems as follows:

{mp} ⊎ pp⇒ {mp′} ∪ pp if mp→ mp′ (simp-mp)
{⊥mp} ⊎ pp⇒ pp (remove-mp)
{∅} ⊎ pp⇒ ⊤pp (success)

Finally we provide rules ⇛ for modifying sets of pattern problems.

{pp} ⊎ P ⇛ {pp′} ∪ P if pp⇒ pp′ (simp-pp)
{∅} ⊎ P ⇛ ⊥P (failure)

{⊤pp} ⊎ P ⇛ P (remove-pp)
{pp} ⊎ P ⇛ Inst(pp, x) ∪ P if mp ∈ pp and (x, f(. . .)) ∈ mp (instantiate)

Here, for a pattern problem pp and a variable x : ι0 ∈ V, the pattern problem set Inst(pp, x)
consists of a pattern problem ppσx,c = {{(tσx,c, ℓ) | (t, ℓ) ∈ mp} | mp ∈ pp} for each
c : ι1 × · · · × ιn → ι0 ∈ C, where σx,c = [x 7→ c(x1, . . . , xn)] for distinct fresh variables
x1 : ι1, . . . , xn : ιn ∈ V.

Clearly, (decompose), (match) and (clash) correspond to a standard matching algorithm.
Most of the other rules correspond to the universal and existential quantification that is
done in the definition of completeness. The only exception is (instantiate). Here a matching
algorithm would detect a failure since a variable x is never matched by a non-variable
term f(. . .). However, since the x in our setting just represents an arbitrary constructor
ground term, we need to do case analysis on the outermost constructor. This is done
by replacing x : ι0 ∈ V by all possible constructor terms of shape c(x1, . . . , xn) for all
c : ι1 × · · · × ιn → ι0 ∈ C.

The following theorem states that ⇛ can be used to decide completeness of linear
pattern problems. Here, ⇛! is defined as reduction to normal form, i.e., P ⇛! P ′ iff
P ⇛∗ P ′ ∧ ∄P ′′. P ′ ⇛ P ′′.

▶ Theorem 7 (Decision Procedure for Completeness of Linear Pattern Problems).
⇛ is terminating.
If P ⇛ P ′ then P is complete iff P ′ is complete.
If P is linear and P ⇛ P ′, then P ′ is linear.
If P is linear and P ⇛! P ′ then P ′ ∈ {∅,⊥P }.
If P is linear, then P is complete iff P ⇛! ∅.
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Proof. The property that normal forms will be either ∅ or ⊥P follows by an easy analysis of
the rules. In particular (clash), (decompose), (match), and (instantiate) cover all cases of a
pair (t, ℓ) of a linear matching problem, i.e., whether these terms are variables or function
applications, and whether the root symbol of both terms is identical or not. Note that the
condition in (match) is always satisfied for linear matching problems.

Preserving completeness is rather obvious for all rules except (instantiate), which was
already explained in the paragraph directly after Definition 6.

The most interesting aspect is termination. To prove it, we first define a measure of
difference |ℓ− t| for a term pair (t, ℓ) of some matching problem:
|ℓ− x| is the number of function symbols in ℓ,
|f(ℓ1, . . . , ℓn)− f(t1, . . . , tn)| =

∑n
i=1 |ℓi − ti|, and

|ℓ− t| = 0 in all other cases.
We lift this measure to pattern problems by |pp|diff =

∑
mp∈pp,(t,ℓ)∈mp |ℓ − t|. Finally, we

define ≻ as a relation on sets of pattern problems via the multiset extension >mul of > by
P ≻ P ′ iff {|pp|diff | pp ∈ P} >mul {|pp|diff | pp ∈ P ′}. This relation is strongly normalizing
and has the nice property that each ⇛-step weakly decreases and the (instantiate) rule
strictly decreases w.r.t. ≻. Hence, (instantiate) cannot be applied infinitely often. That the
remaining rules terminate does not need a complicated measure: their application decreases
the number of function symbols or the cardinalities of the sets. ◀

So, completeness of linear pattern problems is decidable. Let us illustrate the algorithm
on a previous example.

▶ Example 8. The algorithm validates that RN in Example 1 is pattern complete.

P = { {{(even(y), even(0))}, {(even(y), even(s(0)))}, {(even(y), even(s(s(x))))}} }
⇛∗ { {{(y, 0)}, {(y, s(0))}, {(y, s(s(x)))}} }
⇛ { {{(0, 0)}, {(0, s(0))}, {(0, s(s(x)))}}, {{(s(z), 0)}, {(s(z), s(0))}, {(s(z), s(s(x)))}} }
⇛∗ { {∅,⊥mp,⊥mp}, {⊥mp, {(z, 0)}, {(z, s(x))}} }
⇛∗ { {{(z, 0)}, {(z, s(x))}} }
⇛ { {{(0, 0)}, {(0, s(x))}}, {{(s(y), 0)}, {(s(y), s(x))}} }
⇛∗ { {∅,⊥mp}, {⊥mp, ∅} }
⇛∗ ∅

Regarding the complexity of the algorithm, one can prove an exponential upper bound
on the number of ⇛-steps. Note that deciding quasi-reducibility is co-NP complete [7], and
this result carries over to pattern completeness: the restriction to just search for matches at
the root position in pattern completeness does not cause a lower complexity class. So unless
P = NP, the exponential upper bound cannot be improved.

We briefly illustrate the idea of why pattern completeness is co-NP hard.

▶ Theorem 9. Deciding pattern completeness is co-NP hard for both TRSs and pattern
problems, even in the linear case.

Proof. We perform a reduction from the Boolean satisfiability problem for conjunctive
normal forms (CNFs). So assume φ is a CNF that contains n different Boolean variables
x1, . . . , xn and consists of m clauses c1, . . . , cm. W.l.o.g. we assume that no clause ci contains
conflicting literals, i.e., xj and ¬xj for the same j, because such clauses are trivially valid
and can therefore be removed from the set of clauses in polynomial time.
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We translate φ into the following left-linear TRS. We use a signature that contains the two
Booleans true and false as constructors, and there is one defined symbol f : B× . . .× B→ B
of arity n. We then define the TRS Rφ over this signature. It contains m rules where the
ith rule has the form ℓi := f(ti1, . . . , tin) → true and tij is defined as false if xj ∈ ci, true
if ¬xj ∈ ci, and xj , otherwise. For instance, if n = 5 and c2 = {¬x1, x3, x4} then ℓ2 =
f(true, x2, false, false, x5). It is clear that this translation is computable in time proportional
to n×m.

For every variable assignment α : {x1, . . . , xn} → B, let fα be the term f(α(x1), . . . , α(xn)).
Consequently, for every α and clause ci we see that α |= ci iff fα is not matched by ℓi.
Therefore, φ is unsatisfiable iff Rφ is pattern complete.

Of course, instead of using the TRSRφ, one can equivalently use the linear pattern problem
ppφ := {{(f(x1, . . . , xn), ℓ1)}, . . . , {(f(x1, . . . , xn), ℓm)}} and derive that φ is unsatisfiable iff
ppφ is complete. ◀

4 Pattern Completeness – The General Case

In the non-linear case ⇛ might get stuck, e.g., if there is a matching problem {(t, x), (t′, x)}
for t ̸= t′. To treat such cases we have to add further simplification rules. In order to
do so without breaking termination, we need to distinguish between finite and infinite
sorts. To illustrate the problem, consider a TRS to determine the majority of three values:
{f(x, x, y) → x, f(x, y, x) → x, f(y, x, x) → x}. If x is a variable of a finite sort, then the
lhss can be pattern complete: if the sort allows at most two different values, such as the
Booleans, then the lhss cover all cases. If the sort has at least three values a, b, c, then no lhs
matches f(a, b, c). So, we want to allow instantiating variables to judge pattern completeness,
but we cannot allow instantiating variables of infinite sorts, since otherwise the resulting
inference rules would no longer be terminating.

As final preparation for the new inference rules we define (the only two) reasons on why
two terms differ.

▶ Definition 10. We say that terms t and t′ clash if t|p = f(. . . ) ̸= g(. . . ) = t′|p with f ̸= g

for some shared position p of t and t′. The terms t and t′ differ in variable x if t|p ̸= t′|p
and x ∈ {t|p, t′|p} for some shared position p.

▶ Definition 11 (Inference Rules for General Pattern Problems). We take all rules of Definition 6
and add the following ones.

{(t, x), (t′, x)} ⊎mp→ ⊥mp if t and t′ clash (clash’)
{pp} ⊎ P ⇛ Inst(pp, x) ∪ P (instantiate’)

if mp ∈ pp, {(t, y), (t′, y)} ⊆ mp, t and t′ differ in variable x : ι ∈ V, and ι is finite
{pp} ⊎ P ⇛ ⊥P if for each mp ∈ pp there are {(t, y), (t′, y)} ⊆ mp (failure’)

such that t and t′ differ in variable x : ι ∈ V and ι is infinite

Indeed, with these new rules, ⇛ cannot get stuck even for non-linear inputs.
We first remark that there is a different flavor of problems with non-linear matching

problems of the form {(t, x), (t′, x)}. A clash of t and t′ can always be resolved locally by
(clash’). If there is a difference in a finite-sort variable, this can also be handled locally by
(instantiate’). However, differences in infinite-sort variables can only be applied via (failure’)
if indeed all matching problems show such a difference. Note that it is unsound to turn
(failure’) into a local rule for matching problems, i.e., if we would make (failure’) similar to
(clash’).
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▶ Example 12. Consider lhss {f(x, x), f(s(x), y), f(x, s(y))}, where f : N×N→ N is defined
and 0 : N and s : N→ N are the constructors. We can start to apply the rules as follows:

{{(f(x1, x2), f(x, x))}, {(f(x1, x2), f(s(x), y))}, {(f(x1, x2), f(x, s(y)))}}
⇒∗{{(x1, x), (x2, x)}, {(x1, s(x))}, {(x2, s(y))}} =: pp

If at this point we would remove the matching problem {(x1, x), (x2, x)} from pp because of
a difference in variable x1, then we would switch from the complete pattern problem pp into
the incomplete pattern problem pp \ {{(x1, x), (x2, x)}}: the constructor ground substitution
σ where σ(x1) = σ(x2) = 0 is covered by pp, but not by pp \ {{(x1, x), (x2, x)}}.

We state a similar theorem to the linear case, though its proof is much more evolved.

▶ Theorem 13 (Decision Procedure for Completeness of Pattern Problems). Consider ⇛ of
Definition 11.

⇛ is terminating.
If P ⇛! P ′ then P ′ ∈ {∅,⊥P }.
If P ⇛ P ′ then P is complete iff P ′ is complete.
P is complete iff P ⇛! ∅.

Proof. Not getting stuck is the easiest of these properties and we leave it as an exercise to
the interested reader to show that the only possible normal forms are ∅ and ⊥P .

Termination is more complicated. We reuse the difference measure | · |diff from the linear
case, and combine it with three other measures:
|pp|symbols counts the number of all function symbols within pp.
|pp|set-size sums up the cardinalities of all sets, while ignoring the term structure.
|pp|fin-vars is used to measure the size of variables of finite sort. To be more precise, for
a variable x having some finite sort ι, we first define |x| as the maximal term size of a
constructor ground term of sort ι. On top of this auxiliary measure we define

|pp|fin-vars =
∑

x∈{x. mp∈pp,(t,ℓ)∈mp,x:ι∈Var(t),ι is finite}

|x|

In other words, for | · |fin-vars we collect all variables of finite sort and sum up the maximal
term sizes.

The order ≻ on pattern problems is then defined as the lexicographic comparison of
the quadruples (|pp|diff, |pp|fin-vars, |pp|symbols, |pp|set-size) that are obtained from a pattern
problem pp. Multisets of pattern problems P are compared by ≻mul.

All rules on sets of pattern problems give rise to a decrease w.r.t. ≻mul, as it is indicated
in the following matrix:

| · |diff | · |fin-vars | · |symbols | · |set-size

(instantiate) > − − −
(instantiate’) ≥ > − −

(simp-pp) ≥ ≥ ≥ or > > or −
(remove-pp) ≥ ≥ ≥ >

where the decrease in (simp-pp) depends on underlying applied rules. For instance, (decom-
pose) leads to a decrease w.r.t. | · |symbols, but might increase | · |set-size, whereas (remove-mp)
does not change | · |symbols, but gives a decrease w.r.t. | · |set-size. The reason for the decrease of
(instantiate’) is that whenever we instantiate some variable x of finite sort ι by c(x1, . . . , xn),
then |x| ≥ 1 + |x1|+ . . . + |xn| > |x1|+ . . . + |xn|, and hence the | · |fin-vars-measure strictly
decreases.
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Partial correctness is the most challenging part, where the difficulty is the new rule
(failure’). We prove that pp is not complete, whenever (failure’) is applied for pp. To this
end, we build a constructor ground substitution σ such that ppσ contains a clash.

In detail: We use an invariant φ on pattern problems defined as follows: φ(pp) iff for
each mp ∈ pp there are y, t, t′ such that {(t, y), (t′, y)} ⊆ mp, t and t′ contain no variable of
finite sort, and moreover these terms clash or differ in a variable of infinite sort. Suppose
that (failure’) is applicable for a pattern problem pp. To initially satisfy φ, we apply an
initial partial ground substitution σ0 on pp, where all variables of finite sort are instantiated
by some constructor ground term of that sort. Since (failure’) is applicable, we know that all
matching problems in ppσ0 still have a difference in a variable of infinite sort, since none of
these variables gets instantiated by σ0.

Having that ppσ0 satisfies the invariant φ, we now iteratively remove all variables of
infinite sort that cause a difference. To be more precise, whenever some t and t′ differ in a
variable x in ppσi, we build a constructor ground term u that is larger than any of the terms
in ppσi. Note that such u exists, since x has an infinite sort. We let σi+1 to be σi[x 7→ u].
This process will terminate in finitely many steps, since the set of variables in ppσi+1 is a
strict subset of that of ppσi.

At the end of the process, we obtain a partial constructor ground substitution σn that
instantiates all variables that contribute to differences into ground terms. Assuming that φ is
maintained in the process, it is easy to see that the final pattern problem is not complete: all
matching problems of the final pattern problem contain a clash of some terms t and t′, i.e.,
we can extend σn to any constructor ground substitution σ that instantiates the remaining
variables.

Finally we prove that the step from ppσi to ppσi+1 indeed preserves φ. To this end,
pick any terms t and t′ of matching problem mp ∈ ppσi that cause the conflict within the
invariant. We show by case analysis that also t[x 7→ u] and t′[x 7→ u] result in a conflict.

if t and t′ clash at position p, then there also is a clash of t[x 7→ u] and t′[x 7→ u] at the
same position p;
if t|p = y ̸= t′|p for some y ̸= x, then t|p[x 7→ u] = y ̸= t′|p[x 7→ u] shows that again there
is a difference in y;
if t|p = x ̸= t′|p and t′|p contains a variable y ̸= x, then t|p[x 7→ u] = u is a ground term
and thus must have a difference with t′|p[x 7→ u] in the variable y;
if t|p = x ̸= t′|p and t′|p is a ground term, then t|p[x 7→ u] = u ̸= t′|p = t′|p[x 7→ u], since
u is strictly larger than any term of ppσi, and therefore there must be a clash; and finally
if t|p = x ̸= t′|p and Var(t′|p) = {x}, then t|p[x 7→ u] = u and t′|p[x 7→ u] contains u as a
strict subterm. Hence t|p[x 7→ u] and t′|p[x 7→ u] are two different ground terms which
must contain a clash. ◀

Note that ⇛ can be modified to support counter-example generation, i.e., instead of ⊥P

one returns a constructor substitution that violates the completeness of a set of pattern
problems. To achieve this, for each pattern problem we additionally store a constructor
substitution δ. This substitution is initially empty, i.e., nothing is instantiated, and δ will
keep track of the instantiations that are performed during the algorithm. The inference rules
of ⇛ are modified as follows

{(pp, δ)} ⊎ P ⇛ {(pp′, δ)} ∪ P if pp⇒ pp′ (simp-pp)
{(⊤pp, δ)} ⊎ P ⇛ P (remove-pp)
{(∅, δ)} ⊎ P ⇛ δ (failure)
{(pp, δ)} ⊎ P ⇛ {(ppσx,c, δσx,c) | c : · · · ∈ C} ∪ P if . . . (instantiate(’))
{(pp, δ)} ⊎ P ⇛ δσ if . . . (failure’)
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where the dots refer to the conditions of the original rules, and in (failure’) the substitution σ

is defined as the constructor ground substitution that is described in the partial correctness
proof of the (failure’) rule in Theorem 13.

5 Formalization and Implementation

In the formalization we first describe our development on sorted term rewriting (Section 5.1,
1706 lines of Isabelle), which is essential to develop the formalization of the decision procedure
of Section 4 in Isabelle. The latter uses three different layers of abstraction. We start with
an abstract set based formalization (Section 5.2, 1125 lines), then refine it to a version based
on multisets (Section 5.3, 828 lines), and finally arrive at an executable version that uses
lists to represent matching and pattern problems (Section 5.4, 1322 lines).

5.1 Sorted Term Rewriting
Here we present our formalization of sorted term rewriting. First, we reuse the datatype for
terms from the AFP entry First-Order Terms [17].

datatype (’f ,’v) term = Var ’v | Fun ’f ((’f ,’v) term list)

This datatype collects all unsorted, variadic terms. Next we introduce a sorted set over the
datatype (’f ,’v) term. We characterize a sorted set as a partial map that assigns an element
a sort. It is partial, in the sense that unsorted elements are not assigned a sort. Partial
maps are readily supported in Isabelle/HOL as types of form ’a ⇀ ’s, which is a synonym
of ’a → ’s option. We just introduce the notation “a : ι in A” to mean that a sorted set
A :: ’a ⇀ ’s assigns its element a :: ’a a sort ι :: ’s.

definition ... where a : ι in A ≡ A a = Some ι

Hereafter, we often omit Isabelle specifications for introducing notations by “...”.
We formalize sorted signatures also as partial maps:

type_synonym (’f ,’s) ssig = ’f × ’s list ⇀ ’s

and introduce the following notation:

definition ... where f : ιs → ι0 in F ≡ F (f ,ιs) = Some ι0

Given a sorted signature F :: (’f ,’s) ssig and a sorted set V :: ’v ⇀ ’s of variables, we
define the sorted set T (F ,V ) :: (’f ,’v) term ⇀ ’s of terms so that

Var v : ι in T (F ,V ) ⇐⇒ v : ι in V
Fun f ts : ι0 in T (F ,V ) ⇐⇒ (∃ιs. f : ιs → ι0 in F ∧ ts :l ιs in T (F ,V ))

Here, as :l ιs in A denotes that the lists as and ιs have the same length and the ith element
of as has the ith sort of ιs. We also introduce the notation ∅ for Map.empty, the partial map
such that ∅ a = None for any a. Then T (F ,∅) represents the sorted set of ground terms.
Given two signatures C and D, the set of basic terms is formalized as follows:

definition ... where
B(C ,D,V ) = {Fun f ts | f ιs ι0 ts . f : ιs → ι0 in D ∧ ts :l ιs in T (C ,V )}
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A sorted map from a sorted set A to a sorted set B, written f :s A → B in Isabelle,
is a map f such that a : ι in A =⇒ f a : ι in B. In particular, sorted maps of form
σ :s X → T (F ,V ) are the sorted substitutions. The application of a substitution σ on a
term t is already defined as t · σ in the library in the unsorted setting. We additionally
provide facts such as

lemma subst_hastype: σ :s X → T (F ,V ) =⇒ t : ι in T (F ,X) =⇒ t · σ : ι in T (F ,V )

The formalization of when a term matches another is straightforward:

definition ... where l matches t = (∃ σ. t = l · σ)

and now we are ready to define the pattern completeness.

definition ... where
pat_complete_lhss C D L = (∀ t ∈ B(C ,D,∅). ∃l ∈ L. l matches t)

5.2 Formalization of the Algorithm – Set Layer
The set based formalization is the one that is the furthest away from an executable version.
Interestingly, it also deviates quite a bit from the textual description of the algorithm. Still,
it is useful for proving that completeness of pattern problems is not altered by ⇛.

There are some deviations from the textual description that we like to mention.
First, we do not introduce the special problems ⊥mp and ⊤pp, e.g., by using an option-

type. Instead, we split each set of inference rules in two parts, e.g., the matching problem
transformation relation → into relation →s that modifies an existing problem and into
predicate mp_fail that leads to the special problem ⊥mp. In this way, the representation of
matching and pattern problems stays simple, i.e., they are just (sets of) sets of pairs of terms.

Second, we change all ⊎-operators in the textual description into ∪-operators. This simpli-
fies the reasoning for the refinements in the upcoming layers, but introduces nontermination.
For instance, if P = {⊤pp} then P = {⊤pp} ∪ P ⇛ P . Giving up on termination at this
layer, we also join (instantiate) and (instantiate’): the formalization contains only one rule
for instantiation at this layer, and this rule has no side-condition; i.e., it is always possible to
instantiate {pp} by Inst(pp, x) for any x.

Third, the formalization contains a notion of well-formedness for matching and pattern
problems. In detail, the algorithm is formulated within a context that fixes a set S of sorts.
Well-formedness enforces that the variables that occur in the problems only use sorts in
S. Many of the properties are only proven for well-formed problems, and it is additionally
proven that well-formedness is preserved by the transformations. Well-formedness does not
enforce that the sets in a problem are finite; this is another source of nontermination on this
layer.

We provide some example Isabelle snippets that formalize the relations → and ⇒,
illustrating the first two kinds of deviations. Here insert a A is Isabelle’s notation for {a}∪A.

inductive ... where mp →s mp
| length ts = length ls =⇒ insert (Fun f ts, Fun f ls) mp →s set (zip ts ls) ∪ mp
| x /∈

⋃
(vars ‘ snd ‘ mp) =⇒ insert (t, Var x) mp →s mp

inductive mp_fail :: (’f ,’v,’s)match_problem_set → bool
where (f ,length ts) ̸= (g,length ls) =⇒ mp_fail (insert (Fun f ts, Fun g ls) mp)

| (∗ further inference rule for clash’ ∗)
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inductive ... where mp →s mp’ =⇒ insert mp pp ⇒s insert mp’ pp
| mp_fail mp =⇒ insert mp pp ⇒s pp

The relation ⇛ is formalized similarly. The main result of this layer is that ⇛ preserves
pattern completeness on well-formed pattern problem sets, in Isabelle, wf_pats.

theorem P_step_set_pcorrect:
P ⇛s P’ =⇒ wf_pats P =⇒ pats_complete P ←→ pats_complete P’

The most challenging rule was (failure’) as detailed in the previous section. On the other
hand, the most tedious one was (instantiate), which looks rather obvious on paper, but
required 140 lines in our formalization.

5.3 Formalization of the Algorithm – Multiset Layer
On the next layer we use finite multisets to represent the algorithm. This layer is the one that
is closest to the textual description and we fully prove Theorem 13 for this representation.
The design of the formalization is as follows.

Concerning the relationship between textual and formalized version of the algorithm, we
keep the deviation of splitting the inference rules from the previous layer, so that there is no
need for the special problems ⊥mp and ⊤pp. Since a multiset union operation corresponds to
a ⊎-operation on sets, there is no deviation at this point anymore. However, we require one
further inference rule for matching problems whose necessity does not arise when working
with sets. Since a multiset can have multiple occurrences of the same element, we need an
explicit inference rule that is capable of deleting duplicates. To this end, we add the rule

{(t, ℓ), (t, ℓ)} ∪mp→ {(t, ℓ)} ∪mp (duplicate)

on the multiset layer, which is then simulated by a new identity rule mp→ mp on the set
layer.

Partial correctness of ⇛ on this layer is obtained via the partial correctness result of ⇛
from the previous layer by proving a refinement property: The multiset-based implementation
can be simulated by the set-based one.

The major new property that is added on this level is a formal proof of termination by
closely following the textual proof.

We arrive at a formal version of Theorem 13 that looks quite similar to the textual one.
Here, ⇛ in Isabelle refers to the multiset representation of ⇛, SN is strong normalization,
i.e., termination, pats_mset converts from the multiset representation of pattern problems
into the set representation, {#} is the empty multiset, and bottom_mset is representing ⊥P

as the multiset {∅}.

theorem SN_P_step: SN ⇛
theorem P_step:

assumes wf_pats (pats_mset P) and (P,Q) ∈ ⇛!

shows Q = {#} ∧ pats_complete (pats_mset P)
∨ Q = bottom_mset ∧ ¬ pats_complete (pats_mset P)

5.4 Formalization of the Algorithm – List Layer
In the final layer we provide an executable version of the algorithm, by refining the multiset
based version. To this end, we switch from multisets to lists; we turn the inductive inference
rules into a recursive function definition; and we specify the order in which the inference
rules will be applied. Our list-based implementation is split into several phases.
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In the first phase, we exhaustively apply rules (decompose), (duplicate), (clash) and
(clash’). Moreover, we organize the representation of the matching problems as follows.

We store a list of pairs that have the structure (x, f(. . . )), i.e., those pairs on which
(instantiate) is applicable.
We store another list of pairs ([t1, . . . , tn], x) such that the matching problem contains
all pairs (t1, x), . . . , (tn, x), and no combination ti and tj results in a clash, and the list
[t1, . . . , tn] is distinct.
We further store a Boolean flag whether the matching problem satisfies the condition of
(instantiate’) or not.

In the second phase, we apply rule (match) exhaustively and try to apply (failure’). Both
of these steps can efficiently be implemented based on the previously described representation
of matching problems.

Finally, if nothing else is applicable, then in the third phase we invoke (instantiate) or
(instantiate’), with a preference on the former. In order to create fresh variables for the
application of these rules, we assume that these variables are just numbers, and use a global
index n which is incremented whenever a fresh variable is required.

These three phases are then iterated in a recursive function until a normal form is reached.
By induction on ⇛, it is shown that the list-based implementation refines the multiset version
of ⇛. Hence, partial correctness is easily transferred from the previous layer.

There is some additional glue-code required to get the final algorithm.
We need to compute a high-enough value for the initial variable index n.
We need to check the prerequisite that was stated at the beginning of this paper, namely
that indeed all sorts are inhabited: {t | t : ι ∈ T (C)} ≠ ∅. To this end, we verify a
standard marking algorithm that computes the set of inhabited sorts: initially no sort is
marked as inhabited, and whenever c : ι1×· · ·× ιn → ι0 ∈ C is a constructor and all sorts
ι1, . . . , ιn are marked, then also ι0 is marked as inhabited. Finally, exactly the inhabited
sorts are marked.
We further require a function that determines whether a sort is finite or infinite; also
here we verify a marking algorithm: initially no sort is marked as being finite, and
whenever there is a sort ι where all constructors of that sort only have input sorts that
are marked, then also ι is marked as finite. Finally, exactly the finite sorts are marked.3
Interestingly, the dual approach (marking of infinite sorts whenever a recursive constructor
is detected) is not so straight-forward, because sorts might be mutual recursive without
direct recursion.

We finally provide a few wrapper functions that invoke the main decision procedure and
get rid of its preconditions. For instance, for pattern completeness of programs (represented
by their lhss) we obtain an algorithm decide_pat_complete_lhss.

theorem decide_pat_complete_lhss:
assumes decide_pat_complete_lhss C D lhss = return b
shows b = pat_complete_lhss (map_of C ) (map_of D) (set lhss)

The algorithm will report an error on invalid input, e.g., if not all sorts are inhabited,
or if the list of constructors C or the list of defined symbols D contain conflicting sort
informations. If no such error is reported then the return value will be a Boolean b, and b is
the completeness property of the set of lhss.

3 The Isabelle formalization actually slightly deviates from this representation. It starts from the set of
potentially infinite sorts and then iteratively removes the finite sorts.
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Figure 1 Timing of our algorithm for each configuration c ∈ {0, . . . , 15} on different sizes
n ∈ {1, . . . , 100} using a timeout of 60 seconds.

6 Experiments

In order to evaluate the efficiency of our decision procedure, we use the following set of TRSs.
They are similar to test programs that are used to show exponential behavior of match
compilers for functional programming languages [16, Example 6].

▶ Example 14. We define TRS Rc,n for different configurations c ∈ {0, . . . , 15} and different
sizes n. All TRSs use only one sort, namely the Booleans with constructors T and F, and
there is only one defined symbol g. The TRS Rc,n consists of 2n + 1 many rules and g has
arity 2n. We do not provide a full formal definition of Rc,n, but instead illustrate the lhss of
Rc,n for c ∈ {0, 1, 2, 4} and n = 3, where each occurrence of _ represents a fresh variable.

c = 0 c = 1 c = 2 c = 4
g(F, _, F, _, F, _) g(F, F, F, _, _, _) g(F, _, F, _, F, _) g(T, T, _, _, _, _)
g(T, T, _, _, _, _) g(T, _, _, T, _, _) g(T, T, _, _, _, _) g(T, F, _, _, _, _)
g(T, F, _, _, _, _) g(T, _, _, F, _, _) g(_, _, T, T, _, _) g(_, _, T, T, _, _)
g(_, _, T, T, _, _) g(_, T, _, _, T, _) g(_, _, _, _, T, T) g(_, _, T, F, _, _)
g(_, _, T, F, _, _) g(_, T, _, _, F, _) g(T, F, _, _, _, _) g(_, _, _, _, T, T)
g(_, _, _, _, T, T) g(_, _, T, _, _, T) g(_, _, T, F, _, _) g(_, _, _, _, T, F)
g(_, _, _, _, T, F) g(_, _, T, _, _, F) g(_, _, _, _, T, F) g(F, _, F, _, F, _)

The 16 configurations are obtained by combining 4 different kinds to arrange the ar-
guments of g with 4 different orders of the rules. For the argument orders of g we
choose the following four alternatives, visualized by reordering the arguments of the first
lhs of R0,n: g(F, _, F, _, . . . , F, _) or g(_, F, _, F, . . . , _, F) or g(F, F, . . . , F, _, _, . . . , _) or
g(_, _, . . . , _, F, F, . . . , F). Concerning the order of the rules, we either put the first rule of
R0,n to the front position (c = 0) or to the last position (c = 4); and we either group the
other 2n rules in n blocks of size 2 (c = 0) or in 2 blocks of size n (c = 2).

Since for a given n all configurations result in the same set of lhss (modulo symmetries),
the question of pattern completeness should be equally hard for all configurations. However,
since our implementation of the decision procedure has a fixed order in which rules are
applied and in which variables are instantiated, there is quite a different behavior in the
execution time, cf. Figure 1.

Choosing c ∈ {0, . . . , 7} results in a low execution time, where the corresponding blue line
in Figure 1 is not distinguishable from the x-axis: for instance, deciding pattern completeness
of Rc,100 is finished within 0.06 seconds. However, for c ∈ {8, . . . , 15} an exponential behavior
becomes visible, where c = {8, 9}, c = {10, 11}, and c = {12, 13, 14, 15} each have similar
behavior.

We further compare our decision procedure with three other algorithms.
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Figure 2 Left: Increase n for each c ∈ {0, . . . , 15} until n = 100 or 60 seconds timeout is reached.
Right: Number of solved Rc,n instances for (c, n) ∈ {0, . . . , 15} × {1, . . . , 100} within time limit.

GHC: we encode Rc,n as a Haskell program and use the ghc Haskell compiler and ask it
to warn about incomplete patterns. To be more precise we invoke ghc with parameters
-c -Wincomplete-patterns -fmax-pmcheck-models=1000000 where the latter number
is chosen in such a way that no approximation is occurring.4

CO: we run the complement algorithm on the TRSs, taking the implementation that is
available in the ground confluence prover AGCP [1].
TA: given Rc,n we define two tree automata An (with transitions F → bool, T →
bool and g(bool, . . . , bool) → accept) and Bc,n (using four common transitions F →
bool, F → false, T → bool, T → true, and one further transition for each rule, e.g.,
g(bool, bool, bool, bool, true, false) → accept for the last rule of R0,3) so that pattern
completeness of Rc,n is equivalent to the language inclusion problem L(An) ⊆ L(Bc,n).
We then invoke the tree automaton library of FORT-h [13] to decide this inclusion
property.

We ran experiments where for each configuration c and each algorithm we increased n

until either Rc,n for n = 100 was successfully analyzed, or until there was a 60 seconds
timeout when handling Rc,n. In Figure 2 we display the maximal values of n (left) and the
cumulative solved instances plot in the style of SAT-competition [6] (right).

The diagram clearly shows that our new decision procedure outperforms all other three
algorithms on the test suite. Interestingly, also in GHC there is a strong dependence
on the configuration, i.e., the execution time varies between polynomial and exponential.
This is different for TA and CO: these algorithms always resulted in exponential behavior,
independent of the choice of c.

For further details on the experiments we refer to the website with supplementary material.

7 Conclusion and Future Work

We developed a new decision procedure to decide pattern completeness that is not restricted
to the left-linear case. The corresponding verified implementation is faster than previous
approaches, in particular it performs better than the complement algorithm and tree automata
based methods.

We see some opportunities for future work. First, one can integrate an improved strategy
to select variables for instantiation, in particular since permutations in the input cause severe
differences in runtime. One can also try to further improve the implementation, e.g., by

4 When invoking ghc, it does not only check pattern completeness, but also compiles the program. However,
the compilation time is negligible in our experiments. On all programs where GHC was successful, the
compilation time decreased to below 0.5 seconds when turning off the pattern completeness check.
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following suggestions of Sestoft [16, Section 7.5] such as the integration of memoization. The
latter corresponds to a rule {pp, pp}∪P ⇛ {pp}∪P to detect and eliminate duplicate pattern
problems. Second, one might add counter-example generation into the formalization and
into the verified implementation. Third, it remains open whether a similar syntax directed
decision procedure for quasi-reducibility can be designed, i.e., where matching may occur
in arbitrary subterms. Finally, one might consider an extension where it is allowed to add
structural axioms to some symbols such as associativity and commutativity.
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Abstract
We introduce an algebraic structure for studying state-independent contextuality arguments, a key
form of quantum non-classicality exemplified by the well-known Peres-Mermin magic square, and
used as a source of quantum advantage. We introduce commutation groups presented by generators
and relations, and analyse them in terms of a string rewriting system. There is also a linear algebraic
construction, a directed version of the Heisenberg group. We introduce contextual words as a general
form of contextuality witness. We characterise when contextual words can arise in commutation
groups, and explicitly construct non-contextual value assignments in other cases. We give unitary
representations of commutation groups as subgroups of generalized Pauli n-groups.
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1 Introduction

Contextuality is a key form of non-classicality in quantum mechanics, and is the source
of quantum advantage in a range of settings, including measurement-based quantum com-
putation [17] and shallow circuits [8, 7]. In classical physics, observable quantities have
well-defined values independently of which measurements are performed. This is contradicted
by the predictions of quantum mechanics [13], as verified in numerous experiments [6, 10].
These say that values can only be assigned locally, in measurement contexts, i.e. with respect
to sets of measurements which can be performed together, providing observational “windows”
of classical information on the quantum system. These windows may overlap, and will agree
on their overlaps (local consistency), but it is not possible, on pain of logical contradiction,
to glue all these pieces of information together (global inconsistency).

The strongest form of this phenomenon is state-independent contextuality, where the
structure of the observables dictates that contextuality arises for any state. The most famous
example of this phenomenon is the Peres-Mermin magic square [14], which is constructed
from the 2-qubit Pauli group1:

1 We recall the definition of the Pauli group in the Appendix.
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XI — IX — XX

| | |
IZ — ZI — ZZ

| | |
XZ — ZX — Y Y

Here XI denotes the 2-qubit operator σx ⊗ I, and similarly for the other entries. One can
now calculate that the operators in each row and column pairwise commute, and hence form
a valid measurement context. Moreover, the product of each of the rows, and of the first two
columns, is II; while the product of the third column is −II.

We shall now see how to recognize contextuality in this example. The key point is that
this can be done a priori, independently of any observational data. We ask if there is an
assignment of outcomes v : X→ Z2 , where X is the set of operators in the table, subject to
the conditions that
1. if p and q commute, then v(pq) = v(p) + v(q).
2. v(II) = 0 and v(−II) = 1.
Such an assignment is called a non-contextual value assignment. If no such assignment exists,
this yields an example of contextuality. We call this state-independent, since it arises purely
at the level of the operators in the table, independently of any state.

Note that we only require the homomorphism condition (1) for commuting operators,
which correspond to observables that can be performed together, in a common context. This
is the key idea introduced by Kochen and Specker in their seminal work on contextuality [13].

Now assume for contradiction that such an assignment exists. We obtain the following
set of equations over Z2 from the above table, one for each row and each column:

a+ b+ c = 0 a+ d+ g = 0
d+ e+ f = 0 b+ e+ h = 0
g + h+ i = 0 c+ f + i = 1

(1)

Here a is a variable corresponding to v(XI), etc.
Since each variable appears twice in the left hand sides, summing over them yields 0,

while summing over the right hand sides yields 1. This yields the required contradiction.
The justification for assuming the partial homomorphism condition comes from the

quantum case, where if A and B are commuting observables and ψ is a common eigenvector
of A and B, with eigenvalue v for A and w for B, then ψ is an eigenvector for AB with
eigenvalue vw. Also, II has the unique eigenvalue +1, and −II the unique eigenvalue −1.2

We now wish to abstract from the specifics of the Pauli group, and understand the general
structure which makes such arguments possible. This leads us to introduce the notion of
commutation group, to which we now turn.

2 Commutation groups

The idea behind commutation groups is that they are built freely from prescribed commutation
relations on a set of generators. Commutation relations play a fundamental role in quantum
mechanics, the canonical example being the commutation relation between position and
momentum (see e.g. [11]): [p, q] = iℏ1. We can think of a commutation relation as saying that
two elements commute up to a prescribed scalar. For this to make sense in a group theoretic

2 Note that {+1, −1} under multiplication is an isomorphic representation of Z2, with 0 corresponding to
+1 and 1 to −1 under the mapping i 7→ (−1)i.
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context, we need an action of a suitable (classical, hence abelian) group of scalars or “phases”
on the group we are constructing. We are interested here in finite group constructions, so we
shall work over the finite cyclic groups Zd, d ≥ 2.

Given a finite set Xof generators, we define a commutator matrix to be a map µ : X2 → Zd

which is skew-symmetric, meaning that µ(x, y) = −µ(y, x) for all x, y ∈ X. We also assume
that µ(x, x) = 0 for all x ∈ X.3

We shall describe the construction of commutation groups from commutator matrices
in two ways: by generators and relations, and by a linear algebraic construction. Both are
useful, and convey different intuitions.

2.1 Commutation groups by generators and relations
We briefly review the standard notion of presentation of a monoid by generators and relations
⟨X|R⟩. We form the free monoid X∗, and quotient it by the congruence induced from the
relations R ⊆ X∗ × X∗. Explicitly, we define a symmetric relation ←→

R
⊆ X∗ × X∗ by

s ←→
R

t iff there is (u, v) ∈ R ∪ R−1 such that, for some w1, w2 ∈ X∗, s = w1uw2, and

t = w1vw2. We then take the reflexive transitive closure ∗←→
R

. This is a monoid congruence,

and the quotient M = X∗/
∗←→
R

is the presented monoid.

Notation. We write relations as u .= v. We write the empty sequence, which forms the
identity element of the free monoid, as 1.

Given a commutator matrix µ : X2 → Zd, we define a set of relations RG over the gener-
ators X⊔ Zd (using ⊔ for disjoint union), where we write Jk for the generator corresponding
to k ∈ Zd, and:

We have relations Rµ := {xy .= Jµ(x,y)yx | x, y ∈ X}.
We have RJ := {J0

.= 1} ∪ {JkJk′
.= Jk+k′ | k, k′ ∈ Zd} ∪ {Jkx

.= xJk | x ∈ X, k ∈ Zd}.
We have Rd := {xd .= 1 | x ∈ X}.
Finally, RG := Rµ ∪RJ ∪Rd.

The resulting monoid G(µ) := ⟨X⊔ Zd | RG⟩ is in fact a group, since every generator has an
inverse. We call it the commutation group generated by µ.

The J-relations ensure that there is an isomorphic copy of Zd in the centre of the
group. The key relations are the commutation relations xy .= Jµ(x,y)yx. Note that these are
directional, since by skew-symmetry of µ, if µ(x, y) = k, then yx

.= J−kxy. Thus moving
x right past y has the opposite “cost” to moving x left past y. This suggests that we can
analyze G(µ) by a directed string rewriting system.

To do this, we fix a linear ordering x1 < · · · < xn on X.4 Relative to this ordering,
elements of G(µ) can be represented as ordered multisets over X with multiplicities strictly
less than d, together with a “global phase” from Zd. Explicitly, we define N to be the set of
all expressions Jkx

k1
1 · · ·xkn

n , with k ∈ Zd, and 0 ≤ ki < d, 1 ≤ i ≤ n. There is an evident
bijection N ∼= Zd × Zn

d . Thus N has cardinality dn+1.
We now define a string rewriting system on X⊔ Zd, obtained by orienting a subset of the

relations RG, determined by the chosen linear order on X:
→µ := {xy → Jµ(x,y)yx | x > y}.
→J := {J0 → 1} ∪ {JkJk′ → Jk+k′ | k, k′ ∈ Zd} ∪ {xJk → Jkx | x ∈ X, k ∈ Zd}.
→d := {xd → 1}.
→G := →µ ∪→d ∪→J .

3 Note that if d is even, this does not follow automatically from skew-symmetry.
4 As we shall see, the choice of ordering is immaterial, leading to isomorphic results.
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This induces a relation on (X⊔Zd)∗ by s→ t iff for some u→G v, for some w1, w2 ∈ (X⊔Zd)∗,
s = w1uw2, and t = w1vw2.

▶ Theorem 1. The rewrite system →G is confluent and normalizing. The set of normal
forms is N (up to identification of J0 and 1).

Proof. Given a word s ∈ (X⊔ Zd)∗, we define:
An X-inversion in s is (u, v, w, x, y) such that s = uxvyw, and x > y.
A J-inversion in s is (u, v, w, x, k) such that s = uxvJkw.

We define a function φ : (X⊔A)∗ → N× N× N by φ(s) = (n,m, l), where n is the number
of X-inversions in s, m is the number of J-inversions, and l is the length of s.

We now observe that for each rewrite s → t in the above system →G, φ(s) ≻ φ(t) in
the lexicographic ordering on N × N × N. Indeed, the µ relations decrease the number
of X-inversions, the J-commutation rule decreases the number of J-inversions while not
increasing the number of X-inversions, and the remaining rules decrease length while not
increasing the number of inversions. Since this ordering is well-founded, it follows that →G
is normalizing.

By Newman’s Lemma, it now suffices to show that →G is weakly confluent. This is
verified straightforwardly by examining the critical pairs.

Firstly, consider x > y > z, µ(x, y) = a, µ(y, z) = b, µ(x, z) = c:

uxyzv

uJayxzv uxJbzyv

uJa+b+czyxv

∗ ∗

uxyJbv

uJayxJbv uxJbyv

uJa+byxv

∗ ∗

Next, two cases involving J-generators:

uxd−1xJav

uJav uxd−1Jaxv

uJax
dv

∗

uJaJbJcv

uJa+bJcv uJaJb+cv

uJa+b+cv

Finally:

uxd−1xyv

uyv uxd−1Jayxv

uJd·ayx
dv

∗ ∗

uxyyd−1v

uxv uJayxy
d−1v

uJd·ay
dxv

∗ ∗

Note that d · a = 0 mod d, justifying the final legs. ◀
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By virtue of this theorem, we can define a function θ : (X⊔ Zd)∗ → N, which returns the
normal form of a word. Note that, if w →∗ w′, then by confluence, θ(w) = θ(w′).

We can use this function to define an equivalence on (X⊔ Zd)∗ by s ≃ t iff θ(s) = θ(t).
This equivalence is in fact a congruence, since if θ(u) = s = θ(u′) and θ(v) = t = θ(v′), then,
using confluence, θ(uv) = θ(st) = θ(u′v′).

▶ Proposition 2. For all s, t ∈ (X⊔ Zd)∗, s ≃ t iff s
.= t.

Proof. The left-to-right implication follows immediately since →G⊂ RG. For the converse,
it suffices to show that s ≃ t for all relations s .= t in RG, since .= is the least congruence
containing these relations.

Consider firstly xy .= Jkyx, where k = µ(x, y). There are two cases:
1. If x < y, then xy ∈ N, and Jkyx→ JkJ−kxy →∗ xy.
2. If x > y, then Jkyx ∈ N, and xy → Jkyx.
The other relations are verified similarly. ◀

We now define a monoid with carrier N. Note that 1 and Jk, k ∈ Zd, are in N. We define
the multiplication by u · v := θ(uv).

▶ Proposition 3. (N, ·, 1) is a monoid.

Proof. We need to verify associativity. This follows from

θ(θ(uv)w) = θ(uvw) = θ(uθ(vw)) (2)

which in turn follows from confluence. ◀

We now define a map h : G(µ)→ N by h([w]) = θ(w).

▶ Theorem 4. The map h is well-defined, and is a monoid isomorphism h : G(µ) ∼= N.

Proof. If u .= v, then by Proposition 2, θ(u) = θ(v). Thus h is well-defined. The fact that it
preserves multiplication follows from θ(uv) = θ(θ(u)θ(v)), which follows from confluence. If
w ∈ N, then h([w]) = θ(w) = w. Thus h is surjective. Finally, if h([u]) = h([v]), then u ≃ v,
so by Proposition 2, [u] = [v]. ◀

We now come to a key property for applications to contextuality.

▶ Theorem 5. The internal Zd-action given by the J-generators is faithful: if Jk
.= Jk′ in

G(µ), then k = k′.

Proof. This is immediate from the isomorphic representation given by N, since if k ̸= k′, Jk

and Jk′ are distinct normal forms. ◀

The parameter d plays a double role in the commutation groups, defining the order of
the generators by the relations xd = 1, and also the abelian “phase group” Zd acting on the
commutation group. We used this double role of d in proving confluence for the rewriting
system. This assumption is in fact necessary to obtain a confluent system with a faithful
action, as the following example shows.

▶ Example 6. We assume the relations xd .= 1 for the generators. Consider the word
w ≡ yxyd−1xd−1, and let a = µ(x, y). Then w

.= J(d−1)·ay
dxd .= J(d−1)·a, and also w

.=
J−axy

dxd−1 .= J−ax
d .= J−a. Thus to maintain confluence and faithfulness of the action, we

require (d− 1) · a = −a, and hence d · a = 0.
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Comparison with solution groups
In [9] another way of abstracting from the Peres-Mermin square and similar constructions is
pursued, leading to the introduction of solution groups. These groups are specified by sets of
equations of similar form to (1). The generators appearing together in an equation, and only
these, are specified to commute. These groups are shown in [9] to control the question of
whether there is a quantum realization for these equations. Importantly, this is shown to be
equivalent to the existence of quantum perfect strategies for Alice-Bob non-local games.

A remarkable result of Slofstra [19] shows that solution groups, even over Z2, are extremely
expressive (i.e. “wild”). Every finitely presentable group can be embedded in a solution
group. It follows immediately that the word problem for solution groups, and hence the
quantum realization questions, are undecidable.

By contrast, commutation groups are highly tractable. By Theorem 4, they are always
finite. From the proof of termination in Theorem 1, we see that reduction to normal form,
and hence the decision procedure for the word problem, is at most quadratic in the length
of the word. As we shall see later, every commutation group admits a faithful unitary
representation.

2.2 Linear algebraic construction of commutation groups
The characterization of commutation groups in Theorem 4 suggests another description. We
shall now use the fact that Zd is not just an abelian group, but a commutative ring with
unit. We can write a commutator matrix, with a chosen order on the set of generators, as
an n× n matrix with entries in Zd. We write so(n,Zd) for the set of all n× n commutator
matrices (skew-symmetric and zero on the diagonal) over Zd. Given a commutator matrix µ,
we write µ̌ for its lower triangular part, so that µ = µ̌− µ̌⊺.

An n × n matrix M over Zd defines a bilinear form on the free Zd-module Zn
d , by

M(k⃗, l⃗) := k⃗⊤Ml⃗. Now given µ ∈ so(Zd, n), we define a group H(µ) with carrier Zd × Zn
d .

The group product is defined by

(k, k⃗) · (l, l⃗) = (k + l + µ̌(k⃗, l⃗), k⃗ + l⃗).

Thus it is precisely the phase factor µ̌(k⃗, l⃗) which makes the group non-commutative.
The associativity of the product follows from bilinearity. The unit is (0, 0). The inverse

of (k, k⃗) is (−k − µ̌(k⃗,−k⃗),−k⃗).

▶ Proposition 7. For any µ ∈ so(n,Zd), H(µ) ∼= G(µ).

Proof. By Theorem 4, the carriers are in evident bijection: Jkx
k1
1 · · ·xkn

n ↔ (k, (k1, . . . , kn)).
We just have to check that the group product is preserved. The only non-imediate part of
this is to check that the phase factors agree.

Suppose in N we have normal forms with vector parts u = xk1
1 · · ·xkn

n and v = xl1
1 · · ·xln

n .
To combine them into θ(uv), with vector part xk1+l1

1 · · ·xkn+ln
n , we must move l1 copies of

x1 over kn copies of xn, each with a cost of µ(xn, x1); and similarly for the occurrences
of xn−1, . . . , x2 in u, with total cost

∑
i>1 kiµ(xi, x1)l1. A similar analysis applies to the

occurrences of x2, . . . , xn−1 in v, leading to a total cost of
∑

i>j kiµ(xi, xj)lj . This is exactly
k⃗⊤µ̌l⃗ = µ̌(k⃗, l⃗). ◀

Note that we would get the same result if we moved the vector part of u rightwards over the
vector part of v. The choice of left/right orientation is just a convention. On the other hand,
the use of µ̌ rather than µ is significant. As we will see in the next section, using µ would
render the structure useless for our purpose of analyzing contextuality.
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However, we do retrieve µ as the group-theoretic commutator in H(µ).

▶ Proposition 8. Given g = (k, k⃗), h = (l, l⃗) ∈ H(µ), their group theoretic commutator
is given by [g, h] := ghg−1h−1 = (µ̌(k⃗, l⃗) − µ̌(⃗l, k⃗), 0) = (µ(k⃗, l⃗), 0). In terms of G(µ), for
u, v ∈ X∗, [u, v] .= Jk−l, where θ(uv) .= Jkw, θ(vu) .= Jlw.

As Proposition 7 makes clear, commutation groups are very close to the (discrete version
of) the Heisenberg or Heisenberg-Weyl groups [18], and their close relatives the Pauli groups.
The novelty lies mainly in our combinatorial mode of presentation of commutation groups,
which we will make use of in our analysis of contextuality arguments. It should be noted,
though, that the direct equivalent of the usual Heisenberg group construction in our setting
would be to use the full commutator matrix µ.5 As we have mentioned, using µ would yield
a non-isomorphic construction, which would not be useful for analyzing contextuality. This
perhaps suggests that we can think of commutation groups as a directed version of Heisenberg
groups.

3 Contextuality arguments in commutation groups

The commutation group has an evident short exact sequence

0 Zd H(µ) Zn
d 0i π2 (3)

where i(k) = (k, 0). This says that it is a non-abelian group extension of Zn
d by Zd. The image

of Zd lies in the centre of H(µ), so the extension is central. Because of the non-commutativity
of H(µ), it is easy to see that there is no left-splitting of this extension, i.e. a homomorphism
l : H(µ)→ Zd such that l ◦ i = idZd

. One could say that this simple observation is essentially
a form of von Neumann’s much criticised No-Go theorem for hidden variables [15]. The
point of the criticism is that it is not reasonable to ask for a splitting which preserves
non-commuting products.

Following Kochen-Specker [13] and the huge literature on ensuing developments, we want
to consider only assignments to observationally accessible contexts, i.e. those constructed
from commuting products. A general setting for capturing this idea is provided by com-
patible monoids, introduced in [1] with different terminology. A compatible monoid is a
structure (M,⊙, ·, 1), where ⊙ is a reflexive, symmetric relation on M , of “compatibility” or
“comeasurability”, and · : ⊙ →M is a partial binary operation with domain ⊙ ⊆M2, such
that:

x⊙ y ⇒ x · y = y · x,
x⊙ 1 for all x ∈M , and x · 1 = x,
if x⊙ y, x⊙ z, and y ⊙ z, then x⊙ (y · z) and (x · y)⊙ z, and (x · y) · z = x · (y · z).

Homomorphisms of compatible monoids are maps which preserve the compatibility relation,
and the monoid operations when defined.

Any monoid M defines a compatible monoid with the same carrier, with x⊙ y iff xy = yx

in M . We will be interested in the compatible submonoid of M generated by a set S ⊆M .
This is the least set T containing S ∪ {1}, and such that, whenever u, v ∈ T and u⊙ v, then
u · v ∈ T . In particular, we will apply this to G(µ) with respect to the generators X⊔ Zd.
We will write C(µ) for this compatible submonoid of G(µ).

5 There is a notion of polarized Heisenberg group, but this is isomorphic to the usual presentation.
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In terms of H(µ), we can identify the generators as follows: k ∈ Zd can be identified with
the scalar (k, 0), while the generators X can be identified with the standard basis E of the
free module Zn

d , xi ↔ ei := [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−i

]⊤.

We obtain a short exact sequence for C(µ):

0 Zd C(µ) P 0i p (4)

Here p is the restriction of the second projection to C(µ), and P is its image.
A non-contextual value assignment for the commutation group G(µ) is exactly a left

splitting of this short exact sequence: i.e. a homomorphism l : C(µ)→ Zd such that l◦i = idZd
.

If no such left splitting exists, then we say that G(µ) exhibits state-independent contextuality.

3.1 Contextual words
We can distill the essential features of “parity proofs” such as the one given for the Peres-
Mermin square into a notion of contextual word, which provides a witness for state-independent
contextuality. This notion was introduced, somewhat informally, in the concrete context of
Pauli groups over qubits in [12], but can be formulated generally for any commutation group
G(µ). A contextual word for G(µ) is given by a triple (w, β, k) such that:

w ∈ X+.
The number of occurrences of each generator x ∈ X in w is a multiple of d.
β is a bracketing of w, witnessing that it is in C(µ).
w
.= Jk, where k ̸= 0.

Bracketings are defined inductively by

β ∈ BE ::= x | (β1, β2).

We define ∂ : BE → X+ by ∂(x) = x, ∂(β1, β2) = ∂(β1)∂(β2). If ∂(β) = w, then w is the
word bracketed by β. A bracketing β provides a witness for w = ∂(β) ∈ C(µ) if, for every
(β′

1, β
′
2) occurring in β, with u = ∂(β′

1) and v = ∂(β′
2), uv .= vu in G(µ).

▶ Proposition 9. If there is a contextual word for G(µ), then it is state-independently
contextual.

Proof. If (w, β, k) is a contextual word over S, assume for a contradiction that l : C(µ)→ Zd

is a non-contextual value assignment, i.e. a left splitting of (4). The bracketing β witnesses
that w ∈ C(µ). By the homomorphism property, l(w) =

∑
i l(xi), where w = x1 · · ·xn.

Since each x ∈ X occurs with multiplicity kd in w for some k ≥ 0, l(w) = 0 (mod d).
However, we also have w .= Jk, so we must have l(w) = l(Jk) = k ≠ 0, yielding the required
contradiction. ◀

▶ Example 10. Consider the following commutator matrices over Z2

µ1 =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 µ2 =


0 0 0 1
0 0 1 1
0 1 0 0
1 1 0 0

 µ3 =


0 0 0 1
0 0 1 1
0 1 0 1
1 1 1 0


with generators a < b < c < d. Then (wi, βi, 1) is a contextual word for G(µi), with

w1 = abdccabd β1 = ((ab)(dc))((ca)(bd))
w2 = bdccaabd β2 = (b(dc))((ca)((ab)d))
w3 = dcabbadc β3 = (d(ca))(b(((ba)d)c))
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▶ Example 11. We show that the Peres-Mermin square arises in commutation groups.
Firstly, we show that the tensor product construction underlying the extension of the Pauli

group to Paulin has a simple form in terms of group presentations. Given a commutator
matrix µ : X2 → Zd, we define µ2 : (X+ X)2 → Zd by µ2(xi, yi) = µ(x, y), µ2(xi, yj) = 0,
i ̸= j. Thus elements in different copies of X commute with each other.

We now consider the commutator matrix with µ(x, y) = 1 for generators x, y. We can
define the following Peres-Mermin square over G(µ2):

x1 — x2 — x1x2
| | |
y2 — y1 — y1y2
| | |

x1y2 — y1x2 — J1(x1y1)(x2y2)

We can verify that exactly the same algebraic properties hold for this square as in the
concrete example: each row and column pairwise commutes, the product of each row and
the first two columns is 1, the product of the third column is −1 (or more pedantically, J1 in
additive notation).

We can extract a contextual word from this construction: ((x1y2)(y1x2))((x1x2)(y1y2)).
Up to dropping the J1 factor, and interchanging the commuting pair x2y1, this can be read
off from product of the bottom row of the square.

This provides a more succinct contextuality witness than the usual parity proof, which
amounts to taking the product of all the rows and columns.

A similar treatment can be given of the Mermin star [14].

3.2 Comparison with other Heisenberg groups
We can now see why taking the more standard Heisenberg group construction, defined exactly
as for H(µ), but using µ rather than µ̌, would not be suitable for our purposes. Let us
denote the construction using µ rather than µ̌ by H+(µ). By Proposition 8, the commutator
in H(µ) is µ, which means that we can have commuting products gh = hg with non-zero but
equal phase factors, which is clearly essential for contextual words to exist. By contrast, the
commutator in H+(µ) is easily seen to be 2µ, which means in Z2 that all products commute,
while in odd orders, no products commute.

4 No state-independent contextuality in odd characteristics

We shall now show that contextual words can only exist over Zd if d is even. Moreover, we
shall explicitly describe the non-contextual value assignments which exist when d is odd.

In order to prove these results, we will analyze the structure of inversions in bracketed
words.

Notation. In this section, we will deal exclusively with non-empty words over the generators,
w ∈ X+. We will also write formal sums in variables vx,y to stand in for values of the
commutator matrix µ(x, y). We will use the following notation. If S = {λi}i∈I is a family of
inversions, then

∑
S :=

∑
i∈I vxi,yi

, where λi is an inversion between xi and yi, xi > yi.
Given a word s, we write I(s) for the set of inversions in s. Given words s, t, I(s, t) is the

set of inversions between s and t, i.e. the set of all (w1, x, w2, y) such that w1x is a prefix of
s, w2y is a prefix of t, and x > y.

The following is immediate.
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▶ Lemma 12. For all words s, t,∑
I(st) =

∑
I(s) +

∑
I(t) +

∑
I(s, t).

In this notation, the equation forcing the global phase factor for a word s to be k is∑
I(s) = k.

Also, given words s, t, we define the “formal commutator” of s and t to be

Js, tK :=
∑

I(s, t)−
∑

I(t, s).

The equation forcing s and t to commute is
∑

I(st)−
∑

I(ts) = 0. By the previous lemma,
this is equivalently written as Js, tK = 0.

▶ Lemma 13. Let s† be the reverse of a word s. Then
∑

I(s, t) =
∑

I(s†, t†).

Proof. Note that s† defines the same multiset of occurrences of generators as s, so there
will be a bijection between the inversions in I(s, t) and those in I(s†, t†), inducing the same
multiset of variables vx,y. ◀

We now consider bracketings of words. Given a bracketing β, we define the multiset Φ(β)
by

Φ(x) = ∅, Φ(β1, β2) = {|(∂(β1), ∂(β2))|} ⊎ Φ(β1) ⊎ Φ(β2).

Given a word s with bracketing β, we can write Φ(β) as a family {(si, ti)}i∈I of adjacent
subwords of s corresponding to subexpressions of the full bracketing.

▶ Lemma 14. With notation as above, let s† be the reverse of s. Then∑
i∈I

Jsi, tiK =
∑

I(s) −
∑

I(s†). (5)

Proof. By induction on the length of s. If s = x, then the sums on both sides of (5) are
empty, and we have the equation 0 = 0.

In the inductive case, suppose the top-level bracketing of s is s = uv. We can write the
bracketings of u and v as families {(uj , u

′
j)}j∈J , {(vk, v

′
k)}k∈K . Then, applying the induction

hypothesis:∑
i∈I Jsi, tiK = Ju, vK +

∑
jJuj , u

′
jK +

∑
kJvk, v

′
kK

= (
∑

I(u, v)−
∑

I(v, u)) + (
∑

I(u)−
∑

I(u†)) + (
∑

I(v)−
∑

I(v†)).

By Lemma 12,
∑

I(s) =
∑

I(uv) =
∑

I(u, v) +
∑

I(u) +
∑

I(v). Since s† = v†u†, applying
Lemma 12 again yields

∑
I(s†) =

∑
I(v†, u†) +

∑
I(v†) +

∑
I(u†). Applying Lemma (13)

and rearranging terms yields (5). ◀

▶ Lemma 15. Let w be a word in which each generator x occurs nx times, modulo d. Then∑
I(w) +

∑
I(w†) =

∑
x<y

nynxvyx

In particular, when each generator occurs a multiple of d times, we have
∑

I(w) = −
∑

I(w†).
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Proof. In order to count the number of occurrences of the variable vyx, consider each
occurrence of y within w. For the ith occurrence we can write w = uiyvi and for each x such
that x < y, the mi occurrences of x in vi will yield mi inversions in w, while the occurrences
of x in ui will yield ni inversions in w†. Thus, the total multiplicity of vx,y in

∑
I(w) will be∑

i mi, where i ranges over occurrences of y in w. Similarly, the total multiplicity of vx,y in∑
I(w†) will be

∑
i ni. Since for each i, mi + ni = nx we will have the overall multiplicity

nyx =
ny∑
i=1

mi +
ny∑
i=1

ni =
ny∑
i=1

nx = nynx.

When each nx is a multiple of d we therefore have
∑

I(w) +
∑

I(w†) = 0 (mod d). ◀

▶ Theorem 16. If (w, β, k) is a contextual word over Zd, then d is even.

Proof. Since (w, β, k) is contextual, we have Js, tK = 0 for all bracketed subexpressions (s, t)
in β. Hence summing over all such subexpressions yields

∑
iJsi, tiK = 0. By Lemma 14,

this implies that
∑

I(w) −
∑

I(w†) = 0. Applying Lemma 15 yields 2
∑

I(w) = 0. The
contextuality of (w, β, k) forces

∑
I(w) = k, where k ̸= 0. We can only have a non-zero

solution of 2k = 0 (mod d) if d is even. ◀

▶ Theorem 17. If w1 and w2 are words in X+ formed out of commuting products and which
have the same multiset of generators, modulo d, then if d is odd their overall commutation
factors are equal.

Proof. Since w1 and w2 are formed out of commuting products, each of the formal com-
mutators corresponding to the sub-expressions of w1 and w2 is equal to zero, hence∑

I(wi) =
∑

I(w†
i ). From Lemma 15 it follows that

2
∑

I(wi) =
∑
x<y

ni
yn

i
x · vyx

The right hand side of this equation is the same for w1 and w2, since the number ni
x of

occurrences of each generator is equal modulo d in the two words. Since d is odd, the equation
2x = k (mod d) has a unique solution for any k ∈ Zd, and

∑
I(w1) =

∑
I(w2). ◀

▶ Theorem 18. Let µ be a commutator matrix over Zd. If d is odd, there is a non-contextual
value assignment v : C(µ)→ Zd.

Proof. We use the vector representation of C(µ) ⊆ G(µ). Define S := {k⃗ ∈ Zn
d | ∃k. (k, k⃗) ∈

C(µ)}. By Lemma 17, there is a unique φ(k⃗) ∈ Zd such that every word w ∈ X+ which can
be formed by commuting products and evaluates to a normal form θ(w) with corresponding
vector part k⃗ ∈ S has global phase factor φ(k⃗). Thus if w is such a word, φ(k⃗) =

∑
I(w).

By Theorem 16, φ(0) = 0. Given (k, k⃗) ∈ C(µ), we define v : (k, k⃗) 7→ k − φ(k⃗). Clearly this
is left-inverse to the inclusion ι : Zd → C(µ). We must verify the homomorphism condition.
Given a commuting product (k, k⃗) · (l, l⃗) = (k + l+ µ̌(k⃗, l⃗), k⃗ + l⃗) in C(µ), we must show that

(k − φ(k⃗)) + (l − φ(⃗l)) = (k + l + µ̌(k⃗, l⃗))− φ(k⃗ + l⃗),

i.e. that φ(k⃗ + l⃗) = [φ(k⃗) + φ(⃗l) + µ̌(k⃗, l⃗)]. Taking words s, t evaluating to k⃗, l⃗, this is∑
I(st) =

∑
I(s) +

∑
I(t) +

∑
I(s, t), i.e. Lemma 12. ◀
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5 Contextuality in even characteristics

We now show that contextual words exist in abundance in even characteristics. Firstly, we
characterize the circumstances under which non-contextual value assignments do arise.

Given S ⊆ C(µ), we define Z(S) := {a ∈ S | ∀b ∈ S. a⊙ b}. A graph will always mean a
reflexive undirected graph, i.e. a set of vertices with a reflexive, symmetric relation.

A cluster graph is a coproduct (disjoint union) of complete graphs. Equivalently, it is
a graph in which the adjacency relation is transitive, so that the maximal cliques are the
equivalence classes, and hence disjoint, with no adjacencies between them.

We will show that, if (C(µ) \ Z(C(µ)),⊙) is a cluster graph, every empirical model over
C(µ) has global sections, which are exactly non-contextual value assignments.

We briefly review what we need of empirical models; for further details, see [4, 3]. A
maximal clique over the graph (C(µ),⊙) is a (total) commutative sub-monoid of C(µ): closure
under products is implied by maximality. Moreover, it contains Z(C(µ)). Let M be the set
of maximal cliques. Note that the union of this family is C(µ).

A (possibilistic) empirical model over C(µ) assigns to each C ∈ M a non-empty set of
homomorphisms s : C → Zd which split the inclusion Zd ↪→ C. We write {eC}C∈M for this
family of sets of homomorphisms. The family is moreover required to satisfy the following
local consistency property: for all C,C ′ ∈M, eC |C∩C′ = eC′ |C∩C′ , where e.g

eC |C∩C′ := {s|C∩C′ | s ∈ eC}.

We say that such an empirical model is non-contextual (in the sense of not strongly contex-
tual [4]) if there exists a global section: a homomorphism s : C(µ)→ Zd such that s|C ∈ eC

for all C ∈M. Such a global section is necessarily a left splitting, and hence a non-contextual
value assignment for C(µ).

▶ Theorem 19. If (C(µ) \ Z(C(µ)),⊙) is a cluster graph, then every empirical model over
C(µ) is non-contextual.

Proof. Let N := C(µ) \ Z(C(µ)), Z := Z(C(µ)). Each maximal clique of (C(µ),⊙) is of the
form C ⊔ Z, where C is a maximal clique of (N,⊙). Let e be an empirical model, and
consider s ∈ eC⊔Z for C ⊔ Z ∈ M. We can write s = [sC , sZ ] : C ⊔ Z → Zd. By the local
consistency property for e, for any C ′ ̸= C maximal in (N,⊙), there is sC′ : C ′ → Zd such that
s′ = [sC′ , sZ ] : C ′⊔Z → Zd ∈ eC′⊔Z . Morever, as C ′, C ′′ range over maximal cliques of (N,⊙),
since C ′ ∩ C ′′ = ∅, s′ = [sC′ , sZ ] is compatible with s′′ = [sC′′ , sZ ], i.e. s′|Z = sZ = s′′|Z .
Thus we obtain a pairwise compatible family of sections {[sC , sZ ]}C⊔Z∈M.

Since M covers C(µ), this family determines a unique function s : C(µ)→ Zd. We must
check the homomorphism condition. This holds because whenever g⊙h, {g, h} ⊆ C for some
C ∈M, hence s(gh) = sC(gh) = sC(g) + sC(h) = s(g) + s(h). ◀

Note that in the last part of the argument, we were verifying the sheaf property for the cover
M over the presheaf of left splittings on cliques in (C(µ),⊙).

One remaining question is whether empirical models over C(µ) actually exist.6 We shall
discuss unitary representations of commutation groups in the next section. Given a quantum
realization of the associated measurements, we can always obtain an empirical model by
applying any quantum state.

6 The issue is whether we can have a non-empty model satisfying the local consistency conditions.
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5.1 Positive results
We now assume that (C(µ) \ Z(C(µ)),⊙) is not a cluster graph, which means that there are
elements a, b, c such that a⊙ b, a⊙ c, but not b⊙ c. Since a is not in Z(C(µ)), there must
be some d such that not a⊙ d. Allowing for the various possibilities for commutativity of d
with b and c, up to relabelling this gives us the following three compatibility graphs [12]:

a b

c d

a b

c d

a b

c d

(6)

5.1.1 The Z2 case

In the case where µ is a commutator matrix over Z2, we can give a definitive characterisation of
contextuality in C(µ). This follows similar lines to [12], in the general setting of commutation
groups.

▶ Theorem 20. If µ is a commutator matrix over Z2, then the following are equivalent:
1. C(µ) is contextual.
2. There are contextual words over C(µ).
3. The graph (C(µ),⊙) contains one of the graphs in (6) as an induced sub-graph.

Proof. The implication (2) ⇒ (1) is Proposition 9. By contraposition, (1) ⇒ (3) follows
from Theorem 19. Now assume (3). If a, b, c, d are generators, the matrices µi given in
Example 10 correspond to the graphs in (6), and the corresponding contextual words given
in the Example show that (2) holds. Otherwise, these elements arise as commuting products,
each of which can be described by a suitably bracketed word. If any of these words has
global phase factor 1, they are already contextual words. Otherwise, we can substitute them
into the words given in Example 10 to obtain contextual words. ◀

5.1.2 Beyond Z2: padding, splitting and variable changes

We can transfer contextual words from Z2 to Z2k, using the embedding Z2 ↣ Z2k which
sends 1 to k, which can be applied to a commutator matrix over Z2 to produce one over
Z2k. If we take any of the contextual words w from Example 10, we can then perform a
simple padding construction. We append a2k−2b2k−2c2k−2d2k−2 to w, and this produces a
contextual word over Z2k.

Can we construct contextual words over Z2k using matrix values other than 0 and k? By
Theorem 16, the global phase factor for a contextual word over Z2k must be k, but we may
use other values from Z2k in constructing the word. We can use a splitting construction to
achieve this. We illustrate the idea with a simple example over Z4. Given the contextual
word ((ab)(dc))((ca)(bd)) from Example 10, we split the generator a into a1 and a2. We can
use the commutator matrix

µ =


0 0 1 1 1
0 0 3 3 1
3 1 0 2 0
3 1 2 0 0
3 3 0 0 0


and obtain the contextual word [((a1a2)b)(cd)][((a1a2)c)(bd)][a2

1a
2
2b

2c2d2], using also the
padding construction described previously.
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5.1.3 Classification of contextuality for matrices in Darboux normal form
Our overall aim is to give a complete classification of which commutation groups G(µ) admit
contextual words. We shall achieve this for matrices µ in Darboux normal form, i.e. whose
only non-zero entries occur in block 2× 2 matrices on the main diagonal of the form

0 λi

−λi 0

Given a matrix µ over Z2n, which is in Darboux normal form, it is possible to decide
whether it supports contextual words by considering the parity, relative to n, of the non-zero
entries of µ. By relative parity, we mean whether the power with which 2 appears in the
prime factor decomposition of n is lower than the power with which it appears in the prime
factor decomposition of each of the non-zero entries. Thus, if n = n′ × 2y and λ = l × 2x,
where n′ and l′ are both odd integers, we say that λ is even relative to n if x > y and that λ
is odd relative to n if x ≤ y.

Firstly, a preliminary lemma. We use the notation m
...n to mean that m is divisible by n.

▶ Lemma 21. If a word s is formed out of commuting products, and sa and sb denote the

multiplicities with which a and b appear within s, then sasb

... 2k+1.

Proof. We prove this by induction on the length of s. If s is length 1 then either sa or sb, or
both, are zero, and the statement holds trivially. Assume that the statement holds for words
of length less than or equal to L and let s be a word of length L+ 1. Then s = uv for some
u and v of length at most L and let ua, ub, va, vb denote the respective multiplicities of a and
b within u and v. Since u and v commute, we must have

(uavb − ubva)
... 2k+1

By the inductive hypothesis uaub

... 2k+1 and vavb

... 2k+1 and therefore uaubvavb

... 22k+2. If

uavb ̸
... 2k+1 then ubva must be divisible by 2k+1 and this would contradict the commutativity

condition. Hence both uavb and ubva are divisible by 2k+1. This allows us to complete the
inductive proof, as sa = ua + va and sb = ub + vb and so the product sasb expands as a sum
of terms which are each divisible by 2k+1:

sasb = uaub + uavb + ubva + vavb. ◀

▶ Theorem 22. If µ is in Darboux normal form, then there is a contextual word over G(µ)
if and only if there are two non-zero entries above the main diagonal, λi = li × 2xi and
λj = lj × 2xj which are both odd relative to n.

Proof. If we can find two non-zero entries above the main diagonal, λi = li × 2xi and
λj = lj × 2xj which are both odd relative to n and we denote their corresponding variables
by a, b, c, d, then we can form the contextual word

((a . . . a︸ ︷︷ ︸
k

c . . . c︸ ︷︷ ︸
k

)(bd))((a . . . a︸ ︷︷ ︸
k

d)(b c . . . c︸ ︷︷ ︸
k

))(a . . . a︸ ︷︷ ︸
m

)(b . . . b︸ ︷︷ ︸
2n−2

)(c . . . c︸ ︷︷ ︸
m

)(d . . . d︸ ︷︷ ︸
2n−2

)

where k = n′ × 2y−xj , m = n′ × 2y−xi(2xi+1 − 2) and k +m = 2n. It is straightforward to
check that all the brackets commute and that the overall commutation factor is equal to

n′ × 2y−xi × li × 2xi = n× li

which is equal to n modulo 2n, since li is odd.
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On the other hand, if all the non-zero entries of µ are even relative to n then we will not
be able to get any word w with a non-zero commutation factor since, as we have shown in
Section 4, the commutation factor of w must satisfy the equation

2
∑

I(w) = 0

In Z2n the only non-zero solution to this equation is
∑

I(w) = n = n′ × 2y and since
all the commutation variables in the matrix µ have a factor of 2 greater than y, any linear
combination of them will also have a factor of 2 greater than y, and so will not yield a
commutation factor equal to n modulo 2n.

Finally, we can show that if only one non-zero entry is odd relative to n, while all the
others are relatively even, then contextual words cannot exist. For simplicity of notation, we
will show this for 4 generators but the proof, which is essentially a parity argument, works
equally well for any number of generators. Let n = n′ × 2y, as before, and let a and b denote
the two variables whose corresponding entry in the commutation matrix is m × 2y−k for
some odd m and k ≥ 0. By assumption, all other entries are of the form m′ × 2y+1+t for
some odd m′ and t ≥ 0. Then any bracketed subexpression of the form

w = (alablbclcdld)(arabrbcrcdrd)

commutes only if

2y−k ×m(larb − lbra) + 2y+1+t ×m′(lcrd − ldrc) = N × 2y+1 × n′

Since the right hand side is a multiple of 2y+1 and the terms on the left hand side coming
from the relatively even entries are also multiples of 2y+1 and m is odd, it follows that

(larb − lbra)
... 2k+1

By Lemma 21, lbra is divisible by 2k+1 and so the contribution to the overall commutation
factor, which is

2y−k ×mlbra + 2y+1+t ×m′ldrc

will also be a multiple of 2y+1. Recall that the only possible non-zero value for the overall
commutation factor is n modulo 2n which implies∑

I(w) = (2N + 1)n = (2N + 1)n′ × 2y

and therefore a sum of terms which are divisible by 2y+1 cannot yield a non-zero overall
commutation factor, which completes the proof. ◀

5.1.4 Reduction to Darboux normal form
Every commutator matrix can be reduced to one in Darboux normal form. This is standard
over a field, but less obvious over Zd for arbitrary d, so we include a proof.

Note that since µ plays the role of a bilinear form, if we wish to perform a change of basis
preserving this form, we must perform the corresponding row and column operations on the
matrix µ. These operations are encoded by an invertible base change matrix U ; the resulting
matrix UTµU is said to be cogredient to µ.

▶ Lemma 23. Every commutation matrix µ is cogredient to a skew-symmetric matrix µd

whose only non-zero entries occur directly above and below the main diagonal. We call this
the standard form of the commutation matrix.
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Proof. We start by noting that the “swapping” matrix Ui,j which is obtained by swapping
the ith and jth columns of the identity matrix is self-inverse over Z2n and

UT
i,jµUi,j

is the commutation matrix obtained from µ by first swapping the ith and jth rows of µ and
then the ith and jth columns.

Similarly, the “adding” matrix V α
i,j which is obtained by adding to the ith column of the

identity matrix α times the jth column is invertible, its inverse being V −α
i,j . Hence the matrix

V αT
i,j µV

α
i,j

is cogredient with µ and has the corresponding effect of adding α times the jth row/column
of µ to its ith row/column.

Using these two types of cogredient operations it is possible, using Euclid’s algorithm to
change µ into a cogredient matrix µd with the desired property.

The first step is to consider the nth row of the matrix µ:

. . .
...

...
...

...
. . . 0 ∗ ∗ −c
. . . ∗ 0 ∗ −b
. . . ∗ ∗ 0 −a
. . . c b a 0

If it has k non-zero entries, we can use suitable swapping Ui,j matrices to bring those entries to
the right of all zero entries, ordered ascendingly. Then if a = µ(n, n− 1) > µ(n, n− 2) = b we
can use V α

n−1,(n−2) and Un−1,n−2 matrices to perform Euclid’s algorithm on the bottom entries
of these penultimate two columns, resulting in a cogredient matrix µ1 with µ1(n, n− 2) = 0
and µ1(n, n − 1) = gcd(a, b). For example, if the first step of the algorithm gives the
decomposition a = bq1 + r1 then the matrix

µ′ = UT
n−1,n−2V

−q1T
n−1,n−2µV

−q1
n−1,n−2Un−1,n−2

will have µ′(n, n− 2) = r1 and µ′(n, n− 1) = b. If r1 is non-zero, we can continue iterating
the next steps of the algorithm, until eventually we reach µ1.

The next step is to consider c = µ1(n, n − 3) and use suitable Un−3,n−1 and V α
n−1,n−3

matrices to again perform Euclid’s algorithm, resulting in a matrix µ2 for which µ2(n, n−2) =
µ2(n, n− 3) = 0 and µ2(n, n− 1) = gcd(a, b, c). And we proceed to eliminate all the k next
non-zero entries of the last row, thus leaving

µk−1(n, n− 1) = gcd(µ(n, n− 1), µ(n, n− 2), . . . , µ(n, n− k))

as the only non-zero entry on the nth row. And since cogredient operations result in skew-
symmetric matrices, the only non-zero entry on the nth column will also be the one above
the main diagonal.

We can repeat these steps to clear out the t non-zero entries on row n− 1, which are to
the left of the (n− 1, n− 2) position. This results in some matrix µt−1 whose only nonzero
entries on row n− 1 are µt−1(n− 1, n) = µk−1(n− 1, n) and

µt−1(n− 1, n− 2) = gcd(µk−1(n− 1, n− 2), µk−1(n− 1, n− 3), . . . , µk−1(n− 1, n− t)).

We proceed similarly with the remaining rows, eventually resulting in a matrix µd in standard
form. ◀
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▶ Theorem 24. Every commutation matrix µ is cogredient to a matrix µD in Darboux
normal form, whose only non-zero entries occur in block 2× 2 matrices on the main diagonal
of the type

0 λi

−λi 0

Proof. From Lemma 23, we know that µ is cogredient to a matrix µd in standard form. We
describe an algorithm which, given a 4× 4 diagonal block of µd of the type

0 a 0 0
−a 0 b 0
0 −b 0 c

0 0 −c 0

performs cogredient operations on µd to produce a block in Darboux normal form of the type

0 λ1 0 0
−λ1 0 0 0

0 0 0 λ2
0 0 −λ2 0

Assume without loss of generality that the 4 × 4 block is in the top left-hand corner of
µd. If b = 0 the block already has the desired format. If c is equal to zero, we can use
“swapping” U1,3 and suitable “adding” V α

1,3 matrices to perform Euclid’s algorithm on the
non-zero entries in the first and third columns, resulting in a block of the desired format,
with λ1 = gcd(a, b) and λ2 = 0, and the same type of procedure can be used when a = 0.

In the remaining case, when all entries are non-zero, we have to distinguish two scenarios:
first, if aq = b then V qT

3,1 µdV
q

3,1 has the top left-hand block in Darboux normal form with
λ1 = a and λ2 = c.

Otherwise, performing Euclid’s algorithm as above will initially result in a block with
non-zero entries away from the main diagonal:

0 gcd(a, b) 0 y

−gcd(a, b) 0 0 0
0 0 0 x

−y 0 −x 0

We now make a slight modification to the procedure in Lemma 23 in order to bring this block
matrix back to standard form: instead of applying Euclid’s algorithm to reduce the entries
on the last row and column, we use it to reduce the entries on the first row and column. The
resulting matrix will be of the form

0 gcd(a, b, y) 0 0
−gcd(a, b, y) 0 y′ 0

0 −y′ 0 x′

0 0 −x′ 0

At this point we can repeat the steps outlined so far until we eventually bring the block to
Darboux normal form. Since we started with the assumption that a is not a factor of b, the
greatest common divisor of a, b and y must be strictly less than a in the divisibility order, so
eventually the process will terminate. ◀
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Discussion. There is an important caveat to this result. We have defined contextuality
for G(µ) in terms of C(µ), which is defined relative to the set of generators X. When
transforming µ to µ′ in Darboux normal form, we will have G(µ) ∼= H(µ) ∼= H(µ′) ∼= G(µ′),
but this transformation will not preserve the generators. In particular, the new generators
corresponding to the transformed basis for µ′ may correspond to words in the old generators
which cannot be formed from commuting products. This means that a contextual word over
G(µ′) may not correspond to one over G(µ).

6 Unitary representation

Since G(µ) is a finite group, it has unitary representations. Indeed, every linear representation
is equivalent to a unitary one. We wish to have unitary representations which faithfully
preserve the internal Zd-action.

We use the qudit Hilbert space Hd := Cd, with basis vectors |k⟩ labelled by elements
of Zd. The tensor product of n copies of this space, Hn,d, has basis vectors |⃗k⟩ labelled
by k⃗ ∈ Zn

d . We write U(Hn,d) for the unitary group on Hn,d. The centre of this group is
isomorphic to the circle group, U(1) := {z ∈ C | |z| = 1}. For each d ≥ 2, this contains the
cyclic subgroup of the d’th complex roots of unity. We write ω := e

2πi
d for the primitive d’th

root of unity. The map k 7→ ωk is an isomorphism from Zd to the multiplicative group of
d’th complex roots of unity.

Given a commutator matrix µ ∈ so(n,Zd), we shall define a representation ρ : H(µ)→
U(Hn,d): ρ(k, k⃗) |⃗l⟩ = ωk+µ̌(k⃗,⃗l) |⃗l + k⃗⟩.

▶ Proposition 25. For each (k, k⃗) ∈ H(µ), ρ(k, k⃗) is a well-defined unitary operation.
Moreover, ρ is an injective group homomorphism which preserves scalars, i.e. ρ(k, 0) = ωk1.

Proof. The verification that ρ is a homomorphism amounts to showing that

ρ(k, k⃗) ◦ ρ(k′, k⃗′) |⃗l⟩ = ρ(k + k′ + µ̌(k⃗, k⃗′), k⃗ + k⃗′) |⃗l⟩

which reduces to

µ̌(k⃗, k⃗′) + µ̌(k⃗ + k⃗′, l⃗) = µ̌(k⃗′, l⃗) + µ̌(k⃗, k⃗′ + l⃗)

which follows from bilinearity. ◀

Representation in Pauli groups

The generalized Pauli groups Pn,d are the subgroups of U(Hn,d) generated by the X and Z

operations. These operations are defined on Hd by X |k⟩ = |k+ 1⟩, and Z |k⟩ = ωk|k⟩. These
are the Sylvester “shift” and “clock” matrices [20], and can be seen as discrete versions of
position and momentum operators. Note that they satisfy the basic commutation relation
ZX = ωXZ. They are then extended to Hn,d as Xi := I ⊗ · · · ⊗ I︸ ︷︷ ︸

i−1

⊗X ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
n−i

, and

similarly for Zi, i = 1, . . . , n. Note that the commutator matrix for the generators Xi, Zi

is in Darboux normal form: the only non-zero entries are µ(Zi, Xi) = 1, µ(Xi, Zi) = −1
(mod d).

▶ Proposition 26. The image of H(µ) under ρ is a subgroup of Pn,d.
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Proof. Given an element ei of the standard basis of Zn
d , we have ρ(ei) = Xi

∏n
j=1 Z

µ̌i,j

j ,
which can be verified by a simple computation:

Xi

∏n
j=1 Z

µ̌i,j

j |k1⟩ ⊗ · · · ⊗ |kn⟩ = Xi(ωµ̌i,1k1 |k1⟩ ⊗ · · · ⊗ ωµ̌i,nkn |kn⟩)
= Xi(

∏
j ω

µi,jkj ) |⃗k⟩
= ω

∑
j

µ̌i,jkjXi |⃗k⟩
= ωµ̌(ei ,⃗k) |⃗k + ei⟩
= ρ(ei) |⃗k⟩.

Since H(µ) is generated by the ei and the scalar (1, 0), this yields the result. ◀

This result shows the universality of the Pauli operations for expressing discrete commutation
relations. At the same time, the structural tools made available by the presentations of
commutation groups allow for a fine-grained analysis of the “algebra of contextuality”.

7 Outlook

Non-commutativity is a fundamental mathematical feature of quantum mechanics, distin-
guishing it from classical physics. But in many key cases, we do not simply have the failure
of commutativity, but rather that commutativity holds up to a specified scalar. This is the
phenomenon of commutation relations, which play a central role in quantum physics. There
are many familiar examples.

In this paper, we have given an answer, in the discrete case working over Zd, to the
question: what is a commutation relation in general? This opens up the possibility of
classifying the possible contextual behaviours arising from commutation relations. By virtue
of the existence of unitary representations, these arise within quantum mechanics.

We mention a few topics of current and future work:
Studying the cohomology of commutation groups, and relating this to the cohomological
criteria for contextuality studied e.g. in [5, 3, 16, 1].
Studying commutation groups in relation to state-dependent contextuality and empirical
models [4].
Relating commutation groups to the logical analysis of contextuality in terms of partial
Boolean algebras [13, 2].
Generalizing commutation groups to more general abelian groups of scalars.
A Stone-von Neumann type theorem for commutation groups.
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A The Pauli group on qubits

We recall the definition of the Pauli operators, dichotomic (i.e. two-valued) observables
corresponding to measuring spin in the x, y, and z axes, with eigenvalues ±1

X :=
(

0 1
1 0

)
Y :=

(
0 −i
i 0

)
Z :=

(
1 0
0 −1

)
These matrices are self-adjoint, have eigenvalues ±1, and together with the identity matrix I
satisfy the following relations:

X2 = Y 2 = Z2 = I

XY = iZ, Y Z = iX, ZX = iY, (7)
Y X = −iZ, ZY = −iX, XZ = −iY.
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Abstract
Böhm approximations, used in the definition of Böhm trees, are a staple of the semantics of the
lambda-calculus. Introduced more recently by Ehrhard and Regnier, Taylor approximations provide
a quantitative account of the behavior of programs and are well-known to be connected to intersection
types. The key relation between these two notions of approximations is a commutation theorem,
roughly stating that Taylor approximations of Böhm trees are the same as Böhm trees of Taylor
approximations. Böhm and Taylor approximations are available for several variants or extensions of
the lambda-calculus and, in some cases, commutation theorems are known. In this paper, we define
Böhm and Taylor approximations and prove the commutation theorem in a very general setting.
We also introduce (non-idempotent) intersection types at this level of generality. From this, we show
how the commutation theorem and intersection types may be applied to any calculus embedding in
a sufficiently nice way into our general calculus. All known Böhm-Taylor commutation theorems, as
well as new ones, follow by this uniform construction.
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1 Introduction

Böhm trees [4, 5] and their variants are a staple of the semantics of λ-calculus. Intuitively, they
are possibly infinite normal forms representing the essence of the behavior of a λ-term. As
such, they may be seen as limits of a set of finite approximations, called Böhm approximations,
describing larger and larger portions of the Böhm tree.

More recently, Ehrhard and Regnier introduced another notion of approximation for the
λ-calculus, underlying their Taylor expansion [23, 25]. Based on the idea that programs
may be seen as analytic functions on certain topological vector spaces [16, 17], this notion
may be stripped of its quantitative aspects (the coefficients of the Taylor series) and, like
a Böhm tree, be presented as a set of finite approximations. These Taylor approximations
are syntactically very different from Böhm approximations: they are not necessarily normal
forms, and they are linear, in the sense of linear logic [27] (they are related to Boudol’s terms
with multiplicities [7]), so their execution length is bounded by their size.

Given a λ-term t, since a Böhm approximation is, essentially, also a λ-term, one may take
the set of all Taylor approximations of all Böhm approximations of t, yielding a set T (BT(t)).
On the other hand, since Taylor approximations always normalize, one may take the set of
all normal forms of all Taylor approximations of t, yielding a set NF(T (t)). A key result of
Ehrhard and Regnier, known as the commutation theorem, states that T (BT(t)) = NF(T (t)).
This connection between Böhm and Taylor approximations is a surprisingly powerful tool,
implying a wealth of fundamental theorems in the pure λ-calculus [3].
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The theory of Taylor approximations has been extended to call-by-value [18], to call-by-
push-value [10] and to the λµ-calculus [2]. In the call-by-value setting, where a notion of
Böhm tree is available, the commutation theorem is known to hold [29]. These results exploit
the fact that, in reality, the notion of Taylor expansion exists in the much more general
setting of differential linear logic [20]. Informally, whenever a system S may be encoded in
differential linear logic, a notion of Taylor approximation for S may be “pulled back” along
the encoding.

Interestingly, usual Böhm trees, as well as call-by-value Böhm trees, may also be seen as
resulting from a general notion of “Böhm tree” for linear logic, pulled back along Girard’s
call-by-name and call-by-value encodings. It is natural to wonder whether the different forms
of the commutation theorem are also “pullbacks” of a more general commutation theorem.

The main goal of this paper is to give an affirmative answer to the above question. We
introduce a process calculus Proc corresponding to a form of differential linear logic, define
Böhm and Taylor approximations for it and prove the commutation theorem at this level of
generality. We also show that, as soon as a system S embeds in Proc in a sufficiently nice
way, then Böhm trees, Taylor expansion and the commutation theorem automatically “pull
back” to S. The known commutation theorems of [23, 25, 29] are covered by our results.
Furthermore, we show how Böhm trees for call-by-push-value and a fragment of the π-calculus
may also be defined.

It is well-known that intersection types [11, 6], in particular in their non-idempotent
version [26, 15], are strongly related to Taylor approximations [14, 18, 32]. We provide a
system of non-idempotent intersection types for Proc and show how it too “pulls back” along
embeddings, automatically characterizing the existence of normal forms via typability, as
long as these are properly reflected in Proc. Known examples, such as the above or those
of [8], fit in this picture. From [32], we know that other forms of intersection types (affine,
idempotent) may be treated in a similar way, but in this paper we restrict to the linear
non-idempotent case for briefness.

For the reader acquainted with proof nets, our calculus Proc is a process calculus
representation of untyped proof structures (i.e, not necessarily logically correct objects) of
differential linear logic. More precisely, of a non-polarized version of Honda and Laurent
proof structures [28]. In §5.1 we give a more precise statement about the connection with
linear logic proofs. The reduction rules of Proc reflect the process calculi tradition and are
less fine-grained than those of usual differential nets [24, 34, 33], while still being semantically
correct. We do not claim any canonicity of Proc: any other syntax for classical differential
linear logic (for instance, an extension of Accattoli’s syntax [1]) would probably work. The
only real merit of Proc is to provide a manageable syntax.

Another difference is that we do not consider formal sums. In the literature on differential
λ-calculi, formal sums as used to represent non-determinism: a non deterministic choice like
t → u1 and t → u2 is expressed by the deterministic reduction t → u1 + u2. By contrast, as
customary in process calculi, there are no formal sums in Proc and we allow uncontrolled
non-determinism (the calculus does not enjoy confluence). Also, our Taylor approximations
are rigid in the sense of [35, 32]. Intuitively, this is implicit in the usual communication rule
of polyadic process calculi, which is something like a⟨b1, b2⟩ | a(c1, c2).P → P{b1/c1}{b2/c2}
(cf. Definition 7, rule ⊗/`). Non-rigid syntaxes like the ones traditionally considered for
defining Taylor approximations would correspond to b1, b2 being unordered in the output
a⟨b1, b2⟩ (i.e, they form a multiset rather than a list) and the above reduction would become
a⟨b1, b2⟩ | a(c1, c2).P → P{b1/c1}{b2/c2} + P{b2/c1}{b1/c2}, that is, we consider every
possible ordering of the multiset and use formal sums to collect all results. Using rigidity and
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dispensing with sums yields great syntactic simplifications with essentially no semantic loss.
We do, however, neglect quantitative aspects (the coefficients of the Taylor series). Luckily,
in a great number of interesting cases (for instance those of [3]), these are not needed.

About the applicability of our work, we must stress that the fact that an embedding
S → Proc immediately establishes a nice theory of Böhm and Taylor approximations for
S does not say anything about the actual interest of this theory. First of all, as is, the
theory is formulated in the syntax of Proc, and reformulating it in “S-friendly” syntax is
not automatic (the call-by-push-value case of §6.1 is an example). Second, its relevance and
usefulness must be ascertained case by case. For example, we have not yet investigated the
Böhm trees for the stack calculus or for the fragment of the π-calculus presented in §6.2 and
§6.3.

Finally, we want to point out that our notion of embedding (Definition 1) is rather
naive. While sufficient for the examples shown in this paper, many encodings, especially of
process calculi, are not embeddings in the technical sense of this paper, typically because
they are up to some equivalence. For instance, the encoding of the λµ-calculus in the stack
calculus mentioned in §6.2 is up to β-equivalence, so it is not directly covered by this paper.
Extending our results of §4.3 and §5.2 to a more general class of embeddings is an interesting
subject for future work.

2 Preliminaries

In this paper we consider reduction systems, which are given by:
a set of objects, to be thought of as terms, proofs, programs, states. . .
a binary relation →∗ which is reflexive and transitive.

So a reduction system is exactly the same thing as a preorder.
A morphism of reduction systems f : S → T is just a monotonic function: s →∗ s′

implies f(s) →∗ f(s′).

▶ Definition 1 (embedding). An embedding f : S → T is a morphism such that, for every
object s of S, f(s) →∗ t′ implies that there exists s′ such that t′ →∗ f(s′) and s →∗ s′.

The following is straightforward:

▶ Lemma 2. If f : S → T and g : T → U are embeddings, then g ◦ f is an embedding.

3 Processes

We fix two disjoint, countably infinite sets of linear names, ranged over by a, b, c . . . and
cartesian names, ranged over by x, y, z . . . As customary in process calculi, we denote by ã

sequences (possibly empty) of linear names, and we write |ã| for the length of ã.

▶ Definition 3 (pre-process, context). Pre-processes are defined as follows:

P, Q ::= 0
∣∣∣ P | Q

∣∣∣ a ↔ b
∣∣∣ a⟨̃b⟩

∣∣∣ a⟨̃b⟩ (linear pre-processes)∣∣∣ νxP
∣∣∣ a(x)P

∣∣∣ a(x)P
∣∣∣ x⟨a⟩

∣∣∣ x⟨a⟩
∣∣∣ !x(a).P

Linear pre-processes are those generated only by the first line. We use p, q . . . to range over
linear pre-processes. Pre-processes of the form !x(a).P are called boxes. In the literature on
process calculi, a ↔ b is usually called linear forwarder; we will call it axiom to stress the
connection with proof nets.

FSCD 2024
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Contexts are defined as pre-processes but with the addition of the hole {−}. As customary,
we consider only contexts having exactly one occurrence of the hole, and denote them by C.
We denote by C{P} the pre-process obtained by plugging pre-process P in the hole of C.

▶ Definition 4 (occurrences of names). We say that a linear name a occurs as subject in
a⟨̃b⟩, a⟨̃b⟩, a(x)P , a(x)P , a ↔ b and b ↔ a. All other occurrence of a are as object.

The notations νx, a(x) and a(x) are called cartesian binders: in νxP , a(x)P and a(x)P
the cartesian name x is bound, and α-equivalence applies as usual. A cartesian name which
is not bound is free.

If a cartesian name x appears elsewhere than in a binder, then we say that it appears as
subject, and such an occurrence is positive if it is of the form x⟨a⟩, or negative if it is of
the form x⟨a⟩ or !x(a).P .

▶ Definition 5 (process). A (linear) process is a (linear) pre-process verifying the following:
every linear name occurs at most twice. If it occurs once, we say that it is free, otherwise
it is bound and α-equivalence applies to it. We write fn(P ) for the set of free names of
P , both linear and cartesian.
In a(x)P (resp. a(x)P ) every free occurrence of x in P (if any) is positive (resp. negative).
In !x(a).P , fn(P ) = {a} ∪ X where X consists solely of cartesian variables with positive
occurrences in P (the case X = ∅ is allowed).

▶ Definition 6 (structural congruence). Structural congruence is the relfexive, symmetric,
transitive and contextual closure of the following rules:

(P | Q) | R ≡ P | (Q | R) P | 0 ≡ P P | Q ≡ Q | P νx0 ≡ 0

βP | Q ≡ β(P | Q) βγP ≡ γβP a ↔ b ≡ b ↔ a a ↔ b | P ≡ P{a/b},

where: in the bottom row, β and γ are cartesian binders and β binds x ̸∈ fn(Q); in the last
equation, we require b ∈ fn(P ), and P{a/b} means, as customary, that we rename the unique
free occurrence of b in P with a.

One may readily check that being a process is preserved under structural congruence.
For the reader acquainted with proof nets of differential linear logic, the following

“dictionary” may be helpful (the unacquainted reader may safely ignore this paragraph):
0 is the empty net; P | Q is juxtaposition of two nets; as mentioned above, a ↔ b is an
axiom; a⟨̃b⟩ and a⟨̃b⟩ are n-ary tensor and par nodes, respectively; νxP is an “exponential
cut” (“linear cuts” are represented as explained in Definition 8 below); a(x)P and a(x)P are
n-ary contraction and cocontraction, respectively (the arity is the number of occurrences
of x in P ); x⟨a⟩ and x⟨a⟩ are derelection and coderelection nodes, respectively; as already
mentioned, !x(a).P is an exponential box, with principal port x and as many auxiliary ports
as there are occurrences of free names in P . The idea is that the free names of a process
correspond to the conclusions of an untyped net. Structural congruence corresponds to
equality of nets (in the sense of graphical representations), plus elimination of cuts with
axioms (this is consistent with interaction nets [24], in which axioms are just wires).

▶ Definition 7 (reduction). The basic reduction rules are follows:

a⟨̃b⟩ | a⟨c̃⟩ | P →⊗/` P{b̃/c̃} |̃b| = |c̃|, c̃ ∈ fn(P )
a(x)P | a(x)Q →!/? νx(P | Q)

νx(x⟨a⟩ | x⟨b⟩ | P ) →cod0 νxP{a/b} b ∈ fn(P )
νx(C{x⟨a⟩} | !x(b).P ) →c νx(C{P{a/b}} | !x(b).P )

νx(!x(a).P | Q) →w νxQ x ̸∈ fn+(Q)
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plus the rule

νx(!y(c).C{x⟨a⟩} | x⟨b⟩ | P ) →cod! νx(!y(c).νwC{w⟨a⟩} | y⟨c⟩ | νz(C{z⟨a⟩} | z⟨b⟩) | P )

in which w and z are fresh names. In the w rule, x ̸∈ fn+(Q) means that x has no positive
free occurrence in Q.

If R → R′ by means of one of the above basic reductions, we write P → Q to say there
exists a context C such that P ≡ C{R} and Q ≡ C{R′}. We write →∗ for the reflexive-
transitive closure of →. This induces a reduction system Proc (resp. LinProc) whose objects
are processes (resp. linear processes) modulo structural equivalence.

▶ Definition 8 (cut-free process). A linear cut in a process is a linear name occurring twice
as subject. A cartesian cut is any subprocess of the form νxP . A process is cut-free if it
contains neither linear nor cartesian cuts. A process P has a cut-free form if P →∗ N with
N cut-free.

The next two paragraphs provide additional explanations for linear logic experts, which
unacquainted readers may ignore. The basic rules of Definition 7 are a reformulation of
cut-elimination steps of differential linear logic proof nets. The rule ⊗/` is the multiplicative
step. The rule !/? reduces a cut between a contraction and a cocontraction. However,
instead of the usual rule making the two commute with each other, this rule creates a
cartesian cut (which we could also call “exponential cut”). Cartesian cuts should be seen as
communication zones in the sense of Ehrhard and Laurent [22]: any number of derelictions
and coderelections/boxes (as many as the premises of the contraction and the cocontraction
originating the cut) may be paired up non-deterministically in a cartesian cut, using the
rules cod0 (derelection/codereliction), cod! (a codereliction interacting with the border of a
box) or c (a dereliction extracting one copy of a box). The rule w erases a box when there is
no dereliction left. Intuitively, we are taking communication zones as primitive, rather than
implementing them as Ehrhard and Laurent do in [22].

In fact, the usual presentation of cut-elimination of differential linear logic [24, 34, 33]
is based on finer-grained rules than ours. In their encoding of process calculi, Ehrhard
and Laurent use this finer granularity to implement “communication zones” ensuring that
inputs may interact with outputs [22]. This means, in particular, that our formulation is
semantically correct with respect to the usual one: the finer-granularity rules may simulate
our rules. However, our formulation has the advantage of matching the tradition of process
calculi, as well as solving the problems pointed out in [31], which are precisely due to the
fact that the usual cut-elimination rules are too fine-grained for expressing concurrency in
the same way as process calculi.

Nevertheless, Proc does exhibit some unusual features with respect to standard process
calculi. The most striking one is perhaps the presence of linear names and the convention that
a linear name is bound as soon as it appears twice. For instance, the process a⟨⟩ | a⟨⟩ | b⟨⟩
would be traditionally written νa(a⟨⟩ | a⟨⟩ | b⟨⟩). This would lead to a proliferation of ν’s, so
we chose to leave these name restrictions implicit.

Another remarkable difference is that we allow reduction to occur inside boxes, i.e, if
P → Q, then !x(a).P → !x(a).Q. This is useful for encoding λ-calculi whose reductions may
occur in arbitrary positions. It is essential for recovering usual Böhm trees, for example. In
§5.2 we will consider shallow reduction, which only happens outside of boxes and corresponds
to standard reduction of process calculi. This is the notion of reduction to which intersection
types are most immediately applicable. It is also useful for encoding weak reduction strategies
of λ-calculi, which do not reduce under λ.

FSCD 2024
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Observe that all basic reductions involve a cut. Therefore, a cut-free process is normal
with respect to reduction. The converse is false: for example, a⟨⟩ | a⟨b⟩ is a normal process
containing a cut with an “arity mismatch”. Cuts to which no reduction applies are called
irreducible. Other examples of irreducible linear cuts are “clashes” such as a⟨b⟩ | a(x)P or
a⟨b⟩ | a⟨c⟩, or “vicious circles” such as a ↔ a (for the acquainted reader: the first corresponds
to a cut beween a tensor and a contraction; the second to a cut between two tensors; the third
to a cut between the two conclusions of an axiom). Irreducible cartesian cuts are of the form
νx(x⟨a⟩ | P ) (resp. νx(x⟨a⟩ | P )) with P containing no negative (resp. positive) occurrence
of x (for the acquainted reader: the first corresponds to a cut between a dereliction and a
coweakening, the second to a cut between a codereliction and a weakening). In §5.1 we will
introduce types and correctness. The former eliminate clashes and arity mismatches, the
latter vicious circles. Irreducible cartesian cuts, instead, may be present even in well-typed
correct processes. They correspond to situations which, in the usual syntax of differential
linear logic using formal sums, reduce to the empty sum.

The following lemma will be useful later:

▶ Lemma 9. P →∗ Q implies P{a/b} →∗ Q{a/b}.

Proof. By induction on the length of the reduction, we reduce to the case of a single step
C{R} → C{R′}, which is proved by induction on C and by inspection of Definition 7. ◀

4 Approximations

4.1 Taylor Approximations
▶ Definition 10 (Taylor process). Taylor processes are linear processes in which certain inputs
and outputs are marked as “special” and denoted by a⟨⟨̃b⟩⟩ and a⟨⟨̃b⟩⟩. Reduction is defined
just as in linear processes, i.e, with rule ⊗/` of Definition 7, but restricted to special/special
and non-special/non-special pairs, that is, a⟨̃b⟩ | a⟨⟨c̃⟩⟩ is irreducible even in case |̃b| = |c̃|. We
denote by Tay the reduction system with Taylor processes as objects.

There is an obvious morphism Tay → LinProc which forgets the “special” annotations.
It is not an embedding: a⟨⟨⟩⟩ | a⟨⟩ is mapped to a⟨⟩ | a⟨⟩, which reduces to 0, but the original
process cannot reduce.

▶ Lemma 11. In Taylor processes, reduction is strongly confluent and terminating.

Proof. The only reduction steps are of kind ⊗/`, which cannot overlap, hence strong
confluence. For what concerns termination, define the size of a Taylor process to be the
number of axioms and subprocesses of the form a⟨̃b⟩, a⟨̃b⟩, a⟨⟨̃b⟩⟩, a⟨⟨̃b⟩⟩ which are present in
the process. By inspecting Definition 6 and the ⊗/` rule, we immediately see that size is
preserved by structural congruence and that it strictly decreases under reduction, which
implies termination. ◀

The Taylor approximation relation is defined in Fig. 1. It uses approximation judgments
of the form p ⊏ P ⊢ Ξ; Ξ′ where:

p is a Taylor process and P an arbitrary process;
Ξ and Ξ′ are disjoint finite sets of pairs of the form a ⊏ x, where a is a linear name not
appearing free in P and x a cartesian name, such that every linear name appears at most
once in Ξ ∪ Ξ′.
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0 ⊏ 0 ⊢;
p ⊏ P ⊢ Ξ; Ξ′ q ⊏ Q ⊢ Υ; Υ′

p | q ⊏ P | Q ⊢ Ξ, Υ; Ξ′, Υ′ a ↔ b ⊏ a ↔ b ⊢;

a⟨̃b⟩ ⊏ a⟨̃b⟩ ⊢; a⟨̃b⟩ ⊏ a⟨̃b⟩ ⊢;
p ⊏ P ⊢ Ξ, ã ⊏ x; Ξ′, b̃ ⊏ x

p{ã/b̃} ⊏ νxP ⊢ Ξ; Ξ′ |ã| = |̃b|

p ⊏ P ⊢ Ξ, b̃ ⊏ x; Ξ′

a⟨⟨̃b⟩⟩ | p ⊏ a(x)P ⊢ Ξ; Ξ′
x ̸∈ Ξ p ⊏ P ⊢ Ξ; Ξ′, b̃ ⊏ x

a⟨⟨̃b⟩⟩ | p ⊏ a(x)P ⊢ Ξ; Ξ′
x ̸∈ Ξ′

a ↔ b ⊏ x⟨b⟩ ⊢ a ⊏ x;
a ̸= b

a ↔ b ⊏ x⟨b⟩ ⊢; a ⊏ x
a ̸= b

p1 ⊏ P{a1/a} ⊢ Ξ1; . . . pn ⊏ P{an/a} ⊢ Ξn;
p1 | · · · | pn ⊏ !x(a).P ⊢ Ξ1, . . . , Ξn; a1 ⊏ x, . . . , an ⊏ x

∀i ai ̸∈ fn(P )

Figure 1 Taylor approximations.

The intuition is that a ⊏ x in Ξ (resp. Ξ′) means that the linear name a approximates one
positive (resp. negative) occurrence of the cartesian name x.

In the sequel, we will write p ⊏ P when a judgment of the form p ⊏ P ⊢ Ξ; Ξ′ is derivable
for some Ξ, Ξ′.

▶ Lemma 12. Let p ⊏ P . Then:
1. P = Q{a/b} iff p = q{a/b} for some q ⊏ Q;
2. P = C{Q} with fn(Q) = {a} ∪ X with X consisting of cartesian names with only positive

occurrences implies p ≡ t | q1 | · · · | qn for some qi and t such that t ⊏ C{x⟨a⟩} whenever
x ∈ fn(C{x⟨a⟩}), and qi ⊏ Q{ai/a} for all 1 ≤ i ≤ n and some pairwise distinct ai;

3. P ≡ P ′ (resp. p ≡ p′) implies p ≡ p′ for some p′ (resp. P ≡ P ′ for some P ′) such that
p′ ⊏ P ′.

Proof. Point (1) is proved by induction on P . Point (2) is proved by induction on C. Point
(3) is proved by checking every rule of Definition 6 and then by induction on contexts. ◀

Point (3) of Lemma 12 assures us that we may transparently use structural congruence with
Taylor approximations, which is what we will do from now on.

We now prove the two fundamental properties of Taylor approximations, namely that
they may be pulled back along arbitrary reductions and pushed forward along reductions to
cut-free forms.

▶ Lemma 13 (pull-back). Let P →∗ Q and q ⊏ Q. Then, there exists p ⊏ P such that
p →∗ q. Diagrammatically:

P
∗// Q P

∗// Q

⊏ =⇒ ⊏ ⊏

q p
∗// q

FSCD 2024
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Proof. We start by proving the lemma when P = R, Q = R′ and R → R′ by means of one
of the basic rules of Definition 7. The cases ⊗/` and !/? are immediate applications of point
(1) of Lemma 12. For the cases cod0, cod!, c and w, one shows that q ⊏ R′ implies q ⊏ R, so
the pull-back is the empty reduction. This claim is straightforward for the rules cod0, cod!
and w; for the rule c, point (2) of Lemma 12 is used.

Next, we prove the lemma for one-step reduction, that is, when P ≡ C{R}, Q ≡ C{R′}
and R → R′ by means of a basic rule. Define the depth of the context C to be number of
nested boxes within which the hole is located. The proof is by induction on the depth of
C. If the depth is zero, then C ≡ νz̃(S | {−}) for some S, from which we infer q ≡ (s | r′)σ
where s ⊏ S, r′ ⊏ R′ and σ is a substitution. We apply the result we proved above, and
obtain r ⊏ R such that r →∗ r′. Then, if we let p := (s | r)σ, we have p ⊏ P such that,
using Lemma 9, p →∗ q as desired. If C has depth d + 1, then C ≡ νz̃(S | !x(a).C′) for
some process S and context C′ of depth d. We therefore have q ≡ (s | q1 | · · · | qn)σ with
s ⊏ S and qi ⊏ C′{R′}{ai/a} for all 1 ≤ i ≤ n. By hypothesis and Lemma 9, we have
C′{R}{ai/a} → C′{R′}{ai/a}, so we apply the induction hypothesis to each qi and obtain
pi ⊏ C′{R}{ai/a} such that pi →∗ qi. Then, if we let p := (s | p1 | · · · | pn)σ, we have p ⊏ P

such that p →∗ q, and we conclude.
Finally, we prove the general version of the lemma by induction on the length of the

reduction P →∗ Q. The statement is trivial for length zero because P ≡ Q. For length k + 1,
we have P → P1 →∗ Q with P1 →∗ Q of length k. Given q ⊏ Q, the induction hypothesis
gives us p1 ⊏ P1 such that p1 →∗ q. Then, we apply the one-step case proved above to p1
and obtain the desired p ⊏ P such that p →∗ p1 →∗ q. ◀

▶ Lemma 14. Let p ⊏ P such that p has a cut-free form and p → p′ (one-step reduction).
Then, there exist reductions p′ →∗ q and P → Q such that q ⊏ Q. Diagrammatically:

P P // Q

⊏ =⇒ ⊏ ⊏

p // p′ p // p′ ∗// q

Proof. The proof is by induction on the structure of P . We only include the complicated
cases, which are when P is a parallel composition, a box or a restriction. If P = P1 | P2,
then we know that p = p1 | p2 with pi ⊏ Pi. The reduction may be performed within one of
the pi, in which case we use the induction hypothesis to conclude, or it may be a reduction
between an output in, say, p1 and an input in p2. By Fig. 1, this means that P1 is of the
form a⟨̃b⟩ | P ′

1 or a(x)P ′
1, and P2 of the dual form, so P may perform a matching reduction.

If P = !x(a).P ′, then p = p1 | · · · | pn with pi ⊏ P ′{ai/a}. We claim that the step p → p′

cannot happen because of a communication between two distinct pi. If this were the case,
then we would have a free name b occurring as input subject in some pi. Now, we cannot have
b = ai, because ai does not appear in any other pj with j ̸= i. Then, since boxes may have
no free linear name, b must approximate a free cartesian name of P ′, but this is impossible,
because free cartesian names of boxes may only appear as outputs, and approximations
of outputs are still outputs. So pj → p′

j for some j, and p′ = p1 | · · · | p′
j | · · · | pn. Since

approximations do not introduce cuts, the cut reduced in pj → p′
j comes from a cut of

P ′. Such a cut induces a cut in every pi, because these all approximate P ′. But p has
a cut-free form, so all these cuts are reducible, therefore pi → p′

i for all i. The induction
hypothesis gives us p′

i →∗ qi and P ′ → Q′
i such that qi ⊏ Q′

i. However, since it is the same
cut of P ′ that is being reduced in each P ′ → Q′

i, all Q′
i are actually equal to some Q′, so

!x(a).P →∗ !x(a).Q′ and q1 | · · · | qn ⊏ !x(a).Q′, as desired.
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If P = νxP1, then p = p1{ã/b̃} with p1 ⊏ P1 and ã, b̃ approximate x as output and input,
respectively. In case the reduction p → p′ is already present in p1, i.e, in case p′ = p′

1{ã/b̃}
with p1 → p′

1, the induction hypothesis allows us to conclude immediately. Otherwise, the
reduction is made possible by the substitution of ai to bi for some i, which means that there
is an occurrence of x as input matching an occurrence of x as output in P1. Such occurrences
are uniquely determined by the index i and induce a one-step reduction in P . More precisely,
we have P = νxC{R} and R →x R′ where x is one of cod0, cod! or c. At this point, the proof
splits in two cases, according to the shape of C. If C is shallow (i.e, the hole is not under a
box), then we conclude straightforwardly (we omit the details). In case the hole is under a
box, we use the same argument given above (for the case P = !x(a).P ′) to conclude that
the step p → p′ may be “completed” by reducing the other cuts in p approximating the cut
corresponding to R →x R′, yielding the desired push-forward. ◀

▶ Lemma 15 (push-forward). Let p ⊏ P and p →∗ n such that n is cut-free. Then, there
exists a reduction P →∗ Q such that n ⊏ Q. Diagrammatically:

P P
∗// Q

⊏ =⇒ ⊏ ⊏

p
∗// n p

∗// n

Proof. We prove the following stronger result, which is a generalization of Lemma 14 to
reductions of arbitrary length: for all p ⊏ P with p having a cut-free form and for all p →∗ p′,
there exist p′ →∗ q and P →∗ Q such that q ⊏ Q. Diagrammatically:

P P
∗// Q

⊏ =⇒ ⊏ ⊏

p
∗// p′ p

∗// p′ ∗// q

The lemma is the special case in which p′ is cut-free, which implies q = p′.
The proof is by induction on the length of the reduction p →∗ p′. If the length is zero,

then p is itself cut-free and the claim is immediate. Now suppose that the length is k + 1,
which means p → p1 →k p′, with →k denoting reduction in k steps. Diagrammatically, the
proof may be depicted as follows:

P //

(1)

Q1
∗// Q

⊏ ⊏ (3) ⊏

p

$$

q1
k//

(2)

q′ ∗// q

p1
k//

∗ ::

p′

∗
::

where (1) holds by Lemma 14, (2) by Lemma 11 (strong confluence) and (3) by the induction
hypothesis. Let us spell out the details. By Lemma 14, there exist reductions p1 →∗ q1 and
P →∗ Q1 such that q1 ⊏ Q1. Now, it is well known that, in a strongly confluent system, the
two sides of confluence diamonds have the same length, that is, if t →m t′ and t →n t′′, there
there exists u such that t′ →n u and t′′ →m u. Therefore, by Lemma 11, there exists q′ such
that p′ →∗ q′ and q1 →k q′. But q1 still has a cut-free form, because it is a reduct of p, so
the induction hypothesis allows us to conclude. ◀

Lemma 15 is why “special” inputs and outputs are needed in Taylor approximations. If, for
instance, a(x)P where approximated by a⟨̃b⟩ | p rather than a⟨⟨̃b⟩⟩ | p, then the push-forward
property would fail: for example, a(x) | a⟨⟩ cannot reduce, but would be approximated by
a⟨⟩ | a⟨⟩, which reduces to 0. This is related to the failure of the forgetful map Tay → LinProc

to be an embedding, as pointed out above.

FSCD 2024
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4.2 Böhm Approximations and the Commutation Theorem
▶ Definition 16 (Böhm approximations). We define P ≤0 Q just if P is obtained from Q by
replacing any number of its boxes (i.e, subprocesses of the form !x(a).R) with 0. The Böhm
approximation relation is defined as follows: N < P iff N is cut-free and there exists P ′

such that P →∗ P ′ and N ≤0 P ′.

Observe that Definition 16 applies to Taylor processes as well. However, in that case,
≤0 degenerates to equality, because there are no boxes in Taylor processes, so n < p simply
means that n is the cut-free form of p (not all Taylor processes have one).

▶ Lemma 17. For every cut-free Taylor process n, n ⊏ P iff there exists a cut-free process
N such that n ⊏ N ≤0 P .

Proof. Formally, both directions are by induction on P . Rather than detailing all cases, let
us give the intuition. For the forward direction, the key point is that the only way Taylor
approximations may “forget” cuts is by approximating a box with 0. So, if n ⊏ P with n

cut-free, either P is already cut-free, and we are done, or all of its cuts are within boxes
approximated by 0 in n. Therefore, we define N as P in which those same boxes are replaced
with 0, and obtain N cut-free such that n ⊏ N ≤0 P .

The converse does not even rely on cut-freeness: we have n ⊏ N and N is obtained from
P by replacing some boxes with 0, but 0 is a Taylor approximation of any box, so n ⊏ P . ◀

▶ Theorem 18 (Böhm-Taylor commutation). The relations ⊏< and <⊏ coincide.

Proof. The proof is in the following diagram:

P
∗// Q ≥0 N

⊏ (1) ⊏ (2) ⊏

p
∗// n = n

Indeed, observe that, by definition, n ⊏< P is equivalent to the situation depicted in the
red part of the diagram, for some Q and cut-free N . Similarly, n <⊏ P is equivalent to the
situation depicted in the green part of the diagram, for some p.

For red implies green, notice that Taylor approximations do not introduce cuts, so N

cut-free implies n cut-free. Then, Lemma 17 gives us square (2), and Lemma 13 gives us
square (1).

For green implies red, square (1) is given by Lemma 15 and square (2) by Lemma 17. ◀

4.3 Pulling Back the Commutation Theorem
In what follows, we fix an arbitrary reduction system S equipped with an embedding
f : S → Proc (in the technical sense of Definition 1).

▶ Definition 19 (Böhm tree). Let s be an objects of S. A Böhm approximation of s is a
cut-free process N such that s →∗ s′ and N ≤0 f(s′). The Böhm tree of s, denoted by BT(s),
is the set of all Böhm approximations of s.

Observe that we could have defined Böhm approximations by asking that f(s) →∗ f(s′)
and N ≤0 f(s′). We now prove that this is equivalent, because f is an embedding.

▶ Lemma 20. For every process P and cut-free process N , N ≤0 P and P →∗ P ′ implies
N ≤0 P ′.
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Proof. Since N is cut-free, and since N differs from P only by the fact that some boxes of
P are replaced by 0 in N , then any cut of P is inside a box. Therefore, P ′ differs from P

only inside some boxes, and replacing them with 0 yields again N . ◀

▶ Lemma 21. For every object s of S, N is a Böhm approximation of s iff f(s) →∗ f(s′)
such that N ≤0 f(s′).

Proof. The forward reduction is immediate: by definition, we have a reduction s →∗ s′ in S
such that N ≤0 f(s′), so we take the reduction f(s) →∗ f(s′) which we have by monotonicity.
For the converse, suppose that f(s) →∗ f(s′). By definition of embedding, there exists s′′

such that f(s′) →∗ f(s′′) and s →∗ s′′. But by Lemma 20, N ≤0 f(s′) implies N ≤0 f(s′′),
so we conclude. ◀

The terminology “Böhm tree” is somewhat abusive because, strictly speaking, BT(s) has
nothing of a tree. In good cases, however, it does have the properties of Böhm trees. First of
all, it follows immediately from the definition that s →∗ s′ implies BT(s′) ⊆ BT(s). In case
S is confluent, i.e, if any span of the form s →∗ s1, s →∗ s2 may be closed by reductions
s1 →∗ s′ and s2 →∗ s′, then the converse implication also holds:

▶ Proposition 22. Let S be confluent. Then, s →∗ s′ implies BT(s) = BT(s′).

Proof. We only need to show that BT(s) ⊆ BT(s′). Let N ∈ BT(s). By definition, s →∗ s1
such that N ≤0 f(s1). By confluence, there exists s′′ such that s′ →∗ s′′ and s1 →∗ s′′, so
we conclude by Lemma 20. ◀

Additionally, when S is confluent, BT(s) may be seen as a possibly infinite cut-free
process, in the sense of taking the construct !x(a).P coinductively:

▶ Lemma 23. Let S be confluent. Then, BT(s) is either empty or an ideal w.r.t. ≤0.

Proof. Downward closure is immediate from the definition and transitivity of ≤0. It remains
to prove that N1, N2 ∈ BT(s) implies that there is N ∈ BT(s) such that N1, N2 ≤0 N . We
start by proving that, given an arbitrary process P , the poset {Q | Q ≤0 P} ordered by ≤0
has binary suprema. Let τP be the rooted forest whose nodes are the boxes of P and such
that there is an edge from R to S if S is a subprocess of R. By definition, Q ≤0 P iff Q is
obtained by replacing some boxes of P with 0, so the poset {Q | Q ≤0 P} is isomorphic to
the poset {τ | τ is a rooted subforest of τP } ordered by rooted inclusion of forests, and the
latter obviously has binary suprema.

Now, by definition, N1, N2 ∈ BT(s) means that s →∗ s1 and s →∗ s2 such that
N1 ≤0 f(s1) and N2 ≤0 f(s2). By confluence, we have s′ such that s1 →∗ s′ and s2 →∗ s′.
By Lemma 20 and the fact that f is a morphism, N1, N2 ≤0 f(s′), so we take N to be the
supremum of N1 and N2. ◀

▶ Definition 24 (Taylor expansion). Let s be an object of S. A Taylor approximation of s is
a Taylor process p such that p ⊏ f(s). The Taylor expansion of s, denoted by T (s), is the
set of all Taylor approximations of s.

The Taylor expansion of the Böhm tree of s is the following set of Taylor processes:

T (BT(s)) := {n ⊏ N | N ∈ BT(s)}.

Notice that, since Böhm approximations are cut-free, T (BT(s)) is actually a set of cut-free
linear processes.
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⊢; ; A⊥, A

⊢ Θ1; Θ′
1; Γ, A⊥ ⊢ Θ2; Θ′

2; ∆, A

⊢ Θ1, Θ2; Θ′
1, Θ′

2; Γ, ∆
⊢ Θ1, A⊥, . . . , A⊥; Θ′

1; Γ ⊢ Θ2; Θ′
2, A; ∆

⊢ Θ1, Θ2; Θ′
1, Θ′

2; Γ, ∆

⊢ Θ1; Θ′
1; Γ1, A1 . . . ⊢ Θn; Θ′

n; Γn, An

⊢ Θ1, . . . , Θn; Θ′
1, . . . , Θ′

n; Γ1, . . . , Γn, A1 ⊗ · · · ⊗ An

⊢ Θ; Θ′; Γ, A1, . . . , An

⊢ Θ; Θ′; Γ, A1 ` · · · ` An

⊢ Θ; Θ′; Γ, A

⊢ Θ, A; Θ′; Γ
⊢ Θ, A, . . . , A; Θ′; Γ

⊢ Θ; Θ′; Γ, ?A

⊢ Θ; ; A

⊢ Θ; A;
⊢ Θ; Θ′, A; Γ
⊢ Θ; Θ′; Γ, !A

Figure 2 Linear logic. Exchange rules (applicable within every segment of sequents) are implicit.

Given an arbitrary set of Taylor processes X, we define NF(X) as the set of cut-free
forms of processes in X: NF(X) := {n cut-free | ∃p ∈ X such that p →∗ n}.

▶ Theorem 25 (Böhm-Taylor commutation, pulled back). For every object s of S,

NF(T (s)) = T (BT(s)).

Proof. Unfolding the definitions, we have n ∈ NF(T (s)) iff n <⊏ f(s). Similarly, n ∈
T (BT(s)) iff n ⊏< f(s): the forward implication is immediate from the definitions and
the fact that f is a morphism; the converse follows from Lemma 21. We then conclude by
Theorem 18. ◀

5 Linear Logic

5.1 Proofs as Processes
The sequent calculus of classical linear logic is presented in Fig. 2. We leave out additive
connectives as they are unessential for our purposes. Sequents are divided in three segments,
conveniently matching our process calculus. It is an exercise to show that this is equivalent
to a more standard presentation, such as Girard’s original one [27], in the following sense:

▶ Proposition 26. A sequent ⊢ Θ; Θ′; Γ is provable in the sequent calculus of Fig. 2 iff the
sequent ⊢ ?Θ, !Θ′, Γ is provable in the sequent calculus of classical linear logic given in [27].

Proof. Observe that the translation of each rule of Fig. 2 is derivable in Girard’s calculus.
Conversely, every rule of Girard’s calculus is derivable in ours. Deriving contraction and
promotion introduces cuts, using the derivability of ⊢ A; ; !A⊥. ◀

The sequent calculus of Fig. 2 may be decorated with processes and converted to a type
system. This would be a “Curry-style” presentation of the correspondence between our
processes and classical linear logic. We opt instead for a “Church-style” presentation:

▶ Definition 27 (typed process). A typed process is a process in which every occurrence of
name (except in binders) is decorated by a formula of linear logic, in such a way that:

in aA ↔ bB, B = A⊥;
two occurrences of the same linear name are decorated by the same formula if one is
subject and the other object, or by dual formulas if they are both subject or both object;
in aA⟨bB1

1 , . . . , bBn
n ⟩ (resp. aA⟨bB1

1 , . . . , bBn
n ⟩), A = B1 ⊗· · ·⊗Bn (resp. A = B1`· · ·`Bn);
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a ̸= b

a ↔ b ▷ Ξ; ; a, b

P ▷ Ξ; Ξ′
1; Γ, a Q ▷ Ξ; Ξ′

2; ∆, a

P | Q ▷ Ξ; Ξ′
1, Ξ′

2; Γ, ∆

a⟨̃b⟩ ▷ Ξ; ; a, b̃

P ▷ Ξ; Ξ′; Γ, b̃

a⟨̃b⟩ | P ▷ Ξ; Ξ′; Γ, a

P ▷ Ξ, x; Ξ′
1; Γ Q ▷ Ξ; Ξ′

2, x; ∆
νx(P | Q) ▷ Ξ; Ξ′

1, Ξ′
2; Γ, ∆

x⟨a⟩ ▷ Ξ, x; ; a

P ▷ Ξ, x; Ξ′; Γ
a(x)P ▷ Ξ; Ξ′; Γ, a

P ▷ Ξ; ; a

!x(a).P ▷ Ξ; x;
P ▷ Ξ; Ξ′, x; Γ

a(x)P ▷ Ξ; Ξ′; Γ, a

Figure 3 Correct processes.

all occurrences of same polarity of a cartesian name are decorated by the same formula;
in νxP , positive and negative occurrences of x (if any) are decorated by dual formulas;
in aA(x)P (resp. aA(x)P ), A = ?B (resp. A = !B), where B is the formula decorating x

in P , or is arbitrary if x ̸∈ fn(P );
in xA⟨aB⟩ and xA⟨aB⟩, we have A = B; similarly, in !xA(a).P , the decoration of a in P

(which must appear) is A.
The type of a free occurrence of name as subject (resp. as object) is its decoration (resp.
the negation of its decoration). We say that ⊢ Θ; Θ′; Γ is a sequent associated with P if Θ
(resp. Θ′, Γ) contains all types of all positive cartesian (resp. negative cartesian, linear) free
occurrences of variables. This is unique up to a permutation of the occurrences, so in the
sequel we will simply speak of “the” sequent associated with P .

It is important to observe that typed does not imply logically correct: for example,
aA ↔ aA⊥ is typed, but its associated sequent is empty. In the literature on linear logic,
there are correctness criteria [27, 13] for isolating “proof-like” objects. Here, we rely on
an inductive presentation, given in Fig. 3, where a judgment P ▷ Ξ; Ξ′; Γ means that P is
correct and its free positive cartesian (resp. negative cartesian, linear) names are in Ξ (resp.
Ξ′, Γ). Observe that, in accordance with the yoga of linear logic, typability and correctness
are independent notions: a correct process need not be typable.

▶ Proposition 28. A sequent is provable in the sequent calculus of Fig. 2 iff it is associated
with a correct typed process. Moreover, cut-free proofs correspond to cut-free processes.

Proof. Both directions are by induction, on the last rule of the sequent calculus proof or on
the last rule of the correctness derivation. ◀

So correct typed processes may be regarded as linear logic proofs, and reduction as a
cut-elimination procedure. If one wished, confluence and termination could be proved for
correct typed processes, but this is beyond the scope of this paper. We do observe, however,
that Fig. 3 may easily be extended to include correctness for non-deterministic processes. It
suffices to replace the last rule of Fig. 3 with the rule below on the left, and to add the rule
below on the right:

P1 ▷ Ξ; Ξ′
1, x; Γ1 . . . Pn ▷ Ξ; Ξ′

n, x; Γn

a(x)(P1 | · · · | Pn) ▷ Ξ; Ξ′
1, . . . , Ξ′

n; Γ1, . . . , Γn, a x⟨a⟩ ▷ Ξ; x; a

Correct (for this extended notion of correctness) typed processes are in correspondence with
proofs of differential linear logic (with promotion but without zero and sums).
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0 ⊢; ;
P ⊢ Ξ1; Ξ′

1; Γ, [a : A] Q ⊢ Ξ2; Ξ′
2; ∆, [a : A⊥]

P | Q ⊢ Ξ1, Ξ2; Ξ′
1, Ξ′

2; Γ, ∆ a ↔ b ⊢; ; a : A, b : A⊥

a⟨b1, . . . , bn⟩ ⊢; ; a :
⊗

i Ai, b1 : A⊥
1 . . . , bn : A⊥

n

a⟨b1, . . . , bn⟩ ⊢; ; a :
˙

i Ai, b1 : A⊥
1 . . . , bn : A⊥

n

P ⊢ Ξ1, x : A1, . . . , x : An; Ξ′
1; Γ Q ⊢ Ξ2; Ξ′

2, x : A⊥
1 , . . . , x : A⊥

n ; ∆
νx(P | Q) ⊢ Ξ1, Ξ2; Ξ′

1, Ξ′
2; Γ, ∆

P ⊢ Ξ, x : A1, . . . , x : An; Ξ′; Γ
a(x)P ⊢ Ξ; Ξ′; Γ, a :

∨
i Ai

P1 ⊢ Ξ1; Ξ′
1, x : A1; Γ1 . . . Pn ⊢ Ξn; Ξ′

n, x : An; Γn

a(x)(P1 | · · · | Pn) ⊢ Ξ1, . . . , Ξn; Ξ′
1, . . . , Ξ′

n; Γ1, . . . , Γn, a :
∧

i Ai

x⟨a⟩ ⊢ x : A; ; a : A⊥ x⟨a⟩ ⊢; x : A; a : A⊥

P ⊢ Ξ1; ; a : A1 . . . P ⊢ Ξn; ; a : An

!x(a).P ⊢ Ξ1, . . . , Ξn; x : A1, . . . , x : An;

Figure 4 Intersection types. In the second rule at the top, the declarations a : A and a : A⊥ are
either both present or both absent (the rule is a cut in the first case, a mix in the second).

One may also add correctness of the so-called mix rules:

0 ▷; ;
P ▷ Ξ; Ξ′

1; Γ Q ▷ Ξ; Ξ′
2; ∆

P | Q ▷ Ξ; Ξ′
1, Ξ′

2; Γ, ∆

This more general notion of correctness, for non-deterministic processes and with mix rules,
is the one we will consider in the next section.

5.2 Intersection Types
Intersection types are defined as follows:

A, B ::= X | X⊥ | A1 ⊗ · · · ⊗ An | A1 ` · · · ` An | A1 ∧ · · · ∧ An | A1 ∨ · · · ∨ An.

Duality (i.e, linear negation) is defined as usual, with ∧ dual to ∨.
An intersection type judgment is of the form P ⊢ Ξ; Ξ′; Γ where Ξ and Ξ′ (resp. Γ) contain

type declarations of the form x : A (resp. a : A) with x a cartesian name (resp. a a linear
name) and A an intersection type. The same cartesian name may appear in multiple type
declarations in Ξ and Ξ′, even multiple times with the same type (this means that we are
considering non-idempotent intersection types). By contrast, a linear name may only be
declared once in Γ. The intersection type system for processes is given in Fig. 4.
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A typed Taylor process is defined as in Definition 27, with the addition of the constraints
that in aA⟨⟨bB1

1 , . . . , bBn
n ⟩⟩ (resp. aA⟨⟨bB1

1 , . . . , bBn
n ⟩⟩) we have A = B1 ∨ · · · ∨ Bn (resp. A =

B1 ∧ · · · ∧ Bn). Taylor processes do not have cartesian names, so the associated sequent of a
typed Taylor process is of the form ⊢; ; Γ, which we just write ⊢ Γ. If p is a typed Taylor
process, we write p− for the underlying process, without the decorations. In the following,
correctness is meant in the generalized sense of the end of §5.1 (with mix).

▶ Lemma 29. If p is a correct typed Taylor process, then p− has a cut-free form.

Proof. Taylor processes are linear, so reduction always terminates (Lemma 11). Therefore, it
is enough to show that there are no irreducible cuts. This is straightforward: irreducible cuts
are incorrect or not typable and reduction preserves correctness and type decorations. ◀

The following is a reformulation of the results of [32], where a general connection between
Taylor approximations and intersection types is described in detail. We state it without
proof, but one may intuitively justify the result by observing that Fig. 4 is a superposition of
Fig. 1 and Fig. 3 (with the additional rules given at the end of §5.1), annotated with types.

▶ Proposition 30. The judgment P ⊢ Ξ; Ξ′; Γ is derivable in the system of Fig. 4 iff there
exists a correct typed Taylor process p whose associated sequent is ⊢ Ξ, Ξ′, Γ such that p− ⊏ P .

▶ Lemma 31 (subject expansion). If Q ⊢ Ξ; Ξ′; Γ is derivable and P is correct such that
P → Q, then P ⊢ Ξ; Ξ′; Γ is derivable.

Proof. Modulo Proposition 30, this is Lemma 13, except that we need to add type decorations.
Correctness of P ensures that the pullback approximation is also correct. ◀

We say that a context is shallow if the hole does not appear inside a box. Shallow
reduction is defined by modifying Definition 7 as follows: the reduction rule cod! is discarded,
c is restricted to the case C = Q | {−}, with Q arbitrary, and the reduction rules are only
closed under shallow contexts. We write →0 for shallow reduction. A process is said to be
shallow cut-free if all of its cuts, if any, are inside boxes.

▶ Lemma 32 (progress). Let P ⊢ Ξ; Ξ′; Γ be derivable and let p be the associated typed Taylor
process according to Proposition 30. Then, either P is shallow cut-free or P →∗

0 Q and there
is a derivation Q ⊢ Ξ; Ξ′; Γ whose associated Taylor process q is such that p− → q−.

Proof. By inspection of Fig. 1, we see that a shallow cut in P yields a cut in p. As observed in
Lemma 29, such a cut cannot be irreducible, so we have p → q by reducing it. Removing type
annotations, we have p− ⊏ P and p− → q−, so we apply Lemma 15 and Proposition 30. ◀

Observe that Lemma 32 does not hold for general cuts: since boxes may be approximated by
0, P may contain a cut inside a box which is invisible to the intersection type derivation.

▶ Theorem 33. A process P is typable as in Fig. 4 iff it is correct (in the generalized sense
of the end of §5.1) and P →∗

0 P0 with P0 shallow cut-free.

Proof. Let P be typable. Correctness is immediate from the typing rules: they are essentially
a decoration of Fig. 3 plus the extra correctness rules at the end of §5.1. We need to show
that P reduces to a shallow cut-free process. Let p be the typed Taylor approximation given
by Proposition 30. We reason by induction on the size of p−, as defined in the proof of
Lemma 11. We apply Lemma 32 and either conclude immediately because P is shallow
cut-free or obtain P →∗ Q with Q typable with an associated approximation q such that
p− → q−. This implies that the size of q− is strictly smaller than the size of p−, so we
conclude by the induction hypothesis.
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Suppose now that P →∗
0 P0 with P0 shallow cut-free. It is straighforward to prove, by

induction on P0, that P0 is typable (intuitively, we approximate all boxes by 0 and then
typability is guaranteed by correctness and absence of cuts), so we conclude by Lemma 31. ◀

If f : S → Proc is a morphism of reduction systems, then we may say that an object of s

is typable in intersection types if f(s) is typable according to Fig. 4.
Let Proc0 be the reduction system with processes as objects but with →∗

0 as preorder. In
the following, we consider a reduction system S with a distinguished set of objects suggestively
called “normal”. We say that an embedding f : S → Proc0 is sound if

for every object s, f(s) is correct (in the generalized sense);
for every object s0, s0 is normal iff f(s0) is shallow cut-free.

▶ Theorem 34. Let f : S → Proc0 be a sound embedding. Then, an object s of S is typable
in intersection types iff s →∗ s0 with s0 normal.

Proof. Suppose that s is typable, which means that f(s) is. By Theorem 33, f(s) →∗
0 P0

with P0 shallow cut-free. Since f is an embedding, we have P0 →∗
0 f(s0) such that s →∗ s0.

But P0 is shallow cut-free, so f(s0) = P0 and we conclude s0 normal by soundness.
Suppose now that s →∗ s0 with s0 normal. This implies f(s) →∗

0 f(s0). By soundness,
f(s0) is correct and shallow cut-free, so it is typable. By soundness and Lemma 31, f(s) is
typable, so s is typable by definition. ◀

6 Applications

6.1 Call by Push Value
It is known that Paul Levy’s call-by-push-value [30] may be expressed in intuitionistic linear
logic [19], yielding the bang-calculus [21]. We use a recent reformulation due to Bucciarelli
et al. [8], which allows us to show at the same time how Accattoli and Kesner’s explicit
substitutions “at a distance” may be handled painlessly. Terms are defined by

t, u ::= x | λx.t | tu | !t | der t | t[x := u],

where x ranges over a countable set of variables, which, for convenience, we take to be the
set of cartesian names. Contexts are defined as expected (add a hole {−} to the above
definition). We use the notation t[−] for a term of the form t[x1 := u1] · · · [xn := un] (n
may be zero). The constructor !(−) binds more strongly than binary constructors, i.e, !tu
and !t[x := u] are to be understood as (!t)u and (!t)[x := u], respectively. Reduction is the
contextual closure of the following rules:

(λx.t)[−]u → t[x := u][−] t[x := !u[−]] → t{u/x}[−] der(!t[−]) → t[−]

where t{u/x} denotes, as usual, the capture-free substitution of u to all free occurrences
of x in t. This induces a reduction system Λ!. We inductively define a family of maps
L−Ma : Λ! → Proc parametric in a linear name a:

LxMa := x⟨a⟩ Lλx.tMa := a⟨c, d⟩ | c(x)LtMd
LtuMa := LtMb | b⟨c, a⟩ | LuMc L!tMa := a(z)!z(b).LtMb

Lder tMa := c(z)z⟨a⟩ | LtMc Lt[x := u]Ma := b(x)LtMa | LuMb.

The paper [8] also introduces weak reduction for the bang-calculus, which does not reduce
under !(−). We denote by Λw

! the corresponding reduction system. In this system, we take
normal forms to be terms whose redexes and clashes (undesirable configurations defined
in [8]) only appear under a !(−).
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▶ Proposition 35. For any linear name a, L−Ma is an embedding. Moreover, considered as a
map Λw

! → Proc0, it is a sound embedding.

With a bit of work (which we spare the reader), the results of §4.3 may be formulated
directly in the syntax of the bang-calculus. Böhm trees are as expected: given a bang-calculus
term t, if weak reduction for t does not terminate, then BT(t) = ⊥. Otherwise, it terminates
on a term of the form C{!u1, . . . , !un} where C is a multi-hole context containing no !(−).
Then, BT(t) = C{!BT(u1), . . . , !BT(un)}. Notice that ⊥ and !⊥ are different Böhm trees.

The Taylor expansion of call by push value has already been defined and studied in [10].
Here, we find a reformulation in the context of the bang-calculus with explicit substitutions.
Taylor approximation terms are defined as follows:

r, s ::= a | λ⟨ã⟩.r | rs | ⟨r1, . . . , rn⟩ | der r | r[⟨ã⟩ := s],

where a ranges over linear variables, i.e, no variable occurs twice and every variable of ã in
binders λ⟨ã⟩.t or t[⟨ã⟩ := u] must occur free in t. The reduction rules are as follows:

(λ⟨ã⟩.r)s → r[⟨ã⟩ := s] r[⟨ã⟩ := ⟨s̃⟩] → r{s̃/ã} der⟨r⟩ → r,

with the condition that, in the second rule, |ã| = |s̃|. The approximation relation is defined
using judgments Ξ ⊢ r ⊏ t with Ξ consisting of declarations of the form a ⊏ x, with no linear
variable appearing twice in Ξ. The relation is defined as follows:

a ⊏ x ⊢ a ⊏ x

Ξ, ã ⊏ x ⊢ r ⊏ t

Ξ ⊢ λ⟨ã⟩.r ⊏ λx.t
Ξ ⊢ r ⊏ t Υ ⊢ s ⊏ u

Ξ, Υ ⊢ rs ⊏ tu

Ξ1 ⊢ r1 ⊏ t . . . Ξn ⊢ rn ⊏ t

Ξ1, . . . , Ξn ⊢ ⟨r̃⟩ ⊏ !t
Ξ ⊢ r ⊏ t

Ξ ⊢ der r ⊏ der t

Ξ, ã ⊏ x ⊢ r ⊏ t Υ ⊢ s ⊏ u

Ξ, Υ ⊢ r[⟨ã⟩ := s] ⊏ t[x := u]

By Proposition 35 and Theorem 25, we know that the above Böhm trees and Taylor
approximations interact well.

Proposition 35 also entails the results of §5.2. We will not detail them here, but these
allow us to obtain for free the intersection type system of [8], along with the property that it
characterizes terms with weakly clash-free normal forms.

Both [10] and [8] consider the well-known embeddings of call-by-name and call-by-value
λ-calculus in call by push value, and extrapolate from these embeddings suitable notions
of Taylor approximations and intersection type systems for call-by-name and call-by-value,
recovering the results of [23, 25, 18, 29] and [26, 14, 15, 18]. In our setting, these are
embeddings in the technical sense of Definition 1, and since embeddings compose, we also
recover these results in a uniform manner. Additionally, we recover usual Böhm trees [4] and
the call-by-value Böhm trees of [29], as well as the related commutation theorems [23, 25, 29].

6.2 Classical Logic
The stack calculus [9] is a simple calculus for classical computation, embedding the λµ-calculus.
Its syntax has stacks π, terms t and processes P , defined as follows:

π ::= α | t · π | tl(π) t ::= µα.P | hd(π) P ::= ⟨t, π⟩,

where α ranges over a countably infinite set of stack variables, which, for technical convenience,
we take to be a subset of cartesian names of our processes. The construct µα is a binder.
Reduction is defined as follows:

⟨µα.P, π⟩ → P{π/α} hd(t · π) → t tl(t · π) → π.
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Let Stk, T erm amd StkProc be the reduction systems induced by the above definitions,
with stacks, terms and processes as objects, respectively. We define two families of maps
L−Ma : Stk → Proc and L−Ma : T erm → Proc parametric in a linear name a, as well as a
map L−M : StkProc → Proc, as follows:

LαMa := α⟨a⟩ Lt · πMa := a⟨b, c⟩ | b(x)!x(d).LtMd | c(y)!y(e).LπMe

Lµα.P Ma := a(α)LP M Lhd(π)Ma := LπMb | b⟨c, d⟩ | c(x)d(y)(x⟨a⟩)
L⟨t, π⟩M := LtMa | a(x)!x(b).LπMb Ltl(π)Ma := LπMb | b⟨c, d⟩ | c(x)d(y)(y⟨a⟩).

▶ Proposition 36. The above maps are embeddings.

As mentioned in the introduction, the encoding of the λµ-calculus in the stack calculus
is not an embedding in our technical sense, so we cannot directly apply our results to the
λµ-calculus. Nevertheless, now we do have a working theory of Böhm trees and Taylor
expansion for a calculus Curry-Howard-isomorphic to classical logic, which is a novelty as far
as we know (in the context of the λµ-calculus, it is mentioned as an open question in [2]).
We leave the investigation of this theory, in particular the significance of Böhm trees, to
future work.

6.3 Concurrent Computation
The asynchronous polyadic π-calculus is defined as follows:

P, Q ::= 0
∣∣∣ P | Q

∣∣∣ νxP
∣∣∣ x⟨ỹ⟩

∣∣∣ !x(ỹ).P,

where we suppose names to be cartesian names of our processes. Structural congruence and
reduction are standard, with the rules

x⟨ỹ⟩ | !x(z̃).P → P{ỹ/z̃} | !x(z̃).P νx(!x(ỹ).P | Q) → νxQ

with the proviso, in the second rule, that x does not occur as subject of an output in Q.
We consider here the hyperlocalized variant of the calculus [12], which is defined by

restricting to processes such that, in !x(ỹ).P , no free name of P occurs as subject of an input.
Also, reduction is allowed only under a restriction. As shown in [12], this is a reasonably
expressive calculus, with full non-determinism, locks, etc.

Let Π be the reduction system corresponding to the above calculus. Using the notation
(z ⇒ y) := !z(c).y⟨c⟩ (as a process of Proc), we define a map L−M : Π → Proc0 by letting

Lx⟨y1, . . . , yn⟩M := x⟨a⟩ | a⟨b1, . . . , bn⟩ | b1(z1)(z1 ⇒ y1) | · · · | bn(zn)(zn ⇒ yn)
L!x(y1, . . . , yn).P M := !x(a).(a⟨b1, . . . , bn⟩ | b1(y1) · · · bn(yn)LP M)

and by making L−M act homomorphically on 0, parallel composition and restriction.

▶ Proposition 37. The map L−M is an embedding.

Unfortunately, the above embedding is not sound with respect to any reasonable notion
of normal form for the π-calculus, because LP M is not necessarily correct (processes may have
all sorts of vicious cycles). However, this does not prevent from taking the intersection type
system of §5.2 and use it as a starting point for coming up with a working intersection type
system for the hyperlocalized π-calculus. This is exactly the genesis of the paper [12].



A. Dufour and D. Mazza 29:19

References
1 Beniamino Accattoli. Exponentials as substitutions and the cost of cut elimination in linear

logic. Log. Methods Comput. Sci., 19(4), 2023.
2 Davide Barbarossa. Resource approximation for the λµ-calculus. In Proceedings of LICS,

pages 27:1–27:12, 2022.
3 Davide Barbarossa and Giulio Manzonetto. Taylor subsumes Scott, Berry, Kahn and Plotkin.

Proc. ACM Program. Lang., 4(POPL):1:1–1:23, 2020.
4 Henk Barendregt. The type free lambda calculus. In Jon Barwise, editor, Handbook of

Mathematical Logic, volume 90 of Studies in Logic and the Foundations of Mathematics, pages
1091–1132. Elsevier, 1977.

5 Henk Barendregt. The lambda calculus - its syntax and semantics, volume 103 of Studies in
logic and the foundations of mathematics. North-Holland, 1985.

6 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model
and the completeness of type assignment. J. Symb. Log., 48(4):931–940, 1983.

7 Gérard Boudol. The lambda-calculus with multiplicities (abstract). In Proceedings of CONCUR,
volume 715 of Lecture Notes in Computer Science, pages 1–6. Springer, 1993.

8 Antonio Bucciarelli, Delia Kesner, Alejandro Ríos, and Andrés Viso. The bang calculus
revisited. Inf. Comput., 293:105047, 2023.

9 Alberto Carraro, Thomas Ehrhard, and Antonino Salibra. The stack calculus. In Proceedings
of LSFA, volume 113 of EPTCS, pages 93–108, 2012.

10 Jules Chouquet and Christine Tasson. Taylor expansion for call-by-push-value. In Proceedings
of CSL, volume 152 of LIPIcs, pages 16:1–16:16, 2020.

11 Mario Coppo and Mariangiola Dezani-Ciancaglini. An extension of the basic functionality
theory for the λ-calculus. Notre Dame J. Formal Log., 21(4):685–693, 1980.

12 Ugo Dal Lago, Marc de Visme, Damiano Mazza, and Akira Yoshimizu. Intersection types
and runtime errors in the pi-calculus. Proceedings of the ACM on Programming Languages,
3(POPL:7), 2019.

13 Vincent Danos and Laurent Regnier. The structure of multiplicatives. Arch. Math. Log.,
28(3):181–203, 1989.

14 Daniel de Carvalho. Sémantiques de la logique linéaire et temps de calcul. Ph.D. thesis,
Université de la Méditerranée–Aix-Marseille 2, 2007.

15 Daniel de Carvalho. Execution time of λ-terms via denotational semantics and intersection
types. Math. Struct. Comput. Sci., 28(7):1169–1203, 2018.

16 Thomas Ehrhard. On Köthe sequence spaces and linear logic. Math. Struct. Comput. Sci.,
12(5):579–623, 2002.

17 Thomas Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4):615–646, 2005.
18 Thomas Ehrhard. Collapsing non-idempotent intersection types. In Proceedings of CSL,

volume 16 of LIPIcs, pages 259–273, 2012.
19 Thomas Ehrhard. Call-by-push-value from a linear logic point of view. In Proceedings of

ESOP, volume 9632 of Lecture Notes in Computer Science, pages 202–228, 2016.
20 Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and an-

tiderivatives. Math. Struct. Comput. Sci., 28(7):995–1060, 2018.
21 Thomas Ehrhard and Giulio Guerrieri. The bang calculus: an untyped lambda-calculus

generalizing call-by-name and call-by-value. In Proceedings of PPDP, pages 174–187, 2016.
22 Thomas Ehrhard and Olivier Laurent. Acyclic solos and differential interaction nets. Log.

Methods Comput. Sci., 6(3), 2010.
23 Thomas Ehrhard and Laurent Regnier. Böhm trees, Krivine’s machine and the Taylor

expansion of lambda-terms. In Proceedings of CiE 2006, volume 3988 of Lecture Notes in
Computer Science, pages 186–197, 2006.

24 Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theor. Comput. Sci.,
364(2):166–195, 2006.

FSCD 2024



29:20 Böhm and Taylor for All!

25 Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expansion of ordinary
lambda-terms. Theor. Comput. Sci., 403(2-3):347–372, 2008.

26 Philippa Gardner. Discovering needed reductions using type theory. In Proceedings of TACS,
pages 555–574, 1994.

27 Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.
28 Kohei Honda and Olivier Laurent. An exact correspondence between a typed pi-calculus and

polarised proof-nets. Theor. Comput. Sci., 411(22-24):2223–2238, 2010.
29 Axel Kerinec, Giulio Manzonetto, and Michele Pagani. Revisiting call-by-value Böhm trees in

light of their Taylor expansion. Log. Methods Comput. Sci., 16(3), 2020.
30 Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of

Semantics Structures in Computation. Springer, 2004.
31 Damiano Mazza. The true concurrency of differential interaction nets. Math. Struct. Comput.

Sci., 28(7):1097–1125, 2018.
32 Damiano Mazza, Luc Pellissier, and Pierre Vial. Polyadic approximations, fibrations and

intersection types. Proceedings of the ACM on Programming Languages, 2(POPL:6), 2018.
33 Michele Pagani and Paolo Tranquilli. The conservation theorem for differential nets. Math.

Struct. Comput. Sci., 27(6):939–992, 2017.
34 Paolo Tranquilli. Confluence of pure differential nets with promotion. In Proceedings of CSL,

volume 5771 of Lecture Notes in Computer Science, pages 500–514, 2009.
35 Takeshi Tsukada, Kazuyuki Asada, and C.-H. Luke Ong. Generalised species of rigid resource

terms. In Proceedings of LICS, pages 1–12, 2017.



homotopy.io: A Proof Assistant for
Finitely-Presented Globular n-Categories
Nathan Corbyn #

University of Oxford, Oxford, UK

Lukas Heidemann #

University of Oxford, Oxford, UK

Nick Hu #

University of Oxford, Oxford, UK

Chiara Sarti #

University of Cambridge, Cambridge, UK

Calin Tataru #

University of Cambridge, Cambridge, UK

Jamie Vicary #

University of Cambridge, Cambridge, UK

Abstract
We present the proof assistant homotopy.io for working with finitely-presented semistrict higher
categories. The tool runs in the browser with a point-and-click interface, allowing direct manipulation
of proof objects via a graphical representation. We describe the user interface and explain how
the tool can be used in practice. We also describe the essential subsystems of the tool, including
collapse, contraction, expansion, typechecking, and layout, as well as key implementation details
including data structure encoding, memoisation, and rendering. These technical innovations have
been essential for achieving good performance in a resource-constrained setting.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Higher category theory, proof assistant, string diagrams

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.30

Related Version Full Version: https://arxiv.org/abs/2402.13179

Supplementary Material Software (Source Code): https://github.com/homotopy-io/homotopy-rs
archived at swh:1:dir:836bb913a5b2d2556f124f1a260a631a1a7f7387

Audiovisual (Video Tutorial): https://homotopy.io/braiding-example [1]

Funding Nathan Corbyn: EPSRC Industrial CASE Studentship
Nick Hu: EPSRC Doctoral Training Partnership Scholarship [grant number 2218955]

Acknowledgements The authors would like to thank Anastasia Courtney, Yulong Huang, and Jasper
Parish for their contributions during their summer internships, Akvilė Valentukonytė and Klaudia
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(a) 2D projection. (b) 3D projection. (c) 3D print.

Figure 1 The associator 3-diagram shown in both 2D and 3D (link to online workspace).

increasingly popular technique, introduced for monoidal categories by Joyal and Street [23],
and since extended into higher dimensions by a range of authors [5, 7, 11, 13]. In a
higher-categorical setting, string diagrams take the form of higher-dimensional manifold-like
structures, which can efficiently encode complex compositional information. However, these
structures can be hard to visualise, manipulate, or represent in research articles, limiting
their effectiveness.

Our tool aims to bridge this gap, allowing string diagrams to become a practical technique
for working higher category theorists. It runs in the browser, giving a low barrier-to-entry,
and allows direct construction and manipulation of graphical representations of n-dimensional
categorical structures, which we call n-diagrams, by direct point-and-click manipulation with
the mouse or touch interface.

In this article, we give an overview of the user interface, and describe the following major
subsystems, which give the tool its range of functionality.

Collapse acts on a combinatorial n-diagram, constructing a quotient geometry by identi-
fying points which can be considered topologically equivalent.
Contraction allows a region of an n-diagram to be geometrically contracted to a point,
yielding a homotopy that is itself encoded by an (n+ 1)-diagram; the collapse algorithm
gives its base case. This is the major mechanism for constructing all nontrivial diagrams
in the theory.
Expansion provides a limited converse to contraction, defined on a diagram with at least
two vertices at the same height, with the effect that one vertex is moved to an adjacent
height. The resulting diagram will always contract to yield the original diagram.
Typechecking analyses an instance of our n-diagram data structure, and decides whether
it represents a valid composite n-morphism in a free higher category.
Layout generates a set of linear constraints representing the necessary coordinate rela-
tionships between all the parts of a diagram (such as the vertices, wires, and regions),
which can be passed to a linear solver, and used by the rendering pipeline.

We also examine two significant aspects of the implementation.
Memoisation is necessary since the n-diagrams stored by the tool have an intricate
recursive structure, which in principle encodes all sub-k-diagrams for k < n. If this data
was stored separately in memory, the resource requirements of the proof assistant would
grow exponentially with diagram dimension. Memoisation ensures each logically-distinct
k-diagram is stored only once in memory.
Rendering is a complex pipeline that produces suitable output on the screen (see Figure 1);
we use SVG for output in dimension 0, 1, and 2, and WebGL for output in dimension 3
and 4. A subdivision algorithm is necessary to produce visually appealing output. We
also render to STL for 3D printing, and to TikZ for convenient diagram export.

https://beta.homotopy.io/p/2402.00001
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x f x f x
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x α x f x

x f x f x

Figure 2 A string diagram and the corresponding zigzag encoding.

The version of the tool presented in this article is a pre-release version, available here:

https://beta.homotopy.io

It is written in the Rust programming language, and compiled to WebAssembly to run in the
web browser. The implementation is available under a free open-source licence on GitHub.

1.1 Mathematical Context
Our proof assistant implements the theory of higher categories known as associative n-cate-
gories, due to Dorn, Douglas and Vicary [12, 33]. This model is globular, in the sense that
for n ≥ 2 the boundary data of any n-cell satisfies the globularity condition: the source of
the source equals the source of the target, and the target of the source equals the target
of the target. It is also strictly associative and unital, while retaining weak interchangers;
in this sense it is a semistrict theory. It is conjectured that every weak higher category is
equivalent to an associative n-category, although the proof of this remains out of reach.

The proof assistant allows users to build composite cells in the graphical language for
freely generated semistrict globular n-categories which are free on a signature, a list of
variables of specified types. For example, to define a monad-like structure, starting from the
empty signature, we might first add an object x, followed by a 1-cell f : x → x, followed in
turn by a multiplication 2-cell µ : f ◦ f → f , which we interpret as the monad multiplication.

The tool allows generators of non-zero dimension to be optionally tagged as invertible; this
allows the user to work with directed higher categories (if no generators are tagged), higher
groupoids (if all generators are tagged), or more general structures. The resulting invertible
structure is coherent, meaning that it automatically satisfies the necessary higher-dimensional
constraints, such as the adjunction equations.

In the implementation, n-cells are represented combinatorially as n-diagrams, simple in-
ductive data structures which allow us to represent the mathematical zigzag construction [33].
We depict this in Figure 2, which illustrates the encoding of a 2-diagram (drawn on the
left) in terms of an iterated sequence of cospans (drawn on the right). Here, a zigzag is a
sequence of cospans taking value in some category of labels. We distinguish the singular
heights drawn in green, where vertices might appear, from the regular heights drawn in red
which are adjacent. Since zigzags and their morphisms themselves form a category, this
construction can be iterated, and in this way higher-dimensional diagrams can be represented.
This inductive nature of the construction is an essential requirement for our proof assistant:
it allows us to describe n-cells as algebraic data types, as we will detail in Section 4, and to
structure our key algorithms of Section 5 as recursive procedures.

FSCD 2024
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Table 1 Comparison of existing tools for string diagrams.

tool generality interactive invertibility visualisation

homotopy.io n-categories ✓ ✓ up to 4D
Cartographer [37] symmetric monoidal categories ✓ ✗ 2D
DisCoPy [10] monoidal categories ✗ ✗ 2D
Globular [6] 4-categories ✓ partial 2D
rewalt [16] n-categories ✗ partial 2D
sd-visualiser [20] traced cartesian closed categories ✓ ✗ 2D
Quantomatic [24] compact closed categories ✓ ✗ 2D
wiggle.py [9] monoidal 2-categories ✗ ✗ up to 3D

1.2 Related Work
There are many tools for higher categories that use string diagrams as a visualisation method,
and we summarise several of them in Table 1. Each takes a different categorical perspective,
and is focused on a particular formalism. The most closely related tool is Globular, the
direct precursor to homotopy.io, which was limited to 4-categories and lacked full support for
coherent inverses. One other tool, rewalt, also allows manipulations at the level of n-categories
for arbitrary n. Both homotopy.io and rewalt implement semistrict n-categories, but they have
different notions of semistrictness: homotopy.io has strict associators and unitors, but weak
interchanges; whereas rewalt has strict interchangers and associators, with weak identities.
This difference of approach means that the corresponding notions of string diagram are quite
different in each tool. The homotopy.io tool is the first string diagram proof assistant that can
handle coherent invertible generators in all dimensions, an aspect it shares with traditional
type-theoretic approaches to higher category theory, such as homotopy type theory [41],
interpreted via proof assistants such as Agda or Coq.

This paper is the first detailed description of homotopy.io, with previous works focused
on aspects of the theoretical foundations [33, 17, 39, 35, 40, 21]. The theory of associative
n-categories, which is the basis of homotopy.io, was first developed by Dorn, Douglas, and
Vicary and described in Dorn’s PhD thesis [12].

2 Using the Tool

The tool consists of two main components: the signature and the workspace. The signature
stores a list of generators for an n-category, and the workspace stores an n-diagram in the
free n-category generated by this signature. The tool implements a number of actions to
modify the signature and/or workspace, and every state of the tool is determined by the list
of actions that led to that state, starting from the empty signature and workspace. This
makes it easy to implement an undo/redo system, and to reproduce a state by replaying the
list of actions which is useful for debugging and testing.

All actions can be triggered by clicking on UI elements such as the buttons on the sidebar,
interacting with the workspace diagram, or with keyboard shortcuts. We denote the keyboard
shortcut associated to an action as A , which represents pressing the “A” key. Unlike a
traditional proof assistant, there is no text-based aspect to the user-interface, except for
metadata and for providing generator names. A screenshot of the user interface is shown in
Figure 3. In this section, we describe its major components.
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Figure 3 The interface of the proof assistant.

Adding generators. There are two primary ways to add new generators to the signature:
We can add new 0-dimensional generators by clicking “Add 0-cell” ( A ) on the sidebar.
We can add new (n+ 1)-dimensional generators by constructing a source n-diagram in
the workspace and clicking “Source” ( S ), and then constructing a compatible target
n-diagram in the workspace and clicking “Target” ( T ). The order of these two actions
is not important, and the first diagram will be stashed and displayed in the bottom-left
corner of the workspace until the second one is constructed.

Manipulating the workspace. Clicking on any generator in the signature will bring that
diagram into the workspace. We can raise the dimension of the diagram with the “Identity”
( I ) action. We can construct composite diagrams by attaching another diagram to a
boundary by clicking on the edge of the diagram. We can also use generators in the signature
to perform rewrites by clicking inside the workspace diagram. Finally, we can perform
homotopies, such as contractions and expansions which will be described in Section 5, by
clicking and dragging.

Theorems. If the workspace is displaying an n-diagram D for n > 1, the “Theorem” ( H )
action becomes available. This action creates a new n-dimensional generator T with the
same type as D, and a new invertible (n+ 1)-dimensional generator P : T → D. This could
be done by hand, and in this sense this action does not strictly add functionality, rather it
adds a useful shortcut.

The idea is that T is an algebraic generator which axiomatises the existence of D, therefore
allowing users to use it as a rewrite, and the generator P witness the fact that T is true (i.e.
is inhabited), by rewriting it to D. This feature is useful for formalising complex proofs that
depend on other lemmas, by saving each lemma as a theorem and then combining them to
prove the main theorem. It can also be used to give definitions – i.e. we can think of T as a
new generator which is defined to equal D, and P can then be used to expand the definition.
This is similar to using the abstract keyword in Agda, to hide the “implementation detail”
of a proof.

FSCD 2024
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View control. Visualising n-diagrams for n > 2 presents a fundamental challenge, since the
geometry can be difficult for us to visualise. A number of features are therefore provided for
manipulating the visualisation: projecting out certain dimensions, navigating to a subdiagram,
and changing the rendering dimension (with a choice between 0 and 4 dimensions).

These manipulations are effected via the view control component in the top-right corner
of the workspace. This consists of a list of n+ 1 buttons, where n is the dimension of the
workspace diagram, corresponding to the following regular expression:

⋆ (S | T | Ri | Si)k Vd Pn−k−d (d ≤ 4)

Here S means source, T means target, Ri means the i-th regular height, and Si means the
i-th singular height. This means that we are viewing a k-dimensional subdiagram of the
workspace diagram, which is an (n− k)-diagram obtained by recursively going into heights
as specified by the first k symbols. This subdiagram is then projected to d dimensions; that
is, we are viewing d dimensions, and projecting the remaining n− k− d dimensions. Clicking
the star will reset the view to the original n-diagram (i.e. reset k to 0), and clicking on any
of the k view buttons will reset the view to some prefix. Clicking on any V button will
decrement d by 1, to a minimum of 0 (displayed as a single point) and clicking on any P
button will increment d by 1, to a maximum of 4 (rendered as a movie of 3D geometries).

Users can descend into a height by clicking the chevrons appearing on the right-hand side
of the diagram, or descend into the source height by pressing . Similarly, while inside a
height, users can ascend to the parent height by pressing , and navigate to adjacent k-th
height components by pressing / .

To illustrate how the projection works, consider Figure 1 which shows the 2D and 3D
projections of a 3-dimensional diagram side-by-side. Note that the 2D projection can be
understood as looking at the 3D projection from below, and projecting onto a 2D plane.

Generator options. When hovering over a generator, a Ó icon appears on the left which
reveals a menu of options for that generator. This allows the user to rename the generator
(with support for LATEX) or change its colour or shape. Most importantly, it allows the user
to mark a generator as invertible.

Image export. The sidebar has an “Image Export” button which reveals a panel for
exporting the workspace diagram to different formats, such as SVG, TikZ, Manim, and STL.

3 Example: Eckmann-Hilton

Here we will illustrate how the proof assistant may be used in practice to formalise results in
higher category theory. Our running example will be the Eckmann-Hilton argument, the key
result in the correspondence between braided monoidal categories and 3-categories which
are doubly-degenerate, meaning they have a unique 0-cell and no non-identity 1-cells. This
will be essential in Appendix A for our formalisation of Hopf algebras in braided monoidal
categories. This section is accompanied by a video tutorial [1]. The resulting workspace can
be loaded into the tool at https://beta.homotopy.io/p/2402.00002.

To formalise the Eckmann-Hilton argument, we load the tool and begin constructing our
signature, which is given by a unique 0-cell x and two 2-cells α, β which have source and
target the identity on x. Since x is a 0-cell, we may immediately add this to the signature by
pressing the “Add 0-Cell” button, and renaming the cell to “$x$” – the use of “$”s is optional,
but indicates to the tool that the generator’s name should be interpreted as LATEX. To add

https://beta.homotopy.io/p/2402.00002


N. Corbyn, L. Heidemann, N. Hu, C. Sarti, C. Tataru, and J. Vicary 30:7

α :

target

source

β :

target

source

Figure 4 The scalars α and β in our signature for the Eckmann-Hilton argument.

drag

drag

Figure 5 The Eckmann-Hilton argument.

the two scalars α and β to the signature, we need to provide the tool with their sources and
targets, which in this case is 1x. Selecting the generator x we have added to the signature,
we make it the current working diagram. We then click on the “Identity” button to get 1x

from x, and take it as the source of a new 2-cell α by clicking on “Source”. Repeating the
construction of 1x, we can provide the tool with the target of α. Since the diagrams have
compatible boundaries, the globularity condition is satisfied and the tool allows to click on
“Target” to create a 2-cell, which we rename to “$\alpha$”. By repeating this procedure for
β, we get the signature depicted in Figure 4.

With our signature in place, we can begin proving facts about the compositional behaviour
of our scalars. The essence of the Eckmann-Hilton argument amounts to the commutativity
and coincidence of vertical and horizontal composites of scalars, as depicted in Figure 5.

Let us detail how this proof can be built. We begin by constructing the right-most
diagram in Figure 5 by selecting α from the signature, clicking on the highlighted region
marked as target in Figure 4 and selecting β to attach. This builds the vertical composite of
α and β and gives us the starting point or source for our proof. Since we wish to collect the
steps of the proof into a 3-cell, we take the identity on the current diagram. This does not
appear to change the current diagram displayed but adds an extra dimension in the view
control.

We then drag β towards α along the right to get the middle diagram, triggering a
contraction procedure, which we will detail in Section 5.2. Next, we drag β further downwards,
triggering the dual procedure of expansion, detailed in Section 5.3. Note that these procedures
only succeed if they are sound, i.e. the resulting diagram has a valid type as checked by the
procedure of Section 5.4.

We now inspect the proof from the top-dimension by clicking on the ⋆ button on the
right. From this view, our proof amounts to the construction of a braid as depicted in the
first image of Figure 6. We can see this more clearly if we contract the middle part of the
diagram by vertically dragging the bottom half-braid towards the top, obtaining the second
image of Figure 6. We may also perform the proof entirely from this view, by horizontally
dragging the legs of the braid past each other. A 3D visualisation of this proof can now be
observed by pressing the P button in the view control.

FSCD 2024
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Figure 6 The Eckmann-Hilton proof (left) and its contraction (right).

4 Core Data Structures

In this section we outline the fundamental algebraic data types which are used to encode
n-diagrams in the implementation. These are diagrams, rewrites, cones and cospans; their
definitions are sketched in Figure 7. Note that the Rust type system, along with our choice
of encoding, has the following limitation: there exist valid terms of the diagram type which
do not correspond to admissible n-cells of the free higher category generated by the current
signature. For example, any Diagram0 which consists of a generator with its dimension field
set to a non-zero integer does not correspond to any 0-cell of any higher category. The
typechecking procedure of Section 5.2 is used to determine validity of these terms.

1 type frame = int
2 type generator = { dimension: int; id: int }
3

4 type rewrite =
5 | Rewrite0Identity
6 | Rewrite0 of { source: generator; target: generator; label: frame }
7 | RewriteN of { cones: cone list }
8

9 and cone = {
10 index: int;
11 source: cospan list;
12 target: cospan;
13 slices: rewrite list;
14 }
15

16 and cospan = { forward: rewrite; backward: rewrite }
17

18 type diagram =
19 | Diagram0 of generator
20 | DiagramN of { source: diagram; cospans: cospan list }

Figure 7 The core data structures of homotopy.io.

4.1 Diagrams
The core data structure of homotopy.io is a recursive encoding for diagrams that is derived
from the zigzag construction. A 0-diagram has trivial shape (a single point), and type is
essentially the labelling which is an assignment of name to colour, which we call a generator.
An (n+ 1)-diagram is determined by an alternating sequence of singular and regular heights,
which are n-diagrams, together with information on how the heights fit together:

r0 s1 r1 s1 r1 s2 r2.
f0 b0 f1 b1 f2 b2
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A

B

C

D

Figure 8 A zigzag with four cones. A and B are identity cones that do not change the diagram,
omitted in the sparse representation.

Each singular height si is equipped with rewrites fi : ri → si and bi : ri+1 → si that encode
the difference between si and its neighbouring regular heights ri and ri+1. We call the pair
(fi, bi) a cospan, and describe the height of a diagram as the number of cospans (equally,
singular heights) it contains. There is always one more regular height than singular heights.
Instead of storing all the heights of a diagram, we only keep around the first regular height
r0 and reconstruct the other heights when needed by applying the rewrites backwards and
forwards.

4.2 Rewrites
Rewrites between diagrams are also encoded as a recursive data structure. A rewrite of
0-diagrams (0-rewrite) is either the identity rewrite or a rewrite between the underlying gen-
erators; in the latter case, it is also equipped with a frame which represents the directionality
of the rewrite in some space associated to the ambient diagram. A (n+ 1)-rewrite x → y

modifies the sequence of cospans in x by removing subsequences and replacing them with
individual cospans. Each such modification is called a cone (see Figure 8). The following
diagram, which encodes the bottom half of Figure 81, is an example of a rewrite with a single
cone that replaces the cospans (f1, b1) and (f2, b2) with the cospan (f ′, b′):

r0 s0 r1 s′
1 r3

r0 s0 r1 s1 r2 s2 r3

f0 b0 f ′
b′

f0 b0 f1

ℓ1

b1 f2

ℓ2

b2

A cone in a rewrite of (n+ 1)-diagrams also contains rewrites between the n-dimensional
singular heights. In the example above these are the rewrites ℓ1 : s1 → s′

1 and ℓ2 : s2 → s′
1.

A rewrite does not store information for the parts of the diagrams that do not change. Since
in practice most adjacent heights only differ in small parts, this sparse encoding leads to
significant space efficiency.

The core data structures admit a series of auxiliary algorithms:
1. Given an n-diagram x we can apply a rewrite x R−→ y forwards to obtain y. Similarly,

given an n-diagram y and a rewrite x R−→ y we can apply R backwards to y.

1 This can be seen by overlaying the diagram along the bottom of Figure 8. The identity map s0 99K s0
corresponds to cone A, and the right component consisting of s1, r2, s2, s

′
1 and maps between them

corresponds to cone C.

FSCD 2024
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2. We can compute the heights of an (n+ 1)-diagram at any singular or regular height. In
particular, we can obtain the source and target of a diagram.

3. When x
R−→ y and y

R′

−→ z are rewrites, we can compute the composite rewrite x R′◦R−−−→ z

while preserving sparsity.
4. For two n-diagrams s and t whose sources and targets agree, we can create an (n+ 1)-

dimensional diagram which represents an (n+ 1)-morphism between s and t.
5. Given an n-diagram x and k ≤ n we can compute the generators that would be visible in

the projection of x to k dimensions.
6. For an n-diagram x and k ≤ n we can produce a graph that is a dense encoding of the

projection of x to k dimensions. The simplicial complex obtained as the flag complex
from this graph has the geometry of the rendered diagram. The layout algorithm then
assigns coordinates to the vertices (see Section 5.5).

7. Given a pair of diagrams x, y we can search for copies of y that are embedded into x and
intersect a line through the projection. This allows us to find opportunities to rewrite a
diagram, which itself can be realised as a higher cell.

5 Key Algorithms

Many of our key algorithms described in this section first compute the shape of the result,
usually by recursion over diagram dimension, and then complete the type information. These
data are encoded by directed graphs, for which we can utilise graph algorithms to implement
our operations.

5.1 Collapse
A string diagram has geometric properties (e.g. the length of a wire) which are not intended
to be meaningful, as its meaning is captured entirely by topological properties (e.g. connec-
tivity of a wire). Topology yields a natural compatibility with composition in the string
diagram calculus: if two wires are placed in sequence, then the resulting string diagram is
merely a longer wire, and therefore it looks topologically the same and represents the same
mathematical content. However, both the tool and the theory are based on combinatorial
encodings of string diagrams, and moreover there is a distinct encoding for the diagram of
two wires in sequence versus one wire.

We describe the collapse of a diagram as a combinatorial representation of these topological
invariants, essentially as a directed graph, which gives a normal form for the fully-exploded
graph obtained from an n-diagram in a frame-preserving way. In more detail, given such
a graph, every node has a neighbourhood which determines a set of outgoing frames and
incoming frames (framing data); now, consider the largest equivalence relation on nodes
determined by x ∼ y when x is adjacent to y by an identity 0-rewrite, and x and y admit
equal framing data; collapse is the quotient graph induced by ∼. Explicitly, we compute
this by treating the graph as a simplicial complex and checking each 1-simplex (edge) which
is an identity 0-rewrite to see if it is collapsible, whereby identifying both 0-simplex faces
(endpoints) respects ∼, by checking all 2-simplices (triangles) for which that 1-simplex is a
face. A simple example of this is given in Figure 9.

Collapse is used to compare when two diagrams differ as encodings but have the same
topological data: many different diagrams may have the same collapse, for instance degener-
ating a diagram along any part2 does not change its collapse, but two diagrams with distinct

2 This corresponds to composition with a weak unit in the n-categorical model; combinatorially, this
represents the insertion of redundant data.
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a b

b

1

id
1

a b1

Figure 9 The edge b id−→ b is collapsible, so the graph can be simplified in a frame-preserving
fashion.

c
⇝

Figure 10 A contraction of two beads on two singular heights.

collapses are necessarily distinct. These degeneracies arise naturally in the course of the
other operations described in this section, but can be often eliminated without rendering the
diagram malformed. Collapse is a crucial component of typechecking, analogously to how
the standard technique of deciding equality in a term calculus often amounts to computing
normal forms for each term. A detailed account is given in [21].

5.2 Contraction
Contraction is the process of shortening a diagram along a homotopy equivalence which
reduces the height of a diagram locally, producing a contraction rewrite D c−→ C, which may
or may not exist depending on D. An example of this is given by Figure 10, which combines
both singular heights on the left into one on the right. The result of the contraction C always
has a singular height of one. Informally, as a homotopy, the contraction rewrite c is the
unique canonical way to shorten the diagram without making any arbitrary choices, and this
is mathematically captured by its description as the computation of a categorical colimit.

Contraction works recursively on diagram dimension, with the 0-dimensional base case
obtained via collapse, as in Section 5.1, and then ensuring that the maximal elements of the
poset induced by the reachability relation on the resulting directed graph are compatible [21].
The higher-dimensional recursive case has been described theoretically by Reutter and
Vicary [33]; it works by first determining a “∆-colimit”, which determines the shape that
the result necessarily possesses, and then if that exists it then attempts to find a compatible
labelling of each stratum to complete the typing information by a divide-and-conquer strategy.

In the base case, compatibility is the uniqueness of the labelling of the maximal element
of the poset, combined with the condition that the framing data on each maximal element is
identical. In the recursive case, for an (n+ 1)-rewrite D c−→ C, the algorithm is as follows:
1. D is associated to a directed graph G whose nodes represent regular and singular heights

of D, weighted by n-diagrams, and whose edges form cospans between regular heights
and are weighted by n-rewrites;

2. this directed graph is then exploded, obtaining a larger directed graph E whose nodes
are weighted by (n− 1)-diagrams, and whose edges are weighted by (n− 1)-rewrites, by
replacing each node of G with a directed graph, as in the previous step, and each edge by
a collection of connecting (n− 1)-rewrites;

FSCD 2024
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e
⇝

Figure 11 An anticontraction move.

3. E induces a subgraph ∆E which represents only the shape data of D consisting of only
the singular-singular nodes; on ∆E , we obtain its condensation graph with respect to
strongly-connected components3; if the edge relation of the condensation graph does not
correspond to a linear order on nodes, then fail, otherwise, this determines:

a. subproblems determined by the subgraph of E induced by reachability for the nodes
of a particular strongly-connected component of ∆E ;

b. a linear ordering of subproblems, which will determine how their solutions should be
combined.

4. each subproblem represents an independent fragment of D which spans its entire height,
and is solved recursively (step 2); its solution is a singular-singular height of C, which
necessitates the linear ordering of subproblems; the rest of C and c are constructed from
the remaining data;

5. the result is then typechecked, and if it fails, then the algorithm fails.

There are also auxiliary algorithms which propagate a contraction within some height of
a larger diagram. We refer the interested reader to [33].

5.3 Expansion

Expansion is the dual of contraction, first described by Reutter and Vicary [33], and later
refined by Tataru and Vicary [40]. It takes a diagram D and produces an expanded diagram
E, such that E in fact contracts to give D via some rewrite E c−→ D. In this sense, expansion
is a partial converse to contraction.

It is defined inductively, similarly to contraction. In the base case, it performs an
interchanger move that separates two singular levels (the reverse of Figure 10). In the
recursive case, expansion attempts to propagate an expansion of a sub-diagram to the
diagram itself, yielding a diagram which will contract to the original. Since contraction is
computed by a colimit process, this requires an algorithm that can reverse the ordinary
colimit process, a procedure that we call anticontraction [40]. We illustrate this with the
recursive expansion example in Figure 11, where a vertex is moved out of a singular height.
Note that the expanded diagram on the right indeed contracts to give the original diagram
on the left.

3 This graph has a node for each strongly-connected component, and each edge represents reachability for
strongly-connected components.
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Figure 12 The cancellation 2-cell f−1 ◦ f → 1x generated by an invertible 1-cell f : x → y.

5.4 Typechecking
Typechecking is the process of checking the validity of a diagram with respect to a given
signature. Note that despite the name, in our context, “typechecking” does not refer to a
type-theoretic procedure determined by inference rules. The underlying theory gives a clear
perspective on this process [12, 17]: break the diagram into atomic “pieces”, and ensure that
each piece collapses to the canonical neighbourhood of the respective generator. This tells us
that the neighbourhood of each point in the diagram is fully described by the signature.

Collapse plays a crucial role here, because it ensures that higher-dimensional coherences
of invertible generators also typecheck. For example, if f : x → y is an invertible 1-cell, we
can generate a 2-cell f−1 ◦ f → 1x known as the counit (see Figure 12); this is well-typed
because it collapses to the canonical neighbourhood of f .

5.5 Layout
The layout algorithm is used to assign coordinates to every point in an n-diagram, and is a
crucial component of the rendering pipeline described in Section 6.2, enabling rendering in
2D, 3D and 4D. We use a categorical construction based on factorisation systems and colimits
to extract a set of linear constraints from the total order data of the diagram [39]. These
constraints encode the necessary conditions for a layout to be well-defined. For example,
in 2D, this would include the information that one wire is to the left of another wire; or,
in 3D, that one surface is in front of another. We further impose aesthetic constraints, e.g.
that wires and surfaces should be centred. Finally, these constraints are passed to the linear
solver HiGHS [22] to find a layout that satisfies all constraints. An example layout for a
2-diagram is given in Figure 13: each node receives a cartesian coordinate (x, y) from the
solver, which is used to determine where it should be rendered on-screen.

6 Implementation

Here, we describe further implementation details: the memoisation techniques used in our
core data structures and aspects of the rendering pipeline. Whilst independent of the tool’s
mathematical foundations, we have found many of the details here essential, particularly in
enabling the tool to operate in a resource-constrained environment – i.e. the browser.

6.1 Memoisation
Our data structures for Diagram and Rewrite are immutable. Operations that would modify
an object instead create a new one with the modifications applied. This allows us to apply a
technique known as hash consing [14]: whenever a new Diagram or Rewrite is created, we
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Figure 13 The layout of a 2-diagram.

check in a hash table if a logically equal instance is already present and reuse it if possible.
Hash consing enforces the invariant that any two instances that are logically equal must
become physically equal – i.e. have the same representation and location in memory. To
test for equality we may therefore perform a simple pointer comparison instead of traversing
the entire deeply nested structure; similarly, we cache the hash value of every Diagram and
Rewrite to avoid deep traversals. We incur a performance cost due to the hash table lookup
involved whenever a new instance is created. However, we observe significant improvements
in performance and memory usage overall. In practice, we have found that even under
the sparse encoding of Section 4, directly representing diagrams remains highly redundant:
applying hash consing makes memory usage almost negligible, even for large diagrams.

The algorithms from Section 5 are largely recursive over the structure of a diagram
and perform many repeated recursive calls on logically equal substructures. We therefore
memoise the results of recursive calls. Since our deduplicated representation allows for
very fast equality checks and caches hash values, lookups in the memoisation table are
comparatively cheap.

Our data structures are reference counted, so we know when the last reference to an
instance goes out of scope and it is safe to remove it from the hash table. The recursive
algorithms operating on diagrams temporarily materialise the structure that is implicit in
the sparse encoding, leading to the same Diagram or Rewrite being created and destroyed
many times during the execution of the algorithm. An eager approach to maintaining the
deduplication hash table therefore leads to unnecessary churn. We therefore delay the removal
of dead objects from the hash table to a batched garbage collection step that walks the table
and removes instances that have no remaining references.

6.2 Rendering Pipeline
One of the most important parts of the implementation is the rendering pipeline, which
allows for visualising n-diagrams in up to four dimensions. It consists of three components.
First, we have the layout algorithm described in Section 5.5 that assigns real coordinates
to every point of an n-diagram. Second, there is the mesh generation, which takes an
n-diagram and computes a cubical mesh – i.e. a subdivision of the n-diagram into abstract
k-dimensional cubes for k ≤ n. Together, these data are called a geometry which is a
collection of k-dimensional cuboids in the Euclidean space Rn. Finally, we have a subdivision
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procedure which takes a geometry and makes it smoother by recursively subdividing each
cube into smaller cubes with the positions of the new vertices calculated by interpolating the
positions of the old vertices.

The subdivided geometry can then be sent to a number of rendering engines. Amongst
these, the most important are the SVG renderer, rendering 2D diagrams for all the user’s
primary interaction, and the WebGL renderer, rendering 3D and 4D diagrams (with the
4D diagrams appearing as smooth animations of 3D diagrams). We also support a TikZ
renderer, which can be used to generate high quality string diagrams for use in papers such
as in this article.

In the 4-dimensional case, we obtain the animation by intersecting the geometry with
an axis-aligned hyper-plane. This computation is easily implemented via a compute shader.
However, to maximise homotopy.io’s compatibility with contemporary browsers, our shading
pipeline is implemented in WebGL2, precluding the use of compute shaders.

This situation presents a challenge, as computing intersection geometries offline for large
diagrams is prohibitively expensive in terms of memory consumption. Thus, we are forced
perform the slicing in real-time, using a subtle rendering trick:
1. each cube is broken down into a disjoint collection of covering simplices (Figure 14, left);
2. each simplex is further decomposed into sub-simplices, each with one face whose vertices

have equal w-components4,
3. of the six edges of each simplex, the three with non-zero w-components are converted to

three GL vertices, and the simplex a corresponding polygon (Figure 14, right);
4. each GL vertex is supplied with the start and end coordinates of the corresponding edge;
5. the vertex shader interpolates between these points given a global w-coordinate, passed

in as a uniform, dropping the vertex whenever w is outside the bounds of the edge.
The effect is that the animation is broken down into a collection of “birth” and “death”
events for small polygons, which can be rendered straightforwardly, as if it were a 3D mesh.
Animated wires in 4-dimensions are produced through a similar process, but the “pipe”-like
appearance is produced via a deferred post-processing effect, to minimise the cost of storing
geometry for the cylinders.

We additionally compute normals for intersection geometries in real-time via a barycentric
interpolation across a volume-weighted average taken at each vertex. This is directly analogous
to the calculation of normals in traditional 3D pipelines. However, much care is required
when it comes to calculating and preserving the orientations of the elements of the mesh.

7 Future work

The tool is under active development, both mathematically as an end itself and as a piece of
research software as a means to facilitate the development of higher-categorical mathematics.
We sketch some ideas for future improvements to the tool:
Functor boxes It would be both interesting and practical to consider what a functor would

mean in this context; graphically, it should allow for “boxing” pieces of diagrams, allowing
those components to be treated as atomic; this would present the user with more flexibility
in representing proofs.

4 w-component refers to the fourth coordinate of the homogeneous coordinate system commonly used in
computer graphics, and in our tool via WebGL.
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Figure 14 The decomposition of a 3-cube into six 3-simplices (left) and a 3-simplex into w-aligned
sub-simplices (right).

Dualisability support The next logical step after the introduction of coherent inverses would
be the introduction of coherent duals, which would allow for a mathematical exploration
of important problems in higher algebra, such as the tangle hypothesis [4], and knot
theory.

Interopability with type theory Some arguments of logical flavour are more easily expressed
type-theoretically, e.g. in homotopy type theory or CaTT [15], while more graphical
arguments are better suited to homotopy.io; ideally, we could make these tools talk to
each other to support bimodal reasoning.

Linearity Support for higher linear categories would make the tool amenable to directly
performing calculations in topological quantum field theory.

Gallery An arXiv-like gallery can be presented to showcase published proofs, better enabling
proof discovery.

Cubical version More general notions of string diagrams for cubical n-categories have been
considered [32] and it would be an interesting question to extend homotopy.io to cubical
shapes.
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A Case Study: Hopf Algebras and Hopf Modules

In this appendix, we will detail an extended case study to highlight how homotopy.io may be
practically employed to formalise mathematical results of substantial character. The basis
we will build on for this case study will be the discussion in Section 3, showing that the
Eckmann-Hilton argument could be used to formalise braids in the tool. This will allow us
to define Hopf algebras and Hopf modules in braided monoidal categories, and build towards
a proof of the fundamental theorem of Hopf modules, asserting the freeness of Hopf modules
when certain idempotents split. Since this formalisation will involve rich algebraic gadgets,
long proofs and universal properties, we will build it up gradually. The final formalisation,
consisting of the full proofs, is available at https://beta.homotopy.io/p/2402.00006 so that
the reader can inspect the proofs in detail and visualise them in 3D and 4D.

Hopf algebras originated in work by Hopf [19] in topology, developed on and popularised
by Milnor and Moore [31] (see [2] for more detail). They have served to generalise results from
group theory to objects of study in topology, knot theory, algebraic geometry, combinatorics
and quantum theory [38]. Our discussion here is informed by the original proof of the
fundamental theorem of Hopf modules for Hopf algebras over principal ideal domains is given
in [25], its generalisation to braided monoidal categories in [28] and the alternative proof
using Karoubi completions given in [8]. We also use the diagrammatic calculus for Hopf
modules introduced by Majid in [30], which has been used to give a string diagrammatic
translation of this result in [42], though the reader should be warned that the proof contains
flaws.

We start by first defining a bialgebra H in a braided monoidal category. Recall from
Section 3 that in order to obtain the braiding, we will start by adding a single 0-cell x to
our signature, and then add our 2-cell H by specifying 1x as source and target. Hence, H is
an object in our braided monoidal category. Moreover, we need to add four 3-cells: a unit
η : 1 → H, a multiplication µ : H ⊗ H → H, a counit ε : H → 1, and a comultiplication
δ : H → H ⊗H, which are depicted in Figure 15.
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For H to be an algebra, η and µ must satisfy associativity and unitality laws, which are
witnessed by the 4-cells depicted in Figure 16. We add these to the signature and mark them
as invertible. For H to be a coalgebra, it will have to satisfy dual laws of coassociativity and
counitality. Finally, for H to be a bialgebra, the algebra and coalgebra structure have to
interact: units must propagate through comultiplications, counits through multiplication,
counit and units must be one-sided inverses, and multiplication and comultiplication have to
interact via the braiding. These interaction laws are specified as in Figure 17.

Thus, H is now a bialgebra. In order for it to be a Hopf algebra, we must additionally
equip it with an antipode map σ : H → H. This map needs to satisfy the two cancellation
laws given in Figure 18, which make it an inverse to the identity map on H under the
convolution product. These two laws are enough to establish the following lemmas on the
interactions between the antipode and the bialgebra structure.

▶ Lemma 1. For a Hopf algebra H in a braided monoidal category, we have σ ◦ η = η.

▶ Lemma 2 ([29, Lemma 2.3]). For a Hopf algebra H in a braided monoidal category, we
have (σ ⊗ σ) ◦ γH,H ◦ δ = δ ◦ σ, where γH,H : H ⊗H → H ⊗H is the braiding.

Proof. The essential steps of the graphical proof are given in Figure 25. We start by
constructing the left-hand side of the equation, as it involves a braid and thus is more
complex than the right-hand side. This gradient of complexity helps us to use the contraction
procedure effectively.

The first step of the proof is to introduce units at the top of the diagram, and a counit
at the bottom. We then braid the right-most unit past the antipode on the left, multiply
the units and use them with the counit to introduce an antipode on the left. Above this
antipode, we then use the multiplication/comultiplication axiom. Here we note that for proof
to go through, the orientation of this braid, the braid in the starting diagram and the braid
in the multiplication/comultiplication interaction axioms must match.

A sequence of (co)associativity and braid naturality moves follows, until we can isolate
the right-most antipode into a bubble to eliminate it into a unit/counit pair, which we use
to remove a pair of (co)multiplications. We then move to use the (co)associativity laws to
isolate the right-most antipode into a bubble, and proceed to simplify the remaining diagram
down to our target diagram by cancelling the (co)units. ◀

At this point, our signature contains our Hopf algebra H and two results about its
properties, namely Lemma 1 and Lemma 2. Here we must note that the axioms for a Hopf
algebra are self-dual, hence whenever we establish a result its dual statement, obtained by
swapping unit and counit, multiplication and comultiplication and vice versa, will also hold.
For instance, the dual of Lemma 1 would show that ε ◦ σ = ε.

We will now add another object M with the same boundary as H, which is to be a (left)
H-Hopf module. This means M is equipped with two maps, a (left) action α : H ⊗M → M

and a (left) coaction ϕ : M → H ⊗M , which are compatible with the structure of H. Thus,
we add invertible cells as in Figure 20 to impose interaction between the multiplication µ and
the action α, between the unit η and α, their duals for δ, ε and ϕ, and finally the interaction
between the action/coaction pair.

Figure 15 The 3-cells η, µ, ε, and δ (left to right) in the bialgebra signature.
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assoc : →

l-unit : →

r-unit : →

Figure 16 The associativity and unitality laws for the algebra (H, η, µ).

We now have an H-Hopf module M which we have manually added to the signature. The
structure of the Hopf algebra H gives us another way to obtain H-Hopf modules: given any
object B in our braided monoidal category, we may equip H ⊗B with the structure of an
H-Hopf module by taking the action to be µ⊗ 1B : H ⊗H ⊗B → H ⊗B and the coaction
to be δ ⊗ 1B : H ⊗B → H ⊗H ⊗B. We call Hopf modules of this form free.

With the action and coaction of M and the antipode of H, we may define the endomor-
phism ν := α ◦ (σ ⊗ 1M ) ◦ ϕ : M → M depicted in Figure 21. It turns out that this map is
idempotent.

▶ Lemma 3 ([8, Prop. 3.2.1]). The map ν : M → M is idempotent – i.e. ν ◦ ν = ν.

Proof. We first use Lemma 2 to establish that ϕ◦ν = (η⊗1M )◦ν. This is given in Figure 22,
where the key step is to use the action/coaction interaction axiom in order to apply Lemma 3,
and then simplify down the diagram. With this at hand, idempotency follows from Lemma 1
and routine simplifications. ◀

With Lemma 3 at hand, we assume now that we have a splitting for ν – i.e. an object
MH and maps ι : MH → M , υ : M → MH such that υ ◦ ι = 1MH and ι ◦ υ = ν. It turns
out that this splitting enjoys an additional universal property.

▶ Lemma 4 ([8, Prop. 3.2.1]). The map ι : MH → M is the equaliser of ϕ and η ⊗ 1M .

Proof. We add an object P and a map χ : P → M such that ϕ ◦ χ = η ⊗ χ to the signature.
We then show that χ = ν ◦χ by applying Lemma 1. But this means χ = ι ◦ (υ ◦χ) and since
ι is monic this factorisation must be unique. ◀

Thus, MH enjoys a universal property which trivialises the coaction, we call it object of
coinvariants of M . Note that by dualising Lemma 4 and its dependencies, we may also prove
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mul-comul-int : →

mul-counit-int : →

comul-unit-int : →

unit-counit-int : →

Figure 17 The bialgebra interaction laws for (H, η, µ, ε, δ).

l-antipode-elim : →

r-antipode-elim : →

Figure 18 The antipode cancellation laws for σ : H → H.
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⇝ ⇝ ⇝ ⇝

Figure 19 The proof of Lemma 1.

that υ is the coequaliser of α and ε⊗ 1M , and thus MH is also the object of invariants of M .
Now the fundamental theorem of Hopf modules then asserts that if idempotents split in a
braided monoidal category, up to isomorphism, every Hopf module is free.

▶ Theorem 5 (Fundamental Theorem of Hopf Modules [25, Prop. 1],[8, Lemma 3.3.3]). Let M
be a left H-Hopf module in a braided monoidal category, and assume the map ν : M → M

splits through MH . There is an isomorphism of left H-Hopf modules H ⊗MH ∼= M .

Proof. We use the data of the splitting ν = ι ◦ υ to construct two comparison maps
ξ := α ◦ (1H ⊗ ι) and ψ := (1H ⊗ υ) ◦ ϕ between H ⊗MH and M , which will show induce
the isomorphism of Hopf modules. The string diagrams corresponding to ξ and ψ are given
in Figure 23.

We claim ξ respects the Hopf module structure. Compatibility between ξ and the actions
α and µ⊗ 1MH follows immediately from the multiplication/action interaction law. As for
the coactions, we follow Figure 24 in using the action/coaction interaction law, followed by
the equaliser property given by Lemma 4. This establishes the claim.

Finally, we prove that ξ and ψ are mutual inverses. The proof of ξ ◦ ψ = 1M is simpler,
consisting mainly in the cancellation of the antipode, and is given in Figure 26. The proof of
ψ ◦ ξ = 1H⊗MH is more involved, making use of ν being idempotent (Lemma 3) as well as ι
being an equaliser (Lemma 4). This is given in Figure 27. ◀
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mul-act-int : →

unit-act-int : →

act-coact-int : →

Figure 20 The H-Hopf module laws for M , with the duals to the first two omitted.

Figure 21 The idempotent endomorphism ν : M → M .
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⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

Figure 22 The proof of ϕ ◦ ν = (η ⊗ 1M ) ◦ ν in Lemma 3.

(a) The map ξ : H ⊗MH → M . (b) The map ψ : M → H ⊗MH .

Figure 23 The string diagrams for the mutually inverse ξ and ψ.

⇝ ⇝ ⇝

Figure 24 The map ξ respects the coactions ϕ and δ ⊗ 1MH .
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⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

⇝ ⇝ ⇝

Figure 25 The proof of Lemma 2.
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⇝ ⇝ ⇝ ⇝

Figure 26 The proof of ξ ◦ ψ = 1M in Theorem 5.

⇝ ⇝ ⇝

⇝ ⇝ ⇝

⇝ ⇝ ⇝ ⇝

Figure 27 The proof of ψ ◦ ξ = 1H⊗MH in Theorem 5.
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1 Introduction

Logically constrained term rewriting is a relatively new formalism building upon many-sorted
term rewriting and built-in theories. The rules of a logically constrained term rewrite system
(LCTRS, for short) are equipped with constraints over some arbitrary theory, which have to
be fulfilled in order to apply rules in rewrite steps. This formalism intends to live up with
data structures which are often difficult to represent in basic rewriting, such as integers and
bit-vectors, with the help of external provers and their built-in theories.

Logical syntax and semantics are often conceived as two sides of the same coin. This is
not exceptional, especially for equational logic in which term rewriting lies. On the other
hand, although there are many recent advances in rewriting induction [9], completion [20],

© Takahito Aoto, Naoki Nishida, and Jonas Schöpf;
licensed under Creative Commons License CC-BY 4.0

9th International Conference on Formal Structures for Computation and Deduction (FSCD 2024).
Editor: Jakob Rehof; Article No. 31; pp. 31:1–31:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aoto@ie.niigata-u.ac.jp
https://orcid.org/0000-0003-0027-0759
mailto:nishida@i.nagoya-u.ac.jp
https://orcid.org/0000-0001-8697-4970
mailto:jonas.schoepf@uibk.ac.at
https://orcid.org/0000-0001-5908-8519
https://doi.org/10.4230/LIPIcs.FSCD.2024.31
https://arxiv.org/abs/2405.01174
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


31:2 Equational Theories and Validity for Logically Constrained Term Rewriting

complexity analysis [21], confluence analysis [13, 15, 17] and (all-path) reachability [4, 12, 11]
for LCTRSs, these works solely focus on the syntactic side of the formalism, lacking detailed
investigations on semantics.

In this paper, we investigate a semantic side of the LCTRS formalism. To this end,
we first define constrained equations (CEs, for short) and constrained equational theories
(CE-theories, for short). In (first-order) term rewriting, the equational version of rewrite rules
is obtained by removing the orientation of the rules. However, in the case of LCTRSs, if we
consider a constrained rule ℓ→ r [φ ] and relate this naively to a CE ℓ ≈ r [φ ], which does
not distinguish between left- and right-hand sides, we lose information about the restriction
on the possible instantiation of variables. This motivates us to add an explicit set X to each
CE ℓ ≈ r [φ ] as ΠX. ℓ ≈ r [φ ]1 – we name variables in X as logical variables with respect to
the equation. A CE-theory is then defined as a set of CEs. Similar to the rewrite steps of
LCTRSs, we define validity by convertibility if all logical variables are instantiated by values
– we denote this notion of validity as CE-validity for clarity.

After establishing fundamental properties of the CE-validity, we present its relation to the
conversion of rewriting. However, the conversion of rewriting is useful in general to establish
the validity of arbitrary CEs. This motivates us to introduce CEC0, an inference calculus
for deriving valid CEs. After demonstrating the usefulness of CEC0 via some derivations,
we present a soundness theorem for the calculus. We also show a partial completeness result,
followed by a discussion why our system seems incomplete. Afterwards we consider the
opposite question, namely how to prove that a CE is not valid for a particular CE-theory. To
this end, we introduce an algebraic semantics that captures CE-validity. We give a natural
notion of models for CE-theory, which we call CE-algebras. We establish soundness and
completeness with respect to CE-validity for this.

Figure 1 presents the relationships between the introduced notions and results of this
paper. The following concrete contributions are covered in this paper:
1. We propose a formulation of CEs and CE-theories.
2. On top of that we devise a notion of validity of a CE for a CE-theory E , which we call

CE-validity.
3. We give a proof system CEC0, and show soundness (Theorem 4.6) and a partial com-

pleteness result (Theorem 4.10) with respect to CE-validity.
4. We give a notion of CE-algebras and based on it we define algebraic semantics, which

is sound (Theorem 5.6) and complete (Theorem 5.17) with respect to CE-validity for
consistent CE-theories.

We want to discuss some highlights of the last item for readers who are familiar with
algebraic semantics of equational logic. First of all, our definition of CE-algebras admits
extended underlying models, contrast to those that precisely contain the same underlying
models; we will demonstrate why this generalization is required to obtain the completeness
result. To reflect this definition, it was necessary to modify the definition of congruence
relation to a non-standard one. Also, the notion of consistency with respect to values arises
to guarantee this modified notion of congruence in the term algebras. Moreover, it also turns
out that value-consistency is equivalent to a more intuitive notion of consistency.

The remainder of the paper is organized as follows. In the next section, we briefly explain
the LCTRS formalism, and present some basic lemmas that are necessary for our proofs.
Section 3 introduces the notion of CEs, CE-theories and CE-validity, and presents basic

1 In the literature, some other approaches exist. The computation of critical pairs is also prone of losing
information [17]. They solved it by adding dummy constraints x = x to the critical pair. Another
approach was proposed in [20] where LVar(ℓ ≈ r [φ ]) was simply defined as Var(φ).
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E |=cec ΠX. s ≈ t [φ ]

CE-Validity

E ⊢CEC0 ΠX. s ≈ t [φ ]

Provability in CEC0

E |= ΠX. s ≈ t [φ ]

Algebraic SemanticsTheorem 5.6

Theorem 5.17
Theorem 4.6 Theorem 4.10

Corollary 5.7

Figure 1 An overview of the main results of this paper.

properties on CE-validity and its relation to the conversion of rewriting. Section 4 is devoted
to our inference system CEC0, including its soundness and partial completeness with respect
to CE-validity. In Section 5, we present algebraic semantics, and soundness and completeness
results with respect to CE-validity. Before concluding this paper in Section 7, we briefly
describe related work in Section 6. We provide only brief proof sketches of selected results in
this paper. However, all detailed proofs are given in the full version of this paper [1].

2 Preliminaries

In this section, we briefly recall LCTRSs [13, 9, 17]. Familiarity with the basic notions on
mathematical logic [8, 19] and term rewriting [2, 16] is assumed.

The (sorted) signature of an LCTRS is given by the set S of sorts and the set F of S-sorted
function symbols. Each f ∈ F is equipped with a sort declaration f : τ1 × · · · × τn → τ0 with
τ0, . . . , τn ∈ S; τ1× · · · × τn → τ0 is said to be the sort of f , and we denote by Fτ1×···×τn→τ0

the set of function symbols of sort τ1 × · · · × τn → τ0. For constants of sort → τ we drop →
and write τ instead of → τ . The set of S-sorted variables is denoted by V and the set of
S-sorted terms over F ,V is T (F ,V). For each τ ∈ S, we denote by Vτ the set of variables
of sort τ and by T (F ,V)τ the set of terms of sort τ ; we also write tτ for a term t such
that t ∈ T (F ,V)τ . The set of variables occurring in a term t ∈ T (F ,V) is denoted by
Var(t) and can be restricted by a set of sorts T with VarT (t) = {xτ ∈ Var(t) | τ ∈ T }. A
substitution σ is a mapping V → T (F ,V) such that Dom(σ) = {x ∈ V | x ̸= σ(x)} is finite
and σ(xτ ) ∈ T (F ,V)τ is satisfied for all x ∈ Dom(σ).

In the LCTRS formalism, sorts are divided into two categories, that is, each sort τ ∈ S is
either a theory sort or a term sort, where we denote by Sth the set of theory sorts and by
Ste the set of term sorts, i.e. S = Sth ⊎ Ste. Accordingly, the set of variables is partitioned
as V = Vth ⊎ Vte by letting Vth for the set of variables of sort τ ∈ Sth and Vte for the set
of variables of sort τ ∈ Ste. Furthermore, we assume each function symbol f ∈ F is either
a theory symbol or a term symbol, where all former symbols f : τ1 × · · · × τn → τ0 need
to satisfy τi ∈ Sth for all 0 ⩽ i ⩽ n. The sets of theory and term symbols are denoted by
Fth and Fte, respectively: F = Fth ⊎ Fte. Throughout the paper, we consider signatures
consisting of four components ⟨Sth,Ste,Fth,Fte⟩. In some cases term/theory signature stands
for the two respective term/theory components of such a signature.

An LCTRS is also equipped with a model over the sorts Sth and the symbols Fth, which
is given by M = ⟨I,J ⟩, where I assigns each τ ∈ Sth a non-empty set I(τ), specifying
its domain, and J assigns each f : τ1 × · · · × τn → τ0 ∈ Fth an interpretation function
J (f) : I(τ1) × · · · × I(τn) → I(τ0). In particular, J (c) ∈ I(τ) for any constant c ∈ Fτ

th.
We suppose for each τ ∈ Sth, there exists a subset Valτ ⊆ Fτ

th of constants of sort τ such
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that (the restriction of) J to Valτ forms a bijection Valτ ∼= I(τ). We let Val =
⋃

τ∈Sth
Valτ ,

whose elements are called values. For simplicity, we do not distinguish between c ∈ Val and
J (c). Note that, in [13, 9], an arbitrary overlap between term and theory symbols is allowed
provided it is covered by values. For simplicity, we assume Fth ∩ Fte = ∅.

A valuation over a modelM = ⟨I,J ⟩ is a family ρ = (ρτ )τ∈Sth of mappings ρτ : Vτ → I(τ).
The interpretation [[t]]M,ρ ∈ I(τ) of a term tτ ∈ T (Fth,V) in the model M with respect
to the valuation ρ = (ρτ )τ∈Sth is inductively defined as follows: [[xτ ]]M,ρ = ρτ (x) and
[[f(t1, . . . , tn)]]M,ρ = J (f)([[t1]]M,ρ, . . . , [[tn]]M,ρ). We abbreviate [[t]]M,ρ as [[t]]ρ if M is
known from the context. Furthermore, for any ground term t ∈ T (Fth), the valuation ρ has
no impact on the interpretation [[t]]ρ which can be safely ignored and written as [[t]].

We suppose a special sort Bool ∈ Sth such that I(Bool) = B = {true, false}, and usual
logical connectives ¬,∧,∨, . . . ∈ Fth with their default sorts. We assume that there exists for
each τ ∈ Sth an equality symbol =τ of sort τ × τ → Bool in Fth. For brevity we will omit τ

from =τ . We assume, for all of these theory symbols, that their interpretation functions model
their default semantics. The terms in T (Fth,V)Bool are called logical constraints.2 Note that
Var(φ) ⊆ Vth for any logical constraint φ, thus in this case T (Fth,V)Bool = T (Fth,Vth)Bool.
We say that a logical constraint φ is over a set X ⊆ Vth of theory variables if V(φ) ⊆ X. A
logical constraint φ is said to be valid in a model M, written as |=M φ (or |= φ when the
model M is known from the context), if [[φ]]M,ρ = true for any valuation ρ over the model
M. Considering the bijection Valτ ∼= I(τ), an arbitrary substitution σ is equivalent to a
valuation ρ. Suppose that VDom(σ) = {x ∈ Dom(σ) | σ(x) ∈ Val} and Var(φ) ⊆ VDom(σ).
Then the substitution σ can be seen as a valuation over φ, and |=M φσ coincides with
[[φ]]M,σ = true. More generally, we have the following.

▶ Lemma 2.1. Let t ∈ T (Fth,Vth), ρ a valuation, and σ a substitution.
1. Suppose σ(x) ∈ T (Fth,Vth) for all x ∈ Vth. Let [[σ]]M,ρ be a valuation defined as

[[σ]]M,ρ(x) = [[σ(x)]]M,ρ. Then, [[t]]M,[[σ]]M,ρ
= [[tσ]]M,ρ.

2. Suppose that Var(t) ⊆ VDom(σ). Then, [[t]]M,σ̂ = [[tσ]]M, where the valuation σ̂ is defined
by σ̂(xτ ) = ξ(σ(x)) ∈ I(τ) for x ∈ VDom(σ), where ξ is a bijection Valτ ∼= I(τ).

Proof (Sketch).
1. Use structural induction on t ∈ T (Fth,Vth).
2. Similar to 1, using the assumption Var(t) ⊆ VDom(σ). ◀

From Lemma 2.1 the following characterizations, which are used later on, are obtained.
Note that |= φ = true (|= φ = false) if and only if |= φ (|= ¬φ), for a logical constraint φ.

▶ Lemma 2.2. Let φ be a logical constraint.
1. |=M φ if and only if |=M φσ for all substitutions σ such that Var(φ) ⊆ VDom(σ).
2. If |=M φ, then |=M φσ for all substitutions σ such that σ(x) ∈ T (Fth,Vth) for all

x ∈ Var(φ) ∩ Dom(σ).
3. The following statements are equivalent: (1) |=M ¬φ, (2) ̸|=M φσ for all substitutions σ

such that Var(φ) ⊆ VDom(σ), and (3) σ |=M φ for no substitution σ.
Here, σ |=M φ denotes that Var(φ) ⊆ VDom(σ) and |=M φσ hold.

2 Logical constraints are quantifier-free, which is not restrictive: Consider, for example, a formula ∀x. φ
with n free variables x1, . . . , xn and a quantifier-free formula φ. By introducing an n-ary predicate
symbol p defined as [[p(x1, . . . , xn)]]M,ρ = [[∀x. φ]]M,ρ, we can replace the formula by the quantifier-free
formula p(x1, . . . , xn). Clearly, this applies to arbitrary first-order formulas. Another approach can be
seen in [9, Section 2.2].
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Proof (Sketch).
1. (⇒) Let σ be a substitution such that Var(φ) ⊆ VDom(σ), and σ̂ be defined as in

Lemma 2.1. Then, [[φ]]M,σ̂ = true, and hence [[φσ]]M = true by Lemma 2.1. Therefore,
|=M φσ. (⇐) Let ρ be a valuation over a model M = ⟨I,J ⟩. Then, in the view of
Valτ ∼= I(τ), we can take a substitution ρ̌ given by ρ̌(x) = ρ(x) ∈ Val for all x ∈ Var(φ).
Then, use Lemma 2.1 to obtain [[φ]]M,ρ = [[φ]]M, ˆ̌ρ = true, from which |=M φ follows.

2. Take a substitution σ′ such that σ′(x) = σ(x) for x ∈ Var(φ) and σ′(x) = x otherwise.
Then, using Lemma 2.1, we have [[φ]][[σ]]ρ

= [[φ]][[σ′]]ρ
= [[φσ′]]ρ = [[φσ]]ρ. Thus, [[φσ]]ρ = true

for any ρ. Therefore, |=M φσ.
3. Use 1. ◀

LCTRSs admit special rewrite steps over T (F ,V) specified by the underlying model
M = ⟨I,J ⟩. Such rewrite steps are called calculation steps and denoted by s→calc t, which
is defined as follows: s →calc t if s = C[f(c1, . . . , cn)] and t = C[c0] for f ∈ Fth \ Val and
c0, . . . , cn ∈ Val with c0 = J (f)(c1, . . . , cn) and a context C. The following lemma connects
calculation steps and interpretations over ground theory terms T (Fth). In the following
s→! t is used for s→∗ t with t being a normal form with respect to →.

▶ Lemma 2.3. Let s, t ∈ T (Fth). Then, all of the following holds:
1. [[t]] ∈ Val,
2. t→!

calc [[t]],
3. s→∗

calc t implies [[s]] = [[t]], and
4. s←→∗

calc t if and only if [[s]] = [[t]].

Proof (Sketch).
1. This claim follows as [[tτ ]] ∈ I(τ) ∼= Valτ .
2. Show t→∗

calc [[t]] by structural induction on t. Then, the claim follows, since values are
normal forms with respect to calculation steps.

3. We use the fact that the set of calculation rules forms a confluent LCTRS [13]. Since
s→!

calc [[s]] and t→!
calc [[t]] from 2, s→∗

calc t implies [[s]] = [[t]] by confluence.
4. The only-if part follows from 3, and the if part follows from 1. ◀

The other type of rewrite steps in LCTRSs are rule steps specified by rewrite rules. Let
us fix a signature ⟨Sth,Ste,Fth,Fte⟩. A constrained rule of an LCTRS is a triple ℓ→ r [φ ] of
terms ℓ, r with the same sort satisfying root(ℓ) ∈ Fte and a logical constraint φ. We define
LVar(ℓ → r [φ ]) = (Var(r) \ Var(ℓ)) ∪ Var(φ), whose members are called logical variables
of the rule. The intention is that the logical variables of rules in LCTRSs are required to
be instantiated only by values. Let us also fix a model M. Then, a substitution γ is said
to respect a rewrite rule ℓ→ r [φ ] if LVar(ℓ→ r [φ ]) ⊆ VDom(γ) and |=M φγ. Using this
notation, a rule step s →rule t over the model M by the rewrite rule ℓ → r [φ ] is given
as follows: s →rule t if and only if s = C[ℓγ] and t = C[rγ] for some context C and some
substitution γ that respects the rewrite rule ℓ→ r [φ ].

Finally, a logically constrained term rewrite system (LCTRS, for short) consists of a
signature Σ = ⟨Sth,Ste,Fth,Fte⟩, a model M over Σth = ⟨Sth,Fth⟩ (which induces the set
Val ⊆ Fth of values) and a set R of constrained rules over the signature Σ. All this together
defines rewrite steps consisting of calculation steps and rule steps. In a practical setting,
often some predefined (semi-)decidable theories are assumed and used as model M and
theory signature ⟨Sth,Fth⟩. An example of such a theory is linear integer arithmetic, whose
model consists of standard boolean functions and the set of integers including standard
predefined functions on them. From this point of view, we call the triple U = ⟨Sth,Fth,M⟩
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of the theory signature and its respective model the underlying model or background theory
of the LCTRS. We also denote an LCTRS as ⟨M,R⟩ with an implicit signature or ⟨M,R⟩
over the signature Σ = ⟨Sth,Ste,Fth,Fte⟩ for an explicit signature.

3 Validity of Constrained Equational Theories

In this section, we introduce validity of constrained equational theories (CE-validity), which
is a key concept used throughout the paper. Subsequently, we present fundamental properties
of CE-validity, and show their relation to the conversion of rewriting.

3.1 Constrained Equational Theory and Its Validity
In this subsection, after introducing the notion of CEs, we define equational systems, which
are sets of CEs, and rewriting with respect to such systems. This gives an equational version
of the rewrite step in LCTRSs. Furthermore, based on these notions, we define the validity
of CEs.

Recall that logical variables of a constrained rule are those which are only allowed to be
instantiated by values. As we have seen in the previous section, rewrite steps of LCTRSs
depend on the correct instantiation of the logical variables of the applied rule. However, the
sets of logical variables LVar(ℓ→ r [φ ]) and LVar(r → ℓ [φ ]) are not necessarily equivalent,
and the CE ℓ ≈ r [φ ] alone does not suffice to specify the correct logical variables. This
motivates us to add an explicit set X to the CE ℓ ≈ r [φ ] as ΠX. ℓ ≈ r [φ ] which specifies
its logical variables.

▶ Definition 3.1 (constrained equation). Let Σte = ⟨Ste,Fte⟩ be a term signature over the
underlying model U = ⟨Sth,Fth,M⟩. A constrained equation (CE, for short) over U and Σte
is a quadruple ΠX. s ≈ t [φ ] where s, t are terms with the same sort, φ is a logical constraint,
and X ⊆ Vth is a set of theory variables satisfying Var(φ) ⊆ X. A logically constrained
equational system (LCES, for short) is a set of CEs. We abbreviate ΠX. s ≈ t [φ ] to
s ≈ t [φ ] if Var(φ) = X. A CE ΠX. s ≈ t [true ] is abbreviated to ΠX. s ≈ t.

We remark that a constrained rewrite rule ℓ→ r [φ ] is naturally encoded as a CE ΠX. ℓ ≈
r [φ ] by taking X = LVar(ℓ → r [φ ]). Furthermore, let us illustrate the aforementioned
issues, without an explicit set of logical variables, by an example.

▶ Example 3.2. Consider the LCTRS R over the theory of integer arithmetic and its (labeled)
rules

α : f(x, y)→ g(z) [x = 1 ] β : g(z)→ f(x, y) [x = 1 ]

with their sets of logical variables LVar(α) = {x, z} and LVar(β) = {x, y}. Transforming
them naively into the CE f(x, y) ≈ g(z) [x = 1 ] and g(z) ≈ f(x, y) [x = 1 ] would give the
set of logical variables {x} for both. We use the notion of logical variables in Winkler and
Middeldorp [20], where the set of logical variables of a CE consists of the variables appearing in
the constraint. Obviously, we lose concrete information about logical variables of the original
rules. Clearly, in our notion this information remains intact: Π{x, z}. f(x, y) ≈ g(z) [x = 1 ]
and Π{x, y}. g(z) ≈ f(x, y) [x = 1 ]. Note that variables appearing solely in the set of
logical variables and not in the CE have no effect but are allowed. For example, in the CE
Π{x, z, z′}. f(x, y) ≈ g(z) [x = 1 ] the logical variable z′ has no effect and could be dropped.

In the following we extend the notion of rewrite steps by using CEs instead of rewrite
rules.
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▶ Definition 3.3 (←→E). Let E be an LCES over the underlying model U = ⟨Sth,Fth,M⟩
and the term signature Σte = ⟨Ste,Fte⟩. For terms s, t ∈ T (F ,V), we define a rule step
s←→rule,E t if s = C[ℓσ] and t = C[rσ] (or vice versa) for some CE ΠX. ℓ ≈ r [φ ] ∈ E and
some X-valued substitution σ such that |=M φσ. Here, a substitution is said to be X-valued
if X ⊆ VDom(σ). We let ←→E =←→calc ∪←→rule,E , where ←→calc is the symmetric closure of
the calculation steps →calc specified by M.

We give examples on rewriting with CEs.

▶ Example 3.4. Consider integer arithmetic as underlying model M. We consider the
term sorts Ste = {Unit} and the term signature Fte = {cong : Int→ Unit} where Int is the
respective sort of the integers. The set E of CEs consists of {cong(x) ≈ cong(y) [mod(x, 12) =
mod(y, 12)]}. Arithmetic values in intermediate steps of rewrite sequences wrapped in cong
have the property that they are congruent modulo 12 and thus E simulates modular arithmetic
with modulus 12. Consider the following sequence:

cong(7 + 31)←→calc cong(38)←→rule,E cong(14)

From this we conclude that 7 + 31, which gives 38, and 14 are congruent modulo 12. Note
that the rule step ←→rule,E does not allow to directly convert cong(7 + 31) and cong(14).

▶ Example 3.5. Consider integer arithmetic as the underlying model M. We take a term
signature Ste = {G} and Fte = {e : G, inv : G→ G, ∗ : G× G→ G, exp : G× Int→ G}. Let the
set E of CEs consist of:

(x ∗ y) ∗ z ≈ x ∗ (y ∗ z) e ∗ x ≈ x

inv(x) ∗ x ≈ e exp(x, 0) ≈ e
exp(x, 1) ≈ x Π{n,m}. exp(x, n) ∗ exp(x,m) ≈ exp(x,m+ n)

As in first-order equational reasoning, one can show x ∗ e ∗←→E x. Thus, exp(x,−1) ←→E
e∗exp(x,−1)←→E (inv(x)∗x)∗exp(x,−1)←→E inv(x)∗(x∗exp(x,−1))←→E inv(x)∗(exp(x, 1)∗
exp(x,−1))←→E inv(x) ∗ exp(x, 1 + (−1))←→E inv(x) ∗ exp(x, 0)←→E inv(x) ∗ e ∗←→E inv(x) as
expected. This encodes a system of groups with an explicit exponentiation operator exp.

▶ Example 3.6. Consider integer arithmetic as the underlying model M. We take a
term signature Ste = {Elem, List,ElemOp} and Fte = {nil : List, cons : Elem × List → List,
none : ElemOp, some : Elem→ ElemOp, length : List→ Int, nth : List× Int→ ElemOp}. Let the
set E of CEs consist of

length(nil) ≈ 0 length(cons(x, xs)) ≈ length(xs) + 1
Π{n}. nth(nil, n) ≈ none nth(xs, n) ≈ none [n < 0 ]

nth(cons(x, xs), 0) ≈ some(x) nth(cons(x, xs), n) ≈ nth(xs, n− 1) [n > 0 ]

This LCES encodes common list functions that use integers. For program verification
purposes, one may deal with the validity problem of a formula such as nth(xs, n) ̸≈ none⇔
0 ⩽ n ∧ n < length(xs).

We continue by giving some immediate facts which are used later on.

▶ Lemma 3.7. Let E be an LCES over the underlying model U = ⟨Sth,Fth,M⟩ and the term
signature Σte = ⟨Ste,Fte⟩. Then, all of the following hold:
1. ←→E is symmetric,
2. ←→E is closed under contexts i.e. s←→E t implies C[s]←→E C[t] for any context C, and
3. ←→E is closed under substitutions, i.e. s←→E t implies sσ ←→E tσ for any substitution σ.
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Proof (Sketch). 1 and 2 are trivial. For 3 the case s←→calc t is clear. Suppose s←→rule,E t.
Then s = C[ℓρ] and t = C[rρ] (or vice versa) for some CE ΠX. ℓ ≈ r [φ ] ∈ E and an X-valued
substitution ρ such that |=M φρ. Then φρ = (φρ)σ = φ(σ ◦ ρ) and hence |=M φ(σ ◦ ρ).
Then, the claim follows, as sσ = C[ℓρ]σ = Cσ[ℓ(σ ◦ ρ)] and tσ = C[rρ]σ = Cσ[r(σ ◦ ρ)]. ◀

We proceed by defining constrained equational theories (CE-theories) and validity of CEs
(CE-validity) with respect to a CE-theory.

▶ Definition 3.8 (constrained equational theory). A constrained equational theory is specified
by a triple T = ⟨U,Σte, E⟩, where U = ⟨Sth,Fth,M⟩ is an underlying model, Σte is a term
signature over U (as given in the LCTRS formalism), and E is an LCES over U,Σte. If no
confusion arises, we refer to the CE-theory by ⟨M, E⟩, without stating its signature explicitly.
We also say that a CE-theory ⟨M, E⟩ is defined over the signature Σ = ⟨Sth,Ste,Fth,Fte⟩ in
order to make the signature explicit.

▶ Definition 3.9 (CE-validity). Let T = ⟨M, E⟩ be a CE-theory. Then a CE ΠX. s ≈ t [φ ]
is said to be a constrained equational consequence (CE-consequence, for short) of T or
valid (CE-valid, for clarity), written as T |=cec ΠX. s ≈ t [φ ], if sσ ∗←→E tσ for all X-valued
substitutions σ such that |=M φσ. We write E |=cec ΠX. s ≈ t [φ ] if M is known from the
context.

We conclude this subsection with an example on CE-validity.

▶ Example 3.10. Consider integer arithmetic as the underlying model M. We take the term
signature Fte = {abs : Int→ Int,max : Int× Int→ Int} the set of CEs E consisting of

abs(x) ≈ −x [x < 0 ] abs(x) ≈ x [x ⩾ 0 ]
max(x, y) ≈ x [x ⩾ y ] max(x, y) ≈ y [x < y ]

The following are valid CE-consequences:

T |=cec Π{x}. abs(x) ≈ abs(−x) T |=cec Π{x, y}.max(x, y) ≈ max(y, x)
T |=cec Π{x, y}. abs(max(x, y)) ≈ max(abs(x), abs(y)) [0 ⩽ x ∧ 0 ⩽ y ]

On the other hand, the CE Π∅. abs(x) ≈ abs(−x) is not a valid CE-consequence: For the
∅-valued identity substitution σ, we have that abs(x)σ = abs(x) ̸ ∗←→E abs(−x) = abs(−x)σ.

3.2 Properties of CE-Validity
This subsection covers important properties related to CE-validity, for example, we show
that validity forms an equivalence and a congruence relation. Furthermore, we cover in which
way it is closed under substitutions and contexts, and how equality can be induced from
constraints.

Our first two lemmas follow immediately from the definition of the CE-validity.

▶ Lemma 3.11. Let T = ⟨M, E⟩ be a CE-theory. Then for any ΠX. s ≈ t [φ ] ∈ E, we have
T |=cec ΠX. s ≈ t [φ ].

▶ Lemma 3.12 (congruence). Let T = ⟨M, E⟩ be a CE-theory. For any set X ⊆ Vth and
logical constraint φ such that Var(φ) ⊆ X, the binary relation T |=cec ΠX. · ≈ · [φ ] over
terms is a congruence relation over Σ.

For stability under substitutions, we differentiate two kinds; for each CE ΠX. s ≈ t [φ ],
the first one considers substitutions instantiating variables in X; the second one considers
substitutions instantiating variables not in X.
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▶ Lemma 3.13 (stability of theory terms). Let T = ⟨M, E⟩ be a CE-theory. Let X,Y ⊆ Vth
be sets of theory variables and σ a substitution such that σ(y) ∈ T (Fth, X) for any y ∈ Y . If
T |=cec ΠY. s ≈ t [φ ], then T |=cec ΠX. sσ ≈ tσ [φσ ].

Proof (Sketch). Take any X-valued substitution θ with |=M (φσ)θ. This gives a Y -valued
substitution ξ by defining ξ(y) = [[(θ ◦ σ)(y)]] for each y ∈ Y . From Lemma 2.3, we know
(θ ◦ σ)(y) ∗←→E ξ(y) for any y ∈ Y . We also have |=M φξ by Lemma 2.1, and hence sξ ∗←→E tξ

by assumption. Thus, using Lemma 3.7, we obtain (sσ)θ = s(θ ◦ σ) ∗←→E sξ
∗←→E tξ

∗←→E
t(θ ◦ σ) = (tσ)θ. ◀

▶ Lemma 3.14 (general stability). Let ⟨M, E⟩ be a CE-theory and σ a substitution such that
Dom(σ) ∩X = ∅. Then, if E |=cec ΠX. s ≈ t [φ ] then E |=cec ΠX. sσ ≈ tσ [φ ].

Proof (Sketch). Take any X-valued substitution δ such that |=M φδ. Take γ = δ ◦ σ. From
Dom(σ) ∩X = ∅, we have φγ = φδ, and therefore, sσδ ∗←→E tσδ holds. ◀

One may expect that E |=cec ΠX. s ≈ t [φ ] holds for equivalent terms s, t such that
φ⇒ s = t is valid. In fact, a more general result can be obtained.

▶ Lemma 3.15 (model consequence). Let ⟨M, E⟩ be a CE-theory, X ⊆ Vth a set of theory
variables, s, t ∈ T (Fth, X), and φ a logical constraint over X. If |=M (φσ ⇒ sσ = tσ) holds
for all X-valued substitutions σ, then E |=cec ΠX. s ≈ t [φ ].

Proof (Sketch). For any X-valued substitution σ with |=M φσ, we have [[sσ]]M = [[tσ]]M.
Then, use Lemma 2.3 to obtain sσ

∗←→E tσ. ◀

▶ Corollary 3.16. Let ⟨M, E⟩ be a CE-theory, X ⊆ Vth a set of theory variables, and φ⇒
s = t a logical constraint over X such that |=M (φ⇒ s = t). Then, E |=cec ΠX. s ≈ t [φ ].

3.3 Relations to Conversion of Rewrite Steps
In this subsection, we present characterizations of CE-validity from the perspective of logically
constrained rewriting with respect to equations.

▶ Theorem 3.17. For a CE-theory ⟨M, E⟩, s ∗←→E t if and only if E |=cec Π∅. s ≈ t [true ].

Proof (Sketch). We have E |=cec Π∅. s ≈ t [true ] if and only if sσ ∗←→E tσ for any ∅-valued
substitution σ such that σ |= true if and only if sσ ∗←→E tσ for any substitution σ. Thus, the
claim follows by Lemma 3.7. ◀

We consider now the general case with a possibly non-empty set X of theory variables
and a non-trivial constraint φ ̸= true (also ¬φ) for the CE ΠX. s ≈ t [φ ]. In this case,
the following partial characterization can be made by using the notion of trivial CEs [17].
We can naturally extend the notion of trivial CEs in [17] to our setting as follows: a CE
ΠX. s ≈ t [φ ] is said to be trivial if sσ = tσ for any X-valued substitution σ such that
|=M φσ.

▶ Theorem 3.18. Let ⟨M, E⟩ be a CE-theory, and ΠX. s ≈ t [φ ] a CE. Suppose s ∗←→E s
′

and t ∗←→E t
′ for some s′, t′ such that ΠX. s′ ≈ t′ [φ ] is trivial. Then, E |=cec ΠX. s ≈ t [φ ].

Proof (Sketch). Take an arbitrary X-valued substitution σ such that |=M φσ. Then, it
follows from our assumptions that sσ ∗←→E s

′σ = t′σ
∗←→E tσ. ◀

Unfortunately, none of the CE-consequences in Example 3.10 can be handled by Theor-
ems 3.17 and 3.18.
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4 Proving CE-Validity

As mentioned in the previous section, CE-validity of a CE ΠX. s ≈ t [φ ] with respect to a
CE-theory ⟨M, E⟩ is very tedious to be shown by the convertibility of s and t in E . This
motivates us to introduce another approach to reason about CE-validity. In this section, we
introduce an inference system for proving CE-validity of CEs together with a discussion on
its applicability and generality.

4.1 Inference System CEC0 and Its Soundness

In this subsection, we introduce an inference system CEC0 (Constrained Equational Calculus
for elementary steps) for proving CE-validity of CEs. We prove soundness of it, by which it
is guaranteed that all CEs ΠX. s ≈ t [φ ] derivable from E in the system CEC0 are valid, i.e.
E |=cec ΠX. s ≈ t [φ ].

▶ Definition 4.1 (derivation of CEC0). Let T = ⟨M, E⟩ be a CE-theory. The inference
system CEC0 consists of the inference rules given in Figure 2. We assume in the rules
that X,Y range over a (possibly infinite) set of theory variables, φ ranges over logical
constraints. Let ΠX. s ≈ t [φ ] be a CE. We say that ΠX. s ≈ t [φ ] is derivable in CEC0
from E (or ΠX. s ≈ t [φ ] is a consequence of E), written by E ⊢CEC0 ΠX. s ≈ t [φ ], if there
exists a derivation of E ⊢ ΠX. s ≈ t [φ ] in the system CEC0. When no confusion arises,
E ⊢CEC0 ΠX. s ≈ t [φ ] is abbreviated as E ⊢ ΠX. s ≈ t [φ ].

We proceed with intuitive explanations of each rule. The rules Refl, Trans, Sym, Cong,
and Rule are counterparts of the inference rules used in equational logic.

In order to handle instantiations, we consider two cases, namely Theory Instance and
General Instance. The former rule covers instantiations affecting the logical constraint
whereas the latter covers the case not affecting it.

The Weakening and Split rules handle logical reasoning in constraints. The Weakening
rule logically weakens the constraint equation by strengthening its constraint. Note here
the direction of the entailment φ ⇒ ψ in the side condition: the rule is sound because
the constrained equation is valid under the stronger constraint φ if the equation is valid
under the weaker constraint ψ. Since some rules, like Cong and Trans, have premises with
equality constraints, it may be required to first apply the Weakening rule to synchronize
the constraints before using these rules. On the other hand, in the Split rule, the constraint
of the conclusion φ ∨ ψ is logically weaker than the independent ones, φ and ψ, in each
premise. The inference is still sound as it only joins two premises. Using the Split rule, one
can perform reasoning based on case analysis.

The Axiom rule makes it possible to use equational consequences entailed in the constraint
part of equational reasoning. The Abst rule incorporates consequences entailed in the
constraint part in a different way, that is, to infer a possible abstraction of the equation.

The rules Enlarge and Restrict are used to adjust the set of instantiated variables (the
“ΠX” part of CEs), with the proviso that it does not affect the validity. Note that, in Enlarge,
Y ⊆ X implies the side condition Var(s, t) ∩ (Y \ X) = ∅. We also want to remark that
despite its name, the restriction X ⊆ Y can be added to Enlarge, provided that removed
variables are not used in s, t (the side condition Var(s, t) ∩ (Y \X) = ∅ has to be satisfied).

▶ Lemma 4.2. Let ⟨M, E⟩ be a CE-theory. If E ⊢CEC0 ΠX. s ≈ t [φ ], then ΠX. s ≈ t [φ ]
is a CE.
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Refl

E ⊢ ΠX. s ≈ s [φ ]
Var(φ) ⊆ X

Trans
E ⊢ ΠX. s ≈ t [φ ] E ⊢ ΠX. t ≈ u [φ ]

E ⊢ ΠX. s ≈ u [φ ]

Sym
E ⊢ ΠX. t ≈ s [φ ]
E ⊢ ΠX. s ≈ t [φ ]

Cong
E ⊢ ΠX. s1 ≈ t1 [φ ] . . . E ⊢ ΠX. sn ≈ tn [φ ]
E ⊢ ΠX. f(s1, . . . , sn) ≈ f(t1, . . . , tn) [φ ]

Rule
E ⊢ ΠX. ℓ ≈ r [φ ]

(ΠX. ℓ ≈ r [φ ]) ∈ E

Theory Instance E ⊢ ΠY. s ≈ t [φ ]
E ⊢ ΠX. sσ ≈ tσ [φσ ]

∀x ∈ Y. xσ ∈ T (Fth, X)

General Instance E ⊢ ΠX. s ≈ t [φ ]
E ⊢ ΠX. sσ ≈ tσ [φ ]

Dom(σ) ∩X = ∅

Weakening
E ⊢ ΠX. s ≈ t [ψ ]
E ⊢ ΠX. s ≈ t [φ ]

|=M (φ⇒ ψ),Var(φ) ⊆ X

Split
E ⊢ ΠX. s ≈ t [φ ] E ⊢ ΠX. s ≈ t [ψ ]

E ⊢ ΠX. s ≈ t [φ ∨ ψ ]
Axiom

E ⊢ ΠX. s ≈ t [φ ]
|=M (φσ ⇒ sσ = tσ) for all σ s.t. X ⊆ VDom(σ),
Var(φ) ⊆ X

Abst E ⊢ ΠX. sσ ≈ tσ [φσ ]
E ⊢ ΠX. s ≈ t [φ ]

|=M (φ⇒
∧

x∈X x = σ(x)),
Var(φ) ⊆ X,

(⋃
x∈X Var(σ(x))

)
⊆ X

Enlarge E ⊢ ΠY. s ≈ t [φ ]
E ⊢ ΠX. s ≈ t [φ ]

Var(s, t) ∩ (Y \X) = ∅, Var(φ) ⊆ X

Figure 2 Inference rules of CEC0.

Proof (Sketch). The proof proceeds by induction on the derivation of E ⊢ ΠX. s ≈ t [φ ]
that (1) s, t ∈ T (F ,V) have the same sort, (2) φ is a logical constraint, (3) X ⊆ Vth, and (4)
Var(φ) ⊆ X. ◀

Below we present some examples of derivations which cover all of our inference rules
at least once. In the following example we denote Theory Instance by TInst and General
Instance by GInst accordingly.

▶ Example 4.3. Let ⟨M, E⟩ be the CE-theory given in Example 3.5. Below, we present a
derivation of E ⊢ Π{n}. exp(x, n) ∗ exp(x,−n) ≈ e.

E ⊢ Π{n, m}. exp(x, n) ∗ exp(x, m) ≈ exp(x, n + m) Rule

E ⊢ Π{n}. exp(x, n) ∗ exp(x, −n) ≈ exp(x, n + (−n)) TInst
(1)

E ⊢ Π{n}. exp(x, n + (−n)) ≈ e
E ⊢ Π{n}. exp(x, n) ∗ exp(x, −n) ≈ e Trans
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where (1) is

E ⊢ x ≈ x
Refl

E ⊢ Π{n}. x ≈ x
Enlarge

E ⊢ Π{n}. n + (−n) ≈ 0 Axiom

E ⊢ Π{n}. exp(x, n + (−n)) ≈ exp(x, 0)
Cong

E ⊢ exp(x, 0) ≈ e Rule

E ⊢ Π{n}. exp(x, 0) ≈ e
Enlarge

E ⊢ Π{n}. exp(x, n + (−n)) ≈ e Trans

Here, E ⊢ Π{n}. n+(−n) ≈ 0 is derived by the Axiom rule, because of |=M σ(n+(−n)) = 0
holds for all {n}-valued substitutions σ.

▶ Example 4.4. Let ⟨M, E⟩ be the CE-theory given in Example 3.6. Below, we present a
derivation of E ⊢ Π{n}. nth(x::y::zs, n+ 2) ≈ nth(zs, n) [n > 0].

(2)

E ⊢ Π{n}. nth(x::xs, n) ≈ nth(xs, n − 1) [n > 0] Rule

E ⊢ Π{n}. nth(x::xs, n + 1) ≈ nth(xs, (n + 1) − 1) [n + 1 > 0] TInst (1)
E ⊢ Π{n}. nth(x::xs, n + 1) ≈ nth(xs, n) [n + 1 > 0] Trans

E ⊢ Π{n}. nth(x::xs, n + 1) ≈ nth(xs, n) [n > 0] Weaken

E ⊢ Π{n}. nth(y::zs, n + 1) ≈ nth(zs, n) [n > 0] GInst

E ⊢ Π{n}. nth(x::y::zs, n + 2) ≈ nth(zs, n) [n > 0] Trans

where (1) is

E ⊢ Π{n}. xs ≈ xs
Refl

E ⊢ Π{n}. (n + 1) − 1 ≈ n
Axiom

E ⊢ Π{n}. nth(xs, ((n + 1) − 1) ≈ nth(xs, n)
Cong

E ⊢ Π{n}. nth(xs, ((n + 1) − 1) ≈ nth(xs, n) [n + 1 > 0] Weaken

and (2) is

E ⊢ Π{n}. nth(x :: xs, n) ≈ nth(xs, n − 1) [n > 0] Rule

E ⊢ Π{n}. nth(x :: xs, n + 2) ≈ nth(xs, (n + 2) − 1) [n + 2 > 0] TInst (3)
E ⊢ Π{n}. nth(x :: xs, n + 2) ≈ nth(xs, n + 1) [n + 2 > 0] Trans

E ⊢ Π{n}. nth(x :: ys, n + 2) ≈ nth(ys, n + 1) [n > 0] Weaken

E ⊢ Π{n}. nth(x :: y :: zs, n + 2) ≈ nth(y :: zs, n + 1) [n > 0] GInst

where (3) is

E ⊢ Π{n}. xs ≈ xs
Refl

E ⊢ Π{n}. (n + 2) − 1 ≈ n + 1 Axiom

E ⊢ Π{n}. nth(xs, ((n + 2) − 1) ≈ nth(xs, n + 1)
Cong

E ⊢ Π{n}. nth(xs, (n + 2) − 1) ≈ nth(xs, n + 1) [n + 2 > 0] Weaken

In the next example, we illustrate usages of the Split rule and the Abst rule.

▶ Example 4.5. Let f : Bool → Int ∈ Fte. Let E = {Π∅. f(true) ≈ 0 [true ], Π∅. f(false) ≈
0 [true ]}. Then we have f(true)↔E 0 and f(false)↔E 0. Thus, for all {x}-valued substitu-
tions σ, we have f(x)σ ∗←→E 0σ.

E ⊢ Π∅. f(true) ≈ 0 Rule

E ⊢ Π∅. f(true) ≈ 0 [true = true ] Weaken

E ⊢ Π{x}. f(x) ≈ 0 [x = true ] Abst

E ⊢ Π∅. f(false) ≈ 0 Rule

E ⊢ Π∅. f(false) ≈ 0 [ false = false ] Weaken

E ⊢ Π{x}. f(x) ≈ 0 [x = false ] Abst

E ⊢ Π{x}. f(x) ≈ 0 [x = true ∨ x = false ]
Split

E ⊢ Π{x}. f(x) ≈ 0 [true ] Weaken

We now present soundness of the system CEC0 with respect to CE-validity.
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▶ Theorem 4.6 (soundness of the system CEC0). Let ⟨M, E⟩ be a CE-theory and ΠX. s ≈
t [φ ] a CE. If E ⊢CEC0 ΠX. s ≈ t [φ ], then E |=cec ΠX. s ≈ t [φ ].

Proof (Sketch). The proof proceeds by induction on the derivation. The cases for all rules
except for Abst and Enlarge follow by Lemmas 3.11–3.15 and well-known properties in logic.
For the case Abst, suppose that E ⊢ ΠX. s ≈ t [φ ] is derived from E ⊢ ΠX. sσ ≈ tσ [φσ ] as
given in Figure 2. Let ρ be an X-valued substitution such that |=M φρ. Then by the side
conditions we have [[ρ(x)]] = [[ρ(σ(x))]] for any x ∈ X. Hence, |=M φσρ, and sσρ ∗←→E tσρ by
the induction hypothesis. Then by Var(s, t) ⊆ X, we have sρ ∗←→E sσρ

∗←→E tσρ
∗←→E tρ. For

the case Enlarge, suppose that E ⊢ ΠX. s ≈ t [φ ] is derived from E ⊢ ΠY. s ≈ t [φ ] as given
in Figure 2. Let δ be an X-valued substitution such that |=M φδ. Define a substitution δ′ as
follows: δ′(zτ ) = cτ if x ∈ Y \X, and δ′(x) = δ(x) otherwise, where cτ is (arbitrarily) taken
from Valτ . Clearly, δ′ is Y -valued. We also have sδ′ = sδ, tδ′ = tδ, and φδ′ = φδ by the side
conditions. Thus, sδ = sδ′ ∗←→E tδ

′ = tδ using the induction hypothesis. ◀

▶ Remark 4.7. We remark that some of our inference rules utilize validity in the model. Thus,
CEC0 does not have convenient properties like recursive enumerability of its theorems like
we are used to from other formal systems.

4.2 Partial Completeness of CEC0

In this subsection, we present some results regarding the completeness property of CEC0.

▶ Lemma 4.8. Let ⟨M, E⟩ be a CE-theory and ΠX. s ≈ t [φ ] a CE such that φ is satisfiable.
Suppose sσ = tσ for all X-valued substitutions σ such that |=M φσ. Then E ⊢ ΠX. s ≈ t [φ ].

Proof (Sketch). The case s, t ∈ T (Fth, X) follows by the assumption using the Axiom rule.
Next, we consider the case s = x ∈ V with x /∈ X. In this case, we can derive t = x using
the assumption, and the case follows using the Refl rule. For the general case, from the
assumption, one can let s = C[s1, . . . , sn] and t = C[t1, . . . , tn] for a multi-hole context C
and terms si, ti (1 ⩽ i ⩽ n) such that either one of si or ti is a variable. Thus, by the
previous cases, we know that E ⊢ ΠX. si ≈ ti [φ ] for each 1 ⩽ i ⩽ n, possibly using the Sym
rule. Thus, the claim is obtained using Refl, Trans and Cong rules. ◀

▶ Lemma 4.9. Let ⟨M, E⟩ be a CE-theory and ΠX. s ≈ t [φ ] a CE such that φ is satisfiable.
Suppose sσ ←→=

calc tσ for all X-valued substitutions σ such that Dom(σ) = X and |=M φσ.
Then E ⊢ ΠX. s ≈ t [φ ].

Proof (Sketch). First of all, the claim for the case s, t ∈ T (Fth, X) follows using the Axiom
rule. If sσ = tσ for all X-valued substitutions σ, the claim follows from Lemma 4.8.
Thus, it remains to consider the case that there exists an X-valued substitution σ such
that sσ ←→calc tσ, |=M φσ and X = Dom(σ). Suppose that sσ = C[f(v1, . . . , vn)]q and
tσ = C[v0]q with f ∈ Fth and v0, . . . , vn ∈ Val such that I(f)(v1, . . . , vn) = v0. As
Dom(σ) = X and σ is X-valued, we have s|q = f(s1, . . . , sn) with s1, . . . , sn ∈ Val ∪ X
and t|q ∈ Val ∪ X; hence s|q, t|q ∈ T (Fth, X), and thus, E ⊢ ΠX. s|q ≈ t|q [φ ] holds as
we mentioned above. Let s = C1[f(s1, . . . , sn)]q and t = C2[t0]q with C1σ = C2σ for any
X-valued substitution σ such that Dom(σ) = X and |=M φσ. Then, E ⊢ ΠX. s ≈ t [φ ]
follows using E ⊢ ΠX. s|q ≈ t|q [φ ], Lemma 4.8, and the Cong and Trans rules. ◀

From Lemma 4.9, the partial completeness for at most one calculation step follows.
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▶ Theorem 4.10. Let ⟨M, E⟩ be a CE-theory and ΠX. s ≈ t [φ ] a CE such that φ is
satisfiable. Suppose sσ ←→=

calc tσ for all X-valued substitutions σ such that |=M φσ. Then
E ⊢CEC0 ΠX. s ≈ t [φ ].

One may expect that Theorem 4.10 can be extended to the general completeness theorem
for arbitrary E in such a way that E |=cec ΠX. s ≈ t [φ ] implies E ⊢ ΠX. s ≈ t [φ ] (full
completeness). Rephrasing this, we have: if sσ ∗←→E tσ for all X-valued substitutions σ
such that |=M φσ, then E ⊢ ΠX. s ≈ t [φ ]. The partial completeness result above is far
from this formulation of full completeness in that the assumption does not assume arbitrary
conversions sσ ∗←→E tσ but only sσ ←→=

calc tσ (i.e. at most one calculation step). However, full
completeness does not seem to hold for the system CEC0, as witnessed by the following
example.

▶ Example 4.11. Consider the following LCES:

E =
{

Π{x}. nneg(x) ≈ true [x = 0] (1)
Π{x, y}. nneg(x) ≈ nneg(y) [x+ 1 = y ] (2)

For each n ⩾ 0, we have nneg(n) ∗←→E true:

nneg(n)←→E nneg(n− 1)←→E · · · ←→E nneg(0)←→E true

Thus, for the CE Π{x}. nneg(x) ≈ true [x ⩾ 0], we have for all σ such that |=M σ(x) ⩾ 0,
nneg(x)σ ∗←→E trueσ = true. On the other hand, for each n ⩾ 0, one can give a derivation of
Π∅. nneg(n) ≈ true – for example, for n = 2,

(2) Rule

Π∅. nneg(2) ≈ nneg(1) TInst

(2) Rule

Π∅. nneg(1) ≈ nneg(0) I
(1) Rule

Π∅. nneg(0) ≈ true TInst

Π∅. nneg(1) ≈ true Trans

Π∅. nneg(2) ≈ true Trans

However, these derivations differ for each n ⩾ 0, and and are hardly merged. As a conclusion,
it seems that the CE Π{x}. nneg(x) ≈ true [x ⩾ 0] is beyond the derivability of CEC0.

▶ Remark 4.12. After looking at Example 4.11, it might seem reasonable that adding some
kind of induction reasoning is required for our proof system. However, rules for the induction
on positive integers, etc. are only possible when working with a specific model. Such rules
have clearly a different nature than rules in our calculus that work with any underlying model.
Our calculus CEC0 intends to be a general calculus that is free from specific underlying
models and does not include model-specific rules.

▶ Remark 4.13. We remark a difficulty to extend Theorem 4.10 to multiple (calculation)
steps, i.e. to have a statement like E ⊢CEC0 ΠX. s ≈ t [φ ] whenever sσ ←→∗

calc tσ for all
X-valued substitutions σ such that |=M φσ. Or even to obtain a slightly weaker statement
like E ⊢CEC0 ΠX. s ≈ t [φ ] whenever there exists a natural number n such that sσ ←→n

calc tσ

for all X-valued substitutions σ such that |=M φσ. It might look that induction on the
length of sσ ←→∗

calc tσ (or the one on n in the case of the latter) can be applied. However,
to apply Theorem 4.10 to each step, we need the form s0σ ←→calc s1σ ←→calc · · · ←→calc snσ

for each σ which is not generally implied by sσ ←→∗
calc tσ or sσ ←→n

calc tσ, as intermediate
terms may vary depending on the substitution σ. Extending Theorem 4.10 to multiple steps
remains as our future work.
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▶ Remark 4.14. Our final remark deals with the difficulty to extend Theorem 4.10 to a single
rule step, i.e. to have a statement like E ⊢CEC0 ΠX. s ≈ t [φ ] whenever sσ ←→rule,E tσ for
all X-valued substitutions σ such that |=M φσ. For the rule step, there may be multiple
choices of positions and multiple choices of CEs to be applied for the step sσ ←→rule,E tσ.
Thus, we have to divide X-valued substitutions satisfying φ depending on each position p

that a CE is applied and each applied CE ΠXi. ℓi ≈ ri [φi ] ∈ E , and combine the obtained
consequences. However, it is in general not guaranteed that such a division of substitutions
can be characterized by a constraint. Note that the set of sets of substitutions is in general
not countable but the set of constraints is countable. Thus, it may be necessary to assume
some assumption on the expressiveness of constraints to obtain the extension for the single
rule step. On the other hand, we conjecture that the (full) completeness would hold for
CE-theories with a finite underlying model.

5 Algebraic Semantics for CE-Validity

In this section, we explore algebraic semantics for CE-validity. In this approach, CE-validity
is characterized by validity in models in a class of algebras, which we call CE-algebras. We
show that this characterization is sound and complete, in the sense that CE-validity can be
fully characterized.

5.1 CE-Algebras
In this subsection, we introduce a notion of CE-algebras and validity in them. After presenting
basic properties of our semantics, we prove its soundness with respect to the CE-validity.

▶ Definition 5.1 (CE-⟨Σ,M⟩-algebra). Let Σ = ⟨Sth,Ste,Fth,Fte⟩ be a signature and M =
⟨I,J ⟩ be a model over Sth and Fth. A constrained equational ⟨Σ,M⟩-algebra (CE-⟨Σ,M⟩-
algebra, for short) is a pair M = ⟨I, J⟩ where I assigns each τ ∈ S a non-empty set I(τ),
specifying its domain, and J assigns each f : τ1×· · ·×τn → τ0 ∈ F an interpretation function
J(f) : I(τ1)× · · · × I(τn)→ I(τ0) that extends the model M = ⟨I,J ⟩, that is, I(τ) ⊇ I(τ)
for all τ ∈ Sth and J(f) ↾I(τ1)×···×I(τn)= J (f) for all f ∈ Fth (or more generally there exists
an injective homomorphism ι : M→M).

Let M = ⟨I, J⟩ be a CE-⟨Σ,M⟩-algebra. A valuation ρ over M is defined similarly to M,
but S instead of Sth, F instead of Fth, etc. Similarly, a valuation ρ over M satisfies a logical
constraint φ, denoted by |=M φ, if [[φ]]ρ,M = true.

Careful readers may wonder why the interpretation functions for the theory part are not
the same but an extension of the underlying model M = ⟨I,J ⟩. Indeed, in the definition of
CE-⟨Σ,M⟩-algebras M = ⟨I, J⟩ above, we only demand that I(τ) ⊇ I(τ) for all τ ∈ Sth and
not I(τ) = I(τ) for all τ ∈ Sth. In fact, this is required to obtain the completeness result;
however, this explanation is postponed until Example 5.18. We continue to present some
basic properties of our semantics which are proven in a straightforward manner.

▶ Lemma 5.2. Let T = ⟨M, E⟩ be a CE-theory over a signature Σ, and M = ⟨I, J⟩ a
CE-⟨Σ,M⟩-algebra. Then, the binary relation over terms given by [[·]]M,ρ = [[·]]M,ρ for any
valuation ρ on M, is closed under substitutions and contexts.

▶ Lemma 5.3. Let T = ⟨M, E⟩ be a CE- theory over a signature Σ such thatM = ⟨I,J ⟩, M
a CE-⟨Σ,M⟩-algebra, and X ⊆ Vth a set of theory variables and suppose t ∈ T (Fth, X). Then,
for any valuation ρ on M such that ρ(x) ∈ I(τ) for all xτ ∈ X, we have [[t]]M,ρ = [[t]]M,ρ.
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Next, we extend the definition of validity on CE-algebras to CEs, by which we can give a
notion of models of CE-theories, and the semantic consequence relation.

▶ Definition 5.4 (model of constrained equational theory). Let T = ⟨M, E⟩ be a CE-theory
over a signature Σ such that M = ⟨I,J ⟩, and M = ⟨I, J⟩ a CE-⟨Σ,M⟩-algebra.
1. A CE ΠX. ℓ ≈ r [φ ] is said to be valid in M, denoted by |=M ΠX. ℓ ≈ r [φ ], if for all

valuations ρ over M satisfying the constraint φ (i.e. [[φ]]M,ρ = true holds) and ρ(x) ∈ I(τ)
holds for all xτ ∈ X, we have [[ℓ]]M,ρ = [[r]]M,ρ.

2. A CE-⟨Σ,M⟩-algebra M = ⟨I, J⟩ is said to be a model of the CE-theory T if |=M E.
Here, |=M E denotes that |=M ΠX. ℓ ≈ r [φ ] for all ΠX. ℓ ≈ r [φ ] ∈ E.

3. Let ΠX. ℓ ≈ r [φ ] be a CE. We write T |= ΠX. ℓ ≈ r [φ ] (or E |= ΠX. ℓ ≈ r [φ ] if
no confusion arises) if |=M ΠX. ℓ ≈ r [φ ] holds for all CE-⟨Σ,M⟩-algebras M that are
models of T.

We remark that, in item 1, as φ ∈ T (Fth,Vth), we have [[φ]]M,ρ = true if and only if
[[φ]]M,ρ = true by Lemma 5.3. Based on the preceding lemmas, soundness of our semantics
with respect to conversion is not difficult to obtain.

▶ Lemma 5.5 (soundness w.r.t. conversion). Let T = ⟨M, E⟩ be a CE-theory over a signature
Σ, and M = ⟨I, J⟩ a CE-⟨Σ,M⟩-algebra such that |=M E. If s ∗←→E t then [[s]]M,ρ = [[t]]M,ρ

for any valuation ρ on M.

Proof (Sketch). It suffices to consider the case s ←→E t with a root step; the claim easily
follows from Lemma 5.2. Let Σ = ⟨Sth,Ste,Fth,Fte⟩ and M = ⟨I,J ⟩. Let s←→calc t. Then,
s, t ∈ T (Fth), and hence [[s]]M = [[t]]M. Thus, [[s]]M = [[t]]M by Lemma 5.3. Otherwise,
let s ←→rule,E t. Then, s = ℓσ and t = rσ for some ΠX. ℓ ≈ r [φ ] ∈ E and an X-valued
substitution σ such that |=M φσ. We have a valuation [[σ]]M,ρ on M by [[σ]]M,ρ(y) = [[σ(y)]]M,ρ

for any y ∈ V . Then, similarly to Lemma 2.1, we have [[uσ]]M,ρ = [[u]]M,[[σ]]M,ρ
for any term

u ∈ T (Σ,V). Furthermore, for x ∈ X, [[σ]]M,ρ(x) = [[σ(x)]]M,ρ = σ(x) holds. Hence, by
Lemma 5.3, [[φ]]M,[[σ]]M,ρ

= true. Thus, [[s]]M,ρ = [[ℓ]]M,[[σ]]M,ρ
= [[r]]M,[[σ]]M,ρ

= [[t]]M,ρ. ◀

Now we present the soundness of our semantics with respect to the CE-validity.

▶ Theorem 5.6 (soundness w.r.t. CE-validity). Let T be a CE-theory. If T |=cec ΠX. s ≈ t [φ ],
then T |= ΠX. s ≈ t [φ ].

Proof (Sketch). Let T = ⟨M, E⟩ and M = ⟨I,J ⟩. Suppose M = ⟨I, J⟩ is a CE-⟨Σ,M⟩-
algebra such that |=M E . Let ρ be a valuation over M satisfying the constraints φ and
ρ(x) ∈ I(τ) holds for all xτ ∈ X. Now, let ρ̂ be a valuation that is obtained from ρ by
restricting its domain to X. Then, |=M φρ̂ by Lemma 5.3, and thus sρ̂ ∗←→E tρ̂ holds.
Hence, by Lemma 5.5, [[sρ̂]]M,τ = [[tρ̂]]M,τ holds for any valuation τ . This means that
[[s]]M,τ ′ = [[t]]M,τ ′ for any extension τ ′ of ρ̂. In particular, one obtains [[s]]M,ρ = [[t]]M,ρ. ◀

The combination of Theorem 4.6 and Theorem 5.6 implies the following corollary.

▶ Corollary 5.7 (soundness of CEC0 w.r.t. algebraic semantics). Let T be a CE-theory. If
T ⊢CEC0 ΠX. s ≈ t [φ ], then T |= ΠX. s ≈ t [φ ].

▶ Example 5.8. Consider integer arithmetic for the underlying model M. Take a term
signature Fte = {a : Int}. Consider the LCES E = {a ≈ 0, a ≈ 1} with 0, 1 ∈ Val and
0, 1 ∈ Z, hence J (0) = 0 and J (1) = 1. Then, for any valuation ρ on a CE-⟨Σ,M⟩-algebra
M = ⟨I, J⟩ we have ρ(0) = 0 and ρ(1) = 1. Thus, if M is a model of E then it follows that
0 = [[0]] = [[a]] = [[1]] = 1, which is a contradiction. Therefore, there is no CE-⟨Σ,M⟩-algebra
M which validates E .
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This example motivates us to introduce the following definition of consistency for CE-
theories.

▶ Definition 5.9 (consistency). A CE-theory is said to be consistent if it has a model.

Our definition of consistent CE-theories does not exclude any theory that has only an almost
trivial model such that I(τ) = {•} for all τ ∈ Ste.

5.2 Completeness w.r.t. CE-Validity
In this subsection, we prove the completeness of algebraic semantics with respect to the
CE-validity. That is, if a CE is valid in all models of a CE-theory then it is a CE-consequence
of the CE-theory. We start by defining congruence relations, quotient algebras and term
algebras that suit our formalism, incorporating standard notions for example the first-order
equational logic, and then present basic results on them.

Let Σ = ⟨Sth,Ste,Fth,Fte⟩ be a signature, M = ⟨I,J ⟩ a model over Sth and Fth, and
M = ⟨I, J⟩ a CE-⟨Σ,M⟩-algebra. A congruence relation on M is an S-indexed family of
relations ∼ = (∼τ )τ∈S that satisfies all of the following:
1. ∼τ is an equivalence relation on I(τ),
2. ∼τ ∩ I(τ)2 is the identity relation for τ ∈ Sth, and
3. for each f : τ1×· · ·× τn → τ0 ∈ F , if ai ∼τi bi for all 1 ⩽ i ⩽ n then J(f)(a1, . . . , an) ∼τ0

J(f)(b1, . . . , bn).
We note here that the difference from the standard notion of congruence relation on algebras
is located in item 2. Given a CE-⟨Σ,M⟩-algebra M = ⟨I, J⟩ and a congruence relation ∼ on
it, the quotient CE-⟨Σ,M⟩-algebra M/∼ = ⟨I′, J′⟩ is defined as follows: I′(τ) = I(τ)/∼τ =
{ [a]∼τ | a ∈ I(τ)} where [a]∼τ is the equivalence class of a ∈ I(τ), i.e. [a]∼τ = {b ∈ I(τ) |
a ∼τ b}, and J′(f)([a1]∼τ1 , . . . , [an]∼τn ) = [J(f)(a1, . . . , an)]∼τ0 . It is easy to see that J′

is well-defined provided that ∼ is a congruence. When no confusion occurs, we omit the
superscript τ from ∼τ .

▶ Lemma 5.10 (quotient algebra). Let M be a CE-⟨Σ,M⟩-algebra, and ∼ a congruence on
it. Then M/∼ is a CE-⟨Σ,M⟩-algebra.

Next, we define the term algebra. In contrast to the usual construction, for term
CE-algebras we need to take care of identification induced by underlying models.

▶ Definition 5.11 (term algebra). Let Σ = ⟨Sth,Ste,Fth,Fte⟩ be a signature, M = ⟨I,J ⟩ a
model over Sth and Fth, and U a set of variables. The term algebra generated from U with
M (denoted by T [M](Σ, U)) is a pair M = ⟨I, J⟩ where

I(τ) = T (F , U)τ/∼c, and
J(f)([t1]c, . . . , [tn]c) = [f(t1, . . . , tn)]c for any f ∈ F .

Here, F = Fth ∪ Fte, ∼c = ←→∗
calc, and [t]c denotes the ∼c-equivalence class containing a

term t. Since ←→∗
calc is sort preserving, we regard ∼c as the sum of the τ -indexed family of

relations ∼τ
c with τ ∈ S. Clearly, J(f) is well-defined, since ←→∗

calc is closed under contexts.

▶ Lemma 5.12. Let Σ = ⟨Sth,Ste,Fth,Fte⟩ be a signature, M a model over Sth and Fth, and
U a set of variables. Then, the term algebra T [M](Σ, U) is a CE-⟨Σ,M⟩-algebra.

We introduce a syntactic counter part of the notion of consistency of CE-theories for
which equivalence of the two notions will be proved only briefly.

FSCD 2024



31:18 Equational Theories and Validity for Logically Constrained Term Rewriting

▶ Definition 5.13 (consistency w.r.t. values). A CE-theory T = ⟨M, E⟩ is said to be consistent
with respect to values (value-consistent, for short) if for any u, v ∈ Valτ , u ∗←→E v implies
u = v.

Based on the preparations so far, we now proceed to construct canonical models of
CE-theories. The first step is to show that ∗←→E is a congruence relation on the term algebra
for each CE-theory T = ⟨M, E⟩; special attention on ∼c is required.

▶ Lemma 5.14. Let T = ⟨M, E⟩ be a value-consistent CE-theory over a signature Σ, and
U a set of variables. For any [s]c, [t]c ∈ T [M](Σ, U), let ∼E = {⟨[s]c, [t]c⟩ | s

∗←→E t}. Then,
∼E is a congruence relation on the term algebra T [M](Σ, U).

Proof (Sketch). Note first that ∼E is well-defined because one has always ←→∗
calc ⊆

∗←→E . Let
Σ = ⟨Sth,Ste,Fth,Fte⟩, M = ⟨I,J ⟩, and T [M](Σ, U) = ⟨I, J⟩. We only present a proof that
∼τ

E ∩I(τ)2 equals the identity relation for τ ∈ Sth here. Let τ ∈ Sth and suppose [u]c ∼τ
E [v]c

with u, v ∈ I(τ) ∼= Valτ . Then, we have u ∗←→E v by the definition of ∼E , and by consistency
w.r.t. values of the theory T, we obtain u = v as u, v ∈ Val. Therefore, [u]c = [v]c. ◀

We give a construction of canonical models for each CE-theory T .

▶ Lemma 5.15. Let T = ⟨M, E⟩ be a value-consistent CE-theory over a signature Σ. Then,
the quotient TE = T [M](Σ,V)/∼E of the term algebra is a CE-⟨Σ,M⟩-algebra. Furthermore,
both of the following hold:
1. |=TE ΠX. s ≈ t [φ ] if and only if E |=cec ΠX. s ≈ t [φ ], and
2. |=TE E.

Proof (Sketch). That TE is a CE-⟨Σ,M⟩-algebra follows from Lemmas 5.10 and 5.14. Let
us abbreviate [[t]c]∼E as [t]E . First we claim that [uσ]E = [[u]]TE ,ρ holds for any term u, for
any substitution σ and valuation ρ on TE such that ρ(x) = [σ(x)]E , using induction on u.
1. (⇒) Let σ be an X-valued substitution such that |=M φσ. Take a valuation ρ on TE as

ρ(x) = [σ(x)]E . Then, ρ(x) ∈ I(τ) for all xτ ∈ X and |=M φρ. Thus, [[s]]TE ,ρ = [[t]]TE ,ρ.
Hence, [sσ]E = [tσ]E by the claim, and therefore, sσ ∗←→E tσ. (⇐) Let ρ be a valuation
over TE satisfying the constraints φ and ρ(x) ∈ I(τ) for all x ∈ X. Take a substitution σ

in such a way that σ(x) = vx for each x ∈ X, where vx ∈ Valτ such that [vx]E = ρ(x).
By Lemma 5.3, [[φ]]M,ρ = true, and thus, |=M φσ by Lemma 2.1. Hence sσ ∗←→E tσ, and
thus [sσ]E = [tσ]E . Therefore [[s]]TE ,ρ = [[t]]TE ,ρ by the claim.

Item 2 follows from item 1. ◀

Before proceeding to the completeness theorem, we connect the two notions related to
consistency (Definitions 5.9 and 5.13).

▶ Lemma 5.16. A CE-theory T is consistent if and only if it is consistent with respect to
values.

Proof (Sketch). (⇒) Suppose that T = ⟨M, E⟩ is a CE-theory over a signature Σ and let
M = ⟨I,J ⟩. Let M = ⟨I, J⟩ be a CE-⟨Σ,M⟩-algebra such that |=M E . Suppose u, v ∈ Valτ

with u
∗←→E v. Then [[u]]M = [[v]]M by Lemma 5.5. Therefore, by u, v ∈ Valτ ∼= I(τ) ⊆ I(τ),

we have u = [[u]]M = [[u]]M = [[v]]M = [[v]]M = v. (⇐) By Lemma 5.15, TE is a model of T.
This witnesses that T is consistent. ◀

We now arrive at the main theorem of this section.
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▶ Theorem 5.17 (completeness). Let T = ⟨M, E⟩ be a consistent CE-theory. Then, we have
E |=cec ΠX. s ≈ t [φ ] if and only if E |= ΠX. s ≈ t [φ ].

Proof. The only if part follows from Theorem 5.6. Thus, it remains to show the if part.
Suppose contrapositively that E |=cec ΠX. s ≈ t [φ ] does not hold. Then, by Lemma 5.15 1,
̸|=TE ΠX. s ≈ t [φ ]. Since |=TE E , by Lemma 5.15 2, this witnesses that there exists a
CE-⟨Σ,M⟩-algebra M such that |=M E but not |=M ΠX. s ≈ t [φ ]. This means E ̸|= ΠX. s ≈
t [φ ]. This completes the proof of the if part. ◀

To conclude this section, we explain the postponed question from the beginning of the
section on the definition of CE-algebras. The question was on why it is required to include
those equipped with underlying extended models – if such models would not be allowed, one
does not obtain the completeness result as witnessed by the following example.

▶ Example 5.18. Consider integer arithmetic for the underlying model M. Take a term
signature Fte = {f : Ints→ Bool, g : Ints→ Bool}. Consider the LCES E = {f(x) ≈ true [x ⩾
0 ], f(x) ≈ true [x < 0 ], g(x) ≈ true}. By orienting the equations in an obvious way, we
obtain a complete LCTRS (e.g. [13, 20]). Then as g(x)↓ = true ̸= f(x) = f(x)↓, it turns
out that no conversions hold between g(x) and f(x). It follows from the Theorem 3.17 that
E ̸|=cec Π∅. g(x) ≈ f(x). Now, from Theorem 5.17, we have E ̸|= Π∅. g(x) ≈ f(x), i.e. one
should find a model that witnesses this invalidity. Indeed, one can take a CE-⟨Σ,M⟩-algebra
M = ⟨I, J⟩ with I(Ints) = Z ∪ {•}, where • /∈ Z, with the interpretations: J(f)(•) = false,
J(f)(a) = true for all a ∈ Z, and J(g)(x) = true for all x ∈ Z ∪ {•}. On the other hand, if we
would require to take I(Ints) = Z, then we do not get any model that invalidates this CE.

6 Related Work

Constrained rewriting began to be popular around 1990, which has been initiated by the
motivation to achieve a tractable solution for completion modulo equations (such as AC,
ACI, etc.), by separating off the (intractable) equational solving part as constraints. These
constraints mainly consist of (dis)equality of built-in equational theories such as x∗y ≈AC y∗x.
A constrained completion procedure in such a framework is given in [10]; it is well-known
that the specification language Maude also deals with such built-in theories [14]. This line of
research was extended to a framework of rewriting with constraints of an arbitrary first-order
formula in [10], where various completion methods have been developed for this. However,
they, similar to us, mainly considered term algebras as the underlying models, because the
main motivation was to deal with a wide range of completion problems by separating off
some parts of the equational theory as constraints.

Another well-known type of constraints studied in the context of constrained rewriting is
membership constraints of regular tree languages. This type of constraints is motivated by
dealing with terms over an (order-)sorted signature and representing an infinite number of
terms that obeys regular patterns obtained from divergence of theorem proving procedures. In
this line of research, [5, 6] give a dedicated completion method for constrained rewrite systems
with membership constraints of regular tree languages. Further a method for inductive
theorem proving for conditional and constrained systems, which is based on tree grammars
with constraints, has been proposed in [3]. We also want to mention [18] as a formalism with
more abstract constraints – confluence of term rewrite systems with membership constraints
over an arbitrary term set has been considered there.
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The work in this era which is in our opinion closest to the LCTRSs formalism is the one
given in [7]. This is also motivated by giving a link between (symbolic) equational deduction
and constraint solving. Thus, they considered constraints of an arbitrary theory such as
linear integer arithmetic, similarly to LCTRSs. Based on the initial model of this framework,
they gave an operational semantics of constraint equational logic programming.

The introduction of the LCTRS framework is more recent, and was initiated by the
motivation to deal with built-in data structures such as integers, bit-vectors etc. in order to
verify programs written by real-world programming languages with the help of SMT-solvers.
A detailed comparison to the works in this line of research has been given in [13].

All in all, to the best of our knowledge, there does not exist anything in the literature on
algebraic semantics of constrained rewriting and Birkhoff style completeness, as considered
in this paper.

7 Conclusion

With the goal to establish a semantic formalism of logically constrained rewriting, we have
introduced the notions of constrained equations and CE-theories. For this, we have extended
the form of these constrained equations by specifying explicitly the variables, which need to
be instantiated by values, in order to treat equational properties in a uniform way. Then we
have introduced a notion of CE-validity to give a uniform foundation from a semantic point of
view for the LCTRS formalism. After establishing basic properties of the introduced validity,
we have shown the relation to the conversion of rewriting. Then we presented a sound
inference system CEC0 to prove validity of constrained equations in CE-theories. We have
demonstrated its ability to establish validity via some examples. A partial completeness result
and a discussion on why only partial completeness is obtained followed. Finally, we devised
sound and complete algebraic semantics, which enables one to show invalidity of constrained
equations in CE-theories. Furthermore, we have derived an important characterization
of CE-theories, namely, consistency of CE-theories, for which the completeness theorem
holds. Thus, we have established a basis for CE-theories and their validity by showing
its fundamental properties and giving methods for proving and disproving the validity of
constrained equations in CE-theories.

The question whether there exists a sound and complete proof system that captures
CE-validity remains open. Part of our future work is the automation of proving validity of
constrained equations.

This paper uses the initial formalism of LCTRSs given in [13]. However, there exists a
variant which incorporates the interpretation of user-defined function symbols by the term
algebra [4]. This variant is incomparable to the initial one. Nevertheless, to investigate
the semantic side of LCTRSs, the initial formalism was a reasonable starting point. The
adaptation of the current work to the extended formalism is also a part of our future work.
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Termination of Generalized Term Rewriting
Systems
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Abstract
We investigate termination of Generalized Term Rewriting Systems (GTRSs), which extend Condi-
tional Term Rewriting Systems by considering replacement restrictions on selected arguments of
function symbols, as in Context-Sensitive Rewriting, and conditional rewriting rules whose condi-
tional part may include not only a mix of the usual (reachability, joinability,. . . ) conditions, but
also atoms defined by a set of definite Horn clauses. GTRSs can be used to prove confluence and
termination of Generalized Rewrite Theories and Maude programs. We have characterized confluence
of terminating GTRSs as the joinability of a finite set of conditional pairs. Since termination of
GTRSs is underexplored to date, this paper introduces a Dependency Pair Framework which is
well-suited to automatically (dis)prove termination of GTRSs.
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1 Introduction

Generalized Term Rewriting Systems (GTRS [21]) extend Conditional Term Rewriting
Systems (CTRSs, see, e.g., [29, Chapter 7] and the references therein) by (i) restricting
reductions on specific arguments of function symbols by means of a replacement map µ [17]
and by also (ii) including atoms in the conditional part of rules which are defined by (iii) a
set of definite Horn clauses. GTRSs and CTRSs are compared in [21, Section 7.3].

▶ Example 1. The following GTRS R to divide natural numbers in Peano’s notation (adap-
ted from [32, Example 9]), consists of clauses (1)-(5) and rules (6)-(10).

x ≈ y ⇐ x →∗ y (1)
s(x) > 0 (2)

s(x) > s(y) ⇐ x > y (3)
0 ≤ x (4)

s(x) ≤ s(y) ⇐ x ≤ y (5)

x − 0 → x (6)
0 − y → 0 (7)

s(x) − s(y) → x − y (8)
div(x, y) → pair(0, x) ⇐ y > x (9)

div(x, y) → pair(s(q), r) ⇐ y ≤ x, div(x − y, y) ≈ pair(q, r) (10)

A call div(m, n) would return pair(q, r) with q and r the quotient and remainder.

Rewriting steps s →R t with GTRSs R are defined by deduction of goals s → t (where → is
a predicate symbol) with respect to the first-order theory R of R, i.e., s →R t iff R ⊢ s → t

holds. Accordingly, main computational properties such as confluence and termination are
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32:2 Termination of Generalized Term Rewriting Systems

defined by applying the usual abstract notions to →R. For instance, a GTRS R is terminating
if →R is terminating, i.e., there is no infinite rewrite sequence t1 →R t2 →R · · · . Confluence
of terminating GTRSs R is characterized as the joinability of a number of conditional pairs
⟨s, t⟩ ⇐ c obtained from the rules in R [21]. In this paper we investigate how to prove
termination of GTRSs. As explained in [24], the “termination behavior” (of CTRSs) can be
investigated as having a horizontal dimension (H-termination, or just termination in the usual
sense), which pays attention to sequences of rewriting steps only, and a vertical dimension
(V-termination) which pays attention to the existence of infinite proof trees, eventually built
to prove a rewriting goal s → t in a proof system as in natural deduction [30]. When both H-
and V-termination are achieved, the CTRS is said to be operationally terminating [22].
Thus, termination is a weaker property, easier to achieve. For instance, R in Example 1
is not operationally terminating: the attempt to rewrite div(0, 0) using rule (10) leads to
build an infinite tree due to the (recurrent) need to prove that div(0, 0) ≈ pair(q, r) (obtained
from the second condition of the rule after simplifying div(0 − 0, 0) ≈ pair(q, r)) is satisfied
by further rewriting on div(0, 0). However, R is terminating (see Example 43).

The paper is organized as follows: after some preliminaries in Section 2, Section 3 recalls
the notion of a GTRS. Section 4 investigates the structure of infinite rewrite sequences
with GTRSs. Nowadays, proofs of termination of reduction-based systems are based on
the notion of dependency pair (DP [2]) and dependency pair framework [8, 9] for Term
Rewriting Systems (TRSs [3]). Section 5 introduces appropriate notions of dependency pairs
of a GTRS R = (F , Π, µ, H, R), which are viewed as a new set P of Horn clauses which are
added to H to obtain a new GTRS DPHC (R) which characterizes termination of R. Section
6 introduces a framework for (dis)proving termination of GTRSs which is amenable for
automation through appropriate adaptations of the usual notions of termination problem and
processor introduced in the DP Framework for TRSs [8]. Section 7 introduces five processors
to be used in our framework and illustrates their use by means of examples. Section 8
discusses some related work. Section 9 concludes.

2 Preliminaries

In the following, we often write iff instead of if and only if. We assume some familiarity with
the basic notions of term rewriting [3, 29, 33] and first-order logic [7, 27]. We just summarize
the main notions and notations we use.

Given a binary relation R ⊆ A × A on a set A, we often write a R b instead of (a, b) ∈ R.
The transitive closure of R is denoted by R+, and its reflexive and transitive closure by
R∗. An element a ∈ A is irreducible (or an R-normal form), if there exists no b such that
a R b. We say that R is terminating if there is no infinite sequence a1 R a2 R a3 · · · . In
this paper, X denotes a countable set of variables and F denotes a signature, i.e., a set of
symbols {f, g, . . .}, each with a fixed arity given by a mapping ar : F → N. The set of terms
built from F and X is T (F , X ). The set of variables occurring in t is Var(t). Terms are
viewed as labeled trees in the usual way. Positions p are represented by chains of positive
natural numbers used to address subterms t|p of t. The root position of a term is denoted
as Λ; the root symbol as root(t). The set of positions of a term t is Pos(t). A term t is a
strict subterm of s (written s ✄ t) iff t = s|p for some p ∈ Pos(s) − {Λ}. We write s ☎ t if
s = t or s ✄ t.

Given a signature F , a replacement map is a mapping µ from symbols in F to sets of
positive numbers satisfying µ(f) ⊆ {1, . . . , ar(f)} for all f ∈ F [17]. The set of replacement
maps for F is MF . We use µ⊤(f) = {1, . . . , ar(f)} and µ⊥(f) = ∅ for all f ∈ F . The set of µ-
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replacing (or active) positions of t is Posµ(t) = {Λ}, if t ∈ X , and Posµ(t) = {Λ} ∪ {i.p | i ∈
µ(f), p ∈ Posµ(ti)}, if t = f(t1, . . . , tk). The set of non-µ-replacing (or frozen) positions of t

is Posµ(t) = Pos(t) − Posµ(t). Accordingly, subterms u = t|p of a term t at an active (resp.
frozen) position p ∈ Posµ(t) (resp. p ∈ Posµ(t)) of t are called active (resp. frozen). Positions
of active non-variable subterms of t are denoted as Posµ

F (t). Given a term t, the set of
variables occurring at active positions in t is Varµ(t) = {x ∈ Var(t) | ∃p ∈ Posµ(t), x = t|p}.
A term t is a strict, active subterm of s (written s✄µ t) iff t = s|p for some p ∈ Posµ(s)−{Λ}.
We write s ☎µ t if s = t or s ✄µ t.

Consider a signature F of function symbols and a signature Π of predicate symbols. Atoms
A ∈ Atoms(F , Π, X ) and first-order formulas F ∈ Forms(F , Π, X ) on such signatures, with
variables in X , are built in the usual way. A (definite) Horn clause (with label α) is written
α : A ⇐ A1, . . . , An, for atoms A, A1, . . . , An; if n = 0, then α is written A rather than
A ⇐. A first-order theory (FO-theory for short) Th is a set of sentences (formulas whose
variables are all quantified). An F , Π-structure A (or just structure if no confusion arises)
consists of a non-empty set dom(A), called domain and often denoted A if no confusion
arises, together with an interpretation of symbols f ∈ F and P ∈ Π as mappings fA and
relations P A on A, respectively. Then, the usual interpretation of first-order formulas with
respect to A is considered [27, page 60]. An F , Π-model for a theory Th is just a structure A
that makes them all true, written A |= Th. A formula F is a logical consequence of a theory
Th (written Th |= F ) iff every model A of Th is also a model of F . Also, Th ⊢ F means that
F is deducible from Th by using a correct and complete deduction procedure. In that case, ⊢
and |= coincide.

An f-condition γ is an atom [13]. Sequences F = (γi)n
i=1 = (γ1, . . . , γn) of f-conditions are

called f-sequences. We often drop “f-” when no confusion arises. Empty sequences are written
(). Given an FO-theory Th, a condition γ is Th-feasible (or just feasible if no confusion
arises) if Th ⊢ σ(γ) holds for some substitution σ; otherwise, it is infeasible. Note that
(in)feasibility is, in general, undecidable. A sequence F is Th-feasible (or just feasible) iff
there is a substitution σ such that, for all γ ∈ F, Th ⊢ σ(γ) holds.

A CTRS is a pair R = (F , R) where F is a signature and R is a set of rules ℓ → r ⇐ c,
with c a sequence s1 ≈ t1, · · · , sn ≈ tn for some n ≥ 0 and terms ℓ, r, s1, . . . , tn such that
ℓ /∈ X . As usual, ℓ and r are called the left- and right-hand sides of the rule (lhs and rhs,
respectively), and c is the conditional part of the rule. Labeled rules are written α : ℓ → r ⇐ c,
where α is a label. In the following, given R, we often write α ∈ R, instead of α ∈ R, to say
that α is a rule of R.

3 Generalized Term Rewriting Systems

A Generalized Term Rewriting System (GTRS) is a tuple R = (F , Π, µ, H, R) where F is
a signature of function symbols, Π is a signature of predicate symbols, including at least
→ and →∗, µ ∈ MF (µ⊤ is assumed if µ is not explicitly given, as in Example 1), H is a
(possibly empty) set of clauses A ⇐ c, where root(A) /∈ {→, →∗}, and R is a set of rewrite
rules ℓ → r ⇐ c such that ℓ /∈ X . In both cases, c is a sequence of atoms. Note that rules in
R are Horn clauses. We often give them a label α as follows: α : ℓ → r ⇐ c. The rules in R

permit the usual distinction of function symbols f ∈ F as defined (if root(ℓ) = f for some
ℓ → r ⇐ c ∈ R) or constructor symbols (otherwise). The set of defined (resp. constructor)
symbols of R is DR or just D if no confusion arises (resp. CR or C). The FO-theory of R is

R = {(Rf), (Co)} ∪ {(Pr)f,i | f ∈ F , i ∈ µ(f)} ∪ {(HC)α | α ∈ H ∪ R}

FSCD 2024
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Table 1 Generic sentences of the first-order theory of rewriting.

Label Sentence
(Rf) (∀x) x →∗ x

(Co) (∀x, y, z) x → y ∧ y →∗ z ⇒ x →∗ z

(Pr)f,i (∀x1, . . . , xk, yi) xi → yi ⇒ f(x1, . . . , xi, . . . , xk) → f(x1, . . . , yi, . . . , xk)
(HC)A⇐A1,...,An (∀x1, . . . , xp) A1 ∧ · · · ∧ An ⇒ A

where x1, . . . , xp are the variables occurring in A1, . . . , An and A

where (see Table 1), (Rf) expresses reflexivity of many-step rewriting; (Co) expresses compat-
ibility of one-step and many-step rewriting; for each k-ary function symbol f and i ∈ µ(f),
(Pr)f,i enables the propagation of rewriting steps in the i-th immediate active subterm t|i of
a term t with root symbol f ; finally, for each Horn clause α ∈ H ∪ R, (HC)α provides the
usual implicative form for them. For all terms s and t, we write s →R t (resp. s →∗

R t) iff
R ⊢ s → t (resp. R ⊢ s →∗ t). Since R is a Horn theory, the use of, e.g., resolution [31]
provides a correct and complete proof method for the considered goals.
▶ Remark 2 (Infeasible rules). Only rules ℓ → r ⇐ c ∈ R whose conditional part c is R-feasible
can be used in rewriting steps. In the following, we assume that all rules in R can be proved
R-feasible. Again, resolution can be used for this purpose, see also [13].
The following result provides a position-based view of rewriting with GTRSs.

▶ Proposition 3 ([21, Proposition 58]). Let R = (F , Π, µ, H, R) be a GTRS and s, t ∈
T (F , X ). Then, s →R t iff there is p ∈ Posµ(s) and ℓ → r ⇐ c ∈ R such that (i) s|p = σ(ℓ)
for some substitution σ, (ii) for all A ∈ c, R ⊢ σ(A) holds, and (iii) t = s[σ(r)]p.

▶ Definition 4. A GTRS R is terminating iff there is no infinite sequence t1 →R t2 →R · · · .

▶ Example 5. Consider the GTRS R = (F , Π, µ⊤, H, R) (from COPS #342, [34, Ex. 4])

x ≈ y ⇐ x →∗ y (11)
f(x′, x′′) → h(x, f(x, b)) ⇐ x′ ≈ x, x′′ ≈ x (12)

f(g(y′), y′′) → h(y, f(g(y), a)) ⇐ y′ ≈ y, y′′ ≈ y (13)
a → b (14)

where F = {a, b, f, g, h}, Π = {≈, →, →∗}, H = {(11)}, and R = {(12), (13), (14)}. R is:

{(Rf), (Co), (Pr)f,1, (Pr)f,2, (Pr)g,1, (Pr)h,1, (Pr)h,2, (HC)(11), (HC)(12), (HC)(13), (HC)(14)}

Note that R is not terminating: f(b, b) →R h(b, f(b, b)) →R · · · We prove it in Example 30.

The following example illustrates the use of replacement maps.

▶ Example 6. Consider the GTRS R = (F , Π, µ, H, R) with F , Π, H and R as in Example
5 but with µ(f) = {1, 2}, µ(g) = {1}, and µ(h) = ∅. Now,

R = {(Rf), (Co), (Pr)f,1, (Pr)f,2, (Pr)g,1, (HC)(11), (HC)(12), (HC)(13), (HC)(14)}

Note the absence of (Pr)h,1 and (Pr)h,2 due to µ(h) = ∅. Since rewritings on the arguments
of h are forbidden by µ(h) = ∅, R is terminating (see Example 8 below).

Termination of GTRSs is characterized by interpretation of the symbols as follows.
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▶ Proposition 7 (Termination of GTRSs by interpretation). A GTRS R is terminating iff
there is a model A of R with non-empty domain A and →A is terminating on A.

▶ Example 8. Consider the GTRS R in Example 6. By Proposition 7, the following model
A of R (computed by the tool AGES [12] for the automatic generation of models of first-order
theories) with domain A = N ∪ {−1}, function symbols interpreted by

aA=3 bA=0 fA(x)=x + y + 13 gA(x)=x hA(x, y)=1

and predicate symbols as follows:

x ≈A y ⇔ true x →A y ⇔ x > y x(→∗)Ay ⇔ true

proves termination of R, as →A is terminating on N ∪ {−1}.

Sometimes, termination of GTRSs R is difficult to prove by using Proposition 7 due to the
need of (automatically) synthesizing appropriate interpretations. In the following, we develop
a more powerful approach to prove termination of GTRSs. For instance, in Example 20 we
prove termination of R in Example 6 without synthesizing any interpretation.

4 Infinite rewrite sequences starting from minimal terms

In this section, following [14], we consider the structure of infinite rewrite sequences as the
starting point for the subsequent analysis of termination of GTRSs.

▶ Definition 9. Let R = (F , Π, µ, H, R) be a GTRS. A term t is nonterminating if there is
an infinite sequence t = t1 →R t2 →R · · · . A nonterminating term t is minimal if all strict
active subterms t′ of t (i.e., t ✄µ t′) are terminating. Let M∞,µ be the set of such minimal
nonterminating terms.

Nonterminating terms contain active minimal nonterminating subterms (cf. [1, Lemma 3]).

▶ Definition 10. Let R = (F , Π, µ, H, R) be a GTRS. The set of active defined subterms
of a term t is D☎µ(R, t) = {t|p | p ∈ Posµ(t), root(t|p) ∈ D}.

Infinite rewrite sequences starting from a minimal nonterminating term s (i) first rewrite
s below the root to a term t (written s

>Λ−→∗
Rt) which (ii) matches the left-hand side ℓ of a

rule ℓ → r ⇐ c ∈ R, i.e., t = σ(ℓ) for some substitution σ such that σ(c) holds, and hence
(iii) t rewrites at the root to σ(r) (written t = σ(ℓ) Λ→R σ(r)), and then (iv) σ(r) contains a
minimal nonterminating subterm u on which the infinite sequence may continue.

▶ Proposition 11. Let R = (F , Π, µ, H, R) be a GTRS and t ∈ M∞,µ. There exist ℓ → r ⇐
c ∈ R, a substitution σ, and u ∈ M∞,µ such that t

>Λ−→∗
R σ(ℓ) Λ→R σ(r) ☎µ u, and either

1. there is s ∈ D☎µ(R, r), ℓ ⋫µ s, such that u = σ(s), or
2. there is x ∈ Varµ(r) − Varµ(ℓ) such that σ(x) ☎µ u.

The following definition collects the rules that are used in the first and second cases of
Proposition 11, respectively.

▶ Definition 12. Let R = (F , Π, µ, H, R) be a GTRS. Let DRules(R) be the set of rules
in R which depend on other defined symbols in R and ERules(R) be the set of rules in R
whose right-hand sides contain active variables which are not active in the corresponding
left-hand side:

DRules(R) = {ℓ → r ⇐ c ∈ R | D☎µ(R, r) ̸= ∅}
ERules(R) = {ℓ → r ⇐ c ∈ R | Varµ(r) − Varµ(ℓ) ̸= ∅}
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5 Dependency pairs for termination of GTRSs

In the dependency pair approach (or just DP approach) for TRSs [2], termination of a TRS
R is characterized as the absence of infinite chains ⟨u1, v1⟩, ⟨u2, v2⟩, . . .,1 where for all i ≥ 1,
⟨ui, vi⟩ are dependency pairs, which are obtained from the rules ℓ → r ∈ R [2, Definition 3]
by marking the root symbols f (as, e.g., f ♯ but often capitalizing it as F ) in the left-hand
side ℓ of the rule and also the root symbol of the defined subterm s of the right-hand side r

which is referred in Proposition 11. Hence, ⟨u, v⟩, where u = ℓ♯ and v = s♯ is a dependency
pair of R. Furthermore, there is a substitution σ such that, for all i ≥ 1, consecutive
pairs are connected as follows σ(vi) →∗

R σ(ui+1) [2, Definition 5]. This corresponds to the
sequence t

>Λ−→∗
R σ(ℓ) referred in Proposition 11. In our generalization of the DP approach to

GTRSs R = (F , Π, µ, H, R), we use a fresh predicate symbol t→ /∈ Π to represent conditional
pairs u

t→ v ⇐ c which are then added as new definite Horn clauses to H to capture the
termination behavior of R (hence the “t” over the arrow). In this way, we obtain a new
GTRS R′ whose set of rules is R as well. Since the reduction relation of R does not depend
on t→, both →R and →R′ coincide; thus, we take the pairs from the set of Horn clauses in
R′ while using →∗

R′=→∗
R to connect them.

▶ Notation 13. Given a GTRS R, we write R = (F , Π, µ, H ⊎ P, R) making explicit the
(possibly empty) set P of all clauses u

t→ v ⇐ c for some terms u and v and conditional part
c which are used in R. We also write PR to refer to such a subset P of Horn clauses of R.

As usual in the DP approach, unless established otherwise, in the following we assume that
considered pairs are pairwise variable-disjoint renamings of pairs taken from PR.

▶ Definition 14 (Chain of pairs of a GTRS). Let R be a GTRS. An R-chain is a finite or
infinite sequence of pairs ui

t→ vi ⇐ ci ∈ PR together with a substitution σ such that, for all
i ≥ 1 (1 ≤ i < n for sequences of n > 1 pairs), R ⊢ σ(ci), σ(vi) →∗ σ(ui+1), σ(ci+1) holds.
An R-chain is called minimal if for all i ≥ 1, σ(vi) is terminating.

According to Definition 14, the existence of a finite chain α1, . . . , αn for pairs αi : ui
t→ vi ⇐ ci,

1 ≤ i ≤ n, is equivalent to the feasibility of the sequence

c1, v1 →∗ u2, . . . , cn−1, vn−1 →∗ un, cn (15)

▶ Remark 15 (Infeasible pairs). Since only R-feasible pairs can be used in R-chains, we can
safely remove R-infeasible pairs from PR in termination proofs.
As discussed above, we use marked symbols f ♯ associated to (defined) symbols f . In general,
given a signature F , we let F ♯ = {f ♯ | f ∈ F}; and given µ ∈ MF and D ⊆ F , we let
µ♯

D ∈ MF∪D♯ (or just µ♯ if no confusion arises) be as follows: for all f ∈ F ∪ D♯,

µ♯(f) =
{

µ(f) if f ∈ F
µ(g) if f = g♯ for some g ∈ D

As for the DP approach for TRSs, “classical” dependency pairs u
t→ v ⇐ c, obtained from

rules ℓ → r ⇐ c by letting u = ℓ♯ and v = s♯ for some active defined subterm s of v, capture
the situation described in the first item of Proposition 11 (see, e.g., [14, Lemma 1] for TRSs).

1 We use this early notation instead of the current rule-based one, u → v, to prepare the inclusion of our
dependency pairs in the component H, rather than R, of the considered GTRS. See Definition 14.
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However, dealing with GTRSs, we also need to consider item 2 in Proposition 11 for which
“classical” dependency pairs are not appropriate. In this case, Proposition 11 guarantees that
a minimal nonterminating subterm s can be found in σ(x). In order to find and then mark
s, we use (i) the active subterm relation ☎µ defined by a set of clauses Subt(F , µ) and (ii)
a binary predicate symbol Mk defined by a set of clauses Mark(F) for a signature F and
µ ∈ MF :
1. Let ϖ☎µ be a new predicate symbol. Then, Subt(F , µ) consists of clauses

x ϖ☎µ x (16)
f(x1, . . . , xi, . . . , xk) ϖ☎µ

x′
i ⇐ xi ϖ☎µ

x′
i (17)

for each f ∈ F , k = ar(f), i ∈ µ(f), and variables x and xi, x′
i for 1 ≤ i ≤ k.

2. Let Mk be a new predicate symbol. Then, Mark(F) consists of the clauses :
Mk(f(x1, . . . , xk), f ♯(x1, . . . , xk)) (18)

for each f ∈ F , k = ar(f), and fresh variables x1, . . . , xk.

▶ Definition 16. Let R = (F , Π, µ, H, R) be a GTRS whose set of defined symbols is D. The
GTRS DPHC (R) is:

(F ∪ D♯, Π ∪ { ϖ☎µ , Mk}, µ♯, H ∪ Subt(F ∪ D♯, µ♯) ∪ Mark(D) ∪ HDP(R) ∪ HDPC (R), R)

where

HDP(R) = {ℓ♯ t→ v♯ ⇐ c | ℓ → r ⇐ c ∈ DRules(R), v ∈ D☎µ (R, r), ℓ ⋫µ v}
HDPC (R) = {ℓ♯ t→ x′′ ⇐ c, x ϖ☎µ x′, Mk(x′, x′′) | ℓ → r ⇐ c ∈ R, x ∈ Varµ(r) − Varµ(ℓ)

and x′ and x′′ are fresh variables}

The set of clauses HDP(R) correspond to “classical” conditional dependency pairs for R.
HDPC (R) contains collapsing dependency pairs for rules ℓ → r ⇐ c in R, as the right-hand
side of one of such pairs is a variable x′′ corresponding to a variable x ∈ Var(r) which is
active in r but missing, or not active, in ℓ; the conditional part of such pairs uses ϖ☎µ to
extract active minimal nonterminating subterms s to which x′ gets bounded, and finally
mark it using Mk so that x′′ is finally bound to s♯ (see item 2 of Proposition 11). Note that
PDPHC (R) = HDP(R) ∪ HDPC (R).

▶ Example 17. For R in Example 1, PDPHC (R) = HDP(R) ∪ HDPC (R) where HDP(R) =
{(19)} and HDPC (R) = {(20), (21)}, with

s(x) −♯ s(y) t→ x −♯ y (19)

DIV(x, y) t→ q′′ ⇐ y ≤ x, div(x − y, y) ≈ pair(q, r), q ϖ☎µ q′, Mk(q′, q′′) (20)

DIV(x, y) t→ r′′ ⇐ y ≤ x, div(x − y, y) ≈ pair(q, r), r ϖ☎µ r′, Mk(r′, r′′) (21)

where, as usual in the DP approach, the uppercase identifier DIV corresponds to div♯. Besides,
Subt(F , µ) = {(22), . . . , (33)} and Mark(D) = {(34), (35)}, with

x ϖ☎µ x (22)
s(x) ϖ☎µ x′ ⇐ x ϖ☎µ x′ (23)

x − y ϖ☎µ x′ ⇐ x ϖ☎µ x′ (24)
x − y ϖ☎µ y′ ⇐ y ϖ☎µ y′ (25)

div(x, y) ϖ☎µ x′ ⇐ x ϖ☎µ x′ (26)
div(x, y) ϖ☎µ y′ ⇐ y ϖ☎µ y′ (27)

pair(x, y) ϖ☎µ x′ ⇐ x ϖ☎µ x′ (28)

pair(x, y) ϖ☎µ y′ ⇐ y ϖ☎µ y′ (29)

x −♯ y ϖ☎µ x′ ⇐ x ϖ☎µ x′ (30)

x −♯ y ϖ☎µ y′ ⇐ y ϖ☎µ y′ (31)
DIV(x, y) ϖ☎µ x′ ⇐ x ϖ☎µ x′ (32)
DIV(x, y) ϖ☎µ y′ ⇐ y ϖ☎µ y′ (33)

Mk(x − y, x −♯ y) (34)
Mk(div(x, y), DIV(x, y)) (35)
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▶ Example 18. For R in Example 5, PDPHC (R) = HDP(R) ∪ HDPC (R), where HDP(R) =
{(36), (37), (38)} and HDPC (R) = {(39), (40)}, with

F(x′, x′′) t→ F(x, b) ⇐ x′ ≈ x, x′′ ≈ x (36)
F(g(y′), y′′) t→ F(g(y), a) ⇐ y′ ≈ y, y′′ ≈ y (37)

F(g(y′), y′′) t→ A ⇐ y′ ≈ y, y′′ ≈ y (38)
F(x′, x′′) t→ z′ ⇐ x′ ≈ x, x′′ ≈ x, x ϖ☎µ

z, Mk(z, z′) (39)

F(g(y′), y′′) t→ z′ ⇐ y′ ≈ y, y′′ ≈ y, y ϖ☎µ
z, Mk(z, z′) (40)

▶ Theorem 19 (Termination). Let R = (F , Π, µ, H, R) be a GTRS.
1. R is terminating if there is no infinite minimal DPHC (R)-chain.
2. R is nonterminating if there is an infinite DPHC (R)-chain.

▶ Example 20 (Termination of R in Example 6 by absence of DPHC (R)-chains). For R in
Example 6, HDP(R) is empty as the (definite) subterms f(x, b), f(g(y), a), and a in the
right-hand sides of rules (13) and (14) are frozen. Also, HDPC (R) = ∅ as variables x and
y in the right-hand sides of rules (13) and (14) are frozen too. Thus, no DPHC (R)-chain
is possible. By Theorem 19, R is terminating. In contrast to the proof of termination in
Example 8, based on Proposition 7, no synthesis of any model is required here.

The following section introduces a Dependency Pair Framework for the mechanization of
proofs of termination of GTRSs using dependency pairs.

6 The Dependency Pair Framework for GTRSs

The Dependency Pair (DP) Framework is a divide-and-conquer technique to prove “termina-
tion problems”. They are decomposed into smaller or simpler ones to finally obtain “trivial”
problems which can be easily solved. Then, we combine the obtained answers to provide a
solution to the initial problem. Thus, the first ingredient of the DP Framework for GTRSs is
a suitable notion of termination problem. Let F = {a, m} be a signature of flag constants φ

referring to arbitrary (resp. minimal) R-chains if φ = a (resp. φ = m).

▶ Definition 21 (GTRS problem). A GTRS problem τ = (R, φ) consists of a GTRS R and
φ ∈ F.

We often speak of (R, m)-chains (or just τ -chains if τ = (R, m)) instead of minimal R-chains;
and of (R, a)-chains (resp. τ -chains if τ = (R, a)) instead of arbitrary R-chains.

▶ Definition 22 (Finite GTRS problem). A GTRS problem τ = (R, φ) is finite iff there is no
infinite τ -chain; otherwise, τ is infinite.

Accordingly, the following result rephrases Theorem 19.

▶ Theorem 23. A GTRS R is terminating iff (DPHC (R), φ) is finite for some f ∈ F.

Processors transform GTRS problems τ = (R, φ) into possibly empty sets {τ1, . . . , τn} of
GTRS problems τi = (Ri, φi), hopefully easier to deal with. Processors may also return
“no”, with the intended meaning of τ being infinite.

▶ Definition 24 (GTRS processor). A GTRS processor P is a partial function from GTRS
problems into sets of GTRS problems. Alternatively, it can return “no”. Dom(P) is the set
of GTRS problems τ for which P is defined.
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In the following we often speak of “processors” rather than “GTRS processors”. For the sake
of readability, we often write P(R, φ) rather than P((R, φ)). The most relevant properties to
be established when using processors are soundness and completeness. Soundness is essential
to prove GTRS problems finite by using combinations of processors; completeness for proving
infiniteness.

▶ Definition 25 (Soundness and completeness). Let P be a processor and τ ∈ Dom(P). We
say that P is:

τ -sound iff τ is finite whenever P(τ) ̸= no and for all τ ′ ∈ P(τ), τ ′ is finite.
τ -complete iff τ is infinite whenever P(τ) = no or there is τ ′ ∈ P(τ) such that τ ′ is
infinite.

Accordingly, given φ ∈ F, we say that P is φ-sound (resp. φ-complete) if it is τ -sound
(τ -complete) for all τ = (R, φ′) ∈ Dom(P) such that φ = φ′. P is sound (resp. complete) if
it is φ-sound (φ-complete) for all φ ∈ F.

Processors are used in a divide and conquer scheme to incrementally simplify a target GTRS
problem τ0, possibly decomposing it into (a tree of) smaller problems which are independently
treated in the same way.

▶ Definition 26 (GTRS Proof Tree). Let τ0 be a GTRS problem. A GTRS Proof tree T
(GTRSP-tree for short) for τ0 is a tree whose nodes are labeled with GTRS problems; the
leaves may also be labeled with either “yes” or “no”. The root of T is labeled with τ0. For
every inner node n with label τ , there is a processor P such that τ ∈ Dom(P) and:
1. If P(τ) = no, then n has just one child n’ with label “no”.
2. If P(τ) = ∅, then n has just one child n’ with label “yes”.
3. If P(τ) = {τ1, . . . , τk} with k > 0, then n has exactly k children n1, . . . , nk with labels

τ1, . . . , τk, respectively.

▶ Theorem 27. Let τ be a GTRS problem and T be a GTRSP-tree for τ . Then,
1. If all leaves in T are labeled with “yes”, and all involved processors are sound for the

GTRS problems they are applied to, then τ is finite.
2. If T has a leaf with label “no” and all processors from τ to the leaf are complete for the

GTRS problems they are applied to, then τ is infinite.

Given a GTRS R, τI = (DPHC (R), φ), where φ ∈ F, is called an initial problem, from which
a proof of (non)termination of R is initiated. The specific choice of φ is important in practice,
as soundness/completeness of some processor may depend of this choice. However, from
an implementation point of view (which we do not address in this paper), we could easily
adapt the open DP framework discussed in [25, Section 6], which leaves φ unespecified until
a particular use of processors establishes some requirements to fix it.

7 Processors for the DP Framework for GTRSs

In this section we introduce several processors for their use in proofs of termination of GTRSs
and illustrate their application with some examples. Processors PInf and PCyc are used to
prove GTRS problems infinite (Section 7.1). The SCC processor PSCC permits the use of
graph techniques to decompose GTRS problems (Section 7.2). The subterm processor Pπ,✄µ

removes pairs from P without paying attention to rules in R (Section 7.3). The Removal
Pair Processor PRP uses terminating relations to remove pairs from P (Section 7.4).
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7.1 Proving GTRS problems infinite
The following processor detects a simple kind of infinite GTRS problems.

▶ Definition 28 (Infiniteness processor). Let R be a GTRS and φ ∈ F. Then, PInf is given
by PInf (R, φ) = no iff there is u

t→ v ⇐ c ∈ PR and substitutions η and θ such that η(c) and
η(v) = θ(η(u)) hold.

▶ Theorem 29. PInf is sound and a-complete. If τ = (R, m) and v in Definition 28 is
ground and contains no symbol from DR, then PInf is τ -complete.

▶ Example 30 (Nontermination of R in Example 5). For DPHC (R) in Example 18, and
τI = (DPHC (R), a), consider (36) in Example 18, i.e., F(x′, x′′) t→ F(x, b) ⇐ x′ ≈ x, x′′ ≈ x,
η = {x 7→ b, x′ 7→ b, x′′ 7→ b}, and θ be the empty substitution. Since η satisfies the
conditional part of (36) and η(F(x, b)) = F(b, b) = η(F(x′, x′′)), we have PInf (τI) = no.
Hence, by completeness of PCyc (Theorem 32), τI is infinite, and R is not terminating.

Just requiring (i) feasibility of c and that (ii) v matches u in Definition 28 does not guarantee
completeness. For instance, α : F(x) t→ F(s(x)) ⇐ x →∗ 0 is feasible (use σ(x) = 0). The
right-hand side F(s(x)) matches the left-hand side F(x). However, there is no infinite chain
using α only. In practice, PInf will be used with pairs u

t→ v without conditional part. In
this way, checking that v matches u, i.e., v = θ(u) for some substitution θ, suffices.

▶ Definition 31 (Cycle processor). Let R be a GTRS, and φ ∈ F. Then, PCyc is given by
PCyc(R, φ) = no iff there are n ≥ 1 pairs α1, . . . , αn ∈ PR such that the following sequence
is R-feasible

c1, v1 →∗ u2, . . . , ci, vi →∗ ui+1, . . . , cn, vn →∗ u1 (41)

▶ Theorem 32. PCyc is sound and a-complete. If τ = (R, m) and for all 1 ≤ i ≤ n and
vi in pairs αi in Definition 31 is ground and contains no symbol from DR, then PCyc is
τ -complete.

▶ Example 33. Consider R = (F , Π, µ⊤, H, R), where H = {(42)} and R = {(43), (44)}:

x ≈ y ⇐ x →∗ y (42)
a → c(x) ⇐ x ≈ b (43)

b → a (44)

Regarding DPHC (R), Subt(F , µ) and Mark(F) are defined as explained above, and we have
HDP(R) = {(45)} and HDPC (R) = {(46)}, with

B → A (45)
A → x′′ ⇐ x ≈ b, x ϖ☎µ

x′, Mk(x′, x′′) (46)

We prove R nonterminating by applying PCyc to τI = (DPHC (R), a). The following sequence
built using the pairs in HDP(R) and HDPC (R) according to (41):

A →∗ A, x ≈ b, x ϖ☎µ
x′, Mk(x′, x′′), x′′ →∗ B (47)

is DPHC (R)-feasible, as it is satisfied by σ = {x 7→ b, x′ 7→ b, x′′ 7→ B}. Thus, PCyc(τI) = no.

Note that PInf does not apply to R in Example 33: the only substitution satisfying the
conditional part of (46) is σ in the example. But the instance σ(x′′) = B of the right-hand
side of (46) does not match the left-hand side A of (46). However, PCyc does not subsume
PInf . For instance, F(x) t→ F(s(x)), where s is not a defined symbol, can be used to define an
infinite chain which would be easily detected by PInf . However, F(s(x)) →∗ F(x) is infeasible
and PCyc could not be used to detect infiniteness of a GTRS-problem involving such a pair.
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7.2 The SCC processor
In this section we provide a notion of graph which captures infinite (minimal) chains of
(dependency) pairs as given in Definition 14.

▶ Definition 34 (GTRS Graph of Pairs). Let R be a GTRS. The GTRS-graph G(R) has PR
as the set of nodes. There is an arc from α ∈ PR to α′ ∈ PR iff α, α′ is an R-chain for some
substitution σ.

The following result approximates the (in general incomputable) dependency graph using
the infeasibility of some sequences. Although (in)feasibility is undecidable, a number of
techniques and tools have been developed to automatically (dis)prove it, thus providing a
practical approach to approximate the graph.

▶ Definition 35 (Estimated GTRS Graph). Let R be a GTRS. The estimated GTRS-graph
EG(R) has PR as the set of nodes. Let α : u

t→ v ⇐ c, α′ : u′ t→ v′ ⇐ c′ ∈ PR be such that
Var(α) ∩ Var(α′) = ∅ (rename if necessary). There is an arc from α to α′ in EG(R) iff
c, v →∗ u′, c′ cannot be proved R-infeasible.

The sequence considered in Definition 35 actually characterizes the GTRS chain required in
Definition 34 to draw an arc from a node α1 to a node α2 (see (15)): there is such an arc
iff c, c′, v →∗ u′ is feasible. Definition 35 provides an estimation as only an R-infeasibility
proof is attempted (by using some method, tool, etc.); if it succeeds, the arc is dismissed;
otherwise, the arc is included in the graph. Thus, all nodes and arcs of G(R) are in EG(R).

▶ Example 36. Consider the GTRS R in Example 1 and DPHC (R) in Example 17. The
estimated dependency graph EG(DPHC (R)) is

19 20 21

For instance, the following sequence, that corresponds to an arc from (20) to (20),

y1 ≤ x1, div(x1 − y1, y1) ≈ pair(q1, r1), q1 ϖ☎µ
q′

1, Mk(q′
1, q′′

1 ),
y2 ≤ x2, div(x2 − y2, y2) ≈ pair(q2, r2), q2 ϖ☎µ q′

2, Mk(q′
2, q′′

2 ), q′′
1 →∗

R DIV(x2, y2)

can be proved DPHC (R)-infeasible (see [13] for a general treatment of such infeasibility
problems, including mechanization issues).

▶ Definition 37 (SCC processor). Let R = (F , Π, µ, H ⊎ P, R) be a GTRS and τ = (R, φ) be
an R-problem. Then, PSCC is given by

PSCC (τ) = {((F , Π, µ, H ⊎ P ′, R), φ) | P ′are the nodes of an SCC in EG(R)}

▶ Example 38. For R0 = DPHC (R) = (F , Π, µ♯, H ⊎ {(19), (20), (21)}, R) in Example 17
and EG(R0) displayed in Example 36, we have PSCC (R0, φ) = {τ1}, where τ1 = (R1, φ),
with R1 = (F , Π, µ♯, H ⊎ {(19)}, R).

▶ Theorem 39. PSCC is sound and complete.

With PSCC we can separately work with the strongly connected components of EG(R, φ),
disregarding other parts of the graph.
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7.3 Subterm processor
This section generalizes the subterm processor for TRSs [14] to GTRSs R. Such a processor
removes pairs u

t→ v ⇐ c ∈ PR if some immediate subterm v|j of v is a strict active subterm
of an immediate subterm u|i of u, i.e., u|i ✄µ v|j holds, where i and j are determined by
the root symbols of u and v, respectively, by means of a so-called simple projection. The
processor does not pay attention to the conditional part c of α or to the rules in R. The set
of root symbols associated to PR is:

Root(PR) = {root(u) | u
t→ v ⇐ c ∈ PR} ∪ {root(v) | u

t→ v ⇐ c ∈ PR, v ̸∈ X }

▶ Definition 40 (Simple projection). Let R be a GTRS. A simple projection for R is a
mapping π : Root(PR) → N such that π(f) ∈ {1, . . . , ar(f)}. The mapping that assigns a
subterm π(t) = t|π(f) to each term t with root(t) ∈ Root(PR) is also denoted by π; we also
let π(x) = x if x ∈ X .

▶ Definition 41 (Subterm processor). Let R = (F , Π, µ, H ⊎ P, R) be a GTRS, π be a
simple projection for R, and α : u

t→ v ⇐ c ∈ P . Then, Pπ,✄µ
is given by Pπ,✄µ

(R, φ) =
{(F , Π, µ, H ⊎(P −{α}), R)}, if (i) for all u′ t→ v′ ⇐ c′ ∈ P −{α} we have that π(u′)☎µ π(v′)
holds and (ii) π(u) ✄µ π(v) holds.

Note that Pπ,✄µ can not be applied to a GTRS problem (R, φ) if PR contains pairs u
t→ v ⇐ c

from HDPC (R). This is because, by definition, v is a fresh variable not belonging to u. Thus,
neither (i) nor (ii) in Definition 41 are fulfilled and (R, φ) /∈ Dom(Pπ,✄µ).

▶ Theorem 42 (Soundness and completeness of Pπ,✄µ
). Pπ,✄µ

is complete and τ -sound for
all τ = (R, φ) ∈ Dom(Pπ,✄µ) such that for all u

t→ v ⇐ c ∈ PR v /∈ X , φ = m, and
RootP (R) ∩ DR = ∅.

▶ Example 43 (Termination of R in Example 1). Consider τ1 = (R1, φ) in Example 38 with
PR1 = {(19)}, where (19) is s(x) −♯ s(y) t→ x −♯ y. Since Root(PR1) = {−♯}, with π(−♯) = 1
we obtain π(s(x) −♯ s(y)) = s(x) ✄µ x = π(x −♯ y). Hence, Pπ,✄µ

(τ1) = {(R11, φ)} where
PR11 = ∅. This proves termination of R in Example 1, after a “formal” application of PSCC
to obtain an empty set of GTRS problems, see Figure 1 left.

7.4 Use of terminating relations
The absence of infinite R-chains can be ensured by using terminating relations on terms.

▶ Definition 44 (Removal pair). A removal pair (≳,❂) consists of relations ≳ and ❂ on
terms such that ❂ is terminating and ❂ ◦ ≳ ⊆ ❂.

▶ Definition 45 (Compatible removal pair). Let R be a GTRS. A removal pair (≳,❂) is
compatible with R if (i) →∗

R ⊆ ≳ and (ii) if PR is not a singleton, then for all u
t→ v ⇐

c, u′ t→ v′ ⇐ c′ ∈ PR and for all substitutions σ, if R ⊢ σ(c), σ(v) →∗ σ(u′), σ(c′) holds, then
(ii.1) σ(u) ≳ σ(v) or (ii.2) σ(u) ❂ σ(v).

Compatibility guarantees that, if α is followed by another (possibly the same, up to renaming)
pair α′ in a chain, then, by (i), a non-strict decrease is introduced in the transition σ(v) →∗

R
σ(u′), and, if PR is not a singleton, then there is a non-strict (ii.1) or a strict (ii.2) decrease
in the instances of components u and v of α. In the second case (ii.2), we can remove α.
This is the purpose of the removal pair processor. If PR is a singleton, then (ii.1) is useless
when the processor is applied to remove the only pair in PR. In this case, (ii.2) is specifically
required by the processor, as shown in the following.
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▶ Definition 46 (Removal pair processor). Let R = (F , Π, µ, H ⊎ P, R) be a GTRS, α :
u

t→ v ⇐ c ∈ P , and (≳,❂) be a removal pair compatible with R. Then, PRP(R, φ) =
{((F , Π, µ, H ⊎ (P − {α}), R), φ)} if for all substitutions σ, whenever R ⊢ σ(c) holds, we
have σ(u) ❂ σ(v).

▶ Theorem 47 (Soundness and completeness of PRP). PRP is sound and complete.

As discussed in [18, 26], the following semantic approach is useful in practice.

▶ Definition 48 (Semantic version of the removal pair processor). Let R = (F , Π, µ, H ⊎ P, R)
be a GTRS and α : u

t→ v ⇐ c ∈ P . Let ϖ≳ and ϖ❂ be fresh predicate symbols. Let A
be a model of R such that πA

❂ is terminating on the domain of A. Then, PRP(R, φ) =
{((F , Π, µ, H ⊎ (P − {α}), R), φ)} if each of the following conditions hold:
1. A |= (∀x, y, z) ((x ϖ❂ y ∧ y ϖ≳ z) ⇒ x ϖ❂ z),
2. A |= (∀x, y) (x →∗ y ⇒ x ϖ≳ y),
3. if P is not a singleton, then for all u′ t→ v′ ⇐ c′, u′′ t→ v′′ ⇐ c′′ ∈ P , A |= (∀x⃗)((c′∧v′ →∗

u′′ ∧ c′′) ⇒ (u′ ϖ≳ v′ ∨ u′ ϖ❂ v′)),
4. A |= (∀x⃗) (c ⇒ u ϖ❂ v).

The removal pair (≳,❂) implicit in Definition 48 is as follows: for all terms s and t, s ≳ t

(resp. s ❂ t) iff for all valuations ν : X → A, [s]Aν ϖA
≳ [t]Aν (resp. [s]Aν ϖA

❂ [t]Aν ) holds, where
for all terms t ∈ T (F , X ), [t]Aν denotes the (usual) interpretation of terms t using the
interpretations fA of function symbols f ∈ F by A and the interpretation ν(x) of variables
x by ν. Thus, requirement (1) in Definition 48 guarantees that ❂ ◦ ≳ ⊆ ❂ in Definition
44 holds; (2) and (3) make (≳,❂) compatible with R (Definition 45); and (4) permits the
removal of α (Definition 46).

▶ Example 49. Consider the following GTRS R (COPS #330 [28, Ex. 5.1]):

x ≈ y ⇐ x →∗ y (48)
pin(x) → pout(g(x)) (49)
pin(x) → pout(f(y)) ⇐ pin(x) ≈ pout(g(y)) (50)

In DPHC (R), we have HDP(R) = ∅; and HDPC (R) consists of a single clause:

PIN(x) t→ y′′ ⇐ pin(x) ≈ pout(g(y)), y ϖ☎µ
y′, Mk(y′, y′′) (51)

With PRP we can remove (51). Since PDPHC (R) = {(51)} is a singleton, requirement (3) in
Definition 48 is not necessary. Requirements (1), (2), and (4) amount at considering:

(∀x, y, z) x ϖ❂ y ∧ y ϖ≳ z ⇒ x ϖ❂ z (52)
(∀x, y) x →∗ y ⇒ x ϖ≳ y (53)

(∀x, y, y′, y′) (pin(x) ≈ pout(g(y)) ∧ y ϖ☎µ y′ ∧ Mk(y′, y′′)) ⇒ PIN(x) ϖ❂ y′′ (54)

The following structure A (computed by AGES) with domain Z − N (the set of nonpositive
integers); function symbols are interpreted as follows:

fA(x)=2x gA(x)=2x pinA(x)=2x − 1 poutA(x)=x − 1 PINA(x)=2x

and predicate symbols as follows:

x ≈A y ⇔ y ≥ x x →A y ⇔ y ≥ x x (→∗)A y ⇔ y ≥ x

x ( t→)A y ⇔ true x ϖA
☎µ

y ⇔ y ≥ x MkA(x, y) ⇔ y > x

x ϖA
≳ y ⇔ y ≥ x x ϖA

❂ y ⇔ y > x

FSCD 2024



32:14 Termination of Generalized Term Rewriting Systems

τI

PSCC

τ1

P✄

τ11

PSCC

yes

τI

PInf

no

τI

PCyc

no

τI

PRP

τ1

PSCC

yes

Examples 1, 38 & 43 Examples 5 & 30 Example 33 Example 49

Figure 1 Proofs of (non)termination in the DP Framework for the running examples.

is a model of DPHC (R) ∪ {(52), (53), (54)}. Hence (51) can be removed from DPHC (R) to
obtain a GTRS R1, with PR1 = ∅, i.e., PRP(DPHC (R), φ) = {τ1}, where τ1 = (R1, φ). Now,
PSCC (R1, φ) = ∅ (due to PR1 = ∅) completes the proof.

The proof trees for our running examples are shown in Figure 1.

8 Related work

The results in this paper extend and generalize the treatment of termination of oriented
CTRSs presented in [24] which is implemented using the 2D DP Framework for oriented
(2-)CTRSs [25, 26]. Furthermore, some improvements on [25, 26] are obtained:

In contrast to [24], Definition 16 provides a uniform definition of DPHC (R) with pairs of
two classes, HDP(R) and HDPC (R), but with a single definition of R-chain. Also, the
use of atoms x ϖ☎µ x′ and Mk(x′, x′′) in the conditional part of pairs in HDPC (R) (also
in contrast to [24, Definition 41]) often helps to prove DPHC (R)-infeasibility of pairs in
HDPC (R), which is helpful. For instance, (20) and (21) are actually DPHC (R)-infeasible
for R in Example 1. This would not happen with the corresponding pairs obtained from
[24, Definition 41]. We included (20) and (21) here just to illustrate the use of PSCC . A
simpler proof would be obtained otherwise.
Proofs of termination of CTRSs in the 2D DP Framework are restricted, in practice, to
2-CTRSs, i.e., those whose rules ℓ → r ⇐ c satisfy that all variables in r also occur in
ℓ [25, Theorem 16(1)].2 Neither the CTRSs R in Examples 5 and 49 nor Example 1,
viewed as a CTRS, are 2-CTRSs.
As a consequence of [25, Theorem 16(1)], only processors which are sound on arbit-
rary chains can be used in proofs of termination in the 2D DP Framework for CTRSs.
For instance, P✄ cannot be used, as it is sound on minimal chains only. In contrast, our
termination proof of R in Example 1 uses P✄.
PCyc was not considered in [25, 26] and can be used to detect infinite chains involving an
arbitrary number of pairs. Also, PCyc can be implemented as a feasibility problem.

2 Actually, [25, Theorem 16(1)] uses the more general requirement of rules that preserve terminating
substitutions discussed in [24, Section 4.2]. A sufficient condition guaranteeing the property is being a
2-CTRS [24, Proposition 37].
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mod Ex9_SchGra10 is
sorts Boolean S .
op true : -> Boolean . op 0 : -> S . op s : S -> S .
ops _>_ : S S -> Boolean [frozen] . op _<=_ : S S -> Boolean [frozen] .
op _-_ : S S -> S . op pair : S S -> S .
op div : S S -> S . var q r x y : S .
eq s(x) > 0 = true . eq s(x) > s(y) = x > y . eq 0 <= x = true .
eq s(x) <= s(y) = x <= y . rl x - 0 => x .
rl 0 - y => y . rl s(x) - s(y) => x - y .
crl div(x,y) => pair(0,x) if y > x = true .
crl div(x,y) => pair(s(q),r) if y <= x = true /\ div(x - y,y) => pair(q,r) .

endm

Figure 2 Maude enconding of the GTRS R in Example 1.

Approximations of the dependency graph for CTRSs in [25, Section 7.1.1] pay no attention
to the conditional parts of pairs [25, Definitions 55 & 56]. For instance, for DPHC (R) in
Example 17, instead of the graph in Example 36, the techniques in [25] produce:

19 20 21

GTRSs also include CS-CTRS [19, Section 8.1], for which no technique for proving termin-
ation is known. Also, computations with Generalized Rewrite Theories (GRTs [4]) and
Maude programs [5, 6] can often be simulated using (Equational) GTRSs as briefly discussed
in [20, 21]. Vice versa, Maude can be used as a practical platform to use GTRSs.

▶ Example 50. The Maude module in Figure 2 provides an appropriate translation of R
in Example 1 to Maude. Predicates are treated as boolean functions defined by equations
obtained from the corresponding definite Horn clauses. Also note that the arguments of
“predicate” function symbols are all frozen, thus disabling reductions on their arguments.
This makes Maude computations with Ex9_SchGra10 closer to R, viewed as a GTRS. For
instance, the result of the integer division of 3 by 2 is computed as follows:

Maude> rew div(s(s(s(0))),s(s(0))) .
rewrite in Ex9_SchGra10 : div(s(s(s(0))), s(s(0))) .
rewrites: 12 in 0ms cpu (0ms real) (363636 rewrites/second)
result S: pair(s(0), s(0))

Thus, our results provide a basis for the development of techniques and tools for proving
termination of GRTs and Maude programs.

Finally, at first sight, our techniques would also apply to prove termination of Logically
Constrained TRSs (LCTRSs [15, 16]). LCTRSs and GTRSs differ in the treatment of the
conditional part of the rules: LCTRSs use fixed interpretations and GTRSs additional Horn
clauses. Although rewriting with LCTRSs (which requires substitutions that respect the
rules [15, page 347]) is, in general, more restrictive than rewriting with GTRSs, our notion
of dependency pair would capture termination of LCTRSs, although the treatment of the
DP problems would be different due to the semantic treatment of conditions.
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9 Conclusions and future work

We have presented a Dependency Pair Framework for (dis)proving termination of GTRSs.
To the best of our knowledge, this is the first time that the DP Framework has been adapted
to deal with GTRSs. It extends previous proposals for proving termination of CTRSs [25].
As discussed in the previous section, even when applied to CTRSs (as particular GTRSs),
we are able to obtain proofs of termination which are not possible in the 2D DP Framework.
Also, the proof of termination of the CTRS R in Example 5 supplied with a replacement map
µ (see Example 8) cannot be obtained either in the DP Framework for CSR (as it does not
consider conditional rules) or in the 2D DP Framework (replacement maps are not allowed).

From a theoretical point of view, a lot of work remains to be done. For instance, the
refinements in the treatement of frozen subterms in the right-hand sides of unconditional
rules developed in [10, 11] should be adapted to the new conditional setting. Also, the
improvements on the reduction pair processor obtained by considering powerful notions such
as that of usable rule, which are already in use both for CS-TRSs [11, Section 6] and CTRSs
[26, Section 4.4] should also be developed for GTRSs and the DP Framework introduced
here. Also, extending the framework to deal with operational termination of GTRSs is also
important, as operational termination provides the best conditions to compute with rewriting-
based systems using conditional rules (see [23]). The approach for CTRSs developed in [25]
(dealing with the vertical dimension of operational termination by means of an additional set
of dependency pairs) should be thoroughly revised for GTRSs R as operational termination
of GTRSs depends on proofs of atoms using the Horn theory component H of R.

The implementation of the DP Framework for proving termination of GTRSs introduced
here is also an important subject for future work. Regarding the implementation of our
techniques, we are improving our tool mu-term [13] with the ability to deal with GTRSs.
However, this actually depends on other tools, in particular infChecker [13], still unable to deal
with GTRSs. Also, as discussed in [21], GTRSs can be useful to investigate computational
properties of GRTs and Maude programs, which implement GRTs.
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Abstract
Width-based automated theorem proving is a framework where counter-examples for graph theoretic
conjectures are searched width-wise relative to some graph width measure, such as treewidth or
pathwidth. In a recent work it has been shown that dynamic programming algorithms operating on
tree decompositions can be combined together with the purpose of width-based theorem proving.
This approach can be used to show that several long-standing conjectures in graph theory can be
tested in time 22kO(1)

on the class of graphs of treewidth at most k. In this work, we give the first
steps towards evaluating the viability of this framework from a practical standpoint. At the same
time, we advance the framework in two directions. First, we introduce a state-canonization technique
that significantly reduces the number of states evaluated during the search for a counter-example of
the conjecture. Second, we introduce an early-pruning technique that can be applied in the study
of conjectures of the form P1 → P2, for graph properties P1 and P2, where P1 is a property closed
under subgraphs.

As a concrete application, we use our framework in the study of graph theoretic conjectures
related to coloring triangle free graphs. In particular, our algorithm is able to show that Reed’s
conjecture for triangle free graphs is valid on the class of graphs of pathwidth at most 5, and on
graphs of treewidth at most 3. Perhaps more interestingly, our algorithm is able to construct in
a completely automated way counter-examples for non-valid strengthenings of Reed’s conjecture.
These are the first results showing that width-based automated theorem proving is a promising
avenue in the study of graph-theoretic conjectures.

2012 ACM Subject Classification Theory of computation → Automated reasoning; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Width-Based Automated Theorem Proving, Dynamic Programming, Para-
meterized Complexity

Digital Object Identifier 10.4230/LIPIcs.FSCD.2024.33
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1 Introduction

Width-based automated theorem proving is a framework where parameterized algorithms
are employed to search for counterexamples to graph-theoretic conjectures. Within this
framework, the search for counterexamples is conducted width-wise, relative to some specific
width measure for graphs, such as treewidth or pathwidth. More specifically, given a
conjecture C and a positive integer k, the objective is to determine whether C holds on the
class of graphs of width at most k. If C does not hold on this class of graphs, a counterexample
of width at most k that invalidates the conjecture should be produced.

This approach is relevant for two main reasons. First, many interesting classes of graphs
have small width with respect to some graph width measure. For example, trees and forests
have treewidth at most 1, series-parallel graphs have treewidth at most 2 and outerplanar
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graphs have treewidth at most 2 [16, 2, 5]. It has also been shown that k-outerplanar graphs
have treewidth O(k) [1, 15], and that k-caterpilars have pathwidth at most k [20]. Second,
many important conjectures in graph theory are not known to hold on classes of graphs
of small treewidth or pathwidth, and it is therefore natural to try to determine whether
such conjectures hold when restricted to such classes of graphs. In many cases, structural
properties of graphs of small treewidth or pathwidth have been used to produce analytic
proofs of special cases of several well studied conjectures [11, 6, 12, 13, 19, 22, 13, 17]. The
framework of width-based automated theorem proving is an avenue for automatizing this
approach for certain classes of conjectures.

In a recent work [9], a new approach for width-based automated theorem proving was
introduced. Within this approach, instead of specifying graph properties using logical formulas,
such properties are specified using dynamic programming algorithms operating on graph
decompositions. More specifically, it was shown in [9] that given dynamic programming cores
D1, D2, . . . , Dr specifying graph properties P1,P2, . . . ,Pr, then for any Boolean combination
P of these properties, there is an algorithm A that takes a number k as input and decides
whether all graphs of treewidth at most k belong to P. Furthermore, if not all graphs of
treewidth k belong to P, then the algorithm outputs a certificate that can be used to extract
a counter-example. This approach takes double-exponential time with respect to the number
of bits needed to represent local witnesses used by the dynamic programming algorithms.
Given that many interesting graph properties have DP-algorithms that use local witnesses
of size kO(1) when processing tree decompositions of width k, the dynamic programming
approach developed in [9] implies that many interesting conjectures can be tested in time
double-exponential in kO(1) on the class of graphs of treewidth at most k. This includes
long-standing conjectures such as Hadwiger’s conjecture (for a fixed number of colors) [4],
Tutte’s flow conjectures [14, 18], Reed triangle free conjecture etc.

1.1 Our Results
In this work we give the first steps towards evaluating the viability of the width-based
automated theorem proving framework introduced in [9] from a practical perspective. At
the same time, we advance this framework by introducing a new width based deduction
algorithm that produces significantly less states when compared with the algorithm originally
introduced in [9]. Our new algorithm leverages on the introduction of two techniques. First,
we introduce a suitable notion of state canonization. The second is an early pruning technique
that can be used in the study of conjectures of the form P1 → P2, where P1 is a graph
property closed under subgraphs. As a concrete case study, we use our implementation to
study graph-theoretic statements related to colorings of graphs. Our algorithm was able to
produce non-trivial counter-examples for false statements, and also to confirm a well known
conjecture due to Reed [21] on the class of graphs of pathwidth at most 5, and on the class
of graphs of treewidth at most 3. Together, our results provide the first evidence that the
width-based ATP framework introduced in [9] may be a promising avenue in the study of
graph-theoretic conjectures.

1.2 Related Work
The approach for width-based automated theorem proving introduced in [9], and further
developed in the present work, is heavily based on dynamic programming algorithms deciding
graph theoretic properties. Another suitable approach for the study of width-based automated
theorem proving is based on logic [7, 8]. In this context, instead of using dynamic-programming
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algorithms to define graph properties, such graph properties are defined using logical formulas.
For example, it can be shown that for each formula φ in the monadic second order logic of
graphs, there is an algorithm that takes a positive integer k as input and determines whether
every graph of treewidth at most k satisfies φ [7]. The drawback with this approach is that
the running time of the deduction algorithm is governed by a function that grows as a tower
of exponentials on the quantifier depth of the formula φ.

It is worth noting that several interesting graph theoretic properties have dynamic
programming algorithms that produce local witnesses of size kO(1) when processing tree
decompositions of width at most k, while at the same time, require large quantifier depth to
be expressed in MSO logic [9]. For such properties, while the time complexity implied by
the logic approach is upper bounded by a tower of exponentials on k, the time complexity
implied by the dynamic-programming approach is upper bounded double exponential in
kO(1).

2 Basic Definitions

Basic Notation. We let N =̇ {0, 1, . . . } denote the set of natural numbers and N+ = N\{0}
denote the set of positive natural numbers. Given a number n ∈ N, we let [n] =̇ {1, . . . , n}.
In particular, [0] = ∅. Given a set S, the set of finite subsets of S is denoted by Pfin(S), the
set of all subsets of S is denoted by P(S).

Graphs. In this work, a graph is a triple G = (V, E, ρ) where V ⊆ N is a finite set of
vertices, E ⊆ N is a finite set edges, and ρ ⊆ E × V is an incidence relation with the
property that each edge is incident to exactly two vertices. For each edge e ∈ E, we let
endpts(e) = {v ∈ V : (e, v) ∈ ρ} be the endpoints of e. In what follows, we may write V (G),
E(G) and ρG to denote the sets V , E and ρ respectively. We let |G|= |V (G)|+|E(G)| be
the size of G. We let Graphs denote the set of all graphs. For us, the emtpy graph is the
graph (∅, ∅, ∅) with no vertices and no edges.

Graph Isomorphisms. An isomorphism from a graph G to a graph H is a pair φ = (ϕ, ν)
where ϕ : V (G) → V (H) is a bijection from the vertices of G to the vertices of H and
ν : E(G) → E(H) is a bijection from the edges of G to the edges of H with the property that
for each vertex v ∈ V (G) and each edge e ∈ E(G), (v, e) ∈ ρG if and only if (ϕ(v), ν(e)) ∈ ρH .
If such a bijection exists, we say that G and H are isomorphic, and denote this fact by
G ∼ H.

Graph Properties. A graph property is any subset P ⊆ Graphs closed under isomorphisms.
That is to say, for each two isomorphic graphs G and H in Graphs, G ∈ P if and only if
H ∈ P. Note that the sets ∅ and Graphs are graph properties. Given a set S of graphs, the
isomorphism closure of S is defined as the set ISO(S) = {G ∈ Graphs : ∃H ∈ S, G ∼ H}.

Ranked Alphabet. A ranked alphabet is a finite set Σ together with function a : Σ → N,
which intuitively specifies the arity of each symbol in Σ. A term over Σ is a pair τ = (T, λ)
where T is a rooted tree and λ : Nodes(T ) → Σ is a function that labels each node p in
Nodes(T ) with a symbol from Σ in such a way that if λ(p) is a symbol of arity r, then p

has r children p1, . . . , pr. In particular, leaf nodes are labeled with symbols of arity 0. We
assume that the children of p are ordered from left to right, so it makes sense to speak about
th i-th child of a node. We may write Nodes(τ) to refer to Nodes(T ). We write |τ | to denote
|Nodes(T )|. The height of τ is defined as the height of T . We denote by Terms(Σ) the set of
all terms over Σ.
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Terms. If τ1 = (T1, λ1), ..., τr = (Tr, λr) are terms in Terms(Σ), and a ∈ Σ is a symbol
of arity r, then we let a(τ1, ..., τr) denote the term τ = (T, λ) where Nodes(T ) = {u} ∪
Nodes(T1)∪ . . .∪Nodes(Tr) for some fresh node u, root(T ) = u, λ(u) = a, and λ|Nodes(Tj)= λj

for each j ∈ [r].

3 Instructive Dynamic Programming Cores

In this work, we represent graphs of treewidth at most k using k-instructive tree decomposi-
tions (k-ITDs) [9]. For each k ∈ N, consider the following alphabet

Σk =
{

Leaf, IntroVertex{u}, IntroEdge{u, v},

ForgetVertex{u}, Join : u, v ∈ [k + 1], u ̸= v
}

,
(1)

where Leaf is a symbol of arity 0, IntroVertex{u}, ForgetVertex{u} and IntroEdge{u, v}
are symbols of arity 1, and Join is a symbol of arity 2. We call Σk the k-instructive alphabet.
Intuitively, elements of Σk represent instructions that can be used for the construction of a
graph of treewidth at most k, together with a set b ⊆ [k + 1] of active labels, where each
active label labels exacly one vertex of the graph.

1. In the base case, the instruction Leaf creates an empty graph with an empty set of active
labels.

2. Now, let G be a graph with set of active labels b.
a. For each u ∈ [k + 1]\b, the instruction IntroVertex{u} adds a new vertex to G, labels

this vertex with u, and adds u to b.
b. For each u ∈ b, the instruction ForgetVertex{u} erases the label from the current

vertex labeled with u, and removes u from b. The intuition is that the label u is now
free and may be used later in the creation of another vertex.

c. For each u, v ∈ b, the instruction IntroEdge{u, v} introduces a new edge between the
current vertex labeled with u and the current vertex labeled with v. We note that
multiedges are allowed in our graphs.

3. Finally, if G and G′ are two graphs, each having b as the set of active labels, then the
instruction Join creates a new graph by identifying, for each u ∈ b, the vertex of G

labeled with u with the vertex of G′ labeled with u.

Such a construction process can be formalized using a term τ over Σk, which specifies
an inductive construction from the leaves towards the root. More specifically, leaves are
labeled with the Leaf instruction, nodes with a single child are labeled with an instruction of
type IntroVertex{u}, ForgetVertex{u}, or IntroEdge{u, v}, and nodes with two children
are labeled with the Join instruction. We let G(τ) be the graph associated with the root
of τ . We let B(τ) be the set of active labels after processing all operations in τ , and let
θ[τ ] : B(τ) → V (G(τ)) be the map that sends each label in B(τ) to its corresponding vertex
in G(τ).

We note that not all terms over Σk give rise to legal graphs. For instance, if the set
b does not contain a label u then the instruction ForgetVertex{u} is not well defined.
Similarly, if u is already in b, then the instruction IntroVertex{u} is not well defined. In
order to specify the set of all terms over Σk that do correspond to graphs, we may use a tree
automaton Ak. More specifically, we let Ak = (Σk, Qk, Fk, ∆k) be the tree automaton where
Qk = Fk = P([k + 1]), and
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∆k = {Leaf → ∅}
∪ {IntroVertex{u}(b) → b ∪ {u} | u /∈ [k + 1]\b}
∪ {ForgetVertex{u}(b) → b\{u} | u ∈ b}
∪ {IntroEdge{u, v}(b) → b | u, v ∈ b, u ̸= v}
∪ {Join(b, b′) → b | b = b′}.

We let ITDk = L(Ak) where L(Ak) is the set of terms accepted by Ak. The terms in ITDk

are called k-instructive decompositions. It turns out that graphs that can be represented by
k-instructive tree decompositions are precisely the graphs of treewidth at most k.

▶ Lemma 1 ([9]). Let G ∈ Graphs and k ∈ N. Then G has treewidth at most k if and only
if there exists a k-instructive tree decomposition τ such that G(τ) ≃ G.

Dynamic programming algorithms operating on tree decompositions can be formalized
using the notion of an instructive dynamic programming core (instructive DP-core), as defined
below.

▶ Definition 2 (Instructive DP-Cores). An instructive dynamic programming core is a
sequence of 6-tuples D = {(Σk, Wk, Finalk, ∆k, Cleank, Invk)}k∈N where for each k ∈ N,
1. Σk is the k-instructive alphabet;
2. Wk ⊆ {0, 1}∗ is a decidable subset of {0, 1}∗;
3. Finalk : Wk → {0, 1} is a function;
4. ∆k is a set containing

A finite subset Leaf ⊆ W.
A function IntroVertex{u} : W → Pfin(W) for each u ∈ [k + 1].
A function ForgetVertex{u} : W → Pfin(W) for each u ∈ [k + 1].
A function IntroEdge{u, v} : W → Pfin(W) for each {u, v} ∈ P([k + 1], 2).
A function Join : W × W → Pfin(W).

5. Cleank : Pfin(W) → Pfin(W) is a function;
6. Invk : Pfin(W) → {0, 1}∗ is a function.

For each k ∈ N, we let D[k] = (Σk, Wk, Finalk, ∆k, Cleank, Invk) denote the k-th tuple
of D. We may write D[k].Σ to denote the set Σk, D[k].W to denote the set Wk, and so
on. Intuitively, for each k, D[k] is a description of a dynamic programming algorithm that
operates on k-instructive tree decompositions. Such an algorithm processes a k-instructive
tree decomposition τ from the leaves towards the root, and assigns a set of local witnesses
to each node of τ , depending on which instruction labels the node and on the sets assigned
to the children of the node. Some dynamic programming algorithms use a function that
removes redundant local witnesses from the set of local witnesses constructed at each node.
In our framework, this is formalized by the function Cleank. In this work, we assume that
Cleank is the identity function. Finally, the function Invk is used whenever we want to use
dynamic programming algorithms to compute graph invariants. In this work, we will not be
concerned with the computation of invariants, and therefore, we assume that Invk is the
Boolean function that assigns 1 to a set of local witnesses if and only if it contains some final
witness. This process is formalized by the notion of dynamization, which we define below.

▶ Definition 3 (Dynamization). Let k ∈ N and D be an instructive DP-core. The k-
dynamization of D is the function Γ[D, k] : ITDk → Pfin(D[k].W) inductively defined as
follows for each τ ∈ ITDk.
1. If τ = Leaf, then Γ[D, k](τ) = D[k].Leaf.
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2. If τ =IntroVertex{u}(σ), then Γ[D, k](τ)=D[k].Clean(IntroVertex{u}(Γ[D, k](σ))).
3. If τ =ForgetVertex{u}(σ), then Γ[D, k](τ)=D[k].Clean(ForgetVertex{u}(Γ[D, k](σ))).
4. If τ =IntroEdge{u, v}(σ), then Γ[D, k](τ)=D[k].Clean(IntroEdge{u, v}(Γ[D, k](σ))).
5. If τ =Join(σ1, σ2), then Γ[D, k](τ)=D[k].Clean(Join(Γ[D, k](σ1), Γ[D, k](σ2))).

We say that D[k] accepts τ if Γ[D, k](τ) has a final local witness, i.e. a local witness w with
the property that D[k].Final(w) = 1. We let G(D[k]) = ISO({G(τ) : τ is accepted by D[k]})
be the isomorphism closure of the set of graphs associated with terms accepted by D[k]. We
note that G(D[k]) is a graph property, and that all graphs in G(D[k]) have treewidth at most
k. We let G(D) =

⋃
k∈N G(D[k]) be the graph property defined by D.

▶ Definition 4 (Coherency). Let D be an instructive DP-core. We say that D is coherent if
for each k, k′ ∈ N, each τ ∈ ITDk, and each τ ′ ∈ ITDk′ if G(τ) ≃ G(τ ′) then D[k] accepts τ

if and only if D[k′] accepts τ ′.

Let D be a coherent instructive DP-core, and k ∈ N. A (k, D)-state is a pair of the form
(b, S) where b ⊆ [k + 1] and S ⊆ D.W . Such a state is said to be (k, D)-inconsistent, if S has
no final local witness. The initial (k, D)-state is the pair (∅, D.Leaf).

▶ Definition 5 ((k, D)-Refutation). Let D be an instructive DP-core. A (k, D)-refutation is a
sequence of pairs R ≡ (b0, S0)(b1, S1) . . . (bm, Sm) satisfying the following conditions.

1. (b0, S0) = (∅, D[k].Leaf).

2. (bm, Sm) is (k, D)-inconsistent.

3. For each i ∈ [m], there is some j ∈ [i], such that (bi, Si) is equal to one of the following
pairs.
a. (bj ∪ {u}, IntroVertex{u}(Sj)) with u /∈ bj.
b. (bj \ {u}, ForgetVertex{u}(Sj)) with u ∈ bj.
c. (bj , IntroEdge{u, v}(Sj)) with u, v ∈ bj.
d. (bj , Join(Sj , Sl)) with l ∈ [i].

Intuitively, a (k, D)-refutation is a certificate that some inconsistent (k, D)-state is reach-
able from the initial (k, D)-state. It turns out that if D is a coherent instructive DP-core,
then constructing a (k, D)-refutation is equivalent to showing that G(D) does not contain all
graphs of treewidth at most k.

▶ Theorem 6 ([9]). Let D be a coherent instructive DP-core. Then there is a (k, D)-refutation
if and only if some graph of treewidth at most k does not belong to the graph property G(D).

4 Example: An Instructive DP-Core for Chromatic Number at Most r

Let S be a finite set, and r ∈ N. An r-partition of S is a partition of S with at most r cells.
Let G be a graph. We say that G is r-colorable if there is an r-partition of V (G) such that
for each edge e ∈ E(G), the endpoints of e belong to distinct cells. Let Colorabler be the
graph property consisting of all graphs that are r-colorable. In this section, we specify a
DP-core C-Colorabler for the property Colorabler. We start by defining the notion of
a C-Colorabler[k] local witness, for each k ∈ N.

▶ Definition 7. Let k ∈ N. A C-Colorabler[k] local witness is any r-partition of a subset
of [k + 1].
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▶ Definition 8. Let r ∈ N. We let C-Colorabler be the instructive DP-core D specified
below. For each k ∈ N, we define C-Colorabler[k] = D[k]. We let u, v ∈ [k + 1], w and w′

be C-Colorabler[k] local witnesses, and S be a set of such local witnesses.

1. D[k].W = {w : w is a C-Colorabler[k] local witness }.
2. D[k].Leaf = {∅}.

3. D[k].IntroVertex{u}(w) =

{
{(w \ {p}) ∪ {p ∪ {u}} : p ∈ w} if |w|= r,

{w ∪ {{u}}} ∪ {(w \ {p}) ∪ {p ∪ {u}} : p ∈ w} if |w|< r.

4. D[k].ForgetVertex{u}(w) = {p \ {u} : p ∈ w}\{∅} 1.

5. D[k].IntroEdge{u, v}(w) =
{

{w} if u and v are not in a same cell,
∅ Otherwise.

6. D[k].Join(w, w′) =
{

{w} if w = w′,
∅ Otherwise.

7. D[k].Final(w) = 1 for every w ∈ D.W.
8. D[k].Clean(S) = S for every S ⊆ D.W.

9. D[k].Inv(S) =
{

1 if S has a final witness,
0 Otherwise.

Next, we define a predicate relating k-instructive tree decompositions with local witnesses.

▶ Definition 9. We let P-Colorabler[k] be the predicate that is true on a pair (τ, w) ∈
ITDk × C-Colorabler[k].W if and only if the following conditions are satisfied.
1.

⋃
c∈w

c = dom(θ[τ ]).

2. There is an r-partition α of V (G(τ)) such that for every u, v ∈ B(τ), θ[τ ](u) and θ[τ ](v)
belong to the same cell in α if and only if u and v belong to the same cell in w.

▶ Proposition 10. For each τ ∈ ITDk, a local witness w belongs to Γ[C-Colorabler, k](τ)
if and only if P-Colorabler[k](τ, w) = 1.

The next corollary states that the predicate P-Colorable[k, r] characterizes
those pairs (τ, w) for which w is a witness in Γ[C-Colorabler[k], τ ]. Below,
Accepted(C-Colorabler[k]) is the set of k-instructive tree decompositions accepted by
C-Colorabler[k].

▶ Corollary 11. Let τ be a k-instructive tree decomposition. Then G(τ) is r-colorable if and
only if τ ∈ Accepted(C-Colorabler[k]).

Since a C-Colorabler[k] local witness is an r-partition of a subset of [k + 1], we can
represent such a partition using O(k · log r) bits.

▶ Observation 12. C-Colorabler[k] has bit-length O(k · log r).

1 There is at most one cell containing u. If this cell is a singleton, the whole cell is deleted from w.
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5 Width Based ATP with Symmetry Breaking

In this section, we introduce our main technical result. More specifically, we introduce a
width-based automated deduction algorithm endowed with a symmetry breaking procedure
that allows us to remove redundant states during the search for counter-example for a given
conjecture. At the core of our technique, lies the notion of a witness action. Intuitively,
functions that satisfy the axioms of a witness action can be used to define permuted versions
of local witnesses generated by a DP-core. This allows us to define the notion of canonical
form of a state generated during the search process. Instead of keeping track of all inferred
states, we only keep their canonical forms. This leads to a significant reduction of the
search space because states with the same canonical form are identified. Our main theorem
(Theorem 19) states that this process preserves provability.

Let Fk = {f : b → [k + 1] | b ⊆ [k + 1]} be the set of all injective functions f : b → [k + 1]
from some subset b ⊆ [k + 1] to [k + 1]. We call the elements of F relabeling functions. Given
such a function f ∈ Fk, and a subset b ⊆ [k + 1], we let f(b) = {f(u) : u ∈ b} be the image
of b under f . Next, we introduce the notion of a witness action for a DP-core (Definition
13). Actions will be used later to define the notion of a canonical form for a D[k]-state.

▶ Definition 13 (Witness Action). Let D be a DP-core and k ∈ N. We say that a function
ρk

D : Fk × D[k].W → D[k].W is an action for D[k] if the following conditions are satisfied for
each f ∈ Fk, and each w ∈ D[k].W.
1. ρk

D preserves acceptance: w ∈ Accepted(D[k]) if and only if ρk
D(f, w) ∈ Accepted(D[k]).

2. ρk
D(f−1, ρk

D(f, w)) = w.
3. ρk

D(f ◦ f ′, w) = ρk
D(f, ρk

D(f ′, w)).
4. ρk

D(f, IntroVertex{u}(w)) = IntroVertex{f(u)}(ρk
D(f, w)).

5. ρk
D(f, ForgetVertex{u}(w)) = ForgetVertex{f(u)}(ρk

D(f, w)).
6. ρk

D(f, IntroEdge{u, v}(w)) = IntroEdge{f(u), f(v)}(ρk
D(f, w)).

7. ρk
D(f, Join(w1, w2)) = Join(ρk

D(f, w1), ρk
D(f, w2)).

We extend Definition 13 to subsets of witnesses by setting

ρk
D(f, S) = {ρk

D(f, w) : w ∈ S}

for each S ⊆ D[k].W. Next, given a DP-core D, we will define a notion of canonization for a
pair (b, S) where b ⊆ [k + 1] and S ⊆ Pfin(D.W).

Let U be an ordered set of elements, and X ⊆ U . We let vec(X) be the vector obtained
by ordering the elements of X from the smallest value to the largest value. For instance,
if X = {2, 3, 5}, then vec(X) = (2, 3, 5). Given two such subsets X, X ′ ⊆ U , we say that
X < X ′ if vec(X) is lexicographically smaller than vec(X).

Let D be a DP-core and fix an arbitrary order for the set D[k].W . For instance, this order
can be simply the lexicographic order on strings. We say that a pair (b, S) is smaller than
(b′, S′) if the pair (vec(b), vec(S)) is lexicographically smaller than the pair (vec(b′), vec(S′)).

▶ Definition 14 (Canonical Pair). Let b ⊆ [k + 1], S ⊆ D[k].W, and

CANk
D(b, S) = min{(f(b), ρk

D(f, S)) | f ∈ Fk, dom(f ) = b}.

We call the function f : b → [k + 1] where the minimum in the above equation is achieved the
canonical relabeling of (b, S).
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Intuitively, given a fixed action ρk
D the canonical form CANk

D(b, S) of a pair (b, S) is the
lexicographically smallest pair obtained by relabeling the elements of b and each string w ∈ S

according to some relabeling function f : b → [k + 1]. The canonical relabeling of (b, q) is
the unique function f : b → [k + 1] with the property that (f(b), ρk

D(f, S)) = CANk
D(b, S).

Our next step is to define the notion of a relabeled refutation. Intuitively, relabelings will
be used to produce refutations where all states are in canonical form.

▶ Definition 15 (F-Relabeled Refutation). Let F = (f1, . . . , fm) be a sequence of relabeling
functions in Fk and D be a DP-core. An F-relabeled (k, D)-refutation is a sequence of pairs

R ≡ (b0, S0)(b1, S1) . . . (bm, Sm)

satisfying the following conditions:
1. (b0, S0) = (∅, D[k].Leaf).

2. (bm, Sm) is (k, D)-inconsistent, i.e., Sm has no final local witness.

3. For each i ∈ [m], there is some j ∈ [i], such that (bi, Si) is equal to one of the following
pairs.
a. (fi(bj ∪ {u}), ρk

D(fi, IntroVertex{u}(Sj))) for some u /∈ bj.
b. (fi(bj \ {u}), ρk

D(fi, ForgetVertex{u}(Sj))) for some u ∈ bj.
c. (fi(bj), ρk

D(fi, IntroEdge{u, v}(Sj))) for some u, v ∈ bj.
d. (fi(bj), ρk

D(fi, Join(Sj , ρk
D(f, Sl)))) for some l ∈ [i] and some f : bl → [k + 1] with

f(bl) = fi(bj).

If the sequence R in Definition 15 satisfies Conditions 1 and 3, but not Condition 2, then
we say that R is a semi F-relabeled (k, D)-refutation.

Below, given an instructive tree decomposition τ , we let Sub(τ) denote the set of all
subterms of τ .

▶ Lemma 16. Let D be a DP-core, F = (f1, . . . , fm) be a sequence of k-relabeling functions.
Let R = (b0, S0)(b1, S1) . . . (bm, Sm) be a semi F-relabeled (k, D)-refutation, and g : bm →
[k + 1] be a k-relabeling. Then, there is a k-instructive tree decomposition τR ∈ ITDk and a
function T : Sub(τR) → Pfin(D.W) such that the following conditions are satisfied for each
subterm τ of τR.
1. If τ = τR, then T (τ) = ρk

D(g, Sm).
2. if τ = Leaf, then T (τ) = D[k].Leaf.
3. if τ = IntroVertex{u}(τ1) for some subterm τ1, then T (τ) = IntroVertex{u}(T (τ1)).
4. if τ = ForgetVertex{u}(τ1) for some subterm τ1, then T (τ) = ForgetVertex{u}(T (τ1))
5. if τ = IntroEdge{u, v}(τ1) for some subterm τ1, then T (τ) = IntroEdge{u, v}(T (τ1)).
6. if τ = Join(τ1, τ2) for some subterms τ1 and τ2, then T (τ) = Join(T (τ1), T (τ2)).

Proof. The proof of Lemma 16 follows by induction on m. In the base case, we have that
R = (b0, S0). In this case, by setting τR = Leaf and T (τR) = D[k].Leaf, the conditions 1-6
of Lemma 16 are satisfied.

Assume that the lemma holds for all n < m. We show that the lemma holds for n = m.
Below, for each i ∈ [n], we let Ri = (b0, S0)(b1, S1) . . . (bi, Si). By the induction hypothesis,
for each such i, and each h : bi → [k + 1], there is a k-instructional tree decomposition τh

i

and a function T h
i : Sub(τ ′) → Pfin(D.W) such that the conditions 1-6 of Lemma 16 are

satisfied. There are four cases to be analyzed.
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1. In the first case (bm, Sm) = (fm(bi ∪ {u}), ρk
D(fm, IntroVertex{u}(Si))) for some i < m.

Let τ = IntroVertex{g ◦ fm(u)}(τg◦fm

i ), and T : Sub(τ) → Pfin(D[k].W) be such that
T (τ) = IntroVertex{g ◦ fm(u)}(ρk

D(g ◦ fm, Si)) and T |Sub(τg◦fm
i

)= T g◦fm

i . It should be
clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is satisfied, we
note that

IntroVertex{g ◦ fm(u)}(ρk
D(g ◦ fm, Si))

= ρk
D(g ◦ fm, IntroVertex{u}(Si))

= ρk
D(g, ρk

D(fm, IntroVertex{u}(Si)))
= ρk

D(g, Sm).

where the first equality follows from Definition 13.4, the second equality follows
from Definition 13.3 and the third equality follows from the fact that Sm =
ρk

D(fm, IntroVertex{u}(Si)).
2. In the second case (bm, Sm) = (fm(bi \ {u}), ρk

D(fm, ForgetVertex{u}(Si))) for some
i < m. Let τ = ForgetVertex{g ◦ fm(u)}(τg◦fm

i ), and T : Sub(τ) → Pfin(D[k].W) be
such that T (τ) = ForgetVertex{g ◦ fm(u)}(ρk

D(g ◦ fm, Si)) and T |Sub(τg◦fm
i

)= T g◦fm

i . It
should be clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is
satisfied, we note that

ForgetVertex{g ◦ fm(u)}(ρk
D(g ◦ fm, Si))

= ρk
D(g ◦ fm, ForgetVertex{u}(Si))

= ρk
D(g, ρk

D(fm, ForgetVertex{u}(Si)))
= ρk

D(g, Sm).

where the first equality follows from Definition 13.5, the second equality follows
from Definition 13.3 and the third equality follows from the fact that Sm =
ρk

D(fm, ForgetVertex{u}(Si)).
3. In the third case (bm, Sm) = (fm(bi), ρk

D(fm, IntroEdge{u, v}(Si))) for some i < m. Let
τ = IntroEdge{g ◦ fm(u), g ◦ fm(v)}(τg◦fm

i ), and T : Sub(τ) → Pfin(D[k].W) be such
that T (τ) = IntroEdge{g ◦ fm(u), g ◦ fm(v)}(ρk

D(g ◦ fm, Si)) and T |Sub(τg◦fm
i

)= T g◦fm

i .
It should be clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is
satisfied, we note that

IntroEdge{g ◦ fm(u), g ◦ fm(v)}(ρk
D(g ◦ fm, Si))

= ρk
D(g ◦ fm, IntroEdge{u, v}(Si))

= ρk
D(g, ρk

D(fm, IntroEdge{u, v}(Si)))
= ρk

D(g, Sm).

where the first equality follows from Definition 13.6, the second equality follows
from Definition 13.3 and the third equality follows from the fact that Sm =
ρk

D(fm, IntroEdge{u, v}(Si)).
4. In the fourth case (bm, Sm) = (fm(bi), ρk

D(fm, Join(Si, Sj))) for some j, i < m. Let
τ = Join(τg◦fm

i , τg◦fm

j ), and T : Sub(τ) → Pfin(D[k].W) be such that T (τ) = Join(ρk
D(g◦

fm, Si), ρk
D(g ◦ fm, Sj) and T |Sub(τg◦fm

i
)= T g◦fm

i and T |Sub(τg◦fm
j

)= T g◦fm

j . It should be
clear that conditions 2-6 are satisfied. Finally, to show that Condition 1 is satisfied, we
note that

Join(ρk
D(g ◦ fm, Si), ρk

D(g ◦ fm, Sj))
= ρk

D(g ◦ fm, Join(Si, Sj))
= ρk

D(g, ρk
D(fm, Join(Si, Sj)))

= ρk
D(g, Sm).

where the first equality follows from Definition 13.7, the second equality follows from
Definition 13.3 and the third equality follows from the fact that Sm = ρk

D(fm, Join(Si, Sj)).
◀



M. de Oliveira Oliveira and F. Vadiee 33:11

The next theorem states that if D is a coherent DP-core, then from each relabeled
(k, D)-refutation, one can extract a k-instructive tree decomposition whose graph does not
belong to G(D).

▶ Theorem 17. Let F = (f1, . . . , fm) be a sequence of relabeling functions and D be a
coherent DP-core. If there is an F-relabeled (k, D)-refutation, then there exists a k-instructive
tree decomposition τ ∈ ITDk where G(τ) /∈ G(D).

Proof. Let R = (b0, S0)(b1, S1) . . . (bm, Sm) be a F-relabeled (k, D)-refutation. By Lemma 16,
there is a k-instructive tree decomposition τ and a map T : Sub(τ) → Pfin(D.W) such that
conditions 1-6 of Lemma 16 are satisfied. Conditions 2-6 imply that the value of T on τ is
equal to the value of the dynamization of D on τ . In particular we have that Sm = Γ[D, k](τ).
Since R is a (k, D)-refutation, we have that Sm has no final local witness. Therefore, the
definition of acceptance for a DP-core, τ is not accepted by D. Since D is coherent, then
G(τ) does not belong to G(D). ◀

Next, we define the notion of a canonized refutation. Intuitively, such a refutation is
obtained by canonizing the (k, D)-pairs occurring in a (k, D)-refutation.

▶ Definition 18 (Canonized Refutation). Let D be a coherent DP-core, and k ∈ N, F =
(f1, . . . , fm) be a sequence of relabelings, and R ≡ (b0, S0)(b1, S1) . . . (bm, Sm) be an F -
relabeled (k, D)-refutation. We say that R is canonized if for each i ∈ N, the pair (bi, Si) is
canonical.

Our main theorem (Theorem 19) states that if D is a coherent DP-core, then the existence
of a canonized (k, D)-refutation is equivalent to the existence of a graph of treewidth at most
k that does not belong to the property G(D) defined by D.

▶ Theorem 19. Let D be a coherent DP-core and k ∈ N. Then there is a canonized
(k, D)-refutation if and only if some graph of treewidth at most k does not belong to G(D).

Proof. Let G be a graph of treewidth at most k that does not belong to G(D). Then,
by Theorem 6, there is a (k, D)-refutation R = (b0, S0)(b1, S1) . . . (bm, Sm). Let R′ =
(b′

0, S′
0)(b′

1, S′
1) . . . (b′

m, S′
m) be the sequence of pairs where for each i ∈ {0, 1, ...., m}, (b′

i, S′
i)

is the canonical form of (bi, Si). Then R′ is a canonized DP-refutation.
For the converse, suppose there is a canonized (k, D)-refutation R. By Definition 18,

R is a F-relabeled refutation for some relabeling sequence F. By Theorem 17, there is a
k-instructive tree decomposition τ where G(τ) /∈ G(D). ◀

6 Early Pruning

Our second main contribution is an early-pruning procedure that can be applied in the study
of conjectures of the form P1 → P2 where P1 is closed under subgraphs. This reduces the
search space even more because it allows us to avoid the computation of states that do not
contribute in the search for a counter-example.

A graph property P is said to be closed under sub-graphs if whenever a graph G belongs
to P, we have that every sub-graph of G also belongs to P. If the graph property G(D)
specified by a given coherent DP-core D is of the form G(D1) → G(D2) for coherent DP-cores
D1 and D2, such that G(D1) is closed under subgraphs, then when running our inference
algorithm to determine whether some graph of treewidth at most k is not contained in G(D)
we may prune the search earlier. The following simple, but crucial observation is the basis of
our specialized search.
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▶ Observation 20. Let P be a graph property closed under subgraphs. Let τ and τ ′ be
k-instructive tree decompositions such that τ is a subterm of τ ′. Then, if G(τ) /∈ P, then
G(τ ′) /∈ P.

Proof. Assume that G(τ) /∈ P. Since τ is a subterm of τ ′, we have that G(τ) is isomorphic
to a subgraph of G(τ ′). Suppose G(τ ′) ∈ P, then since P is closed under subgraphs, we have
that G(τ) ∈ P. This contradicts the assumption that G(τ) /∈ P. ◀

Observation 20 implies that in order to determine whether there is a graph of treewidth
at most k that does not belong to G(D), instead of searching for inconsistent (k, D)-pairs, we
may instead search for inconsistent (k, D1, D2)-triples. Such a triple, is a triple of the form
(b, S1, S1) satisfying the following properties:
1. (b, S1) is a (k, D1)-pair,
2. (b, S2) is a (k, D2)-pair,
3. S1 has a final local witness for D1 but S2 does not have a final local witness for D2.

This allows a more efficient search because, since G(D1) is assumed to be closed under
subgraphs, as soon as we have reached a (k, D1, D2)-triple (b, S1, S2) where (b, S1) is an
inconsistent (k, D1)-pair, we know that no triple (b, S′

1, S′
2) derived from (b, S1, S2) will be

inconsistent (because S′
1 does not contain a final witness for D1). Therefore, we do not need

to consider (k, D1, D2)-triples derived from (b, S1, S2). This construction is carried out in
details in the full version of this work.

7 Reed’s Conjecture Parameterized by Treewidth

In this section, we provide a concrete example of how dynamic programming algorithms can
be used to provide asymptotic upper bounds on the time-complexity of verifying whether a
given graph theoretic conjecture is valid on the class of graphs of width at most k. More
specifically, we analyze the following well known conjecture due to Reed [21], which establishes
an upper bound on the chromatic number χ(G) of a triangle-free graph G in terms of the
maximum degree ∆(G) of G.

▶ Conjecture 21. For any simple, triangle-free, undirected graph G, χ(G) ≤ ⌈ ∆(G)+3
2 ⌉.

It is worth noting that graphs of treewidth at most k are (k + 1)-colorable [3]. The
following theorem due to Dvorák and Kawarabayashi establishes a better upper bound for
the chromatic number of triangle-free graphs in terms of treewidth.

▶ Theorem 22 ([10]). For any triangle-free graph G of treewidth ≤ k, χ(G) ≤
⌈

k+3
2

⌉
.

Therefore, in order to prove that every graph of treewidth at most k satisfies Conjecture 21,
it is enough to show that for each s ∈ {0, . . . , k − 1}, every graph of treewidth at most k and
maximum degree at most s has chromatic number at most ⌈ s+3

2 ⌉, since for larger values of
s, Theorem 22 implies that the conjecture is true. Now, let Colorabler denote the graph
property consisting of all graphs that are r-colorable, MaxDegd denote the graph property
consisting of all graphs that have maximum degree at least d, Cliqueω be the property
consisting of all graphs that have clique number at least ω, and MultiEdge be the property
consisting of all graphs that have some multiple edges. Let Reed(s) be the graph property

Reed(s) ≡ ¬MultiEdge ∧ ¬Clique3 ∧ ¬MaxDegs+1 → Colorable⌈(s+3)/2⌉. (2)
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Then determining whether all graphs of treewidth at most k satisfy Reed conjecture
is equivalent to determining whether for each s ∈ {0, 1, . . . , k − 1}, the set of all graphs
of treewidth at most k is contained in property Reed(s). Now, Reed(s) is a Boolean
combination of four properties, each of which can be decided coherent DP-cores whose
bitlength is polynomial in k. The bitlength of a DP-core D is a function β(k) that measures
the maximum number of bits of a local witness produced during the processing of a k-
instructive tree decomposition. The specification of each of the four DP-cores can be found
in the appendix. Such implementations are of independent interest, because each such core
may be viewed as an algorithm that takes a k-instructive tree decomposition τ as input
and decides whether the graph G(τ) associated with τ satisfies the corresponding property
represented by the core.

▶ Theorem 23 (DP-Cores for Reed’s Conjecture). There exist coherent, instructive DP-
cores C-MaxDeg, C-Colorable, C-Cliqueω, C-MultiEdge satisfying the following
properties.
1. C-MaxDegd has bit-length O(k · log d) and G(C-MaxDegd) = MaxDegd.
2. C-Colorabler has bit-length O(k · log r) and G(C-Colorabler) = Colorabler.
3. C-Cliqueω has bit-length O(k · log ω) and G(C-Cliqueω) = Cliqueω.
4. C-MultiEdge has bit-length O(k2) and G(C-MultiEdge) = MultiEdge

Therefore, as a consequence of Theorem 19, Theorem 23, and Equation 2 we have the
following corollary.

▶ Corollary 24. For each k ∈ N, Reed’s conjecture for triangle-free graphs can be tested in
time double-exponential in O(k2).

Actually, the bound in Corollary 24 can be improved to double-exponential in O(k · log k) by
noting that the DP-core C-MultiEdge is deterministic.

8 Experimental Evaluation

We have implemented our width-based automated theorem proving framework on a software
called TreeWidzard. Our software provides an interface that facilitates the implementation
of dynamic programming algorithms parameterized by treewidth and pathwidth, and the
integration of such algorithms with the purpose of width based automated theorem proving.
In this section we evaluate our implementation on the task of producing counter-examples
for wrong graph-theoretic statements, and also to provide a verification of Reed’s conjectures
on graphs of small treewidth and pathwidth.

8.1 Constructing Counterexamples for Wrong Mathematical Statements
One of the most remarkable applications of the framework of width-based automated theorem
proving lies in its ability to search for counter-examples width-wise. The advantage of this
approach is that the width of a graph may be significantly smaller than its number of vertices.

As stated in Theorem 22, triangle-free graphs of treewidth at most k have chromatic
number at most ⌈ k+3

2 ⌉. It can be shown by an analytic proof that for each k ≥ 1, this
bound is tight [10], in the sense that there are graphs of treewidth at most k that cannot
be properly colored with ⌈ k+3

2 ⌉ − 1 colors. In Figure 1:Left we depict a triangle-free graph
with 14 vertices, 27 edges and chromatic number 4. Apart from the drawing, for which we
took some artistic liberty, this graph was obtained as a counter-example for the following
statement: triangle-free graphs have chromatic number at most 3. In particular, the graph

FSCD 2024



33:14 State Canonization and Early Pruning inWidth-Based Automated Theorem Proving

was found when restricting our search to graphs of pathwidth at most 4. Note that it follows
from [10] that this statement is true for graphs of pathwidth at most 3, and our search
terminates without counter-examples in this case.

In a similar vein, the graph depicted in Figure 1:Right is a triangle-free graph of maximum
degree 4 and chromatic number 4. This graph was obtained as a counter example for the
following statement which is a (false) strengthening of Conjecture 21: triangle-free graphs of
maximum degree at most 4 have chromatic number at most 3. The graph was found when
restricting our search to graphs of pathwidth at most 4. It is worth noting that it also follows
from [10] that this statement is true for graphs of pathwidth at most 3. In this case, our
algorithm concluded the search without a counter-example.
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Figure 1 Left: G is a triangle-free graph of pathwidth 4 and chromatic number 4. This is a
counter-example for a strengthening of a theorem of Reed and Dvorak. Right: G is a triangle-free
graph of pathwidth 4, chromatic number 4, and maximum degree 4. This is a counter-example for a
strengthening of Reed’s conjecture for triangle free graphs.

8.2 Validating Reed’s Triangle Free Conjecture on Graphs of Small
Pathwidth and Treewidth

When testing whether a given graph-theoretic conjecture is valid on the class of graphs of
pathwidth/treewidth at most k, our deduction algorithm may terminate without producing
a counter-example. This means that the conjecture is valid on the class of graphs of
pathwidth/treewidth at most k.

When combining both the symmetry-breaking technique introduced in Section 5 with the
early-pruning technique introduced in Section 6, our software was able to confirm Conjecture
21 in the class of graphs of pathwidth at most 5. To the best of our knowledge, an analytic
proof of Conjecture 21 on this class of graphs is lacking in the literature. It is worth noting
that to confirm this case, it is enough to consider graphs of maximum degree at most 3, since
for graphs of larger degree Reed’s conjecture follow from Theorem 22.

In the verification of Conjecture 21 in the case of graphs of pathwidth at most 5, our
search, using both techniques introduced in this work, produced 746187 states, took about 21
hours, and consumed 35 GB of memory on a cluster with processors of type Intel Xeon Gold
6130, with 2.1 Ghz. The search in this particular case was executed with 64 cores and 128
threads. It is worth noting that this case becomes prohibitively large if we deactivate either
the canonization procedure or the subgraph-closed premise search. Therefore, the techniques
introduced in this work were crucial in this regard.

For graphs of treewidth at most 3, and graphs of pathwidth at most 4, we performed a
comparison between the original deduction algorithm introduced in [9], and the algorithm
augmented only with the symmetry breaking procedure, only with the early pruning procedure,
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and with both (See Table 1). Both improvements when applied isolated decrease significantly
the number of states considered during the search process. Nevertheless, when combining
both approaches, the reduction of the search space was very expressive. For example, in the
case of pathwidth 3 and maximum degree 2, the method with no improvement produced more
than 20 million states. The method with only the symmetry breaking improvement produced
about 1 million states, the method with only the early pruning improvement produced about
1916 states, and the method with both improvements produced only 141 states.

Table 1 Number of states generated by our program when testing Reed’s (ω, ∆, χ)-conjecture
for ω = 2 (triangle-free case) on graphs of constant pathwidth and treewidth. The entries in
blue correspond to experiments that did not terminate, and the entries with a star correspond to
experiments that stopped due to a memory limit.

BFS BFS-premise

pw
∆

2 3 4 2 3 4

pw = 2 2503 4814 9877 149 341 617

pw = 3 > 20738085∗ > 21164080∗ 5193467 1916 9850 27720

pw = 4 > 9463445∗ > 6019042∗ > 8333258∗ 29184 1156954 2438694

ISO-BFS ISO-BFS-premise

pw = 2 520 945 1843 38 76 128

pw = 3 1031545 1050960 223920 141 579 1451

pw = 4 > 9449990∗ > 9903864∗ > 5029614∗ 486 12375 24494

ISO-BFS ISO-BFS-premise

tw = 2 >25351 >25960 >27632 57 153 330

tw = 3 >69621 >71183 >72891 194 1268 4080

tw = 4 >71858 >73532 >75426 616 >4942 >13438

9 Conclusion

In this work, we have given the first steps towards evaluating the width-based automated
theorem proving approach introduced in [9] from a practical perspective. At the same time, we
have introduced two techniques that have together drastically reduced the space of states to
be explored during the search for a counter-example. While the first technique is quite general
and can be applied in the study of any conjecture involving DP-cores for which a witness
action can be defined, the second improvement can be applied in the case of conjectures
of the form P1 → P2, where P1 is a property closed under subgraphs. To illustrate the
applicability of our methods, we have used our implementation to produce counter-examples
for false graph-theoretic statements, and also to confirm Reed’s triangle-free conjecture on
the class of graphs of pathwidth at most 5 and on the class of graphs of treewidth at most 3.

It is worth highlighting the modularity of our approach. While the implementation of
instructive dynamic programming cores requires specialized knowledge from the part of the
programmer, the use of such cores once they have been implemented is straightforward.
For instance, in our framework, the critical case for testing Reed’s conjecture on graphs of
pathwidth at most 5 is the case where the degree is at most 3. More precisely, a conjecture
stating that all simple, triangle-free graphs of maximum degree at most 3 have chromatic
number at most 3. This conjecture is stated in our framework using the following intuitive
lines of code, where the first four lines correspond each to a graph property, and the last line
corresponds to the conjecture being tested.
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x := MaxDegree_AtLeast(4)
y := CliqueNumber_AtLeast(3)
z := HasMultipleEdges
w := Colorable(3)
Formula
NOT x AND NOT y AND NOT z IMPLIES w

The idea is that dynamic programming cores deciding graph properties are implemented
as plugins that need to be implemented only once by a specialist and then used without
difficulty by graph theorists. We believe that our approach has the potential to create a nice
interchange of knowledge between the community of researchers working on parameterized
complexity theory, and researchers working in automated theorem proving. In essence, our
framework shows that the 3 decades of accumulated knowledge obtained in the development
of faster width-based parameterized algorithms for model checking may now be put into use
in the context of automated theorem proving.
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