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Abstract
We study hardness amplification in the context of two well-known “moderate” average-case hardness
results for AC0 circuits. First, we investigate the extent to which AC0 circuits of depth d can
approximate AC0 circuits of some larger depth d + k. The case k = 1 is resolved by Håstad,
Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017). Our
contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show that
there exists a linear-size AC0

d+k circuit h : {0, 1}n → {0, 1} such that for every AC0
d circuit g, either

g has size exp(nΩ(1/d)), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs where
ε = exp(−(1/d) · Ω(log n)k−1). For comparison, Håstad, Rossman, Servedio, and Tan’s result has
ε = n−Θ(1/d). Second, we consider the majority function. It is well known that the majority function
is moderately hard for AC0 circuits (and stronger classes). Our contribution is a stronger correlation
bound for the XOR of t copies of the n-bit majority function, denoted MAJ⊕t

n . We show that if g is
an AC0

d circuit of size S, then g agrees with MAJ⊕t
n on at most a (1/2 + ε)-fraction of inputs, where

ε =
(
O(log S)d−1/

√
n
)t.

To prove these results, we develop a hardness amplification technique that is tailored to a specific
type of circuit lower bound proof. In particular, one way to show that a function h is moderately hard
for AC0 circuits is to (a) design some distribution over random restrictions or random projections,
(b) show that AC0 circuits simplify to shallow decision trees under these restrictions/projections,
and finally (c) show that after applying the restriction/projection, h is moderately hard for shallow
decision trees with respect to an appropriate distribution. We show that (roughly speaking) if h can
be proven to be moderately hard by a proof with that structure, then XORing multiple copies of h

amplifies its hardness. Our analysis involves a new kind of XOR lemma for decision trees, which
might be of independent interest.
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1 Introduction

1.1 Average-Case Circuit Lower Bounds

Circuit lower bounds are at the heart of computational complexity theory. To understand
the limitations of (extremely) efficient computation, we seek to prove that certain explicit
functions cannot be computed by certain interesting classes of Boolean circuits. In fact,
ideally, we want to prove average-case circuit lower bounds, also known as correlation bounds.
That is, we would like to prove that circuits in some class C cannot compute some function
h : {0, 1}n → {0, 1} on more than a (1/2 + ε)-fraction of inputs for some small value ε > 0:
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1:2 A Technique for Hardness Amplification Against AC0

For every g ∈ C, Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + ε. (1)

We would like ε to be as small as possible. For example, one motivation for trying to
minimize ε comes from the Nisan-Wigderson framework for converting correlation bounds
into pseudorandom generators (PRGs) [57]. In this framework, a bound of the form (1)
implies a PRG with error εn, and in particular, the framework requires ε < 1/n.

In this work, we focus on the case that C consists of AC0 circuits, i.e., circuits made up of
AND and OR gates of unbounded fan-in, with literals and constants at the bottom. The size
of the circuit is the number of AND and OR gates, and the depth of the circuit is the length
of the longest path from an input gate to the output gate. We refer to an AC0 circuit of
depth d as an “AC0

d circuit.” We are especially interested in the constant-depth regime; this
class of circuits can be viewed as a model of constant-time parallel computation. Some of the
most celebrated theorems in circuit complexity are lower bounds on the size of AC0 circuits
computing various explicit functions. For example, if g is an AC0

d circuit, then g famously
cannot compute the parity function on n bits or the majority function on n bits, unless g

has size at least exp(cd · n1/(d−1)) [28, 1, 80, 35, 36].

1.2 Hardness Amplification and Yao’s XOR Lemma
One appealing approach for proving strong correlation bounds is to first construct a function
h that is “moderately hard” (e.g., maybe we have ε = 1/

√
n), and then apply some kind

of hardness amplification scheme that converts h into a “very hard” function (e.g., maybe
now we can take ε = n−ω(1)). The most famous method for hardness amplification is Yao’s
XOR Lemma [79, 53, 43, 29]. Starting from a hard function h : {0, 1}n → {0, 1}, this lemma
considers the new hard function h⊕t : {0, 1}nt → {0, 1} defined by h⊕t(x(1), . . . , x(t)) =⊕t

i=1 h(x(i)). One well-known version1 of Yao’s XOR Lemma says that if h is moderately
hard for MAJ ◦ C circuits, where MAJ denotes the majority function, then h⊕t is very hard
for C circuits.

In the context of relatively weak classes such as AC0, the distinction between C and
MAJ ◦ C is extremely important. Proving lower bounds on the size of MAJ ◦ C circuits is
generally much more difficult than proving lower bounds on the size of C circuits. For this
reason, there is a great deal of interest in “removing the majority gate” from Yao’s XOR
Lemma. For example, we can ask the following.

▶ Question 1.1 (Does XORing amplify hardness for AC0?). Let h : {0, 1}n → {0, 1} and let
t = log n. Assume that every constant-depth subexponential-size AC0 circuit g satisfies

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + n−Ω(1).

Does it follow that every constant-depth polynomial-size AC0 circuit g satisfies

Pr
x∈{0,1}nt

[g(x) = h⊕t(x)] ≤ 1
2 + n−ω(1)?

Several recent papers have developed and applied a refined version of Yao’s XOR Lemma
featuring an “approximate linear sum” gate instead of the traditional majority gate [22, 21,
20, 42, 19, 25]. This clever approach has been fruitful, but it is still not applicable if we

1 See, for example, Viola’s work [77].
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start with a function that is hard merely for AC0 circuits. Unfortunately, there are strong
barrier results saying that every “black-box” hardness amplification scheme must involve
some nontrivial computational overhead [74, 32, 63, 31, 62]. As a special case, this line of
work implies that Theorem 1.1 cannot be resolved affirmatively via a “black-box” hardness
amplification scheme. Thus, we have an ironic state of affairs: we have a rich toolkit for
proving lower bounds on the size of AC0 circuits, because we are able to exploit these circuits’
weaknesses, but at the same time, specifically because these circuits are too weak, we cannot
use Yao’s XOR Lemma to amplify our lower bounds.2

1.3 Our Contributions
In this work, we develop a non-black-box method for hardness amplification, applicable to
some (but not all) moderate hardness results for AC0 circuits. We use our method to amplify
two well-known average-case hardness results, discussed next.

1.3.1 Correlation Bounds for Depth Reduction Within AC0

Our first application of our hardness amplification technique concerns the role of depth in
circuit complexity. To what extent are deeper circuits more powerful than shallower circuits?
In other words, what is the marginal utility of time for parallel computation?

Surprisingly, it turns out that in many contexts, circuits can be generically and nontrivially
simulated by shallower circuits. For example:

NC1 circuits (i.e., circuits of depth O(log n) with bounded fan-in) can be simulated by
AC0

d circuits of size exp(nO(1/d)) [73, 75, 76, 71].
ACC0

d circuits (i.e., AC0
d circuits augmented with MODm gates) of size S can be simulated

by SYM ◦ AND circuits of size exp((log S)O(d)) [72, 2, 4, 81, 3, 11, 78, 24].
AC0 circuits can be approximated in various ways by low-degree polynomials [60, 66, 67,
10, 70, 55, 15, 37, 8, 59, 16, 69, 51, 34], which can be viewed as a “depth-two” model of
computation.

In light of these remarkable “depth reduction” results and their numerous applications,
we would like to know precisely when, and to what extent, depth reduction is possible.
Indeed, there is a longstanding interest in thoroughly understanding the hardness of circuit
depth reduction within AC0. Early work shows that there exists a linear-size AC0

d+1 circuit
h : {0, 1}n → {0, 1} such that every AC0

d circuit computing h must have size exp(nΩ(1/d))
[65, 80, 35]. For several decades, it was a stubborn open problem to prove a similar hierarchy
theorem in the average-case setting. O’Donnell and Wimmer essentially resolved the depth-2
vs. depth-3 case [58], and then finally Håstad, Rossman, Servedio, and Tan resolved the
general depth-d vs. depth-(d + 1) case in a breakthrough last decade [39]:

▶ Theorem 1.2 (The average-case depth hierarchy theorem [39]). Let n, d ∈ N with d ≤ α log n
log log n ,

where α > 0 is a suitable constant. There is an explicit3 AC0
d+1 circuit h : {0, 1}n → {0, 1} of

size O(n) such that for every AC0
d circuit g : {0, 1}n → {0, 1}, either g has size exp(nΩ(1/d)),

or else the following correlation bound holds:

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + n−Ω(1/d). (2)

2 The exception, of course, is if we start from a lower bound against a stronger class such as MAJ ◦ AC0.
See Klivans’ work [49].

3 I.e., the circuit h can be constructed in poly(n) time, given the parameters n and d.
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Theorem 1.2 asserts that h is moderately hard for AC0
d circuits. Håstad, Rossman, Servedio,

and Tan identified two obstacles preventing significant improvement of the n−Ω(1/d) correlation
bound in (2):

The “hard function” h in Theorem 1.2 is monotone. By the Kahn-Kalai-Linial theorem [47],
every monotone Boolean function can be approximated by a constant or a variable with
success probability 1/2 + ω(1/n).
By the discriminator lemma [33], every linear-size AC0

d+1 circuit h, whether monotone or
not, can be approximated by a linear-size AC0

d circuit with success probability 1/2+Ω(1/n).
(See Hatami, Hoza, Tal, and Tell’s work for further details of these two arguments [40,
Appendix A].)

In this work, we overcome both obstacles by using a different, non-monotone hard function
h with depth slightly greater than d + 1. We prove an average-case lower bound for the
task of simulating AC0

d+k circuits using AC0
d circuits, with a correlation bound that gets

significantly stronger as k gets larger.

▶ Theorem 1.3 (AC0
d circuits cannot approximate AC0

d+k circuits). Let n, d, k ∈ N with k ≥ 3
and dk ≤ α log n

log log n , where α > 0 is a suitable constant. There is an explicit AC0
d+k circuit

h : {0, 1}n → {0, 1} of size O(n) such that for every AC0
d circuit g : {0, 1}n → {0, 1}, either g

has size exp(nΩ(1/d)), or else the following correlation bound holds:

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + exp

(
−1

d
· Ω(log n)k−1

)
.

Our hard function h is the XOR of approximately logk−2 n many copies of Håstad,
Rossman, Servedio, and Tan’s hard function [39]. By combining Theorem 1.3 with the
Nisan-Wigderson framework [57] and a reduction due to Li and Zuckerman [54], we obtain
new constructions of seedless randomness extractors that are computable by small AC0

d+O(1)
circuits and that can extract from sources that are “recognizable” by large AC0

d circuits. See
the full version of this paper for details [41].

1.3.2 Correlation Bounds for XOR of Majority
Our second application of our hardness amplification technique concerns the n-bit majority
function (MAJn). It is well known that the majority function is moderately hard for AC0

circuits and more generally for AC0[⊕] circuits, i.e., AC0 circuits augmented with parity
gates.4 Specifically, based on the seminal works of Razborov and Smolensky [60, 66, 67], we
have the following correlation bound.

▶ Theorem 1.4 (Majority is moderately hard for AC0
d[⊕] circuits). Let n, d, S ∈ N with S ≥ n.

Let g : {0, 1}n → {0, 1} be an AC0
d[⊕] circuit of size S. Then

Pr
x∈{0,1}n

[g(x) = MAJn(x)] ≤ 1
2 + O(log S)d−1

√
n

.

We emphasize that we are considering the problem of computing the majority function on a
(1/2 + ε)-fraction of n-bit inputs, which is distinct from the perhaps more famous “promise
majority” problem in which we wish to compute the majority function on all inputs with
relative Hamming weight outside the interval 1/2 ± ε. It seems that O’Donnell and Wimmer
were the first to explicitly consider correlation bounds for the majority function [58].

4 Even more generally, we can consider MODq gates where q is a power of a prime – but let us focus on
parity gates for simplicity.
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The specific quantitative bound in Theorem 1.4 is actually a log-factor improvement
over what was known before, to the best of our knowledge. We therefore include a proof of
Theorem 1.4 in the full version of this paper [41, Appendix A]. (We also present a matching
AC0 construction based on prior work, showing that Theorem 1.4 is tight.) That being said,
our main focus is on the qualitative distinction between functions that are “moderately hard”
and functions that are “very hard.” The fact that the majority function is moderately hard for
AC0[⊕] circuits – for example, the correlation bound above is Θ̃(1/

√
n) in the constant-depth

polynomial-size regime – was already well-understood prior to this work.
Remarkably, this weak correlation bound is the best bound known on the correlation

between AC0[⊕] circuits and any hard function in NP.5 It is a major open problem to
construct an explicit function that is provably “very hard” for AC0[⊕] circuits. The function
MAJ⊕t

n , perhaps with t = polylog(n), seems like a reasonable candidate.
Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman recently proved that XORing

amplifies the hardness of MAJn for constant-degree F2-polynomials [18], which can be
considered a special case of polynomial-size AC0

2[⊕] circuits. In this work, we consider a
different special case of AC0[⊕] circuits, namely AC0 circuits. Our contribution is a proof
that XORing amplifies the hardness of MAJn for AC0 circuits.

▶ Theorem 1.5 (MAJ⊕t
n is hard for AC0

d circuits). Let n, t, d, S ∈ N and let g : {0, 1}nt → {0, 1}
be an AC0

d circuit of size S. Then

Pr
x∈{0,1}nt

[
g(x) = MAJ⊕t

n (x)
]

≤ 1
2 +

(
O(log S)d−1

√
n

)t

.

1.4 Our Technique
1.4.1 XOR Lemmas for Decision Trees
Our correlation bounds are based on XOR lemmas for decision trees. Before explaining
the connection between AC0 circuits and decision trees, let us discuss the XOR lemmas for
decision trees themselves – a fascinating subject in its own right. Let h be a Boolean function
that is moderately hard for shallow decision trees: every depth-D decision tree agrees with h

on at most a (1/2 + ε)-fraction of inputs.
It is not hard to show that decision trees of that same depth D can compute h⊕t on at

most a (1/2 + ε′)-fraction of inputs, where ε′ = 1
2 · (2ε)t. (For example, this is a special case

of Shaltiel’s analysis of “fair” decision trees [61].) It turns out that a slight generalization of
that simple analysis suffices for proving our correlation bound for depth reduction within
AC0 (Theorem 1.3).

On the other hand, to get the best parameters in Theorem 1.5 (on the hardness of MAJ⊕t
n ),

it turns out that we need a more sophisticated XOR lemma for decision trees, in which we
allow the tree attempting to compute h⊕t to have depth significantly larger than D.

This problem has been previously studied by Drucker [26]. Focusing on one setting of
parameters, Drucker showed that for every constant α > 0, there is a value D′ = Ω(Dt)
such that trees of depth D′ cannot compute h⊕t on more than a (1/2 + ε′)-fraction of
inputs, where ε′ = O(ε)(1−α)·t [26]. Although it comes close, this result is not quite sufficient
to prove Theorem 1.5 because of the (1 − α)-factor loss in the exponent. Furthermore,
unfortunately, the (1 − α)-factor loss is unavoidable in general, due to counterexamples

5 If we permit hard functions that satisfy less stringent explicitness conditions, then better correlation
bounds are known against AC0[⊕] and even stronger classes [77, 23, 22, 19].
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1:6 A Technique for Hardness Amplification Against AC0

identified by Shaltiel [61]. The idea behind these counterexamples is that although h is hard
for decision trees of depth D, it might nevertheless be easy for decision trees of depth D + 1.
In this case, for any constant c > 0, a decision tree of depth cDt can successfully compute h

on Ω(t) independent instances.
To circumvent Shaltiel’s counterexamples [61], we strengthen the assumption. We assume

that h is moderately hard for depth-D decision trees for all D simultaneously, with a
correlation bound ε that scales with the depth D according to some log-concave function
ε(D). Under this assumption, we prove the decision trees of depth Ω(Dt) have correlation at
most O(ε)t with h⊕t.

▶ Lemma 1.6 (XOR lemma for decision trees under a robust hardness assumption). Let
h : {0, 1}n → {0, 1} be a function and let ε : [0, ∞) → (0, ∞) be a log-concave function.
Assume that for every D ∈ N and every decision tree T : {0, 1}n → {0, 1} of depth at most
D, we have

Pr
x∈{0,1}n

[T (x) = h(x)] ≤ 1
2 + ε(D).

Then for every D, t ∈ N and every decision tree T : {0, 1}nt → {0, 1} of depth at most Dt/2,
we have

Pr
x∈{0,1}nt

[T (x) = h⊕t(x)] ≤ 1
2 + O(ε(D))t.

(See Lemma 3.2 for a more general statement.)

1.4.2 Amplifying the Average-Case Depth Hierarchy Theorem
Now we briefly explain how we use an XOR lemma for decision trees to prove Theorem 1.3
(our correlation bound for depth reduction within AC0). Our analysis builds on Håstad,
Rossman, Servedio, and Tan’s proof of the average-case depth hierarchy theorem [39]. Recall
that their lower bound proof is based on the concept of random projections, which generalize
traditional random restrictions. (A traditional restriction assigns values to some input
variables while keeping others “alive.” A projection can additionally merge living variables.)
To prove that their hard function h is moderately hard for AC0

d circuits, Håstad, Rossman,
Servedio, and Tan carefully designed a distribution R over projections and a distribution µ

over inputs and showed the following [39].
1. (Completion to the uniform distribution.) For every function f : {0, 1}n → {0, 1}, plugging

a uniform random x ∈ {0, 1}n into f is equivalent to first sampling a projection π ∼ R,
then independently sampling an input y ∼ µ, and finally plugging y into f |π.

2. (Simplification.) For every AC0
d circuit g, either g has size exp(nΩ(1/d)), or else with high

probability over π ∼ R, the circuit g simplifies under π in the sense that g|π can be
computed by a shallow decision tree.

3. (Maintaining structure.) With high probability over π ∼ R, the hard function h maintains
structure in the sense that h|π is moderately hard for shallow decision trees with respect
to µ.

Taken together, the three steps above imply that h is moderately hard for AC0
d circuits with

respect to a uniform random input. We call this proof structure the random simplification
method for proving correlation bounds.

As mentioned previously, our hard function is h⊕t, where h is Håstad, Rossman, Servedio,
and Tan’s hard function and t ≈ logk−2 n. To prove that h⊕t is very hard for AC0

d circuits,
we use the random simplification method. We apply R to each of the t input blocks of h⊕t

independently. By Håstad, Rossman, Servedio, and Tan’s analysis [39], each copy of h is
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likely to be moderately hard for shallow decision trees after the projection. Therefore, by
a suitable XOR lemma for decision trees, h⊕t is likely to be very hard for shallow decision
trees after the projection. Meanwhile, Håstad, Rossman, Servedio, and Tan’s simplification
arguments [39] extend to the case of several independent copies of R, completing the proof.

1.4.3 Amplifying the Hardness of the Majority Function
There are at least three known proofs that the majority function is moderately hard for
AC0 circuits: one using the Razborov-Smolensky method [27, 50, 41], one due to O’Donnell
and Wimmer [58], and one due to Tal [69]. However, none of these proofs fits into our
framework of “random simplification arguments,” so it is not clear how to combine them
with our amplification technique. (The latter two proofs do use switching lemmas, but only
in an indirect Fourier-analytic way.) For this reason, in the full version of this paper [41,
§5.1], we present yet another proof that the majority function is moderately hard for AC0

d

circuits. Our new proof does fit into our “random simplification argument” framework, and
furthermore, the “robust hardness assumption” of Lemma 1.6 is satisfied in our proof. These
features of our proof enable us to apply our new XOR lemma for decision trees to complete
our analysis of MAJ⊕t

n .

1.5 Related Work
Goldwasser, Gutfreund, Healy, Kaufman, and Rothblum designed a method for converting
worst-case hardness into moderate average-case hardness in the context of weak circuit
classes [30], which complements our work in some ways. One contrast between their work and
ours is that they merely construct a hard function with a very weak explicitness guarantee,
namely membership in EXP, whereas we study an extremely explicit hardness amplification
method, namely XORing. More recently, Chen, Lu, Lyu, and Oliveira developed a method
for constructing very hard functions for weak circuit classes starting from relatively weak
assumptions [20] – but once again, their hard functions only satisfy weak explicitness
guarantees such as membership in E.

A long sequence of works has established strong bounds on the correlation between the
parity function and AC0 circuits [28, 1, 80, 35, 36, 7, 49, 75, 9, 44, 38]. One of these works,
by Klivans [49], is especially relevant for us. Klivans’ proof is based on a result by Aspnes,
Beigel, Furst, and Rudich, who showed that if g is a MAJ ◦ AC0

d circuit, then either g has size
exp(nΩ(1/d)), or else g disagrees with the parity function on a constant fraction of inputs [6].
Klivans combined this result with Yao’s XOR Lemma to re-prove a strong (albeit not optimal)
bound on the correlation between AC0

d circuits and the parity function [49]. Klivans’ proof is
the only prior work we are aware of that uses hardness amplification methods to prove an
unconditional AC0 circuit lower bound.

Many prior works have studied XOR lemmas for various types of decision trees, along
with the closely related “direct product” and “direct sum” problems [45, 12, 56, 61, 48, 68,
5, 46, 26, 64, 52, 13, 14, 17]. However, as far as we are aware, we are the first to consider
the case that we have hardness for all depths simultaneously.

1.6 Organization
After some preliminaries, we present our XOR lemma for decision trees (Lemma 1.6) in
Section 3. Then, in Section 4, we present general lemmas showing that XORing amplifies
hardness whenever the hardness is proved via the random simplification method. The proofs
of our main results (Theorem 1.3 and Theorem 1.5) are omitted from this extended abstract,
but they can be found in the full version of this paper [41].
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1:8 A Technique for Hardness Amplification Against AC0

2 Preliminaries

We write N to denote the set of non-negative integers.

2.1 Boolean Functions
In the introduction, we worked with functions f : {0, 1}n → {0, 1}. Going forward, it will
be more convenient to encode a bit b ∈ {0, 1} as the value (−1)b. Thus, we will work with
functions f : {±1}n → {±1}. We continue to use the notation f⊕t, but now f⊕t denotes the
product of t copies of f on independent inputs.

We use the following notation to describe decision trees.

▶ Definition 2.1 (Decision trees). For a function f : {±1}n → {±1}, we define DTDepth(f)
to be the minimum depth of a decision tree computing f . In the other direction, for a
parameter D ∈ N, we define DTDepth[D] to be the class of all functions f : {±1}n → {±1}
that can be computed by depth-D decision trees. (The parameter n will always be clear from
context.)

2.2 Probability and Correlation
We denote random variables using boldface. We write x ∼ µ to indicate that the random
variable x is sampled from the distribution µ. If µ, µ̃ are discrete probability distributions
over some set Ω, then we consider the “total variation distance” between µ and µ̃ to be

max
S⊆Ω

(| Pr[x ∈ S] − Pr[x̃ ∈ S]|),

where x ∼ µ and x̃ ∼ µ̃. We also rely on the following alternative notion of “distance”
between probability distributions.

▶ Definition 2.2 (Max-divergence). Let µ and µ̃ be discrete probability distributions over
some set Ω. The max-divergence of µ̃ from µ is defined by

D∞(µ̃ ∥ µ) = ln
(

max
x∈Ω

(
Pr[x̃ = x]
Pr[x = x]

))
,

where x ∼ µ and x̃ ∼ µ̃.

Max-divergence and total variation distance are related by the following lemma.

▶ Lemma 2.3 (Low max-divergence ⇒ low total variation distance). Let µ and µ̃ be discrete
probability distributions over the same set Ω. Let ε = D∞(µ̃ ∥ µ). There exists a probability
distribution µ′ such that µ can be written as a convex combination µ = (1 − ε) · µ̃ + ε · µ′.
Moreover, the total variation distance between µ and µ̃ is at most ε.

Proof. If ε = 0, the lemma is trivial, so assume ε > 0. For each x ∈ Ω, define

p(x) = Pr[x = x] − (1 − ε) Pr[x̃ = x]
ε

,

where x ∼ µ and x̃ ∼ µ̃. Then
∑

x∈Ω p(x) = 1. Furthermore, p(x) ≥ 0, because

(1 − ε) Pr[x̃ = x] ≤ (1 − ε) · eε · Pr[x = x] ≤ Pr[x = x].
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Therefore, p(·) is a probability mass function, and we can let µ′ be the corresponding
probability distribution. For the “moreover” part, observe that for any S ⊆ Ω, we have

Pr[x ∈ S] = (1 − ε) · Pr[x̃ ∈ S] + ε · Pr[x′ ∈ S],

where x′ ∼ µ′. Therefore,

Pr[x ∈ S] ≤ Pr[x̃ ∈ S] + ε · Pr[x′ ∈ S] ≤ Pr[x̃ ∈ S] + ε,

and

Pr[x ∈ S] ≥ (1 − ε) · Pr[x̃ ∈ S] ≥ Pr[x̃ ∈ S] − ε. ◀

We use the following notation for product distributions.

▶ Definition 2.4 (Tensor product of probability distributions). Let µ1, . . . , µt be probability
distributions over the spaces Ω1, . . . , Ωt. Sample x1 ∼ µ1, . . . , xt ∼ µt independently. The
tensor product µ1 ⊗ · · · ⊗ µt is the probability distribution of (x1, . . . , xt). As a special case,
we define

µ⊗t = µ ⊗ µ ⊗ · · · ⊗ µ︸ ︷︷ ︸
t copies

.

We use the following standard definition to reason about average-case hardness of {±1}-
valued functions.

▶ Definition 2.5 (Correlation). Let g, h : {±1}n → R be functions and let µ be a distribution
over {±1}n. We define

Corrµ(g, h) = E
x∼µ

[g(x) · h(x)].

More generally, if C is a class of functions g : {±1}n → R, then we define

Corrµ(C, h) = max
g∈C

Corrµ(g, h).

If µ is omitted, then by default it is assumed to be the uniform distribution over {±1}n.

If g and h are {±1}-valued, then a bound |Corr(g, h)| ≤ ε is equivalent to the statement
that g agrees with h on at most a (1/2 + ε/2)-fraction of inputs, because for any two
{0, 1}-valued random variables a, b, we have Pr[a = b] = 1

2 + 1
2 E[(−1)a · (−1)b].

2.3 Generalized Restrictions
To formulate our hardness amplification technique in the clearest and most general way
possible, we work with a notion of generalized restrictions that includes restrictions and
projections as special cases. A generalized restriction, formally defined below, consists of an
arbitrary “preprocessing” step that can be applied to a Boolean function of interest.

▶ Definition 2.6 (Generalized restriction). A generalized restriction is a function π : {±1}r →
{±1}n. If f : {±1}n → {±1} is a Boolean function, then we define g|π to be the composition
g ◦ π. That is, g|π : {±1}r → {±1} is given by g|π(x) = g(π(x)).

Traditional restrictions can be viewed as a special case of generalized restrictions as
follows.
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1:10 A Technique for Hardness Amplification Against AC0

▶ Definition 2.7 (Traditional restrictions as generalized restrictions). A restriction is a string
ρ ∈ {+1, −1, ⋆}n. We identify ρ with a generalized restriction π : {±1}r → {±1}n, where
r = |ρ−1(⋆)|, as follows. Given y ∈ {±1}r, we let π(y) be ρ, except that the i-th star is
replaced with yi for every i ∈ [r].

Next, we consider distributions over generalized restrictions, and we explain how to interpret
the tensor product of such distributions.

▶ Definition 2.8 (Tensor product of generalized restriction distributions). Let r, n ∈ N, and
let R be a distribution over generalized restrictions π : {±1}r → {±1}n. Let π1, . . . , πt be
independent samples from R, and define π⃗ : {±1}rt → {±1}nt by concatenating, i.e.,

π⃗(y(1), . . . , y(t)) = (π1(y(1)), . . . , πt(y(t))).

Then the tensor product R⊗t is the distribution of the random variable π⃗.

2.4 Logarithmic Concavity
We recall the following standard definition.

▶ Definition 2.9 (Log-concave). A function f : [0, ∞) → (0, ∞) is log-concave if log f is
concave, i.e., for every x, y ∈ [0, ∞) and λ ∈ (0, 1), we have f(x)λ ·f(y)1−λ ≤ f(λx+(1−λ)y).

If f is log-concave, then by induction on t, we have
∏t

i=1 f(xi) ≤ f(x̄)t where x̄ = 1
t

∑t
i=1 xi.

3 XOR Lemmas for Decision Trees

In this section, we present our XOR lemma for decision trees. We begin by stating a simple
XOR lemma, in which the decision tree attempting to compute h⊕t has the same depth as
the decision tree attempting to compute h.

▶ Lemma 3.1 (Basic XOR lemma for decision trees). Let h1, . . . , ht : {±1}r → {±1} be
functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y(i)). Let µ be a distribution over {±1}r.

For every D ∈ N, we have

Corrµ⊗t(h, DTDepth[D]) ≤
t∏

i=1
Corrµ(hi, DTDepth[D]).

We were unable to find a reference for the specific statement of Lemma 3.1, but it has no
significant novelty. It is closely related to Shaltiel’s analysis of “fair” decision trees [61].
It can also be viewed as a special case of Claim 3.6 that we prove below. As discussed in
Subsection 1.4, Lemma 3.1 is sufficient for our analysis of depth-d approximators to AC0

d+k

circuits (Theorem 1.3). However, for our analysis of MAJ⊕t
n (Theorem 1.5), we need a more

sophisticated XOR lemma, stated next.

▶ Lemma 3.2 (XOR lemma for decision trees under robust hardness assumptions, general version).
Let h1, . . . , ht : {±1}r → {±1} be functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y(i)). Let

µ1, . . . , µt be distributions over {±1}r, and define µ = µ1 ⊗ · · · ⊗ µt. Let ε : [0, ∞) → (0, ∞)
be a log-concave function, and assume that for every i ∈ [t] and every D ∈ N, we have

Corrµi(hi, DTDepth[D]) ≤ ε(D).

Then for every D ∈ N, we have

Corrµ(h, DTDepth[Dt/2]) ≤ O(ε(D))t.
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The first step of the proof of Lemma 3.2 is the following claim, which enables us to relate
the success probability of a tree to the success probabilities of its subtrees.

▷ Claim 3.3 (Law of total correlation). Let h, T, E : {±1}r → {±1}. Let µ be a distribution
over {0, 1}r. For each b ∈ {±1}, let pb = Pry∼µ[E(y) = b], and let µb be the conditional
distribution (y ∼ µ | E(y) = b). Suppose that T can be decomposed in the form

T (y) =
{

T+1(y) if E(y) = +1
T−1(y) if E(y) = −1

for some T+1, T−1 : {±1}r → {±1}. Then

Corrµ(h, T ) =
∑

b∈{±1}

pb · Corrµb(h, Tb).

Proof.

Corrµ(h, T ) = E
y∼µ

[h(y) · T (y)]

=
∑

b∈{±1}

pb · E
y∼µ

[h(y) · T (y) | E(y) = b] (Law of total expectation)

=
∑

b∈{±1}

pb E
y∼µb

[h(y) · Tb(y)]. ◁

Next, we consider the following notion of “fair” decision trees due to Shaltiel [61].

▶ Definition 3.4 ((D1, . . . , Dt)-fair decision trees [61]). Let T : {±1}rt → {±1} be a decision
tree and let D1, . . . , Dt ∈ N. We say that T is (D1, . . . , Dt)-fair if for every input y⃗ =
(y(1), . . . , y(t)) ∈ ({±1}r)t, for every i ∈ [t], the computation T (y⃗) makes at most Di queries
to y(i).

The key to proving Lemma 3.2 is to generalize Definition 3.4 to the case of a set of tuples
(D1, . . . , Dt).

▶ Definition 3.5 (Q-fair decision trees). Let T : {±1}rt → {±1} be a decision tree and let
Q ⊆ Nt. We say that T is Q-fair if for every input y⃗ = (y(1), . . . , y(t)) ∈ ({±1}r)t, there is
some tuple (D1, . . . , Dt) ∈ Q such that for every i ∈ [t], the computation T (y⃗) makes at most
Di queries to y(i).

We emphasize that the tuple (D1, . . . , Dt) is permitted to vary from one input y⃗ to another.
Therefore, the fact that a tree is Q-fair does not necessarily imply that there is some
(D1, . . . , Dt) ∈ Q such that the tree is (D1, . . . , Dt)-fair. Given the concept of Q-fairness, it
is relatively straightforward to prove the following claim by induction on the depth of T . The
claim generalizes the analysis by Shaltiel [61], who considered the case of (D1, . . . , Dt)-fair
decision trees and focused on the uniform distribution.

▷ Claim 3.6 (XOR lemma for Q-fair decision trees). Let h1, . . . , ht : {±1}r → {±1} be
functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y(i)). Let µ1, . . . , µt be distributions over

{±1}r, and define µ = µ1 ⊗ · · · ⊗ µt. Let Q ⊆ Nt and let T : {±1}rt → {±1} be a Q-fair
decision tree. Then

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi
(hi, DTDepth[Di]).
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Proof. Assume without loss of generality that T never queries the same variable twice. For
the base case, if T has depth 0, then T is a constant function, so

|Corrµ(h, T )| =
t∏

i=1

∣∣∣∣ E
y(i)∼µi

[hi(y(i))]
∣∣∣∣ =

t∏
i=1

Corrµi
(hi, DTDepth[0]).

Since T is Q-fair, Q must be nonempty. The lemma follows because Corrµi(hi, DTDepth[0]) ≤
Corrµi(hi, DTDepth[Di]) for every Di ∈ N. For the inductive step, let y

(i∗)
j∗

be the variable
queried by the root of the tree. Let T+1 and T−1 be the children of the root, corresponding
to the cases y

(i∗)
j∗

= +1 and y
(i∗)
j∗

= −1 respectively. Define

Q′ = {(D1, . . . , Di∗−1, Di∗ − 1, Di∗+1, . . . , Dt) : (D1, . . . , Dt) ∈ Q and Di∗ ̸= 0}.

Then T+1 and T−1 are both Q′-fair.
For each b ∈ {±1}, define

pb = Pr
y(i∗)∼µi∗

[
y(i∗)

j∗
= b
]

.

Let µb
i∗

be the conditional distribution (y(i∗) ∼ µi∗ | y(i∗)
j∗

= b), and for i ̸= i∗, let µb
i = µi.

Let µb = µb
1 ⊗ · · · ⊗ µb

t . By Claim 3.3 and the induction hypothesis, we have

Corrµ(h, T ) =
∑

b∈{±1}

pb · Corrµb(h, Tb)

≤
∑

b∈{±1}

pb ·
∑

(D1,...,Dt)∈Q′

t∏
i=1

Corrµb
i
(hi, DTDepth[Di])

=
∑

(D1,...,Dt)∈Q′

 ∑
b∈{±1}

pb · Corrµb
i∗

(hi∗ , DTDepth[Di∗ ])

 · Π ̸=i∗(D1, . . . , Dt)

where Π̸=i∗(D1, . . . , Dt) =
∏

i∈[t],i̸=i∗
Corrµi

(hi, DTDepth[Di]). Now we bound the inner
sum. By Claim 3.3, for any Di∗ , we have

Corrµi∗
(hi∗ , DTDepth[Di∗ + 1]) ≥

∑
b∈{±1}

pb · Corrµb
i∗

(hi∗ , DTDepth[Di∗ ]),

because we can approximate hi∗ with respect to µi∗ by first querying y
(i∗)
j∗

and then using
optimal subtrees of depth Di∗ . For every (D1, . . . , Dt) ∈ Q′, we have (D1, . . . , Di∗−1, Di∗ +
1, Di∗+1, . . . , Dt) ∈ Q. Therefore,

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi
(hi, DTDepth[Di]). ◁

Given Claim 3.6, our XOR lemma for decision trees under a robust hardness assumption
(Lemma 3.2) readily follows, as we now show.

Proof of Lemma 3.2. Let T : {±1}rt → {±1} be a decision tree of depth at most Dt/2. Let
Q be the set of t-tuples (D1, . . . , Dt) ∈ Nt such that (1) D1 + · · · + Dt ≤ Dt and (2) Di is an
integer multiple of ⌈D/2⌉ for every i. We claim that T is Q-fair. Indeed, let y⃗ = (y(1), . . . , y(t))
be any input, and let Di be the number of queries that T (y⃗) makes to y(i). Let D′

i be the
smallest integer multiple of ⌈D/2⌉ such that Di ≤ D′

i. Then D′
i ≤ Di + (⌈D/2⌉ − 1), and

hence D′
1 + · · · + D′

t ≤ Dt/2 + t · (⌈D/2⌉ − 1) ≤ Dt, showing that (D′
1, . . . , D′

t) ∈ Q.
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Therefore, by Claim 3.6,

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi, DTDepth[Di]).

For any (D1, . . . , Dt) ∈ Q, we can define (D′
1, . . . , D′

t) such that D′
i ≥ Di and D′

1 +
· · · + D′

t is exactly Dt rather than being at most Dt. Then Corrµi(hi, DTDepth[Di]) ≤
Corrµi

(hi, DTDepth[D′
i]), so

Corrµ(h, T ) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi, DTDepth[D′
i])

≤
∑

(D1,...,Dt)∈Q

t∏
i=1

ε(D′
i)

≤
∑

(D1,...,Dt)∈Q

ε(D)t (Log-concavity)

= |Q| · ε(D)t.

To bound |Q|, observe that if (D1, . . . , Dt) ∈ Q, then we can write Di = ci · ⌈D/2⌉ for
some nonnegative integers c1, . . . , ct. Furthermore, Dt ≥

∑
i ci · ⌈D/2⌉ ≥ (D/2) ·

∑
i ci, so

c1 + · · · + ct ≤ 2t. Therefore, |Q| is at most the number of ways that 2t can be partitioned
into t + 1 nonnegative integers, which is precisely

(3t
t

)
. Thus,

Corrµ(h, T ) ≤
(

3t

t

)
· ε(D)t ≤ O(ε(D))t. ◀

4 XOR Lemmas for the Random Simplification Method

In this section, we prove two general “XOR lemmas for the random simplification method,”
which formalize our hardness amplification technique. The first and simpler version is as
follows.

▶ Lemma 4.1 (XOR lemma for the random simplification method, basic version). Let n, t, r, D ∈
N and ε, δ > 0. Let h : {±1}n → {±1} and g : {±1}nt → {±1} be Boolean functions, let R
be a distribution over generalized restrictions π : {±1}r → {±1}n, let µ be a distribution over
{±1}r, and assume the following.
1. (The distribution µ completes R to the uniform distribution.) If we sample π ∼ R and

y ∼ µ independently, then π(y) is a uniform random element of {±1}n.
2. (The function g simplifies under R⊗t.) We have

Pr
π⃗∼R⊗t

[
DTDepth(g|π⃗) > D

]
≤ δ.

3. (The function h retains structure under R.) We have

E
π∼R

[
Corrµ(h|π, DTDepth[D])

]
≤ ε.

Then Corr(g, h⊕t) ≤ εt + δ.
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Proof. Sample π⃗ = (π1, . . . , πt) ∼ R⊗t and y⃗ ∼ µ⊗t independently. Let T be g|π⃗ if
DTDepth(g|π⃗) ≤ D; otherwise, let T be the constant-zero function. Assumption 1 implies
that π⃗(y⃗) is distributed uniformly over {±1}nt. Therefore,

Corr(h⊕t, g) = E⃗
π

[
Corrµ⊕t(h⊕t|π⃗, g|π⃗)

]
(Assumption 1)

≤ δ + E⃗
π

[
Corrµ⊕t(h⊕t|π⃗, T)

]
(Assumption 2)

≤ δ + E⃗
π

[
Corrµ⊕t(h⊕t|π⃗, DTDepth[D])

]
≤ δ + E⃗

π

[
t∏

i=1
Corrµ(h|πi

, DTDepth[D])
]

(Lemma 3.1)

= δ +
(

E
π∼R

[Corrµ(h|π, DTDepth[D])]
)t

(Independence)

≤ δ + εt (Assumption 3.) ◀

In the full version of this paper [41], we review the basic structure of Håstad, Rossman,
Servedio, and Tan’s proof of the average-case depth hierarchy theorem [39] and explain how
it fits into the framework of Lemma 4.1. As a result, we are able to use Lemma 4.1 to prove
our result about the average-case hardness of AC0

d+k circuits for AC0
d circuits (Theorem 1.3).

In this extended abstract, let us focus on the hardness amplification technique itself. The
conclusion of Lemma 4.1 is Corr(g, h⊕t) ≤ εt +δ. The “+ δ” term is unfortunate, since it does
not improve with increasing t. To address this weakness, we now prove a more sophisticated
version of Lemma 4.1 in which the correlation bound is O(ε)t, with no “+ δ” term, albeit
under stronger assumptions.

▶ Lemma 4.2 (Tighter XOR lemma for the random simplification method). Let n, t ∈ N
and let h : {±1}n → {±1} be a Boolean function. Let C be a class of Boolean functions
g : {±1}nt → {±1} that is closed under restrictions.6 Let r ∈ N, let R be a distribution
over generalized restrictions π : {±1}r → {±1}n, and let µ be a distribution over {±1}r. Let
ε > 0, and assume the following.
1. (The distribution µ approximately completes R to the uniform distribution.) If we sample

π ∼ R and y ∼ µ independently, and we sample x ∈ {±1}n uniformly at random, then
D∞(π(y) ∥ x) ≤ ε.

2. (The class C simplifies under R⊗t.) For every g ∈ C and every D ∈ N, we have

Pr
π⃗∼R⊗t

[DTDepth(g|π⃗) ≥ D] ≤ 2t−D.

3. (The function h retains structure under R.) For every D ∈ N and every π ∈ Supp(R),
we have

Corrµ(h|π, DTDepth[D]) ≤ ε · 2D/3.

Then Corr(C, h⊕t) ≤ O(ε)t.

Proof. Fix any g ∈ C. Our job is to analyze the correlation between g and h⊕t under a
uniform random input. By Lemma 2.3, we can sample a uniform random input by the
following procedure.

6 Every function in C has domain {±1}nt. When we say that C is closed under restrictions, we are
thinking of a restriction of g ∈ C as another function on nt bits that ignores some of its input variables.
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1. Sample π⃗ = (π1, . . . , πt) ∼ R⊗t.
2. Sample y⃗ = (y(1), . . . , y(t)) ∼ µ⊗t.
3. Sample e⃗ = (e(1), . . . , e(t)) ∼ (µ′)⊗t, where µ′ is the distribution over {±1}n from

Lemma 2.3.
4. Sample I ⊆ [t] where Pr[i ∈ I] = 1 − ε independently for every i.
5. Output the string x⃗ = (x(1), . . . , x(t)) ∈ {±1}nt, where

x(i) =
{

πi(y(i)) if i ∈ I
e(i) if i /∈ I.

Let g : {±1}nt → {±1} be the function obtained from g by plugging e(i) into each block i /∈ I
and leaving the blocks in I alive. Since g ignores the variables in blocks outside I, we have

g(x⃗) = g|π⃗(y⃗).

Similarly, define h : {±1}nt → {±1} by the formula

h(x⃗) =
(∏

i∈I

hi(x(i))
)

·

(∏
i/∈I

hi(e(i))
)

,

so that h⊕t(x⃗) = h|π⃗(y⃗). That way,

Corr(g, h⊕t) = E[g(x⃗) · h⊕t(x⃗)] = E
I,⃗e,π⃗

[Corrµ⊗t(g|π⃗, h|π⃗)].

Let D = ⌊DTDepth(g|π⃗)/|I|⌋. Then

E
I,⃗e,π⃗

[Corrµ⊗t(g|π⃗, h|π⃗)] ≤ E
I,⃗e,π⃗

[Corrµ⊗t(h|π⃗, DTDepth[(D + 1) · |I|])].

Let πI = (πi)i∈I, and define hI : {±1}n|I| → {±1} by hI((x(i))i∈I) =
∏

i∈I h(x(i)). Then for
any fixing of I, e⃗, π⃗, we have

Corrµ⊗t(h|π⃗, DTDepth[(D + 1) · |I|]) = Corrµ⊗|I|(hI|πI , DTDepth[(D + 1) · |I|]).

Now we apply Lemma 3.2. For each i ∈ I and each D ∈ N, we have

Corrµ(h|πi , DTDepth[D]) ≤ ε · 2D/3.

Furthermore, the function ε(D) = ε · 2D/3 is log-concave. Therefore, Lemma 3.2 guarantees
that

Corrµ⊗|I|(hI|πI , DTDepth[(D + 1) · |I|]) ≤ O(ε · 22·(D+1)/3)|I| = O(ε · 22D/3)|I|.

Thus, overall, we get

Corr(g, h⊕t) ≤ E
I,⃗e,π⃗

[
O
(

ε · 22D/3
)|I|
]

.

Now consider any fixing of I and e⃗. Since C is closed under restrictions, g ∈ C. Therefore,
our simplification assumption tells us that for every D ∈ N, we have

Pr
π⃗

[D = D] ≤ 2t−D·|I|.
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Consequently,

E⃗
π

[
O
(

ε · 22D/3
)|I|
]

=
∞∑

D=0
Pr
π⃗

[D = D] · O
(

ε · 22D/3
)|I|

≤ 2t ·
∞∑

D=0
O
(

ε · 2−D/3
)|I|

≤ 2t · O

( ∞∑
D=0

ε · 2−D/3

)|I|

= 2t · O(ε)|I|.

Therefore, our overall bound is given by

Corr(g, h⊕t) ≤ E
I
[2t · O(ε)|I|] = 2t ·

∑
I⊆[t]

Pr[I = I] · O(ε)|I|

= 2t ·
∑
I⊆[t]

(1 − ε)|I| · εt−|I| · O(ε)|I|

≤ O(ε)t. ◀

In the full version of this paper [41], we explain how to use Lemma 4.2 to prove our
correlation bound for MAJ⊕t

n (Theorem 1.5).

5 Directions for Further Research

The main open question related to our work is whether XORing always amplifies hardness
for AC0 circuits (cf. Theorem 1.1). We wish to also highlight the problem of proving tight
correlation bounds for depth reduction within AC0 (cf. Theorem 1.3). That is, what is the
correlation between linear-size AC0

d+k circuits and near-exponential-size AC0
d circuits?

For simplicity, let us consider the case that d and k are both constants. As discussed
previously, the extreme case k = 1 (i.e., using AC0

d circuits to approximate AC0
d+1 circuits) is

resolved by Håstad, Rossman, Servedio, and Tan’s work [39] to within polynomial factors; the
optimal correlation bound is nΘ(1). Prior work also implies near-matching upper and lower
bounds in the opposite extreme case d = 1 (i.e., using AC0

1 circuits to approximate AC0
1+k

circuits). In this case, it turns out that the optimal correlation bound is exp
(

−Θ̃(logk n)
)

.
(The approximators are based on the Linial-Nisan-Mansour theorem [55]; see the full version
of this paper [41, Appendix B] for details.)

Based on those two extreme cases, it is tempting to conjecture that for all d and k, the
optimal correlation bound should be exp

(
−Θ̃(logk n)

)
, but in truth it is not at all clear

that this is the best guess. Arguably the most interesting case is k = 2, i.e., the problem of
using AC0

d circuits to approximate AC0
d+2 circuits. On the one hand, the best method we

know for constructing such an approximator is simply to use an optimal AC0
1 approximator.

On the other hand, the best correlation bound we know for this case is Håstad, Rossman,
Servedio, and Tan’s bound [39]. We therefore have a considerable gap between the upper
and lower correlation bounds for this case, namely n−Ω(1) vs. n−Õ(logd n).
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