
Explicit Directional Affine Extractors and Improved
Hardness for Linear Branching Programs
Xin Li #

Johns Hopkins University, Baltimore, MD, USA

Yan Zhong #

Johns Hopkins University, Baltimore, MD, USA

Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such
as AC0 circuits, parity decision trees, and general Boolean circuits. However, they are not known to
give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov,
Pudlák, and Talebanfard (CCC’ 22) introduced a stronger version of affine extractors known as
directional affine extractors, together with a generalization of ROBPs where each node can make
linear queries, and showed that the former implies strong lower bound for a certain type of the
latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives
explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case
complexity 2n/3−o(n) against SROLBPs with exponentially small correlation. A follow-up work by
Chattopadhyay and Liao (CCC’ 23) improves the hardness to 2n−o(n) at the price of increasing
the correlation to polynomially large, via a new connection to sumset extractors introduced by
Chattopadhyay and Li (STOC’ 16) and explicit constructions of such extractors by Chattopadhyay
and Liao (STOC’ 22). Both works left open the questions of better constructions of directional
affine extractors and improved average-case complexity against SROLBPs in the regime of small
correlation.

This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and
ROBPs. Our main results include:

An explicit construction of directional affine extractors with k = o(n) and exponentially small
error, which gives average-case complexity 2n−o(n) against SROLBPs with exponentially small
correlation, thus answering the two open questions raised in previous works.
An explicit function in AC0 that gives average-case complexity 2(1−δ)n against ROBPs with
negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is
known, and the best size lower bound for any function in AC0 against ROBPs is 2Ω(n).

One of the key ingredients in our constructions is a new linear somewhere condenser for affine
sources, which is based on dimension expanders. The condenser also leads to an unconditional
improvement of the entropy requirement of explicit affine extractors with negligible error. We
further show that the condenser also works for general weak random sources, under the Polynomial
Freiman-Ruzsa Theorem in Fn

2 , recently proved by Gowers, Green, Manners, and Tao (arXiv’ 23).

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness ex-
tractors; Theory of computation → Circuit complexity; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases Randomness Extractors, Affine, Read-once Linear Branching Programs,
Low-degree polynomials, AC0 circuits

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.10

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/058/

Funding Xin Li: Supported by NSF CAREER Award CCF-1845349 and NSF Award CCF-2127575.
Yan Zhong: Supported by NSF CAREER Award CCF-1845349.

Acknowledgements We thank anonymous reviewers for their helpful comments and a reviewer for
pointing us to [20].

© Xin Li and Yan Zhong;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lixints@cs.jhu.edu
https://orcid.org/0000-0002-9408-2451
mailto:yzhong36@jhu.edu
https://orcid.org/0009-0000-1960-833X
https://doi.org/10.4230/LIPIcs.CCC.2024.10
https://eccc.weizmann.ac.il/report/2023/058/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Directional Affine Extractors and Linear Branching Programs

1 Introduction

Randomness extractors are functions that extract almost uniform random bits from weak
random sources that have poor quality. Although the original motivation of randomness
extractors comes from bridging the gap between the quality of randomness required in
typical applications and that available in practice, as pseudorandom objects, they turn out
to have broad applications in computer science. For example, the kind of extractors known
as affine extractors are shown to be closely connected to complexity theory. Indeed, they
give strong size lower bounds for AC0 circuits (constant depth circuits with NOT gates and
unbounded fan-in AND, OR gates) by the standard switching lemma [23], and are shown
to give exponential size lower bounds for DNF circuits with a bottom layer of parity gates,
together with strong average-case hardness for parity decision trees [14]. Via sophisticated
gate elimination techniques, they also give the best-known size lower bounds for general
Boolean circuits [16, 18, 28]. We define affine extractors below.

▶ Definition 1 (Affine extractor). An (n, k) affine source is the uniform distribution over some
affine subspace with dimension k, of the vector space Fn

2 .1 A function Ext : {0, 1}n → {0, 1}m

is an affine extractor for entropy k with error ε if for every (n, k) affine source X, we have

Ext(X) ≈ε Um,

where Um stands for the uniform distribution over {0, 1}m, and ≈ε means ε close in statistical
distance. We say Ext is explicit if it is computable by a polynomial-time algorithm.

However, affine extractors are not known to imply strong lower bounds for computational
models that measure space complexity. For example, a natural model in this context is a
branching program, which is a directed acyclic graph with one source and two sinks, and
each non-sink node has out-degree 2. To define the computation of the branching program,
one marks each non-sink node with the index of an input bit, and labels the two outgoing
edges by 0 and 1, respectively. Furthermore, one sink is labeled by 1 and the other is labeled
by 0. The program now computes any input by following the natural path from the source
to one sink, while reading the corresponding input bits and going through the corresponding
edges. The program accepts the input if and only if the path ends in the sink with label 1,
and the size of the branching program is defined as the number of its nodes, which roughly
corresponds to 2O(s) where s is the space complexity of the computation.

Proving non-trivial lower bounds of an explicit function for general branching programs
turns out to be a challenging problem. The best known bound is Ω(n2

log2 n
) [33] after decades

of effort, which is not enough to separate P from LOGSPACE. Thus, most research on
lower bounds for branching programs has focused on restricted models, and the most well-
studied is the model of read-once branching program, where on any computational path,
any input bit is read at most once. Exponential lower bounds are known in this model
[41, 43, 17, 24, 27, 39, 36, 19, 5, 1, 26], however, it is not clear if affine extractors imply
strong lower bounds here. For example, the inner product is a good affine extractor for any
entropy k > n/2, but it can be computed by a read-once branching program of size O(n).

In a recent work [22], Gryaznov, Pudlák, and Talebanfard introduced a generalization of
affine extractors called directional affine extractors and a generalization of standard read-once
branching programs called read-once linear branching programs, and show that explicit
constructions of the former imply strong lower bounds for certain cases of the latter. We
define the two generalizations below.

1 More generally, affine sources and affine extractors can be defined over any finite field, but in this paper
we focus on the binary field F2.

X. Li and Y. Zhong 10:3

▶ Definition 2 (Directional affine extractor). A function DAExt : {0, 1}n → {0, 1}m is a
directional affine extractor for entropy k with error ε if for every (n, k) affine source X and
every non-zero vector a ∈ Fn

2 , we have

(DAExt(X), DAExt(X + a)) ≈ε (Um, DAExt(X + a)).

We say the function is a (zero-error) directional affine disperser if there exists some b ∈ {0, 1}m

such that∣∣∣Supp (DAExt(X) | DAExt(X + a) = b)
∣∣∣ = 2m.

▶ Remark 3. Our definition is slightly more general than the definition in [22], since we allow
the extractor to output more than one bits. In the special case of m = 1, our definition
implies that in [22], the reverse is also true up to a small loss in parameters as shown in [12].

▶ Definition 4 (Linear branching program [22]). A linear branching program on Fn
2 is a

directed acyclic graph P with the following properties:
There is only one source s in P .
There are two sinks in P , labeled with 0 and 1 respectively.
Every non-sink node v is labeled with a linear function ℓv : Fn

2 → F2. Moreover, there are
exactly two outgoing edges from v, one is labeled with 1 and the other is labeled with 0.

The size of P is the number of non-sink nodes in P . P computes a Boolean function
f : {0, 1}n → {0, 1} in the following way. For every input x ∈ Fn

2 , P follows the computation
path by starting from s, and when on a non-sink node v, moves to the next node following
the edge with label ℓv(x) ∈ {0, 1}. The computation ends when the path ends at a sink, and
f(x) is defined to be the label on this sink.

[22] defines two kinds of read-once linear branching programs (ROLBP for short). Spe-
cifically, given any linear branching program P and any node v in P , let Prev denote the
span of all linear queries that appear on any path from the source to v, excluding the query
ℓv. Let Postv denote the span of all linear queries in the subprogram starting at v.

▶ Definition 5 (Weakly read-once linear branching program). A linear branching program P

is weakly read-once if for every inner node v of P , it holds that ℓv /∈ Prev.

▶ Definition 6 (Strongly read-once linear branching program). A linear branching program P

is strongly read-once if for every inner node v of P , it holds that Prev ∩ Postv = {0}.

In this paper, we will focus on strongly read-once linear branching programs, and use
SROLBP as a shorthand. As observed in [22] and [12], even the more restricted SROLBPs
generalize several important and well-studied computational models, for example, decision
trees, parity decision trees, and standard read-once branching programs. These models have
applications in diverse areas, such as learning theory, streaming algorithms, communication
complexity and query complexity. Thus, just as the natural generalizations from AC0 circuits
to AC0[⊕] circuits (AC0 with parity gates), and from decision trees to parity decision trees,
studying the generalization from ROBPs to ROLBPs is also a natural direction. In addition,
as observed in [22], parity decision trees are the only case in AC0[⊕] for which we have strong
average-case lower bounds, and they are closely related to tree-like resolution refutation proof
systems. Thus studying ROLBPs as a generalization of parity decision trees is of particular
interest (in fact, this is the original motivation in [22]). We now define two complexity
measures of SROLBPs below.

CCC 2024

10:4 Directional Affine Extractors and Linear Branching Programs

▶ Definition 7. For a Boolean function f : {0, 1}n → {0, 1}, let SROLBP(f) denote the
smallest possible size of a strongly read-once linear branching program that computes f ,
and SROLBPε(f) denote the smallest possible size of a strongly read-once linear branching
program P such that

Prx←U Fn
2
[P (x) = f(X)] ≥ 1

2 + ε.

The definition can be adapted to ROBPs naturally.

The main contribution of [22] is to show that directional affine extractors give strong
average-case hardness for SROLBPs. Specifically, they show that for any directional affine
extractor DAExt for entropy k with error ε, we have SROLBP√

ε/2(DAExt) ≥ ε2n−k−1. In
addition, they give an explicit construction of directional affine extractor for k ≥ 2n

3 + c

with ε ≤ 2−c, which also implies exponential average-case hardness for SROLBPs of size
up to 2 n

3−o(n). Thus, directional affine extractors are indeed stronger than standard affine
extractors and give strong lower bounds in more computational models. [22] left open the
question of explicit constructions of directional affine extractors for k = o(n).

In a follow-up work, Chattopadhyay and Liao [12] showed that another kind of extractors,
known as sumset extractors, also give strong average-case hardness for SROLBPs. These
extractors were introduced by Chattopadhyay and Li [9], which are extractors that work for
the sum of two (or more) independent weak random sources. By using existing constructions
of such extractors in [11], they give an explicit function Ext such that SROLBPn−Ω(1)(Ext) ≥
2n−logO(1) n, i.e., the branching program size lower bound becomes close to optimal, but the
correlation increases from exponentially small to polynomially large. Similarly, [12] left open
the question of obtaining improved average-case hardness against SROLBPs in the small
correlation regime.

We remark that directional affine extractors are a special case of affine non-malleable
extractors, which are defined by Chattopadhyay and Li [10]. Roughly, an affine non-malleable
extractor is an affine extractor such that the output is still close to uniform, even conditioned
on the output of the extractor where the input affine source is modified by any affine function
with no fixed points.

In this context, directional affine extractors just correspond to the case where the
tampering function adds a non-zero affine shift to the source. Previously, the best affine
non-malleable extractor due to Li [32] works for entropy k ≥ (1 −γ)n for some small constant
γ < 1/3 with error 2−Ω(n). Thus this does not give a better construction of directional
affine extractors. However, [32] does give an improved sumset extractor, which yields an
explicit function Ext such that SROLBPε(Ext) ≥ 2n−O(log n) for any constant ε > 0, i.e., the
branching program size lower bound becomes optimal up to the constant in O(.), but the
correlation increases to any constant.

1.1 Our Results
In this paper, we present a much more in-depth study of directional affine extractors, affine
non-malleable extractors, SROLBPs, and standard ROBPs. To begin with, we observe that
it is not a prior clear that SROLBPs are more powerful than standard ROBPs. Indeed, it is
easy to see that AC0[⊕] and parity decision trees are exponentially more powerful than AC0

circuits and standard decision trees, respectively, since parity requires exponential size AC0

circuits and decision trees. However, any parity function can be computed by an ROBP of
size O(n). Nevertheless, there are previous works [34, 25, 20] which showed that computing

X. Li and Y. Zhong 10:5

explicit characteristic functions of certain affine subspaces require ROBPs of size 2Ω(n) (e.g.,
the satisfiable Tseitin formulas in [20]). Since such functions are easily computable by an
SROLBP of size O(n), this provides a separation between SROLBP and ROBP and shows
that indeed SROLBPs are exponentially more powerful than ROBPs.

In turn, this further demonstrates that directional affine extractors have stronger properties
than standard affine extractors, as they imply strong lower bounds for SROLBPs. Next, we
give explicit constructions of directional affine extractors with much better parameters than
that in [22]. Our construction works for any linear entropy with exponentially small error.

▶ Theorem 8. For any constant 0 < δ ≤ 1, there exists a family of explicit directional affine
extractors DAExt : {0, 1}n → {0, 1}m for entropy k ≥ δn with error ε = 2−Ω(n) and output
length m = Ω(n).

In fact, our construction can work for slightly sub-linear entropy.

▶ Theorem 9. There exists a constant c > 1 and an explicit family of directional affine
extractors DAExt : {0, 1}n → {0, 1}m for entropy k ≥ cn(log log log n)2/ log log n with error
ε = 2−nΩ(1) and output length m = nΩ(1), as well as an explicit family of directional affine
dispersers for entropy k ≥ cn(log log n)2/ log n with m = nΩ(1).

This theorem immediately gives much improved average-case hardness for SROLBPs.

▶ Theorem 10. There is an explicit function DAExt such that SROLBP2−nΩ(1) (DAExt) ≥

2n−Õ(n
log log n), where Õ(.) hides (log log log n)2 factors.

In particular, we can achieve exponentially small correlation while obtaining a 2n−o(n) size
lower bound for SROLBPs, which is almost optimal. This significantly improves the 2n/3−o(n)

size lower bound in [22] and the polynomially large correlation in [12]. Thus, Theorem 9 and
10 provide positive answers to the two open questions in [22] and [12] mentioned before.

We remark that under our new definition, a directional affine extractor is strictly stronger
than a standard affine extractor. Thus Theorem 9 also improves the entropy requirement of
negligible error affine extractors, from the previously best-known result of n√

log log n
[42, 29]

to cn(log log log n)2

log log n .
We also revisit the hardness results for standard ROBPs. As mentioned before, exponential

and even close to optimal size lower bounds are known for explicit functions in this model,
where the current best result is an explicit function that requires ROBPs (in fact, SROLBPs)
of size 2n−O(log n) [32]. However, there has also been a lot of interest in finding functions in
lower complexity classes that give strong lower bounds for ROBPs. It is clear that the class
NC0 is not sufficient. Thus the next possible class is AC0. Indeed there are previous works
giving explicit AC0 functions that require ROBPs of size 2Ω(

√
n)[24, 27, 19, 5] and even 2Ω(n)

[20], yet there is no average-case hardness as far as we know. Here, we improve both the
size lower bound and the average-case hardness by giving an explicit AC0 function that has
negligible correlation with ROBPs of size 2(1−δ)n for any constant δ > 0.

▶ Theorem 11. For any constant δ > 0 there is an explicit function AC0-Ext in AC0 such
that ROBP2−poly log n(AC0-Ext) ≥ 2(1−δ)n.

One of the key ingredients in our constructions is a new linear somewhere condenser for
affine sources. Specifically, we have

▶ Definition 12. For any 0 < δ < γ < 1, a function SCond : Fn
2 → (Fm

2)ℓ is a (δ, γ) affine
somewhere condenser, if it satisfies the following property: for any affine source X over Fn

2
with entropy δn, let (Y1, · · · , Yℓ) = SCond(X) ∈ (Fm

2)ℓ, then there exists at least one i ∈ [ℓ]
such that Yi is an affine source over Fm

2 with entropy at least γm.

CCC 2024

10:6 Directional Affine Extractors and Linear Branching Programs

▶ Theorem 13. There exists a constant β > 0 such that for any 0 < δ ≤ 1/2, there is an
explicit (δ, 1/2 + β) affine somewhere condenser SCond : Fn

2 → (Fm
2)t, where t = poly(1/δ)

and m = n/poly(1/δ). Moreover, SCond is a linear function.

We further show that (a slight modification of) this condenser works for general weak
random sources, under the well-known Polynomial Freiman-Ruzsa Theorem in Fn

2 , once one
of the most important conjectures in additive combinatorics and very recently proved by
Gowers, Green, Manners, and Tao [21].

Previously, all condensers of this kind are based on sum-product theorems, and the function
is a polynomial with degree poly(1/δ) [3, 38, 44]. In contrast, there exist constructions of
linear seeded extractors, where if one lists the outputs of the extractor for all possible seeds,
then we get a somewhere random source such that at least one output is close to uniform, and
the function is a linear function. However, in many applications such as ours, one needs to use
a somewhere condenser instead of simply listing all outputs of an extractor, since the former
only gives a small number (e.g., a constant) of outputs as opposed to poly(n) outputs from
the extractor. Hence, our linear somewhere condenser complements the existing sum-product
theorem based somewhere condensers. Moreover, our construction of the condenser is based
on dimension expanders, which are algebraic pseudorandom objects previously studied based
on their own interests, with no clear applications in computer science as far as we know.
Thus, our construction can be viewed as one of the first applications of dimension expanders
in computer science.

Finally, we study the question of whether directional affine extractors can give strong
lower bounds for the class of AC0[⊕] in a black box way. Cohen and Tal [15] showed via
probablistic methods that standard affine extractors do not suffice since depth-3 AC0[⊕]
circuits can compute optimal affine extractors. Using a slightly modified argument as that
in [15], we show that even the stronger version of directional affine extractors does not suffice.
Specifically, depth-3 AC0[⊕] circuits can also compute optimal directional affine extractors.
This in turn provides a strong separation of AC0[⊕] from SROLBP.

▶ Theorem 14. There exists a function f : {0, 1}n → {0, 1} which is a directional affine
extractor for entropy k with error ε, where k = log n

ε2 + log log n
ε2 + O(1) such that the

following properties hold.
1. f is a polynomial of degree log n

ε2 + log log n
ε2 + O(1).

2. f can be realized by a XOR-AND-XOR circuit of size O((n/ε)2 · log3(n/ε)).
3. f can be realized by a De Morgan formula of size O((n5/ε2) · log3(n/ε)).

2 Overview of the Techniques

Here we give a sketch of the main ideas used in this paper. For clarity, we shall be informal
at places and ignore some technical details.

2.1 Directional affine extractors
Our starting point is the construction of affine extractors by Li [29], which works for sub-linear
entropy with exponentially small error. We first briefly recall the construction there. Divide
an affine source X of entropy rate δ into O(1/δ) blocks. By choosing the size of the blocks
appropriately, one can show that there exists a “good” block Xg of entropy rate Ω(δ), and the
source X still has a lot of entropy conditioned on Xg (i.e., we get an affine block source). If
we know the position of Xg, randomness extraction is easy: we apply a somewhere condenser
(e.g., those in [3, 38, 44]) to condense Xg into a matrix with a constant number of rows,

X. Li and Y. Zhong 10:7

such that at least one row has entropy rate 1 − δ/2. At this point, we can apply a linear
two-source extractor (e.g., the inner product function) to each row of the matrix and the
source X to get an affine somewhere random source, conditioned on the fixing of Xg. This
is another matrix with a constant number of rows, such that at least one row is uniform,
and one can apply existing techniques to deterministically extract random bits from this
source [37].

However, when δ is small, we don’t know which block Xg is good. Thus in [29], the
construction tries all blocks, and then combines them together. To make this process work,
the construction crucially maintains the following property: (*) for each block Xi, the output
bits produced from this block are constant degree polynomials of the input bits, and the
degrees decrease geometrically from the first block to the last block. With this property,
the analysis goes by focusing on the first good block Xg. Notice that we can fix all the
outputs produced from blocks before Xg, while all outputs produced from blocks after Xg

have degrees less than those from Xg. Thus if we take the XOR of all these outputs, an XOR
lemma of polynomials [40, 4] guarantees the final output is still close to uniform. We note
that the XOR lemma of polynomials only works for degree up to log n. Hence it is important
to keep the degree c of the outputs from each block to be as small as possible. Roughly, we
will need cO(1/δ) < log n.

Our strategy now is to adapt this construction to directional affine extractors. Towards
this, we use techniques from constructions of non-malleable extractors since, as we remark
before, directional affine extractors are a special case of affine non-malleable extractors.
Recent constructions of non-malleable extractors usually consist of two steps: first, generate
a small advice that is different from the tampered version with high probability, and then use
the advice together with other tools (e.g., correlation breakers) to achieve non-malleability.
Thus, our goal is to adapt these two steps to directional affine extractors while, at the same
time, still maintaining property (*), which is crucial to achieving any linear entropy or slightly
sub-linear entropy. We now explain both steps.

As before, for each block Xi we will get an output Ui, which is close to uniform if Xi is a
good block. Divide Ui into two parts Ui = Ui1 ◦ Ui2. We will use Ui1 to generate the advice
and Ui2 for the rest of the construction. Notice that from the tampered input X ′ = X + a

we also have a tampered version U ′i = U ′i1 ◦ U ′i2. In the following, we will always use letters
with prime to denote the corresponding random variables produced from the tampered input.
If Ui1 ̸= U ′i1 then we are done, otherwise we use Ui1 = U ′i1 to sample some Ω(δ2n) bits Hi

from an encoding of X, using an asymptotically good binary linear code. Since X ′ = X + a,
we have that Hi + H ′i basically corresponds to the sampled bits from the encoding of a. Thus
Hi ̸= H ′i with high probability by the distance of the linear code. However, we cannot just do
sampling naively since we need to keep the degree to be a constant. Therefore, we also divide
both Ui1 and the encoding of X into Ω(δ2n) blocks where each block contains a constant
number of bits, and use each block of Ui1 to sample one bit from the corresponding block
of the encoding of X. By the distance property of the code, there are Ω(δ2n) blocks of the
encoding of X and X ′ that are different. Thus we still have Hi ̸= H ′i with high probability,
and now each bit of Hi is a constant degree polynomial of the bits of Ui1 and X. The advice
string is now Ui1 ◦ Hi.

Once we have the advice, we can append it to another string extracted from X by
using a linear seeded extractor and Ui2 as the seed. Now notice that the string produced
from X is different from the string produced from X ′ with high probability, and they are
linearly correlated conditioned on the fixing of (Ui, U ′i). Thus we can apply, for example,
a known affine non-malleable extractor (the state-of-the-art affine non-malleable extractor

CCC 2024

10:8 Directional Affine Extractors and Linear Branching Programs

with negligible error only works for high entropy). However, the known construction of affine
non-malleable extractor in [10] has super constant degree. Indeed, even one application of
this extractor results in a polynomial of degree larger than log n, which already defeats our
purpose to get a directional affine extractor (we can still get a directional affine disperser,
though).

To solve this problem, we develop new ideas that make use of the special structure of
X ′ = X + a. Recall that in our construction, for every block Xi we get a Ui2, which is close
to uniform if Xi is good, and X still has enough entropy conditioned on Xi. Our idea now is
to use a seeded non-malleable extractor snmExt instead, which is an extractor with a uniform
random seed, such that if an adversary tampers with the seed but not the source, then the
output of the extractor on the original inputs is close to uniform given the output on the
tampered inputs. By appending the advice string to Ui2 and getting Ũi = Ui ◦ Hi, we have
Ũi ̸= Ũ ′i with high probability, and the seed Ũi has high entropy if Hi has small size, which
suffices for the seeded non-malleable extractor as long as the extractor is strong. Now, if
the seeded non-malleable extractor is also linear conditioned on any fixing of the seed, then
we have snmExt(X ′, Ũ ′i) = snmExt(X, Ũ ′i) + snmExt(a, Ũ ′i). Since snmExt(X, Ũi) is close to
uniform given snmExt(X, Ũ ′i) (because it is a non-malleable extractor), and the extractor is
strong (we can fix the seeds (Ũi, Ũ ′i)), this implies that snmExt(X, Ũi) is close to uniform
given snmExt(X ′, Ũ ′i). 2

Luckily, there are previous constructions of linear seeded non-malleable extractors due to
Li [30], which are based on the inner product function. Moreover, this extractor also has
the property that each output bit is a constant degree polynomial of the input bits. Thus
everything seems to work out, except for one problem: the non-malleable extractor in [30]
only works when the source has entropy rate > 1/2, but here our goal is to work for any linear
(or slightly sub-linear) entropy. A natural idea would be to use the somewhere condenser
(e.g., in [3, 38, 44]) to boost the entropy rate of X. However, all known condensers of this
kind are based on sum-product theorems, which are non-linear functions, and applying them
changes the structure of X ′ = X + a, which is important for our construction. Another idea
is to apply a linear seeded extractor to X and try all possible seeds. This indeed keeps the
structure of X ′ = X + a, but will result in a poly(n) number of outputs, and combining them
together will result in a polynomial of large, super constant degree.

This motivates another key ingredient in our construction, a new linear somewhere
condenser for affine sources. In short, we construct a linear function which, given any affine
source on n bits with entropy rate 0 < δ ≤ 1/2, outputs poly(1/δ) rows such that each
row has n/poly(1/δ) bits, and at least one row has entropy rate 1/2 + β for some absolute
constant β > 0. This complements the sum-product based somewhere condensers, and can
be viewed as a separate contribution of our work. We will explain the construction of this
condenser later, but finish the description of our directional affine extractor here, assuming
that we have the linear somewhere condenser.

The rest of the construction roughly goes as follows. We apply the linear somewhere
condenser to the source X to get a constant number of rows, then apply snmExt to each row
using Ũi as the seed. Thus we get a constant number of outputs such that at least one of
them is close to uniform conditioned on the corresponding tampered output. Now we apply
an affine correlation breaker such as those in [31, 8, 11] to further break the correlations
between different outputs, and combine these outputs together by taking the XOR. The

2 The actual analysis involves more details since here X is not independent of (Ũi, Ũ ′
i), but the property

still holds due to the affine structure. We omit the details here.

X. Li and Y. Zhong 10:9

correlation breaker guarantees that the final output is close to uniform conditioned on the
tampered output. To keep the degree small, we need to replace all seeded extractors used in
the correlation breaker with a constant degree linear seeded extractor in [29]. This keeps
the output bits to be constant degree polynomials of the input bits, and the remaining
construction is essentially the same as that in [29].

2.2 Linear somewhere condenser
We now describe our construction of the linear somewhere condenser. This is based on another
pseudorandom object known as dimension expander. Informally, a dimension expander is a set
of linear mappings from a vector space Fn to itself, such that for any linear subspace V ⊂ F n

with small dimension k ≤ n/2, the span of the union of all the images of V under the set of
linear mappings has dimension at least (1 + α)k for some absolute constant α > 0. Readers
familiar with expander graphs can see that this is a linear algebraic analog of expander graphs.
Thus, it is desirable to give explicit constructions of the set of linear mappings which has as
few number of mappings as possible, where this number d is called the degree. Dimension
expanders were first introduced by Barak, Impagliazzo, Shpilka, and Wigderson [2], who also
showed the existence of such objects. Later, Bourgain and Yehudayoff [6, 7] gave explicit
constructions of dimension expanders with degree d = O(1) over any field. Interestingly,
as far as we know, there are no previous applications of dimension expanders in computer
science, and they are mainly studied based on their own interests and connections to other
algebraic pseudorandom objects. Thus our construction can be viewed as one of the first
applications of dimension expanders in computer science.

Given an explicit dimension expander {Ti}i∈[d] where each Ti is a linear mapping, and any
affine source X with entropy rate δ ≤ 1/2, we first construct a basic somewhere condenser as
follows. Divide X equally into X = X1 ◦ X2, and our condenser produces 2d + 2 outputs:
(X1, X2, {X1 + Ti(X2)}i∈[d], {Ti(X1) + X2}i∈[d]). We show that at least one output has
entropy rate (1 + γ)δ for some constant γ > 0, and we give some intuition below. By
the structure of affine sources, one can show that there exists another affine source X3
independent of X1 such that X2 = X3 + L(X1) for some linear function L. Let H(X1) = s,
H(X3) = r and H(L(X1)) = t, then we have s + r = δn. If either s or r is small, e.g.,
s ≪ δn/2, then we must have r ≫ δn/2 and thus H(X2) = r + t ≥ (1 + γ)δn/2. Therefore
the entropy rate of X2 is at least (1 + γ)δ. The case of r ≪ δn/2 is similar. Hence, we only
need to consider the case where s ≈ δn/2 and r ≈ δn/2, and notice that we must have either
s ≤ δn/2 or r ≤ δn/2. Furthermore, in this case, t must be small, since otherwise, we would
again have H(X2) = r + t ≥ (1 + γ)δn/2.

For simplicity, assume that s = r = δn/2, and t = 0. Hence both X1 and X2 have
entropy rate δ ≤ 1/2, and they are independent. Without loss of generality, assume the
supports of both X1 and X2 are linear subspaces. By the property of the dimension expander,
Span(∪i∈[d]Ti(X1)) has dimension at least (1 + α)δn/2. We now argue that there exists an
i ∈ [d] such that the support of Ti(X1) + X2 has dimension at least (1 + α/d)δn/2, which
implies that Ti(X1) + X2 has entropy rate at least (1 + α/d)δ. To see this, assume otherwise,
then for any i ∈ [d], any vector in the support of Ti(X1) + X2 can be expressed as a linear
combination of the r = δn/2 basis vectors in the support of X2 and < (α/d)δn/2 other vectors.
This implies that Span(∪i∈[d]Ti(X1)) has dimension < δn/2 + d · (α/d)δn/2 = (1 + α)δn/2,
since any vector in Span(∪i∈[d]Ti(X1)) can be expressed as a linear combination of the
r = δn/2 basis vectors in the support of X2 and < d · (α/d)δn/2 other vectors. This
contradicts the property of the dimension expander.

CCC 2024

10:10 Directional Affine Extractors and Linear Branching Programs

Thus, in all cases, we get the desired entropy rate boost. Our final somewhere condenser
involves repeated uses of the basic condenser, as in previous works. It is easy to see that
the entropy rate of at least one output will increase to 1/2 + β for some absolute constant
β > 0 after O(log(1/δ)) uses of the basic condenser. The number of outputs is, therefore,
poly(1/δ) and each output has n/poly(1/δ) bits. Finally, it is clear that the condenser is a
linear function.

Once we have this linear condenser, we can even replace the somewhere condensers used
in [29] by the new condenser. This further reduces the degree of the polynomials of the
output bits (since previous somewhere condensers are polynomials instead of linear functions).
Therefore we can push the entropy requirement of our directional affine extractor to be even
better than that in [29], from n√

log log n
to cn(log log log n)2

log log n .
We show that a slight modification of our linear condenser also works for general weak

random sources, under the Polynomial Freiman-Ruzsa Theorem. Roughly, the idea is to use
a careful analysis of subsources and collision probability. Specifically, it is known that if the
collision probability of a distribution is small, then the distribution is close to having high
min-entropy. On the other hand, if the collision probability is large, then (without loss of
generality) assuming the distribution is the uniform distribution over some unknown subset,
existing results in additive combinatorics imply that there is a large subset A in the support
of the distribution such that the size of A + A is not much larger than A. The Polynomial
Freiman-Ruzsa Theorem then implies that there is another large subset A′ ⊂ A which is
“close” to an affine subspace, which roughly reduces the analysis to the case of affine sources.

2.3 AC0 average-case hardness for ROBPs
To show AC0 average-case hardness for ROBPs, we use a standard observation that if one
conditions on an inner node, then the input bits priori to this node and the input bits after
this node are still independent. We then construct an appropriate extractor in AC0, which
we call AC0-Ext, for sources with such a structure. Specifically, given any ROBP of size s and
any constant δ > 0, we can find a cut or anti-chain (a maximal subset of vertices such that
none of which is an ancestor of any other vertex) of size O(s) at roughly depth δn above the
sinks, so that conditioned on the fixing of any vertex in the cut, the input uniform random
string X now becomes two independent weak sources A and B, where A corresponds to the
first part of the program and B corresponds to the second part. Since we don’t know the
order of bits queried by the ROBP, the bits of the two sources are interleaved, and we view
X = A + B. Using a standard averaging argument, one can show that with high probability,
the following properties are satisfied: (1) A and B are supported on disjoint subsets of input
bits; (2) A has min-entropy roughly (1 − δ)n − log s and B has min-entropy δn; and (3) B is
an oblivious bit-fixing source, which is obtained by fixing some unknown bits in a uniform
random string. If s ≤ 2(1−2δ)n then both A and B have entropy rate roughly δ. Now, our
goal is to construct an extractor in AC0 for sources with this structure, that is also strong in
B. This means that even if we condition on the fixing of the vertex in the cut and B, the
output of the extractor is still close to uniform. On the other hand, the output of the ROBP
is completely determined by the vertex and B. Thus our extractor is average-case hard for
ROBPs of size up to 2(1−2δ)n.

As usual, the function AC0-Ext will be compositions of different, more basic extractors
as building blocks. Thus we need all these building blocks to be computable in AC0. Here,
we leverage the constructions from two previous works on extractors in AC0: (1) the AC0-
computable extractors AC0-BFExt for bit-fixing source by Cheng and Li [13], and (2) the
AC0-computable strong linear seeded extractors AC0-LExt by Papakonstantinou, Woodruff,
and Yang [35].

X. Li and Y. Zhong 10:11

Now we can describe our main idea of construction. Divide X into t = O(1/δ) blocks,
and by an averaging argument, there exists a block Bg of B with entropy rate Ω(δ). Now
for the block Xg = Ag + Bg, we can fix Ag so that Xg is an oblivious bit-fixing source of
entropy rate Ω(δ) and is a deterministic function of B. We next fix the bits from B outside
of the g-th block so that the source X outside of Xg is a deterministic function of A and
thus independent of Xg. Moreover, A and X still have enough entropy left.

Applying the above-mentioned extractor AC0-BFExt for bit-fixing sources to each block
Xi, we convert X into a somewhere random source Y = Y1 ◦ · · · ◦ Yt where the row Yg is a
deterministic function of Bg and close to uniform, while all the other rows are deterministic
functions of A. At this point, we can simply take the XOR of the Yi’s to obtain a close-to-
uniform output. However, as mentioned before, we need the extractor to be strong in B and
this simple approach is not sufficient. Instead, we fix all the outputs produced by AC0-BFExt
for Xi where i ̸= g. Note that these are all deterministic functions of A. Thus conditioned on
this fixing, Y becomes a deterministic function of B, which is independent of A. Moreover, as
long as the output size of AC0-BFExt is not too large, A still has enough entropy left. Since
X = A + B, we can now apply a strong t-affine correlation breaker as in [31, 11] with each
Yi as the seed to extract from X a random string, and take the XOR of them. The property
of the correlation breaker guarantees that the string produced from Yg and X is close to
uniform conditioned on all the other outputs and Y . Hence the XOR is also close to uniform
conditioned on B. To ensure the correlation breaker is computable in AC0, we replace all the
strong (linear) seeded extractors in the known constructions of t-affine correlation breakers
with the above-mentioned AC0-LExt. Since t = O(1/δ) is a constant, the correlation breaker
involves a constant number of compositions of AC0-LExt, which is still in AC0.

3 Open Problems

Our work leaves several natural open problems. The most obvious is to further improve the
constructions of directional affine extractors and the average-case hardness for SROLBPs.
It would also be quite interesting to show any hardness of explicit functions for WROLBPs,
which appears to require new ideas. Finally, it is an interesting question to see if there exist
functions in AC0 that achieve optimal hardness for ROBPs, or strong hardness for SROLBPs.

References

1 Alexander E. Andreev, Juri L. Baskakov, Andrea E. F. Clementi, and José D. P. Rolim.
Small pseudo-random sets yield hard functions: New tight explict lower bounds for branching
programs. In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata,
Languages and Programming, 26th International Colloquium, ICALP’99, Prague, Czech
Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes in Computer Science,
pages 179–189. Springer, 1999. doi:10.1007/3-540-48523-6_15.

2 Boaz Barak, Russel Impagliazzo, Amir Shpilka, and Avi Wigderson. Definition and existence
of dimension expanders. Discussion (no written record), 2004.

3 Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
independence: New constructions of condensers, Ramsey graphs, dispersers, and extractors. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10, 2005.

4 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of reed-muller codes. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 488–497. IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.54.

CCC 2024

https://doi.org/10.1007/3-540-48523-6_15
https://doi.org/10.1109/FOCS.2010.54

10:12 Directional Affine Extractors and Linear Branching Programs

5 Beate Bollig and Ingo Wegener. A very simple function that requires exponential size read-once
branching programs. Inf. Process. Lett., 66(2):53–57, 1998. doi:10.1016/S0020-0190(98)
00042-8.

6 Jean Bourgain. Expanders and dimensional expansion. Comptes Rendus Mathematique,
347(7):357–362, 2009.

7 Jean Bourgain and Amir Yehudayoff. Expansion in SL2(R) and monotone expanders. Geometric
and Functional Analysis, 23(1):1–41, 2013.

8 Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 622–633, 2022. doi:10.1109/FOCS52979.2021.00067.

9 Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, Cambridge, MA, USA, June 18-21, 2016, pages 299–311. ACM, 2016.
doi:10.1145/2897518.2897643.

10 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1171–1184. ACM, 2017. doi:10.1145/3055399.3055483.

11 Eshan Chattopadhyay and Jyun-Jie Liao. Extractors for sum of two sources. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1584–1597. ACM, 2022.
doi:10.1145/3519935.3519963.

12 Eshan Chattopadhyay and Jyun-Jie Liao. Hardness against linear branching programs and
more. In Proceedings of the Conference on Proceedings of the 38th Computational Complexity
Conference, CCC ’23, Dagstuhl, DEU, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

13 Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality. In Eric Blais,
Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 37:1–37:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.
37.

14 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Madhu Sudan, editor,
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 47–58. ACM, 2016. doi:10.1145/2840728.
2840734.

15 Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and applica-
tions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2015, 2015.

16 Evgeny Demenkov and Alexander Kulikov. An elementary proof of 3n-o(n) lower bound on
the circuit complexity of affine dispersers. In Proceedings of the 36th international conference
on Mathematical foundations of computer science, pages 256–265, 2011.

17 Paul E. Dunne. Lower bounds on the complexity of 1-time only branching programs. In Lothar
Budach, editor, Fundamentals of Computation Theory, FCT ’85, Cottbus, GDR, September
9-13, 1985, volume 199 of Lecture Notes in Computer Science, pages 90–99. Springer, 1985.
doi:10.1007/BFb0028795.

18 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 89–98, 2016.
doi:10.1109/FOCS.2016.19.

19 Anna Gál. A simple function that requires exponential size read-once branching programs.
Inf. Process. Lett., 62(1):13–16, 1997. doi:10.1016/S0020-0190(97)00041-0.

https://doi.org/10.1016/S0020-0190(98)00042-8
https://doi.org/10.1016/S0020-0190(98)00042-8
https://doi.org/10.1109/FOCS52979.2021.00067
https://doi.org/10.1145/2897518.2897643
https://doi.org/10.1145/3055399.3055483
https://doi.org/10.1145/3519935.3519963
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.37
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.37
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1007/BFb0028795
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1016/S0020-0190(97)00041-0

X. Li and Y. Zhong 10:13

20 Ludmila Glinskih and Dmitry Itsykson. Satisfiable Tseitin Formulas Are Hard for Non-
deterministic Read-Once Branching Programs. In Kim G. Larsen, Hans L. Bodlaender, and
Jean-Francois Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 26:1–26:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.MFCS.2017.26.

21 W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. On a conjecture of marton,
2023. arXiv:2311.05762.

22 Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear Branching Programs and
Directional Affine Extractors. In 37th Computational Complexity Conference (CCC 2022),
volume 234, pages 4:1–4:16, 2022.

23 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6–20. ACM, 1986. doi:10.1145/12130.12132.

24 Stasys Jukna. Entropy of contact circuits and lower bounds on their complexity. Theor.
Comput. Sci., 57:113–129, 1988. doi:10.1016/0304-3975(88)90166-1.

25 Stasys Jukna. A note on read-k times branching programs. RAIRO - Theoretical Informatics
and Applications, 28:75–83, January 1995.

26 Valentine Kabanets. Almost k-wise independence and hard boolean functions. Theor. Comput.
Sci., 297(1-3):281–295, 2003. doi:10.1016/S0304-3975(02)00643-6.

27 Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser turing
machine classes Le, NLe, co-NLe and Pe. Theor. Comput. Sci., 86(2):267–275, 1991. doi:
10.1016/0304-3975(91)90021-S.

28 Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages
1180–1193, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519935.3519976.

29 Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th Annual
IEEE Conference on Computational Complexity, CCC, 2011.

30 Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science, 2012.

31 Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, STOC 2017, pages
1144–1156, New York, NY, USA, 2017. Association for Computing Machinery.

32 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. Technical
report, Arxiv, 2023. arXiv:2303.06802.

33 E. I. Nechiporuk. On a boolean function. Doklady of the Academy of Sciences of the USSR,
164(4):765–766, 1966.

34 EA Okolnishnikova. On lower bounds for branching programs. Siberian Advances in Mathem-
atics, 3:152–156, January 1993.

35 Periklis A Papakonstantinou, David P Woodruff, and Guang Yang. True randomness from big
data. Scientific reports, 6:33740, 2016.

36 Stephen Ponzio. A lower bound for integer multiplication with read-once branching programs.
SIAM Journal on Computing, 28(3):798–815, 1998. doi:10.1137/S0097539795290349.

37 Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 2009 24th Annual
IEEE Conference on Computational Complexity, CCC ’09, pages 95–101. IEEE Computer
Society, 2009.

38 Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

39 Janos Simon and Mario Szegedy. A new lower bound theorem for read-only-once branching
programs and its applications. In Advances In Computational Complexity Theory, 1992.

CCC 2024

https://doi.org/10.4230/LIPIcs.MFCS.2017.26
https://arxiv.org/abs/2311.05762
https://doi.org/10.1145/12130.12132
https://doi.org/10.1016/0304-3975(88)90166-1
https://doi.org/10.1016/S0304-3975(02)00643-6
https://doi.org/10.1016/0304-3975(91)90021-S
https://doi.org/10.1016/0304-3975(91)90021-S
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/3519935.3519976
https://arxiv.org/abs/2303.06802
https://doi.org/10.1137/S0097539795290349

10:14 Directional Affine Extractors and Linear Branching Programs

40 Emanuele Viola and Avi Wigderson. Norms, xor lemmas, and lower bounds for polynomials
and protocols. Theory of Computing, 4(7):137–168, 2008. doi:10.4086/toc.2008.v004a007.

41 Ingo Wegener. On the complexity of branching programs and decision trees for clique functions.
J. ACM, 35(2):461–471, 1988. doi:10.1145/42282.46161.

42 Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256, 2011.
43 Stanislav Zák. An exponential lower bound for one-time-only branching programs. In Michal

Chytil and Václav Koubek, editors, Mathematical Foundations of Computer Science 1984,
Praha, Czechoslovakia, September 3-7, 1984, Proceedings, volume 176 of Lecture Notes in
Computer Science, pages 562–566. Springer, 1984. doi:10.1007/BFb0030340.

44 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Theory of Computing, 2007.

https://doi.org/10.4086/toc.2008.v004a007
https://doi.org/10.1145/42282.46161
https://doi.org/10.1007/BFb0030340

	1 Introduction
	1.1 Our Results

	2 Overview of the Techniques
	2.1 Directional affine extractors
	2.2 Linear somewhere condenser
	2.3 Lg average-case hardness for Lgs

	3 Open Problems

