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Abstract
We study the circuit complexity of the multiselection problem: given an input string x ∈ {0, 1}n

along with indices i1, . . . , iq ∈ [n], output (xi1 , . . . , xiq ). A trivial lower bound for the circuit size is
the input length n + q · log(n), but the straightforward construction has size Θ(q · n).

Our main result is an O(n + q · log3(n))-size and O(log(n + q))-depth circuit for multiselection.
In particular, for any q ≤ n/ log3(n) the circuit has linear size and logarithmic depth. Prior to our
work no linear-size circuit for multiselection was known for any q = ω(1) and regardless of depth.
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1 Introduction

In the selection problem, also commonly called multiplexing, one is given a long string
x ∈ {0, 1}n and an index i ∈ [n], and the goal is to output xi. Selection is one of the basic
operations in the word RAM model (and indeed costs unit time in that model). Implementing
it by a Boolean circuit however is more involved and requires a circuit of size Θ(n).1

In this work we investigate a natural generalization of selection, which we call multiselec-
tion; now rather than a single index, one is given indices i1, . . . , iq ∈ [n], and the goal is to
compute (xi1 , . . . , xiq

). We denote this function by Seln→q. Multiselection is trivial in the
word RAM model of computation (it costs Θ(q) operations with any standard instruction
set). We focus on implementing multiselection by small Boolean circuits, where here and
throughout this work all circuits have bounded fan-in. In this setting, we do not have
matching upper and lower bounds. The best circuit size lower bound for multiselection is
the input length n + q · log n. On the other hand, the straightforward construction (which
selects each index separately) is much larger, with size Θ(n · q). A slightly more sophisticated
approach reduces to sorting, and results in a circuit of size Θ(n log2 n) for any q = O(n).
Somewhat surprisingly, it appears that multiselection has not been systematically studied and
in particular we are not aware of essentially any other upper bounds (see further discussion
in Section 1.1).

1 The Ω(n) lower bound simply comes from the input size (which is a circuit size lower bound for any
function in which each input has non-zero influence). The upper bound follows from a simple divide
and conquer approach (cf. [27, Lemma 2.5.5] or Proposition 2).
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11:2 Linear-Size Boolean Circuits for Multiselection

Our main result is an O(n)-size, and O(log n)-depth, Boolean circuit for multiselection
for any q ≤ O(n/ log3(n)). More generally: [Main Theorem] For all n, q ∈ Z+ there is a
Boolean circuit computing Seln→q of size O(n + q · log3(n)) and depth O(log(n + q)). To
the best of our knowledge, no linear-size circuit for multiselection was previously known for
any q = ω(1), even without any restriction on the depth.

The main technical tools used in our construction are self-routing superconcentrators [25]
and low-depth quasi-linear size sorting networks [1]. We also discuss applications of our
linear-size multiselection circuit to problems in cryptography in Appendix A.

▶ Remark 1 (Uniformity). The circuits that we construct to prove Section 1 are log-space
uniform, meaning that they can be generated in logarithmic space (and polynomial-time) by a
uniform algorithm, given 1n as input. Motivated by some of our applications, in Appendix B
we also show an extension of the result with a linear-time uniform generation algorithm (on
a word RAM machine), but only for q < nε, where ε > 0 is a universal constant.

1.1 Related Work

1.1.1 Tight Compaction
Several recent works [5, 22, 4, 3] study the related and central problem of tight compaction,
in which the task is to retrieve all “marked” symbols of a string x (in any order). Although
this has a similar flavor to multiselection, there are several important differences. First,
compaction circuits assume that each symbol xi of x is marked with a bit bi indicating
whether or not xi is to be selected. In multiselection, we are instead given a list of indices
i1, . . . , iq that should be selected. Given such a list, we know how to compute (b1, . . . , bn)
with circuits only of size Ω(n log2 n). Second, the ordering of a compaction circuit’s output
is unconstrained, while the ordering of a multiselection circuit’s output is determined by the
ordering of its input indices i1, . . . , iq.

We address similar issues in our approach to constructing multiselection circuits. Interest-
ingly, our construction implicitly utilizes a variant of compaction that can be instantiated in
linear size using the [5] construction. We discuss this point further in our technical overview.

1.1.2 Uniselection Lower Bounds.
As noted above, it is easy to construct an O(n)-size circuit for the uniselection problem (i.e.,
the case of q = 1). Interestingly though, the uniselection problem has been a source for
some of the best known circuit and formula lower bounds that are known (for any explicit
function).

In particular, Paul [24] gave a 2n − o(n) lower bound on the circuit complexity of
uniselection (over any 2-bit gate basis). Blum [7] gave a 3n−o(n) lower bound for computing
a closely related function (as a matter of fact this function involves computing a multiselection
with q = 3 and applying a simple gadget function to the result). Nechiporuk [23] proved a
quadratic lower bound on the formula size for a modified selection function and Andreev [2]
proved an n2.5−o(1) lower bound on the de Morgan formula size of roughly the same function.

2 Technical Overview

In this section we give an overview of the proof techniques underlying the proof of Section 1.
In this overview we focus on achieving a linear-size multiselection circuit and defer the
additional complications needed to simultaneously achieve logarithmic-depth to the technical
sections.
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The main technical tool that we use in our construction is a superconcentrator. Recall
that a superconcentrator [28] is a constant-degree directed acyclic graph with O(n) vertices,
n of which are sources and n of which are sinks, with the property that for any q ≤ n, any
set S of sources, and any set T of sinks with |S| = |T | = q, there exist q vertex-disjoint paths
from S to T .

2.1 Weak multiselection from superconcentrators
We first use superconcentrators to construct linear-size circuits for a weak form of multiselec-
tion (to be described shortly) and then show how to upgrade this construction to a circuit
for full-fledged multiselection.

By replacing each vertex of a superconcentrator with a constant-sized routing gadget, we
obtain for every q ≤ n a circuit Ĉ of size O(n) that implements the following weak form of
multiselection: For any list of distinct indices i = (i1, . . . , iq) ∈ [n]q, there exists an “advice
string” î ∈ {0, 1}Θ(n) and a reordering j1, . . . , jq of i1, . . . , iq such that Ĉ(x, î) = (xj1 , . . . , xjq

),
for all x ∈ {0, 1}n. The string î describes the q vertex-disjoint paths from the source vertices
i1, i2, . . . , iq, to the sinks 1, 2, . . . , q, by specifying how each vertex’s routing gadget should
be configured.

This weak form of multiselection suffers from three drawbacks, which we will repair one
by one:
1. The cost of computing î might be large, and in particular super-linear in the length of x,
2. The output of Ĉ is misordered – it is (xj1 , . . . , xjq ) instead of (xi1 , . . . , xiq ), and
3. The input i is required to consist of distinct indices in [n].

2.2 Amortizing the computation of the advice string
We address issue 1 by (temporarily) switching to a larger alphabet, which allows to amortize
the cost of computing the advice string î. We refer to the latter as a “block multiselector”.
Later we will show how to use a block multiselector to construct our desired (binary alphabet)
multiselector.

In more detail, consider a generalization of multiselection, over an alphabet Σ = {0, 1}s.
The input is now a string x ∈ Σn and indices i1, . . . , iq ∈ [n] and the goal, as before, is to
output (xi1 , . . . , xiq

) ∈ Σq. Jumping ahead, it will suffice for us to set the block size s to be
poly-logarithmic in n.

To construct the block multiselector, denoted Ĉs, we simply take s copies of Ĉ so that the
jth copy gets as input the jth bit of each input block and produces the jth bit of each output
block; all copies of Ĉ share the same advice string input. This circuit Ĉs has the property that
for all i ∈ [n]q (consisting of distinct elements), there exists î ∈ {0, 1}Θ(n) and a reordering
j = (j1, . . . , jq) of i such that for all x ∈

(
{0, 1}s

)n, it holds that Ĉs(x, î) = (xj1 , . . . , xjq
).

The size of Ĉs is O(n · s), but the computation of î from i1, . . . , iq is entirely independent
of s. Thus, by choosing s to be sufficiently large, we can hope to amortize the computation of
î relative to our input length, which is Ω(n ·s). There is an O(n log2(n)) circuit for computing
î for Pippenger’s self-routing superconcentrators [25], so by using these in the prior step it
suffices now to set s = log2(n).

Overall, we obtain a linear-size block multiselector Cs (i.e., of size O(n · s)), for block
size s = log2(n) and number of queries q ≤ n, with the following property: for all distinct
i1, . . . , iq ∈ [n]q, there exists a reordering j1, . . . , jq of i1, . . . , iq such that Cs(x, i1, . . . , iq) =
(xj1 , . . . , xjq ), for all x ∈

(
{0, 1}s

)n. We note that such a circuit could also be constructed
using linear-size circuits for tight compaction [5], in conjunction with Lemma 21.

CCC 2024
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2.3 Reordering the outputs and handling non-unique inputs
We next simultaneously resolve issues 2 (misordered output) and 3 (the restriction of unique
indices). The high level idea is to append to each of the blocks its (original) block index.
This means that after applying the block-multiselector from the previous step, we still keep
track of the original location of this block, which we can combine with i1, . . . , iq to rearrange
the output blocks in the desired order (and handle multiplicities appropriately).

In more detail, on input x ∈
(
{0, 1}s

)n and i ∈ [n]q, we construct the string x′ :=(
(1, x1), . . . , (n, xn)

)
∈ ({0, 1}log(n)+s)n as well as an index string i′ ∈ [n]q that consists of a

sequence of distinct elements that contains all elements of i (the string i′ can be constructed
by sorting i1, . . . , iq, removing duplicates, and adding suitable padding). We then invoke
Cs+log n on input (x′, i′) to obtain the set{

(i′
1, xi′

1
), . . . , (i′

q, xi′
q
)
}

, (1)

represented as a list of elements (in some order).
We next combine (1) with{

(1, i1), . . . , (q, iq)
}

(2)

to obtain{
(1, i1, xi1), . . . , (q, iq, xiq

)
}

(3)

using the same representations of sets. This step, which can be viewed as an inner join (cf
the database literature), combines the two lists based on the common keys i1, . . . , iq. It can
be implemented in quasilinear size using sorting circuits. Once we have constructed the set
in Equation (3) in some arbitrary order, we can sort its elements by their first coordinate to
obtain the ordered list

(
(1, i1, xi1), . . . , (q, iq, xiq

)
)
, from which we can read off (xi1 , . . . , xiq

).
The dominant costs in this construction arise from the usage of sorting circuits. In each

instance, standard sorting circuits are applicable, with size Õ(q) · (s + log n). If we use the
sorting circuits of [1], then the Õ(q) factor is in fact O(q log q), so (with s = log2(n)) it
suffices to set q ≤ n/ log3(n).

To summarize, we have now built a linear-size block-multiselection circuit for querying
q = n/ log3(n) blocks of size s = log2(n).

2.4 From block-multiselection back to bit-multiselection
Finally, we return to our original goal of multiselection over {0, 1}. We do so as follows: given
queries i1, . . . , iq to bits of a string x, we group the bits of x into s-bit blocks B1, . . . , Bn/s. We
view each index ij as consisting of a prefix pj ∈ [n/s] (specifying the block index) and a suffix
rj ∈ [s] (specifying the internal index within the block). We apply the multiselection circuit of
the previous step to obtain blocks Bp1 , . . . , Bpq

indexed by the log(n/s)-bit prefixes p1, . . . , pq

of i1, . . . , iq. We then use q copies of a (uni-)selection circuit to obtain and output the rth
j

bit from each block Bpj
. The circuit implements the desired multiselection functionality and

has size O((n/s) · s + q · s) = O(n).

2.5 Achieving low-depth
A straightforward implementiation of our construction has depth polylog(n). Improving
this to O(log n) requires significant care. For example, while we can use a logarithmic
depth sorting network [1], that network uses abstract comparator gates. When working over
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a large alphabet, the implementation of each comparator gate has super-constant depth
(when implemented as a Boolean circuit), and so the resulting overall depth is ostensibly
super-logarithmic. Nevertheless, we are able to provide suitable implementations of all of the
gadgets so that the overall construction achieves logarithmic depth.

3 Preliminaries

We assume that the reader is familiar with the notion of a Boolean circuit and the associated
function that it computes. We emphasize that, unless otherwise stated, throughout this work
by “circuit” we refer to constant fan-in circuits over the standard De Morgan base.

3.1 Uniformity
We say that a family C = {Cn}n∈Z+ of Boolean circuits is log-space uniform if there exists a
Turing machine that on input 1n uses O(log n) space and prints the description of the circuit
Cn, on a write-only output tape. The description is a listing of the gates in an (arbitrary)
topological ordering along with a specification of the gate operation and pointers to each of
its inputs. In Appendix B we also discuss an extension of our main result for linear-time
uniformity.

3.2 Boolean Circuits for Uniselection
The following standard proposition gives a linear-size circuit, that given a string x ∈ Σn, over
an alphabet Σ, and an index i ∈ [n], outputs the symbol xi (in other words, a multiplexer).

▶ Proposition 2. Let s = s(n) ∈ Z+ and let Σ = {0, 1}s. There exists a log-space uniform
Boolean circuit for Seln→1

Σ with size O(n · s) and depth O(log n)

Proof. Without loss of generality assume that s = 1 (for s > 1 we can use s parallel copies
of the circuit for s = 1). The circuit follows a divide and conquer strategy. Assume for
simplicity that n is a power of 2. Let x ∈ {0, 1}n and i ∈ [n] be the inputs. Let i1 denote the
most significant bit of i and let i′ denote the remaining bits (i.e., i′ ∈ [n/2]). To select the ith

bit of x, the circuit recursively selects the (i′)th bit of both the lower and upper halves of x.
Then, based on i1, it decides which of the two bits to output. Overall the circuit size satisfies
the recursion: S(n) = 2S(n/2) + O(1) and the depth satisfies D(n) = D(n/2) + O(1). The
proposition follows. ◀

3.3 Small-Size Sorting Circuits
Our circuits for multiselection heavily rely on circuits for sorting integers.

▶ Lemma 3. For every k = k(n) and m = m(n), there is a log-space uniform Boolean circuit
of size O(n ·m · log n) for sorting n integers of m bits.

This lemma follows immediately from the sorting networks of Ajtai, Komlós, and Szemerédi [1].
In order to make our multiselection circuit have logarithmic depth, we need a refined version
of Lemma 3, which we present in Section 4.

4 Low-Depth Sorting of Logarithmic-Length Keys

We first recall what it means to sort with respect to a partial ordering.

▶ Definition 4. Let Σ be a finite set. We say that x, y ∈ Σn are reorderings of each other if
for some permutation π : [n]→ [n], it holds that xi = yπ(i), for all i ∈ [n].

CCC 2024
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▶ Definition 5. Let Σ be a finite set with a strict partial ordering ≺. A Boolean circuit is
said to sort Σn with respect to ≺ if on any input x ∈ Σn, it outputs a reordering y of x such
that for any i, j ∈ [n], yi ≺ yj =⇒ i < j.

In particular, we will focus on a partial ordering that compares integers by their k most
significant bits. That is, for any m ∈ Z+ and any x, y ∈ {0, 1}m, we write x ≺k y to denote
that (x1, . . . , xk) lexicographically precedes (y1, . . . , yk).

▶ Lemma 6. For every m = m(n) and k ∈ [m], there is a log-space uniform Boolean circuit
of size O(n ·m · log n) and depth O(k + log n) for sorting

(
{0, 1}m

)n with respect to ≺k.

We are mainly interested in the setting k = Θ(log n), in which case the constructed Boolean
circuit has size O(n ·m · log n) and depth O(log n).

To the best of our knowledge Lemma 6 was not previously known. The straight-forward
circuit based on AKS networks yields circuits with matching size O(n ·m · log n) but depth
O(log n · log k). Kospanov [17] obtained circuits with better depth O(log n + log k) but much
larger size O(n2 · k). A recent work of [18] obtains size O(n · k2) and depth O(log n + k log k),
which is better for some values of k = o(log n), but worse in our regime of k = Θ(log n). The
work of Lin and Shi [22, Theorem 1.1] similarly constructs circuits with size O(n ·m · log n)
and depth O(log n) when n > 24k+7, but not for all values of k = Θ(log n).

4.1 Sorting Networks
Our sorting circuits rely on sorting networks, which are generic constructions of n-input
sorting circuits from 2-input sorting circuits.

▶ Definition 7 (Sorting Networks). An n-input sorting network is a circuit C with n inputs
and n outputs, and with all gates having fan-in and fan-out two, such that for any set Σ with
strict partial ordering ≺, if each gate of C is replaced by a circuit that sorts Σ2 with respect
to ≺, then the resulting circuit sorts Σn with respect to ≺.

For the best asymptotic size and depth, we use the celebrated sorting network of Ajtai,
Komlós, and Szemerédi [1].

▶ Lemma 8 ([1]). There is a (log-space uniform) n-input sorting network with size O(n log n)
and depth O(log n).

4.2 From Sorting Networks to Boolean Circuits
We prove Lemma 6 by combining the following lemma with Lemma 8.

▶ Lemma 9. Suppose that there is a log-space uniform sorting network on n elements with
size S = S(n) and depth D = D(n). Then, for all m = m(n) and k ∈ [m], there is a log-space
uniform Boolean circuit with size O(S ·m) and depth O(D + k) for sorting

(
{0, 1}m

)n with
respect to ≺k.

Proof. Starting with an n-input sorting network A with size S and depth D, we obtain a
Boolean circuit C from A by replacing each gate with a Boolean circuit Sort(2)

k,m that sorts(
{0, 1}m

)2 with respect to ≺k. With this approach it is easy to make C have size O(S ·m) –
since Sort(2)

k,m merely needs to have size O(m).
Depth seems to pose more of a difficulty. Locality considerations imply that Sort(2)

k,m must
have depth at least Ω(log k) (e.g. the least significant bit of either output of Sort(2)

k,m(x, y)
depends on all of the k most significant bits of x and y). Thus, it might seem that this
approach dooms C to have depth Ω(D · log k).
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We circumvent this difficulty by noting that although input-to-output paths in C are
concatenations of D input-to-output paths in Sort(2)

k,m, these D paths cannot all be worst-case.
In particular, the ith output bit of one copy of Sort(2)

k,m is only connected to the jth input bit
of another copy if i ≡ j (mod m) (see Figure 1).

Figure 1 The four different ways that we can connect one copy of Sort(2)
k,n to another. In this

depiction, a copy of Sort(2)
k,n is depicted by a rectangle, with inputs incident to the bottom edge and

output incident to the top. The left half corresponds to the first input/output, and the right half to
the second.

We leverage this with the following lemma, whose proof we defer momentarily.

▶ Lemma 10. For any m = m(n) and k ∈ [m], there is a log-space uniform Boolean
circuit Sort(2)

k,m with size O(m) that sorts
(
{0, 1}m

)2 with respect to ≺k and has the following
additional property:

For all î, ĵ ∈ [m] and i, j ∈ [2m] with i ≡ î (mod m) and j ≡ ĵ (mod m), every path in
Sort(2)

k,m from the ith input vertex to the jth output vertex has length O
(
min(j, k)−min(i, k)+1

)
.

In particular there is no such path if k > i > j.

Assuming Lemma 10, consider any input-to-output path p in C. We write p as a composition
of paths p1 ◦ · · · ◦ pD, where each pℓ is an input-to-output path of some copy of Sort(2)

k,m.
Define iℓ, jℓ ∈ [2m] so that pℓ starts at the ith

ℓ input and ends at the jth
ℓ output of that copy,

and define îℓ, ĵℓ ∈ [m] such that iℓ ≡ îℓ (mod m) and jℓ ≡ ĵℓ (mod m). By the observation
above, we have ĵℓ = îℓ+1 for all ℓ ∈ [D − 1], and by Lemma 10, we have for some constant L

that |pℓ| ≤ L ·
(

min(ĵℓ, k)−min(̂iℓ, k)+1
)
.

Putting this together, we bound

|p| =
D∑

ℓ=1
|pℓ|

≤
D∑

ℓ=1
L ·

(
min(ĵℓ, k)−min(̂iℓ, k) + 1

)
= L ·

(
min(ĵD, k)−min(̂i1, k) + D

)
(telescoping sum because ĵℓ = îℓ+1 for ℓ ∈ [D − 1])

≤ L · (k + D)
= O(k + D). ◀

It remains to prove Lemma 10.

CCC 2024
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Proof of Lemma 10. We use the straightforward construction that compares the elements
bit-by-bit starting with their most significant bits. In more detail, we will construct a circuit
S̃ort

(2)
k,m : {≺, ?,≻} × {0, 1}m × {0, 1}m that has the functionality

S̃ort
(2)
k,m(?, x, y) =

{
(x, y) if x ≺ y
(y, x) otherwise.

S̃ort
(2)
k,m(≺, x, y) = (x, y)

S̃ort
(2)
k,m(≻, x, y) = (y, x)

and we define Sort(2)
k,m = S̃ort

(2)
k,m(?, ·, ·). This clearly gives the desired functionality. The first

input symbol aids in recursively constructing the circuit for S̃ort
(2)
k,m, and is meant to indicate

whether the global decision on the comparison between x and y is (1) still undecided (?), (2)
decided toward x or (3) decided toward y.

Our construction of S̃ort
(2)
k,m is recursive. If k = 0, then we define S̃ort

(2)
k,m to be the

identity function. For k > 0, S̃ort
(2)
k,m takes input (c, x, y), it first computes

(c′, a1, b1) =


(≺, x1, y1) if c = ≺ or (c = ? and x1 < y1)
(?, x1, y1) if c = ? and x1 = y1

(≻, y1, x1) if c = ≻ or (c = ? and x1 > y1).

Then, with x′ and y′ denoting (x2, . . . , xm) and (y2, . . . , ym), it computes

(a′, b′) = S̃ort
(2)
k−1,m−1(c′, x′, y′).

Finally it outputs
(
a1 ◦ a′, b1 ◦ b′), where ◦ denotes string concatenation.

It is easy to check the correctness of this construction.

Circuit Size. Let S(k, m) denote the size of S̃ort
(2)
k,m. For k = 0 we clearly have S(k, m) =

O(m). For larger k, the recursive construction gives S(k, m) = S(k− 1, m− 1) + O(1), so by
induction S(k, m) = O(m) for all k ≤ m.

Input-to-Output Path Lengths. We now bound the length of different input-to-output
paths in S̃ort

(2)
k,m. As in the construction above, denote the input to S̃ort

(2)
k,m by (c, x, y) and

denote the output by (a, b).

▷ Claim 11. There exists a constant L such that any path in S̃ort
(2)
k,m from an input {xi, yi}

to an output {aj , bj} has length at most L · (j − i + 1), and any path from the input c to an
output {aj , bj} has length at most L · j.

In particular any path to an output {aj , bj} has length at most L · j.

Proof. Let (x′, y′) denote the input to the recursive call to S̃ort
(2)
k−1,m−1 and let (a′, b′) denote

the output of this call.
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We consider several cases separately:
Paths to {a1, b1} have length bounded by an absolute constant because a1 and b1 are
just a (constant-sized) function of the inputs (c, x1, y1). If L is sufficiently large then this
constant is at most L.
For j > 1, paths from {c, x1, y1} to aj (= a′

j−1) consist of a path through a constant-sized

circuit (the computation of c′) concatenated with a path to a′
j−1 in S̃ort

(2)
k−1,m−1. By

induction the latter path has length at most L · (j − 1), so if L is sufficiently large then
the total path length is at most L · j.
For i > 1 and j > 1, paths from {xi, yi} to {aj , bj} are just paths from {x′

i−1, y′
i−1} to

{a′
j−1, b′

j−1} and thus by induction they have length at most L · (j − i + 1). ◁

Returning to Sort(2)
k,m = S̃ort

(2)
k,m(?, ·, ·) (without the tilde), we can see that any input-to-output

path in Sort(2)
k,m directly corresponds to an input-to-output path in S̃ort

(2)
k,m whose length is

appropriately bounded by Claim 11. That concludes the proof of Lemma 10. ◀

5 Unordered Multiselection Over Large Alphabets

In this section we construct a circuit that implements a relaxation of multiselection. Informally,
this relaxation allows the output elements to appear in any order (and possibly with
repetitions), rather than the same order in which they were queried. Additionally, rather
than selecting individual bits (which is our eventual goal) - we consider a generalization to a
larger alphabet size.

▶ Definition 12. Unordered multiselection (with q queries, over alphabet Σ) is the search
problem defined by the relation

S̃el
n→q

Σ
def=

{(
(x, i), y

)
∈

(
Σn × [n]q)× (Σ ∪ {⊥})q :

{
yk : yk ̸= ⊥

}
k∈[q] =

{
xik

}
k∈[q]

}
.

5.1 Superconcentrators and Routing
We recall the notion of a superconcentrator, which is the main technical tool involved in our
construction of Boolean circuits for unordered multiselection.

▶ Definition 13 (Networks). A network N is a tuple N = (V, E, A, B), where G = (V, E) is
a directed acyclic graph and A, B ⊆ V are respectively sets of sources and sinks in G.

If |A| = |B| = n, then N is said to be an n-network. The size of N , denoted by |N |, is
defined to be |E|; the degree of N is the degree of G; and the depth of N is the longest path
length in G.

A family of n-networks {Nn}n∈Z+ is said to be log-space uniform if there an algorithm that
on input 1n runs in O(log n) space and outputs G (say with an adjacency list representation)
and A, B (say represented by indicator strings).

▶ Definition 14 (Superconcentrators). An n-network N = (V, E, A, B) is said to be a
superconcentrator if for all q ∈ [n] and all subsets X ⊆ A and Y ⊆ B with |X| = |Y | = q,
there exist q vertex-disjoint paths from X to Y .

▶ Definition 15. Let S = (V, E, A, B) be an n-superconcentrator. The routing problem for S
is a search problem RouteS whose input is a pair of (indicator strings for) sets X ⊆ A, Y ⊆ B

with |X| = |Y |. A valid corresponding output is any (indicator string for a) set R ⊆ E of
edges such that R is a union of q vertex-disjoint paths from X to Y , where q = |X| = |Y |.
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Note that whenever S is an n-superconcentrator, the search problem RouteS is total. Naturally,
it is desirable for a superconcentrator S to admit efficient algorithms for RouteS . The state
of the art in this respect is Pippenger’s construction of a “self-routing” superconcentrator.

Informally, a delay-d self-routing protocol for a superconcentrator (V, E, A, B) associates
each vertex v ∈ V with a finite automaton that can communicate synchronously with the
automata on neighboring vertices (where u is said to neighbor v if (u, v) or (v, u) is in E). For
any sets X ⊆ A and Y ⊆ B with |X| = |Y | = q, if the automata in X and Y are initialized
with state 1, and all other automata are initialized with state 0, then in d steps the automata
jointly compute q vertex-disjoint paths from X to Y by on the dth step transmitting 1 on all
edges in those paths and 0 on other edges.

▶ Definition 16. A self-routing protocol with delay d for an n-superconcentrator S =
(V, E, A, B) is a tuple (Σ, δ), where:

Σ is a finite “alphabet” set that contains {0, 1}; and
δ : ΣV ∪E → ΣV ∪E is a function such that:

for every vertex v ∈ V with incident edges Ev, δ(q)v depends as a function of q only
on

(
qe)e∈Ev.

for every edge e = (u, v) ∈ E, δ(q)e depends as a function of q only on qu and qv.
For any sets X ⊆ A and Y ⊆ B with |X| = |Y |, if we define q(0) ∈ ΣV ∪E by

q(0)
v

def=
{

1 if v ∈ X ∪ Y

0 if v ∈ V \ (X ∪ Y )

and q
(0)
e

def= 0 for all e ∈ E, then the set

R
def=

{
e ∈ E : δd(q(0))e = 1

}
satisfies

(
(1X , 1Y ), 1R

)
∈ RouteS .

Such a self-routing protocol for an n-superconcentrator is said to be log-space uniform if
there is a log-space Turing machine that on input 1n outputs:

a description of Σ;
for each v ∈ V with incident edges Ev, the truth table for δ(q)v as a function of (qe)e∈Ev

.
for each e = (u, v) ∈ E, the truth table for δ(q)e as a function of (qu, qv).

▶ Definition 17. A self-routing superconcentrator is a superconcentrator S with an associated
self-routing protocol (Σ, δ) for S. A self-routing superconcentrator is said to be log-space
uniform if both the superconcentrator and the associated self-routing protocol are log-space
uniform.

▶ Theorem 18 ([25]). There exists a log-space uniform self-routing n-superconcentrator S
with size O(n), degree O(1), and depth O(log n), where the self-routing protocol has alphabet
size O(1) and delay O(log n).

▶ Corollary 19. There exists a log-space uniform n-superconcentrator S with size O(n),
degree O(1), and depth O(log n), such that RouteS is solvable by a log-space uniform Boolean
circuit of size O(n log n) and depth O(log n).

Proof. Let S = (V, E, A, B) be the log-space uniform self-routing superconcentrator given by
Theorem 18, let the self-routing protocol be given by (Σ, δ), and let d = O(log n) denote the
delay of this self-routing protocol. To prove the corollary, we need to construct a log-space
uniform Boolean circuit for solving RouteS , with size O(n log n) and depth O(log n).
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We are given 1X and 1Y . The circuit starts by computing q(0) ∈ ΣV ∪E as defined in
Definition 16. By construction this can be done with a circuitry of size O(n) and depth O(1).
The circuit next computes δd(q(0)). Recall that each output symbol of δ(q) depends on at
most deg(S) = O(1) symbols of q. Since the alphabet Σ is also constant-sized, this means
that δ is implementable by a (log-space uniform) circuit of size O(|V ∪E|) = O(n) and depth
O(1). Iterating this circuit d times, we compute δd(q(0)) with log-space uniform circuitry of
size O(d · n) and depth O(d). Finally, we extract from δd(q(0)) the indicator string 1R for
the set

R
def=

{
e ∈ E : δd(q(0))e = 1

}
.

This takes (log-space uniform) circuitry of size O(|E|) = O(n) and depth O(1).
In total, this circuit for computing 1R is log-space uniform and has size O(n · d) =

O(n log n) and depth O(d) = O(log n). By the definition of a self-routing protocol, R satisfies(
(1X , 1Y ), 1R

)
∈ RouteS , i.e. the circuit solves RouteS . ◀

5.2 From Superconcentrators To Unordered Multiselection
▶ Proposition 20. Let n ∈ Z+, let s = s(n) satisfy s = Ω(log2 n), and let Σ = {0, 1}s. For
any q = q(n) ∈ [n] there exists a log-space uniform Boolean circuit for S̃el

n→q

Σ with size
O(n · s) and depth O(log n).

Proof. Let S = (V, E, A, B) be a log-space uniform n-superconcentrator with size O(n), depth
O(log n), degree O(1) such that RouteS is solvable by a log-space uniform Boolean circuit
of size O(n log n) and depth O(log n). (Such an S is guaranteed to exist by Corollary 19).
Order the elements of A and B arbitrarily so that A = {a1, . . . , an} and B = {b1, . . . , bn}.

The Circuit. Our circuit, taking as input x ∈ Σn and (i1, . . . , iq) ∈ [n]q, is constructed in
two parts.

The first part of our circuit computes indicator strings 1X ∈ {0, 1}A, 1Y ∈ {0, 1}B , and
1R ∈ {0, 1}E for sets X ⊆ A, Y ⊆ B, and R ⊆ E defined as follows. The set X is defined
as {ai1 , . . . , aiq

}, Y is defined as {b1, . . . , bq′}, where q′ is the cardinality of X (which may
be smaller than q due to repetitions), and R is the edges of q′ vertex-disjoint paths from X

to Y .
The second part of our circuit consists of a gadget gv for each vertex v ∈ V . For a vertex

v ∈ A, say v = aj , the gadget gv simply outputs xj if v ∈ X and ⊥ otherwise. For other v,
i.e. with positive in-degree d, the gadget gv is a circuit for Seld→1

Σ∪{⊥} (e.g. the circuit from
Proposition 2). To construct the inputs for gv, first order the in-neighbors of v arbitrarily
as u1, . . . , ud. The data input for gv is then constructed by taking the ith symbol, for any
i ∈ [d], to be the output of gui

. The selector input for gv is constructed to be (the unique)
i⋆ ∈ [d] such that (ui⋆ , v) ∈ R if such an i⋆ exists, and arbitrary otherwise.

Finally, the outputs of our circuit are the outputs of gb1 , . . . , gbq
.

Size and Depth. In the first part of our circuit, the computation of 1X uses log-space
uniform circuitry of size O(n log2 n) = O(n ·s) and depth O(log n) by Lemma 21 below. Next,
1Y is obtained by sorting 1X with log-space uniform circuitry of size O(n log n) and depth
O(log n) (this is possible by Lemma 8). Finally, the computation of 1R uses log-space uniform
circuitry of size O(n log n) and depth O(log n) because of our choice of superconcentrator S.
In total the circuitry of this part has size O(n · s) and depth O(log n).
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In the second part of our circuit, there are O(n) gadgets (because S has size O(n)), and
each gadget has size O(s) (because S has constant degree). Additionally for each non-source
gadget there is constant-sized circuitry to compute the selector input as a function of 1R

(again because S has constant degree). In total the circuitry size is O(n · s). As for depth,
each gadget has constant depth. Since the output of gadget u is an input to gadget v iff (u, v)
is an element of E, and S has depth O(log n), the circuitry here also has depth O(log n).

Correctness. The main claim that we use to establish correctness is that for every ai ∈ X

and every vertex v ∈ V , if v lies on a path in R from ai to B, then the output of gv is xi,
and otherwise the output of gv is ⊥. Here ai is well-defined as a partial function of v because
R consists only of vertex-disjoint paths. This claim suffices for correctness because there are
paths in R from each aik

to B, but not from any a ∈ A \ {i1, . . . , iq}, so the set of non-⊥
outputs is exactly {xi1 , . . . , xiq

}.
We prove the claim by induction on the depth of v (i.e. the maximum length of a path

ending in v). The base case is when v has depth 0, i.e. v is a source vertex ai in (V, E). In
this case we defined gv to output xi.

For the inductive step, consider a vertex v with positive depth, and suppose that the
claim holds for all u of lesser depth, and in particular for the in-neighbors u1, . . . , ud of v.
Now if v lies on a path p from some ai to Y , this path must go through uj for some j ∈ [d],
and then the inductive hypothesis implies that the output of guj

is xi. The construction of
the selector input for gv ensures that gv also outputs xi, which completes the proof of the
claim. ◀

5.3 Computing Set Indicator Strings
▶ Lemma 21. For q = q(n) ∈ Z+, there is a log-space uniform Boolean circuit with size
O

(
(n + q) · log2(n + q)

)
and depth O

(
log(n + q)

)
that maps (i1, . . . , iq) ∈ [n]q to the indicator

string 1{i1,...,iq} ∈ {0, 1}n.

Proof. On input (i1, . . . , iq), the circuit performs the following steps:
1. Construct the list (1, . . . , n, i1, . . . , iq) ∈ [n]n+q, and sort it to obtain a non-decreasing list

(ji)i∈[n+q] with the property that ji appears more than once in the list iff ji ∈ {i1, . . . , iq}.
This can be done with circuitry of size O

(
(n + q) · log2(n + q)

)
and depth O

(
log(n + q)

)
by Lemma 6.

2. Label ji with 0 if the value ji appears once in the list. If ji appears more than once, we
label the first occurrence with 1 and all other occurrences with ⊥. This labels ji with 1
only if ji is in {i1, . . . , iq}, and labels ji with 0 only if it isn’t.
More explicitly, we compute labels

bi =


⊥ if i > 1 and ji−1 = ji

1 otherwise, if i < n + q and ji = ji+1

0 otherwise

for i ∈ [n + q]. This can be done with circuitry of size O
(
(n + q) log n

)
and depth

O(log log n): first compute in parallel for each i ∈ [n + q − 1] whether or not ji = ji+1
(this circuit has size O(log n) and depth O(log log n)), and then compute each bi with a
constant-sized circuit.

3. Sort the list
(
(ji, bi)

)
i∈[n+q] in order of increasing ji, except that if bi = ⊥ we treat ji as

+∞. That is, we prepend each ji with 1 if bi = ⊥ and with 0 otherwise. We then take
the first n elements of the result to obtain a list

(
(i, b′

i)
)

i∈[n] such that b′
i ∈ {0, 1} satisfies
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b′
i =

{
1 if i ∈ {i1, . . . , iq}
0 otherwise.

In other words, (b′
1, . . . , b′

n) is 1{i1,...,iq}, which is our desired output. This step can
be done with circuitry of size O

(
(n + q) · log2(n + q)

)
and depth O

(
log(n + q)

)
by

Lemma 6. ◀

6 From Unordered to Ordered Multiselection

In this section we construct a circuit for ordered multiselection over a large alphabet from a
circuit for unordered multiselection over a slightly larger alphabet.

▶ Lemma 22. Let q = q(n) ∈ [n] and s = s(n) = Ω(log n) be integer functions of n, let
Σ = {0, 1}s, let Σ̃ = [n]× Σ, and suppose there is a (log-space uniform) Boolean circuit for
S̃el

n/s→q

Σ̃ with size S and depth D.
Then there is a (log-space uniform) Boolean circuit for Seln→q

Σ with size S + O(q · s · log q)
and depth D + O(log n).

Combining Lemma 22 with Proposition 20 gives the following corollary.

▶ Corollary 23. Let s = s(n) satisfy s = Ω(log2 n), let Σ = {0, 1}s, and let q = q(n) ∈ [n].
Then there is a log-space uniform Boolean circuit for Seln→q

Σ with size O(n · s + q · s · log n)
and depth O(log n).

6.1 Boolean Circuits for Inner Joins
The main tool that we use in the proof of Lemma 22 is Boolean circuitry for computing an
inner join of two relations (cf. relational databases [12]).

▶ Definition 24. If R ⊆ W ×X and S ⊆ X × Y are relations, the inner join of R and S
(which we denote by R ▷◁ S) is

R ▷◁ S def=
{

(w, x, y) : (w, x) ∈ R ∧ (x, y) ∈ S
}

.

To our knowledge, prior work on the computational complexity of computing joins has
focused on algorithms in the RAM or PRAM models of computation, as opposed to Boolean
circuits.

We focus for simplicity on a special case. First, we require that the relation S is a partial
function. That is, for every x ∈ X there is at most one y ∈ Y such that (x, y) ∈ S. The
partial function requirement prevents |R ▷◁ S| from being larger than |R|. We also require
that for every (w, x) ∈ R there exists some (x, y) ∈ S.

The following proposition says that inner joins in this special case are computable by
(uniform) Boolean circuits of logarithmic depth and nearly linear size.

▶ Proposition 25. Let n, m be positive integers, let W and Y be sets whose elements are
represented by s-bit strings, and let X be a finite set whose elements are represented by k-bit
strings.

There exists a log-space uniform Boolean circuit of size O(q · (k + s) · log q) and depth
O(k + log q) that takes as input a relation R ⊆ W × X and a partial function f ⊆ X × Y
with |R| ≤ q, |f | ≤ q, and {x : ∃w, (w, x) ∈ R} ⊆ {x : ∃y, (x, y) ∈ f}, and outputs R ▷◁ f .

Here sets are represented by an arbitrarily ordered listing of their elements, padded with
⊥ elements as needed to have length q.
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Proof. Denote the elements of {x : ∃y, (x, y) ∈ f} by x1, . . . , xk, where x1 < · · · < xk. For
i ∈ [k], let Wi denote the set

{
w : (w, xi) ∈ R

}
, and let ni denote |Wi|. With this notation,

our desired output is a list of length q whose non-⊥ elements in some order are precisely(
w, xi, f(xi)

)
i∈[k],w∈Wi

.
We first construct a list with at most 2q elements in (W ∪ {⋆}) × X × (Y ∪ {⋆}),

namely
{

(xi, w, ⋆)
}

i∈[k],w∈Wi
and

{(
xi, ⋆, f(xi)

)}
i∈[k]

. Such a list is readily obtained by

concatenating the listings of R and f (with the natural embeddings of W ×X and X ×Y in
(W ∪ ⋆)×X × (Y ∪ ⋆)).

We sort this list with respect to the partial ordering that defines (w, x, y) ≺ (w′, x′, y′) iff
x < x′ or x = x′ and w = ⋆ and w′ ̸= ⋆. By Lemma 6 this can be done with circuitry of size
O(q · (k + s) · log q) and depth O(log q). This yields a list L composed of k blocks, the ith of
which has length ni + 1 and is((

⋆, xi, f(xi)
)
, (wi,1, xi, ⋆), . . . , (wi,ni , xi, ⋆)

)
,

where {wi1 , . . . , wi,ni
} = Wi.

With local processing, we obtain two lists Lf and LS where the ith block of Lf is(
f(xi),⊥, . . . ,⊥︸ ︷︷ ︸

ni times

)
(4)

and the ith block of LS is(
⊥, (wi,1, xi), . . . , (wi,ni

, xi)
)
. (5)

Using Lemma 26 below, we map Lf to a list whose ith block is(
f(xi), . . . , f(xi)︸ ︷︷ ︸

ni + 1 times

)
. (6)

We then locally combine (6) with (5) to obtain a list whose ith block is(
⊥,

(
(wi,1, xi, f(xi)

)
, . . . , (wi,ni , xi, f(xi)

))
. (7)

A final sorting step sends the ⊥ elements to the back of the list, which allows us to
conclude by truncating the list to length n. This step can also be done with circuitry of size
O(q · (k + s) · log q) and depth O(log q) by Lemma 6. ◀

▶ Lemma 26. For n, s ∈ Z+, there is a (logspace-uniform) constant fan-in Boolean circuit
of size O(n · s) and depth O(log n) that takes as input x ∈ ({0, 1}s ∪ {⊥})n with x1 ̸= ⊥, and
outputs y ∈

(
{0, 1}s

)n such that

yi =
{

xi if xi ̸= ⊥
yi−1 otherwise.

Equivalently, yi = xji
, where ji = max{j : 1 ≤ j ≤ i ∧ xj ̸= ⊥} (this maximum is guaranteed

to be over a non-empty set because x1 ̸= ⊥).

Proof. Without loss of generality we can assume that s = 1 because for s > 1 we can use s

copies of the circuit for the s = 1 case.
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Consider the binary operation ⋆ : {0, 1,⊥} × {0, 1,⊥} → {0, 1,⊥} defined by

τ ⋆ υ =
{

τ if υ = ⊥
υ if υ ̸= ⊥.

It is clear that our desired y has y1 = x1 and yi = yi−1 ⋆ xi for i > 1.
We now observe that ⋆ is an associative operation. To see this, consider any σ, τ, υ ∈

{0, 1,⊥} and consider separately the cases υ = ⊥ and υ ̸= ⊥. If υ = ⊥ then (σ ⋆ τ) ⋆ υ =
σ ⋆ τ = σ ⋆ (τ ⋆ υ). If υ ̸= ⊥ then (σ ⋆ τ) ⋆ υ = υ = σ ⋆ υ = σ ⋆ (τ ⋆ υ).

Now we use a classic result of Ladner and Fischer [20] that for any associative operation
⋆ : Σ× Σ→ Σ and n ∈ Z+, there exists a (log-space uniform) circuit of size O(n) and depth
O(log n) (with only ⋆-gates) that computes all ⋆-prefix products. That is, the circuit takes
as input x ∈ Σn and outputs y such that yi = x1 ⋆ · · · ⋆ xi.

In our case, ⋆ is computable by a Boolean circuit of constant size, so replacing ⋆-gates by
such a circuit finishes the proof. ◀

6.2 A Circuit for Ordered Multiselection

We are now ready to prove Lemma 22.

Proof of Lemma 22. Let C̃ be a circuit for S̃el
n→q

Σ̃ .

The Circuit. Our circuit for Seln→q
Σ takes as input (x, i) ∈ Σn × [n]q and consists of the

following stages:
1. Compute x̃ ∈ Σ̃n, defined so that x̃i = (i, xi) for i ∈ [n], and compute a list representation

of

I =
{

(1, i1), . . . , (q, iq)
}

.

2. Compute ỹ← C̃(x̃, i) to obtain ỹ ∈
(
Σ̃ ∪ {⊥}

)q such that

{ỹk : ỹk ̸= ⊥}k∈[q] = {x̃ik
}k∈[q] =

{
(ik, xik

)
}

k∈[q].

In particular, each ỹk that is not equal to ⊥ has the form (i, xi) for some i ∈ [n].
3. Deduplicate ỹ to obtain a list representation of the partial function

Y =
{

(ik, xik
)
}

k∈[q].

This involves sorting the non-⊥ symbols
{

(ik, xik
)
}

of ỹ in order of increasing ik (this
can be done with circuitry of size O(n · s · log n) and depth O(log n) by Lemma 6).

4. Apply the circuit given by Proposition 25 to I and Y to compute a list representation of

I ▷◁ Y =
{

(k, ik, xik
)
}

k∈[q].

5. Sort the list representation of I ▷◁ Y in order of increasing k, and read off the desired
output (xi1 , . . . , xik

).
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Size and Depth. The “computation” of x̃ from x and of I from i is just adding constant
values, so it can certainly be done by a (log-space uniform) Boolean circuit of size O

(
n · (s +

log n)
)

and depth O(1).
By assumption, C̃ is a circuit of size S and depth D.
Via sorting (Lemma 6), one can deduplicate ỹ with circuitry of size O(q ·(s+log n)·log q) =

O(q · s · log q) and depth O(log n).
By Proposition 25, the computation of I ▷◁ Y can also be done with circuitry of size

O(q · (s + log n) · log q) = O(q · s · log n) and depth O(log n).
Sorting the elements of I ▷◁ Y again takes log-space uniform circuitry of size O(q · s · log q)

and depth O(log n) by Lemma 6.
In total our constructed circuit has size S + O(q · s · log q) and depth D + O(log n). ◀

7 Binary Multiselection and Proof of Main Theorem

Next, we use the multiselection circuit over large alphabets to obtain a binary multiselection
circuit.

▶ Lemma 27. Let q = q(n) and s = s(n) be integer functions of n, let Σ = {0, 1}s, and let
Cn be a (log-space uniform) Boolean circuit for Seln/s→q

Σ with size S and depth D.
Then there is a (log-space uniform) Boolean circuit C ′

n for Seln→q
{0,1} with size S + O(q · s)

and depth D + O(log s).

Proof. On data input x ∈ {0, 1}n and selector input (i1, . . . , iq) ∈ [n]q, C ′
n performs the

following steps:
1. View x ∈ {0, 1}n as X ∈ Σn/s by setting Xi =

(
x(i−1)·s+1, . . . , xi·s

)
. View each ij as a

log n-bit string with prefix pj ∈ {0, 1}log n−log s and a suffix sj ∈ {0, 1}log s. This is just
relabeling wires, so it requires no circuitry.

2. Compute (Xp1 , . . . , Xpq
) ← Cn

(
X, (p1, . . . , pq)

)
. This requires circuitry of size S and

depth D.
3. For each j ∈ [q] in parallel, compute xij = Sels→1

{0,1}
(
Xpj , (sj)

)
. By Proposition 2, for each

j ∈ [q] this requires circuitry of size O(s) and depth O(log s), for a total circuitry size of
O(q · s) and depth O(log s).

4. Output (xi1 , . . . , xiq
). ◀

We can now prove our main theorem, which we recall here for convenience.
[Main Theorem] For all n, q ∈ Z+ there is a Boolean circuit computing Seln→q of size

O(n + q · log3(n)) and depth O(log(n + q)).

Proof. Set s(n) = log2 n and let Σ = {0, 1}s. By Corollary 23, there exists a log-space
uniform circuit for Seln/s→q

Σ with size O(s · n/s + q · s · log n) = O(n + q log3 n) and depth
O

(
log(n/s)

)
= O(log n). Applying Lemma 27 to this circuit yields a log-space uniform circuit

for Seln→q
{0,1} with size O

(
n + q · (log3 n + s)

)
= O(n + q · log3 n) and depth O(log n + log s) =

O(log n). ◀
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A Applications

While we find the multiselection problem to be basic and natural, we additionally mention
two concrete applications of the linear-sized multiselection circuit of Section 1 to problems in
cryptography.

A.1 Application 1: Simplifying Efficient Arguments
Recently there has been a great deal of interest, both in theory and in practice, in developing
efficient argument-systems (aka computationally sound proofs), proving for example that a
given formula is satisfiable with a proof that is much shorter than the satisfying assignment
(and is also very efficiently verifiable). A key bottleneck in such proof-systems is the efficiency
of proving correctness, relative to the cost of merely computing the function.

Recent works [26, 14] consider the setting of Boolean circuits and construct provers
whose size is linear in the size of the original computation. These works, following Kilian’s
pioneering work [16], use a (generalization of a) PCP which is compiled into a succinct
argument by sending a short hash of the PCP and then decommiting to desired locations
that are sampled by the verifier. This naturally requires multiselection: the prover needs to
restrict the PCP proof string to the selected indices. Thus, to get a linear-size prover, these
works need a linear-size multiselection gadget.

Both [26] and [14] relied on ad-hoc solutions leveraging application-specific structure of
the queries (i1, . . . , iq) and expended considerable effort to guarantee this structure. For
example in the case of [14], a new local testing procedure was presented for tensor codes,
with the novel property that the local testing queries were efficiently “multiselectable”.

Section 1 makes this work unnecessary by removing the burden of worrying about a
particular query structure. This significantly simplifies these works (especially [14]) and is
likely to simplify similar future works.

A.2 Application 2: More Efficient Batch PIR
Private information retrieval (PIR) [11, 19] is a process by which a client with an index
i ∈ [n] obtains an element xi from a server with a database x ∈ Σn while (computationally)
hiding all information about i from the server. Batch PIR has just one modification: the
client has multiple indices i1, . . . , iq, and correspondingly obtains xi1 , . . . , xiq

. We call q

the batch size. Thus the standard notion of PIR, which we also refer to as non-batch PIR,
corresponds to the case q = 1. The raison d’être of batch PIR is that the server’s running
time can be much less than q times the cost of non-batch PIR.

https://doi.org/10.1137/0206030
https://doi.org/10.1006/jcss.1996.0005
https://doi.org/10.1145/800116.803752
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Indeed, our Section 1 implies the following corollary: if the ring learning with errors2

(ring LWE) assumption holds, then for every batch size q ≤ n/ log3 n and every constant
ϵ > 0, there is a batch PIR protocol in which:

the server’s running time is n · polylog(λ), where λ is a computational security parameter,
the client-to-server communication is (1 + ϵ) · q · log n + poly(λ),
the server-to-client communication is (1 + ϵ) · q + poly(λ), and
the client’s running time is q · log n · polylog(λ) + poly(λ).

In a nutshell, the idea is for the client to send an encryption cti of the indices i =
(i1, . . . , iq) under a fully homomorphic encryption (FHE) scheme with the appropriate
efficiency properties. The server, holding database x ∈ {0, 1}n, homomorphically evaluates
Seln→q(x, ·) (represented by the circuit of Section 1) on cti and sends the result to the client,
which decrypts to obtain its output.

As for efficiency, homomorphic evaluation should satisfy two properties. First, the cost
of homomorphically evaluating a circuit C should be |C| · polylog(λ) (at least when C is
the circuit for Seln→q constructed in Section 1). Second, the ciphertexts resulting from
homomorphic evaluation should have rate 1. If the ring LWE assumption holds, then one
way to obtain such an FHE scheme is by combining the work of [13], which constructs FHE
with polylog(λ) evaluation overhead3, with the work of [9], which for any constant ϵ > 0
constructs FHE in which evaluated ciphertexts have rate 1− ϵ.

A.3 Prior Work
A.3.1 Batch PIR via Batch Codes
One major alternative approach to batch PIR is a reduction to non-batch PIR using batch
codes [15], which encode a database x ∈ {0, 1}n as a string X ∈

(
{0, 1}N/m

)m such that to
recover any q bits of x, it suffices to read one bit from each N/m-bit block of X. Here N , m,
and q are parameters of the batch code. By retrieving each of these m bits with a non-batch
PIR protocol, we obtain a batch PIR protocol with batch size q, server running time ≈ N ,
and communication ≈ m.

To replicate our batch PIR result via this approach, one would need batch codes with
m ≈ k and N ≈ n for q at least ω(1). However, no such codes are known (see the table in
Section 1.2 of [15]).

A.3.2 Doubly Efficient PIR.
A recent breakthrough result of Lin, Mook, and Wichs [21] shows how to achieve doubly
efficient PIR (DEPIR) [6, 10, 8], i.e. PIR where the server’s running time is sublinear in
the database length (after a one-time deterministic preprocessing step), under the ring LWE
assumption. Among other benefits, this allows the server’s work to increase sublinearly with
the number of queries, similarly to batch PIR. Amazingly, unlike in batch PIR, this is true
even if the queries come from independent clients.

One can generically construct batch PIR protocols from DEPIR protocols, although as
we now explain, our construction of batch PIR is more efficient than what one would obtain
from [21]. Their DEPIR protocol exhibits a tunable trade-off between the server’s online
time and preprocessing time. They present two specific parameter settings:

2 If we instead assume only standard LWE, we obtain a similar result but with all polylog(λ) factors
replaced by poly(λ).

3 The work of [13] obtains this overhead only for circuits of width at least λ.
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(Online-Optimized) The online time is polylog(n) · poly(λ), but the preprocessing time
is n1+ϵ · poly(λ) for any constant ϵ > 0.
(Preprocessing-Optimized) The preprocessing time is n · 2Θ̃(

√
log n) · poly(λ), but the

online time is 2Θ̃(
√

log n) · poly(λ).

In contrast to our batch PIR construction, their doubly efficient PIR server’s total running
time with either parameter setting never depends only linearly on n, and the server’s per-
query running time (including the amortized cost of pre-processing) is not polylogarithmic
in n unless the number of queries is larger than the database.

B Linear-time Uniformity

In this section we briefly discuss an extension of our multiselection circuit that can be
generated by a linear-time algorithm (rather than log-space uniformity as in Section 1). The
specific notion of uniformity that we consider here is constructability by an algorithm in
the standard word RAM model, that on input 1n, runs in O(n) time, using words of size
O(log n) and a standard instruction set.

▶ Theorem 28 (Linear-time Uniformity). There exists a constant ϵ > 0 such that for every
q = q(n) ≤ nϵ, there exists a linear-time uniform Boolean circuit computing Seln→q of
linear-size and logarithmic-depth.

Proof Sketch. As a matter of fact, we show how one can generically take any nc-time-uniform
multiselection circuit for c ≥ 1 (e.g., those of Section 1) and transform it into a linear-time
uniform multiselection circuit (for a somewhat smaller number of queries), while preserving
the linear-size and logarithmic depth.

The idea is to first generate a multiselection circuit C for input strings of length n′ = n1/c.
By assumption, this can be done in time O

(
(n′)c

)
= O(n). The multiselection is then

constructed as follows: we partition the input string x ∈ {0, 1}n into n′ blocks of size
n/n′ = n1−1/c bits each. We then run n1−1/c copies of C, where the i-th copy is given the
i-th bit of each of the blocks. The output of these circuit copies of C can be interpreted as q

blocks in which our desired indices lie. We then apply a direct (uni-)selector to each block to
obtain the desired bit. This step can be implemented by q circuits, each of size O(n1−1/c).
As long as q = O(n1/c), the constructed circuit has linear-size and logarithmic depth.

To generate the circuit, our algorithm first generates the base multi-selector circuit which
as noted above, takes time O(n). Once that circuit is generated, creating the n1−1/c copies
(with suitable input wiring) can be done in time O(n1/c · n1−1/c) = O(n). The additional
circuitry can also be constructed in O(q · n1−1/c) = O(n) time. ◀
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