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—— Abstract

For every n, we construct a sum-of-squares identity
n n S
Qe v =D fi,
i=1 j=1 k=1

where f are bilinear forms with complex coefficients and s = O(n

1-62) " Previously, such a con-

struction was known with s = O(n?/logn). The same bound holds over any field of positive
characteristic.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Sum-of-squares composition formulas, Hurwitz’s problem, non-commutative
arithmetic circuit

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.12

Funding Pavel Hrubes: This work was supported by Czech Science Foundation GACR grant
19-27871X.

1 Introduction

The problem of Hurwitz [8] asks for which integers n,m, s does there exist a sum-of-squares
identity

(@i tal) i+ un) =4+ 2 (1)

where f1,..., fs are bilinear forms in z and y with complex coefficients. Historically, the
problem was motivated by existence of non-trivial identities with n = m = s. Starting with
the obvious z2y? = (x1y1)?, the first remarkable identity is

(2 + 23) (U5 + v3) = (T1y1 — 22y2)* + (T1y2 + 2291)* .

It can be interpreted as asserting multiplicativity of the norm on complex numbers. Euler’s
4-square identity is an example with n,m,s = 4 which has later been interpreted as multi-
plicativity of the norm on quaternions. The final one is an 8-square identity which arises in
connection to the algebra of octonions.

A classical result of Hurwitz [8] shows that these are the only cases: an identity (1) exists
with m,s = n iff n € {1,2,4,8}. An extension of this result is given by Hurwitz-Radon
theorem [11]: an identity (1) exists with s = n iff m < p(n), where p(n) is the Hurwitz-Radon
number. The value of p(n) is known exactly. For every n, p(n) < n and equality is achieved
only in the cases n € {1,2,4,8}. Asymptotically, p(n) lies between 2log, n and 2log, n + 2
if n is a power of 2. As shown in [12], Hurwitz-Radon theorem remains valid over any
field of characteristic different from two. Hurwitz’s problem is an intriguing question with
connections to several branches of mathematics. We recommend D. Shapiro’s monograph [13]
on this subject.
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Let o(n) denote the smallest s such that an identity (1) with m = n exists. While
Hurwitz-Radon theorem solves the case s = n ezactly, even the asymptotic behavior of o(n)
is not known. Elementary bounds! are n < o(n) < n2. Hurwitz’s theorem implies that the
first inequality is strict if n is sufficiently large. Using Hurwitz-Radon theorem, the upper
bound can be improved to

o(n) < O(n*/logn).

As far as we are aware, this was the best asymptotic upper bound previously known. In this
paper, we will improve it to a truly subquadratic bound

o(n) < O(n'%?). (2)

A specific motivation for this problem comes from arithmetic circuit complexity. In [6],
Wigderson, Yehudayoff and the current author related the sum-of-squares problem with
complexity of non-commutative computations. Non-commutative arithmetic circuit is a
model for computing polynomials whose variables do not multiplicatively commute. Since
the seminal paper of Nisan [10], it has been an open problem to give a superpolynomial lower
bound on circuit size in this model. In [6], it has been shown that a superlinear lower bound
of Q(n'T¢) on o(n) translates to an exponential lower bound in the non-commutative setting.
Hence, providing asymptotic lower bounds on Hurwitz’s problem can be seen as a concrete
approach towards answering Nisan’s question. A more general, and hence less concrete,
result of this flavor was given by Carmosino et al. in [1]. In an attempt to implement
the sum-of-squares approach, the authors from [6] gave an Q(n%/°) lower bound under the
assumption that the identity (1) involves integer coefficients only [7]. However, the upper
bound (2) goes in the opposite direction. Since it is superlinear, it does not immediately
frustrate the approach from [6], it merely dampens its optimism.

2 The main result

Let F be a field. Define or(n, m) as the smallest s such that there exist bilienear?fi, ..., fs €
Flz1,...,Zn, Y1, - - - Ym] satisfying (1). Furthermore, let op(n) := op(n,n).

» Theorem 1. Let F be either C or a field of positive characteristic. Then op(n) < O(n€)
where ¢ < 1.62.

This will be proved in Section 4. In Section 5.1, we will give a modification of Theorem 1
that applies to any field.

» Remark 2.
(i) If the field has characteristic two, Theorem 1 is trivial. Since (>, xf)(zj y?) =
(> i z;y;5)%, we have op(n,m) = 1.
(ii) Instead of C, the result holds also over Gaussian rationals Q(i).

Notation

Given vectors u,v € F™, (u,v) := >_"" | u;v; is their inner product. For a set S, (i) denotes
the set of k-element subsets of S and ( <Sk) the set of subsets with at most & elements.

(gnk) = Zf:o (). [n] is the set {1,...,n}.

! The former is obtained by substituting (1,0,...,0) for the y variables, the latter by writing
(R, 1) = 5, (@)™

2 Namely, of the form ij QG TiYg-
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3 Hurwitz-Radon conditions

In this section, we give some well-known properties of o that we will need later.
The definition immediately implies thet op(n, m) is symmetric, subadditive, and monotone:
orp(n,m) = op(m,n),
or(n,my +ma) < op(n,my) + or(n,ms),
op(n,m) < op(n,m’), m<m'. (3)

The following lemma gives a characterization of ¢ in terms of Hurwitz-Radon conditions (4).
A proof can be found, e.g., in [13], but we present it for completeness.

» Lemma 3. Let F be a field of characteristic different from two. Then op(n,m) equals the

smallest s such that there exist matrices Hy, ..., Hy,, € F™"*° satisfying
HH! =1I,,
HiH!+ H;H; =0, i#j, (4)

for every i, j € [m].

Proof. Let fi,..., fs be bilinear polynomials in variables x1,...,x, and y1,...,%n. Then

the vector f = (fi1,..., fs) can be written as

n
i=1
where & = (x1,...,2,) and H; € F"**. Hence

Mo =F1 =) yiEHHE + Y gy E(HH) + HyH)E

k=1 i i<j

If the matrices satisfy (4), this equals Y, y?21,7" = (yi + - - +y2,) (@ + - - -+ 22), which
gives a sum-of-squares identity with s squares. Conversely, if (y? +---+32)(z?+---+22) =
> f¢, we must have ZH; H/Z" = a3 + - - - + «2 and Z(H;H} + H;H!)Z" = 0. In characteristic
different from 2, this is possible only if the conditions (4) are satisfied. |

Given a natural number of the form n = 2Fa where a is odd, the Hurwitz-Radon number
is defined as

2% +1, ifk=0

%, k=1
p(n) = mod 4

Observe that
2logsn < p(n) < 2logy(n) + 2,

whenever n is a power of two.

Square matrices A, Ay anticommute if AyAs = —AgsA;. A family of square matrices
Ax, ..., Ay will be called anticommuting if A;, A; anticommute for every i # j.

The following lemma is a key ingredient in the proof of Hurwitz-Radon theorem. A
self-contained construction can be found in [2].

CCC 2024
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» Lemma 4. For every n, there exists an anticommuting family of t = p(n) — 1 integer

matrices ey, ..., e € Z™"*™ which are orthonormal and antisymmetric (i.e., eie§ =1, and
t

e = —el).

» Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommuting family of
t = 2log, n + 1 integer matrices ey, ..., e; € Z"*™ with e? = +1,, whenever n is a power of
two. With minor modifications, these matrices could be used in the subsequent construction
instead.

4  The construction

Let eq,...,e; be a set of square matrices. Given A = {iy,...,ix} C [t] with iy < -+ < g, let
k

eq = szl € -

» Lemma 6. Let eq,...,e; be a set of anticommuting matrices. If A, B C [t] have even size

(resp. odd size) then ea,ep anticommute assuming |A N B| is odd (resp. even).

Proof. Since e; anticommutes with every e;, j # 4, but commutes with itself, we obtain
eae; = (—D)IMNMHeey

This implies that
eaep = (—1)%epea,

where g = |A| - |B| — |AN B|. Hence if A, B are even (resp. odd) and their intersection is
odd (resp. even), ¢ is odd and e, ep anticommute. <

Given integers 0 < k < ¢, a (k,t)-parity representation of dimension s over a field F is a
map & : ([,?) — % such that for every A, B € ([Z])

(£(4),£(4)) =1,
(€(A),&(B)) =0, if A# B and (AN B| =kmod?2). (5)

» Lemma 7. Let 0 < k <t. Over C, there exists a (k,t)-parity representation of dimension
<§Uz/2j)‘ If F is a field of odd characteristic p, there exists a (k,t)-parity representation of
dimension (p — 1) (<Uz/2j)'

The case of odd characteristic will be proved in the Appendix.
Proof of Lemma 7 over C. Let 0 < k <t be given and d := |k/2].

For a € {0,1}!, let |a| be the number of ones in a. Recall that a polynomial is multilinear,
if every variable in it has individual degree at most one. We first observe:

> Claim 8. There exists a multilinear polynomial f € Q(z1,...,z;) of degree at most d
such that for every a € {0, 1}*

1, if|a|=k
fla) = . (6)
0, ifla| <k and (Ja| =kmod2).

Proof of Claim. Consider the polynomial

g(x1,.. ., 1) i=c H (ij—z)

0<i<k,i=kmod2 j=1
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Then g has degree d and we can choose ¢ € Q so that g satisfies (6). Since we care about

inputs from {0,1}, g can be rewritten as a multilinear polynomial f of degree at most d.

<

Since f is multilinear, we can write it as

flay, ... x) = Z acHxi,

ce(l) i€C

where a¢ are rational coefficients. Identifying a subset A of [t] with its characteristic vector
in {0,1}, we have

A= ac.
cca
Let s := (<td). Given A € ([,i]), let £(A) € C° be the vector whose coordinates are indexed
by subsets C' € ( E]d) such that

| (ae)?, #CcA
S(A)C_{ 0, ifCg A

This guarantees

(§(A),£(B)) =) &(A)cé(B)c = Y ac=f(ANB).

c CCANB
Hence conditions (6) translate to the desired properties of the map &. |
Combining Lemma 6 and 7, we obtain the following bound on o:

. . 1
» Theorem 9. Let n be a non-negative integer. Let 0 < k < p(n) — 1 and m := (ﬂ(nlz )
Then

oewem < (L))

IfF is a field of odd characteristic p then

p(n) — 1) .

Proof. Let n,k,m be as in the assumption. Let eq,...,e; be the matrices from Lemma 4
with ¢t = p(n) — 1. Let £ be the (k, t)-parity representation given by the previous lemma. For
Ae ([Z]), let

Hpy:=es®&(4),

where e, is defined as in Lemma 6, £(A) is viewed as a row vector, and ® is the Kronecker
(tensor) product.

Note that each H4 has dimension n X (ns) where s is the dimension of the parity
representation, and there are m = (,i) such matrices H4. By Lemma 3, it is sufficient to
show that the system of matrices Hs, A € ([,i]), satisfies Hurwitz-Radon conditions (4).

We have

HaHp = (eae) @ (§(A)E(B)") = (£(A),6(B)) - eacls .

12:5
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Since every e; is orthonormal, we have e4e!y = I,,. From (5), we have (£(A),£(A)) =1 and
hence

HaHY =1,.
If A # B then
HaHp + HpHY = (£(A),&(B)) - (eael + epely). (7)

If |JAN B| = kmod 2 then (£(A),&(B)) = 0 by (5) and hence (7) equals zero. If |AN B| #
kmod2 then esely + epely = 0. This is because esep = —epes by Lemma 6 and that, since
e; are antisymmetric, e4, eg are either both symmetric or both antisymmetric. Therefore (7)
equals zero for every A # B € (I)). <

Theorem 1 is an application of Theorem 9.

Proof of Theorem 1. Assume first that n is a power of 16. This gives p(n) = 2log,(n) + 1.
Let k be the smallest integer with n < (21052 ") =: m. From the previous theorem and
monotonicity of o (cf. (3)), we obtain

or(n) < op(n,m) < cns,

where the constant ¢ depends on the field only and s := (ilﬁffﬁ)

We have k = 2(a + €,) logy n where a € (0, 1) is such that H(a) = 1/2 (H is the binary
entropy function) and ¢, — 0 as n approaches infinity. We also have

5 < 92H (5 m)logyn _ 2H(§)+e),

)
where €, — 0. Hence

op(n) < en!t2H )4

The numerical value of « is 0.11... which leads to op(n) < en! 615+ < O(n!-616),
If n is not a power of 16, take n’ with n < n’ < 16n which is. By monotonicity of o, we
have op(n) < op(n’). <

4.1 Comments

» Remark 10.
(i) IInstead of C, the proof of Theorem 9 applies to any field where all rationals have a
square root. However, Theorem 1 holds also over Gaussian rationals Q(i) (cf. Section
5.1).
(ii) In positive characteristic, the bounds in Lemma 7 and Theorem 9 can sometimes be
improved: if F O F2, the factor (p — 1) can be dropped. For certain values of k,
(Sle/?J) can be replaced with (Lk;%) (cf. Remark 19).

An improvement on the dimension of parity representation in Lemma 7, if possible, will
lead to an improvement in Theorem 1. However, this dimension cannot be too small:
» Remark 11. If k is even, every (k,t)-parity representation must have dimension at least
s = (LZ//QQJ) over any field. This is because there exists a family A of k-element subsets
of [t] whose pairwise intersection is even, and |A| = s . The map & must assign linearly
independent vectors to elements of A. Similarly for k& odd.
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On the other hand, (Sth:/2J) in Lemma 7 can be replaced with (Sttjk/2j) which gives
a smaller bound if if £ > ¢/2. This is because we can instead work with complements of
Ac (1),

The notion of (k,t)-parity representation can be restated in the language of orthonormal
representations of graphs of Lovasz [9]. Given a graph G with vertex set V, its orthonormal
representation is a map £(V) :— F*® such that for every u,v € V

(€w),&(u)) = 1,
(€(u),&(v)) = 0, if u# v are not adjacent in G.

In this language, (k, t)-parity representation is an orthonormal representation of the following
combinatorial Knesser-type graph Gy 4: vertices of Gy, ; are k-element subsets of [t]. There is
an edge between u and v iff |u Nv| # kmod 2. Orthogonal representations of related graphs
have been studied by Haviv in [4, 3].

5 Modifications and extensions

5.1 A sum of bilinear products

Define fr(n) as the smallest s such there exists an identity

@4+ a2yl 4+ yd) = A+ oL (8)

where fi,..., fs and f{,..., f. are bilinear forms with coefficients from F.
We have Br(n) < op(n). In some contexts, 8 is a more natural quantity than o. In this
section, we give a modification of Theorem 1 in terms of 3:

» Theorem 12. Over any field, fr(n) < O(n°) where ¢ < 1.62.

N2 N2
» Remark 13. In characteristic different from two, we have ff' = (f+f ) — (f;f ) , which

allows to rewrite (8) as
@4+ a) Wi+ yn) =gl + gl — b= =B
It follows that

or(n) 20r(n), if F contains a square root of — 1,

or(n)

IN A

pPr(n), if F has characteristic p > 0.

We conclude that, first, Theorem 1 is a consequence of Theorem 12 and, second, Theorem 1
holds also over Gaussian rationals Q(i).

The proof of Theorem 12 is a straightforward modification of that of Theorem 1 and we
only highlight the main points.
The following is an analogy of Lemma 3:

» Lemma 14. Assume that there are matrices Hy, ... Hy,, Hy, ..., H,, € F"*5 satisfying
H;H! =1,, H;H! + H;H! =0, i # j,

for every i,j € [m]. Then Br(n,m) <s

12:7
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Proof. Define
(f17~ . ~;fs) = ZjHlyz; (f{a . 7f;) = Zfﬁzyz .
i=1 i=1
Hence
S et =(fro FO ) =D yiaH A+ gy a(HHE + HH)z'
k=1 i i<y
This equals Y, y?z1, " = (yi + -+ -+ y2,) (2] + - -+ + 22) as required. <
» Lemma 15. For 0 < k <t and any field F of characteristic different from two, there ezists
a pair of maps &,& : ([Z]) — F% with s = ( such that for every A, B € ([Z])
(€(A),€(4)) = 1,
(€(4),8(B)) = (&(B),£(A)),
(E(A),E(B)) = 0, if A# B and (JANB| =kmod?2).

<lk/2y)

Proof. The proof is almost the same as that of Lemma 7. Equipped with the polynomial f
from Claim 8 or Lemma 17, it is is sufficient to modify the definition of £ as follows:

ac, fCCA - 1, ifCCA
(A)e=4{ "9 , E(A)e = . <
0, ifCZA. 0, fCZA.

Proof sketch of Thoreom 12. In Theorem 9, replace the matrices H4 by the pair
Hy:=ea®E(A), Hy=es @E(A).

They satisfy the conditions from Lemma 14 and we can proceed as in Theorem 1. |

5.2 A tensor product construction

We now outline an alternative construction of non-trivial sum-of-squares identities. While it
gives different types of identities, it does not seem to give better bounds asymptotically.

Instead of the products of anticommuting matrices e 4, one can take the tensor product of
matrices satisfying Hurwitz-Radon conditions (4). Namely, given such matrices Hy, ..., H,, €
Fr*s and a € [m]*, let

H,=H, ®H,, ---®H,,.
Observe that every H, satisfies H, H! = I,,+ and that
HaHlf + HbHé =0,

whenever a and b have odd Hamming distance (i.e., they differ in an odd number of
coordinates). As in Lemma 7, we can find a map ¢ : [m]¢ — C* with s < (4m)%/? such that

(£(a),&(a)) 1
(&(a),&(b)) = 0, if a # b have even Hamming distance.

)

This gives for every ¢
J(c(n[, mz) < oc(n, m)e(4m)4/2
For example, starting with o¢(8,8) = 8, we have

O'(C(Se, 8@) S 811[/6 .



P. Hrubes

6 Open problems

Let Even; denote the set of even-sized subsets of [¢]. A map & : Even; — F® will be called a
t-parity representation of dimension s if for every A, B € Eveny

(€(4),6(4)) = 1,
(€(A),¢(B)) = 0, if A# B and |AN B| is even.

» Problem 1. Over C, does there exist a t-parity representation of dimension 2(0-5+o(1)t

If this were the case, we could improve the bound of Theorem 1 to o¢(n,n) < n'->+e),
A more surprising consequence would be that

oc(n,n?) < n?re

The constant 0.5 in Problem 1 cannot be improved: since there exists a family of 2L*/2] subsets
of [t] with pairwise even intersection, every t-parity representation must have dimension at
least 2*/2 (cf. Remark 11). On the other hand, Lemma 7 implies that there exists a t-parity
representation of dimension at most 2(H(0-25)+o(1))t  90.82¢

Our results do not apply to sum-of-squares composition formulas over the real numbers.
Since R is one of the most natural choices of the underlying field, it is desirable to extend

the construction in this direction. This motivates the following:

» Problem 2. Over R, does there exist a t-parity representation of dimension O(2) with
c<1?
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A Proof of Lemma 7 in positive characteristic

Given non-negative integers 7 = (n1,...,nq) let B(n) be the d x d matrix {B(n);}i je(a
with

B(n)i; = (Z’f1> .

We assume that (}) = 0 whenever n < k; this guarantees (}) = w

» Lemma 16. If n = (r,r 4+ 2,...,r + 2(d — 1)) for some non-negative integer r then
det(B(n)) = 2(2).

Proof. We claim that
det(B = H i)~ tdet(V(n)),

where V(n) is the Vandermonde matrix with entries V(n); ; = n . To see this, multiply
every i-th row of B(n) by (¢ — 1)! to obtain matrix B’(n) with

det(B'(n)) = H i!) det(B
An i-th row 7; of B'(n) is of the form (n'~'+g;(n1),...,n}+gi(ng)) where g; is a polynomial
of degree < (i — 1). This means that r; equals the i-th row of V(i
)

combination of the preceding rows of V(7). Therefore, det(B’(n
Given 1 as in the assumption, we obtain

det(V() = [[ (p-ni)= [ (22—250)

) plus a suitable linear of

) = det(V(n)).

1</1<j2<d 1<j1<j2<d
= 203) II G- H il
1<j1<j2<d
This shows that det(B(n)) = 2(2). <

» Lemma 17. Let p be an odd prime. Given 0 < k < t, there exists a multilinear polynomial
[ €Fy(z1,...,2¢) of degree at most d = |k/2| such that for every a € {0,1}

B 1, iflal=k
f(a)—{ 0, iflal <k and (la| = kmod?2).

Proof. We logk for f of the form f = Z?:o chf where Sg is the elementary symmetric
polynomial S} =7 4 _; [;c4 z:- Given a € {0, 1},

d
|a>
a) = ch( .| modp.
=0 Y
We are therefore looking for a solution of the linear system
B(n)(co--.,cq)" = (0,...,0,1)",

where n = (0,2,...,2d), if k is even, and n = (1, 3,...,2d + 1), if k is odd. By the previous
lemma, B(n) is invertible over F,, and such a solution exists. <
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» Lemma 18. IfF is a field of odd characteristic p, there exists a (k,t)-parity representation
of dimension (p — 1)(SU§/2J)‘

Proof. If every element of F, has a square root in F, the proof is the same as over C. In
general, proceed as follows. Since every non-zero element of F, is a sum of at most (p — 1)
ones, we can write

f(xl,...,xt)zznxi,

CecieC

where C is a multiset of s < (p—1) (<td) subsets of [t]. For A € ([Z]), let £(A) € F* be a vector
whose coordinates are indexed by elements C' of C so that

g(A)C:{ 1, TngA «

0, fCZA.

» Remark 19.

(i) Over Fy2 or a larger field, the factor of (p — 1) in Lemma 18 can be dropped. This is
because every element of I, has a square root in 2.

(i) For specific values of k, a stronger bound is possible. For example, if & = 2p’ — 1, there
is a (k, t)-parity representation of dimension (Lk;2 J)' It follows from Lucas’ theorem
that in this case, f in Lemma 17 can be taken simply as the elementary symmetric

polynomial of degree |k/2]. This polynomial has only (ijz J) monomials.

12:11
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