A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Pavel Hrubeš

Institute of Mathematics of ASCR, Prague, Czech Republic

Abstract

For every n, we construct a sum-of-squares identity

$$\sum_{i=1}^{n} x_i^2 \cdot \sum_{j=1}^{n} y_j^2 = \sum_{k=1}^{s} f_k^2,$$

where f_k are bilinear forms with complex coefficients and $s = O(n^{1.62})$. Previously, such a construction was known with $s = O(n^2/\log n)$. The same bound holds over any field of positive characteristic.

2012 ACM Subject Classification

Theory of computation

Keywords and phrases

Sum-of-squares composition formulas, Hurwitz’s problem, non-commutative arithmetic circuit

Digital Object Identifier

10.4230/LIPIcs.CCC.2024.12

Funding

Pavel Hrubeš: This work was supported by Czech Science Foundation GAČR grant 19-27871X.

1 Introduction

The problem of Hurwitz [8] asks for which integers n, m, s does there exist a sum-of-squares identity

$$x_1^2 + x_2^2 + \cdots + x_n^2 \cdot y_1^2 + y_2^2 + \cdots + y_m^2 = f_1^2 + f_2^2 + \cdots + f_s^2,$$

where f_1, \ldots, f_s are bilinear forms in x and y with complex coefficients. Historically, the problem was motivated by existence of non-trivial identities with $n = m = s$. Starting with the obvious $x_1^2 y_1^2 = (x_1 y_1)^2$, the first remarkable identity is

$$(x_1^2 + x_2^2)(y_1^2 + y_2^2) = (x_1 y_1 - x_2 y_2)^2 + (x_1 y_2 + x_2 y_1)^2.$$

It can be interpreted as asserting multiplicativity of the norm on complex numbers. Euler’s 4-square identity is an example with $n, m, s = 4$ which has later been interpreted as multiplicativity of the norm on quaternions. The final one is an 8-square identity which arises in connection to the algebra of octonions.

A classical result of Hurwitz [8] shows that these are the only cases: an identity (1) exists with $m, s = n$ iff $n \in \{1, 2, 4, 8\}$. An extension of this result is given by Hurwitz-Radon theorem [11]: an identity (1) exists with $s = n$ iff $m \leq \rho(n)$, where $\rho(n)$ is the Hurwitz-Radon number. The value of $\rho(n)$ is known exactly. For every n, $\rho(n) \leq n$ and equality is achieved only in the cases $n \in \{1, 2, 4, 8\}$. Asymptotically, $\rho(n)$ lies between $2 \log_2 n$ and $2 \log_2 n + 2$ if n is a power of 2. As shown in [12], Hurwitz-Radon theorem remains valid over any field of characteristic different from two. Hurwitz’s problem is an intriguing question with connections to several branches of mathematics. We recommend D. Shapiro’s monograph [13] on this subject.
Let $\sigma(n)$ denote the smallest s such that an identity (1) with $m = n$ exists. While Hurwitz-Radon theorem solves the case $s = n$ exactly, even the asymptotic behavior of $\sigma(n)$ is not known. Elementary bounds\(^1\) are $n \leq \sigma(n) \leq n^2$. Hurwitz’s theorem implies that the first inequality is strict if n is sufficiently large. Using Hurwitz-Radon theorem, the upper bound can be improved to
\[
\sigma(n) \leq O(n^{1.62}).
\]
As far as we are aware, this was the best asymptotic upper bound previously known. In this paper, we will improve it to a truly subquadratic bound
\[
\sigma(n) \leq O\left(\frac{n^{1.62}}{\log n}\right).
\]
A specific motivation for this problem comes from arithmetic circuit complexity. In [6], Wigderson, Yehudayoff and the current author related the sum-of-squares problem with complexity of non-commutative computations. Non-commutative arithmetic circuit is a model for computing polynomials whose variables do not multiplicatively commute. Since the seminal paper of Nisan [10], it has been an open problem to give a superpolynomial lower bound on circuit size in this model. In [6], it has been shown that a superlinear lower bound of $\Omega(n^{1+\epsilon})$ on $\sigma(n)$ translates to an exponential lower bound in the non-commutative setting. Hence, providing asymptotic lower bounds on Hurwitz’s problem can be seen as a concrete approach towards answering Nisan’s question. A more general, and hence less concrete, result of this flavor was given by Carmosino et al. in [1]. In an attempt to implement the sum-of-squares approach, the authors from [6] gave an $\Omega\left(\frac{n^6}{5}\right)$ lower bound under the assumption that the identity (1) involves integer coefficients only [7]. However, the upper bound (2) goes in the opposite direction. Since it is superlinear, it does not immediately frustrate the approach from [6], it merely dampens its optimism.

2 The main result

Let F be a field. Define $\sigma_F(n, m)$ as the smallest s such that there exist bilinear $f_1, \ldots, f_s \in F[x_1, \ldots, x_n, y_1, \ldots, y_m]$ satisfying (1). Furthermore, let $\sigma_F(n) := \sigma_F(n, n)$.

\[\textbf{Theorem 1.} \text{ Let } F \text{ be either } \mathbb{C} \text{ or a field of positive characteristic. Then } \sigma_F(n) \leq O(n^c) \text{ where } c < 1.62.\]

This will be proved in Section 4. In Section 5.1, we will give a modification of Theorem 1 that applies to any field.

\[\textbf{Remark 2.} \]

(i) If the field has characteristic two, Theorem 1 is trivial. Since $(\sum_i x_i^2)(\sum_j y_j^2) = (\sum_{i,j} x_i y_j)^2$, we have $\sigma_F(n, m) = 1$.

(ii) Instead of \mathbb{C}, the result holds also over Gaussian rationals $\mathbb{Q}(i)$.

\[\textbf{Notation} \]

Given vectors $u, v \in F^n$, $(u, v) := \sum_{i=1}^n u_i v_i$ is their inner product. For a set S, $\binom{S}{k}$ denotes the set of k-element subsets of S and $\binom{S}{\leq k}$ the set of subsets with at most k elements. $\binom{n}{\leq k} := \sum_{i=0}^k \binom{n}{i}$. $[n]$ is the set $\{1, \ldots, n\}$.

\[\text{1 The former is obtained by substituting } (1, 0, \ldots, 0) \text{ for the } y \text{ variables, the latter by writing } (\sum_i x_i^2)(\sum_j y_j^2) = \sum_{i,j} (x_i y_j)^2.\]

\[\text{2 Namely, of the form } \sum_{i,j} a_{i,j} x_i y_j.\]
3 Hurwitz-Radon conditions

In this section, we give some well-known properties of \(\sigma \) that we will need later.

The definition immediately implies that \(\sigma(n, m) \) is symmetric, subadditive, and monotone:

\[
\begin{align*}
\sigma(n, m) &= \sigma(m, n), \\
\sigma(n, m_1 + m_2) &\leq \sigma(n, m_1) + \sigma(n, m_2), \\
\sigma(n, m) &\leq \sigma(n, m'), \quad m \leq m'.
\end{align*}
\]

(3)

The following lemma gives a characterization of \(\sigma \) in terms of Hurwitz-Radon conditions (4). A proof can be found, e.g., in [13], but we present it for completeness.

Lemma 3. Let \(\mathbb{F} \) be a field of characteristic different from two. Then \(\sigma(n, m) \) equals the smallest \(s \) such that there exist matrices \(H_1, \ldots, H_m \in \mathbb{F}^{n \times s} \) satisfying

\[
\begin{align*}
H_i H_i^t &= I_n, \\
H_i H_j + H_j H_i^t &= 0, \quad i \neq j,
\end{align*}
\]

for every \(i, j \in [m] \).

Proof. Let \(f_1, \ldots, f_s \) be bilinear polynomials in variables \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_m \). Then the vector \(\bar{f} = (f_1, \ldots, f_s) \) can be written as

\[
\bar{f} = \sum_{i=1}^n \bar{x} H_i y_i,
\]

where \(\bar{x} = (x_1, \ldots, x_n) \) and \(H_i \in \mathbb{F}^{n \times s} \). Hence

\[
\sum_{k=1}^s f_k^2 = \bar{f} \bar{f}^t = \sum_i y_i^2 \bar{x} H_i H_i^t \bar{x}^t + \sum_{i<j} y_i y_j \bar{x} (H_i H_j^t + H_j H_i^t) \bar{x}^t.
\]

If the matrices satisfy (4), this equals \(\sum_i y_i^2 \bar{x} I_n \bar{x}^t = (y_1^2 + \cdots + y_m^2) (x_1^2 + \cdots + x_n^2) \), which gives a sum-of-squares identity with \(s \) squares. Conversely, if \((y_1^2 + \cdots + y_m^2) (x_1^2 + \cdots + x_n^2) = \sum f_k^2 \), we must have \(\bar{x} H_i H_i^t \bar{x}^t = x_1^2 + \cdots + x_n^2 \) and \(\bar{x} (H_i H_j^t + H_j H_i^t) \bar{x}^t = 0 \). In characteristic different from 2, this is possible only if the conditions (4) are satisfied. ▶

Given a natural number of the form \(n = 2^a \) where \(a \) is odd, the Hurwitz-Radon number is defined as

\[
\rho(n) = \begin{cases}
2k + 1, & \text{if } k = 0 \\
2k, & \text{if } k = 1 \mod 4 \\
2k, & \text{if } k = 2 \\
2k + 2, & \text{if } k = 3
\end{cases}
\]

Observe that

\[
2 \log_2 n \leq \rho(n) \leq 2 \log_2 (n) + 2,
\]

whenever \(n \) is a power of two.

Square matrices \(A_1, A_2 \) anticommute if \(A_1 A_2 = -A_2 A_1 \). A family of square matrices \(A_1, \ldots, A_t \) will be called anticommuting if \(A_i, A_j \) anticommute for every \(i \neq j \).

The following lemma is a key ingredient in the proof of Hurwitz-Radon theorem. A self-contained construction can be found in [2].
A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Lemma 4. For every n, there exists an anticommuting family of $t = \rho(n) - 1$ integer matrices $e_1, \ldots, e_t \in \mathbb{Z}^{n \times n}$ which are orthonormal and antisymmetric (i.e., $e_i e_i^T = I_n$ and $e_i = -e_i^T$).

Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommuting family of $t = 2 \log_2 n + 1$ integer matrices $e_1, \ldots, e_t \in \mathbb{Z}^{n \times n}$ with $e_i^2 = \pm I_n$ whenever n is a power of two. With minor modifications, these matrices could be used in the subsequent construction instead.

The construction

Let e_1, \ldots, e_t be a set of square matrices. Given $A = \{i_1, \ldots, i_k\} \subseteq [t]$ with $i_1 < \cdots < i_k$, let $e_A := \prod_{j=1}^t e_{i_j}$.

Lemma 6. Let e_1, \ldots, e_t be a set of anticommuting matrices. If $A, B \subseteq [t]$ have even size (resp. odd size) then e_A, e_B anticommute assuming $|A \cap B|$ is odd (resp. even).

Proof. Since e_i anticommutes with every e_j, $j \neq i$, but commutes with itself, we obtain

$$e_A e_i = (-1)^{|A\setminus\{i\}|} e_i e_A.$$

This implies that

$$e_A e_B = (-1)^q e_B e_A,$$

where $q = |A| \cdot |B| - |A \cap B|$. Hence if A, B are even (resp. odd) and their intersection is odd (resp. even), q is odd and e_A, e_B anticommute.

Given integers $0 \leq k \leq t$, a (k, t)-parity representation of dimension s over a field \mathbb{F} is a map $\xi : \binom{[t]}{k} \to \mathbb{F}^s$ such that for every $A, B \in \binom{[t]}{k}$

$$\langle \xi(A), \xi(A) \rangle = 1, \quad \langle \xi(A), \xi(B) \rangle = 0, \quad \text{if } A \neq B \text{ and } (|A \cap B| = k \mod 2).$$

Lemma 7. Let $0 \leq k \leq t$. Over \mathbb{C}, there exists a (k, t)-parity representation of dimension $\binom{t}{\leq \lfloor k/2 \rfloor}$. If \mathbb{F} is a field of odd characteristic p, there exists a (k, t)-parity representation of dimension $(p-1)\binom{t}{\leq \lfloor k/2 \rfloor}$.

The case of odd characteristic will be proved in the Appendix.

Proof of Lemma 7 over \mathbb{C}. Let $0 \leq k \leq t$ be given and $d := \lfloor k/2 \rfloor$.

For $a \in \{0, 1\}^t$, let $|a|$ be the number of ones in a. Recall that a polynomial is multilinear, if every variable in it has individual degree at most one. We first observe:

Claim 8. There exists a multilinear polynomial $f \in \mathbb{Q}(x_1, \ldots, x_t)$ of degree at most d such that for every $a \in \{0, 1\}^t$

$$f(a) = \begin{cases} 1, & \text{if } |a| = k \\ 0, & \text{if } |a| < k \text{ and } (|a| = k \mod 2). \end{cases}$$

Proof of Claim. Consider the polynomial

$$g(x_1, \ldots, x_t) := c \prod_{0 \leq i < k, i \equiv k \mod 2} \left(\sum_{j=1}^t (x_j - i) \right).$$
Then g has degree d and we can choose $c \in \mathbb{Q}$ so that g satisfies (6). Since we care about inputs from $\{0,1\}^t$, g can be rewritten as a multilinear polynomial f of degree at most d.

Since f is multilinear, we can write it as

$$f(x_1, \ldots, x_t) = \sum_{C \in \binom{[t]}{\leq d}} \alpha_C \prod_{i \in C} x_i,$$

where α_C are rational coefficients. Identifying a subset A of $[t]$ with its characteristic vector in $\{0,1\}^t$, we have

$$f(A) = \sum_{C \subseteq A} \alpha_C.$$

Let $s := \binom{\frac{k}{2}}{t}$. Given $A \in \binom{[t]}{\leq \frac{k}{2}}$, let $\xi(A) \in \mathbb{C}^s$ be the vector whose coordinates are indexed by subsets $C \in \binom{[t]}{\leq \frac{k}{2}}$ such that

$$\xi(A)_C = \begin{cases} (\alpha_C)^{1/2}, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A. \end{cases}$$

This guarantees

$$\langle \xi(A), \xi(B) \rangle = \sum_C \xi(A)_C \xi(B)_C = \sum_{C \subseteq A \cap B} \alpha_C = f(A \cap B).$$

Hence conditions (6) translate to the desired properties of the map ξ.

Combining Lemma 6 and 7, we obtain the following bound on σ:

Theorem 9. Let n be a non-negative integer. Let $0 \leq k \leq \rho(n) - 1$ and $m := \binom{\rho(n) - 1}{k}$.

Then

$$\sigma_C(n, m) \leq n \cdot \left(\rho(n) - 1 \leq \frac{k}{2}\right).$$

If \mathbb{F} is a field of odd characteristic p then

$$\sigma_{\mathbb{F}}(n, m) \leq (p - 1)n \cdot \left(\rho(n) - 1 \leq \frac{k}{2}\right).$$

Proof. Let n, k, m be as in the assumption. Let e_1, \ldots, e_t be the matrices from Lemma 4 with $t = \rho(n) - 1$. Let ξ be the (k,t)-parity representation given by the previous lemma. For $A \in \binom{[t]}{k}$, let

$$H_A := e_A \otimes \xi(A),$$

where e_A is defined as in Lemma 6, $\xi(A)$ is viewed as a row vector, and \otimes is the Kronecker (tensor) product.

Note that each H_A has dimension $n \times (ns)$ where s is the dimension of the parity representation, and there are $m = \binom{t}{k}$ such matrices H_A. By Lemma 3, it is sufficient to show that the system of matrices $H_A, A \in \binom{[t]}{k}$, satisfies Hurwitz-Radon conditions (4).

We have

$$H_A H_B^t = (e_A e_B^t) \otimes (\xi(A)\xi(B)^t) = \langle \xi(A), \xi(B) \rangle \cdot e_A e_B^t.$$
Since every e_i is orthonormal, we have $e_A e_A^t = I_n$. From (5), we have $\langle \xi(A), \xi(A) \rangle = 1$ and hence

$$H_A H_A^t = I_n .$$

If $A \neq B$ then

$$H_A H_B^t + H_B H_A^t = \langle \xi(A), \xi(B) \rangle \cdot (e_A e_B^t + e_B e_A^t) .$$

(7)

If $|A \cap B| = k \mod 2$ then $\langle \xi(A), \xi(B) \rangle = 0$ by (5) and hence (7) equals zero. If $|A \cap B| \neq k \mod 2$ then $e_A e_B^t + e_B e_A^t = 0$. This is because $e_A e_B = -e_B e_A$ by Lemma 6 and that, since e_i are antisymmetric, e_A, e_B are either both symmetric or both antisymmetric. Therefore (7) equals zero for every $A \neq B \in \binom{[t]}{k}$.

Theorem 1 is an application of Theorem 9.

Proof of Theorem 1. Assume first that n is a power of 16. This gives $\rho(n) = 2 \log_2(n) + 1$. Let k be the smallest integer with $n \leq \binom{2 \log_2 n}{k} =: m$. From the previous theorem and monotonicity of σ (cf. (3)), we obtain

$$\sigma_{\Xi}(n) \leq \sigma_{\Xi}(n, m) \leq c n \rho,$$

where the constant c depends on the field only and $s := \binom{2 \log_2 n}{\leq \lfloor k/2 \rfloor}$.

We have $k = 2(\alpha + \epsilon_n) \log_2 n$ where $\alpha \in (0, \frac{1}{2})$ is such that $H(\alpha) = 1/2$ (H is the binary entropy function) and $\epsilon_n \to 0$ as n approaches infinity. We also have

$$s \leq 2^{2H(\frac{\alpha + \epsilon_n}{2})} \log_2 n = n^{2H(\frac{\alpha}{2}) + \epsilon'_n},$$

where $\epsilon'_n \to 0$. Hence

$$\sigma_{\Xi}(n) \leq c n^{1+2H(\frac{\alpha}{2}) + \epsilon'_n}.$$

The numerical value of α is 0.11... which leads to $\sigma_{\Xi}(n) \leq c n^{1.615+\epsilon'_n} \leq O(n^{1.616})$.

If n is not a power of 16, take n' with $n < n' < 16n$ which is. By monotonicity of σ, we have $\sigma_{\Xi}(n) \leq \sigma_{\Xi}(n')$.

4.1 Comments

Remark 10.

(i) Instead of C, the proof of Theorem 9 applies to any field where all rationals have a square root. However, Theorem 1 holds also over Gaussian rationals $\mathbb{Q}(i)$ (cf. Section 5.1).

(ii) In positive characteristic, the bounds in Lemma 7 and Theorem 9 can sometimes be improved: if $\mathbb{F} \supseteq \mathbb{F}_{p^2}$, the factor $(p - 1)$ can be dropped. For certain values of k, $\binom{t}{\leq \lfloor k/2 \rfloor}$ can be replaced with $\binom{t}{\lfloor k/2 \rfloor}$ (cf. Remark 19).

An improvement on the dimension of parity representation in Lemma 7, if possible, will lead to an improvement in Theorem 1. However, this dimension cannot be too small:

Remark 11. If k is even, every (k, t)-parity representation must have dimension at least $s = \binom{t}{\lfloor t/2 \rfloor}$ over any field. This is because there exists a family \mathcal{A} of k-element subsets of $[t]$ whose pairwise intersection is even, and $|\mathcal{A}| = s$. The map ξ must assign linearly independent vectors to elements of \mathcal{A}. Similarly for k odd.
On the other hand, \((\leq t/k/2)\) in Lemma 7 can be replaced with \((\leq 1/2)\) which gives a smaller bound if if \(k > 1/2\). This is because we can instead work with complements of \(A \in \binom{[t]}{k}\).

The notion of \((k,t)\)-parity representation can be restated in the language of orthonormal representations of graphs of Lovász [9]. Given a graph \(G\) with vertex set \(V\), its orthonormal representation is a map \(\xi(V) : \rightarrow \mathbb{F}^s\) such that for every \(u,v \in V\)

\[
\langle \xi(u), \xi(u) \rangle = 1, \\
\langle \xi(u), \xi(v) \rangle = 0, \text{ if } u \neq v \text{ are not adjacent in } G.
\]

In this language, \((k,t)\)-parity representation is an orthonormal representation of the following combinatorial Kneser-type graph \(G_{k,t}\): vertices of \(G_{k,t}\) are \(k\)-element subsets of \([t]\). There is an edge between \(u\) and \(v\) iff \(|u \cap v| \neq k \mod 2\). Orthogonal representations of related graphs have been studied by Haviv in [4, 3].

5 Modifications and extensions

5.1 A sum of bilinear products

Define \(\beta_{\mathbb{F}}(n)\) as the smallest \(s\) such there exists an identity

\[
(x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2) = f_1f'_1 + \cdots + fssf'_s,
\]

where \(f_1, \ldots, f_s\) and \(f'_1, \ldots, f'_s\) are bilinear forms with coefficients from \(\mathbb{F}\).

We have \(\beta_{\mathbb{F}}(n) \leq \sigma_{\mathbb{F}}(n)\). In some contexts, \(\beta\) is a more natural quantity than \(\sigma\). In this section, we give a modification of Theorem 1 in terms of \(\beta\):

\textbf{Theorem 12.} Over any field, \(\beta_{\mathbb{F}}(n) \leq O(n^c)\) where \(c < 1.62\).

\textbf{Remark 13.} In characteristic different from two, we have \(ff' = \left(\frac{t + t'}{2}\right)^2 - \left(\frac{t - t'}{2}\right)^2\), which allows to rewrite (8) as

\[
(x_1^2 + \cdots + x_n^2)(y_1^2 + \cdots + y_n^2) = g_1^2 + \cdots + g_s^2 - h_1^2 - \cdots - h_s^2.
\]

It follows that

\[
\sigma_{\mathbb{F}}(n) \leq 2\beta_{\mathbb{F}}(n), \text{ if } \mathbb{F} \text{ contains a square root of } -1,
\]

\[
\sigma_{\mathbb{F}}(n) \leq p\beta_{\mathbb{F}}(n), \text{ if } \mathbb{F} \text{ has characteristic } p > 0.
\]

We conclude that, first, Theorem 1 is a consequence of Theorem 12 and, second, Theorem 1 holds also over Gaussian rationals \(\mathbb{Q}(i)\).

The proof of Theorem 12 is a straightforward modification of that of Theorem 1 and we only highlight the main points.

The following is an analogy of Lemma 3:

\textbf{Lemma 14.} Assume that there are matrices \(H_1, \ldots, H_m, \tilde{H}_1, \ldots, \tilde{H}_m \in \mathbb{F}^{n \times s}\) satisfying

\[
H_i \tilde{H}_j^t = I_n, \quad H_i \tilde{H}_j^t + H_j \tilde{H}_i^t = 0, \text{ if } i \neq j,
\]

for every \(i, j \in [m]\). Then \(\beta_{\mathbb{F}}(n, m) \leq s\).
12:8 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Proof. Define
\[(f_1, \ldots, f_s) = \sum_{i=1}^n \bar{x}H_i y_i, \quad (f'_1, \ldots, f'_s) = \sum_{i=1}^n \bar{H}_i y_i.\]

Hence
\[\sum_{k=1}^s f_k f'_k = (f_1, \ldots, f_s)(f'_1, \ldots, f'_s)^t = \sum_i y_i^2 \bar{x}H_i \bar{H}_i^t \bar{x}^t + \sum_{i<j} y_i y_j \bar{x}(H_i \bar{H}_j^t + H_j \bar{H}_i^t) \bar{x}^t.\]

This equals \(\sum_i y_i^2 \bar{x}I_n \bar{x}^t = (y_1^2 + \cdots + y_m^2)(x_1^2 + \cdots + x_n^2)\) as required. \(\blacksquare\)

Lemma 15. For \(0 \leq k \leq t\) and any field \(\mathbb{F}\) of characteristic different from two, there exists a pair of maps \(\xi, \tilde{\xi} : \binom{[k]}{k/2} \to \mathbb{F}^n\) with \(s = \binom{t}{k/2}\) such that for every \(A, B \in \binom{[k]}{k/2}\)
\[\langle \xi(A), \tilde{\xi}(A) \rangle = 1, \quad \langle \xi(A), \tilde{\xi}(B) \rangle = \langle \xi(B), \tilde{\xi}(A) \rangle, \quad \langle \xi(A), \tilde{\xi}(B) \rangle = 0, \text{ if } A \neq B \text{ and } (|A \cap B| = k \mod 2).\]

Proof. The proof is almost the same as that of Lemma 7. Equipped with the polynomial \(f\) from Claim 8 or Lemma 17, it is is sufficient to modify the definition of \(\xi\) as follows:
\[\xi(A)_C = \begin{cases} \alpha_C, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A \end{cases}, \quad \tilde{\xi}(A)_C = \begin{cases} 1, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A \end{cases}.\]

Proof sketch of Theorem 12. In Theorem 9, replace the matrices \(H_A\) by the pair \(H_A := e_A \otimes \xi(A), \tilde{H}_A = e_A \otimes \tilde{\xi}(A)\).

They satisfy the conditions from Lemma 14 and we can proceed as in Theorem 1. \(\blacksquare\)

5.2 A tensor product construction

We now outline an alternative construction of non-trivial sum-of-squares identities. While it gives different types of identities, it does not seem to give better bounds asymptotically.

Instead of the products of anticommuting matrices \(e_A\), one can take the **tensor** product of matrices satisfying Hurwitz-Radon conditions (4). Namely, given such matrices \(H_1, \ldots, H_m \in \mathbb{F}^{n \times n}\), and \(a \in [m]^t\), let
\[H_a := H_{a_1} \otimes H_{a_2} \cdots \otimes H_{a_t}.\]

Observe that every \(H_a\) satisfies \(H_a H_a^* = I_n^t\) and that
\[H_a H_b^* + H_b H_a^* = 0,\]
whenever \(a\) and \(b\) have odd Hamming distance (i.e., they differ in an odd number of coordinates). As in Lemma 7, we can find a map \(\xi : [m]^t \to \mathbb{C}^s\) with \(s \leq (4m)^t/2\) such that
\[\langle \xi(a), \xi(a) \rangle = 1, \quad \langle \xi(a), \xi(b) \rangle = 0, \text{ if } a \neq b \text{ have even Hamming distance}.\]

This gives for every \(\ell\)
\[\sigma_C(n, \ell^t) \leq \sigma_C(n, m^\ell) (4m)^{t/2}\]

For example, starting with \(\sigma_C(8, 8) = 8\), we have
\[\sigma_C(8^t, 8^t) \leq 8^{11t/6}.\]
6 Open problems

Let \(\text{Even}_t \) denote the set of even-sized subsets of \([t]\). A map \(\xi : \text{Even}_t \rightarrow F^s \) will be called a \(t \)-parity representation of dimension \(s \) if for every \(A, B \in \text{Even}_t \)
\[
\langle \xi(A), \xi(A) \rangle = 1,
\langle \xi(A), \xi(B) \rangle = 0, \text{ if } A \neq B \text{ and } |A \cap B| \text{ is even}.
\]

Problem 1. Over \(\mathbb{C} \), does there exist a \(t \)-parity representation of dimension \(2^{0.5+o(1)}t \) ?

If this were the case, we could improve the bound of Theorem 1 to \(\sigma_C(n,n) \leq n^{1.5+o(1)} \).

A more surprising consequence would be that
\[
\sigma_C(n,n^2) \leq n^{2+o(1)}.
\]

The constant 0.5 in Problem 1 cannot be improved: since there exists a family of \(2^{\left\lfloor t/2 \right\rfloor} \) subsets of \([t]\) with pairwise even intersection, every \(t \)-parity representation must have dimension at least \(2^{t/2} \) (cf. Remark 11). On the other hand, Lemma 7 implies that there exists a \(t \)-parity representation of dimension at most \(2^{H(0.25)+o(1)}t < 2^{0.82t} \).

Our results do not apply to sum-of-squares composition formulas over the real numbers. Since \(\mathbb{R} \) is one of the most natural choices of the underlying field, it is desirable to extend the construction in this direction. This motivates the following:

Problem 2. Over \(\mathbb{R} \), does there exist a \(t \)-parity representation of dimension \(O(2^{ct}) \) with \(c < 1 \)?

References

A Proof of Lemma 7 in positive characteristic

Given non-negative integers $\bar{n} = (n_1, \ldots, n_d)$ let $B(\bar{n})$ be the $d \times d$ matrix $\{B(\bar{n})_{i,j}\}_{i,j \in [d]}$ with

$$B(\bar{n})_{i,j} = \binom{n_j}{i-1}.$$

We assume that $\binom{n}{k} = 0$ whenever $n < k$; this guarantees $\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}.$

Lemma 16. If $\bar{n} = (r, r + 2, \ldots, r + 2(d - 1))$ for some non-negative integer r then $\det(B(\bar{n})) = 2^d$.

Proof. We claim that $\det(B(\bar{n})) = \left(\prod_{i=1}^{d-1} 1!\right)^{-1} \det(V(\bar{n})),$

where $V(\bar{n})$ is the Vandermonde matrix with entries $V(\bar{n})_{i,j} = n_j^{i-1}$. To see this, multiply every i-th row of $B(\bar{n})$ by $(i - 1)!$ to obtain matrix $B'(\bar{n})$ with

$$\det(B'(\bar{n})) = \left(\prod_{i=1}^{d-1} 1!\right) \det(B(\bar{n})).$$

An i-th row r_i of $B'(\bar{n})$ is of the form $(n_1^{i-1} + g_1(n_1), \ldots, n_d^{i-1} + g_d(n_d))$ where g_i is a polynomial of degree $< (i - 1)$. This means that r_i equals the i-th row of $V(\bar{n})$ plus a suitable linear of combination of the preceding rows of $V(\bar{n})$. Therefore, $\det(B'(\bar{n})) = \det(V(\bar{n})).$

Given \bar{n} as in the assumption, we obtain

$$\det(V(\bar{n})) = \prod_{1 \leq j_1 < j_2 \leq d} (n_{j_2} - n_{j_1}) = \prod_{1 \leq j_1 < j_2 \leq d} (2j_2 - 2j_1)$$

$$= 2^d \prod_{1 \leq j_1 < j_2 \leq d} (j_2 - j_1) = 2^d \prod_{i=1}^{d-1} i!.$$

This shows that $\det(B(\bar{n})) = 2^d$. ▶

Lemma 17. Let p be an odd prime. Given $0 \leq k \leq t$, there exists a multilinear polynomial $f \in \mathbb{F}_p(x_1, \ldots, x_d)$ of degree at most $d = \lfloor k/2 \rfloor$ such that for every $a \in \{0, 1\}^t$

$$f(a) = \begin{cases} 1, & \text{if } |a| = k \\ 0, & \text{if } |a| < k \text{ and } (|a| = k \mod 2) \end{cases}.$$

Proof. We look for f of the form $f = \sum_{j=0}^{d} c_j S_j^k$ where S_j^k is the elementary symmetric polynomial $S_j^k = \sum_{|A| = j} \prod_{i \in A} x_i$. Given $a \in \{0, 1\}^t$,

$$f(a) = \sum_{j=0}^{d} c_j \binom{|a|}{j} \mod p.$$

We are therefore looking for a solution of the linear system

$$B(\bar{n}) (c_0, \ldots, c_d)^t = (0, \ldots, 0, 1)^t,$$

where $\bar{n} = (0, 2, \ldots, 2d)$, if k is even, and $\bar{n} = (1, 3, \ldots, 2d + 1)$, if k is odd. By the previous lemma, $B(\bar{n})$ is invertible over \mathbb{F}_p, and such a solution exists. ▶
Lemma 18. If F is a field of odd characteristic p, there exists a (k,t)-parity representation of dimension $(p-1)\binom{t}{\leq \lfloor k/2 \rfloor}$.

Proof. If every element of F_p has a square root in F, the proof is the same as over \mathbb{C}. In general, proceed as follows. Since every non-zero element of F_p is a sum of at most $(p-1)$ ones, we can write

$$f(x_1, \ldots, x_t) = \sum_{C \in \mathcal{C}} \prod_{i \in C} x_i,$$

where \mathcal{C} is a multiset of $s \leq (p-1)\binom{t}{s}$ subsets of $[t]$. For $A \in \binom{[t]}{k}$, let $\xi(A) \in F^s$ be a vector whose coordinates are indexed by elements C of \mathcal{C} so that

$$\xi(A)_C = \begin{cases} 1, & \text{if } C \subseteq A \\ 0, & \text{if } C \not\subseteq A. \end{cases}$$

Remark 19.

(i) Over F_{p^2} or a larger field, the factor of $(p-1)$ in Lemma 18 can be dropped. This is because every element of F_p has a square root in F_{p^2}.

(ii) For specific values of k, a stronger bound is possible. For example, if $k = 2p^\ell - 1$, there is a (k,t)-parity representation of dimension $\binom{t}{\leq \lfloor k/2 \rfloor}$. It follows from Lucas’ theorem that in this case, f in Lemma 17 can be taken simply as the elementary symmetric polynomial of degree $\lfloor k/2 \rfloor$. This polynomial has only $\binom{t}{\lfloor k/2 \rfloor}$ monomials.