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Abstract
For every n, we construct a sum-of-squares identity

(
n∑

i=1

x2
i )(

n∑
j=1

y2
j ) =

s∑
k=1

f2
k ,

where fk are bilinear forms with complex coefficients and s = O(n1.62). Previously, such a con-
struction was known with s = O(n2/ log n). The same bound holds over any field of positive
characteristic.
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1 Introduction

The problem of Hurwitz [8] asks for which integers n, m, s does there exist a sum-of-squares
identity

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

m) = f2
1 + · · · + f2

s , (1)

where f1, . . . , fs are bilinear forms in x and y with complex coefficients. Historically, the
problem was motivated by existence of non-trivial identities with n = m = s. Starting with
the obvious x2

1y2
1 = (x1y1)2, the first remarkable identity is

(x2
1 + x2

2)(y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2 .

It can be interpreted as asserting multiplicativity of the norm on complex numbers. Euler’s
4-square identity is an example with n, m, s = 4 which has later been interpreted as multi-
plicativity of the norm on quaternions. The final one is an 8-square identity which arises in
connection to the algebra of octonions.

A classical result of Hurwitz [8] shows that these are the only cases: an identity (1) exists
with m, s = n iff n ∈ {1, 2, 4, 8}. An extension of this result is given by Hurwitz-Radon
theorem [11]: an identity (1) exists with s = n iff m ≤ ρ(n), where ρ(n) is the Hurwitz-Radon
number. The value of ρ(n) is known exactly. For every n, ρ(n) ≤ n and equality is achieved
only in the cases n ∈ {1, 2, 4, 8}. Asymptotically, ρ(n) lies between 2 log2 n and 2 log2 n + 2
if n is a power of 2. As shown in [12], Hurwitz-Radon theorem remains valid over any
field of characteristic different from two. Hurwitz’s problem is an intriguing question with
connections to several branches of mathematics. We recommend D. Shapiro’s monograph [13]
on this subject.
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12:2 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Let σ(n) denote the smallest s such that an identity (1) with m = n exists. While
Hurwitz-Radon theorem solves the case s = n exactly, even the asymptotic behavior of σ(n)
is not known. Elementary bounds1 are n ≤ σ(n) ≤ n2. Hurwitz’s theorem implies that the
first inequality is strict if n is sufficiently large. Using Hurwitz-Radon theorem, the upper
bound can be improved to

σ(n) ≤ O(n2/ log n) .

As far as we are aware, this was the best asymptotic upper bound previously known. In this
paper, we will improve it to a truly subquadratic bound

σ(n) ≤ O(n1.62) . (2)

A specific motivation for this problem comes from arithmetic circuit complexity. In [6],
Wigderson, Yehudayoff and the current author related the sum-of-squares problem with
complexity of non-commutative computations. Non-commutative arithmetic circuit is a
model for computing polynomials whose variables do not multiplicatively commute. Since
the seminal paper of Nisan [10], it has been an open problem to give a superpolynomial lower
bound on circuit size in this model. In [6], it has been shown that a superlinear lower bound
of Ω(n1+ϵ) on σ(n) translates to an exponential lower bound in the non-commutative setting.
Hence, providing asymptotic lower bounds on Hurwitz’s problem can be seen as a concrete
approach towards answering Nisan’s question. A more general, and hence less concrete,
result of this flavor was given by Carmosino et al. in [1]. In an attempt to implement
the sum-of-squares approach, the authors from [6] gave an Ω(n6/5) lower bound under the
assumption that the identity (1) involves integer coefficients only [7]. However, the upper
bound (2) goes in the opposite direction. Since it is superlinear, it does not immediately
frustrate the approach from [6], it merely dampens its optimism.

2 The main result

Let F be a field. Define σF(n, m) as the smallest s such that there exist bilienear2f1, . . . , fs ∈
F[x1, . . . , xn, y1, . . . ym] satisfying (1). Furthermore, let σF(n) := σF(n, n).

▶ Theorem 1. Let F be either C or a field of positive characteristic. Then σF(n) ≤ O(nc)
where c < 1.62.

This will be proved in Section 4. In Section 5.1, we will give a modification of Theorem 1
that applies to any field.
▶ Remark 2.

(i) If the field has characteristic two, Theorem 1 is trivial. Since (
∑

i x2
i )(

∑
j y2

j ) =
(
∑

i,j xiyj)2, we have σF(n, m) = 1.
(ii) Instead of C, the result holds also over Gaussian rationals Q(i).

Notation

Given vectors u, v ∈ Fn, ⟨u, v⟩ :=
∑n

i=1 uivi is their inner product. For a set S,
(

S
k

)
denotes

the set of k-element subsets of S and
(

S
≤k

)
the set of subsets with at most k elements.(

n
≤k

)
:=

∑k
i=0

(
n
i

)
. [n] is the set {1, . . . , n}.

1 The former is obtained by substituting (1, 0, . . . , 0) for the y variables, the latter by writing
(
∑

x2
i )(

∑
j

y2
j ) =

∑
i,j

(xiyj)2.
2 Namely, of the form

∑
i,j

ai,jxiyj .
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3 Hurwitz-Radon conditions

In this section, we give some well-known properties of σ that we will need later.
The definition immediately implies thet σF(n, m) is symmetric, subadditive, and monotone:

σF(n, m) = σF(m, n) ,

σF(n, m1 + m2) ≤ σF(n, m1) + σF(n, m2) ,

σF(n, m) ≤ σF(n, m′) , m ≤ m′ . (3)

The following lemma gives a characterization of σ in terms of Hurwitz-Radon conditions (4).
A proof can be found, e.g., in [13], but we present it for completeness.

▶ Lemma 3. Let F be a field of characteristic different from two. Then σF(n, m) equals the
smallest s such that there exist matrices H1, . . . , Hm ∈ Fn×s satisfying

HiH
t
i = In ,

HiH
t
j + HjHt

i = 0 , i ̸= j , (4)

for every i, j ∈ [m].

Proof. Let f1, . . . , fs be bilinear polynomials in variables x1, . . . , xn and y1, . . . , ym. Then
the vector f̄ = (f1, . . . , fs) can be written as

f̄ =
n∑

i=1
x̄Hiyi ,

where x̄ = (x1, . . . , xn) and Hi ∈ Fn×s. Hence
s∑

k=1
f2

k = f̄ f̄ t =
∑

i

y2
i x̄HiH

t
i x̄t +

∑
i<j

yiyj x̄(HiH
t
j + HjHt

i )x̄t .

If the matrices satisfy (4), this equals
∑

i y2
i x̄Inx̄t = (y2

1 + · · · + y2
m)(x2

1 + · · · + x2
n), which

gives a sum-of-squares identity with s squares. Conversely, if (y2
1 + · · · + y2

m)(x2
1 + · · · + x2

n) =∑
f2

k , we must have x̄HiH
t
i x̄t = x2

1 + · · · + x2
n and x̄(HiH

t
j + HjHt

i )x̄t = 0. In characteristic
different from 2, this is possible only if the conditions (4) are satisfied. ◀

Given a natural number of the form n = 2ka where a is odd, the Hurwitz-Radon number
is defined as

ρ(n) =


2k + 1 , if k = 0
2k , if k = 1
2k , if k = 2
2k + 2 , if k = 3

mod 4

Observe that

2 log2 n ≤ ρ(n) ≤ 2 log2(n) + 2 ,

whenever n is a power of two.
Square matrices A1, A2 anticommute if A1A2 = −A2A1. A family of square matrices

A1, . . . , At will be called anticommuting if Ai, Aj anticommute for every i ̸= j.
The following lemma is a key ingredient in the proof of Hurwitz-Radon theorem. A

self-contained construction can be found in [2].

CCC 2024
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▶ Lemma 4. For every n, there exists an anticommuting family of t = ρ(n) − 1 integer
matrices e1, . . . , et ∈ Zn×n which are orthonormal and antisymmetric (i.e., eie

t
i = In and

ei = −et
i).

▶ Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommuting family of
t = 2 log2 n + 1 integer matrices e1, . . . , et ∈ Zn×n with e2

i = ±In whenever n is a power of
two. With minor modifications, these matrices could be used in the subsequent construction
instead.

4 The construction

Let e1, . . . , et be a set of square matrices. Given A = {i1, . . . , ik} ⊆ [t] with i1 < · · · < ik, let
eA :=

∏k
j=1 eij .

▶ Lemma 6. Let e1, . . . , et be a set of anticommuting matrices. If A, B ⊆ [t] have even size
(resp. odd size) then eA, eB anticommute assuming |A ∩ B| is odd (resp. even).

Proof. Since ei anticommutes with every ej , j ̸= i, but commutes with itself, we obtain

eAei = (−1)|A\{i}|eieA .

This implies that

eAeB = (−1)qeBeA ,

where q = |A| · |B| − |A ∩ B|. Hence if A, B are even (resp. odd) and their intersection is
odd (resp. even), q is odd and eA, eB anticommute. ◀

Given integers 0 ≤ k ≤ t, a (k, t)-parity representation of dimension s over a field F is a
map ξ :

([t]
k

)
→ Fs such that for every A, B ∈

([t]
k

)
⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and (|A ∩ B| = k mod 2) . (5)

▶ Lemma 7. Let 0 ≤ k ≤ t. Over C, there exists a (k, t)-parity representation of dimension(
t

≤⌊k/2⌋
)
. If F is a field of odd characteristic p, there exists a (k, t)-parity representation of

dimension (p − 1)
(

t
≤⌊k/2⌋

)
.

The case of odd characteristic will be proved in the Appendix.

Proof of Lemma 7 over C. Let 0 ≤ k ≤ t be given and d := ⌊k/2⌋.
For a ∈ {0, 1}t, let |a| be the number of ones in a. Recall that a polynomial is multilinear,

if every variable in it has individual degree at most one. We first observe:

▷ Claim 8. There exists a multilinear polynomial f ∈ Q(x1, . . . , xt) of degree at most d

such that for every a ∈ {0, 1}t

f(a) =
{

1 , if |a| = k

0 , if |a| < k and (|a| = k mod 2) .
(6)

Proof of Claim. Consider the polynomial

g(x1, . . . , xt) := c
∏

0≤i<k, i=k mod 2
(

t∑
j=1

xj − i) .
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Then g has degree d and we can choose c ∈ Q so that g satisfies (6). Since we care about
inputs from {0, 1}t, g can be rewritten as a multilinear polynomial f of degree at most d.

◁

Since f is multilinear, we can write it as

f(x1, . . . , xt) =
∑

C∈( [t]
≤d)

αC

∏
i∈C

xi ,

where αC are rational coefficients. Identifying a subset A of [t] with its characteristic vector
in {0, 1}t, we have

f(A) =
∑

C⊆A

αC .

Let s :=
(

t
≤d

)
. Given A ∈

([t]
k

)
, let ξ(A) ∈ Cs be the vector whose coordinates are indexed

by subsets C ∈
( [t]

≤d

)
such that

ξ(A)C =
{

(αC)1/2 , if C ⊆ A

0 , if C ̸⊆ A .

This guarantees

⟨ξ(A), ξ(B)⟩ =
∑

C

ξ(A)Cξ(B)C =
∑

C⊆A∩B

αC = f(A ∩ B) .

Hence conditions (6) translate to the desired properties of the map ξ. ◀

Combining Lemma 6 and 7, we obtain the following bound on σ:

▶ Theorem 9. Let n be a non-negative integer. Let 0 ≤ k ≤ ρ(n) − 1 and m :=
(

ρ(n)−1
k

)
.

Then

σC(n, m) ≤ n ·
(

ρ(n) − 1
≤ ⌊k/2⌋

)
.

If F is a field of odd characteristic p then

σF(n, m) ≤ (p − 1)n ·
(

ρ(n) − 1
≤ ⌊k/2⌋

)
.

Proof. Let n, k, m be as in the assumption. Let e1, . . . , et be the matrices from Lemma 4
with t = ρ(n) − 1. Let ξ be the (k, t)-parity representation given by the previous lemma. For
A ∈

([t]
k

)
, let

HA := eA ⊗ ξ(A) ,

where eA is defined as in Lemma 6, ξ(A) is viewed as a row vector, and ⊗ is the Kronecker
(tensor) product.

Note that each HA has dimension n × (ns) where s is the dimension of the parity
representation, and there are m =

(
t
k

)
such matrices HA. By Lemma 3, it is sufficient to

show that the system of matrices HA, A ∈
([t]

k

)
, satisfies Hurwitz-Radon conditions (4).

We have

HAHt
B = (eAet

B) ⊗ (ξ(A)ξ(B)t) = ⟨ξ(A), ξ(B)⟩ · eAet
B .

CCC 2024
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Since every ei is orthonormal, we have eAet
A = In. From (5), we have ⟨ξ(A), ξ(A)⟩ = 1 and

hence

HAHt
A = In .

If A ̸= B then

HAHt
B + HBHt

A = ⟨ξ(A), ξ(B)⟩ · (eAet
B + eBet

A) . (7)

If |A ∩ B| = k mod 2 then ⟨ξ(A), ξ(B)⟩ = 0 by (5) and hence (7) equals zero. If |A ∩ B| ≠
k mod 2 then eAet

B + eBet
A = 0. This is because eAeB = −eBeA by Lemma 6 and that, since

ei are antisymmetric, eA, eB are either both symmetric or both antisymmetric. Therefore (7)
equals zero for every A ̸= B ∈

([t]
k

)
. ◀

Theorem 1 is an application of Theorem 9.

Proof of Theorem 1. Assume first that n is a power of 16. This gives ρ(n) = 2 log2(n) + 1.
Let k be the smallest integer with n ≤

(2 log2 n
k

)
=: m. From the previous theorem and

monotonicity of σ (cf. (3)), we obtain

σF(n) ≤ σF(n, m) ≤ cns ,

where the constant c depends on the field only and s :=
(2 log2 n

≤⌊k/2⌋
)
.

We have k = 2(α + ϵn) log2 n where α ∈ (0, 1
2 ) is such that H(α) = 1/2 (H is the binary

entropy function) and ϵn → 0 as n approaches infinity. We also have

s ≤ 22H( α+ϵn
2 ) log2 n = n2H( α

2 )+ϵ′
n ,

where ϵ′
n → 0. Hence

σF(n) ≤ cn1+2H( α
2 )+ϵ′

n .

The numerical value of α is 0.11 . . . which leads to σF(n) ≤ cn1.615+ϵ′
n ≤ O(n1.616).

If n is not a power of 16, take n′ with n < n′ < 16n which is. By monotonicity of σ, we
have σF(n) ≤ σF(n′). ◀

4.1 Comments
▶ Remark 10.

(i) IInstead of C, the proof of Theorem 9 applies to any field where all rationals have a
square root. However, Theorem 1 holds also over Gaussian rationals Q(i) (cf. Section
5.1).

(ii) In positive characteristic, the bounds in Lemma 7 and Theorem 9 can sometimes be
improved: if F ⊇ Fp2 , the factor (p − 1) can be dropped. For certain values of k,(

t
≤⌊k/2⌋

)
can be replaced with

(
t

⌊k/2⌋
)

(cf. Remark 19).

An improvement on the dimension of parity representation in Lemma 7, if possible, will
lead to an improvement in Theorem 1. However, this dimension cannot be too small:
▶ Remark 11. If k is even, every (k, t)-parity representation must have dimension at least
s =

(⌊t/2⌋
k/2

)
over any field. This is because there exists a family A of k-element subsets

of [t] whose pairwise intersection is even, and |A| = s . The map ξ must assign linearly
independent vectors to elements of A. Similarly for k odd.
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On the other hand,
(

t
≤⌊k/2⌋

)
in Lemma 7 can be replaced with

(
t

≤⌊t−k/2⌋
)

which gives
a smaller bound if if k > t/2. This is because we can instead work with complements of
A ∈

([t]
k

)
.

The notion of (k, t)-parity representation can be restated in the language of orthonormal
representations of graphs of Lovász [9]. Given a graph G with vertex set V , its orthonormal
representation is a map ξ(V ) :→ Fs such that for every u, v ∈ V

⟨ξ(u), ξ(u)⟩ = 1 ,

⟨ξ(u), ξ(v)⟩ = 0 , if u ̸= v are not adjacent in G.

In this language, (k, t)-parity representation is an orthonormal representation of the following
combinatorial Knesser-type graph Gk,t: vertices of Gk,t are k-element subsets of [t]. There is
an edge between u and v iff |u ∩ v| ≠ k mod 2. Orthogonal representations of related graphs
have been studied by Haviv in [4, 3].

5 Modifications and extensions

5.1 A sum of bilinear products
Define βF(n) as the smallest s such there exists an identity

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = f1f ′
1 + · · · + fsf ′

s , (8)

where f1, . . . , fs and f ′
1, . . . , f ′

s are bilinear forms with coefficients from F.
We have βF(n) ≤ σF(n). In some contexts, β is a more natural quantity than σ. In this

section, we give a modification of Theorem 1 in terms of β:

▶ Theorem 12. Over any field, βF(n) ≤ O(nc) where c < 1.62.

▶ Remark 13. In characteristic different from two, we have ff ′ =
(

f+f ′

2

)2
−

(
f−f ′

2

)2
, which

allows to rewrite (8) as

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = g2
1 + · · · + g2

s − h2
1 − · · · − h2

s .

It follows that

σF(n) ≤ 2βF(n) , if F contains a square root of − 1 ,

σF(n) ≤ pβF(n) , if F has characteristic p > 0 .

We conclude that, first, Theorem 1 is a consequence of Theorem 12 and, second, Theorem 1
holds also over Gaussian rationals Q(i).

The proof of Theorem 12 is a straightforward modification of that of Theorem 1 and we
only highlight the main points.

The following is an analogy of Lemma 3:

▶ Lemma 14. Assume that there are matrices H1, . . . Hm, H̃1, . . . , H̃m ∈ Fn×s satisfying

HiH̃
t
i = In , HiH̃

t
j + HjH̃t

i = 0 , i ̸= j,

for every i, j ∈ [m]. Then βF(n, m) ≤ s.

CCC 2024
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Proof. Define

(f1, . . . , fs) =
n∑

i=1
x̄Hiyi , (f ′

1, . . . , f ′
s) =

n∑
i=1

x̄H̃iyi .

Hence
s∑

k=1
fkf ′

k = (f1, . . . , fs)(f ′
1, . . . , f ′

s)t =
∑

i

y2
i x̄HiH̃

t
i x̄t +

∑
i<j

yiyj x̄(HiH̃
t
j + HjH̃t

i )x̄t .

This equals
∑

i y2
i x̄Inx̄t = (y2

1 + · · · + y2
m)(x2

1 + · · · + x2
n) as required. ◀

▶ Lemma 15. For 0 ≤ k ≤ t and any field F of characteristic different from two, there exists
a pair of maps ξ, ξ̃ :

([t]
k

)
→ Fs with s =

(
t

≤⌊k/2⌋
)

such that for every A, B ∈
([t]

k

)
⟨ξ(A), ξ̃(A)⟩ = 1 ,

⟨ξ(A), ξ̃(B)⟩ = ⟨ξ(B), ξ̃(A)⟩ ,

⟨ξ(A), ξ̃(B)⟩ = 0 , if A ̸= B and (|A ∩ B| = k mod 2) .

Proof. The proof is almost the same as that of Lemma 7. Equipped with the polynomial f

from Claim 8 or Lemma 17, it is is sufficient to modify the definition of ξ as follows:

ξ(A)C =
{

αC , if C ⊆ A

0 , if C ̸⊆ A .
, ξ̃(A)C =

{
1 , if C ⊆ A

0 , if C ̸⊆ A .
◀

Proof sketch of Thoreom 12. In Theorem 9, replace the matrices HA by the pair

HA := eA ⊗ ξ(A) , H̃A = eA ⊗ ξ̃(A) .

They satisfy the conditions from Lemma 14 and we can proceed as in Theorem 1. ◀

5.2 A tensor product construction
We now outline an alternative construction of non-trivial sum-of-squares identities. While it
gives different types of identities, it does not seem to give better bounds asymptotically.

Instead of the products of anticommuting matrices eA, one can take the tensor product of
matrices satisfying Hurwitz-Radon conditions (4). Namely, given such matrices H1, . . . , Hm ∈
Fn×s, and a ∈ [m]ℓ, let

Ha := Ha1 ⊗ Ha2 · · · ⊗ Haℓ
.

Observe that every Ha satisfies HaHt
a = Inℓ and that

HaHt
b + HbHt

a = 0 ,

whenever a and b have odd Hamming distance (i.e., they differ in an odd number of
coordinates). As in Lemma 7, we can find a map ξ : [m]ℓ → Cs with s ≤ (4m)ℓ/2 such that

⟨ξ(a), ξ(a)⟩ = 1 ,

⟨ξ(a), ξ(b)⟩ = 0 , if a ̸= b have even Hamming distance.

This gives for every ℓ

σC(nℓ, mℓ) ≤ σC(n, m)ℓ(4m)ℓ/2

For example, starting with σC(8, 8) = 8, we have

σC(8ℓ, 8ℓ) ≤ 811ℓ/6 .
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6 Open problems

Let Event denote the set of even-sized subsets of [t]. A map ξ : Event → Fs will be called a
t-parity representation of dimension s if for every A, B ∈ Event

⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and |A ∩ B| is even.

▶ Problem 1. Over C, does there exist a t-parity representation of dimension 2(0.5+o(1))t?

If this were the case, we could improve the bound of Theorem 1 to σC(n, n) ≤ n1.5+o(1).
A more surprising consequence would be that

σC(n, n2) ≤ n2+o(1) .

The constant 0.5 in Problem 1 cannot be improved: since there exists a family of 2⌊t/2⌋ subsets
of [t] with pairwise even intersection, every t-parity representation must have dimension at
least 2⌊t/2⌋ (cf. Remark 11). On the other hand, Lemma 7 implies that there exists a t-parity
representation of dimension at most 2(H(0.25)+o(1))t < 20.82t.

Our results do not apply to sum-of-squares composition formulas over the real numbers.
Since R is one of the most natural choices of the underlying field, it is desirable to extend
the construction in this direction. This motivates the following:

▶ Problem 2. Over R, does there exist a t-parity representation of dimension O(2ct) with
c < 1?

References
1 Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness

amplification for non-commutative arithmetic circuits. In Proceedings of the 33rd Computational
Complexity Conference, CCC ’18, 2018.

2 A. Geramita and N. Pullman. A theorem of Hurwitz and Radon and orthogonal projective
modules. Proceedings of The American Mathematical Society, 42:51–51, January 1974. doi:
10.1090/S0002-9939-1974-0332764-4.

3 I. Haviv. On minrank and the Lovász Theta function. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, 2018.

4 I. Haviv. Topological bounds on the dimension of orthogonal representations of graphs.
European Journal of Combinatorics, 81:84–97, 2019.

5 P. Hrubeš. On families of anticommuting matrices. Linear Algebra and Applications, 493:494–
507, 2016.

6 P. Hrubeš, A. Wigderson, and A. Yehudayoff. Non-commutative circuits and the sum of
squares problem. In STOC’ 10 Proceedings of the 42nd symposium on Theory of Computing,
pages 667–676, 2010.

7 P. Hrubeš, A. Wigderson, and A. Yehudayoff. An asymptotic bound on the composition
number of integer sums of squares formulas. Canadian Mathematical Bulletin, 56:70–79, 2013.

8 A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln.
Nach. Ges. der Wiss. Göttingen, pages 309–316, 1898.

9 L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.
10 N. Nisan. Lower bounds for non-commutative computation. In Proceeding of the 23th STOC,

pages 410–418, 1991.
11 J. Radon. Lineare scharen orthogonalen Matrizen. Abh. Math. Sem. Univ. Hamburg, 1(2-14),

1922.
12 D. B. Shapiro. Quadratic forms and similarities. Bull. Amer. Math. Soc., 81(6), 1975.
13 D. B. Shapiro. Compositions of quadratic forms. De Gruyter expositions in mathematics 33,

2000.

CCC 2024

https://doi.org/10.1090/S0002-9939-1974-0332764-4
https://doi.org/10.1090/S0002-9939-1974-0332764-4


12:10 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

A Proof of Lemma 7 in positive characteristic

Given non-negative integers n̄ = (n1, . . . , nd) let B(n̄) be the d × d matrix {B(n̄)i,j}i,j∈[d]
with

B(n̄)i,j =
(

nj

i − 1

)
.

We assume that
(

n
k

)
= 0 whenever n < k; this guarantees

(
n
k

)
= n(n−1)···(n−k+1)

k! .

▶ Lemma 16. If n̄ = (r, r + 2, . . . , r + 2(d − 1)) for some non-negative integer r then
det(B(n̄)) = 2(d

2).

Proof. We claim that

det(B(n̄)) = (
d−1∏
i=1

i!)−1 det(V (n̄)) ,

where V (n̄) is the Vandermonde matrix with entries V (n̄)i,j = ni−1
j . To see this, multiply

every i-th row of B(n̄) by (i − 1)! to obtain matrix B′(n̄) with

det(B′(n̄)) = (
d−1∏
i=1

i!) det(B(n̄)) .

An i-th row ri of B′(n̄) is of the form (ni−1
1 +gi(n1), . . . , ni

d +gi(nd)) where gi is a polynomial
of degree < (i − 1). This means that ri equals the i-th row of V (n̄) plus a suitable linear of
combination of the preceding rows of V (n̄). Therefore, det(B′(n̄)) = det(V (n̄)).

Given n̄ as in the assumption, we obtain

det(V (n̄)) =
∏

1≤j1<j2≤d

(nj2 − nj1) =
∏

1≤j1<j2≤d

(2j2 − 2j1)

= 2(d
2)

∏
1≤j1<j2≤d

(j2 − j1) = 2(d
2)

d−1∏
i=1

i! .

This shows that det(B(n̄)) = 2(d
2). ◀

▶ Lemma 17. Let p be an odd prime. Given 0 ≤ k ≤ t, there exists a multilinear polynomial
f ∈ Fp(x1, . . . , xt) of degree at most d = ⌊k/2⌋ such that for every a ∈ {0, 1}t

f(a) =
{

1 , if |a| = k

0 , if |a| < k and (|a| = k mod 2) .

Proof. We look for f of the form f =
∑d

j=0 cjSj
t where Sj

t is the elementary symmetric
polynomial Sj

t =
∑

|A|=j

∏
i∈A xi. Given a ∈ {0, 1}t,

f(a) =
d∑

j=0
cj

(
|a|
j

)
mod p .

We are therefore looking for a solution of the linear system

B(n̄) (c0 . . . , cd)t = (0, . . . , 0, 1)t
,

where n̄ = (0, 2, . . . , 2d), if k is even, and n̄ = (1, 3, . . . , 2d + 1), if k is odd. By the previous
lemma, B(n̄) is invertible over Fp and such a solution exists. ◀
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▶ Lemma 18. If F is a field of odd characteristic p, there exists a (k, t)-parity representation
of dimension (p − 1)

(
t

≤⌊k/2⌋
)
.

Proof. If every element of Fp has a square root in F, the proof is the same as over C. In
general, proceed as follows. Since every non-zero element of Fp is a sum of at most (p − 1)
ones, we can write

f(x1, . . . , xt) =
∑
C∈C

∏
i∈C

xi ,

where C is a multiset of s ≤ (p − 1)
(

t
≤d

)
subsets of [t]. For A ∈

([t]
k

)
, let ξ(A) ∈ Fs be a vector

whose coordinates are indexed by elements C of C so that

ξ(A)C =
{

1 , if C ⊆ A

0 , if C ̸⊆ A .
◀

▶ Remark 19.
(i) Over Fp2 or a larger field, the factor of (p − 1) in Lemma 18 can be dropped. This is

because every element of Fp has a square root in Fp2 .
(ii) For specific values of k, a stronger bound is possible. For example, if k = 2pℓ − 1, there

is a (k, t)-parity representation of dimension
(

t
⌊k/2⌋

)
. It follows from Lucas’ theorem

that in this case, f in Lemma 17 can be taken simply as the elementary symmetric
polynomial of degree ⌊k/2⌋. This polynomial has only

(
t

⌊k/2⌋
)

monomials.
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