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Abstract
Given a non-negative real matrix M of non-negative rank at least r, can we witness this fact by a
small submatrix of M? While Moitra (SIAM J. Comput. 2013) proved that this cannot be achieved
exactly, we show that such a witnessing is possible approximately: an m × n matrix of non-negative
rank r always contains a submatrix with at most r3 rows and columns with non-negative rank at
least Ω( r

log n log m
). A similar result is proved for the 1-partition number of a Boolean matrix and,

consequently, also for its two-player deterministic communication complexity. Tightness of the latter
estimate is closely related to the log-rank conjecture of Lovász and Saks.
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1 Introduction

The rank of a matrix is one of the most versatile concepts from linear algebra. A basic
property of matrix rank is the following: if a matrix M has rank at least r then it contains
an r × r submatrix of rank r. Put differently, the fact that rk(M) ≥ r can be witnessed by a
hard r × r submatrix. Can we extend this witnessing property to other matrix complexity
measures? We will consider two such measures: the non-negative rank of a non-negative real
matrix and the 1-partition number of a Boolean matrix.

Given a matrix with non-negative real entries, its non-negative rank is defined similarly
to rank, except that we want to express the matrix as a sum of non-negative rank-one
matrices. This quantity has numerous applications in communication complexity and linear
optimization [20], and other fileds (cf. [15]). In [20], Yannakakis has discovered a geometric
interpretation of non-negative rank in terms of linear projections of polytopes. This connection
has been extended and exploited in many subsequent results, see, e.g., [18, 2, 5], including
the current paper.

If M is a 0, 1-matrix, its 1-partition number can be defined as the smallest r such that
M can be written as a sum of r rank-one Boolean matrices. This is an important concept in
communication complexity [11, 16]. Interpreting a 0, 1-matrix as the adjacency matrix of a
bipartite graph, it is also equivalent to the biclique partition number (see [3] and references
within).

If M has non-negative rank ≥ r, can this fact be witnessed by a small submatrix? The
short answer is no. In [15], Moitra presented an n × n matrix M of non-negative rank 4
such that every submatrix with less than n/3 columns has non-negative rank at most 3 – in
particular, M contains no constant-size submatrix of non-negative rank 4. In Section 6.3, we
will give a different example where the gap is more dramatic. Similarly, we will see that the
most optimistic form of witnessing fails for 1-partition number. On the positive side, we will

© Pavel Hrubeš;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 13; pp. 13:1–13:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pahrubes@gmail.com
https://users.math.cas.cz/~hrubes
https://orcid.org/0000-0003-4526-4934
https://doi.org/10.4230/LIPIcs.CCC.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 Hard Submatrices for Non-Negative Rank and Communication Complexity

show that a weaker form of witnessing nevertheless holds: if a matrix has non-negative rank
r then it contains a submatrix of size bounded by a polynomial in r whose non-negative rank
is close to r; similarly for 1-partition number.

The two-player deterministic communication complexity of M can be characterized by the
logarithm of the 1-partition number of M . Hence our witnessing result for 1-partition number
can be restated in the language of communication complexity: if a Boolean function has a large
communication complexity, this fact can be approximately witnessed by a relatively small
set of inputs. It should be noted that this statement immediately follows from the log-rank
conjecture of Lovász and Saks (presented in [14]). This conjecture relates the communication
complexity of a Boolean matrix with its rank. It implies that for a Boolean matrix M ,
the three parameters – rank, 1-partition number, non-negative rank – are essentially the
same, with their logarithm being polynomially related to the communication complexity
of M . This allows us deduce a witnessing property for these measures from the witnessing
property of matrix rank. Our result to confirms this prediction of the conjecture and it may
therefore be interpreted as a vote in its favor. On the other hand, the log-rank conjecture
implies a stronger form of witnessing than what we actually prove. Hence, in principle, a
counterexample to the conjecture may be given by a matrix for which this predicted form of
witnessing fails (see Section 5 for more details). According to [6], the witnessing problem for
communication complexity has been previously posed by H. Halemi.

Our witnessing results could be easily converted to non-trivial approximation algorithms
to compute non-negative rank or the 1-partition number. These algorithms would run in
polynomial time whenever the complexity parameter in question is fixed. Interestingly, exact
algorithms of this form were given by Moitra [15] and Chandran et al. [3]. While there
are similarities between these algorithms and the witnessing perspective, these algorithms
ultimately do not search for a witness.

On a more abstract level, the witnessing problem can be posed with respect to any com-
plexity measure whatsoever. A related result in Boolean circuit complexity are “anticheckers”
of Lipton and Young [13]. In their work, it is shown that if a Boolean function f requires a
Boolean circuit of size s then there is a subset of inputs of size roughly s such that f restricted
to this subset still requires circuit size roughly s. A related topic are “hard-core predicates”
of Impagliazzo [10]. Recently, Göös et al. [6] studied deterministic query complexity from
this perspective. An example from the opposite side of the spectrum is the chromatic number
of a graph. It is known that a large chromatic number imposes almost no local structure on
a graph and cannot be witnessed by a small subgraph [4, 17].

2 Main results

Given an m × n matrix M with real non-negative entries, its non-negative rank, rk+(M), is
the smallest s such that M can be written as

M = LR ,

where L and R are non-negative matrices of dimensions m × s and s × n, respectively.
We will show that every M with large non-negative rank contains a relatively small

submatrix of large non-negative rank.

▶ Theorem 1. Let M be an m × n non-negative real matrix with n ≥ 2. Then for every
k ≤ n, M contains an m × k submatrix of k columns with non-negative rank Ω(R), where
R := min

(
( k

log n ) 1
3 , rk+(M)

log n

)
.
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A remarkable consequence is the following:
M contains an s1 × s2 submatrix with s1, s2 ≤ rk+(M)3 and non-negative rank
Ω( rk+(M)

log n log m ). Moreover, If M is a square matrix then so is the submatrix.

In some cases, a stronger conclusion is possible. For example, if rk+(M) = n then
every m × k submatrix of M has non-negative rank k. Theorem 1 becomes interesting if
log n ≪ rk+(M) ≪ n. For example, if M is n × n with rk+(M) roughly nϵ, we obtain an
n3ϵ × n3ϵ submatrix of non-negative rank roughly nϵ, and also an nϵ × nϵ submatrix of
non-negative rank roughly nϵ/3. How far from truth is the estimate from Theorem 1 is an
interesting question. In Section 6.3, we will see that the result gives a qualitatively correct
picture: the exponent 1/3 can be replaced by 1/2 at best.

Given a Boolean matrix M ∈ {0, 1}m×n, let us define its 1-partition number, χ1(M), as
the smallest s such that M can be written as

M = LR , with L ∈ {0, 1}m×s , R ∈ {0, 1}s×m ,

where the operations are over R. The definition emphasizes the analogy with rk+, and χ1 is
also sometimes referred to as binary rank. On the other hand, the phrase “partition number”
comes from communication complexity. The name is justified: it is easy to see that χ1(M)
equals the smallest s such that the 1-entries of M can be partitioned into s 1-monochromatic
rectangles (i.e., rank-one Boolean matrices). Finally, when M is viewed as the adjacency
matrix of a bipartite graph, χ1(M) also appears under the name biclique partition number [3].

In the case of χ1, we obtain a similar but simpler result:

▶ Theorem 2. Let M be an m × n Boolean matrix with n ≥ 2. Then for every k ≤ n, M

contains an m × k submatrix of k columns with 1-partition number Ω(min(
√

k, χ1(M)
log n )).

One consequence is the following (cf. Corollary 6):
if χ1(M) = p then M contains a p × p submatrix with 1-partition number Ω(p1/4).

The results on 1-partition number imply similar statements in communication complexity;
they will be presented in Section 5. Whether these witnessing results can be significantly
improved is an intriguing question. It is intimately related to the log-rank conjecture; this
connection is discussed in Section 5.

Theorems 1 and 2 are proved in Sections 6.2 and 4, respectively. The proof of Theorem 2
is self-contained. Theorem 1 uses geometrical interpretation of non-negative rank in terms
of extended formulations of polytopes and also employs known bounds on complexity of
quantifier elimination.

Notation

All logarithms are in base 2 and [n] := {1, . . . , n}.

3 A combinatorial lemma

Both Theorems 1 and 2 rely on a simple combinatorial lemma.

▶ Lemma 3. Let A ⊆ 2[n] be a family of subsets of [n]. Assume that 1 ≤ k ≤ n is such that
every k-element subset of [n] is contained in some A ∈ A. Then there exists a subfamily
A′ ⊆ A of size |A′| ≤ O(|A| 1

k log(n/k)) with
⋃

A′ = [n]. In particular, if |A| ≤ 2k then
|A′| ≤ O(log n).

CCC 2024
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Proof. Assume that |A| ≤ ak. Let t be the size of a largest set in A. Then we have(
n

k

)
≤ ak

(
t

k

)
.

Hence t ≥ n
ea , using the estimates ( n

k )k ≤
(

n
k

)
,

(
t
k

)
≤ ( et

k )k. Take some A0 ∈ A of size t. Let

A1 := {A \ A0 : A ∈ A} .

Then every subset of U1 := [n] \ A0 of size at most k is contained in some member of A1.
The size of U1 is at most n(1 − 1

ea ). Similarly, take a largest set A1 from A1 and obtain a
new family A2 ⊆ 2U2 on U2 := U1 \ A1. After s steps, the size of Us is at most n(1 − 1

ea )s

and after s ≤ O(a log(n/k)) steps we have |Us| ≤ k. This guarantees that the largest set in
As is Us itself and [n] =

⋃s
i=0 As. By construction, every Ai is contained in some element of

the original family A. ◀

For some range of parameters, the lemma can be also proved from the Min Max Theorem
of Lipton and Young in [13] which would also give an approximate version of it.

An application (which will not be explicitly used) is the following. A subadditive measure
on [n] is a function µ : 2[n] → R such that µ(A1 ∪ A2) ≤ µ(A1) + µ(A2) holds for every
A1, A2 ⊆ [n].

▶ Corollary 4. Let µ be a subadditive measure on [n]. Assume 1 ≤ k ≤ n and that every
k-element subset of [n] has measure at most s. Let N be the number of ⊆-maximal subsets
of [n] of measure at most s. Then µ([n]) ≤ O(sN

1
k log(n/k))).

4 1-Partition number

In this section, we prove Theorem 2.
Let M be an m × n matrix with rows indexed by [n] = {1, . . . , n}. Given A ⊆ [n], MA

denotes the submatrix obtained by removing the rows outside of A from M . Observe that1

χ1(MA1∪A2) ≤ χ1(MA1) + χ1(MA2) , (1)

and so χ1(MA) can be viewed as a subadditive measure on [n] whenever M is fixed.
If a matrix M has rank r, its rows are a linear combination of a subset of r rows of M .

This means that every column of M is determined by a fixed subset of r coordinates. If M

is Boolean, this leads to the following useful fact:
if M has distinct columns then n ≤ 2rk(M) (similarly for rows).

▶ Lemma 5. Let M be an m × n Boolean matrix of rank r. Given s ∈ [n], let A be the
collection of maximal subsets A ⊆ [n] with χ1(MA) ≤ s (i.e., χ1(MA) ≤ s and χ1(MA′) > s

for every A′ ⊋ A). Then |A| ≤ 2(r+s)2 .

Proof. Let v1, . . . , vn ∈ Rm be the columns of M . Given L ∈ {0, 1}m×s, let

L∗ := {i ∈ [n] : ∃y ∈ {0, 1}s vi = Ly} .

Let L := {L∗ : L ∈ {0, 1}m×s}.

1 If A1, A2 are disjoint, this is quite obvious. Otherwise consider A1, A2 \ A1.
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We claim that A ⊆ L. If χ1(MA) ≤ s, we can write MA = LR with L ∈ {0, 1}m×s and
R ∈ {0, 1}s×|A|. This means that every vi, i ∈ A, is a Boolean linear combination of the
columns of L and A ⊆ L∗. Furthermore, if A is maximal, we must have A = L∗.

We now want to estimate the size of L. The set L∗ consists of indices i ∈ [n] so that
there exists x ∈ Rn, y ∈ Rs satisfying

Mx − Ly = 0 (2)

such that y ∈ {0, 1}s and x is the i-th unit vector. Since M has rank r and L has rank at
most s, the system (2) is equivalent to a subsystem of t := min((s + r), m) equations. These
correspond to rows of the matrix (M, L). Hence, in order to determine L∗, it is sufficient
to specify a t-element subset of [m] together with the t × s submatrix of L. This gives the
estimate

|L| ≤
(

m

t

)
2ts ≤ 2t(s+log m) .

Finally, we can assume that M has distinct rows and so log m ≤ r, obtaining the bound
2(r+s)2 . ◀

▶ Theorem 2 (restated). Let M be an m×n Boolean matrix with n ≥ 2. Then for every k ≤ n,
M contains an m × k submatrix of k columns with 1-partition number Ω(min(

√
k, χ1(M)

log n )).

Proof. Let r be the rank of M . We will assume r ≤ k1/2

2 . Otherwise, observe that M

contains a full rank r × r submatrix, χ1 is lower-bounded by rank, and the conclusion of the
theorem follows.

Let s be the maximum χ1(MA) over all A ⊆ [n] of size k. Let A be the family from
the previous lemma. If |A| ≥ 2k, we have 2k ≤ 2(s+r)2 and therefore s ≥ k1/2

2 from the
assumption on r.

Assume |A| ≤ 2k. By Lemma 3, there exists a subfamily A′ ⊆ A of size O(log n) which
covers [n]. Using (1), this implies χ1(M) ≤ O(s log n) and so s ≥ Ω(χ1(M)/ log n). ◀

▶ Corollary 6. Let M be as above with χ1(M) = p. Then M contains
(i) a submatrix of at most p2 columns with partition number Ω(p/ log n),
(ii) a submatrix with at most p2 rows and columns with partition number Ω(p/(log n log m)).

If M is a square matrix then so is the submatrix.
(iii) a submatrix with p columns with partition number Ω(p 1

2 )
(iv) a p × p submatrix with partition number Ω(p 1

4 ).

Proof. Part (i). If n ≤ p2, M itself satisfies the statement. Otherwise apply the theorem
with k = p2.

Part (ii). Apply (i) again to the transpose of the submatrix obtained in (i). If m = n, we
can enlarge the submatrix to a square matrix.

Part (iii). Without loss of generality, we can assume that the columns of M are distinct.
This implies that M has rank at least log n. If √

p ≤ p/ log n, apply the theorem to obtain
the desired matrix. Otherwise, we have p ≥ log2 n. M contains a submatrix of p columns of
rank at least min(p, log n) ≥ √

p.
Part (iv) follows by taking the submatrix from (iii), and applying (iii) to its transpose. ◀

▶ Remark 7. The bound of Theorem 2 can be slightly improved to give
Ω(

√
k log(1 + χ1(M)

k1/2 log n
)), as long as k1/2 ≤ χ1(M)/ log n. For example, if k = χ1(M)/ log n,

we obtain a submatrix of k columns with 1-partition number Ω(
√

k log k).

CCC 2024
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Furthermore, M always contains a submatrix M ′ of k columns with χ1(M ′) ≥ χ1(M) ·⌈
n
k

⌉−1, which gives better parameters if χ1(M) is close to n.

4.1 A somewhat non-trivial example
We now give a finite example which shows that the most optimistic form of witnessing fails
for χ1.

▶ Theorem 8. There exists a 5 × 6 Boolean matrix M with χ1(M) = 5 such that every 5 × 5
submatrix of M has 1-partition number at most 4.

Proof. Let

M :=


1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
0 0 0 1 1 1
1 1 1 1 1 1

 .

We first argue that χ1(M) > 4, which implies χ1(M) = 5 since M has 5 rows.
Suppose that χ1(M) ≤ 4. Then there exists a set of Boolean row-vectors V = {v1, . . . , v4}

such that every row of M is their Boolean linear combination; i.e., of the form
∑

i∈A vi for
some A ⊆ {1, . . . , 4}. Note that in this expression, the non-zero coordinates of vi, i ∈ A, are
a subset of the non-zero coordinates of the given row. Using this observation, it is easy to
see that V must consist of the first 4 rows of M . If χ1(M) ≤ 4 this means that the last row
of M is a Boolean combination of the first four rows, which is clearly impossible.

We now show that every submatrix obtained by removing a column from M has χ1 at
most 4.

First, assume that M ′ has been obtained by removing the third column. The resulting
matrix, together with a partition into four 1-monochromatic rectangles a, b, c, d, is as follows:

M ′ =


1 0 0 1 1
0 1 1 0 1
0 0 1 1 0
0 0 1 1 1
1 1 1 1 1

 ,


a 0 0 a b

0 c c 0 b

0 0 d d 0
0 0 d d b

a c c a b

 .

Second, assume that M ′′ has been obtained by removing the last column. The resulting
matrix, together with its partition, is the following:

M ′′ =


1 0 0 0 1
0 1 0 1 0
0 0 1 1 1
0 0 0 1 1
1 1 1 1 1

 ,


a 0 0 0 a

0 b 0 b 0
0 0 c d d

0 0 0 d d

a b c b a

 .

Finally, note that if we remove from M the first or the second column, we obtain M ′ (up
to a permutation of rows and columns). And, if we remove the fourth or fifth column, we
obtain M ′′. Hence indeed, every 5 × 5 submatrix has χ1 at most 4 ◀

By placing n copies of the matrix from Theorem 8 on diagonal, we obtain:

▶ Corollary 9. For every n, there exists a 5n × 6n Boolean matrix M with χ1(M) = 5n such
that every submatrix obtained by removing a column of M has 1-partition number strictly
less than 5n.
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5 Communication complexity, and a comparison with the log-rank
conjecture

Given an m × n Boolean matrix M , consider the following two-player game: Alice knows
i ∈ [m], Bob knows j ∈ [n], and they are supposed to compute the value of Mi,j . Denote
by cc(M) the deterministic communication complexity of this game. For details about the
communication model, see for example [11, 16].

In order to relate communication complexity with χ1, we need the following classical fact
(the first inequality is due to Yao, the second is due to Yannakakis [20]): if M is non-constant
then

log(χ1(M) + 1) ≤ cc(M) ≤ O(log2 χ1(M)) . (3)

▶ Proposition 10. Let M be a Boolean matrix with communication complexity c. Then
there exist k ≥ Ω(

√
c) and a 2k × 2k submatrix of M with communication complexity at least

k/4 − O(1).

Proof. From (3), there exists k ≥ Ω(
√

c) with χ1(M) ≥ 2k. Corollary 6, part (iv), gives
2k × 2k submatrix M ′ with χ1(M ′) ≥ Ω(2k/4). By (3), we have cc(M ′) ≥ k/4 − O(1). ◀

It is worthwhile to compare this with what is predicted by the log-rank conjecture [14] of
Lovász and Saks.

▶ Log-rank conjecture. There is a constant α such that cc(M) ≤ O(logα(rk(M))) for any
non-zero Boolean matrix M .

▶ Proposition 11. Assume the log-rank conjecture. Then every Boolean matrix with commu-
nication complexity c contains a 2k × 2k submatrix M ′ with χ1(M ′) = 2k, communication
complexity k + 1, and k ≥ Ω(c1/α).

Proof. If M has communication complexity c then, by the log-rank conjecture, M has rank
at least 2k with k ≥ Ω(c1/α). Hence M contains a full-rank 2k × 2k submatrix M ′. Since
χ1(M ′) ≥ rk(M ′), we have χ1(M ′) = 2k. If c is sufficiently large, so that k ≥ 1, then M ′ is
non-constant and we obtain cc(M ′) ≥ k + 1 by (3). ◀

This is almost what has been proved in Proposition 10. One difference is that the constant
α in Proposition 11 is unconditionally set to 2 in Proposition 10. However, there is a more
important qualitative difference. The submatrix presented in Proposition 11 has highest
possible communication complexity: the protocol in which Alice sends her input to Bob and
Bob sends back the answer (or vice versa), is optimal. Any other protocol cannot save even
one bit of communication. In contrast, Proposition 10 presents a submatrix with only a
very high communication complexity. To summarize, Proposition 10 confirms a prediction
of the log-rank conjecture. But with worse parameters than what the conjecture predicts:
consequently the bound in the proposition is far from from tight, or the conjecture is false.

Another consequence is:

▶ Remark 12. In order to solve the log-rank conjecture, it is sufficient to focus on 2k × 2k

matrices with communication complexity at least k/4 − O(1).

CCC 2024
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6 Non-negative rank

6.1 Extended formulations and separation complexity
Let us first make a short detour into extended formulations of convex polyhedra.

A polyhedron P ⊆ Rr is a (possibly unbounded) set defined by a finite number of linear
constraints. Following [20, 18, 2], define the extension complexity of P , xc(P ), as the smallest
s such that P is a linear projection of a polyhedron Q ⊆ Rm where Q can be defined using s

inequalities (and any number of equalities). Observe that P with extension complexity s can
be expressed in the standard form

x ∈ P iff ∃y∈Rs Cx + Dy = b, y ≥ 0 ,

where C ∈ Rt×r, D ∈ Rt×s and b ∈ Rt for some t.
Let V be a finite subset of Rr. Given A ⊆ V , its separation complexity, sepV (A), is the

minimum xc(P ) over all polyhedra P ⊆ Rr with2

P ∩ V = A ;

such a P is called a separating polyhedron for A. In other words, sepV (A) is the smallest s

so that we can distinguish points in A from points in V \ A by means of a linear program
with s inequalities. Moreover, such a program can be rewritten as

x ∈ A iff ( x ∈ V and ∃y∈Rs Cx + Dy = b, y ≥ 0 ) .

The notion of separation complexity has been studied in [7, 8, 9] in the case when
V = {0, 1}n is the Boolean cube. The following theorem is of independent interest and can
be seen as an extension of similar results in [7, 9]. The proof is a considerable simplification
of the previous ones.

▶ Theorem 13. Let V be a non-empty finite subset of Rr. Given a parameter s ≥ 1, let A
be the collection of subsets A of V with sepV (A) ≤ s. Then

|A| ≤ 2O(s(r+s)2 log |V |) .

The proof is delegated to the appendix.
An immediate consequence of Theorem 13 is a theorem from [9]:
if V = {0, 1}n then there exists A ⊆ V with sepV (A) ≥ 2n

1
3 (1−o(1))

.

6.2 Submatrices of large non-negative rank
In order to apply Theorem 13, we also need a connection between extension complexity
and non-negative rank. This is provided by the notion of slack matrix introduced in [20].
Following [20, 2], we now define what it is. Let V be a sequence v1, . . . , vm1 of points in Rr

and L(x) a system ℓ1(x) ≥ b1, . . . , ℓm2(x) ≥ bm2 of inequalities in Rr. The slack matrix with
respect to V and L(x) is the m2 × m1 matrix S such that

Si,j = ℓi(vj) − bi .

Let P0 := conv(V ) be the convex hull of V and P1 := {x ∈ Rr : L(x) holds}. If P0 ⊆ P1
then S is non-negative. In [2], we can find:

2 If no such polyhedron exists, which may happen if V is not convexly independent, we set sepV (A) := ∞.
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▶ Lemma 14 ([2]). Let P0 ⊆ P1 and S be as above. Define xc(P0, P1) as the minimum xc(P )
over all polyhedra with P0 ⊆ P ⊆ P1. Then

rk+S − 1 ≤ xc(P0, P1) ≤ rk+S .

▶ Theorem 1 (restated). Let M be an m × n non-negative real matrix with n ≥ 2. Then for
every k ≤ n, M contains an m × k submatrix of k columns with non-negative rank Ω(R),
where R := min

(
( k

log n ) 1
3 , rk+(M)

log n

)
.

Proof. Let r be the rank of M . We can write M = LR where L ∈ Rm×r, R ∈ Rr×n. Let
V ⊆ Rr be the set of columns v1, . . . vn of R. (Without loss of generality, the columns of M

are distinct). Given A ⊆ [n], let MA be the submatrix obtained by deleting columns outside
of A from M . Also let VA := {vi : i ∈ A}. Then MA can be interpreted as the slack matrix
of the polytope PA = conv(VA) and the polyhedron Q = {x ∈ Rd : Lx ≥ 0}.

Suppose that for every A of size k, rk+(MA) ≤ s. Then for every such A, there is a
polyhedron QA with VA ⊆ QA ⊆ Q with xc(QA) ≤ s. Let A∗ := V ∩ QA. Then QA is
a separating polyhedron for A∗ ⊇ A. Let A be the collection of A∗ over all A of size k.
Theorem 13 implies

|A| ≤ 2c log n(s+r)3
,

where c is an absolute constant.
We will assume r ≤ ( k

2c log n )1/3. Otherwise M contains a full rank r × r submatrix, rk+
is lower-bounded by rank, and the conclusion of the theorem follows.

If |A| ≥ 2k, we obtain c log n(s + r)3 ≥ k and hence s ≥ Ω((k/ log n)1/3) from the
assumption on r.

Assume |A| ≤ 2k. By Lemma 3, there exists a subfamily A′ ⊆ A of size O(log n) which
covers [n]. This implies (note that (1) holds also for non-negative rank) rk+(M) ≤ O(s log n)
and s ≥ Ω(rk+(M)/ log n). ◀

The following is proved similarly to Corollary 6:

▶ Corollary 15. Let M be a non-negative m × n matrix with rk+(M) = p. Then M contains
(i) an s1 × s2 submatrix with s1, s2 ≤ p3 with non-negative rank Ω( p

log n log m ). If m = n,
we can assume s1 = s2.

(ii) a p × p submatrix with non-negative rank Ω( p
1
3

log
1
3 n log m

).

6.3 Tightness
In [15], Moitra has constructed a non-negative matrix M with the following properties:

M is 3rn × 3rn, rk+(M) ≥ 4r, any submatrix with < n columns has non-negative rank
at most 3r.

Observe that in order to witness the non-negative rank of this M exactly, one needs a
constant fraction of the columns of M . On the other hand, the gap between the non-negative
rank of M and that of its submatrices is quite mild.

We now give a different example which is of a similar flavor as the bound from Theorem 1.
It also shows that the constant 1

3 in the theorem can be replaced by 1
2 at best. The example

follows from very non-trivial results of Kwan et al. [12]. A similar bound would follow from
the more general result of Shitov [19].
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▶ Theorem 16. For every n, there exists an n × n matrix with non-negative rank Ω(
√

n)
such that every n × k submatrix has non-negative rank O(

√
k).

Proof. From [12], there exists an n-vertex polygon P ⊆ R2 with vertices lying on the
unit circle with extension complexity Ω(

√
n). Let M be its slack matrix with columns

corresponding to vertices v1, . . . , vn of P . From Lemma 14, we have rk+(M) ≥ Ω(
√

n).
Given an n × k submatrix M ′ with columns i1, . . . , ik, Lemma 14 shows that rk+(M ′) is at
most the extension complexity of conv(vi1 , . . . , vik

) (plus 1). Using another result from [12],
every k-gon with vertices on the unit circle has extension complexity at most O(

√
k). ◀

7 Open problems

Our first two open problems are concerned with tightness of the bounds in Theorems 1 and 2.

▶ Open problem 1. Let M be m × n non-negative matrix. Does M contain a submatrix of
at most rk+(M)2 columns with non-negative rank Ω(rk+(M))?

▶ Open problem 2. Find a Boolean matrix M with χ1(M) = p such that every p × p

submatrix has 1-partitition number much smaller than p.

As far as we can see, the bound from Problem 1 is consistent with what we know about
non-negative rank, and would be optimal. The task is to improve Corollary 15(i) in two
different ways: first, to reduce the dependence on rk+(M) from cubic to quadratic and,
second, to eliminate the logarithmic dependence on the size of M altogether. For Problem
2, Theorem 8 gives an M with submatrices of χ1 strictly less than p; there should exist a
construction with a larger gap.

As discussed in Section 5, in order to solve the log-rank conjecture, it is enough to focus
on matrices with large 1-partition number. The following is the extreme case of this question:

▶ Open problem 3. Suppose M is n × n Boolean matrix with χ1(M) = n. How small can
the rank of M be?
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A Proof of Theorem 13

The proof uses known results on quantifier elimination which we first outline. We follow
the monograph of Basu, Pollack and Roy [1]. Theorem 13 requires an elimination of only a
single block of existential quantifiers, so we focus on this case only.

For b ∈ R, let

sgn(b) :=


1 , b > 0 ,

0 , b = 0 ,

−1 , b < 0 .

Given b = ⟨b1, . . . , bm⟩ ∈ Rm, let sgn(b) := ⟨sgn(b1), . . . , sgn(bm)⟩ ∈ {−1, 0, 1}m. Let
F = F (z, y) be a sequence of m polynomials f1, . . . , fm ∈ R[z, y] in variables z = {z1, . . . , zk1}
and y = {y1, . . . , yk2}. Given a ∈ Rk1 , define SGN1(F, a) ⊆ {−1, 0, 1}m

SGN1(F, a) := {sgn(F (a, b)) : b ∈ Rk2} .

Let

SGN(F ) := {SGN1(F, a) : a ∈ Rk1} .

Theorem 14.16 from [1] provides the following bound on the size of SGN:

▶ Theorem ([1]). If every polynomial in F has degree at most d then

|SGN(F )| ≤ m(k1+1)(k2+1)dO(k1)O(k2) . (4)

We now apply this result to the case of Theorem 13. Let V, s, A be as in the assumption.
Every A ∈ A can be described by a linear system with s inequalities. Namely, for every
x ∈ V ,

x ∈ A iff ∃y∈Rs Cx + Dy = b, y ≥ 0 , (5)

where C ∈ Rt×r, D ∈ Rt×s and b ∈ Rt. Since Cx + Dy = b is a system of equations in r + s

variables x, y, we can also assume t = r + s.
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Let us view the parameters C, D, b in (5) as variables. Let z be the set of these variables,
of size k1 = (r +s)(r +s+1). Given v ∈ V , let Fv(z, y) be the sequence of (r +s) polynomials

Cv + Dy − b

in variables z and y = {y1, . . . , ys}. Let F (z, y) be the union of Fv(z, y) over all v ∈ V ,
together with the polynomials y1, . . . , ys. Hence F consists of m = s + |V |(r + s) polynomials
of degree at most two.

F (z, y) is set up so that

|A| ≤ |SGN(F )| .

To see this, observe that whenever the parameters z are fixed, the set A ⊆ V given by (5) is
uniquely determined by SGN1(F (z, y)). Since every A ∈ A is obtained by some fixing of the
parameters, we indeed obtain |A| ≤ |SGN(F (z, y))|.

Finally, we can apply (4) to estimate |SGN(F )| with m = s + |V |(r + s), k1 = (r + s)(r +
s + 1), k2 = s, and d = 2. To simplify the expression, we can assume s + r ≤ |V |; otherwise
the upper bound asserted in Theorem 13 exceeds the trivial bound |A| ≤ 2|V |. This means
that m ≤ 2|V |2. If we loosen the bound (4) as |SGN(F )| ≤ (dm)O(k1)O(k2), we obtain (recall
that s ≥ 1)

|SGN(F )| ≤ 2O(s(s+r)2 log |V |) ,

as required.
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