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Abstract

Consider the expected query complexity of computing the k-fold direct product f⊗k of a function f

to error ε with respect to a distribution µk. One strategy is to sequentially compute each of the k

copies to error ε/k with respect to µ and apply the union bound. We prove a strong direct sum
theorem showing that this naive strategy is essentially optimal. In particular, computing a direct
product necessitates a blowup in both query complexity and error.

Strong direct sum theorems contrast with results that only show a blowup in query complexity
or error but not both. There has been a long line of such results for distributional query complexity,
dating back to (Impagliazzo, Raz, Wigderson 1994) and (Nisan, Rudich, Saks 1994), but a strong
direct sum theorem that holds for all functions in the standard query model had been elusive.

A key idea in our work is the first use of the Hardcore Theorem (Impagliazzo 1995) in the
context of query complexity. We prove a new resilience lemma that accompanies it, showing that
the hardcore of f⊗k is likely to remain dense under arbitrary partitions of the input space.
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1 Introduction

The direct sum problem seeks to understand the ways in which the complexity of solving k

independent instances of a computational task scales with k. This problem and its variants
such as the XOR problem, where one only seeks to compute the XOR of the k output values,
have a long history in complexity theory. Research on them dates back to Strassen [33]
and they have since been studied in all major computational models including boolean
circuits [36, 26, 12, 14, 17, 29, 15, 11], communication protocols [16, 30, 22, 25, 35, 21, 31,
18, 20, 4, 8, 37], as well as classical [16, 27, 30, 22, 10, 5, 6, 9, 13] and quantum query
complexity [2, 22, 32, 31, 1, 24].
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16:2 A Strong Direct Sum Theorem for Distributional Query Complexity

1.1 This work
We focus on classical query complexity, and specifically distributional query complexity.
Distributional complexity, also known as average-case complexity, is a basic notion applicable
to all models of computation. Direct sum theorems and XOR lemmas for distributional
complexity, in addition to being statements of independent interest, have found applications
in areas ranging from derandomization [36, 28, 17] to streaming [3] and property testing [7].

Let f : {±1}n → {±1} be a boolean function, µ be a distribution over {±1}n, and consider
the task of computing the k-fold direct product f⊗k(X(1), . . . , X(k)) := (f(X(1)), . . . , f(X(k)))
of f to error ε with respect to µk. One strategy is to sequentially compute each f(X(i)) to
error ε/k with respect to µ and apply the union bound. Writing Depthµ(f, ε) to denote the
minimum expected depth of any decision tree that computes f to error ε w.r.t. µ, this shows
that:

Depthµk

(f⊗k, ε) ≤ k · Depthµ(f, ε
k ).

Our main result is that this naive strategy is essentially optimal for all functions and
distributions:

▶ Theorem 1 (Strong direct sum theorem for distributional query complexity; special
case of Theorem 2). For every function f : {±1}n → {±1}, distribution µ over {±1}n,
integer k ∈ N, and ε < 1,

Depthµk

(f⊗k, ε) ≥ Ω̃(ε2k) · Depthµ(f, Θ( ε
k )).

Such direct sum theorems are termed strong, referring to the fact that they show that
computing a direct product necessitates a blowup in both the computational resources
of interest – in our case, query complexity – and error. Strong direct sum theorems
contrast with standard ones, which only show a blowup in computational resource, and
also with direct product theorems, which focus on the blowup in error. We give a detailed
overview of prior work in Section 3, mentioning for now that while standard direct sum
and direct product theorems for distributional query complexity have long been known, a
strong direct sum theorem had been elusive. Prior to our work, it was even open whether
Depthµk

(f⊗k, 1.01ε) ≥ 1.01 · Depthµ(f, ε) holds. Indeed, the problem is known to be quite
subtle, as a striking counterexample of Shaltiel [30] shows that a strong direct sum theorem
is badly false if one considers worst-case instead of expected query complexity.

A strong XOR lemma

We also obtain a strong XOR lemma (Theorem 3) as a corollary of a simple equivalence
between direct sum theorems and XOR lemmas for query complexity. One direction is
immediate, since the k-fold XOR f⊕k(X(1), . . . , X(k)) := f(X(1)) ⊕ · · · ⊕ f(X(k)) can only
be easier to compute than the k-fold direct product. For the query model the converse also
holds: a direct sum theorem implies an XOR lemma with analogous parameters.

2 Broader context: Comparison with the randomized setting

Direct sum theorems are also well-studied in the setting of randomized query complexity.
Recall that the ε-error randomized query complexity of f , denoted R(f, ε), is the minimum
expected depth of any randomized decision tree that computes f with error at most ε for all
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inputs. By Yao’s minimax principle, direct sum theorems for distributional query complexity
imply analogous ones for randomized query complexity. However, as we now elaborate, such
theorems are substantially more difficult to prove in the distributional setting.

2.1 A simple and near-optimal strong direct sum theorem for R
For randomized query complexity, proving a strong direct sum theorem with near-optimal
parameters requires only two observations.

Observation #1

The first is that a standard direct sum theorem, one without error amplification, easily holds
in the distributional setting, and hence the randomized setting as well by Yao’s principle:

Depthµk

(f⊗k, ε) ≥ Ω(k) · Depthµ(f, ε) and therefore R(f⊗k, ε) ≥ Ω(k) · R(f, ε). (1)

The idea is that given a decision tree T of average depth q that computes f⊗k with error ε,
one can extract a decision tree of average depth q/k that computes f to error ε: place the
input in a random block i ∼ [k], fill the remaining blocks with independent random draws
from µ, and return the ith bit of T ’s output. It is straightforward to show that this reduces
the average depth of T by a factor of k while preserving its error.

Observation #2

The second observation is standard error reduction of randomized algorithms by repetition,
which in particular implies:

R(f, ε
k ) ≤ O(log k) · R(f, ε). (2)

Combining Equations (1) and (2) yields a strong direct sum theorem

R(f⊗k, ε) ≥ Ω
(

k

log k

)
· R(f, ε

k )

that is within a O(log k) factor of optimal.

Blais–Brody

Using more sophisticated techniques, Blais and Brody [6] were recently able remove to this
O(log k) factor and obtain an optimal strong direct sum theorem for R. Building on their
work, Brody, Kim, Lerdputtipongporn, and Srinivasulu [9] then obtained an optimal strong
XOR lemma for R.

2.2 Error reduction fails in the distributional setting
While the crux of [6] and [9]’s works is the removal of a O(log k) factor, the situation is
very different in the distributional setting. As mentioned, prior to our work even a direct
sum theorem where both factor-of-Ω̃(k) blowups in Theorem 1 are replaced by 1.01 was not
known to hold.

With regards to the argument above, it is Observation #2 that breaks in the distributional
setting – not only does error reduction by repetition break, the distributional analogue
of Equation (2) is simply false. This points to a fundamental difference between distributional
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16:4 A Strong Direct Sum Theorem for Distributional Query Complexity

and randomized complexity: while generic error reduction of randomized algorithms is possible
in all reasonable models of computation, the analogous statement for distributional complexity
is badly false in all reasonable models of computation. For the query model specifically,
in Appendix C we give an easy proof of the following:

▶ Fact 1. For any n ∈ N and µ being the uniform distribution over {±1}n, there is a
function f : {±1}n → {±1} such that Depthµ(f, 1

4 ) = 0 and yet Depthµ(f, 1
8 ) ≥ Ω(n).

2.3 A brief summary of our approach
We revisit Observation #1 and show how the very same extraction strategy can in fact yield
a tree with error Θ(ε/k), instead of ε, at the expense of only a slight increase in depth. A key
technical ingredient in our analysis is Impagliazzo’s Hardcore Theorem [14]. For intuition
as to why this theorem may be relevant for us, we note that it is tightly connected to the
notion of boosting from learning theory – they are, in some sense, dual to each other [23].
And boosting is, of course, a form of error reduction, albeit one that is more intricate than
error reduction by repetition.

See Section 5 for a detailed overview of our approach, including a discussion of why
Impagliazzo’s Hardcore Theorem, as is, does not suffice, thereby necessitating our new
“resilience lemma” that accompanies it.

3 Prior Work

We now place Theorem 1 within the context of prior work on direct sum and product theorems
for distributional query complexity. This is a fairly large body of work that dates back to
the 1990s.

3.1 Standard direct sum and product theorems
Standard direct sum theorems

As we sketched in Section 2.1, a simple argument shows that

Depthµk

(f⊗k, ε) ≥ Ω(k) · Depthµ(f, ε). (3)

This along with an application of Markov’s inequality yields:

Depthµk

(f⊗k, ε − ε′) ≥ Ω(ε′k) · Depthµ(f, ε), (4)

where Depthµ(·, ·) is the analogue of Depthµ(·, ·) for worst-case instead of expected query
complexity. (The details of these arguments are spelt out in [19, 5].)

Note that the error budget is the same on both sides of Equation (3) and the error budget
on the RHS of Equation (4) is larger than that of the LHS. In a strong direct sum theorem
one seeks a lower bound even when the error budget on the RHS is much smaller than that
of the LHS, ideally by a multiplicative factor of k to match the naive upper bound.

A direct product theorem

Impagliazzo, Raz, and Wigderson [16] proved a direct product theorem which focuses on the
blowup in error. They showed that:

Depthµk

(f⊗k, ε) ≥ Depthµ(f, ε
k ). (5)

While this result has the sought-for factor of k difference between the error budgets on the
LHS and RHS, it comes at the price of there no longer being any blowup in depth.
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3.2 Progress and barriers towards a strong direct sum theorem
These results naturally point to the problem of proving a unifying strong direct sum theorem.
We now survey efforts at such a best-of-both-worlds result over the years.

Decision forests

Nisan, Rudich, and Saks [27] proved the following strengthening of [16]’s result. While [16]
gives an upper bound on the success probability of a single depth-d decision tree for f⊗k, [27]
showed that the same bound holds even for decision forests where one gets to construct a
different depth-d tree for each of the k copies of f .

Since one can always stack the k many depth-d trees in a decision forest to obtain a single
tree of depth kd, [27]’s result establishes a special case of a strong direct sum theorem under
a structural assumption on the tree for f⊗k. See Figure 3 in Appendix A for an illustration
of the stacked decision tree that one gets from a decision forest.

Fair decision trees

Building on the techniques of [27], Shaltiel [30] proved a strong direct sum theorem under a
different structural assumption on the tree for f⊗k. He considered decision trees of depth kd

that are “fair” in the sense that every path queries each of the k blocks of variables at most
d times. ([30] actually proved a strong XOR lemma for fair decision trees, which implies a
strong direct sum theorem for such trees.) See Figure 4 in Appendix A for an illustration of
a fair decision tree.

Shaltiel’s counterexample for worst-case query complexity

These results of [27] and [30] could be viewed as evidence in favor of a general strong direct
sum theorem, one that does not impose any structural assumptions on the tree for f⊗k.
However, in the same paper Shaltiel also presented an illuminating example: he constructed
a function, which we call Shal, and a distribution µ such that for all k ∈ N,

Depthµk

(Shal⊗k, ε) ≤ O
(
Depthµ(Shal, ε

k )
)
. (6)

This shows, surprisingly, that for worst-case query complexity, the factor-of-Ω(k) blowup in
query complexity that one seeks in a strong direct sum theorem is not always necessary, and
in fact sometimes even a constant factor suffices.

Shaltiel’s counterexample vs. Theorem 1

This counterexample for worst-case query complexity should be contrasted with our main
result, Theorem 1, which shows that a strong direct sum theorem holds for expected query
complexity. Indeed, the starting point of our work was the encouraging observation that
Shaltiel’s function does in fact satisfy a strong direct sum theorem if one instead considers
expected query complexity. That is, for any ε < 1 and sufficiently large k,

Depthµk

(Shal⊗k, ε) ≥ Ω(k) · Depthµ(Shal, ε
k ).

This is a simple observation but appears to have been overlooked. As we now overview,
subsequent work considered other ways of sidestepping Shaltiel’s counterexample.
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16:6 A Strong Direct Sum Theorem for Distributional Query Complexity

3.3 Results in light of Shaltiel’s counterexample
A strong direct sum theorem for the OR function

Klauck, Špalek, and de Wolf [22] sidestepped Shaltiel’s counterexample by considering a
specific function (and distribution): motivated by applications to time-space tradeoffs, they
proved a strong direct sum theorem for the OR function and with µ being its canonical hard
distribution. Using this, they also showed, for all functions f a lower bound on f⊗k’s query
complexity in terms of f ’s block sensitivity. This stands in contrast to a strong direct sum
theorem where one seeks a lower bound on f⊗k’s query complexity in terms of f ’s query
complexity.

A phase transition in Shaltiel’s counterexample

The precise parameters of Shaltiel’s counterexample are:

Depthµk

(Shal⊗k, e−Θ(δk)) ≤ Cδk · Depthµ(Shal, δ)

for all sufficiently large constants C. Importantly, the multiplicative factor on the RHS is
only δk instead of k, and therefore becomes a constant if the initial hardness parameter is
δ = ε/k (thereby yielding Equation (6)).

Drucker [10] showed that there is a “phase transition” in Shaltiel’s counterexample in the
following sense: for all functions f and a sufficiently small constant c > 0,

Depthµk

(f⊗k, 1 − e−Θ(δk)) ≥ cδk · Depthµ(f, δ). (7)

Therefore, while [30] showed the existence of a function Shal such that its k-fold direct
product can be computed to surprisingly low error if the depth budget is Cδk · Depthµ(f, δ)
for a sufficiently large constant C, [10] showed that for all functions f , this stops being the
case if the depth budget is instead cδk · Depthµ(f, δ) for a sufficiently small constant c.

Query complexity with aborts

Blais and Brody [6] showed that Shaltiel’s counterexample can be sidestepped in a different
way. En route to proving their strong direct sum theorem for randomized query complexity
(discussed in Section 2), they considered decision trees T : {±1}n → {±1, ⊥} that are allowed
to output ⊥ (“abort”) on certain inputs, and where the error of T in computing a function
f : {±1}n → {±1} is measured with respect to T −1({±1}). In other words, T ’s output on x

is considered correct if T (x) = ⊥.
Writing Depthµ

Pr[⊥]≤ 1
3
(f, ε) to denote the minimum depth of any decision tree for f that

aborts with probability at most 1/3 and otherwise errs with probability at most ε (both
w.r.t. µ), [6] proved that

Depthµk

Pr[⊥]≤ 1
3
(f⊗k, ε) ≥ Ω(k) · Depthµ

Pr[⊥]≤ 1
3
(f, ε

k ). (8)

Even though the error budget on non-aborts is only ε/k on the RHS, the fact that the
tree is allowed to abort with probability 1/3 means that it is deemed correct on a 1/3 fraction
of inputs “for free”. A decision tree that aborts with probability 1/3 and otherwise errs with
probability ε/k can therefore be much smaller than one that never aborts and errs with
probability ε/k, and indeed, it is easy to construct examples witnessing the maximally large
separation:

n = Depthµ(f, ε
k ) ≫ Depthµ

Pr[⊥]≤ 1
3
(f, ε

k ) = 1.
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Building on [6], Brody, Kim, Lerdputtipongporn, and Srinivasulu [9] proved a strong
XOR lemma for this model of query complexity with aborts, achieving analogous parameters.

A strong XOR lemma assuming hardness against all depths

A standard strong XOR lemma states that if f is hard against decision trees of certain
fixed depth d, then f⊗k is much harder against decision trees of depth Ω(dk). Recent work
of Hoza [13] shows that Shaltiel’s counterexample can be sidestepped if one allows for the
stronger assumption that f ’s hardness “scales nicely” with d. (See the paper for the precise
statement of the resulting strong XOR lemma.)

3.4 Summary
Summarizing, prior work on direct sum and product theorems for distributional query
complexity either: focused on the blowup in error [16] or query complexity [19, 5] but not
both; considered restrictions (fair decision trees [30]) or variants (decision forests [27]; allowing
for aborts [6, 9]) of the query model; focused on specific functions (the OR function [22]); or
imposed additional hardness assumptions about the function [13]. Theorem 1, on the other
hand, gives a strong direct sum theorem that holds for all functions in the standard query
model. See Table 1.

Table 1 Direct sum and product theorems for distributional query complexity.

Reference Error
Amplification

Query
Amplification

Query model/
Assumption

[19, 5] × ✓ Standard query model

[16] ✓ × Standard query model

[27] ✓ ✓ Decision forests

[30] ✓ ✓ Fair decision trees

[22] ✓ ✓ f = OR

[6, 9] ✓ ✓ Decision trees with aborts

[13] ✓ ✓ Hardness against all depths

Theorem 1 ✓ ✓ Standard query model

4 Formal statements of our results and their tightness

Theorem 1 is a special case of the following result:

▶ Theorem 2 (Strong direct sum theorem). For every function f : {±1}n → {±1}, distribution
µ over {±1}n, k ∈ N, and γ, δ ∈ (0, 1), we have that

Depthµk

(f⊗k, 1 − e−Θ(δk) − γ) ≥ Ω
(

γ2k

log(1/δ)

)
· Depthµ(f, δ).

CCC 2024



16:8 A Strong Direct Sum Theorem for Distributional Query Complexity

We in fact prove a strong threshold direct sum theorem which further generalizes Theorem 2:
while a direct sum theorem shows that f⊗k is hard to compute, i.e. it is hard to get all k

copies of f correct, a threshold direct sum theorem shows that it is hard even to get most of
the k copies of f correct. See Theorem 22.

By the equivalence between strong direct sum theorems and strong XOR lemmas
(Claim 35), we also get:

▶ Theorem 3 (Strong XOR lemma). For every function f : {±1}n → {±1} and distribution
µ over {±1}n, k ∈ N, and γ, δ ∈ (0, 1), we have that

Depthµk (
f⊕k, 1

2 (1 − e−Θ(δk) − γ)
)

≥ Ω
(

γ2k

log(1/δ)

)
· Depthµ(f, δ).

4.1 Tightness
Theorem 2 amplifies an initial hardness parameter of δ = Θ(1/k) to 1 − γ for any small
constant γ with a near-optimal overhead of

Ω
(

γ2k

log(1/δ)

)
= Ω

(
k

log k

)
.

However, due to the polynomial dependence on γ, we cannot achieve a final hardness parameter
that is exponentially close to 1 as a function of k. We show that this is unavoidable since at
least a linear dependence on γ is necessary:

▷ Claim 4 (Linear dependence on γ is necessary). Let Par : {±1}n → {±1} be the parity
function and µ be the uniform distribution over {±1}n. Then for all γ,

Depthµk

(Par⊗k, 1 − γ) ≤ O(γk) · Depthµ(Par, 1
4 ).

The same example shows that a linear dependence on γ is likewise necessary in the setting
of XOR lemmas. Determining the optimal polynomial dependence on γ in both settings, as
well as the necessity of the log(1/δ) factor, are concrete avenues for future work.

5 Technical Overview for Theorem 2

5.1 Hardcore measures and the Hardcore Theorem
At the heart of our proof is the notion of a hardcore measure and Impagliazzo’s Hardcore
Theorem [14], both adapted to the setting of query complexity.

▶ Definition 5 (Hardcore measure for query complexity). We say that H : {±1}n → [0, 1] is a
(γ, d)-hardcore measure for f : {±1}n → {±1} w.r.t. µ of density δ if:
1. H’s density is δ: E

x∼µ
[H(x)] = δ.

2. d-query algorithms achieve correlation at most γ with f on H:

E
x∼µ

[f(x)T (x)H(x)] ≤ γ E
x∼µ

[H(x)] = γδ.

for all decision trees T whose expected depth w.r.t. µ is at most d.

▶ Theorem 6 (Hardcore Theorem for query complexity). For every function f : {±1}n → {±1},
distribution µ over {±1}n, and γ, δ > 0, there exists a (γ, d)-hardcore measure H for f of
density δ/2 w.r.t. µ where

d = Θ
(

γ2

log(1/δ)

)
Depthµ(f, δ).
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The Hardcore Theorem was originally proved, and remains most commonly used, in the
setting of circuit complexity where it has long been recognized as a powerful result. (See
e.g. [34], where it is described as “one of the bits of magic of complexity theory”.) We
show in Appendix B that its proof extends readily to the setting of query complexity to
establish Theorem 6. Despite its importance in circuit complexity and its straightforward
extension to query complexity, our work appears to be the first to consider its applicability
in the latter setting.

▶ Remark 7. For intuition regarding Definition 5, note that if H : {±1}n → {0, 1} is the
indicator of a set, the two properties simplify to: Pr

x∼µ
[x ∈ H] = δ and E

x∼µ
[f(x)T (x) | x ∈

H] ≤ γ.

5.2 Two key quantities: hardcore density and hardcore advantage at a
leaf

Setup

For the remainder of this section, we fix a function f : {±1}n → {±1}, distribution µ

over {±1}n, and initial hardness parameter δ (which we think of as small, close to 0). Let
T : ({±1}n)k → {±1}k be a decision tree that seeks to compute f⊗k w.r.t. µk. Our goal is
to show that T ’s error must be large, close to 1, unless its depth is sufficient large.

Definitions of the hardcore density and hardcore advantage at a leaf

Let H : {±1}n → [0, 1] be a (γ, d)-hardcore measure for f of density δ w.r.t. µ given
by Theorem 6. Each leaf ℓ of T corresponds to a tuple of restrictions (π1, . . . , πk) to each of
the k blocks of inputs. We will be interested in understanding, for a random block i ∈ [k], the
extent to which the restricted function Hπi

retains the two defining properties of a hardcore
measure: high density and strong hardness. We therefore define:

▶ Definition 8 (Hardcore density at ℓ). For i ∈ [k], the hardcore density at ℓ in the ith block
is the quantity:

DensH(ℓ, i) := E
X∼µk

[
H(X(i)) | X reaches ℓ

]
.

The total hardcore density at ℓ is the quantity DensH(ℓ) :=
k∑

i=1
DensH(ℓ, i).

See Figure 1 for an illustration of Definition 8.

▶ Definition 9 (Hardcore advantage at ℓ). For i ∈ [k], the hardcore advantage at ℓ in the ith
block is the quantity:

AdvH(ℓ, i) :=
∣∣∣ E
X∼µk

[
f(X(i))T (X)iH(X(i)) | X reaches ℓ

]∣∣∣.
The total hardcore advantage at ℓ is the quantity AdvH(ℓ) :=

k∑
i=1

AdvH(ℓ, i).

Intuitively, leaves for which DensH(ℓ) is large and AdvH(ℓ) is small contribute significantly
to error of T . Lemma 10 below formalizes this:

CCC 2024



16:10 A Strong Direct Sum Theorem for Distributional Query Complexity

π

H H H, ,

, ,Leaf ℓ

Hardcore measure Hπ1 with DensH(ℓ, 1) = area( )/area(□)

Queries along path π

Figure 1 Illustration of a hardcore density. The tree T : ({±1}n)3 → {±1}3 seeks to compute a
function f⊗3. The tuple of squares at the top of the figure illustrates the set of all inputs to the
function while the strings in the support of the hardcore measure are shaded gray. The tuple at
the bottom of the figure illustrates the set of inputs reaching the leaf ℓ. Each block is the subcube
consistent with the path π and the shaded region denotes the fragment of H which is contained in
the corresponding subcube.

Notation

Canonical distribution over leaves. We write µk(T ) to denote the distribution over leaves
of T where:

Pr
ℓ∼µk(T )

[ℓ = ℓ] = Pr
X∼µk

[X reaches ℓ].

▶ Lemma 10 (Accuracy in terms of hardcore density and advantage at leaves).

Pr
X∼µk

[T (X) = f⊗k(X)] ≤ E
ℓ∼µk(T )

[
exp
(

−DensH(ℓ) − AdvH(ℓ)
4

)]
.

5.3 Expected total hardcore density and advantage

Lemma 10 motivates understanding the random variables DensH(ℓ) and AdvH(ℓ) for ℓ ∼
µk(T ). We begin by bounding their expectations:

▷ Claim 11 (Expected total hardcore density). If H is a hardcore measure of density δ then

E
ℓ∼µk(T )

[DensH(ℓ)] = δk.
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Claim 11 is a statement about density preservation. It says that H’s expected density at
a random leaf ℓ ∼ µk(T ) and in a random block i ∼ [k] is equal to H’s initial density:

E
ℓ∼µk(T )

i∼[k]

[
E

X∼µk

[
H(X(i)) | X reaches ℓ

]
︸ ︷︷ ︸

DensH (ℓ,i)

]
= δ = E

x∼µ
[H(X)].

▷ Claim 12 (Expected total hardcore advantage). If H is a (γ, d)-hardcore measure for f of
density δ w.r.t. µ and the expected depth of T is at most dk, then

E
ℓ∼µk(T )

[AdvH(ℓ)] ≤ γ E
ℓ∼µk(T )

[DensH(ℓ)].

Claim 12 is a statement about depth amplification. By definition, H being a (γ, d)-
hardcore measure for f means that

E
x∼µ

[f(x)Tsmall(x)H(x)]︸ ︷︷ ︸
Hardcore advantage

≤ γ E
x∼µ

[H(x)]︸ ︷︷ ︸
Hardcore density

for every tree Tsmall : {±1}n → {±1} of expected depth d. Claim 12 says that

k∑
i=1

E
X∼µk

[
f(X(i))Tlarge(X)iH(X(i))

]
︸ ︷︷ ︸

Total hardcore advantage

≤ γ

k∑
i=1

E
X∼µk

[H(X(i))]︸ ︷︷ ︸
Total hardcore density

.

for every tree Tlarge : ({±1}n)k → {±1}k of expected depth dk. Crucially, the depth of
Tlarge is allowed to be a factor of k larger than that of Tsmall, and yet the ratio of hardcore
advantage to hardcore density remains the same (γ in both cases).

5.3.1 Done if Jensen went the other way

For intuition as to why Claim 11 and Claim 12 are relevant yet insufficient for us, note that
if it were the case that E[exp(−Z)] ≤ exp(−E[Z]), which unfortunately is the opposite of
what Jensen’s inequality gives, we would have the strong bound on the accuracy of T that
we seek:

Pr
X∼µk

[T (X) = f⊗k(X)] ≤ E
ℓ∼µk(T )

[
exp
(

−DensH(ℓ) − Advh(ℓ)
4

)]
(Lemma 10)

“ ≤ ” exp
(

− E
ℓ∼µk(T )

[
DensH(ℓ) − AdvH(ℓ)

4

])
(Wrong direction of Jensen)

≤ exp
(

− δk − γδk

4

)
(Claim 11 and Claim 12)

≤ exp(−Θ(δk)).

For an actual proof, we need to develop a more refined understanding of the distribution
of DensH(ℓ) beyond just its expectation. (As it turns out, this along with the bound on
E[AdvH(ℓ)] given by Claim 12 suffices.)
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5.4 A resilience lemma for hardcore measures
An illustrative bad case to rule out

Suppose T were such that it achieved E[DensH(ℓ)] = δk by having a δ-fraction of leaves with
DensH(ℓ) = k and the remaining 1 − δ fraction with DensH(ℓ) = 0. If this were the case then
“all the hardness” would be concentrated on a small δ fraction of leaves, and the best lower
bound that we would be able to guarantee on error of T with respect to f⊗k would only be
δ. This is our starting assumption on the hardness of f , and so no error amplification has
occurred.

The resilience lemma

We rule out cases like this by showing that T must achieve E[DensH(ℓ)] = δk by having the
vast majority of its leaves with DensH(ℓ) = Ω(δk), i.e. that DensH(ℓ) is tightly concentrated
around its expectation:

▶ Lemma 13 (Resilience lemma). For any hardcore measure H of density δ w.r.t. µ

and tree T : ({±1}n)k → {±1}k,

Pr
ℓ∼µk(T )

[DensH(ℓ) ≤ δk/2] ≤ e−δk/8.

Similarly, Pr
ℓ∼µk(T )

[DensH(ℓ) ≥ 2δk] ≤ e−δk/3.

Leaf ℓ with
DensH(ℓ) = 0

δ-fraction (1 − δ)-fraction

k k k k k 0 0 0 0 0 0 0

(a) An illustration of the bad case where DensH

is anti-concentrated away from its mean of δk.

Leaf ℓ with
DensH(ℓ) ≈ δk

≈ δk ≈ δk ≈ δk ≈ δk ≈ δk ≈ δk

(b) An illustration of the good case where DensH

is concentrated around its mean of δk.

Figure 2 An illustration of our resilience lemma (Lemma 13). This lemma shows that all trees
resemble the one on the right, with DensH(ℓ) tightly concentrated around its mean of δk. This
allows us to rule out bad trees such as those on the left where all of the hardness is concentrated on
a small fraction of the leaves.

Comparing Lemma 13 to Claim 12, we see that Claim 12 is a statement about density
preservation in expectation whereas Lemma 13 is a statement about density preservation
with high probability. It says that H’s density at a random leaf ℓ ∼ µk(T ) and in a random
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block i ∼ [k] remains, with high probability, roughly the same as that of H’s initial density –
this is why we call Lemma 13 a resilience lemma. (Our proof of Lemma 13 in fact shows
that the H’s density remains resilient under arbitrary partitions of ({±1}n)k, not just those
induced by a decision tree.)

With Lemma 13 in hand, the intuition sketched in Section 5.3.1 can be made formal.

6 Discussion and Future Work

Our main results are a strong direct sum theorem and a strong XOR lemma for distributional
query complexity, showing that if f is somewhat hard to approximate with depth-d decision
trees, then f⊗k and f⊕k are both much harder to approximate, even with decision trees of
much larger depth. These results hold for expected query complexity, and they circumvent a
counterexample of Shaltiel showing that such statements are badly false for worst-case query
complexity. We view our work as confirming a remark Shaltiel made in his paper, that his
counterexample “seems to exploit defects in the formulation of the problem rather than show
that our general intuition for direct product assertions is false.”

Shaltiel’s counterexample applies to many other models including boolean circuits and
communication protocols. A broad avenue for future work is to understand how this
counterexample can be similarly circumvented in these models by working with more fine-
grained notions of computation cost. Consider for example boolean circuit complexity and
Yao’s XOR lemma [36], which states that if f is mildly hard to approximate with size-s
circuits w.r.t. µ, then f⊕k is extremely hard to approximate with size-s′ circuits w.r.t. µk.
A well-known downside of this important result is that it only holds for s′ ≪ s. Indeed,
Shaltiel’s counterexample shows that it cannot hold for s′ ≫ s, at least not for the standard
notion of circuit size. Extrapolating from our work, can we prove a strong XOR lemma for
boolean circuits by considering a notion of the “expected size” of a circuit C : {±1}n → {±1}
with respect to a distribution µ over {±1}n? A natural approach is to consider the standard
notion of the expected runtime of a Turing machine with respect to a distribution over inputs
and have the Cook–Levin theorem guide us towards an appropriate analogue for circuit size.

On a more technical level, a crucial ingredient in our work is the first use of Impagliazzo’s
Hardcore Theorem within the context of query complexity (and indeed, to our knowledge, the
first use of it outside of circuit complexity). Could this powerful theorem be useful for other
problems in query complexity, possibly when used in conjunction with our new resilience
lemma?

7 Preliminaries

We use [n] to denote the set {1, 2, . . . , n} and bold font (e.g x ∼ D) to denote random
variables. For any distribution µ, we use µk to denote k-fold the product distribution
µ × · · · × µ.

For any function f : {±1}n → {±1}, we use f⊗k : ({±1}n)k → {±1}k to denote its k-fold
direct product,

f⊗k(X(1), . . . , X(k)) :=
(
f(X(1)), . . . , f(X(k))

)
.

Similarly, we use f⊕k : ({±1}n)k → {±1} to denote its k-fold direct sum,

f⊕k(X(1), . . . , X(k)) :=
∏

i∈[k]

f(X(i)).

CCC 2024



16:14 A Strong Direct Sum Theorem for Distributional Query Complexity

▶ Definition 14 (Bernoulli distribution). For any δ ∈ [0, 1], we write Ber(δ) to denote the
distribution of z where z = 1 with probability δ and 0 otherwise.

▶ Definition 15 (Binomial distribution). For any k ∈ N, δ ∈ [0, 1], we write Bin(k, δ) to
denote the sum of k independent random variables drawn from Ber(δ).

▶ Fact 2 (Chernoff bound). Let z1, . . . , zk be independent and each bounded within [0, 1] and
Z :=

∑
i∈[k] zi. For any threshold t ≤ µ := E[Z],

Pr[Z ≤ t] ≤ exp
(

− (µ−t)2

2µ

)
.

Similar bounds for the probability Z exceeds its mean hold. For example,

Pr[Z ≥ 2µ] ≤ exp
(
− µ

3
)
.

Furthermore, the above bounds also hold for any random variable Y satisfying E[eλY ] ≤
E[eλZ ] for all λ ∈ R.

7.1 Randomized vs. deterministic decision trees
We will prove all of our results with respect to the expected depth of a randomized decision
tree. In this subsection, we formally define deterministic and randomized decision trees and
prove that our results easily extend to the deterministic setting.

▶ Definition 16 (Deterministic decision tree). A deterministic decision tree, T : {±1}n →
{±1}, is a binary tree with two types of nodes: Internal nodes each query some xi for i ∈ [n]
and have two children whereas leaf nodes are labeled by a bit b ∈ {±1} and have no children.
On input x ∈ {±1}n, T (x) is computed as follows: We proceed through T starting at the root.
Whenever at an internal node that queries the ith coordinate, we proceed to the left child if
xi = −1 and right child if xi = +1. Once we reach a leaf, we output the label of that leaf.

▶ Definition 17 (Randomized decision tree). A randomized decision tree, T : {±1}n → {±1},
is distribution over deterministic decision trees. On input x ∈ {±1}n, it first draws T ∼ T
and then outputs T (x).

▶ Definition 18 (Expected depth). For any deterministic decision tree T : {±1}n → {±1}
and distribution µ on {±1}n, we use Depthµ(T ) to denote the expected depth of T , which
is the expected number of coordinates T queries on a random input x ∼ µ. Similarly, for a
randomized decision tree T , Depthµ(T ) := ET ∼T [Depthµ(T )].

We write Depthµ(·, ·) to denote the minimum expected depth of any decision tree,
including randomized decision trees. Thus, all of our main results, as written, hold for
randomized decision trees; however, equivalent statements are true if we restrict ourselves to
only deterministic decision trees, with only a small change in constants, as easily seen from
the following claim.

▷ Claim 19. For any f : {±1}n → {±1}, distribution µ, and constant ε,

Depthµ(f, 2ε) ≤ Depthµ

det(f, 2ε) ≤ 2 · Depthµ(f, ε).

Proof. The left-most inequality follows immediately from that fact that any deterministic
decision tree is also a randomized decision tree. For the second inequality, given any
randomized decision tree T with error ε and expected depth d, we’ll construct a deterministic
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decision tree T with error at most 2ε and expected depth at most 2d. First, we decompose
the expected error of T :

ε = Pr
x∼µ

[T (x) ̸= f(x)] = E
T ∼T

[
Pr

x∼µ
[T (x) ̸= f(x)]

]
.

Applying Markov’s inequality, if we sample T ∼ T , with probability at least 1/2, it has error
at most ε. Similarly, since the expected depth of T is d, with probability at least 1/2, T will
have expected depth at most 2d. By union bound, there is a nonzero probability that we
choose a single (deterministic) tree with error at most 2ε and expected depth at most 2d.

◁

Claim 19 immediately allows direct sum theorems for randomized decision trees to also apply
to deterministic decision trees.

▶ Corollary 20 (Randomized direct sum theorems imply deterministic ones). Suppose that a
randomized direct sum theorem of the following form holds. For a function f : {±1}n → {±1},
distribution µ over {±1}n, k ∈ N, and constants ε, δ, M ,

Depthµ⊗k

(f⊗k, ε) ≥ M · Depthµ(f, δ).

Then,

Depthµ⊗k

det (f⊗k, ε) ≥ Depthµ⊗k

(f⊗k, ε) ≥ M · Depthµ(f, δ) ≥ M
2 · Depthµ

det(f, 2δ).

With Corollary 20 in mind, the remainder of this paper will only consider randomized decision
trees.

8 Proof of Theorem 2

The purpose of this section is to prove our direct sum theorem (Theorem 2) showing that
if f is hard to compute, than f⊗k is even harder to compute. We will in fact prove a
threshold direct sum theorem, showing that it is hard even to get most of the k copies correct.
To formalize this, we generalize the notation Depth(·, ·) to take in an additional threshold
parameter t specifying how many blocks we allow to be wrong.

▶ Definition 21. For any function f : {±1}n → {±1}, error ε, and threshold t ∈ N, we use
Depthµk

(f⊗, ε, t) to denote the minimum expected depth of a tree T : ({±1}n)k → {±1}k

satisfying

Pr
X∼µk

[
∥T (X) − f⊗k(X)∥0] > t

]
≤ ε.

▶ Theorem 22 (A strong threshold direct sum theorem for query complexity). For every
function f : {±1}n → {±1}, distribution µ over {±1}n, k ∈ N, and γ, δ ∈ (0, 1),

Depthµk

(f⊗k, 1 − e−Ω(δk) − γ, Ω(δk)) ≥ Ω
(

γ2k

log(1/δ)

)
· Depthµ(f, δ).

Note that the threshold of Ω(δk) is within a constant factor of optimal, as repeating an
algorithm that errs δ fraction of the time k times will lead to an average of δk mistakes. The-
orem 22 implies our standard strong direct sum theorem (Theorem 2) because

Depthµk

(f⊗k, ε, t) ≥ Depthµk

(f⊗k, ε, 0) = Depthµk

(f⊗k, ε)

for any t ≥ 0 and ε > 0.
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8.1 The structure of this section
By the Hardcore Theorem (Theorem 6), proving Theorem 22 reduces to proving:

▶ Theorem 23 (Hardness of f⊗k in terms of a hardcore measure for f). Suppose that
f : {±1}n → {±1} has an (γ, d)-hardcore measure w.r.t µ of density δ. Then, for any
T : ({±1}n)k → {±1}k with Depthµk

(T ) ≤ kd,

Pr
X∼µk

[
∥T (X) − f⊗k(X)∥0 ≤ δk

10
]

≤ e− δk
10 + 10γ.

This section is therefore devoted to proving Theorem 23. As discussed in Section 5, our
proof tracks two key quantities: we will analyze how hardcore density (Definition 8) and
hardcore advantage (Definition 9) are distributed over the leaves of T . This proof will be
broken into three steps:
1. In Section 8.2, we prove Claim 12 and Lemma 13, which aim to understand the distribu-

tions of the hardcore density and hardcore advantage of a random leaf of T .
2. In Section 8.3, we derive an expression for the probability T makes surprisingly few

mistakes as a function of the hardcore density and hardcore advantage at each leaf. This
generalizes Lemma 10.

3. In Section 8.4, we combine the above to prove Theorem 23.

8.2 How hardcore density and advantage distribute over the leaves
We begin with proving our resilience lemma for hardcore density. Roughly speaking, this
will say that for any tree T : ({±1}n)k → {±1}k, the hardcore density of a random leaf
concentrates around δk. We recall the definition of hardcore density.

▶ Definition 24 (Hardcore density at ℓ, Definition 8 restated). For any tree T : ({±1}n)k →
{±1}k, hardcore measure H : {±1}n → [0, 1], distribution µ on {±1}n, i ∈ [k], and leaf ℓ of
T , the hardcore density at ℓ in the ith block is the quantity:

DensH(ℓ, i) := E
X∼µk

[
H(X(i)) | X reaches ℓ

]
.

The total hardcore density at ℓ is the quantity DensH(ℓ) :=
k∑

i=1
DensH(ℓ, i).

The distribution over leaves in the resilience lemma is the canonical distribution.

▶ Definition 25 (Canonical distribution). For any tree T and distribution µ over T ’s domain,
we write µ(T ) to denote the distribution over leaves of T where:

Pr
ℓ∼µk(T )

[ℓ = ℓ] = Pr
X∼µ

[X reaches ℓ].

▶ Lemma 26 (Resilience lemma, generalization of Lemma 13). For any T : ({±1}n)k → {±1}k,
hardcore measure H, distribution µ, and convex Φ : R → R,

E
ℓ∼µk(T )

[Φ(DensH(ℓ))] ≤ E
z∼Bin(k,δ)

[Φ(z)]

where δ := Ex∼µ[H(x)] is the density of H w.r.t. µ.
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Proof. Draw X ∼ µk. Then, for each i ∈ [k], independently draw zi ∼ Ber(H(X(i))). Note
that, for any leaf ℓ and i ∈ [k],

DensH(ℓ, i) := E
X∼µk

[H(X(i)) | X reaches ℓ] = E
X∼µk

[zi | X reaches ℓ].

By the above equality and definition DensH(ℓ) =
∑

i∈[k] DensH(ℓ, i),

E
ℓ∼µk(T )

[Φ(DensH(ℓ))] = E
ℓ∼µk(T )

[
Φ
(

E
X∼µk

[∑
i∈[k]

zi | X reaches ℓ

])]

≤ E
ℓ∼µk(T )

[
E

X∼µk

[
Φ
(∑

i∈[k]

zi | X reaches ℓ

)]]
(Jensen’s inequality)

= E
X∼µk

[
Φ
(∑

i∈[k]

zi

)]
. (Law of total expectation)

Note that the last line holds precisely for the distribution µk(T ) defined in Definition 25,
which is why we use that distribution.

Since X is drawn from a product distribution, and zi depends on only the ith coordinate
of X, z1, . . . , zk are independent. Furthermore, each has mean Ex∼µ[H(x)] = δ. Therefore,∑

i∈[k] zi is distributed according to Bin(k, δ). ◀

A couple of remarks about the above Lemma: First, it implies that DensH(ℓ) concentrates
around δk. Since z 7→ eλz is convex for any λ ∈ R, Lemma 26 implies that the moment
generating function of DensH(ℓ) is dominated by that of Bin(k, δ). This means that Chernoff
bounds that hold for Bin(k, δ) also hold for DensH(ℓ). In particular, the statement of
Lemma 13 is a consequence of the Chernoff bound given in Fact 2.

Second, the proof of Lemma 26 does not make heavy use of the decision tree structure
of T . It only uses that the leaves of T partition ({±1}n)k, and so may find uses for other
models that partition the domain.

Depth amplification for hardcore advantage

While the resilience lemma gives a fairly fine-grained understanding of how hardcore density
distributes among the leaves, our guarantee for hardcore advantage are more coarse – that
its expectation over the leaves is bounded.

▶ Definition 27 (Hardcore advantage at ℓ, Definition 9 restated). For any tree T : ({±1}n)k →
{±1}k, hardcore measure H : {±1}n → [0, 1], distribution µ on {±1}n, i ∈ [k], and leaf ℓ of
T , the hardcore advantage at ℓ in the ith block is the quantity:

AdvH(ℓ, i) :=
∣∣∣ E
X∼µk

[
f(X(i))T (X)iH(X(i)) | X reaches ℓ

]∣∣∣. (9)

The total hardcore advantage at ℓ is the quantity AdvH(ℓ) :=
k∑

i=1
AdvH(ℓ, i).

▶ Lemma 28 (Expected total hardcore advantage, Claim 12 restated). If H is a (γ, d)-hardcore
measure for f of density δ w.r.t. µ and the expected depth of T is at most dk, then

E
ℓ∼µk(T )

[AdvH(ℓ)] ≤ γ E
ℓ∼µk(T )

[DensH(ℓ)] = γδk.
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Proof of Lemma 28. By contrapositive. Suppose there exists Tlarge : ({±1}n)k → {±1}k

making dk queries on average w.r.t. µk for which,

E
ℓ∼µk(T )

[AdvH(ℓ)] > γ E
ℓ∼µk(T )

[DensH(ℓ)] = γδk.

Then, we’ll show there exists Tsmall : {±1}n → {±1} making d queries on average w.r.t. µ

for which

E
x∼µ

[f(x)Tsmall(x)H(x)] > γ · E
x∼µ

[H(x)] = γδ.

Before constructing Tsmall, we observe that we can assume, without loss of generality, that
for every leaf ℓ of T , that we can remove the absolute value from Equation (9); i.e. that

AdvH(ℓ, i) = E
X∼µk

[
f(X(i))T (X)iH(X(i)) | X reaches ℓ

]
Otherwise, we could modify this leaf by flipping the label of T (X)i whenever X reaches a
leaf where the above quantity is negative. This does not change the hardcore advantage, so
this new T still satisfies our assumption.

Tsmall will be a randomized algorithm. Upon receiving the input x ∈ {±1}n, it samples
X ∼ µk and i ∼ Unif([k]), and then constructs X(x, i) by inserting x into the ith block
of X,

(X(x, i))(j) =
{

X(j) if j ̸= i

x if j = i.

Then, Tsmall(x) outputs Tlarge(X(x, i))i.
Our analysis of Tsmall relies on the following simple observation: If we sample x ∼ µ,

then even conditioning on any choice of i = i, the distribution of X(x, i) is µk. This also
means that X(x, i) and i are independent.

We claim that Tsmall has the two desired properties; low expected number of queries, and
high accuracy on H. To bound the expected number of queries Tsmall makes on an input
x ∼ µ, we use that X(x, i) is distributed according to µk. Therefore, Tlarge(X(x, i)) makes,
on average, dk queries. Expanded, we have that,∑

i∈[k],j∈[n]

Pr[Tlarge(X(x, i)) queries X(x)(i)
j ] = dk.

Whereas, the number of queries Tsmall(x) makes only counts queries to the ith block, and is
therefore,∑

i∈[k],j∈[n]

Pr
[
Tlarge(X(x, i)) queries X(x, i)(i)

j · 1[i = i]
]

=
∑

i∈[k],j∈[n]

Pr
[
Tlarge(X(x, i))) queries X(x, i)(i)

j

]
· 1

k

= d.

In the above, the first equality uses that i is independent of X(x, i), and so is still uniform
on [k] even conditioned on which queries Tlarge makes.
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Lastly, we verify that Tsmall has high accuracy on the hardcore measure.

E
x∼µ

[f(x)Tsmall(x, i))H(x)] = E
x∼µ

[f(x)Tlarge(X(x, i)))iH(x)] (Definition of Tsmall)

= E
i∼[k]

[
E

X∼µk

[
f(X(i))Tlarge(X)iH(X(i))

]]
(i, X(x) are independent)

= E
i∼[k]

[
E

ℓ∼µk(Tlarge)
[AdvH(ℓ, i)]

]
(Definition 27)

= 1
k

E
ℓ∼µk(Tlarge)

[AdvH(ℓ)] > γδ. ◀

8.3 Understanding the error in terms of hardcore density and advantage
To state the main result of this subsection, we’ll define the following distribution for the sum
of independent Bernoulli random variables.

▶ Definition 29. For any p ∈ [0, 1]k, we use BerSum(p) to denote the distribution of
z := z1 + · · · + zk where each zi is independently drawn from Ber(pi).

The following generalizes Lemma 10.

▶ Lemma 30 (Accuracy in terms of hardcore density and advantage of the leaves). Let H be a
(γ, d)-hardcore measure w.r.t. µ for f : {±1}n → {±1}, and T : ({±1}n)k → {±1} be any
tree. Then, for any t ≥ 0,

Pr
X∼µk

[∥∥T (X) − f⊗k(X)
∥∥

0 ≤ t
]

≤ E
ℓ∼µk(T )

[
Pr

z∼BerSum(p(ℓ))
[z ≤ t]

]
where p(ℓ) ∈ [0, 1]k is the vector where

p(ℓ)i := DensH(ℓ, i) − AdvH(ℓ, i)
2 for each i ∈ [k].

Lemma 30 implies a generalization of Lemma 10.

▶ Corollary 31. Let H be a (γ, d)-hardcore measure w.r.t. µ for f : {±1}n → {±1}, and
T : ({±1}n)k → {±1} be any tree. Then, for any t ≥ 0,

Pr
X∼µk

[∥∥T (X) − f⊗k(X)
∥∥

0 ≤ t
]

≤ E
ℓ∼µk(T )

[
min

(
1, exp

(
t − DensH(ℓ) − AdvH(ℓ)

4

))]
.

Proof. The Chernoff bound of Fact 2 says that, for any p ∈ [0, 1]k and µ :=
∑

i∈[k] pi,

Pr
z∼BerSum(p)

[z ≤ t] ≤

exp
(

− (µ−t)2

2µ

)
if µ ≥ t

1 otherwise.

We want to show that the above is bounded by min(1, et−µ/2). Clearly this holds for µ < t,
so we need only consider the case where µ ≥ t

exp
(

− (µ−t)2

2µ

)
= exp

(
− µ2−2tµ+t2

2µ

)
≤ exp

(
− µ2−2tµ

2µ

)
= et−µ/2.

Since exp
(

− (µ−t)2

2µ

)
≤ 1 as well, it is upper bounded by min(1, et−µ/2) as desired. The

desired result follows from Lemma 30 as well as
∑

i∈[k] p(ℓ)i = DensH (ℓ)−AdvH (ℓ)
2 for every

leaf ℓ of T . ◀
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The main observation underlying Lemma 30 is that, if we choose an input X ∼ µk

conditioned on reaching a leaf ℓ ∈ T , that X is distributed according to a k-wise product
distribution (i.e. from µ1(ℓ) × · · · × µk(ℓ) for appropriately defined distributions). The below
is essentially the same as Lemma 3.2 of [10], but we include a proof for completeness.

▷ Claim 32. For any (potentially randomized) tree T : ({±1}n)k → Y and leaf ℓ of T ,
if X ∼ µk, then the distribution of X conditioned on reaching the leaf ℓ is a product
distribution over the k blocks of X.

Proof. First, if T is a randomized tree, it is as a distribution over deterministic trees. If the
desired result holds for each of those deterministic trees, it also holds for T . Therefore, it
suffices to consider the case where T is deterministic.

We’ll prove that the distribution of X reaching any internal node or leaf of T is product
by induction on the depth of that node. If that depth is 0, then all inputs reach it and so
the desired result follows from µk being product.

For depth d ≥ 1, let α be the parent of ℓ. Then α has depth d − 1, so by the inductive
hypothesis, the distribution of inputs reaching α is product. Let i ∈ [k], j ∈ [n], b ∈ {±1} be
chosen so that an input X reaches ℓ iff it reaches α and X

(i)
j = b. Then,

Pr[X = X | X reaches ℓ]

= Pr[X = X | X reaches α] ·
1[X(i)

j = b]

Pr[X(i)
j = b | X reaches α]

=
1[X(i)

j = b]

Pr[X(i)
j = b | X reaches α]

·
∏

ℓ∈[k]

Pr[X(ℓ) = X(ℓ) | X reaches α] (Inductive hypothesis)

=

(∏
ℓ ̸=i

Pr[X(ℓ) = X(ℓ) | X reaches α]

)
·

Pr[X(i) = X(i) | X reaches α] · 1[X(i)
j = b]

Pr[X(i)
j = b | X reaches α]

=

(∏
ℓ ̸=i

Pr[X(ℓ) = X(ℓ) | X reaches α]

)
· Pr[X(i) = X(i) | X reaches α, X

(i)
j = b].

The above is decomposed as a product over the k components of X, so is a product distribution.
◁

We conclude this subsection with a proof of Lemma 30.

Proof of Lemma 30. Consider any leaf ℓ of T . We wish to compute the probability that
T (X) makes less than t mistakes on f⊗k(X) given that X reaches the leaf ℓ. On this leaf, T

outputs a single vector y ∈ {±1}k. Meanwhile, by Claim 32, the distribution of X is product
over the blocks, and so f(X(1)), . . . , f(X(k)) are independent. Define q(ℓ) ∈ [0, 1]k as,

q(ℓ)i := Pr
X∼µk

[yi ̸= f(X(i))].

Then,

Pr
X∼µk

[∥∥T (X), f⊗k(X)
∥∥

0 ≤ t | X reaches ℓ
]

= Pr
z∼BerSum(q(ℓ))

[z ≤ t].

For z ∼ BerSum(q), the probability z ≤ t is monotonically decreasing in each qi. Therefore,
it suffices to show that q(ℓ)i ≥ p(ℓ)i for each i ∈ [k]. We compute,

q(ℓ)i = Pr
X∼µk

[T (X)i ̸= f(X(i)) | X reaches ℓ]

=
1 − EX∼µk [T (X)if(X(i)) | X reaches ℓ]

2 (T (X)i, f(X(i) ∈ {±1})
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Separating the above expectation into two pieces, for X drawn from µk conditioned in X

reaching ℓ,

E[T (X)if(X(i))] = E[T (X)if(X(i))H(X(i))] + E[T (X)if(X(i))(1 − H(X(i)))]

≤ AdvH(ℓ, i) + E[T (X)if(X(i))(1 − H(X(i)))] (Definition 9)

≤ AdvH(ℓ, i) + E[(1 − H(X(i)))] = 1 + AdvH(ℓ, i) − DensH(ℓ, i).

Therefore,

q(ℓ)i ≥ DensH(ℓ, i) − AdvH(ℓ, i)
2 = p(ℓ)i. ◀

8.4 Completing the proof of the threshold direct sum theorem
In this subsection, we complete the proof of Theorem 23. Throughout this section, we’ll use
the following function:

gt(z) := min(1, et−z/4).

By using Corollary 31, it suffices to show that

E
ℓ∼µk(T )

[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
≤ e−δk/10 + 1 − γ. (10)

Recall that we have much information about how DensH(ℓ) distributes over the leaves via
Lemma 26, but a coarser understanding of how AdvH(ℓ) distributes via Lemma 28. Because
of this, we will first bound the above equation where the AdvH(ℓ) is set to 0 and analyze
how much including that term affects the result.

▶ Lemma 33. For any tree T : ({±1}n)k → {±1}k and hardcore measure of density δ w.r.t.
distribution µ,

E
ℓ∼µk(T )

[
gδk/10(DensH(ℓ))

]
≤ e−.121δk.

Proof. We bound,

E
ℓ∼µk(T )

[
min

(
1, exp

(
δk/10 − DensH(ℓ)

4

))]
≤ eδk/10 · E

ℓ∼µk(T )

[
e−DensH (ℓ)/4

]
.

Since z 7→ e−z/4 is convex, we can use Lemma 26 to bound the above using the moment
generating function of the binomial distribution,

E
ℓ∼µk(T )

[
e−DensH (ℓ)/4

]
≤ E

z∼Bin(k,δ)
[e−z/4]

= (1 − δ(1 − e−1/4))k

≤ e−(1−e−1/4)δk.

Combining the above,

E
ℓ∼µk(T )

[
gδk/10(DensH(ℓ))

]
≤ e−δk(1−e−1/4−1/10) ≤ e−0.121δk. ◀

Next, we prove a Lipschitz-style bound for g. This will be useful in incorporating AdvH(ℓ)
to Equation (10).
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▶ Proposition 34. For any z, ∆, t ≥ 0,

gt(z − ∆) ≤ gt(z) + ∆/4. (11)

Furthermore, if z ≥ 5t, then

gt(z − ∆) ≤ gt(z) + ∆/t. (12)

Proof. Equation (11) follows from the (1/4)-Lipschitzness of gt(z).
For Equation (12), fix any choice of z ≥ 5t. We want to show that for any choice of ∆,

gt(z − ∆) − gt(z)
∆ ≤ 1/t.

We claim that the left hand side of the above inequality is maximized when ∆ = z −4t. When
∆ is increased beyond z − 4t, the numerator remains constant (because gt(z) is constant
for any z ≤ 4t, but the denominator increases, so the maximum cannot occur at at any
∆ > z − 4t. On the other hand, gt(z) is convex when restricted to the domain [4t, ∞), so the
maximum cannot occur at any ∆ < z − 4t. Therefore, it suffices to consider ∆ = z − 4t, in
which case,

gt(z − ∆) − gt(z)
∆ = 1 − gt(z)

∆ ≤ 1
∆ ≤ 1/t. ◀

We are now ready to prove the main result of this section.

Proof of Theorem 23. By applying Corollary 31,

Pr
X∼µk

[∥∥T (X) − f⊗k(X)
∥∥

0 ≤ δk/10
]

≤ E
ℓ∼µk(T )

[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
.

First, we consider the case where δk ≤ 40. Here, by applying Equation (11),

E
ℓ∼µk(T )

[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
≤ E

ℓ∼µk(T )

[
gδk/10(DensH(ℓ))

]
+ 1

4 · E
ℓ∼µk(T )

[AdvH(ℓ)]

≤ e−0.121δk + γδk/4 (Lemmas 28 and 33)

≤ e−δk/10 + 10γ (δk ≤ 40)

When δk > 40, we break down the desired result into two pieces, depending on whether
DensH(ℓ) is small or large. For the piece where DensH(ℓ) is small, we just use that g(·) is
bounded between 0 and 1 which means g(z) − g(z − ∆) ≤ 1,

E
[
gδk/10(DensH(ℓ) − AdvH(ℓ)) · 1[DensH(ℓ) ≤ δk/2]

]
≤ E

[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) ≤ δk/2]

]
+ Pr[DensH(ℓ) ≤ δk/2]

≤ E
[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) ≤ δk/2]

]
+ e−δk/8. (Lemma 13)

For the piece where DensH(ℓ) is large, we use Equation (12)

E
[
gδk/10(DensH(ℓ) − AdvH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
≤ E

[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
+ 10

δk
·E[AdvH(ℓ) · 1[DensH(ℓ) > δk/2]]

(Equation (12))

≤ E
[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
+ 10

δk
·E[AdvH(ℓ)] (DensH(ℓ) ≥ 0)

≤ E
[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
+ 10

δk
· γδk (Lemma 28)
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Combining the above two pieces,

E
[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
≤ E

[
gδk/10(DensH(ℓ))

]
+ e−δk/8 + 10γ

≤ e−δk/8 + e−0.121δk + 10γ (Lemma 33)

When δk > 40, e−δk/8 + e−0.121δk < e−δk/10, so we also recover the desired result in this
case. ◀

9 Equivalence between direct sum theorems and XOR lemmas and
the proof of Theorem 3

In this section, we prove the following claim which shows that a strong direct sum theorem
implies a strong XOR lemma. We then derive Theorem 3 as a consequence of this equivalence
and our strong direct sum theorem for query complexity (Theorem 1).

▷ Claim 35 (Equivalence between direct sum theorems and XOR lemmas). For every f :
{±1}n → {±1}, distribution µ over {±1}n, integer k ∈ N, multiplicative factor M ∈ R, and
ε ∈ (0, 1), if the following direct sum theorem holds:

Depthµk

(f⊗k, ε) ≥ M · Depthµ(f, δ).

then, the following XOR lemma holds:

Depthµk

(f⊕k, ε
2 ) ≥ M · Depthµ(f, δ).

In order to prove Claim 35 and Theorem 3, we establish a lemma which allows us to
convert any decision accurately computing f⊕k into a decision tree accurately computing
f⊗k. The following definition captures this conversion.

▶ Definition 36 (The product tree). Given a decision tree T : ({±1}n)k → {±1}, the k-wise
product tree T̃ : ({±1}n)k → {±1}k is defined as follows. For the internal nodes, T̃ has
exactly the same structure as T . For a leaf ℓ in T , the leaf vector (ℓ1, . . . , ℓk) ∈ {±1}k in T̃

is defined by

ℓi := sign
(

E
X∼µk

[f(X(i)) | X reaches ℓ]
)

for all i ∈ [k].

Intuitively, T̃ computes T ’s best guess for f(X(i)) for each i ∈ [k] on a given input
(X(1), . . . , X(k)). If T is really good at computing f⊕k then at every leaf it should have
queried enough variables to pin down f ’s value on each of the input blocks. The main lemma
formalizes this intuition.

▶ Lemma 37. For any f : {±1}n → {±1}, distribution µ over {±1}n, and tree T :
({±1}n)k → {±1}, the k-wise product tree T̃ : ({±1}n)k → {±1}k satisfies

Pr
X∼µk

[T̃ (X) = f⊗k(X)] ≥ E
X∼µk

[T (X)f⊕k(X)].
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9.1 Proofs of Claim 35 and Theorem 3 assuming Lemma 37
The following corollary of Lemma 37 implies Claim 35 and Theorem 3.

▶ Corollary 38 (Main corollary of Lemma 37). For all f : {±1}n → {±1}, k ≥ 1, distributions
µ over {±1}n, and ε > 0, Depthµk

(f⊕k, ε
2 ) ≥ Depthµk

(f⊗k, ε).

Proof. Let A be a randomized query algorithm for f⊕k with error ε/2 and expected cost
q = Depthµk

(f⊕k, ε/2). Let T denote the distribution over decision trees determined by A.
Consider the algorithm Ã which computes f⊗k(X) by sampling T ∼ T and returning T̃ (X)
where T̃ is the decision tree from Lemma 37. Then, the success of Ã is

E
T ∼T

[
Pr

X∼µk
[T̃ (X) = f⊗k(X)]

]
≥ E

T ∼T

[
E

X∼µk
[T (X)f⊕k(X)]

]
(Lemma 37)

≥ 1 − ε

where the last step uses the fact that advantage is 1 − 2 · error. Since the structure of each T̃

is the same as T , the expected cost of Ã is q which completes the proof. ◀

Proofs of Claim 35 and Theorem 3. By Corollary 38,

Depthµk

(f⊕k, ε
2 ) ≥ Depthµk

(f⊗k, ε) ≥ M · Depthµ(f, δ).

Theorem 3 follows immediately by applying Claim 35 to Theorem 2. ◀

▶ Remark 39 (On the necessity of the 1/2 loss in ε in Corollary 38). One may wonder whether
the 1/2 loss in ε parameter in Corollary 38 is necessary. For example, can one show
Depthµk

(f⊕k, 0.51ε) ≥ Depthµk

(f⊗k, ε)? The issue is that Depthµk

(f⊕k, 0.5) = 0 for all
functions f : {±1}n → {±1} because the bias of f⊕k is at least 0.5. So such a statement
cannot hold for all f in all parameter regimes. Concretely, one can show that if f is the
parity of n bits and µ is uniform over {±1}n, then Depthµk

(f⊗k, ε) ≥ Ω(kn) for all constant
ε < 1. Any path in a decision tree for f⊗k which queries at most λkn bits for some constant
λ < 1 has success probability 2−Ω(k). So to achieve any constant accuracy requires Ω(kn)
expected depth. On the other hand, Depthµk

(f⊕k, 0.5) = 1 ≪ Depthµk

(f⊗k, ε) which is
achieved by the decision tree that outputs a single constant value. Therefore, the ε/2 in
Corollary 38 is necessary for such a statement to hold in full generality.

9.2 Proof of Lemma 37
Each ℓi for i ∈ [k] satisfies

E
X∼µk

[ℓi · f(X(i)) | X reaches ℓ] =
∣∣∣∣ E
X∼µk

[f(X(i)) | X reaches ℓ]
∣∣∣∣

≥ E
X∼µk

[ℓ · f(X(i)) | X reaches ℓ].

In particular, for all leaves ℓ of T ,

E
X∼µk

[T̃ (X)i · f(X(i)) | X reaches ℓ] ≥ E
X∼µk

[T (X) · f(X(i)) | X reaches ℓ]. (13)
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Therefore:

Pr
X∼µk

[T̃ (X) = f⊗k(X)]

= E
ℓ∼µk(T )

[
Pr

X∼µk
[T̃ (X) = f⊗k(X) | X reaches ℓ]

]
= E

ℓ∼µk(T )

[ ∏
i∈[k]

Pr
X∼µk

[T̃ (X)i = f(X(i)) | X reaches ℓ]
]

(Claim 32)

≥ E
ℓ∼µk(T )

[ ∏
i∈[k]

E
X∼µk

[T̃ (X)if(X(i)) | X reaches ℓ]
]

≥ E
ℓ∼µk(T )

[ ∏
i∈[k]

E
X∼µk

[T (X)f(X(i)) | X reaches ℓ]
]

(Equation (13))

= E
ℓ∼µk(T )

[
E

X∼µk

[
T (X)

∏
i∈[k]

f(X(i)) | X reaches ℓ

]]
(Claim 32)

= E
ℓ∼µk(T )

[
E

X∼µk
[T (X)f⊗k(X) | X reaches ℓ]

]
(
∏

i∈[k] f(X(i)) = f⊕k(X))

= E
X∼µk

[T (X)f⊕k(X)]

which completes the proof. ◀

10 Proof of Claim 4

▷ Claim 40 (The γ factor in Theorem 2 is necessary; Claim 4 restated). Let Par : {±1}n → {±1}
be the parity function and µ be the uniform distribution over {±1}n. Then for all γ,

Depthµk

(Par⊗k, 1 − γ) ≤ 2γk · Depthµ(Par, 1
4 ).

We will need the following simple proposition, which states that in any tree that seeks to
compute the n-variable parity function, leaves of depth strictly less than n contribute 1

2 to
the error:

▶ Proposition 41. For any (potentially randomized) tree T : {±1}n → {±1} and leaf ℓ of T

with depth strictly less than n,

Pr
x∼Unif({±1}n)

[T (x) ̸= Par(x) | x reaches ℓ] = 1
2 .

Proof. Since ℓ is at depth strictly less than n, there must be some index i ∈ [n] not queried
on the path to ℓ. Taking any input x that reaches ℓ, the input x′ with the ith bit flipped
must also reach ℓ and have the opposite parity. Both of these inputs are equally likely under
the uniform distribution and so the value of Par(x) conditioned on x reaching ℓ is equally
likely to be +1 and −1. Therefore, T errs half the time it reaches this leaf regardless of how
it labels it. ◀

Proof of Claim 40. The proof proceeds in two parts. First, we show that Depthµ(Par, 1
4 ) = n

2 .

Second, we prove that Depthµ⊗k

(Par⊗k, 1 − γ) ≤ γkn.
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(1) Depthµ(Par, 1
4 ) = n

2 . Let T be an arbitrary randomized decision tree let pn(T ) be the
probability that T queries all n variables. Then, the expected depth of T is at least n · pn(T ).
Meanwhile, by Proposition 41, the error of T in computing parity is at least 1

2 · pn(T ) w.r.t.
the uniform distribution. Therefore, Depthµ(f, 1

4 ) ≥ n
2 .

While this direction is not needed for Claim 40 we show for completeness that
Depthµ(f, 1

4 ) ≤ n
2 by constructing a randomized1 decision tree T for f . With probabil-

ity 1
2 , T queries all n variables to compute f exactly. Otherwise, it simply outputs 0. T

has expected depth n
2 , and it errs only when it queries no variables and guesses incorrectly,

which happens with probability 1
2 · 1

2 = 1
4 . Thus, Depthµ(f, 1

4 ) ≤ n
2 .

(2) Depthµ⊗k

(f⊗k, 1 − γ) ≤ γkn. We construct a randomized2 decision tree T for f⊗k.
With probability γ, T queries all kn variables to compute f⊗k exactly, and with probability
1 − γ, it outputs 0. When it queries all variables, it has no error so its average error is at
most 1 − γ. Furthermore, its average depth is γkn. ◁
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A Figures of stacked and fair trees
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Figure 3 Illustration of a stacked decision tree for a function f⊗k. The decision tree consists of k

depth-d decision trees, T1, . . . , Tk, stacked on top of each other. For an input X ∈ ({±1}n)k, the
output T (X) is computed sequentially, first by computing T1(X), then T2(X), and so on. The final
output is T (X) := (T1(X), . . . , Tk(X)).

B Proof of Theorem 6

Let H denote the set of measures of density δ/2 with respect to µ and let T denote the
set of decision trees T whose expected depth with respect to µ is at most d. Suppose for
contradiction that there does not exist an H ∈ H which is (γ, d)-hardcore. That is, for all
H ∈ H there is a tree T of expected depth at most d satisfying

E
x∼µ

[f(x)T (x)H(x)] > γ E
x∼µ

[H(x)] = γδ/2. (14)

https://lucatrevisan.wordpress.com/2007/11/06/the-impagliazzo-hard-core-set-theorem/
https://lucatrevisan.wordpress.com/2007/11/06/the-impagliazzo-hard-core-set-theorem/
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X
(i)
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X
(i)
3

X
(i)
22

π

X(i) queried ≤ d

times on path π

Figure 4 Illustration of a fair decision tree. For every block i ∈ [k] and path π, the input block
X(i) is queried at most d times.

We use the minimax theorem to switch the quantifiers in the above statement. Consider the
payoff matrix M whose rows are indexed by distributions from H and whose columns are
indexed by algorithms from T and whose entries are given by MH,T := Ex∼µ[f(x)T (x)H(x)].
This is the payoff matrix for the zero-sum game where the row player first chooses a row H

and the column player then chooses a column T and the payoffs are determined by MH,T .
Note that once the first player’s strategy is fixed, we can assume without loss of generality
that the second player’s strategy is deterministic. Therefore, the minimax theorem for
zero-sum games yields

γδ/2 < min
ρ∈µ(H)

max
T ∈T

(ρ⊤M)T (Equation (14))

= max
τ∈µ(T )

min
H∈H

(Mτ)H (minimax theorem)

where µ(·) denotes the set of distributions over a given set. Therefore, there is a fixed
distribution τ over the set T such that for all H ∈ H

E
T ∼τ

[
E

x∼µ
[f(x)T (x)H(x)]

]
> γδ/2. (15)

This shows that

Pr
x∼µ

[
E

T ∼τ
[T (x)]f(x) ≥ γ

]
≥ 1 − δ/2.

In particular, if instead Prx∼µ[ET ∼τ [T (x)]f(x) < γ] ≥ δ/2 then we can contradict Equa-
tion (15) by constructing a δ/2-density H such that H(x) := Prx∼µ[x = x] for a δ/2-fraction
of x satisfying ET ∼τ [T (x)]f(x) < γ. Equation (15) shows that ET ∼τ [T (x)] has good
correlation with f for a large fraction of inputs. We obtain a single strategy from the
distribution τ by sampling T1, . . . , Tr ∼ τ for r sufficiently large (chosen later) and defining
T ⋆ as T ⋆(x) := MAJ(T1(x), . . . , Tr(x)). For every x for which ET ∼τ [T (x)]f(x) ≥ γ, we have

Pr
T1,...,Tr∼τ

[
MAJ(T1(x), . . . , Tr(x)) ̸= f(x)

]
≤ 2−Ω(γ2r)

CCC 2024



16:30 A Strong Direct Sum Theorem for Distributional Query Complexity

by a Chernoff bound. Choosing r = Θ(log(1/δ)/γ2) ensures that the failure probability is at
most δ/2. The decision tree T ⋆ satisfies Prx∼µ[T ⋆(x) ̸= f(x)] ≤ δ. The expected depth of
T ⋆ is less than

r · d = Θ(d log(1/δ)/γ2) < Depthµ(f, δ)

which is a contradiction.

C The lack of error reduction for distributional error

In Section 2, we showed how error reduction gave a simple proof of a strong direct sum
theorem for randomized query complexity. The specific statement needed in that proof is the
following standard error reduction by repetition theorem.

▶ Fact 3 (Error reduction for R). For any function f : {±1}n → {±1} and δ > 0,

R(f, δ) ≤ O(log( 1
δ )) · R(f, 1/4).

Here, we give a short proof that no error reduction holds in the distributional setting, even
with substantially weaker parameters.

▷ Claim 42. For any n ∈ N, let µ be the uniform distribution over {±1}n. There is a
function f : {±1}n → {±1} satisfying,

Depthµ(f, 1/4) = 0 and Depthµ(f, 1/8) ≥ Ω(n).

Since any function on n bits can be computed exactly using n, the f in the above claim
requires essentially the maximum number of queries to be computed to error 1/8 despite
requiring no queries to be computed to error 1/4.

Proof. We first define f : If x1 = 0, then f(x) = 0. Otherwise, f(x) is the parity of the
remaining n − 1 bits of x.

Note that,

Prx∼µ[f(x) = 0] = 1
2 · (Pr[f(x) = 0 | x1 = 0] + Pr[f(x) = 0 | x1 = 1]) = 3

4 .

Therefore, the 0 query algorithm that simply outputs 0 has an error of only 1/4 on f .
It only remains to prove that Depthµ(f, 1/10) ≥ Ω(n). Consider any (potentially random-

ized) T : {±1}n → {±1} and leaf ℓ of T at depth strictly less than n − 1. By Proposition 41

Prx∼µ[T (x) ̸= f(x) | x reaches ℓ, x1 = 1] = 1/2.

Let p be the probability that T (x) queries a leaf of depth at least n − 1 given that x1 = 1.
The above allows us to conclude that

Prx∼µ[T (x) ̸= f(x)] ≥ 1
2 · Pr[T (x) ̸= f(x) | x1 = 1] ≥ 1

4 · p.

Therefore, if T has error at most 1/8, then p must be at least 1/2, which shows that
Depthµ(f, 1/8) ≥ n−1

4 . ◁
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