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Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear
algebraic branching programs, each with a possibly different ordering (

∑
smABP). Specifically, we

give an explicit nd-variate polynomial of degree d such that any
∑

smABP computing it must have
size nω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low
degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result
generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a
single ordered set-multilinear ABP.

The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and
Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered
set-multilinear branching programs – for a polynomial of sufficiently low degree – would imply super-
polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture
that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work
shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n),
then it would imply super-polynomial lower bounds against general ABPs.

Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and
Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput.
Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each
of which established lower bounds for related or restricted versions of this model. They also strongly
answer a question from the former two, which asked to prove super-polynomial lower bounds for
general

∑
smABP.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.20

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/212/
Full Version: https://arxiv.org/abs/2312.15874

Funding Prerona Chatterjee: This work was done as a postdoctoral student at Tel Aviv University,
where the research was funded by the Azrieli International Postdoctoral Fellowship, the Israel Science
Foundation (grant number 514/20) and the Len Blavatnik and the Blavatnik Family foundation.
Shubhangi Saraf : Research partially supported by a Sloan research fellowship and an NSERC
Discovery Grant.
Amir Shpilka: Research leading to these results has received funding from the Israel Science
Foundation (grant number 514/20) and from the Len Blavatnik and the Blavatnik Family foundation.

© Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prerona.ch@gmail.com
https://preronac.bitbucket.io/
https://orcid.org/0000-0003-2643-8142
mailto:deepkush@cs.toronto.edu
https://www.cs.toronto.edu/~deepkush/
https://orcid.org/0000-0001-5764-2942
mailto:shubhangi.saraf@utoronto.ca
https://www.math.toronto.edu/ssaraf/
https://orcid.org/0009-0005-0874-2978
mailto:shpilka@tauex.tau.ac.il
https://www.cs.tau.ac.il//~shpilka/
https://orcid.org/0000-0003-2384-425X
https://doi.org/10.4230/LIPIcs.CCC.2024.20
https://eccc.weizmann.ac.il/report/2023/212/
https://arxiv.org/abs/2312.15874
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Lower Bounds for Set-Multilinear Branching Programs

Acknowledgements Parts of this work were done while the first author was visiting TIFR Mumbai
and ICTS-TIFR Bengaluru, and she would like to thank Venkata Susmita Biswas, Ramprasad
Saptharishi, Prahladh Harsha and Jaikumar Radhakrishnan for the hospitality. The first author
would also like to thank Anamay Tengse for useful discussions.

1 Introduction

1.1 Background on Algberaic Complexity
In his seminal work ([40]) in 1979, Valiant proposed an algebraic framework to study the
computational complexity of computing polynomials. Algebraic Complexity Theory is this
study of the complexity of computational problems which can be described as computing a
multivariate polynomial P (x1, . . . , xN ) over some elements x1, . . . , xN lying in a fixed field .
Several fundamental computational tasks such as computing the determinant, permanent,
matrix product, etc., can be represented using this framework. The natural computational
models that we investigate in this setting are models such as algebraic circuits, algebraic
branching programs, and algebraic formulas.

An algebraic circuit over a field for a multivariate polynomial P (x1, . . . , xN ) is a directed
acyclic graph (DAG) whose internal vertices (called gates) are labeled as either + (sum) or ×
(product), and leaves (vertices of in-degree zero) are labeled by the variables xi or constants
from . A special output gate (the root of the DAG) represents the polynomial P . If the DAG
happens to be a tree, such a resulting circuit is called an algebraic formula. The size of a
circuit or formula is the number of nodes in the DAG. We also consider the product-depth of
the circuit, which is the maximum number of product gates on a root-to-leaf path. The class
VP (respectively, VF) is then defined to be the collection of all polynomials having at most
polynomially large degree which can be computed by polynomial-sized circuits (respectively,
formulas).

The class VP is synonymous to what we understand as efficiently computable polynomials.
The class VNP, whose definition is similar to the boolean class NP, is in some sense a notion
of what we deem as explicit. Much like the problem of proving circuit size lower bounds
for explicit boolean functions, the problem of proving them for explicit polynomials (i.e.,
showing VP ̸= VNP) has also remained elusive for many decades. However, because the latter
only deals with formal symbolic computation as opposed to modelling semantic truth-table
constraints, it is widely believed to be easier to resolve than its boolean counterpart. In
fact, it is even known to be a pre-requisite to the P ̸= NP conjecture in the non-uniform
setting ([8]).

An algebraic branching program (ABP) is a layered DAG with two special nodes in it: a
start-node and an end-node. All edges of the ABP go from layer ℓ − 1 to layer ℓ for some ℓ

(say start-node is the unique node in layer 0 and end-node is the unique node in the last
layer) and are labeled by a linear polynomial. Every directed path γ from start-node to
end-node computes the monomial Pγ , which is the product of all labels on the path γ. The
ABP computes the polynomial P =

∑
γ Pγ , where the sum is over all paths γ from start-node

to end-node. Its size is simply the number of nodes in the DAG, its depth is the length of
the longest path from the start-node to the end-node, and width is the maximum number
of nodes in any layer. The class VBP is then defined to be the collection of all polynomials
(with polynomially-bounded degree) which can be computed by polynomial-sized branching
programs. ABPs are known to be of intermediate complexity between formulas and circuits;
in other words, we know the inclusions VF ⊆ VBP ⊆ VP ⊆ VNP.
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It is conjectured that all of these inclusions are strict, and resolving any of these conjectures
would represent a dramatic advancement in algebraic complexity theory, and even more
broadly, in circuit complexity overall. Valiant’s original hypothesis in [40] pertains to showing
a super-polynomial separation between the complexity of computing the determinant and the
permanent polynomials. This is known to be equivalent to the VBP ̸= VNP conjecture, i.e.,
showing super-polynomial size lower bounds against ABPs computing explicit polynomials.
At present, the best known lower bound against ABPs is only quadratic ([9]), and it appears
as though we are quite distant from addressing this conjecture. On the other hand, as we
now elaborate, while not directly improving upon this quadratic bound, this paper makes
significant progress towards a different line of attack aimed at resolving Valiant’s conjecture.

1.2 Set-Multilinearity: A Key Syntactic Restriction
One key advantage that algebraic models offer over their boolean counterparts is that of
syntactic restrictions. A recurring theme in algebraic complexity theory is to first efficiently
convert general models of computation (such as circuits or formulas) to special kinds of
syntactically-restricted models, show strong lower bounds against these restricted models,
and then recover non-trivial lower bounds against the original general models owing to
the efficiency of this conversion. This phenomenon is termed hardness escalation. In this
subsection, we describe one crucial example of a syntactic restriction in detail, that of
set-multilinearity.

A polynomial is said to be homogeneous if each monomial has the same total degree
and multilinear if every variable occurs at most once in any monomial. Now, suppose that
the underlying variable set is partitioned into d sets X1, . . . , Xd. Then the polynomial is
said to be set-multilinear with respect to this variable partition if each monomial in P has
exactly one variable from each set. Note that a set-multilinear polynomial is both multilinear
and homogeneous, and has degree precisely d if it is set-multilinear over d sets. Next,
we define different models of computation corresponding to these variants of polynomials
classes. An algebraic formula/branching program/circuit is set-multilinear with respect to a
variable partition (X1, . . . , Xd) if each internal node in the formula/branching program/circuit
computes a set-multilinear polynomial.1 Multilinear and homogeneous formulas/branching
programs/circuits are defined analogously.

We now describe several important hardness escalation results, each reducing general
models to corresponding set-multilinear models.

Constant depth circuits

The recent celebrated breakthrough work of Limaye, Srinivasan, and Tavenas ([27]) establishes
super-polynomial lower bounds for general algebraic circuits for all constant-depths, a problem
that was open for many decades. In order to show this, it is first shown that general low-depth
algebraic formulas can be converted to set-multilinear algebraic formulas of low depth as
well, and without much of a blow-up in size (as long as the degree is small). Subsequently,
strong lower bounds are established for low-depth set-multilinear circuits (of small enough
degree), which when combined with the first step yields the desired lower bound for general
constant-depth circuits.

1 Of course, a non-root node need not be set-multilinear with respect to the entire variable partition.
Nevertheless, here we demand that it must be set-multilinear with respect to some subset of the collection
{X1, . . . , Xd}.

CCC 2024
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Formulas

Raz [33] showed that if an N -variate set-multilinear polynomial of degree d has an algebraic
formula of size s, then it also has a set-multilinear formula of size poly(s) · (log s)d. In
particular, for a set-multilinear polynomial P of degree d = O(log N/ log log N), it follows
that P has a formula of size poly(N) if and only if P has a set-multilinear formula of size
poly(N). Thus, having Nωd(1) set-multilinear formula size lower bounds for such a low degree
would imply super-polynomial lower bounds for general formulas. A recent line of work by
Kush and Saraf ([25, 26]) can be viewed as an attempt to prove general formula lower bounds
via this route.

Algebraic Branching Programs

In fact, in the context of ABPs as well, the very recent work of Bhargav, Dwivedi, and
Saxena ([5]) reduces the problem of showing lower bounds against general ABPs to proving
lower bounds against sums of ordered set-multlinear ABPs (again, as long as the degree is
small enough). Ordered set-multilinear ABPs are, in fact, historically well-studied models
and extremely well-understood. However, despite their apparent simplicity, the work [5]
implies that understanding their sums – a model that is far less studied – is at the forefront
of understanding Valiant’s conjecture. We state their result formally as Theorem 1.5 in
Section 1.3.

First however, as this is also the main model considered in this paper, we begin by
formally defining ordered set-multilinear ABPs and outlining their importance.

▶ Definition 1.1 (Ordered smABP). Given a variable partition (X1, . . . , Xd), we say that a
set-multilinear branching program of depth d is said to be ordered with respect to an ordering
(or permutation) σ ∈ Sd if for each ℓ ∈ [d], all edges of the ABP from layer ℓ − 1 to layer ℓ

are labeled using a linear form over the variables in Xσ(ℓ). It is simply said to be ordered if
there exists an ordering σ such that it is ordered with respect to σ.

At this point, it is essential to take note of the terminology in this context: in this
paper, a general (or “unordered”) set-multilinear branching program refers to an ABP for
which each internal node computes a polynomial that is set-multilinear with respect to some
subset of the global partition, whereas an ordered set-multilinear branching program is more
specialized and has the property that any two nodes in the same layer compute polynomials
that are set-multilinear with respect to the same partition.
▶ Remark 1.2. This notion of ordered set-multilinear branching programs turns out to be
equivalent to the more commonly used notions of (i) “read-once oblivious algebraic branching
programs (ROABPs)”, as well as (ii) “non-commutative algebraic branching programs” (see,
for example, [12]). This relationship, especially with the former model, is described in more
detail later in Section 1.4.

▶ Definition 1.3 (
∑

smABP). Given a polynomial P (X) that is set-multilinear with respect
to the variable partition X = (X1, . . . , Xd), we say that

∑t
i=1 Ai is a

∑
smABP computing P

if indeed
∑t

i=1 Ai(X) = P (X), and each Ai is an ordered set-multilinear branching program
i.e., each Ai is ordered with respect to some σi ∈ Sd. We call t (i.e., the number of summands
in a

∑
smABP) its support size and define its max-width and total-width to be the maximum

over the width of each Ai and the sum of the width of each Ai, respectively.

We have known exponential width lower bounds against a single ordered set-multilinear
ABP since the foundational work of Nisan. In [29], he showed that there are explicit
polynomials (in fact, in VP) which require any ordered set-multilinear ABP computing
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them to be of exponentially large width. Viewed differently, this work even shows that in
the non-commutative setting, VBP ̸= VP2. More crucially however, this work introduced
a powerful technique – a notion known as the partial derivative method – that has been
instrumental in the bulk of the major advancements in algebraic complexity theory over the
past three decades (such as [30, 32, 36, 19, 23, 20, 24, 27, 39], see also [38, 37]).

Despite the considerable development of the partial derivative technique over the course
of these works (and many more) for proving strong lower bounds against various algebraic
models, relatively little is known about a general sum of ordered set-multilinear ABPs – a
simple and direct generalization of the original model considered by Nisan. There is some
progress in the literature towards this goal but which still requires additional structural
restrictions on either the max-width or the support size or the size of each part in the variable
partition. The work [3] of Arvind and Raja shows that any

∑
smABP of support size t

computing the n × n permanent polynomial requires max-width (and therefore, total-width)
at least 2Ω(n/t). Note that for this bound to be super-polynomial, the support size needs
to be heavily restricted i.e., t must be sub-linear. On the other hand, the work [5] also
shows a super-polynomial lower bound in this context: it implies that no

∑
smABP of

polynomially-bounded total-width can compute the iterated matrix multiplication (IMM)
polynomial. However, their work requires the additional assumption that the max-width of
such an

∑
smABP is no(1), that is sub-polynomial in the number of variables.

Apart from these, Ramya and Rao ([31]) use the partial derivative method to show an
exponential lower bound against the related model of sum of ROABPs in the multilinear
setting, as well as some other structured multilinear ABPs. Their lower bounds are for
a multilinear polynomial that is computable by a small multilinear circuit. Ghoshal and
Rao ([13]) partially extend their work by proving an exponential lower bound, for a polynomial
that is computable even by a small multilinear ABP, against sums of ROABPs that have
polynomially bounded width. Notably, these results can be viewed as lower bounds against
the

∑
smABP model where each variable set in the variable partition has size 2 (that is, the

total number of variables is 2d). This is because a multilinear polynomial and any multilinear
model computing it (such as circuit, formula, or branching program) can be converted, in
a generic manner, to a set-multilinear polynomial and the corresponding set-multilinear
model respectively, with each variable set having size 2 (also see Section 1.5 for a discussion).
However, from the perspective of hardness escalation of [5] that is described above – and
which is indeed the focus of our work – the setting of d that is far more interesting is when it
is allowed to be considerably smaller than n. More precisely, the framework of [5] requires
d = O(log n/ log log n) (stated formally as Theorem 1.5 below). A detailed discussion about
the results in [31], [13] and how they compare with our work can be found in Section 1.5.

1.3 Our Results
Our main result is in this paper is a super-polynomial lower bound against an unrestricted
sum of ordered set-multilinear branching programs, for a hard polynomial with “small” degree.
We first state this result formally below, and then subsequently explain the connection with
the hardness escalation result of [5] that is alluded to in the previous subsections.

▶ Theorem 1.4 (“Low”-Degree
∑

smABP Lower Bounds). Let d ≤ n be growing parameters
satisfying d = ω(log n). There is a Θ(dn)-variate degree d set-multilinear polynomial Fn,d in
VP such that Fn,d cannot be computed by a

∑
smABP of total-width poly(n).

2 We briefly explain the connection between ordered set-multilinear ABPs and non-commutative compu-
tation in Section 1.4.

CCC 2024
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Next, we formally state the aforementioned hardness escalation result of [5]. In words, in
order to show VBP ≠ VP, it suffices to show lower bounds for any

∑
smABP computing a

polynomial P whose degree is at most about logarithmic in the number of variables. Towards
this goal, our main result above (Theorem 1.4) shows a super-polynomial lower bound for
any

∑
smABP computing an explicit set-multilinear polynomial, whose degree is barely

super-logarithmic in the number of variables. In this sense, it approaches the resolution of
Valiant’s conjecture.

▶ Theorem 1.5 (Hardness Escalation of [5]). Let n, d be growing parameters with d =
O(log n/ log log n). Let Pn,d be a Θ(dn)-variate degree d set-multilinear polynomial in VP
(respectively, VNP). If Pn,d cannot be computed by a

∑
smABP of total-width poly(n), then

VBP ̸= VP (respectively, VBP ̸= VNP).

Next, we also give an explicit set-multilinear polynomial (with polynomially-large degree)
such that any

∑
smABP computing it must require exponential total-width. This strongly

answers a question left open in both [3] and [5].

▶ Theorem 1.6 (Exponential Lower Bounds for
∑

smABP). There is a set-multilinear
polynomial Fn,n in VP, in Θ(n2) variables and of degree Θ(n), such that any

∑
smABP

computing Fn,n requires total-width exp(Ω(n1/3)).

Theorem 1.6 and Theorem 1.4 are also true when Fn,d (as defined in Section 3.3) is
replaced by the appropriate Nisan-Wigderson polynomial NWn,d (as defined in Section 3.2),
which is known to be in VNP. In fact, we first indeed established them for the Nisan-
Wigderson polynomial, and then used some of the ideas presented in a recent work by Kush
and Saraf ([26]) to make the hard polynomial lie in VP.3

With additional effort, and building upon the machinery4 of [26] (which, in turn, uses the
techniques developed in [10]), we can almost recover the same lower bounds as in Theorem 1.6
and Theorem 1.4 for a set-multilinear polynomial even in VBP. We preferred to first state
Theorem 1.6 and Theorem 1.4 in the manner above because (i) the proof is less intricate
and in fact, even serves as a prelude to the proof of the latter, and (ii) to draw a direct
comparison and contrast with the hardness escalation statement (Theorem 1.5). We now
state these results for when the hard polynomial is the VBP polynomial and then describe
two intriguing consequences.

▶ Theorem 1.6’. There is a fixed constant δ ≥ 1/100 and a set-multilinear polynomial Gn,n

in VBP, in Θ(n2) variables and of degree Θ(n), such that any
∑

smABP computing Gn,n

requires total-width exp(Ω(nδ)).

▶ Theorem 1.4’. Let d ≤ n be growing parameters satisfying d = ω(log n). There is a
Θ(dn)-variate, degree Θ(d) set-multilinear polynomial Gn,d in VBP such that Gn,d cannot be
computed by a

∑
smABP of total-width poly(n).

The first intriguing consequence of proving the statements above is that we are able
to show that the ABP set-multilinearization process given in [5] is nearly tight, as Gn,d is
known to have a small set-multilinear branching program and yet, any

∑
smABP computing

it must have large total-width. To make this point effectively, we first state the following key
ingredient in the proof of Theorem 1.5, and subsequently state our tightness result.

3 We also acknowledge that an exponential lower bound – with weaker quantitative parameters – for the
related model of multilinear ROABPs was obtained in [31]. For a comparison of this model with the∑

smABP model, see Sections 1.4 and 1.5.
4 This is explained in more detail in Section 1.6.
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▶ Lemma 1.7 (ABP Set-Multilinearization in [5]). Let Pn,d be a polynomial of degree d that is
set-multilinear with respect to the partition X = (X1, . . . , Xd) where |Xi| ≤ n for all i ∈ [d].
If Pn,d can be computed by an ABP of size s, then it can also be computed by a

∑
smABP

of max-width s and total-width 2O(d log d)s.

▶ Theorem 1.8 (Near-Tightness of ABP Set-Multilinearization). For large enough integers
ω(log n) = d ≤ n, there is a polynomial Gn,d(X) which is set-multilinear over the variable
partition X = (X1, . . . , Xd) with each |Xi| ≤ n, and such that:

it has a branching program of size poly(n),
but any

∑
smABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d).

The second intriguing consequence is the fact that Theorem 1.8 can also be viewed
as an exponential separation between the model of (general) small-width set-multilinear
branching programs and the model of sums of small-width ordered set-multilinear branching
programs. Moreover, we can improve this bound much further in the case of a single ordered
set-multilinear branching program. More precisely, in Theorem 1.9 below, we answer a
question posed in [26] about the relative strength of an unordered and (a single) ordered
set-multilinear branching program, by obtaining a near-optimal separation. A priori, as is
shown in [26] and as mentioned earlier in the introduction, if these two models coincided
(i.e., if a general set-multilinear ABP could be simulated by a small and ordered one), then
it would have led to super-polynomial lower bounds for general algebraic formulas.

▶ Theorem 1.9 (Near-Optimal Separation between Ordered and Unordered smABPs). There is
a polynomial Gn,d(X) which is set-multilinear over the variable partition X = (X1, . . . , Xd)
with each |Xi| ≤ n, and such that:

it has a set-multilinear branching program of size poly(n, d),
but any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).

Note that Gn,d has at most nd monomials and so, it trivially has an ordered set-multilinear
ABP of width nd. Therefore, the lower bound above is essentially optimal.

1.4 The ROABP Perspective
One can also view all of our results described in Section 1.3 through the lens of another
well-studied model in algebraic complexity theory, namely read-once oblivious algebraic
branching programs (ROABPs).

▶ Definition 1.10 (ROABP). For integers n, d and a permutation σ ∈ Sn, an ABP over the
variables x1, . . . , xn is said be a read-once oblivious algebraic branching program (ROABP)
in the order σ of individual degree d if for each ℓ ∈ [n], all edges from layer ℓ − 1 to ℓ are
labelled by univariate polynomials in xσ(i) of degree at most d.

ROABPs were first introduced in this form by Forbes and Shpilka in [12], where it is also
noted that proving lower bounds against ordered set-multilinear ABPs (as in Definition 1.1)
is equivalent to proving lower bounds against ROABPs as well as non-commutative ABPs.

Suppose f ∈ [X1, . . . , Xd] is a set-multilinear polynomial with respect to X1 ⊔ · · · ⊔ Xd

with Xi = {xi,1, . . . , xi,n}. Then we can define an associated polynomial gf ∈ [x1, . . . , xd] as
follows.

gf (x1, . . . xd) =
∑

e∈[n]d

n∏
i=1

xei
i · coefficient of xi,ei

.

CCC 2024



20:8 Lower Bounds for Set-Multilinear Branching Programs

Now let us assume that gf can be computed by an ROABP of size s that is ordered with
respect to σ ∈ Sn. Then a set-multilinear ABP ordered with respect to σ can be constructed
using it, by simply replacing xei

i by xi,ei
and erasing any degree zero components on each

edge. It is easy to check that this computes f and we can use the lower bound against ordered
set-multilinear ABPs for f to prove a lower bound against ROABPs for gf . Conversely,
given g ∈ [x1, . . . , xn], we can define fg ∈ [X1, . . . , Xn] with Xi = {xi,0, xi,1, . . . , xi,d} by by
replacing xei

i with xi,ei
. We could then use an ordered set-multilinear ABP computing fg to

construct an ROABP (in the same order) computing g by using the inverse transformation,
thereby proving that lower bounds against ROABPs imply lower bounds against ordered
set-multilinear ABPs. Furthermore, the computation that an ROABP (or an ordered set-
multilinear ABP) performs can be seen to be non-commutative. This is because the variables
(or linear forms) along a path get multiplied in the same order σ as that of the ROABP (or
ordered set-multilinear ABP).

As a consequence, exponential lower bounds follow for a single ROABP from the work of
Nisan ([29]), and also from later works ([18, 21]). Using the transformation described above,
our lower bounds (Theorem 1.6 and Theorem 1.6’) can also be viewed as exponential lower
bounds for the model of sum of ROABPs. The work of Ramya & Rao [31] also prove (weaker)
exponential lower bounds against this model for a multilinear polynomial computable by
multilinear circuits. In a follow-up work, Ghoshal & Rao [13] prove an exponential lower
bound against sums of ROABPs with the additional restriction that the summand ROABPs
have pollynomially-bounded width for a mulilinear polynomial computable by multlinear
ABPs. On the other hand, the works of Arvind & Raja ([3]) and Bhargav, Dwivedi & Saxena
([5] provide lower bounds in certain restricted versions of this model. Along with these, the
work of Anderson, Forbes, Saptharishi, Shpilka, and Volk ([2]) also implies an exponential
lower bound for a restricted version (for the sum of k ROABPs when k = o(log n)).

Finally, we note that ROABPs have been studied extensively in the context of another
central problem in algebraic complexity theory: that of polynomial identity testing (PIT).
The PIT question for a general algebraic model M is the following: Given access to an
n-variate polynomial f of degree at most d that can be computed in the model M of (an
appropriate measure of) complexity at most s, determine whether f ≡ 0 in poly(n, d, s) time.
When one is given access to the model computing f explicitly, this flavour of PIT is called
white-box PIT, and when one is merely provided query access to f , it is called black-box
PIT.

The solution to the PIT problem for ROABPs in the white-box setting follows from
a result by Raz and Shpilka ([34] – where it is stated in the equivalent language of non-
commutative computation). However, the corresponding problem in the black-box setting
remains open to this date, with the best-known time bound in the black-box setting still
being only sO(log s) due to the work by Forbes and Shpilka ([12]), who additionally assumed
that the ordering of the ROABP is known. This was matched later by Agrawal Gurjar,
Korwar, and Saxena ([1]) in the unknown order setting, improving upon the work of Forbes,
Saptharishi and Shpilka ([11]). Guo and Gurjar improved the result further by improving
the dependence on the width [14]. Additionally, there have been various improvements to
this result in restricted settings ([15, 17, 6]) and some other works that study PIT for a
small sum of ROABPs ([16, 7, 14]). When the number of summands is super-constant, the
question of even white-box PIT remains wide open.
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1.5 Related Work
In this subsection, we discuss two closely related papers, namely those of Ramya & Rao [31]
and Ghoshal & Rao [13]5, which study the model of sum of ROABPs in the multilinear setting.
In [31, Theorem 1], the authors show that there exists an explicit multilinear polynomial
(computable by a small multilinear circuit) such that any sum of ROABPs computing it has
exponential size. In [13, Theorem 2], the authors show a similar lower bound for an explicit
multilinear polynomial (computable by a small multilinear ABP) – albeit, in the restricted
setting where the summand ROABPs have polynomially-bounded width.

Using the transformation described in Section 1.4, one can then view these lower bounds
as ones against the

∑
smABP model in the special case that each bucket in the variable

partition has size 2. (To see how a multilinear polynomial say over the variable set x1, . . . , xd

can be set-multilinearized trivially, here is a sketch: for each variable xi, have a variable
set Xi comprising of two fresh variables xi,0 and xi,1 in the new set-multilinear polynomial;
here, the latter is to signify the “presence” of xi in any monomial of the original multilinear
polynomial, whereas the former is to signify its “absence”.) Additionally, it is not hard
to see that the set-multilinearized version of the hard polynomials (in the manner just
described) used in [31, Theorem 1] and [13, Theorem 2] are efficiently computable by small
set-multilinear circuits and set-multilinear ABPs respectively. We note, however, that even
so, our result in the high-degree setting where the hard polynomial is in VP (Theorem 1.6)
is quantitatively better than [31, Theorem 1]. Additionally, our result in the high-degree
setting where the hard polynomial is in VBP (Theorem 1.6’) is both quantitatively as well as
qualitatively better than [13, Theorem 2] – the latter since we do not assume any bound
on the width of the individual summand ordered set-multilinear ABPs. More crucially, our
techniques enable us to prove super-polynomial bounds even when the degree is vastly smaller
than the number of variables – in particular, when d is as low as ω(log n) (Theorem 1.4 and
Theorem 1.4’) – which is the more interesting regime of parameters due to the work of [5].

Ramya and Rao [31] also study another model, which they call sum of α-set-multilinear
ABPs. They define α-set-multilinear ABPs to be ABPs with Nα layers, where N is the
number of variables in the polynomial being computed. Any edge between layer ℓ − 1 and
ℓ in an α-set-multilinear ABP is labelled by an arbitrary multilinear polynomial over Xℓ,
where X = X1 ⊔ · · · ⊔ XNα is a partition of the variable set. Then, for α ≥ 1/10, they
establish exponential lower bounds against sum of α-set-multilinear ABPs for a polynomial
that is multilinear, but which is not set-multilinear under the variable partition that the
model respects. Hence, even though this model is more general than ordered set-multilinear
ABPs, this result [31, Theorem 3] is also not comparable with ours as our hard polynomial
is set-multilinear. Again, more crucially, the result [31, Theorem 3] does not handle the
“low-degree” regime – a setting in which our techniques allow us to prove lower bounds.

1.6 Proof Overview
The organization of this subsection is as follows: we first describe the basics of the partial
derivative method and summarize its typical application in proving lower bounds against
a generic set-multilinear model of computation. Next, we briefly describe Nisan’s original
partial derivative method from [29] to prove lower bounds specifically against a single ordered
set-multilinear branching program. We then describe an alternative approach that yields a

5 We thank Ben Lee Volk and Utsab Ghosal for pointing out these papers to us after the release of an
initial pre-print of this article, which erroneously claimed that it was the first to show super-polynomial
lower bounds in the sum of ROABPs model.
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slightly weaker bound for the same model, but nevertheless is versatile enough that we can
generalize it considerably more in order to prove Theorem 1.6 and Theorem 1.4. Finally, we
describe the additional ideas needed in order to situate the hard polynomial in these theorems
in VBP and in the process, establish the tightness result for ABP set-multilinearization
(Theorem 1.8).

Partial Derivative Measure Basics

The high-level idea is to work with a measure that we show to be “small” for all polynomials
computed by a specified model of computation – the model against which we wish to
prove lower bounds. If we can also show that there is a “hard” polynomial for which the
measure is in fact “large”, then it follows that this polynomial cannot be computed by the
specified model. These partial derivative measures, after the initial work ([29]) by Nisan,
were further developed by Nisan and Wigderson in [30], who used them to prove some
constant-depth set-multilinear formula lower bounds. Since then, variations of these measures
have also been used to prove various other stronger set-multilinear formula lower bounds
(e.g., [27, 39, 28, 4, 25, 26]).

Given a variable partition (X1, . . . , Xd), the idea is to label each set of variables Xi

as “+1” or “−1” according to some rule (called a “word”) w ∈ {−1, 1}d. Let Pw and Nw

denote the set of positive and negative indices (or coordinates) respectively, and let MP
w

and MN
w denote the sets of all set-multilinear monomials over Pw and Nw respectively. For

a polynomial f that is set-multilinear over the given variable partition (X1, . . . , Xd), the
measure then is simply the rank of the “partial derivative matrix” Mw(f), whose rows are
indexed by the elements of MP

w and columns indexed by MN
w , and the entry of this matrix

corresponding to a row m1 and a column m2 is the coefficient of the monomial m1 · m2 in f .
For a subset S ⊆ [d], let wS denote the sum of those coordinates of w that lie in

S. In other words, |wS | measures the amount of “bias” that the rule w exhibits when
restricted to the S coordinates. Note that the rank of Mw(f) can never exceed n(d−|w[d]|)/2.
Furthermore, we have that the rank measure is multiplicative: if f and g are polynomials
that are set-multilinear over disjoint subsets of the global partition (X1, . . . , Xd), then the
rank of Mw(f · g) is the product of the ranks of Mw(f) and Mw(g). These two observations,
combined with the sub-additivity of rank, provide a recipe for showing lower bounds against
any given set-multilinear model of computation: the overall idea is to carefully split up the
original model into smaller, multiplicatively disjoint parts and then argue the existence of a
rule for which enough of these parts exhibit high bias. This process allows us to prove that the
measure is small for the model of computation. Therefore, one can conclude that any explicit
polynomial for which the measure is provably high – which needs to established separately
– can not be computed by this model. It is known ([25, 26]) that there is a set-multilinear
polynomial NWn,d in VNP (see Section 3.2) as well as a set-multilinear polynomial Fn,d in VP
(see Section 3.3) for which the matrices Mw(NWn,d), Mw(Fn,d), have full-rank, whenever
|Pw| = |Nw|.

Nisan’s original lower bound

Let us first summarize how Nisan’s original partial derivative method from [29], as alluded
to in Section 1.2, can be applied in this context to obtain lower bounds against the size
of a single ordered set-multilinear ABP (ordered smABP) computing the aforementioned
“full-rank” polynomials. Given any set-multilinear branching program A ordered with respect
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to some permutation σ ∈ Sd computing Fn,d, the idea is to pick a word w such that the
+1 labels in w precisely correspond to the “left half” of the ordering σ, and the −1 labels
correspond to the “right half”. One can then observe that the rank of Mw(Fn,d) = Mw(A)
serves as a lower bound on the number of nodes s in the middle layer of the ABP, yielding a
near-optimal nΩ(d) lower bound: this is because the matrix Mw(A) is easily seen to be the
product of an nd/2 × s and an s × nd/2 matrix.

We now sketch an alternate proof: rather than constructing a word dependent on the
ordering of variable sets Xi in the ordered smABP A as above, choose a uniformly random6

word w from {−1, 1}d. We demonstrate that, with positive probability, the rank of Mw(A)
is bounded by s · nd/2−Ω(

√
d), where s is the width of the middle layer in A: Standard

anti-concentration bounds imply that, with at least constant probability, the bias in the left
and right halves of A is Ω(

√
d). Since A can be expressed as a sum of s polynomials fi · gi

for i ∈ [s], where each fi and gi are ordered smABPs with respect to disjoint subsets of
the global partition, we encounter a loss of a factor of nΩ(

√
d) in the rank of the product

polynomial Mw(fi · gi) due to the bias of w. This, combined with the sub-additivity of rank,
shows the desired bound of s · nd/2−Ω(

√
d) on the rank of Mw(A). Finally, we exploit the

full-rank property of Fn,d with respect to such words to establish a lower bound of nΩ(
√

d)

on the width s of a single ordered smABP computing Fn,d. Notably, this bound is indeed
slightly worse than what one can obtain by manually defining a rule w deterministically,
which ensures a maximal bias of d/2 in each half of A as described in the paragraph above.

Generalization of the alternative argument

The alternative argument described above yields an exponential lower bound even for a sum
of ordered smABPs, assuming the number of summands is small. Consider a

∑
smABP of the

form
∑t

i=1 Ai, of max-width s, computing Fn,d. For each summand Ai, the analysis above
provides an upper bound of s · nd/2−Ω(

√
d) on the rank of Mw(Ai) with constant probability.

If the number of summands t is a small enough constant, the union bound ensures the
existence of a word w such that the rank of Mw(

∑
Ai) is at most t · s · nd/2−Ω(

√
d). Thus7,

we obtain an exponential lower bound on t · s since this
∑

smABP computes a full-rank
polynomial. However, because of the use of the union bound in this manner, this method
faces an inherent limitation – it is unable to handle more than a very small number of
summands, even if we lower the bias demand from each half (e.g., from Ω(

√
d) to Ω( 4

√
d)

or a smaller polynomial in d). In fact, one can construct a sum of d ordered smABPs (by
starting with a single smABP ordered arbitrarily and considering the d cyclic shifts of this
ordering) such that any unbiased word w (i.e., w[d] = 0) has the property that for at least
one of the summands, the left and right halves will have no bias! Evidently then, in order to
prove lower bounds against an unrestricted number of summands, we need another method
to analyze the rank of the summands. Nonetheless, a conceptual takeaway from the exercise
above is that selecting a rule w that is oblivious to the orderings of individual summands
(and in particular, a random rule) still lets us derive strong lower bounds for the sum of
multiple ordered smABPs.

Suppose instead of slicing an ordered smABP A down the middle, we slice it into three
roughly equal pieces. Then, it is possible to write the polynomial computed by A as a sum
over s2 terms, each of the form fi · gi · hi where for each i, each of fi, gi, hi depends on d/3

6 We also need to suitably condition on the event that the word w is symmetric (i.e., |Pw| = |Nw|) in
order to use the full-rank property of the hard polynomial – the probability of this event is Θ( 1√

d
). For

ease of exposition, we omit the technical details in this sketch.
7 See footnote 6.
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disjoint variable sets of the global partition. We can then perform a similar analysis as above
to show enough bias across these 3 pieces, thereby obtaining a rank deficit. More precisely,
we can conclude that for a single ordered smABP A, again with a constant probability, the
rank of Mw(A) is at most s2 · nd/2−Ω(

√
d). When we slice the ABP into 3 pieces in this

way, it is not immediately clear where the gain is. In fact, for a single ordered smABP, this
method actually gives a worse lower bound on s due to the presence of the factor of s2.
Where we gain is in the magnitude of the probability with which we can guarantee that a
single ordered smABP has a rank deficit – we will now describe how this observation allows
us to take a union bound over many more summands.

In order to illustrate this trade-off more clearly, we will partition the ordered smABP
A into many more pieces. Suppose we slice it into q ≈

√
d pieces, each of size roughly

r = d/q ≈
√

d (this is just one setting of parameters; q and r are suitably optimized in the
final proof). Thus, the polynomial that A computes can be written as a sum of at most
sq−1 terms, where each term is a product of q polynomials – each set-multilinear over a
disjoint subset of the global partition, where each piece has size r. When a word w is chosen
randomly, each such piece again exhibits a bias of about Ω(

√
r) with constant probability.

The crucial observation then is that by known concentration bounds, it can be shown that
with probability exponentially close to 1, the sum of the biases across all the q pieces is
Ω(q

√
r) = poly(d). For a single ordered smABP A, this shows that the rank of Mw(A) is

at most sq · n−Ω(q
√

r), which is still enough to show an exponential lower bound on s, even
though it is worse than what we obtained by slicing into fewer pieces.

The key advantage in implementing this analysis is that it provides a way to argue that
for a random word w, Mw(A) has low rank for a single ordered smABP A – with probability
exponentially close to 1. In particular, this allows us to union bound over exponentially many
ordered smABPs and show that even if we have an

∑
smABP computing Fn,d of exponential

support size, with high probability, each summand will have a rank deficit. Then, again
using the sub-additivity of rank, we can conclude that the sum has a rank deficit as well.

This method of analyzing the rank of an ordered smABP by partitioning it into numerous
pieces and tactfully using concentration bounds is novel, and conceptually the most essential
aspect of the proof. As we demonstrated above, this method of analysis indeed gives a worse
bound for a single smABP. However, while mildly sacrificing what we can prove about the
rank of a single ordered smABP, we are able to leverage it to still prove something meaningful
about the rank of a sum with a much larger number of summands.

Our partial derivative measure draws inspiration from previously known lower bounds in
the context of multilinear and set-multilinear formulas ([32, 25]). One noteworthy distinction
lies in the analysis of the measure: whereas the partitioning is present intrinsically in those
formula settings, in our setting of ABPs, we deliberately introduce the partitioning at the
expense of a notable increase in the number of summands or the total-width (and therefore,
in the number of events we union bound over). The substantial advantage gained in utilizing
this partitioning for rank analysis justifies the tolerable increase in the total-width.

Tightness of ABP set-multilinearization

In order to make the hard polynomial in Theorems 1.6 and 1.4 lie in VBP, one might wonder
if we can get away with using the same rank measure (i.e., rank of the matrix Mw(·) for
a uniformly random word w ∈ {−1, 1}d) that was used in the analysis above for the VP
polynomial Fn,d. However, as far as we know, full-rank polynomials (in the sense described
above) may also require super-polynomial sized set-multilinear ABPs. Thus, in order to prove
a separation between (general) set-multilinear ABPs and (sums of) ordered set-multilinear
ABPs, we seek a property that is weaker than being full-rank and yet is still useful enough for
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proving lower bounds against our model. For this, we rely upon the arc-partition framework
that is developed in [26] in order to prove near-optimal set-multilinear formula lower bounds
(building upon the initial ingenious construction given in [10] for the multilinear context),
tailor the framework to our

∑
smABP model, and use a more delicate concentration bound

analysis in order to prove our results.
An arc-partition is a special kind of symmetric word w from {−1, 1}d: we will now describe

a distribution over {−1, 1}d; the words that will have positive probability of being obtained
in this distribution will be called arc-partitions. The distribution is defined according to the
following (iterative) sampling algorithm. Position the d variable sets on a cycle with d nodes
so that there is an edge between i and i + 1 modulo d. Start with the arc [L1, R1] = {1, 2}
(an arc is a connected path on the cycle). At step t > 1 of the process, maintain a partition
of the arc [Lt, Rt]. “Grow” this partition by first picking a pair uniformly at random out of
the three possible pairs {Lt − 2, Lt − 1}, {Lt − 1, Rt + 1}, {Rt + 1, Rt + 2}, and then choosing
a labelling (or partition) Π on this pair i.e., assigning one of them “+1” and the other “−1”
uniformly at random. After d/2 steps, we have chosen a partition (i.e., a word w from
{−1, 1}d) of the d variable sets into two disjoint, equal-size sets of variables P and N . It is
known from [26] that there exist set-multilinear polynomials Gn,d (as defined in Section 3.4)
that are arc-full-rank i.e., Mw(Gn,d) is full-rank for every arc-partition w. Analogous to the
proofs of Theorems 1.6 and 1.4, we establish our

∑
smABP lower bounds by showing that

with high probability, every
∑

smABP has an appropriately large rank deficit with respect
to the arc-partition distribution. However, as we now briefly explain, this analysis turns out
to be significantly more intricate.

Similar to the analysis as in the VP case, we partition an ordered smABP A into q pieces
of size r each, and write the polynomial that it computes as a sum of at most sq terms. Again,
the task is to show that an arc-partition w exhibits a large total bias across the q pieces:
more precisely, we show that if the pieces are labelled as S1, . . . , Sq, then with probability
exponentially close to 1, the sum

∑q
i=1 |wSi

| (i.e., the total bias of w across these pieces) is
Ω(qrε), which is polynomially large in d for an appropriate setting of q, r. This then yields
the desired rank deficit similar to the VP analysis (albeit with mildly worse parameters).

The bias lower bound is established in the following sequence of steps:

View the partition (S1, . . . , Sq) of [d] as a fixed “coloring” of the latter. We say that a pair
– as sampled in the construction of an arc-partition described above – “violates” a color S

if exactly one of the elements of the pair is colored by the set S. Then, we show that
with probability exponentially close to 1, “many” colors must have “many” violations:
more precisely, that at least a constant fraction of the colors (i.e., Ω(q) many) have at
least r2ε many violations each (for some small constant ε > 0). Such a “many violations”
lemma is also established in [26] in the context of proving set-multilinear formula lower
bounds. We show that this lemma, in fact, holds for a much wider range of parameters
than was previously known; this extension is indeed necessary for our use. The proof of
this strengthened many violations lemma is deferred to the appendix.

We then use the strengthened many violations lemma to argue that even though w is not
chosen uniformly at random and as such, its coordinates are not truly independent, it
possesses “enough” inherent independence that a similar concentration bound as in the
VP analysis is applicable. More precisely, we show that with high probability, there is an
ordering of a set of Ω(q) colors such that each such color has at least r2ε violations and
a more nuanced application of standard concentration bounds shows that w exhibits a
total bias of at least Ω(qrε).
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2 Relative Rank and its Properties

We first describe the notation that we need to define the measures that we use to prove our
results described in Section 1.3. Instead of directly working with the rank of the partial
derivative matrix, we work with the following normalized form.

▶ Definition 2.1. Let w = (w1, w2, . . . , wd) be a tuple (or word) of non-zero real numbers.
For a subset S ⊆ [t], we shall refer to the sum

∑
i∈S wi by wS, and by w|S, we will refer

to the tuple obtained by considering only the elements of w that are indexed by S. Given a
word w = (w1, . . . , wd), we denote by X(w) a tuple of d sets of variables (X(w1), . . . , X(wd))
where |X(wi)| = 2|wi|.8 We denote by Fsm[T ] the set of set-multilinear polynomials over the
tuple of sets of variables T .

▶ Definition 2.2 (Relative Rank Measure of [27]). Let X = (X1, . . . , Xd) be a tuple of sets of
variables such that |Xi| = ni and let f ∈ Fsm[X]. Let w = (w1, w2, . . . , wd) be a tuple (or
word) of non-zero real numbers such that 2|wi| = ni for all i ∈ [d]. Corresponding to a word
w, define Pw := {i | wi > 0} and Nw := {i | wi < 0}. Let MP

w be the set of all set-multilinear
monomials over the subset of the variable sets X1, X2, . . . , Xd precisely indexed by Pw, and
similarly let MN

w be the set of all set-multilinear monomials over these variable sets indexed
by Nw.

Define the ‘partial derivative matrix’ matrix Mw(f) whose rows are indexed by the
elements of MP

w and columns indexed by the elements of MN
w as follows: the entry of this

matrix corresponding to a row m1 and a column m2 is the coefficient of the monomial m1 ·m2
in f . We define

relrkw(f) := rank(Mw(f))√
|MP

w | · |MN
w |

= rank(Mw(f))

2
1
2

∑
i∈[d]

|wi|
.

The following is a simple result that establishes various useful properties of the relative
rank measure.

▷ Claim 2.3 ([27]).
1. (Imbalance) Say f ∈ Fsm[X(w)]. Then, relrkw(f) ≤ 2−|w[d]|/2.
2. (Sub-additivity) If f, g ∈ Fsm[X(w)], then relrkw(f + g) ≤ relrkw(f) + relrkw(g).
3. (Multiplicativity) Say f = f1f2 · · · ft and assume that for each i ∈ [t], fi ∈ Fsm[X(w|Si

)],
where (S1, . . . , St) is a partition of [d]. Then

relrkw(f) =
∏
i∈[t]

relrkw|Si
(fi).

3 The Hard Polynomial

We now describe the different hard polynomials we use for our results.

3.1 Inner Product Gadget
The following observation is used crucially to construct the hard polynomials in VP as well
as VBP.

8 In particular, 2|wi| ∈ N.
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▶ Observation 3.1 ([26]). Let n = 2k and X1 = {x1,1, . . . , x1,n} and X2 = {x2,1, . . . , x2,n}
be two disjoint sets of variables. Then, for any symmetric word w ∈ {k, −k}2 (i.e., where
w1 + w2 = 0) and for the inner product “gadget” f = X1 · X2 =

∑n
i=1 x1,ix2,i, relrkw(f) = 1

i.e., Mw(f) is full-rank.

3.2 A Hard Set-multilinear Polynomial in VNP
As is done in previous lower bounds using the NW polynomials (for example, see [22]), we
will identify the set of the first n integers as elements of n via an arbitrary correspondence
ϕ : [n] →n. If f(z) ∈n [z] is a univariate polynomial, then we abuse notation to let f(i)
denote the evaluation of f at the i-th field element via the above correspondence i.e.,
f(i) := ϕ−1(f(ϕ(i))). To simplify the exposition, in the following definition, we will omit the
correspondence ϕ and identify a variable xi,j by the point (ϕ(i), ϕ(j)) ∈n ×n.

▶ Definition 3.2 (Nisan-Wigderson Polynomials). For a prime power n, let n be a field of size
n. For an integer d ≤ n and the set X of nd variables {xi,j : i ∈ [n], j ∈ [d]}, we define the
degree d homogeneous polynomial NWn,d over any field as

NWn,d(X) =
∑

f(z)∈n[z]
deg(f)<d/2

∏
j∈[d]

xf(j),j .

▷ Claim 3.3 ([25]). For an integer n = 2k and d ≤ n, let w ∈ {k, −k}d with w[d] = 0. Then
relrkw(NWn,d) = 1 i.e., Mw(NWn,d) has full rank.

Proof. Fix n = 2k and d, so that we can also write NW for NWn,d, and let n′ = d/2. The
condition on w implies that |Pw| = |Nw| = n′. Observe that Mw(NW ) is a square matrix
of dimension |MP

w | = |MN
w | = nn′ . Consider a row of Mw(NW ) indexed by a monomial

m1 = xi1,j1 · · · xin′ ,jn′ ∈ MP
w . m1 can be thought of as a map from S = {j1, . . . , jn′} to n

which sends jℓ to iℓ for each ℓ ∈ [n′]. Next, by interpolating the pairs (j1, i1), . . . , (jn′ , in′), we
know that there exists a unique polynomial f(z) ∈n (z) of degree < n′ for which f(jℓ) = iℓ for
each ℓ ∈ [n′]. As a consequence, there is a unique “extension” of the monomial xi1,j1 · · · xin′ ,jn′

that appears as a term in NW , which is precisely m1 ·
∏

j∈Nw
xf(j),j . Therefore, all but one

of the entries in the row corresponding to m1 must be zero, and the remaining entry must
be 1. Applying the same argument to the columns of Mw(NW ), we deduce that Mw(NW )
is a permutation matrix, and so has full rank. ◁

3.3 A Hard Set-multilinear Polynomial in VP
Let d be an even integer and let X = (X1, . . . , Xd) be a collection of sets of variables where
each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables
where each |Yi| = n. We shall refer to the Y -variables as the auxiliary variables. For i and
j ∈ {1, . . . , d}, let Xi · Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here, we

shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
For two integers i ∈ N and j ∈ N, we denote [i, j] = {k ∈ N : i ≤ k and k ≤ j}

and call such a set an interval. For every interval [i, j] ⊆ [d], we define a polynomial
fi,j(X, Y ) ∈ Fsm[Xi, . . . , Xj , Yi, . . . , Yj ] as follows:

fi,j =


yi,jyj,i(Xi · Xj) if j = i + 1
0 if j − i is even
yi,jyj,i(Xi · Xj) · fi+1,j−1 +

∑j−1
r=i+1 fi,rfr+1,j otherwise
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These fi,j in present form were defined in [26], but were in turn inspired from an earlier
work of Raz and Yehudayoff ([35]) in the multilinear context. [26] shows that they have the
following full-rank property that will be instrumental for us.

▶ Lemma 3.4 ([26]). Let n = 2k and d ≤ n be an even integer. Over any field of
characteristic zero, the polynomial Fn,d = f1,d ∈ Fsm[X, Y ] as defined above satisfies the
following: For any w ∈ {−k, k}d with w[d] = 0, Mw(Fn,d) is full-rank when viewed as a
matrix over the field (Y ), the field of rational functions over the Y variables.

3.4 A Hard Set-Multilinear Polynomial in VBP
3.4.1 Arc-partition Measure Description
This subsection is adapted from Section 2 of [10]. Let n = 2k, d ≤ n be an even integer, and
let X = (X1, X2, . . . , Xd) be a collection of disjoint sets of n variables each. An arc-partition
will be a special kind of symmetric word w ∈ {−k, k}d (i.e., a one-to-one map Π from X to
{−k, k}d). For the purpose of this subsection, the reader can even choose to think of the
alphabet of w as {−1, 1} (i.e., one “positive” and one “negative” value) – we use k, −k only
to remain consistent with Definition 2.2.

Identify X with the set {1, 2, . . . , d} in the natural way. Consider the d-cycle graph,
i.e., the graph with nodes {1, 2, . . . , d} and edges between i and i + 1 modulo d. For two
nodes i ̸= j in the d-cycle, denote by [i, j] the arc between i, j, that is, the set of nodes
on the path {i, i + 1, . . . , j − 1, j} from i to j in d-cycle. First, define a distribution DP

on a family of pairings (a list of disjoint pairs of nodes in the cycle) as follows. A random
pairing is constructed in d/2 steps. At the end of step t ∈ [d/2], we shall have a pairing
(P1, . . . , Pt) of the arc [Lt, Rt]. The size of [Lt, Rt] is always 2t. The first pairing contains
only P1 = {L1, R1} with L1 = 1 and R1 = 2. Given (P1, . . . , Pt) and [Lt, Rt], define the
random pair Pt + 1 (independently of previous choices) by

Pt+1 =


{Lt − 2, Lt − 1} with probability 1/3
{Lt − 1, Rt + 1} with probability 1/3
{Rt + 1, Rt + 2} with probability 1/3

Define

[Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.

So, Lt+1 is either Lt − 2, Lt − 1 or Lt, each value is obtained with probability 1/3, and
similarly (but not independently) for Rt+1.

The final pairing is P = (P1, P2, . . . , Pd/2). Denote by P ∼ DP a pairing distributed
according to DP .

Once a pairing P has been obtained, a word w ∈ {−k, k}d is obtained by simply randomly
assigning +k and −k to the indices of any pair Pi. More formally, for every t ∈ [d/2], if
Pt = {it, jt}, let with probability 1/2, independently of all other choices,

wit = +k and wjt = −k,

and with probability 1/2,

wit
= −k and wjt

= +k.

Denote by w ∼ D a word in {−1, 1}n that is sampled using this procedure. We call such a
word an arc-partition. For a pair Pt = {it, jt}, we refer to it and jt as partners.
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▶ Definition 3.5 (Arc-full-rank). We say that a polynomial f that is set-multilinear over
X = (X1, . . . , Xd) is arc-full-rank if for every arc-partition w ∈ {−k, k}d, relrkw(f) = 1.

3.4.2 Construction of an Arc-full-rank Polynomial
Below, we describe a simple construction of a polynomial sized ABP that computes an
arc-full-rank set-multilinear polynomial. The high-level idea is to construct an ABP in
which every path between start-node and end-node corresponds to a specific execution of
the random process which samples arc-partitions. Each node in the ABP corresponds to an
arc [L, R], which sends an edge to each of the nodes [L − 2, R], [L − 1, R + 1] and [L, R + 2].
The edges have specially chosen labels that help guarantee full rank with respect to every
arc-partition. For simplicity of presentation, we allow the edges of the program to be labeled
by degree four set-multilinear polynomial polynomials over the corresponding subset of the
variable partition. This assumption can be easily removed by replacing each edge with a
polynomial-sized ABP computing the corresponding degree four polynomial.

Formally, the nodes of the program are even-size arcs in the d-cycle, d an even integer.
The start-node of the program is the empty arc ∅ and the end-node is the whole cycle [d]
(both are “special” arcs). Let X = (X1, . . . , Xd) be a collection of sets of variables where
each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables
where each |Yi| = n (we shall refer to the Y -variables as auxiliary variables). For i and j in
{1, . . . , d}, let Xi · Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here, we shall

assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
Construct the branching program by connecting a node/arc of size 2t to three nodes/arcs

of size 2t + 2. For t = 1, there is just one node [1, 2], and the edge from start-node to it is
labeled y1,2y2,1(X0 · X1). For t > 1, the node [L, R] ⊃ [1, 2] of size 2t < d is connected to
the three nodes: [L − 2, R], [L − 1, R + 1], and [L, R + 2]. (It may be the case that the three
nodes are the end-node.) The edge labeling is:

The edge between [L, R] and [L − 2, R] is labeled yL−2,L−1yL−1,L−2(XL−2 · XL−1).
The edge between [L, R] and [L − 1, R + 1] is labeled yL−1,R+1yR+1,L−1(XL−1 · XR+1).
The edge between [L, R] and [L, R + 2] is labeled yR+1,R+2yR+2,R+1(XR+1 · XR+2).

Consider the ABP thus described, and the polynomial Gn,d it computes. For every path
γ from start-node to end-node in the ABP, the list of edges along γ yields a pairing P ; every
edge e in γ corresponds to a pair Pe = {ie, je} of nodes in d-cycle. Thus,

Gn,d =
∑

γ

∏
e={ie,je}∈γ

yie,jeyje,ie · (Xie · Xje). (1)

where the sum is over all paths γ from start-node to end-node.

▶ Remark 3.6. There is in fact a one-to-one correspondence between pairings P and such
paths γ (this follows by induction on t). Note that this is true only because pairings are
tuples i.e., they are ordered by definition. Otherwise, it is of course still possible to obtain
the same set of pairs in a given pairing using multiple different orderings. The sum defining
Gn,d can be thought of, therefore, as over pairings P .

The following statement summarizes the main useful property of Gn,d.

▶ Lemma 3.7 ([26]). Over any field of characteristic zero, the polynomial Gn,d defined
above is arc-full-rank as a set-multilinear polynomial in the variables X over the field (Y ) of
rational functions in Y .
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Proof. Let w ∼ D be an arc-partition. We want to show that Mw(Gn,d) has full rank.
The arc-partition w is defined from a pairing P = (P1, . . . , Pd/2) (though as discussed in
Remark 3.6, there could be multiple such P ). The pairing P corresponds to a path γ

from start-node to end-node. Consider the polynomial f that is obtained by setting every
yi,j = yj,i = 0 in F such that {i, j} is not a pair in P , and setting every yi,j = yj,i = 1 for
every pair {i, j} in P . Then, it is easy to see that the only terms that survive in Equation 1
correspond to paths (and in turn, pairings) which have the same underlying set of pairs
as P . As a consequence, f is simply some non-zero constant times a polynomial which is
full-rank (recall Observation 3.1). Mw(f) being full rank then implies that Mw(Gn,d) is also
full-rank. ◀
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