
Public-Key Pseudoentanglement and the
Hardness of Learning Ground State Entanglement
Structure
Adam Bouland #

Department of Computer Science, Stanford University, CA, USA

Bill Fefferman #

Department of Computer Science, University of Chicago, IL, USA

Soumik Ghosh #

Department of Computer Science, University of Chicago, IL, USA

Tony Metger #

ETH Zürich, Switzerland

Umesh Vazirani #

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA, USA

Chenyi Zhang #

Department of Computer Science, Stanford University, CA, USA

Zixin Zhou #

Department of Computer Science, Stanford University, CA, USA

Abstract
Given a local Hamiltonian, how difficult is it to determine the entanglement structure of its ground
state? We show that this problem is computationally intractable even if one is only trying to decide
if the ground state is volume-law vs near area-law entangled. We prove this by constructing strong
forms of pseudoentanglement in a public-key setting, where the circuits used to prepare the states
are public knowledge. In particular, we construct two families of quantum circuits which produce
volume-law vs near area-law entangled states, but nonetheless the classical descriptions of the circuits
are indistinguishable under the Learning with Errors (LWE) assumption. Indistinguishability of the
circuits then allows us to translate our construction to Hamiltonians. Our work opens new directions
in Hamiltonian complexity, for example whether it is difficult to learn certain phases of matter.
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1 Introduction

The central problem in Hamiltonian complexity is to understand the structure of ground states
of local Hamiltonians and the difficulty of learning properties of them, e.g. [20, 29, 24, 6, 5].
In this work we study the following question: given a local Hamiltonian H, how difficult is it
to learn about the entanglement structure of its ground state? For example, given H, can
you tell if its ground state is area-law or volume-law entangled? We call such questions about
the qualitative features of the entanglement structure a Learning Ground State Entanglement
Structure (LGSES) problem. This problem is related to both condensed matter physics –
where ground state entanglement structure is a central object of study – and may also shed
light on questions in quantum gravity regarding how entanglement could possibly be dual to
other physical quantities [12, 18].

Whereas most effort in many-body physics has been directed towards the positive side
of this question, i.e. finding conditions under which properties of the ground state can be
efficiently learnt or computed (see e.g. [15, 24, 21]), here our goal is to prove hardness results
for the LGSES problem from cryptographic assumptions. This explores the limitations that
any algorithm for such problems must run up against. In other words, hardness results for
the LGSES problem point to qualitative features of Hamiltonian ground states that are
inherently computationally intractable to compute.

To prove computational hardness results for the LGSES problem, we will relate it to a no-
tion called pseudoentanglement, a term recently introduced in [1]. Informally, pseudoentangled
state ensembles consist of low-entanglement states that masquerade as high-entanglement
states to computationally bounded observers; in other words, a pseudoentangled state only
looks like a high-entanglement state to bounded observers, whereas its actual (information-
theoretic) entanglement is low. The main result of [1] is that it is possible to create
pseudoentangled states which hide vast differences in entanglement. More concretely, they
construct two ensembles of quantum states, Ψhigh and Ψlow, such that any state |𝜓⟩ ∈ Ψhigh

has high entanglement entropy across any bipartition of the qubits and states in Ψlow have
low entanglement, but any computationally bounded quantum algorithm that receives a
state from Ψhigh ∪Ψlow cannot tell which kind of state it received.

This notion of pseudoentanglement is interesting in its own right and has been used for
various applications in [1], but its relevance to Hamiltonian complexity is unclear. This
is because the settings are inherently different: the notion of pseudoentanglement in [1]
involves a quantum input, namely copies of the relevant quantum states, being given to the
distinguisher. If we tried to translate this into a setting involving Hamiltonian ground states,
we would end up in a model where we study the properties of Hamiltonian ground states
given quantum copies of these ground states, but without knowing the actual Hamiltonian
itself. In contrast, in Hamiltonian complexity we assume that we know a classical description
of the Hamiltonian under consideration and would like to determine properties of its ground
state.

Therefore, if we want to use some notion of pseudoentanglement to prove hardness results
for the LGSES problem, we need to consider a model where the distinguisher is not just
given quantum copies of the high- or low-entanglement states, but rather an efficient classical
description of these states. This leads to a different kind of pseudoentanglement, which we
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call public-key pseudoentanglement since the description of the states (the “key”) can be
made public. This notion is already implicit in earlier work by Gheorghiu and Hoban [18],
who gave a construction of public-key pseudoentanglement that we discuss in more detail
below.

▶ Definition 1 (Public-key pseudoentanglement (implicit in [18])). Two ensembles of n-qubit
poly(n)-gate quantum circuits {Ck}, {C ′k} are public-key pseudoentangled with entanglement
gap f(n) vs g(n) if they are computationally indistinguishable to poly-time quantum algorithms,
and yet with high probability over the ensembles, Ck|0n⟩ has entanglement ≥ f(n) and C ′k|0n⟩
has entanglement ≤ g(n) across one or more cuts of the system.

The key difference between this definition and the one in [1] is that here a classical
description of the circuit used to prepare the states is given as input to the distinguisher,
whereas in [1] the distinguisher only receives copies of the output state of the circuit. A
distinguisher can therefore not only prepare copies of the output state, but also analyse the
classical description of the circuits directly to gain additional information, making it harder
to “hide” the entanglement of pseudoentangled states. Hence, public-key pseudoentanglement
is a much stronger notion than that in [1], which we will call private-key pseudoentanglement
as the circuits are hidden.

There are generally two features we care about in a pseudoentanglement construction:
the entanglement gap, which we want to be as large as possible in order to hide as much
entanglement as possible, and the set of cuts across which this entanglement gap holds.
Informally, a more general set of cuts (i.e. bipartitions of the qubits) across which the
entanglement gap holds corresponds to hiding more qualitative information about the
entanglement structure of the state; this is what we are most interested in for the LGSES
problem.

The pioneering work of Gheorghiu and Hoban gave the first pseudoentanglement con-
struction with entanglement gap n vs n− Ω(1) across a single cut based on the Learning
With Errors (LWE) assumption [18]. Using this they showed that it is difficult to learn
fine-grained properties of the ground state entanglement – namely if the ground state has
entanglement n vs n−Ω(1) across a fixed cut. The basic idea is that if one passes the circuit
to prepare pseudoentangled states through a modified Kitaev clock construction [23, 26],
the ground state of the resulting Hamiltonian has the same entanglement properties as the
output state of the circuit. We emphasize that the Kitaev clock Hamiltonian encodes the
circuit used to prepare the state in plaintext. Consequently, this application necessarily
requires a public-key construction if we aim to construct the hard instance via the Kitaev
clock.

However, Gheorghiu and Hoban’s construction only suffices to prove hardness of detecting
very small differences in the entanglement of the ground state across a single cut. In contrast,
the LGSES problem asks about qualitative or coarse-grained features of the entanglement
structure, as very fine-grained properties are usually not physically relevant. This raises the
following question: is it possible to get a public-key pseudoentanglement construction that
hides qualitatively different entanglement structures? This would lead to natural hardness
statements for the LGSES problem.

1.1 Near area-law public-key pseudoentanglement

Our first result is to construct strong forms of public-key pseudoentanglement from LWE. In
particular we show it is possible to hide 1D near area-law vs volume-law entanglement.
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▶ Theorem 2 (Volume vs area-law public-key pseudoentanglement (informal)). Assuming
subexponential-time hardness of LWE, there exist public-key pseudoentangled ensembles with
volume-law vs near area-law entanglement when the qubits are arranged on a 1D line.

That is, in one case the states have entanglement Ω(min(k, n− k)) across any division
of the qubits into k vs n− k qubits (volume-law), and in the other case the entanglement
of any cut is ≤ |A|polylog(n) where |A| is the area of the cut when the qubits are arranged
on a 1D line (i.e. the number of times the cut crosses the 1D line). We call this near
area-law entangled. This is optimal because if the polylog factor were changed to a log,
then these states would be efficiently distinguishable from one another by standard Matrix
Product State learning algorithms [15, 24]. Hiding such qualitatively different entanglement
structures requires a completely different construction from [18]. We note that while in
Theorem 2 we assume subexponential-time hardness of LWE, we also show that the standard
LWE assumption implies a similar result.1 We will discuss the application of our result to
Hamiltonian complexity shortly, after we present its proof sketch.

Proof sketch for single-cut pseudoentanglement. Let us first consider a single cut par-
titioning the qubits into sets A and B. In this case, the most natural states to consider
are of the form

∑
x∈{0,1}n |x⟩A|h(x)⟩B for some function h. If one chooses h to be injective,

then this state has entanglement entropy n across this cut; if one chooses h to be 2k-to-1,
then the entanglement is n − k. [18] used exactly these states with trapdoor claw-free
functions from [13], which are functions that are either injective or 2-to-1, but the two cases
are computationally hard to distinguish (given a description of the function) assuming the
hardness of LWE. There are some additional subtleties arising from the fact that the trapdoor
claw-free functions from [13] do not output numbers, but probability distributions, and are
only approximately 2-to-1. We refer to [18] for a detailed analysis of this construction.

To increase the entanglement gap, we need to make the many-to-1 functions more
compressing. The functions in [18, 13] additionally have a trapdoor; however, we observe
that for pseudoentanglement, we can dispense with the trapdoor and only need so-called
lossy functions: these are functions that are either injective or 2k-to-1, but again the two
kinds of functions are hard to distinguish. Starting from this observation, it turns out to
be possible to combine the construction from [18] with ideas from a recent randomness
generation protocol [25] to achieve an entanglement gap of n vs n𝛿 for any 𝛿 > 0.2

The challenge with this approach based on [18] is that it appears fundamentally restricted
to a single cut. However, our goal is to obtain pseudoentangled states with near area-law vs
volume-law entanglement structure, which requires low entanglement across exponentially
many cuts simultaneously. This would require controlling the entanglement not just between
regions A and B, but also within these regions. With the approach of [18] it seems difficult
to appropriately modify the state in register A without jeopardising the entanglement across
the cut between A and B.

For this reason, we need a different kind of state that allows us to control the entanglement
across all cuts simultaneously. It turns out that a useful class to consider are binary phase
states as in [22, 14, 1], i.e., states of the form

∑
x∈{0,1}n(−1)f(x)|x⟩. Our approach will be

1 In particular, the polylog correction factor to the area-law scaling is replaced by an n𝜖 correction, where
𝜖 can be any constant > 0.

2 We note that independently from and simultaneously to our work, Gheorghiu and Hoban updated their
results to include a construction of this form, which achieves the aforementioned gap of n𝛿 vs n across
a fixed cut with n qubits in one set and poly(n) in the other.
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as follows: we start from a phase state with high-entanglement across every cut. We will
then modify this state (in a computationally undetectable way) to have low entanglement
across some particular cut. This achieves essentially the same as the [18]-based construction
above.3 However, crucially our “modification procedure” is iterable: this means that we can
perform essentially the same entanglement reduction operation across many cuts in sequence
and end up with a state with low entanglement across every cut.

We first describe the construction and proof for a single cut. For simplicity, let us first
consider the cut between the first and second n/2 qubits. One can easily compute that
the reduced density matrix of the first half of the state

∑
x∈{0,1}n(−1)f(x)|x⟩ is 𝜌 ∝ TT⊤,

where Tij = (−1)f(i∥j). Here, ∥ denotes the concatenation of two strings, and i, j ∈ {0, 1}n/2

correspond to the first and second halves of the string x, i.e., T is the truth table of the
function f written out in a matrix form. By a direct calculation, one can show an upper
bound on the entanglement entropy of our phase state (i.e. the von Neumann entropy of 𝜌)
in terms of the rank of T , and a lower bound on the entanglement entropy in terms of the
Frobenius norm of TT⊤. Our strategy will therefore be to start from a “T -matrix” for a
high-entanglement state, and then perform one of two modifications in a computationally
indistinguishable way: either modify T to reduce its rank to get low-entanglement states,
or modify T in a way that does not reduce

∥∥TT⊤
∥∥

2 too much so that the entanglement of
the states remains high, where ∥ · ∥2 denotes the Frobenius norm, as defined in Section 2.1.
These modified T -matrices then correspond to modified phase states, and our goal is to hide
which of the two procedures we performed, even when handing out a classical description for
preparing the corresponding states.

In [1] the idea is to apply a private key cryptographic hash function to replace rows of the
matrix T with copies of other rows to reduce its rank. That is, we pick a phase function f(x)
which yields high entanglement [14], and then “whittle down” its entanglement by replacing
f(x) with f(h(i) ∥ j) where i, j ∈ {0, 1}n/2 and h : {0, 1}n/2 → {0, 1}n/2 is a 2k-to-1 function.
This reduces the number of distinct rows in T (each of which is now repeated many times) and
correspondingly decreases the rank of T . As a result, this procedure lowers the entanglement
of 𝜌 by k. On the other hand, if we pick h to be a 1-to-1 function, we simply permute the
rows of T and do not change

∥∥TT⊤
∥∥

2. To make this public-key, we need a way of applying a
2k-to-1 or a 1-to-1 hash function to these phase states in such a way that it is hard to tell
which one was applied, even when the state preparation circuit (and therefore the source
code for h) is public.

At first sight, it may seem that we can use the same idea as above: take the lossy functions
from [25] and use them to reduce the rank of T . However, the phase state construction is
much less flexible than states of the form

∑
x |x⟩|h(x)⟩: for the latter, the codomain of h

does not matter and we can use the functions h from [25], whose codomain are probability
distributions over Zm

q for m ≫ n. In contrast, for phase states we need lossy functions
h : {0, 1}n/2 → {0, 1}n/2, i.e. the codomain has to be the same as the domain. This is a
somewhat unusual requirement from a cryptographic perspective and forces us to use a
custom construction of “imperfect” lossy functions based on LWE. Concretely, we first show
how to create lossy functions mapping {0, 1}n/2 → {0, 1}poly(n) which are exactly injective
vs 2k-to-1 (for sufficiently large k) with high probability. This is not yet what we need,
as the codomain is exponentially larger than the domain. To fix this, we compose these

3 One advantage of this construction even for a single cut is that it allows an entanglement gap of n vs
poly log n for an O(n)-qubit state, whereas in the [18]-based construction the B-register had to have
poly(n) qubits for a comparable entanglement gap.

CCC 2024
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functions with pairwise independent hash functions which shrink the codomain size back to
2n/2. This can only make the 2k-to-1 functions more compressing, which is to our benefit.
However, this also introduces unwanted collisions for the injective functions which might
break the high-entanglement case. To deal with this, we show that the repetition pattern
this produces in the matrix T is sufficiently well-behaved that the corresponding states still
have high entanglement. Intuitively, this holds because even though the “injective” functions
or no longer actually injective, they are still pairwise independent, which ensures enough
independence in the row repetition pattern of T to give a strong lower bound on the Frobenius
norm

∥∥TT⊤
∥∥

2.

From single-cut to multi-cut pseudoentanglement. As we mentioned, the advantage of
the above construction is that it can be extended to pseudoentanglement across all cuts
simultaneously. We now explain how this extension works at a high level. A first observation
is that to achieve pseudoentangled states with 1D near area law scaling, reducing the
entanglement across all n− 1 contiguous cuts of the line to O(polylog(n)) suffices by strong
subadditivity. Therefore, a natural approach is to perform a 1D sweep of the line, reducing
the entanglement of the contiguous cuts one at a time. For reasons that will become apparent
below, we perform this sweep right-to-left. The final phase function is then a complicated
composition of n independent lossy functions and hash functions.

To show that this construction indeed achieves pseudoentanglement across all cuts
simultaneously, we need to worry about two issues: firstly, for the low entanglement states
we need to ensure that performing the entanglement reduction operation for a cut towards
the left of the line does not inadvertently increase the entanglement across earlier cuts to the
right, so that the low entanglement across those earlier cuts is preserved. Secondly, for the
high entanglement states we need to make sure that the fact that we are using “imperfect”
injective functions does not decrease the entanglement too much even after applying these
functions across every cut.

The first concern is relatively easy to deal with due to the relationships between the
“T -matrices” for different cuts. To see this, consider a phase state |𝜓⟩ =

∑
(−1)f(x)|x⟩ on

n + m qubits on a line and let T n|m ∈ {±1}2n×2m be the T -matrix for the cut between the
first n and last m qubits, i.e. T

n|m
ij = (−1)f(i∥j) for i ∈ {0, 1}n, j ∈ {0, 1}m. After performing

the entanglement reduction operation, this matrix will only have some smaller number R

of distinct rows, each repeated many times. In the next step of the sweep (recalling that
we move right to left), we consider the cut between the first n − 1 and last m + 1 qubits.
We denote the corresponding T -matrix by T n−1|m+1 ∈ {±1}2n−1×2m+1 . From the definition
of the T -matrix, one can see that the first row of T n−1|m+1 simply consists of the first two
rows of T n|m stacked side by side. More generally, the i-th row of T n−1|m+1 is simply the
horizontal concatenation of rows 2i− 1 and 2i from T n|m. Suppose we now reduce the rank
of T n−1|m+1 by removing some rows and duplicating others. We then need to check that if
we go back to the cut n|m, the resulting T -matrix (denoted T̃ n|m) still has rank at most R.
This is the case since the rows of T̃ n|m consist of the first and second parts of the rows of
T n−1|m+1; since the rank reduction only repeats, but does not modify, rows in T n−1|m+1,
every row in T̃ n|m must have already appeared in T n|m. As a result, the subsequent rank
reduction for cut n− 1|m + 1 can only decrease, not increase, the rank of the T -matrix across
n|m. It is not too hard to see that this argument generalises to any future rank reduction
operation, not just the immediately subsequent one.

The second concern is more difficult to deal with. When applying this sweep with
approximately injective functions, the entanglement is reduced slightly each time. The
rightmost (first) cut in particular has its entanglement reduced n times, so even a tiny loss
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could kill the entire construction. Perhaps surprisingly, we show that this is not the case,
and the entanglement losses do not compound too badly. We show that different rows have
different probabilities of being hashed together due to the structure of the sweep, and a
careful accounting of this process reveals that not much entanglement is lost, even in the
first cut. The analysis is somewhat technical and we refer to Section 3.3 for details. Finally,
we note that while the construction we described here does not produce pseudorandom
states ensembles (i.e. the families of pseudoentangled states, without the public key, are not
necessarily pseudorandom states [22]), we can make a simple modification to our construction
to ensure that this is the case.

1.2 Hardness of learning ground state entanglement structure

Our second result is to show that this public-key, area vs volume-law pseudoentanglement
construction enables new applications in quantum Hamiltonian complexity. Because our
public-key pseudoentanglement construction can hide qualitative features of the entangle-
ment structure, we can show natural results for the hardness of the Learning Ground State
Entanglement Structure (LGSES) problem for broad differences in entanglement structure.
As we mentioned above, the main idea for turning pseudoentanglement constructions into
hard instances of LGSES is to use a circuit-to-Hamiltonian construction on the state prepar-
ation circuit for the pseudoentangled state. There are a variety of circuit-to-Hamiltonian
constructions and using these on our pseudoentangled states yields a variety of hardness
statements for LGSES. In this paper, we consider three different constructions: a Kitaev
clock construction with a binary clock, a Kitaev clock construction with a unary clock, and a
customised version of a geometrically local 2D construction [3]. As we discuss in Section 1.4,
an interesting open problem is whether a custom circuit-to-Hamiltonian construction that
is focused purely on preserving entanglement structure (rather than QMA-hardness) can
produce hard instances of the LGSES problem for more physically natural Hamiltonians.

Using a Kitaev clock construction with a binary clock [23], we get the following result
(see Theorem 26 for the formal statement).

▶ Theorem 3 (informal). Assuming subexponential-time hardness of LWE, LGSES is in-
tractable when the input Hamiltonian is O(log n)-local on n qubits, and the goal is to decide
whether the ground state is volume-law or near area-law entangled for the qubits arranged on
a 1D line.

This result follows relatively straightforwardly from the standard Kitaev clock construction.
There are only two issues that need to be addressed: firstly, the ground state of the
Hamiltonian in the Kitaev clock construction is the history state of the circuit, not the
output state. However, our pseudoentanglement construction only provides guarantees on the
entanglement structure of the output state. This problem can be addressed using a “padding
trick” [26]: we can simply pad the pseudoentanglement circuit with a large (polynomial)
number of identity gates at the end. This will ensure that the history state has most weight
on the output state. Using continuity properties of the von Neumann entropy, this implies
that the history state has the desired entanglement structure, too. The second issue is
that we have no control over the entanglement within the clock register of the Hamiltonian.
However, this does not matter for the coarse-grained entanglement structure of the state:
since the clock register only has logarithmically many qubits, discarding it only changes the
entanglement by O(log n), which is irrelevant for our O(poly log n) vs Ω(n) entanglement
gap.

CCC 2024
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The Hamiltonian in Theorem 3 does not achieve constant locality because the Hamiltonian
terms acting on the binary clock register require locality log n. By using a unary clock instead
of a binary clock, we can make the Hamiltonians in Theorem 3 have constant locality [23].
This is also what was used in [18] to study a Hamiltonian version of their entropy difference
problem. However, the clock register now has Θ(n) qubits, and because it has so many
qubits, the analysis from Theorem 3 no longer yields the desired entanglement gap. However,
if we trace out the clock register and measure entanglement of the remaining mixed state by
any operational mixed-state entanglement measure, we show that we still recover a maximal
entanglement gap across any cut. Intuitively, this is because due to the padding trick, after
tracing out the clock register the remaining mixed state is close in trace distance to the
(pure) output state of the pseudoentanglement circuit. We refer to Theorem 28 for the formal
statement.

The main downside of the Kitaev clock construction is that the resulting Hamiltonian
is not geometrically local, i.e. even though we imagine the qubits as arranged on a 1D line
in order to talk about area and volume law entanglement, the Hamiltonian itself has no
inherent 1D geometrical structure. In contrast, most physical Hamiltonians are geometrically
local. To obtain hard instances of the LGSES problem for geometrically local Hamiltonians
we can use a more sophisticated 2D clock construction, where we account for time across
one of the spatial dimensions instead of needing to add extra clock qubits to the circuit. We
first state the resulting hardness statement for LGSES informally and then briefly sketch the
proof. We refer to Theorem 31 for the formal statement and Section 4.3 for details of the
construction.

▶ Theorem 4. Assuming subexponential-time hardness of LWE, LGSES is intractable when
the input Hamiltonian is geometrically local on a 2D grid of n× poly(n) qudits with constant
local dimension d = O(1), and the goal is to decide whether the ground state has entanglement
scaling polylog(n) or n across horizontal cuts.

At a high level, the construction of the 2D geometrically local case is similar to before:
we take padded versions of our pseudoentanglement circuits and convert them to local
Hamiltonians using a 2D circuit-to-Hamiltonian construction [3]. This circuit-to-Hamiltonian
construction produces a geometrically local Hamiltonian by dispensing with an explicit clock
register. As a result, the ground state also does not have a clock register and is instead of
the form

∑
t Vt|𝜓t⟩ (with normalization), where |𝜓t⟩ is the state of the circuit after time step

t and Vt are isometries such that V †t Vt′ = 0 for any t ̸= t′. In other words, similarly to the
Kitaev clock construction, the ground state of the Hamiltonian has the form of a history
state, with different time steps encoded in mutually orthogonal states. Since we padded the
circuit with identities, we can approximate this ground state by

∑
Vt|𝜓out⟩ with |𝜓out⟩ the

output state of our pseudoentanglement circuit.
The challenge in bounding the entropy of the reduced states of this “history state” is that

the different time steps are encoded in different bases, specified by the isometries Vt. This is
in contrast to the Kitaev construction, where the intermediate states are all encoded in the
same basis. As a result, when we trace out part of the state

∑
Vt|𝜓out⟩, we get a state that

looks very different from just the reduced state of |𝜓out⟩. With the construction of [3], we do
not know how to bound the entanglement of these reduced states.

We therefore need to modify the construction from [3] to gain better control over the
entropy of these reduced states. We do this by increasing the local dimension of the qudits
in order to better keep track of different steps of the circuit execution. With this modified
construction, we can ensure that reduced states of different Vt|𝜓out⟩ corresponding to different
phases of the circuit execution are, in a certain sense, “cutwise” orthogonal The overall reduced
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state is now a sum of different “orthogonal” reduced states, each corresponding to a different
phase of the circuit execution. We can compute the entropy of each of these individual
reduced states relatively easily from the entanglement properties of our pseudoentangled
states. Using cutwise orthogonality allows us relate the entropy of the overall state to the
entropies of the individual reduced states that we sum over. As a result, we can compute the
entropy of the overall reduced state even though all the different time steps are encoded in
different bases.

1.3 Related work
We have already given a detailed discussion of the work of Gheorghiu and Hoban [18], which
introduced the idea of public key-pseudoentanglement and gave the first construction, and
the work of Aaronson et al. [1], which coined the term pseudoentanglement and gave a
private-key construction with maximal entanglement gap across any cut.

The main motivation in [18] was to provide a hardness result for the so-called (quantum)
entropy difference problem: given two (quantum) circuits, decide whose output has more
entropy when acting on a uniformly random input. If the circuit depth is polynomial, these
problems are known to be complete for the complexity classes QSZK and SZK, respectively [19,
10]. Gheorghiu and Hoban showed that for constant-depth circuits with unbounded fan-out
or logarithmic-depth circuits with constant fan-out, both the QED and ED problems are still
at least as hard as breaking LWE. In their proof, the entropy difference between the high-
and low-entropy circuits was a single bit. Our improved pseudoentanglement construction
implies that both ED and QED remain LWE-hard with large entropy gaps.4 This is similar
in spirit to the classical result that SZK gaps can be amplified [28].

Recently, independent and complementary work of Arnon-Friedman, Brakerski, and
Vidick [7] gave a new definition of pseudoentanglement. Their definition is private-key and is
natural in the context of operational tasks in quantum Shannon theory. Consequently, they
focus on operational mixed-state entanglement measures across a single cut and require their
states to be efficiently preparable under LOCC. In contrast in our work we focus on creating
public-key pseudoentanglement with different large-scale geometrical structures, which is
driven by our applications in Hamiltonian complexity.

Finally, we discuss the relationship between the LGSES problem and existing algorithms
for properties of ground states. While the physics literature on computing properties of ground
states is too vast to survey here, we highlight two results closer to computer science. First,
in [24] the authors provide a polynomial-time algorithm that, given a classical description
of a one-dimensional geometrically local Hamiltonian with constant spectral gap, outputs
an MPS description of the ground state. Therefore 1D constant gapped geometrically local
Hamiltonians cannot “hide” anything about their ground state entanglement structure. We
note that this algorithm cannot be used on the Hamiltonians we construct in this paper
as they are neither 1D geometrically local nor have constant spectral gap. Therefore our
results limit potential further improvements to their algorithm. Second, the recent result [21]
considers the problem of distinguishing phases of matter given labelled examples of states

4 This result only requires our single-cut pseudoentanglement construction, for which the depth can be
made logarithmic as in [18]. In fact, as mentioned earlier, an independently updated version of [18]
also achieves single-cut pseudoentanglement with a large gap, implying the same hardness result for
the (Q)ED problem that we obtain from our construction, although their circuits have poly(n) output
qubits for an entropy gap of n𝛿 vs n, whereas ours only have O(n) output qubits, i.e. achieve a larger
relative gap. We refer to [18] for a more detailed analysis.
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in different phases. The authors show that if there is a constant spectral gap and the
separation between the phases is sufficiently well-conditioned5, then a classical algorithm
can efficiently learn to distinguish between the phases using information from only few-body
measurements. In condensed matter physics, different qualitative entanglement structures
are often associated with different quantum phases of matter; therefore our result also limits
potential further improvements to such algorithms, i.e. it is not possible to relax some of their
assumptions e.g. to gapless phases. An interesting direction for future work is to make our
pseudoentanglement Hamiltonians “more physical” to be closer to the assumptions of theses
algorithmic settings. This would help to better delineate the boundary between tractability
vs intractability of learning properties of ground states of local Hamiltonians.

1.4 Discussion and open questions
In this work, we have introduced and studied the Learning Ground State Entanglement
Structure (LGSES) problem: given a classical description of a local Hamiltonian, determine
qualitative properties of the entanglement of its ground state, e.g. whether it is area-law
or volume-law entangled. To prove hardness results for this problem, we have related it
to a notion that we call public-key pseudoentanglement: low-entanglement states that are
computationally indistinguishable from high-entanglement states even when given the state
preparation circuit. Our main technical contribution is to construct public-key pseudoentan-
glement with (near) area-law vs volume-law scaling assuming the hardness of LWE.

Psedoentanglement is a relatively new idea with many avenues for future work. We
suggest three main directions: (i) improving pseudoentanglement constructions themselves,
(ii) strengthening the link between pseudoentanglement and condensed matter physics, and
(iii) applications of pseudoentanglement beyond Hamiltonian complexity. We briefly discuss
each in turn.

(i) Our public-key pseudoentanglement construction achieves essentially optimal para-
meters, but its construction uses a fairly involved iterated entanglement reduction
procedure. In contrast, the private-key construction from [1] is very simple and based
on subset states. It would be desirable to have a similarly straightforward construction
of public-key pseudoentanglement, too. Furthermore, as we suggested in our discussion
of [7], one can extend our definition of public-key pseudoentanglement to include a
trapdoor that allows for efficient distillation of the “hidden” entanglement. It is not
obvious how to extend our construction to include this feature.

(ii) Our hardness results for the LGSES problem use Hamiltonians that differ from the
Hamiltonians typically studied in condensed matter physics. For example, while we do
prove a hardness result for the LGSES problem for 2D geometrically local Hamiltonians,
this only holds for a certain set of cuts across the system. We expect that these results
can be improved to be closer to the settings studied in condensed matter physics,
such as to geometrically local Hamiltonians with more natural entanglement structures
and larger spectral gaps,6 which would have implications for the hardness of studying

5 In particular, there must be a well-behaved function of few-body observables that separates the phases.
6 Of course, we cannot hope to construct hard instances of the LGSES problem where both the area

and volume law Hamiltonians are geometrically local and have constant spectral gap. This is simply
because the area law (proven in 1D [20] and in 2D under extra conditions [4], but widely believed to
hold generally) requires any such Hamiltonian to have area law entanglement. However, this does not
rule out computationally indistinguishable families of Hamiltonians where the area law Hamiltonian
has constant gap and the volume law Hamiltonian has inverse polynomial gap, since determining the
spectral gap itself is computationally infeasible [16, 9].
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quantum phases of matter. This may require developing new sorts of clock constructions
where the only goal is to preserve entanglement structure of BQP computations rather
than to encode more general QMA-complete problems.

(iii) While we have focused on applications in Hamiltonian complexity in this work, pseudo-
entanglement might be a useful tool for proving hardness results in other domains, too.
For example, recent work [11, 7] has analysed the computational resources required
to execute certain tasks from quantum Shannon theory, e.g. entanglement distillation.
As observed in [7], proving hardness results for such problems is closely related to
pseudoentanglement, and we hope that our construction of public-key pseudoentangle-
ment will lead to additional and stronger hardness results in this direction.
Furthermore, public-key pseudoentanglement might also be interesting from a quantum
cryptographic point of view, in particular its trapdoor-variant we suggested above.
For example, recent work has focused on finding minimal assumptions for quantum
cryptography (see e.g. [32] and references therein for an overview), and it would be
interesting to explore how pseudoentanglement is related to these assumptions.
Finally, it is natural to ask if public-key pseudoentanglement might have applications in
quantum gravity. The AdS/CFT correspondence postulates that gravitational theories
are dual to quantum mechanical systems, and that the entanglement structure of the
quantum system is related to the geometry of the gravitational system [27]. Our results
show that it is difficult to estimate the entanglement of quantum states. In contrast,
geometry seems to be easy to determine, which might provide an argument that this
duality is exponentially hard to compute, as first suggested in [12]. Indeed this was
part of the motivation for prior works of pseudoentanglement [18, 1, 7]. Our public-key
extension might allow one to argue about hardness of different versions of the duality,
e.g. the duality remains hard to compute even if given a parent Hamiltonian for the
quantum state.

2 Preliminaries

2.1 Notation

We write [n] for the set {1, . . . , n}. For a bitstring x ∈ {0, 1}n, we denote the m most and
least significant bits by MSBm(x) and LSBm(x), respectively. We denote the concatenation
of strings by x ∥ y. For a set of indices I ⊂ [n] and bitstrings x ∈ {0, 1}|I|, y ∈ {0, 1}n−|I| we
denote by z = x ∥I y the string z that equals x in indices in I and y on indices in [n] \ I. We
will occasionally think of a bitstring as a Z2-vector, in which case we denote it as x⃗.

For a matrix A ∈ Cm×n, we denote by ∥A∥p = Tr
[
(A†A)p/2]1/p its Schatten p-norm. The

1-norm is also called the trace norm, the 2-norm is the Frobenius norm (or Hilbert-Schmidt
norm), and the ∞-norm the operator norm.

Quantum systems are denoted by capital letters A, B, etc. For a pure state |𝜓⟩AB or a
mixed state 𝜌AB on systems A and B, we denote the reduced states on system A by 𝜓A and
𝜌A, respectively. We write quantum circuits as C = UT ·UT−1 · · ·U1, where Ui are elementary
gates. This should be thought of as a list of gates, not simply a large unitary; in particular,
inserting identity gates into the circuit does change the circuit (although of course it does
not change the unitary implemented by the circuit).
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2.2 Independent hash functions
▶ Definition 5 (r-wise independent function family). A function family H = {hk : [N ] →
[M ]}k∈K indexed by some set of keys K is r-wise independent if for all distinct x1, . . . , xr ∈
[N ], the random variables hk(x1), . . . , hk(xr) (for k ∈ K chosen uniformly) are uniform i.i.d.

The following is a standard result (see e.g. [30, Corollary 3.34]):

▶ Lemma 6. For any n, m, r ∈ N, there exists an r-wise independent function family
Hn = {hk : Zn

q → Zm
q }k∈K such that each k ∈ K has length poly(n, m, r, log q) and given

k ∈ K, the function hk can be evaluated in time poly(n, m, r, log q).

2.3 Entropies
We recall the basic definitions of quantum entropies. Throughout, we use the convention
that 0 log 0 = 0.

▶ Definition 7 (von Neumann entropy). The von Neumann entropy of a quantum state 𝜌 is
defined as

S(𝜌) = −Tr[𝜌 log 𝜌] .

▶ Definition 8 (Conditional von Neumann entropy). The conditional von Neumann entropy
of a quantum state 𝜌AB is defined as

S(𝜌A|B) = S(𝜌AB)− S(𝜌B).

▶ Definition 9 (Binary entropy function). The binary entropy function is defined as

h(x) = −x log x− (1− x) log(1− x),

for x ∈ [0, 1].

2.3.1 Continuity properties
▶ Lemma 10 (Continuity of the von Neumann entropy [17, 8]). Let 𝜌AB and 𝜎AB be the
density matrix of two n-qubit quantum states respectively, each partitioned into subsystems A

and B, and let
1
2 ||𝜌AB − 𝜎AB ||1 ≤ 𝜖 .

Then,

|S(𝜌AB)− S(𝜎AB)| ≤ 𝜖 · n + h(𝜖),

where h(·) is the binary entropy function.

▶ Lemma 11 (Continuity of the conditional von Neumann entropy [31]). Let 𝜌AB and 𝜎AB be
the density matrix of two n-qubit quantum states respectively, each partitioned into subsystems
A and B, and let

1
2 ||𝜌AB − 𝜎AB ||1 ≤ 𝜖 .

Then,

|S(𝜌A|B)− S(𝜎A|B)| ≤ 2𝜖 · log |A|+ (1 + 𝜖) · h
(

𝜖

1 + 𝜖

)
,

where |A| is the dimension of the Hilbert space for subsystem A and h(·) is the binary entropy
function.
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2.4 Entanglement measures
2.4.1 Pure state entanglement measure
For pure states on systems AB, the entanglement between A and B is quantified using the
so-called entanglement entropy, which is simply the von Neumann entropy of the reduced
state on either subsystem.

▶ Definition 12 (Entanglement entropy). For a pure state |𝜓⟩AB, the entanglement entropy
between systems A and B is defined as S(𝜓A). Note that this is invariant under swapping A

and B since for a pure state |𝜓⟩AB, S(𝜓A) = S(𝜓B).

2.4.2 Entanglement entropy for phase states
▶ Definition 13 (T -matrix associated with phase states). Let s : {0, 1}n → {0, 1}. For an
n-qubit phase state

|𝜓⟩ =
∑

x

(−1)s(x)|x⟩

and a subset X ⊆ [n], we define the “T -matrix” with respect to the cut X as a {±1}2|I|×2n−|I|-
matrix with entries

Tij = (−1)s(i∥X j) ,

where ∥X is the “index string concatenation” defined in Section 2.1.

▶ Lemma 14. Let s : {0, 1}n → {0, 1} and |𝜓⟩ =
∑

x(−1)s(x)|x⟩. Then for any cut X ⊆ [n],
the entanglement entropy of that cut is bounded by

− log
(∥∥∥∥ 1

2n
TT⊤

∥∥∥∥
2

)
≤ S(𝜓X) ≤ log rank(T ) ,

where T is the T -matrix of |𝜓⟩ across cut X.

3 Public-key pseudoentanglement: definition and construction

In this section, we define and construct public-key pseudoentanglement. Our construction
uses a similar idea as in [1, Appendix A], which is to consider phase states whose phases have
been manipulated in a particular way to create high or low entanglement. The “manipulation”
of these phases is by means of applying a one-to-one or many-to-one function (see Section 3.2
for details). We therefore need to construct such lossy functions with the appropriate
parameters, which we do in Section 3.1 based on the LWE assumption.

In Section 3.2, we then use these lossy functions to construct indistinguishable families of
quantum states where states in one family have high entanglement and states in the other
family have low entanglement across a single fixed bipartition of the qubits. In Section 3.3,
we extend this construction to states that have high or low entanglement for (almost)
every cut on a 1Dimensional line, i.e. we imagine the qubits of the state being arranged
on a line and consider all bipartitions into left and right qubits. We show that under the
subexponential-time LWE assumption, it is possible to construct pseudoentangled states of
this form where either all cuts a have a linear or a polylogarithmic amount of entanglement,
which is the largest possible separation, as discussed in Remark 19. In this sense our public-
key pseudoentanglement construction is optimal. We will use this multi-cut construction
in Section 4 to show that learning the ground state entanglement structure of (classically
described) local Hamiltonians is computationally hard (under the LWE assumption).
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3.1 Construction of lossy functions
We define the following rounding function for Zq elements.

▶ Definition 15. For q = cp with c ∈ N, divide Zq into p consecutive bins. We define
⌊x⌋p ∈ Zp as the index of the bin in which x lies. For a vector x ∈ Zm

q , ⌊x⃗⌋p ∈ Zm
p is defined

as the element-wise application of ⌊·⌋p.

▶ Definition 16 (Lossy function construction). Choose parameters ℓ(m), r(m) ≤ poly(m).
Let p = 24, q = 2m, and 𝜎 = q/m3. Let Hm = {hk : Zm

p → Zm
2 }k∈Khash

m
be the r(m)-

wise independent function family from Lemma 6. We define two families of functions
f : {0, 1}m → {0, 1}m indexed by key sets Kinj

m ,Klossy
m ⊂ Zm×m

q ×Khash
m as follows:

To sample a key from Kinj
m , denoted k ← Kinj

m , sample A ← Um×m
q and khash ∈ Khash

m

uniformly. Set k = (A, khash).
To sample a key from Klossy

m , denoted k ← Klossy
m , sample A← Lm×m

q,ℓ,𝜎 and khash ∈ Khash
m

uniformly. Set k = (A, khash).
For a key k = (A, khash) ∈ Kinj

m ∪Klossy
m , the function fk : {0, 1}m → {0, 1}m is defined as

fk(x⃗) = hkhash (⌊A · x⃗⌋p) .

3.2 Public-key pseudoentanglement across a single cut
We will now use our lossy function construction from Section 3.1 to construct public-key
pseudoentangled states for the middle cut that separates the left and right half of qubits.
In Section 3.3 we will use the ideas from this section in an iterated way to construct
pseudoentangled states for qubits arranged on a line that are pseudoentangled across every
cut on the line. Strictly speaking, all the results in this section follow from the more general
analysis in Section 3.3. We spell them out nonetheless because it may be easier for readers
to first understand the single-cut construction in detail before moving on to Section 3.3.

We begin by defining single-cut public-key pseudoentanglement formally.

▶ Definition 17 (Public-key pseudoentanglement across a single cut). A public-key pseudoen-
tangled state ensemble with entanglement gap (f(n), g(n)) across cuts Xn ⊂ [n] consists of
two sequences of families of quantum states Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψhigh
n = {|𝜓k⟩}k∈Khigh

n

indexed by key sets Klow
n and Khigh

n respectively with the following properties:
(i) Every |𝜓k⟩ ∈ Ψlow

n ∪Ψhigh
n is an n-qubit state.

(ii) Every key k ∈ Klow
n ∪Khigh

n has length poly(n), and there exists an efficient sampling
procedure that, given as input n and a label “high” or “low”, outputs a key k ∈ Klow

n or
k ∈ Khigh

n , respectively. We write k ← Klow
n and k ← Khigh

n for keys sampled according
to this procedure.

(iii) Given k ∈ Klow
n ∪Khigh

n , the corresponding state |𝜓k⟩ is efficiently preparable (without
knowing whether k ∈ Klow or k ∈ Khigh). Formally, there exists a uniform polynomial-
time circuit family {Cn} such that Cn takes as input a key k ∈ Klow

n ∪Khigh
n and outputs

a state negligibly close to |𝜓k⟩.
(iv) The keys from Klow

n and Khigh
n are computationally indistinguishable. Formally, for all

poly(n)-time quantum adversaries A that take as input a key Klow
n ∪Khigh

n and output
a single bit:∣∣∣Prk←Klow

n
[A(k) = 0]− Prk←Khigh

n
[A(k) = 0]

∣∣∣ = negl(n) .
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(v) With overwhelming probability, across the cut Xn states in Ψlow
n have entanglement

entropy Θ(f(n)) and states in Ψhigh
n have entanglement entropy Θ(g(n)). Formally,

there exist constants 0 < C1 < C2 such that for all sufficiently large n,

Prk←Klow
n

[S((𝜓k)Xn
) ∈ [C1f(n), C2f(n)]] ≥ 1− negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn
) ∈ [C1g(n), C2g(n)]] ≥ 1− negl(n) .

Here, S((𝜓k)Xn) is the von Neumann entropy of the reduced state of |𝜓k⟩ on the qubits
in the set Xn ⊂ [n].

▶ Remark 18. We will frequently abuse notation and use entanglement gaps of the form
(O(f(n)), Ω(g(n))). By this, we mean that (across a specified cut Xn) Ψlow

n has entanglement
at most O(f(n)) and Ψhigh

n has entanglement at least Ω(g(n)). Formally, this means that for
this case Item v of Definition 17 has to be modified as follows:

Prk←Klow
n

[S((𝜓k)Xn
) ≤ O(f(n))] ≥ 1− negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn
) ≥ Ω(g(n))] ≥ 1− negl(n) .

▶ Remark 19. A natural question is what the optimal entanglement gap for pseudoentangled
states is. Clearly, the high-entanglement states can have entanglement at most g(n) = O(n)
across any cut, since the entanglement entropy is upper bounded by the number of qubits.
For the low-entanglement states, one can show that the entanglement entropy needs to scale
faster than log n, i.e. f(n) = 𝜔(log n). Otherwise, one could distinguish the low-entanglement
states from the high-entanglement states using a variant of the SWAP test. This was proven
in [22] and [1, Appendix F] for private-key pseudoentangled states and the same proof applies
to the public-key setting, too.

We now give a construction of single-cut pseudoentangled states based on our lossy
function construction from Section 3.1. As we will show in Theorem 21, these states do
indeed form pseudoentangled ensembles in the sense of Definition 17. Under the standard
LWE assumption, we can achieve an entanglement gap of (O(n𝛿), Ω(n)) for any 𝛿 > 0,
where n is the number of qubits and the cut divides the qubits into two equal halves; under
the stronger subexponential-time LWE assumption we can achieve an entanglement gap of
(O(poly log n), Ω(n)), which is essentially optimal as noted in Remark 19.

For simplicity, for the rest of this subsection we always assume that n is even and write
m = n/2. We will consider the cut that divides the qubits into two sets of size n; we could
also consider more general cuts and treat them with the same technique, which we do in
Section 3.3.

▶ Definition 20. Fix a function f(n). (This will be treated as a parameter of the construction.)
Let Hn = {hk : {0, 1}n → {0, 1}}k∈K4

n
be a 4-wise independent family as given in Lemma 6.

Instantiate the lossy functions from Section 3.1 with parameters ℓ(m) =
√

f(2m) and
r(m) = 2. (Recall that m := n/2.)

We first describe the sampling procedure for the keys Klow
n and Khigh

n .
(i) To sample k ∈ Klow

n , sample krep ← Klossy
m and kfin ∈ K4

n uniformly. Set k = (krep, kfin).
(ii) To sample k ∈ Khigh

n , sample krep ← Kinj
m and kfin ∈ K4

n uniformly. Set k = (krep, kfin).
For k = (krep, kfin), define the labelling function rk : {0, 1}n → {0, 1}n by

rk(x) = (fkrep(i) ∥ j) with i = MSBm(x), j = LSBm(x) .

We next define the function sk : {0, 1}n → {0, 1} as

sk(x) = hkfin(rk(x)) .
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The states |𝜓k⟩ are then given by

|𝜓k⟩ =
∑

x∈{0,1}n

(−1)sk(x)|x⟩ .

▶ Theorem 21.
(i) Under the standard LWE assumption, for any function f(n) = n𝛿 for 𝛿 > 0, the state

families Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψhigh

n = {|𝜓k⟩}k∈Khigh
n

from Definition 20 form a
pseudoentangled state ensemble with entanglement gap (O(f(n)), Ω(n)) across the cuts
Xn = [n/2].

(ii) Under the subexpoential-time LWE assumption, there exists a function f(n) = poly log n

such that the state families Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψhigh

n = {|𝜓k⟩}k∈Khigh
n

from Defin-
ition 20 form a pseudoentangled state ensemble with entanglement gap (O(f(n)), Ω(n))
across the cuts Xn = [n/2].

3.3 Area-law public-key pseudoentangled states on a 1D line
In this section we will give a (nearly) area-law public-key pseudoentangled states construction
on a line based on the row repetition technique we introduced in Section 3.2. This means
that we will construct public-key pseudoentangled states such that if we imagine the qubits
arranged on a line, the entanglement gap is poly log n vs n across all cuts that separate the
qubits into left and right qubits on the line.

We begin by formally defining this multi-cut version of pseudoentanglement. The definition
is almost identical to Definition 17, except that we now need to require an entanglement
gap across all cuts on a line simultaneously. One slight subtlety is that if we consider cuts
close to the end of the line, the entanglement will be low simply by virtue of the fact that
there are only very few qubits on one side of the cut. Therefore, in the high-entanglement
case, we need to require the entanglement to be at least g(distance from end of line) rather
than simply g(n). Furthermore, very close to the boundary (namely, O(log n) close), certain
properties of our construction break down. Therefore, we only consider cuts that are at least
𝜔(log n) far from the boundary. Since we are primarily interested in large entanglement gaps
of the form (O(poly log n), Ω(n)), this small boundary region is of no particular interest to
us. Nonetheless, it is possible to modify our construction to work for such small boundary
regions too.

As in the single-cut case, we use entanglement gaps of the form (O(f(n)), Ω(g(n))) for
pseudoentangled states where we only have an upper bound on the entanglement in the
low-entanglement case and a lower bound in the high-entanglement case (see Remark 18 for
details). To simplify the definition slightly, below we state the definition directly for this
case; it is straightforward to adapt it to the case where one wants the exact scaling rather
than one-sided bounds, but we will not need this for our results.

▶ Definition 22 (Public-key pseudoentanglement across geometrically local cuts in 1D). A
public-key pseudoentangled state ensemble with entanglement gap (O(f(n)), Ω(g(n))) across
geometrically local cuts on a 1D line consists of two sequences of families of quantum
states Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψhigh
n = {|𝜓k⟩}k∈Khigh

n
indexed by key sets Klow

n and Khigh
n

respectively that satisfy Items i–iv from Definition 17 and the following modified version of
Item v from Definition 17:
(v’) For any function b(n) = 𝜔(log n), with overwhelming probability, states in Ψlow

n

have entanglement entropy O(f(n)) and states in Ψhigh
n have entanglement entropy

Ω(g(distance from end of line)) for all geometrically local cuts that are at least b(n) far
from the end of the line. Formally,
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Prk←Klow
n

[
∀c ∈ {b(n), . . . , n − b(n)} : S((𝜓k)[c]) ≤ O(f(n))

]
≥ 1 − negl(n) ,

Pr
k←Khigh

n

[
∀c ∈ {b(n), . . . , n − b(n)} : S((𝜓k)[c]) ≥ Ω

(
min(g(c), g(n − c))

)]
≥ 1 − negl(n) .

Here, (𝜓k)[c] is the reduced states of |𝜓k⟩ on qubits (1, . . . , c).

▶ Definition 23. Fix a function f(n) (this will be treated as a parameter of the construction).
Let Hn = {hk : {0, 1}n → {0, 1}}k∈K4

n
be a 4-wise independent family as given in Lemma 6.

For m ∈ {f(n), f(n) + 1, . . . , n}, instantiate the m-bit lossy function from Section 3.1 with
parameters ℓ(m) =

√
f(n) and r(m) = 2.

We first describe the sampling procedure for the keys Klow
n and Khigh

n .
(i) To sample k ∈ Klow

n , for m ∈ {f(n), f(n)+1, . . . , n}, independently sample krep
m ← Klossy

m

(see Definition 16) and kfin ∈ K4
n uniformly. Set k = (krep

f(n), krep
f(n)+1, . . . , krep

n , kfin).
(ii) To sample k ∈ Khigh

n , for m ∈ {f(n), f(n)+1, . . . , n}, independently sample krep
m ← Kinj

m

and kfin ∈ K4
n uniformly. Set k = (krep

f(n), krep
f(n)+1, . . . , krep

n , kfin).
For k = (krep

f(n), krep
f(n)+1, . . . , krep

n , kfin), define the labelling functions r
f(n)
k , . . . , rn

k : {0, 1}n →
{0, 1}n recursively by

rm
k (x) =

{
x m = n + 1,

rm+1
k (fkrep

m
(i) ∥ j) f(n) ≤ m ≤ n, MSBm(x) = i, LSBn−m(x) = j,

where MSBm(x) is the first m bits of x, LSBm(x) is the last m bits of x, and i ∥ j is the
concatenation of bit strings i and j. For simplicity, we define rk(x) = r

f(n)
k (x).

With this notation, for k = (krep
f(n), krep

f(n)+1, . . . , krep
n , kfin), we next define the function

sk : {0, 1}n → {0, 1} as

sk(x) = hkfin (rk(x)) ,

The states |𝜓k⟩ are then given by

|𝜓k⟩ =
∑

x∈{0,1}n

(−1)sk(x)|x⟩ .

Our main result is that this construction satisfies the requirements from Definition 22 as
summarised by the following theorem. In particular, we show that under the subexponential-
time LWE assumption, our construction achieves an entanglement gap of poly log n vs
n, which is essentially optimal by Remark 19. On a 1D line, this entanglement scaling
corresponds to area-law (up to poly log factors) vs volume law entanglement, which is why
we call this result area-law pseudoentangled states.

▶ Theorem 24.
(i) Under the standard LWE assumption, for any function f(n) = n𝛿 for 𝛿 > 0, the state

families Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψhigh

n = {|𝜓k⟩}k∈Khigh
n

from form a pseudoentangled
state ensemble with entanglement gap (O(f(n)), Ω(n)) across geometrically local cuts
in 1D.

(ii) Under the subexponential-time LWE assumption, there exists a function f(n) =
poly log n such that the state families Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψhigh
n = {|𝜓k⟩}k∈Khigh

n

from Definition 23 form a pseudoentangled state ensemble with entanglement gap
(O(f(n)), Ω(n)) across geometrically local cuts in 1D.
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3.4 Area-law public-key pseudoentangled states on a 2D grid
We can easily generalise the 1D construction from Section 3.3 to a system of qubits arranged
on a 2D grid. This is the same construction as in [1, Appendix D.5], so we only provide a
short sketch. Let |𝜓k⟩ be an n-qubit state from a pseudoentangled state ensemble. We can
arrange the qubits of this state on an

√
n×
√

n grid as shown in Figure 1. Now consider a

Figure 1 Arranging an n-qubit state on a
√

n ×
√

n grid.

contiguous 2D subregion R of this
√

n×
√

n grid. Let |R| be the size of R (i.e. the number
of qubits in R) and |∂R| the size of the boundary of R. Unfolding the “snake”, this region R

corresponds to a (not necessarily geometrically local) cut in 1D.
For the pseudoentangled state ensembles we constructed in Theorem 24, a high-entangle-

ment state |𝜓k⟩ has entanglement entropy Ω(|R|) for any (sufficiently large) cut R, even
if the cut is not 1D geometrically local. This means that arranged on a 2D grid, the
high-entanglement states from Theorem 24 exhibit volume law entanglement scaling.

Conversely, consider a low-entanglement state |𝜓k⟩ from the construction in Theorem 24.
From the geometry of Figure 1 it is easy to see that a region R corresponds to a 1D cut that
divides the qubits into at most O(|∂R|) contiguous regions; this is because the boundary of
the region R can cut the “snake” at most O(|∂R|) times. For each of these O(|∂R|) cuts in 1D,
we know from Theorem 24 that |𝜓k⟩ has entanglement entropy at most O(poly log n) across
that cut. Using subadditivity of entanglement entropy, it then follows that the entanglement
entropy of the region R is at most O(|∂R| · poly log n), which corresponds to area-law scaling
in two dimensions (up to polylogarithmic factors).

4 Computational hardness of learning ground state entanglement
structure

Our public-key pseudoentanglement constructions can be leveraged to construct Hamiltonians
such that it is hard to learn the entanglement structure of their ground state. This is what
we will discuss in the next sections. Specifically, we will study variants of the following
problem, which we define somewhat informally.

▶ Definition 25 (Learning Ground State Entanglement Structure (LGSES) problem). Given a
classical description of a k-local Hamiltonian H on n qubits with spectral gap at least 1

poly(n) ,
decide whether the ground state of H has entanglement structure A or B? Here, A and B
should be two qualitatively different, pre-specified entanglement structures, e.g. near are-law
and volume law entanglement.

We will see three different variants of this problem for three different types of local
Hamiltonians and correspondingly three slightly different entanglement structures. We will
progressively make our constructions more local – in some sense, more local corresponds to
more physical Hamiltonians – but we will pay a slight price in terms of how straightforwardly
the entanglement structures can be described.
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(i) In Section 4.1, we will study the hardness of LGSES for O(log n)-local Hamiltonians on
n qubits arranged in a 1D line. The two entanglement structures to distinguish between
will be poly log n vs Ω(n) entanglement across geometrically local cuts in 1D. In other
words, we are asked to distinguish 1D near area-law vs volume-law entanglement.

(ii) In Section 4.2, we will improve upon the locality of the Hamiltonian and study the
hardness of LGSES for O(1)-local Hamiltonians on n qubits arranged in a 1D line.
However, the entanglement structure will be slightly more complicated: we will consider
the reduced states of ground states on a specific subsystem and ask whether this has
1D near area-law or volume-law entanglement structure for a mixed state measure of
entanglement.

(iii) In Section 4.3, we will study the hardness of LGSES for 2-local Hamiltonians on a 2D
grid of size n×poly(n) and with constant local dimension, where all Hamiltonian terms
are geometrically local (i.e. only nearest neighbors on the grid can interact). The two
entanglement structures to distinguish will be entanglement entropy O(poly log n) vs
Ω(n) across horizontal cuts through the grid.

4.1 1D Hamiltonians with log n-locality and pure states
In this section, we will show how to obtain two families of log n-local Hamiltonians, one
whose ground state has poly log n entanglement scaling and the other whose ground state
has Ω(n) entanglement scaling across geometrically local cuts in 1D, such that given the
description of one of these Hamiltonians it is computationally hard to decide which family it
belongs to.

We will start with the public-key pseudoentangled state constructions in Section 3.3, use
the padded circuit-to-Hamiltonain construction, and then use the trace distance closeness
property to show that the entanglement structures of the ground states of these Hamiltonians
resemble the entanglement structure of the public-key pseudoentangled states.

▶ Theorem 26. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of O(log n)-local
Hamiltonians on (n + O(log n)) qubits arranged on a 1D line with spectral gap Ω(1/ poly(n))
and efficient procedures that sample (classical descriptions of) Hamiltonians from either
family (denoted H ← Hlow

n and H ← Hhigh
n ) with the following properties:

(i) Hamiltonians sampled according to H ← Hlow
n and H ← Hhigh

n are computationally
indistinguishable under the assumption that LWE is subexponentially hard.

(ii) With overwhelming probability, the ground states of Hamiltonians H ← Hlow
n have

1D near area-law entanglement and Hamiltonians H ← Hlow
n have 1D volume-law

entanglement. Formally, this means that for geometrically local cuts in 1D of size r =
𝜔(log n), the ground states of the Hamiltonians have entanglement entropy O(poly log n)
or Ω(min(r, n− r)), respectively.

▶ Remark 27. Under the standard LWE assumption instead of the subexponentially hardness
assumption, Theorem 26 still holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n)
for any 𝛿 > 0. This mirrors directly the statement in Theorem 24.

4.2 1D Hamiltonians with constant locality and mixed states
In this section, we will modify the construction in Section 4.1 with a unary clock to get
constant locality. However, because the clock register will now have poly(n) qubits, we can no
longer simply remove the clock qubits as we did in Theorem 26. Therefore, we will consider
the entanglement structure of the reduced density matrices of the ground state with the
clock register traced out. Using mixed state entanglement measures, we will show that one
such density matrix will have high entanglement, and the other will have low entanglement.
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As discussed in Section 2.4, there are many mixed state measures of entanglement. We
will show that for any “natural” mixed state entanglement measure, the ground state of the
our Hamiltonian (with the clock register traced out) has either high or low entanglement.
We achieve this by giving an upper bound on the entanglement of formation of our low
entanglement construction and a lower bound on the distillable entanglement of our high
entanglement construction. This gives an entanglement gap for any natural entanglement
measure. In fact, Hamiltonians constructed from our ensembles of pseudoentangled states
achieve a maximally large gap.

▶ Theorem 28. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of O(1)-local
Hamiltonians on (n + poly(n)) qubits arranged on a 1D line with spectral gap Ω(1/ poly(n))
and efficient procedures that sample (classical descriptions of) Hamiltonians from either
family (denoted H ← Hlow

n and H ← Hhigh
n ) with the following properties:

(i) Hamiltonians sampled according to H ← Hlow
n and H ← Hhigh

n are computationally
indistinguishable under the assumption that LWE is subexponentially hard.

(ii) If we trace out poly(n) many qubits from the ground state of each Hamiltonian, the
entanglement gap between the resultant quantum states in the high and low families
is Ω(min(r, n − r)) versus O(poly log n), for a cut of size (r, n − r), for any natural
entanglement measure. With overwhelming probability, the reduced states on the first
n qubits of the ground states of Hamiltonians H ← Hlow

n have 1D near area-law
entanglement and Hamiltonians H ← Hlow

n have 1D volume-law entanglement with
respect to any natural mixed state entanglement measure.

▶ Remark 29. Just as in Remark 27, under the standard LWE assumption Theorem 28 still
holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n) for any 𝛿 > 0.

4.3 2D Hamiltonians with geometric locality and pure states
In this section, we will show how to obtain two families of 2D Hamiltonians on a 2D grid
of poly(n) qudits, one whose ground state has entanglement entropy of order n and the
other whose ground state has entanglement entropy of order poly log n, with respect to most
horizontal cuts across the 2D grid. Thus, arguably, this gives us a relatively more complicated
entanglement structure than the constructions in Theorem 26 and Theorem 28. However, we
gain in geometric locality: the Hamiltonian only has nearest neighbor interactions on a 2D
grid. Formally, 2D Hamiltonians are defined as follows.

▶ Definition 30 (2D (local) Hamiltonian, [2]). Let H be a Hermitian operator (interpreted as
a Hamiltonian, giving the energy of some system). We say that H is an r-state Hamiltonian
if it acts on r-state qudits (i.e. d = r). When r = 2, namely, when the qudits are qubits. We
say that H is k-local if it can be written as

H =
∑

i

Hi,

where each Hi acts non-trivially on at most k qudits. Note that this term does not assume
anything about the physical location of the qudits. We say that H is a 2D Hamiltonian if the
qudits are arranged on a 2D grid and the terms Hi interact only pairs of nearest neighbor
qudits. In particular, a 2D Hamiltonian is 2-local.
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▶ Theorem 31. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of geometrically
2D-local Hamiltonians on (n× poly n) qudits arranged in an n× poly(n) grid with spectral
gap Ω(1/ poly(n)), and there are efficient procedures that sample (classical descriptions of)
Hamiltonians from either family (denoted H ← Hlow

n and H ← Hhigh
n ) with the following

properties:
(i) Hamiltonians sampled according to H ← Hlow

n and H ← Hhigh
n are computationally

indistinguishable under the assumption that LWE is subexponentially hard.
(ii) With overwhelming probability, the ground states of Hamiltonians H ← Hlow

n have
poly log n entanglement across horizontal cuts through the grid that are at least 𝜔(log n)
far from the boundary, and Hamiltonians H ← Hhigh

n have Ω(n) entanglement across
the same cuts.

Overview. The main steps of our construction are as follows:
First, we start with two n-qubit public key pseudoentangled states across multiple cuts,
according to the construction in Section 3.3, and consider the circuits for preparing them.
Suppose these circuits have K = poly(n) gates. Without loss of generality, we assume
the circuit can be decomposed into R = poly(n) “rounds”, each made up of exactly n

nearest-neighbor interactions on qubits 1, (1,2), (2,3), etc. Any circuit can be transformed
into this form by inserting a polynomial number of identity and swap gates. Hence, the
circuit contains nR gates in total. As in Section 4.1, we pad the circuits with nM identity
gates at the end for a sufficiently large M = poly(n).
Then, we use a modified version of the 2D clock construction [3] to construct two families
of 2D Hamiltonians such that the padded circuit is embedded into its ground state. That
is, if C = UnT · UnT−1 · · ·U1 is the circuit with padding, where T = M + R is the total
number of rounds after padding, we construct a Hamiltonian H such that the ground
state |𝜓ground⟩, on an n × T grid of qudits, encodes the time evolution of the padded
circuit.
We show how, because of the padding, the entanglement structure of the 2D ground state
across any horizontal cut resembles the entanglement structure of the state

|𝜓output⟩ = UnR · UnR−1 · · ·U1|0n⟩, (4.1)

across the same cut.
By virtue of our pseudoentanglement construction, the state in Equation (4.1) either has
high or low entanglement, whenever the cut has distance 𝜔(log n) to the boundary of
the grid. Then, by a continuity argument, we show that the ground state |𝜓ground⟩ also
inherits the high or low entanglement property.
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