
Depth-d Frege Systems Are Not Automatable
Unless P = NP
Theodoros Papamakarios #

Department of Computer Science, University of Chicago, IL, USA

Abstract
We show that for any integer d > 0, depth-d Frege systems are NP-hard to automate. Namely, given
a set S of depth-d formulas, it is NP-hard to find a depth-d Frege refutation of S in time polynomial
in the size of the shortest such refutation. This extends the result of Atserias and Müller [JACM,
2020] for the non-automatability of resolution – a depth-1 Frege system – to Frege systems of any
depth d > 0.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof complexity, Automatability, Bounded-depth Frege

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.22

Acknowledgements I would like to thank Alexander Razborov for numerous remarks and suggestions
that greatly improved the presentation of the paper.

1 Introduction

Since its inception as child discipline of mathematical logic, computability, and by extension
complexity theory, has had the following two questions at its core: First, broadly asked,
how hard is it to prove a theorem, and secondly, knowing that a proof exists, how hard is it
to find one. Significantly refining earlier results, most notably [1], Atserias and Müller [2]
showed that a version of the latter question, even for a system as weak as resolution, is the
same as asking whether P = NP.

Namely, a proof system σ is called automatable if there is an algorithm that, given a
provable formula ϕ, constructs a proof of ϕ in σ, in time polynomial in the size of the smallest
proof of ϕ in σ. What Aterias and Müller show is that resolution is not automatable unless
P = NP.

Now, resolution lies at the bottom of a hierarchy of proof systems, the so called Frege
systems of bounded depth, the d-th level of that hierarchy – depth-d Frege – being a system
operating with formulas of depth d. It seems plausible that the more complicated the proof
systems is, the harder it is to automate it. Following this intuition, as depth-(d − 1) Frege is
a subsystem of depth-d Frege, the latter should be harder to automate. We show that for
any d, depth-d Frege is as hard to automate as possible. More specifically, we extend the
Atserias-Müller result, to show:

▶ Theorem 1.1. If P ̸= NP, then for any d > 0, depth-d Frege systems are not automatable.

The Atserias-Müller result has been extended to cutting planes [11], Res(k) [10], and
various algebraic proof systems [7]. Whether it can be extended to bounded-depth Frege
systems had remained open. It should be noted that the non-automatability of bounded-depth
Frege systems was known under a stronger assumption, namely that the Diffie-Hellman key
exchange protocol cannot be broken with circuits of subexponential size [4]. The present paper
improves on [4] on three fronts. First, the assumption P ̸= NP is much weaker, in particular,
it is as weak as possible. Secondly, the result of [4] only works for sufficiently large d, while
ours works for all d. Finally, our result requires proving new lower bounds for bounded-depth

© Theodoros Papamakarios;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:papamakarios@uchicago.edu
https://orcid.org/0009-0009-2814-5256
https://doi.org/10.4230/LIPIcs.CCC.2024.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Depth-d Frege Systems Are Not Automatable Unless P = NP

Frege, unlike the approach of [4]. However, still, this result and ours are incomparable: [4]
rules out even the weak automatability of bounded-depth Frege systems, which is to say that
no system polynomially simulating a depth-d Frege system is automatable.

Proof outline
The proof is a reduction from SAT. We want for any positive integer d, given a CNF formula
F , to construct a formula G such that if F is satisfiable, then G has small depth-d refutations,
whereas if F is unsatisfiable, then G requires large depth-d refutations.

For d = 1, [2] considers the formula G := Ref(F, z) expressing that z encodes a resolution
refutation of F . Then a “relativization” construction is applied to Ref(F, z) to get the
formula RRef(F, z), stating that z is either itself, or contains a resolution refutation of F .
It is shown by Pudlák [16] that if F is satisfiable, then the formula Ref(F, z) has short
resolution refutations, and this readily extends to RRef(F, z) [2]. To show a lower bound
for RRef(F, z) in the case F is unsatisfiable, first it is argued in [2] that there cannot be
resolution refutation of RRef(F, z) having small index-width, where the index-width of a
resolution refutation π of RRef(F, z) is defined as the maximum number of clauses of z

contained in a clause of π. Then it is shown, following [6], that if RRef(F, z) had a small
resolution refutation, then Ref(F, z′), where the size of z′ is polynomially related to the size
of z, would have a resolution refutation of small index-width. Notice that arguing in terms
of a variant of width, index-width in this case, is necessary. The same argument could not
have worked for width, since resolution is automatable with respect to width, in the sense
that a resolution refutation of F having width w can be found in time nO(w), where n is the
number of variables of F .

To extend the above for the case d > 1, an idea is to employ the construction of [14] (see
also [3]), replacing every variable of RRef(F, z) with Sipser functions, i.e. formulas of the
form∧

i1

∨
i2

· · ·
∧

ik=1
xi1,...,ik

or ∨
i1

∧
i2

· · ·
∨

ik=1
xi1,...,ik

,

for some suitable k. Following [14, 3], one gets a lower bound by repeated applications of
Håstad’s switching lemma [12], which reduce a size lower bound to essentially a width lower
bound. In our case, we need a reduction in the base case of the argument to a lower bound
for index-width, and trying to apply Håstad’s switching lemma for index-width instead of
width, one encounters several difficulties, a main one being that the variables encoding the
clauses of z induce an exponential factor in the switching probability, making the lemma
trivial. We are able to overcome these difficulties by applying the weaker Furst-Saxe-Sipser
switching lemma [8], which can use restrictions that fix much less variables on average than
Håstad’s switching lemma. This will give a weaker lower bound, only polynomial in our case,
which nonetheless is sufficient for the purposes of showing non-automatability.

Let us note that the reduction described above is to a formula that has large depth.
In particular, this does not rule out the possibility of bounded-depth Frege systems being
automatable when restricted on refuting CNF formulas. To show non-automatability for
refuting CNF formulas, one would need to describe a reduction to a CNF formula. This
however we expect to be hard to do; see the discussion in the concluding section.

T. Papamakarios 22:3

2 Bounded-depth Frege systems and automatability

2.1 Basic definitions
We assume that formulas are built from constants 0 and 1, propositional variables and their
negations, unbounded conjunctions and unbounded disjunctions. So negations can only
appear next to variables. The depth of a formula is the maximum nesting of conjunctions
and disjunctions in it. Formally,

d(0) = d(1) = d(x) = d(¬x) = 0,

d(◦{F1, . . . , Fk}) = 1 + max
i

d(Fi),

where x is a variable and ◦ is either a conjunction
∧

or a disjunction
∨

.
Depth-0 formulas that are not constants are called literals. We often write literals in the

form xε, where x1 := x and x0 := ¬x. Depth-1 formulas are called clauses/terms, clauses
being disjunctions and terms conjunctions of literals. Depth-2 formulas that are disjunctions
of terms are called DNF formulas and depth-2 formulas that are conjunctions of clauses are
called CNF formulas. DNF formulas each conjunction of which consists of at most k literals
are called k-DNF formulas; k-CNF formulas are defined similarly. We define Σs,k

d to be the
class of all formulas F for which there is a depth-d formula G that is semantically equivalent
to F , the outermost connective of G is

∨
, and

1. G contains at most s subformulas of depth at least 2;
2. all depth-2 subformulas of G are either k-DNFs or k-CNFs.
Similarly, Πs,k

d is defined as the class of all formulas F for which there is a depth-d formula
G semantically equivalent to F , the outermost connective of which is

∧
, satisfying the above

two conditions.
A restriction is an assignment ρ : V → {0, 1} of truth values to a set V of variables. For

a restriction ρ and a formula F , we denote by F |ρ the formula resulting by replacing every
variable x of F which is in the domain of ρ by ρ(x), and then eliminating constants from
F |ρ using the identities

A ∨ 0 = A, A ∨ 1 = 1, A ∧ 0 = 0, A ∧ 1 = A.

We call a restriction that gives a value to all variables a total assignment, or simply assignment.
For a set S of formulas, we write S |= F if for any total assignment α, G|α = 1 for every
G ∈ S implies F |α = 1. For formulas F and G, we write F ≡ G if F and G are semantically
equivalent, i.e. it holds that F |= G and G |= F .

2.2 LK proofs
Bounded-depth Frege systems are commonly presented as subsystems of sequent calculus
(LK for short) for propositional logic. We give a Tait-style formulation of LK, where we
write cedents as disjunctions. The inference rules of the system are shown in Table 1. There,
x stands for a propositional variable, A and B stand for arbitrary formulas whose top-most
connective is

∨
, ϕ stands for an arbitrary propositional formula and Φ stands for a set of

propositional formulas. ϕ is the formula that results from ϕ by exchanging every occurrence
of
∨

with
∧

and vice versa, and replacing each literal xε with x1−ε.
An LK proof from a set of premises S is a sequence of formulas, called the lines of the

proof, such that each line either belongs to S or results from earlier lines by one of rules
of Table 1. If the last line in a proof is the empty disjunction, then the proof is called a
refutation. A depth-d LK proof is an LK proof each line of which is a formula of depth at
most d. The size of a proof is the total number of symbols occurring in it.

CCC 2024

22:4 Depth-d Frege Systems Are Not Automatable Unless P = NP

Table 1 The rules of LK.

Axioms:
x ∨ ¬x

Weakening:
A

A ∨ B

∨
-introduction:

A ∨ ϕ

A ∨
∨

Φ
, where ϕ ∈ Φ

∧
-introduction:

A ∨ ϕ1 . . . A ∨ ϕk

A ∨
∧

{ϕ1, . . . , ϕk}

Cut:
A ∨ ϕ B ∨ ϕ

A ∨ B

Of particular importance among depth-d LK proofs is the case of depth-1 proofs, called
resolution proofs. In resolution proofs, lines are clauses, and the only applicable LK rules are
the weakening and cut rule, which take the form

C

C ∨ D
,

C ∨ x D ∨ ¬x

C ∨ D

for clauses C and D. In the rightmost rule, also called the resolution rule, we say that C ∨ D

is the result of resolving C ∨ x on D ∨ ¬x on x.
We may view a proof as a DAG, by drawing for every line A, edges from the lines A is

derived to A. In case a proof DAG is a tree, we refer to the proof as being tree-like. The
next propositions, due to [14], state that depth-d LK proofs and tree-like depth-(d + 1) LK
proofs can be turned into one another with only a polynomial increase in size.

▶ Proposition 2.1 [14]. A depth-d LK proof of a formula F from S of size s can be turned
into a depth-(d + 1) tree-like LK proof of F from S of size polynomial in s.

▶ Proposition 2.2 [14, 3]. Let S be a set of formulas of depth at most d and F a formula of
depth at most d. A depth-(d + 1) tree-like LK proof of a formula F from S of size s can be
turned into a depth-d LK proof of F from S of size O(s2).

2.3 Semantic proofs, variable width and decision trees
A semantic depth-d (Frege) proof from a set of formulas S is a sequence of depth-d formulas
F1, . . . , Ft such that for every i, either Fi ∈ S or there are j, k < i such that Fj , Fk |= Fi.
Notice that if S consists of depth-(d − 1) formulas, then there is a trivial depth-d proof of any
valid consequence of S, as

∧
S can be derived in |S| − 1 steps. Thus, under this formulation,

depth-d proofs from S are interesting only if S contains depth-d formulas not in Πs,k
d for any

s and k, and indeed, our results pertain to such proofs.

T. Papamakarios 22:5

The definitions of lines, size of a proof, refutation, tree-like proofs, apply to semantic
proofs as well. The variable width of a proof is the maximum number of variables among the
lines of the proof.

Unlike size, variable width is an inherently semantic notion. In particular, it is independent
of depth: any depth-d proof of variable width w can be transformed into a depth-1 proof of
(variable) width O(w). In fact, something stronger can be said. A decision tree is a binary
tree the internal nodes of which are labelled by variables, and the edges by values 0 or 1.
Nodes query variables and the edges going from a node to its children are labelled, one by
the value 0 and the other by 1, giving an answer to that query. No variable is repeated in
a branch so that branches correspond to restrictions, and each branch has a value, 0 or 1,
associated with it, so that the decision tree represents a Boolean function. We denote the set
of branches of T having the value v by Brv(T). Specifically, we say that a decision tree T
represents a formula F if for every branch π of T with value v, F |π ≡ v. The height of a
decision tree is the length of its longest branch. Notice that if a formula F is represented by
a decision tree of height h, then F ∈ Σ1,h

2 ∩ Π1,h
2 . We write h(F) for the minimum height of

a decision tree representing F . The following lemma is shown in [18] for a specific type of
depth-2 proofs, but holds for proofs of arbitrary depth, or for that matter, arbitrary sound
proofs.

▶ Lemma 2.3. Let S be a set of clauses each containing at most h literals. If there is a
semantic refutation of S each line of which is represented by a decision tree of height at most
h, then there is a resolution refutation of S of width at most 3h.

Proof. Let F1, . . . , Ft be a semantic refutation of S and let Ti be a decision tree of height
at most h representing Fi. We assume that Tt has a single node having the value 0. For
a restriction π, let Cπ be the minimal clause falsified by π. We will show that for every
i, for every branch π ∈ Br0(Ti), we can derive Cπ via a resolution proof of width at most
3h. Notice that Cπ for π ∈ Br0(Tt) is the empty clause, so this construction will give a
refutation.

If Fi is a clause C in S, then every π ∈ Br0(Ti) must make every literal in C false, hence
Cπ is a weakening of C. Assume now that Fi is derived from Fj and Fk and we have derived
all clauses Cπ for π ∈ Br0(Tj) ∪ Br0(Tk). Let σ ∈ Br0(Ti), and let T be the tree resulting
by appending a copy of Tk at the end of every branch π ∈ Br1(Tj) of Tj . We will use T
to extract a resolution proof of Cσ. More specifically, for every node u of T such that the
path πu from the root of T to u corresponds to a restriction that is consistent with σ, we
will derive Cσ ∨ Cπv

. When we reach the root of T we will have derived Cσ. If u is a leaf
of T, then we claim that Cπu

is a weakening of some clause Cπ for π ∈ Br0(Tj) ∪ Br0(Tk).
To see this, let πu = πj ∪ πk, where πj is the part of πu that belongs to Tj and πk the part
that belongs to Tk. Since Fj , Fk |= Fi and πu is consistent with σ, it cannot be the case
that both πj ∈ Br1(Tj) and πk ∈ Br1(Tk), otherwise a total assignment extending both πu

and σ would make Fj and Fk true, but Fi false. Suppose now that u is not a leaf of T and
suppose that v and w are its children. Then either πv and πw are both consistent with σ, in
which case Cσ ∨ Cπu can be derived by resolving Cσ ∨ Cπv and Cσ ∨ Cπw on the variable
labelling u, or one of the children, say v, will be consistent with σ and thus Cσ ∨ Cπu

will be
identical to Cσ ∨ Cπv

. ◀

2.4 Automatability and the main result
A proof system σ is called automatable [5] if there is an algorithm that given a set of formulas
S and a formula ϕ provable from S, outputs a σ-proof of ϕ from S in time polynomial r + s,
where r is the total size of S and s the size of the shortest σ-proof of ϕ from S.

CCC 2024

22:6 Depth-d Frege Systems Are Not Automatable Unless P = NP

The main theorem of this paper is the fact that approximating the minimum size of a
depth-d Frege refutation within a polynomial factor is NP hard:

▶ Theorem 2.4. For every integer d > 0, there is a polynomial-time computable function,
which takes as input a CNF formula F with n variables and m clauses and integers s, N > 0
represented in unary, and returns a formula Gd(F ; s, N) of depth d such that

1. if F is satisfiable, then there is a depth-d LK refutation of Gd(F ; s, N) of size

O
((

Nd+3s2n(m + s2n3)
)2) ;

2. if F is not satisfiable, N is an increasing function of n and s is a polynomial in n, every
semantic depth-d refutation of Gd(F ; s, N) must have size at least

N
1
3 (log s

log n −2)
1

d−1

for large enough n.
The NP hardness of automating depth-d Frege systems follows from Theorem 2.4 by setting
s := n(3h)d−1+2 and N := s for a large enough constant h (see Theorem 6.1).

We describe the reduction, constructing the formula Gd(F ; s, N) from F in Section 3. In
Section 4, we show the upper bound of Theorem 2.4, and in Section 5 we show the lower
bound. It is important to note that both bounds hold for semantic depth-d refutations. The
reason we formulate the upper bound in terms of LK refutations is twofold. First, we are able
to apply Proposition 2.2; we contend it is much cleaner to first give a depth-(d + 1) tree-like
LK refutation of our formulas and then convert it to a depth-d refutation, rather than directly
giving a depth-d refutation. Secondly, the notion of automatability is neither monotone nor
anti-monotone. Hence it is clear from Theorem 2.4 that the non automatability result applies
to any version intermediate between depth-d LK and depth-d semantic systems.

3 The formulas Ref

Let F be a CNF formula with n variables and m clauses. The key ingredient in the non-
automatability result of [2] is expressing by a set of clauses Ref(F, s) the statement that
there is a resolution refutation D1, . . . , Ds of length s from the clauses of F .

The variables of Ref(F, s) are D[u, i, b], V [u, i], I[u, j], L[u, v] and R[u, v], where u, v ∈ [s],
i ∈ [n], j ∈ [m] and b ∈ {0, 1}. The meaning of D[u, i, b] is that xb

i appears in Du. The
meaning of V [u, i] is that Du is derived as a weakening of the resolvent of two previous
clauses on xi, and the meaning of I[u, j] is that Du is a weakening of the j-th clause of
F . The meaning of L[u, v] is that the left clause (i.e. that which contains ¬xi) from which
Du was derived is Dv, and the meaning of R[u, w] is that the right clause (i.e. that which
contains xi) from which Du was derived is Dw. We will also use the variables V [u, 0] and
I[u, 0] to indicate whether Du is derived from previous clauses or from an initial clause of F :
in the former case, I[u, 0] will be true and V [u, 0] false, and in the latter V [u, 0] will be true
and I[u, 0] false. The clauses of Ref(F, s) encode the following conditions: For each u, v ∈ [s],
i, i′ ∈ [n], j ∈ [m] and b ∈ {0, 1},

T. Papamakarios 22:7

∃!k V [u, k] & ∃!k I[u, k] & ∃!k L[u, k] & ∃!k R[u, k]; (3.1)
V [u, 0] ⇐⇒ ¬I[u, 0]; (3.2)
¬L[u, v] for v ≥ u & ¬R[u, v] for v ≥ u; (3.3)
V [u, i] & L[u, v] =⇒ D[v, i, 0]; (3.4)
V [u, i] & R[u, v] =⇒ D[v, i, 1]; (3.5)
V [u, i] & L[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]; (3.6)
V [u, i] & R[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]; (3.7)
I[u, j] & xb

i appears in Cj =⇒ D[u, i, b]; (3.8)
¬D[u, i, 0] ∨ ¬D[u, i, 1]; (3.9)
¬D[s, i, b]. (3.10)

It was shown, subsequent to [2], that Ref(F, s) is hard for resolution whenever F is
unsatisfiable [9]. In [2], a variation, RRef(F, s), is used. RRef(F, s) expresses the fact that
there is a resolution refutation D1, . . . , Ds or one contained in D1, . . . , Ds, from the clauses of
F . RRef(F, s) has the same variables as Ref(F, s) plus a new variable P [u] indicating which
of the indices 1, . . . , s are active, i.e. are part of the refutation. The clauses of RRef(F, s)
express the following conditions, which are those of Ref(F, s) conditioned on the fact that
P [u] is true, in addition to three new ones requiring P [s] to be true, and P [v] to be true
whenever P [u] and L[u, v] or R[u, v] are true:

P [u] =⇒ ∃!k V [u, k] & ∃!k I[u, k] & ∃!k L[u, k] & ∃!k R[u, k]; (3.11)
P [u] =⇒ (V [u, 0] ⇐⇒ ¬I[u, 0]) ; (3.12)
P [u] =⇒ ¬L[u, v] for v ≥ u & ¬R[u, v] for v ≥ u; (3.13)
P [u] =⇒ (V [u, i] & L[u, v] =⇒ D[v, i, 0]) ; (3.14)
P [u] =⇒ (V [u, i] & R[u, v] =⇒ D[v, i, 1]) ; (3.15)
P [u] =⇒ (V [u, i] & L[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]) ; (3.16)
P [u] =⇒ (V [u, i] & R[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]) ; (3.17)
P [u] =⇒

(
I[u, j] & xb

i appears in Cj =⇒ D[u, i, b]
)

; (3.18)
P [u] =⇒ (¬D[u, i, 0] ∨ ¬D[u, i, 1]) ; (3.19)
P [s] & ¬D[s, i, b]; (3.20)
(P [u] & L[u, v] =⇒ P [v]) & (P [u] & R[u, v] =⇒ P [v]) . (3.21)

Notice that giving truth values to the P [u] variables (where P [s] = 1) reduces RRef(F, s)
to Ref(F, s′) where s′ is the number of indices u for which P [u] = 1.

For an integer k ≥ 1, we define RkRef(F, s) as the formula resulting from substituting each
variable P [u] in RRef(F, s) with the conjunction

∧k
i=1 Pi[u] for new variables P1[u], . . . , Pk[u].

Note that RRef(F, s) = R1Ref(F, s).
Now, let d, N ≥ 1 be integers, and let x be a propositional variable. We associate with x

Nd−1⌈
√

N/2⌉ new variables xi1,...,id
, where i1, . . . , id−1 ∈ [N] and id ∈ [⌈

√
N/2⌉]. The fact

that we make id range over [⌈
√

N/2⌉] instead of [N] will be important later (specifically in
Lemma 5.2). The depth-d Sipser functions for x are defined by

CCC 2024

22:8 Depth-d Frege Systems Are Not Automatable Unless P = NP

S∧
d,N (x) def=

N∧
i1=1

N∨
i2=1

· · ·
⌈
√

N/2⌉∧
id=1

xi1,...,id
,

S∨
d,N (x) def=

N∨
i1=1

N∧
i2=1

· · ·
⌈
√

N/2⌉∨
id=1

xi1,...,id

if d is odd, and

S∧
d,N (x) def=

N∧
i1=1

N∨
i2=1

· · ·
⌈
√

N/2⌉∨
id=1

xi1,...,id
,

S∨
d,N (x) def=

N∨
i1=1

N∧
i2=1

· · ·
⌈
√

N/2⌉∧
id=1

xi1,...,id

if d is even.
We define RRefd,N (F, s) to be the result of substituting every variable of the form

P [u] in RRef(F, s) with S∧
d,N (P [u]) and every other variable x with S∨

d,N (x). Notice that
RRefd,N (F, s) is a set of depth-(d + 1) formulas. But, as we want to prove statements about
whether RRefd,N (F, s) has or does not have small depth-d refutations, we must write it
as a set of depth-d formulas. We may do that with only a polynomial increase in size, as
the only clauses of non constant size of RRef(F, s) are those of the form ¬P [u] ∨

∨
i X[u, i]

corresponding to conditions (3.11), and these clauses will have depth-d after the substitution
taking us from RRef(F, s) to RRefd,N (F, s). Note that the conversion from RRefd,N (F, s)
written as a set of depth-d formulas to its equivalent set of depth-(d + 1) formulas can be
carried in tree-like depth-(d + 1) LK in linear time. In particular, a tree-like depth-(d + 1)
LK refutation of the latter set can be turned into a tree-like depth-(d + 1) LK refutation of
the former set, increasing the size by at most a factor of N3.

4 Upper bounds

We show in this section that if F is satisfiable, then RRefd,N (F, s) has small depth-d
refutations:

▶ Proposition 4.1. If F is a satisfiable CNF formula with n variables and m clauses, then
there is a depth-d LK refutation of RRefd,N (F, s) of size

S = O
((

Nd+3s2n(m + s2n3)
)2)

.

In particular, if m = O(s2n3), then S = O(N2(d+3)(sn)8).

Proof. We start with a small depth-2 LK tree-like refutation of RRef(F, s). This refutation
will be such that after the substitution with Sipser functions, we get a depth-(d + 1) tree-like
refutation of RRefd,N (F, s), which in turn we can convert to a depth-d DAG-like refutation
of RRefd,N (F, s) by Proposition 2.2.

We write, for better readability, A1, . . . , Ak → B1, . . . , Bℓ instead of A1 ∨ · · · ∨ Ak ∨ B1 ∨
· · · ∨ Bℓ.

Let α be an assignment that satisfies every clause of F . We set

T (u) := P [u] →
n∨

i=1
D[u, i, α(xi)].

T. Papamakarios 22:9

What T (u) says is that if P [u] is true, then α satisfies the u-th clause in the refutation
Ref(F, s) describes.

Our refutation of RRef(F, s) consists of s − 1 stages, starting with stage 0. In the u-th
stage, T (1), . . . , T (s − u) → 0 will have been derived. Then we can use this formula, along
with a derivation of T (1), . . . , T (s − u − 1) → T (s − u), to derive T (1), . . . , T (s − u − 1) → 0.
In the s − 1-th stage, T (1) → 0 will have been derived, at which point we can reach a
contradiction by deriving T (1).

A derivation of T (1), . . . , T (v − 1) → T (v) is sketched in Figure 1. The formulas I[v, j] →

T (1), . . . , T (v − 1) → T (v)

V [v, 0] → T (v) T (1), . . . , T (v − 1) → V [v, 0], T (v)

I[v, j] → T (v) T (1), . . . , T (v − 1), V [v, i] → T (v)

· · · · · ·

T (vℓ), L[v, vℓ], T (vr), R[v, vr],
V [v, i] → T (v)

· · ·

D[vℓ, j, α(xj)], L[v, vℓ], D[vr, k, α(xk)],
R[v, vr], V [v, i] → T (v)

· · ·

Figure 1 A sketch of a derivation of T (1), . . . , T (v − 1) → T (v).

T (v) for j ∈ [m] can be immediately derived from the clauses P [u] ∧ I[v, j] → D[v, i, α(xi)],
which are clauses corresponding to condition (3.18), as the fact that α satisfies the clause Cj

means that x
α(xi)
i must belong to Cj for some i. These formulas can be in turn used along

with the clauses (3.11) for I[v, k] and (3.12) to derive V [v, 0] → T (v). Now deriving

T (1), . . . , T (v − 1) → V [v, 0], T (v) (4.1)

will allow us to derive T (1), . . . , T (v − 1) → T (v) by cutting on V [v, 0]. We can derive (4.1)
from the formulas

T (1), . . . , T (v − 1), V [v, i] → T (v) (4.2)

for i ∈ [n] using the clauses (3.11) for V [v, i]. The formulas (4.2) can be in turn derived from
the formulas

T (vℓ), L[v, vℓ], T (vr), R[u, vr], V [v, i] → T (v) (4.3)

for vℓ, vr ∈ [s] using the clauses (3.11) for L[v, k] and R[v, k], (3.12) and (3.13). Finally, (4.3)
can be derived from the formulas

D[vℓ, j, α(xj), L[v, vℓ], D[vr, xk, α(xk)], R[u, vr], V [v, i] → T (v), (4.4)

for j, k ∈ [n], which can be derived directly from the clauses (3.21) and either (3.14), (3.15)
and (3.19) or (3.16) and (3.17) depending on whether i = j = k or not.

CCC 2024

22:10 Depth-d Frege Systems Are Not Automatable Unless P = NP

We can see that the derivations of T (1), T (s) and T (1), . . . , T (v − 1) → T (v) take at
most O(m + s2n3) steps, hence the overall refutation has size O

(
s2n(m + s2n3)

)
.

Now, notice that after substituting every variable P [u] in it with S∧
d,N (P [u]) and every

other variable x with S∨
d,N (x), T (v) becomes a depth-d formula. Hence we see that after the

substitution, the refutation described above becomes a depth-(d + 1) tree-like LK refutation
of RRefd,N (F, s). We can then get a depth-d refutation of RRefd,N (F, s) of the required size
by applying Proposition 2.2. ◀

5 Lower bounds

Lower bounds for depth-d Frege systems for d > 1, typically follow the following strategy:
1. We first show that the formulas we are trying to refute are robust; namely, after applying

a restriction selected at random to them, then with high probability they cannot be
refuted with proofs whose lines are, in a certain sense, simple.

2. Then we show, through the use of a switching lemma, that applying such a restriction to
a short proof will result with high probability in a proof with simple lines.

Here we start with RRefd,N (F, s), which after applying the restrictions will collapse to
Ref(F, s′), where s′ is polynomially related to s. For the part of the overall strategy showing
that there cannot be refutations with simple lines, we take, as in [2], simple to mean of small
index-width. We say that a variable of the form D[u, i, b], V [u, i], I[u, j], L[u, v] or R[u, v]
mentions the index u. The index-width of a clause in the variables of Ref(F, s) is defined
as the number of indices mentioned by its variables, and the index-width of a resolution
refutation of Ref(F, s) is the maximum index-width over its clauses. We have:

▶ Theorem 5.1 [2]. For all integers n, s > 0 with s ≤ 2n, and every unsatisfiable CNF F

with n variables, every resolution refutation of Ref(F, s) has index-width at least s/6n.

5.1 The robustness of RRefd,N

We create a distribution on restrictions to the variables of RRefd,N (F, s) as follows. Suppose
d is odd (if d were even, we would exchange the roles of 0 and 1 in the following construction).
For each S∧

d,N (x) formula in RRefd,N (F, s), look at its bottom-most Nd−1 ∧ connectives.
For each such connective, we decide to “preserve” it with probability 1/

√
N , and not to

preserve it with probability 1 − 1/
√

N . For each of the preserved connectives, we leave its
first variable unset and set the rest to 1. For each variable in the unpreserved connectives,
we set it to 0 or 1 with probability 1/2 for each choice. The variables of S∨

d,N (x) are set
in the same way, except that the set variables of the preserved

∨
connectives are set to 0

instead of 1.
Under such restrictions, Sipser functions do not simplify much. For formulas F and G, in

which each variable appears only once, we say that F contains G if we can get G from F by
deleting some of its literals and/or renaming some of its variables.

▶ Lemma 5.2. For any d ≥ 2, the probability that Sν
d,N (x)|ρ, where ν ∈ {∧, ∨}, does not

contain Sν
d−1,N (x) is at most 2−Ω(

√
N).

Proof. We show the lemma for S∧
d,N (x) and d odd. If S∧

d,N (x)|ρ does not contain S∧
d−1,N ,

then either one of its bottom-most
∧

connectives takes the value 1, or in one of its depth-2
subformulas, less than

√
N/2

∧
connectives are preserved. The probability that a bottom-

most
∧

connective takes the value 1 is at most 2−
√

N/2 and the probability that this happens
for at least one of the Nd−1 bottom-most

∧
connectives is at most

T. Papamakarios 22:11

Nd−12−
√

N/2 ≤ 2−Ω(
√

N).

Now fix a depth-2 subformula A of S∧
d,N (x). The expected number of preserved

∧
connectives

in A|ρ is N/
√

N =
√

N , and by the Chernoff bound, the probability that there are less than√
N/2 preserved

∧
connectives is at most 2−Ω(

√
N). The probability that at least one of the

Nd−2 depth-2 subformulas of S∧
d,N (x) has less than

√
N/2 preserved connectives is thus at

most

Nd−22−Ω(
√

N) ≤ 2−Ω(
√

N).

We conclude that the probability that S∧
d,N |ρ does not contain S∧

d−1,N is at most 2−Ω(
√

N). ◀

5.2 The Furst-Saxe-Sipser switching lemma
Switching lemmas provide conditions under which a k-DNF formula “switches” to a ℓ-CNF
formula after applying a restriction created at random. We will use the switching lemma of
[8] and a variation tailored for RkRef(F, s) due to [10].

Let G be a k-DNF formula over the set of variables X. Let X1, . . . , Xr be a partition of
X into r blocks, and let ν ∈ {0, 1}. Consider the following distribution over restrictions on
X: For each block Xi, we decide to “preserve” Xi with probability p, and not to preserve it
with probability 1 − p. For each preserved block, we leave one of its variables, say the first
in the block, unset, and set all others to ν. For each unpreserved block, we set each of its
variables to 0 or 1 with probability 1/2 for each value.

We can extract the following lemma from [8, 19]. The lemma is implicit in [8, 19] with
parameters obscured under a big O notation. We present it here in a more general, improved
form, with explicit parameters, using decision trees along the lines of [18]. In what follows,
ln denotes the natural logarithm; we preserve the notation log for the base 2 logarithm.

▶ Lemma 5.3 (see [8, 19]). If phk2k ln N = o(N−ε) for some ε ∈ (0, 1), then

P [h(G|ρ) > kh] ≤ o(N−εh)2kh − 1
2h − 1 .

Proof. The proof is by induction on k. If k = 0, G is a constant and can be represented by
a decision tree of height 0. Suppose k > 0. We distinguish between two cases, G being wide
and G being narrow. We call G wide if there are at least h2k ln N terms in it such that no
two of them contain variables from the same block. G is narrow if and only if it is not wide.
If G is wide, then

P [h(G|ρ) > kh] ≤ P [G|ρ ̸= 1] ≤

(
1 −

(
1 − p

2

)k
)h2k ln N

≤ e−(1−p)kh ln N = N−(1−p)kh = o(N−εh).

If G is narrow, then take a maximal set of terms such that no two of them contain variables
from the same block, and let H be the set of blocks that contain a variable occurring in
some term of this set. H contains at most hk2k ln N blocks and every term of G contains
some variable (or its negation) from some block in H. The probability of the event A that ρ

preserves more than h blocks in H is

P [A] ≤
(

hk2k ln N

h

)
ph ≤ (hk2k ln N)hph = o(N−εh).

CCC 2024

22:12 Depth-d Frege Systems Are Not Automatable Unless P = NP

Now, let π be a restriction that sets the variables of all blocks in H, and let Aπ be the event
that π is consistent with ρ and h((G|ρ)|π) > (k − 1)h. Notice that G|π is a (k − 1)-DNF, so
by the induction hypothesis,

P [Aπ] ≤ P [h((G|π)|ρ) > (k − 1)h] ≤ o(N−εh)2(k−1)h − 1
2h − 1 .

Notice that a restriction ρ that preserves at most h blocks is consistent with at most 2h

restrictions π, so we get

P

[
A ∪

⋃
π

Aπ

]
≤ o(N−εh) + o(N−εh)2h 2(k−1)h − 1

2h − 1

= o(N−εh)2kh − 1
2h − 1 .

In the event(
A ∪

⋃
π

Aπ

)c

,

i.e. the event that ρ preserves at most h blocks in H and for all restrictions π consistent with
ρ, h((G|ρ)|π) ≤ (k − 1)h, we can construct a decision tree of height at most kh representing
G|ρ as follows: We query all variables belonging to some block in H left unset by ρ (since ρ

preserves at most h blocks in H, there are at most h of them), and at each branch π of the
resulting tree, we append a decision tree of minimum height representing (G|ρ)|π. ◀

We create a distribution on restrictions on the variables of RℓRef(F, s) as follows: For
every index u and every i ∈ [ℓ], we set Pi[u] to 0 or 1, with probability 1/2 for each value. Let
U be the set of indices such that Pi[u] = 1 for all i ∈ [ℓ]. For each variable x of RℓRef(F, s)
not of the form Pi[u] mentioning an index in U , we set x to 0 or 1, with probability 1/2 for
each value.

For a decision tree T querying variables of Ref(F, s), we define the index-height of T as
the maximum number of indices mentioned by variables over all branches that do not falsify
axioms of Ref(F, s). For a formula G, We denote by ℏ(G) the minimum index-height of a
decision tree representing G.

The following lemma is from [10]. We give a proof because in [10] the lemma is stated
not for RℓRef(F, s) but a variation, plus we view the following proof to be simpler.

▶ Lemma 5.4 [10]. Let F be a CNF formula in n variables, k and ℓ integers with 0 < k ≤ ℓ,
and G a k-DNF formula over the variables of RℓRef(F, s), where s ≤ 2δn for some δ < 1.
Then for large enough n,

P [ℏ(G|ρ) > h] ≤ 2− h

nk−1 γ(k),

where γ(0) = 1, γ(i) = (log e)(i4i+1)−1γ(i − 1).

Proof. Let hi := hγ(i − 1)/(4ni−1). We will show, by induction on k, that for every k and ℓ

with k ≤ ℓ, for every k-DNF formula G over the variables of RℓRef(F, s),

P

[
ℏ(G|ρ) >

k∑
i=1

hi

]
≤ 2− h

nk−1 γ(k)

for large enough n.

T. Papamakarios 22:13

If k = 0, F is a constant and can be represented by a decision tree of height 0. Suppose
k > 0. We call G wide if there are at least hk/k terms in G over disjoint sets of indices,
and call G narrow otherwise. Suppose G is wide. A literal in a term t of G is satisfied
with probability at least 1/4: Literals on a variable Pi[u] are satisfied with probability 1/2.
For any other literal xϵ of t mentioning the index u, since k ≤ ℓ, there must be a variable
Pi[u] not in t, which is made 0 with probability 1/2, in which case xϵ will be satisfied with
probability 1/2. Hence

P [ℏ(G|ρ) > h] ≤ P [G|ρ ̸= 1] ≤ (1 − 4−k)
hγ(k−1)
4knk−1

≤ 2− h

nk−1 (log e)(k4k+1)−1γ(k−1)

= 2− h

nk−1 γ(k).

Suppose now that G is narrow. Take a maximal set of terms over disjoint sets of indices,
and let H be the set of indices that are mentioned by the terms of this set. Notice that
|H| ≤ hk and that every term of G contains some variable (or its negation) that mentions an
index in H. Let π be a restriction that
1. sets all variables mentioning an index in H and leaves all other variables unset, and
2. does not falsify any axioms of RℓRef(F, s).
The second condition means in particular that if U is the set of indices u for which π sets
Pi[u] to 1 for all i, then for all u ∈ U , there will be exactly one v such that L[u, v] is true,
exactly one v such that R[u, v] is true, exactly one i such that V [u, i] is true, and exactly
one j such that I[u, j] is true, making the total number of such π’s to be at most

S|U |2(|H|−|U |)n0

where S := s2(n + 1)(m + 1)22n and n0 is the number of variables of RℓRef(F, s) mentioning
a fixed index u.

Let Aπ be the event that π is consistent with ρ and ℏ((G|ρ)|π) >
∑k−1

i=i hi. We have that

P [Aπ] = P

[
ℏ((G|ρ)|π) >

k−1∑
i=i

hi | ρ con. with π

]
P [ρ con. with π]

= P

[
ℏ((G|π)|ρ) >

k−1∑
i=i

hi

]
P [ρ con. with π]

≤ 2− h

nk−2 γ(k−1)2−ℓ|U |2−(|H|−|U |)n0 .

Hence, we get

P

[⋃
π

Aπ

]
≤
∑

π

P [Aπ]

≤
∑

U⊆H

S|U |2(|H|−|U |)n02− h

nk−2 γ(k−1)2−ℓ|U |2−(|H|−|U |)n0

=
|H|∑
r=0

(
|H|
r

)
Sr2− h

nk−2 γ(k−1)2−ℓr

= (S/2ℓ + 1)|H|2− h

nk−2 γ(k−1)

≤ S|H|2− h

nk−2 γ(k−1).

CCC 2024

22:14 Depth-d Frege Systems Are Not Automatable Unless P = NP

Since s ≤ 2δn for some δ < 1, the quantity

S|H| =
(
s2(n + 1)(m + 1)22n

) h

4nk−1 γ(k−1)

will be at most 2
εh

nk−2 γ(k−1) for some ε < 1 for large enough n, therefore

P

[⋃
π

Aπ

]
≤ 2− h

nk−1 γ(k)

for large enough n.
In the event (

⋃
π Aπ)c

, that is the event that for every π consistent with ρ, ℏ((G|ρ)|π) ≤∑k−1
i=1 hi, we can construct a decision tree for G|ρ of index-height at most

∑k
i=1 hi as follows:

We first query all variables mentioning an index in H left unset by ρ. Then, at each branch
π of the resulting tree, we append a decision tree of minimum index-height representing
(G|ρ)|π. ◀

5.3 The lower bound for RRefd,N

▶ Theorem 5.5. For every integer d > 0, if F is an unsatisfiable CNF in n variables, N is
an increasing function of n and s is a polynomial in n, every semantic depth-d refutation of
RRefd,N (F, s) has size at least

N
1
3 (log s

log n −2)
1

d−1

for large enough n.

Proof. Let h := (1/3)(log s/ log n − 2)1/(d−1) and let G1, . . . , Gt be a semantic depth-d
refutation of RRefd,N (F, s) of size at most Nh. We assume that each Gi is either a literal or
a disjunction of its immediate subformulas. Let A be a depth-1 subformula of some Gi. A

is a 1-DNF or a 1-CNF formula, so applying Lemma 5.3 to it (or its negation respectively)
with k = 1 and p = N−1/2 and using as blocks X1, . . . , Xr the variables in the depth-1
subformulas of RRefd,N (F, s), we get, since N−1/23h ln N = o

(
N−1/3),

P [h(A|ρ) > 3h] = o(N−h).

Now, there are at most Nh depth-1 subformulas A in the refutation, hence, by Lemma 5.2
and the union bound, the probability that either there is a depth-1 subformula A with
h(A|ρ) > 3h or RRefd,N (F, s)|ρ does not contain RRefd−1,N (F, s) is o(1). Therefore, for large
n, there must be a restriction ρ′

1 such that RRefd,N (F, s)|ρ′
1

contains RRefd−1,N (F, s) and
all depth-1 subformulas of all Gi|ρ′

1
are disjunctions or conjunctions of at most 3h literals.

Let ρ1 be a restriction extending ρ′
1 such that RRefd,N (F, s)|ρ1 is exactly RRefd−1,N (F, s).

We continue by applying Lemma 5.3 with k = 3h and p = N−1/2 to a 3h-CNF or 3h-DNF
depth-2 subformula B of Gi|ρ1 to get

P
[
h(B|ρ) > (3h)2] = o(N−h).

Since Gi|ρ1 has at most Nh depth-2 subformulas, there is a restriction ρ2 such that
RRefd,N (F, s)|ρ1ρ2 becomes RRefd−2,N (F, s) and all depth-2 subformulas of all Gi|ρ1 can be
represented by decision trees of height at most (3h)2. A formula representable by a decision
tree of height at most (3h)2 can be written as both a (3h)2-CNF and a (3h)2-DNF, so for all
i ∈ [t], Gi|ρ1ρ2 ∈ ΣNh,(3h)2

d−1 .

T. Papamakarios 22:15

Repeating the same argument d − 1 times, applying Lemma 5.3 at the j-th time to
depth-2 subformulas of ΣNh,(3h)j

d−j+1 -formulas equivalent to Gi|ρ1...ρd−1 , we get restrictions
ρ1, . . . , ρd−1 such that RRefd,N (F, s)|ρ1...ρd−1 becomes RRef1,N (F, s) and for all i ∈ [t],
Gi|ρ1...ρd−1 ∈ ΣNh,(3h)d−1

2 .
We are now ready to apply Lemma 5.4. First notice that RRef1,N (F, s) contains

RℓRef(F, s) for large n, where ℓ := (3h)d−1. For ρ selected randomly as specified in Lemma 5.4
for this ℓ, we get that the expected number of active indices is s/2ℓ, hence RRef1,N (F, s)|ρ
contains Ref(F, s′), where s′ := s/2ℓ+1, with high probability. Furthermore, Lemma 5.4 gives

P
[
ℏ(C|ρ) > n(3h)d−1

]
≤ 2−Ω(n),

where C is a (3h)d−1-DNF formula equivalent to some Gi|ρ1...ρd−1 . Therefore there must
be a restriction ρd such that RRefd,N |ρ1...ρd

becomes Ref(F, s′) and for every i ∈ [t],
ℏ(Gi|ρ1...ρd−1) ≤ n(3h)d−1 . Applying now the construction of Lemma 2.31 to G1|ρ1...ρd−1 , . . . ,

Gt|ρ1...ρd−1 gives a resolution refutation of Ref(F, s′) of index-width at most 3n(3h)d−1 = 3s/n2,
contradicting Theorem 5.1 for large n. ◀

6 Non-automatability of bounded-depth Frege systems

▶ Theorem 6.1. If P ̸= NP, then depth-d Frege systems are not automatable.

Proof. Suppose there is an algorithm A which, given an unsatisfiable CNF formula G,
returns a depth-d refutation of G in time polynomial in S(G) + S, where S(G) is the size
of G and S the size of the smallest depth-d refutation of G. Let c, n0 ≥ 1 be integers such
that for every G with |G| ≥ n0, A runs in time at most (S(G) + S)c. We will use A to
decide in polynomial time whether 3-SAT is satisfiable. Given a 3-CNF formula F with
n variables (and thus of size O(n3)), we construct the formula G := RRefd,N (F, s), where
s := n(3h)d−1+2, N := s and h is an integer such that(

(3h)d−1 + 2
)

h > c
((

(3h)d−1 + 2
)

(2(d + 3)) + 8
(
(3h)d−1 + 3

)
+ 1
)

.

Notice that the left hand side of the above inequality is a polynomial of degree d in h and the
right hand side a polynomial of degree d − 1, hence such an h must exist. Since N and s are
polynomials in n, the size of G is polynomial in n, hence its construction takes polynomial
time. Let S be the size of the smallest depth-d refutation of G and let n1 ≥ n0 be an integer
such that for all n ≥ n1,

F satisfiable =⇒ S + S(G) ≤ n((3h)d−1+2)(2(d+3))+8((3h)d−1+3)+1;

F not satisfiable =⇒ S ≥ n((3h)d−1+2)h.

Here we use the bounds given by Proposition 4.1 and Theorem 5.5. To decide whether F is
satisfiable, if n < n1, then we check all possible assignments to its variables to see if there is
a satisfying one. Otherwise, we run A on G for

nc(((3h)d−1+2)(2(d+3))+8((3h)d−1+3)+1)

steps. If A stops, then we can assert that F is satisfiable; otherwise we can assert that F is
unsatisfiable. ◀

1 Lemma 2.3 is stated for height and width, but it is not hard to see that the same construction yields
the lemma with index-height and index-width instead of height and width respectively.

CCC 2024

22:16 Depth-d Frege Systems Are Not Automatable Unless P = NP

7 Conclusion

This paper shows the non-automatability of bounded-depth Frege system assuming P ̸= NP.
We do this, following [2], by constructing, given a CNF formula F , a formula RRefd,N (F, s),
and exhibiting a gap between the size of the shortest depth-d Frege refutations of RRefd,N (F, s)
when F is satisfiable and the size of the shortest depth-d Frege refutations of RRefd,N (F, s)
when F is not satisfiable.

To show the lower bound for depth-d Frege refutations of RRefd,N (F, s) in the case F is
not satisfiable, we employ the Furst-Saxe-Sipser switching lemma [8]. While sufficient for the
purpose of showing non-automatability assuming P ̸= NP, this can only give lower bounds
of the form nh, where h is a barely superconstant function of n. It would be nice to have
an exponential lower bound. In particular, as in [2], an exponential lower bound would rule
out the automatability of bounded-depth Frege systems in quasipolynomial time unless NP
problems can be solved in quasipolynomial time, and their automatability in subexponential
time unless NP problems can be solved in subexponential time.

RRefd,N (F, s) consists of formulas of depth d. In particular, this does not preclude the
possibility of bounded-depth Frege systems being automatable on refuting, say CNF formulas.
A natural question is whether we could use CNFs, or at least formulas of constant depth,
not depending on d, instead. Let us mention here that whether there is a constant depth
formula exponentially separating depth-d from depth-(d + 1) Frege is open as well; currently,
only a super-polynomial separation is known [13] (see also [15, Section 14.5]). Moreover, the
formulas RRefd,N (F, s) are ad hoc and rather artificial. It would be nice if one could establish
a lower bound for formulas Refd(F, s) for an unsatisfiable formula F , encoding the fact that
there are depth-d refutations of F of size s (see Problem 2 in [17]), showing that proving
lower bounds for a depth-d Frege system is hard within the system. The latter problem
for a proof system is considered by Pudlák [17] to be a more important question than the
question of whether the system is automatable. Note that a CNF encoding of Refd(F, s) is
a candidate formula for the question of whether bounded-depth Frege systems for refuting
CNFs are automatable, and a CNF encoding of the reflection principle Sat(F, v) ∧ Refd(F, s),
where Sat(F, v) encodes that v is an assignment satisfying F , is a candidate formula for the
depth-d vs depth-(d + 1) Frege problem (see [17]).

Finally, the non-automatability result of [2] has been shown for cutting planes [11], Res(k)
[10], and various algebraic proof systems [7]. As far as we know, two remaining open cases
are the sum of squares and Sherali-Adams proof systems.

References
1 Michael Alekhnovich and Alexander Razborov. Resolution is not automatizable unless W[P]

is tractable. SIAM Journal of Computing, 38:1347–1363, 2008.
2 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the ACM,

67:31:1–31:17, 2020.
3 Arnold Beckmann and Samuel Buss. Separation results for the size of constant-depth proposi-

tional proofs. Annals of Pure and Applied Logic, 136:30–55, 2005.
4 Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi.

Non-automatizability of bounded-depth frege proofs. Computational Complexity, 13:47–68,
2004.

5 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
frege systems. SIAM Journal of Computing, 29:1939–1967, 2000.

6 Stefan Dantchev and Søren Riis. On relativisation and complexity gap. In Proceedings of the
12th Annual Conference of the EACSL, pages 142–154, 2003.

T. Papamakarios 22:17

7 Susanna de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In Proccedings of the 53rd
Annual ACM Symposium on Theory of Computing, pages 209–222, 2021.

8 Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

9 Michal Garlík. Resolution lower bounds for refutation statements. In Proccedings of the 44th
International Symposium on Mathematical Foundations of Computer Science, volume 138,
pages 37:1–37:13, 2019.

10 Michal Garlík. Failure of feasible disjunction property for k-DNF resolution and NP-hardness
of automating it. Electronic Colloqium on Computational Complexity, 2020.

11 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is
NP-hard. In Proccedings of the 52nd Annual ACM Symposium on Theory of Computing, pages
68–77, 2020.

12 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

13 Russell Impagliazzo and Jan Krajícek. A note on conservativity relations among bounded
arithmetic theories. Mathematical Logic Quarterly, 48:375–377, 2002.

14 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. Journal of
Symbolic Logic, 59:73–86, 1994.

15 Jan Krajíček. Proof Complexity. Cambridge University Press, 2019.
16 Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer

Science, 295:323–339, 2003.
17 Pavel Pudlák. Reflection principles, propositional proof systems, and theories, 2020.

arXiv:2007.14835. arXiv:2007.14835.
18 Nathan Segerlind, Samuel Buss, and Russell Impagliazzo. A switching lemma for small

restrictions and lower bounds for k-DNF resolution. SIAM Journal of Computing, 33:1171–
1200, 2004.

19 Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, pages 61–69, 1983.

CCC 2024

https://arxiv.org/abs/2007.14835

	1 Introduction
	2 Bounded-depth Frege systems and automatability
	2.1 Basic definitions
	2.2 LK proofs
	2.3 Semantic proofs, variable width and decision trees
	2.4 Automatability and the main result

	3 The formulas Ref
	4 Upper bounds
	5 Lower bounds
	5.1 The robustness of RRef_{d,N}
	5.2 The Furst-Saxe-Sipser switching lemma
	5.3 The lower bound for RRef_{d,N}

	6 Non-automatability of bounded-depth Frege systems
	7 Conclusion

