Depth- d Frege Systems Are Not Automatable Unless $\mathbf{P}=\mathbf{N P}$

Theodoros Papamakarios \square ©
Department of Computer Science, University of Chicago, IL, USA

Abstract

We show that for any integer $d>0$, depth- d Frege systems are NP-hard to automate. Namely, given a set S of depth- d formulas, it is NP-hard to find a depth- d Frege refutation of S in time polynomial in the size of the shortest such refutation. This extends the result of Atserias and Müller [JACM, 2020] for the non-automatability of resolution - a depth-1 Frege system - to Frege systems of any depth $d>0$.

2012 ACM Subject Classification Theory of computation \rightarrow Proof complexity
Keywords and phrases Proof complexity, Automatability, Bounded-depth Frege
Digital Object Identifier 10.4230/LIPIcs.CCC.2024.22
Acknowledgements I would like to thank Alexander Razborov for numerous remarks and suggestions that greatly improved the presentation of the paper.

1 Introduction

Since its inception as child discipline of mathematical logic, computability, and by extension complexity theory, has had the following two questions at its core: First, broadly asked, how hard is it to prove a theorem, and secondly, knowing that a proof exists, how hard is it to find one. Significantly refining earlier results, most notably [1], Atserias and Müller [2] showed that a version of the latter question, even for a system as weak as resolution, is the same as asking whether $\mathrm{P}=\mathrm{NP}$.

Namely, a proof system σ is called automatable if there is an algorithm that, given a provable formula ϕ, constructs a proof of ϕ in σ, in time polynomial in the size of the smallest proof of ϕ in σ. What Aterias and Müller show is that resolution is not automatable unless $P=N P$.

Now, resolution lies at the bottom of a hierarchy of proof systems, the so called Frege systems of bounded depth, the d-th level of that hierarchy - depth- d Frege - being a system operating with formulas of depth d. It seems plausible that the more complicated the proof systems is, the harder it is to automate it. Following this intuition, as depth- $(d-1)$ Frege is a subsystem of depth- d Frege, the latter should be harder to automate. We show that for any d, depth- d Frege is as hard to automate as possible. More specifically, we extend the Atserias-Müller result, to show:

- Theorem 1.1. If $\mathrm{P} \neq \mathrm{NP}$, then for any $d>0$, depth-d Frege systems are not automatable.

The Atserias-Müller result has been extended to cutting planes [11], $\operatorname{Res}(k)$ [10], and various algebraic proof systems [7]. Whether it can be extended to bounded-depth Frege systems had remained open. It should be noted that the non-automatability of bounded-depth Frege systems was known under a stronger assumption, namely that the Diffie-Hellman key exchange protocol cannot be broken with circuits of subexponential size [4]. The present paper improves on [4] on three fronts. First, the assumption $P \neq$ NP is much weaker, in particular, it is as weak as possible. Secondly, the result of [4] only works for sufficiently large d, while ours works for all d. Finally, our result requires proving new lower bounds for bounded-depth

Frege, unlike the approach of [4]. However, still, this result and ours are incomparable: [4] rules out even the weak automatability of bounded-depth Frege systems, which is to say that no system polynomially simulating a depth- d Frege system is automatable.

Proof outline

The proof is a reduction from SAT. We want for any positive integer d, given a CNF formula F, to construct a formula G such that if F is satisfiable, then G has small depth- d refutations, whereas if F is unsatisfiable, then G requires large depth- d refutations.

For $d=1,[2]$ considers the formula $G:=\operatorname{Ref}(F, z)$ expressing that z encodes a resolution refutation of F. Then a "relativization" construction is applied to $\operatorname{Ref}(F, z)$ to get the formula $\operatorname{RRef}(F, z)$, stating that z is either itself, or contains a resolution refutation of F. It is shown by Pudlák [16] that if F is satisfiable, then the formula $\operatorname{Ref}(F, z)$ has short resolution refutations, and this readily extends to $\operatorname{RRef}(F, z)$ [2]. To show a lower bound for $\operatorname{RRef}(F, z)$ in the case F is unsatisfiable, first it is argued in [2] that there cannot be resolution refutation of $\operatorname{RRef}(F, z)$ having small index-width, where the index-width of a resolution refutation π of $\operatorname{RRef}(F, z)$ is defined as the maximum number of clauses of z contained in a clause of π. Then it is shown, following [6], that if $\operatorname{Ref}(F, z)$ had a small resolution refutation, then $\operatorname{Ref}\left(F, z^{\prime}\right)$, where the size of z^{\prime} is polynomially related to the size of z, would have a resolution refutation of small index-width. Notice that arguing in terms of a variant of width, index-width in this case, is necessary. The same argument could not have worked for width, since resolution is automatable with respect to width, in the sense that a resolution refutation of F having width w can be found in time $n^{O(w)}$, where n is the number of variables of F.

To extend the above for the case $d>1$, an idea is to employ the construction of [14] (see also [3]), replacing every variable of $\operatorname{RRef}(F, z)$ with Sipser functions, i.e. formulas of the form

$$
\bigwedge_{i_{1}} \bigvee_{i_{2}} \cdots \bigwedge_{i_{k}=1} x_{i_{1}, \ldots, i_{k}}
$$

or

$$
\bigvee_{i_{1}} \bigwedge_{i_{2}} \cdots \bigvee_{i_{k}=1} x_{i_{1}, \ldots, i_{k}}
$$

for some suitable k. Following [14, 3], one gets a lower bound by repeated applications of Håstad's switching lemma [12], which reduce a size lower bound to essentially a width lower bound. In our case, we need a reduction in the base case of the argument to a lower bound for index-width, and trying to apply Håstad's switching lemma for index-width instead of width, one encounters several difficulties, a main one being that the variables encoding the clauses of z induce an exponential factor in the switching probability, making the lemma trivial. We are able to overcome these difficulties by applying the weaker Furst-Saxe-Sipser switching lemma [8], which can use restrictions that fix much less variables on average than Håstad's switching lemma. This will give a weaker lower bound, only polynomial in our case, which nonetheless is sufficient for the purposes of showing non-automatability.

Let us note that the reduction described above is to a formula that has large depth. In particular, this does not rule out the possibility of bounded-depth Frege systems being automatable when restricted on refuting CNF formulas. To show non-automatability for refuting CNF formulas, one would need to describe a reduction to a CNF formula. This however we expect to be hard to do; see the discussion in the concluding section.

2 Bounded-depth Frege systems and automatability

2.1 Basic definitions

We assume that formulas are built from constants 0 and 1 , propositional variables and their negations, unbounded conjunctions and unbounded disjunctions. So negations can only appear next to variables. The depth of a formula is the maximum nesting of conjunctions and disjunctions in it. Formally,

$$
\begin{aligned}
d(0)=d(1)=d(x)=d(\neg x) & =0, \\
d\left(\circ\left\{F_{1}, \ldots, F_{k}\right\}\right) & =1+\max _{i} d\left(F_{i}\right),
\end{aligned}
$$

where x is a variable and \circ is either a conjunction \bigwedge or a disjunction \bigvee.
Depth-0 formulas that are not constants are called literals. We often write literals in the form x^{ε}, where $x^{1}:=x$ and $x^{0}:=\neg x$. Depth- 1 formulas are called clauses/terms, clauses being disjunctions and terms conjunctions of literals. Depth-2 formulas that are disjunctions of terms are called DNF formulas and depth- 2 formulas that are conjunctions of clauses are called CNF formulas. DNF formulas each conjunction of which consists of at most k literals are called k - $D N F$ formulas; k-CNF formulas are defined similarly. We define $\Sigma_{d}^{s, k}$ to be the class of all formulas F for which there is a depth- d formula G that is semantically equivalent to F, the outermost connective of G is \bigvee, and

1. G contains at most s subformulas of depth at least 2 ;
2. all depth-2 subformulas of G are either k-DNFs or k-CNFs.

Similarly, $\Pi_{d}^{s, k}$ is defined as the class of all formulas F for which there is a depth- d formula G semantically equivalent to F, the outermost connective of which is Λ, satisfying the above two conditions.

A restriction is an assignment $\rho: V \rightarrow\{0,1\}$ of truth values to a set V of variables. For a restriction ρ and a formula F, we denote by $\left.F\right|_{\rho}$ the formula resulting by replacing every variable x of F which is in the domain of ρ by $\rho(x)$, and then eliminating constants from $\left.F\right|_{\rho}$ using the identities

$$
A \vee 0=A, A \vee 1=1, A \wedge 0=0, A \wedge 1=A
$$

We call a restriction that gives a value to all variables a total assignment, or simply assignment. For a set S of formulas, we write $S \models F$ if for any total assignment $\alpha,\left.G\right|_{\alpha}=1$ for every $G \in S$ implies $\left.F\right|_{\alpha}=1$. For formulas F and G, we write $F \equiv G$ if F and G are semantically equivalent, i.e. it holds that $F \models G$ and $G \models F$.

2.2 LK proofs

Bounded-depth Frege systems are commonly presented as subsystems of sequent calculus ($L K$ for short) for propositional logic. We give a Tait-style formulation of LK, where we write cedents as disjunctions. The inference rules of the system are shown in Table 1. There, x stands for a propositional variable, A and B stand for arbitrary formulas whose top-most connective is \bigvee, ϕ stands for an arbitrary propositional formula and Φ stands for a set of propositional formulas. $\bar{\phi}$ is the formula that results from ϕ by exchanging every occurrence of \bigvee with \bigwedge and vice versa, and replacing each literal x^{ε} with $x^{1-\varepsilon}$.

An LK proof from a set of premises S is a sequence of formulas, called the lines of the proof, such that each line either belongs to S or results from earlier lines by one of rules of Table 1. If the last line in a proof is the empty disjunction, then the proof is called a refutation. A depth- d LK proof is an LK proof each line of which is a formula of depth at most d. The size of a proof is the total number of symbols occurring in it.

Table 1 The rules of LK.

$$
\begin{aligned}
\text { Axioms: } & \overline{x \vee \neg x} \\
\text { Weakening: } & \frac{A}{A \vee B} \\
\bigvee \text {-introduction: } & \frac{A \vee \phi}{A \vee \bigvee \Phi}, \text { where } \phi \in \Phi \\
\bigwedge \text {-introduction: } & \frac{A \vee \phi_{1}}{A \vee \bigwedge\left\{\phi_{1}, \ldots, \phi_{k}\right\}} \\
\text { Cut: } & \frac{A \vee \phi}{A \vee B} \quad B \vee \bar{\phi}
\end{aligned}
$$

Of particular importance among depth- d LK proofs is the case of depth- 1 proofs, called resolution proofs. In resolution proofs, lines are clauses, and the only applicable LK rules are the weakening and cut rule, which take the form

$$
\frac{C}{C \vee D}, \quad \frac{C \vee x \quad D \vee \neg x}{C \vee D}
$$

for clauses C and D. In the rightmost rule, also called the resolution rule, we say that $C \vee D$ is the result of resolving $C \vee x$ on $D \vee \neg x$ on x.

We may view a proof as a DAG, by drawing for every line A, edges from the lines A is derived to A. In case a proof DAG is a tree, we refer to the proof as being tree-like. The next propositions, due to [14], state that depth- d LK proofs and tree-like depth- $(d+1)$ LK proofs can be turned into one another with only a polynomial increase in size.

- Proposition 2.1 [14]. A depth-d LK proof of a formula F from S of size s can be turned into a depth- $(d+1)$ tree-like LK proof of F from S of size polynomial in s.
- Proposition 2.2 [14, 3]. Let S be a set of formulas of depth at most d and F a formula of depth at most d. A depth- $(d+1)$ tree-like LK proof of a formula F from S of size s can be turned into a depth-d LK proof of F from S of size $O\left(s^{2}\right)$.

2.3 Semantic proofs, variable width and decision trees

A semantic depth- d (Frege) proof from a set of formulas S is a sequence of depth- d formulas F_{1}, \ldots, F_{t} such that for every i, either $F_{i} \in S$ or there are $j, k<i$ such that $F_{j}, F_{k} \models F_{i}$. Notice that if S consists of depth- $(d-1)$ formulas, then there is a trivial depth- d proof of any valid consequence of S, as $\bigwedge S$ can be derived in $|S|-1$ steps. Thus, under this formulation, depth- d proofs from S are interesting only if S contains depth- d formulas not in $\Pi_{d}^{s, k}$ for any s and k, and indeed, our results pertain to such proofs.

T. Papamakarios

The definitions of lines, size of a proof, refutation, tree-like proofs, apply to semantic proofs as well. The variable width of a proof is the maximum number of variables among the lines of the proof.

Unlike size, variable width is an inherently semantic notion. In particular, it is independent of depth: any depth- d proof of variable width w can be transformed into a depth- 1 proof of (variable) width $O(w)$. In fact, something stronger can be said. A decision tree is a binary tree the internal nodes of which are labelled by variables, and the edges by values 0 or 1 . Nodes query variables and the edges going from a node to its children are labelled, one by the value 0 and the other by 1, giving an answer to that query. No variable is repeated in a branch so that branches correspond to restrictions, and each branch has a value, 0 or 1 , associated with it, so that the decision tree represents a Boolean function. We denote the set of branches of \mathbf{T} having the value v by $\operatorname{Br}_{v}(\mathbf{T})$. Specifically, we say that a decision tree \mathbf{T} represents a formula F if for every branch π of \mathbf{T} with value $v,\left.F\right|_{\pi} \equiv v$. The height of a decision tree is the length of its longest branch. Notice that if a formula F is represented by a decision tree of height h, then $F \in \Sigma_{2}^{1, h} \cap \Pi_{2}^{1, h}$. We write $h(F)$ for the minimum height of a decision tree representing F. The following lemma is shown in [18] for a specific type of depth-2 proofs, but holds for proofs of arbitrary depth, or for that matter, arbitrary sound proofs.

- Lemma 2.3. Let S be a set of clauses each containing at most h literals. If there is a semantic refutation of S each line of which is represented by a decision tree of height at most h, then there is a resolution refutation of S of width at most $3 h$.

Proof. Let F_{1}, \ldots, F_{t} be a semantic refutation of S and let \mathbf{T}_{i} be a decision tree of height at most h representing F_{i}. We assume that \mathbf{T}_{t} has a single node having the value 0 . For a restriction π, let C_{π} be the minimal clause falsified by π. We will show that for every i, for every branch $\pi \in \operatorname{Br}_{0}\left(\mathbf{T}_{i}\right)$, we can derive C_{π} via a resolution proof of width at most $3 h$. Notice that C_{π} for $\pi \in \operatorname{Br}_{0}\left(\mathbf{T}_{t}\right)$ is the empty clause, so this construction will give a refutation.

If F_{i} is a clause C in S, then every $\pi \in \operatorname{Br}_{0}\left(\mathbf{T}_{i}\right)$ must make every literal in C false, hence C_{π} is a weakening of C. Assume now that F_{i} is derived from F_{j} and F_{k} and we have derived all clauses C_{π} for $\pi \in \operatorname{Br}_{0}\left(\mathbf{T}_{j}\right) \cup \operatorname{Br}_{0}\left(\mathbf{T}_{k}\right)$. Let $\sigma \in \operatorname{Br}_{0}\left(\mathbf{T}_{i}\right)$, and let \mathbf{T} be the tree resulting by appending a copy of \mathbf{T}_{k} at the end of every branch $\pi \in \operatorname{Br}_{1}\left(\mathbf{T}_{j}\right)$ of \mathbf{T}_{j}. We will use \mathbf{T} to extract a resolution proof of C_{σ}. More specifically, for every node u of \mathbf{T} such that the path π_{u} from the root of \mathbf{T} to u corresponds to a restriction that is consistent with σ, we will derive $C_{\sigma} \vee C_{\pi_{v}}$. When we reach the root of \mathbf{T} we will have derived C_{σ}. If u is a leaf of \mathbf{T}, then we claim that $C_{\pi_{u}}$ is a weakening of some clause C_{π} for $\pi \in \operatorname{Br}_{0}\left(\mathbf{T}_{j}\right) \cup \operatorname{Br}_{0}\left(\mathbf{T}_{k}\right)$. To see this, let $\pi_{u}=\pi_{j} \cup \pi_{k}$, where π_{j} is the part of π_{u} that belongs to \mathbf{T}_{j} and π_{k} the part that belongs to \mathbf{T}_{k}. Since $F_{j}, F_{k} \models F_{i}$ and π_{u} is consistent with σ, it cannot be the case that both $\pi_{j} \in \operatorname{Br}_{1}\left(\mathbf{T}_{j}\right)$ and $\pi_{k} \in \operatorname{Br}_{1}\left(\mathbf{T}_{k}\right)$, otherwise a total assignment extending both π_{u} and σ would make F_{j} and F_{k} true, but F_{i} false. Suppose now that u is not a leaf of \mathbf{T} and suppose that v and w are its children. Then either π_{v} and π_{w} are both consistent with σ, in which case $C_{\sigma} \vee C_{\pi_{u}}$ can be derived by resolving $C_{\sigma} \vee C_{\pi_{v}}$ and $C_{\sigma} \vee C_{\pi_{w}}$ on the variable labelling u, or one of the children, say v, will be consistent with σ and thus $C_{\sigma} \vee C_{\pi_{u}}$ will be identical to $C_{\sigma} \vee C_{\pi_{v}}$.

2.4 Automatability and the main result

A proof system σ is called automatable [5] if there is an algorithm that given a set of formulas S and a formula ϕ provable from S, outputs a σ-proof of ϕ from S in time polynomial $r+s$, where r is the total size of S and s the size of the shortest σ-proof of ϕ from S.

The main theorem of this paper is the fact that approximating the minimum size of a depth- d Frege refutation within a polynomial factor is NP hard:

- Theorem 2.4. For every integer $d>0$, there is a polynomial-time computable function, which takes as input a CNF formula F with n variables and m clauses and integers $s, N>0$ represented in unary, and returns a formula $G_{d}(F ; s, N)$ of depth d such that

1. if F is satisfiable, then there is a depth-d LK refutation of $G_{d}(F ; s, N)$ of size

$$
O\left(\left(N^{d+3} s^{2} n\left(m+s^{2} n^{3}\right)\right)^{2}\right)
$$

2. if F is not satisfiable, N is an increasing function of n and s is a polynomial in n, every semantic depth-d refutation of $G_{d}(F ; s, N)$ must have size at least

$$
N^{\frac{1}{3}\left(\frac{\log s}{\log n}-2\right)^{\frac{1}{d-1}}}
$$

for large enough n.
The NP hardness of automating depth- d Frege systems follows from Theorem 2.4 by setting $s:=n^{(3 h)^{d-1}+2}$ and $N:=s$ for a large enough constant h (see Theorem 6.1).

We describe the reduction, constructing the formula $G_{d}(F ; s, N)$ from F in Section 3. In Section 4, we show the upper bound of Theorem 2.4, and in Section 5 we show the lower bound. It is important to note that both bounds hold for semantic depth- d refutations. The reason we formulate the upper bound in terms of LK refutations is twofold. First, we are able to apply Proposition 2.2; we contend it is much cleaner to first give a depth- $(d+1)$ tree-like LK refutation of our formulas and then convert it to a depth- d refutation, rather than directly giving a depth- d refutation. Secondly, the notion of automatability is neither monotone nor anti-monotone. Hence it is clear from Theorem 2.4 that the non automatability result applies to any version intermediate between depth- d LK and depth- d semantic systems.

3 The formulas Ref

Let F be a CNF formula with n variables and m clauses. The key ingredient in the nonautomatability result of [2] is expressing by a set of clauses $\operatorname{Ref}(F, s)$ the statement that there is a resolution refutation D_{1}, \ldots, D_{s} of length s from the clauses of F.

The variables of $\operatorname{Ref}(F, s)$ are $D[u, i, b], V[u, i], I[u, j], L[u, v]$ and $R[u, v]$, where $u, v \in[s]$, $i \in[n], j \in[m]$ and $b \in\{0,1\}$. The meaning of $D[u, i, b]$ is that x_{i}^{b} appears in D_{u}. The meaning of $V[u, i]$ is that D_{u} is derived as a weakening of the resolvent of two previous clauses on x_{i}, and the meaning of $I[u, j]$ is that D_{u} is a weakening of the j-th clause of F. The meaning of $L[u, v]$ is that the left clause (i.e. that which contains $\neg x_{i}$) from which D_{u} was derived is D_{v}, and the meaning of $R[u, w]$ is that the right clause (i.e. that which contains x_{i}) from which D_{u} was derived is D_{w}. We will also use the variables $V[u, 0]$ and $I[u, 0]$ to indicate whether D_{u} is derived from previous clauses or from an initial clause of F : in the former case, $I[u, 0]$ will be true and $V[u, 0]$ false, and in the latter $V[u, 0]$ will be true and $I[u, 0]$ false. The clauses of $\operatorname{Ref}(F, s)$ encode the following conditions: For each $u, v \in[s]$, $i, i^{\prime} \in[n], j \in[m]$ and $b \in\{0,1\}$,

$$
\begin{align*}
& \exists!k V[u, k] \& \exists!k I[u, k] \& \exists!k L[u, k] \& \exists!k R[u, k] ; \tag{3.1}\\
& V[u, 0] \Longleftrightarrow \neg[u, 0] ; \tag{3.2}\\
& \neg L[u, v] \text { for } v \geq u \& \neg R[u, v] \text { for } v \geq u ; \tag{3.3}\\
& V[u, i] \& L[u, v] \Longrightarrow D[v, i, 0] ; \tag{3.4}\\
& V[u, i] \& R[u, v] \Longrightarrow D[v, i, 1] ; \tag{3.5}\\
& V[u, i] \& L[u, v] \& D\left[v, i^{\prime}, b\right] \& i \neq i^{\prime} \Longrightarrow D\left[u, i^{\prime}, b\right] ; \tag{3.6}\\
& V[u, i] \& R[u, v] \& D\left[v, i^{\prime}, b\right] \& i \neq i^{\prime} \Longrightarrow D\left[u, i^{\prime}, b\right] ; \tag{3.7}\\
& I[u, j] \& x_{i}^{b} \text { appears in } C_{j} \Longrightarrow D[u, i, b] ; \tag{3.8}\\
& \neg D[u, i, 0] \vee \neg D[u, i, 1] ; \tag{3.9}\\
& \neg D[s, i, b] . \tag{3.10}
\end{align*}
$$

It was shown, subsequent to [2], that $\operatorname{Ref}(F, s)$ is hard for resolution whenever F is unsatisfiable [9]. In [2], a variation, $\operatorname{RRef}(F, s)$, is used. $\operatorname{RRef}(F, s)$ expresses the fact that there is a resolution refutation D_{1}, \ldots, D_{s} or one contained in D_{1}, \ldots, D_{s}, from the clauses of $F . \operatorname{RRef}(F, s)$ has the same variables as $\operatorname{Ref}(F, s)$ plus a new variable $P[u]$ indicating which of the indices $1, \ldots, s$ are active, i.e. are part of the refutation. The clauses of $\operatorname{RRef}(F, s)$ express the following conditions, which are those of $\operatorname{Ref}(F, s)$ conditioned on the fact that $P[u]$ is true, in addition to three new ones requiring $P[s]$ to be true, and $P[v]$ to be true whenever $P[u]$ and $L[u, v]$ or $R[u, v]$ are true:

$$
\begin{align*}
& P[u] \Longrightarrow \exists!k V[u, k] \& \exists!k I[u, k] \& \exists!k L[u, k] \& \exists!k R[u, k] ; \tag{3.11}\\
& P[u] \Longrightarrow(V[u, 0] \Longleftrightarrow \neg[u, 0]) ; \tag{3.12}\\
& P[u] \Longrightarrow \neg[u, v] \text { for } v \geq u \& \neg R[u, v] \text { for } v \geq u ; \tag{3.13}\\
& P[u] \Longrightarrow(V[u, i] \& L[u, v] \Longrightarrow D[v, i, 0]) ; \tag{3.14}\\
& P[u] \Longrightarrow(V[u, i] \& R[u, v] \Longrightarrow D[v, i, 1]) ; \tag{3.15}\\
& P[u] \Longrightarrow\left(V[u, i] \& L[u, v] \& D\left[v, i^{\prime}, b\right] \& i \neq i^{\prime} \Longrightarrow D\left[u, i^{\prime}, b\right]\right) ; \tag{3.16}\\
& P[u] \Longrightarrow\left(V[u, i] \& R[u, v] \& D\left[v, i^{\prime}, b\right] \& i \neq i^{\prime} \Longrightarrow D\left[u, i^{\prime}, b\right]\right) ; \tag{3.17}\\
& P[u] \Longrightarrow\left(I[u, j] \& x_{i}^{b} \text { appears in } C_{j} \Longrightarrow D[u, i, b]\right) ; \tag{3.18}\\
& P[u] \Longrightarrow(\neg D[u, i, 0] \vee \neg D[u, i, 1]) ; \tag{3.19}\\
& P[s] \& \neg D[s, i, b] ; \tag{3.20}\\
& (P[u] \& L[u, v] \Longrightarrow P[v]) \&(P[u] \& R[u, v] \Longrightarrow P[v]) . \tag{3.21}
\end{align*}
$$

Notice that giving truth values to the $P[u]$ variables (where $P[s]=1$) reduces $\operatorname{RRef}(F, s)$ to $\operatorname{Ref}\left(F, s^{\prime}\right)$ where s^{\prime} is the number of indices u for which $P[u]=1$.

For an integer $k \geq 1$, we define $\mathrm{R}^{k} \operatorname{Ref}(F, s)$ as the formula resulting from substituting each variable $P[u]$ in $\operatorname{RRef}(F, s)$ with the conjunction $\bigwedge_{i=1}^{k} P_{i}[u]$ for new variables $P_{1}[u], \ldots, P_{k}[u]$. Note that $\operatorname{RRef}(F, s)=\mathrm{R}^{1} \operatorname{Ref}(F, s)$.

Now, let $d, N \geq 1$ be integers, and let x be a propositional variable. We associate with x $N^{d-1}\lceil\sqrt{N} / 2\rceil$ new variables $x_{i_{1}, \ldots, i_{d}}$, where $i_{1}, \ldots, i_{d-1} \in[N]$ and $i_{d} \in[\lceil\sqrt{N} / 2\rceil]$. The fact that we make i_{d} range over $[\lceil\sqrt{N} / 2\rceil]$ instead of $[N]$ will be important later (specifically in Lemma 5.2). The depth- d Sipser functions for x are defined by

$$
\begin{aligned}
& S_{d, N}^{\wedge}(x) \stackrel{\text { def }}{=} \bigwedge_{i_{1}=1}^{N} \bigvee_{i_{2}=1}^{N} \cdots \bigwedge_{i_{d}=1}^{\lceil\sqrt{N} / 2\rceil} x_{i_{1}, \ldots, i_{d}}, \\
& S_{d, N}^{\vee}(x) \stackrel{\text { def }}{=} \bigvee_{i_{1}=1}^{N} \bigwedge_{i_{2}=1}^{N} \cdots \bigvee_{i_{d}=1}^{\lceil\sqrt{N} / 2\rceil} x_{i_{1}, \ldots, i_{d}}
\end{aligned}
$$

if d is odd, and

$$
\begin{aligned}
& S_{d, N}^{\wedge}(x) \stackrel{\text { def }}{=} \bigwedge_{i_{1}=1}^{N} \bigvee_{i_{2}=1}^{N} \cdots \bigvee_{i_{d}=1}^{\lceil\sqrt{N} / 2\rceil} x_{i_{1}, \ldots, i_{d}}, \\
& S_{d, N}^{\vee}(x) \stackrel{\text { def }}{=} \bigvee_{i_{1}=1}^{N} \bigwedge_{i_{2}=1}^{N} \cdots \bigwedge_{i_{d}=1}^{\lceil\sqrt{N} / 2\rceil} x_{i_{1}, \ldots, i_{d}}
\end{aligned}
$$

if d is even.
We define $\operatorname{RRef}_{d, N}(F, s)$ to be the result of substituting every variable of the form $P[u]$ in $\operatorname{RRef}(F, s)$ with $S_{d, N}^{\wedge}(P[u])$ and every other variable x with $S_{d, N}^{\vee}(x)$. Notice that $\operatorname{RRef}_{d, N}(F, s)$ is a set of depth- $(d+1)$ formulas. But, as we want to prove statements about whether $\operatorname{RRef}_{d, N}(F, s)$ has or does not have small depth- d refutations, we must write it as a set of depth- d formulas. We may do that with only a polynomial increase in size, as the only clauses of non constant size of $\operatorname{RRef}(F, s)$ are those of the form $\neg P[u] \vee \bigvee_{i} X[u, i]$ corresponding to conditions (3.11), and these clauses will have depth- d after the substitution taking us from $\operatorname{RRef}(F, s)$ to $\operatorname{RRef}_{d, N}(F, s)$. Note that the conversion from $\operatorname{RRef}_{d, N}(F, s)$ written as a set of depth- d formulas to its equivalent set of depth- $(d+1)$ formulas can be carried in tree-like depth- $(d+1)$ LK in linear time. In particular, a tree-like depth- $(d+1)$ LK refutation of the latter set can be turned into a tree-like depth- $(d+1)$ LK refutation of the former set, increasing the size by at most a factor of N^{3}.

4 Upper bounds

We show in this section that if F is satisfiable, then $\operatorname{RRef}_{d, N}(F, s)$ has small depth- d refutations:

- Proposition 4.1. If F is a satisfiable CNF formula with n variables and m clauses, then there is a depth-d LK refutation of $\operatorname{RRef}_{d, N}(F, s)$ of size

$$
S=O\left(\left(N^{d+3} s^{2} n\left(m+s^{2} n^{3}\right)\right)^{2}\right)
$$

In particular, if $m=O\left(s^{2} n^{3}\right)$, then $S=O\left(N^{2(d+3)}(s n)^{8}\right)$.
Proof. We start with a small depth-2 LK tree-like refutation of $\operatorname{RRef}(F, s)$. This refutation will be such that after the substitution with Sipser functions, we get a depth- $(d+1)$ tree-like refutation of $\operatorname{RRef}_{d, N}(F, s)$, which in turn we can convert to a depth- d DAG-like refutation of $\operatorname{RRef}_{d, N}(F, s)$ by Proposition 2.2.

We write, for better readability, $A_{1}, \ldots, A_{k} \rightarrow B_{1}, \ldots, B_{\ell}$ instead of $\overline{A_{1}} \vee \cdots \vee \overline{A_{k}} \vee B_{1} \vee$ $\cdots \vee B_{\ell}$.

Let α be an assignment that satisfies every clause of F. We set

$$
T(u):=P[u] \rightarrow \bigvee_{i=1}^{n} D\left[u, i, \alpha\left(x_{i}\right)\right]
$$

What $T(u)$ says is that if $P[u]$ is true, then α satisfies the u-th clause in the refutation $\operatorname{Ref}(F, s)$ describes.

Our refutation of $\operatorname{RRef}(F, s)$ consists of $s-1$ stages, starting with stage 0 . In the u-th stage, $T(1), \ldots, T(s-u) \rightarrow 0$ will have been derived. Then we can use this formula, along with a derivation of $T(1), \ldots, T(s-u-1) \rightarrow T(s-u)$, to derive $T(1), \ldots, T(s-u-1) \rightarrow 0$. In the $s-1$-th stage, $T(1) \rightarrow 0$ will have been derived, at which point we can reach a contradiction by deriving $T(1)$.

A derivation of $T(1), \ldots, T(v-1) \rightarrow T(v)$ is sketched in Figure 1. The formulas $I[v, j] \rightarrow$

Figure 1 A sketch of a derivation of $T(1), \ldots, T(v-1) \rightarrow T(v)$.
$T(v)$ for $j \in[m]$ can be immediately derived from the clauses $P[u] \wedge I[v, j] \rightarrow D\left[v, i, \alpha\left(x_{i}\right)\right]$, which are clauses corresponding to condition (3.18), as the fact that α satisfies the clause C_{j} means that $x_{i}^{\alpha\left(x_{i}\right)}$ must belong to C_{j} for some i. These formulas can be in turn used along with the clauses (3.11) for $I[v, k]$ and (3.12) to derive $V[v, 0] \rightarrow T(v)$. Now deriving

$$
\begin{equation*}
T(1), \ldots, T(v-1) \rightarrow V[v, 0], T(v) \tag{4.1}
\end{equation*}
$$

will allow us to derive $T(1), \ldots, T(v-1) \rightarrow T(v)$ by cutting on $V[v, 0]$. We can derive (4.1) from the formulas

$$
\begin{equation*}
T(1), \ldots, T(v-1), V[v, i] \rightarrow T(v) \tag{4.2}
\end{equation*}
$$

for $i \in[n]$ using the clauses (3.11) for $V[v, i]$. The formulas (4.2) can be in turn derived from the formulas

$$
\begin{equation*}
T\left(v_{\ell}\right), L\left[v, v_{\ell}\right], T\left(v_{r}\right), R\left[u, v_{r}\right], V[v, i] \rightarrow T(v) \tag{4.3}
\end{equation*}
$$

for $v_{\ell}, v_{r} \in[s]$ using the clauses (3.11) for $L[v, k]$ and $R[v, k]$, (3.12) and (3.13). Finally, (4.3) can be derived from the formulas

$$
\begin{equation*}
D\left[v_{\ell}, j, \alpha\left(x_{j}\right), L\left[v, v_{\ell}\right], D\left[v_{r}, x_{k}, \alpha\left(x_{k}\right)\right], R\left[u, v_{r}\right], V[v, i] \rightarrow T(v),\right. \tag{4.4}
\end{equation*}
$$

for $j, k \in[n]$, which can be derived directly from the clauses (3.21) and either (3.14), (3.15) and (3.19) or (3.16) and (3.17) depending on whether $i=j=k$ or not.

We can see that the derivations of $T(1), \overline{T(s)}$ and $T(1), \ldots, T(v-1) \rightarrow T(v)$ take at most $O\left(m+s^{2} n^{3}\right)$ steps, hence the overall refutation has size $O\left(s^{2} n\left(m+s^{2} n^{3}\right)\right)$.

Now, notice that after substituting every variable $P[u]$ in it with $S_{d, N}^{\wedge}(P[u])$ and every other variable x with $S_{d, N}^{\vee}(x), T(v)$ becomes a depth- d formula. Hence we see that after the substitution, the refutation described above becomes a depth- $(d+1)$ tree-like LK refutation of $\operatorname{RRef}_{d, N}(F, s)$. We can then get a depth- d refutation of $\operatorname{RRef}_{d, N}(F, s)$ of the required size by applying Proposition 2.2.

5 Lower bounds

Lower bounds for depth- d Frege systems for $d>1$, typically follow the following strategy:

1. We first show that the formulas we are trying to refute are robust; namely, after applying a restriction selected at random to them, then with high probability they cannot be refuted with proofs whose lines are, in a certain sense, simple.
2. Then we show, through the use of a switching lemma, that applying such a restriction to a short proof will result with high probability in a proof with simple lines.

Here we start with $\operatorname{RRef}_{d, N}(F, s)$, which after applying the restrictions will collapse to $\operatorname{Ref}\left(F, s^{\prime}\right)$, where s^{\prime} is polynomially related to s. For the part of the overall strategy showing that there cannot be refutations with simple lines, we take, as in [2], simple to mean of small index-width. We say that a variable of the form $D[u, i, b], V[u, i], I[u, j], L[u, v]$ or $R[u, v]$ mentions the index u. The index-width of a clause in the variables of $\operatorname{Ref}(F, s)$ is defined as the number of indices mentioned by its variables, and the index-width of a resolution refutation of $\operatorname{Ref}(F, s)$ is the maximum index-width over its clauses. We have:

- Theorem 5.1 [2]. For all integers $n, s>0$ with $s \leq 2^{n}$, and every unsatisfiable CNF F with n variables, every resolution refutation of $\operatorname{Ref}(F, s)$ has index-width at least $s / 6 n$.

5.1 The robustness of $\operatorname{RRef}_{d, N}$

We create a distribution on restrictions to the variables of $\operatorname{RRef}_{d, N}(F, s)$ as follows. Suppose d is odd (if d were even, we would exchange the roles of 0 and 1 in the following construction). For each $S_{d, N}^{\wedge}(x)$ formula in $\operatorname{RRef}_{d, N}(F, s)$, look at its bottom-most $N^{d-1} \bigwedge$ connectives. For each such connective, we decide to "preserve" it with probability $1 / \sqrt{N}$, and not to preserve it with probability $1-1 / \sqrt{N}$. For each of the preserved connectives, we leave its first variable unset and set the rest to 1 . For each variable in the unpreserved connectives, we set it to 0 or 1 with probability $1 / 2$ for each choice. The variables of $S_{d, N}^{\vee}(x)$ are set in the same way, except that the set variables of the preserved \bigvee connectives are set to 0 instead of 1 .

Under such restrictions, Sipser functions do not simplify much. For formulas F and G, in which each variable appears only once, we say that F contains G if we can get G from F by deleting some of its literals and/or renaming some of its variables.

- Lemma 5.2. For any $d \geq 2$, the probability that $\left.S_{d, N}^{\nu}(x)\right|_{\rho}$, where $\nu \in\{\wedge, \vee\}$, does not contain $S_{d-1, N}^{\nu}(x)$ is at most $2^{-\Omega(\sqrt{N})}$.
Proof. We show the lemma for $S_{d, N}^{\wedge}(x)$ and d odd. If $\left.S_{d, N}^{\wedge}(x)\right|_{\rho}$ does not contain $S_{d-1, N}^{\wedge}$, then either one of its bottom-most \bigwedge connectives takes the value 1 , or in one of its depth- 2 subformulas, less than $\sqrt{N} / 2 \bigwedge$ connectives are preserved. The probability that a bottommost \bigwedge connective takes the value 1 is at most $2^{-\sqrt{N} / 2}$ and the probability that this happens for at least one of the N^{d-1} bottom-most \bigwedge connectives is at most

$$
N^{d-1} 2^{-\sqrt{N} / 2} \leq 2^{-\Omega(\sqrt{N})} .
$$

Now fix a depth-2 subformula A of $S_{d, N}^{\wedge}(x)$. The expected number of preserved Λ connectives in $\left.A\right|_{\rho}$ is $N / \sqrt{N}=\sqrt{N}$, and by the Chernoff bound, the probability that there are less than $\sqrt{N} / 2$ preserved \bigwedge connectives is at most $2^{-\Omega(\sqrt{N})}$. The probability that at least one of the N^{d-2} depth-2 subformulas of $S_{d, N}^{\wedge}(x)$ has less than $\sqrt{N} / 2$ preserved connectives is thus at most

$$
N^{d-2} 2^{-\Omega(\sqrt{N})} \leq 2^{-\Omega(\sqrt{N})}
$$

We conclude that the probability that $\left.S_{d, N}^{\wedge}\right|_{\rho}$ does not contain $S_{d-1, N}^{\wedge}$ is at most $2^{-\Omega(\sqrt{N})}$.

5.2 The Furst-Saxe-Sipser switching lemma

Switching lemmas provide conditions under which a k-DNF formula "switches" to a ℓ-CNF formula after applying a restriction created at random. We will use the switching lemma of [8] and a variation tailored for $\mathrm{R}^{k} \operatorname{Ref}(F, s)$ due to [10].

Let G be a k-DNF formula over the set of variables X. Let X_{1}, \ldots, X_{r} be a partition of X into r blocks, and let $\nu \in\{0,1\}$. Consider the following distribution over restrictions on X : For each block X_{i}, we decide to "preserve" X_{i} with probability p, and not to preserve it with probability $1-p$. For each preserved block, we leave one of its variables, say the first in the block, unset, and set all others to ν. For each unpreserved block, we set each of its variables to 0 or 1 with probability $1 / 2$ for each value.

We can extract the following lemma from [8, 19]. The lemma is implicit in [8, 19] with parameters obscured under a big O notation. We present it here in a more general, improved form, with explicit parameters, using decision trees along the lines of [18]. In what follows, ln denotes the natural logarithm; we preserve the notation log for the base 2 logarithm.
\triangleright Lemma 5.3 (see [8, 19]). If $p h k 2^{k} \ln N=o\left(N^{-\varepsilon}\right)$ for some $\varepsilon \in(0,1)$, then

$$
P\left[h\left(\left.G\right|_{\rho}\right)>k h\right] \leq o\left(N^{-\varepsilon h}\right) \frac{2^{k h}-1}{2^{h}-1} .
$$

Proof. The proof is by induction on k. If $k=0, G$ is a constant and can be represented by a decision tree of height 0 . Suppose $k>0$. We distinguish between two cases, G being wide and G being narrow. We call G wide if there are at least $h 2^{k} \ln N$ terms in it such that no two of them contain variables from the same block. G is narrow if and only if it is not wide. If G is wide, then

$$
\begin{aligned}
P\left[h\left(\left.G\right|_{\rho}\right)>k h\right] & \leq P\left[\left.G\right|_{\rho} \neq 1\right] \leq\left(1-\left(\frac{1-p}{2}\right)^{k}\right)^{h 2^{k} \ln N} \\
& \leq e^{-(1-p)^{k} h \ln N}=N^{-(1-p)^{k} h}=o\left(N^{-\varepsilon h}\right)
\end{aligned}
$$

If G is narrow, then take a maximal set of terms such that no two of them contain variables from the same block, and let H be the set of blocks that contain a variable occurring in some term of this set. H contains at most $h k 2^{k} \ln N$ blocks and every term of G contains some variable (or its negation) from some block in H. The probability of the event A that ρ preserves more than h blocks in H is

$$
P[A] \leq\binom{ h k 2^{k} \ln N}{h} p^{h} \leq\left(h k 2^{k} \ln N\right)^{h} p^{h}=o\left(N^{-\varepsilon h}\right)
$$

Now, let π be a restriction that sets the variables of all blocks in H, and let A_{π} be the event that π is consistent with ρ and $h\left(\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}\right)>(k-1) h$. Notice that $\left.G\right|_{\pi}$ is a $(k-1)$-DNF, so by the induction hypothesis,

$$
P\left[A_{\pi}\right] \leq P\left[h\left(\left.\left(\left.G\right|_{\pi}\right)\right|_{\rho}\right)>(k-1) h\right] \leq o\left(N^{-\varepsilon h}\right) \frac{2^{(k-1) h}-1}{2^{h}-1}
$$

Notice that a restriction ρ that preserves at most h blocks is consistent with at most 2^{h} restrictions π, so we get

$$
\begin{aligned}
P\left[A \cup \bigcup_{\pi} A_{\pi}\right] & \leq o\left(N^{-\varepsilon h}\right)+o\left(N^{-\varepsilon h}\right) 2^{h} \frac{2^{(k-1) h}-1}{2^{h}-1} \\
& =o\left(N^{-\varepsilon h}\right) \frac{2^{k h}-1}{2^{h}-1} .
\end{aligned}
$$

In the event

$$
\left(A \cup \bigcup_{\pi} A_{\pi}\right)^{c}
$$

i.e. the event that ρ preserves at most h blocks in H and for all restrictions π consistent with $\rho, h\left(\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}\right) \leq(k-1) h$, we can construct a decision tree of height at most $k h$ representing $\left.G\right|_{\rho}$ as follows: We query all variables belonging to some block in H left unset by ρ (since ρ preserves at most h blocks in H, there are at most h of them), and at each branch π of the resulting tree, we append a decision tree of minimum height representing $\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}$.

We create a distribution on restrictions on the variables of $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$ as follows: For every index u and every $i \in[\ell]$, we set $P_{i}[u]$ to 0 or 1 , with probability $1 / 2$ for each value. Let U be the set of indices such that $P_{i}[u]=1$ for all $i \in[\ell]$. For each variable x of $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$ not of the form $P_{i}[u]$ mentioning an index in U, we set x to 0 or 1 , with probability $1 / 2$ for each value.

For a decision tree \mathbf{T} querying variables of $\operatorname{Ref}(F, s)$, we define the index-height of \mathbf{T} as the maximum number of indices mentioned by variables over all branches that do not falsify axioms of $\operatorname{Ref}(F, s)$. For a formula G, We denote by $\hbar(G)$ the minimum index-height of a decision tree representing G.

The following lemma is from [10]. We give a proof because in [10] the lemma is stated not for $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$ but a variation, plus we view the following proof to be simpler.

- Lemma 5.4 [10]. Let F be a $C N F$ formula in n variables, k and ℓ integers with $0<k \leq \ell$, and G a $k-D N F$ formula over the variables of $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$, where $s \leq 2^{\delta n}$ for some $\delta<1$. Then for large enough n,

$$
P\left[\hbar\left(\left.G\right|_{\rho}\right)>h\right] \leq 2^{-\frac{h}{n^{k-1} \gamma(k)}}
$$

where $\gamma(0)=1, \gamma(i)=(\log e)\left(i 4^{i+1}\right)^{-1} \gamma(i-1)$.
Proof. Let $h_{i}:=h \gamma(i-1) /\left(4 n^{i-1}\right)$. We will show, by induction on k, that for every k and ℓ with $k \leq \ell$, for every k-DNF formula G over the variables of $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$,

$$
P\left[\hbar\left(\left.G\right|_{\rho}\right)>\sum_{i=1}^{k} h_{i}\right] \leq 2^{-\frac{h}{n^{k-1}} \gamma(k)}
$$

for large enough n.

If $k=0, F$ is a constant and can be represented by a decision tree of height 0 . Suppose $k>0$. We call G wide if there are at least h_{k} / k terms in G over disjoint sets of indices, and call G narrow otherwise. Suppose G is wide. A literal in a term t of G is satisfied with probability at least $1 / 4$: Literals on a variable $P_{i}[u]$ are satisfied with probability $1 / 2$. For any other literal x^{ϵ} of t mentioning the index u, since $k \leq \ell$, there must be a variable $P_{i}[u]$ not in t, which is made 0 with probability $1 / 2$, in which case x^{ϵ} will be satisfied with probability $1 / 2$. Hence

$$
\begin{aligned}
P\left[\hbar\left(\left.G\right|_{\rho}\right)>h\right] & \leq P\left[\left.G\right|_{\rho} \neq 1\right] \leq\left(1-4^{-k}\right)^{\frac{h \gamma(k-1)}{4 k n^{k-1}}} \\
& \leq 2^{-\frac{h}{n^{k-1}}(\log e)\left(k 4^{k+1}\right)^{-1} \gamma(k-1)} \\
& =2^{-\frac{h}{n^{k-1}} \gamma(k)} .
\end{aligned}
$$

Suppose now that G is narrow. Take a maximal set of terms over disjoint sets of indices, and let H be the set of indices that are mentioned by the terms of this set. Notice that $|H| \leq h_{k}$ and that every term of G contains some variable (or its negation) that mentions an index in H. Let π be a restriction that

1. sets all variables mentioning an index in H and leaves all other variables unset, and
2. does not falsify any axioms of $\mathrm{R}^{\ell} \operatorname{Re} f(F, s)$.

The second condition means in particular that if U is the set of indices u for which π sets $P_{i}[u]$ to 1 for all i, then for all $u \in U$, there will be exactly one v such that $L[u, v]$ is true, exactly one v such that $R[u, v]$ is true, exactly one i such that $V[u, i]$ is true, and exactly one j such that $I[u, j]$ is true, making the total number of such π 's to be at most

$$
S^{|U|_{2}} 2^{(|H|-|U|) n_{0}}
$$

where $S:=s^{2}(n+1)(m+1) 2^{2 n}$ and n_{0} is the number of variables of $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$ mentioning a fixed index u.

Let A_{π} be the event that π is consistent with ρ and $\hbar\left(\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}\right)>\sum_{i=i}^{k-1} h_{i}$. We have that

$$
\begin{aligned}
P\left[A_{\pi}\right] & =P\left[\hbar\left(\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}\right)>\sum_{i=i}^{k-1} h_{i} \mid \rho \text { con. with } \pi\right] P[\rho \text { con. with } \pi] \\
& =P\left[\hbar\left(\left.\left(\left.G\right|_{\pi}\right)\right|_{\rho}\right)>\sum_{i=i}^{k-1} h_{i}\right] P[\rho \text { con. with } \pi] \\
& \leq 2^{-\frac{h}{n^{k-2}} \gamma(k-1)} 2^{-\ell|U|} 2^{-(|H|-|U|) n_{0}} .
\end{aligned}
$$

Hence, we get

$$
\begin{aligned}
P\left[\bigcup_{\pi} A_{\pi}\right] & \leq \sum_{\pi} P\left[A_{\pi}\right] \\
& \leq \sum_{U \subseteq H} S^{|U|} 2^{(|H|-|U|) n_{0}} 2^{-\frac{h}{n^{k-2}} \gamma(k-1)} 2^{-\ell|U|} 2^{-(|H|-|U|) n_{0}} \\
& =\sum_{r=0}^{|H|}\binom{|H|}{r} S^{r} 2^{-\frac{h}{n^{k-2}} \gamma(k-1)} 2^{-\ell r} \\
& =\left(S / 2^{\ell}+1\right)^{|H|} 2^{-\frac{h}{n^{k-2}} \gamma(k-1)} \\
& \leq S^{|H|} 2^{-\frac{h}{n^{k-2}} \gamma(k-1)} .
\end{aligned}
$$

Since $s \leq 2^{\delta n}$ for some $\delta<1$, the quantity

$$
S^{|H|}=\left(s^{2}(n+1)(m+1) 2^{2 n}\right)^{\frac{h}{4 n^{k-1}} \gamma(k-1)}
$$

will be at most $2^{\frac{\varepsilon h}{n^{k-2}} \gamma(k-1)}$ for some $\varepsilon<1$ for large enough n, therefore

$$
P\left[\bigcup_{\pi} A_{\pi}\right] \leq 2^{-\frac{h}{n^{k-1}} \gamma(k)}
$$

for large enough n.
In the event $\left(\bigcup_{\pi} A_{\pi}\right)^{c}$, that is the event that for every π consistent with $\rho, \hbar\left(\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}\right) \leq$ $\sum_{i=1}^{k-1} h_{i}$, we can construct a decision tree for $\left.G\right|_{\rho}$ of index-height at most $\sum_{i=1}^{k} h_{i}$ as follows: We first query all variables mentioning an index in H left unset by ρ. Then, at each branch π of the resulting tree, we append a decision tree of minimum index-height representing $\left.\left(\left.G\right|_{\rho}\right)\right|_{\pi}$.

5.3 The lower bound for $\operatorname{RRef}_{d, N}$

- Theorem 5.5. For every integer $d>0$, if F is an unsatisfiable CNF in n variables, N is an increasing function of n and s is a polynomial in n, every semantic depth-d refutation of $\operatorname{RRef}_{d, N}(F, s)$ has size at least

$$
N^{\frac{1}{3}\left(\frac{\log s}{\log n}-2\right)^{\frac{1}{d-1}}}
$$

for large enough n.
Proof. Let $h:=(1 / 3)(\log s / \log n-2)^{1 /(d-1)}$ and let G_{1}, \ldots, G_{t} be a semantic depth- d refutation of $\operatorname{RRef}_{d, N}(F, s)$ of size at most N^{h}. We assume that each G_{i} is either a literal or a disjunction of its immediate subformulas. Let A be a depth-1 subformula of some G_{i}. A is a 1-DNF or a 1-CNF formula, so applying Lemma 5.3 to it (or its negation respectively) with $k=1$ and $p=N^{-1 / 2}$ and using as blocks X_{1}, \ldots, X_{r} the variables in the depth-1 subformulas of $\operatorname{RRef}_{d, N}(F, s)$, we get, since $N^{-1 / 2} 3 h \ln N=o\left(N^{-1 / 3}\right)$,

$$
P\left[h\left(\left.A\right|_{\rho}\right)>3 h\right]=o\left(N^{-h}\right) .
$$

Now, there are at most N^{h} depth-1 subformulas A in the refutation, hence, by Lemma 5.2 and the union bound, the probability that either there is a depth- 1 subformula A with $h\left(\left.A\right|_{\rho}\right)>3 h$ or $\left.\operatorname{RRef}_{d, N}(F, s)\right|_{\rho}$ does not contain $\operatorname{RRef}_{d-1, N}(F, s)$ is $o(1)$. Therefore, for large n, there must be a restriction ρ_{1}^{\prime} such that $\left.\operatorname{RRef}_{d, N}(F, s)\right|_{\rho_{1}^{\prime}}$ contains $\operatorname{RRef}_{d-1, N}(F, s)$ and all depth- 1 subformulas of all $\left.G_{i}\right|_{\rho_{1}^{\prime}}$ are disjunctions or conjunctions of at most $3 h$ literals. Let ρ_{1} be a restriction extending ρ_{1}^{\prime} such that $\left.\operatorname{RRef}_{d, N}(F, s)\right|_{\rho_{1}}$ is exactly $\operatorname{RRef}_{d-1, N}(F, s)$. We continue by applying Lemma 5.3 with $k=3 h$ and $p=N^{-1 / 2}$ to a $3 h$-CNF or $3 h$-DNF depth-2 subformula B of $\left.G_{i}\right|_{\rho_{1}}$ to get

$$
P\left[h\left(\left.B\right|_{\rho}\right)>(3 h)^{2}\right]=o\left(N^{-h}\right)
$$

Since $\left.G_{i}\right|_{\rho_{1}}$ has at most N^{h} depth-2 subformulas, there is a restriction ρ_{2} such that $\left.\operatorname{RRef}_{d, N}(F, s)\right|_{\rho_{1} \rho_{2}}$ becomes $\operatorname{RRef}_{d-2, N}(F, s)$ and all depth- 2 subformulas of all $\left.G_{i}\right|_{\rho_{1}}$ can be represented by decision trees of height at most $(3 h)^{2}$. A formula representable by a decision tree of height at most $(3 h)^{2}$ can be written as both a $(3 h)^{2}$-CNF and a $(3 h)^{2}$-DNF, so for all $i \in[t],\left.G_{i}\right|_{\rho_{1} \rho_{2}} \in \Sigma_{d-1}^{N^{h},(3 h)^{2}}$.

Repeating the same argument $d-1$ times, applying Lemma 5.3 at the j-th time to depth-2 subformulas of $\Sigma_{d-j+1}^{N^{h},(3 h)^{j}}$-formulas equivalent to $\left.G_{i}\right|_{\rho_{1} \ldots \rho_{d-1}}$, we get restrictions $\rho_{1}, \ldots, \rho_{d-1}$ such that $\left.\operatorname{RRef}_{d, N}(F, s)\right|_{\rho_{1} \ldots \rho_{d-1}}$ becomes $\operatorname{RRef}_{1, N}(F, s)$ and for all $i \in[t]$, $\left.G_{i}\right|_{\rho_{1} \ldots \rho_{d-1}} \in \Sigma_{2}^{N^{h},(3 h)^{d-1}}$.

We are now ready to apply Lemma 5.4. First notice that $\operatorname{RRef}_{1, N}(F, s)$ contains $\mathrm{R}^{\ell} \operatorname{Ref}(F, s)$ for large n, where $\ell:=(3 h)^{d-1}$. For ρ selected randomly as specified in Lemma 5.4 for this ℓ, we get that the expected number of active indices is $s / 2^{\ell}$, hence $\left.\operatorname{RRef}_{1, N}(F, s)\right|_{\rho}$ contains $\operatorname{Ref}\left(F, s^{\prime}\right)$, where $s^{\prime}:=s / 2^{\ell+1}$, with high probability. Furthermore, Lemma 5.4 gives

$$
P\left[\hbar\left(\left.C\right|_{\rho}\right)>n^{(3 h)^{d-1}}\right] \leq 2^{-\Omega(n)}
$$

where C is a $(3 h)^{d-1}$-DNF formula equivalent to some $\left.G_{i}\right|_{\rho_{1} \ldots \rho_{d-1}}$. Therefore there must be a restriction ρ_{d} such that $\left.\operatorname{RRef}_{d, N}\right|_{\rho_{1} \ldots \rho_{d}}$ becomes $\operatorname{Ref}\left(F, s^{\prime}\right)$ and for every $i \in[t]$, $\hbar\left(\left.G_{i}\right|_{\rho_{1} \ldots \rho_{d-1}}\right) \leq n^{(3 h)^{d-1}}$. Applying now the construction of Lemma 2.3^{1} to $\left.G_{1}\right|_{\rho_{1} \ldots \rho_{d-1}}, \ldots$, $\left.G_{t}\right|_{\rho_{1} \ldots \rho_{d-1}}$ gives a resolution refutation of $\operatorname{Ref}\left(F, s^{\prime}\right)$ of index-width at most $3 n^{(3 h)^{d-1}}=3 s / n^{2}$, contradicting Theorem 5.1 for large n.

6 Non-automatability of bounded-depth Frege systems

- Theorem 6.1. If $\mathrm{P} \neq \mathrm{NP}$, then depth-d Frege systems are not automatable.

Proof. Suppose there is an algorithm \mathbf{A} which, given an unsatisfiable CNF formula G, returns a depth- d refutation of G in time polynomial in $S(G)+S$, where $S(G)$ is the size of G and S the size of the smallest depth- d refutation of G. Let $c, n_{0} \geq 1$ be integers such that for every G with $|G| \geq n_{0}, \mathbf{A}$ runs in time at most $(S(G)+S)^{c}$. We will use \mathbf{A} to decide in polynomial time whether 3-SAT is satisfiable. Given a 3-CNF formula F with n variables (and thus of size $O\left(n^{3}\right)$), we construct the formula $G:=\operatorname{RRef}_{d, N}(F, s)$, where $s:=n^{(3 h)^{d-1}+2}, N:=s$ and h is an integer such that

$$
\left((3 h)^{d-1}+2\right) h>c\left(\left((3 h)^{d-1}+2\right)(2(d+3))+8\left((3 h)^{d-1}+3\right)+1\right) .
$$

Notice that the left hand side of the above inequality is a polynomial of degree d in h and the right hand side a polynomial of degree $d-1$, hence such an h must exist. Since N and s are polynomials in n, the size of G is polynomial in n, hence its construction takes polynomial time. Let S be the size of the smallest depth- d refutation of G and let $n_{1} \geq n_{0}$ be an integer such that for all $n \geq n_{1}$,

$$
\begin{aligned}
F \text { satisfiable } & \Longrightarrow S+S(G) \leq n^{\left((3 h)^{d-1}+2\right)(2(d+3))+8\left((3 h)^{d-1}+3\right)+1} ; \\
F \text { not satisfiable } & \Longrightarrow S \geq n^{\left((3 h)^{d-1}+2\right) h}
\end{aligned}
$$

Here we use the bounds given by Proposition 4.1 and Theorem 5.5. To decide whether F is satisfiable, if $n<n_{1}$, then we check all possible assignments to its variables to see if there is a satisfying one. Otherwise, we run \mathbf{A} on G for

$$
n^{c\left(\left((3 h)^{d-1}+2\right)(2(d+3))+8\left((3 h)^{d-1}+3\right)+1\right)}
$$

steps. If \mathbf{A} stops, then we can assert that F is satisfiable; otherwise we can assert that F is unsatisfiable.

[^0]
7 Conclusion

This paper shows the non-automatability of bounded-depth Frege system assuming $\mathrm{P} \neq \mathrm{NP}$. We do this, following [2], by constructing, given a CNF formula F, a formula $\operatorname{RRef}_{d, N}(F, s)$, and exhibiting a gap between the size of the shortest depth- d Frege refutations of $\operatorname{RRef}_{d, N}(F, s)$ when F is satisfiable and the size of the shortest depth- d Frege refutations of $\operatorname{RRef}_{d, N}(F, s)$ when F is not satisfiable.

To show the lower bound for depth- d Frege refutations of $\operatorname{RRef}_{d, N}(F, s)$ in the case F is not satisfiable, we employ the Furst-Saxe-Sipser switching lemma [8]. While sufficient for the purpose of showing non-automatability assuming $P \neq N P$, this can only give lower bounds of the form n^{h}, where h is a barely superconstant function of n. It would be nice to have an exponential lower bound. In particular, as in [2], an exponential lower bound would rule out the automatability of bounded-depth Frege systems in quasipolynomial time unless NP problems can be solved in quasipolynomial time, and their automatability in subexponential time unless NP problems can be solved in subexponential time.
$\operatorname{RRef}_{d, N}(F, s)$ consists of formulas of depth d. In particular, this does not preclude the possibility of bounded-depth Frege systems being automatable on refuting, say CNF formulas. A natural question is whether we could use CNFs, or at least formulas of constant depth, not depending on d, instead. Let us mention here that whether there is a constant depth formula exponentially separating depth- d from depth- $(d+1)$ Frege is open as well; currently, only a super-polynomial separation is known [13] (see also [15, Section 14.5]). Moreover, the formulas $\operatorname{RRe}_{d, N}(F, s)$ are ad hoc and rather artificial. It would be nice if one could establish a lower bound for formulas $\operatorname{Ref}_{d}(F, s)$ for an unsatisfiable formula F, encoding the fact that there are depth- d refutations of F of size s (see Problem 2 in [17]), showing that proving lower bounds for a depth- d Frege system is hard within the system. The latter problem for a proof system is considered by Pudlák [17] to be a more important question than the question of whether the system is automatable. Note that a CNF encoding of $\operatorname{Ref}_{d}(F, s)$ is a candidate formula for the question of whether bounded-depth Frege systems for refuting CNFs are automatable, and a CNF encoding of the reflection principle $\operatorname{Sat}(F, v) \wedge \operatorname{Ref}_{d}(F, s)$, where $\operatorname{Sat}(F, v)$ encodes that v is an assignment satisfying F, is a candidate formula for the depth- d vs depth- $(d+1)$ Frege problem (see [17]).

Finally, the non-automatability result of [2] has been shown for cutting planes [11], $\operatorname{Res}(k)$ [10], and various algebraic proof systems [7]. As far as we know, two remaining open cases are the sum of squares and Sherali-Adams proof systems.

References

1 Michael Alekhnovich and Alexander Razborov. Resolution is not automatizable unless W[P] is tractable. SIAM Journal of Computing, 38:1347-1363, 2008.
2 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the ACM, 67:31:1-31:17, 2020.
3 Arnold Beckmann and Samuel Buss. Separation results for the size of constant-depth propositional proofs. Annals of Pure and Applied Logic, 136:30-55, 2005.
4 Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi. Non-automatizability of bounded-depth frege proofs. Computational Complexity, 13:47-68, 2004.

5 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for frege systems. SIAM Journal of Computing, 29:1939-1967, 2000.
6 Stefan Dantchev and Søren Riis. On relativisation and complexity gap. In Proceedings of the 12th Annual Conference of the EACSL, pages 142-154, 2003.

7 Susanna de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In Proccedings of the 53rd Annual ACM Symposium on Theory of Computing, pages 209-222, 2021.
8 Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time hierarchy. Mathematical Systems Theory, 17:13-27, 1984.
9 Michal Garlík. Resolution lower bounds for refutation statements. In Proccedings of the 44 th International Symposium on Mathematical Foundations of Computer Science, volume 138, pages 37:1-37:13, 2019.
10 Michal Garlík. Failure of feasible disjunction property for k-DNF resolution and NP-hardness of automating it. Electronic Colloqium on Computational Complexity, 2020.
11 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-hard. In Proccedings of the 52nd Annual ACM Symposium on Theory of Computing, pages 68-77, 2020.
12 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pages 6-20, 1986.
13 Russell Impagliazzo and Jan Krajícek. A note on conservativity relations among bounded arithmetic theories. Mathematical Logic Quarterly, 48:375-377, 2002.
14 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. Journal of Symbolic Logic, 59:73-86, 1994.
15 Jan Krajíček. Proof Complexity. Cambridge University Press, 2019.
16 Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer Science, 295:323-339, 2003.
17 Pavel Pudlák. Reflection principles, propositional proof systems, and theories, 2020. arXiv:2007.14835. arXiv:2007. 14835.
18 Nathan Segerlind, Samuel Buss, and Russell Impagliazzo. A switching lemma for small restrictions and lower bounds for k-DNF resolution. SIAM Journal of Computing, 33:11711200, 2004.
19 Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15 th Annual ACM Symposium on Theory of Computing, pages 61-69, 1983.

[^0]: ${ }^{1}$ Lemma 2.3 is stated for height and width, but it is not hard to see that the same construction yields the lemma with index-height and index-width instead of height and width respectively.

