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Abstract
Motivated by the fact that input distributions are often unknown in advance, distribution-free
property testing considers a setting in which the algorithmic task is to accept functions f : [n] → {0, 1}
having a certain property Π and reject functions that are ε-far from Π, where the distance is measured
according to an arbitrary and unknown input distribution D ∼ [n]. As usual in property testing,
the tester is required to do so while making only a sublinear number of input queries, but as the
distribution is unknown, we also allow a sublinear number of samples from the distribution D.

In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPPs)
in which the distribution-free testing algorithm is assisted by an all powerful but untrusted prover.
Our main result is that for any problem Π ∈ NC, any proximity parameter ε > 0, and any (trade-
off) parameter τ ≤

√
n, we construct a df-IPP for Π with respect to ε, that has query and sample

complexities τ +O(1/ε), and communication complexity Õ(n/τ +1/ε). For τ as above and sufficiently
large ε (namely, when ε > τ/n), this result matches the parameters of the best-known general
purpose IPPs in the standard uniform setting. Moreover, for such τ , its parameters are optimal up
to poly-logarithmic factors under reasonable cryptographic assumptions for the same regime of ε as
the uniform setting, i.e., when ε ≥ 1/τ .

For smaller values of ε (i.e., when ε < τ/n), our protocol has communication complexity Ω(1/ε),
which is worse than the Õ(n/τ) communication complexity of the uniform IPPs (with the same query
complexity). With the aim of improving on this gap, we further show that for IPPs over specialised,
but large distribution families, such as sufficiently smooth distributions and product distributions,
the communication complexity can be reduced to Õ(n/τ1−o(1)). In addition, we show that for
certain natural families of languages, such as symmetric and (relaxed) self-correctable languages, it
is possible to further improve the efficiency of distribution-free IPPs.
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24:2 Distribution-Free Proofs of Proximity

1 Introduction

Property Testing, initiated in [45, 25], is a rich and well-studied research field lying at the
heart of many advancements in sublinear algorithms and complexity theory; see [21, 7] for a
detailed introduction. Loosely speaking, a testing algorithm for a property Π is given oracle
access to an input function f : [n] → {0, 1} and should decide whether f ∈ Π using a small
sublinear number of queries. As we cannot expect to do so exactly, the tester is required to
distinguish between inputs that are in Π from those that are ε-far from every function in
Π. Here, distance is typically measured using the relative Hamming distance – namely, the
fraction of outputs of f that need to be changed to reach a member of Π.

While modeling distance using the relative Hamming distance is natural and convenient,
in many settings it may not capture the underlying question (for example, when functions
always satisfy a particular format or when some parts in the domain are more important than
others). Following the Probably-Approximately-Correct (PAC) learning model, introduced
by Valiant in his celebrated work in computational learning theory [49], distribution-free
algorithms have widely been accepted as a closer abstraction of real-world computational
tasks that are required to make decisions based on limited access to the input data. In
this spirit, [25] introduced distribution-free property testing, where the distance between two
functions is with respect to a distribution D (over inputs to the function), which is arbitrary
and unknown to the testing algorithm. Since D is unknown, in addition to the query oracle
to the input f : [n] → {0, 1}, the tester can draw independent identically distributed random
labelled samples (i, f(i)) from a sample oracle, where each index i is generated independently
from the distribution D. The tester is required to reject any function that is ε-far1 from Π
along the unknown distribution D, and the only access that the tester has to D is via the
sample oracle.

The distribution-free model of testing naturally complements the PAC-learning model,
and profound bidirectional connections are known between them.2 Moreover, distribution-free
testing is motivated by the fact that it captures the realistic setting where the tester is
required to maintain its guarantees despite dealing with data from an unknown environment
(i.e., via data samples from some unknown and arbitrary distribution D). It also deals with
situations where not all underlying data points are equally important, e.g., in graphs where
certain edges or vertices are more important than others, and one would like to consider
distributions that weigh them appropriately.

Following [25], several distribution-free testing algorithms have been designed for function
classes including monotone Boolean functions and low-degree polynomials over finite fields [33],
k-juntas [37, 11, 3], conjunctions (monotone or non-monotone) and linear threshold functions
[19, 13], polynomial threshold functions and decision trees [8], halfspaces [8, 12], and low-
degree polynomials on Rn [18, 2]. Distribution-free testing has also been studied for graph
properties including connectivity [34], bipartiteness [22], k-path and degree regularity [23],
as well as for word problems like subsequence-freeness [41].

Despite such strides of progress, our understanding of distribution-free testing is much
more limited than that of testing with respect to the uniform distribution. This is due to
the multitude of challenges that arise in designing algorithms that need to deal with data
samples that can come from any arbitrary distribution, which in turn, makes the model
significantly more involved.

1 We say f : [n] → {0, 1} is ε-far from a (non-empty) property Π along D, if for every f ′ : [n] → {0, 1}
such that f ′ ∈ Π, it holds that Pi∼D[f(i) ̸= f ′(i)] > ε.

2 In particular, in [25], it is shown that if a class of functions C has a proper PAC-learner using membership
queries (where the learner outputs an approximate hypothesis that also belongs to C), then C has a
distribution-free tester that uses roughly the same number of queries and samples as the learner.
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This paper aims to bridge the gap between testing over the uniform distribution and
distribution-free testing by capitalising on the power of interactive proofs, and delegating
the task of handling the challenges imposed by the distribution-free setting to a powerful,
but untrusted, prover.

1.1 Distribution-free Interactive Proofs of Proximity
In this work, we initiate the study of distribution-free interactive proofs of proximity
(distribution-free IPPs), which are distribution-free testers that are augmented with the
help of a prover. In the rest of this paper, for convenience, rather than thinking of the input
as a function, we view it as a string x ∈ {0, 1}n (which can be similarly be viewed as a truth
table of a function fx : [n] → {0, 1}). Correspondingly, we view a property Π of functions as
a language L over strings (which may be viewed as truth tables of the functions in Π).

Thus, distribution-free IPPs are protocols where a sublinear time, randomised algorithm,
called the verifier, interacts with an untrusted prover to decide whether the given input
x ∈ {0, 1}n belongs to the language L or is far from such, where distance is measured with
respect to a fixed, but unknown distribution D over [n]. The verifier is given access to the
input x through a query oracle, as well as a sample oracle with respect to D, while the prover
can look at the input entirely. We assume that the prover does not know the queries that
the verifier makes to either of its oracles.

We require that for any x ∈ L, there exists an honest prover that interacts with the
verifier and convinces it to accept with high probability, while when x is ε-far from L with
respect to the distribution D, no cheating prover, even computationally unbounded, will
make the verifier accept, except with low probability. Further, we require the distribution-free
IPP to meet these requirements, with respect to the underlying (and unknown) distribution
D from which the oracle draws samples.

In this setting, the verifier’s query complexity and sample complexity, the number of bits
exchanged in the protocol, i.e., the communication complexity, and the verifier’s running
time should all be sublinear in input length. Other complexity parameters of interest are the
number of rounds of interaction, and the (honest) prover’s running time.

Distribution-free IPPs capture the distribution-free property testing analogue of interactive
proofs (for more information, see Section 1.4). As such, similar to uniform IPPs, distribution-
free IPPs can be alternatively viewed as proof systems where the bounded verifier need only
be convinced of the fact that the input is close to the language, by interacting with a more
powerful prover. One of the main goals of distribution-free IPPs is to overcome the inherent
limitations of distribution-free testing algorithms by showing that for certain properties,
verifying proximity over arbitrary distributions is considerably faster with a prover than
actually testing it. In particular, we want to design distribution-free IPPs (with sublinear
query complexity) for rich families of properties that have no known distribution-free testers.

Of close relevance are the well-studied notion of IPPs over the uniform distribution, which
we refer to in this work as Uniform IPPs, that were introduced in [16, 44] (and are trivially
generalised by distribution-free IPPs). Showcasing the power of interaction, [44] constructed
highly non-trivial uniform IPPs for every language that can be decided in bounded depth (e.g.,
NC), which was recently made near-optimal by [43] (see [36] for the conditional matching
lower bound), and strengthened to encompass also bounded space languages [40].

Motivated intrinsically and by natural applications to delegation of computation, the study
of uniform IPPs has drawn much recent attention on its own right [44, 32, 36, 40, 26, 20].
Moreover, their study has led to interesting models and applications of sublinear time
verification, including non-interactive proofs of proximity (or MAPs) [32] (a related model
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was studied concurrently and independently by [17]), arguments of proximity [36], testing
properties of distributions [14, 35], interactive oracle proofs of proximity [40, 4, 42, 10],
verifying machine learning tasks [29], batch verification for UP [39, 43], as well as variants
involving zero-knowledge [6] and quantum computation [15].

1.2 Our Results
Our main contribution is constructing distribution-free IPPs for any language in NC, which
for any query vs communication trade-off parameter τ ≤

√
n, matches the complexity of the

best known IPPs for most settings of the proximity parameter ε – specifically, when ε ≥ τ/n.
We further improve the efficiency of distribution-free IPPs for general ε (i.e., when ε < τ/n),
under specific distribution families such as “smooth” and “learnable” distributions, which
are defined below.

In addition, for certain families of languages, such as symmetric and relaxed self-
correctable languages, we construct distribution-free IPPs that improve on our general-
purpose distribution-free IPPs, then use them to provide separation results that provide
further insight into the distribution-free IPP model.

We elaborate on these results next.

1.2.1 Distribution-free IPPs for NC
Our first main result is a sublinear distribution-free IPP for any language computable by low-
depth circuits. In more detail, let (logspace-uniform) NC be the set of languages computable
by (logspace-uniform) Boolean circuits of polynomial size and poly-logarithmic depth. We
show that every language in NC has a distribution-free IPP with sublinear complexity
measures, for almost all values of the proximity parameter ε. We emphasize that this is in
stark contrast to distribution-free testers, which are only known for a handful of languages
based on their combinatorial or algebraic structure. Indeed, the following theorem shows
that distribution-free IPPs capture a much richer class of languages that need not have such
special structural properties.

▶ Theorem 1 (Distribution-Free IPP for NC). For every language L in logspace-uniform
NC and every trade-off parameter τ = τ(n) ≤

√
n, there exists a distribution-free IPP for L

with proximity parameter ε ≥ Ω
(

log3(n)
n

)
, query complexity τ + O

( 1
ε

)
, sample complexity

τ + O
( 1

ε

)
and communication complexity Õ

(
n
τ + 1

ε

)
.

Moreover, the verifier runs in time Õ
(

n
τ + 1

ε

)
, the prover runs in time poly(n) and the

round complexity is polylog(n).

Here, τ denotes the parameter that trades-off between the query and communication
complexities of the distribution-free IPP. Note that, for the above values of τ , our distribution-
free IPP has sublinear query and communication complexity even for very small values of the
proximity parameter ε of the form 1/n1−δ, where δ > 0. An interesting instantiation of our
result is obtained by setting τ to

√
n, and thus, for every ε ≥ 1/

√
n, the query complexity and

sample complexities are O(
√

n), while the communication complexity and verifier running
times are both Õ(

√
n).

It is worth noting that, for every ε ≥ 1
τ (and τ ≤

√
n), this result is conditionally optimal

up to poly-logarithmic factors, since [36] show a lower bound of Ω(n) on the product of
the query and communication complexities of a uniform IPP for a language in NC1, under
a strong, but reasonable, cryptographic assumption. Furthermore, for any ε, the query
complexity of Ω(1/ε) is necessary for any IPP over non-degenerate languages, even over the
uniform distribution (see [44, Remark 1.2]).
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▶ Remark 2. While Theorem 1 refers to distribution-free IPPs over NC languages, the
theorem can be made more general. In particular, it also yields distribution-free IPPs with
sublinear query and communication complexities for languages computable by circuits of
sub-exponential size and bounded polynomial depth.

Likewise, in a similar fashion to the known literature on uniform IPPs, we can combine our
techniques directly with [40] to get a constant-round distribution-free IPP for any language
that is computable in poly(n) time and bounded polynomial space.

Comparison to Uniform IPPs for NC [44, 43]

For any language in NC, Rothblum, Vadhan and Wigderson [44] construct a uniform IPP
for any τ = τ(n) and proximity parameter ε > 0, with query complexity τ + O(1/ε)1+o(1)

and communication complexity n
τ1−o(1) . Rothblum and Rothblum [43] improve on this, by

reducing the communication complexity to n
τ · polylog(n). In particular, the latter obtains

an optimal trade-off, up to poly-logarithmic factors, between the query and communication
complexities of a uniform IPP (conditionally, from [36]), for every value of τ and ε ≥ 1/τ .
While these results are stated in [44, 43] by implicitly setting τ = O(1/ε), for any given ε,
this IPP formulation parameterised by τ is obtained by inspection (see also [26, Theorem
6.3]). For comparison, in this setting, our distribution-free IPP has the same query (and
sample) complexity, while the communication complexity and verifier running times are both
Õ(ε · n + 1/ε).3

Theorem 1 gives a construction of a distribution-free IPP for any NC language that
matches the query and communication complexities of the uniform IPP by [43], when
ε ≥ τ/n. Moreover, this obtains the (conditionally) optimal trade-offs between query and
communication complexities in the same regime of ε, but when τ ≤

√
n. Indeed, when

ε ≥ 1/τ , the product of the query and communication complexities of the distribution-free
IPP from Theorem 1 is Õ(n + τ2). Our protocol builds on [44], introducing new ideas that
allow us to construct IPPs in the more involved distribution-free setting.

Finally, when the proximity parameter ε is very small, Theorem 1 suffers a blow-up in
the communication complexity compared to the uniform IPPs of [44, 43]. In more detail,
when ε ≪ τ/n, the communication complexity in our distribution-free IPP is Ω̃

( 1
ε

)
, whereas

the communication complexity achieved by the uniform IPPs is Õ
(

n
τ

)
(the query complexity

roughly remains the same across all three cases). Thus, our distribution-free IPP has
communication complexity at least Ω(n/τ) for every value of ε, whereas the communication
complexity of the uniform IPPs is much lower when ε ≪ τ/n.

1.2.2 IPPs for NC: The case of small ε

Following the discussion in the last section, we aim to construct distribution-free IPPs that
achieve query and communication complexities that match the state-of-the-art uniform IPP
for every value of ε. While we unable to do so in the most general case, we construct such
IPPs over specific families of distributions, which match the complexities of [44] and, in
turn, differ from the complexities of [43] only by a factor of no(1). For these IPPs, while the
underlying distribution is still unknown, it is guaranteed to come from the specific family of
distributions under consideration.

3 In fact, we prove that for every value of the parameter τ and ε, the distribution-free IPP from Theorem 1
has communication complexity Õ(τ + n/τ + 1/ε); thus, setting τ = O(1/ε) suffices. An additional point
to note is that when τ >

√
n, the IPP always has worse communication complexity than its uniform

counterpart irrespective of the value of ε, and further, never meets the optimal [36] lower bound. As
such, we only consider τ ≤

√
n as a more interesting regime of study.

CCC 2024
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To describe our results, it will be convenient throughout this section to identify [n] with
the elements of an m-dimensional tensor of size k ∈ N in each dimension, such that km = n.
In such a case, we refer to [n] as [k]m (by fixing some canonical bijection between them).

ρ-Dispersed Distributions

Intuitively speaking, ρ-dispersed distributions capture the sense that for a smooth distribution
over [k]m, along any dimension, its probability mass on any element in [k]m is not much
larger than the average of the probability masses of its neighbours. ρ-dispersed distributions
relax this requirement by having the probability mass on any element bounded by ρ times
the expected mass on any of its neighbours.4

We show that for distributions that are reasonably smooth in this sense, i.e. for ρ-
dispersed distributions for ρ ≤ ko(1), we obtain IPPs for NC over such distributions for every
τ = τ(n) < n and ε > 0, with query complexity O(τ + 1/ε)1+o(1), and communication
complexity of Õ

(
n
τ · τo(1)), thus matching the bounds obtained by [44]. It is worth noting

that ko(1)-dispersed distributions are still quite general, e.g. any distribution where the
probability mass on any element in [k]m is in the range

[ 1
an , a

n

]
, for some a ≤ ko(1) is

ko(1)-dispersed.

▶ Theorem 3 (IPP for NC over ρ-dispersed distributions). For every language in logspace-
uniform NC, every m, n, k ∈ N such that m = logk(n) (i.e., km = n) and ρ ∈ R such
that ρ ≤ ko(1), for every proximity parameter ε > 0 and trade-off parameter τ > 0, there
exists an IPP over ρ-Dispersed distributions over [k]m with query and sample complexities
O(τ + 1/ε)1+o(1) and communication complexity Õ

(
n

τ1−o(1)

)
.

Moreover, the verifier runs in time no(1) ·
(
τ + n

τ + 1
ε

)
, the prover runs in time poly(n)

and the round complexity is polylog(n).

Theorem 3 also holds generally over ρ-dispersed distributions, for any ρ. The query
complexity increases with ρ, while the communication complexity is independent of ρ.
Theorem 3 builds on the ideas used for the distribution-free IPP from Theorem 1 while
incorporating new technical insights into the analysis by [44] to generalise over ρ-dispersed
distributions. We leave the task of obtaining IPPs over ρ-dispersed distributions that
match [43] as future work.

1.2.2.1 Product Distributions in the White-Box model

Note that in the IPPs of Theorems 1 and 3, the verifier does not learn the underlying
distribution D. Hence, we ask the following question: if we could gain more information
about D, or further, learn a reasonably good approximation for D, can we improve the query
complexity of the IPPs, over general values of ε? We answer this question in the affirmative
for product distributions.

We consider the white-box model for distribution-free IPPs, where the verifier receives a
succinct description of the unknown distribution D over [k]m via a polynomial-sized sampling
circuit C, in addition to query access to the input string. It is worth noting that, for white-box
IPPs, the sample complexity is irrelevant since the verifier has a succinct description of the
entire distribution. Thus, the main complexity parameters here are the query complexity,
communication complexity, and the verifier running time.

4 For example, the uniform distribution is the only 1-dispersed distribution, i.e., a maximally smooth
distribution in this sense. On the other hand, every distribution over [k]m is trivially a k-dispersed
distribution.
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While white-box models have been widely studied in the setting of zero-knowledge proofs
[46, 48, 47] and in distribution testing (see survey by [27]), we use this model to construct
IPPs for languages in NC over a generalised family of product distributions over [k]m, to get
improved complexities for general values of ε, compared to the distribution-free IPP from
Theorem 1. We call this family as m-product distributions, and denote any such distribution
D as D = D1 × . . . Dm, where each Dj is supported on [k] and is independent of any other
coordinate distributions. In particular, D(i1, . . . , im) is defined as

∏m
j=1 Dj(ij).

▶ Theorem 4 (IPPs for NC over m-product distributions). For every language in logspace-
uniform NC, every τ = τ(n), ε > 0, and m, n, k ∈ N such that m ≤ log(n) and km = n,
there exists a white-box IPP for L over m-product distributions over [k]m. The IPP has query
complexity O(τ + 1/ε)1+o(1) and communication complexity

(
n

τ1−o(1) · k + k2)
· polylog(n).

Moreover, the verifier runs in time no(1) (
n
τ · k + τ + k2 + 1

ε

)
and the round complexity is

polylog(n).

When m is large enough (like m = log(n)), the query and communication complexity
trade-off, as well as the verifier running time of the IPP from Theorem 4 match that of the
uniform IPP from [44], while working in this setting.5 Theorem 4 builds on the framework of
Theorem 1, and uses several new ideas in the construction of the IPP, as well as its analysis,
to improve the complexity. Crucially, it uses that any product distribution has a succinct
description to be able to learn it in the white-box-setting.

It is worth stressing that the IPPs from Theorems 3 and 4 are incomparable. Indeed,
there exist m-product distributions D = D1 × · · · × Dm that are poorly dispersed, for eg., D
is no longer smooth when some Dj has a large probability mass over just one element (one
row or more generally, a few rows). For such distributions, the IPP from Theorem 4 provides
a much better query and communication trade-off than the IPP from Theorem 3, which is a
more general result for smooth distributions.

1.2.3 On the power of distribution-free IPPs
Recall that Theorems 3 and 4 improve the query and communication complexity trade-off of
our general distribution-free IPP in Theorem 1, by considering special families of distributions
to design the IPPs over. A natural direction that complements this approach is to ask whether
we can use additional information about the language L instead, to construct super-efficient
distribution-free IPPs.

In turn, we study distribution-free IPPs for specific problems of interest. On one hand,
for certain problems we can hope to improve the various associated complexity parameters
over our general distribution-free IPP by capitalising on the structure of the language. On
the other hand, this allows us to obtain complexity-theoretic separations between the power
of standard, non-interactive, and interactive distribution-free testers.

1.2.3.1 Symmetric languages

We study the power of distribution-free testers and IPPs for symmetric languages, which
are languages that are invariant under permutations. We show that there exist symmetric
languages that are hard for distribution-free testers, yet, given interaction with a prover, the
symmetrical structure can be leveraged to obtain exponentially faster distribution-free IPPs.

5 A subtle point here is that while Theorem 4 is over product distributions over [k]m, when m = 2 (or a
small constant), we get sublinear complexities only by considering distributions over biased matrices
[k1] × [k2].

CCC 2024
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▶ Theorem 5 (Distribution-free IPPs for symmetric languages). The following statements
hold.
1. Let L be a symmetric language. Then, there exist a distribution-free IPP for L with

sample complexity O(1/ε), communication complexity O(log2(n)/ε) and O(log(n)/ε)
round complexity.

2. There exists a symmetric language L′ for every ε > 0 such that any distribution-free
property tester for L′ requires Ω(n1/3−0.0005) queries and labeled samples from the input.

1.2.3.2 (Relaxed) self-correctable languages

Next, we show that for languages that admit self-correctability, we can transform any IPP
into a distribution-free IPP at a negligible cost. In fact, we can deal with a far more general
class of languages; namely, languages that are relaxed locally correctable [5, 31]. Loosely
speaking, these are languages that admit a correcting algorithm that is required to correct
the symbol at every location of the codeword, by reading a small number of locations in it,
but is allowed to abort if noticing that the given word is corrupted. This family of languages
is of central importance in the interactive proofs and probabilistically checkable proofs
literature, and in particular, it captures languages of low-degree polynomials, holographic
IPPs, and various relaxed locally correctable and decodable languages that were used to
prove complexity-theoretic separations (cf. [30]).

▶ Proposition 6 (Generic Transformations for IPPs for RLCCs). For any subset L of
a binary RLCC, C ⊆ {0, 1}n, if L has an IPP over the uniform distribution with query
complexity q and communication complexity c for proximity ε > 0, then there exists a
distribution-free IPP for L with the same round complexity, communication complexity and
query complexity q + O( t

ε ), where t is the query complexity of the corrector of C.

As a corollary of Proposition 6, we are able to lift complexity-theoretic results concerning
uniform IPPs to the setting of distribution-free IPPs. In particular, we obtain strong
separations between the power of distribution-free testers, distribution-free non-interactive
proofs of proximity (MAPs), and distribution-free IPPs.

▶ Corollary 7 (Complexity separations). There exists a language L such the following hold
true.
1. Property Testing: The query complexity of distribution-free testing L (without a proof) is

Θ(n0.999±o(1)).
2. MAP: L has a distribution-free MAP with query and communication complexities

Θ(n0.499±o(1)). Moreover, for every p ≥ 1, the distribution-free MAP query complex-
ity of L with respect to proofs of length p is Θ

(
n0.999±o(1)

p

)
.

3. IPP: L has a distribution-free IPP with query and communication complexities polylog(n).
Complementing this Corollary, we prove the existence of languages that can be tested under
the uniform distribution with low query complexity (and thus, have a uniform IPP with
low query complexity and no communication), but for which distribution-free IPPs require
large query complexity or large communication complexity. This illustrates the difficulty of
constructing distribution-free IPPs vs. standard uniform IPPs.

▶ Proposition 8 (Distribution-free IPPs vs. uniform testing). The following hold true:
1. There exists ε > 0 and a language L such that L has a property tester over the uniform

distribution with query complexity O(1/ε) for proximity parameter ε. However, for any
distribution-free MAP for L with proximity parameter ε, query complexity q, and proof
length p, max(q, p) = Ω(ε · n).
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2. Assuming the existence of exponentially hard pseudo-random generators, there exists
ε > 0 such that for all q = q(n) ≤ n, there exists a language L, such that for any
distribution-free IPP for L with proximity parameter ε, communication complexity c, and
query complexity q, max(c, q) = Ω(

√
ε · n). However, L has a uniform property tester

with query complexity O(1/ε) for proximity parameter ε.

Table 1 provides a comparison of some of these results with related testing models.
It is an interesting open direction to exhibit distribution-free IPPs that improve on the
query complexity lower bounds known for distribution-testing functional properties like
monotonicity [33], monotone conjunctions [13], or k-juntas [38].

Table 1 This is a table of our main results (TensorSum as defined in [32]). The complexities
shown here are those that minimise the sum of the query and communication complexity. Note that
while the uniform property tester for symmetric properties is more efficient than the corresponding
uniform IPP, this only holds for restricted (constant) values of ε.

Property Testing IPP DF-Property
Testing DF-IPP

Languages
in NC

Ω(n) (e.g., low-
degree univariate
polynomial)

Õ(
√

n)
[44, 43] Ω(n) similarly

Õ(
√

n) (arbitrary distributions, for ε ≥
1/

√
n); see Theorem 1

n1/2+o(1) (smooth distributions); see
Theorem 3
n1/2+o(1) (product distributions); see
Theorem 4

TensorSum Ω(n0.99+o(1))
[32]

polylog(n)
[32]

Ω(n0.99+o(1))
Trivially, from
[32]

polylog(n); see Corollary 7

Symmetric
Properties

Θ(1) (ε = O(1))
Folklore polylog(n)

[44]
Ω(n 1

3 )
Theorem 5 polylog(n); see Theorem 5

1.3 Technical Overview
In this technical overview, we highlight the proofs of Theorems 1, 3, and 4. The general
strategy for proving these theorems builds on the Uniform IPPs for NC from [44, 43]. However,
the setting of distribution-free testing is more involved, and below, we highlight the key
challenges encountered in this setting, and our ideas to overcome them. Our distribution-free
IPPs are constructed through an interplay of various techniques and tools from interactive
proofs, property testing, and distribution testing.

Note that, for convenience, we show the construction of the distribution-free IPP from
Theorem 1 in the setting of τ = O(1/ε), for any proximity parameter ε, obtaining query
complexity O(1/ε) and communication complexity Õ(ε · n + 1/ε). This can be shown to be
equivalent to the statement of Theorem 1 that is parameterised by τ . Similarly, the IPPs
for our other results are parameterised in terms of the proximity parameter ε. For detailed
proofs, we refer the reader to the full version [1].

1.3.1 Proof outline of Theorem 1
The [44] protocol (as well as the follow-up work [43]) is centered around a parameterised
problem called PVAL. Loosely speaking, the PVAL language contains all strings, whose
encoding under a specific code, called the low degree extension, is equal to given values when
projected on to the given coordinates. More precisely, the PVAL problem is parameterised by
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a (sufficiently large) finite field F , integers k, m, n such that k, m < |F| and km = n, a set
of vectors J = (j1, . . . , jt) ⊂ Fm of size t and a t-length vector v⃗ ∈ F t. An input X ∈ Fkm

is in PVAL(J, v⃗) if it holds that PX(ji) = vi, for every i ∈ [t], where PX : Fm → F is the
m-variate low-degree extension (LDE) of X.6

The interactive reduction from NC to PVAL

Let L be any language in NC and let ε > 0 be the input proximity parameter. Let X ∈ {0, 1}n

be the input to L and D be the unknown underlying distribution over which the verifier can
access X through a sample oracle. The first step in [44] is to show an interactive reduction
ΠNC from L to (a parameterisation of) PVAL, where the verifier does not access the input
X ∈ {0, 1}n.7

In more detail, let BD(X) (respectively BU (X)) be the set of binary strings that are at a
distance at most ε along the distribution D (respectively the uniform distribution U) from
X. In [44], the verifier in ΠNC generates parameters (F , k, m, J, v⃗) for PVAL, where J is a
set of t points in Fm, such that the following hold when t is sufficiently large.

If X ∈ L, then X ∈ PVAL(J, v⃗).
If X is ε-far from L along U then, with high probability over the verifier’s randomness,
BU (X) and PVAL(J, v⃗) are disjoint. In other words, with high probability, X is ε-far
from PVAL(J, v⃗) along U .

Furthermore, the points J output by the reduction ΠNC are distributed uniformly at random
in (Fm)t. Crucially, [44] show that the guarantees over the outputs of this reduction only
hold when t = O(log(|BU (X)|) many points are picked in J .8

Since the size of the set BU (X) is
(

n
εn

)
≤ O(2εn log(n)), following from the earlier discussion,

by setting t = O(log(|BU (X)|) = Õ(εn), we ensure that the guarantees of ΠNC hold. An
immediate attempt would be try to extend this analysis verbatim to distribution-free testing,
by setting t to O(log(|BD(X)|)) instead, and thus having ΠNC guarantee that X is ε-far
from PVAL(J, v⃗) along the distribution D, for soundness. However, for an arbitrary unknown
distribution D, the size of BD(X) can be prohibitively large. For example, when D is
supported over the first log(n) indices, for any value of ε, the size of BD(X) blows up to at
least 2n−log(n)! Thus, for our choice of t, we already lose the sublinear time verification and
communication complexity, and it is unclear if this reduction can achieve such soundness
guarantees for PVAL.

Uniform IPP for PVAL is also “complete” for distribution-free IPPs for NC

Our key idea for constructing the distribution-free IPP for L, is in fact, an interactive
reduction Π′ to constructing a uniform IPP for PVAL (with a different parameterisation for
PVAL than that obtained by ΠNC). Theorem 1 follows by using the ready-made uniform IPP
for PVAL by [43].

6 Recall that the m-variate LDE PX is the unique polynomial with individual degree k − 1 such that PX

agrees with X on [k]m, where we identify [k] with a subset of field elements in some canonical way.
7 Technically, an interactive proof is specified by a verifier and an honest prover. However, for the sake of

exposition we refer to them both together as ΠNC in this section.
8 ΠNC runs t parallel copies of the interactive reduction from L to PVAL over a single point by [28], with

the guarantee that if the input X /∈ L, the probability that X is also in PVAL over t points, is at most
2−t. Now, if X were instead ε-far from L, then a union bound over all the points in BU (X) ensures a
small probability for the event that there exists a point in BU (X) that is also in PVAL over t points.
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Figure 1 The shaded region (BU (X) ∩
BD(X)) consists of the set of points in {0, 1}n

that are ε-close to X with respect to both D
and U . The soundness promise of the inter-
active reduction Π′ ensures that any string
in PVAL(J, v⃗) is present in at most one of
BU (X) or BD(X), but not in both (shaded
region) (with high probability).

Figure 2 In the uniform IPP for PVAL,
the prover sends the (m − 1)-variate LDE
of each row of X evaluated on J2 (column
indices of J), in the form of the purported
matrix Y ′ ∈ Fk×t. However, to ensure con-
sistency of Y ′ with respect to PVAL(J, v⃗), for
any j = (a, b) ∈ J , the univariate LDE of the
bth-column of Y ′ evaluated on a is required
to be equal to v⃗[j].

Consider a NO input X ∈ {0, 1}n to L, that is, an input that satisfies the soundness
requirement dD(X, L) > ε, over the unknown distribution D. To start with, Π′ runs the
interactive reduction ΠNC from L to PVAL(J, v⃗) with the same value of t = |J | = Õ(εn).

Setting t to be O(log(|BD(X) ∩ BU (X)|)) ≤ O(log(|BU (X)|)) = Õ(εn), we can generalise
the guarantees of ΠNC to show that the intersection of BU (X) and BD(X) is disjoint from
PVAL(J, v⃗), with high probability. Indeed, this builds on the earlier argument (and Footnote
8), but over BU (X) ∩ BD(X), alongside the fact that the size of this set is upper bounded by
the size of BU (X). Thus, X cannot be ε-close to PVAL(J, v⃗) along both U and D, or in other
words, X is ε-far from every element of PVAL along at least one of the two distributions (see
Figure 1 for details).

Following this, assume that dD(X, PVAL(J, v⃗)) > ε. We construct the next stage of Π′,
based on a case analysis whether X is additionally ε-far from PVAL(J, v⃗) under the uniform
distribution or not. Indeed, suppose that X is ε-far from PVAL(J, v⃗) under the uniform
distribution. This is the easy case; we can catch this with the uniform IPP for PVAL(J, v⃗) as
usual.

On the other hand, suppose that instead, X is close to PVAL(J, v⃗) under the uniform
distribution, i.e., dU (X, PVAL(J, v⃗)) ≤ ε. At this point, we observe (following [43]) that
when J is distributed uniformly at random, with high probability PVAL(J, v⃗) is a good error
correcting code (i.e., with large minimal distance).9 Since the output J of ΠNC is distributed
uniformly at random, when X is ε-close to PVAL(J, v⃗) over the uniform distribution, ΠNC
guarantees that X is in fact close to a unique element X ′ in PVAL(J, v⃗).

To summarize, so far we have that X is ε-close to X ′ ∈ PVAL(J, v⃗) along U , but by our
soundness condition, X is ε-far from PVAL(J, v⃗), and in particular from X ′, along D. Now,
the verifier uses the sample oracle to D to generate O(1/ε) samples, which we denote by
I ⊆ [n], and the corresponding values in X given by X|I . From the soundness assumption,
with high probability there exists an index i in I such that Xi ≠ X ′

i. Combining this with
the fact that every element in PVAL(J, v⃗) other than X ′ is ε-far from X along the uniform
distribution, X ′ is not in PVAL((J, I), (v⃗, X|I)), where PVAL is parameterised over a larger
set. In other words, we see that X is ε-far from PVAL((J, I), (v⃗, X|I)) along the uniform
distribution and a uniform IPP for PVAL((J, I), (v⃗, X|I)) suffices.

9 It is worth emphasising that this does not hold for every choice of J , for eg., PVAL(J, v⃗) is a bad error
correcting code when J consists of t copies of the same point.
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The argument for completeness trivially holds from the guarantees of ΠNC and definition
of an LDE of X, since in this case X ∈ PVAL((J, I), (v⃗, X|I)). We end with a quick note on
the complexity of the distribution-free IPP. The query complexity of O(1/ε) is the same
as that of the uniform IPP by [43], and the communication complexity is the sum of the
number of bits used to send the O(1/ε) samples in I in addition to the communication by
the uniform IPP, which is Õ(εn). Overall the communication complexity is Õ

( 1
ε + ε · n

)
which matches that in [43] (up to poly-logarithmic factors) whenever ε ≥ 1/

√
n.

1.3.2 Proof outlines of Theorems 3 and 4
Next, we describe the proof techniques of Theorems 3 and 4 that construct IPPs for NC over
smooth distributions and product distributions, matching the complexities of [44] for every
value of ε. This improves over the communication complexity of the distribution-free IPP in
Theorem 1 when ε ≪ 1/

√
n (with roughly the same query complexity). We follow the general

strategy by [44] and the main technical challenges arise during the analysis with respect to
the new promise on the soundness of an IPP for PVAL. We assume some familiarity with the
uniform IPP construction by [44] for this section.

Uniform IPP for PVAL(J, v⃗)

We start with a summary of the Uniform IPP from [44]. Let the input X ∈ [k]m, for k = log n

and n = km. Further, let |J | = t.
[44] use a divide and conquer approach, by decomposing the t claims about X into new

claims for each individual row instance Xi ∈ Fkm−1 , for every i ∈ [k]. In more detail, let
J = (J1, J2), where the first component J1 ⊂ F and J2 ⊂ Fm−1. The prover sends the matrix
Y ′ ∈ Fk×t, where each row Y ′

i is the purported set of evaluations of the (m − 1)-variate LDE
(of individual degree k − 1) of Xi on J2. By the definition of an m-variate LDE on X, the
prover cannot lie about the consistency of Y ′ with v⃗, since for each (a, b) ∈ J (where b ∈ J2),
the verifier can easily check if the univariate LDE of Y ′[·, b] (the bth column of Y ) evaluated
on the coordinate a equals v⃗[(a, b)] (see Figure 2).

Thus, the initial PVAL instance is now reduced to k instances Xi ∈ Fkm−1 for
{PVAL(J2, Y ′

i )}. A natural idea now is for the verifier to send a random vector z ∈ Fk

to the prover, and ask it back for a “folded” version X ′ ∈ Fkm−1 , that is purported to be
z · X.10 Now, the IPP could recurse on a single input X ′ ∈ Fkm−1 that has shrunk in size by
a factor of k, to the problem PVAL(J2, z · Y ′). Completeness easily holds, since if X belonged
to PVAL(J, v⃗), then the honest prover will just send the “true” Y ′ ∈ Fk×t and the verifier
checks always pass.

Uniform Distance Preservation Lemma

However showing soundness is not straightforward. Suppose that X is ε-far from PVAL(J, v⃗)
under the uniform distribution. It turns out that the malicious prover has cheated in at least
one row of the purported matrix Y ′ (if not, since X is not in PVAL, there would be at least
one column in Y ′ which would be inconsistent with the corresponding value in v⃗ and the
verifier would catch the prover in the checks made above).

10 The dot product z · X ∈ Fkm−1
between z ∈ Fk and a matrix X ∈ Fk×km−1

is given by
∑k

i=1 ziXi.
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For any row Xi ∈ Fkm−1 that is a lower-dimensional input instance, let εi be the distance
between Xi and PVAL(J2, Y ′

i ). To ensure that the verifier catches the cheating prover, the
folded instance X ′ also needs to be reasonably far from PVAL on a lower dimension at the
end of a recursive step. In order to capture this, [44] (implicitly) use a uniform distance
preservation lemma, which states that if X is ε-far from PVAL(J, v⃗), then

∑k
i=1 εi > kε.

Using the uniform distance preservation lemma, [44] observe that if the prover ended
up cheating (roughly) uniformly across all rows in Y ′, then any row Xi would be roughly
ε-far from PV AL(J2, z · Y ′

i ), and the IPP would recurse by picking a single row at random.
However, the prover could have cheated across multiple rows of Y ′

i and the verifier does not
know these rows. To accommodate this, the verifier considers log(k) many random foldings of
X, where the Hamming weight of the vectors z used to fold X, range across 1 to k (in powers
of 2). In particular, this results in O(log(log(n))) recursive instances in Fkm−1 . Crucially,
they use the uniform distance preservation lemma to generalise the intuition above and show
that for at least one of these folded instances, the distance is roughly preserved. Moreover,
for such a folded instance, the product of the new distance and the effective query complexity
(the number of queries on X to compute the value at any index in z · X) is O(1/ε), along
with small but super-constant multiplicative factors.

The IPP continues to recursively fold the instance dimension-wise by the above pro-
cess, until the size of each final folded instance becomes Õ(εn), which happens after
Ω(log(n)/ log(log(n))) steps. In such a case, the prover directly sends each final instance.
Since there exists an instance X̃j at each level of recursion for which distance is preserved,
there exists a final folded instance X̃, such that the verifier catches a cheating prover by
uniformly sampling a few coordinates of X̃. Moreover, since the product of the distance and
effective query complexities for each X̃j are roughly maintained to be small at each step
of the recursion, making O(1/ε1+o(1)) many queries to X̃ is sufficient to catch the cheating
prover (since the total number of recursive instances after the stated number of steps is
roughly no(1) = 1/εo(1)). The communication complexity is simply the number of bits used
to send all the final folded instances, in addition to sending the matrices Y ′ of size k × t, and
thus is Õ(ε1−o(1)n).

IPPs for NC under specific distribution families

We now highlight some key ideas which help us construct IPPs over large distribution
families like smooth distributions and product distributions. To begin with, on any input
X ∈ {0, 1}km , we first reduce L to PVAL using ΠNC. Recall that in the distribution-free
setting, ΠNC outputs (J, v⃗), such that for the soundness promise, with high probability X

cannot be ε-close to PVAL(J, v⃗) along both U and the unknown distribution from the given
family, D. In other words, X is ε-far from PVAL(J, v⃗) along at least one of U or D. Building
on this observation, we design IPPs for PVAL(J, v⃗) over these distribution families, using an
intricate case analysis of the soundness condition.

In more detail, if X is ε-far from PVAL(J, v⃗) under the uniform distribution, then we
can directly use the uniform distance preservation lemma to catch a malicious prover as
seen previously in the uniform IPP. If not, suppose that dD(X, PVAL(J, v⃗)) > ε. Next,
we briefly describe the soundness analysis, using specific distance preservation lemmas for
smooth distributions and product distributions. Given this, we build on the strategy of the
uniform IPP above to construct an IPP for PVAL(J, v⃗) over these distribution families, with
the main technical work being that of simultaneously incorporating both the uniform and
the respective distance preservation lemmas into the soundness analysis, across the recursive
levels.
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ρ-dispersed distributions

Recall that ρ-dispersed distributions over [k]m capture the smoothness of a distribution,
by requiring that the probability mass on any element is bounded by ρ times the average
mass on any of its neighbours. Adopting similar notation as above, let D̂ be the marginal
distribution of D over [k]m−1.

For any row Xi ∈ Fkm−1 that is a lower-dimensional input instance, let εi be the
distance between Xi and PVAL(J2, Y ′

i ) over D̂. Here, we show a distance preservation
lemma for ρ-dispersed distributions, such that for any distribution D that is ρ-dispersed,∑k

i=1 εi > (kε)/ρ.11 The idea behind proving this is not obvious immediately; while εi

measures the distance along marginal distributions, ε is the distance from each element of
PVAL(J, v⃗) over D (which could be a joint distribution). However, we crucially use properties
about ρ-dispersed distributions to prove this distance preservation lemma.

Using the strategy described earlier, we get an IPP for NC over ρ-dispersed distributions,
having query and sample complexities ρlog(1/ε)/ log log(n)

ε1+o(1) , while keeping communication com-
plexity the same. In particular, for ρ = ko(1), the query complexity is 1/ε1+o(1) and matches
that of the uniform IPP for all ε > 0.

Product distributions

Let D be an m-product distribution defined as D = D1 × . . . Dm over [k]m, where k = log(n),
and each Dj is an independent distribution supported on [k]. In particular, D(i1, . . . , im) is
defined as

∏m
j=1 Dj(ij).

Our main approach here to construct IPPs over such distributions, is to first learn the
underlying distribution and then use this as an aid to obtain near-optimal complexity
parameters. For more context, consider the following k-dispersed distribution D over [k]m,
that is supported on the first row of the first dimension, i.e, exactly on the set of elements of
the form (1, i2, . . . , im) for every (i2, . . . , im) ∈ [k]m−1.12 We see that the IPP over k-dispersed
distributions has query complexity O(1/ε2). However, if the verifier “learns” beforehand that
D is only supported on the first row, then it can focus its attention on a smaller instance in
Fkm−1 and potentially obtain much better query complexity, if D conditioned on the first
row is ρ-dispersed, for a small ρ.

Our main technical idea here is to show a learning-augmented distance preservation
lemma for product distributions. Let εi be the distance between Xi and PVAL(J2, Y ′

i ) over
D̂ = D2 × · · · × Dm. Based on an alternative analysis to that of ρ-dispersed distributions, we
prove that for any product distribution D,

∑k
i=1 εi > Cε, for C > 1 that only depends on

D1. Using this key insight, if the verifier “transformed” D1 into the uniform distribution over
[a0 · k], where a0 ≥ 1 is a small constant, then we get a similar expression as the uniform
distance preservation lemma, i.e., C = O(k), despite still measuring distance according to D̂
for the lower dimensional instances.13

We briefly highlight the sequence of tools used to implement the latter idea. The
verifier learns the probability vector of D1, into an approximation P1, using the parallel set
lower bound protocol [9] which requires white-box access to D1. Following this, it runs a

11 Note that the uniform distribution is a 1-dispersed distribution and we thus generalise the uniform
distance preservation lemma.

12 Intuitively, for any i2, . . . , im ∈ [k]m−1, D(1, i2, . . . , im) is the only element in the set {ℓ, i2, . . . , im}ℓ∈[k]
with a non-zero probability mass and thus is k-times the average of the probability mass on its
neighbourhood.

13 For consistency, a0 = 1, when D1 is just Uk.
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“granularising” algorithm taking P1 as input, that outputs the probability vector of a new
8k-granular distribution E1 over [k + 1] (i.e., for every i, E1(i) is bi/8k), such that in the
soundness case, the distance of the input over E1 is still ε (up to constant factors). Finally,
this granularity set is used to “extend” X into a new input instance X ′ ∈ {0, 1}8k×km−1 ,
by making copies of each row according to it’s granularity, and we can thus, equivalently
consider the underlying row distribution as the uniform distribution over [8k]. The last two
steps build on ideas from [24] for testing unknown distributions, while our focus is on the
setting of testing with an implicit input.

1.4 Related Work
Proofs of Proximity for Distributions

In a related model, [14, 35] study proofs of proximity for testing distributions. In their
setting, for a fixed property Π of distributions, the verifier receives samples from an unknown
distribution D, and interacts with the prover to decide whether D ∈ Π or D is ε-far from any
distribution in Π along the total variation distance. While there are superficial similarities to
our model regarding the use of sample oracle, we focus on testing properties (or languages)
of strings, where the distribution oracle only provides a means of accessing the input string.
In addition, the verifier also has oracle access to the input instance and the distance for the
NO instance is measured with respect to the underlying distribution.

Sample-based IPPs

Another related model is that of Sample-based IPPs [20], where the verifier can only access
the input through an oracle that provides labeled samples over the uniform distribution.
They show that any language in logspace-uniform NC has an SIPP with Õ(

√
n) sample and

communication complexities, by in fact constructing a reduction protocol from an SIPP to
the query-based IPP by [44]. Our model is more general conceptually, since any protocol in
our model needs to be able to test for a language given access to labeled samples over any
unknown distribution. On the other hand, to aid with this generality, we also provide the
verifier with the more powerful oracle access to the input, which SIPPs do not.

That being said, we can use the uniform SIPP by [20] within the proof of Theorem 1
(instead of the query-based IPP by [43]) to obtain a distribution-free SIPP for NC where the
verifier only accesses the input through labeled samples over U and the unknown distribution
D, for any ε ≥ τ/n.14 It is unclear whether we can construct distribution-free SIPPs for
general values of ε (even over smooth or product distributions) that match the complexities
of the uniform IPPs and we leave it as future work.

Interactive Proofs for Agnostic Learning

[29] study the setting of verifying PAC-learners. There, the verifier has sampling access to an
unknown distribution D over labeled examples of the form (i, xi), where i ∼ D and x is the
underlying input. It’s goal is to verify whether a hypothesis h : {0, 1}log(n) → {0, 1} given by
the prover from a fixed hypothesis class, is the best approximation of D. From the property
testing perspective, the prover wants to convince the verifier that D′ has the property that
every hypothesis in the class has error larger than ε over D, for some ε > 0 (i.e., the best
possible approximation of D by the hypothesis class is at least ε).

14 The uniform SIPP by [20] has communication complexity Õ
(

n
τ + 1

ε

)
(for tradeoff τ ≤

√
n), and using

this still gives us the same communication complexity as the query-based distribution-free IPP from
Theorem 1.
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Similar to the setting of SIPPs, their scenario focuses on the case where the verifier only
has access to x via a labeled sample oracle, over an unknown distribution. Furthermore,
they focus on testing specific properties pertaining to machine learning, such as closeness to
an underlying hypothesis class, with the hope of getting very low sample complexity (with
respect to the VC dimension of the hypothesis class). In contrast, we deal with verification
of general classes of properties, and in some cases the sample and query complexities are
both Õ(

√
n).
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