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Abstract
Quantum entanglement, a distinctive form of quantum correlation, has become a key enabling
ingredient in diverse applications in quantum computation, complexity, cryptography, etc. However,
the presence of unwanted adversarial entanglement also poses challenges and even prevents the
correct behaviour of many protocols and applications.

In this paper, we explore methods to “break” the quantum correlations. Specifically, we construct
a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input. In
particular, we show: For every d, ℓ ≥ k ∈ N+, there is an efficient channel Λ: Cdℓ ⊗ Cdℓ → Cdk

such that for every bipartite separable density operator ρ1 ⊗ ρ2, the output Λ(ρ1 ⊗ ρ2) is close to a
k-partite separable state. Concretely, for some distribution µ on states from Cd,∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
|ψ⟩⟨ψ|⊗kdµ(ψ)

∥∥∥∥
1

≤ Õ

((
k3

ℓ

)1/4
)
.

Moreover, Λ(|ψ⟩⟨ψ|⊗ℓ ⊗ |ψ⟩⟨ψ|⊗ℓ) = |ψ⟩⟨ψ|⊗k. Without the bipartite unentanglement assumption,
the above bound is conjectured to be impossible and would imply QMA(2) = QMA.

Leveraging multipartite unentanglement ensured by our disentanglers, we achieve the following:
(i) a new proof that QMA(2) admits arbitrary gap amplification; (ii) a variant of the swap test and
product test with improved soundness, addressing a major limitation of their original versions. More
importantly, we demonstrate that unentangled quantum proofs of almost general real amplitudes
capture NEXP, thereby greatly relaxing the non-negative amplitudes assumption in the recent work
of QMA+(2) = NEXP [Jeronimo and Wu, STOC 2023]. Specifically, our findings show that to
capture NEXP, it suffices to have unentangled proofs of the form |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩ where

|ψ+⟩ has non-negative amplitudes, |ψ−⟩ only has negative amplitudes and |a− (1 − a)| ≥ 1/poly(n)
with a ∈ [0, 1]. Additionally, we present a protocol achieving an almost largest possible completeness-
soundness gap before obtaining QMAR(k) = NEXP, namely, a 1/poly(n) additive improvement to
the gap results in this equality.
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1 Introduction

Quantum entanglement is a fundamental form of quantum correlation that can be stronger
than any classical correlation [13, 5, 11, 21]. It plays a crucial role in a myriad of areas such
as quantum computing, quantum information, quantum complexity, quantum cryptography,
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condensed matter physics, etc [19, 25, 32]. Hence, comprehending both the capabilities
and constraints of quantum entanglement stands as a crucial research endeavor. However,
entanglement can also pose challenges in numerous applications, such as quantum key
distribution and quantum proof systems [28, 23, 26, 15]. This raises the natural question of
designing quantum channels that convert quantum states into unentangled states. For the
purpose of applications, such channel, also called disentangler, Φ : H → K ⊗ K can be defined
to satisfy two conditions: (i) for any |ψ⟩ ∈ K, there is preimage |ϕ⟩, such that Φ(ϕ) = ψ ⊗ ψ;
and (ii) for any density operator ϕ ∈ H, Φ(ϕ) is close to separable.

The quantum de Finetti type theorems [10, 24, 28] provide examples of disentanglers. A
quantum de Finetti theorem quantifies the closeness of a permutation-invariant ℓ-partite
quantum state, to k-partite separable states when all but k subsystems are traced out. A
standard quantum de Finetti theorem reads

▶ Theorem 1 (Quantum de Finetti [24]). For every d, ℓ ≥ k ∈ N+, the channel Λ: (Cd)⊗ℓ →
(Cd)⊗k defined as Λ(ρ) = Trℓ−k(1/ℓ!

∑
π∈Symℓ

πρπ†) satisfies∥∥∥∥Λ(ρ) −
∫

|ψ⟩⟨ψ|⊗kdµ
∥∥∥∥

1
≤ 2kd2

ℓ
.

Note that the error bound scales at least1 as d/ℓ, and in this version of the quantum de
Finetti theorem, the parameters are known to be essentially tight. Consequently, if each
subsystem is composed of n qubits, then obtaining a non-trivial error bound requires at
least ℓ ≥ d = 2n subsystems, making this channel impractical for many applications. This is
conjectured to be essentially the best you can achieve. In particular, it is conjectured that
for any disentangler, the input dimension will be exponential in the output dimension [1] to
achieve that the output is always ε close in trace distance to some separable states for any
constant ε < 1.

Dimension Independent Disentangler from Unentanglement

While the original disentangler conjecture remains widely open, in this work, we show that
there is an explicit, efficient (BQP), and dimension independent quantum disentangler for
k-partite (output) system starting from a bipartite unentangled system. More precisely, we
prove

▶ Theorem 2 (Disentangler from unentanglement). Let d, ℓ ≥ k ∈ N+. There is an efficient
channel Λ: (Cd)⊗ℓ ⊗ (Cd)⊗ℓ → (Cd)⊗k such that for any density operators ρ1, ρ2 ∈ Cdℓ there
is a distribution µ on pure states |ψ⟩ ∈ Cd satisfying∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

≤ Õ

((
k3

ℓ

)1/4)
.

Furthermore, product states of the form ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ are mapped to |ψ⟩⟨ψ|⊗k.

In contrast to the de Finetti disentangler, our disentangler from unentanglement features
error parameters that are independent of the input dimension entirely! Subsequently, we
discuss applications of Theorem 2 in testing product states and the gap amplification in

1 If instead of making the state permutation invariant, we project it onto the symmetric subspace, which is
a perfectly valid and efficient operation in the quantum setting, then the dependence on d in Theorem 1
improves from d2 to d.
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quantum proof systems, culminating in a near-optimal gap amplification for the QMA+(k)
class: Any improvement on this gap amplification would imply QMAR(k) = NEXP.2 We
also anticipate that our tool will find further applications beyond those discussed in this
paper.

1.1 Super Product Test
The product test was designed to test if a state |ϕ⟩ is close to k-partite product state, i.e.,
|ϕ⟩ ≈ |ϕ1⟩⊗ · · ·⊗ |ϕk⟩, given two copies of |ϕ⟩. This test involves applying a sequence of swap
tests to each of the k subsystems of the two copies |ϕ⟩. Clearly, if |ϕ⟩ is indeed a k-partite
product state, all the swap tests accept with certainty. On the other hand, if |ϕ⟩ is entangled
across the k subsystems, some swap test will reject with a probability that depends on the
amount of entanglement. It can be argued that the product test is optimal for ensuring
perfect completeness, i.e., accepting product states with certainty [17].

Despite its utility and elegance, the product test has two limitations. Firstly, it only
provides a guarantee concerning its input |ϕ⟩⊗ |ϕ⟩ which are destroyed after the test, yielding
a single classical bit as output. Very often in applications, one also needs some extra certified
input states |ϕ⟩ to manipulate in subsequent computations after the test. Secondly, and
probably more irritatingly, the product test always accepts with some constant probability
(say ≥ 1/2) no matter how far |ϕ⟩ is from being k-partite product, i.e., it has poor soundness.
These limitations can be resolved if you have more than 2 copies of |ϕ⟩ [22, 29]. For instance,
given ℓ copies of |ϕ⟩, then one can adapt the product test to sequentially apply projections
on to symmetric subspace on the first, second, and subsequent subsystems of all the copies
of ϕ. Intuitively, this should give us a stronger test whose analysis was left as an open
problem in [17]. Recently, She and Yuen [29] analyzed this higher order version of product
test achieving improved soundness. We restate this higher order product test as relying on
some ℓ unentangled equal copies of |ψ⟩ to deduce a k-partite product structure of the input
state. One can require something even stronger on the input to achieve what we call super
product test.

▶ Lemma 3. The super product test on input |ψ⟩ ⊗ (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ accepts with probability

ℓ

(ℓ+ 1) · |⟨ψ |ϕ1⟩ . . . |ϕk⟩|2 + 1
(ℓ+ 1) .

This super product test focuses on determining whether a target state |ψ⟩ is a product
state or not. In addition to the target state, there are ℓ copies of an already k-partite product
state that come to help. This test is very natural and simple, except it seems to ask too
much of its inputs: To compare, the high-order product test requires some copies of a state
whereas Lemma 3 requires some copies of an already k-partite product state of the form
|ϕ1⟩⊗· · ·⊗|ϕk⟩. We claim the super product test is not really asking for too much because our
disentangler channel effectively “amplifies” the number of unentangled systems. In particular,
we can rely on just two unentangled proofs to enforce a state close to (|ϕ1⟩ ⊗ · · · ⊗ |ϕk⟩)⊗ℓ

by Theorem 2. For simplicity, consider k unentangled pairs of untangled proofs where the
ith pair applied Theorem 2 yields |ϕi⟩⊗ℓ. Then run the super product test on a target state

2 We don’t want to distract the readers by the issue about quantum states over real or complex numbers.
In many cases, quantum computation over reals captures that over complex numbers. However, to the
best of the authors’ knowledge, this is unclear in the context of QMA(2). We have to use QMAR(k) to
denote the proof systems where the proofs are guaranteed to have real amplitudes.
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|ψ⟩ and the ℓ copies of already product states from our disentangler. Furthermore, note
that it is very cheap to instead enforce a state close to (|ϕ1⟩ ⊗ · · · ⊗ |ϕk⟩)⊗2ℓ, allowing us
to reserve the extra ℓ copies of |ϕ1⟩ ⊗ · · · ⊗ |ϕk⟩ as once the super product test passes, they
can be used in any other computations as a very good proxy of |ψ⟩. With this combination,
we achieve arbitrarily good soundness without requiring more than 2k unentangled states3

while obtaining a guarantee about the output, rather than having just a single classical bit
of output.

1.2 A Gap Amplification for QMA+(2) up to Criticality

Next, we turn to the unentangled quantum proofs, the so-called QMA(2) class [23] and its
variants. First, we provide some background on this subject.

The complexity of QMA(2) was shown to be closely related to a variety of quantum and
classical computational problems, e.g., determining if a mixed state is entangled given its
classical description, as well as, various forms of classical polynomial/tensor optimization
(see [17] for a more comprehensive list). Despite considerable interest and effort (e.g., [12,
1, 6, 4, 7, 14, 30, 27, 9, 8, 18]), we still only know the trivial complexity bounds QMA ⊆
QMA(2) ⊆ NEXP.

Even the fact that QMA(2) admits strong gap amplification is non-trivial and remained
open for about 10 years before the seminar work of Harrow and Montanaro [17]. With
Theorem 2, it is easy to give a new proof of this fact.

A variant of QMA(2), denoted QMA+(2), with proofs of nonnegative amplitudes was
introduced by Jeronimo and Wu in [20]. The goal of this variant was to capture many
properties of QMA(2) while having more structure in order to obtain a greater understanding.
Indeed, they showed that QMA+(2) = NEXP by designing a QMA+(2) protocol for a NEXP-
complete problem with a constant gap. On the other end of their result is the observation
that QMA+(2) ⊆ QMA(2) provided that the completeness-soundness gap of QMA+(2) is a
sufficiently large constant. This makes QMA+(2) an intriguing class to study since either (i)
showing that QMA+(2) = QMA(2), via possibly a gap amplification approach for QMA+(2),
would characterize the complexity of QMA(2), or (ii) showing QMA+(2) ̸= QMA(2) would
give a better upper bound QMA(2) ⊊ NEXP.

By virtue of the unentanglement assumption of QMA+(2) and the product test [17],
QMA+(2) admits some non-trivial gap amplification. For example, a gap of 1/poly(n) can
be amplified to a constant gap in which the completeness becomes 1 − exp(−poly(n)) and
the soundness becomes some constant strictly less than 1. Recently, Bassirian, Fefferman and
Marwaha [3], building on [20], curiously showed that QMA+(1) = NEXP also with a constant
gap.4 Since in the large constant gap regime of QMA+(1), we have QMA+(1) = QMA ⊆
PP, their result rules out the strong gap amplification for QMA+(1) unless NEXP ⊆ PP.
Moreover, it also suggests that strategies aimed at amplifying the gap for QMA+(2) must
rely on the unentanglement assumption. This is precisely where the tools like the product
test or our disentangler become essential.

With our disentangler, we make progresses towards understanding of QMA+(2) versus
QMA(2). In particular, our progresses can be summarized as two aspects with two motivating
questions.

3 Naturally, the 2k unentangled states need to get larger in dimension to achieve better soundness.
4 It is not clear that their gap can be made as large as the one for QMA+(2) = NEXP.
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Motivating question 1. How crucial is the nonnegative amplitudes assumption to obtain
QMA+(2) = NEXP?

Regarding our first motivating question, we show that the nonnegative amplitudes assumption
can be almost completely removed by considering unentangled quantum proofs of almost
general real amplitudes. More precisely, we show that to capture NEXP it suffices to have
unentangled proofs of the form |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩ where |ψ+⟩ has nonnegative

amplitudes, |ψ−⟩ only has negative amplitudes and |a− (1 − a)| ≥ 1/poly(n) with a ∈ [0, 1].
In words, we require the proofs to have slightly more ℓ2-probability mass (1/poly(n) extra
mass) either on nonnegative or negative amplitudes. We refer to the quantity |a− (1 − a)|
as the ℓ2-sign bias of |ψ⟩. We call the associated complexity class almost-QMAR(k). Our
main complexity result can be stated as follows.

▶ Theorem 4. NEXP = almost-QMAR(k) with unentangled proofs of ℓ2-sign bias of5
b(n) ≥ poly(1/n) and k = poly(1/b(n)).

We obtain the above result by investigating the other motivating question: Since the
power of QMA+(k) ranges from NEXP to QMA(k) depending on the gap,

Motivating question 2. How much can we amplify the gap of QMA+(k)?

We make significant progress addressing this question. Specifically, we show that a even
more relaxed version of QMA+(3), featuring a single proof with nonnegative amplitudes and
the other two with general amplitudes, equals NEXP, with completeness 1 − exp(−poly(n))
and soundness 1/2 + 1/poly(n). At the first glance, this looks like a “just so so” gap
amplification. It is noteworthy that achieving a slightly improved soundness of 1/2−1/poly(n)
would imply QMAR(3) = NEXP. In particular, if QMAR(3) ̸= NEXP, then there is a sharp
phase transition in the complexity around the gap of a half.

▶ Theorem 5. NEXP = QMA+(3) with completeness c = 1 − exp(−poly(n)) and soundness
s = 1/2 + 1/poly(n). Furthermore, we can assume a particular case of QMA+(3) in which
two unentangled proofs have arbitrary amplitudes whereas only one unentangled proof has
nonnegative amplitudes.

0 1
1
2

1
poly(n)

NEXP QMAR(3)

Figure 1 Gap and the complexity regime of the particular version of QMA+(3) from Theorem 5.
A gap below 1/2−1/poly(n) corresponds to NEXP, whereas a gap above 1/2+1/poly(n) corresponds
to QMAR(3), illustrating a sharp phase transition.

1.3 Organization
We introduce notations and review basic concepts and facts in Section 2. In Section 3, we
present an efficient multipartite disentangler (like) channel from bipartite unentanglement.
This construction relies on new de Finetti type properties concerning the interplay between

5 The letter n represents the input size and b(n) is any polynomial time computable function bounded
from below by a polynomial, i.e., by 1/nc for some constant c > 0.

CCC 2024



26:6 Dimension Independent Disentanglers from Unentanglement and Applications

entanglement and symmetry which we explore in Section 4. In Section 5, we delve into
the utility of our disentangler where we elaborate a generic framework in the context of
property testing. As one example, we present a new proof that QMA(2) admits strong
gap amplification. The final two sections are devoted to design new tests and derive the
main complexity results in this paper. In Section 6, we present the super swap and super
product test which leverage unentanglement to achieve much improved soundness than the
well-known swap and product tests. Finally, we provide protocols for NEXP in Section 7
leading to the main complexity results of this paper, Theorem 4 and Theorem 5.

2 Preliminaries

General

As usual, N,R,C stand for the natural, real, and complex numbers, respectively. We adopt
the Dirac notation for vectors representing quantum states, e.g., |ψ⟩, |ϕ⟩, etc. In this paper,
all the vectors of the form |ψ⟩ are unit vectors. Given any pure state |ψ⟩, we adopt the
convention that its density operator is denoted by the Greek letter without the “ket”, e.g.
ψ = |ψ⟩⟨ψ|. The set of density operators in an arbitrary Hilbert space H is denoted D(H).
A symmetric state |ψ⟩ ∈ (Cd)⊗n is that invariant under any permutation π ∈ Symn where
Symn is the symmetric group. The action of π on (Cd)⊗n is

π : |ψ1, ψ2, . . . , ψn⟩ 7→ |ψπ(1), ψπ(2), . . . , ψπ(n)⟩.

The symmetric subspace is the subspace of (Cd)⊗n that is invariant under Symn, denoted by
∨n(Cd). Given any set H ⊆ H for some Hilbert space H, conv (H) is the convex hull of H.

One other particularly interesting set of states is the separable states. We adopt the
following notation for the set of density operators regarding separable states,

SEP(d, r) := conv
(
ψ1 ⊗ · · · ⊗ ψr | |ψ1⟩, . . . , |ψr⟩ ∈ Cd

)
.

A related notion is that of separable measurement, whose formal definition is given below.

▶ Definition 6 (Separable measurement). A measurement M = (M0,M1) is separable if in the
yes case, the corresponding positive semi-definite matrix M1 can be represented as a conical
combination of two operators acting on the first and second parts, i.e., for some distribution
µ over the tensor product of positive semi-definite matrices α and β on the corresponding
space,

M1 =
∫
α⊗ β dµ.

We record the following well-known fact. An interested reader is referred to [16] for a formal
proof.

▶ Fact 7 (Folklore). The swap test is separable.

Matrix Analysis

Given any matrix M ∈ Cn×n, M† is its conjugate transpose. Let σ1 ≥ σ2 ≥ . . . ≥ σn denote
its singular values. Then the trace norm ∥ · ∥1, Frobenius norm ∥ · ∥F are defined as below

∥M∥1 =
∑
i

σi, ∥M∥F =
√∑

i

σ2
i .

The Frobenius norm also equals the square root of sum of squared modulus of each entry,
i.e., ∥M∥F =

√∑
i,j |M(i, j)|2.
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For a positive semi-definite (PSD) matrix M , ∥M∥F =
√

TrM2. For two PSD matrices,
there is one (of many) analogous matrix Cauchy-Schwarz inequality.

Tr(σρ) ≤ ∥σ∥F · ∥ρ∥F . (2.1)

We adopt the notation ⪰ to denote the partial order that σ ⪰ ρ if σ−ρ is positive semi-definite.

Distances between Quantum States

A standard notion of distance for quantum states is that of the trace distance. The trace
distance between ψ and ϕ, denoted D(ψ, ϕ), is

1
2∥ψ − ϕ∥1 = 1

2 Tr
√

(ψ − ϕ)†(ψ − ϕ). (2.2)

We also use the notation D(|ψ⟩, |ϕ⟩) if we want to emphasize that ψ and ϕ are pure states.
The following fact provides an alternative definition for trace distance between pure states.

▶ Fact 8. The trace distance between |ϕ⟩ and |ψ⟩ is given by D(|ϕ⟩, |ψ⟩) =
√

1 − |⟨ϕ |ψ⟩|2.

Two states with small trace distance are indistinguishable to quantum protocols.

▶ Fact 9. If a quantum protocol accepts a state ϕ with probability at most p, then it accepts
ψ with probability at most p+ D(ϕ, ψ).

Trace distance enjoys the triangle inequality. For pure states, we can actually strengthen
it.

▷ Claim 10. Given unit vectors |α⟩, |ϕ⟩, |β⟩ ∈ H for some Hilbert space H. Suppose

|⟨α | ϕ⟩|2 = 1 − ε, |⟨β | ϕ⟩|2 = 1 − δ.

Then for any ε+ δ ≤ 1,6

|⟨α | β⟩|2 ≥ (
√

(1 − ε)(1 − δ) −
√
εδ)2. (2.3)

In general, we always have

|⟨α | β⟩|2 ≥ 1 − ε− δ − 2
√
εδ. (2.4)

Proof. Without loss of generality assume that

|α⟩ =
√

1 − ε|ϕ⟩ +
√
ε|µ⟩,

|β⟩ =
√

1 − δ|ϕ⟩ + σ
√
η|µ⟩ +

√
δ − η|ρ⟩,

where |µ⟩, |ρ⟩, |ϕ⟩ are orthogonal, 0 ≤ η ≤ δ and σ ∈ C is a relative phase. Using the basis
{|ϕ⟩, |µ⟩, |ρ⟩}, we can write down explicitly the density matrix of α and β:

α =

 1 − ε
√
ε(1 − ε) 0√

ε(1 − ε) ε 0
0 0 0

 ,

β =

 1 − δ σ
√

(1 − δ)η
√

(1 − δ)(δ − η)
σ∗
√

(1 − δ)η η σ
√
η(δ − η)√

(1 − δ)(δ − η) σ∗
√
η(δ − η) δ − η

 .

6 When ε+ δ > 1, then |α⟩ and |β⟩ in general can be orthogonal.
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Now by definition,

D(|α⟩, |β⟩)2 =
(

1
2 Tr

√
(α− β)†(α− β)

)2

= 1
2∥α− β∥2

F

= 1
2((ε− δ)2 + (ε− η)2 + (δ − η)2) + η(δ − η)

+ |
√
ε(1 − ε) − σ

√
(1 − δ)η|2 + (1 − δ)(δ − η)

≤ 1
2((ε− δ)2 + (ε− η)2 + (δ − η)2) + η(δ − η)

+ (
√
ε(1 − ε) +

√
(1 − δ)η)2 + (1 − δ)(δ − η), (2.5)

where the second step holds because α−β is Hermitian with trace 0 and rank 0 or 2. We claim
that the RHS of (2.5), denote by f , is non-decreasing for η ∈ [0, δ]. By routine calculation,

df

dη
= −ε+

√
ε

η
(1 − ε)(1 − δ) ≥ 0 ⇐⇒ (1 − ε)(1 − δ) ≥ ηε

⇐= (1 − ε)(1 − δ) ≥ δε ⇐⇒ 1 ≥ ε+ δ.

As we assumed that 1 ≥ ε + δ, df/dη is always non-negative. Since the RHS of (2.5) is
non-decreasing for η ∈ [0, δ], plug η = δ into the RHS of (2.5), we obtain

D(|α⟩, |β⟩)2 ≤ (ε− δ)2 + (
√
ε(1 − ε) +

√
(1 − δ)δ)2,

In view of Fact 8, (2.3) is proved. The “in general” part is trivially true when ε+ δ > 1 and
otherwise follows from (2.3). ◁

Another widely used distance measure between quantum states is that of fidelity. For
any density operators ρ, σ from the same Hilbert space,

F (ρ, σ) =
(

Tr
√√

ρσ
√
ρ)
)2

.

For our purposes, we only need the fact that when one of the two density operators corresponds
to a pure state, then

F (ρ, σ) = Tr(ρσ).

The well-known data processing inequality for fidelity states that applying quantum operation
never decreases the fidelity.

▶ Fact 11. For any quantum channel (CPTP map) Φ,

F (Φ(ρ),Φ(σ)) ≥ F (ρ, σ).

Schmidt Decomposition and Partial Trace

For |ψ⟩ describing quantum states over two subsystems A,B, e.g., |ψ⟩ ∈ Cm ⊗ Cn, there are
two sets of orthonormal states {|α1⟩, |α2⟩, . . . , |αk⟩} ⊆ Cm, {|β1⟩, |β2⟩, . . . , |βk⟩} ⊆ Cn , and
positive numbers λ1 ≥ λ2 ≥ · · · ≥ λk for some k ≤ min{n,m} such that

|ψ⟩ =
k∑
i=1

√
λi|αi⟩|βi⟩, and

k∑
i=1

λi = 1. (2.6)
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The formula (2.6) is called the Schmidt decomposition of |ψ⟩. The set of
√
λi is unique, and is

called the Schmidt coefficient of |ψ⟩. We call
√
λ1 the top Schmidt coefficient and |α1⟩|β1⟩ the

top Schmidt component. Note that the top Schmidt component may not be unique ignoring
the global phases, in that case we break tie arbitrarily. Since Schmidt decomposition follows
from singular value decomposition, the (top) Schmidt coefficients can also be formulated as
some optimization problem.

▷ Claim 12. Given any state |ψ⟩ ∈ H1 ⊗ H2. Then

λ1 = max
|σ⟩∈H1,|ρ⟩∈H2

|⟨ψ | σ, ρ⟩|2

Often we want to study the density operator of a quantum state |ψ⟩ over the subsystem
A, mathematically described by tracing out B, denoted TrB(ψ). We also abbreviate ψA =
TrB(ψ). Note that fidelity never increases under partial trace due to Fact 11, and similarly,
the trace distance never increases under partial trace:

▶ Fact 13. For any quantum states ψ and ϕ over systems A and B,

D(ψ, ϕ) ≥ D(ψA, ϕA).

We use subscript to emphasize the systems that an operator is describing, e.g., ψAB simply
means that ψ is a state over systems A and B.

Quantum Merlin-Arthur Systems

We now formally define the class almost-QMAR(k), but first we will need the ℓ2-sign bias
definition, which, roughly speaking, quantifies the imbalance in ℓ2 mass between the positive
and negative amplitudes parts of a state.

▶ Definition 14 (ℓ2-sign bias). Given |ψ⟩ ∈ Rn, we can uniquely write it as |ψ⟩ =
√
a|ψ+⟩ +√

1 − a|ψ−⟩, where a ∈ [0, 1], |ψ+⟩ and |ψ−⟩ are unit vectors with only positive and negative
amplitudes, respectively. The ℓ2-sign bias of |ψ⟩ is defined as |a− (1 − a)|.

Note that a non-negative amplitude state has ℓ2-sign bias of 1 whereas a general state
has bias at least 0. Almost-QMAR(k) will be defined based on ℓ2-sign as a natural relaxation
of QMA+(k) towards the general QMA(k).

▶ Definition 15 (almost-QMAR(k)). Let k : N → N be a polynomial time computable function.
A promise problem Lyes,Lno ⊆ {0, 1}∗ is in almost-QMAR(k) if there exists a BQP verifier
V such that for every n ∈ N and every x ∈ {0, 1}n,

Completeness: If x ∈ Lyes, then there exist unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each
of ℓ2-sign bias 1/poly(n) and on at most poly(n) qubits, s.t. Pr[V (x, |ψ1⟩ ⊗ · · · ⊗
|ψk(n)⟩) accepts] ≥ 9/10.
Soundness: If x ∈ Lno, then for every unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each of each
of ℓ2-sign bias 1/poly(n) and on at most poly(n) qubits, we have Pr[V (x, |ψ1⟩ ⊗ · · · ⊗
|ψk(n)⟩) accepts] ≤ 1/10.

3 The Disentangler from Unentanglement

In this section, we show how to obtain the dimension independent k-partite disentangler
(like) channel from bi-partite unentanglement establishing Theorem 2. We will actually work
mainly with a more refined procedure which we call quantum probably approximately product
output (PAPO) procedure, from which the claimed disentangler can be easily constructed.
We define PAPO as follows.
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▶ Definition 16 (PAPO). Let d, ℓ, k ∈ N and ε, δ ∈ [0, 1]. A (d, ℓ, k, ε, δ)-PAPO is a quantum
procedure Λ satisfying:

Completeness: ∀|ψ⟩ ∈ Cd, Λ(ρ1 ⊗ ρ2) = |ψ⟩⟨ψ|⊗k where ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ,
Soundness: ∀ρ ∈ SEP(dℓ, 2), with probability at least 1 − δ, Λ(ρ) either rejects or outputs
a state ε-close in trace distance to a separable state.

The main result in this section is an efficient PAPO procedure with parameter ℓ that is
independent of the dimension d.

▶ Theorem 17. For every d, k ∈ N and ε, δ ∈ [0, 1], there is an efficient (d, ℓ, k, ε, δ)-PAPO
with ℓ = O(k3ε−2δ−2 log δ−1).

In Algorithm 1, we give a detailed description of our PAPO procedure. The procedure takes
input two unentangled states, each over ℓ subsystems. We name the ℓ systems A1, A2, . . . , Aℓ
for the first state, and B1, B2, . . . , Bℓ for the second state. The PAPO procedure is very simple,
which we consider an advantage for such a fundamental task. It should be compared with
the product test [17]: the PAPO procedure further takes advantage of symmetric subspace
and that projection onto the symmetric subspace is efficient for quantum algorithms.

Algorithm 1 PAPO.

Input: ρA1,A2,··· ,Aℓ ⊗ ρB1,B2,··· ,Bℓ ∈ SEP(dℓ, 2).
Sample ℓ′ ∈ [ℓ− k] uniformly at random.
For i = 1, . . . , ℓ′:

1. Project ρAi,··· ,Aℓ onto the symmetric space.
2. Project ρBi,··· ,Bℓ onto the symmetric space.
3. If any of the projections fails: Reject.
4. If i ̸= ℓ′, SwapTest(ρAi , ρBi).
5. If the SwapTest fails: Reject.
Output ρAℓ′ ,··· ,Aℓ′+k−1 .

3.1 Analysis of PAPO
The efficiency of the protocol is trivial. Indeed projection onto the symmetric subspace can
be implemented efficiently, see for example [2], and swap test is a special case of projection
onto the symmetric subspace. So in the remainder of the section, we argue that our procedure
satisfies the completeness and soundness criterion in Definition 16. We start with the following
definition of termination index.

▶ Definition 18 (Termination Index). We set i∗ to be the least element in [ℓ− k] such that
either ρAi∗ ,...,Aℓ or ρBi∗ ,...,Bℓ is orthogonal to the symmetric subspace; we set i∗ = ∞ if no
such element exists.

Here the “termination” means absolute termination (rejection) by projection into the sym-
metric subspace and has nothing to do with a particular execution of Algorithm 1. Most
likely, projecting a general state into the symmetric subspace can success or fail. When a
state can be successfully projected into the symmetric subspace with nonzero probability,
then PAPO continues to run with nonzero probability. Such case is not counted as absolute
termination. 7

7 Note that the swap test has no danger of absolute termination since it is always applied to separable
states in Algorithm 1 and the swap test has soundness 1/2. Thus in the definition of termination index,
we don’t worry about the swap test.
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▷ Claim 19. The state ρAi,...,Aℓ,Bi...,Bℓ at the ith iteration of the for loop in Algorithm 1 is
separable across ρAi,...,Aℓ and ρBi,...,Bℓ .

Proof. Because the SwapTest is separable across A and B part given it accepts by Fact 7
and projection into the symmetric subspace for A and B part individually is also separable.
Therefore ρAi...AℓBi...Bℓ is separable across A and B part. ◁

▶ Definition 20 (Bad Index). We say that an index i ∈ [ℓ] is η-bad
1. If i ≥ i∗, (see Definition 18)
2. or if SwapTest(ρAi , ρBi) accepts with probability at most 1 − η.

▷ Claim 21. SwapTest(ρ, σ) accepts with probability 1+Tr(ρσ)
2 ≤ 3

4 + Tr(σ2)
4 .

Proof. Apply (2.1) for the density operators,

Tr(ρσ) ≤
√

Tr(σ2) · Tr(ρ2) ≤ Trσ2 + Tr ρ2

2 ,

where the second step uses the AM-GM inequality. Note that Tr ρ2 ≤ 1, we are done. ◁

One more technical tool that we are going to need is the following, whose proof we defer
to the next section.

▶ Theorem 22. Given state σA1...Ak ∈ conv
(
∨k(Cd)

)
. Then there is some distribution µ on

pure states |ϕ⟩ ∈ Cd, such that∥∥∥∥σ −
∫
ϕ⊗kdµ

∥∥∥∥
1

≤ O
(√

k3(1 − Tr (σA1)2)
)
.

Proof of Theorem 17.
Completeness: For a desired output of |ψ⟩⟨ψ|⊗k, we give two unentangled copies of |ψ⟩⊗ℓ

to Λ as input. In this case, Algorithm 1 indeed outputs |ψ⟩⟨ψ|⊗k w.p. 1.

Soundness: Let ρ ∈ SEP(dℓ, 2) be the input of Λ. Set

η = ε2/k3.

Due to Claim 19, ρAℓ′ ...Aℓ,Bℓ′ ...Bℓ is separable just before the ℓ′th iteration (assuming suc-
cessfully reaching this iteration). For ℓ′ that is not a bad index, after projection onto
the symmetric subspace, ρAℓ′ ...Aℓ′+k−1 ∈ conv

(
∨k(Cd)

)
. It follows from Claim 21 that

TrAℓ′ (ρAℓ′ ...Aℓ)2 ≥ 1 − 4η. Thus we conclude that if ℓ′ is not a bad index, then the output (if
no rejection) is ε-close in trace distance to a convex combination of product states by The-
orem 22 and our choice of parameter η. Therefore to prove the theorem, it suffices to bound
the probability that Algorithm 1 outputs (not rejects) when ℓ′ is a bad index.

Next we consider two cases. The first case: If the number of the η-bad indices among the
first ℓ− k subsystems are less than δ(ℓ− k), then with probability at least 1 − δ, the random
index ℓ′ is not η-bad. Therefore, Definition 16 is satisfied.

The second case: This fraction is larger than δ. Now conditioning on the event that ℓ′ is
a bad index, then ℓ′ is a uniformly random bad index. Therefore, the chance that the set
of indices {1, 2, . . . , ℓ′} contains less than δ/2 fraction of bad indices is at most δ/2. Thus
with probability at least 1 − δ/2, we have seen at least δ/2 · δ(ℓ− k) − 1 bad indices in the
execution of Algorithm 1 in the first ℓ′ iterations. Since for each bad index the probability of
not rejecting by the swap test is at most 1 − η, the total probability of not rejecting is at
most
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(1 − η)δ
2(ℓ−k)−1 = exp(−Ω(ηδ2ℓ)) = exp

(
−Ω

(
ℓ

ε−2δ−2k3

))
. (3.1)

For ℓ = Ω
(
k3ε−2δ−2 log δ−1), we have e−ηδ2ℓ ≤ δ/2. In this case, Definition 16 is also

satisfied. ◀

3.2 The Disentangler from Unentanglement
We now construct our disentangler using the PAPO procedure, thereby proving Theorem 2
(restated below).

▶ Theorem 2 (Disentangler from unentanglement). Let d, ℓ ≥ k ∈ N+. There is an efficient
channel Λ: (Cd)⊗ℓ ⊗ (Cd)⊗ℓ → (Cd)⊗k such that for any density operators ρ1, ρ2 ∈ Cdℓ there
is a distribution µ on pure states |ψ⟩ ∈ Cd satisfying∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

≤ Õ

((
k3

ℓ

)1/4)
.

Furthermore, product states of the form ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ are mapped to |ψ⟩⟨ψ|⊗k.

Proof. We set ε = δ, whose exact values will be determined later. Let Λ0 be the (d, ℓ, k, ε, δ)-
PAPO procedure guaranteed by Theorem 17. Suppose that we have an input state ρ ∈
SEP(dℓ, 2). The channel Λ will be defined as follows. Run the PAPO procedure Λ0 on input
ρ, then
1. If Λ0(ρ) succeeds, Λ outputs Λ0(ρ).
2. Otherwise, Λ outputs a fixed product state say |0⟩⟨0|⊗k.
If ρ = ρ1 ⊗ρ2 with ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ, then Λ outputs |ψ⟩⟨ψ|⊗k as desired. If the Λ0 rejects,
Λ outputs a product state. Therefore by the soundness of Λ0, firstly, with probability at
least 1 − δ, Λ outputs a state σ which is ε-close to a mixture of product states, i.e., for some
distribution µ on D(Cd),∥∥∥∥∥σ −

∫
|ψ⟩

|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥∥
1

≤ ε;

and secondly, with probability ≤ δ, we output a state ρerror. Overall, we have

Λ(ρ) = (1 − δ′)σ + δ′ρerror.

Therefore,∥∥∥∥Λ(ρ)−
∫

|ψ⟩⟨ψ|⊗kdµ
∥∥∥∥

1

=
∥∥∥∥(1 − δ′)σ + δ′ρerror −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

≤
∥∥∥∥σ −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

+ ∥−δ′σ + δ′ρerror∥1

≤ ε+ 2δ.

In view of Theorem 17, for ε = δ,∥∥∥∥Λ(ρ) −
∫

|ψ⟩⟨ψ|⊗kdµ
∥∥∥∥

1
≤ Õ

((
k3

ℓ

)1/4)
,

concluding the proof. ◀
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4 Quantum Slicing de Finetti Theorem

In this section, we prove Theorem 22. In spirit, it is a de Finetti type theorem with the
contraint that there is little entanglement across some cut. We refer to such type of theorem
as the slicing de Finetti theorem.

4.1 One-versus-Many Slicing de Finetti
To start, we study the following most basic scenario that a given permutation-invariant pure
quantum state from ∨k(Cd) has a large top Schmidt coefficient over cut between the first
and the remaining subsystems. We obtain a dimension independent quantum de Finetti
theorem under slicing constraints from first principles.

▶ Theorem 23 (One-versus-many Slicing de Finetti). Let |σ⟩A1...Ak ∈ ∨k(Cd). If the largest
Schmidt coefficient across the cut A1 : A2 · · ·Ak is at least

√
1 − ε, then

max
|ϕ⟩∈Cd

∣∣⟨σ|A1...Ak |ϕ⟩⊗k∣∣2 ≥ 1 − 8k3 · ε.

To prove this theorem, we first establish the following duplicate lemma. It says that when
a symmetric state |σ⟩ is close to some product state |ϕ⟩|ρ⟩, then you can find a new state
close to |σ⟩ that with two |ϕ⟩ and harms the closeness only mildly.

▶ Lemma 24 (Duplicate Lemma). Let |σ⟩ ∈ ∨k(Cd). Consider some arbitrary decomposition
of {A1, A2, . . . , Ak} = A ∪ B ∪ C, such that |A| = |B|. Suppose |⟨σ|ABC |ϕ⟩A|ρ⟩BC |2 ≥ 1 − ε.

Then, there is a state |ζ⟩ABC such that |ζ⟩ = |ϕ⟩A|ϕ⟩B |γ⟩C for some |γ⟩C , and

|⟨σ | ζ⟩|2 ≥ 1 − 8ε.

Furthermore, if ρC is a pure state, then γ = ρC.

Proof. We assume that ε < 1/8, otherwise the statement is trivially true. Apply Schmidt
decomposition to |ρ⟩BC for the B : C cut,

|ρ⟩BC =
∑
i

√
λi|βi⟩B|γi⟩C .

Let

|ρ′⟩AC =
∑
i

√
λi|βi⟩A|γi⟩C .

Since |σ⟩ ∈ ∨k(Cd), we have

|⟨σ|ABC |ϕ⟩A|ρ⟩BC |2 = |⟨σ|ABC |ϕ⟩B|ρ′⟩AC |2 = 1 − ε.

By Claim 10,

(1 − 2ε)2 ≤ |⟨ϕ|A⟨ρ|BC |ϕ⟩B|ρ′⟩AC |2 =
(∑

i

λi|⟨ϕ | βi⟩|2
)2

. (4.1)

Abbreviate ηi = |⟨ϕ | βi⟩|2. Note that∑
ηi ≤ 1,

∑
λi = 1.
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Therefore, immediately from (4.1),

λ1,max ηi ≥ 1 − 2ε, (4.2)

which is at least 3/4 since ε < 1/8. If η1 ̸= max ηi, then

1 − 2ε ≤
∑
i

λiηi ≤ λ1(1 − max ηi) + max ηi · (1 − λ1) ≤ 4ε,

which is impossible as ε < 1/8. Therefore, η1 ≥ 1 − 2ε.
We push it further,

1 − 2ε ≤
∑
i

λiηi ≤ λ1η1 + (1 − λ1)(1 − η1) = 2λ1η1 − λ1 − η1 + 1

≤ 2λ1η1 − 2
√
λ1η1 + 1

= 2
(√

λ1η1 − 1
2

)2
+ 1

2 ,

where the second step is due to AM-GM inequality. Since λ1, η1 > 3/4, and ε < 1/8,

λ1η1 ≥

(
1
2 +

√
1
4 − ε

)2

≥ 1 − 3ε,

where the last inequality holds for ε ∈ [0, 1/8]. Note that

|⟨ϕ|A⟨ρ|BC |ϕ⟩A|ϕ⟩B|γ1⟩C |2 ≥ λ1η1 ≥ 1 − 3ε.

By Claim 10 and that 1 − 3ε > 1/2, it can be verified that

|⟨σ|ABC |ϕ⟩A|ϕ⟩B|γ1⟩C |2 ≥ (
√

(1 − ε)(1 − 3ε) −
√

3ε)2

= 1 − 4ε+ 6ε2 − 2
√

3ε
√

(1 − ε)(1 − 3ε)
≥ 1 − 8ε. ◀

Now Theorem 23 is a simple consequence of Lemma 24: Duplicate the the first subsystem
taken from the top Schmidt component of |σ⟩.

Proof of Theorem 23. Let |σ0⟩ = |ϕ⟩|γ⟩ be the top Schmidt component of |σ⟩ for the
A1 : A2 . . . Ak cut. By assumption of the theorem statement,

|⟨σ | σ0⟩|2 ≥ 1 − ε.

Let m = ⌊log k⌋,m∗ = ⌈log k⌉. For i = 1, 2, . . . ,m, apply the Duplicate Lemma on |σi−1⟩ with
A = {A1, A2, . . . , A2i−1},B = {A2i−1+1, A2i−1+2, . . . , A2i}. Let |σi⟩ be the |ζ⟩ guaranteed by
the Duplicate Lemma.

If 2m < k, apply the Duplicate Lemma one more time on |σm⟩ with A =
{A1, A2, . . . , Ak−2m},B = {A2m+1, A2m+2, . . . , Ak}, and let |σm∗⟩ be the state guaranteed
by the Duplicate Lemma. Then, a straightforward induction shows
1. |⟨σ | σm∗⟩|2 ≥ 1 − 8m∗

ε ≥ 1 − 8k3ε,
2. |σm∗⟩ = |ϕ⟩⊗k.
That finishes the proof. ◀
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We make a remark about Theorem 23. Note that some polynomial dependence on k is
unavoidable in this analysis for our procedure. Consider the following state:

1√
k + 1

|⃗0⟩ + 1√
k + 1

k∑
i=1

|e⃗i⟩.

To obtain a tight version of the above theorem with linear dependency on k is an interesting
problem.

4.2 Many-versus-Many Slicing de Finetti
In Theorem 23, we considered top Schmidt coefficient being large on a 1 vs k − 1 cut for
pure state. By looking at the example we mentioned in the end of the previous subsection, it
is natural to think that if the top Schmidt coefficient is large among a balanced cut, then
we can obtain better trace distance. That is indeed the case. In fact, that top Schmidt
coefficient is large for a balanced cut always implies the top Schmidt coefficient is large for
a less balanced cut for a symmetric state. In this subsection, our goal is to formalize this
intuition.

▶ Theorem 25 (Many-versus-many Slicing de Finetti). Let |σ⟩A1...Ak ∈ ∨k(Cd). Suppose for
some 1 ≤ ℓ ≤ k/2, the top Schmidt coefficient of |σ⟩ over the A1 . . . Aℓ : Aℓ+1 . . . Ak cut is√

1 − ε. Then there is |ϕ⟩ ∈ Cd, such that

|⟨σ, ϕ⊗k⟩|2 ≥ 1 −O((k/ℓ)3ε).

We start by collecting a couple of useful facts. The first one says that if a symmetric
state from (Cd)⊗k is close to a product state, then it is also close to a symmetric product
state, i.e., |ϕ⊗k⟩ for some |ϕ⟩ ∈ Cd.

▶ Lemma 26. Given a symmetric state |σ⟩ ∈ ∨k(Cd) and a k-partite product state |ψ⟩ ∈
(Cd)⊗k. Suppose |⟨ψ | σ⟩|2 ≥ 1 − ε. Then there is |ϕ⟩ ∈ Cd that satisfies

|⟨σ | ϕ⊗k⟩|2 ≥ 1 − 9ε.

Proof. We take advantage of |σ⟩ being symmetric in a way similar to that of Lemma 24. As
|σ⟩ ∈ ∨k(Cd), we have for any permutation π ∈ Symk, |⟨σ | πψ⟩|2 ≥ 1 − ε. By Claim 10,

|⟨ψ | πψ⟩|2 ≥ 1 − 4ε.

Say |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψk⟩, then,

(1 − 4ε)k! ≤
∏

π∈Symk

|⟨ψ | πψ⟩|2 =

∏
i∈[k]

∏
j∈[k]

|⟨ψi | ψj⟩|2
(k−1)!

≤

 E
i∈[k]

∏
j∈[k]

|⟨ψi | ψj⟩|2
k!

, (4.3)

where the last step uses the AM-GM inequality. It follows from (4.3), there must exist i ∈ [k]
such that

1 − 4ε ≤
∏
j∈[k]

|⟨ψi | ψj⟩|2 ⇐⇒ 1 − 4ε ≤ |⟨ψ⊗k
i | ψ⟩|2.

Apply Claim 10 one more time, we obtain our lemma. ◀
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The second fact due to Harrow and Montanaro [17, Appendix B Lemma 2] and Soleimanifar
and Wright [31] establishes some criteria when a pure state is close to a product state.

▶ Lemma 27. Given any quantum state |ψ⟩ ∈ H1 ⊗ H2 ⊗ · · · ⊗ Hk for some arbitrary Hilbert
space H1, . . . ,Hk. Suppose

E
S⊆[k]

[Trψ2
S ] ≥ 1 − ε.

Then for some product state |ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕk⟩,

|⟨ψ | ϕ⟩|2 ≥ 1 − 3ε.

Combining the above two lemmas, we obtain

▶ Corollary 28. Given any state |σ⟩ ∈ ∨k(Cd). Suppose

E
S⊆[k]

[Trσ2
S ] ≥ 1 − ε.

Then for some state |ϕ⟩ ∈ Cd,

|⟨σ | ϕ⊗k⟩|2 ≥ 1 − 27ε.

From the above discussion, to prove Theorem 25, it suffices to bound Trψ2
S for any subset

S. The following “cut lemma” establishes such bounds.

▶ Lemma 29 (Cut Lemma). Let |σ⟩ ∈ ∨k(Cd). Suppose for some 1 ≤ ℓ ≤ k/2, the top
Schmidt coefficient of |σ⟩ over the A1 . . . Aℓ : Aℓ+1 . . . Ak cut is

√
1 − ε. Let S ⊆ [k] be some

arbitrary subset. Then,

Trσ2
S ≥


1, |S| = 0;
1 − 6ε, min{|S|, k − |S|} ∈ {1, 2, . . . , ℓ− 1};
1 −O((|S|/ℓ)3ε), min{|S|, k − |S|} ∈ {ℓ, . . . , k/2}.

Proof. For S = ∅, the statement is trivial as σ is pure. Since |σ⟩ ∈ ∨k(Cd), without
loss of generality, assume that S = {1, 2, . . . ,m} for some 1 ≤ m ≤ k/2. This is because
Trσ2

S = Trσ2
S when σ is a pure state. Let |ϕ⟩A1...Aℓ |ζ⟩Aℓ+1...Ak be the top Schmidt component

associated with the coefficient
√

1 − ε.

Case 1. m < ℓ. Let A = {1, 2, . . . ,m},B = {m+ 1, . . . , ℓ}, C = {ℓ+ 1, . . . , k − ℓ+m},D =
{k − ℓ+m+ 1, . . . , k}. Write down the Schmidt decomposition of |ϕ⟩ over the A and B cut,
|ζ⟩ over the C and D cut,

|ϕ⟩ =
∑
i

√
λi|αi⟩|βi⟩, |ζ⟩ =

∑
i

√
ηi|γi⟩|δi⟩.

Since B and D has the same size, and that |σ⟩ ∈ ∨k(Cd), we have for the state |ϕ⟩|ζ⟩, if
we switch the subsystem of B and D, then the overlap with |σ⟩ is still 1 − ε. Therefore, by
Claim 10, we have
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(1 − 2ε)2 ≤

∣∣∣∣∣∣
〈∑

i,j

√
λiηj⟨αi|A⟨βi|B⟨γj |C⟨δj |D,

∑
i,j

√
λiηj |αi⟩A|βi⟩D|γj⟩C |δj⟩B

〉∣∣∣∣∣∣
2

=

∑
i,j

λiηj |⟨βi | δj⟩|2
2

≤ λ2
1

∑
i,j

ηj |⟨βi | δj⟩|2
2

≤ λ2
1

∑
j

ηj
∑
i

|⟨βi | δj⟩|2
2

≤ λ2
1.

Immediately,

Trσ2
A ≥ (1 − ε)2 Tr[(TrBCD(ϕ⊗ ζ))2]

= (1 − ε)2 Tr

(TrBCD

(∑
i

λiαi ⊗ βi ⊗ ζ

))2


≥ (1 − ε)2λ2
1 ≥ (1 − ε)2(1 − 2ε)2

≥ 1 − 6ε. (4.4)

The first step is true because σ ⪰ (1 − ε)ϕ⊗ ζ, therefore TrBCD σ ⪰ (1 − ε) TrBCD(ϕ⊗ ζ) as
partial trace is completely positive. It then follows that Trσ2

A ⪰ (1 − ε)2 Tr(TrBCD(ϕ⊗ ζ))2.

Case 2. ℓ < m ≤ k/2. We are much like the situation of Theorem 23. Let t = ⌈log(m/ℓ)⌉.
For i = 1 to t, we apply the Duplicate Lemma and obtain a state |σi⟩, such that for
i = 1, 2, . . . , t

Tr{ℓ·2i+1,...,k} σi = ϕ⊗2i

,

Tr{ℓ·2i+1,...,k} σ
2
i = 1, (4.5)

|⟨σ | σi⟩|2 ≥ 1 − 8iε. (4.6)

By our choice of parameter, 2t−1ℓ < m ≤ 2tℓ. If m = 2tℓ, then (σt)S = Trℓ·2t+1,...,k σt is
pure by (4.5). Then√

Trσ2
S =

√
Trσ2

S · Tr(σt)2
S ≥ Tr(σS · (σt)S) = F (σS , (σt)S)

≥ F (σ, σt) = |⟨σ | σt⟩|2 ≥ (1 − 8log(m/ℓ))ε,

where the first step and third step are true because (σt)S is pure; the second step uses (2.1);
the fourth step is by Fact 11, the data processing inequality for fidelity; then fifth step is
again by purity of the states; and the final step uses (4.6). It follows that

Trσ2
S ≥ 1 −O((m/ℓ)3ε).

If m < 2tℓ, then we can apply Case 1. Let A = {1, 2, . . . , 2tℓ},B = {2tℓ+ 1, . . . , k}. Then in
view of (4.6), the top Schmidt coefficient of |σ⟩ among the A : B cut is at least

√
1 − 8tε by

Claim 12. Thus by (4.4),

Trσ2
S ≥ 1 − 6 · 8tε ≥ 1 −O((m/ℓ)3ε). ◀

Now Theorem 25 follows from Corollary 28 and Lemma 29.
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4.3 Proof of Theorem 22
Now we record a version of the slicing de Finetti theorem for the mixture of symmetric states.
A natural generalization of the top Schmidt coefficient among some A : B cut for a state σ
being large is that Trσ2

A being large. In particular,

▶ Lemma 30. Let σ ∈ Cn ⊗ Cm be some density operator, and A,B are the systems with
respect to the space Cn and Cm, respectively. Suppose

Trσ2
A ≥ 1 − ε.

Let µ be some distribution on pure states induced by σ, then

E
ρ∼µ

λ1(ρ) ≥ 1 − ε.

Proof. Let m = | suppµ| be a finite number, this is without loss of generality. Let
ρ1, ρ2, . . . , ρm be the pure states in suppµ. Further, write the Schmidt decomposition
for each ρi

|ρi⟩ =
∑
j

√
λij |ϕij⟩A|σij⟩B , λi1 ≥ λi2 ≥ · · · .

Then

σA =
∑
i

µ(ρi)
∑
j

λij |ϕij⟩⟨ϕij |.

Thus,

Trσ2
A =

∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i ̸=i′

µ(ρi)µ(ρi′)
∑
j,j′

λijλi′j′ |⟨ϕij | ϕi′j′⟩|2

≤
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i̸=i′

µ(ρi)µ(ρi′)λi1
∑
j,j′

λi′j′ |⟨ϕij | ϕi′j′⟩|2

≤
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i̸=i′

µ(ρi)µ(ρi′)λi1
∑
j′

λi′j′

≤
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i ̸=i′

µ(ρi)µ(ρi′)λi1

=
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i

µ(ρi)(1 − µ(ρi))λi1

≤
∑
i

µ(ρi)2λi1 +
∑
i

µ(ρi)(1 − µ(ρi))λi1

=
∑
i

µ(ρi)λi1,

where the third step holds because for fixed i, i′, j′,
∑
j |⟨ϕij | ϕi′j′⟩|2 ≤ 1. ◀

▶ Theorem 31. Given density operator σA1...Ak that describes states from conv
(
∨k(Cd)

)
.

For any 1 ≤ ℓ ≤ k/2 and A = {A1, A2, · · · , Aℓ}, there is some distribution µ on |ϕ⟩ ∈ Cd,∥∥∥∥σ −
∫

|ϕ⟩⟨ϕ|⊗kdµ
∥∥∥∥

1
≤ O

(√
(k/ℓ)3(1 − Trσ2

A)
)
. (4.7)

Proof. Let µ be the distribution on pure symmetric states induced by σ. Let Trσ2
A = 1 − ε.

The theorem follows immediately by combining Fact 8, Lemma 30, Theorem 25, and triangle
inequality. ◀
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5 A Framework: Multiplexing Unentangled States for Property Testing

In this section, we present a general template illustrating the utility of our disentangler The-
orem 2. We will then use this template multiple of times. Initially, we provide two examples
as warm-ups for what is to come. Subsequently, in later sections, we apply this template
with carefully designed testers to obtain new complexity results.

Our disentangler leverages a bipartite unentanglement assumption between two states
of the form ρ1 ⊗ ρ2 into an (approximate) multipartite unentanglement assumption of the
form

∫
|ψ⟩⟨ψ|⊗kdµ. Having sufficiently many unentangled copies of a state ψ is particularly

important in the context of quantum property testing as some properties require this
assumption for testability. Indeed, many of other information processing tasks like quantum
state tomography often assumes the input is of this form |ψ⟩⟨ψ|⊗k. Moreover, multiple copies
allow the tester to be executed multiple times amplifying its probability of distinguishing the
closeness to the desired property. Finally, a property tester may end up destroying the copies
ψ⊗k when it measures this state, so it is desirable to have additional copies that can be used
in further information processing tasks once the closeness to the desired property is certified.
In Figure 2, we provide an illustration of a property tester being used in conjunction with
our disentangler in order to obtain the aforementioned benefits.

ρ1

ρ2

Disentangler ψ · · · ψ ψ · · · ψ

Property Tester

Figure 2 Schematic picture of our disentangler being used to (approximately) ensure multiple
unentangled copies of a state as output. Part of these copies are used to test a given desired property.
If the test passes, the remaining “certified” copies can be used in further information processing
tasks.

Product Tester and Preparing Multipartite Separable States

To make this illustration more concrete, first we consider a scenario where the tester is the
product test [17]. More precisely, the product test requires two unentangled copies of |ψ⟩ ∈ Cd
and checks whether |ψ⟩ is close to a product state of the form |ϕ1⟩⊗· · ·⊗|ϕs⟩ ∈ Cd1 ⊗· · ·⊗Cds ,
where d = d1 · · · ds. For context, recall that (an abridged version of) their main result provides
the following guarantees for this tester.

▶ Theorem 32 (Product Test [17]). Given |ψ⟩ ∈ Cd1 ⊗ · · · ⊗ Cds , let

1 − ε = max
{

|⟨ψ |ϕ1, . . . , ϕs⟩|2 : |ϕi⟩ ∈ Cdi , 1 ≤ i ≤ s
}
.

Let Ptest(|ψ⟩⟨ψ|) be the probability that the product test passes when applied to |ψ⟩. Then, we
have Ptest(|ψ⟩⟨ψ|) = 1 − Θ(ε).

Combining our disentangler from Theorem 2 and the product test from Theorem 32,
we obtain the following corollary giving all the desired qualities alluded above in a more
quantitative way.
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▶ Corollary 33. Let H = Cd1 ⊗ · · · ⊗ Cds . For every k, k′, ℓ ∈ N such that ℓ ≥ k + 2k′, there
is a channel Γ: D(H⊗ℓ ⊗ H⊗ℓ) → D(H⊗k ⊗ C2) such that for every ρ1, ρ2 ∈ D(H⊗ℓ), there
exists σ ∈ D(H⊗k ⊗ C2) defined as

σ =
∫

|ψ⟩⟨ψ|⊗k ⊗
(
Ptest(|ψ⟩⟨ψ|)k

′
|1⟩⟨1| + (1 − Ptest(|ψ⟩⟨ψ|)k

′
)|0⟩⟨0|

)
dµ ,

such that

∥Γ(ρ1 ⊗ ρ2) − σ∥1 ≤ Õ

((
(k + 2k′)3

ℓ

)1/4)
.

Furthermore, Γ(ρ1 ⊗ ρ2) = (|ψ⟩⟨ψ|)⊗k ⊗ |1⟩⟨1| provided ρ1 = ρ2 = (|ψ⟩⟨ψ|)⊗ℓ, where |ψ⟩ =
|ϕ1⟩ ⊗ . . .⊗ |ϕs⟩ for some |ϕi⟩ ∈ Cdi for 1 ≤ i ≤ s.

Proof. Define another channel Γ′ : D(H⊗(k+2k′)) → D(H⊗k ⊗ C2) that takes as input the
output of the disentangler Λ which is comprised of k + 2k′ registers of the space H. We
define the channel Γ′ to act as identity on the first k registers. On the last 2k′ registers it
performs the product test on each pair of registers, outputting a single qubit |1⟩⟨1| if all tests
pass, otherwise outputting |0⟩⟨0|. Next we show Γ = Γ′ ◦ Λ, the composed channel, satisfies
the statement.

Given general input ρ1 ⊗ ρ2, by the guarantee of our disentangler, Λ(ρ1 ⊗ ρ2) satisfies∥∥∥∥Λ(ρ1 ⊗ ρ2) −
∫

|ψ⟩⟨ψ|⊗k+2k′
dµ

∥∥∥∥
1

≤ Õ

((
(k + 2k′)3

ℓ

)1/4)
.

Note that Γ′ applied to
∫

|ψ⟩⟨ψ|⊗k+2k′
dµ results in∫

|ψ⟩⟨ψ|⊗k ⊗
(
Ptest(|ψ⟩⟨ψ|)k

′
|1⟩⟨1| + (1 − Ptest(|ψ⟩⟨ψ|)k

′
)|0⟩⟨0|

)
dµ . (5.1)

Thus, the composed channel output Γ(ρ1 ⊗ρ2)) is Õ(((k+2k′)3/ℓ)1/4) close, in trace distance,
to the state of (5.1).

The furthermore part is straightforward. Suppose that |ψ⟩ = |ϕ1⟩ ⊗ . . . ⊗ |ϕs⟩, where
|ϕi⟩ ∈ Cdi for 1 ≤ i ≤ s, and ρ1 = ρ2 = (|ψ⟩⟨ψ|)⊗ℓ. In this case, Λ(ρ1 ⊗ ρ2) = (|ψ⟩⟨ψ|)⊗k+2k′

and Γ′(Λ(ρ1 ⊗ρ2)) = (|ψ⟩⟨ψ|)⊗k ⊗ |1⟩⟨1| since |ψ⟩ is a product state and product test accepts
with probability 1. ◀

QMA(2) Tester – Gap Amplification for QMA(2)

The gap amplification of QMA(2) was first proved in the seminar work of Harrow and
Montanaro [17]. Using our template, we provide a conceptually more straightforward proof:
Take the old QMA(2) protocol as the property tester in Figure 2.

▶ Theorem 34. Given a language L = (Lyes,Lno). Suppose that L ∈ QMA(2) with com-
pleteness c and soundness s, where c− s > 1/poly(n). Then, L ∈ QMA(2) with completeness
c′ = 1 − exp(−poly(n)) and soundness s′ = 1/poly(n).

Proof. Let P be the protocol for L with the promised completeness c and soundness s.
Therefore, for any fixed input x there is a measurement M acting on a space H⊗2 where
H = Cd, such that,

∃σ ⊗ ρ ∈ D(H⊗2), Tr(M(σ ⊗ ρ)) ≥ c, if x ∈ Lyes

∀σ ⊗ ρ ∈ D(H⊗2), Tr(M(σ ⊗ ρ)) ≤ s, if x ∈ Lno.
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In the new protocol, choose k = poly(n)/(c − s)2 and ℓ = poly(k) for some large enough
polynomial. We ask for two proofs |ρ1⟩, |ρ2⟩ ∈ D(H′⊗ℓ), where H′ = C2 ⊗ H. In words, H′ is
H with one extra qubit. Apply the disentangler Λ from Theorem 2 on ρ1 ⊗ ρ2, obtaining a
separable state ϕ =

∫
dµ|ψ⟩⟨ψ|⊗k, such that∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
dµ|ψ⟩⟨ψ|⊗k

∥∥∥∥
1

= 1
poly(n) . (5.2)

Consider the new measurement M ′ = |01⟩⟨01|⊗M . We apply M ′⊗(k/2) to Λ(ρ1 ⊗ρ2). Accept
if more than (c+ s)/2 fraction of the applications of M ′ accepts; reject otherwise. Next, we
calculate the completeness and soundness of the new protocol.

Completeness. Suppose that x ∈ Lyes, then the faithful prover will provide

|ρ1⟩ = |ρ2⟩ =
(

|0, σ⟩ + |1, ρ⟩√
2

)⊗ℓ

, and Λ(ρ1 ⊗ ρ2) =
(

|0, σ⟩ + |1, ρ⟩√
2

)⊗k

.

Calculating the probability that M ′ accepts (|0, σ⟩ + |1, ρ⟩)⊗2/2,

Tr
(
M ′
(

|0, σ⟩ + |1, ρ⟩√
2

)⊗2
)

= 1
4 Tr(M(σ ⊗ ρ)) ≥ c/4.

By Chernoff bound, with probability at least 1 − exp(−Ω((c− s)2k)) = 1 − exp(−poly(n)),
the new protocol accepts.

Soundness. Suppose that x ∈ Lno. Calculating the probability that M ′ accepts (α|0, σ⟩ +
β|1, ρ⟩)⊗2 for arbitrary α, β ∈ C and arbitrary σ, ρ ∈ H such that |α|2 + |β|2 = 1,

Tr(M ′(α|0, σ⟩ + β|1, ρ⟩)⊗2 = |αβ|2 Tr(M(σ ⊗ ρ)) ≤ s/4.

Therefore the probability to accept ϕ, an arbitrary convex combination of |ψ⟩⊗k is at most
exp(−Ω((c − s)2k)) by Chernoff bound. Finally, by (5.2), the probability of accepting
Λ(ρ1 ⊗ ρ2) is at most 1/poly(n). ◀

6 The Super Swap and Super Product Tests

In this section, we take another look at the product test as well as the swap test, considering
one of the strongest possible generalization of the two.

We start with the more elementary swap test, which is a widely used to test if two
quantum states, say |ψ⟩ and |ϕ⟩, are equal. One fundamental limitation of the swap test is
that it always accepts with probability at least 1/2 even if the states are orthogonal. More
precisely, its acceptance probability is (1 + |⟨ψ |ϕ⟩|2)/2. Ideally, it would be much more
useful to have a test with acceptance probability of |⟨ψ |ϕ⟩|2, which is impossible with only
one copy for each state. In the presence of many unentangled copies of |ϕ⟩ but just a single
copy of |ψ⟩, we show that it is possible to approach this goal with an arbitrarily small error
overcoming the inherent limitation of the swap test. Therefore, we call this test the super
swap test and we provide a description of it in Algorithm 2. In particular, this super swap
test can be useful when it is difficult to produce a state |ψ⟩, but much easier to produce
copies of |ϕ⟩ and we want the tester’s acceptance probability to more accurately capture how
close |ψ⟩ is to |ϕ⟩. In Section 7, the special state |ψ⟩ will be a nonnegative amplitudes state
which has a greater cost in the context of complexity protocols there, whereas |ϕ⟩ will have
general amplitudes being a cheaper resource in that context.

The acceptance probability of the super swap test is established next.
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Algorithm 2 SuperSwap(|ψ⟩, |ϕ⟩⊗ℓ).

Input: |ψ⟩, |ϕ⟩⊗ℓ.
1. Project |ψ⟩|ϕ⟩⊗ℓ onto the symmetric space ∨ℓ+1(Cd).
2. If the projection succeeds accept; else reject.

▶ Lemma 35. The super swap test accepts with probability

ℓ · |⟨ψ |ϕ⟩|2

ℓ+ 1 + 1
ℓ+ 1 .

Proof. Let Π = (1/(ℓ+ 1)!)
∑
π∈Symℓ+1

π be the projector onto ∨ℓ+1(Cd). Indeed, we have

⟨ψ|⟨ϕ|⊗ℓΠ|ψ⟩|ϕ⟩⊗ℓ = 1
ℓ+ 1 ⟨ψ |ψ⟩ ⟨ϕ |ϕ⟩ℓ + ℓ

ℓ+ 1 |⟨ψ |ϕ⟩|2 ⟨ϕ |ϕ⟩ℓ−2
,

concluding the proof. ◀

At first glance, it may seem inconvenient to assume multiple (ℓ-many) unentangled copies
of |ϕ⟩. However, due to our disentangler channel, we can enforce a distribution over product
states |ϕ⟩⊗ℓ by assuming only bipartite unentanglement.

Next we turn to the product test which checks whether a state is close to a k-partite
product state [17]. It has a similar drawback to the usual swap test, namely, it always accepts
with probability at least 1/2 even if the state |ψ⟩ is very far from product. As before, we
will arbitrarily improve the soundness of the product test by having multiple unentangled
copies. We call this new test the super product test and we describe it in Algorithm 3.

Algorithm 3 SuperProduct(|ψ⟩, (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ).

Input: |ψ⟩, (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ

1. Project |ψ⟩(|ϕ1⟩ . . . |ϕk⟩)⊗ℓ onto the symmetric space ∨ℓ+1((Cd)⊗k).
2. If the projection succeeds accept; else reject.

▶ Lemma 36. The super product test accepts with probability

ℓ

(ℓ+ 1) · |⟨ψ |ϕ1⟩ . . . |ϕk⟩|2 + 1
(ℓ+ 1) .

Proof. We view each copy of the state |ϕ1⟩ . . . |ϕk⟩ as a single state |ϕ⟩ and apply the super
swap test to |ψ⟩ and |ϕ⟩⊗ℓ. The acceptance probability of the super product test now follows
from Lemma 35. ◀

Analogously, it may seem inconvenient to assume multiple (ℓ-many) unentangled copies
of |ϕ1⟩ . . . |ϕk⟩. However, that is not an issue by Corollary 33: We can enforce a distribution
over product states (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ by assuming only 2 unentangled states.
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7 Gap Amplification for QMA+(k) up to Criticality and
Almost-QMA(k) = NEXP

In the previous section, we described a very strong version of swap test and product test,
noting that our disentangler channel has a good synergy with the new tests to overcome
the drawbacks in their original versions. In this section, we put the tools in the context of
quantum Merlin-Arthur games with unentangled provers, establishing our main complexity
results Theorems 4 and 5.

7.1 Gap Amplification for QMA+(k) up to Criticality
The gap amplification for QMA+(k) is much less straightforward than QMA(2). Indeed, a
full gap amplification would imply QMA(2) = NEXP. To give our half gap amplification
promised in Theorem 5, we start by showing how to simulate a QMA+(k) protocol P given
the following kinds of proofs:
1. one nonnegative-amplitudes proof |ψ⟩;
2. abundant equal copies of an arbitrary proofs over reals |ϕ⟩.
Note we are relaxing k nonnegative-amplitudes proofs in a QMA+(k) protocol with only one
nonnegative-amplitudes proof and general-amplitudes states. The motivation is, roughly, to
remove as many nonnegative-amplitudes proofs in a QMA+(k) protocol as possible, so we
get closer to a general QMA(k) protocol.

We will check whether |ϕ⟩⊗k is close to |ψ⟩. Either they are close and then we can use
the many copies of |ϕ⟩⊗k to simulate P, or else they are far apart and an application of the
super product test can detect this condition. A description of this simulation procedure is
given in Algorithm 4, which we denote as the symmetric simulator (since it assumes many
equal copies of |ϕ⟩).

Algorithm 4 SymSimulator.

Input: QMA+(k) protocol P, |ψ⟩ =
∑
i βi|i⟩ : βi ≥ 0, |ϕ⟩⊗2kℓ.

If SuperProduct(|ψ⟩, (|ϕ⟩⊗k)⊗ℓ) fails, then reject.
For i = 1, . . . , ℓ

Run the QMA+(k) protocol P on a new copy of |ϕ⟩⊗k.
If protocol rejects, then reject.

Accept.

We now analyze the completeness and soundness of this simulation.

▶ Lemma 37. Suppose P is a QMA+(k) protocol with completeness c and soundness s.
Let p(n) be a non-decreasing function such that p(n) ≥ C0 for a sufficiently large constant
C0 > 0. If ℓ ≥ 8p(n)2 ln(2) and s ≤ 1/8p(n)2, then SymSimulator has completeness cℓ and
soundness at most 1/2 + 1/p(n).

Proof. In the completeness case, we can assume that the proofs |ϕ⟩ have nonnegative
amplitudes and |ψ⟩ = |ϕ⟩⊗k. Thus, SymSimulator accepts with probability at least cℓ.

Now, suppose that we are in the soundness case. Set ε =
∣∣〈ψ ∣∣ϕ⊗k〉∣∣2. By Lemma 3, the

super product test accepts with probability(
εℓ

ℓ+ 1 + 1
ℓ+ 1

)
.
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Since ℓ ≥ 2p(n), if ε < 1/2 + 1/2p(n), then the acceptance probability due to the super
product test alone is at most 1/2 + 1/p(n) and we are done. Therefore, from now on, we
assume that ε ≥ 1/2 + 1/2p(n).

Suppose |ϕ⟩ =
∑
i αi|i⟩, and let |ϕ+⟩ =

∑
i |αi| |i⟩. Thus, |ϕ+⟩ is a valid nonnegative-

amplitudes state. Since |ψ⟩ has nonnegative amplitudes by assumption, we should have

|⟨ψ | ϕ⊗k
+ ⟩|2 ≥ |⟨ψ | ϕ⊗k⟩|2 = ε. (7.1)

This is because the latter inner product incurs some cancellations due to negative values,
which are avoided in the former inner product. (7.1) together with Claim 10 implies that

|⟨ϕ⊗k, ϕ⊗k
+ ⟩|2 ≥ 2ε− 1.

Since we are assuming ε > 1/2, the trace distance between |ϕ⟩⊗k and |ϕ+⟩⊗k can be bounded
as below

D(ϕ⊗k, ϕ⊗k
+ ) ≤ 2

√
ε(1 − ε) (7.2)

Note that P accepts |ϕ⊗k
+ ⟩ with probability at most s by the soundness of P. Therefore,

each execution of the protocol P on |ϕ⟩⊗k accepts with probability, by Fact 9, at most

min{1, 2
√
ε(1 − ε) + s}.

The overall soundness of SymSimulator becomes(
ε

ℓ

ℓ+ 1 + 1
ℓ+ 1

)(
min{1, 2

√
ε(1 − ε) + s}

)ℓ
.

Now take ε ≥ 1/2 + 1/2p(n), and compute, we have

2
√
ε(1 − ε) ≤ 2

√
1
4 − 1

4p(n)2 ≤ 1 − 1
2p(n)2 +O

(
1

p(n)4

)
≤ 1 − 1

4p(n)2 ,

where the last inequality relies on p(n) ≥ C0 for a large enough constant C0 > 0. Using that
s ≤ 1/8p(n)2 and ℓ ≥ 8p(n)2 ln(2), the final acceptance probability is

(
2
√
ε(1 − ε) + s

)ℓ
≤
(

1 − 1
8p(n)2

)ℓ
≤ 1

2 ,

concluding the proof. ◀

To remove 2 the symmetric assumption of having multiple identical copies of |ϕ⟩ in
SymSimulator, we use the PAPO channel Λ and the PAPO channel takes just two unentangled
proofs |ϕ′⟩ and |ϕ′′⟩ (of arbitrary amplitudes) as its input. In other words, we now simulate
a QMA+(k) protocol P with:

(i) one nonnegative-amplitudes proof |ψ⟩;
(ii’) two general states |ϕ′⟩, |ϕ′′⟩.

A formal description of the new simulation is given in Algorithm 5.
The analysis of Algorithm 5 is similar to that of Lemma 37. Therefore, instead of

presenting an analysis of Algorithm 5 in isolation, we now apply this simulation for a
QMA+(k) protocol P that solves a NEXP-complete problem. In particular, we will need the
following characterization of QMA+(2) from [20] as shown in the following theorem.
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Algorithm 5 Simulator.

Input: QMA+(k) protocol P, |ψ⟩ =
∑
i βi|i⟩ : βi ≥ 0, |ϕ′⟩, |ϕ′′⟩

Let ρ be the output of our disentangler Λ(ϕ′ ⊗ ϕ′′) (i.e. Theorem 2).
If SymSimulator(P, |ψ⟩, ρ) accepts, then accept; else reject.

▶ Theorem 38 ([20]). QMA+(2) = NEXP.

Algorithm 5 gives rise to a protocol for NEXP that improves the above theorem in two
aspects. First, the new protocol uses three unentangled proofs among which only one is
required to have nonnegative amplitudes. Second, the completeness and soundness gap of
this protocol is about 1/2. This seemingly mediocre gap is in fact a critical point, which we
discuss in the next section.

▶ Theorem 5. NEXP = QMA+(3) with completeness c = 1 − exp(−poly(n)) and soundness
s = 1/2 + 1/poly(n). Furthermore, we can assume a particular case of QMA+(3) in which
two unentangled proofs have arbitrary amplitudes whereas only one unentangled proof has
nonnegative amplitudes.

Proof. From Theorem 38, we apply the standard gap amplification by asking for more
unentangled proofs to obtain a QMA+(k) protocol P with completeness c = 1−exp(−poly(n))
and soundness s = exp(−poly(n)), where k = poly(n). Simulate P using Algorithm 5. By
Theorem 2, ρ = Λ(ϕ′ ⊗ ϕ′′) is 1/poly(n)-close to a convex combination of product states∫

|ϕ⟩⟨ϕ|⊗2kℓdµ with ℓ = poly(n). Invoking the symmetric simulator, by Lemma 37, the
completeness becomes cℓ ≥ 1 − exp(−poly(n)) and the soundness 1/2 + 1/poly(n) for a
suitable choice of polynomial ℓ = poly(n). ◀

7.2 Almost-QMAR(k) = NEXP
Next, we show how to go from the nonnegative amplitudes assumptions to almost general
amplitudes. Recall that the ℓ2-sign bias of a state |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩, where |ψ+⟩

and |ψ−⟩ are the normalized nonnegative and negative amplitudes parts of |ψ⟩, is defined as
|a− (1 − a)| (see Definition 14).

▶ Theorem 4. NEXP = almost-QMAR(k) with unentangled proofs of ℓ2-sign bias of8
b(n) ≥ poly(1/n) and k = poly(1/b(n)).

Proof. We start with the QMA+(3) protocol from Theorem 5 with two general proofs
|ϕ′⟩, |ϕ′′⟩ and only one nonnegative proof |ψ⟩. Let M be the verifier measurement. In the
completeness case, we can assume that |ψ⟩ has nonnegative amplitudes so we proceed to
analyze the soundness case.

In the almost-QMAR(3) protocol, |ψ⟩ will no-longer be assumed to have nonnegative
amplitudes. Instead, we write |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩, where |ψ+⟩ and |ψ−⟩ are its

nonnegative- and negative-amplitudes normalized states. Without loss of generality, suppose
that a ≥ 1/2. Furthermore, under the ℓ2-sign bias assumption, we may assume that

a ≥ 1/2 +
√

100/p(n). (7.3)

8 The letter n represents the input size and b(n) is any polynomial time computable function bounded
from below by a polynomial, i.e., by 1/nc for some constant c > 0.
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Let |ϕ′⟩ and |ϕ′′⟩ be some quantum states (ignoring the ℓ2-bias requirement) as to be used
in the simulation Algorithm 5. The combined proofs of the almost-QMAR(3) protocol can
be expressed as |ξ⟩ =

√
a|ξ0⟩ +

√
1 − a|ξ1⟩, where |ξ0⟩ = |ϕ′⟩ ⊗ |ϕ′′⟩ ⊗ |ψ+⟩ and |ξ1⟩ =

|ϕ′⟩ ⊗ |ϕ′′⟩ ⊗ |ψ−⟩. Denote s the soundness of QMA+(3) protocol from Theorem 5. Then we
can assume

s ≤ 1/2 + 6/p(n). (7.4)

Calculating the accepting probability of M on ξ,

⟨ξ|M |ξ⟩ = a⟨ξ0|M |ξ0⟩ + (1 − a)⟨ξ1|M |ξ1⟩

+
√
a(1 − a)⟨ξ0|M |ξ1⟩ +

√
a(1 − a)⟨ξ1|M |ξ0⟩

≤ s+
√
a(1 − a) (⟨ξ0|M |ξ0⟩ + ⟨ξ1|M |ξ1⟩)

≤ (1 + 2
√
a(1 − a))s. (7.5)

where the first inequality follows from M being PSD, i.e., since (⟨ξ0| − ⟨ξ1|)M(|ξ0⟩ − |ξ1⟩) ≥ 0
implies ⟨ξ0|M |ξ0⟩ + ⟨ξ1|M |ξ1⟩ ≥ ⟨ξ0|M |ξ1⟩ + ⟨ξ1|M |ξ0⟩. By (7.3) and (7.4), we have

(1 + 2
√
a(1 − a))s ≤

(
2 − 8

p(n)

)
s ≤

(
2 − 8

p(n)

)(
1
2 + 1

p(n)

)
≤ 1 − 2

p(n) .

Note that by a suitable choice of polynomial p(n) and the initial completeness c =
1 − exp(−poly(n)) of the QMA+(3) protocol of Theorem 5, we obtain a gap of Ω(1/p(n)).
To conclude the proof, we apply standard gap amplification using k = poly(p(n)) proofs in
almost-QMAR(k). ◀

We emphasize an important observation following from the above analysis: The “half” gap
amplification in Theorem 5 is almost optimal. A larger gap in Theorem 5 by an additive term
1/poly(n) (e.g., if the soundness was at most 1/2 − 1/poly(n)) would allow us to completely
discard the ℓ2-sign bias assumption in Theorem 4, showing NEXP = QMAR(k). This can
be easily seen in (7.5), when s < 1/2 − 1/poly(n), the RHS will be at most 1 − 1/poly(n).
It means that s = 1/2 ± 1/poly(n) in Theorem 5 is a critical point. In the case that
QMA(k)R ̸= NEXP, there is a sharp phase transition.
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