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Abstract
Adversarially robust streaming algorithms are required to process a stream of elements and produce
correct outputs, even when each stream element can be chosen as a function of earlier algorithm
outputs. As with classic streaming algorithms, which must only be correct for the worst-case fixed
stream, adversarially robust algorithms with access to randomness can use significantly less space
than deterministic algorithms. We prove that for the Missing Item Finding problem in streaming,
the space complexity also significantly depends on how adversarially robust algorithms are permitted
to use randomness. (In contrast, the space complexity of classic streaming algorithms does not
depend as strongly on the way randomness is used.)

For Missing Item Finding on streams of length ℓ with elements in {1, . . . , n}, and ≤ 1/poly(ℓ)
error, we show that when ℓ = O(2

√
log n), “random seed” adversarially robust algorithms, which

only use randomness at initialization, require ℓΩ(1) bits of space, while “random tape” adversarially
robust algorithms, which may make random decisions at any time, may use O(polylog(ℓ)) random
bits. When ℓ is between nΩ(1) and O(

√
n), “random tape” adversarially robust algorithms need ℓΩ(1)

space, while “random oracle” adversarially robust algorithms, which can read from a long random
string for free, may use O(polylog(ℓ)) space. The space lower bound for the “random seed” case
follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming
algorithms given in this paper.
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1 Introduction

Randomized streaming algorithms can achieve exponentially better space bounds than
corresponding deterministic ones: this is a basic, well-known, easily proved fact that applies
to a host of problems of practical interest. A prominent class of randomized streaming
algorithms uses randomness in a very specific way, namely to sketch the input stream by
applying a random linear transformation – given by a sketch matrix S – to the input frequency
vector. The primary goal of a streaming algorithm is to achieve sublinear space, so it is
infeasible to store S explicitly. In some well-known cases, the most natural presentation of
the algorithm is to explicitly describe the distribution of S, a classic case in point being
frequency moment estimation [16]. This leads to an algorithm that is very space-efficient
provided one doesn’t charge the algorithm any space cost for storing S. Algorithms that
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work this way can be thought of as accessing a “random oracle”: despite their impracticality,
they have theoretical value, because the standard ways of proving space lower bounds for
randomized streaming algorithms in fact work in this model. For the specific frequency-
moment algorithms mentioned earlier, [16] goes on to design variants of his algorithms that
use only a small (sublinear) number of random bits and apply a pseudorandom generator to
suitably mimic the behavior of his random-oracle algorithms. Thus, at least in this case, a
random oracle isn’t necessary to achieve sublinear complexity. This raises a natural question:
from a space complexity viewpoint, does it ever help to use a random oracle, as opposed to
“ordinary” random bits that must be stored (and thus paid for) if they are to be reused?

For most classic streaming problems, the answer is “No,” but for unsatisfactory reasons:
Newman’s Theorem [21] allows one to replace a long oracle-provided random string by a
much shorter one (that is cheap to store), though the resulting algorithm is non-constructive.
This brings us to the recent and ongoing line of work on adversarially robust streaming
algorithms where we shall find that the answer to our question is a very interesting “Yes.”
For the basic and natural MissingItemFinding problem, defined below, we shall show that
three different approaches to randomization result in distinct space-complexity behaviors.
To explain this better, let us review adversarial robustness briefly.

Some recent works have studied streaming algorithms in a setting where the input to the
algorithm can be adaptively (and adversarially) chosen based on its past outputs. Existing
(“classic”) randomized streaming algorithms may fail in this adversarial setting when the
input-generating adversary learns enough about the past random choices of the algorithm to
identify future inputs on which the algorithm will likely fail. There are, heuristically, two
ways for algorithm designers to protect against this: (a) prevent the adversary from learning
the past random choices of the algorithm (in the extreme, by making a pseudo-deterministic
algorithm), or (b) prevent the adversary from exploiting knowledge of past random decisions,
by having the algorithm’s future behavior depend on randomness that it has not yet revealed.
Concretely, algorithms in this setting use techniques such as independent re-sampling [6],
sketch switching using independent sub-instances of an underlying classic algorithm [5],
rounding outputs to limit the number of computation paths [5], and differential privacy
to safely aggregate classic algorithm sub-instances [15]. Mostly, these algorithms use at
most as many random bits as their space bounds allow. However, some recently published
adversarially robust streaming algorithms for vertex-coloring a graph (given by an edge
stream) [8, 2], and one for the MissingItemFinding problem [24], assume access to a large
amount of oracle randomness: they prevent the adversary from exploiting the random bits it
learns by making each output depend on an unrevealed part of the oracle random string.
It is still open whether these last two problems have efficient solutions that do not use this
oracle randomness hammer. This suggests the following question:

Are there problems for which space-efficient adversarially robust
streaming algorithms provably require access to oracle randomness?

In this paper, we prove that for certain parameter regimes, MissingItemFinding
(henceforth, mif) is such a problem. In the problem mif(n, ℓ), the input is a stream ⟨e1, . . . , eℓ⟩
of ℓ integers, not necessarily distinct, with each ei ∈ {1, . . . , n}, where 1 ≤ ℓ ≤ n. The goal is
as follows: having received the ith integer, output a number v in {1, . . . , n}\{e1, . . . , ei}. We
will be mostly interested in the setting ℓ = o(n), so the “trivial” upper bound on the space
complexity of mif(n, ℓ) is O(ℓ log n), achieved by the deterministic algorithm that simply
stores the input stream as is.
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1.1 Groundwork for Our Results
To state our results about mif, we need to introduce some key terminology. Notice that
mif is a tracking problem: an output is required after reading each input.Thus, we view
streaming algorithms as generalizations of finite state (Moore-type) machines. An algorithm
A has a finite set of states Σ (leading to a space cost of log2 |Σ|), a finite input set I, and a
finite output set O. It has a transition function T : Σ× I ×R → Σ indicating the state to
switch to after receiving an input, plus an output function γ : Σ ×R → O indicating the
output produced upon reaching a state. How the final parameter (in R) of T and γ is used
depends on the type of randomness. We consider four cases, leading to four different models
of streaming computation.

Deterministic. The initial state of the algorithm is a fixed element of Σ, and T and γ

are deterministic (they do not depend on the parameter in R).
Random seed. The initial state is drawn from a distribution D over Σ, and T and γ are
deterministic. This models the situation that all random bits used count towards the
algorithm’s space cost.
Random tape. The initial state is drawn from a distribution D over Σ. The space R
is a sample space; when the algorithm receives an input e ∈ I and is at state σ ∈ Σ, it
chooses a random ρ ∈ R independent of all previous choices and moves to state T (e, σ, ρ).
However, γ is deterministic.This models the situation that the algorithm can make random
decisions at any time, but it cannot remember past random decisions without recording
them (which would add to its space cost).
Random oracle. The initial state is fixed; R is a sample space. A specific R ∈ R is drawn
at the start of the algorithm and stays the same over its lifetime. When the algorithm
is at state σ and receives input e, its next state is T (e, σ, R). The output given at state
σ is γ(σ, R). This models the situation that random bits are essentially “free” to the
algorithm; it can read from a long random string which doesn’t count toward its space
cost and which remains consistent over its lifetime. A random oracle algorithm can be
interpreted as choosing a random deterministic algorithm, indexed by R, from some
family.

These models form a rough hierarchy; they have been presented in (almost) increasing
order of power. Every z-bit (2z-state) deterministic algorithm can be implemented in any
of the random models using z bits of space; the same holds for any z-bit random seed
algorithm. Every z-bit random tape algorithm has a corresponding (z + log ℓ)-bit random
oracle algorithm – the added space cost is because for a random oracle algorithm to emulate
a random tape algorithm, it must have a way to get “fresh” randomness on each turn.1

Streaming algorithms are also classified by the kind of correctness guarantee they provide.
Recall that we focus on “tracking” algorithms [5]; they present an output after reading each
input item and this entire sequence of outputs must be correct. Here are three possible
meanings of the statement “algorithm A is δ-error” (we assume that A handles streams of
length ℓ with elements in I and has outputs in O):

Static setting. For all inputs τ ∈ Iℓ, running A on τ produces incorrect output with
probability ≤ δ.

1 An alternative, which lets one express z-bit random tape algorithms using a z-bit random oracle variant,
is to assume the random oracle algorithm has access to a clock or knows the position in the stream for
free; both are reasonable assumptions in practice.
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Adversarial setting. For all (computationally unbounded) adaptive adversaries α (i.e.,
for all functions α : O⋆ → I),2 running A against α will produce incorrect output with
probability ≤ δ.
Pseudo-deterministic setting. There exists a canonical output function f : I⋆ → O
producing all correct outputs so that, for each τ ∈ Iℓ, A(τ) fails to output f(τ) with
probability ≤ δ.

Algorithms for the static setting are called “classic” streaming algorithms; ones for
the adversarial setting are called “adversarially robust” streaming algorithms. All pseudo-
deterministic algorithms are adversarially robust, and all adversarially robust algorithms are
also classic.

As a consequence of Newman’s theorem [21], any random oracle or random tape algorithm
in the static setting with error δ can be emulated using a random seed algorithm with only ε

increase in error and an additional O(log ℓ + log log |I|+ log 1
εδ ) bits of space. However, the

resulting algorithm is non-constructive.

1.2 Our Results
As context for our results, we remind the reader that it’s trivial to solve mif(n, ℓ) in O(ℓ log n)
space deterministically (somewhat better deterministic bounds were obtained in [24]). Moving
to randomized algorithms, [24] gave a space bound of O(log2 n) for ℓ ≤ n/2 in the static
setting, and a bound of Õ(ℓ2/n + 1) 3 in the adversarial setting, using a random oracle. The
immediate takeaway is that, given access to a deep pool of randomness (i.e., an oracle),
mif becomes easy in the static setting for essentially the full range of stream lengths ℓ and
remains easy even against an adversary for lengths ℓ ≤

√
n.

The main results of this paper consist of three new lower bounds and one new upper
bound on the space complexity of mif(n, ℓ). Stating the bounds in their strongest forms
leads to complicated expressions; therefore, we first present some easier-to-read takeaways
from these bounds that carry important conceptual messages. In the lower bounds below,
the error level should be thought of as δ = 1/n2.

▶ Result 1. At ℓ =
√

n, adversarially robust random tape algorithms for mif(n, ℓ) require
Ω(ℓ1/4) bits of space. More generally, for every constant α ∈ (0, 1), there is a constant
β ∈ (0, 1) such that at ℓ = Ω(nα), the space requirement is Ω(ℓβ), in the adversarially robust
random tape setting.

This shows that mif remains hard, even for modest values of ℓ, if we must be robust
while using only a random tape, i.e., if there is a cost to storing random bits we want to reuse
– a very reasonable requirement for a practical algorithm. The above result is an exponential
separation between the random tape and random oracle models.

The random seed model places an even greater restriction on an algorithm: besides
counting towards storage cost, random bits are available only at initialization and not on the
fly. Many actual randomized algorithms, including streaming ones, are structured this way,
making it a natural model to study. We obtain the following result.

▶ Result 2. Adversarially robust random seed algorithms for mif(n, ℓ) require Ω̃(
√

ℓ) bits of
space.

2 By the minimax theorem, it suffices to consider deterministic adversaries.
3 The notations Õ(·) and Ω̃(·) hide factors polylogarithmic in n and ℓ.
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Table 1 Bounds for the space complexity of mif(n, ℓ), from this and prior work. To keep
expressions simple, these bounds are evaluated at error level δ = 1/n2, when applicable. (†)
indicates that the precise results are stronger.

Setting Type Bound Reference

Static Random seed O((log n)2) if ℓ ≤ n/2 [24]
Adversarial Random oracle O(( ℓ2

n + log n) log n) [24]
Ω( ℓ2

n ) [24]
Adversarial Random tape O(ℓlogn ℓ(log ℓ)2 + log ℓ · log n) † Theorem 1

Ω( log ℓ
log n ℓ

15
32 logn ℓ) † Theorem 8

Adversarial Random seed O(( ℓ2

n +
√

ℓ + log n) log n) [24]a)

Ω( ℓ2

n +
√

ℓ
(log n)3 + ℓ1/5) Theorem 10

Pseudo-
deterministic

Random oracle Ω( ℓ
(log(2n/ℓ))2 + (ℓ log n)1/4) Theorem 16

Static Deterministic Ω( ℓ
log(2n/ℓ) +

√
ℓ) [24]

O( ℓ log ℓ
log n +

√
ℓ log ℓ) [24]

a) The random seed algorithm for the adversarial setting is given in the arXiv version of [24].

Consider the two results above as ℓ decreases from
√

n to Θ(1). The bound in Result 2
stays interesting even when ℓ = no(1), so long as ℓ ≥ (log n)C for a suitable constant C (in
fact, the full version of the result is good for even smaller ℓ). In contrast, the bound in
Result 1 peters out at much larger values of ℓ. There is a very good reason: mif starts to
become “easy,” even under a random-tape restriction, once ℓ decreases to sub-polynomial in
n. Specifically, we obtain the following upper bound.

▶ Result 3. There is an adversarially robust random tape algorithm for mif(n, ℓ) that, in
the regime ℓ = O(2

√
log n), uses O(log ℓ · log n) bits of space.

Notice that at ℓ = Θ(2(log n)1/C ), where C ≥ 2 is a constant, the bound in Result 3
is polylogarithmic in ℓ. Combined with the lower bound in Result 2, we have another
exponential separation, between the random seed and random tape models.

The proof of Result 2 uses a reduction, given in prior work [24], that converts a space
lower bound in the pseudo-deterministic setting to a related bound in the random-seed setting.
A pseudo-deterministic algorithm is allowed to use randomness (which, due to Newman’s
theorem, might as well be of the oracle kind) but must, with high probability, map each input
to a fixed output, just as a deterministic algorithm would. This strong property makes the
algorithm adversarially robust, because the adversary has nothing to learn from observing
its outputs. Thanks to the [24] reduction, the main action in the proof of Result 2 is the
following new lower bound we give.

▶ Result 4. Pseudo-deterministic random oracle algorithms for mif(n, ℓ) require Ω̃(ℓ) bits
of space.

These separations rule out the possibility of a way to convert an adversarially robust
random oracle algorithm to use only a random seed or even a random tape, with only minor
(e.g., a polylog(ℓ, n) factor) overhead. In contrast, as we noted earlier, such a conversion is
routine in the static setting, due to Newman’s theorem [21]. The separation between random
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oracle and random tape settings shows that MissingItemFinding is a problem for which
much lower space usage is possible if one’s adversaries are computationally bounded (in
which case a pseudo-random generator can emulate a random oracle.)

Table 1 shows more detailed versions of the above results as well as salient results from
earlier work, summarizing the state of the art for the space complexity of mif(n, ℓ). The
fully detailed versions of our results, showing the dependence of the bounds on the error
probability, appear in later sections of the paper, as indicated in the table.

1.3 Related Work
We briefly survey related work. An influential early work [14] considered adaptive adversaries
for linear sketches. The adversarial setting was formally introduced by [5], who provided
general methods (like sketch-switching) for designing adversarially robust algorithms given
classic streaming algorithms, especially in cases where the problem is to approximate a
real-valued quantity. For some tasks, like F0-estimation, they obtained slightly better upper
bounds by using a random oracle, although later work [26] removed this need. [6] observed
that in sampling-based streaming algorithms, increasing the sample size is often all that is
needed to make an algorithm adversarially robust. [15] described how to use differential
privacy techniques as a more efficient alternative to sketch-switching, and [4] used this as
part of a more efficient adversarially robust algorithm for turnstile F2-estimation.

Most of these papers focus on providing algorithms and general techniques, but there
has been some work on proving adversarially robust lower bounds. [18] described a problem
(of approximating a certain real-valued function) that requires exponentially more space in
the adversarial setting than in the static setting. [8], in a brief comment, observed a similar
separation for a simple problem along the lines of mif. They also proved lower bounds for
adversarially robust coloring algorithms for graph edge-insertion streams. [24] considered the
mif problem as defined here and, among upper and lower bounds in a number of models,
described an adversarially robust algorithm for mif that requires a random oracle; they asked
whether a random oracle is necessary for space-efficient algorithms.

The white-box adversarial setting [1] is similar to the adversarial setting we study, with the
adversary having the additional power of seeing the internal state of the algorithm, including
(if used) the random oracle. [24] proved an Ω(ℓ/polylog(n)) lower bound for mif(n, ℓ) for
random tape algorithms in this setting, suggesting that any more efficient algorithm for mif
must conceal some part of its internal state. Pseudo-deterministic streaming algorithms were
introduced by [12], who gave lower bounds for a few problems. [7, 13] gave lower bounds for
pseudo-deterministic algorithms that approximately count the number of stream elements.
The latter shows they require Ω(log m) space, where m is the stream length; in contrast, in
the static setting, Morris’s counter algorithm4 uses only O(log log m) space.

While it is not posed as a streaming task, the mirror game introduced by [11] is another
problem with conjectured separation between the space needed for different types of ran-
domness. In the mirror game, two players (Alice and Bob) alternately state numbers in the
set {1, . . . , n}, where n is even, without repeating any number, until one player mistakenly
states a number said before (loss) or the set is completed (tie). [11] showed that if Alice has
o(n) bits of memory and plays a deterministic strategy, Bob can always win. Later, [10, 20]
showed that if Alice has access to a random oracle, she can tie-or-win w.h.p. using only

4 Morris’s is a “random tape” algorithm; “random seed” algorithms for counting aren’t better than
deterministic ones.
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O(polylog(n)) space. A major open question here is how much space Alice needs when
she does not have a random oracle. [19] did not resolve this, but showed that if Alice is
“open-book” (equivalently, that Bob is a white-box adversary and can see her state), then
Alice needs Ω(n) bits of state to tie-or-win.

Assuming access to a random oracle is a reasonable temporary measure when designing
streaming algorithms in the static setting. As noted at the beginning of Section 1, [16]
designed Lp-estimation algorithms using random linear sketch matrices, without regard to the
amount of randomness used, and then described a way to apply Nisan’s PRG [22] to partially
derandomize these algorithms and obtain efficient (random seed) streaming algorithms. In
general, the use of PRGs for linear sketches has some space overhead, which later work
(see [17] as a recent example) has been working to eliminate.

It is important to distinguish the “random oracle” type of streaming algorithm from the
“random oracle model” in cryptography [3], in which one assumes that all agents have access
to the random oracle. [1], when defining white-box adversaries, also assumed that they can
see the same random oracle as the algorithm; and, for one task, obtained a more efficient
algorithm against a computationally bounded white-box adversary, when both have access
to a random oracle, than when neither do. Tight lower bounds are known in neither case.

The power of different types of access to randomness has been studied in computational
complexity. [23] showed that logspace Turing machines with a multiple-access random tape
can (with zero error) decide languages that logspace Turing machines with a read-once
random tape decide only with bounded two-sided error. This type of separation does not
hold for time complexity classes.

For a more detailed history and survey of problems related to MissingItemFinding, we
direct the reader to [24].

2 Organization of This Extended Abstract

What follows is an extended abstract of our paper, which omits formal proofs of our results.
Instead, we give a technical overview of each result, followed by selected details of its proof.
The full paper contains all remaining details and formal proofs.

2.1 Notation
Throughout this paper, log x = log2 x, while ln x = loge x. The set N consists of all
positive integers; [k] := {1, 2, . . . , k}; and [a, b) is a half open interval of real numbers.
For a condition or event E, the symbol 1E takes the value 1 if E occurs and 0 otherwise.
The sequence (stream) obtained by concatenating sequences a and b, in that order, is
denoted a ◦ b. For a set S of elements in a totally ordered universe, sort(S) denotes the
sequence of elements of S in increasing order;

(
S
k

)
is the set of k-element subsets of S; and

seqs(S, k) = {sort(Y ) : Y ∈
(

S
k

)
}. We sometimes extend set-theoretic notation to vectors

and sequences; e.g., for y ∈ [n]t, write y ⊆ S to mean that ∀i ∈ [t] : yi ∈ S. For a set X,
△[X] denotes the set of probability distributions over X, while A ∼ X indicates that A is
chosen uniformly at random from X.

2.2 Preliminary Remarks
The proofs of Results 1, 3, and 4 are all significant generalizations of existing proofs from [24]
which handled different (and more tractable) models. The proof of Result 2 consists of
applying a reduction from [24] to the lower bound given by Result 4. As we explain our
techniques, we will summarize the relevant “basic” proofs from [24], which will clarify the
enhancements needed to obtain our results.

CCC 2024
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Space complexity lower bounds in streaming models are often proved via communication
complexity. This meta-technique is unavailable to us, because the setup of communication
complexity blurs the distinctions between random seed, random tape, and random oracle
models and our results are all about these distinctions. Instead, to prove Result 1, we
design a suitable strategy for the stream-generating adversary that exploits the algorithm’s
random-tape limitation by learning enough about its internal state. Our adversary uses a
nontrivially recursive construction. To properly appreciate it, it is important to understand
what streaming-algorithmic techniques the adversary must contend with. Therefore, we shall
discuss our upper bound result first.

3 Random Tape Upper Bound (Result 3)

The adversarially robust random tape algorithm for mif(n, ℓ) can be seen as a generalization
of the random oracle and random seed algorithms.

The random oracle algorithm and its adversaries. The random oracle algorithm for
mif(n, ℓ) from [24] has the following structure. It interprets its oracle random string as a
uniformly random sequence L containing ℓ + 1 distinct elements in [n]. As it reads its input,
it keeps track of which elements in L were in the input stream so far (were “covered”). It
reports as its output the first uncovered element of L. Because L comes from the oracle, the
space cost of the algorithm is just the cost of keeping track of the set J of covered positions in
L. We will explain why that can be done using only O((ℓ2/n + 1) log ℓ) space, in expectation.

An adversary for the algorithm only has two reasonable strategies for choosing the next
input. It can “echo” back the current algorithm output to be the next input to the algorithm.
It can also choose the next input to be a value from the set U of values that are neither an
earlier input nor the current output – but because L is chosen uniformly at random, one can
show that the adversary can do no better than picking the next input uniformly at random
from U . (The third strategy, of choosing an old input, has no effect on the algorithm.)
When the algorithm is run against an adversary that chooses inputs using a mixture of
the echo and random strategies, the set J will be structured as the union of a contiguous
interval starting at 1 (corresponding to the positions in L covered by the echo strategy) and
a sparse random set of expected size O(ℓ2/n) (corresponding to positions in L covered by
the random strategy). Together, these parts of J can be encoded using O((ℓ2/n + 1) log ℓ)
bits, in expectation.

Delaying the echo strategy. If we implemented the above random oracle algorithm as a
random seed algorithm, we would need Ω(ℓ) bits of space, just to store the random list L.
But why does L need to have length ℓ + 1? This length is needed for the algorithm to be
resilient to the echo strategy, which covers one new element of L on every step; if L were
shorter, the echo strategy could entirely cover it, making the algorithm run out of possible
values to output. The random seed algorithm for mif(n, ℓ) works by making the echo strategy
less effective, ensuring that multiple inputs are needed for it to cover another element of L.
It does this by partitioning [n] into Θ(ℓ) disjoint subsets (“blocks”) of size Θ(n/ℓ), and then
taking L to be a random list of blocks (rather than a random list of elements of [n]). We
will now say that a block is “covered” if any element of that block was an input. Instead of
outputting the first uncovered element in L, the algorithm will run a deterministic algorithm
for mif inside the block corresponding to the first uncovered block of L, and report outputs
from that; and will only move on to the next uncovered block when the nested algorithm
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stops. See Algorithm 1 for the details of this design. Because the analogue of the echo
strategy now requires many more inputs to cover a block, we can make the list L shorter.
This change will not make the random strategy much more effective.5 The minimum length
of L is constrained by the O(n/ℓ) block sizes, which limit the number of outputs that the
nested algorithm can make; as a result, one must have L = Ω(ℓ2/n). In the end, after
balancing the length of the list with the cost of the nested algorithm, the optimal list length
for the random seed algorithm will be O(ℓ2/n +

√
ℓ).

Algorithm 1 Example: recursive construction for a random tape mif(n, ℓ) algorithm.

Parameter: t ∈ [Ω(ℓ2/n), ℓ] is the number of parts into which the input stream is split
Initialization:

1: Let k = O(t), s = O(ℓ), and B1, . . . , Bs be a partition of [n] into s equal “blocks”
2: L← uniformly randomly chosen sequence of k distinct elements of [s]
3: J ← ∅, is a subset of [k] ▷ a set marking which blocks of L have been covered
4: c← 1 ▷ the current active block
5: A← instance of algorithm A solving mif(n/s, ⌈ℓ/t⌉)

Update(a ∈ [n]):
6: Let h be the block containing a, and x the rank of a in Bh

7: if h ∈ L then
8: Add j to J , where Lj = h ▷ Mark list element containing h as used
9: if h = Lc then

10: A.Update(x)
11: if A is out of space then ▷ This requires that A.Update() be called ≥ ⌈ℓ/t⌉ times
12: c← least integer which is > c and not in J ▷ This line may abort if J = [k]
13: A← new instance of algorithm A ▷ Using new random bits, if A is randomized

Output → [n]:
14: Let x ∈ [n/s] be the output of A

15: return xth entry of block Bc

Active
block

Inputs: black squares

Variables:
L=[1,2,3,4,5,6]
J={1,2,3,5}
c=3

(using alg
for MIF(5,3))

Parameters:
n=50, l=20
t=4,k=6,s=10

blocks not in L

previous active block

Current output: circle

Figure 1 A diagram illustrating the state of an instance of Algorithm 1 on an example input.
Positions on the horizontal axis correspond to integers in [n]; the set of values in the input stream
({1, 2, 4, 9, 12, 13, . . .}) is marked with black squares; the current output value (15) with a circle.
Outside this example, L need not be contiguous or in sorted order.

The recursive random tape algorithm. The random seed algorithm for mif(n, ℓ) used the
construction of Algorithm 1 to build on top of an “inner” deterministic algorithm.6 To get
an efficient random tape algorithm, we can recursively apply the construction of Algorithm 1

5 The fact that [n] is split into Ω(ℓ) blocks is enough to mitigate the random strategy; with ℓ guesses, the
adversary is unlikely to guess more than a constant fraction of the elements in L.

6 The construction uses randomness in two places: when initializing the random sequence L, and (possibly)
each time the inner algorithm is initialized. For the random seed model, every “inner” initialization
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d − 1 times, for d = O(min(log ℓ, log n/ log ℓ)); at the end of this recursion, we can use a
simple deterministic algorithm for mif. The optimal lengths of the random lists used at each
level of the recursion are determined by balancing the costs of the different recursion levels.
We end up choosing list lengths that all bounded by a quantity which lies between O(ℓ1/d)
and O(ℓ1/(d−1)).

In the extreme case where d = Θ(log ℓ) and the required error level δ is constant, our
recursive algorithm may have a stack of random lists, each of length 2, and every time a
level of the algorithm completes (i.e., all blocks of a list have been used), it will make a new
instance of that level. That is, some large uncovered block will be split into many smaller
blocks, and the algorithm will randomly pick two of them for the new instance’s list. Because
the lists are all short, the algorithm will not need to remember many random bits at a given
time; in exchange, for this regime it needs a very large (n = ℓΩ(d)) number of possible outputs
and will frequently need to sample new random lists.

The final version of our algorithm is given in the full version of the paper. It looks somewhat
different from the recursive construction in Algorithm 1, because we have unraveled the
recursive framing to allow for a simpler error analysis that must only bound the probability
of a single “bad event.” The resulting space bound is:

▶ Theorem 1. There is a family of adversarially robust random tape algorithms, where for
mif(n, ℓ) the corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
2

d(d−1)

⌉
(log ℓ)2 + min(ℓ, log 1

δ ) log ℓ

)

bits of space, where d = max
(

2, min
(
⌈log ℓ⌉,

⌊
2 log(n/4)

log(16ℓ)

⌋))
. At δ = 1/poly(n) this space

bound is O(ℓlogn ℓ(log ℓ)2 + log ℓ log n).

4 Random Tape Lower Bound (Result 1)

The AVOID problem. At the core of many of the mif lower bounds is the SubsetAvoidance
communication problem, introduced in [8]. Here we have two players, Alice and Bob, and
a known universe [m]: Alice has a set A ⊆ [m] of size a, and should send a message (as
short as possible) to Bob, who should use the message to output a set B ⊆ [m] of size b

which is disjoint from A. Henceforth, we’ll call this problem avoid(m, a, b). [8] showed that
both deterministic and constant-error randomized one-way protocols for this problem require
Ω(ab/m) bits of communication. An adversarially robust z-space algorithm for mif(m, a + b)
can be used as a subroutine to implement a z-bit one-way protocol for avoid(m, a, b), thereby
proving z = Ω(ab/m). This immediately gives us an Ω(ℓ2/n) space lower bound for mif(n, ℓ),
which, as we have seen, is near-optimal in the robust, random oracle setting.

▶ Lemma 2 (Adversarially robust random oracle lower bound, from [24]). Any random oracle
(or random seed) algorithm which solves mif(n, ℓ) in the adversarial setting with total error
≤ δ requires Ω(ℓ2/n + log(1− δ)) bits of space.

The random tape lower bound. To prove stronger lower bounds that exploit the random
tape limitation of the algorithm, we need a more sophisticated use of avoid. Fix an
adversarially robust, random tape, z-space algorithm A for mif(n, ℓ). Roughly speaking,

would require a corresponding set of random bits, which are counted toward the space cost of the
algorithm. Using a deterministic inner algorithm avoids this cost.
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while the random oracle argument used A to produce an avoid protocol at the particular
scale a = b = ℓ, for the fixed universe [n], our random tape argument will “probe” A in
a recursive fashion – reminiscent of the recursion in our random tape upper bound – to
identify a suitable scale and sub-universe at which an avoid protocol can be produced. This
probing will itself invoke the avoid lower bound to say that if an avoid(m, a, b) protocol is
built out of a z-space streaming algorithm where z ≪ a, then B must be small, with size
b = O((z/a)m).

We will focus on the regime where δ = O(1/n). This error level requires a measure of
structure from the algorithm: it cannot just pick a random output each step, because that
would risk colliding with an earlier input with ≥ 1/n probability. Our recursive argument
works by writing z, the space usage of A, as a function of a space lower bound for mif(w, t),
where w = Θ(zn/ℓ) and t = Θ(n/z). For small enough z, t2/w ≫ ℓ2/n, so by repeating
this reduction step a few times we can increase the ratio of the stream length to the input
domain size until we can apply the simple Ω(ℓ̂2/n̂) lower bound for mif(n̂, ℓ̂). With the right
number of reduction steps, one obtains the lower bound formula of Theorem 8, of which
Result 1 is a special case.

The reduction. The reduction step argues that the mif(n, ℓ) algorithm A “contains” a
z-space algorithm for mif(w, t), which, on being given any t = O(ℓ/z) items in a certain
sub-universe W ⊆ [n] of size w = O(zn/ℓ), will repeatedly produce missing items from that
sub-universe. That such a set W exists can be seen as a consequence of the lower bound for
avoid: if A receives a random sorted subset S of ℓ/2 elements in [n], then because there
are

(
n

ℓ/2
)

possible subsets, most of the 2z states of A will need to be “good” for Ω(2−z
(

n
ℓ/2
)
)

different subsets. In particular, upon reaching a given state σ, for A to solve mif with error
probability O(1/n), its outputs henceforth – for the next ℓ/2 items in the stream – must
avoid most of the sets of inputs that could have led it to σ. We will prove by a counting
argument that after the random sequence S is sent, each state σ has an associated set Hσ

of possible “safe” outputs which are unlikely to collide with the inputs from S, and that
|Hσ| is typically O(zn/ℓ). Thus, for a typical state σ, starting A from σ causes its next
ℓ/2 outputs to be inside Hσ, w.h.p.; in other words, A contains a “sub-algorithm” solving
mif(O(zn/ℓ), ℓ/2) on the set W = Hσ.

However, even though there exists a set W on which A will concentrate its outputs, it
may not be possible for an adversary to find it. In particular, had A been a random oracle
algorithm, each setting of the random string might lead to a different value for W , making
W practically unguessable. But A is in fact a random tape algorithm, so we can execute the
following strategy.

In our core lemma, Lemma 5, we design an adversary (Adversary 2) that can with Ω(1)
probability identify a set W of size Θ(zn/ℓ) for which the next Θ(ℓ/z) outputs of A will
be contained in W , with Ω(1) probability, no matter what inputs the adversary sends next.
In other words, our adversary will identify a part of the stream and a sub-universe of [n]
where the algorithm solves mif(Θ(zn/ℓ), Θ(ℓ/z)). The general strategy is to use an iterative
search based on a win-win argument. First, the adversary will send a stream comprising a
random subset S of size ℓ/2 to A, to ensure that henceforth its outputs are contained in
some (unknown) set Hρ, where ρ is the (unknown) state reached by A just after processing
S. Because A has ≤ 2z states, from the adversary’s perspective there are ≤ 2z possible
candidates for Hρ. Then, the adversary conceptually divides the rest of the stream to be fed
to A into O(z) phases, each consisting of t = O(ℓ/z) stream items. In each phase, one of the
following things happens.
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1. There exists a “sub-adversary” (function to choose the t items constituting the phase, one
by one) which will probably make A output an item that rules out a constant fraction of
the candidate values for Hρ (output i rules out set J if i /∈ J). The adversary then runs
this sub-adversary.

2. No matter how the adversary picks the t inputs for this phase, there will be a set
W (roughly, an “average” of the remaining candidate sets) that probably contains the
corresponding t outputs of A.

As the set of candidate sets can only shrink by a constant fraction O(z) times, the first
case can only happen O(z) times, with high probability. Thus, eventually, the adversary
will identify the set W that it seeks. Once it has done so, it will run the optimal adversary
for mif(Θ(zn/ℓ), Θ(ℓ/z)). This essentially reduces the lower bound for mif(ℓ, n) to that for
mif(Θ(zn/ℓ), Θ(ℓ/z)).

4.1 Technical Details
Types of error. One subtlety is that we will need to carefully account for the probability
that A, over the next Θ(ℓ/z) stream items, produces outputs outside W . This will require us
to distinguish between two types of “errors” for the algorithm over those next Θ(ℓ/z) items:
an O(1) chance of producing an output outside W , and a smaller chance of making a mistake
per the definition of mif, i.e., outputting an item that was not missing (cf. Definition 3).

▶ Definition 3. An algorithm A for mif(n, ℓ) can fail in either of two ways. It may make an
incorrect output, or mistake, if outputs an element that was already in the input stream. It
may also abort, by outputting a special value ⊥ (or some other value which is not a possible
input for mif).

This distinction is useful because, if we take an algorithm for mif(n, ℓ), conditioned on
producing some initial transcript of outputs in response to an input sequence, we may obtain
an algorithm for mif(|W |, t) for some t ≤ ℓ and W ⊆ [n]; the probability that the algorithm
“aborts” (produces an output outside of W ) can be much larger than the probability that
the algorithm makes an incorrect output (output in W that collides with an earlier input).
In the following proofs the algorithm aborting will be bad for the adversary, and making a
mistake will be good.

For integers n, ℓ, z with 1 ≤ ℓ < n, and γ ∈ [0, 1], let Algs(n, ℓ, z, γ) be the set of all
z-bit random tape algorithms for mif(n, ℓ) which on any adversary abort with probability
≤ γ. Define ∆(n, ℓ, γ, z) := min{δ(A, n, ℓ) : A ∈ Algs(n, ℓ, z, γ)}, where δ(A, n, ℓ) is the
maximum probability, over all possible adversaries, that A makes an incorrect output. As a
consequence of the definition, ∆(n, ℓ, γ, z) is non-increasing in γ and z.

Using this new notation, the Ω(ℓ2/n) lower bound for adversarially robust streaming
algorithms from [24] (cf. Lemma 2) tells us:

▶ Lemma 4. Random tape algorithms for mif(n, ℓ) that do not abort often have high error
if they use too little space: concretely,

∆(n, ℓ, γ, z) ≥ 1
41z≤ℓ2/(16n ln 2)1γ≤1/2 . (1)

Induction lemma. Our proof of Result 1 is inductive, with the above lemma being the base
case. The induction step consists of a reduction, using an adaptive adversary described in
Adversary 2 to prove a lower bound on the mistake probability. The next lemma formalizes
the induction step.
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▶ Lemma 5. Let 1 ≤ ℓ < n and z be integers, and γ ∈ [0, 1
2 ]. Let k be an integer parameter

for which z ≥ 2 log(32k). Define, matching definitions in Adversary 2,

w = 2
⌊
32zn

ℓ

⌋
and t =

⌊
ℓ

64zk

⌋
.

If t < w, then there is a distribution µ ∈ △[0, 1] for which EG∼µG ≤ γ + 1
4k and

∆(n, ℓ, γ, z) ≥ min
(

ℓ

27nk
,
(1

2 −
1
4k

)
EG∼µ∆(w, t, G, z)

)
. (2)

The adversary. The adversary (Adversary 2) used for Lemma 5 is rather complicated, and
requires some additional definitions.

▶ Definition 6. Say A is a random tape algorithm whose states are given by the set Σ, and
Q is a subset of Σ, where each state in Q has an associated set Hσ. A sequence y in [n]t is
said to be divisive for Q if |{σ ∈ Q : y ⊆ Hσ}| ≤ 1

2 |Q|.
Say Υ is a t-length deterministic adversary. (That is, a function which maps sequences

in [n]⋆ of length between 0 and t− 1, inclusive, to values in [n].) For any state σ ∈ Σ of A,
let G(σ, Υ) be the random variable in [n]t which gives the output if we run A, starting at
state σ, against the adversary Υ. (If after processing a few inputs, the algorithm has output
sequence v ∈ [n]⋆, its next input will be Υ(v).) We define an adversary to be α-splitting for
Q against a distribution D ∈ △[Σ] if, when we choose a random state S from D,

Pr[G(S, Υ) is divisive for Q] ≥ α .

When we run Adversary 2 against an algorithm A, let ρ be the state of A after v is sent.
The proof of Lemma 5 is long and requires that we consider the probabilities of the following
events:

Brepeat occurs if A produces an output in [n] \Hρ

Bbig occurs if the state ρ has |Hρ| > 1
2 w

Bincomplete occurs if the adversary aborts without executing Line 18
Babort occurs if A aborts before the adversary reaches Line 18
Rabort occurs if A “aborts” (either for real, or by making an output outside W ′) while
the adversary is executing Line 18
Rerror occurs if A produces an incorrect output while the adversary is executing Line 18

Calculations. By repeatedly applying Lemma 5, we obtain the following:

▶ Lemma 7. Let 1 ≤ ℓ < n. For any integer k ≥ 1, say that z is an integer satisfying
z ≤ 1

64k ℓ1/k. Then:

∆(n, ℓ, 0, z) > min
( ℓ

210nk
,

1
2k+51z≤L

)
where L = 1

64k

(
ℓk+1

n

) 2
k2+3k−2

. (3)

Consequently, algorithms for MIF with ≤ min( ℓ
210nk , 2−(k+5)) error require > L bits of space.

Lemma 7 implies a lower bound on z for z-bit algorithms with < ℓ
210nk error probability.

Choosing the value of k which maximizes the lower bound on z, and doing some additional
calculations, gives the following theorem:

6 For any sequence v ∈ seqs([n], ⌈ℓ/2⌉), P (v)(σ) = Pr[the state of A just after receiving v is σ]

CCC 2024



28:14 Finding Missing Items Requires Strong Forms of Randomness

Adversary 2 An adversary for a random tape mif(n, ℓ) algorithm, with parameter k.

Let: w = 2
⌊
32 zn

ℓ

⌋
, hmax = 32zk, and t =

⌊
ℓ

2hmax

⌋
Adversary

1: v ← a uniformly random sequence in seqs([n], ⌈ℓ/2⌉).
2: send v to the algorithm
3: Let G be a distribution over functions of type seqs([n], ⌈ℓ/2⌉)→ Σ, so that when F ∼ G,

the distribution of F (v) equals the distribution of current algorithm states
4: Compute, for all σ ∈ Σ,

Hσ :=
{

i ∈ [n] : Pr
X∼seqs([n],⌈ℓ/2⌉),F ∼G

[i ∈ X | F (X) = σ] ≤ ⌈ℓ/2⌉
4n

}
5: Let Q0 = {σ ∈ Σ : |Hσ| ≤ 1

2 w} ▷ Have a ≥ 1− 1/16k chance current alg. state is in Q0
6: for h in 1, . . . , hmax do
7: Let D be the distribution over alg. states conditioned on the transcript so far
8: if ∃ a 1/(8k)-splitting t-length deterministic. adversary Υ for Qh−1 given D then
9: run Υ against the algorithm, and let y ∈ [n]t be the output

10: Qh ← {σ ∈ Qh−1 : y ⊆ Hσ} ▷ Have a ≥ 1/(8k) chance that |Qh| ≤ 1
2 |Qh−1|

11: if Qh = ∅ then abort
12: else
13: W ← {i ∈ [n] : |{σ ∈ Qh−1 : i ∈ Hσ}| ≥ 1

2 |Qh−1|}.
14: Let W ′ ←W plus w − |W | padding elements
15: Define sub-algorithm B to behave like the given algorithm, conditioned on the

exact transcript of inputs and outputs made so far
16: Let Ξ be an adversary maximizing the probability that B makes an incorrect

output. (This can be computed using brute-force search.)
17: ▷ If B produces an output outside of W ′, we interpret this as B having aborted,

not as having made a mistake
18: run adversary Ξ, sending t inputs in W ′

19: return
20: abort

▶ Theorem 8. Random tape δ-error adversarially robust algorithms for mif(n, ℓ) require

Ω
(

max
k∈N

1
k

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
log ℓ

log n
ℓ

15
32 logn ℓ)

)

bits of space, for δ ≤ 1
210n .

▶ Remark. The adversary of Adversary 2 runs in doubly exponential time, and requires
knowledge of the algorithm. The former condition cannot be improved by too much: if
one-way functions exist, one could implement the random oracle algorithm for mif(n, ℓ)
from [24] using a pseudo-random generator that fools all polynomial-time adversaries. One
can also prove by minimax theorem that universal adversaries for (random tape or otherwise)
mif(n, ℓ) algorithms can not be used to prove any stronger lower bounds than the one for
random oracle algorithms.
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5 Random Seed Lower Bound (Result 2)

The adversary constructed above for our random tape lower bound can be seen as a significant
generalization of the adversary used by [24] to prove a random seed lower bound conditioned
on a (then conjectured) pseudo-deterministic lower bound. Indeed, [24]’s adversary against
a z-space algorithm A also proceeds in a number of phases, each of length t = Θ(ℓ/z). In
each step, either (1) it can learn some new information about the initial state of A (the
“random seed”), by sending A a specific stream of inputs in [n]t, looking at the resulting
output, and ruling out the seed values that could not have produced the output; or (2) it
cannot learn much information, because for any possible input stream in [n]t, A has an
output that it produces with constant probability. Each time the adversary follows the
case (1), a constant fraction of the ≤ 2z seed values are ruled out. Therefore, either within
O(z) steps the adversary will exactly learn the seed, at which point it can perfectly predict
A’s behavior, which lands us in case (2); or A will not reveal much information about
the seed in a given phase, which also puts us in case (2). Because case (2) means that A
behaves pseudo-deterministically, A must use enough space to pseudo-deterministically solve
mif(n, t).

▶ Theorem 9 (from [24]). Let SPD
1/3(n, ℓ) give a space lower bound for a pseudo-deterministic

algorithm for mif(n, ℓ) with error ≤ 1/3. Then an adversarially robust random seed algorithm
with error δ ≤ 1

6 , if it uses z bits of space, must have z ≥ SPD
1/3(n,

⌊
ℓ

2z+2

⌋
).

Thus, Result 2 follows as a corollary of Result 4, which we discuss next. More specifically,
Theorem 10 follows by combining Theorem 9 with the pseudo-deterministic lower bound,
and also applying Lemma 2, which is stronger in the regime ℓ ≥ n2/3.

▶ Theorem 10. Adversarially robust random seed algorithms for mif(n, ℓ) with error ≤ 1
6

require space:

Ω
(

ℓ2

n
+
√

ℓ/(log n)3 + ℓ1/5
)

.

6 Pseudo-Deterministic Lower Bound (Result 4)

This proof generalizes [24]’s space lower bound for deterministic mif(n, ℓ) algorithms, which
we briefly explain. Fix a deterministic mif(n, ℓ) algorithm A that uses z bits of space. For
each stream τ with length |τ | ≤ ℓ, define Fτ to be the set of all possible outputs of A
corresponding to length-ℓ streams that have τ as a prefix. Let ρ be a stream such that
|τ |+ |ρ| ≤ ℓ. Then, by definition, Fτ◦ρ ⊆ Fτ ; whereas, by the correctness of A, Fτ◦ρ ∩ ρ = ∅.
Now consider the avoid problem over the universe Fτ , for a fixed τ : if Alice gets ρ ⊆ Fτ as
an input, she could send Bob the state σ of A upon processing τ ◦ ρ, whereupon Bob could
determine Fτ◦ρ (by repeatedly running A’s state machine starting at σ), which would be a
valid output.

Let us restrict this scenario to suffixes ρ of some fixed length t; we’ll soon determine a
useful value for t. By the above observations, were it the case that

∃τ ∈ [n]≤ℓ−t ∀ρ ∈ [n]t : |Fτ◦ρ| ≥ 1
2 |Fτ | , (4)

we would have a z-bit protocol for avoid(|Fτ |, t, 1
2 |Fτ |). By [8]’s lower bound for avoid,

we would have z ≥ Ct for a universal constant C. On the other hand, if the opposite were
true, i.e.,
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∀τ ∈ [n]≤ℓ−t ∃ρ ∈ [n]t : |Fτ◦ρ| < 1
2 |Fτ | , (5)

then, starting from the empty stream ϵ, we could add a sequence of length-ℓ suffixes ρ1, . . . , ρd

(where d ≤ ⌊ℓ/t⌋) such that |Fρ1◦···◦ρs
| < 2−d|Fϵ| ≤ 2−dn. Since A must produce some output

at time ℓ, this would be a contradiction for d ≥ log n. Thus, for a setting of t = Θ(ℓ/ log n),
situation (4) must occur, implying a lower bound of z = Ω(ℓ/ log n).

Relaxing “all outputs” to “common outputs”. Examining the above argument closely
shows where it fails for pseudo-deterministic algorithms. In constructing an avoid protocol
above, we needed the key property that Fτ can be determined from just the state of A upon
processing τ . For pseudo-deterministic algorithms, if we simply define F ′

τ to be “the set of all
canonical outputs at time ℓ for continuations of τ ,” we cannot carry out the above proof plan
because this F ′

τ cannot be computed reliably from a single state: given a random state σ

associated to τ , on average a δ fraction of the outputs might be incorrect and have arbitrary
values; even a single bad output could corrupt the union calculation!

To work around this issue, we replace Fτ with a more elaborate recursive procedure
FindCommonOutputs, (or fco for short) that computes the “most common outputs” at
time ℓ for a certain distribution over continuations of τ . To explain this, let us imagine
positions 1 through ℓ in the input stream as being divided into d contiguous “time intervals.”
In the deterministic proof, these intervals were of length t each. Given a stream τ that
occupies the first d− k of these intervals, Fτ can be thought of as the output of a procedure
FindAllOutputs (or fao for short) where fao(A, τ, k) operates as follows: for each setting
ρ of the (d− k + 1)th time interval, call fao(A, τ ◦ ρ, k − 1) and return the union of the sets
so obtained. In the base case, fao(A, τ, 0) takes a stream τ ∈ [n]ℓ and returns the singleton
set {A(τ)}. The deterministic argument amounts to showing that, with interval lengths
t = Θ(z), the set fao(A, τ, k) has cardinality ≥ 2k; since fao(A, ϵ, d) has cardinality ≤ n,
this bounds d ≤ log n, which lower-bounds z.

For our pseudo-deterministic setting, we use time intervals as above and we design
an analogous procedure fco(B, C, τ, k) that operates on a function B : [n]ℓ → [n] (roughly
corresponding to a mif algorithm), a matrix C of random thresholds,7 and a stream τ of length
≤ ℓ that occupies the first d− k time intervals. The recursive structure of fco(B, C, τ, k) is
similar to fao, but crucially, the sets computed by the recursive calls fco(B, C, τ ◦ ρ, k − 1)
are used differently. Instead of simply returning their union, we use these sets to collect
statistics about the outputs in [n] and return only those that are sufficiently common. The
thresholds in C control the meaning of “sufficiently common.”

The function B provided to fco can be either the canonical output function Π of the
given pseudo-deterministic algorithm B or a deterministic algorithm A ∼ B obtained by
fixing the random coins of B. We will show that:

With high probability over C and the randomness of B, fco will produce the same
outputs on Π and B. In other words, fco is robust to noise (i.e., to algorithm errors).
When applied to the canonical algorithm, the cardinalities of the sets returned by fco will
grow exponentially with k. Equivalently, similar to |Fτ | from the deterministic proof, the
cardinality of fco(B, C, τ, k) will shrink exponentially as the length |τ | grows. Ultimately,
this is proven by implementing avoid using fco on the actual algorithm as a subroutine.
Critically, this implementation uses the fact that the recursive calls to fco w.h.p. produce
the same output on Π and B.

7 The use of random thresholds is a standard trick for robustly computing quantities in the presence of
noise.
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The argument can be carried out with all but one of the d time intervals being of length
≈ Θ(z). If z were too small, d would be large enough that for the empty stream prefix
we would have |fco(B, C, ϵ, d)| > n, which contradicts fco(. . .) ⊆ [n]; this lets us derive
a lower bound on z.

Error amplification and the case n ≫ ℓ. One technical issue that arises is that the
correctness of fco requires B’s error probability to be as small as 1/nΩ(log n). Fortunately,
even if the original error probability was 1/3, we can reduce it to the required level since
pseudo-deterministic algorithms allow efficient error reduction by independent repetition. A
second technical point is that a z-space pseudo-deterministic algorithm can be shown to have
only O(2z) possible outputs; so if n≫ ℓ, we can sometimes obtain a stronger lower bound
by pretending that n is actually O(2z). This is formalized by a simple encoding argument.

6.1 Technical Details
Pseudocode. Pseudocode for fco is given in Procedure 3. The procedure is parameterized
by the interval lengths td, . . . , t1, the set S of all possible canonical outputs, and a series of
output sizes wd, . . . , w1, where wi = 2i−1(t1 + 1).

Procedure 3 The procedure to compute a set for Lemma 11.

Let t1, . . . , td, w1, . . . , wd be integer parameters, and S the set of valid outputs

FindCommonOutputs(B, C, x, k) ▷ abbreviated as fco(B, C, x, k)
1: ▷ Inputs: function B : [n]ℓ → [n], matrix C ∈ [1, 2)d×N, stream prefix x ∈ [n]tk+···+t1

2: ▷ Output: a subset of S of size wk

3: if k = 1 then
4: e0 ← B(x ◦ ⟨1, 1, . . . , 1⟩)
5: for i in 1, . . . , t1 do
6: ei ← B(x ◦ ⟨e0, . . . , ei−1, 1, . . . , 1⟩)
7: if e0, . . . , et1 are all distinct then
8: return {e0, e1, . . . , et1} ▷ identify w1 distinct possible outputs
9: return arbitrary subset of S of size w1 (failure)

10: else
11: for each y ∈ seqs([n], tk) do
12: Ty ← FindCommonOutputs(B, C, x ◦ y, k − 1) ▷ note |Ty| = wk−1

13: Q0 ← T⟨1,2,...,tk⟩
14: for h in 1, 2, 3, 4 do
15: ▷ gather statistics and find common elements among the sets Ty

16: for each j ∈ S do
17: f

(h)
j ← |{y ∈ seqs(Qh−1, tk) : j ∈ Ty}| ▷ count frequencies

18: θ ← Ck,hwk−1/(16|S|) ▷ set random threshold
19: Ph ←

{
j ∈ S : f

(h)
j ≥ θ

(|Qh−1|
tk

)}
▷ identify “sufficiently common” elements

20: Qh ← Qh−1 ∪ Ph

21: if |Qh| ≥ wk then
22: return the wk smallest elements in Qh

23: return arbitrary subset of S of size wk (failure)

CCC 2024



28:18 Finding Missing Items Requires Strong Forms of Randomness

Central lemma. For a series of error probabilities with 1 > εd ≫ εd−1 . . .≫ ε1 ≈ 1/nΩ(d),
we prove, by induction, the following lemma. It asserts that the set of common outputs is
likely the same for the canonical function Π as it is for a random draw A ∼ B. It also asserts
two other key properties of fco. The lemma can be thought of as a “proof of correctness” of
fco.

▶ Lemma 11. Let k ∈ [d] and x ∈ [n]td+···+tk+1 . Then fco satisfies the following properties.
1. PrA∼B,C∼[1,2)d×N [fco(A, C, x, k) = fco(Π, C, x, k)] ≥ 1− εk.
2. For all C ∈ [1, 2)d, the set fco(Π, C, x, k) is disjoint from x and a subset of S.
3. For all A : [n]ℓ → [n] and C ∈ [1, 2)d, fco(A, C, x, k) outputs a set of size wk.

Its proof is split over a number of helper lemmas:

▶ Lemma 12. Lemma 11 holds for k = 1.

▶ Lemma 13. Let x ∈ [n]td+···+tk+1 . When computing fco(Π, C, x, k), in the hth loop
iteration, if |Qh−1| < wk, then |Ph \ Qh−1| ≥

⌈ 1
4 wk−1

⌉
. Consequently, the procedure will

return using Line 22, not Line 23.

▶ Lemma 14. For k > 1, x ∈ [n]td+···+tk+1 , fco(Π, C, x, k) is disjoint from x and a subset
of S; and for all B, C, x, k, fco(B, C, x, k) outputs a set of size wk.

▶ Lemma 15. For k > 1, and all x ∈ [n]td+···+tk+1 ,

Pr
A∼B,C

[fco(A, C, x, k) ̸= fco(Π, C, x, k)] ≤ εk .

Using the central lemma. A consequence of Lemma 11 is that fco(Π, C, d) will output a
set of size wd; this gives a lower bound on n. Solving for a lower bound on z gives:

▶ Theorem 16. Pseudo-deterministic δ-error random oracle algorithms for mif(n, ℓ) require

Ω
(

min
(

ℓ

log 2n
ℓ

+
√

ℓ,
ℓ log 1

2δ

(log 2n
ℓ )2 log n

+
(

ℓ log 1
2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/poly(n) and ℓ = Ω(log n), this is:

Ω
(

ℓ

(log 2n
ℓ )2 + (ℓ log n)1/4

)
.

▶ Remark. For δ ≤ 2−ℓ, Theorem 16 reproduces the deterministic algorithm space lower
bound for mif(n, ℓ) from [24] within a constant factor.
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