
Exact Search-To-Decision Reductions for
Time-Bounded Kolmogorov Complexity
Shuichi Hirahara #

National Institute of Informatics, Tokyo, Japan

Valentine Kabanets #

Simon Fraser University, Burnaby, Canada

Zhenjian Lu #

University of Warwick, UK

Igor C. Oliveira #

University of Warwick, UK

Abstract
A search-to-decision reduction is a procedure that allows one to find a solution to a problem from
the mere ability to decide when a solution exists. The existence of a search-to-decision reduction for
time-bounded Kolmogorov complexity, i.e., the problem of checking if a string x can be generated
by a t-time bounded program of description length s, is a long-standing open problem that dates
back to the 1960s.

In this work, we obtain new average-case and worst-case search-to-decision reductions for the
complexity measure Kt and its randomized analogue rKt:
1. (Conditional Errorless and Error-Prone Reductions for Kt) Under the assumption that E requires

exponential size circuits, we design polynomial-time average-case search-to-decision reductions
for Kt in both errorless and error-prone settings.
In fact, under the easiness of deciding Kt under the uniform distribution, we obtain a search
algorithm for any given polynomial-time samplable distribution. In the error-prone reduction,
the search algorithm works in the more general setting of conditional Kt complexity, i.e., it finds
a minimum length t-time bound program for generating x given a string y.

2. (Unconditional Errorless Reduction for rKt) We obtain an unconditional polynomial-time average-
case search-to-decision reduction for rKt in the errorless setting. Similarly to the results described
above, we obtain a search algorithm for each polynomial-time samplable distribution, assuming
the existence of a decision algorithm under the uniform distribution.
To our knowledge, this is the first unconditional sub-exponential time search-to-decision reduction
among the measures Kt and rKt that works with respect to any given polynomial-time samplable
distribution.

3. (Worst-Case to Average-Case Reductions) Under the errorless average-case easiness of deciding
rKt, we design a worst-case search algorithm running in time 2O(n/ log n) that produces a minimum
length randomized t-time program for every input string x ∈ {0, 1}n, with the caveat that it
only succeeds on some explicitly computed sub-exponential time bound t ≤ 2nε

that depends on
x. A similar result holds for Kt, under the assumption that E requires exponential size circuits.

In these results, the corresponding search problem is solved exactly, i.e., a successful run of the
search algorithm outputs a t-time bounded program for x of minimum length, as opposed to an
approximately optimal program of slightly larger description length or running time.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases average-case complexity, Kolmogorov complexity, search-to-decision reduc-
tions

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.29

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/059

© Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 29; pp. 29:1–29:56

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s_hirahara@nii.ac.jp
https://orcid.org/0000-0002-3101-446X
mailto:kabanets@cs.sfu.ca
mailto:zhenjian.lu@warwick.ac.uk
https://orcid.org/0009-0007-3990-4751
mailto:igor.oliveira@warwick.ac.uk
https://orcid.org/0000-0003-4048-2385
https://doi.org/10.4230/LIPIcs.CCC.2024.29
https://eccc.weizmann.ac.il/report/2024/059
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Funding This work received support from the Royal Society University Research Fellowship
URF\R1\191059; the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre for
Discrete Mathematics and its Applications (DIMAP) at the University of Warwick.

1 Introduction

The time-bounded Kolmogorov complexity Kt(x) of an input binary string x is defined as
the length of a shortest program that prints out x within t time steps. The corresponding
search version of the problem would be to find such a shortest program that prints x within
time t. Both problems have been studied since the 1960s, and are conjectured to require
brute-force (trivial) algorithms to solve them [32]. The existence of an efficient search-to-
decision reduction for Kt, i.e., an algorithm to solve the search version of Kt(x) assuming an
algorithm for the decision version of computing Kt(x), is also an old open problem going
back to the 1960s.1 In fact, it is consistent with current knowledge that there might exist an
algorithm that computes Kt(x) in time linear in n = |x|, while any search algorithm for the
problem requires time 2Ω(n).

In this work, we obtain new average-case and worst-case search-to-decision reductions for
the measure Kt and its randomized analogue rKt, which considers the length of the shortest
randomized program that prints x with high probability within time t. Our search algorithms
have two important features:

they solve the search problem exactly: they find an optimally minimal-size program to
print x within t steps (rather than an approximately optimal program of slightly larger
size or running in slightly bigger than t time); and
they succeed with high probability on any given polynomial-time samplable distribution
(rather than being restricted to the uniform distribution).

It should be noted that such search-to-decision reductions are necessary for excluding
Pessiland from Impagliazzo’s five worlds [18], that is, for basing the security of a one-way
function on the average-case hardness of NP. By the result of Liu and Pass [22], the existence
of a one-way function is characterized by the average-case hardness of computing time-
bounded Kolmogorov complexity over the uniform distribution. If Pessiland is eliminated, it
follows that the average-case easiness of time-bounded Kolmogorov complexity implies that
every NP search problem is easy on any polynomial-time samplable distribution [19, 3], and
in particular, the search problems of finding short programs are also easy. Thus, designing
such reductions can be seen as a progress towards excluding Pessiland from Impagliazzo’s
five worlds.

We describe our results in the next section. We compare them with the existing literature
on exact and approximate search-to-decision reductions in Section 1.2.

1.1 Results
Informally, our main results give polynomial-time algorithms for solving the search versions
of time-bounded Kolmogorov complexity measures Kt and rKt, on average with respect to any
given polynomial-time samplable distribution, under the assumption that the corresponding
decision versions are easy on average with respect to the uniform distribution. For rKt, such a

1 One reason why such search-to-decision reductions may be possible to Kt is that the decision version
of Kt is conjectured to be NP-complete, and efficient search-to-decision reductions for NP-complete
problems are easy to get.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:3

search-to-decision average-case reduction is unconditional, whereas for Kt we make a standard
derandomization assumption. Our reduction for rKt works in the errorless average-case
setting. Our (conditional) reductions for Kt work in both errorless and error-prone settings.

We provide a more detailed description of our results in the following subsections.

1.1.1 Average-Case Search-to-Decision for Kt

Below we employ standard definitions of Kt(x) and rKt(x), reviewed in Section 2.1. We let
U denote the fixed universal Turing machine used in these definitions.

Let MINKT be the following decision problem: Given (x, 1s, 1t), where x ∈ {0, 1}∗ and
s, t ∈ N, decide whether Kt(x) ≤ s. Let Search-MINKT be the corresponding search problem:
Given (x, 1t), where x ∈ {0, 1}∗ and t ∈ N, find a Kt-witness of x, i.e., a program M ∈ {0, 1}∗

such that |M | = Kt(x) and U(M) outputs x within t steps.
In our average-case search-to-decision reductions for Kt we consider both errorless and

error-prone settings, which correspond to the average-case complexity classes AvgBPP and
HeurBPP, respectively (cf. [4]).

The Errorless Setting. We shall use “MINKT ∈ AvgBPP”, as an abbreviation for the
statement that MINKT can be solved in polynomial time on average without errors over
polynomial-time samplable distributions. Similarly, we shall use “Search-MINKT ∈ AvgBPP”
to state that Search-MINKT can be solved in polynomial time on average without errors over
polynomial-time samplable distributions. More formally, we have the following definitions.2

“MINKT ∈ AvgBPP”: For every polynomial-time samplable distribution family {Dn}n∈N,
where each Dn is over {0, 1}n, there exist a polynomial ρ and a polynomial-time algorithm
A such that the following holds for all n, s, k ∈ N, and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n, A(x, 1s, 1t, 1k) outputs either MINKT(x, 1s, 1t) or ⊥, and
2. Prx∼Dn

[
A(x, 1s, 1t, 1k) = MINKT(x, 1s, 1t)

]
≥ 1 − 1

k .

“Search-MINKT ∈ AvgBPP”: For every polynomial-time samplable distribution family
{Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and a polynomial-
time algorithm A such that the following holds for all n, k ∈ N, and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n, A(x, 1t, 1k) outputs either a Kt-witness of x or ⊥, and
2. Prx∼Dn

[
A(x, 1t, 1k) outputs a Kt-witness of x

]
≥ 1 − 1

k .

Before stating our first result, we recall the following widely believed complexity-theoretic
assumption. We use E ̸⊆ i.o.SIZE[2o(n)] to denote that there is a language L ∈ E and ε > 0
such that L requires Boolean circuits of size at least 2ε·n on every large enough input length
n.

▶ Theorem 1 (Errorless Average-Case Search-to-Decision for Kt). Assume E ̸⊆ i.o.SIZE[2o(n)].
Then

“MINKT ∈ AvgBPP” =⇒ “Search-MINKT ∈ AvgBPP”.

2 In [4], AvgBPP denotes the class of all the pairs (L, D) of problems L and distributions D that
admit randomized average-polynomial-time algorithms (or, equivalently, randomized errorless heuristic
schemes). Our statement “MINKT ∈ AvgBPP” deviates from this standard notation in that (1) we
abbreviate the input distribution D = {Dn}n∈N, and (2) the lower bound ρ(n) of the time parameter t
depends on the distribution D.

CCC 2024

29:4 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

The Error-Prone Setting. Theorem 1 shows an average-case search-to-decision reduction for
MINKT in the errorless setting, under the assumption that E ̸⊆ i.o.SIZE[2o(n)]. Can we also
get a similar reduction in the error-prone setting? It turns out that such a search-to-decision
reduction is implicit in a recent work by Liu and Pass [23]. However, it requires a stronger
assumption saying that E ̸⊆ i.o.NSIZE[2o(n)], i.e., that there is a language in E that requires
non-deterministic circuits of exponential size. We discuss this in more detail next.

We define “MINKT ∈ HeurBPP” and “Search-MINKT ∈ HeurBPP” to be the analogs of
“MINKT ∈ AvgBPP” and “Search-MINKT ∈ AvgBPP”, respectively, but in the regime where
errors are allowed.3

“MINKT ∈ HeurBPP”: For every polynomial-time samplable distribution family {Dn}n∈N,
with each Dn over {0, 1}n, there is a polynomial ρ and a polynomial-time algorithm A such
that for all n, s, k ∈ N, and all t ≥ ρ(n, k), Prx∼Dn

[
A(x, 1s, 1t, 1k) = MINKT(x, 1s, 1t)

]
≥

1 − 1
k .

“Search-MINKT ∈ HeurBPP”: For every polynomial-time samplable distribution fam-
ily {Dn}n∈N, with each Dn over {0, 1}n, there is a polynomial ρ and a
polytime algorithm A such that for all n, k ∈ N, and all t ≥ ρ(n, k),
Prx∼Dn

[
A(x, 1t, 1k) outputs a Kt-witness of x

]
≥ 1 − 1

k .

As noted above, [23] proved “MINKT ∈ HeurBPP” =⇒ “Search-MINKT ∈ HeurBPP”,
assuming E ̸⊆ i.o.NSIZE[2o(n)]. We strengthen their result by weakening their assumption to
E ̸⊆ i.o.SIZE[2o(n)]. Combined with Theorem 1, this yields average-case search-to-decision
reductions for MINKT in both errorless and error-prone settings, under the assumption that
E ̸⊆ i.o.SIZE[2o(n)].

In fact, we show an even stronger result where we solve the conditional variant of the
search problem, Search-MINcKT, on average over polynomial-time samplable distributions,
while using the same assumption on the decision problem. We describe this in more detail
below.

For x, y ∈ {0, 1}∗, we say that a program Π is a Kt(· | y)-witness of x if |Π| = Kt(x | y)
and U(Π, y) outputs x within t steps.

▶ Theorem 2 (Error-Prone Average-Case Search-to-Decision for Conditional Kt). Assume
E ̸⊆ i.o.SIZE[2o(n)]. If “MINKT ∈ HeurBPP” holds, then for every polynomial-time samplable
distribution family {D⟨n,m⟩}n,m∈N supported over {0, 1}n × {0, 1}m, there exist a polynomial
ρ and a polynomial-time algorithm A such that for all n, m, k ∈ N, and all t ≥ ρ(n, m, k),

Pr
(x,y)∼D⟨n,m⟩

[
A(x, y, 1t, 1k) outputs a Kt(· | y)-witness of x

]
≥ 1 − 1

k
.

Note that Theorem 2 implies a search-to-decision reduction for Kt (without the condi-
tional string) by considering the set of polynomial-time samplable distribution families
{D⟨n,m⟩}n,m∈N restricted to m = 0.

While the search-to-decision reductions from Theorems 1 and 2 rely on the assumption
E ̸⊆ i.o.SIZE[2o(n)], we remark that it is possible to obtain weaker unconditional variants
of these results using a simple win-win argument. Indeed, if the assumption does not hold
then we can solve the corresponding search problem on infinitely many input lengths using

3 For technical reasons, in the error-prone setting we let the function ρ depend on k in addition to n.
(See Remark 31). Obtaining a reduction without this dependence (as in the errorless setting) is an
interesting problem.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:5

circuits of size 2o(n) (see Appendix C for an implementation of this idea). Consequently, it
follows that there are errorless and error-prone search-to-decision reductions for Kt computed
by sub-exponential size Boolean circuits, on infinitely many input lengths.

1.1.2 Average-Case Search-to-Decision for rKt

We use rKt
λ(x) to denote the minimum length of a randomized program that outputs x with

probability at least λ within t steps (see Section 2.1). We often omit λ in informal discussions,
tacitly assuming that λ = 2/3.

Analogously to MINKT, one can also consider the problem of deciding whether rKt(x) ≤ s

given (x, 1s, 1t). However, this problem is not very “natural” in the sense that it can only
be placed in the class ∃ · PP. This is because the precise computation of the acceptance
probability of a given machine is a computationally hard counting problem.

Here, we consider a more robust variant, which we call MINrKT, that can be shown to be
in (promise) MA. We will then focus on the search version of MINrKT.

Let MINrKT be the following promise problem (YES, NO):

YES :=
{

(x, λ, 1s, 1t, 1ℓ) | rKt
λ(x) ≤ s

}
,

NO :=
{

(x, λ, 1s, 1t, 1ℓ) | rKt
λ−1/ℓ(x) > s

}
.

Next, we describe the search version of MINrKT. We first need some notation. For
x ∈ {0, 1}n, t ∈ N and 0 < ε, λ ≤ 1, we say that a program M is an ε-rKt

λ-witness of x if
|M | ≤ rKt

λ(x), and
U(M, r) outputs x within t steps with probability at least λ − ε over r ∼ {0, 1}t.

Let Search-MINrKT be the following search problem: Given (x, λ, 1t, 1ℓ), where x ∈ {0, 1}∗,
t, ℓ ∈ N and λ ∈ [0, 1], find an (1/ℓ)-rKt

λ-witness of x.
We introduce the statement “MINrKT ∈ AvgBPP”, which states that MINrKT can be

solved in probabilistic polynomial time on average (without errors) over polynomial-time
samplable distributions. We first need to specify what it means by solving a promise problem
in the average-case setting. For an algorithm A, x ∈ {0, 1}∗, λ ∈ [0, 1], and ℓ, t, s ∈ N, we
say that A decides MINrKT on (x, λ, 1s, 1t, 1ℓ) if the following holds:

A(x, λ, 1s, 1t, 1ℓ) =

1 if rKt

λ(x) ≤ s

0 if rKt
λ−1/ℓ(x) > s

either 0 or 1 otherwise.

For λ ∈ R, we denote by |λ| the bit complexity of λ.

“MINrKT ∈ AvgBPP”: For every polynomial-time samplable distribution family {Dn}n∈N,
where each Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic polynomial-
time algorithm A such that the following hold for all λ ∈ (0, 1), all n, s, ℓ, k ∈ N, and all
t ≥ ρ(n) · log(1/(1 − λ)).
1. For all x ∈ {0, 1}n,

Pr
A

[
A decides MINrKT on (x, λ, 1s, 1t, 1ℓ) OR A(x, λ, 1s, 1t, 1ℓ, 1k) = ⊥

]
≥ 2

3 .

2. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A decides MINrKT on (x, λ, 1s, 1t, 1ℓ)

]
≥ 2

3 .

CCC 2024

29:6 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

We also introduce the statement “SearchMINrKT ∈ AvgBPP”, which states that Search-
MINrKT can be solved in probabilistic polynomial time on average (without errors) over
polynomial-time samplable distributions (cf. the definition of AvgBPP from [4]).

“SearchMINrKT ∈ AvgBPP”: For every polynomial-time samplable distribution family
{Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic
polynomial-time algorithm A such that the following hold for all all λ ∈ (0, 1), all
n, s, ℓ, k ∈ N, and all t ≥ ρ(n) · log(1/(1 − λ)).
1. For all x ∈ {0, 1}n,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs either an (1/ℓ)-rKt

λ-witness of x or ⊥
]

≥ 1 − 1
2k

.

2. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs an (1/ℓ)-rKt

λ-witness of x
]

≥ 1 − 1
2k

.

▶ Theorem 3 (Errorless Average-Case Search-to-Decision for rKt). We have

“MINrKT ∈ AvgBPP” =⇒ “SearchMINrKT ∈ AvgBPP”.4

In contrast to our main results for Kt (Theorems 1 and 2), the search-to-decision reduction
for rKt is unconditional in that it does not rely on a circuit lower bound assumption. To our
knowledge, this is the first unconditional reduction for the measures Kt and rKt that runs in
less than exponential time and that works with respect to all polynomial-time samplable
distributions.

1.1.3 Worst-Case to Average-Case Search-to-Decision
In our next results, we aim to obtain a worst-case search algorithm from the same average-case
easiness assumptions considered before. Note that this is significantly more challenging than
a typical (worst-case to worst-case) search-to-decision reduction.

▶ Theorem 4 (Conditional Worst-Case to Average-Case Search-to-Decision for Kt). Assume
E ̸⊆ i.o.SIZE[2o(n)]. If “MINKT ∈ AvgBPP” holds, then for every ε > 0 and every polynomial
β, there is an algorithm A such that for all n ∈ N and x ∈ {0, 1}n, A(x) runs in time
2O(n/ log n) and outputs a program M and an integer t that satisfy the following:

β(n) ≤ t ≤ 2nε , and
M is a Kt-witness of x.

▶ Theorem 5 (Worst-Case to Average-Case Search-to-Decision for rKt). If “MINrKT ∈ AvgBPP”
holds, every polynomial β, there is a probabilistic algorithm A such that for all n ∈ N,
x ∈ {0, 1}n, all ℓ ∈ N, and all λ ∈ (0, 1) such that λ ≤ 1 − 1/2poly(n), A(x, λ, 1ℓ) runs in time
2O(n/ log n) · poly(|λ|, ℓ) and, with probability at least 1 − 2−ℓ, outputs a program M and an
integer t that satisfy the following:

β(n) ≤ t ≤ 2nε , and
M is an (1/ℓ)-rKt

λ-witness of x.

In both results, we obtain a sub-exponential time search algorithm that works on every
input string x. A caveat is that we have no control over the value of t on which the search
algorithm succeeds, while ideally we would like it to succeed on every choice of t presented
as an extra input parameter. On the positive side, in both results we make only an average-
case easiness assumption on the decision problem, i.e., we obtain an interesting worst-case
conclusion from a significantly weaker computational assumption.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:7

1.1.4 Weaker Assumptions on the Decision Problems
In fact, for the results stated above, a much weaker assumption on the decision problem
suffices to get the same consequence on the search problem. This is a consequence of the
nature of our techniques, which we discuss in Section 1.3 below. Consider the following
statements.

(MINKT, U) ∈ HeurBPP: There exist a polynomial ρ and a polynomial-
time algorithm A such that for all n, s, k ∈ N, and all t ≥ ρ(n, k),
Prx∼{0,1}n

[
A(x, 1s, 1t, 1k) = MINKT(x, 1s, 1t)

]
≥ 1 − 1

k .

(coMINKT, U) ∈ Avg1BPP: There exist a constant c > 0, a polynomial ρ and a probabil-
istic polynomial-time algorithm A such that the following hold for all sufficiently large n,
all t ≥ ρ(n), and all s ≤ n − c · log log t.
1. For every x ∈ {0, 1}n with Kt(x) ≤ s, we have PrA[A(x, 1s, 1t) = 1] ≥ 2/3.
2. With probability at least 1/n over x ∼ {0, 1}n, we have PrA[A(x, 1s, 1t) = 0] ≥ 2/3.

It turns out that, as shown in the body of the paper, these weaker assumptions (see
Proposition 11) suffice in the following search-to-decision reductions:

Theorems 1 and 4 still hold if replacing “MINKT ∈ AvgBPP” with (coMINKT, U) ∈
Avg1BPP.
Theorems 3 and 5 still hold if replacing “MINrKT ∈ AvgBPP” with (coMINKT, U) ∈
Avg1BPP.
Theorem 2 still holds if replacing “MINKT ∈ HeurBPP” with (MINKT, U) ∈ HeurBPP.

Consequently, in our search-to-decision reductions the existence of a decision algorithm for
the uniform distribution provides a search algorithm for any polynomial-time samplable
distribution.

1.2 Related Work
We now compare our results with prior work on search-to-decision reductions for time-bounded
Kolmogorov complexity.

Approximate Reductions. Many previous results on search-to-decision for time-bounded
Kolmogorov complexity have focused on approximate reductions (also known as gap re-
ductions), where there is a weaker guarantee on the output of the search algorithm. More
precisely, for a string x ∈ {0, 1}n such that Kt(x) = s, the search algorithm is allowed to
output a program with the running time t′ ≈ t and the program size s′ ≈ s.

In a recent development, [30] obtained a worst-case approximate reduction that produces
a program with t′ = poly(|x|, t, s), s′ ≤ s + log poly(|x|, t, s), and that runs in randomized
time 2ε·s · poly(|x|, t, s), for an arbitrarily small ε > 0. An advantage of the approximate
reduction of [30] with respect to our exact reductions is that it invokes the decision algorithm
in a black-box way, while our techniques require access to the code of the decision algorithm.

While approximate reductions are not the focus of this work, we note that some of our
techniques can be used to obtain a polynomial-time reduction with similar parameters t′

and s′, under the assumption that E requires exponential size circuits. Although predicated
on a hardness assumption, our search-to-decision reduction has essentially the best possible
runtime. We refer to Appendix C for the details.

CCC 2024

29:8 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

A statement related to the average-case to worst-case search-to-decision reduction for Kt

(Theorem 4) appears in [13, Theorem 8.7]. Both results are conditional. However, in contrast
to Theorem 4, where the search algorithm produces an exact solution, in [13, Theorem 8.7]
the search algorithm outputs an approximate solution where s′ = s = Kt(x) but t′ can be as
large as 2n/ log n for t ≤ 2n0.99 .

For the time-bounded Kolmogorov complexity measures Kt and rKt, [25, 27] designed
efficient reductions with s′ = O(s) such that, on a given input string x, the search algorithm
only queries the decision algorithm on x.

In these approximate reductions, it is often possible to relax the requirement on the
decision algorithm, i.e., the reduction still works when the latter only approximates Kt(x).
Interestingly, this is also the case in our results as a consequence of the discussion in
Section 1.1.4, though we obtain an exact solution to the search problem even under a
relaxation of the decision algorithm.

Exact Average-Case Reductions. [22] (see also the alternate proof in [30]) established
the first error-prone polynomial-time search-to-decision reduction for Kt over the uniform
distribution. Another related result appears in [24], which showed that if polynomial-time
symmetry of information holds for Kt (i.e., if Kt(x, y) ≈ KtO(1)(x)+KtO(1)(y | x)), then Search-
MINKT admits an error-prone polynomial-time algorithm over the uniform distribution. In
contrast, here we obtain both error-prone and errorless reductions for Kt for every given
polynomial-time samplable distribution, under the assumption that E requires exponential
size circuits.

While reductions restricted to the uniform distribution are not the focus of this work,
complementing the results of [22, 30], which provide error-prone search-to-decision reductions
for Kt under the uniform distribution, we describe in Appendix D an errorless search-to-
decision reduction for Kt under the uniform distribution.

As discussed in Section 1.1.1, [23] implicitly established an error-prone search-to-decision
reduction for Kt under any polynomial-time samplable distribution, under the assumption
E ̸⊆ i.o.NSIZE[2o(n)]. Our error-prone search-to-decision reduction for Kt weakens this
circuit complexity assumption, and provides a search algorithm for the more general case of
conditional Kt complexity. We note that [23] also establishes a search-to-decision reduction
for the probabilistic Kolmogorov complexity measure pKt, which we do not consider in this
work.

Additional Related Work. In two recent works, [29] and [15] obtain non-uniform algorithms
solving the exact search problem for Kt. In more detail, in these results the size of the
non-uniform circuit is of order 24n/5 and the circuit neither needs access to, nor assumes
the existence of an algorithm for the decision problem. It is not known how to extend these
results to uniform algorithms.

In another recent paper, [28] describes a non-uniform polynomial-size search-to-decision
reduction when the decision procedure solves MINKT with respect to any underlying universal
Turing machine U , given black-box access to it (see their paper for details about this setting).

Search-to-decision reductions have also been investigated in the related setting of circuit
complexity theory, where the goal is to compute the complexity of a given input function.
[16] investigated this problem for Boolean formulas (corresponding to MFSP, the Minimum
Formula Size Problem), and designed a worst-case search-to-decision reduction that runs
in time O(20.67n) on an input function of description length n. Additionally, [16] obtained
an improved running time of 2O(n/ log log n) when the search algorithm is only required to
succeed with high probability over the uniform distribution.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:9

Finally, we note that efficient randomized search-to-decision reductions are known for
the complexity class DistNP. Every DistNP search problem can be reduced to some DistNP
decision problem [3]. However, such reductions typically do not preserve the problem they
reduce from (except for certain DistNP-complete problems like the Bounded Halting Problem),
and so do not seem to apply to the case of search-to-decision reductions for MINKT and
MINrKT studied in our work.

1.3 Techniques
From a technical perspective, our most interesting results are an unconditional errorless
average-case search-to-decision reduction for rKt (Theorem 3) and a conditional error-prone
average-case search-to-decision reduction for Kt (Theorem 2). However, for illustration, we
start with a more complete overview of the proof of the conditional errorless average-case
search-to-decision reduction for Kt (Theorem 1), which is simpler yet captures some key
ideas behind most of our proofs.

Average-Case Search-to-Decision for Kt. Our starting point is the aforementioned result
from [24], which showed that if polynomial-time symmetry of information holds for Kt, then
Search-MINKT can be solved over the uniform distribution. By inspecting the proof more
carefully, we observe that if polynomial-time symmetry of information holds for Kt, then
given t and x, one can find a shortest t-time program for x in time exponential in the
(t, p(t))-computational depth of x, i.e., cdt,p(t)(x) := Kt(x) − Kp(t)(x), for some polynomial p.

To show this, consider x ∈ {0, 1}n and any sufficiently large t ∈ N. Let yt be a shortest
t-time program for generating x. By the assumed polynomial-time symmetry of information,
we get that there is a polynomial p′ such that the following holds:

Kp′(2t)(yt | x) ≲ K2t(x, yt) − Kp′(2t)(x) (by polytime symmetry of information)

≲ |yt| − Kp′(2t)(x) (since x is determined by yt)

= Kt(x) − Kp′(2t)(x) (since |yt| = Kt(x))

≤ Kt(x) − Kp(t)(x) (by monotonicity of Kt with respect to t)

= cdt,p(t)(x), (by definition of computational depth)

where p > p′ is a polynomial. The above essentially says that there is a program Πyt
of size

at most cdt,p(t)(x) such that U(Πyt
, x) outputs yt within p(t) steps.

Consider the following algorithm:

For an integer s, enumerate all programs Π ∈ {0, 1}≤s, and run U(Π, x) for p(t)
steps to obtain a list of candidate Kt-witnesses y, which is guaranteed to include yt if
cdt,p(t)(x) ≤ s. For each such candidate y, check if y is indeed a t-time program for x,
and output a valid one of the smallest length.

This algorithm runs in time 2s ·poly(t), and finds a Kt-witness for every x with cdt,p(t)(x) ≤ s.
Using ideas from prior work on meta-complexity [7, 9, 5, 13], one can show that (assuming

E ̸⊆ i.o.SIZE[2o(n)]), if MINKT is easy on average (in the errorless setting), then polynomial-
time symmetry of information for Kt holds (see Lemma 22 below).

Since the (t, p(t))-computational depth of x is small, i.e., O(log |x|), for a uniformly random
x with high probability, the above yields a polynomial-time Search-MINKT algorithm over
the uniform distribution. We want to extend to all polynomial-time samplable distributions.

CCC 2024

29:10 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

To this end, we want to say that, for a polynomial-time samplable distribution D, cdt,p(t)(x)
is small for almost all x sampled from D. It turns out that this is true if the coding theorem
holds for Kt, i.e., if for every x ∈ {0, 1}n in the support of D, Kt(x) ≤ − log D(x) + O(log n),
for any sufficiently large t ≥ poly(n). Combining the above with the well-known property of
Kolmogorov complexity that for almost all x sampled from D, K(x) ≥ − log D(x) − O(log n),
we would get that cdt,p(t)(x) = Kt(x) − Kp(t)(x) ≤ Kt(x) − K(x) ≤ O(log n) for almost all x

sampled from D.
Again, using ideas from meta-complexity in prior work, assuming E ̸⊆ i.o.SIZE[2o(n)] and

average-case easiness of MINKT (in the errorless setting), we can obtain the requisite coding
theorem for Kt (see Lemma 23).

Thus, by the coding theorem for Kt, we can already show that if MINKT is easy on average
(and assuming E ̸⊆ i.o.SIZE[2o(n)]), one can efficiently solve Search-MINKT over polynomial-
time samplable distributions. However, such an average-case algorithm can make errors for
strings x whose (t, p(t))-computational depth is not small. We would like to recognize such
strings x, and output ⊥ on them. To this end, we will design a deterministic polynomial-time
computational depth certifying algorithm A with the following two properties:
1. If A(x) accepts, then indeed cdt,p(t)(x) ≤ O(log n), and
2. For almost all x sampled from D, A(x) accepts.
Given A, our final errorless average-case algorithm for solving Search-MINKT is as follows:

Given x and t, if the algorithm A accepts, which implies that cdt,p(t)(x) is small, then
we are guaranteed that the previously-mentioned procedure can output a Kt witness
of x. Otherwise if algorithm A rejects, which happens with only small probability
over x ∼ D, we output ⊥.

It remains to explain how to get the requisite algorithm A. By known results in meta-
complexity, if MINKT is easy on average and if E ̸⊆ i.o.SIZE[2o(n)], then there is some
polynomial q such that given x and t′, one can compute in deterministic polynomial time an
integer s′ such that Kq(t′)(x) ≲ s′ ≤ Kt′(x). By running this algorithm on both (x, 1q−1(t))
and (x, 1p(t)), we obtain an integer s such that

Kt(x) − Kp(t)(x) ≤ s ≲ Kq−1(t)(x) − Kq(p(t))(x)

(see Lemma 24). Let A be the algorithm that computes a number s as above, accepting
if s ≤ O(log n), and rejecting otherwise. By definition, A satisfies property (1) above.
Also, A satisfies property (2) above, since as discussed earlier, by the coding theorem,
Kq−1(t)(x) − Kq(p(t))(x) ≤ O(log n) for almost all x sampled from D, provided that t (hence
q−1(t)) is sufficiently large.

Worst-Case Search-to-Decision for Kt. As described above, assuming average-case tract-
ability of MINKT, one can find a Kt-witness of x in time exponential to cdt,p(t)(x), where p is
a polynomial. The observation is that for every x, there exists some good t ≤ 2nε such that
cdt,p(t)(x) is at most O(n/ log n). We show that using the above-described computational
depth certifying algorithm, one can also find such a good t for a given x. Then for such a t,
we can find a Kt-witness in time 2O(n/ log n) · poly(t).

Average-Case Search-to-Decision for rKt. One can use ideas from prior work on meta-
complexity, and a known generator with rKt-style reconstruction, to obtain symmetry of
information, coding theorem, and a worst-to-average reduction for rKt, albeit with an

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:11

O(log3 n) overhead (as opposed to O(log n) in the case for Kt), just assuming the average-
case easiness of MINrKT (and no derandomization assumptions). By using these tools
and following a similar approach as described above for the average-case search-to-decision
reduction for Kt, we get an average-case search-to-decision reduction for rKt with time roughly
2O(log3 n) · poly(t), which is quasi-polynomial; see Section B in the appendix for details.

A polynomial-time reduction, as stated in Theorem 3, is considerably more challenging to
get, since we don’t know the desired symmetry of information theorem and coding theorem for
rKt with an optimal O(log n) overhead. Our approach is to use the symmetry of information
theorem (under an average-case easiness assumption for MINKT) and the coding theorem for
pKt with optimal O(log n) overheads. However, implementing this plan requires a delicate
analysis. We consider two variants of computational depth defined as rKt(x) − pKpoly(t)(x)
and pKt(x) − K(x), and argue that
1. rKt-witnesses can be found in time exponential in the computational depth rKt(x) −

pKpoly(t)(x) (Lemma 19),
2. the computational depth rKt(x) − pKpoly(t)(x) is upper-bounded by O(pKt1/c

(x) − K(x) +
log n), for some constant c > 0 (Theorem 18).

Finally, using the optimal coding theorems for K and pKt, we conclude that the running
time exponential in O(pKt1/c

(x) − K(x) + log n) is actually average polynomial time for every
given t1/c-time samplable distribution.

The proof of Theorem 18 requires a novel application of techniques from meta-complexity.
The key idea is to combine the hitting-set generator Hm : {0, 1}n × {0, 1}d → {0, 1}m of [8]
and the disperser Gm : {0, 1}n ×{0, 1}d → {0, 1}m of [31]. The generator Hm has an efficient
albeit sub-optimal reconstruction: if there is a randomized polynomial-time algorithm D that
avoids Hm(x, -) (i.e., D outputs 0 on input Hm(x, z) for every z ∈ {0, 1}d, yet D outputs
1 on most inputs), then rKpoly(n)(x) ≤ O(m + log n). The disperser Gm may be viewed
as a hitting-set generator with an inefficient but nearly optimal reconstruction: if there
is an algorithm D that avoids Gm(x, -), then K(x) ≤ m + O(log n). For x ∈ {0, 1}n, we
set m ≈ K(x) and m′ ≈ pKt1/c

(x) − K(x). We then argue that the concatenated generator
Gm(x, z)◦Hm′(x, z′) (for seeds z and z′) has an efficient distinguisher, based on an algorithm
that approximates the pK-complexity of its input. On the other hand, Gm(x, z) ◦ Um′ is
“indistinguishable” from the uniform distribution Um+m′ (by our choice of m). This implies
that there is an efficient algorithm that takes m bits of advice and avoids Hm′(x, -), which
allows us to apply the reconstruction property of Hm′ to conclude the proof.

We should also point out another important difference between Kt and rKt witness search.
In the search-to-decision reduction for Kt, after generating a list of candidate Kt witnesses in
the search algorithm, one can check whether each of them is a valid t-time program that
outputs x. However, given a candidate randomized program y and λ, we cannot efficiently
check whether y outputs x with probability at least λ or if this probability is less than λ,
unless PP = BPP. However, we can distinguish the set of randomized programs that output
x with probability at least λ and those that output x with probability less than λ − (1/ℓ), in
time poly(ℓ). This allows us to find an (1/ℓ)-rKt

λ-witness.

Error-Prone Average-Case Search-to-Decision for Conditional Kt. We first describe the
proof ideas behind the (conditional) error-prone average-case search-to-decision reductions
for Kt in [23] mentioned in Section 1.1.1.

First of all, it was shown in [22] that if MINKT is average-case easy (in the error-prone
setting), then infinitely-often one-way functions do not exist. Also, implicit in [22, 23], if
infinitely-often one-way functions do not exist, then there is an error-prone average-case

CCC 2024

29:12 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

algorithm for solving Search-MINKT over the “universal t-time-bounded distribution” where
each x is assigned the probability mass 2−Kt(x). Thus, to get an average-case Search-MINKT
algorithm over a polynomial-time samplable distribution D, it suffices to argue that D is
dominated5 by the universal t-time-bounded distribution (for some polynomial t). The latter
would follow from a coding theorem for Kpoly.

While the coding theorem is not known to hold for Kpoly, it does hold for pKpoly [27].
Moreover, it is also known that Kpoly and pKpoly are essentially equivalent under the derandom-
ization assumption that E ̸⊆ i.o.NSIZE[2o(n)] [6]. As a result, assuming E ̸⊆ i.o.NSIZE[2o(n)],
one gets a coding theorem for Kpoly. Using these observations, [23] showed that assuming
E ̸⊆ i.o.NSIZE[2o(n)], the average-case algorithms for solving Search-MINKT over the class
of universal poly-time-bounded distributions also work for the class of polynomial-time
samplable distributions.

Our key observation is that assuming only E ̸⊆ i.o.SIZE[2o(n)], plus the non-existence
of infinitely-often one-way functions, one can get an average-case coding theorem for Kpoly;
this result is implicit in [17]. We then show that such an average-case coding theorem
for Kpoly implies that polynomial-time samplable distributions are dominated by universal
poly-time-bounded distributions on average. In turn, this implies that the average-case
Search-MINKT algorithms over universal poly-time-bounded distributions also work over
polynomial-time samplable distributions.

Next, we explain how to generalize these ideas to get an average-case Search-MINcKT
algorithm. For simplicity, consider a polynomial-time samplable distribution family {Dn}
supported over {0, 1}n × {0, 1}n. Also, let {Cn} be the the family of marginal distributions
of {Dn} on the second part. That is, to sample from Cn, we sample (x, y) from Dn and then
output y. We observe the following equivalent way of sampling Dn: First sample y from Cn

and then sample x from Dn(· | y), where Dn(· | y) is the conditional distribution of Dn on
the first part given that the second part is y.

First of all, by borrowing ideas from [22, 23], we show that non-existence of infinitely-often
one-way functions implies that there is an (error-prone) average-case algorithm A such that,
with high probability over y ∼ Cn, A outputs a Kt(· | y)-witness of x with high probability
over the distribution Et

y assigning each x the probability mass 2−Kt(x|y).
In [14], it was shown that if infinitely-often one-way functions do not exist, then one can

get an average-case conditional coding theorem for pKpoly. By “derandomizing” the proof, we
can show that assuming E ̸⊆ i.o.SIZE[2o(n)], plus the non-existence of infinitely-often one-way
functions, one gets an average-case conditional coding theorem for Kpoly which says that with
high probability over (x, y) ∼ Dn,

Kpoly(n)(x | y) ≲ 1
Dn(x | y) . (1)

Note that by an averaging argument, we get that with high probability over y ∼ Cn,
Equation (1) holds with high probability over x ∼ Dn(· | y).

Now using this conditional coding theorem, we get that with high probability over
y ∼ Cn, the distribution Et

y dominates Dn(· | y), again, on average, for any sufficiently large
t ≥ poly(n). By the same observation as discussed earlier, such “average-case domination”
suffices for us to argue that the algorithm A, which works on average over Et

y, also works
on average over the distribution Dn(· | y). As a result, we get that with high probability
over y ∼ Cn, A output a Kt(· | y)-witness of x with high probability over x ∼ Dn(· | y). This
implies that A solves Search-MINcKT on average over (x, y) ∼ Dn.

5 Recall that a distribution D dominates another distribution D′ if D(x) ≥ D′(x)/poly(n) for every x.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:13

1.4 Concluding Remarks, Directions, and Open Problems

We have designed exact search-to-decision reductions for Kt and rKt complexities in the
average-case setting. The results for Kt hold under a widely believed hardness assumption,
while the results for rKt are unconditional. We have also made progress on worst-case to
average-case search-to-decision reductions, where a worst-case search algorithm is obtained
from an average-case easiness assumption on the decision problem. (As stated in Section 1.1.4,
the assumptions on the decision problems in most results can be made considerably weaker,
while maintaining the same conclusion.) A key contribution of our results is showing that
search-to-decision reductions exist for any fixed polynomial-time samplable distribution. (We
also describe new approximate reductions in Appendix C, and a new errorless reduction over
the uniform distribution in Appendix D.) A summary of the existing average-case polynomial-
time search-to-decision reductions for the measures Kt and rKt appears in Table 1.

We would like to highlight the following problems and directions:

1. In the worst-case setting, it is currently possible that computing Kt(x) admits a linear
time algorithm, while finding a minimum t-time bounded program for x requires time
2Ω(|x|). Are there sub-exponential time (exact) worst-case to worst-case search-to-decision
reductions for Kt and rKt?

2. Can we improve Theorems 4 and 5 so that the search algorithm works for every choice
of the parameter t? Note that this would provide a positive solution to the previous
problem.

3. Design an unconditional polynomial-time error-prone search-to-decision reduction for rKt

for polynomial-time samplable distributions.

4. Our search-to-decision reductions are non-black-box, i.e., the search algorithm relies on
the code of the decision algorithm. Is it possible to obtain black-box search-to-decision
reductions for the settings considered in our work?

5. Is it possible to combine our techniques for exact search-to-decision with the techniques
from [30] and Appendix C for approximate search-to-decision to obtain stronger results?

Table 1 Summary of average-case polytime search-to-decision reductions for Kt and rKt.

Assumption Measure Distribution Errorless or
Error-prone

Reference

None Kt Uniform Error-prone [22]
E ̸⊆ i.o.NSIZE[2o(n)] Kt P-Samplable Error-prone [23]
None Kt Uniform Errorless Appendix D
E ̸⊆ i.o.SIZE[2o(n)] Kt P-Samplable Errorless Theorem 1
E ̸⊆ i.o.SIZE[2o(n)] Kt P-Samplable Error-prone Theorem 2

None rKt Uniform Error-prone [30]6

None rKt P-Samplable Errorless Theorem 3

6 The proof of [30, Theorem 1.3] via list recoverable codes extends to rKt with simple modifications.

CCC 2024

29:14 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

2 Preliminaries

2.1 Definitions and Notation
For a string w ∈ {0, 1}∗, we use |w| ∈ N to denote its length. The empty string is denoted
by ϵ.

Time-Bounded Kolmogorov Complexity. Let U be a Turing machine. Given a positive
integer t and a string x ∈ {0, 1}∗, we let

Kt
U (x) = min

p∈{0,1}∗

{
|p| | U(p, ϵ) outputs x in at most t steps

}
.

We say that Kt
U (x) is the t-time-bounded Kolmogorov complexity of x (with respect to U). As

usual, we fix U to be a time-optimal machine [21], i.e., a universal machine that is almost as
fast and length efficient as any other universal machine, and drop the index U when referring
to time-bounded Kolmogorov complexity measures.

We also consider a randomized variant of Kt where instead of having a deterministic
machine that prints x, we consider a randomized machine that generates x with high
probability. Given a probability parameter λ ∈ [0, 1] and a positive integer t, we let

rKt
λ(x) = min

p∈{0,1}∗

{
|p| | Pr

r∼{0,1}t
[U(p, r) outputs x in at most t steps] ≥ λ

}
.

denote the t-time-bounded randomized Kolmogorov complexity of x. Note that we do not
require that U(p, r) stops in time at most t on every r.7 We assume that the random string
r is given on a separate input tape.

Also, for λ ∈ [0, 1] and a positive integer t, we let

pKt
λ(x) = min

{
k | Pr

r∼{0,1}t
[∃ p ∈ {0, 1}k, U(p, r) outputs x in at most t steps] ≥ λ

}
.

denote the t-time-bounded probabilistic Kolmogorov complexity of x. For simplicity, in both
definitions above, we omit λ when λ = 2/3.

For more information about different notions of randomized time-bounded Kolmogorov
complexity and their applications, we refer to [26].

We use K(x) to denote the (time-unbounded) Kolmogorov complexity of x.
These definitions are extended to conditional Kolmogorov complexity measures in the

usual way. For instance, in rKt(x | y) the machine U is also given access to the string y as
part of its input. We assume that the string y is given on a separate input tape.

Probability Distributions. We will consider distributions supported over pairs of strings.
Let D = {D⟨n,m⟩}n,m∈N be a family of polynomial-time samplable distributions8, where each
D⟨n,m⟩ is supported over {0, 1}n × {0, 1}m. For y ∈ {0, 1}m, we denote by D⟨n,m⟩(· | y) the
conditional distribution of D⟨n,m⟩ on the first part given that the second part is y.

7 This condition would be computationally difficult to check for a given randomized program. However,
in a setting where it might be relevant, it can be achieved with a clocked program by storing the value t
using log t bits, or an approximation of t (e.g., the exponent of the smallest power of 2 not smaller than
t) using just log log t bits.

8 Recall that D can be sampled in polynomial time if there is a polynomial-time algorithm Samp such
that Samp(1⟨n,m⟩, r) is distributed according to D⟨n,m⟩ when r is a uniformly random string of length
poly(n, m).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:15

We use D⟨n,m⟩(x, y) to denote the probability that the pair (x, y) is sampled from D⟨n,m⟩.
Similarly, D⟨n,m⟩(x | y) denotes the probability that x is sampled from the conditional
distribution D⟨n,m⟩(· | y).

2.2 Basic Results in Kolmogorov Complexity
We will need the following results.

▶ Fact 6. For every x ∈ {0, 1}∗, time bound t ∈ N, and λ > 1/2,

K(x) ≤ rKt
λ(x).

Since we have not explicitly considered prefix-free encodings in our definitions, below we
simply observe the following result, which is useful later.

▶ Lemma 7 (“Kraft’s Inequality for K”). For all n > 0,∑
x∈{0,1}n

2−K(x) ≤ nO(1).

Proof. For every x ∈ {0, 1}n, its Kolmogorov description of length K(x) can be encoded
using a prefix-free code (where no codeword is a prefix of another codeword) at the expense
of extra O(log n) bits (roughly, by adding the encoding of the integer value K(x) ≤ n + O(1),
using a simple prefix-free binary code where each bit of the message is repeated twice, and
10 is added at the end). Let C(x) denote the length of this prefix-free encoding of x. Then
we have∑

x∈{0,1}n

2−K(x) ≤
∑

x∈{0,1}n

2−C(x)+O(log n)

≤ nO(1) ·
∑

x∈{0,1}n

2−C(x)

≤ nO(1),

where the last step uses Kraft’s inequality (saying that for every prefix-free binary code with
lengths C(x), we have

∑
x 2−C(x) ≤ 1). ◀

▶ Theorem 8 (Coding Theorem for pKt [27]). There is a constant c > 0, such that the following
holds. For any distribution family {Dn}n∈N, where each Dn is over {0, 1}n, samplable in
time p(n), we have pKp(n)c

(x) ≤ − log Dn(x) + O(log p(n)).

▶ Lemma 9 (See [14, Lemma 9]). There exists a universal constant b > 0 such that for any
distribution family {Dn}n∈N, where each Dn is over {0, 1}n, and γ ∈ N,

Pr
x∼Dn

[
K(x) < log 1

Dn(x) − γ

]
<

nb

2γ
.

▶ Lemma 10 (Success Amplification for rKt). For any string x ∈ {0, 1}∗, time bound t ∈ N,
and q ∈ N, we have

rKt′

1−1/q(x) ≤ rKt(x) + O(log log q),

where t′ := t · O(log q).

CCC 2024

29:16 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Proposition 11. The following hold.
1. “MINKT ∈ HeurBPP” =⇒ (MINKT, U) ∈ HeurBPP.
2. “MINKT ∈ AvgBPP” =⇒ (coMINKT, U) ∈ Avg1BPP.
3. “MINrKT ∈ AvgBPP” =⇒ (coMINKT, U) ∈ Avg1BPP.

Proof. The implication from “MINKT ∈ HeurBPP” to (MINKT, U) ∈ HeurBPP (Item 1) is
immediate. Next, we show that “MINrKT ∈ AvgBPP” implies (coMINKT, U) ∈ Avg1BPP
(Item 2).

Suppose “MINrKT ∈ AvgBPP” holds. Then it follows that there exist a polynomial ρ and
a probabilistic polynomial-time algorithm A′ such that the following hold for all n, s ∈ N,
and all t ≥ ρ(n).

For all x ∈ {0, 1}n,

Pr
A′

[
A′ decides MINrKT on (x, 2/3, 1s, 1t, 1n) OR A′(x, 2/3, 1s, 1t, 1n) = ⊥

]
≥ 2

3 . (2)

With probability at least 1 − 1/(2 log t) over x ∼ {0, 1}n,

Pr
A′

[
A′ decides MINrKT on (x, 2/3, 1s, 1t, 1n)

]
≥ 2

3 . (3)

Let A be the algorithm: On input (x, 1s, 1t), A accepts if A′(x, 2/3, 1s, 1t, 1n) outputs 1 or
⊥; otherwise it rejects. We claim that the algorithm A satisfies the conditions stated for
(coMINKT, U) ∈ Avg1BPP.

Let t ≥ ρ(n) and s ≤ n − 2 log log t.
On the one hand, consider x ∈ {0, 1}n such that Kt(x) ≤ s. Then we also have rKt(x) ≤ s.

This means that (x, 2/3, 1s, 1t, 1n) is a YES instance of MINrKT. Then by Equation (2),
A′(x, 2/3, 1s, 1t, 1n) outputs 1 or ⊥ with probability at least 2/3, which implies that A(x, 1s, 1t)
accepts with probability at least 2/3.

On the other hand, by a counting argument, we have that with probability at least
1 − 1/(2 log t) over x ∼ {0, 1}n, K(x) ≥ n − log(2 log t) > s. By Fact 6, we also get that

rKt
2/3−1/n(x) > s.

In this case, (x, 2/3, 1s, 1t, 1n) is a NO instance of MINrKT. Combining this fact with
Equation (3) and using a union bound, we get that with probability at least 1 − 1/(2 log t) ≥
1/n over x ∼ {0, 1}n, A′(x, 2/3, 1s, 1t, 1n) rejects with probability at least 2/3. Note that
the above allows us to conclude that (coMINKT, U) ∈ Avg1BPP holds.

Item 3 can be shown in a similar way. We omit the details. ◀

We will also need the following lemma.

▶ Lemma 12 (Computational Depth Upper Bound [11]). For every ε > 0, every non-decreasing
polynomials qdpt and pdpt , and every large enough x ∈ {0, 1}n, there exists a time bound t∗

such that qdpt(n) ≤ t∗ ≤ 2nε and

Kt∗
(x) − Kpdpt (t∗)(x) ≤ O

(
n

log n

)
.

Moreover, the same holds if we replace in the above Kt∗(x) − Kpdpt (t∗)(x) with rKt∗
(x) −

rKpdpt (t∗)(x).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:17

Proof. We show the proof for randomized time-bound Kolmogorov complexity. The proof
can be easily adapted to the deterministic case.

Given x ∈ {0, 1}n and polynomials qdpt and pdpt , define the polynomial τ := pdpt ◦ qdpt . For
an integer I ≥ 1, consider the following telescoping sum:

rKτ(n)(x)−rKτ(I+1)(n)(x) =
(

rKτ(n)(x) − rKτ(2)(n)(x)
)

+
(

rKτ(2)(n)(x) − rKτ(3)(n)(x)
)

+ · · · +
(

rKτ(I)(n)(x) − rKτ(I+1)(n)(x)
)

,

where τ (i) denotes the composition of τ with itself i times. For any choice of x, qdpt , and
pdpt as in the statement of the lemma, rKτ(n)(x) ≤ n + d, for some universal constant d ≥ 0;
hence, the above sum is at most n + d. By averaging, there is some index i0 ∈ [I] such that

rKτ(i0)(n)(x) − rKτ(i0+1)(n)(x) ≤ n + d

I
. (4)

For this i0, define t∗ := τ (i0)(n). Note that t∗ ≥ τ(n) ≥ (n), since i0 ≥ 1 and pdpt(ℓ) ≥ ℓ for
every input ℓ. Letting c ∈ N be such that τ(n) ≤ nc for sufficiently large n, define

I := logc

(
nε

log n

)
.

Then t∗ ≤ ncI = 2nε . Moreover,

rKt∗
(x) − rKpdpt (t∗)(x) ≤ rKt∗

(x) − rKτ(t∗)(x)

≤ O

(
n

log n

)
, (by Equation (4))

where the constant behind the O(−) can depend on ε and c (and hence qdpt and pdpt). ◀

3 Errorless Average-Case Search-to-Decision Reduction for rKt

Here we prove Theorem 3, re-stated in its stronger form below (cf. Proposition 11).

▶ Theorem 13.

(coMINKT, U) ∈ Avg1BPP =⇒ “SearchMINrKT ∈ AvgBPP”.

3.1 Technical Tools
A randomized oracle D : {0, 1}m → {0, 1} is a family {Dq}q∈{0,1}m of random variables Dq

over {0, 1}. When a query q ∈ {0, 1}m is made to a randomized oracle D, a sample a ∼ Dq

is returned independently.
We say that an algorithm D : {0, 1}m → {0, 1} ε-avoids a generator G : {0, 1}d → {0, 1}m

if D is 1 on at least ε fraction of its inputs, and yet D(G(z)) = 0 for all z ∈ {0, 1}d. Similarly,
a randomized oracle D ε-avoids a generator G if PrD[D(w) = 1] ≥ 2

3 for at least ε2m inputs
w ∈ {0, 1}m, and yet PrD[D(G(z)) = 0] ≥ 2

3 for all z ∈ {0, 1}d.
We will use the following two hitting-set generators with reconstruction properties.

CCC 2024

29:18 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Lemma 14 (Implicit in [8]). There exists a polynomial-time-computable family

H =
{

Hn,m : {0, 1}n × {0, 1}d(n,m) → {0, 1}m
}

n,m∈N

of functions such that d(n, m) = O(log3 m+log n) and for any x ∈ {0, 1}n and any randomized
oracle D : {0, 1}m → {0, 1} that ε-avoids Hn,m(x, -), it holds that

Kt,D(x) ≤ 2m + O(log3 m + log n)

for t := poly(n, m).

Proof Sketch. For a deterministic oracle D, this is [8, Corollary 4.4]. By inspecting the
proof, one can observe that the proof can be generalized to a randomized oracle D. ◀

We need the nearly optimal construction of a disperser obtained by [31]. We regard it as
a hitting-set generator with an inefficient reconstruction property.

▶ Lemma 15. There exists a polynomial-time-computable family

G =
{

Gn,m : {0, 1}n × {0, 1}O(log n) → {0, 1}m
}

n,m∈N

of functions such that for any x ∈ {0, 1}n and any oracle D : {0, 1}m → {0, 1} that ε-avoids
Gn,m(x, -), it holds that

KD(x) ≤ m + O(log n).

Proof. We may assume without loss of generality that m ≤ 2n because otherwise the
conclusion is obvious. It is shown in [31, Theorem 1.4] that for every n, k and constant ε > 0,
there exists a strongly explicit bipartite graph (V, W, E) with left degree 2d = nO(1) such
that V = [2n], |W | = Θ(2k+d−3 log n), and every subset A ⊆ V of size at least 2k has at least
(1 − ε/2)|W | distinct neighbours in W . We let |W | = 2m, where m = k + d − 3 log n ± Θ(1),
and view the vertices in W as m-bit strings. We define Gn,m(x, z) to be the z-th neighbour
of x ∈ {0, 1}n ≡ V for every z ∈ [2d] ≡ {0, 1}d.

Let A be the set of n-bit strings x ∈ {0, 1}n such that D(Gn,m(x, z)) = 0 for every
z ∈ {0, 1}d. We claim that the size of A is at most 2k. Assume, towards a contradiction,
that |A| ≥ 2k. Let Γ denote the set of the neighbours of A. By the property of the disperser,
|Γ| ≥ (1 − ε/2)|W |. By the definition of A, for every w ∈ Γ, we have D(w) = 0. This
contradicts the assumption that D(w) = 1 for at least an ε fraction of w ∈ {0, 1}m.

Observe that the elements of A can be enumerated given n, m ∈ N and oracle access to
D. Thus, we obtain KD(x) ≤ log |A| + O(log nm) ≤ k + O(log n) ≤ m + O(log n) for every
x ∈ A. ◀

▶ Lemma 16 ([13, 5, 6]). If (coMINKT, U) ∈ Avg1BPP, then there exists a randomized
polynomial-time algorithm M such that for every x ∈ {0, 1}∗ and every t ≥ |x|,

pKtO(1)
(x) − O(log n) ≤ M(x, 1t) ≤ pKt(x)

with high probability over the internal randomness of M .

▶ Lemma 17 (Symmetry of Information for pKt; implicit in [13, 6]). If (coMINKT, U) ∈
Avg1BPP holds, then there exist polynomials pSoI and p0 such that for all sufficiently large
x, y ∈ {0, 1}∗ and every t ≥ p0(|x| + |y|),

pKpSoI(t)(y | x) ≤ pKt(x, y) − pKpSoI(t)(x) + log pSoI(|x| + |y|) + log pSoI(log t).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:19

The Symmetry of Information statement for pKt as in Lemma 17 above was proved in
[6] under the stronger assumption that distributional NP is easy on average for randomized
polynomial-time algorithms in the errorless setting. It turns out that the weaker assumption
on the average-case errorless easiness of MINKT (rather than all problems in NP) suffices to
get the same result, with the proof similar to that in [6]. For completeness, we give the proof
of Lemma 17 in Appendix A.

3.2 On Computational Depth

The following is the key result enabling us to argue that an algorithm that runs in time
2O(rKpoly(t)(x)−K(x)+log n) also runs in time 2O(pKpoly(t)(x)−K(x)+log n). The latter runtime can be
shown to be average-polynomial-time over any t-time samplable distribution.

▶ Theorem 18. If (coMINKT, U) ∈ Avg1BPP, then for some polynomial p, for all n ∈ N, all
t ≥ n, and all x ∈ {0, 1}n, it holds that

rKp(t)(x) − K(x) ≤ O(pKt(x) − K(x) + log n).

Moreover, for every polynomial q, there exists a randomized algorithm M such that, on input
(x, t), with probability at least 1 − o(1) over the internal randomness of M , outputs v ∈ N
such that

rKp(t)(x) − pKq(t)(x) − O(log n) ≤ v ≤ O(pKt(x) − K(x) + log n).

in time 2O(pKt(x)−K(x)+log n).

Proof. Let G be the function of Lemma 15. Let H be the black-box hitting set generator
construction of Lemma 14. The idea is to avoid Gn,m(x, z) ◦ Hn,m′(x, z′) by measuring its
Kolmogorov complexity for some m and m′. Let M be the algorithm of Lemma 16.

Define m := K(x) − c log n and m′ = pKt(x) − K(x) + log3 m′ + c′ log n for sufficiently
large constants c, c′. Observe that there exists a polynomial q such that

pKq(t)(Gn,m(x, z) ◦ Hn,m′(x, z′)) ≤ pKt(x) + |z′| + O(log n)
≤ m + m′ − (c′ − c − O(1)) log n.

Let D0 be an algorithm that takes a string w ∈ {0, 1}m+m′ and outputs 0 if and only if

M(w, 1q(t)) ≤ m + m′ − (c′ − c − O(1)) log n.

Then, D0(Gn,m(x, z) ◦ Hn,m′(x, z′)) = 0 because

M(Gn,m(x, z) ◦ Hn,m′(x, z′), 1q(t)) ≤ pKq(t)(Gn,m(x, z) ◦ Hn,m′(x, z′))
≤ m + m′ − (c′ − c − O(1)) log n.

On the other hand, for a uniformly random w ∈ {0, 1}m+m′ , we have D0(w) = 1 with
probability at least 1 − ε for a small ε > 0.

Let D′ be an (inefficient) algorithm that takes w ∈ {0, 1}m and checks whether

Pr
w′∼{0,1}m′ ,D0

[D0(w ◦ w′) = 0] ≤ 2ε.

CCC 2024

29:20 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

By Markov’s inequality, with probability at least 1
2 over w ∼ {0, 1}m, it holds that D′(w) = 1.

If D′ 1
2 -avoids Gn,m(x, -), by Lemma 15, we would obtain

K(x) ≤ KD′
(x) + O(1)

≤ m + O(log n)
= K(x) − (c − O(1)) log n,

which is a contradiction for a sufficiently large constant c. Thus, D′ does not avoid Gn,m(x, -)
and so there exists z ∈ {0, 1}O(log n) such that D′(Gn,m(x, z)) = 1. That is,

Pr
w′∼{0,1}m′ ,D0

[D0(Gn,m(x, z) ◦ w′) = 0] ≤ 2ε.

Next define a randomized oracle D as follows. On input w′ ∈ {0, 1}m′ , D(w′) = 1 if
and only if D0(Gn,m(x, z) ◦ w′) = 1. Note that D (1 − 2ε)-avoids Hn,m′(x, -), and so, by
Lemma 14, we obtain

rKp(t),D(x) ≤ 2m′ + O(log3 m′ + log n)
≤ O(m′ + log n).

Finally, observe that

rKtO(1)
(x) ≤ rKp(t),D(x) + m + O(log m)

≤ m + O(m′ + log n),

because D can be computed by hard-wiring the fixed string Gn,m(x, z) ∈ {0, 1}m. By the
definitions of m and m′, we obtain that

rKtO(1)
(x) − K(x) ≤ O(pKt(x) − K(x) + log n).

This completes the proof of the first part.
To see the “moreover” part, we compute m̃ such that

K(x) − c log n ≤ m̃ ≤ pKq(t)(x) + O(log n).

This can be done in randomized polynomial time by using the algorithm M . For every
m ≤ m̃, we define D0 to be the algorithm that takes a string w of length m + m′ and outputs
1 if and only if M(w, 1tO(1)) ≤ m + m′ − (c′/2) log n. We compute the maximum integer m

such that there exists z such that Prw′ [D0(Gn,m(x, z) ◦ w′) = 0] ≤ 2ε. Note that m can be
approximately computed in polynomial time by using random sampling. By the proof above,
we have

K(x) − c log n ≤ m ≤ m̃ ≤ pKq(t)(x) + O(log n).

Next, we compute the maximum integer m′ such that D0(Gn,m(x, z) ◦ Hn,m′(x, z′)) = 1 for
all z′ ∈ {0, 1}O(log3 m′+log n). This can be computed in quasi-polynomial time in m′. By the
proof above, we have m′ ≤ pKt(x) − m + O(log3 m′ + log n). Finally, we define the output v

to be m′. As in the proof above, we obtain

rKtO(1)
(x) ≤ m + O(m′ + log n),

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:21

from which it follows that

rKtO(1)
(x) − pKq(t)(x) − O(log n) ≤ rKtO(1)

(x) − m

≤ O(v + log n)
≤ O(pKt(x) − m + log n)
≤ O(pKt(x) − K(x) + log n),

as required. ◀

3.3 Finding rKt-Witnesses for Strings of Small Computational Depth
We call a 0-rKt

λ(x)-witness a rKt
λ(x)-witness.

▶ Lemma 19. If (coMINKT, U) ∈ Avg1BPP, then for some polynomial p′, there exists a
randomized polynomial-time algorithm A that, on input (x, λ, 1t, 1k), outputs a list of strings
that contains an rKt

λ-witness of x with probability at least 1−o(1) over the internal randomness
of A if

rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x) + O(log |x| + log log t + log log(1/(1 − λ))) ≤ log k.

Proof. We assume without loss of generality that λ ≥ 2/3. The proof can be easily adapted
to the case where λ ≤ 2/3.

The algorithm A operates as follows.

On input (x, λ, 1t, 1k), repeat the following kO(1) times: Choose a uniformly random
string r (of length t), run U(z, r, x) for poly(t) steps, for each string z ∈ {0, 1}≤log k,
and add its output to the list.

To prove the correctness, let y be the lexicographically first rKt
λ-witness of x. Note that

|y| = rKt
λ(x). By Lemma 17, we have

pKpSoI(2t)(y | x) ≤ pK2t(x, y) − pKpSoI(2t)(x) + log pSoI(|x| + |y|) + log pSoI(log t).

Observe that (x, y) can be described by y. Thus, we obtain

pK2t(x, y) ≤ |y| + O(1)
= rKt

λ(x) + O(1) (by the definition of y)

≤ rKt/O(log(1/(1−λ)))(x) + O(log log(1/(1 − λ))). (by Lemma 10)

Combining these inequalities, we obtain

pKpSoI(2t)(y | x) ≤ rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x)
+ O(log |x| + log log t + log log(1/(1 − λ)))

≤ log k,

which implies that A adds the witness y to its list with high probability. ◀

▶ Lemma 20. Suppose (coMINKT, U) ∈ Avg1BPP. Then for every polynomial-time samplable
distribution family {Dn}n supported over {0, 1}n, there exist a polynomial ρ, a randomized
algorithm A, and a time function T such that, for all n ∈ N, λ ∈ R, and

t ≥ ρ(n) · log(1/(1 − λ))),

the following conditions hold:

CCC 2024

29:22 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

For every x ∈ {0, 1}n, with probability at least 2/3 over its randomness, A(x, λ, 1t) stops
within T (x, λ, t) steps and outputs a list of strings that contains an rKt

λ-witness of x.
For some constant ε > 0,

E
x∼Dn

[T (x, λ, t)ε] ≤ poly(n, |λ|, t).

Proof. Throughout the proof, we will assume t ≥ ρ(n) · log(1/(1 − λ))), for some sufficiently
large polynomial ρ to be specified later.

Let p the polynomial of Theorem 18. Also, let M be the algorithm from Theorem 18,
instantiated with a sufficiently large polynomial q to be specified later. Let A and p′ be the
algorithm and polynomial of Lemma 19, respectively.

We define a new algorithm A′ as follows.

On input (x, λ, 1t), let t0 be the maximum integer t0 such that

t ≥ p(t0) · O(log(1/(1 − λ))).

Run M on input (x, 1t0) to obtain v := M(x, 1t0), and then simulate A on input
(x, λ, 1t, 1k) for

k := 2O(v+log |x|+log log t+log log(1/(1−λ)))

and output what A outputs.

By Theorem 18, we get that with probability at least 1 − o(1), the value v obtained in
the algorithm satisfies

rKp(t0)(x) − pKq(t0)(x) − O(log n) ≤ v ≤ O(pKt0(x) − K(x) + log n). (5)

Therefore, our algorithm will run in time

T (x, λ, t) := 2O(pKt0 (x)−K(x)+log n+log t+log |λ|)).

Also, by letting q be a sufficiently large polynomial, we have

rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x) ≤ rKp(t0)(x) − pKq(t0)(x) ≤ O(v + log n).

Thus, we have

rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x) + O(log |x| + log log t + log(1/(1 − λ)))
≤ O(v + log n) + O(log |x| + log log t + log log(1/(1 − λ)))
≤ log k,

which means that the condition of Lemma 19 is satisfied.
As a result, we get that with probability at least 2/3, the algorithm A′ runs in time

T (x, λ, t) and outputs a list of strings that contains an rKt
λ-witness of x.

We claim that for every polynomial-time samplable distribution family {Dn}, there exists
a polynomial ρ such that for all large n ∈ N, A′ is an average-polynomial-time algorithm on
input (x, λ, 1t) over x ∼ Dn if t ≥ ρ(n) · log(1/(1 − λ)). Fix the parameters n, λ and t such
that t ≥ ρ(n) · log(1/(1 − λ))). We have

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:23

E
x∼Dn

[T (x, λ, t)ε]

≤
∑

x

Dn(x) · 2ε·O(pKt0 (x)−K(x)+log n+log t+log |λ|))

≤n · |λ| · t ·
∑

x

Dn(x) · 2pKt0 (x)−K(x) (for sufficiently small ε > 0)

≤n · |λ| · t ·
∑

x

2−K(x) (by Coding Theorem for pKt (Theorem 8))

≤nO(1) · |λ| · t. (by “Kraft’s Inequality for K” (Lemma 7))

Note that the penultimate inequality holds for ρ that is a sufficiently large polynomial. ◀

3.4 Proof of Theorem 3
By using Lemma 20, we obtain an errorless average-case polynomial-time algorithm for
finding (1/ℓ)-rKt-witnesses.

Proof of Theorem 13. Let {Dn} be a polynomial-time samplable distribution familiy.
Consider the algorithm A in Lemma 20. We first amplify the success probability of A, as

follows. Given (x, λ, 1t, 1k), we maintain poly(k) executions of A(x, λ, 1t) in parallel (each
with its own randomness). After half of the executions have stopped, we take the union of
the outputs of these executions. By standard concentration bounds, we get an algorithm A′

such that

E
x∼Dn

[T ′(x, λ, t, k)ε] ≤ poly(n, |λ|, t, k),

where ε > 0 is a constant, and T ′ satisfies that for all x, with probability at least 1 − 2−k/2
over its randomness, A′(x, λ, 1t, 1k) stops within T ′(x, λ, t, k) steps and outputs a list of
strings that contains an rKt

λ-witness of x.
By Markov’s inequality, we get that for every k, with probability at least 1 − 1/k over

x ∼ Dn, A′(x, λ, 1t, 1k) runs in time Tk := poly(n, |λ|, t, k) and outputs a list of strings
that contains an rKt

λ-witness of x, with probability at least 1 − 2−k/2 (over the internal
randomness of A′).

Consider the algorithm A′′ that, on input (x, λ, 1t, 1ℓ, 1k), simulates A′(x, λ, 1t, 1k+1). If
it does not stop within Tk steps, we output ⊥; otherwise, we obtain a list of programs.

Note that for every x, we will either get ⊥ or obtain a list of programs that contains an
rKt

λ-witness of x, with probability at least 1 − 1/2−k/2 (over the internal randomness of A′′).
Also, with probability at least 1 − 1/k over x ∼ Dn, we will obtain a list of programs

that contains an rKt
λ-witness of x, with probability at least 1 − 2−k/2 (over the internal

randomness of A′′). We aim to find an (1/ℓ)-rKt
λ-witness of x in this case.

We need one more tool. Given x ∈ {0, 1}n, a randomized program y and a time bound
t ∈ N, we will need to check whether y is a valid randomized program that outputs x with
probability at least λ − 1/ℓ.

▷ Claim 21. There is a polynomial-time algorithm Valid that takes as input (x, y, λ, 1t, 1ℓ, 1k′),
where x, y ∈ {0, 1}∗, λ ∈ (0, 1), and t, ℓ, k′ ∈ N, and with probability at least 1 − 2−k′ ,

accepts if y is a randomized program that outputs x within t steps with probability at
least λ, and
rejects if y is a randomized program that outputs x within t steps with probability less
than λ − 1/ℓ.

CCC 2024

29:24 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Proof Sketch of Claim 21. The algorithm repeatedly simulates the randomized program y

for t steps, for poly(ℓ, k′) simulations and counts the fraction of times that x is obtained.
If this number is greater than λ − 1/(2ℓ), the algorithm accepts; otherwise it rejects. The
correctness can be easily shown using Chernoff bounds. ◁

Using the algorithm Valid in Claim 21, we can easily obtain, from a good list output by the
algorithm A′′, an (1/ℓ)-rKt

λ-witness of x, with probability at least 1 − 2−k/2, by outputting
the first y in the list so that Valid(x, y, λ, 1ℓ, 1k′) accepts, where k′ is set appropriately.

It is easy to verify our final algorithm has polynomial running time. The correctness
follows from a union bound. ◀

4 Errorless Average-Case Search-to-Decision Reduction for Kt

In this section we prove Theorem 1.

4.1 Technical Tools
The lemmas stated in this subsection are implicit in prior work, e.g., [7, 9, 5, 13]. The proof
ideas are similar to those in Appendix B.1, but instead of using a generator with rKt-style
reconstruction, we use a generator with Kt reconstruction (assuming E ̸⊆ i.o.SIZE[2o(n)]).
(See also Lemma 53.) We omit the details of the proofs since no new ideas are needed.

▶ Lemma 22. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then there
exist polynomials pSoI and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and every
t ≥ p0(|x| + |y|),

Kt(x, y) > KpSoI (t)(x) + KpSoI (t)(y | x) − log pSoI(t).

▶ Lemma 23. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then for
every polynomial-time samplable distribution family {Dn}n, there exists a polynomial pcode

such that for every n ∈ N and x ∈ Support(Dn),

Kpcode (n)(x) ≤ log 1
Dn(x) + log pcode(n).

▶ Lemma 24. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then there
exist a constant c > 0, a polynomial τ and an algorithm Approx-depth that, on input
(x, 1t1 , 1t2), where x ∈ {0, 1}n, t1, t2 ∈ N with t1, t2 ≥ cn, runs in time poly(n, t1, t2) and
outputs an integer s such that

Kτ(t1)(x) − Kt2(x) ≤ s ≤ Kt1(x) − Kτ(t2)(x) + log τ(t1) + log τ(t2).

4.2 Proof of Theorem 1
The following implies Theorem 1 via Proposition 11.

▶ Theorem 25. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then for
every polynomial-time samplable distribution family {Dn}n∈N, where each Dn is over {0, 1}n,
there exist a polynomial ρ and a polynomial-time algorithm A such that the following holds
for all n, k ∈ N, and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n, A(x, 1t, 1k) outputs either a Kt-witness of x or ⊥,
2. and

Pr
x∼Dn

[
A(x, 1t, 1k) = ⊥

]
≤ 1

k
.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:25

Proof. Throughout the proof, we will assume that t ≥ ρ(n) for some polynomial ρ, which
will be specified later.

Let t ∈ N be such that t ≥ p0(3n), where p0 is the polynomial from Lemma 22. Consider
any x ∈ {0, 1}n, and let yt be a Kt-witness of x. That is, yt is the shortest t-time program
that outputs x.

First of all, by symmetry of information (Lemma 22), there exists a polynomial pSoI ,

KpSoI (2t)(yt | x) ≤ K2t(x, yt) − KpSoI (2t)(x) + log pSoI(2t)

≤ |yt| − KpSoI (2t)(x) + log pSoI(2t) + O(1)

= Kt(x) − KpSoI (2t)(x) + log pSoI(2t) + O(1) (6)

where the second inequality follows from the fact that given yt, one can also output x within
t steps.

Let d > 0 be some constant specified later, we say that x ∈ {0, 1}n is (t, k)-good if

Kt(x) − KpSoI (2t)(x) ≤ d · log t + log k. (7)

Consider any x, t, k such that x is (t, k)-good. Equation (6) implies that

Ktd

(yt | x) ≤ KpSoI (2t)(yt | x)

≤ Kt(x) − KpSoI (2t)(x) + log pSoI(2t) + O(1)
≤ 2d log t + log k, (8)

provided that d is a sufficiently large constant (which depends on pSoI).
Given Equation (8), we get that for some sufficiently large constant c > d, there is a

program Πyt
of length at most

s := c · log t + log k (9)

that, given x, outputs yt within T := tc · kc steps. We aim to find such a yt. Let A′ be the
following algorithm that, given (x, 1t) such that x is (t, k)-good, aims to output a Kt-witness
of x.

Algorithm 1 Search for Kt-Witnesses for Good x’s.

1: procedure A′(x, 1t)
2: n := |x|
3: M := 02n

4: s := c · log t + log k, where c is the constant from Equation (9).
5: T := tc · kc

6:
7: for Π ∈ {0, 1}≤s do
8: y := the output of U(Π, x) after running T steps.
9: if |y| < |M | and U(y) outputs x within t steps then

10: M := y

11: Output M

It is easy to verify that A′(x, 1t) runs in time poly(n, t, k). Next, we argue that if x is
(t, k)-good, then the above algorithm outputs a Kt-witness of x.

Note that the algorithm A′ always outputs some program M that can output x within t

steps. Also, if x is (t, k)-good, then as described in previous paragraphs there is a program
Πyt

of length at most s := c · log t + log k such that U(Πyt
, x) outputs yt within T := tc · kc

steps. For such an x, we will have that |M | ≤ |yt| = Kt(x) when Π = Πyt
in the for loop.

CCC 2024

29:26 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

We now describe our final algorithm A in the theorem. Let τ be the polynomial in
Lemma 24, and let Approx-depth be the algorithm from Lemma 24. Our final algorithm A

works as follows.

On input (x, 1t, 1k), we first check if

Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

≤ d · log t + log k,

where d is the constant in Equation (7). If yes, we output A′(x, 1t, 1k). Otherwise, we
output ⊥.

We argue that the algorithm A above satisfies the two conditions stated in the theorem.
For the first condition, we consider two cases. Suppose x is not (t, k)-good, meaning that

Kt(x) − KpSoI (2t)(x) > d · log t + log k.

Note that by Lemma 24, in this case Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

outputs some s that
satisfies

s ≥ Kτ(⌊τ−1(t)⌋)(x) − KpSoI (2t)(x)

≥ Kt(x) − KpSoI (2t)(x)
> d · log t + log k.

Therefore, our algorithm will output ⊥ in this case. Now suppose x is (t, k)-good. As
discussed above, for such x, A′(x, 1t, 1k) will output a Kt-witness of x. Therefore, our
algorithm will always output ⊥ or a Kt-witness of x.

For the second condition, we will show that in the above algorithm the criteria using
Approx-depth will fail (hence output ⊥) with probability at most 1/k over x ∼ Dn. To show
this, we claim the following.

▷ Claim 26. For every t, k ∈ N such that t ≥ ρ(n), with probability at least 1 − 1/k over
x ∼ Dn, we have

Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

≤ d · log t + log k.

Proof of Claim 26. Recall the coding theorem for Kt (Lemma 23). By letting ρ be a sufficiently
large polynomial so that for all t ≥ ρ(n), it is satisfied that ⌊τ−1(t)⌋ ≥ pcode(n), where pcode is
the quasi-polynomial from Lemma 23, we get that for every x ∈ Support(Dn),

K⌊τ−1(t)⌋(x) ≤ Kpcode (n)(x) ≤ log 1
Dn(x) + log pcode(n). (10)

On the other hand, by Lemma 9, with probability at least 1 − 1/k over x ∼ Dn, we have

K(x) ≥ log 1
Dn(x) − b log n − log k,

where b > 0 is a constant. In particular, this implies

Kτ(pSoI (2t))(x) ≥ K(x) ≥ log 1
Dn(x) − b log n − log k. (11)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:27

Finally, we get that with probability at least 1 − 1/k over x ∼ Dn,

Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

≤ K⌊τ−1(t)⌋(x) − Kτ(pSoI (2t))(x) + log τ(⌊τ−1(t)⌋) + log τ(pSoI(2t)) (by Lemma 24)

≤
(

log 1
Dn(x) + log pcode(n)

)
−

(
log 1

Dn(x) − b log n − log k

)
+ log t + log τ(pSoI(2t))

(by Equation (10) and Equation (11))
= log pcodet(n) + b log n + log k + log t + log τ(pSoI(2t))
≤ d · log t + log k,

where the last inequality holds by letting d be a sufficiently large constant. ◁

Claim 26 implies that for at least 1 − 1/k fraction of the x sampled from Dn, our algorithm
will output something other than ⊥, as desired. ◀

5 Error-Prone Average-Case Search-to-Decision Reduction for
Conditional Kt

In this section, we prove Theorem 2. We start with some technical tools.

5.1 Technical Tools
▶ Lemma 27. Assume

E ̸⊆ i.o.SIZE[2o(n)], and
infinitely-often one-way functions do not exist.

Then for every polynomial-time samplable distribution family {C⟨n,m⟩}, where each C⟨n,m⟩ is
over {0, 1}m, there exists a polynomial-time algorithm A such that for all n, m, t, k ∈ N with
t ≥ n1.01, with probability at least 1 − 1/k over y ∼ C⟨n,m⟩,∑

x∈{0,1}n

2−Kt(x|y) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINKT(x, y, 1t)] ≤ poly(n)
k

. (12)

Proof. Let c > 0 be a constant so that Kt(x) ≤ n + c for every x ∈ {0, 1}n and t ≥ n1.01.
Let S be the sampler for {C⟨n,m⟩} that takes u := poly(n, m) random bits.

Let f be a polynomial-time computable function defined as follows.

On input (ℓ, Π, r, r1, r2), where ℓ ∈ {0, 1}log(n+c), Π ∈ {0, 1}n+c, r ∈ {0, 1}u, r1 ∈
{0, 1}t and r2 ∈ {0, 1}k, we first obtain y := S(r). We then run U(Π[ℓ], y) for t steps
and obtain a string x. If x is of length n, we output (ℓ, x, y, 1t, 1k); otherwise output
(ℓ, 0n, y, 1t, 1k).

Since we assume that E ̸⊆ i.o.SIZE[2o(n)] and that infinitely-often one-way functions do
not exist (which implies infinitely-often weak one-way functions do not exist), there is a
deterministic polynomial-time algorithm A′ such that for all n, m, t, k ∈ N, it holds that

Pr
[
A′(ℓ, x, y, 1t, 1k) succeeds

]
≥ 1 − 1

k2 ,

where (ℓ, x, y, 1t, 1k) is sampled according to f and “A′(ℓ, x, y, 1t, 1k) succeeds” means
A′(ℓ, x, y, 1t, 1k) outputs a pre-image of (ℓ, x, y, 1t, 1k). By an averaging argument, we

CCC 2024

29:28 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

get that with probability at least 1 − 1/k over y ∼ C⟨n,m⟩ (i.e., over r ∼ {0, 1}u), it holds
that

Pr
[
A′(ℓ, x, y, 1t, 1k) succeeds

]
≥ 1 − 1

k
, (13)

where the above probability is only over ℓ and x. In what follows, fix a good y such that
Equation (13) holds.

By a union bound, Equation (13) yields that for all ℓ ∈ {0, 1}log(n+c),

Pr
[
A′(ℓ, x, y, 1t, 1k) succeeds

]
≥ 1 − n + c

k
, (14)

where now the probability is only over x.
Next, for any fixed ℓ, consider the following distribution D(y,ℓ):

1. Pick Π ∼ {0, 1}n+c.
2. Run U(Π[ℓ], y) for t steps and obtain a string x. If x is of length n, output x; otherwise

output 0n.
Then Equation (14) implies that for all ℓ ∈ {0, 1}log(n+c),

Pr
(x)∼D(y,ℓ)

[
A′(ℓ, x, y, 1t, 1k) fails

]
<

n + c

k
. (15)

Now consider the following algorithm A:

On input (x, y, 1t, 1k), we try ℓ = 1, 2, . . . , n + c, and finds the smallest ℓ such that
A′(ℓ, x, y, 1t, 1k) returns some (ℓ, Π, r, r1, r2) for which y = S(r) and U(Π[ℓ], y) outputs
x within t steps. Then we output Π[ℓ].

We claim that the algorithm A satisfies the condition stated in Equation (12) for all good
y. For the sake of contradiction, suppose there exists some good y such that

∑
x∈{0,1}n

2−Kt(x|y) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINcKT(x, y, 1t)] >
nb

k
, (16)

where b > 0 is a constant specified later.
Note that for every fixed y and ℓ, the support of D(y,ℓ) consists of only strings whose

Kt(· | y)-complexity is at most ℓ. Also, for every x ∈ {0, 1}n with Kt(x | y) = ℓ, D(y,ℓ)

outputs x with probability at least 2−Kt(x|y). In other words, for every such x, we have

2−Kt(x|y) ≤ D(y,ℓ)(x). (17)

Also, for every x ∈ {0, 1}n with Kt(x | y) = ℓ, if A′(ℓ, x, y, 1t, 1k) succeeds, then
A(x, y, 1t, 1k) ∈ Search-MINcKT(x, y, 1t).

Then we have

nb

k
≤

∑
ℓ

∑
x:Kt(x|y)=ℓ

2−Kt(x|y) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINcKT(x, y, 1t)] (by Equation (16))

≤
∑

ℓ

∑
x:Kt(x|y)=ℓ

D(y,ℓ)(x) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINcKT(x, y, 1t)] (by Equation (17))

≤
∑

ℓ

∑
x:Kt(x|y)=ℓ

D(y,ℓ)(x) · 1[A′(ℓ,x,y,1t,1k) fails].

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:29

By averaging, the above implies that there exists some ℓ such that∑
x:Kt(x|y)=ℓ

D(y,ℓ)(x) · 1[A′(ℓ,x,y,1t,1k) fails] ≥ nb

(n + c) · k
,

which contradicts Equation (15) by letting b be a sufficiently large constant. ◀

▶ Lemma 28 (Implicit in [22]). If (MINKT, U) ∈ HeurBPP holds, then infinitely-often one-way
functions do not exist.

▶ Lemma 29 (Following [14]; see the proof of [14, Lemma 14]). Assume
E ̸⊆ i.o.SIZE[2o(n)], and
infinitely-often one-way functions do not exist.

Then for every polynomial-time samplable distribution family {D⟨n,m⟩} supported over
{0, 1}n × {0, 1}m, there exists a polynomial p such that for all n, m, k ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[
Kp(n,m,k)(x | y) ≤ log 1

D⟨n,m⟩(x | y) + log p(n, m, k)
]

≥ 1 − 1
k

.

Proof Sketch. First of all, [14, Lemma 14] gives that if infinitely-often one-way functions do
not exist, then one can get average-case coding theorem for pKpoly. (See also [14, Section
1.3] for an exposition). The proof here is done by “derandomizing” that of [14, Lemma 14].
More specifically, it is not hard to adapt the proof of [14, Lemma 14] to show the following.
If infinitely-often one-way functions do not exist, then for every polynomial-time samplable
distribution family {D⟨n,m⟩} supported over {0, 1}n × {0, 1}m, there exists a deterministic
polynomial-time algorithm Rec, such that for all n, m, k ∈ N, with probability at least 1−1/k

over (x, y) ∼ D⟨n,m⟩,

Pr
w∼{0,1}poly(n)

rRec ∼{0,1}poly(n,m,k)

[
Rec(Hw(x), y, w, 1k; rRec) = x

]
≥ 2

3 , (18)

Where Hw is a function from a pairwise independent hash family, mapping n bits to

s := log 1
D⟨n,m⟩(x | y) + O(log n)

bits, and is indexed by the string w. Moreover, given w and x, Hw(x) can be computed in
time poly(n).

Fix any (x, y) such that Equation (18) holds, we show that given y and an advice of
length

log 1
D⟨n,m⟩(x | y) + O(log nk),

we can output x in time poly(n, m, k). This will conclude the proof of the lemma.
The idea is to derandomize Equation (18). Consider the circuit D that takes as input

w ∈ {0, 1}poly(n) and rRec ∈ {0, 1}poly(n,m,k), and such that

D(w, rRec) = 1 ⇐⇒ Rec(Hw(x), y, w, 1k) = x.

Note that D can be implemented as a circuit of size poly(n, m, k). Also, by Equation (18),
we have

Pr
w,rRec

[D(w, rRec) = x] ≥ 2
3 . (19)

CCC 2024

29:30 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Assuming E ̸⊆ i.o.SIZE[2o(n)], there is a pseudorandom generator G of seed length O(log s)
that can derandomize circuits of size at most s [20]. In particular,

Pr
z∼{0,1}O(log(nmk))

[D(G(z)) = 1] − Pr
w,rRec

[D(w, rRec) = 1] ≥ 1
10 .

Together with Equation (19), the above yields that there exists some z ∈ {0, 1}O(log(nmk))

such that for (w, rRec) := G(z), we have

Rec(Hw(x), y, w, 1k; rRec) = x.

Note that |Hw(x)| = s. As a result, given y, z and Hw(x), we can recover x in time
poly(n, m, k), as desired. ◀

5.2 Proof of Theorem 2
We prove the following which implies Theorem 2.

▶ Theorem 30. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (MINKT, U) ∈ HeurBPP holds, then for every
polynomial-time samplable distribution family {D⟨n,m⟩}n,m∈N supported over {0, 1}n×{0, 1}m,
there exist a polynomial ρ and a polynomial-time algorithm A such that for all n, m, k ∈ N,
and all t ≥ ρ(n, m, k),

Pr
(x,y)∼D⟨n,m⟩

[
A(x, y, 1t, 1k) outputs a Kt(· | y)-witness of x

]
≥ 1 − 1

k
.

Proof. Let {D⟨n,m⟩} be a polynomial-time samplable distribution family. Let {C⟨n,m⟩} be
the family of marginal distributions of {D⟨n,m⟩} on the second part. That is, to sample from
C⟨n,m⟩, we sample (x, y) from D⟨n,m⟩ and then output y. Note that {C⟨n,m⟩} is polynomial-
time samplable and is supported over {0, 1}m. Also, let n, m, k ∈ N, and all t ≥ ρ(n, m, k),
where ρ is a polynomial specified later.

We show how to solve Search-MINcKT with probability at least 1 − 1/k over D⟨n,m⟩.
First of all, since we assume that (MINKT, U) ∈ HeurBPP holds, by Lemma 28, we get

that infinitely-often one-way functions do not exist. Let A′ be the polynomial-time algorithm
in Lemma 27. We have that with probability at least 1 − 1/(4k) over y ∼ C⟨n,m⟩,∑

x∈{0,1}n

2−Kt(x|y) · 1
[A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)]
≤ 1

kb · (nm)b
. (20)

where b > 0 is a constant specified later.
Also, by Lemma 29 and an averaging argument, there exists a polynomial p such that,

with probability at least 1 − 1/(4k) over y ∼ C⟨n,m⟩,

Pr
x∼D⟨n,m⟩(·|y)

[
Kp(n,m,16k2)(x | y) ≤ log 1

D⟨n,m⟩(x | y) + log p(n, m, 16k2)
]

≥ 1 − 1
4k

. (21)

Fix any good y such that both Equation (20) and Equation (21) hold. Note that y is
good with probability at least 1 − 1/(2k) when sampled from C⟨n,m⟩. We claim that

Pr
x∼D⟨n,m⟩(·|y)

[
A′(x, y, 1t, 1(nm)b·kb

) outputs a Kt(· | y)-witness of x
]

≥ 1 − 1
2k

. (22)

Note that this suffices to show the theorem, since sampling (x, y) ∼ D⟨n,m⟩ is equivalent to
first sampling y ∼ C⟨n,m⟩ and then sampling x ∼ D⟨n,m⟩(· | y).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:31

Suppose, for the sake of contradiction, Equation (22) is not true. Then

Pr
x∼D⟨n,m⟩(·|y)

[
A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)
]

>
1
2k

. (23)

Let E(x) be the event that both the following hold.
A′(x, y, 1t, 1(nm)b·kb) ̸∈ Search-MINcKT(x, y, 1t)
Kp(n,m,16k2)(x | y) ≤ log 1

D⟨n,m⟩(x|y) + log p(n, m, 16k2).
By Equation (23) and Equation (21), we get that∑

x∈{0,1}n

D⟨n,m⟩(x | y) · 1E(x) ≥ 1
4k

. (24)

Note that whenever E(x) holds, we have

D⟨n,m⟩(x | y) ≤ p(n, m, 16k2)
2Kp(n,m,16k2)(x|y)

. (25)

Now we have
1
4k

≤
∑

x∈{0,1}n

D⟨n,m⟩(x | y) · 1E(x) (by Equation (24))

≤
∑

x∈{0,1}n

p(n, m, 16k2)
2Kp(n,m,k)(x|y) · 1E(x) (by Equation (25))

≤ p(n, m, 16k2) ·
∑

x∈{0,1}n

2−Kp(n,m,16k2)(x|y) · 1E(x)

≤ p(n, m, 16k2) ·
∑

x∈{0,1}n

2−Kp(n,m,16k2)(x|y) · 1
[A′(x, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, 1t)]

≤ p(n, m, 16k2) ·
∑

x∈{0,1}n

2−Kt(x|y) · 1
[A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)]
,

where the last inequality holds if t ≥ p(n, m, 16k2). By rearranging, we get∑
x∈{0,1}n

2−Kt(x|y) · 1
[A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)]
≥ 1

2k2 · p(n, m, 16k2) .

However, this contradicts Equation (20) by letting b be a sufficiently large constant. ◀

▶ Remark 31. In Theorem 30, our search algorithm only works for t ≥ ρ(n, m, k) instead
of t ≥ ρ(n, m), where ρ is some polynomial (depending on the distribution family) and k

is the parameter controlling the success probability of the algorithm. The reason for the
dependency of k is that in the proof of Theorem 30, we need to apply the average-case
conditional coding theorem (Lemma 29) with success probability at least 1 − 1/(4k) (see
Equation (21)), and as a result, the time bound in the coding theorem is at least poly(n, m, k).
As shown at the end of the proof, we need t to be greater than this time bound.

6 Worst-Case to Average-Case Search-to-Decision Reductions

6.1 Worst-Case to Average-Case Search-to-Decision for rKt

In this subsection, we show the following which implies Theorem 5 via Proposition 11.

CCC 2024

29:32 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Theorem 32. If (coMINKT, U) ∈ Avg1BPP holds, then for every ε > 0 and every polynomial
β, there is a probabilistic algorithm A such that for all n ∈ N, x ∈ {0, 1}n, all ℓ ∈ N, and
all λ ∈ (0, 1) such that λ ≤ 1 − 1/2poly(n), A(x, λ, 1ℓ) runs in time 2O(n/ log n) · poly(|λ|, ℓ)
and, with probability at least 1 − 2−ℓ, outputs a program M and an integer t that satisfy the
following:

β(n) ≤ t ≤ 2nε , and
M is an (1/ℓ)-rKt

λ-witness of x.

Proof. Without loss of generality, we assume λ ≥ 2/3. The proof can be easily adapted to
the case where λ ≤ 2/3.

Let 0 < ε < 1 and let β be a polynomial. Let t ∈ N be such that t ≥ p0(3n)·log2(1/(1−λ)),
where p0 is the polynomial from Lemma 43. Consider any x ∈ {0, 1}n, and let yt be a rKt

λ-
witness of x. That is, yt is a program such that U(yt, r) outputs x within t steps with
probability at least λ over r ∼ {0, 1}t and |yt| = rKt

λ(x). Also, let q := ⌈1/(1 − λ)⌉. Note
that log(q) ≤ O(|λ|).

By symmetry of information (Lemma 43), we have, for some polynomial pSoI ,

rKpSoI (2t)(yt | x)

≤ rK2t(x, yt) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n)

≤ |yt| − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n) + O(1)

= rKt
λ(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n) + O(1) (by the definition of yt)

≤ rKt
1−1/q(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n) + O(1)

≤ rKt/O(log q)(x) − rKpSoI (2t)(x) + log pSoI(2t) + O(log log q) (by Lemma 10)

≤ rK
√

t(x) − rKpSoI (t2)(x) + log pSoI(2t) + log3 pSoI(n) + O(log log q),

where the second inequality follows from the fact that given yt, one can also output x within t

steps with probability at least 2/3, and the last inequality uses that t ≥ p0(3n) ·O(log2(1/(1−
λ))). Then by the above, we have

rKpSoI (2t)(yt | x) ≤ rK
√

t(x) − rKpSoI (t2)(x) + log pSoI(2t) + log3 pSoI(n) + O(log |λ|). (26)

We note that the above holds for all t ≥ p0(3n) · log2(1/(1 − λ)).
We claim the following.

▷ Claim 33. There is an algorithm B that, on input x ∈ {0, 1}n and ℓ ∈ N, runs in time
O

(
2nε)

· poly(ℓ) and with probability at least 1 − 2−ℓ, outputs an integer tgood such that
max{p0(3n) · log2(1/(1 − λ)), β(n)} ≤ tgood ≤ 2nε , and
rK

√
tgood(x) − rKpSoI(t2

good)(x) ≤ dn/ log n, where d ≥ 1 is a constant.

Proof of Claim 33. Let Approx-depth be the algorithm from Lemma 47, and let ℓ′ := ℓ+⌈nε/2⌉.
Also, let d ≥ 1 be a constant specified later.

The algorithm B works as follows.

On input x ∈ {0, 1}n, we enumerate all

t0 ∈
[
max

{
p0(3n) · log2(1/(1 − λ), β(n)

}
, 2nε/2

]
and consider the first t0 such that Approx-depth(x, 1t0 , 1τ(pSoI(t4

0)), 1ℓ′) ≤ dn/ log n. If
such t0 is found, we output tgood := τ(t2

0), where τ is the polynomial from Lemma 47.
Otherwise, we output ⊥.

It is easy to see that the running time of this algorithm is O
(
2nε)

· poly(ℓ).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:33

We now argue its correctness. First of all, by a union bound, we get that with probability
except 2−ℓ′ · 2nε/2 ≤ 2−ℓ, Approx-depth(x, 1t0 , 1pSoI(t2

0), 1k′) will succeed (meaning that it
outputs an answer that satisfies the condition stated in Lemma 47) on all t0 ≤ 2nε/2 . In
what follows, we assume that this is the case.

Now consider Lemma 12 instantiated with the parameter ε/2, polynomials qdpt such that
qdpt(n) ≥ max

{
p0(3n) · log2(1/(1 − λ)), β(n)

}
, and pdpt such that pdpt(z) ≥ τ (2)(pSoI(z4)). We

have that there exists some t∗ such that qdpt(n) ≤ t∗ ≤ 2nε/2 and that

rKt∗
(x) − rKpdpt (t∗)(x) ≤ d0 · n

log n
, (27)

by choosing d0 to be a large enough constant. For such t∗, Approx-
depth(x, 1t∗

, 1τ(pSoI ((t∗)4)), 1k′) outputs some s that satisfies

s ≤ rKt∗
(x) − rKτ(2)(pSoI((t∗)4))(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)4))

+ log3 τ(n)

≤ rKt∗
(x) − rKpdpt (t∗)(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)4))

+ log3 τ(n)

≤ 2d0n

log n
. (by Equation (27))

In other words, if we let d ≥ 2d0, there is at least one t0 (in particular, t∗) that can pass the
test using Approx-depth. Also, by the property of Approx-depth, for any t0 that passes the
test, we have

rKτ(t0)(x) − rKτ(pSoI((t0)4))(x) ≤ dn/ log n.

Recall that we will output tgood := τ(t2
0). Then by the above, we have

rK
√

tgood(x) − rKpSoI(t2
good)(x) ≤ dn/ log n,

as desired. ◁

Suppose we run the above algorithm B on x and obtain an integer tgood that satisfies the
condition stated in Claim 33. Now by Equation (26), where we let t := tgood, we get

rKpSoI (2tgood)(ytgood | x)

≤ rK
√

tgood(x) − rKpSoI(t2
good)(x) + log pSoI(2tgood) + log3 pSoI(n) + O(1)

≤ 2dn

log n
, (28)

provided that d is a sufficiently large constant.
Given Equation (28) and using amplification techniques (Lemma 10), we get that for

some large constant c ≥ 1, there is a randomized program Πyt
of length at most

s := cn/ log n + c · log log ℓ (29)

that, given x, outputs yt within T := 2cnε · ℓc steps with probability at least 1 − 2−ℓ/4, where
t := tgood and yt is a rKt-witness of x. We aim to find such a yt.

Let Valid be the algorithm from Claim 21. Consider the following algorithm A that, on
input (x, λ, ℓ), aims to output a program M and an integer t such that M is a (1/ℓ)-rKt

1−λ-
witness of x.

CCC 2024

29:34 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Algorithm 2 Search for rKt-Witnesses.

1: procedure A(x, λ, 1ℓ)
2: n := |x|
3: M := 02n

4: s := cn/ log n + c log log ℓ, where c is the constant from Equation (29).
5: T := 2cnε · ℓc

6:
7: t := B

(
x, 1ℓ+2)

, where B is the algorithm in Claim 33.
8:
9: for Π ∈ {0, 1}≤s do

10: r := a uniformly random string in {0, 1}T .
11: y := the output of U(Π, x, r) after running T steps.
12: if |y| < |M | and Valid

(
x, y, λ, 1t, 1ℓ, 1ℓ+s+3)

then
13: M := y

14: Output M and t

First of all, it is easy to verify that the above algorithm runs in time 2O(n/ log n) · poly(ℓ).
Next, we show its correctness.

Note that if the algorithm B succeeds (meaning that it returns an integer t such that
there is a randomized program Πyt ∈ {0, 1}≤s that outputs yt within T steps with probability
at least 1 − 2−ℓ/4, where yt is a rKt-witness of x), which happens with probability at least
1 − 2−ℓ/4, then our algorithm will succeed if both of the following are true.
1. The algorithm Valid succeeds in all of the m :=

∑s
i=1 2i ≤ 2s+1 executions, which happens

with probability at most least 1 − 2m · 2−ℓ−s−3 = 1 − 2−ℓ/4.
2. For Π = Πyt

, U(Π, x, r) outputs yt within T steps, which happens with probability at
least 1 − 2−ℓ/4 over r ∼ {0, 1}T .

To see this, if the first item is true, then the randoized program M output by the algorithm
is a “valid” one that outputs x within t steps with probability at least λ − 1/ℓ. If the second
item is true, then |M | ≤ |yt| = rKt

λ(x), since Valid(x, yt, λ, 1t, 1ℓ, 1ℓ+s+3) = 1 (for a successful
execution of Valid).

The correctness of the algorithm then follows by a union bound. ◀

6.2 Worst-Case to Average-Case Search-to-Decision for Kt

The following implies Theorem 4 via Proposition 11.

▶ Theorem 34. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then for
every ε > 0 and every polynomial β, there is an algorithm A such that for all n ∈ N,
x ∈ {0, 1}n, A(x) runs in time 2O(n/ log n) and outputs a program M and an integer t that
satisfy the following:

β(n) ≤ t ≤ 2nε , and
M is a Kt-witness of x.

Proof. The proof follows closely to that of Theorem 32.
Let 0 < ε < 1 and let β be a polynomial.
Fix any t ∈ N such that t ≥ p0(3n), where p0 is the polynomial from Lemma 22. Consider

any x ∈ {0, 1}n, and let yt be a Kt-witness of x. That is, yt is a shortest program such that
U(yt) outputs x within t steps.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:35

By symmetry of information (Lemma 22), we have, for some polynomial pSoI ,

KpSoI (2t)(yt | x) ≤ K2t(x, yt) − rKpSoI (2t)(x) + log pSoI(2t)

≤ |yt| − KpSoI (2t)(x) + log pSoI(2t) + O(1)

= Kt(x) − KpSoI (2t)(x) + log pSoI(2t) + O(1) (by the definition of yt)

where the second inequality follows from the fact that given yt, one can also output x within
t steps. Then by the above, we have

KpSoI (2t)(yt | x) ≤ Kt(x) − KpSoI (t2)(x) + log pSoI(2t) + O(1). (30)

We show the following claim.

▷ Claim 35. There is an algorithm B that, on input x ∈ {0, 1}n, runs in time O
(
2nε)

and
outputs an integer tgood such that

max{p0(3n), β(n)} ≤ tgood ≤ 2nε , and
Ktgood(x) − KpSoI(t2

good)(x) ≤ dn/ log n, where d ≥ 1 is a constant.

Proof of Claim 35. Let Approx-depth be the algorithm from Lemma 24. Also, let d ≥ 1 be a
constant specified later.

The algorithm B works as follows.

On input x ∈ {0, 1}n, we enumerate all

t0 ∈
[
max{p0(3n), β(n)}, 2nε/2

]
and consider the first t0 such that Approx-depth(x, 1t0 , 1τ(pSoI(t2

0))) ≤ dn/ log n. If such
t0 is found, we output tgood := τ(t0), where τ is the polynomial from Lemma 47.
Otherwise, we output ⊥.

It is easy to verify that the running time of this algorithm is O
(
2nε)

. Next, we argue its
correctness.

First of all, consider Lemma 12 instantiated with the parameter ε/2, polynomials qdpt

such that qdpt(n) ≥ max{p0(3n), β(n)}, and pdpt such that pdpt(z) ≥ τ (2)(pSoI(z2)). We have
that there exists some t∗ such that qdpt(n) ≤ t∗ ≤ 2nε/2 and that

Kt∗
(x) − Kpdpt (t∗)(x) ≤ d0 · n

log n
, (31)

by choosing d0 to be a large enough constant. For such t∗, Approx-depth(x, 1t∗
, 1τ(pSoI ((t∗)2)))

outputs some s that satisfies the following.

s ≤ Kt∗
(x) − Kτ(2)(pSoI((t∗)2))(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)2))

≤ Kt∗
(x) − Kpdpt (t∗)(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)2))

≤ 2d0n

log n
. (by Equation (31))

In other words, if we let d ≥ 2d0, there is at least one t0 (in particular, t∗) that can pass the
test using Approx-depth. Also, by the property of Approx-depth, for any t0 that passes the
test, we have

Kτ(t0)(x) − Kτ(pSoI((t0)2))(x) ≤ dn/ log n.

CCC 2024

29:36 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Recall that we will output tgood := τ(t0). Then by the above, we have

Ktgood(x) − KpSoI(t2
good)(x) ≤ dn/ log n,

as desired. ◁

Suppose we run the above algorithm B on x and obtain an integer tgood that satisfies the
condition stated in Claim 35. Now by Equation (30), where we let t := tgood, we get

KpSoI (2tgood)(ytgood | x) ≤ Ktgood(x) − KpSoI(t2
good)(x) + log pSoI(2tgood) + O(1)

≤ 2dn

log n
, (32)

provided that d is a sufficiently large constant.
Given Equation (32), we get that for some large constant c ≥ 1, there is a program Πyt

of length at most

s := cn/ log n (33)

that, given x, outputs yt within T := 2cnε steps, where t := tgood and yt is a Kt-witness of x.
We aim to find such a yt.

Consider the following algorithm A that, on input x, aims to output a program M and
an integer t such that M is a Kt-witness of x.

Algorithm 3 Search for Kt-Witnesses.

1: procedure A(x)
2: n := |x|
3: M := 02n

4: s := cn/ log n, where c is the constant from Equation (33).
5: T := 2cnε

6:
7: t := B(x), where B is the algorithm in Claim 35.
8:
9: for Π ∈ {0, 1}≤s do

10: y := the output of U(Π, x) after running T steps.
11: if |y| < |M | and U(y) outputs x within t steps then
12: M := y

13: Output M and t

First of all, it is easy to verify that the above algorithm runs in time 2O(n/ log n). Next,
we show its correctness.

Note that the algorithm B, on input x, will return a integer t that is “good” for x so that
Equation (32) holds. For such t, there is some program Πyt

of length at most s := cn/ log n

that outputs yt, which is Kt-witness of x, within T := 2cnε steps. Since we enumerate
all programs of size s, we will encounter Πyt

and hence obtain yt. This ensures that our
algorithm can always find a t-time program for x, and the final program output by the
algorithm has size at most |yt| = Kt(x). ◀

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:37

References
1 Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew

Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput.,
47(4):1339–1372, 2018. doi:10.1137/17M1157970.

2 Luis Filipe Coelho Antunes and Lance Fortnow. Worst-case running times for average-
case algorithms. In Conference on Computational Complexity (CCC), pages 298–303, 2009.
doi:10.1109/CCC.2009.12.

3 Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of average case
complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992. doi:10.1016/0022-0000(92)90019-F.

4 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006. doi:10.1561/0400000004.

5 Halley Goldberg and Valentine Kabanets. A simpler proof of the worst-case to average-case
reduction for polynomial hierarchy via symmetry of information. Electron. Colloquium Comput.
Complex., TR22-007:1–14, 2022. URL: https://eccc.weizmann.ac.il/report/2022/007,
arXiv:TR22-007.

6 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In Computational
Complexity Conference (CCC), pages 16:1–16:60, 2022. doi:10.4230/LIPIcs.CCC.2022.16.

7 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018. doi:
10.1109/FOCS.2018.00032.

8 Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-complexity.
In Symposium on Foundations of Computer Science (FOCS), pages 50–60, 2020. doi:10.
1109/FOCS46700.2020.00014.

9 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In Conference on Computational Complexity (CCC), pages
20:1–20:47, 2020. doi:10.4230/LIPIcs.CCC.2020.20.

10 Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform
reductions. In Symposium on Theory of Computing (STOC), pages 1038–1051, 2020. doi:
10.1145/3357713.3384251.

11 Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness
assumptions. In Symposium on Theory of Computing (STOC), pages 292–302, 2021.
doi:10.1145/3406325.3451065.

12 Shuichi Hirahara. Meta-computational average-case complexity: A new paradigm toward
excluding heuristica. Bull. EATCS, 136, 2022. URL: http://bulletin.eatcs.org/index.
php/beatcs/article/view/688.

13 Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational Com-
plexity Conference (CCC), pages 26:1–26:41, 2022. doi:10.4230/LIPIcs.CCC.2022.26.

14 Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor C. Oliveira. A
duality between one-way functions and average-case symmetry of information. In Symposium
on Theory of Computing (STOC), pages 1039–1050, 2023. doi:10.1145/3564246.3585138.

15 Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. Electron. Colloquium Comput. Complex., 171:1–30, 2023. URL: https://eccc.
weizmann.ac.il/report/2023/171/, arXiv:TR23-171.

16 Rahul Ilango. Connecting Perebor conjectures: Towards a search to decision reduction for
minimizing formulas. In Computational Complexity Conference (CCC), pages 31:1–31:35, 2020.
doi:10.4230/LIPIcs.CCC.2020.31.

17 Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribution
suffices: New characterizations of one-way functions by meta-complexity. Electron. Colloquium
Comput. Complex., page 82, 2021. URL: https://eccc.weizmann.ac.il/report/2021/082,
arXiv:TR21-082.

CCC 2024

https://doi.org/10.1137/17M1157970
https://doi.org/10.1109/CCC.2009.12
https://doi.org/10.1016/0022-0000(92)90019-F
https://doi.org/10.1561/0400000004
https://eccc.weizmann.ac.il/report/2022/007
https://arxiv.org/abs/TR22-007
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3406325.3451065
http://bulletin.eatcs.org/index.php/beatcs/article/view/688
http://bulletin.eatcs.org/index.php/beatcs/article/view/688
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.1145/3564246.3585138
https://eccc.weizmann.ac.il/report/2023/171/
https://eccc.weizmann.ac.il/report/2023/171/
https://arxiv.org/abs/TR23-171
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://eccc.weizmann.ac.il/report/2021/082
https://arxiv.org/abs/TR21-082

29:38 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

18 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, pages 134–147, 1995. doi:10.1109/SCT.
1995.514853.

19 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than
picking uniformly at random. In Symposium on Theory of Computing (STOC), pages 812–821,
1990. doi:10.1109/FSCS.1990.89604.

20 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Symposium on Theory of Computing (STOC), pages 220–229.
ACM, 1997. doi:10.1145/258533.258590.

21 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/
978-3-030-11298-1.

22 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Symposium on
Foundations of Computer Science (FOCS), pages 1243–1254, 2020. doi:10.1109/FOCS46700.
2020.00118.

23 Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-bounded
Kolmogorov complexity w.r.t. samplable distributions. In Annual Cryptology Conference
(CRYPTO), pages 645–673, 2023. doi:10.1007/978-3-031-38545-2_21.

24 Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time
invertibility. Inf. Comput., 121(1):14–22, 1995. doi:10.1006/inco.1995.1120.

25 Zhenjian Lu and Igor C. Oliveira. An efficient coding theorem via probabilistic representations
and its applications. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 94:1–94:20, 2021. doi:10.4230/LIPIcs.ICALP.2021.94.

26 Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilistic Kolmogorov
complexity. Bull. EATCS, 137, 2022. URL: http://bulletin.eatcs.org/index.php/beatcs/
article/view/700.

27 Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-
bounded Kolmogorov complexity. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 92:1–92:14, 2022. doi:10.4230/LIPIcs.ICALP.2022.92.

28 Noam Mazor and Rafael Pass. A note on the universality of black-box MKtP solvers. Electron.
Colloquium Comput. Complex., 192:1–11, 2023. URL: https://eccc.weizmann.ac.il/report/
2023/192/, arXiv:TR23-192.

29 Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
Kolmogorov complexity is false. In Innovations in Theoretical Computer Science (ITCS),
pages 80:1–80:20, 2024. doi:10.4230/LIPIcs.ITCS.2024.80.

30 Noam Mazor and Rafael Pass. Search-to-decision reductions for Kolmogorov complexity.
Electron. Colloquium Comput. Complex., 3:TR24–003, 2024. URL: https://eccc.weizmann.
ac.il/report/2024/003.

31 Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, un-
balanced expanders, and extractors. Combinatorica, 27(2):213–240, 2007. doi:10.1007/
s00493-007-0053-2.

32 Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)
algorithms. IEEE Ann. Hist. Comput., 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.

A Symmetry of Information for pKt

▶ Lemma 36 (Symmetry of Information for pKt). If (coMINKT, U) ∈ Avg1BPP holds, then
there exist polynomials pSoI and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and every
t ≥ p0(|x| + |y|),

pKpSoI (t)(y | x) ≤ pKt(x, y) − pKpSoI (t)(x) + log pSoI(|x| + |y|) + log pSoI(log t).

https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1007/978-3-031-38545-2_21
https://doi.org/10.1006/inco.1995.1120
https://doi.org/10.4230/LIPIcs.ICALP.2021.94
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://eccc.weizmann.ac.il/report/2023/192/
https://eccc.weizmann.ac.il/report/2023/192/
https://arxiv.org/abs/TR23-192
https://doi.org/10.4230/LIPIcs.ITCS.2024.80
https://eccc.weizmann.ac.il/report/2024/003
https://eccc.weizmann.ac.il/report/2024/003
https://doi.org/10.1007/s00493-007-0053-2
https://doi.org/10.1007/s00493-007-0053-2
https://doi.org/10.1109/MAHC.1984.10036

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:39

▶ Definition 37 (Direct Product Generator [11, Definiton 3.10]). For k, n ∈ N, we define the
k-wise direct product generator to be the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that

DPk(x; z1, . . . , zk) := (z1, . . . , zk, x · z1, . . . , x · zk).

▶ Lemma 38 (pKt Reconstruction Lemma [6, Lemma 22]). For ε > 0, x ∈ {0, 1}n, s ∈ N,
and k ∈ N satisfying k ≤ 2n, let D be a randomized algorithm that takes an advice string β

and runs in time tD such that D ε-distinguishes DPk(x; Unk) from Unk+k. Then there is a
polynomial pDP such that

pKÕ(tD)·pDP (n/ε)(x | β) ≤ k + log pDP(n/ε) + log pDP(log tD).

▶ Remark 39. One difference between Lemma 38 and [6, Lemma 22] is that the pKt bound in
Lemma 38 has an additive term O(log log tD) instead of O(log tD) in [6, Lemma 22], where
tD is the running time of the distinguisher. The reason why we have an additive O(log tD)
term in [6, Lemma 22] is because in the reconstruction procedure we need to encode the
number tD, which takes O(log tD) bits. However, we can assume without loss of generality
that tD is a power of two. Hence we can encode it using only O(log log tD) bits.

Proof of Lemma 36. Let τ be the smallest power of two that is at least t. Note that τ can
be encoded using O(log log τ) bits.

Let x ∈ {0, 1}n, y ∈ {0, 1}ℓ, and k, k′ ∈ N to be defined later. Let DP(−) be the generator
from Definition 37. Also, let c ≥ 1 be a sufficiently large constant specified later.

To begin, observe that there exist a polynomial p0 and a constant d ≥ 1 such that for
any t ≥ p0(n, ℓ), any choice of z ∈ {0, 1}nk and z′ ∈ {0, 1}ℓk′ ,

pK2τ (DPk(x; z) ◦ DPk′(y; z′)) ≤ pKt(x, y) + |z| + |z′| + d log(nℓ). (34)

In particular, p0(n, ℓ) reflects the time required to deterministically compute DPk(x; z) ◦

DPk′(y; z′) given xy, z, z′, and d log(nℓ) bits of information to delineate x from y. In what
follows, we will give a lower bound on pK2τ (DPk(x; z) ◦ DPk′(y; z′)) and thereby a lower
bound on pKt(x, y).

Since we assume that (coMINKT, U) ∈ Avg1BPP holds, there exist a constant c′ > 0, a
polynomial ρ and a probabilistic polynomial-time algorithm B such that the following hold
for all sufficiently large n′, all t′ ≥ ρ(n′), and s′ ≤ n′ − c′ · log log t′, and .
1. If r ∈ {0, 1}n′ and Kt′(r) ≤ s′, then PrB [B(r, 1s′

, 1t′) = 1] ≥ 1 − 1
10n′ .

2. With probability at least 1/n′ over r ∼ {0, 1}n′
, PrB [B(r, 1s′

, 1t′) = 0] ≥ 1 − 1
10n′ .

Let c > 0 be a sufficiently large constant to be specified later, and consider the following
parameters.

k := pKq(τ)(x) − log q(log τ) − log p
G

(nℓ) − 1 and k′ := pKq(τ)(y | x) − log q(log τ) −
log q(nℓ) − 1, where q is a sufficiently large polynomial specified later.
n′ := nk + k + ℓk′ + k′ + τ c.
s′ := nk + k + ℓk′ + k′ + τ c − c · log log τ − c · log(nℓ).
t′ := τ2c.

We show the following which will imply a lower bound on rK2t(DPk(x; z) ◦ DPk′(y; z′)).

CCC 2024

29:40 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▷ Claim 40. There exist z ∈ {0, 1}nk and z′ ∈ {0, 1}ℓk′
such that

Pr
w∼{0,1}tc

[
Kt′

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s′
]

< 1 − 1
10n′ .

Proof of Claim 40. We first claim the following:

Pr
z,v,w,B

[
B(DPk(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
≤ 1 − 4

10n′ . (35)

Toward a contradiction, suppose

Pr
z,v,w,B

[
B(DPk′(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
> 1 − 4

10n′ . (36)

By the property of the algorithm B (Item 2), we have

Pr
u,v,w,B

[
B(uvw, 1s′

, 1t′
) = 0

]
≥ 1

2n′ .

In this case, comparing with Equation (36), we get a randomized distinguisher for DPk(x; Unk)
with advantage 1/10n′, defined by sampling v ∼ Uℓk′+k′ , w ∼ Utc , and outputting B(− ◦

vw, 1s′
, 1t′). By Lemma 38, there exists some polynomial q such that

pKq(τ)(x) ≤ k + log q(log τ) + log p
G

(nℓ). (37)

Recall that k = pKq(t)(x) − log q(log τ) − log q(nℓ) − 1, so Equation (37) gives a contradiction.
This shows Equation (35).

Now, toward a contradiction, suppose that for all z, z′,

Pr
w

[
Kt′

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ .

By the property of B (Item 1), this implies that

Pr
z,z′,w,B

[
B(DPk(x; z) ◦ DPk′(y; z′)) ◦ w, 1s′

, 1t′
) = 1

]
≥ 1 − 2

10n′ .

In this case, comparing with Equation (35), we get a randomized distinguisher for DPk′(y; Uℓk′)
with advantage (2/10n′), defined by sampling z ∼ Uk′ , w ∼ Uτc , and outputting B(DPk(x; z) ◦

− ◦ w, 1s′
, 1t′). Again, by Lemma 38, we have

pKq(τ)(y | x) ≤ k′ + log q(log τ) + log q(nℓ). (38)

Recall that k′ = pKq(τ)(y | x) − log q(τ) − log q(nℓ) − 1, so that Equation (38) gives a
contradiction. This completes the proof of Claim 40. ◁

Next, we show that Claim 40 implies there exist z, z′ such that

pKτc

1−1/10n′(DPk(x; z) ◦ DPk′(y; z′)) > s =: |z| + k + |z′| + k′ − 2c · log log τ.

Suppose this is not the case. Then there exists a deterministic program M of length at most
s such that U(M, w) outputs DPk(x; z) ◦ DPk′(y; z′) within τ c steps for at least 1 − 1/(10n′)
of the w ∈ {0, 1}τc

, which implies

Pr
w∼{0,1}τc

[
Kτ2c

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s + τ c + O(log(c · log τ))
]

≥ 1 − 1
10n′ . (39)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:41

On the other hand, we have

s + τ c + O(log(c log τ)) = (nk + k + ℓk′ + k′ − 2c · log log τ) + τ c + O(log(c · log τ))
≤ s′, (40)

where the last inequality holds if we choose c to be a sufficiently large constant. Equation (39)
and Equation (40) together imply that

Pr
w∼{0,1}τc

[
Kt′

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ ,

which contradicts Claim 40.
Therefore, there exist z, z′ such that

pKτc

1−1/10n′(DPk(x; z) ◦ DPk′(y; z′)) > |z| + k + |z′| + k′ − 2c · log log τ.

By amplification techniques (Lemma 10), the above implies

pK2τ (DPk(x; z) ◦ DPk′(y; z′)) > |z| + k + |z′| + k′ − 2c · log log τ − O(log log n′). (41)

Finally, we get

pKt(x, y) ≥ pK2τ (DPk(x; z) ◦ DPk′(y; z′)) − |z| − |z′| − d log(nℓ) (by Equation (34))
> k + k′ − 2c · log log τ − O(log log n′) − d log(nℓ) (by Equation (41))

=
(

pKq(τ)(x) − log q(log τ) − log p
G

(nℓ) − 1
)

+
(

pKq(τ)(y | x) − log q(log τ) − log q(nℓ) − 1
)

− 2c · log log τ − O(log log n′) − d log(nℓ)

≥ pKpSoI (t)(x) + pKpSoI (t)(y | x) − log pSoI(|x| + |y|) − log pSoI(log t),

where the last inequality holds by letting pSoI be a large enough polynomial. ◀

B Quasi-Polynomial-Time Average-Case Search-to-Decision Reduction
for rKt

We introduce the following statement.

“MINrKT ∈ AvgBPTIME[2O(log3 n)]”: For every polynomial-time samplable distribution
family {Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and a probab-
ilistic algorithm A such that the following hold for all all λ ∈ (0, 1), all n, s, ℓ, k ∈ N, and
all t ≥ ρ(n) · log(1/(1 − λ))).
1. For all x ∈ {0, 1}n, A(x, λ, 1t, 1ℓ, 1k) runs in time 2O(log3 n) · poly(|λ|, t, ℓ, k).
2. For all x ∈ {0, 1}n,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs either an (1/ℓ)-rKt

λ-witness of x or ⊥
]

≥ 1 − 1
2k

.

3. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs an (1/ℓ)-rKt

λ-witness of x
]

≥ 1 − 1
2k

.

In this section we prove the following quasipolynomial-time version of Theorem 3.

▶ Theorem 41. We have

“MINrKT ∈ AvgBPP” =⇒ “MINrKT ∈ AvgBPTIME[2O(log3 n)]”.

CCC 2024

29:42 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

B.1 Technical Tools
We begin with some technical tools.

B.1.1 A Generator with rKt Reconstruction
We will use the following pseudorandom generator construction.

▶ Lemma 42 (see e.g., [13] and [14, Lemma 26]). There exists a polynomial p such that, for
all sufficiently large n, m, t ∈ N such that m ≤ 2n and t ≥ n, there exists a “pseudorandom
generator construction”

Gm : {0, 1}n × {0, 1}d → {0, 1}m

such that for every x ∈ {0, 1}n and any function D : {0, 1}m × {0, 1}t → {0, 1}, if∣∣∣∣∣∣∣ Pr
z∼{0,1}d

w′∼{0,1}t

[D(Gm(x; z); w′) = 1] − Pr
w∼{0,1}m

w′∼{0,1}t

[D(w; w′) = 1]

∣∣∣∣∣∣∣ ≥ 1
m

,

then

rKp(t),D(x) ≤ m + O(log3 n).

Here, d = O(log3 n) and Gm can be computed in time poly(n).

B.1.2 Symmetry of Information for rKt

▶ Lemma 43 (Symmetry of Information for rKt). If (coMINKT, U) ∈ Avg1BPP holds, then
there exist polynomials pSoI and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and every
t ≥ p0(|x| + |y|),

rKt(x, y) > rKpSoI (t)(x) + rKpSoI (t)(y | x) − log pSoI(t) − log3 pSoI(|x| · |y|).

Proof. The proof follows closely to that of Lemma 36.
Let x ∈ {0, 1}n, y ∈ {0, 1}ℓ, and m, m′ ∈ N to be defined later. Let G(−) be the generator

from Lemma 42. Also, let c ≥ 1 be a sufficiently large constant specified later.
To begin, observe that there exist a polynomial p0 and a constant d ≥ 1 such that for

any t ≥ p0(n, ℓ), any choice of z ∈ {0, 1}O(log3 n) and z′ ∈ {0, 1}O(log3 ℓ),

rK2t(Gm(x; z) ◦ Gm′(y; z′)) ≤ rKt(x, y) + |z| + |z′| + d log t. (42)

In particular, p0(n, ℓ) reflects the time required to deterministically compute Gm(x; z) ◦

Gm′(y; z′) given xy, z, z′, and d log t bits of information to delineate x from y. In what
follows, we will give a lower bound on rK2t(Gm(x; z) ◦ Gm′(y; z′)) and thereby a lower bound
on rKt(x, y).

Since we assume that (coMINKT, U) ∈ Avg1BPP holds, there exist a constant c′ > 0, a
polynomial ρ and a probabilistic polynomial-time algorithm B such that the following hold
for all sufficiently large n′, all all t′ ≥ ρ(n′), and all s′ ≤ n′ − c′ · log log t′.
1. If r ∈ {0, 1}n′ and Kt′(r) ≤ s′, then PrB [B(r, 1s′

, 1t′) = 1] ≥ 1 − 1
10n′ .

2. With probability at least 1/n′ over r ∼ {0, 1}n′
, PrB [B(r, 1s′

, 1t′) = 0] ≥ 1 − 1
10n′ .

Let c > 0 be a sufficiently large constant to be specified later, and consider the following
parameters.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:43

m := rKp
G

(t)(x) − log p
G

(t) − log3 p
G

(nℓ) − 1 and m′ := rKp
G

(t)(y | x) − log p
G

(t) −
log3 p

G
(nℓ) − 1, where p

G
is a sufficiently large polynomial specified later.

n′ := m + m′ + tc.
s′ := m + m′ + tc − c2 · log(t) − c · log3(nℓ).
t′ := t2c.

We show the following which will imply a lower bound on rK2t(Gm(x; z) ◦ Gm′(y; z′)).

▷ Claim 44. There exist z ∈ O(log3 n) and z′ ∈ O(log3 ℓ) such that

Pr
w∼{0,1}tc

[
Kt′

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s′
]

< 1 − 1
10n′ .

Proof of Claim 44. We first claim the following:

Pr
z,v,w,B

[
B(Gm(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
≤ 1 − 4

10n′ . (43)

Toward a contradiction, suppose

Pr
z,v,w,B

[
B(Gm(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
> 1 − 4

10n′ . (44)

By the property of the algorithm B (Item 2), we have

Pr
u,v,w,B

[
B(uvw, 1s′

, 1t′
) = 0

]
≥ 1

2n′ .

In this case, comparing with Equation (44), we get a randomized distinguisher for
Gm(x; UO(log3 n)) with advantage 1/10n′, defined by sampling v ∼ Um′ , w ∼ Utc , and
outputting B(− ◦ vw, 1s′

, 1t′). By Lemma 42, there exists some polynomial p
G

such that

rKp
G

(t)(x) ≤ m + log p
G

(t) + log3 p
G

(nℓ). (45)

Recall that m = rKp
G

(t)(x)−log p
G

(t)−log3 p
G

(nℓ)−1, so Equation (45) gives a contradiction.
This shows Equation (43).

Now, toward a contradiction, suppose that for all z, z′,

Pr
w

[
Kt′

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ .

By the property of B (Item 1), this implies that

Pr
z,z′,w,B

[
B(Gm(x; z) ◦ Gm′(y; z′)) ◦ w, 1s′

, 1t′
) = 1

]
≥ 1 − 2

10n′ .

In this case, comparing with Equation (43), we get a randomized distinguisher for
Gm′(y; UO(log3 ℓ)) with advantage (2/10n′), defined by sampling z ∼ UO(log3 ℓ), w ∼ Utc ,
and outputting B(Gm(x; z) ◦ − ◦ w, 1s′

, 1t′). Again, by Lemma 42, we have

rKp
G

(t)(y | x) ≤ m′ + log p
G

(t) + log3 p
G

(nℓ). (46)

Recall that m′ = rKp
G

(t)(y | x) − log p
G

(t) − log3 p
G

(nℓ) − 1, so that Equation (46) gives a
contradiction. This completes the proof of Claim 44. ◁

CCC 2024

29:44 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Next, we show that Claim 44 implies there exist z, z′ such that

rKtc

1−1/10n′(Gm(x; z) ◦ Gm′(y; z′)) > s =: |z| + m + |z′| + m′ − c3 log(t).

Suppose this is not the case. Then there exists a deterministic program M of length at most
s such that U(M, w) outputs Gm(x; z) ◦ Gm′(y; z′) within tc steps for at least 1 − 1/(10n′)
of the w ∈ {0, 1}tc

, which implies

Pr
w∼{0,1}tc

[
Kt2c

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s + tc + O(c log t)
]

≥ 1 − 1
10n′ . (47)

On the other hand, we have

s + tc + O(c log t) =
(
m + m′ + O(log3 n) + O(log3 ℓ) − c3 log(t)

)
+ tc + O(c log t)

≤ s′, (48)

where the last inequality holds if we choose c to be a sufficiently large constant. Equation (47)
and Equation (48) together imply that

Pr
w∼{0,1}tc

[
Kt′

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ ,

which contradicts Claim 44.
Therefore, there exist z, z′ such that

rKtc

1−1/10n′(Gm(x; z) ◦ Gm′(y; z′)) > |z| + m + |z′| + m′ − c2 log(t).

By amplification techniques (Lemma 10), the above implies

rK2t(Gm(x; z) ◦ Gm′(y; z′)) > |z| + m + |z′| + m′ − c2 log(t) − O(log log n′). (49)

Finally, we get

rKt(x, y)≥ rK2t
(
Gm(x; z) ◦ Gm′ (y; z′)

)
− |z| − |z′| − d log t (by Equation (42))

> m + m′ − c log3(nℓ) − c3 log(t) − O(log log n′) − d log t (by Equation (49))

=
(
rKp

G
(t)(x)−log pG (t)−log3 pG (nℓ)−1

)
+

(
rKp

G
(t)(y | x)−log pG (t)−log3 pG (nℓ)−1

)
− c log3(nℓ) − c3 log(t) − O(log log n′) − d log t

≥ rKpSoI (t)(x) + rKpSoI (t)(y | x) − log pSoI (t) − log3 pSoI (nℓ),

where the last inequality holds by letting pSoI be a large enough polynomial. ◀

B.1.3 Coding Theorem for rKt

▶ Lemma 45 (An Efficient Coding Theorem for rKt). If (coMINKT, U) ∈ Avg1BPP holds, then
for every polynomial-time samplable distribution family {Dn}n, there exists a polynomial
pcode such that for every n ∈ N and x ∈ Support(Dn),

rKpcode (n)(x) ≤ log 1
Dn(x) + log3 pcode(n).

We need the following technical lemma.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:45

▶ Lemma 46 ([2, 1]; See also [11, Lemma 9.7]). Let {Dn}n be any polynomial-time samplable
family of distributions. Then, there exist polynomials p and q such that, for every n ∈ N and
every x ∈ Support(Dn),

Pr
r∼{0,1}q(n)

[
Kp(n)(x, r) ≤ 1

Dn(x) + |r| + log p(n)
]

≥ 1
4 .

We now show Lemma 45.

Proof of Lemma 45. The proof is essentially the same as that of [11, Corollary 9.8].
Note that for any x ∈ {0, 1}∗ and t ∈ N, we have rKt(x) ≤ Kt(x). On the one hand, by

Lemma 46, we have for some polynomials p and q and for every x ∈ Support(Dn),

Pr
r∼{0,1}q(n)

[
rKp(n)(x, r) ≤ 1

Dn(x) + |r| + log p(n)
]

≥ 1
4 . (50)

On the other hand, by symmetry of information (Lemma 43), for every x ∈ {0, 1}n and
r ∈ {0, 1}q(n), we have

rKp(n)(x, r) ≥ rKpSoI (p(n))(x) + rKpSoI (p(n))(r | x) − log pSoI(p(n)) − log3 pSoI(n · q(n)). (51)

Also, by a simple counting argument, we have for any fixed x ∈ {0, 1}∗,

Pr
r∼{0,1}q(n)

[
rKpSoI (p(n))(r | x) ≥ |r| − log n

]
>

3
4 . (52)

Combining Equations (51) and (52), we get that with probability greater than 3/4,

rKp(n)(x, r) ≥ rKpSoI (p(n))(x) + |r| − log pSoI(p(n)) − log3 pSoI(n · q(n)) − log n,

which, together with Equation (50), implies that there exists some r such that

rKpSoI (p(n))(x) ≤ log 1
Dn(x) + log p(n) + log pSoI(p(n)) + log3 pSoI(n · q(n)) + log n.

The desired conclusion follows by choosing pcode to be a sufficiently large polynomial. ◀

B.1.4 Approximate Computational Depth for rKt

In this subsection, we show an algorithm that can approximate the (randomized) computa-
tional depth of a given string.

▶ Lemma 47. If (coMINKT, U) ∈ Avg1BPP holds, then there exist a constant c > 0, a
polynomial τ and an algorithm Approx-depth that, on input (x, 1t1 , 1t2 , 1k), where x ∈ {0, 1}n,
t1, t2, k ∈ N with t1, t2 ≥ cn, runs in time poly(n, t1, t2, k) and with probability 1−2−k outputs
an integer s such that

rKτ(t1)(x) − rKt2(x) ≤ s ≤ rKt1(x) − rKτ(t2)(x) + log τ(t1) + log τ(t2) + log3 τ(n).

To show Lemma 47, we need the following “worst-case-to-average-case reduction” result.

▶ Lemma 48. If (coMINKT, U) ∈ Avg1BPP holds, then there exists a polynomial τ such that
the following promise problem is in prBPP:

YES :=
{(

x, 1s, 1t
)

| rKt(x) ≤ s
}

,

NO :=
{(

x, 1s, 1t
)

| rKτ(t)(x) > s + log τ(t) + log3 τ(n)
}

.

CCC 2024

29:46 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Proof. Fix an instance (x, 1s, 1t), where x ∈ {0, 1}n. Without loss generality, we assume
that t ≥ |x|. Let G(−) be the generator from Lemma 42.

Since we assume that (coMINKT, U) ∈ Avg1BPP holds, There exist a constant c′ > 0, a
polynomial ρ and a probabilistic polynomial-time algorithm B such that the following hold
for all sufficiently large n′, allt′ ≥ ρ(n′) and all s′ ≤ n′ − c′ · log log t′, and .
1. If y ∈ {0, 1}n′ and Kt′(y) ≤ s′, then PrB [B(y, 1s′

, 1t′) = 1] ≥ 1 − 1
10n′ .

2. With probability at least 1/n′ over y ∈ {0, 1}n′
, PrB [B(y, 1s′

, 1t′) = 0] ≥ 1 − 1
10n′ .

Let c > 0 be a sufficiently large constant and consider the following parameters.
m := s + c3 · log t + c log3 n.
n′ := m + tc.
s′ := s + tc + c2 · log t + c log3 n.
t′ := t2c.

Now, define an algorithm B′ as follows:

On input (x, 1s, 1t) with x ∈ {0, 1}n, sample z ∼ {0, 1}O(log3 n) and w ∼ {0, 1}tc

, and
then output B

(
Gm(x; z) ◦ w, 1s′

, 1t′
)

.

Below, we show that B′ solves (YES, NO) correctly with high probability in the worst case.
First, consider the case that (x, 1s, 1t) ∈ YES, i.e., rKt(x) ≤ s. By amplification techniques

(Lemma 10), we get that

rKtc

1−1/10n′(x) ≤ s + O(log log n′).

In other words, there exists a deterministic program M of length at most s + O(log log n′)
such that U(M, w) outputs x within tc steps for at least 1 − 1/10n′ of the w ∈ {0, 1}tc

. This
implies that for any choice of z ∈ {0, 1}O(log3 n),

Pr
w∼{0,1}tc

[
Kt2c

(Gm(x; z) ◦ w) ≤ s + O(log log n′) + tc + O(log3 n) + O(c log t)
]

≥ 1− 1
10n′ .

(53)

Also, note that by letting c be a sufficiently large constant, we have

s + O(log log n′) + tc + O(log3 n) + O(c log t) ≤ s′ (54)

Equation (53) and Equation (54) together imply that

Pr
w∼{0,1}tc

[
Kt′

(Gm(x; z) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ .

Then by the property of B (Item 1) and a union bound, we have

Pr
w,z,B

[
B(Gm(x; z) ◦ w, 1s′

, 1t′
) = 1

]
≥ 1 − 1

5n′ ,

and so

Pr
B′

[
B′(x, 1s, 1t) = 1

]
≥ 1 − 1

5n′ . (55)

Now Let τ be a sufficiently large polynomial specified later, and consider any (x, 1s, 1t) ∈
NO, i.e., rKτ(t)(x) > s + log τ(t). We will show that

Pr
B′

[
B′(x, 1s, 1t) = 1

]
≤ 1 − 2

5n′ . (56)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:47

Note that by combining Equation (55) and Equation (56), B′ yields an polynomial-time
algorithm for (YES, NO) via standard success amplification techniques.

Suppose, for the sake of contradiction, Equation (56) is not true. Then by the definition
of B′, we have

Pr
w,z,B

[
B(Gm(x; z) ◦ w, 1s′

, 1t′
) = 1

]
> 1 − 2

5n′ . (57)

On the other hand, by the property of B (Item 2), we get

Pr
u,w,B

[
B(u ◦ w, 1s′

, 1t′
) = 1

]
< 1 − 1

2n′ . (58)

Comparing Equation (57) and Equation (58), it is clear that B(− ◦ Utc , 1s′
, 1t′) distinguishes

Gm(x; UO(log3 n)) from Um with advantage 1/10n′. By Lemma 42 and by letting τ be a
sufficiently large polynomial, we get

rKτ(t)(x) ≤ m + O(log3 n) + O(log t′)
≤ s + c3 · log t + c log3 n + O(log3 n) + O(c log t)
≤ s + log τ(t) + log3 τ(n).

This means (x, 1s, 1t) is not in NO, which gives the desired contradiction. ◀

▶ Corollary 49. If (coMINKT, U) ∈ Avg1BPP holds, then there exist a constant c > 0,
a polynomial τ , and a probabilistic polynomial-time algorithm Approx-rK that, on input
(x, 1t, 1k) where x ∈ {0, 1}n, t ≥ cn and k ∈ N, with probability at least 1 − 2−k outputs an
integer s such that

rKτ(t)(x) − log τ(t) − log3 τ(n) ≤ s ≤ rKt(x).

Proof. Consider a randomized polynomial-time algorithm A that solves the promise problem
from Lemma 48. By standard error reduction techniques, assume without loss of generality
that on the inputs satisfying the promise its error is at most 2−k/n2, where n = |x|. Note
that the running time of A becomes poly(n, k). Our algorithm Approx-rK runs A on (x, 1s, 1t)
for s = 1, 2, . . . , n + log n, and outputs the first s such that A(x, 1s, 1t) = 1.

The correctness of Approx-rK follows by a union bound. Indeed, if s < rKτ(t)(x) −
log τ(t) − log3 τ(n), i.e., rKτ(t)(x) > s + log τ(t) + log3 τ(n), using the promise we get that
PrA[A(x, 1s, 1t) = 1] ≤ 2−k/n2. On the other hand, if s = rKt(x), which implies that
rKt(x) ≤ s and the promise is satisfied, we have PrA[A(x, 1s, 1t) = 1)] ≥ 1 − 2−k/n2.
Since rKt(x) ≤ n + log n, if t ≥ cn, where c ≥ 1 is a sufficiently large constant, then with
high probability over the internal randomness of Approx-rK, it outputs a value s such that
rKτ(t)(x) − log τ(t) − log3 τ(n) ≤ s ≤ rKt(x). ◀

We are now ready to prove Lemma 47.

Proof of Lemma 47. Let τ ′ be the polynomial from Corollary 49, and let Approx-rK be the
algorithm from Corollary 49. By running Approx-rK(x, 1t1 , 1k+1), with probability at least
1 − 2−k/2, we get some integer s0 such that

rKτ ′(t1)(x) − log τ ′(t1) − log3 τ ′(n) ≤ s1 ≤ rKt1(x).

Similarly, by running Approx-rK
(
x, 1t2 , 1k+1)

, with probability at least 1 − 2−k/2, we get
some integer s2 such that

rKτ ′(t2)(x) − log τ ′(t2) − log3 τ ′(n) ≤ s2 ≤ rKt2(x).

CCC 2024

29:48 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Then with probability at least 1 − 2−k, we have

s1 − s2 ≤ rKt1(x) −
(

rKτ ′(t2)(x) − log τ ′(t2) − log3 τ ′(n)
)

(59)

and

s1 − s2 ≥
(

rKτ ′(t1)(x) − log τ ′(t1) − log3 τ ′(n)
)

− rKt2(x). (60)

We can then output

s := s1 − s2 + log τ ′(t1) + log3 τ ′(n).

Note that using Equations (59) and (60), we have

s ≤ rKt1(x) − rKτ ′(t2)(x) + log τ ′(t1) + log τ ′(t2) + 2 · log3 τ ′(n)

≤ rKt1(x) − rKτ(t2)(x) + log τ(t1) + log τ(t2) + log3 τ(n),

and s ≥ rKτ ′(t1)(x) − rKt2(x) ≥ rKτ(t1)(x) − rKt2(x), where in the above we let τ > τ ′ be a
large polynomial. ◀

B.2 Proof of Theorem 41
In this subsection, we prove the following, which implies Theorem 41 via Proposition 11.

▶ Theorem 50. If (coMINKT, U) ∈ Avg1BPP holds, then for every polynomial-time samplable
distribution family {Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and
a probabilistic algorithm A such that the following hold for all λ ∈ (0, 1), all n, s, ℓ, k ∈ N,
and all t ≥ ρ(n) · log(1/(1 − λ)).
1. For all x ∈ {0, 1}n, A(x, λ, 1t, 1ℓ, 1k) runs in time 2O(log3 n) · poly(|λ|, t, ℓ, k) and outputs

either a program or ⊥.
2. For all x ∈ {0, 1}n,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs neither an (1/ℓ)-rKt

λ-witness of x nor ⊥
]

≤ 2−k.

3. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) = ⊥

]
≤ 2−k.

Proof. Throughout the proof, we will assume that t ≥ ρ(n)·log(1/(1−λ)) for some polynomial
ρ, which will be specified later. Here we assume without loss of generality that λ ≥ 2/3. The
proof can be easily adapted to the case where λ ≤ 2/3.

Let t ∈ N be such that t ≥ p0(3n), where p0 is the polynomial from Lemma 43. Consider
any x ∈ {0, 1}n and let yt be a rKt

λ-witness of x. That is, yt is a program such that U(yt, r)
outputs x within t steps with probability at least λ over r ∼ {0, 1}t and |yt| = rKt

λ(x). Also,
let q := ⌈1/(1 − λ)⌉. Note that log(q) ≤ O(|λ|).

By symmetry of information (Lemma 43), we have, for some polynomial pSoI ,

rKpSoI (2t)(yt | x)

≤ rK2t(x, yt) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n)

≤ |yt| − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(1)

= rKt
λ(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(1) (by the definition of yt)

≤ rKt/O(log q)(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(log log q),
(by Lemma 10)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:49

where the second inequality follows from the fact that given yt, one can also output x within
t steps with probability at least 2/3.

Let t′ := t/O(log(1/(1 − λ)). Then we have

rKpSoI (2t)(yt | x) ≤ rKt′
(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(log |λ|). (61)

Let d > 0 be some constant specified later, we say that x ∈ {0, 1}n is (t, k)-good if

rKt′
(x) − rKpSoI (2t)(x) ≤ d · (log t + log3 n) + log k. (62)

Consider any x, t, k such that x is (t, k)-good. Equation (61) implies that

rKtd

(yt | x) ≤ rKpSoI (2t)(yt | x)

≤ rKt′
(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(log log q)

≤ 2d · (log t + log3 n) + log k + d · log |λ|, (63)

provided that d is a sufficiently large constant (which depends on pSoI).
Given Equation (63) and using standard success amplification techniques (Lemma 10),

we get that for some sufficiently large constant c > d, there is a randomized program Πyt
of

length at most

s := c ·
(
log3 n + log t + log k + log |λ|

)
(64)

that, given x, outputs yt within T := tc · kc steps with probability at least 1 − 2−k/2. We
aim to find such a yt.

Let Valid be the algorithm from Claim 21, and let A′ be the following algorithm that,
given (x, λ, 1t, 1ℓ, 1k) such that x is (t, k)-good, aims to output an (1/ℓ)-rKt

λ-witness of x.

Algorithm 4 Search for rKt-Witnesses for Good x’s.

1: procedure A′(x, λ, 1t, 1ℓ, 1k)
2: n := |x|
3: M := 02n

4: s := c ·
(
log3 n + log t + log k + log |λ|

)
, where c is the constant from Equation (64).

5: T := tc · kc

6:
7: for Π ∈ {0, 1}≤s do
8: r := a uniformly random string in {0, 1}T .
9: y := the output of U(Π, x, r) after running T steps.

10: if |y| < |M | and Valid
(
x, y, λ, 1t, 1ℓ, 1k+s+2)

then
11: M := y

12: Output M

It is easy to verify that A′(x, λ, 1t, 1k, 1ℓ) runs in time 2O(log3 n) · poly(|λ|, t, k, ℓ). Next,
we argue that if x is (t, k)-good, then the above algorithm outputs an (1/ℓ)-rKt

λ-witness of x

with probability 1 − 2−k.
Note that if x is (t, k)-good, then as described in previous paragraphs there is a randomized

program Πyt of length at most s := c ·
(
log3 n + log t + log k + log |λ|

)
such that U(Πyt , x, r)

outputs yt within T := tc · kc steps with probability at least 1 − 2−k/2 over r ∼ {0, 1}T . For
such an x, our algorithm A′ will successfully output an (1/ℓ)-rKt

λ-witness of x if both of the
following are true.

CCC 2024

29:50 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

1. The algorithm Valid succeeds (meaning that the condition stated in Claim 21 is satisfied)
in all of the m :=

∑s
i=1 2i ≤ 2s+1 executions, which happens with probability at least

1 − 2m · 2−k−s−2 ≥ 1 − 2−k/2.
2. For Π = Πyt

, U(Π, x, r) outputs yt within T steps, which happens with probability at
least 1 − 2−k/2 over r ∼ {0, 1}T .

To see this, if the first item is true, then the randomized program M output by the
algorithm is always a “valid” one that outputs x within t steps with probability at least
λ − 1/ℓ. If the second item is true, we are guaranteed that that |M | ≤ |yt| = rKt

λ(x), since
Valid(x, yt, λ, 1t, 1ℓ, 1k+s+1) = 1 (for a successful execution of Valid). The correctness of the
algorithm then follows by a union bound.

We now describe our final algorithm A in the theorem. Let τ be the quasi-polynomial in
Lemma 47, and let Approx-depth be the algorithm from Lemma 47. Our final algorithm A

works as follows.

On input (x, λ, 1t, 1ℓ, 1k), we first check if

Approx-depth
(

x, 1⌊τ−1(t′)⌋, 1pSoI (2t), 1k
)

≤ d · (log t + log3 n) + log k,

where d is the constant in Equation (62). If yes, we output A′(x, λ, 1t, 1ℓ, 1k). Other-
wise, we output ⊥.

We argue that the algorithm A above satisfies the three conditions stated in the theorem.
The first condition is easy to verify.

For the second condition, we consider two cases. Suppose x is not (t, k)-good, meaning
that

rKt′
(x) − rKpSoI (2t)(x) > d · (log t + log3 n) + log k.

Note that by Lemma 47, in this case Approx-depth
(

x, 1⌊τ−1(t′)⌋, 1pSoI (2t), 1k
)

outputs, with
probability at least 1 − 2−k, some s that satisfies

s ≥ rKτ(⌊τ−1(t′)⌋)(x) − rKpSoI (2t)(x)

≥ rKt′
(x) − rKpSoI (2t)(x)

> d · (log t + log3 n) + log k.

Therefore, our algorithm will output ⊥ with probability at least 1 − 2−k.
Now suppose x is (t, k)-good. Then A′(x, λ, 1t, 1ℓ, 1k) will output an (1/ℓ)-rKt-witness

of x with probability at least 1 − 2−ℓ, which suffices to imply that the probability that our
algorithm outputs neither an (1/ℓ)-optimal rKt-witness of x nor ⊥ is at most 2−k in this
case, which also yields the second condition in this case.

Finally, for the third condition, we will show that in the above algorithm the criteria
using Approx-depth will fail (hence output ⊥) with probability at most 1/k over x ∼ Dn. To
show this, we claim the following.

▷ Claim 51. For every t, k ∈ N such that t ≥ ρ(n), with probability at least 1 − 1/k over
x ∼ Dn, we have

ζ : = rK⌊τ−1(t′)⌋(x) − rKτ(pSoI (2t))(x) + log τ(⌊τ−1(t′)⌋) + log τ(pSoI(2t)) + log3 τ(n)
≤ d · (log t + log3 n) + log k.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:51

Proof of Claim 51. Recall the coding theorem for rK (Lemma 45). By letting ρ be a sufficiently
large polynomial so that for all t ≥ ρ(n)·log(1/(1−λ))), it is satisfied that ⌊τ−1(t′)⌋ ≥ pcode(n),
where pcode is the polynomial from Lemma 45, we get that for every x ∈ Support(Dn),

rK⌊τ−1(t′)⌋(x) ≤ rKpcode (n)(x) ≤ log 1
Dn(x) + log pcode(n). (65)

On the other hand, by Lemma 9, with probability at least 1 − 1/k over x ∼ Dn, we have

K(x) ≥ log 1
Dn(x) − b log n − log k,

where b > 0 is a constant. In particular, by Fact 6, this implies

rKτ(pSoI (2t))(x) ≥ log 1
Dn(x) − b log n − log k. (66)

Combining Equations (65) and (66), we get that with probability at least 1 − 1/k over
x ∼ Dn,

ζ : = rK⌊τ−1(t′)⌋(x) − rKτ(pSoI (2t))(x) + log τ(⌊τ−1(t′)⌋) + log τ(pSoI(2t)) + log3 τ(n)

≤
(

log 1
Dn(x) + log pcode(n)

)
−

(
log 1

Dn(x) − b log n − log k

)
+ log t′ + log τ(pSoI(2t)) + log3 τ(n)

= log pcode(n) + b log n + log k + log t′ + log τ(pSoI(2t)) + log3 τ(n)
≤ d · (log t + log3 n) + log k,

where the last inequality holds by letting d be a sufficiently large constant. ◁

To see that the third condition follows from Claim 51, note that by Lemma 47, we have
Approx-depth

(
x, 1⌊τ−1(t′)⌋, 1pSoI (2t), 1k

)
outputs, with probability at least 1 − 2−k, some s

such that s ≤ ζ. Then by Claim 51, we obtain that for at least 1 − 1/k fraction of the x

sampled from Dn, our algorithm will output something other than ⊥ with probability at
least 1 − 2−k, as desired. ◀

C Search-to-Decision Reductions for the GapMINKT Problem

Mazor and Pass [30, Theorem 1.1] have recently described a sub-exponential time search-to-
decision reduction for a gap version of time-bounded Kolmogorov complexity. In this section,
we describe some related results obtained via techniques from meta-complexity.

Let MINKT denote the set of strings (x, 1s, 1t) such that Kt(x) ≤ s. We consider a gap
version of the corresponding computational problem, defined as follows. For a polynomial p,
we let GappMINKT denote the following promise problem:

YES instances consist of strings (x, 1s, 1t) such that Kt(x) ≤ s;
NO instances consist of strings (x, 1s, 1t) such that Kp(t,|x|) > s + log p(t, |x|).

We say that an algorithm A solves Search-GappMINKT if given any GappMINKT YES instance
(x, 1s, 1t), A outputs a program Π of length at most s+log p(t, |x|) such that Up(t,|x|)(Π) = x.
In other words, the algorithm certifies that (x, 1s, 1t) is not a NO instance of GappMINKT.
We can think of A as providing an approximate or near-optimal solution to the search
problem for Kt, since there is a bounded overhead in the running time and in the description
length of the provided solution.

CCC 2024

29:52 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Theorem 52. Assume that E ̸⊆ i.o.SIZE[2o(n)]. If there is a polynomial p such that
GappMINKT admits a polynomial-time algorithm, then there is a polynomial q and a
polynomial-time algorithm that solves Search-GapqMINKT.

Proof. We rely on the efficiency and bounded advice complexity (under E ̸⊆ i.o.SIZE[2o(n)]) of
the reconstruction procedure of the k-wise direct product generator DPk : {0, 1}n ×{0, 1}nk →
{0, 1}nk+k, defined as follows:

DPk(x; z) := (z1, . . . , zk, ⟨z1, x⟩, . . . , ⟨zk, x⟩) ,

where ⟨z, x⟩ denotes the inner product of z ∈ {0, 1}n and x ∈ {0, 1}n over GF(2). We will
need the following result.

▶ Lemma 53 (Reconstruction Lemma for Kt [11]). Assume that E ̸⊆ i.o.SIZE[2o(n)]. There
is a polynomial q1 such that, for every n ∈ N, x ∈ {0, 1}n, parameter k ∈ N, and for every
deterministic circuit C of size ℓ such that∣∣∣ Pr

z
[C(DPk(x; z)) = 1] − Pr

w
[C(w) = 1]

∣∣∣ ≥ 1/n,

where z ∼ {0, 1}nk and w ∈ {0, 1}nk+k, it holds that

Kq1(n·ℓ)(x | C) ≤ k + log q1(n · ℓ).

Moreover, there is a deterministic algorithm B that, given x ∈ {0, 1}n, k ∈ N, and C,
runs in polynomial time and outputs a string y of length at most k + log q1(n, ℓ) such that
Uq1(n,ℓ)(y, C) = x.

Sketch of the Proof of Lemma 53. The assumption that E ̸⊆ i.o.SIZE[2o(n)] yields a pseu-
dorandom generator G of seed length O(log m) that allows us to derandomize non-uniform
algorithms of complexity at most m [20]. In the construction described below, we can use
G to derandomize any internal procedure of the program that outputs x given C. We note
that by fixing a good seed of G in such a derandomization, we will incur an overhead in
the description length of the program for x of at most log poly(n, ℓ) bits, while the overhead
in the running time of the program is poly(n, ℓ). These overheads do not create an issue
because we can take the polynomial q1 to be of large enough degree. (Moreover, it would be
enough to design a randomized algorithm B, since this algorithm can be derandomized in
a standard way by trying all seeds of the generator and outputting the first valid program
with the desired parameters.)

Using the circuit C as a distinguisher and Yao’s equivalence between breaking a candid-
ate generator and next-bit (un)predictability, it follows that there is an index i ∈ [k]
such that ⟨zi, x⟩ can be predicted with probability at least 1/2 + Ω(1/(n · k)), given
z1, . . . , zk, ⟨z1, x⟩, . . . ⟨zi−1, x⟩ as input. Since ⟨zi, x⟩ is the zi-th bit of the Hadamard code
of x, we can use the next-bit predictor and the list-decoding algorithm of the Hadamard
code to recover with noticeable probability a list of strings of polynomial size that contains x.
More precisely, this yields a randomized algorithm M (with access to C) that runs in time
polynomial in n and ℓ such that, given a random choice of z1, . . . , zk and the corresponding
bits ⟨z1, x⟩, . . . ⟨zi−1, x⟩, outputs with probability at least 1/poly(n, ℓ) a list S of size poly(n, ℓ)
that contains x.

As explained above, using the generator G, a good choice of the random strings z1, . . . , zk

as well as of the internal randomness of M can be obtained from some seed σ ∈ {0, 1}s,
where s = O(log poly(n, ℓ)). Additionally, the i − 1 ≤ k “advice bits” ⟨z1, x⟩, . . . ⟨zi−1, x⟩

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:53

can be efficiently computed from x and z1, . . . zi−1. These advice bits are stored in the
corresponding program y witnessing that Kq1(n·ℓ)(x | C) ≤ k + log q1(n · ℓ). Finally, the
position of x in the list S can be encoded with O(log poly(n, ℓ)) bits of advice and is also
stored in y.

The search algorithm B from the “moreover” part of the result tries all seeds σ of
the generator until a good seed is found, a condition that can be tested by running the
corresponding program yσ. The overall running time of B is poly(n, ℓ), as desired. ◀

We now describe the search-do-decision reduction. Assume that E ̸⊆ i.o.SIZE[2o(n)]. Let F

be a polynomial-time algorithm that decides GappMINKT. Note that we can assume without
loss of generality that F is deterministic, since E ̸⊆ i.o.SIZE[2o(n)] yields strong pseudorandom
generators [20]. For a large enough polynomial q specified later in the proof, we describe a
deterministic polynomial-time algorithm A that solves Search-GapqMINKT, i.e., given any
GapqMINKT YES instance (x, 1s, 1t), A outputs a q(t, |x|)-time-bounded description of x of
length at most s + log q(t, |x|).

Let α ≥ 1 be a large enough constant. We assume that s ≤ n−10α · log n, since otherwise
a trivial description of x is a correct output for GapqMINKT (taking q to be of large enough
degree). We can also assume that t ≥ n, as the polynomial q can depend on n = |x|. The
search algorithm A sets k = s + α · log n in the execution of the algorithm B from Lemma 53,
and let C(v) be the (deterministic) circuit of size ℓ = poly(t) obtained from F on inputs of
the form (v, 1s′

, 1t′), where |v| = nk + k, s′ = nk + k − (α/4) · log n, and t′ = q2(t), for a
polynomial q2 of large enough degree.

For a given GapqMINKT YES instance (x, 1s, 1t), it is not hard to see that for every string
z ∈ {0, 1}nk,

Kq2(n)(DPk(x; z)) ≤ |z| + Kt(x) + O(log n) ≤ nk + s + O(log n) ≤ nk + k − (α/2) · log n,

where we used that α is large enough. On the other hand, for a random string w ∼ {0, 1}nk+k,
a simple counting argument gives that

K(w) ≥ nk + k − log n

with probability at least 1/n. Recall that C(v) accepts every instance v such that Kt′(v) ≤ s′

and rejects every instance v such that Kp(t′,|v|)(v) > s′ + log p(t′, |v|). Consequently, due to
our choices of s′ and t′ and using a large enough α, it is not hard to see that C(v) satisfies
the condition in the statement of Lemma 53.

Therefore, the algorithm B on inputs x, k = s + α · log n, and C (as defined above), runs
in time poly(x, k, |C|) = poly(n, s, t) and outputs a string y of length at most

k + log q1(n, ℓ) = s + α · log n + log q1(n, poly(t))

such that Uq1(n,ℓ)(y, C) = x. Since C can be efficiently computed from the code of F (which
has description length O(1)) and parameters s and t (which can be described with log n+log t

bits), if we take q to be a large enough polynomial, A can produce from y a string Π of
length at most s + log q(t, |x|) such that Uq(t,|x|))(Π) = x. This completes the proof of
Theorem 52. ◀

▶ Remark 54 (Comparison with [30, Theorem 1.1]). On the one hand, the (black-box) search-
to-decision reduction in [30, Theorem 1.1] is unconditional, while Theorem 52 relies on a
standard derandomization assumption and is non-black-box. On the other hand, Theorem 52
provides a polynomial-time search to decision reduction for GapMINKT, as opposed to the
sub-exponential running time of [30, Theorem 1.1].

CCC 2024

29:54 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Remark 55 (Exact versus Gap Search-to-Decision Reductions for Kt). We note that the
assumption in Theorem 52 on the existence of a polynomial p such that GappMINKT admits
a polynomial-time algorithm is implied by “MINKT ∈ AvgBPP” and E ̸⊆ i.o.SIZE[2o(n)]
(see [10, 9] or [12]). In other words, the assumption on the easiness of GappMINKT can be
replaced by “MINKT ∈ AvgBPP” in Theorem 52. In particular, under the assumptions of
Theorem 1 we can efficiently solve the exact search problem for Kt on average and the gap
search problem for Kt in the worst case.

We observe that it is possible to derive a weaker unconditional consequence from The-
orem 52 via a win-win argument. We will need the following simple result.

▶ Proposition 56. Suppose that E ⊆ i.o.SIZE[2o(n)]. Then, for every ε > 0, there exists
infinitely many values of n and a circuit Cn of size at most 2ε·n such that, given a string
x ∈ {0, 1}n and 1 ≤ t ≤ 2n (represented as an n-bit string), Cn(x, t) outputs a minimum
length program Π such that U t(Π) = x.

Proof. Under the assumption, for every L ∈ E and for every ε > 0, there is an infinite set
S ⊆ N such that, for every n ∈ S, there is a circuit Cn of size at most 2ε·n that computes
Ln, i.e., L restricted to inputs of length exactly n.

We consider a paddable language L (with a padding input parameter k) that contains all
tuples ⟨x, w, i, s, t, 1k⟩ such that:

(i) |x| = n for some n, |w| = n, |i| = log n, |s| = log n, |t| = n, and k is arbitrary. We view
i as an integer such that 1 ≤ i ≤ n, and t as an integer such that 1 ≤ t ≤ 2n.

(ii) Let w≤i be the i-th bit prefix w. There is a program Π that extends wi and is of length
at most s such that U t(Π) = x.

We assume that the tuples in L employ an encoding such that the bit-length of ⟨x, w, i, s, t, 1k⟩
as a string is precisely 4n + k, whenever n is sufficiently large. This is easy to get, since
|x| + |w| + |i| + |s| + |t| = 3n + 2 log n for positive instances. The particular choice of encoding
is not important as long as the tuple can be efficiently encoded and decoded.

Observe that L ∈ E. Under the assumption of Proposition 56, for every δ > 0 there are
infinitely many input lengths m such that L on input length m admits a circuit Dm of size
at most 2δ·m. Using the padding parameter k, it is not hard to see that we can use Dm to
decide tuples ⟨x, w, i, s, t, 1k⟩ with |x| = m/5. Finally, let n = |x|. Given Dm, by a standard
binary search over prefixes of w, we can optimally solve the search problem for Kt on x in
size 2δ·m · poly(m) ≤ 26·δ·n. Since δ > 0 can be taken arbitrarily small, the result follows. ◀

By combining Theorem 52 and Proposition 56, we get the following unconditional search-
to-decision reduction. (Since we consider Boolean circuits in the next statement, which
are devices that operate over fixed input lengths, we assume an upper bound on the input
parameters as a function of n.)

▶ Theorem 57. If there is a polynomial p such that GappMINKT admits a polynomial-time
algorithm, then there is a polynomial q such that, for every ε > 0, there are infinitely many
input lengths n such that Search-GapqMINKT can be solved by a circuit of size at most 2ε·n

on inputs (x, 1s, 1t), where we assume that x ∈ {0, 1}n, 1 ≤ s ≤ n + log n, and 1 ≤ t ≤ 2o(n).

Proof. If E ̸⊆ i.o.SIZE[2o(n)], the result immediately follows from Theorem 52. Otherwise,
we get that E ⊆ i.o.SIZE[2o(n)]. Let Cn be one of the circuits from Proposition 56. Then we
can use Cn to solve the search problem of any GapqMINKT YES instance (x, 1s, 1t). This
completes the proof. ◀

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:55

Note that, in contrast to the search-to-decision reduction from [30, Theorem 1.1], which
provides a uniform algorithm for Search-GapqMINKT with the sub-exponential-time 2ε·s ·
poly(n, t, s) (for every ε > 0), Theorem 57 only provides a non-uniform infinitely often
sub-exponential-time 2ε·n algorithm (for every ε > 0), and so has similar sub-exponential in
s efficiency only for s ∈ Ω(n).9

D Errorless Average-Case Search-to-Decision Reduction for Kt over
the Uniform Distribution

In this section, we describe polynomial-time errorless average-case search-to-decision reduction
over the uniform distribution for Kt. We get the following polynomial-time average-case
search-to-decision reduction for Kt in the errorless setting over the uniform distribution. This
complements a similar result in [22], which holds in the error-prone setting.

▶ Theorem 58. If (coMINKT, U) ∈ Avg1BPP holds, then there exist a polynomial ρ and a
probabilistic polynomial-time algorithm A such that the following holds for all n, s, k ∈ N,
and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n,

Pr
A

[
A(x, 1t, 1k) outputs either an Kt-witness of x or ⊥

]
≥ 1 − 1

2k
.

2. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, 1t, 1k) outputs ⊥

]
≤ 1

2k
.

Proof. The proof follows a similar approach to that of Theorem 50.
Let n ∈ N and let t ≥ ρ(n) for some polynomial ρ specified later.
Consider any x ∈ {0, 1}n and let yt be a Kt-witness of x.
By the assumption that (coMINKT, U) ∈ Avg1BPP holds, it follows from Lemma 17 that

there exist polynomials pSoI such that

pKpSoI (2t)(yt | x) ≤ pK2t(x, yt) − pKpSoI (2t)(x) + log pSoI(2t)

≤ K2t(x, yt) − pKpSoI (2t)(x) + log pSoI(2t)

≤ |yt| − pKpSoI (2t)(x) + log pSoI(2t)

= Kt(x) − pKpSoI (2t)(x) + log pSoI(2t).

Using standard amplification techniques for probabilistic time-bounded Kolmogorov com-
plexity (see, e.g., [6, Lemma 21]), we get

pKpSoI (2t)·poly(k)
1−2−k (yt | x) ≤ Kt(x) − pKpSoI (2t)(x) + log pSoI(2t) + O(log k). (67)

Let d > 0 be a constant determined later. We say that x is (t, k)-good if

pKpSoI (2t)(x) > n − d · log t − log k.

9 In Theorem 57 there is a dependence on n in the exponent of the circuit size, as opposed to a dependence
on s in the running time as in [30, Theorem 1.1]. This is inherent in the non-uniform model when the
parameter s is part of the input, since the circuit is fixed and must work for all values of s including
s = Θ(n). In other words, in a uniform algorithm the running time can depend on a given input instance,
but in a circuit its size is fixed for all inputs of a given input length.

CCC 2024

29:56 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Note that if x is (t, k)-good, then the quantity in Equation (67) becomes

pK(t·k)d

1−2−k (yt | x)| ≤ Kt(x) − pKpSoI (2t)(x) + log pSoI(2t) + O(log k)

< (n + O(1)) − (n − d · log t − log k) + log pSoI(2t) + O(log k)
≤ 2d · (log t + log k),

if we let d be a sufficiently large constant. This implies that for at least 1−2−k fraction of the
w ∈ {0, 1}T , where T := (tk)d, there is a program Πyt

of size at most s := 2d · (log t + log k)
such that U(Π, w) outputs yt within T steps. Therefore, the following procedure A′ will be
able to find a Kt-witness of x with probability at least 1 − 2−k.

On input (x, 1t, 1k), we pick w ∼ {0, 1}T , enumerate all Π ∈ {0, 1}≤s, run U(Π, w) for
T steps and obtain a list of candidate programs {y} (which is guaranteed to contain
yt). We then return the shortest y that outputs x within t steps.

Let M be the randomized algorithm that approximates pKt as in Lemma 16. By standard
amplification techniques, we can amplify its success probability to be 1 − 2−k, by blowing up
the running time by at most poly(k). Consider the following algorithm Certify:

On input (x, 1t, 1k), let t′ := pSoI(2t) and let θ := n − d · log t − log k. We accept if and
only if M(x, 1t′) ≥ θ.

Our final algorithm A works as follows:

On input (x, 1t, 1k), we runs Certify(x, 1t, 1k), if it rejects, we output ⊥; otherwise, we
run A′(x, 1t, 1k) and output whatever it outputs.

We show the first condition of Theorem 58. Note that on the one hand, if x is not
(t, k)-good, then by the correctness of M , Certify(x, 1t, 1k) will reject with probability at least
1 − 2−k over its internal randomness.

On the other hand, if x is indeed (t, k)-good, then our algorithm A′ will return a Kt-witness
of x with probability with probability at least 1 − 2−k over its internal randomness.

To see the second condition, note that by a simple counting argument, with probability
at least 1 − 1/k over x ∼ {0, 1}n, it holds that

pKτ(pSoI (2t))(x) ≥ K(x) − O(log τ(pSoI(2t)))
≥ n − O(log τ(pSoI(2t))) − log k

> n − d · log t − log k,

where the last inequality holds if we choose d to be a sufficiently large constant. Again, by
the correctness of M , this implies that Certify(x, 1t, 1k) will accept at least (1 − 1/k)-fraction
of x ∈ {0, 1}n (with probability at least 1 − 2−k over its internal randomness). ◀

	1 Introduction
	1.1 Results
	1.1.1 Average-Case Search-to-Decision for Kt
	1.1.2 Average-Case Search-to-Decision for rKt
	1.1.3 Worst-Case to Average-Case Search-to-Decision
	1.1.4 Weaker Assumptions on the Decision Problems

	1.2 Related Work
	1.3 Techniques
	1.4 Concluding Remarks, Directions, and Open Problems

	2 Preliminaries
	2.1 Definitions and Notation
	2.2 Basic Results in Kolmogorov Complexity

	3 Errorless Average-Case Search-to-Decision Reduction for rKt
	3.1 Technical Tools
	3.2 On Computational Depth
	3.3 Finding -Witnesses for Strings of Small Computational Depth
	3.4 Proof of

	4 Errorless Average-Case Search-to-Decision Reduction for Kpoly
	4.1 Technical Tools
	4.2 Proof of

	5 Error-Prone Average-Case Search-to-Decision Reduction for Conditional Kt
	5.1 Technical Tools
	5.2 Proof of PDFstring

	6 Worst-Case to Average-Case Search-to-Decision Reductions
	6.1 Worst-Case to Average-Case Search-to-Decision for rKpoly
	6.2 Worst-Case to Average-Case Search-to-Decision for Kpoly

	A Symmetry of Information for PDFstring
	B Quasi-Polynomial-Time Average-Case Search-to-Decision Reduction for rKt
	B.1 Technical Tools
	B.1.1 A Generator with rKt Reconstruction
	B.1.2 Symmetry of Information for rKt
	B.1.3 Coding Theorem for rkt
	B.1.4 Approximate Computational Depth for rKt

	B.2 Proof of

	C Search-to-Decision Reductions for the Problem
	D Errorless Average-Case Search-to-Decision Reduction for over the Uniform Distribution

