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Abstract
Whether BPL = L (which is conjectured to be equal) or even whether BPL ⊆ NL, is a big open
problem in theoretical computer science. It is well known that L ⊆ NL ⊆ L-AC1. In this work we
show that BPL ⊆ L-AC1 also holds. Our proof is based on a new iteration method for boosting
precision in approximating matrix powering, which is inspired by the Richardson Iteration method
developed in a recent line of work [1, 28, 10, 17, 12, 25, 8]. We also improve the algorithm for
approximate counting in low-depth L-AC circuits from an additive error setting to a multiplicative
error setting.
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1 Introduction

BPL is the class of languages that can be computed by randomized logspace Turing Machines
(TM) with error probability ≤ 1/3. Here by randomized we mean that the TM has read-once
access to a random tape. We also require that the TM halts on any input randomness.
Whether BPL ?= L is a big open problem of space-bounded derandomization in theoretical
computer science. Most believe that L = BPL is true. Different from time-bounded derandom-
ization, we even do not know whether L = NL implies L = BPL. But on the other hand, there
is no known barrier for proving L = BPL. The seminal work by Saks and Zhou [29] shows
that BPL ⊆ L3/2 and this was improved to be BPL ⊆ SPACE

[
O
(
(log n)3/2/

√
log log n

)]
by

Hoza [17].
The relation between (Randomized) small space-bounded computation and uniform low-

depth circuits is also an interesting topic. It is well known that L-NC1 ⊆ L ⊆ NL ⊆ L-AC1,
where L-NC1 and L-AC1 are complexity classes of logspace-uniform O(log n)-depth NC and
AC circuits. But for BPL, there is still an interesting question: is BPL also a subset of L-AC1?
If the conjecture L = BPL is true, or even if BPL ⊆ NL, then immediately BPL ⊆ L-AC1. But
without these assumptions, it becomes a challenge. In this work, we will unconditionally
prove that BPL ⊆ L-AC1. On the other hand, we mention that the inclusion BPL ⊆ AC1 for
non-uniform AC1, is obvious via non-uniform derandomization techniques.1 See Figure 1 for
a visualization of the known relations between the complexity classes.

1 There are two ways to prove BPL ⊆ non-uniform AC1: (1) By L ⊆ AC1 we know BPL can be computed by
randomized AC1 circuits, then apply the non-uniform derandomization for AC in [3] we know BPL ⊆ AC1;
(2) First by a standard non-uniform derandomization argument we have BPL ⊆ L/poly, then by L ⊆ AC1

we know BPL ⊆ L/poly ⊆ AC1.
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32:2 BPL ⊆ L-AC1
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Figure 1 Relation of Complexity Classes. A → B means A ⊆ B.

One may view derandomizing BPL as the problem of approximating powers of sub-
stochastic matrices. For a TM with s bits of memory, one can label all its states by elements
in [2s]. We can define A ∈ R2s×2s to be its transition matrix in the sense that Ai,j is
the probability that the machine moves from state i to state j in one step. Note that it
must arrive at an accept or reject state in 2s steps, so we only need to approximate A2s .
Saks and Zhou [29] showed that approximating An for A ∈ Rw×w can be done in space
O
(
(log n)3/2 +

√
log n · log w

)
. Hoza [17] gave a logarithmic improvement in the n = poℓy(w)

regime, attaining O( 1√
log log n

(log n)3/2) space. Cohen, Doron, Sberlo and Ta-shma[12], and

also Putterman and Pyne [25] independently improved [29]’s result to Õ(log n+
√

log n · log w).
We mention that a closely related problem setting is to approximate the multiplication of
many distinct matrices, also called the iterated matrix multiplication (IMM) setting. This
corresponds to the read-once branching program (ROBP) model. IMM asks one to approxim-
ate A1A2 · · · An for a given sequence A1, · · · , An ∈ Rw×w. [29, 17, 12, 25] can also work
for IMM, attaining the same parameters respectively as their results for matrix powering.
In [29] and [17], this is done via a simple block-box reduction from the powering setting.
While in [12] and [25], a more careful analysis is applied. In the rest of our paper, we mainly
consider matrix powering since this is enough for our main result and IMM is also in BPL. A
key idea in [17, 12, 25] is to use Richardson Iteration to boost precision, which is developed in
a line of work [1, 28, 10, 12, 25, 8]. We briefly recall this method here. Consider the problem
of approximating X−1 for an invertible matrix X. Assume we already have a matrix Y, which
is an approximation of X−1 such that ∥I − YX∥ < ε. Then we can rewrite XX−1 = I as

X−1 = (I − YX)X−1 + Y.

Start from Y(0) = Y, by taking the iteration

Y(i+1) := (I − YX)Y(i) + Y,

we can reduce
∥∥Y(i) − X−1∥∥ very quickly. Then in the application of approximating

A1, · · · , An, we can take
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X :=


I

−A I
−A I

. . .
−A I

 , X−1 =



I
A I
A2 A I

An−1 · · · I
An An−1 A I


.

In this way, approximating A, A2, · · · , An do not necessarily need to conduct approximating
for their inverse matrices. Although Richardson Iteration is a powerful method, an interesting
question is: are there any other iteration methods that have different or more powerful
effects? In fact we develop a more efficient iteration algorithm for boosting precision for our
setting in Section 4, which is the main ingredient of our proof of BPL ⊆ L-AC1. The new
iteration keeps using the idea of boosting precision via numerical analysis techniques, and it
does not rely on approximating matrix inversions even in its analysis.

Another side of proving BPL ⊆ L-AC1 is on the power of L-AC circuits. A key tool here is
the approximate counting computable by L-AC circuits. Specifically, the task is to decide
whether an n-bit string contains ≤ a or ≥ b 1’s by poly(n)-size low depth L-AC circuits. The
L-AC0 algorithm for distinguishing ≥ 2n/3 1’s and ≤ n/3 1’s was developed by Ajtai [2]. A
line of work [3, 30, 31, 13] further studies this question, achieving depth O

( log n
b−a

log log n + 1
)

(also

see our Lemma 17). We will show that this can actually be done by O

(
log b

b−a

log log n + 1
)

-depth

poly-size L-AC circuits. This can be viewed as improving the previous results from an additive
error setting to a multiplicative error setting. But even so, one can see still that L-AC circuits
are good at aggregating on many inputs, but not good at high precision. This triggers one to
think of some steps of boosting precision potentially by iteration methods.

1.1 Our Result
▶ Theorem 1 (Main Theorem, see also Corollary 21). BPL ⊆ L-AC1.

▶ Theorem 2 (Multiplicative Approximate Counting in AC, see also Theorem 14). Let n, a, b ∈ N

such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size O

(
log b

b−a

log log n + 1
)

-depth L-uniform

AC circuit family {Cn,a,b} that computes GapMaj[a, b] on n bits.2

1.2 Related Work
We investigate some more about related work on derandomizing BPL. For other results not
covered, we refer to these surveys [18][16].

A remarkable line of work [5, 22, 20, 24, 4, 6, 19, 7, 11, 27, 17] develops PRGs, weighted
PRGs, and Hitting-set generators for ROBPs, which directly provide black-box derandomiza-
tions for BPL and its related classes. Among them, the celebrated work [22] by Nisan presents
a logspace computable pseudorandom generator with seed length O(log n log nw

ε ), error ε,
for length n width w ROBPs. Based on some special properties of this generator, Saks and
Zhou [29] showed BPL ⊆ L3/2, and Nisan [23] showed that BPL ⊆ TISP[poly(n), O((log n)2)].
Nisan and Zuckerman [24] showed a PRG for ROBPs with large widths but very short lengths

2 GapMaj[a, b] is the promise problem that asks us to distinguish whether the number of 1’s in an n-bit
string is ≥ b or ≤ a. See Definition 11 for a formal definition.

CCC 2024



32:4 BPL ⊆ L-AC1

i.e. n = poly(log w), attaining seed length O(log w) with error 2− log0.99 w. Armoni [4] gave
an improved construction by interpolating [22] and [24]. The recent improvement for PRGs
[6, 19, 7, 11, 27, 17] focus on achieving seed length optimal in the error parameter. Several
iteration-type methods are applied by these work, including the use of Richardson Iteration
developed by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan [1], and then
further developed in [28, 10, 17, 12, 25, 8].

There is also a sequence of work studying derandomizing BPL under assumptions. Klivans
and van Melkebeek [21] showed that under the assumption that SPACE[O(n)] requires 2Ω(n)

circuit size, one can have L = BPL. Cheng and Hoza [9] showed that under the assumption
that there exists a black-box hitting-set generator computable in logspace, one can have
L = BPL. Some recent works [15, 26, 14] further study upon this line with various and
enhanced requirements for derandomization.

1.3 Proof Overview
We sketch the proof of BPL ⊆ L-AC1 and discuss the organization of our paper.

In Section 2, we describe some basic concepts and tools for our main proof.
In Section 3, we prove that deciding whether n bits contains ≤ a or ≥ b 1’s can be done

in poly(n)-size O

(
log b

b−a

log log n + 1
)

-depth, see Theorem 14. This will be a building block for

approximating matrix operations. The main idea to prove Theorem 14 is to reduce the
general GapMaj[a, b] to the special case GapMaj[n/3, 2n/3] via pairwise independent hash
functions, and then apply [2]’s algorithm for GapMaj[n/3, 2n/3].

One can see that low-depth L-AC circuits are good at aggregating on many inputs, but
without a high precision. This motivates us to consider a step of boosting precision for matrix
powerings. However, we must be very careful since we cannot pay too much in depth.

In Section 4, we give the core iteration step. This is a depth-efficient iteration algorithm
for boosting precision in matrix powerings, which is the main ingredient of our proof.

▶ Theorem 3 (see also Theorem 18). Let A ∈ Rn×n be a substochastic matrix and k, t ∈ Z+

such that log n ≥ k ≥ t. Suppose substochastic matrices B0, · · · , Bk−1 are approximations of
A20

, · · · , A2k−1 such that
∥∥∥Bi − A2i

∥∥∥
1

≤ εi for i = 1, 2, · · · , k − 1. Define 3

C := −
t−1∑
i=1

∑
{j1<···<jp}⊎{j′

1<···<j′
q}

={k−1,k−2,··· ,k−i+1}

Bjp
· · · Bj1B2

k−iBj′
1

· · · Bj′
q

+
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−t+1}

Bjp
· · · Bj1B2

k−tBj′
1

· · · Bj′
q
.

Then∥∥∥C − A2k
∥∥∥

1
≤

t−1∑
i=1

2i−1ε2
k−i + 2tεk−t.

3 Here
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−i+1}

means taking the sum over all possible two-partitions of the set {k −

1, k − 2, · · · , k − i + 1}. Each two-partition partitions {k − 1, k − 2, · · · , k − i + 1} into two disjoint
subsets {j1, · · · , jp}, {j′

1, · · · , j′
q}. Here set elements are sorted in increasing order, i.e., j1 < · · · < jp

and j′
1 < · · · < j′

q. Therefore this
∑

is sum of 2i−1 terms.
When i = 1, {k − 1, k − 2, · · · , k − i + 1} represents the empty set.
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Intuitively speaking, we can obtain a good approximation of A2k given these Bk−1, · · · , B0,
which either has lower accuracy or is an approximation of A2k′

for much smaller k′. We
will prove that the iteration step can be easily computed by low-depth L-AC circuits in
Theorem 19 which crucially uses our depth-efficient approximate counting in Section 3.

In Section 5 we present the complete algorithm. We compute intermediate matrices M(k, t)
for k, t ≤ O(log n), where M(k, t) is a 1/2t-approximation of A2k (i.e.,

∥∥∥M(k, t) − A2k
∥∥∥

1
≤

1/2t). We will use the iteration step developed in Section 4 to show that, for any k, t ≤
O(log n), given all M(k − i, [t/2] + 2i)’s (for i = 1, 2, · · · ), we can compute a valid M(k, t) in
O(t)-depth. Then we can compute a valid M(log n, log n) in O(log n)-depth.

Finally in Section 6 we will discuss some open problems.

2 Preliminaries

2.1 Matrix Approximation
▶ Definition 4 (L1-norm). Define the L1-norm of a vector (x1, · · · , xn)⊤ ∈ Rn to be∥∥(x1, · · · , xn)⊤∥∥

1 := |x1| + · · · + |xn|.

Define the L1-norm of a matrix A ∈ Rn×n to be

∥A∥1 := sup
x∈Rn

∥Ax∥1
∥x∥1

= max
1≤j≤n

{|A1,j | + |A2,j | + · · · + |An,j |} .

▶ Theorem 5. For any A, B ∈ Rn×n, we have:
1. ∥A + B∥1 ≤ ∥A∥1 + ∥B∥1;
2. ∥AB∥1 ≤ ∥A∥1 ∥B∥1;
3. If ∥A∥1 , ∥B∥1 ≤ 1, then for any p ∈ Z+, ∥Ap − Bp∥1 ≤ p ∥A − B∥1.

▶ Definition 6 (Non-negative Matrix). We say a matrix is non-negative if each of its entry is
non-negative.

▶ Definition 7 (Substochastic Matrix). We say a matrix A ∈ Rn×n is a substochastic matrix
if A is non-negative and ∥A∥1 ≤ 1.

For simplicity, we always assume that the size of a substochastic matrix is a power of 2. To
represent a substochastic matrix, we independently represent each entry in binary, accurate
to 100 log n decimal places.

2.2 L-uniform AC Circuit Family and Approximate Counting
▶ Definition 8 (AC circuit). AC circuit is a circuit with input gates, NOT gates, unbounded
fan-in AND/OR gates, and (possibly more than one) output gates. The size of a circuit is
defined by the number of AND/OR gates. The depth of a circuit is defined by the largest
number of AND/OR gates on any path from an input gate to an output gate.

▶ Definition 9 (L-uniform AC circuit family). For functions S, d : Z+ → R+, we say a collection
of circuits {Cn}n∈Z+ is an S-size d-depth L-uniform AC circuit family, if each Cn has size
≤ S(n) and depth ≤ d(n), and given the binary representation of n, the description of Cn

can be computed in uniform O(log n)-space.

CCC 2024



32:6 BPL ⊆ L-AC1

We need to mention that the number of input gates in Cn is not necessarily n. Also
note that since we can encode a tuple of O(1) many integers to a single integer, we can also
consider circuit collections with a tuple of integers as an index.

▶ Definition 10 (Complexity Class L-AC1). We say a language L is in the class L-AC1 if there
exists a poly(n)-size O(log n)-depth L-uniform AC circuit family {Cn} such that Cn computes
L on n-bit inputs.

▶ Definition 11 (GapMaj). For n ∈ Z+ and a, b ∈ R such that 0 ≤ a < b ≤ n, define the
promise problem GapMaj[a, b] on n bits as follow:

GapMaj[a, b](x1, · · · , xn) :=


YES if x1, · · · , xn contains ≥ b 1’s
NO if x1, · · · , xn contains ≤ a 1’s
⊥ otherwise

2.3 Tool: Pairwise Independent Hash Function
We will use pairwise independent hash function as a tool for approximate counting in AC.
We shall use the following construction based on convolution, which was also used in [22].

▶ Definition 12 (Convolution-Based Pairwise Independent Hash Function). Suppose m is a
power of 2. Define Hm :

[
m3] × [m] → [m] by: for (k, x) ∈

[
m3] × [m], let x1 · · · xlog m be

the binary representation of x − 1, let a1 · · · a2 log mb1 · · · blog m be the binary representation of
k − 1, let yj :=

(∑log m
i=1 ai+jxi + bj

)
mod 2 for j ∈ [log m], then define Hm(k, x) by letting

y1 · · · ylog m be the binary representation of Hm(k, x) − 1.

▶ Theorem 13. Hm is Pairwise Independent Hash Function in the following sense: for
any 1 ≤ i < j ≤ m, when k is sampled from the uniform distribution over

[
m3], the joint

distribution of (Hm(k, i), Hm(k, j)) is identical to the uniform distribution over [m] × [m].

3 Approximate Counting in AC

The goal of this Section is to prove Theorem 14, which will be a building block for the proof
of BPL ⊆ L-AC1.

▶ Theorem 14. Let n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size

O

(
log b

b−a

log log n + 1
)

-depth L-uniform AC circuit family {Cn,a,b} that computes GapMaj[a, b] on

n bits.

The proof depends on the next few Lemmas.

▶ Lemma 15 ([2]). Let n ∈ Z+. Then there exists poly(n)-size O(1)-depth L-uniform AC
circuit family {C(0)

n } that computes GapMaj[n/3, 2n/3] on n bits.

▶ Lemma 16 (Exact Counting). Let n, ℓ ∈ Z+ such that n ≥ ℓ. Then there exists a poly(n)-
size O

(
log ℓ

log log n + 1
)

-depth L-uniform AC circuit family {En,ℓ} such that on ℓ bits of input,
En,ℓ outputs the exact number of 1’s over the input bits, in binary form.

We remark that in Lemma 16, n is only used to bound the size of the circuit. Also, n, ℓ are
not necessarily polynomially related.
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Proof. We only need to show how to compute sum of O(
√

log n) many O(log n)-bit4 non-
negative integers in O(1)-depth, then by divide-and-conquer we can compute sum of ℓ bits
in O

(
log ℓ

log log n + 1
)

-depth.

View the O(log n)-bit integers as 2
[√

log n
]
-base O(

√
log n)-digit integers. We use the

grade-school algorithm to sum O(
√

log n) integers as follow. We first guess the result and all

carry-bits, which involve at most O(
√

log n) · O

(
log
(√

log n · 2
[√

log n
]))

= O(log n) bits,

and thus has at most poly(n) choices. Then we can apply a local check on each digit, each
local check involves at most O(log n) bits, and thus deciding whether all local checks are
passed can be computed in O(1)-depth. Then we can take the result of the only guess that
passes all local checks. The total cost is O(1)-depth. ◀

▶ Lemma 17. Let n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size
O
( log n

b−a

log log n + 1
)

-depth L-uniform AC circuit family {C(1)
n,a,b} that computes GapMaj[a, b] on n

bits.

Proof. Only consider the case that n is a power of 2, otherwise we can use a simple
padding argument. By Lemma 15, it suffices to show how to reduce GapMaj[a, b] on n bits
to GapMaj[n3/3, 2n3/3] on n3 bits, via a poly(n)-size O

( log n
b−a

log log n + 1
)

-depth L-uniform AC
circuit.

If b − a ≤ 4
√

n then we can directly compute the number of 1’s exactly via Lemma 16.
Below we only consider b − a > 4

√
n.

Let ℓ :=
⌈

12n2

(b−a)2

⌉
. Suppose the GapMaj[a, b] instance is x1, x2, · · · , xn. Let Hn be the

hash function defined in Definition 12. Define y1, · · · , yn3 as follow: for i ∈ [n3], let yi be 1 if
at least a+b

2n fraction of xHn(i,1), · · · , xHn(i,ℓ) is 1, otherwise let yi be 0. Note that y1, · · · , yn3

can be computed via a poly(n)-size O
(

log ℓ
log log n + 1

)
-depth L-uniform AC circuit, by Lemma

16. Here O
(

log ℓ
log log n + 1

)
= O

( log n
b−a

log log n + 1
)

.
Let’s do some simple calculations. Assume p fraction of x1, · · · , xn is 1. Let Si be

number of 1’s in xHn(i,1), · · · , xHn(i,ℓ). Then we have Ei∼[n3][Si] = pℓ and Vari∼[n3][Si] ≤
ℓ. So if p ≤ a

n , then Pri∼[n3]

[
Si ≥ ℓ · (a+b)

2n

]
≤ ℓ(

ℓ· (b−a)
2n

)2 = 4n2

ℓ(b−a)2 ≤ 1
3 . Similarly if

p ≥ b
n then Pri∼[n3]

[
Si ≤ ℓ · (a+b)

2n

]
≤ 1

3 . This means if x1, · · · , xn is YES/NO instance of
GapMaj[a, b], then y1, · · · , yn3 is YES/NO instance of GapMaj[n3/3, 2n3/3]. The reduction is
completed. ◀

Proof of Theorem 14. We will try to reduce to Lemma 17. Suppose the GapMaj[a, b] instance
is x1, x2, · · · , xn. We only consider the case n is a power of 2, otherwise use a simple padding
argument. We only consider the case 10

(
b

b−a

)2
< n

b−a (or equivalently, n(b − a) > 10b2),
otherwise we can directly apply Lemma 17.

Let ℓ :=
[

n(b−a)
2b2

]
. For i ∈ [n3], let yi := xHn(i,1) ∨ · · · ∨ xHn(i,ℓ), here Hn is the

hash function defined in Definition 12. Then y1, · · · , yn3 can be computed via poly(n)-size
O(1)-depth L-uniform AC circuit.

Assume p fraction of x1, · · · , xn is 1. Let Si be number of 1’s in xHn(i,1), · · · , xHn(i,ℓ).
Then we have Ei∼[n3][Si] = pℓ and Ei∼[n3][S2

i ] = ℓ(ℓ − 1)p2 + ℓp ≤ ℓp + ℓ2p2. Thus by

Ei∼[n3][Si]2

Ei∼[n3][S2
i ] ≤ Pr

i∼[n3]
[Si ≥ 1] ≤ E

i∼[n3]
[Si]

4 Here “O(log n)-bit integers” refers to integers which has O(log n)-bits in its binary representation.

CCC 2024



32:8 BPL ⊆ L-AC1

we know: if p ≤ a
n , then Pri∼[n3][Si ≥ 1] ≤ ℓa

n ; if p ≥ b
n , then Pri∼[n3][Si ≥ 1] ≥ ( ℓb

n )2

ℓb
n +( ℓb

n )2 ≥
ℓb
n −

(
ℓb
n

)2. To summarize, if x1, · · · , xn is YES/NO instance of GapMaj[a, b], then y1, · · · , yn3

is YES/NO instance of GapMaj
[[

n3 · ℓa
n

]
,
⌈
n3 ·

(
ℓb
n −

(
ℓb
n

)2)⌉].
Finally we observe that

(
ℓb
n −

(
ℓb
n

)2) − ℓa
n = ℓ ·

(
b−a

n − ℓb2

n2

)
≥ n(b−a)

3b2 · b−a
2n = (b−a)2

6b2 .

Thus by Lemma 17, GapMaj
[[

n3 · ℓa
n

]
,
⌈
n3 ·

(
ℓb
n −

(
ℓb
n

)2)⌉] over n3 bits can be computed

via a poly(n)-size O

(
log b

b−a

log log n + 1
)

-depth L-uniform AC circuit. ◀

4 The Iteration Method

In this section, we will introduce the iteration step, which is the core of our proof of
BPL ⊆ L-AC1.

▶ Theorem 18 (The Iteration). Let A ∈ Rn×n be a substochastic matrix and k, t ∈ Z+ such
that log n ≥ k ≥ t. Suppose substochastic matrices B0, · · · , Bk−1 are approximations of
A20

, · · · , A2k−1 such that
∥∥∥Bi − A2i

∥∥∥
1

≤ εi for i = 1, 2, · · · , k − 1. Define

C := −
t−1∑
i=1

∑
{j1<···<jp}⊎{j′

1<···<j′
q}

={k−1,k−2,··· ,k−i+1}

Bjp
· · · Bj1B2

k−iBj′
1

· · · Bj′
q

+
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−t+1}

Bjp · · · Bj1B2
k−tBj′

1
· · · Bj′

q
.

Then∥∥∥C − A2k
∥∥∥

1
≤

t−1∑
i=1

2i−1ε2
k−i + 2tεk−t.

Proof. Note that

C − A2k

= −
t−1∑
i=1

∑
{j1<···<jp}⊎{j′

1<···<j′
q}

={k−1,k−2,··· ,k−i+1}

Bjp
· · · Bj1

(
A2k−i

− Bk−i

)2
Bj′

1
· · · Bj′

q

−
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−t+1}

Bjp
· · · Bj1

(
A2k−t+1

− B2
k−t

)
Bj′

1
· · · Bj′

q
.

So by Theorem 5,

∥∥∥C − A2k
∥∥∥

1
≤

t−1∑
i=1

2i−1
∥∥∥A2k−i

− Bk−i

∥∥∥2

1
+ 2t

∥∥∥A2k−t

− Bk−t

∥∥∥
1

≤
t−1∑
i=1

2i−1ε2
k−i + 2tεk−t. ◀
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▶ Theorem 19 (Computing the Iteration). Let n, k, t, A, B0, · · · , Bk−1, ε0, · · · , εk−1, C be
as defined in Theorem 18. Let d be an integer such that 4 log n ≥ d ≥ t/10. Then there
exists a poly(n)-size O(d)-depth L-uniform AC circuit family {In,k,t,d} such that on inputs
Bk−t, · · · , Bk−1, if

t−1∑
i=1

2i−1ε2
k−i + 2tεk−t ≤ 1

2d+2

is satisfied, then In,k,t,d outputs a substochastic matrix C′ such that
∥∥∥C′ − A2k

∥∥∥
1

≤ 1/2d.

The intuition behind Theorem 19 is that to approximately compute C, all arithmetic
operations only need a multiplicative accuracy of 1/2Θ(d). This can be done efficiently by
L-uniform AC circuit by Theorem 14.

Proof of Theorem 19. We observe that C is the sum of 2t−1 “+” terms and 2t−1 − 1 “−”
terms, and each term is a multiplication of not more than t + 1 substochastic matrices. We
will first show how to approximate the multiplication of substochastic matrices and then
show how to approximate their sum.

To approximate Z := XY for two substochastic matrices X, Y, we only need to approx-
imate

∑n
r=1 Xi,rYr,j for each pair (i, j) ∈ [n]2. We first represent each entry Xi,r, Yr,j

using n100 bits such that fraction of 1’s in these n100 bits is equal to the entry, then use
a layer of AND gate to represent each Xi,rYr,j using fraction of 1’s in n200 bits, and
then represent each 1

n

∑n
r=1 Xi,rYr,j using fraction of 1’s in n201 bits. Then we invoke

Cn201,ℓ,⌈ℓ(1+1/220d+10)⌉ (as defined in Theorem 14, which has depth ≤ O
(

d
log log n + 1

)
≤

O
(

d
log(t+1)

)
)5 for ℓ = 1, 2, · · · , n200 over these n201 bits. Suppose ℓ0 is the smallest index

such that Cn201,ℓ0,⌈ℓ0(1+1/220d+10)⌉ outputs 0, then we have

ℓ0 − 1
n200 < Zi,j <

ℓ0
(
1 + 1

220d+10

)
n200

and thus6

Zi,j

1 + 1
220d+10

− 1
n100 ≤ 1

n100

[
ℓ0

n100

]
≤ Zi,j .

Use [ℓ0/n100]/n100 as an approximation of Zi,j , then we obtain an approximation Z̃ of Z
such that Z − Z̃ is non-negative and Z̃ is substochastic and

∥∥∥Z − Z̃
∥∥∥

1
≤ 1/220d+10 + 1/n99.

We need to be careful that here we need a multiplicative small error on each entry and thus
we need to strengthen Lemma 17 to Theorem 14.

Then multiplication of not more than t + 1 substochastic matrices can be computed via
O(log(t + 1)) layers of multiplication of two matrices. Recall that multiplying two matrices
uses O

(
d

log(t+1)

)
-depth and has additive error 1/220d+10 + 1/n99. So the total depth for

computing multiplication of not more than t + 1 substochastic matrices is O(d) and the total
error is ≤ t(1/220d+10 + 1/n99) ≤ 1/219d+5.

5 In Theorem 14 we take (a, b) = (ℓ, ⌈ℓ(1 + 1/220d+10)⌉), and then log b
b−a ≤ O(d).

6 Since n200Zi,j is an integer, we have ℓ0−1
n200 < Zi,j =⇒ ℓ0

n200 ≤ Zi,j .
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To summarize, suppose C = −
∑2t−1−1

i=1 Di +
∑2t−1

i=1 D′
i, here each Di, D′

i is multiplication
of some substochastic matrices. Then we can compute their approximations D̃i, D̃′

i in O(d)
depth such that

∥∥∥Di − D̃i

∥∥∥
1

≤ 1/219d+5 and
∥∥∥D′

i − D̃′
i

∥∥∥
1

≤ 1/219d+5.

We approximate 1
2t−1

∑2t−1−1
i=1 D̃i and 1

2t−1

∑2t−1

i=1 D̃′
i. Use the similar idea as summing

1
n

∑n
r=1 Xi,rYr,j , we can compute substochastic matrices C−, C+ using O(d)-depth, such

that∥∥∥∥∥∥C− − 1
2t−1

2t−1−1∑
i=1

D̃i

∥∥∥∥∥∥
1

≤ 1
219d+5 ,

∥∥∥∥∥∥C+ − 1
2t−1

2t−1∑
i=1

D̃′
i

∥∥∥∥∥∥
1

≤ 1
219d+5 .

Then 2t−1(C+ − C−) is a good approximation of A2k since

∥∥∥2t−1(C+ − C−) − A2k
∥∥∥

1
≤ 2t−1

∥∥∥∥∥∥C− − 1
2t−1

2t−1−1∑
i=1

D̃i

∥∥∥∥∥∥
1

+ 2t−1

∥∥∥∥∥∥C+ − 1
2t−1

2t−1∑
i=1

D̃′
i

∥∥∥∥∥∥
1

+
2t−1−1∑

i=1

∥∥∥Di − D̃i

∥∥∥
1

+
2t−1∑
i=1

∥∥∥D′
i − D̃′

i

∥∥∥
1

+

∥∥∥∥∥∥−
2t−1−1∑

i=1
Di +

2t−1∑
i=1

D′
i − A2k

∥∥∥∥∥∥
1

≤ 2t−1

219d+5 + 2t−1

219d+5 + 2t−1

219d+5 + 2t−1

219d+5 +
∥∥∥C − A2k

∥∥∥
1

≤ 1
29d+4 +

(
t−1∑
i=1

2i−1ε2
k−i + 2tεk−t

)

≤ 1
29d+4 + 1

2d+2 .

Here the last step is from the statement of Theorem 19.
Finally we compute a substochastic matrix C′ which is a good approximation of A2k and

2t−1(C+ − C−). Here we need to be careful that C and 2t−1(C+ − C−) are not necessarily
non-negative or substochastic (but A2k is guaranteed substochastic). Let

C′′
i,j := max{2t−1(C+

i,j − C−
i,j), 0},

C′
i,j := 1

n100

[
C′′

i,j

(
1 − 1

2d+1

)
· n100

]
.

We can compute C′ given C+, C− by hardwiring the map (C+
i,j , C−

i,j) 7→ C′
i,j , which is

L-uniform. Obviously C′ is non-negative. Note that C′′ is entrywise closer to A2k than
2t−1(C+ − C−) and hence∥∥∥C′′ − A2k

∥∥∥
1

≤
∥∥∥2t−1(C+ − C−) − A2k

∥∥∥
1

≤ 1
29d+4 + 1

2d+2

Therefore C′ is substochastic since

∥C′∥1 ≤
(

1 − 1
2d+1

)
∥C′′∥1 ≤

(
1 − 1

2d+1

)(
1 + 1

29d+4 + 1
2d+2

)
≤ 1.
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Also note that∥∥∥C′ − A2k
∥∥∥

1
≤ ∥C′ − C′′∥1 +

∥∥∥C′′ − A2k
∥∥∥

1

≤ 1
n99 + 1

2d+1 ∥C′′∥1 +
∥∥∥C′′ − A2k

∥∥∥
1

≤ 1
n99 + 1

2d+1

(
1 + 1

29d+4 + 1
2d+2

)
+ 1

29d+4 + 1
2d+2

≤ 1
2d

.

To summarize, we can output a valid C′ in O(d)-depth. And the circuit is poly(n)-size
and L-uniform. ◀

5 The Complete Algorithm

▶ Theorem 20. Let n be a power of 2. Then there exists a poly(n)-size O(log n)-depth
L-uniform AC circuit family {Mn}7 such that on input a substochastic matrix A ∈ Rn×n,
Mn outputs a substochastic matrix M ∈ Rn×n such that ∥M − An∥1 ≤ 1/n.

Proof. Only consider log n ≥ 10. For k, t ∈ N such that k ≤ log n and 1 ≤ t ≤ 3 log n − 2k,
we wish to compute a substochastic matrix M(k, t), which is an approximation of A2k , such
that

∥∥∥M(k, t) − A2k
∥∥∥

1
≤ 1/2t. Then M := M(log n, log n) is the desired matrix.

For k = 0, we can trivially let M(0, t) := A. Now we show how to recursively compute
M(k0, t0) for k0 = 1, 2, · · · , log n.

In Theorem 18, take the same n, A and take k := k0, take Bk−i := M(k − i, [t0/2] + 2i)
for 1 ≤ i ≤ k. Then we can take εk−i := 1/2[t0/2]+2i for 1 ≤ i ≤ k − 1 and ε0 = 0. Now we
will invoke Theorem 18, 19 by choosing parameter t properly according to the following two
cases.

Case 1. k ≤ 2t0 + 2.
Take the parameter t in Theorem 18 to be t := k. Then

k−1∑
i=1

2i−1ε2
k−i + 2kε0 =

k−1∑
i=1

1
22[t0/2]+3i+1 ≤ 1

2t0+2 .

In Theorem 19 take d := t0. It is easy to verify that log n ≥ k ≥ t and 4 log n ≥ d ≥ t/10 hold
when we invoke Theorem 18, 19. Given Bk−1, · · · , B0, use In,k0,k0,t0 (defined in Theorem
19) we can compute a substochastic matrix C′ such that

∥∥∥C′ − A2k
∥∥∥

1
≤ 1/2t0 .

Case 2. k ≥ 2t0 + 3.
Take t := 2t0 + 3 in Theorem 18. Then

2t0+2∑
i=1

2i−1ε2
k−i + 22t0+3εk−2t0−3 ≤

2t0+2∑
i=1

1
22[t0/2]+3i+1 + 1

2[t0/2]+2t0+3 ≤ 1
2t0+2 .

In Theorem 19 take d := t0. Given Bk−1, · · · , B0, use In,k0,2t0+3,t0 we can compute a
substochastic matrix C′ such that

∥∥∥C′ − A2k
∥∥∥

1
≤ 1/2t0 .

7 We require that given n, description of Mn can be computed in space O(log n).
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To summarize, take M(k0, t0) := C′, we can compute M(k0, t0) given M(k0 −i, [t0/2]+2i)
for 1 ≤ i ≤ k0, via a poly(n)-size O(t0)-depth L-uniform AC circuit.

Let γ > 0 be a concrete constant such that we can compute M(k0, t0) given M(k0 −
i, [t0/2] + 2i)’s via a poly(n)-size γt0-depth L-uniform AC circuit. Note that if M(k0 −
i, [t0/2] + 2i) can be computed in 2γ(2(k0 − i) + ([t0/2] + 2i))-depth for 1 ≤ i ≤ k0, then
M(k0, t0) can be computed in

γt0 + max
1≤i≤k0

{2γ(2(k0 − i) + ([t0/2] + 2i))} ≤ 2γ(2k0 + t0)

-depth. Also note that M(0, t0)’s are just the inputs, so by induction we know M(k0, t0) can
be computed in 2γ(2k0 + t0)-depth. Specially, M(log n, log n) (which is the desired output)
can be computed in 6γ log n ≤ O(log n)-depth. Also note that we use “compute M(k0, t0)
given M(k0 − i, [t0/2] + 2i)” O((log n)2) many times, so the total circuit size for computing
M(log n, log n) is still poly(n). ◀

▶ Corollary 21. BPL ⊆ L-AC1.

6 Open Problems

1. Our algorithm based on the improved iteration can be thought of as low-depth of
precision requirement. Can this method be applied to obtain other interesting results
in derandomizing BPL? It seems that the space-bounded model or nondeterministic
space-bounded model cannot deal with low accuracy aggregating on many bits at low
cost, as in the AC circuit model.

2. Our algorithm involves a “×O(log log n)” step when multiplying O(log n) matrices and a
“/O(log log n)” step in approximate counting in AC, which seems coincidentally achieves
O(log n)-depth. Can we improve the algorithm to obtain an O

(
log n

log log n

)
-depth AC circuit

for approximating powers of substochastic matrices? We need to mention that this does
not imply BPL can be computed by O

(
log n

log log n

)
-depth AC circuits since we do not know

whether L can be computed by O
(

log n
log log n

)
-depth AC circuits.
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