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Abstract
We show that for every integer k ≥ 2, the Res(k) propositional proof system does not have the weak
feasible disjunction property. Next, we generalize a result of Atserias and Müller [3] to Res(k). We
show that if NP is not included in P (resp. QP, SUBEXP) then for every integer k ≥ 1, Res(k) is
not automatable in polynomial (resp. quasi-polynomial, subexponential) time.
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1 Introduction

Following Pudlák [20], a proof system P has weak feasible disjunction property if there exists
a polynomial p such that if a formula A∨B, in which A and B do not share variables, has a P

proof of length t, then either A or B has a P proof of length p(t). In this paper we deal with
refutation systems, which for the previous definition amounts to replacing in it “∨” by “∧”
and “proof” by “refutation”. It is known and easy to see that resolution has the weak feasible
disjunction property. Resolution also has feasible interpolation, a prominent concept in proof
complexity introduced by Krajíček [11, 12]. A refutation system P has feasible interpolation
if there is a polynomial p and an algorithm that when given as input a refutation Π of size
r of a CNF A(x, y) ∧ B(x, z), where y, x, z are disjoint sets of propositional variables, and
a truth assignment σ to the variables x outputs in time p(r) a value i ∈ {0, 1} such that if
i = 0 then A↾σ is unsatisfiable and if i = 1 then B ↾σ is unsatisfiable. Here F ↾σ denotes the
formula obtained from F by an application of a partial truth assignment σ to the variables
of F that are in the domain of σ.

Pudlák [20] comments that so far the weak feasible disjunction property has been observed
in all proof systems that were shown to have feasible interpolation. This is because known
feasible interpolation algorithms, like those in Chapter 17.7 in [15], actually construct a
refutation of one of the conjuncts.

A proof system P is polynomially bounded if there is a polynomial p such that any
tautology of size r has a P proof of size p(r). A fundamental problem in proof complexity is
to show that no polynomially bounded proof system exists. This is equivalent to establishing
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33:2 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

NP ≠ coNP, as observed by Cook and Reckhow [6]. There is a potentially useful observation
by Krajíček [14] that for the purpose of proving that some proof system P is not polynomially
bounded we may assume without a loss of generality that P admits the weak feasible
disjunction property. This readily follows from the fact that if a disjunction of two formulas
that do not share variables is a tautology, then one of the disjuncts is.

A propositional version of the negation of the reflection principle for a proof system P

is a conjunction of a propositional formula expressing that ‘z is a satisfying assignment of
formula x of length r’ and a propositional formula expressing that ‘y is a P refutation of
length t of formula x of length r’. Here P, t, r are fixed parameters and x, y, z are disjoint sets
of variables. When we plug in for the common variables x some formula F of length r, we
denote the conjunction by SATF ∧ REFF

P,t, and we call the second conjunct a P refutation
statement for F . We need to define one very mild requirement on a proof system in order
to state a result from [20] about the weak feasible disjunction property that is the main
source of motivation for this paper. We say that P is closed under restrictions if there is
a polynomial p such that whenever F has a P proof of length t and σ is a partial truth
assignment to the variables of F , then there is a P proof of F ↾σ of length at most p(t).

There is a proposition proved in [20] saying that if a proof system P has the weak feasible
disjunction property, has polynomial-size proofs of the reflection principle for P , is closed
under restrictions, and has the property that given a P proof of ¬SAT¬F there is at most
polynomially longer P proof of F , then for every formula F and every integer t which is at
least the size of F , either there is a P proof of F of length tO(1), or there is a tO(1) long P

proof of ¬REF¬F
P,t . Pudlák comments that the conclusion of this proposition seems unlikely

(and therefore it seems unlikely that a proof system satisfying the remaining three reasonable
properties has the weak feasible disjunction property). He concludes that the weak feasible
disjunction property is very unlikely to occur unless the system is very weak. Motivated
to find and emphasize the contrast between resolution and Res(2) (see Section 2) in this
respect, we show the following theorem.

▶ Theorem 1. For every integer k ≥ 2, Res(k) does not have the weak feasible disjunction
property. Moreover, there are families {An}n≥1 and {Bn,k}n≥1,k≥1 of CNFs, where An has
size nO(1), Bn,k has size nO(k), and An and Bn,k do not share any variables, such that all
the following hold:

(i) There exists α > 0 and an integer n1 such that for every k ≥ 1 and n ≥ n1, any Res(k)
refutation of An has size greater than 2nα .

(ii) For every k ≥ 1 there is β > 0 and an integer n2 such that for every n ≥ n2, any
Res(k) refutation of Bn,k has size greater than 2βn.

(iii) For all integers n ≥ 1 and k ≥ 1, An ∧ Bn,k has a Res(2) refutation of size O(k2n7k+7).

The idea is to employ a reflection, but instead of the reflection principle for Res(k),
which would correspond to the hypothesis of Pudlák’s proposition above, we work with
the reflection principle for resolution and make it harder by the relativization technique of
Dantchev and Riis [7]. More precisely, we replace in the reflection principle the resolution
refutation statement by its k-fold relativization. Most of this paper is then concerned with
proving length lower bounds on Res(k) refutations of a version of the k-fold relativization
of REFF

Res,t for every unsatisfiable CNF F (Theorem 18). This lower bound will be used
to prove Item ii above, but since it works for every unsatisfiable F , Item i will be easy to
get choosing F to be hard enough for Res(k). The upper bound, Item iii, generalizes upper
bounds for similar formulas [2, 3, 8], which all build on an idea from [20].

To prove Theorem 18, the mentioned main lower bound, we develop a switching lemma in
the spirit of [21] but respecting the functional properties of the formula REFF

Res,t. This will
come at a cost of worse parameters in the switching lemma and its narrowed applicability in
terms of random restrictions it works for.
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Our second result is a generalization of conditional non-automatability results for res-
olution [3] to the systems Res(k). Following [5, 2] and [3], we say that a refutation system
P is automatable in time T : N → N if there is an algorithm that when given as input an
unsatisfiable CNF F of size r outputs a P refutation of F in time T (r + sP (F )), where
sP (F ) is the length of a shortest P refutation of F . If the function T is a polynomial,
then P is simply called automatable. A refutation system P is weakly automatable if there
is a refutation system Q, a polynomial p, and an algorithm that when given as input an
unsatisfiable CNF F of size r outputs a Q refutation of F in time p(r + sP (F )). It is known
that feasible interpolation is implied by weak automatability in refutation systems that are
closed under restrictions (see Theorem 3 in [2]).

First negative automatability results were obtained by Krajíček and Pudlák [16] who
showed that Extended Frege systems do not have feasible interpolation assuming that RSA
is secure against P/poly. Bonet et al. [5, 4] showed that Frege systems and constant-depth
Frege systems do not have feasible interpolation assuming the Diffie-Hellman key exchange
procedure is secure against polynomial and subexponential size circuits, respectively. All
these proof systems are closed under restrictions, hence these results conditionally rule out
weak automatability and automatability. As for resolution, before a recent breakthrough by
Atserias and Müller [3] who showed that resolution is not automatable unless P = NP, it was
known by a result of Alekhnovich and Razborov [1] that resolution is not automatable unless
W[P] = FPT. Here W[P] is the class of parametrized problems that are fixed-parameter
reducible to the problem of deciding if a monotone circuit C has a satisfying assignment of
Hamming weight k. Regarding weak automatability, Atserias and Bonet [2] proved that for
every k > 1, the following are equivalent: (i) Res(k) has feasible interpolation, (ii) Res(k) is
weakly automatable, (iii) resolution is weakly automatable. We refer the interested reader to
the introduction section of [3] for more on the history of the automatability problem.

Let QP denote the class of problems decidable in quasi-polynomial time 2(log n)O(1) , and
let SUBEXP denote the class of problems decidable in subexponential time 2no(1) . We show
the following theorem, which was proved for k = 1 in [3].

▶ Theorem 2.

1. If NP ̸⊆ P then for every integer k ≥ 1, Res(k) is not automatable in polynomial time.

2. If NP ̸⊆ QP then for every integer k ≥ 1, Res(k) is not automatable in quasi-polynomial
time.

3. If NP ̸⊆ SUBEXP then for every integer k ≥ 1, Res(k) is not automatable in subexponen-
tial time.

The basic idea of the proof is the same as in [3]: to map every formula F to a resolution
refutation statement for F and to show that if F is satisfiable then the refutation statement has
a polynomial-length Res(k) refutation, and if F is unsatisfiable then the refutation statement
requires long Res(k) refutations. An automating algorithm that finds short refutations
quickly enough can then be used to distinguish between the two situations, and hence to
solve SAT. We thus need to show strong lower bounds on the length of Res(k) refutations
of a version of resolution refutation statements. To do this, we use the aforementioned
Theorem 18 again.

Among the subsequent developments on non-automatability that appeared after [3] are
NP-hardness of non-automatability of Cutting Planes [9], of Nullstellensatz and Polynomial
Calculus [10], and of constant-depth Frege [18].

CCC 2024
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2 Preliminaries

For a function f , we write dom(f) to denote its domain and im(f) to denote its image.
Functions f and g are compatible if f ∪ g is a function. If k is an integer, [k] denotes the set
{1, . . . , k}. For a propositional variable x, we denote by x1 the positive literal of x, that is,
x, and we denote by x0 the negative literal of x, that is, ¬x. A clause (resp. term) is a set
of literals, and is written as a disjunction (resp. conjunction) of its elements. A CNF is a set
of clauses, and is written as a conjunction of the clauses. A CNF whose each clause contains
at most k literals is called a k-CNF. A DNF is a set of terms, and is written as a disjunction
of the terms. A k-DNF is a DNF in which each term has at most k literals. We will identify
1-DNFs with clauses. A clause that does not contain both the positive and negative literal of
the same variable is called non-tautological. If C and D are clauses and D ⊆ C, we say that
C is a weakening of D. We say that a clause D is the resolvent of clauses C1 and C2 on a
variable x if x ∈ C1, ¬x ∈ C2 and D = (C1 \ {x}) ∪ (C2 \ {¬x}). A clause E is obtained by
the resolution rule from clauses C1 and C2 if E is a weakening of the resolvent of C1 and C2
on a variable x. The clauses C1 and C2 are called the premises of the rule.

Let C be a clause and F a CNF. A sequence of clauses Π = (C1, . . . , Ct) is a resolution
derivation of C from F if Ct = C and for all u ∈ [t], either Cu is a weakening of a clause in
F , or there are v, w ∈ [u − 1] such that Cu is obtained by the resolution rule from Cv and
Cw. A resolution refutation of F is a resolution derivation of the empty clause from F . The
length of a resolution derivation Π = (C1, . . . , Ct) is t. For v ∈ [t], the height of v in Π is
defined as the maximum integer h such that there is a subsequence (Cv1 , . . . , Cvh

) of Π in
which vh = v and for each i ∈ [h − 1], Cvi

is a premise of a resolution rule by which Cvi+1 is
obtained in Π. The height of Π is the maximum height of v in Π over v ∈ [t].

Let x1, . . . , xn be propositional variables. A partial assignment to x1, . . . , xn is a partial
map from {x1, . . . , xn} to {0, 1}. For a partial assignment γ and a CNF F , we denote by
F ↾γ the CNF formed from F by removing every clause containing a literal satisfied by γ,
and removing every literal falsified by γ from the remaining clauses. If Π = (C1, . . . , Ct) is a
sequence of clauses, Π↾γ is formed from Π by the same operations. It is easy to check that
if Π is a resolution refutation of F , then Π↾γ is a resolution refutation of F ↾γ.

The Res(k) refutation system is a generalization of resolution introduced by Krajíček
[13]1. The lines in Res(k) consist of k-DNFs. The inference rules of Res(k) are the following
(A, B are k-DNFs, j ∈ [k], and l, l1, . . . , lj are literals):

Axiomx ∨ ¬x
A ∨ l1 B ∨ (l2 ∧ · · · ∧ lj)

∧-introduction
A ∨ B ∨ (l1 ∧ · · · ∧ lj)

A Weakening
A ∨ B

A ∨ (l1 ∧ · · · ∧ lj) B ∨ ¬l1 ∨ · · · ∨ ¬lj
Cut

A ∨ B

A Res(k) derivation from a CNF F is a sequence of k-DNFs (D1, . . . , Dt) so that each Di

either is a member of F or is obtained from the preceding lines by an application of one of
the inference rules. A Res(k) derivation (D1, . . . , Dt) from F whose final line Dt is the empty
clause is called a Res(k) refutation of F . The length of a Res(k) derivation Π = (D1, . . . , Dt),
denoted by |Π|, is t. The size of Π, denoted by size(Π), is the number of symbols in Π.

1 In [13] (see also Chapter 5.7 in [15]) more general fragments R(f) of DNF-resolution are introduced,
where f : N → N is non-decreasing and a refutation Π is said to have R(f)-size s if its lines are
f(s)-DNFs and |Π| ≤ s. In the present paper we work with constant functions f .
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3 Resolution Refutations of s Levels of t Clauses

It will be convenient to work with a variant of resolution in which the clauses forming a
refutation are arranged in layers. All definitions in this section are taken from [8].

▶ Definition 3. Let F be a CNF consisting of r clauses in n variables x1, . . . , xn. A
resolution refutation of F of s levels of t clauses is a sequence of clauses Ci,j indexed by all
pairs (i, j) ∈ [s] × [t], such that each clause C1,j on the first level is a weakening of a clause
in F , each clause Ci,j on level i∈ [s]\{1} is a weakening of the resolvent of two clauses from
level i − 1 on a variable, and the clause Cs,t is empty.

The following proposition says that the requirement that clauses be arranged in layers is
not very restrictive, since this system quadratically simulates resolution and preserves the
height of the refutation.

▶ Proposition 4 ([8]). Assume that a (n−1)-CNF F in n variables has a resolution refutation
of height h and length s. Then F has a resolution refutation of h levels of 3s clauses.

We now formalize refutation statements for this system in the same way as in [8]. Let
n, r, s, t be integers. Suppose that F is a CNF consisting of r clauses C1, . . . , Cr in n variables
x1, . . . , xn. We define a propositional formula REFF

s,t, which expresses that F has a resolution
refutation of s levels of t clauses.

First we list the variables of REFF
s,t. D-variables D(i, j, ℓ, b), i ∈ [s], j ∈ [t], ℓ ∈ [n], b ∈

{0, 1}, encode clauses Ci,j as follows: D(i, j, ℓ, 0) (resp. D(i, j, ℓ, 1)) means that the literal
¬xℓ (resp. xℓ) is in Ci,j . R-variables R(i, j, j′) (resp. L-variables L(i, j, j′)), i ∈ [s]\{1},
j, j′ ∈ [t], say that Ci−1,j′ is a premise of the resolution rule by which Ci,j is obtained, and
it is the premise that contains the negative (resp. positive) literal of the resolved variable.
V -variables V (i, j, ℓ), i∈ [s]\{1}, j ∈ [t], ℓ ∈ [n], say that Ci,j is inferred by resolving on xℓ.
I-variables I(j, m), j ∈ [t], m ∈ [r], indicate that C1,j is a weakening of Cm.

The formula REFF
s,t (see Appendix A for a precise formalization) consists of clauses of

several kinds: they express that clause C1,j (described by D-variables) on the first level
contains all literals of the clause from F of which it is a weakening; that clauses Ci,j are
non-tautological; that the premises of the resolution rule contain the appropriate literal of
the resolved variable and that all the other literals of the premises are passed to the clause
inferred from them; that the last clause Cs,t is empty; and that the V, I, L, R-variables define
functions with appropriate domains and ranges.

▶ Definition 5. For i ∈ [s], j, j′ ∈ [t], ℓ ∈ [n], b ∈ {0, 1}, m ∈ [r], we say that (i, j) is the
home pair of the variable D(i, j, ℓ, b), of the variables R(i, j, j′), L(i, j, j′), V (i, j, ℓ) if i ̸= 1,
and of the variable I(j, m) if i = 1.

We write V (i, j, ·) to stand for the set {V (i, j, ℓ) : ℓ ∈ [n]}. Similarly, we write
I(j, ·), L(i, j, ·), and R(i, j, ·) to stand for the set {I(j, m) : m ∈ [r]}, {L(i, j, j′) : j′ ∈ [t]},
and {R(i, j, j′) : j′ ∈ [t]}, respectively. We denote by D(i, j, ·, ·) the set {D(i, j, ℓ, b) : ℓ ∈
[n], b ∈ {0, 1}}.

Let σ be a partial assignment. We say that V (i, j, ·) is set to ℓ by σ if σ(V (i, j, ℓ)) = 1
and for all ℓ′ ∈ [n]\ {ℓ}, σ(V (i, j, ℓ′)) = 0 . Similarly, we say that I(j, ·) is set to m by σ

if σ(I(j, m)) = 1 and for all m′ ∈ [r]\{m} we have σ(I(j, m′)) = 0. We say that L(i, j, ·)
(resp. R(i, j, ·)) is set to j′ by σ if σ(L(i, j, j′)) = 1 (resp. σ(R(i, j, j′)) = 1) and for all
j′′ ∈ [t]\{j′}, we have σ(L(i, j, j′′)) = 0 (resp. σ(R(i, j, j′′)) = 0). We say that D(i, j, ·, ·) is
set to a clause Ci,j by σ if for all ℓ ∈ [n], b ∈ {0, 1} we have σ(D(i, j, ℓ, b)) = 1 if xb

ℓ ∈ Ci,j

and σ(D(i, j, ℓ, b)) = 0 if xb
ℓ ̸∈ Ci,j.

CCC 2024



33:6 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

For Y ∈ {D(i, j, ·, ·), V (i, j, ·), I(j, ·), R(i, j, ·), L(i, j, ·)}, we say that Y is set by σ if Y is
set to v by σ for some value v. We will sometimes omit saying “by σ” if σ is clear from the
context.

4 Reflection Principle for Resolution

We repeat the formulation of a version of the reflection principle from [8]. The CNF expressing
the negation of the reflection principle for resolution can be written as SATn,r ∧ REFn,r

s,t , the
conjunction of two CNFs. The only common variables of the formulas SATn,r and REFn,r

s,t

encode a CNF with r clauses in n variables. The meaning of SATn,r is that the encoded CNF
is satisfiable, while the meaning of REFn,r

s,t is that the same CNF has a resolution refutation
of s levels of t clauses. A formal definition is given below.

We list the variables of the formula SATn,r. C-variables C(m, ℓ, b), m ∈ [r], ℓ ∈ [n], b ∈
{0, 1}, encode clauses Cm in the usual way: C(m, ℓ, 1) (resp. C(m, ℓ, 0)) means that the literal
xℓ (resp. ¬xℓ) is in Cm. T -variables T (ℓ), ℓ ∈ [n], and T (m, ℓ, b), m ∈ [r], ℓ ∈ [n], b ∈ {0, 1},
encode the truth value of the literals and clauses of the CNF {C1, . . . , Cr} (under an
assignment to the variables x1, . . . , xn). The meaning of T (ℓ) is that the literal xℓ is satisfied.
The meaning of T (m, ℓ, 1) (resp. T (m, ℓ, 0)) is that clause Cm is satisfied through the literal
xℓ (resp. ¬xℓ).

The clauses of SATn,r are the following:

T (m, 1, 1) ∨ T (m, 1, 0) ∨ . . . ∨ T (m, n, 1) ∨ T (m, n, 0) m ∈ [r], (1)
¬T (m, ℓ, 1) ∨ T (ℓ) m ∈ [r], ℓ ∈ [n], (2)
¬T (m, ℓ, 0) ∨ ¬T (ℓ) m ∈ [r], ℓ ∈ [n], (3)
¬T (m, ℓ, b) ∨ C(m, ℓ, b) m ∈ [r], ℓ ∈ [n], b ∈ {0, 1}. (4)

For m ∈ [r], clause (1) says that clause Cm is satisfied through some literal. Clauses (2) and
(3) say that if Cm is satisfied through a literal, then the literal is satisfied. The meaning of
(4) is that if clause Cm is satisfied through a literal, then it contains the literal.

Now let us take a look at REFn,r
s,t . The variables of REFn,r

s,t are the variables C(m, ℓ, b)
of SATn,r together with all the variables of REFF

s,t for some (and each) F of r clauses in n

variables. That is, REFn,r
s,t has the following variables: C(m, ℓ, b) for m ∈ [r], ℓ ∈ [n], b ∈ {0, 1};

D(i, j, ℓ, b) for i ∈ [s], j ∈ [t], ℓ ∈ [n], b ∈ {0, 1}; L(i, j, j′) and R(i, j, j′) for i∈ [s]\{1}, j, j′ ∈ [t];
V (i, j, ℓ) for i∈ [s]\{1}, j ∈ [t], ℓ ∈ [n]; I(j, m) for j ∈ [t], m ∈ [r].

The clauses of REFn,r
s,t are all clauses (12) - (25) of REFF

s,t together with the following
set of clauses (to replace clauses (11)):

¬I(j, m) ∨ ¬C(m, ℓ, b) ∨ D(1, j, ℓ, b) j ∈ [t], m ∈ [r], ℓ ∈ [n], b ∈ {0, 1}, (5)

saying that if C1,j is a weakening of Cm, then the former contains each literal of the latter.
So the difference with (11) is that Cm is no longer a clause of some fixed formula F , but is
described by C-variables.

In Appendix B we show a simple proposition saying that evaluating SATn,r by a partial
assignment describing a CNF F with r clauses in n variables results in a formula equivalent
to F .

5 The Upper Bounds

In this section we work with a stronger formulation of the negation of the reflection principle
for resolution, expressed by a CNF formula SATn,r ∧ RkREFn,r

s,t . The difference with the
previous formulation SATn,r ∧ REFn,r

s,t is that we replace REFn,r
s,t by its k-fold relativization



M. Garlík 33:7

RkREFn,r
s,t . The first-order logic notion of relativization of a first-order formula to a relation

was put to use in propositional proof complexity by Dantchev and Riis [7]. Informally
speaking, relativization turns a statement that some property holds for the whole universe
into a statement that the property holds for any non-empty subset S of the universe. In the
propositional setting, this is realized by introducing new variables to encode the characteristic
function of the subset S of the universe. We will actually use a conjunction of k fresh
variables for each element of the universe to indicate the presence of the element in S.

We first treat the case of a fixed F , that is, we show how to relativize REFF
s,t. The

relativization of REFn,r
s,t will then be immediate.

The k-fold relativization of REFF
s,t is denoted by RkREFF

s,t. The variables of this CNF are
those of REFF

s,t together with new variables Su(i, j), (i, j) ∈ [s] × [t], u ∈ [k]. The meaning
of RkREFF

s,t is that those clauses Ci,j (described by D-variables) for which
∧

u∈[k] Su(i, j) is
satisfied form a resolution refutation of F of s levels of at most t clauses. That is, only the
selected clauses Ci,j have to form a refutation, and nothing is asked of the clauses that are
not selected. Formally, RkREFF

s,t is defined in Appendix C.
It is immediate that the partial assignment that maps Su(i, j) to 1 for all (i, j) ∈ [s] × [t]

and all u ∈ [k] maps RkREFF
s,t to REFF

s,t.
We now define the formula RkREFn,r

s,t by a change to RkREFF
s,t completely analogous to

the change by which we obtained REFn,r
s,t from REFF

s,t. That is, the clauses of RkREFn,r
s,t

are (27) - (43) of RkREFF
s,t together with the following clauses (to replace (26)):∨

u∈[k]

¬Su(1, j) ∨ ¬I(j, m) ∨ ¬C(m, ℓ, b) ∨ D(1, j, ℓ, b)

j ∈ [t], m∈ [r], ℓ∈ [n], b∈{0, 1}, (6)

saying that if clause C1,j is selected and is a weakening of clause Cm (described by C-variables),
then it contains each literal of Cm.

▶ Theorem 6. The negation of the reflection principle for resolution expressed by the formula
SATn,r ∧ RkREFn,r

s,t has Res(2) refutations of size O(trn2 + tr2 + trnk + st2n3 + st2n2k +
st2nk2 + st3n).

The proof of this theorem is in Appendix D

6 The Lower Bounds

We need a modification of two results of Segerlind, Buss and Impagliazzo [21]. Namely, their
switching lemma works with the usual notion of the width of a clause, and we would like
it to work with the notion of “the number of pairs mentioned” in the sense of Definition 9
below. This is because our random restrictions have to respect the functional properties of
the formula REFF

s,t (expressed by clauses (18) - (25)), and it is therefore convenient to require
that they evaluate variables in groups determined by the home pair. Consequently, we do
not want to represent a k-DNF simplified by a random restriction by a standard decision
tree like in [21], as such a tree would branch exponentially in t, which would prevent taking
union bounds over the branches of shallow trees occurring in the proof of our switching
lemma. To circumvent this problem, the decision trees we construct (called decision trees over
REFF

s,t) ask queries like “What is the left premise of clause Ci,j?” rather than queries like
“Is L(i, j, j′) true?”. This makes their branching more manageable (though still exponential
in the number of variables of F ), but there is a price to pay in terms of the parameters
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of the switching lemma (Theorem 16) and its more complicated proof, which uses certain
independence properties of our random restrictions. Also, such trees no longer represent
formulas over all partial assignments, but only over assignments that do not violate the
functionality axioms and evaluate variables in groups determined by home pairs. Accordingly,
we need to adapt to our different notions of width and representation a result in [21] which
says that if the lines of a Res(k) refutation can be strongly represented by shallow decision
trees, then the refutation can be converted to a resolution refutation of a small width.

Our random restrictions (Definition 15) will be applied to k-DNFs in the variables of
RkREFF

s,t and they are defined in two stages, the first of which evaluates all S-variables,
thereby declaring some pairs (i, j) selected (when

∧
u∈[k] Su(i, j) evaluates to 1), and in the

second stage all variables with a home pair that was not selected are evaluated randomly and
independently. The restricted k-DNF formula is therefore in the variables of REFF

s,t, and the
purpose of the switching lemma is to show that it can be represented by a shallow decision
tree over REFF

s,t with a high probability. We begin with a definition of these trees and the
notion of representation. Before reading the next definition, it is useful to recall Definition 5.

▶ Definition 7. A decision tree over REFF
s,t is a rooted tree T in which every internal node

is labelled with a pair (i, j) ∈ [s] × [t]. There are 22n · r edges leaving each node labelled
with (1, j) ∈ {1} × [t], and they are labelled with pairs (C1,j , m), where C1,j is a clause in
variables x1, . . . , xn, and m ∈ [r]. There are 22n · nt2 edges leaving each node labelled with
(i, j) ∈ {2, . . . , s} × [t], and these edges are labelled with tuples (Ci,j , ℓ, j′, j′′), where Ci,j is
a clause in variables x1, . . . , xn, ℓ ∈ [n], and j′, j′′ ∈ [t]. The leaves of T are labelled with
either 0 or 1. No pair (i, j) is allowed to label two nodes on any path from the root to a leaf
of T . For each node v of T , the path from the root to v is viewed as a partial assignment
πv that for each edge that is on the path, leaving a node with a label (i, j), evaluates the
variables of REFF

s,t with home pair (i, j) in the following way: If i = 1 and the label of the
edge is (C1,j , m), then πv sets D(1, j, ·, ·) to C1,j and I(j, ·) to m; otherwise i ∈ [s] \ {1} and
the label of the edge is some tuple (Ci,j , ℓ, j′, j′′), in which case πv sets D(i, j, ·, ·) to Ci,j,
V (i, j, ·) to ℓ, L(i, j, ·) to j′, and R(i, j, ·) to j′′. For b ∈ {0, 1}, we let Brb(T ) stand for the
set of paths (viewed as partial assignments) that lead from the root to a leaf labelled with b.

▶ Definition 8. Let G be a DNF in the variables of REFF
s,t. We say that a decision tree T

over REFF
s,t strongly represents G if for every π ∈ Br0(T ), for every q ∈ G, q ↾π = 0 and

for every π ∈ Br1(T ), there exists q ∈ G, q ↾π = 1. The representation index-height of G,
hi(G), is the minimum height of a decision tree over REFF

s,t strongly representing G.

▶ Definition 9. Let π be a partial assignment to the variables of REFF
s,t, and let E be a

clause in the variables of REFF
s,t. We say that a pair (i, j) ∈ [s] × [t] is mentioned in π (resp.

E) if it is the home pair of a variable in dom(π) (resp. of a variable a literal of which is in
E).

▶ Definition 10. Let C be a clause in the variables of REFF
s,t. The index-width of C is the

number of pairs (i, j) ∈ [s] × [t] that are mentioned in C. The index-width of a resolution
derivation is the maximum index-width of a clause in the derivation.

The following theorem is an adaptation of [21, Theorem 5.1]. Its proof is in Appendix E

▶ Theorem 11. Let H be a CNF in the variables of REFF
s,t whose every clause has index-

width at most h ≥ 1. If for some k ≥ 1 there is a Res(k) refutation of H such that for each
line G of the refutation, hi(G) ≤ h, then there is a resolution refutation of H together with
the functionality clauses (18) - (25) of REFF

s,t such that the index-width of the refutation is
at most 3h.
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We now turn our attention to the formula RkREFF
s,t. Recall from its definition in Section 5

that its variables are those of REFF
s,t together with variables Su(i, j), (i, j) ∈ [s] × [t], u ∈ [k].

In the following definition we extend the notion of a home pair from Definition 5 to the
S-variables, and we extend the notion of a pair being mentioned accordingly.

▶ Definition 12. For (i, j) ∈ [s] × [t] and u ∈ [k], the home pair of the variable Su(i, j) is
(i, j).

We say that a pair (i, j) is mentioned in a clause E (resp. a partial assignment π; a term
q) if it is a home pair of a variable a literal of which is in E (resp. which is in dom(π); a
literal of which is in q).

▶ Definition 13. Let U ⊆ [s] × [t] and let G be a DNF in the variables of RkREFF
s,t. If for

each term q ∈ G there is (i, j) ∈ U such that (i, j) is mentioned in q, then we say that U is
an index-cover of G. The index-covering number of G, ci(G), is the minimum cardinality of
an index-cover of G.

▶ Definition 14. For a set U ⊆ [s] × [t], denote by Var(U) the set of all variables of REFF
s,t

with home pair in U , that is,

Var(U) :=
⋃

(i,j)∈U

D(i, j, ·, ·)∪
⋃

(i,j)∈U\([1]×[t])

(R(i, j, ·) ∪ L(i, j, ·) ∪ V (i, j, ·))∪
⋃

(1,j)∈U

I(j, ·).

Also, denote by VarS(U) the set of all S-variables with home pair in U ; in symbols, VarS(U) :=
{Su(i, j) : u ∈ [k], (i, j) ∈ U}.

We generalize random restrictions from [3] to our case of RkREFF
s,t.

▶ Definition 15. A random restriction ρk is a partial assignment to the variables of RkREFF
s,t

given by the following experiment:
1. Independently for each (i, j) ∈ [s] × [t] and u ∈ [k], map Su(i, j) to 0 or 1, each with

probability 1/2.
2. Let A be the set of those (i, j) ∈ [s] × [t] such that for every u ∈ [k], Su(i, j) is mapped to

1.
3. Map independently each variable from Var(([s] × [t]) \ A) to 0 or 1, each with probability

1/2.

The main theorem of this section is the following switching lemma. Its proof is in
Appendix F

▶ Theorem 16. Suppose that k ≥ 1, a ≥ 1 are integers such that k ≥ a. There is δ > 0 and
an integer n0 > 0 such that if n, r, s, t are integers satisfying

r ≤ t ≤ 2δn and n0 ≤ n, (7)

and F is a CNF with r clauses in n variables, then for every a-DNF G in the variables of
RkREFF

s,t and every w > 0,

Pr[hi(G↾ρk) > w] ≤ 2− w

na−1 γ(a), (8)

where γ(a) = (log e)a

2a2+3a−2a! .

The following theorem states a width lower bound. Its proof is in Appendix G
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▶ Theorem 17. Let w > 0. If n, r, s, t are integers satisfying

2 ≤ n + 1 ≤ s, 2w < t, (9)

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,
then any resolution refutation of REFF

s,t has index-width greater than w.

We now put together all the results so far in this section to show a length lower bound
on Res(k) refutations of RkREFF

s,t with an unsatisfiable F . The proof of the next theorem is
in Appendix H.

▶ Theorem 18. Suppose k ≥ 1 is an integer. There is δ > 0 and an integer n0 > 0 such
that if n, r, s, t are integers satisfying

n0 ≤ n, n + 1 ≤ s ≤ t, r ≤ t ≤ 2δn, nk ≤ t, (10)

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,
then any Res(k) refutation of RkREFF

s,t has length greater than 2β(k) t

nk−1 , where β(k) :=
(log e)k

2k2+4k+4k! .

From this theorem it is not dificult to derive the main results of this paper, Theorem 1
and Theorem 2. We include their proofs in Appendix I.

7 Conclusion

We have shown that for every integer k ≥ 2, the system Res(k) does not have the weak
feasible disjunction property and, unless P = NP, it is not automatable. Because of the
factor t/nk−1 that appears in the exponent of the lower bound in Theorem 18 and originates
in the switching lemma (Theorem 16), we have not been able to extend the results to
superconstant k.

A more important open question is to rule out weak automatability of these systems
assuming some standard hardness assumption. Weak automatability behaves better; e.g. in
contrast to automatability, it trivially follows that if a proof system P simulates Q and P is
weakly automatable, then so is Q.
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A Formula REFF
s,t

The formula REFF
s,t is the union of the following fifteen sets of clauses:

¬I(j, m) ∨ D(1, j, ℓ, b) j ∈ [t], m∈ [r], b∈{0, 1}, xb
ℓ ∈Cm, (11)

clause C1,j contains all literals of Cm if C1,j is a weakening of Cm,

¬D(i, j, ℓ, 0) ∨ ¬D(i, j, ℓ, 1) i∈ [s], j ∈ [t], ℓ∈ [n], (12)

clause Ci,j cannot contain both ¬xℓ and xℓ,

¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 1) i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (13)
¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 0) i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (14)
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clause Ci−1,j′ used as the premise given by L(i, j, j′) (resp. R(i, j, j′)) when resolving on xℓ

must contain xℓ (resp. ¬xℓ),

¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)
i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 1), (15)

¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)
i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 0), (16)

clause Ci,j inferred by resolving on xℓ must contain each literal different from xℓ (resp. ¬xℓ)
from the premise given by L(i, j, j′) (resp. R(i, j, j′)),

¬D(s, t, ℓ, b) ℓ∈ [n], b∈{0, 1}, (17)

clause Cs,t is the empty clause,

V (i, j, 1) ∨ V (i, j, 2) ∨ . . . ∨ V (i, j, n) i∈ [s]\{1}, j ∈ [t], (18)
I(j, 1) ∨ I(j, 2) ∨ . . . ∨ I(j, r) j ∈ [t], (19)
L(i, j, 1) ∨ L(i, j, 2) ∨ . . . ∨ L(i, j, t) i∈ [s]\{1}, j ∈ [t], (20)
R(i, j, 1) ∨ R(i, j, 2) ∨ . . . ∨ R(i, j, t) i∈ [s]\{1}, j ∈ [t], (21)
¬V (i, j, ℓ) ∨ ¬V (i, j, ℓ′) i∈ [s]\{1}, j ∈ [t], ℓ, ℓ′ ∈ [n], ℓ ̸= ℓ′, (22)
¬I(j, m) ∨ ¬I(j, m′) j ∈ [t], m, m′ ∈ [r], m ̸= m′, (23)
¬L(i, j, j′) ∨ ¬L(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (24)
¬R(i, j, j′) ∨ ¬R(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (25)

the V, I, L, R-variables define functions.

B Obtaining F from SATn,r

▶ Proposition 19. Let F be a CNF of r clauses C1, . . . , Cr in n variables x1, . . . , xn, and
let γF be the assignment describing F , that is, the domain of γF consists of all C-variables,
and γF (C(m, ℓ, b)) = 1 if xb

ℓ ∈ Cm and γF (C(m, ℓ, b)) = 0 if xb
ℓ /∈ Cm. Then there is a

substitution τ that maps the T -variables of SATn,r ↾γF to {0, 1} ∪ {xb
ℓ : ℓ ∈ [n], b ∈ {0, 1}}

such that (SATn,r ↾ γF ) ↾ τ is F together with some tautological clauses in the variables
x1, . . . , xn.

Proof. Define τ as follows. If γF (C(m, ℓ, b)) = 0, then set τ(T (m, ℓ, b)) = 0. This deletes
T (m, ℓ, b) from (1) and satisfies the corresponding clauses of (4) together with either (2) (if
b = 1) or (3) (if b = 0). If γF (C(m, ℓ, b)) = 1, then the corresponding clause in (4) has been
satisfied and we define τ(T (m, ℓ, b)) = xb

ℓ and τ(T (ℓ)) = xℓ. This choice turns (2) (if b = 1)
or (3) (if b = 0) into a tautological clause and correctly substitutes the remaining literals of
(1) to yield the clause Cm of F . ◀

C Formula RkREFF
s,t

The formula RkREFF
s,t is the union of the following sets of clauses:∨

u∈[k]

¬Su(1, j) ∨ ¬I(j, m) ∨ D(1, j, ℓ, b) j ∈ [t], m∈ [r], b∈{0, 1}, xb
ℓ ∈Cm, (26)
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∨
u∈[k]

¬Su(i, j) ∨ ¬D(i, j, ℓ, 1) ∨ ¬D(i, j, ℓ, 0) i∈ [s], j ∈ [t], ℓ∈ [n], (27)

∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 1)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (28)∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 0)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (29)∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 1), (30)∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 0), (31)∨
u∈[k]

¬Su(s, t) ∨ ¬D(s, t, ℓ, b) ℓ∈ [n], b∈{0, 1}, (32)

∨
u∈[k]

¬Su(i, j) ∨
∨

ℓ∈[n]

V (i, j, ℓ) i∈ [s]\{1}, j ∈ [t], (33)

∨
u∈[k]

¬Su(1, j) ∨
∨

m∈[r]

I(j, m) j ∈ [t], (34)

∨
u∈[k]

¬Su(i, j) ∨
∨

j′∈[t]

L(i, j, j′) i∈ [s]\{1}, j ∈ [t], (35)

∨
u∈[k]

¬Su(i, j) ∨
∨

j′∈[t]

R(i, j, j′) i∈ [s]\{1}, j ∈ [t], (36)

∨
u∈[k]

¬Su(i, j) ∨ ¬V (i, j, ℓ) ∨ ¬V (i, j, ℓ′) i∈ [s]\{1}, j ∈ [t], ℓ, ℓ′ ∈ [n], ℓ ̸= ℓ′, (37)

∨
u∈[k]

¬Su(i, j) ∨ ¬I(j, m) ∨ ¬I(j, m′) j ∈ [t], m, m′ ∈ [r], m ̸= m′, (38)

∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ ¬L(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (39)

∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ ¬R(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (40)

Su(s, t) u ∈ [k], (41)∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ Su′(i − 1, j′) i∈ [s]\{1}, j, j′ ∈ [t], u′ ∈ [k], (42)

∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ Su′(i − 1, j′) i∈ [s]\{1}, j, j′ ∈ [t], u′ ∈ [k]. (43)

Clauses in (26) - (40) are just the clauses in (11) - (25) with the additional disjuncts∨
u∈[k] ¬Su(i, j) with the corresponding (i, j). Clauses (41) together with (32) make sure

that Cs,t is selected and empty. Clauses in (42) and (43) ensure that if Ci−1,j′ is not selected
then it cannot be used as a premise.
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D Proof of Theorem 6

By induction on i ∈ [s], we derive for each j ∈ [t] the clause

Di,j :=
∨

u∈[k]

¬S(i, j) ∨
∨

ℓ∈[n],b∈{0,1}

(
D(i, j, ℓ, b) ∧ T (ℓ)b

)
. (44)

The meaning of this clause is that if Ci,j (the clause described by D(i, j, ·, ·)) is selected then
it contains a satisfied literal. Then, cutting Ds,t with (32) for each ℓ ∈ [n] and b ∈ {0, 1},
followed by k cuts with clauses (41), yields the empty clause.

Base case: i = 1. For each j ∈ [t], m ∈ [r], ℓ ∈ [n], b ∈ {0, 1}, cut (4) with (6) to obtain∨
u∈[k] ¬Su(1, j) ∨ ¬I(j, m) ∨ ¬T (m, ℓ, b) ∨ D(1, j, ℓ, b). Applying ∧-introduction to this and

¬T (m, ℓ, b) ∨ T (ℓ)b (which is either (2) or (3)) yields∨
u∈[k]

¬Su(1, j) ∨ ¬I(j, m) ∨ ¬T (m, ℓ, b) ∨
(
D(1, j, ℓ, b) ∧ T (ℓ)b

)
. (45)

Cutting (45) for each ℓ ∈ [n] and b ∈ {0, 1} with (1) gives ¬I(j, m) ∨ D1,j . Cutting this for
each m ∈ [r] with (34) yields D1,j .

Induction step: Assume we have derived Di−1,j′ for all j′ ∈ [t]. We derive Di,j for each
j ∈ [t]. In the following we write P0 in place of R and P1 in place of L.

For each ℓ ∈ [n], b ∈ {0, 1}, j′ ∈ [t], cut
∨

u∈[k] ¬Su(i, j)∨¬D(i−1, j′, ℓ, 1)∨¬D(i−1, j′, ℓ, 0)
(from (27)) with

∨
u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 1 − b) (which is

from (28) or (29)) to obtain
∨

u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ, b).
Cutting this with Di−1,j′ yields∨

u∈[k]

¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨
(
Di−1,j′ \ {D(i − 1, j′, ℓ, b) ∧ T (ℓ)b}

)
. (46)

Cut (46) with T (ℓ) ∨ ¬T (ℓ) to get∨
u∈[k]

¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ T (ℓ)1−b

∨ (Di−1,j′ \ {D(i − 1, j′, ℓ, 0) ∧ ¬T (ℓ), D(i − 1, j′, ℓ, 1) ∧ T (ℓ)}) . (47)

Next, for each ℓ′ ∈ [n] \ {ℓ} and b′ ∈ {0, 1}, apply ∧-introduction to T (ℓ′) ∨ ¬T (ℓ′) and∨
u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b′) ∨ D(i, j, ℓ′, b′) (from (30) or

(31)) to get∨
u∈[k]

¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨
(

D(i, j, ℓ′, b′) ∧ T (ℓ′)b′
)

∨ ¬D(i − 1, j′, ℓ′, b′) ∨ T (ℓ′)1−b′
. (48)

Cutting (48), for each ℓ′ ∈ [n] \ {ℓ} and b′ ∈ {0, 1}, with (47) results, after an additional
weakening by (D(i, j, ℓ, 0) ∧ T (ℓ)0) ∨ (D(i, j, ℓ, 1) ∧ T (ℓ)1), in∨

u∈[k]

¬Su(i − 1, j′) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ T (ℓ)1−b ∨ Di,j . (49)

Cut (49), for each u′ ∈ [k], with
∨

u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ Su′(i − 1, j′) (from (42)
or (43)) to get

¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ T (ℓ)1−b ∨ Di,j . (50)
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Recall that we have obtained (50) for each ℓ ∈ [n], b ∈ {0, 1}, j′ ∈ [t]. Cutting (50), for
each j′ ∈ [t], with

∨
u∈[k] ¬Su(i, j) ∨

∨
j′∈[t] P1−b(i, j, j′) (which is from (35) or (36)) yields

¬V (i, j, ℓ) ∨ T (ℓ)1−b ∨ Di,j . We have derived such a clause for each ℓ ∈ [n], b ∈ {0, 1}, so a
cut on T (ℓ) gives ¬V (i, j, ℓ) ∨ Di,j , and cutting this, for each ℓ ∈ [n], with (33) yields Di,j .

Let us estimate the size of the refutation. The size of the base case is O(t(rn2 +r2 +rnk)),
the total size of the induction steps is O(st(n3t + n2tk + ntk2 + nt2)), and the size of the
finish is O(n2 + nk). In total this is O(trn2 + tr2 + trnk + st2n3 + st2n2k + st2nk2 + st3n).

E Some results on trees and a proof of Theorem 11

▶ Definition 20. A partial assignment π to the variables of REFF
s,t is called respectful if for

each (i, j) ∈ [s] × [t], either (i, j) is not mentioned in π, or i ∈ [s]\{1} and each of D(i, j, ·, ·),
V (i, j, ·), R(i, j, ·), L(i, j, ·) is set by π, or i = 1 and both D(1, j, ·, ·) and I(j, ·) are set by π.
In other words, respectful assignments are exactly the assignments of the form πv where v is
a node of a decision tree over REFF

s,t.
If T is a decision tree over REFF

s,t and π is a respectful partial assignment, T ↾ π is
obtained as follows: for each node v of T with a label (i, j) that is mentioned in π, contract
the edge whose label determines an assignment to the variables with home pair (i, j) that is a
subset of π, and delete all other edges leaving v (and delete their associated subtrees).

▶ Lemma 21. Let T be a decision tree over REFF
s,t, let G be a DNF, and let π be a respectful

partial assignment. If T strongly represents G, then T ↾π strongly represents G↾π.

Proof. For a leaf v of T ↾π there is a unique leaf u of T such that πv = πu \ π, where πu,
πv are defined as in Definition 7. Moreover, v has the same label as u, and π and πu are
compatible. Therefore, for a term q ∈ G we have q ↾(π ∪ πu) = q ↾(π ∪ πv) = (q ↾π)↾πv. Also,
for b ∈ {0, 1}, if q ↾πu = b then q ↾(π ∪ πu) = b. ◀

In the other direction, we have the following lemma.

▶ Lemma 22. Let T be a decision tree over REFF
s,t, and let G be a DNF in the variables of

REFF
s,t. For each leaf v of T , let Tv be a decision tree that strongly represents G↾πv, where

πv is the path in T from the root to v. Moreover, assume that each label (i, j) of an internal
node of Tv is a home pair of a variable of G↾πv. Then the tree T ′ obtained by appending to
each leaf v of T the tree Tv strongly represents G.

Proof. This follows directly from the definitions. ◀

Proof of Theorem 11. Denote Π the Res(k) refutation. For a line G in Π, let TG be a
decision tree over REFF

s,t of minimum height that strongly represents G. We can assume
that no node of TG is labelled with a pair (i, j) that is not a home pair of any variable of G.

For any respectful partial assignment π let Cπ be the clause consisting of the following liter-
als: D(i, j, ℓ, b) if and only if π(D(i, j, ℓ, b)) = 0, ¬D(i, j, ℓ, b) if and only if π(D(i, j, ℓ, b)) = 1,
¬I(j, m) if and only if π sets I(j, ·) to m, ¬V (i, j, ℓ) if and only if π sets V (i, j, ·) to ℓ,
¬L(i, j, j′) if and only if π sets L(i, j, ·) to j′, ¬R(i, j, j′) if and only if π sets R(i, j, ·) to j′.

By induction on the lines of Π we show that for each line G of Π and for each π ∈ Br0(TG),
there is a resolution derivation ΠG(π) of Cπ from H together with the clauses (18) -
(25), such that the index-width of ΠG(π) is at most 3h. The theorem then follows from
{Cπ : π ∈ Br0(T∅)} = {C∅} = {∅}.

Assume that G is an axiom X ∨ ¬X. Then all the branches of TG are labelled with 1,
and so {Cπ : π ∈ Br0(TG)} = ∅.
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Next assume that G ∈ H. Let π ∈ Br0(TG). Since G is a clause, the node labels of TG

are exactly the pairs (i, j) mentioned in G. Note that since G↾π = 0, for every (i, j) each
literal of a variable in D(i, j, ·, ·) that is in G is also in Cπ. Suppose that π sets V (i, j, ·)
to ℓ ∈ [n]. If there is a literal in G of a variable from V (i, j, ·) such that the literal is not
in Cπ, then the literal must be V (i, j, ℓ′) for some ℓ′ ∈ [n] with ℓ′ ̸= ℓ. This follows from
G↾π = 0 and ¬V (i, j, ℓ) ∈ Cπ. Such literals V (i, j, ℓ′) can be removed from G by resolving
with the clause ¬V (i, j, ℓ) ∨ ¬V (i, j, ℓ′) from (22). Similarly, we remove from G the literals in
G \ Cπ of I, L, R-variables by resolving with the corresponding clauses from (23), (24), (25),
respectively. We have thus obtained a resolution derivation ΠG(π) of Cπ from {G} together
with the clauses (22) - (25). Because the index-width of G is at most h, the same is true for
the clauses in ΠG(π).

Now assume that line G in Π is inferred from previously derived lines G1, . . . , Gd for
d ∈ [2]. By the induction hypothesis, we have for each c ∈ [d] and for each π ∈ Br0(TGc) a
resolution derivation ΠG(π) of Cπ with the required properties. First construct a decision
tree T as follows: if d = 1, T is TG1 ; if d = 2, append to each branch π ∈ Br1(TG1) the tree
TG2 ↾π. Observe that for each π ∈ Br0(T ) there is c ∈ [d] and π′ ∈ Br0(Tc) such that π′ ⊆ π,
and Cπ is a weakening of Cπ′ . Also, the index-width of Cπ is at most 2h, because so is the
height of T . For a node v of T define a partial assignment πv as in Definition 7.

Let σ ∈ Br0(TG) be given. Inductively, from the leaves to the root of T , we show that
if a node v of T is such that πv is compatible with σ, then there is a resolution derivation
ΠG(πv, σ) of Cπv

∨Cσ from H together with the clauses (18) - (25), such that the index-width
of ΠG(πv, σ) is at most 3h. When we reach the root of T , we will have obtained a derivation
ΠG(∅, σ) of Cσ, and this is the derivation ΠG(σ) we are after.

Assume that v is a leaf of T and πv is compatible with σ. Then πv ∈ Br0(T ). This can
be seen as follows. It is easy to check that the rules of Res(k) have the property, called
strong soundness, that any partial assignment that satisfies all premises of a rule also satisfies
the conclusion of the rule. If we had πv ∈ Br1(T ), then for each c ∈ [d], πv contains some
πc ∈ Br1(TGc), and so Gc ↾πv = Gc ↾πc = 1 because TGc strongly represents Gc. By strong
soundness it follows that G↾πv = 1. But this means that πv cannot be compatible with σ,
because σ falsifies every term of G. So indeed πv ∈ Br0(T ). Further, we have that Cπv ∨ Cσ

is a weakening of Cπv
, which in turn is a weakening of Cπ′ for some π′ ∈ Br0(Tc) and some

c ∈ [d] such that that π′ ⊆ πv, by the construction of T . By the inductive hypothesis we have
a resolution derivation ΠG(π′) of Cπ′ with the required properties. Because the index-width
of Cπv

is at most 2h, the index-width of Cπv
∨ Cσ is at most 3h. We have thus obtained a

resolution derivation ΠG(πv, σ) of Cπv ∨ Cσ with the required properties.
Now assume that v is labelled with a pair (i, j) and πv is compatible with σ. We

distinguish two cases. In the first case, assume that (i, j) is mentioned in σ. Then there is a
child u of v such that πu \πv ⊆ σ. Also, πu is compatible with σ. By the induction hypothesis
we therefore have a resolution derivation ΠG(πu, σ) of Cπu

∨ Cσ with the required properties.
Because πu ∪ σ = πv ∪ σ, we have Cπu ∨ Cσ = Cπv ∨ Cσ, and so we define ΠG(πv, σ) to be
ΠG(πu, σ). In the second case, assume that (i, j) is not mentioned in σ. Then for each child u

of v, πu is compatible with σ. By the induction hypothesis, for each such u there is a resolution
derivation ΠG(πu, σ) of Cπu

∨ Cσ with the required properties. Notice that Cπu
∨ Cσ =

Cπu\πv
∨Cπv

∨Cσ. We first construct a resolution refutation Π′ of {Cπu\πv
: u is a child of v}

together with the clauses (18) - (21) such that the index-width of Π′ is 1. This is easy:
since {Cπu\πv

: u is a child of v} = {Cα : α is respectful and mentions just the pair (i, j)},
we use (18), (20), (21) (resp. (19) if i = 1) to remove all the negated V, L, R-variables
(resp. the negated I-variables) from the clauses Cα, and we refute the resulting clauses by a
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refutation in the form of a complete binary tree to resolve all the D-variables. Now, having
Π′, we define ΠG(πv, σ) as follows: add the literals of Cπv

∨ Cσ to each clause of Π′ other
than an initial clause from (18), (20), (21), (19), and derive each initial clause Cπu

∨ Cσ in
the resulting derivation using the derivation ΠG(πu, σ). It is easy to see that ΠG(πv, σ) has
the required properties. ◀

F Proof of Theorem 16

Denote the right hand side of the inequality (8) by pa(w). Let k ≥ 1 be given and denote
ρ := ρk. We prove the theorem by induction on a.

Base case: a = 1. G is a clause. If ci(G) ≤ w, then Pr[hi(G ↾ ρ) > w] = 0 because
we can build a decision tree strongly representing G ↾ ρ by querying the pairs from the
smallest index-cover of G. If ci(G) > w, we have Pr[hi(G ↾ ρ) > w] ≤ Pr[G ↾ ρ ̸= 1] ≤(
1 − (1 − 2−k)/2

)ci(G) ≤ (1 − 1/4)ci(G) ≤ e−ci(G)/4 = 2−ci(G)γ(1) ≤ 2−wγ(1).
Induction step: Assume the theorem holds for a − 1, witnessed by δ(k, a − 1) and

n0(k, a − 1). Find a positive δ(k, a) ≤ δ(k, a − 1) and an integer n0(k, a) ≥ n0(k, a − 1) such
that

−γ(a − 1)
2 n +

(
2 log t + log n + γ(a − 1)

na−2

)
· γ(a − 1)

4 ≤ −γ(a) (51)

holds for any n, r, t satisfying (7) with δ(k, a) and n0(k, a) in place of δ and n0, respectively.
Let G be an a-DNF, and let U be an index cover of G of size ci(G). We distinguish two
cases based on ci(G).

Case 1: ci(G) > w
na−1 · γ(a−1)

4 . In this case we want to show that ρ satisfies G with a
high probability. To this end, note that there are at least ci(G)/a many terms in G that are
index-independent, that is, for no two of them there is a pair (i, j) ∈ [s] × [t] mentioned by
both. (If every such set of terms was smaller than ci(G)/a, take a maximal one and observe
that the set of pairs mentioned by the terms forms an index-cover of G of cardinality smaller
than ci(G), a contradiction.) It is easy to see that each of these index-independent terms is
satisfied by ρ with independent probability at least 2−2a. Therefore,

Pr[hi(G↾ρ) > w] ≤ Pr[G↾ρ ̸= 1] ≤
(
1 − 2−2a

)ci(G)/a ≤ 2− (log e)
a22a ci(G) ≤ 2− (log e)

a22a · w

na−1 · γ(a−1)
4

= 2− w

na−1 γ(a)
.

This finishes the inductive step for Case 1.
Case 2: ci(G) ≤ w

na−1 · γ(a−1)
4 . Let U ′ ⊆ U , and let ν : VarS(U) ∪ Var(U \ U ′) → {0, 1}

satisfy the following conditions:
(ν1) for each (i, j) ∈ U ′ and each u ∈ [k], ν(Su(i, j)) = 1,
(ν2) for each (i, j) ∈ U \ U ′ there is u ∈ [k] with ν(Su(i, j)) = 0.
We have

Pr[hi(G↾ρ) > w | ρ↾dom(ν) = ν]
≤ Pr[∃π : Var(U ′) → {0, 1}, π is respectful ∧ hi((G↾π)↾ρ) > w − |U ′| | ρ↾dom(ν) = ν]

≤
∑

π:Var(U ′)→{0,1},
π is respectful

Pr[hi((G↾π)↾ρ) > w − |U ′| | ρ↾dom(ν) = ν]

=
∑

π:Var(U ′)→{0,1},
π is respectful

Pr[hi(((G↾π)↾ν)↾ρ) > w − |U ′|]

≤
(
t2n22n

)|U ′|
pa−1(w − |U ′|).
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Here the first inequality follows from Lemma 22 and from (G ↾ π) ↾ ρ = (G ↾ ρ) ↾ π (since
dom(π) ∩ dom(ρ) = ∅). The second inequality is obtained by the union bound. The equality
follows since the events hi(((G↾π)↾ν)↾ρ) > w − |U ′| and ρ↾dom(ν) = ν are independent (by
the definition of ρ). And the last inequality is by the induction hypothesis and by the upper
bound t2n22n = max{t2n22n, r22n} (recall that t ≥ r) over (i, j) ∈ [s] × [t] on the number of
respectful partial assignments mentioning exactly the pair (i, j).

Since the event A ∩ U = U ′ (where the random variable A is given by Definition 15) is
the disjoint union of events ρ↾dom(ν) = ν over all ν satisfying conditions (ν1) and (ν2), the
above calculation implies

Pr[hi(G↾ρ) > w | A ∩ U = U ′] ≤
(
t2n22n

)|U ′|
pa−1(w − |U ′|). (52)

Therefore,

Pr[hi(G↾ρ) > w] =
∑

U ′⊆U

Pr[hi(G↾ρ) > w ∧ A ∩ U = U ′]

=
∑

U ′⊆U

Pr[hi(G↾ρ) > w | A ∩ U = U ′] · Pr[A ∩ U = U ′]

≤
∑

U ′⊆U

(
t2n22n

)|U ′|
pa−1(w − |U ′|) · 2−k|U ′| (

1 − 2−k
)|U\U ′|

=
ci(G)∑
q=0

(
ci(G)

q

) (
t2n22n

)q
pa−1(w − q) · 2−kq

(
1 − 2−k

)ci(G)−q

≤
(
t2n22n

)ci(G)
pa−1(w − ci(G)). (53)

Here the first inequality is by (52) and by the definition of ρ. The second inequality follows
from

(
t2n22n

)q
pa−1(w − q) ≤

(
t2n22n

)ci(G)
pa−1(w − ci(G)) for q ≤ ci(G). From (53), using

the definition of pa−1(w − ci(G)) and the assumption ci(G) ≤ w
na−1 · γ(a−1)

4 , we get

log(Pr[hi(G↾ρ) > w]) ≤ (2 log t + log n + 2n) ci(G) − w − ci(G)
na−2 γ(a − 1)

=
(

2 log t + log n + 2n + γ(a − 1)
na−2

)
ci(G) − wγ(a − 1)

na−2

≤
(

2 log t + log n + 2n + γ(a − 1)
na−2

)
w

na−1 · γ(a − 1)
4 − wγ(a − 1)

na−2

= −wγ(a − 1)
2na−2 +

(
2 log t + log n + γ(a − 1)

na−2

)
w

na−1 · γ(a − 1)
4

≤ − w

na−1 γ(a),

where the last inequality is equivalent to (51). This finishes the inductive step for Case 2,
and the proof of the theorem.

G The width lower bound

▶ Definition 23. A partial assignment σ to the variables of REFF
s,t is called admissible if it

satisfies all the following conditions.
(A1) For each (i, j) ∈ [s] × [t], D(i, j, ·, ·) (resp. V (i, j, ·), I(j, ·), L(i, j, ·), R(i, j, ·)) either

is set to some clause (resp. some ℓ ∈ [n], some m ∈ [r], some j′ ∈ [t], some j′ ∈ [t]) by
σ or contains no variable that is in dom(σ).
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(A2) For each (i, j) ∈ [s] × [t], if L(i, j, ·) or R(i, j, ·) is set to some j′ ∈ [t], then both
D(i, j, ·, ·) and D(i − 1, j′, ·, ·) are set.

(A3) For each (i, j) ∈ ([s] \ {1}) × [t], D(i, j, ·, ·) is set if and only if V (i, j, ·) is set. For
each j ∈ [t], D(1, j, ·, ·) is set if and only if I(j, ·) is set.

(A4) For each (i, j) ∈ [s]×[t], if D(i, j, ·, ·) is set to a clause Ci,j , then Ci,j is non-tautological
and has at least min{s − i, n} many literals. If D(i, j, ·, ·) is set to a clause Ci,j with
less than n literals and V (i, j, ·) is set to some ℓ ∈ [n], then none of the literals of xℓ is
in Ci,j.

(A5) If D(s, t, ·, ·) is set, it is set to the empty clause.
(A6) For each j ∈ [t], if I(j, ·) is set, then σ satisfies all clauses in (11) with this j.
(A7) For each (i, j) ∈ ([s] \ {1}) × [t], if L(i, j, ·) (resp. R(i, j, ·)) is set, then σ satisfies all

clauses in (13) and (15) (resp. (14) and (16)) with this (i, j) (i.e., those clauses that
contain the literal ¬L(i, j, j′) (resp. ¬R(i, j, j′)) for some j′ ∈ [t]).

Proof of Theorem 17. Assume for a contradiction that there is a resolution refutation Π
of REFF

s,t of index-width at most w. We will show that if there is an admissible partial
assignment falsifying a clause E in Π obtained by the resolution rule from E0 and E1, then
there is an admissible partial assignment falsifying either E0 or E1. This immediately (by
induction) leads to a contradiction, since the empty assignment is admissible and falsifies the
last (empty) clause in Π, and, by definition, no admissible partial assignment falsifies any
clause of REFF

s,t.
Let then σ be an admissible partial assignment falsifying a clause E in Π. Without

loss of generality, assume that σ is a minimal (with respect to inclusion) admissible partial
assignment with this property.

Let Q be the variable resolved on to obtain E from E0 and E1. If Q ∈ dom(σ), then σ

already falsifies either E0 or E1. So assume that Q ̸∈ dom(σ). We consider two cases.
Case 1. Suppose that for some (i, j) ∈ [s] × [t], Q ∈ D(i, j, ·, ·) or Q ∈ V (i, j, ·) (resp.

Q ∈ I(j, ·) and i = 1). Note that by (A1), (A2), and (A3), no variable from D(i, j, ·, ·) ∪
V (i, j, ·) ∪ L(i, j, ·) ∪ R(i, j, ·) (resp. D(1, j, ·, ·) ∪ I(j, ·)) is in dom(σ), and, moreoever, for
any j′ ∈ [t], it is not the case that L(i + 1, j′, ·) or R(i + 1, j′, ·) is set to j by σ. Therefore,
we can extend σ to a partial assignment σ′ as follows. Set D(i, j, ·, ·) to any non-tautological
clause containing n literals, unless (i, j) = (s, t), in which case set D(i, j, ·, ·) to the empty
clause. In case i ≥ 2, set V (i, j, ·) to an arbitrary value ℓ ∈ [n]; in case i = 1, set I(j, ·) to
any m ∈ [r] such that the clause Cm is a subset of the clause to which we have set D(1, j, ·, ·).
(Here we use that F is unsatisfiable.) It is straightforward to check that σ′ is admissible.
Since Q ∈ dom(σ′), σ′ falsifies E ∪ {Q1−σ′(Q)}, of which either E0 or E1 is a subset.

Case 2. Suppose that for some (i, j) ∈ ([s] \ {1}) × [t], Q ∈ L(i, j, ·) (if Q ∈ R(i, j, ·),
we proceed in a completely analogous way). We may assume that D(i, j, ·, ·) is set to some
clause Ci,j by σ and V (i, j, ·) is set to some ℓ ∈ [n] by σ; if not, set them both as described
in Case 1. We now concentrate on the level i − 1. Since the index-width of E is at most w

and σ is a minimal admissible partial assignment falsifying E,

|{j′ : D(i − 1, j′, ·, ·) is set by σ}| ≤ 2w. (54)

This is because D(i − 1, j′, ·, ·) can be set by σ for two reasons: either (i − 1, j′) is mentioned
in E (which, together with (A2) and (A3), implies that D(i − 1, j′, ·, ·) is set by σ) or there is
some j′′ ∈ [t] such that a literal of a variable from L(i, j′′, ·) or R(i, j′′, ·) is in E (which forces
σ to set L(i, j′′, ·) or R(i, j′′, ·), respectively, in order to falsify the literal) and σ happens to
set L(i, j′′, ·) or R(i, j′′, ·), respectively, to j′ (and therefore by (A2) D(i − 1, j′, ·, ·) must be
set by σ too).
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We extend σ to a partial assignment σ′ as follows. Set L(i, j, ·) to any j′ that is not
from the set in (54). Such j′ exists because 2w < t. Set D(i − 1, j′, ·, ·) to the clause
Ci−1,j′ := (Ci,j \ {¬xℓ}) ∪ {xℓ}, where Ci,j and ℓ are as above. Finally, if i ∈ {3, . . . , s},
then either Ci−1,j′ has less than n literals and we set V (i − 1, j′, ·) to any ℓ′ ∈ [n] such that
no literal of xℓ′ is in Ci−1,j′ , or Ci−1,j′ has n literals, in which case we set V (i − 1, j′, ·)
arbitrarily. If i = 2, then by (A4), (9), and the definition of Ci−1,j′ we know that Ci−1,j′ has
n literals, and we set I(j′, ·) to any m ∈ [r] such that Cm ⊆ Ci−1,j′ . (Here we use that F is
unsatisfiable.) This finishes the definition of σ′.

It is again easy to verify that σ′ is admissible. Because Q ∈ dom(σ′), σ′ falsifies
E ∪ {Q1−σ′(Q)}, of which one of E0, E1 is a subset. ◀

H Proof of Theorem 18

Let k ≥ 1 be given. Take δ and n0 as given by Theorem 16 for a = k. If necessary, increase
n0 so that it satisfies

β(k)n0 > k + 1. (55)

Let n, r, s, t be integers satisfying (10), and let F satisfy the hypothesis of the theorem.
Assume for a contradiction that there is a Res(k) refutation Π of RkREFF

s,t of length at most
2β(k) t

nk−1 .
Recall the random variable A from Definition 15. We have that with probability 2−k,

(a) (s, t) ∈ A.

By the Chernoff bound and the union bound, with probability at least 1 − se−t2−k/8,
(b) for each i ∈ [s] the cardinality of A ∩ ({i} × [t]) is at least t/2k+1.
We have

se−t2−k/8 = 2log s− t log e

2k+3 ≤ 2log t− t log e

2k+3 ≤ 2log n0− n0 log e

2k+3 < 2−(k+1),

where we used s ≤ t, n0 ≤ s (from (10)), and n0 log e
2k+3 − log n0 > β(k)n0 > k + 1 (by (55)).

By Theorem 16 and the union bound, with probability at least 1 − |Π| · 2− t

nk−12k+5 γ(k),
(c) for every line G in Π, hi(G↾ρk) ≤ t/2k+5.
We have

|Π| · 2− t

nk−12k+5 γ(k) ≤ 2β(k) t

nk−1 · 2− t

nk−12k+5 γ(k) = 2−β(k) t

nk−1 ≤ 2−β(k)n0 < 2−(k+1),

where we used nk ≤ t, n0 ≤ n (from (10)), and (55).
It follows that there exists ρk such that (a), (b) and (c) hold. Fix any such ρk and denote

it by ρ. We now restrict RkREFF
s,t ↾ρ some more before we apply Theorem 11.

For each level i ∈ [s] select any t′ := ⌊t/2k+1⌋ − 2 home pairs (i, j) of variables of
RkREFF

s,t ↾ρ (they exist thanks to (b)), making sure to include the pair (s, t) in the selection.
Denote the set of selected pairs by B. Define a partial assignment ν : Var(RkREFF

s,t ↾
ρ) → {0, 1} by mapping all the variables with not selected home pairs so that they form an
arbitrary resolution derivation from F , that is, so that ν satisfies every clause of RkREFF

s,t ↾ρ

that contains a literal of a variable in dom(ν). (This derivation may require two clauses per
level, which is why we selected only ⌊t/2k+1⌋ − 2 on each level.) Note that ν is respectful.
Hence by (c) and Lemma 21 we have that for any line G in Π↾ρ, hi(G↾ν) ≤ t/2k+5.

Next, define a partial assignment λ as follows. For every (i, j) ∈ B \ ({1} × [t]) and every
j′ ∈ [t] such that (i − 1, j′) ̸∈ B, map both L(i, j, j′) and R(i, j, j′) to 0. Let us verify that
((RkREFF

s,t ↾ρ)↾ν)↾λ is REFF
s,t′ up to a re-indexing of variables determined by a bijection
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that maps, for each i ∈ [s], the elements of B ∩ ({i} × [t]) to (i, 1), . . . , (i, t′). Thanks to
Item a, clauses (41) are satisfied by ρ. All clauses (42) and (43) are satisfied: if (i, j) ∈ B and
(i − 1, j′) /∈ B, then the clause is satisfied by λ, otherwise it is satisfied by ρ or ν. Clauses
(26) - (40) with (i, j) /∈ B are satisfied either by ρ (if (i, j) /∈ A) or by ν. Clauses (26) - (40)
with (i, j) ∈ B become, after removing those clauses (28) - (31) that are satisfied by λ and
after the re-indexing of variables, the clauses (11) - (25) with t replaced by t′. (Here notice
that clauses (32) become (17) thanks to (s, t) ∈ B.) Hence ((RkREFF

s,t ↾ρ)↾ν)↾λ is indeed
REFF

s,t′ up to the re-indexing of variables.
Let us now show that for a line G in (Π↾ρ)↾ν we have that G↾λ is, after the re-indexing

of variables, strongly represented by a decision tree over REFF
s,t′ of height at most t/2k+5. As

we already verified, hi(G) ≤ t/2k+5, and therefore there is a tree T over REFF
s,t of minimum

height which strongly represents G and whose height is at most t/2k+5. Define a tree T ↾λ

by deleting all edges (and the corresponding subtrees) in T whose label is of the form
(Ci,j , ℓ, j′, j′′) with (i − 1, j′) /∈ B or (i − 1, j′′) /∈ B. T ↾λ is, after relabelling its nodes and
edges according to the re-indexing bijection, a decision tree over REFF

s,t′ . With every branch
π of T ↾ λ we associate a partial assignment πT ↾λ : Var(((RkREFF

s,t ↾ ρ) ↾ ν) ↾ λ) → {0, 1}
defined via the re-indexing bijection and Definition 7, understanding the relabelled T ↾λ as
a tree over REFF

s,t′ . But every branch π of T ↾λ is also a branch of T , hence Definition 7
with T (which is a tree over REFF

s,t) says how π should be viewed as a partial assignment to
Var(REFF

s,t); let us denote the partial assignment by πT for clarity. It is easy to see from
the definitions that for every branch π in T ↾λ, dom(λ) ∩ dom(πT ↾λ) = ∅ and πT ⊆ λ ∪ πT ↾λ.
It follows that G↾λ is strongly represented by T ↾λ. The tree T ↾λ has, of course, height at
most t/2k+5.

We can now apply Theorem 11 taking REFF
s,t′ (i.e., the re-indexed ((RkREFF

s,t ↾ρ)↾ν)↾λ)
for H, t′ for t, and t/2k+5 for h, to obtain a resolution refutation of REFF

s,t′ of index-width
at most 3t/2k+5.

But we have

2 · 3t/2k+5 < t/2k+2 < ⌊t/2k+1⌋ − 2 = t′,

where the second inequality follows from (10) and (55). Therefore, we can use Theorem 17,
taking 3t/2k+5 for w and t′ for t, to conclude that any resolution refutation of REFF

s,t′ has
index-width greater than 3t/2k+5. That is a contradiction.

I Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Denote by F the well-known CNF ¬PHPn+1
n called the negation of

the pigeonhole principle, expressing that a multi-valued function from n + 1 to n is injective.
It consists of r := n + 1 + (n3 + n2)/2 clauses in ñ := (n + 1)n variables.

Define An := SATñ,r ↾γF , where γF is as in Proposition 19.
Since by [17, 19] there exists α > 0 and an integer n1 such that for every n ≥ n1,

¬PHPn+1
n has no Res(k) refutations of size at most 2nα , the same is true for An. This is

because by Proposition 19 there is a substitution τ such that An ↾τ is ¬PHPn+1
n together

with some tautological clauses, and if Π is a Res(k) refutation of An then Π↾τ is a Res(k)
refutation of An ↾τ . This shows Item i.

Define Bn,k := RkREFF
s,t, where we set s := ñ + 1 and t := ñk.

Let δ > 0 and integer n0 witness Theorem 18. Set n2 ≥ n0 so that the hypotheses (10)
with ñ in place of n hold with our choice of r, s, t (as functions of ñ) for all ñ ≥ n2. By that
theorem, for every ñ ≥ n2, any Res(k) refutation of Bn,k has size greater than 2β(k)ñ. Item ii
follows.
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Note that RkREFñ,r
s,t ↾γF is RkREFF

s,t, because γF turns the clauses (6) into (26) (and
the clauses satisfied by γF are removed). By Theorem 6 there is a Res(2) refutation of
SATñ,r ∧ RkREFñ,r

s,t of size O(k2ñ3k+3). Hence the same holds for An ∧ Bn,k = SATñ,r ↾γF ∧
RkREFñ,r

s,t ↾γF . This gives Item iii. ◀

Theorem 2 follows immediately from the more general Theorem 24 below. A function
T : N → N is called time-constructible if there is an algorithm that when given 1n (the string
of n many 1’s) computes 1T (n) in time O(T (n)). We call a function T : N → N subexponential
if T (n) ≤ 2no(1) .

▶ Theorem 24. Let T : N → N be time-constructible, non-decreasing and subexponential.
If there is an integer k ≥ 1 such that Res(k) is automatable in time T , then there are
c1, c2, c3, c4 > 0 and an algorithm that when given as input a 3-CNF F in n variables decides
in time c3(T (c1nc2k) + nk)c4 whether F is satisfiable.

Proof. Assume that for some integer k ≥ 1 the system Res(k) is automatable in time T

satisfying the assumptions of the theorem. Set r, s and t as functions of n as follows: r :=
(2n

3
)
,

s := n + 1, t := nk+3.
By Theorem 6 there are integers c1, c2 > 0 such that SATn,r ∧ RkREFn,r

s,t has a Res(2)
refutation Π of size at most c1nc2k; if necessary, increase c1 and c2 so that the size of Π plus
the size of the formula RkREFn,r

s,t is at most c1nc2k.
Let δ > 0 and integer n0 > 0 witness Theorem 18. Let n1 > n0 be such that for all

n ≥ n1,

r ≤ t ≤ 2δn (56)

and

2β(k) t

nk−1 > T (c1nc2k), (57)

where β(k) is as in Theorem 18. Here we use that T is subexponential.
Define algorithm M as follows. Given as input a 3-CNF F in n variables, check if n ≥ n1.

If n < n1, use brute force to decide if F is satisfiable or not, and output the answer. If n ≥ n1,
compute the formula RkREFF

s,t and run the automating algorithm on this formula for up to
T (c1nc2k) steps. If the automating algorithm returns a Res(k) refutation of RkREFF

s,t, then
output “satisfiable”. Else output “unsatisfiable”.

Since both computing RkREFF
s,t from F and checking whether the output of the auto-

mating algorithm is a Res(k) refutation of RkREFF
s,t are polynomial-time procedures, and

since T is time-constructible, it follows that there are c3, c4 > 0 such that the running time
of M is at most c3(T (c1nc2k) + nk)c4 . It suffices to show that M gives the correct answer on
3-CNFs F in n ≥ n1 variables such that each clause of F has exactly three literals. Let F be
such a 3-CNF, and let r′ be the number of its clauses. We have r′ ≤ r =

(2n
3

)
.

Assume first that F is satisfiable. Let γF and τ be as in Proposition 19, and let ν be a
satisfying assignment for F . We have

(((SATn,r′
∧RkREFn,r′

s,t )↾γF )↾τ)↾ν = ((SATn,r′
↾γF )↾τ)↾ν ∧RkREFn,r′

s,t ↾γF = RkREFF
s,t,

because by Proposition 19, (SATn,r′
↾γF )↾τ is F together with some tautological clauses in

the variables x1, . . . , xn. Let Π′ be the Res(2) refutation of SATn,r′
∧ RkREFn,r′

s,t given by
Theorem 6. Then Π′′ := ((Π′ ↾γF )↾τ)↾ν is a Res(2) refutation of RkREFF

s,t (note that it is
actually a resolution refutation), and we have
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size(Π′′) + size(RkREFF
s,t) ≤ size(Π′) + size(RkREFn,r′

s,t )
≤ size(Π) + size(RkREFn,r

s,t )
≤ c1nc2k.

Because T is non-decreasing, the automating algorithm finds within the allotted time
T (c1nc2k) a Res(k) refutation of RkREFF

s,t, and M outputs “satisfiable”.
Assume now that F is unsatisfiable. From our choices of r, s, t and n1 and from (56)

it follows that the hypotheses (10) of Theorem 18 are met for all n ≥ n1, and the same is
true with r′ in place of r. By that theorem, any Res(k) refutation of RkREFF

s,t has size
greater than 2β(k) t

nk−1 . Thanks to (57) this implies that the automating algorithm cannot
output any Res(k) refutation of RkREFF

s,t within the allotted time. M therefore outputs
“unsatisfiable”. ◀
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