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Abstract
A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision
reduction for the time-bounded Kolmogorov complexity problem – that is, the problem of determining
whether the length of the shortest time-t program generating a given string x is at most s.

In this work, we consider the more “robust” version of the time-bounded Kolmogorov complexity
problem, referred to as the GapMINKT problem, where given a size bound s and a running
time bound t, the goal is to determine whether there exists a poly(t, |x|)-time program of length
s + O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for
the GapMINKT problem; R has a running-time bound of 2ϵn for any ϵ > 0 and additionally only
queries its oracle on “thresholds” s of size s + O(log |x|). As such, we get that any algorithm with
running-time (resp. circuit size) 2αspoly(|x|, t, s) for solving GapMINKT (given an instance (x, t, s),
yields an algorithm for finding a witness with running-time (resp. circuit size) 2(α+ϵ)spoly(|x|, t, s).

Our second result is a polynomial-time search-to-decision reduction for the time-bounded
Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown
by Liu and Pass (FOCS’20), heavily relying on cryptographic techniques. Our reduction is more
direct and additionally has the advantage of being length-preserving, and as such also applies in the
exponential time/size regime.

A central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of
Information Theorem.
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1 Introduction

In his historical account, Trakhtenbrot [22] describes efforts in the 1960s in the Russian
Cybernetics program to understand problems requiring brute-force search to solve [22, 23, 24].
The so-called Perebor (Russian for brute-force search) conjectures refer to the conjectures
that certain types of, what today are referred to as “meta-complexity”, problems require
brute-force search to be solved. These include (a) the Minimimum Circuit Size problem
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(MCSP) [12, 22] – finding the smallest Boolean circuit that computes a given function x, and
(b) the Time-Bounded Kolmogorov Complexity Problem [14, 21, 2, 13, 6, 20] – computing
the length, denoted Kt(x) of the shortest program (evaluated on some particular Universal
Turing machine U) that generates a given string x, within time t, where t = poly(|x|) is a
polynomial.

Our focus in this paper is on the Time-Bounded Kolmogorov Complexity problem. As
explained by Trakhtenbrot, two versions of this problem were considered since the 1960s.

The “existential” (i.e., decisional) version: Given a string x and a threshold s,
determining whether Kt(x) is less than “roughly” s.
The “constructive” (i.e., search) version: Given a string x and a threshold s, if
Kt(x) is less than “roughly” s, finding a program π of length “roughly” s that certifies
this.

Both of these problems are conjectured to require brute-force search: that is, to require
algorithms with running time close to 2n where n = |x| is the size of the given instance x.
This is referred to as the Perebor conjecture (with respect to the time-bounded Kolmogorov
complexity problem) and can be viewed as an early precursor, and stronger form, of the
NP ≠ P conjecture (as the problem trivially resides in NP). In fact, not only no non-trivial
uniform algorithms are known for the search versions1, but there are also no non-trivial
(uniform) algorithms (i.e., beating brute-force search) even if we have access to an oracle
solving the decisional version: That is, the only search-to-decision reduction is simply to
ignore the decision oracle and solve the search version using brute-force search.2

The central result of this paper is developing the first non-trivial search-to-decision
reduction for a gap-version of time-bounded Kolmogorov complexity; more precisely, we
develop such a reduction with running time 2ϵn for every ϵ > 0.

We additionally address search-to-decision reductions in the average-case regime (w.r.t.
the uniform distribution over instances). There, recently, Liu and Pass demonstrated a
polynomial time reduction [16], but the reduction is not length preserving and as such it
cannot be applied in the exponential regime. As our second result, we present a new direct
proof of the result of [16], but achieve also a length-preserving polynomial-time reduction
(which thus also applies in the exponential regime).

1.1 Our Results
To explain our results, let us first recall the MINKT and GapMINKT problems.

The GapMINKT Problem

Following Ko [13], we let MINKT denote the set of strings (x, 1t, 1s) such that Kt(x) ≤ s.
Since the notion of Kolmogorov complexity is highly dependent on the choice of the universal
Turing machine, a natural – and more “robust” – variant of this problem allows for (a) some
polynomial overhead in terms of the running time, and (b) some logarithmic slackness in
terms of the threshold [15, 13]. Following Hirahara [9], we refer to GappMINKT as the
promise problem where:

1 As we shall discuss shortly, two recent works [17, 11] demonstrate circuits (i.e., non-uniform algorithms)
of size 24n/5n+o(n) that solve it.

2 As just mentioned, in the non-uniform regime, non-trivial algorithms are known, but the same algorithm
solves both the search and the decisional problem, so also in the non-uniform setting, the best known
approach is to simply ignore the decisional oracle and solving the search problem from scratch.
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YES-instances consist of strings (x, 1t, 1s) where Kt(x) ≤ s;
NO-instances consist of strings (x, 1t, 1s) where Kp(t,|x|)(x) > s + log p(t, |x|);

and we say that an algorithm A solves GapMINKT if there exists some polynomial p such
that A decides GappMINKT. Furthermore, we say that A solves the search version of
the problem, search- GapMINKT if there exists some polynomial p such that given any
GappMINKT YES-instance (x, 1t, 1s), A outputs a program Π certifying that (x, 1t, 1s)
is not a NO-instance (i.e, the program can run in time p(t, |x|) and have length at most
s + log p(t, |x|).

Non-trivial Search-to-Decision for GapMINKT

Our first (and main) result, is a non-trivial search-to-decision reduction for GapMINKT.

▶ Theorem 1 (Informal). For any ε > 0, and every polynomial τ , there exists a random-
ized oracle-aided algorithm F such that for every A that decides Gapτ MINKT, F A solves
search- GapMINKT.

Moreover, on input (x, 1t, 1s) F runs in time 2ϵspoly(|x|, t, s), and only queries A on
inputs (y, 1t′

, 1s′) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and s′ ≤ s + log poly(|x|, t, s).

F A solves search- GapMINKT with gap τO(1/ϵ). We remark that the reduction is not
fully length preserving – the reduction invokes its oracle on statements x′ that are longer
than the original statement x, and at first sight, it may thus seem that the reduction is not
useful in the regime of exponential hardness.

The key point, however, is that it only invokes the oracle on thresholds s′ that are of
roughly the same size as the original threshold s. Therefore, since the hardness of the
GapMINKT problem most naturally should be thought to be a function of the threshold
s (as there is a trivial poly(|x|, t, s)2s algorithm, namely brute-force search), this reduction
still yields a non-trivial search-to-decision reduction in the exponential regime:

▶ Corollary 2. For any ϵ > 0, α > 0, τ ∈ poly, assume that there is an algorithm that solves
Gapτ MINKT in time (resp. size) 2α·spoly(|x|, t, s). Then there exists an algorithm that
solves search- GapMINKT in time (resp. size) 2(α+ϵ)s · poly(|x|, t, s) on inputs (x, 1t, 1s).

An Average-case Search-to-Decision Reduction

We turn to considering the average-case regime. Here we provide a polynomial-time reduction
that additionally is length-preserving and as such directly also applies in the exponential
regime. (This is in contrast to the earlier average-case search-to-decision reduction of [16]
that did not apply in the exponential regime.)

▶ Theorem 3. For every p, t ∈ poly there exists p̂ ∈ poly and t′ ∈ poly, and an efficient
oracle-aided algorithm F such that the following holds. Let A be an algorithm that computes
Kt′ with probability 1 − 1/p̂ on the uniform distribution. Then F A solves search- Kt with
probability 1− 1/p on the uniform distribution.

Moreover, on input x ∈ {0, 1}n, F makes only queries of the form x||y with y ∈ O(log n).

As corollaries, we thus get:

▶ Corollary 4 (reproving [16]). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that
the following holds: if there exists a polynomial time (reps. 2o(|x|) time) algorithm that
computes Kt′ with probability 1− 1/p̂ over the uniform distribution, then exists polynomial
time (resp. 2o(|x|) time) algorithm that solves search- Kt with probability 1 − 1/p on the
uniform distribution. Moreover, the same holds also in the non-uniform setting (i.e., w.r.t.
polynomial-size and respectively 2o(|x|) size algorithms).

CCC 2024
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▶ Corollary 5 (new). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the following
holds: if there exists a constant α > 0 and a 2α·|x|poly(|x|) time (reps. size) algorithm
that computes Kt′ with probability 1− 1/p̂ over the uniform distribution, then there exists a
2α·|x|poly(|x|) time (resp. size) algorithm that solves search- Kt w.p 1− 1/p over the uniform
distribution.

We note that while our reduction improves on [16] in the length-preserving aspect (and
additionally is significantly simpler), it also has some disadvantages: in particular, in [16] an
oracle for Kt′ for any polynomial t′ can be used to solve search- Kt for any other polynomial
t, whereas in our case, the reduction only works as long as t is sufficiently larger than t′.
Additionally, the same thing holds also with respect to the error probability polynomials p̂, p.
The reasons for these “amplifications” is that [16] passes through cryptographic techniques
(hardness amplification [25], and constructions of pseudorandom generators [7]) that blow up
the input size.

1.2 Related Works
While, as far as we know, no non-trivial search-to-decision reductions were previously known
for GapMINKT in the worst-case regime, there are several works that consider variants of
this question:
Slightly Subexponential Search-to-Decision for MFSP: An elegant work by Ilango con-

siders a formula size variant of the classic Perebor conjecture problem, MFSP, where the
goal is to find the shortest formula computing some given function. He demonstrates
a search-to-decision reduction with running-time 20.67n for MFSP. As far as we know,
this is the first result to demonstrate any non-trivial search-to-decision reduction for
a Perebor-style problem. (We note that in contrast, we here consider the standard
time-bounded Kolmogorov complexity problem, and we also get a smaller running time
of 2ϵn for any ϵ > 0.) Ilango also gets an improved running time of 2n/ log log n if only
requiring an algorithm that succeeds on most (i.e., a 1− 1/o(1)) fraction of instances. In
contrast, in this setting, we get a polynomial running time.

Average-case Search-to-Decision for MINKT: Liu and Pass [16] show a polynomial-time
algorithm that solves the search- GapMINKT) on average over the uniform (over x, and
for every t, s) given access to an oracle that solves GapMINKT on average. Our second
result is a strict strengthening of this result since our reduction is length-preserving (i.e.,
it only queries its oracle on input lengths that are O(log n) longer), and as such it also
applies in the exponential regime (whereas the result of [16] only apply in the polynomial
to subexponential regimes).

Conditional and Non-black-box Search-to-Decision for GapMINKT: An intriguing work
by Hirahara [10] presents a non-black-box search to decision reduction for GapMINKT
in the polynomial regime, under standard derandomization assumptions. More pre-
cisely, assuming that E does not have subexponential-size circuits, he shows that if
GapMINKT has a (deterministic, wlog due to the assumption) polynomial-time decider,
then search- GapMINKT has a polynomial-time algorithm. His result does not extend
to the non-uniform setting, or to algorithms running in time even just nlog n due to the
fact that the code of the GapMINKT attacker gets incorporated into the witness for the
search- GapMINKT problem. In contrast, ours is unconditional; on the other hand, ours
is only meaningful in the exponential regime (as the running time of the reduction is
subexponential).
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A different paper by Hirahara [8] gets an unconditional non-black-box search-to-decision
reduction for the polynomial regime for Gapτ MINKT w.r.t τ = 2

√
n.3 This result also

does not apply in the non-uniform setting, but does extend to the subexponential (but
not exponential) regime.

Search-to-Decision Reductions w.r.t. Black-box Solvers: In a very recent work, the cur-
rent authors consider black-box solvers for the MINKT problem that solve the problem
no matter what the underlying Universal Turing Machine U is, given black-box access to
it. A polynomial-size black-box search-to-decision reduction is demonstrated with respect
to such attackers. In contrast, we here consider all, and not just black-box, solvers.

Non-uniform Algorithms Beating Perebor: As mentioned above, two independent recent
works [17, 11] develop algorithms solving the MINKT problem using a circuit of size
24n/5poly(n), disproving the “non-uniform” version of the Perebor conjecture. These
algorithms directly also work for the search version of the problem and as such, even in
the non-uniform regime, it was not known how to make use of an GapMINKT oracle to
solve the search version better than simply solving it from scratch.

1.3 Proof Overview
We provide a brief overview of the proofs of Theorem 1 and 3, starting with Theorem 1,
which proceeds in two steps.

Worst-case Search-to-Decision Reduction for “Shallow” Instances

As an intermediary step, which may be of independent interest, we start by providing a
search-to-decision reduction whose running time is a function of the so-called computational
depth of the instance x we are reducing from (i.e., that we want to find a witness for). Recall
that the computational depth [1] of an instance x is defined as cdt(x) = Kt(x)−K(x). Note
that by a standard counting argument, we have that “computationally deep” strings (i.e.,
string x such that cdt(x) > O(log(|x|)) are rare.

We start by presenting a search-to-decision reduction with running time

2cdt(x)poly(|x|, t, s)

(which thus for most strings runs in polynomial time). The key idea behind the reduction is
the following. Given a string x, and a minimal-length t-time program Π generating x, the
Kt′-complexity of the string x||Π, for t′ = poly(|x|, t), is not significantly higher than the
Kt-complexity of the string x – since the string x||Π also can be generated by a self-printing
variant of Π. Furthermore, the above argument also holds even if we concatenate not only
the whole of Π but even just a prefix of it.

Thus, if we have access to a GapMINKT oracle, we ought to be able to find Π “bit-by-
bit” by simply concatenating a bit to x and checking if the Kt′-complexity remains below
s + O(log |x|). In more detail, we keep track of a set S of candidates y (whose prefix is x) and
at each iteration concatenate each bit b ∈ {0, 1} to y and check whether the Kt′ -complexity
of y||b remains small, and if so adding y||b to the set S. By the argument above and a
standard induction, we have that at iteration i, y = x||Π≤i (where Π≤i denotes the i first bit
of Π) must be in the set S, so we can finally find Π by simply going over all the elements
y = x||Π′ of S and checking whether Π′ generates x.

3 The results is actually a bit stronger – the running time only increases by a polynomial, but the gap
increases by

√
n, as opposed to the desired O(log n).

CCC 2024
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The problem, of course, is that the set S could contain lots of other elements. This is
where computational depth enters the picture. To see why, let us first start by showing that
if we had been dealing with Kolmogorov complexity, as opposed to t-bounded Kolmogorov
complexity, then the size of S can never be more than of polynomial size (in |x|, t). In fact,
this follows almost directly from Kolmogorov and Levin’s celebrated symmetry of information
(SoI) theorem [26] which states that for any strings a, b, we have that4

K(a||b) ≥ K(a) + K(b|a)−O(log(|a|+ |b|).

Indeed, recall that S consists of all strings y = x||Π whose K-complexity is roughly that of
x; by the SoI theorem, setting a = x and b = Π, we get that K(Π|x) ≤ O(log |x|) and thus
there can be at most poly(|x|) such strings.5

Finally, note that if considering a string x whose computational depth is d, then Kt(x)−
K(x) ≤ d, and as such for each element x||Π that remains in S, we have that

K(x||Π)−K(x) ≤ Kt(x||Π)−K(x)
≤ Kt(x) + O(log |x|)−K(x)
≤ Kt(x) + O(log |x|)− (Kt(x)− cdt(x))
≤ d + O(log |x|)

Thus, by the SoI theorem, we then get that K(Π|x) ≤ d+O(log |x|), and therefore we have
that |S| ≤ 2dpoly(|x|). As such, the running of our algorithm becomes 2cdt(x)poly(|x|, t, s),
as desired.

Dealing with Deep Instances

Note that given any instances x whose computational depth is bounded by ϵ|x|, then the
running time of the above algorithm becomes 2ϵ|x|poly(|x|, t, s), as desired. If not, and in
case the algorithm’s running time becomes larger than this, we must have that the set S
produced is bigger than 2ϵ|x|. Our key idea now is to simply stop the algorithm once the size
of S reaches 2ϵ|x|, and at this point selecting a random element in x′ ∈ S, and restarting the
algorithm on x′ instead (since a program generating x′ can easily be modified to a program
generating x). The reason for doing this is that since the set S is “big”, by choosing a random
element, we are guaranteed that the actual (i.e., not time-bounded) Kolmogorov complexity
of the chosen string x′ is roughly ϵn larger than that of x, yet since all strings in S have
roughly the same time-bounded Kolmogorov complexity (s + O(log |x|), we must have that
the computational depth of x′ is at least ϵn smaller than that of x. In essence, by picking
this random element, we are able to get a new instance x′ such that (a) the witness for x′ is
also a valid witness for x, yet (b) the computational depth of x′ is ϵ|x| smaller than that of x.

By iteratively continuing this process, we eventually (after 1/ϵ steps) end up with an
element with small computational depth and thus manage to find a witness in the desired
running time.

4 Recall that the conditional Kolmogorov complexity of b given a, denoted by K(b | a) is the minimal
length of a program that outputs b given input a.

5 This result may be of independent interest. It shows a polynomial-time “list-to-decision” reduction for
Kolmogorov-complexity – that is, a polynomial-time algorithm that given access to a decision oracle
outputs a polynomial-length list of candidate witnesses, one of which is correct. The reason why this
does not yield a search-to-decision reduction is that we cannot, in polynomial-time, determine if a
witness is correct by running it.
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Let us highlight why this approach only gives an algorithm with subexponential running
time: The issue is that each time we pick a random element x′ ∈ S, the time-bounded
Kolmogorov complexity of the element may increase by O(log |x|), so we can only afford a
constant number of iterations, which is why we need to make sure that we can eliminate a
constant fraction of the computational depth in each step. (An additional reason is that the
running-time t′ blows up as a polynomial of t in each iteration, so again, we can only afford
a constant number of iterations.)

Search-to-Decision in the Average-case Regime

We turn to discussing our search-to-decision reduction in the average-case regime. The
goal is to show how to use an oracle that (decides, or equivalently, computes) Kt with high
probability on the uniform distribution to find a Kt′ witness with high probability over the
uniform distribution for a polynomially related t′.

Towards this, we will show a reduction that again works in the worst-case regime, but
only on computationally shallow instances – that is, instances x with computational depth
O(log |x|). This reduction will improve on the one above in the sense that it is length
preserving; additionally, due to the length-preserving aspect of the reduction, it will also
follow that if we only require the reduction to work with high probability (over the uniform
distribution) over instances, then it suffices for the oracle to also work with high probability.

The idea is to, given an instance x, consider strings y = x||i||Πi, where Πi is the ith
“chunk” (of length O(log|x|)) of the smallest time-bounded program Π generating x; such
strings still have roughly the same time-bounded Kolmogorov complexity as x, and by
the same argument based on symmetry-of-information, we can argue that there cannot be
more than polynomially many strings y that have x as a prefix and also have roughly the
same time-bounded Kolmogorov complexity as x. This enables us to recover a small set of
candidates for (most) of the “coordinates” of Π. But, even if there are just 2 candidates
for each such coordinate, there will still be too many options to try out, as the number of
coordinates is polynomial in |Π|/|Πi| which can be as large as |x|/ log|x|.

To solve this problem, we will rely on the notion of a list-recoverable error-correcting
code [5, 3] – in essence, a type of an error-correcting code (ECC) from which we recover a
polynomial-length list of candidate messages (one of which is guaranteed to be the true one)
given a polynomial-length candidate list for each symbol of the encoding. Roughly speaking,
we find all strings y = x||i||zi that have small time-bounded Kolmogorov complexity, and
then apply the list-recoverable procedure of the ECC. By the existence of efficient list-
recoverable codes [5] (where both the encoding and decoding can be done efficiently), we
are still guaranteed that when zi is the ith symbol of the encoding of Π, then y indeed
has small time-bounded Kolmogorov complexity; next, the above symmetry-of-information
based argument will ensure that we can only have a “small” number of candidates for
most coordinates i, and as such, the list-recovering procedure will indeed find some short
program Π.

There is just one catch with this argument: using the above SoI based argument we
will get a too weak bound on the number of possible candidates for each symbol. We note,
however, that we can use the same argument to bound the total number of strings of the
form (x, i, z) with small time-bounded Kolmogorov complexity, and as such, use an averaging
argument to argue that for, say 90% of the coordinates, we get a sufficiently small list
of symbols. The issue remaining is that we can no longer rely on the list-recoverability
property to recover the message (as we no longer have a short list for every symbol of the
codeword). Luckily, there exist list-recoverable codes satisfying exactly this property (i.e.,

CCC 2024
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that we can recover a polynomial-length list of messages, even if we only have a bound on
the set of symbols, for a constant fraction of the coordinates) – indeed, as shown in [5, 4],
the Reed-Solomon code also satisfies such list-recoverability “with errors”.

To finally see why this reduction also works in the average-case regime, first recall that
computationally deep strings are rare, so the reduction will work with high probability over x,
as long as the oracle works on all instances. Next, note that the reduction, given an instance
x, only queries its oracles on instances of roughly the same length as x, and that have x as a
prefix, which suffices to argue that we only need an oracle that works with high probability.

2 Preliminaries

2.1 Notations
All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand
for the set of all polynomials. Given a vector v ∈ Σn, let vi denote its ith entry, let
v<i = (v1, . . . , vi−1) and v≤i = (v1, . . . , vi). For x, y ∈ {0, 1}∗, we let xy and x||y denote the
concatenation of the strings x an y. An oracle-aided algorithm A is an algorithm with an
oracle access. Given a (randomized) function O, we use AO to denote the algorithm A when
using O as the oracle.

2.2 Distributions and Random Variables
When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a
(discrete) distribution P, let x← P denote that x was sampled according to P. Similarly,
for a set S, let x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity
Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗

is the length of the shortest program Π = (M, y) such that, when simulated by a universal
Turing machine, Π outputs x in t steps. Here, a program Π is simply a pair of a Turing
Machine M and an input y, where the output of Π is defined as the output of M(y). When
there is no running time bound (i.e., the program can run in an arbitrary number of steps),
we obtain the notion of Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We
now define the notion of Kolmogorov complexity with respect to the universal TM U.

▶ Definition 6. Let t ∈ N be a number. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t) = x}

where |Π| is referred to as the description length of Π. Similarly, for every z ∈ {0, 1}∗ define

Kt
U(x | z) = min

Π∈{0,1}∗
{|Π| : U(Π(z), 1t) = x}.

When there is no time bound, we define

KU(x) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N s.t. U(Π, 1t) = x}

and

KU(x | z) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N s.t. U(Π(z), 1t) = x}.
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It is well known that for every x, Kt(x) ≤ |x|+ c, for some constant c depending only on the
choice of the universal TM U.

▶ Fact 7. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗,
and for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

We will also use the following fact, which states that we can efficiently encode a pair
(x, y) with a small overhead.

▶ Fact 8. There exists q ∈ poly such that the following holds or every x, y ∈ {0, 1}∗,

Kq(|xy|)(x, y) ≤ |x|+ |y|+ log|x|+ 2 log log|x|+ O(1).

We will use the following bound on the Kolmogorov complexity of strings sampled from
the uniform distribution.

▶ Lemma 9. For any universal TM U, any string x ∈ {0, 1}∗ and any set S, it holds that

Pry←S [KU(y | x) < log|S| − i] ≤ 2−i.

In this paper, unless otherwise stated, we fix some universal Turing machine U that can
emulate any program Π with polynomial overhead, and let Kt = Kt

U and K = KU.
The computational depth of a string is the difference between its Kolmogorov complexity

and its time-bounded Kolmogorov complexity.

▶ Definition 10 (Computational depth [1]). For x ∈ {0, 1}∗ and t ∈ N, the computational
depth of x is defined to be cdt(x) = Kt(x)−K(x).

Since, by a simple counting argument, most strings x ∈ {0, 1}n have Kt(x) close to n, it
holds that most strings have small computational depth.

▶ Fact 11. For every n ∈ N and every t ∈ N, Prx←{0,1}n [cdt(x) > i] ≤ 2−i.

We will also use the Symmetry of Information lemma.

▶ Theorem 12 (Symmetry of Information [26]). There exists a constant c ∈ N such that for
every x, y ∈ {0, 1}∗,

K(x) + K(y | x) + c log(|x|+ |y|) ≥ K(x||y) ≥ K(x) + K(y | x)− c log(|x|+ |y|)

We next define MINKT and GapMINKT.

▶ Definition 13 (MINKT). MINKT is the following promise problem:
Y = {(x, 1t, 1s) : Kt(x) ≤ s}
N = {(x, 1t, 1s) : Kt(x) > s}

We say that an algorithm A solves search- MINKT if A finds a program Π such that |Π| ≤ s

and U(Π, 1t) = x, for every (x, 1t, 1s) ∈ Y.

We remark that MINKT is actually a language (every possible input is either in Y or in N ),
and we define it as a promise problem for easy comparison with GapMINKT.

▶ Definition 14 (GapMINKT). Let τ ∈ poly be a polynomial such that τ(t, |x|) ≥ t for every
t, x. Then Gapτ MINKT is the following promise problem:
Y = {(x, 1t, 1s) : Kt(x) ≤ s}
Nτ =

{
(x, 1t, 1s) : Kτ(t,|x|)(x) > s + log τ(t, |x|)

}
We say that an algorithm A decides GapMINKT if there exists τ ∈ poly such that A decides
Gapτ MINKT.

We say that a (randomized) algorithm A solves search- GapMINKT if there exists τ ∈ poly
such that A (with probability 1/2) finds a program Π such that |Π| ≤ s + log τ(t, |x|) and
U(Π, 1τ(t,|x|)) = x, for every (x, 1t, 1s) ∈ Y.
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3 Decision-to-Search for Shallow Instances

In this part we prove our search-to-decision reduction for inputs with small computational
depth.

▶ Theorem 15. There exists an oracle-aided algorithm F such that the following holds. Let
A be an oracle that decides GapMINKT. Then F A solves search- MINKT.

Moreover, on input (x, 1t, 1s), F runs in time 2cdt(x)poly(|x|, t, s), and only queries A on
inputs (y, 1t′

, 1s′) with |y| ≤ |x|+ s, t′ ∈ poly(|x|, t), and s′ ≤ s + O(log(|x|+ t)).

Directly from Theorem 15 we get the following corollary.

▶ Corollary 16. The following holds:
Assume that there is a poly-time (resp. poly size) algorithm that solves GapMINKT.
Then there exists an algorithm that solves search- GapMINKT in time (resp. size) 2cdt(x) ·
poly(|x|, t, s) on inputs (x, 1t, 1s).
Assume that for some α > 0 there is an algorithm that solves GapMINKT in time (resp.
size) 2α·spoly(|x|, t, s). Then there exists an algorithm that solves search- GapMINKT in
time (resp. size) 2cdt(x)+α·s · poly(|x|, t, s) on inputs (x, 1t, 1s).

The proof of Theorem 15 is almost immediate from the following lemma, in which the
running time of the algorithm that solves MINKT is larger for high values of the threshold s.

▶ Lemma 17. There exists an oracle-aided algorithm F ′ such that the following holds. Let
A be an oracle that decides GapMINKT. Then F ′A solves search- MINKT.

Moreover, on input (x, 1t, 1s), F ′ runs in time 2s−K(x)poly(|x|, t, s), and queries A on
inputs (y, 1t′

, 1s′) with |y| ≤ |x|+ s, t′ ∈ poly(t), and s′ ≤ s + O(log(|x|+ t)).

Proof of Theorem 15. Let F be the algorithm that given (x, 1t, 1s) runs F ′ on input
(x, 1t, 1s′) for every s′ = 1, . . . , s, until the first execution that outputs a program Π with
U(Π, 1t) = x. The theorem follows since the algorithm halts when s′ = Kt(x). ◀

We next prove Lemma 17. In the proof of Lemma 17 we will use the following claim.

▷ Claim 18. There exists a polynomial q ∈ poly and a constant c0, such that the following
holds for every x ∈ {0, 1}∗ with |x| ≥ 2, and every t ∈ N. Let Π a program of length Kt(x)
such that U(Π, 1t) = x. Then for every i ≤ Kt(x), Kq(t,|x|)(x||Π≤i) ≤ Kt(x) + c0 log|x|.

Proof of Claim 18. Let U′ be an efficient program such that U′(Π, i) = U(Π)||Π≤i (where we
encode Π, i using Fact 8), and let q be a polynomial such that q(t, |x|) is an upper bound
on the running time of U′ where t is a bound on the running time of U(Π) (recall that
|Π| = Kt(x) ≤ |x|+ O(1)).

Then Kq(t,|x|)(U(Π)||Π≤i) ≤ |(Π, i)|+ O(1) ≤ |Π|+ 3 log|Π|+ O(1) ≤ |Π|+ 3 log(|x|+ c) +
O(1), where the last inequality holds by Fact 7, for some constant c ∈ N. ◁

To prove Lemma 17, let q ∈ poly and c0 be the polynomial and constant promised by
Claim 18, and consider the following algorithm that finds a minimal Kt-witness.
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▶ Algorithm 19 (F’).
Oracle: GapMINKT decider A.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Set S0 = {x} and k = s + c0 log|x|.
2. For every i = 1, 2, . . . , s:

a. Compute Si =
{

yb : y ∈ Si−1, b ∈ {0, 1} and A(yb, 1q(t,|x|), 1k) = Yes
}

b. If exists y ∈ Si such that y = x||Π and U(Π, 1t) = x, output Π and terminate.
3. Output ⊥.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We will show that the correctness of the above algorithm follows directly by Claim 18.
To bound the running time of Algorithm 19, we will use the following claim.

▷ Claim 20. On input (x, 1t, 1s), Algorithm 19 runs in time 2s−K(x) · poly(|x|, t, s).

Before proving Claim 20, let us use Claim 18 and Claim 20 to prove Lemma 17.

Proof of Lemma 17. We start with the correctness of Algorithm 19. Let (x, 1t, 1s) be the
input for the algorithm, and assume that Kt(x) ≤ s. Let Π be a program of minimal length
such that U(Π, 1t) = x. By Claim 18, the correctness of the oracle A, and by a simple
induction, x||Π≤i is in the set Si for every i ≤ |Π| ≤ s. Therefore, x||Π is in SKt(x), and thus
Algorithm 19 outputs a correct answer.

By Claim 20, Algorithm 19 runs in time 2s−K(x) · poly(|x|, t, s). Finally, it is not hard to
see that Algorithm 19 makes only queries of the form (yb, 1q(t,|x|), 1k) with k = s + c0 log|x|,
and |yb| ≤ |x|+ s. ◀

3.1 Proving Claim 20
We will use the following lemma, that bounds the number of k-bit strings y such that xy has
low Kolmogorov complexity

▶ Lemma 21. There exists a constant c ∈ N such that the following holds for every x ∈ {0, 1}∗

and for every k, ℓ ∈ N.∣∣∣{y ∈ {0, 1}≤k : K(xy) ≤ ℓ
}∣∣∣ ≤ 2ℓ+1−K(x) · (|x|+ k)c

Proof of Lemma 21. Let c be the constant from Theorem 12. By a simple counting
argument, there are at most 2ℓ+c log(|x|+k)+1−K(x) strings y ∈ {0, 1}≤k such that K(y |
x) ≤ ℓ + c log(|x| + k) − K(x). It thus enough to show that for every y ∈ {0, 1}≤k with
K(y | x) > ℓ+c log(|x|+k)−K(x), it holds that K(xy) > ℓ, which is true By Theorem 12. ◀

We are now ready to prove Claim 20.

Proof of Claim 20. The running time of Algorithm 19 is bounded by |
⋃
Si| · poly(|x|, t, s),

and thus it is enough to bound the size of
⋃
Si. Toward this goal, let τ ∈ poly be the

polynomial for which A decides Gapτ MINKT. We get that∣∣∣⋃Si

∣∣∣ ≤ ∣∣∣{y ∈ {0, 1}≤s : A(xy, 1q(t,|x|), 1s+c0 log|x|) = Yes
}∣∣∣

≤
∣∣∣{y ∈ {0, 1}≤s : Kτ(q(t,|x|),|x|)(xy) ≤ s + c0 log|x|+ log τ(q(t, |x|), |x|)

}∣∣∣
≤

∣∣∣{y ∈ {0, 1}≤s : K(xy) ≤ s + c0 log|x|+ log τ(q(t, |x|), |x|)
}∣∣∣

≤ 2s+c0 log|x|+log τ(q(t,|x|),|x|)+1−K(x) · poly(|x|+ s)

= 2s−K(x) · poly(|x|, t, s),
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where the second inequality holds by the correctness of A, the third since K(xy) ≤ Kt(xy)
and the last inequality holds by Lemma 21. ◁

3.2 A List-to-Decision Reduction for K-complexity
We note that Algorithm 19 also gives “list-to-decision” reduction for Kolmogorov-complexity:
given access to an oracle that decides the threshold problem of Kolmogorov-complexity, a
simple variant of Algorithm 19 outputs a list of polynomial length, containing the witness.

▶ Theorem 22. There exists an efficient oracle-aided algorithm F such that the following
holds. Let A be an oracle that given x ∈ {0, 1}∗ and s ∈ N, decides if K(x) ≤ s. Then F A

outputs a list L, such that |L| ∈ poly(|x|), and L contains a K-witness for x: that is, there
exists Π ∈ L for which |Π| = K(x) and U(Π) = x.

As in Theorem 15, the same holds when the oracle A only solves the gap version of the
threshold problem (given x and s, A decides if K(x) ≤ s or K(x) ≥ s + O(log|x|).)

The algorithm is as follows.

▶ Algorithm 23 (F).
Oracle: A.
Input: x ∈ {0, 1}∗.
1. Use A to compute s = K(x).
2. Set S0 = {x} and k = s + c0 log|x|.
3. For every i = 1, 2, . . . , s:

a. Compute Si =
{

yb : y ∈ Si−1, b ∈ {0, 1} and A(yb, 1k) = Yes
}

4. Output Ss.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Proof of Theorem 22. Fix an input x ∈ {0, 1}∗, and let Π be a K-witness for x. By Claim 18
and simple induction, there exists a constant c0 such that Π ∈ Ss. By Lemma 21, it holds
that |Ss| ∈ poly(|x|, K(x)) = poly|x|.

Finally, by Lemma 21 we get that |Si| ∈ poly(|x|, i), which implies that Algorithm 23
runs in polynomial time. ◀

4 Decision-to-Search Everywhere

In this part we prove our main search-to-decision reduction for GapMINKT.

▶ Theorem 24. Let ε > 0 be a constant. Then there exists a randomized oracle-aided
algorithm F such that the following holds for every τ ∈ poly. Let A be an oracle that decides
Gapτ MINKT. Then F A

τ = F A(τ, ·, ·, ·) solves search- GapMINKT.
Moreover, on input (x, 1t, 1s) F A

τ runs in time 2ϵspoly(|x|, t, s), and only queries A on
inputs (y, 1t′

, 1s′) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and s′ ≤ s + log poly(|x|, t, s).

Directly from Theorem 24 we get the following corollary.

▶ Corollary 25. The following holds for every τ ∈ poly and ϵ > 0: Assume that for some
α > 0 there is an algorithm that solves Gapτ MINKT in time (resp. size) 2α·spoly(|x|, t, s).
Then there exists an algorithm that solves search- GapMINKT in time (resp. size) 2(α+ϵ)s ·
poly(|x|, t, s) on inputs (x, 1t, 1s).
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We next prove Theorem 24. In the following, let q ∈ poly, c0 ∈ N be the polynomial and
constant from Claim 18, and let c be the constant from Theorem 12. We start with the
following algorithm, that with high probability outputs a program Π such that x is a prefix
of the output of Π. We later change the algorithm such that the output will be a program
that outputs x.

▶ Algorithm 26 (Find).
Parameters: ϵ > 0, τ ∈ poly
Oracle: Gapτ MINKT decider A.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Set x1 = x, t1 = t and s1 = s.
2. For every j = 1, . . . , ⌈1/ε⌉+ 1:

a. Set Sj
0 =

{
xj

}
, and kj = sj + c0 log

∣∣xj
∣∣.

b. Set rj = ϵs + (kj − sj) + c log(
∣∣xj

∣∣ + sj) + log τ(q(tj ,
∣∣xj

∣∣), ∣∣xj
∣∣ + sj) + log 4/ϵ.

c. For every i = 1, 2, . . . , sj:
i. Compute Sj

i =
{

yb : y ∈ Sj
i−1, b ∈ {0, 1} and A(yb, 1q(tj ,|xj|), 1kj ) = Yes

}
ii. If exists y ∈ Sj

i such that y = xj ||Π and U(Π, 1tj ) = xj, output Π and terminate.
iii. If

∣∣∣Sj
i

∣∣∣ ≥ 2rj , set Sj = Sj
i and move to Item 2d.

d. Randomly choose xj+1 ← Sj.
e. Set tj+1 = τ(q(tj ,

∣∣xj
∣∣), ∣∣xj+1

∣∣) and sj+1 = kj + log τ(q(tj ,
∣∣xj

∣∣), ∣∣xj+1
∣∣).

3. Output ⊥.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We start with a simple observation on the parameters in Claim 28.

▷ Claim 27. For every j ≤ ⌈1/ϵ⌉+ 1 it holds that tj ∈ poly(|x|, t, s),
∣∣xj

∣∣ ∈ poly(|x|, t, s),
sj = s + log(poly(|x|, t, s)), kj = s + log(poly(|x|, t, s)), and rj = ϵ · s + log(poly(|x|, t, s)).

Proof of Claim 27. The claim holds since ϵ is a constant, τ and q are polynomials, and by
the definition of tj , xj , sj , kj and rj . ◁

We next bound the running time of Algorithm 26.

▷ Claim 28. On input (x, 1t, 1s), Algorithm 26 runs in time 2ϵs · poly(|x|, t, s). Moreover,
Algorithm 26 only queries A on inputs (y, 1t′

, 1s′) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s),
and s′ ≤ s + log poly(|x|, t, s).

Proof of Claim 28. Fix an input (x, 1t, 1s). Similarly to the proof of Claim 20, the running
time of the j-th iteration in Step 2 of Algorithm 26 is at most∣∣∣∣∣⋃

i

Sj
i

∣∣∣∣∣ · poly(
∣∣xj

∣∣, tj , sj) ≤ sj · 2rj

· poly(
∣∣xj

∣∣, tj , sj).

It thus enough to show that tj ∈ poly(|x|, t, s),
∣∣xj

∣∣ ∈ poly(|x|, t, s), sj = s+log(poly(|x|, t, s)),
and rj = ϵ · s + log(poly(|x|, t, s)) for every j ≤ ⌈1/ϵ⌉+ 1, which holds by Claim 27. ◁

To see that Algorithm 26 indeed outputs a program that outputs x, we have the following
claim.

▷ Claim 29. There exists a constant c ∈ N such that the following holds. Assume that on
input (x, 1t, 1s), Algorithm 26 enters the j-th iteration in Step 2. Then,
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1. x is a prefix of xj ,
2. Ktj (xj) ≤ sj , and,
3. With probability at least 1− j · ϵ/4, K(xj) ≥ (j − 1) · ϵ · s + (sj − s).

Proof of Claim 29. The first item holds by the definition of the algorithm. The second item
holds since in Algorithm 26, xj is in the set Sj−1

i only if A(xj , 1q(tj−1,|xj−1|), 1kj−1) = Yes,
which implies by the correctness of A that

Kτ(q(tj−1,|xj−1|),|xj|)(xj) ≤ kj−1 + log τ(q(tj−1,
∣∣xj−1∣∣), ∣∣xj

∣∣),
and since tj = τ(q(tj−1,

∣∣xj−1
∣∣), ∣∣xj

∣∣), sj = kj−1 + log τ(q(tj−1,
∣∣xj−1

∣∣), ∣∣xj
∣∣).

The proof of the last item is by induction on j. Assume that

K(xj) ≥ (j − 1) · ϵ · s + (sj − s).

Observe that by definition of the algorithm, it holds that xj is a prefix of every element in
Sj . That is, we can write Sj = xj ||S ′j for a set S ′j of size at least 2rj .

Thus, xj+1 = xj ||z, for z ∈ {0, 1}≤sj

which is randomly chosen from a set of size at least
2rj . Using Lemma 9, it holds that with probability at least 1−ϵ/4 that K(z | xj) ≥ rj−log 4/ϵ.
by Symmetry of Information (Theorem 12) we get that

K(xj+1) ≥ K(xj) + rj − log 4/ϵ− c log(
∣∣xj

∣∣ + sj)
≥ (j − 1) · ϵ · s + (sj − s) + (ϵs + (kj − sj) + log τ(q(tj ,

∣∣xj
∣∣), ∣∣xj

∣∣ + sj))
≥ j · ϵ · s + (kj + log τ(q(tj ,

∣∣xj
∣∣), ∣∣xj

∣∣ + sj))− s

≥ j · ϵ · s + (kj + log τ(q(tj ,
∣∣xj

∣∣), ∣∣xj+1∣∣))− s

= j · ϵ · s + sj+1 − s

The proof now follows by the union bound. ◁

We can now prove Theorem 24.

Proof of Theorem 24. We start with the definition of the algorithm F . Let F be the
algorithm that first executes Algorithm 26, to get a program Π such that U(Π)≤|x| = x.
Then, F outputs a program Π′ that simulates Π, and outputs the |x| first bits of its output.
It follows that U(Π′) = x, and |Π′| ≤ |Π|+ O(log|x|). Moreover, the running time of Π′ is
bounded by a polynomial of the running time of Π.

Next, by Claim 28, F runs in the stated time. We now prove the correctness of F . First,
recall that by Fact 7, we can assume without loss of generality that s ≤ |x|+ O(1). Next,
observe that by Claim 29, in every iteration j it holds that x is a prefix of xj , and that
Ktj (xj) ≤ sj . Thus, by the correctness of Algorithm 19, if for every iteration i, Sj

i is not
larger than 2rj , then Algorithm 26 outputs a program of length at most

sj = s + log poly(|x|, t, s) = s + log poly(|x|, t)

that outputs xj in time

tj = poly(|x|, t, s) = poly(|x|, t).

We are left to deal with the case that in every iteration j of Step 2, Sj
i is larger than

2rj for some i. In this case, by the third item of Claim 29, with probability at least
1− (⌈1/ϵ⌉+ 1)ϵ/4 ≥ 1/2, in the last iteration we get that

K(x⌈1/ϵ⌉+1) ≥ (⌈1/ϵ⌉+ 1)ϵs + (s⌈1/ϵ⌉+1 − s) > s⌈1/ϵ⌉+1,

which is in contradiction to the second item of Claim 29, as K(x⌈1/ϵ⌉+1) ≤ Kt(x⌈1/ϵ⌉+1) for
every t ∈ N. ◀
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5 Decision-to-Search for MINKT using List Recoverable Codes

In this part we use list recoverable codes to get length-preserving decision-to-search for
instances with small computational depth. List recoverable codes [3] are defined next.

▶ Definition 30. For Σ = {Σn}n∈N and functions m : N → N, p : N → [0, 1], ℓ : N → N
and L : N→ N, an ensemble Enc = {Encn : {0, 1}n → Σm(n)

n }n∈N is an efficient (p, ℓ, L)-list-
recoverable code if Enc can be computed in polynomial time, and there exists an efficient
procedure Rec such that the following holds for every n ∈ N. Given sets S1, . . . ,Sm(n) ⊆ Σn

such that |Si| ≤ ℓ(n) for every i, Rec(S1, . . . ,Sm(n)) outputs a list R of size at most L(n),
containing all x ∈ {0, 1}n with

|{i ∈ [m(n)] : Enc(x)i /∈ Si}| ≤ p(n) ·m(n).

As shown in [5, 4], Reed-Solomon codes [19] are list recoverable with parameters that are
suitable for our needs. In particular:

▶ Theorem 31 ([5, 4]). For every efficiently computable w ∈ O(log n), there exists an efficient
Enc : {0, 1}n → [m(n)]m(n), for m(n) = 2w(n), such that Enc is an (p, ℓ, L) list recoverable
code , for any p ≤ 1−

√
ℓ(n) · n/m(n) and L(n) ∈ O(ℓ(n) ·m(n)).

Moreover, Enc : {0, 1}n → [m(n)]m(n) runs in time poly(n, w(n)).

We now state the main theorem of this part.

▶ Theorem 32. For every d ∈ N, there exists an oracle-aided algorithm F such that the
following holds. Let A be an oracle that decides MINKT. Then F A solves search- MINKT
on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.

Moreover, on input (x, 1t, 1s), F runs in time poly(|x|, t, s), and only queries A on inputs
(x||y, 1t′(|x|,t), 1s′) with |y| = r(|x|, t) ≤ log poly(|x|, t), t′ ∈ poly and s′ ≤ s + log poly(|x|, t).

In the following, let Enc = {Encn : {0, 1}n → Σm(n)
n } be an efficient (p, ℓ, L) list recoverable

code, and Rec the efficient reconstruction algorithm of Enc, for parameters Σn, m(n), p, ℓ, L

we will choose later. Let q ∈ poly and c0, c1 ∈ N be a polynomial and constants to be chosen
later. We will show that the following algorithm returns a short program that produces x,
when the input s is exactly equal to Kt(x), and then show how to get rid of this assumption.
For i ∈ [m(n)], we let ⟨i⟩ ∈ {0, 1}⌈log m(n)⌉ be the binary representation of i. Let cK be the
constant from Fact 7 such that Kt(x) ≤ |x|+ cK for every x.

▶ Algorithm 33 (Find).
Oracle: MINKT decider A.
Parameters: τ ∈ poly, d ∈ N.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Let n = |x|+ cK .
2. For every i ∈ [m(n)], compute the set

Si =
{

y ∈ Σn : A(x||⟨i⟩||y, 1q(t,|x|), 1s+log m(n)+c1 log log m(n)) = Yes
}

.

3. For every i ∈ [m(n)] such that |Si| > ℓ(n), set Ŝi = ∅. Otherwise, set Ŝi = Si.
4. Compute Rec(Ŝ1, . . . , Ŝm(n)), and let R ⊆ {0, 1}n be the output.
5. Find a string Π ∈ {0, 1}s such that Π||0n−s ∈ R and U(Π, 1t) = x.
6. Output Π.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Note that in the above algorithm, the set Si is the set of all possible values (in Σn) for the
ith symbol in the encoding of Π. We start by showing that the size of S1, . . . ,Sm(n) is not
too large.

▷ Claim 34. There exists a constant c2 ∈ N such that the following holds for every
c1, d, w ∈ N. Let x ∈ {0, 1}∗ such that cdt(x) ≤ d log|x|. Then there are at most

M = 2w+(c1+c2)(log 2w)+d log|x|+c2 log|x|

pairs (i, α) ∈ [2w] · [2w] such that K(x||⟨i⟩||α) ≤ Kt(x) + w + c1(log w).

Proof. Immediate by Lemma 21. ◁

Next, we will use the following claim to show that Π is in the set R.

▷ Claim 35. For every w : N→ N, and every efficient code Enc : {0, 1}n → [2w(n)]2w(n) , there
exists a polynomial q such that the following holds for every x ∈ {0, 1}∗ with w(|x|) ≥ 2, and
every t ∈ N. Let Π a program of length Kt(x) such that U(Π, 1t) = x. Then for n = |x|+ cK

and every i ∈ [2w(n)],

Kq(t,|x|)(x||⟨i⟩||Enc(Π||0n−|Π|)i) ≤ Kt(x) + w(n) + c1 log w(n)

for some universal constant c1.

Proof. Let Π′ be the program that given input (Π, i), first simulates U(Π) to get an output
x, and then computes n = |x|+ cK and Enc(Π||0n−|Π|)i. Let q ∈ poly be the bound of the
running time of Π′. Then, using Fact 8, Kq(t,|x|)(x||⟨i⟩||Enc(Π)i) ≤ Kt(x)+w(n)+4 log w(n).

◁

We are now ready to prove Theorem 32.

Proof of Theorem 32. We will show that on input (x, 1t, 1s′) Algorithm 33 returns a program
Π such that U(Π, 1t) = x, if s′ = Kt(x). The theorem then follows by considering the algorithm
that enumerates over all possible values of s′ < s.

Let c1 and c2 be the constants promised by Claim 35 and Claim 34 respectively. Let
Enc : {0, 1}n → [2w(n)]m(n) be an efficient (p, ℓ, L) list recoverable code, for w(n) = 2(d +
c1 + c2) log n + 10, p(n) = 1/10, ℓ(n) = 2(c1+c2) log w(n)+(d+c2) log n+5, L(n) ∈ poly and
m(n) = 2w(n). By Theorem 31 such a code exists as

ℓ(n) · n/m(n) = n · 2(c1+c2) log w(n)−(d+2c1+c2) log n−5 ≤ 2−5 ≤ (1− p)2

for any large enough n. Finally, let q be the polynomial promised by Claim 35 with respect
to the code Enc.

We next show that when using Enc as the code in Algorithm 33, Algorithm 33 outputs a
minimal program Π that produces the input x. By the list recoverable property of Enc, it is
enough to show that Π||0n−s is in the list outputted by Rec. It thus enough to show that
(1) Enc(Π)i ∈ Si for every i ∈ [m(n)] and (2), Si = Ŝi for at least (1− 1/10)m(n) indexes
i ∈ [m(n)].

(1) follows immediately by Claim 35 and the definition of Si. For (2), by Claim 34 the
total size

∑
i|Si| of the sets Si is at most

2w+(c1+c2) log 2w+d log n+c2 log n = m(n) · ℓ(n) · 2−5.

By Markov, we get that there are at most 2−5 ·m(n) < 1/10 ·m(n) indexes i such that
|Si| > ℓ(n). For all other i’s it holds that Si = Ŝi , which concludes the proof. ◀
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5.1 Decision-to-Search on Average
▶ Definition 36. For a function t : N→ N, we say that an algorithm A computes Kt if for
every x ∈ {0, 1}∗, A(x) = Kt(|x|)(x). We say that A computes Kt with error ϵ if for every
n ∈ N, Prx←{0,1}n

[
A(x) = Kt(|x|)(x)

]
≥ 1− ϵ(n).

We say that A solves search- Kt with error ϵ if A outputs a program Π such that
U(Π, 1t(|x|)) = x and |Π| = Kt(|x|)(x) with probability 1− ϵ(n) over x← {0, 1}n.

We prove the following theorem.

▶ Theorem 37. For every p, t ∈ poly there exists p̂ ∈ poly and t′ ∈ poly, and an efficient
oracle-aided algorithm F such that the following holds. Let A be an that computes Kt′ with
error 1/p̂. Then F A solves search- Kt with error 1/p.

Moreover, on input x ∈ {0, 1}n, F makes only queries of the form x||y with y ∈ O(log n).

To prove Theorem 37, we will use the following theorem, which is followed by the same proof
as Theorem 32.

▶ Theorem 38. For every d ∈ N and t ∈ poly, there exists t′ ∈ poly and an oracle-aided
algorithm F such that the following holds. Let A be an oracle that computes Kt′ . Then F A

solves search- Kt on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.
Moreover, on input x, F runs in time poly(|x|), and only queries A on inputs x||y with

|y| = r(|x|, t) ≤ log poly(|x|, t).

Proof. This follows by a similar proof to Theorem 32, together with the observation that
MINKT can be decided on inputs (x, 1t(|x|), 1s) using oracle that computes Kt. ◀

Proof of Theorem 37. We start with the assumption that the oracle A is deterministic,
and later show how to eliminate this assumption. Fix p and t, and let t′ and F be the
polynomial and algorithm promised by Theorem 32. Let r be the parameters of F as defined
in Theorem 32, and let d be such that |x|d > 2p(|x|) for every x with |x| > 2. Finally, let
p̂(|x|) = 8p(|x|) · 2r(|x|,t(|x|)), and let A be an oracle the computes Kt′ with error 1/p̂ (when
the probability is taken only over the input x of A).

Let Â be an oracle that computes Kt′ correctly on every input. By Definition 36, on
a random x ← {0, 1}n

A and Â agree with probability 1 − 1/p̂(x). By Theorem 32, F Â

solves search- Kt on every input with cdt(|x|)(x) ≤ d log|x|, and thus, by Fact 11, F Â solves
search- Kt with error at most 1/|x|d ≤ 1/(2p(|x|)). It is thus enough to show that

Prx←{0,1}n

[
F A(x) = F Â(x)

]
≥ 1− 1/2p(|x|). (1)

To see Equation (1), let Bn be the set of all x ∈ {0, 1}n such that F A(x) ̸= F Â(x). By
definition of B, on every input x ∈ Bn, there must be some query x||y that F makes to the
oracle, such that A(x||y) ̸= Â(x||y). Let Rn ⊆ {0, 1}n be the set of all x’s, such that there
exists y ∈ {0, 1}r(n,t(n)) with A(x||y) ̸= Â(x||y). We get that |Rn| ≥ |Bn|, and,

1/p̂(n + r(n, t(n))) ≥ Prz←{0,1}n+r(n,t(n))

[
A(z) ̸= Â(z)

]
≥ |Rn| · 2−n−r(n,t(n)).

Thus, we get that

|Bn| ≤ 2n+r(n,t(n))+1 · 1/p̂(n + r(n, t(n))) ≤ 2n+r(n,t(n))+1 · 1/p̂(n),

which implies that |Bn|/2n ≤ 1/4p(n), which concludes the claim.
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We next move to deal with randomized algorithm A. That is, A that err with probability
1/p̂, where the probability is now taken both over the input and the internal randomness of
A. To deal with such a randomized oracle A, we observe that by standard amplification, it is
enough to replace Equation (1), with Prx←{0,1}n

[
Pr

[
F A(x) ̸= F Â(x)

]
> 1/2

]
≤ 1/4p(|x|).

We can thus let Bn be the set of all x ∈ {0, 1}n such that Pr
[
F A(x) ̸= F Â(x)

]
> 1/2,

and Rn ⊆ {0, 1}n be the set of all x’s, such that with probability larger than 1/2 (over
the randomness of A) there exists y ∈ {0, 1}r(n,t(n)) with A(x||y) ̸= Â(x||y). We get that
|Rn| ≥ |Bn|, and,

1/p̂(n + r(n, t(n))) ≥ Prz←{0,1}n+r(n,t(n))

[
A(z) ̸= Â(z)

]
≥ 1/2 · |Rn| · 2−n−r(n,t(n)),

and the claim follows as in the deterministic case. ◀

We get the following two corollaries. The first was already proven in [16].

▶ Corollary 39 (reproving [16]). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the
following holds:

Assume that there is a poly-time (resp. poly size) algorithm that computes Kt′ with error
1/p̂. Then there exists a poly-time (resp. poly-size) algorithm that solves search- Kt with
error 1/p.
Assume that there is an algorithm that computes Kt′(x) with error 1/p̂ in time (resp.
size) 2o(|x|). Then there exists an algorithm that solves search- Kt with error 1/p in time
(resp. size) 2o(|x|).

The second shows that the same holds also in the exponential regime.

▶ Corollary 40. For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the following holds:
Assume that there exists a constant α > 0 and an algorithm that computes Kt′ with error
1/p̂ in time (resp. size) 2α·|x|poly(|x|). Then there exists an algorithm that solves search- Kt

with error 1/p in time (resp. size) 2α·|x|poly(|x|).

6 Decision-to-Search for GapMINKT using List Recoverable Codes

In this part we show that Theorem 32 holds even when we start with an oracle that solves
GapMINKT instead of MINKT.

▶ Theorem 41. For every τ ∈ poly and d ∈ N, there exists an oracle-aided algorithm F

such that the following holds. Let A be an oracle that decides Gapτ MINKT. Then F A solves
search- MINKT on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.

Moreover, on input (x, 1t, 1s), F runs in time poly(|x|, t, s), and only queries A on
inputs (x||y, 1t′(|x|,t), 1s′) with |y| = ℓ(|x|, t) ≤ log poly(|x|, t), t′ ∈ poly and s′(|x|, t) ≤
s + log poly(|x|, t).

To prove Theorem 41 we will show that Algorithm 33 with different parameters works. When
the oracle A only decides GapMINKT, the size of the sets Si can be larger. The first claim
shows that it still cannot be too large.

▷ Claim 42. There exists a constant c2 ∈ N such that the following holds for every
c1, d, w ∈ N, and every τ, q ∈ poly. Let x ∈ {0, 1}∗ such that cdt(x) ≤ d log|x|. Then there
are at most

M = 2w+(c1+c2)(log 2w)+d log|x|+c2 log|x|)+log τ(q(t,|x|),|x|)

pairs (i, α) ∈ [2w] · [2w] such that K(x||⟨i⟩||α) ≤ Kt(x) + w + c1(log w) + log τ(q(t, |x|), |x|).

Proof. Immediate by Lemma 21. ◁
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To get non-trivial bound from Claim 42, we will need to choose out code alphabet size,
2w, to be larger than τ(q(t, |x|), |x|). Since the polynomial q is going to be dependent on the
code evaluation time, we will need to use codes where the running time of the code does not
grow too fast with the alphabet size. By Theorem 31, there is a family of list recoverable
codes, such that we can choose the size of the output alphabet Σ, and the running time of
the encoder only depends on log|Σ|. This property is used in the next claim, which shows
that Π||0n−s is in the set R.

▷ Claim 43. There exists a constant c1 and polynomial q′, such that the following holds
for every w : N→ N, every x ∈ {0, 1}∗ with |x| ≥ 16, and every t ∈ N. Let Π a program of
length Kt(x) such that U(Π, 1t) = x, and let Enc : {0, 1}n → [2w(n)]2w(n) be the code from
Theorem 31. Then for n = |x|+ cK and for every i ∈ [2w(n)],

Kq′(t,|x|,w(n))(x||⟨i⟩||Enc(Π||0n−|Π|)i) ≤ Kt(x) + w(n) + c1 log w(n).

Proof. The proof is similar to the proof of Claim 35, using the observation that the running
time of Π′ is polynomial in t, |x| and w(n) by the choice of Enc. ◁

We are now ready to prove Theorem 41.

Proof of Theorem 41. We will show that on input (x, 1t, 1s′) Algorithm 33 returns a program
Π such that U(Π, 1t) = x, if s′ = Kt(x). The theorem then follows by considering the algorithm
that enumerates over all possible values of s′ < s.

Let c1 and q′ be the constant and polynomial promised by Claim 43, and let c2 be the
constant from Claim 42. Let c0 be such that for w(n) = c0⌈log n + t(n)⌉,

w(|x|+ cK) (2)
≥ 2((c1 + c2) log w(|x|+ cK) + (d + c2) log|x|

+ log τ(q′(t(|x|), n, w(|x|+ cK)), |x|+ 2w(|x|+ cK))),

and, 2w(|x|+cK)/3 > |x|. Finally, let q(t, |x|) = q′(t, |x|, w).
The proof now continues similar to the proof of Theorem 32. ◀
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