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Abstract
In batch Kernel Density Estimation (KDE) for a kernel function f : Rm × Rm → R, we are given
as input 2n points x(1), . . . , x(n), y(1), . . . , y(n) ∈ Rm in dimension m, as well as a vector v ∈ Rn.
These inputs implicitly define the n × n kernel matrix K given by K[i, j] = f(x(i), y(j)). The goal
is to compute a vector v ∈ Rn which approximates Kw, i.e., with ||Kw − v||∞ < ε||w||1. For
illustrative purposes, consider the Gaussian kernel f(x, y) := e−||x−y||2

2 . The classic approach to this
problem is the famous Fast Multipole Method (FMM), which runs in time n · O(logm(ε−1)) and is
particularly effective in low dimensions because of its exponential dependence on m. Recently, as the
higher-dimensional case m ≥ Ω(log n) has seen more applications in machine learning and statistics,
new algorithms have focused on this setting: an algorithm using discrepancy theory, which runs in
time O(n/ε), and an algorithm based on the polynomial method, which achieves inverse polynomial
accuracy in almost linear time when the input points have bounded square diameter B < o(log n).

A recent line of work has proved fine-grained lower bounds, with the goal of showing that
the “curse of dimensionality” arising in FMM is necessary assuming the Strong Exponential Time
Hypothesis (SETH). Backurs et al. [NeurIPS 2017] first showed the hardness of a variety of Empirical
Risk Minimization problems including KDE for Gaussian-like kernels in the case with high dimension
m = Ω(log n) and large scale B = Ω(log n). Alman et al. [FOCS 2020] later developed new
reductions in roughly this same parameter regime, leading to lower bounds for more general kernels,
but only for very small error ε < 2− logΩ(1)(n).

In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter
regimes, closing gaps between the known algorithms and lower bounds. For example:

In the setting where m = C log n and B = o(log n), we prove Gaussian KDE requires n2−o(1)

time to achieve additive error ε < Ω(m/B)−m, matching the performance of the polynomial
method up to low-order terms.
In the low dimensional setting m = o(log n), we show that Gaussian KDE requires n2−o(1) time
to achieve ε such that log log(ε−1) > Ω̃((log n)/m), matching the error bound achievable by
FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known
in this regime.

Our approach also generalizes to any parameter regime and any kernel. For example, we achieve
similar fine-grained hardness results for any kernel with slowly-decaying Taylor coefficients such
as the Cauchy kernel. Our new lower bounds make use of an intricate analysis of the “counting
matrix”, a special case of the kernel matrix focused on carefully-chosen evaluation points. As a key
technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur
polynomials from algebraic combinatorics.
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1 Introduction

In computational statistics and learning theory, many applications reduce to solving the
following problem: Given a set of points X ⊆ Rm sampled from some unknown distribution D,
estimate the probability density at a query point y ∈ Rm (or multiple such points Y ⊆ Rm).
This problem is known as the density estimation problem and has attracted interest in
theoretical computer science in recent years. One of the most common methods for this
problem is Kernel Density Estimation (KDE), which tries to approximate the distribution
by a sum of kernel functions centered at each data point x. More concretely, if a kernel
function k : Rm × Rm → [0, 1] is appropriately picked, then the Kernel Density KDF(y) :=
1
n

∑
x∈X k(x, y) is a reasonably good approximation of D at point y.1 In this work, we will

focus on the popular class of radial kernels, i.e., kernels of the form K(x, y) = f(∥x − y∥2
2)

for some function f : R≥0 → [0, 1]. Some prominent radial kernels include the Gaussian
kernel with f(u) = e−u, Rational Quadratic kernel with f(u) = 1/(1 + u)σ for constant σ,
and t-Student kernel with f(u) = 1/(1 + uρ) for constant ρ.

By virtue of its excellent statistical properties, Kernel Density Estimation has found
numerous applications in computational statistics for tasks like mean estimation, classification,
and outlier detection; see, for instance, the surveys [18, 13] and [24, Chapter 1]. The prevalence
of kernel methods in machine learning has also led to many new applications of Kernel
Density Estimation [22]. One popular recent example is in “attention computation”, the
time bottleneck in computations involving transformers and other large language models;
this is known to be essentially equivalent to Kernel Density Estimation with the Gaussian
kernel [3]2.

In light of its wide applicability, tremendous effort has also been put into designing
efficient algorithms for the KDE problem. The straightforward algorithm shows that for a
given y, KDF(y) can be computed in O(n) time, assuming f is efficiently computable.3 If
one aims at an exact result, this simple algorithm seems to be optimal. However, a number of
advances starting from the celebrated Fast Multipole Method [14] have successfully brought
the running time down to no(1) in various parameter regimes (after preprocessing the set
X), provided an approximation to the Kernel Density suffices. Before introducing these
algorithmic ideas, we first give a formal definition of the (approximate) KDE problem. For
simplicity, we present here the batched version, which asks to compute the KDF value for a
collection of query points simultaneously. (We also compare the batched version and the
data structure version in Section 1.5.)

▶ Definition 1 ((Approximate) Kernel Density Estimation KDEf (n, m, ε, B)). Let f : [0, B] →
[0, 1] be a real function and define the (kernel) function k(x, y) = f(∥x − y∥2

2).
Suppose we are given as input 2n points x(1), · · · , x(n), y(1), · · · , y(n) ∈ Rm with the

guarantee that ∥x(i) − y(j)∥2
2 ≤ B for all i, j ∈ [n]. Define the kernel matrix K ∈ [0, 1]n×n by

K[i, j] = f(∥x(i) − y(j)∥2
2) for i, j ∈ [n]. Then given additionally a vector u ∈ Rn, one needs

to output a vector v ∈ Rn such that ∥v − Ku∥∞ ≤ ε∥u∥1.

1 For example, when m = 1 and k(x, y) = 1[|x − y| ≤ 1], the KDF is the histogram of the dataset X.
2 The parameters of KDE correspond directly to the parameters in attention: n is the number of “tokens”

in the query sequence, and m is the dimension of the vectors which encode tokens.
3 In this work we always assume f(∥x − y∥2

2) can be exactly computed in O(1) time. Most of the previous
works adopt this assumption.
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1.1 Algorithms
As a computational problem, KDE has its running time dependent on four parameters: the
number of data points / query points n, the dimension of vectors m, the additive error
of approximation ε, and the maximum pairwise (square) distance B. Multiple parameter
regimes arise from the their interplay, and the KDE problem tends to have rather different
behavior across the regimes. Of course, the choice of the kernel function can also substantially
change the complexity of the problem; in the following discussion we take the Gaussian
kernel as a running example.

Low dimensional KDE: m = o(log n). The first nontrivial algorithm for the KDE problem
is Greengard and Roklin’s Fast Multipole Method [14]. In this method, one partitions the
space into bounded regions, and then Taylor expands the kernel around centers of these
regions. In this way a truncation of the Taylor series yields a approximation of high accuracy
when the data points lie in distant cells. For the Gaussian kernel, the Fast Multipole
Method runs in time O(n logO(m)(n/ε)), which is exceptionally good in low dimensions
(e.g., m = O(1) in the original physical context4 of [15]). However, in higher dimensional
regimes, this approach suffers from an exponential dependence on m, which is inherent in the
(deterministic) space partitioning procedure (essentially building a quad-tree), and shared by
other tree-based methods.

Moderate dimensional KDE: m = Θ(log n). One way to avoid the exponential dependence
on m of the Fast Multipole Method is to use the method of polynomial approximation directly,
without combining it with space partitioning. Alman and Aggarwal [1] pinned down the
optimal degree of a polynomial that approximates f(u) = e−Bu over u ∈ [0, 1] by analyzing its
Chebyshev truncation. A polynomial approximation of e−Bu then allows one to approximate
the Gaussian kernel matrix using a matrix consisting of only polynomial entries. Such a
matrix admits a decomposition as a product of two matrices of dimension n × no(1), for
which the matrix-vector product can be performed efficiently. As a result, they gave an
algorithm for Gaussian KDE running in n1+o(1) time when m = O(log n), B = o(log n) and
ε = 1/poly(n).

High dimensional KDE: m = ω(log n). Another technique often used in the study of
KDE is random sampling. For example, to compute 1

n

∑
x∈X k(x, y), one can sample a

subset S ⊆ X so that 1
|S|
∑

x∈S k(x, y) is a close approximation to KDF(y) when |S| is
sufficiently large. Simple calculation shows that |S| = O(log n/ε2) suffices, and a Õ(n/ε2)
time (randomized) algorithm follows. We note that this algorithm has no dependence on
m and works for arbitrarily high dimensions. This folklore random sampling algorithm
stood unchallenged until recently Phillips and Tai [20] devised an O(n/ε)-time algorithm by
building a small coreset based on discrepancy theory. They show that a clever subsampling
scheme yields a smaller S ⊆ X which has the same accuracy as its counterpart when used in
the random sampling algorithm. We in addition note that much effort [10, 11, 5, 7, 8, 9] has
been dedicated to the relative error setting, combining sampling schemes with techniques
from high-dimensional geometry (such as hashing-based space partitioning). See Section
1.5 below where we compare the additive error and relative error settings and survey these
algorithms in more detail.

4 The Fast Multipole Method was originally introduced to solve the n-body problem from physics.

CCC 2024
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1.2 Lower bounds
Despite the great variety of algorithms developed over the years, we still lack a comprehensive
understanding of the complexity of the KDE problem. In this work, our goal is to complement
the distinct algorithms targeting different parameter regimes with (nearly) matching running
time lower bounds, and explain how the complexity of KDE is affected by parameters.

The first and most influential known lower bound was developed by Backurs, Indyk and
Schimidt [6]. This work establishes a reduction from the Bichromatic Closest Pair (BCP)
problem to a collection of empirical risk minimization problems including KDE. As BCP is a
standard hard problem in fine-grained complexity assuming the Strong Exponential Time
Hypothesis (SETH), the reduction leads to conditional lower bounds on the running time of
KDE. To explain in detail, we first give the formal statement of the BCP problem.

▶ Problem 2 (Bichromatic Closest Pair). Hamming-BCP(n, m): Given two sets X = {x(1), · · · ,

x(n)}, Y = {y(1), · · · , y(n)} ∈ {0, 1}m, compute mini,j∈[n] ∥x(i) − y(j)∥2
2.

We then observe that terms in the KDE result ∥K × 1∥1 can be grouped according to the
pairwise distance between x(i) and y(j).

∥K × 1∥1 =
n∑

i=1

n∑
j=1

f(∥x(i) − y(j)∥2
2) =

m∑
p=0

f(p) · #
{

(i, j) ∈ [n]2 : ∥x(i) − y(j)∥2
2 = p

}
.

This identity provides a way of extracting minimum pairwise distance from the KDE result.
Indeed, if mini,j ∥x(i) −y(j)∥2 ≥ p+1, then ∥K ×1∥1 ≤ n2f(p+1) (assuming f is decreasing);
otherwise, there exists a pair (x(i), y(j)) with ∥x(i) − y(j)∥2 ≤ p and ∥K × 1∥1 ≥ f(p). In
this way, if f is decreasing quickly enough, one can decide whether mini,j ∥x(i) − y(j)∥2 ≤ p

based on a sufficiently accurate approximation of ∥K × 1∥1.
This relatively simple reduction gives strong running time lower bounds in the moder-

ate/high dimensional regime. In the original paper, [6] shows that when m = Ω(log n) and
B = Ω(log n), it requires n2−o(1) time to approximate the Gaussian KDE to ε = 2−poly log n.
This result is later improved by Alman and Aggarwal [1] (also in [11] for KDE with relative
error), who combine the same reduction with the hardness result of approximate BCP [21]
and show that even approximating to accuracy ε = 1/poly(n) requires n2−o(1) time.

However, we note that this reduction relies on a strong premise that f(p)/f(p + 1) > n2,
i.e., the kernel function has rapid decay. (The variant in [1] relies on a similar condition.)
This fails to hold for many kernels of interest, including all smooth kernels (such as the
Rational Quadratic kernels and t-Student kernels) and small-scale Gaussian kernels with
small B < o(log n).

To get around this barrier, Alman, Chu, Schild and Song [2] extends the reduction of [6],
by solving multiple KDE instances and, roughly speaking, combining their answers to extract
more information about the pairwise distances. Concretely, we define the distance vector (in
terms of two sets of points) and counting matrix (in terms of the function f) as follows.

▶ Definition 3. Let X = {x(1), · · · , x(n)}, Y = {y(1), · · · , y(n)} ∈ {0, 1}m be two sets of
points. We define the distance vector w = [#{(i, j) : ∥x(i) − y(j)∥2

2 = p}]p∈[m], and for
α1, · · · , αm ∈ [0, 1] define the counting matrix M = [f(αℓ · p)]ℓ,p∈[m].

Consider the matrix-vector multiplication M × w. By the same argument as in the reduction
of [6], we observe each entry in w̃ := M × w can be computed by some KDE instance Kℓ × 1
(Kℓ is associated with appropriately scaled X and Y ):

w̃[ℓ] =
n∑

i=1

n∑
j=1

f(∥
√

αℓx
(i) −

√
αℓy

(j)∥2
2) =

m∑
p=0

f(αℓp) · #
{

(i, j) : ∥x(i) − y(j)∥2
2 = p

}
.
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Once w̃ is obtained from KDE subroutines, one can then approximate the distance vector by
simply computing M−1 × w̃. If this approximation to w has (additive) error bounded by
1/3, then a subsequent rounding step yields the exact distance vector, and automatically a
solution to the BCP problem.

To analyze this reduction, we define a key quantity

τ(M) := max
0 ̸=v∈Rm

∥M−1v∥∞

∥v∥∞
.

Suppose ∥Kℓ × 1∥∞ ≤ ε∥1∥1 for all ℓ ∈ [m]. Then

∥M−1w̃ − w∥∞ = ∥M−1(w̃ − Mw)∥∞ ≤ τ(M) · max
ℓ∈[m]

∥Kℓ × 1∥1 ≤ τ(M) · n2ε.

Therefore, any algorithm that approximates KDE instances to accuracy ε = 1/(3n2τ(M)) in
n2−Ω(1) time amounts to a truly subquadratic BCP algorithm and refutes SETH. (In this
paper below, we slightly modify this approach to improve the dependence on n in ε from
quadratic to linear; see Section 1.4 for more details.)

To complete the hardness result, it remains to bound the quantity τ(M) as a function of m

and B. [2] makes a generic statement relating τ(M) to the approximability of f by low-degree
polynomials. In particular, it is shown that for all three kernels – Rational Quadratic kernel,
t-Student kernel and small-scale Gaussian kernel – performing Ω(log n)-dimensional KDE
requires n2−o(1) time to achieve accuracy ε = 2−poly log n.

The proof of [2] for this bound on τ(M) is highly technical, and requires new tools from
analysis and linear algebra. For the sake of coherence, we defer an overview of the details to
Section 1.4. A main weakness of [2] is that it only gives hardness for very small ε, which is
an inherent consequence of their approach to bounding τ(M). One of the main technical
contributions of our paper, which we discuss in more detail shortly, is an improved approach
to bounding τ(M) which yields exponentially better bounds on ε for many kernel functions
of interest.

1.3 Our contribution
In this work we give stronger negative results for the KDE problem, and pin down its
complexity in each parameter regime. We mainly focus on the Gaussian kernel, and on two
of the most used smooth kernels – the Rational Quadratic kernel and the t-Student kernel.
That said, our approach is general and would apply to any other kernel of interest after
some calculations (See Section 1.5 for further discussion). To give a unified presentation, we
formulate both the positive and negative results as upper bounds and lower bounds on 1/ε.
More specifically, we will answer the following questions.

▶ Question 4. Fix a kernel function f and a parameter regime determined by m = o(log n)
(resp. Θ(log n), ω(log n)) and B = o(log n) (resp. Ω(log n)). What is the range of 1/ε

achievable in n1+o(1) time? What is the range of 1/ε that requires n2−o(1) time?

For simplicity, in the following discussion we understand “Easy” as being achievable in n1+o(1)

time, and understand “Hard” as requiring n2−o(1) time.

Gaussian kernel. In the regime m = Θ(log n), B = o(log n), the polynomial method [1]
gives the best known positive result: Gaussian KDE is Easy when 1/ε < (m/B)o(m). The
best known negative result due to [2] establishes the Hardness of KDE when 1/ε > 2poly log n.
In this work we improve the negative result and show that the polynomial method is optimal
up to a low-order 2O(m) factor in 1/ε.

CCC 2024
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▶ Theorem 5. Assuming SETH, for every q ∈ (0, 1), there exist C1, C2 > 0 such that when
m > C1 log n and 1/ε > (m/B)m · Cm

2 , GaussianKDE(n, m, B, ε) cannot be solved in O(n2−q)
time.

In the low dimensional regime5, clog∗ n < m < o(log n)/(log log n), the Fast Multipole
Method has stood unchallenged for over three decades. Using this method, Gaussian KDE
is Easy when log log(1/ε) < o(log n)/m. It is natural to conjecture that a substantial
improvement is impossible. However, to the best of our knowledge, no previous hardness
result was known for Gaussian kernel KDE in this regime.6 In this work we give the first
negative result against the Fast Multipole Method, and in particular show that the log log(1/ε)
achieved by the Fast Multipole Method is optimal up to a roughly logarithmic factor in m.

▶ Theorem 6. Assuming SETH, for every q > 0, there exist C1, C ′
1, C2 > 0 such that

when C log∗ n
1 < m < C ′

1(log n)/(log log n) and log log(1/ε) > (log n)/m · (log m) · C log∗ n
2 ,

GaussianKDE(n, m, B, ε) cannot be solved in O(n2−q) time.

Apart from the two major improvements above, our techniques also lead to new results in
other regimes. As a straightforward corollary of Theorem 5, we show 1/ε > ((log n)/B)Ω(log n)

is Hard for high-dimensional m = ω(log n), small-scale B = o(log n) regime, improving the
1/ε > 2poly log n bound in [2]. For the large scale regime, we note the hardness result in
[1] requires (B/ log n) to tend to infinity alongside (m/ log n). This inherent dependence
between B and m is an inevitable consequence of the rapid decay condition. In comparison,
as our new reduction is free of such restrictions, new hardness results can be developed as
well in the regime where B = Θ(log n) is fixed and only m/ log n tends to infinity.

We summarize all the known upper and lower bounds for Gaussian KDE in Table 1.

Table 1 Summary of known results for Gaussian KDE, incorporating our new Theorems 5 and 6.
The new hardness in high dimensions follows from our Theorem 5 and a straightforward reduction
from moderate to high dimension. The stated hardness results for large scale and moderate or high
dimension were previously known [6, 1], although we improve the constant C in these cases.

small scale

B = o(log n)

large scale

B = Ω(log n)

low dimension

clog∗ n < m < o
( log n

log log n

) Easy: log log(1/ε) < o((log n)/m)

Hard (new): log log(1/ε) > Ω̃(log n)/m)

moderate dimension

m = C log n

Easy: 1/ε < (m/B)o(m)

Hard (new): 1/ε > Ω(m/B)m

Easy: 1/ε < n1−q

Hard: 1/ε > nC for some C > 1

high dimension

m > ω(log n)

Easy: 1/ε < n1−q

Hard (new): 1/ε > ((log n)/B)Ω(log n)

Easy: 1/ε < n1−q

Hard: 1/ε > nC for some C > 1

Rational Quadratic kernel and t-Student kernel. For the Rational Quadratic kernel
f(x) = 1/(1 + x)σ and t-Student kernel f(x) = 1/(1 + xρ) parameterized by absolute
constants σ, ρ ≥ 1, we give similar lower bound results. In the moderate to high dimensional
regime d = Ω(log n), the best known negative result is again that 1/ε = 2poly log n is Hard
by [2]. We show that this can be improved to 1/ε = poly(n). This parallels the improvement

5 We use log∗ to denote the very slowly-growing iterated logarithm function.
6 For non-Lipschitz kernels, some hardness results for very low error in low dimensions were established

in [2].
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by [1] for the large-scale Gaussian kernel from 1/ε = 2poly log n to 1/ε = poly(n) (and we
recall that these kernels do not decrease quickly enough to prove this using the approach
of [6, 1]).

▶ Theorem 7. For Rational Quadratic kernel f(x) = 1/(1 + x)σ and t-Student kernel
f(x) = 1/(1+xρ) parameterized by absolute constants σ, ρ ≥ 1, the following holds. Assuming
SETH, for every q > 0, there exists C1, C2 > 0 such that if m > C1 log n, 1/ε > nC2 , then
KDEf (n, m, B = 1, ε) cannot be solved in O(n2−q). Here C2 is dependent on σ or ρ.

This result implies that KDE for Rational Quadratic kernel and t-Student kernel are strictly
harder than Gaussian KDE: for B = O(1) and m = Θ(log n), Gaussian KDE is Easy when
1/ε < mo(m) whereas KDE for Rational Quadratic kernel and t-Student kernel are Hard for
1/ε > 2Ω(m). Interestingly, this is in sharp contrast to the phenomenon in the study of KDE
with relative error, where KDE for smooth kernels are seemingly easier to solve. We discuss
this difference in detail in Section 1.5.

In the low dimensional regime, we also prove negative results against the Fast Multipole
Method. For both Rational Quadratic kernel and t-Student kernel, the Fast Multipole Method
has similar bound O(n logO(m)(n/ε)) on running time. We complement this algorithm with
a matching lower bound up to a Õ(log m) factor in log log(1/ε).

▶ Theorem 8. For Rational Quadratic kernel f(x) = 1/(1 + x)σ and t-Student kernel f(x) =
1/(1+xρ) parameterized by absolute constants σ, ρ ≥ 1, the following holds. Assuming SETH,
for every q > 0, there exist C1, C ′

1, C2 > 0 such that when C log∗ n
1 < m < C ′

1(log n)/(log log n)
and log log(1/ε) > (log n)/m · (log m) · C log∗ n

2 , KDEf (n, m, B = 1, ε) cannot be solved in
O(n2−q) time. Here C2 is dependent on σ or ρ.

1.4 Techniques
As discussed in Section 1.2, [2] established an upper bound on 1/ε which hinges on a key
quantity τ(M), and the central ingredient of their reduction is a bound on this quantity.
Therefore we start by sketching the proof [2] developed for this bound. By definition,

τ(M) = max
∥v∥∞=1

∥M−1v∥∞ ≤ max
∥v∥∞=1

max
s∈[m]

m∑
t=1

|M−1[s, t]||v[t]| ≤ m max
s,t∈[m]

|M−1[s, t]|.

By Cramer’s rule, we write M−1[s, t] = det(Ms−
t− )

det(M) , where Ms−
t− is the matrix obtained by

removing the s-th row and t-th column of M . Thus it suffices to bound det(M) and det(Ms−
t− ).

We here make use of a common matrix decomposition technique in the study of the polynomial
method. If f has Taylor series f(x) =

∑∞
k=0

f(k)(0)
k! xk convergent over [0, 1], then

det(M) = det
[ ∞∑

k=0

f (k)(0)
k! αk

sβk
t

]
s,t∈[m]

= det
([

αk
s · f (k)(0)

k!

]
m×N

×
[
βk

t

]
N×m

)
.

One tool for computing determinants of the form det(A × B), where A and B are rectangular
matrices, is the Cauchy-Binet formula (See Section 2.3 for details), which gives

det(M) =
∑

0≤n1<···<nm

(
m∏

k=1

f (nk)(0)
nk!

)
det
[
αnk

s

]
s,k∈[m]

det
[
βnk

t

]
t,k∈[m]

. (1)

Observing that the determinants involved are effectively (m!)-term polynomials in α and
β, [2] then views the entire sum as a power series and applies a standard (yet technical)
analysis to derive a bound on τ(M).

In this work, we extend this approach in four aspects.

CCC 2024
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Direction 1: Schur polynomials. First, we improve on the analysis of the series (1).
Although this series is a rather concrete representation of det(M), the analysis of the (m!)-
term polynomials and infinite sum is still a strenuous task and tends not to lead to tight
bounds. In this work, we make further inspections of the structure of series (1) and observe
that all the determinants det [αnk

s ]s,k∈[m] , det [βnk
t ]t,k∈[m] have a special structure – they are

known as generalized Vandermonde matrices. Such matrices have been extensively studied in
Algebraic Combinatorics under the name Schur polynomials, and are central to the theory
of symmetric polynomials. For the classical theory and application of Schur polynomials
we point to Chapter 7 of [23]. In recent years, Schur polynomials have also found various
applications in computer science, such as in quantum computation [16, 19] and geometric
complexity theory [17].

One key property of Schur polynomials lies in its two equivalent definitions. The algebraic
definition by Cauchy establishes connection between Schur polynomials and generalized
Vandermonde matrices, while the combinatorial definition by Littlewood gives a concrete
specification of the coefficients of Schur polynomials.

▶ Definition 9 (Schur polynomials). Let m > 0 be an integer and λ1 ≤ · · · ≤ λm be positive
integers. We define the Schur polynomial sλ on variables (u1, · · · , um) by

sλ(u) = sλ(u1, · · · , um) =
det[uλk+(k−1)

i ]i,k∈[m]∏
j>i(uj − ui)

. (Cauchy)

Equivalently, the Schur polynomial sλ(u) can be defined by

sλ(u) =
∑
T ∈T

m∏
i=1

u
t(T )i

i , (Littlewood)

where T is the set of all semi-standard Young tableaux of shape λ on alphabet [m], and
t(T ) ∈ Nm is the type of T . (See Section 4 for the definition of Young tableaux and associated
parameters.)

Based on this property, we are able to represent det [αnk
s ] and det [βnk

t ] by “neater” poly-
nomials whose nonzero coefficients are uniformly 1, and whose monomials can be enumerated
using some combinatorial objects. One can thereby obtain stronger bounds through more
straightforward analysis. Moreover, many known results regarding the asymptotic behavior
of Schur polynomials also turn out useful in providing guidance on proof strategies.

Direction 2: Special counting matrices. We also observe that for many kernels of interest,
the counting matrix M itself has a special structure. For the t-Student kernel f = 1/(1 + xρ),
its associated counting matrix Mf = [1/(1 + αρ

sβρ
t )]s,t∈[m] is known as a (scaled) Cauchy

matrix, as is Ms−
t− . For the Gaussian kernel f = e−x, the associated counting matrix

Mf = [eαsβt ]s,t∈[m] is a Vandermonde matrix, and Ms−
t− is (a relatively simple example of) a

generalized Vandermonde matrix. Closed-form formulas are known for determinants of such
special matrices. One may thus get around the Cauchy-Binet expansion and bounds can be
deduced via a direct argument.

Direction 3: Grouping vector pairs. Regarding the reduction per se, we show the reduction
in [2] can be modified so that ε = 1/(3nτ(M)) suffices, in contrast to the aforementioned
ε = 1/(3n2τ(M)) lower bound. The main idea is to perform the reduction on {x(i)} × Y for
each x(i) ∈ X separately. Note that for fixed i ∈ [n],
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(K × 1)[i] =
∑

j∈[n]

f(∥x(i) − y(j)∥2
2) =

m∑
p=0

f(p) · #
{

j : ∥x(i) − y(j)∥2
2 = p

}
.

By the same argument as before, one now recovers the components wi = [#{j ∈ [m] :
∥x(i) −y(j)∥2

2 = p}]p∈[m] of w for respective i ∈ [m]. We note, in this new reduction, it suffices
to approximate single entries (K × 1)[i], which is arguably a simpler task than approximating
∥K × 1∥1, as an error n times as large may accumulate in the latter case. Formalizing this
idea in Section 3, we successfully shave a factor of n.

This improvement on the dependence of n in addition raises an interesting question. In
the high dimensional regime, [20] showed that for any positive definite kernel f , one can
compute KDEf (n, m, ε, B) in truly subquadratic time with accuracy 1/ε < n1−δ for any
constant δ > 0. Against this algorithm, our improved reduction produces a lower bound
for 1/ε > Ω(n) · τ(M), leaving a gap of simply τ(M). This brings within reach a potential
tightness result: the optimality of [20] can be (in part) established as long as one can bound
τ(M) = O(1) for some positive definite kernel f . Such a result is arguably hard to obtain
from the previous lower bounds by either [6] or [2].

Direction 4: Low-dimensional BCP. To extend the negative result to the low-dimensional
regime, we combine our main reduction with a variant of the BCP problem. Williams [25] and
Chen [12] showed that the BCP problem for vectors with integer entries remains hard even in
extremely low dimensions d = 2O(log∗ n). (See Section 2.1 for a formal statement). With slight
modification, our main reduction can use KDE subroutines to recover the distance vector for
not only datapoints in {0, 1}m but those in Zm (though a larger counting matrix is required).
A hardness result for KDE in low dimensions thus follows from similar analysis. Moreover,
looking into the proofs of [25] and [12], we notice that they effectively showed a stronger
trade-off between the dimension of vectors and magnitude of vector entries. Translated into
the setting of KDE, this is a trade-off between dimension m and approximation error ε.

1.5 Discussion
Additive vs. Relative Error. In the previous discussion we focused mainly on the KDE
problem with additive error. In recent years, much effort has also been dedicated to algorithm
design in the setting with relative error, primarily in the moderate to high dimensional
regime d = Ω(log n). In this setting, the running time of KDE algorithms normally depends
not only on the relative error parameter εR but also on a lower bound of the kernel value
µ = minx∈[0,B] f(x). The folklore random sampling algorithm runs in time O(nε−2

R µ−1). For
the Gaussian kernel, Charikar and Siminelakis [10] made the first major improvement by
designing a O(nε−2

R µ−0.5)-time algorithm using a LSH-based Importance Sampling scheme.
Later Charikar et al. [8] presented an improved implementation of Importance sampling
that achieves O(nε−2

R µ−0.173) running time. For smooth kernels (including the Rational
Quadratic kernel and t-Student kernel), the first non-trivial improvement was due to Backurs
et al. [5], who presented an algorithm running in nε−2

R poly log(µ−1) time using tree-based
space partitioning techniques. Recently, Charikar, Kapralov and Waingarten [9] combined
this result with the discrepancy based sampling scheme by Phillips and Tai [20] and achieved
nε−1

R poly log(µ−1) running time, improving the dependence on εR.
Interestingly, our new lower bounds in Section 1.3 exhibits a sharp contrast between the

additive and relative error setting. The best known KDE algorithms stated above suggest
that KDE for smooth kernels are likely easier than that for Gaussian-like kernels in the
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relative error setting. However, comparing between Theorem 5 and Theorem 7, we observe an
opposite trend. For example, for B = O(1) and m = Θ(log n), Gaussian KDE is Easy when
1/ε < mo(m) whereas KDE for Rational Quadratic kernel and t-Student kernel are Hard even
for 1/ε = 2Ω(m). This difference suggests that the discrepancy between two formulations is
likely inherent and they should be treated with respective care.

Dynamic vs. Batched KDE. As we see from the reduction of [6] and [2], the BCP problem
naturally reduces to the batched version of KDE, and thereby we take batched KDE as the
primary formulation in this work for simplicity. In the literature, the KDE problem is equally
often phrased in its dynamic version, e.g., in [10, 20, 9]. In the dynamic KDE problem for
kernel k(x, y), one is given a dataset X ⊂ Rm and a vector w ∈ Rn, and asked to design a
data structure A that preprocesses X and outputs an approximation to the Kernel Density∑

x∈X k(x, q)w[x] for each query point q ∈ Rm. Given a KDE data structure, one can easily
build a batched KDE algorithm in time T (preprocessing) + n ·T (query). Hence any hardness
result proved for batched KDE automatically holds for dynamic KDE as well. It is not
clear whether there is a reduction in the reverse direction, and it remains an open problem
to determine whether the batched version is strictly easier. Nonetheless, all the known
algorithms including the Fast Multipole method, Polynomial method and sampling-based
methods, are data structures or can be modified to solve the dynamic problem.

2 Preliminaries

2.1 SETH and known hard problems
We now introduce several variants of the Bichromatic Closest Pair problem.

▶ Problem 10 (Hamming (Exact) Bichromatic Closest Pair). Hamming-BCP(n, m): Given two
sets A = {x(1), · · · , x(n)}, B = {y(1), · · · , y(n)} ⊂ {0, 1}m, compute mini,j∈[n] ∥x(i) − y(j)∥2

2.

▶ Theorem 11 ([4]). Assuming SETH, for every q ∈ (0, 1), there exists C > 0 such that if
m > C log n, then Hamming-BCP(n, m) cannot be solved in time O(n2−q) for any constant
q > 0.

Similarly, one can define the Hamming approximate BCP problem and its decision version.

▶ Problem 12 (Hamming Approximate BCP). Hamming-Apx-BCP(n, m, µ): Given two sets
A, B as in Problem 10 as well as µ ∈ R+, output d ∈ R such that mini,j∈[n] ∥x(i) − y(j)∥2

2 ≤
d ≤ (1 + µ) mini,j∈[n] ∥x(i) − y(j)∥2

2.

▶ Theorem 13 ([21]). Assuming SETH, for every q > 0, there exist C > 0, µ > 0 such that
if m > C log n, then Hamming-Apx-BCP(n, m, µ) cannot be solved in time O(n2−q) for any
constant q > 0.

In the low dimensional regime m = o(log n), we consider the hardness of the ℓ2 BCP
problem.

▶ Problem 14 (ℓ2 (Exact) Bichromatic Closest Pair). ℓ2-BCP(n, m, D): Given two sets
A = {x(1), · · · , x(n)}, B = {y(1), · · · , y(n)} ∈ Zm such that maxi,j∈[n] ∥x(i) − y(j)∥2

2 ≤ D,
compute mini,j∈[n] ∥x(i) − y(j)∥2

2.

▶ Theorem 15 ([12]). Assuming SETH, for every q > 0, there exists C1, C2 > 0 such that
if m > C log∗ n

1 and D > mClog∗ n
2 ·(log n)/m, then ℓ2-BCP(n, m, D) cannot be solved in time

O(n2−q) for any constant q > 0.
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To unify the hardness results for BCP in different dimension regimes, we view the Hamming
BCP problem as an ℓ2 BCP problem with D = m. Formally, we combine Theorem 13 and
Theorem 15 as follows.

▶ Theorem 16. Assuming SETH, for every q > 0, there exists C > 0 such that ℓ2-
BCP(n, m, D) cannot be solved in time O(n2−q) for any constant q > 0 if either of the
following holds: (1) m > C log n, D = m, or (2) m > C log∗ n, D > mClog∗ n·(log n)/m.

2.2 Kernels of interest
In this work we focus primarily on three kernels k(x, y) = f(∥x − y∥2

2):
Gaussian kernel f(x) = e−x;
Rational Quadratic kernel f(x) = 1/(1 + x)σ for σ ≥ 1 a parameter;
t-Student kernel f(x) = 1/(1 + xρ) for ρ ≥ 1 a parameter.7

Rational Quadratic kernel and t-Student kernel are two typical kernels with mild decay (as
opposed to the rapid decay of Gaussian kernel). This property is abstracted by Backurs et
al. [5] in the definition of a smooth kernel. Here we only focus on decreasing radial kernels.

▶ Definition 17 (smooth kernel). A decreasing radial kernel k(x, y) = f(∥x − y∥2
2) is (L, t)

smooth if for any 0 < a < b, f(a)
f(b) ≤ L

(
b
a

)t.

By calculation one can verify that Rational Quadratic kernel and t-Student kernel are
respectively (1, 1)- and (1, ρ)-smooth.

Positive definite kernels. Most commonly-studied kernels are positive definite. We will
find that our lower bound approach takes a particularly nice form for such kernels.

▶ Definition 18 (Positive definite kernel). A kernel k : Rm × Rm → R is positive definite if
for any n points x1, · · · , xn ∈ Rm, the Gram matrix G = [k(xi, xj)]i,j∈[n] is always positive
definite.

For radial kernels, we have the following concise characterization of positive definite kernels.

▶ Definition 19. Let f : R≥0 → R be a real function. We say f is absolutely monotone if
G ∈ C∞(R≥0) and f (k)(t) for all k ∈ N and t ≥ 0, and we say f is completely monotone if
G ∈ C∞(R≥0) and (−1)k · f (k)(t) ≥ 0 for all k ∈ N and t ≥ 0.

▶ Theorem 20 (Schoenberg’s characterization). Let f : R≥0 → R be a real function. Then
the kernel k(x, y) = f(∥x − y∥2

2) is positive definite if and only if f is completely monotone
on R≥0.

2.3 Tools from linear algebra
As in prior work, we will make use of the Cauchy-Binet formula.

▶ Lemma 21 (Cauchy-Binet formula). Let k > 0 be an integer, and for functions A :
[k] × N → R and B : N × [k] → R, define the matrix C ∈ Rk×k by, for i, j ∈ [k], C[i, j] =∑∞

ℓ=0 A[i, ℓ]B[ℓ, j]. If the sum converges absolutely for all i, j, then

det(C) =
∑

1≤ℓ1<···<ℓk

det(A[ℓ1, · · · , ℓk]) · det(B[ℓ1, · · · , ℓk]).

Here A[ℓ1, · · · , ℓk](resp. B[ℓ1, · · · , ℓk]) is the k × k matrix obtained from A (resp. B) by
taking the columns (resp. rows) ℓ1, · · · , ℓk.

7 t in the name of the kernel in principle should be the name of the parameter. We here use ρ as parameter
while keeping the name t-Student kernel unchanged.
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3 Main reduction from BCP

Most of our new lower bounds are based on the reduction below from Hamming or ℓ2 Exact
Bichromatic Closest Pair to KDE. This reduction generalizes a framework developed in [2]
to accommodate different parameter regimes. In this section we will give the outline of the
reduction and establish an upper bound on 1/ε determined by the quantity τ(M).

▶ Definition 22. Let D > 0 be an integer. Fix vectors α, β ∈ RD and c ∈ R. Suppose
c + αℓβp ∈ [0, 1] for all ℓ, p ∈ [D]. Then for function f : [0, 1] → R, the counting matrix
M = M(D; f, α, β) is a D × D matrix defined by M [ℓ, p] = f(c + αℓβp), ℓ, p ∈ [D].

▶ Theorem 23. Let α ∈ RD be a fixed vector and β ∈ RD be the identity vector defined
by βp = p. If KDEf (n, m, ε) can be solved in T (n, m, ε) time, then ℓ2-BCP(n, m, D) with
m = no(1), D = no(1) can be solved in T (n, m + 1, (3nτ(M))−1) · no(1) + n1+o(1) time, where
M is the D × D counting matrix associated with f, α, β and τ(M) = max0 ̸=b∈RD

∥M−1b∥∞
∥b∥∞

.

Proof. Given two sets X = {x(1), · · · , xn}, Y = {y(1), · · · , y(n)} ⊆ Zm such that maxi,j∈[n]
∥x(i) − y(j)∥2

2 ≤ D, let W ∈ ND×n denote the distance count matrix defined by W [p, i] =
#[j ∈ [n] : ∥x(i) − y(j)∥2

2 = p]. Then the matrix product U = M × W gives

U [ℓ, i] =
D∑

p=1
M [ℓ, p] · W [p, i] =

D∑
p=1

f
(
c + αℓβp

) ∑
j∈[n]

1

[
∥x(i) − y(j)∥2

2 = p
]

=
∑

j∈[n]

f
(

c + αℓ · β
[
∥x(i) − y(j)∥2

2

])
. (2)

We note that when β is the identity vector, the summation (2) can be formulated as a
KDE instance. More specifically, let x̃

(i)
ℓ , ỹ

(j)
ℓ ∈ Rm+1 be defined by x̃

(i)
ℓ [k] =

√
α(ℓ)x(i)[k]

if k ∈ [m] and x̃
(i)
ℓ [m + 1] =

√
c; ỹ

(j)
ℓ [k] =

√
α(ℓ)y(j)[k] if k ∈ [m] and ỹ

(j)
ℓ [m + 1] =

0. Then U [ℓ, i] =
∑

j∈[n] f(∥x̃
(i)
ℓ − ỹ

(j)
ℓ ∥2

2). Therefore we have the following algorithm
for ℓ2-BCP(n, m, D) using KDEf as a subroutine. On input X = {x(1), · · · , x(n)}, Y =
{y(1), · · · , y(n)} such that maxi,j∈[n] ∥x(i) − y(j)∥2

2 ≤ D:
1. For ℓ ∈ [D], construct vectors x̃

(i)
ℓ , ỹ

(j)
ℓ , i, j ∈ [n]. Then approximate the ℓ-th row of U :

Û [ℓ] ≈ U [ℓ] = Kℓ × 1 using the KDEf oracle.
2. Compute Ŵ = M−1 × Û , and round each entry to the closest integer.

We claim that if we call the KDEf subroutine with ε = (3nτ(M))−1, then the distance
count matrix W is exactly recovered after the rounding step. Indeed, for fixed i ∈ [n], letting
W [·, i], U [·, i] respectively denote the i-th column of matrix W and U , we have

∥Ŵ [·, i] − W [·, i]∥∞ = ∥M−1(Û [·, i] − U [·, i])∥∞ ≤ τ(M) · ∥Û [·, i] − U [·, i]∥∞.

If the KDEf subroutine guarantees that ∥Û [ℓ] − U [ℓ]∥∞ ≤ (3nτ(M))−1 · ∥1∥1 = (3τ(M))−1

for all ℓ ∈ {1, · · · , D}, then the entry-wise difference between Ŵ and W is bounded by 1/3.
The D calls to the subroutine then take in total D · T (n, m, (3nτ(M))−1) time. It takes

in addition D · O(nm) = n1+o(1) operations to construct the vectors and O(Dω) time for
step 2.8 ◀

8 We always assume f(x) can be exactly computed in constant time for any x ∈ [0, 1].
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We now combine the reduction above and the hardness result of BCP in Theorem 16.
The hardness of the KDE problem follows.

▶ Theorem 24. Assuming SETH, for every q > 0, there exists C ≥ 0 such that KDEf (n, m,

(3nτ(M))−1) cannot be solved in time O(n2−q) for any constant q > 0. if either of the
following holds: (1) m > C log n, D = m or (2) m > C log∗ n, D > mClog∗ n·(log n)/m. Here M

is the D × D counting matrix in Definition 22.

4 Schur polynomials

Let F be a field. For matrices A, B ∈ Fm×n, let A ◦ B denote the Hadamard product of
A and B, i.e. the m × n matrix with entries (A ◦ B)[i, j] = A[i, j] · B[i, j], i ∈ [m], j ∈ [n].
For matrix A ∈ Fm×n we define the Hadamard powers A◦1 = A and A◦(k+1) = A◦k ◦ A for
integer k ≥ 1. Similarly one can define the Hadamard product and Hadamard power for
vectors u ∈ Fm. Moreover, given a vector u ∈ Fm and a tuple r = (r1, · · · , rn) ∈ Nn, we
denote by u◦r the m × n matrix | | |

u◦r1 u◦r2 · · · u◦rn

| | |

 =

ur1
1 ur2

1 · · · urn
1

...
...

. . .
...

ur1
m ur2

m · · · urn
m

 .

In particular, when m = n, we call u◦r a generalized Vandermonde matrix. This is a
natural generalization of the (usual) Vandermonde matrix u◦δ associated with the tuple
δ = (0, 1, · · · , m − 1).

The concept of Schur polynomials was first proposed by Cauchy and defined as the ratio
of two generalized Vandermonde determinants. In what follows we denote by Nm

< = {x ∈
Nm : x1 < · · · < xm} the set of m-tuples composed of distinct entries in ascending order, and
define Nm

≤ = {x ∈ Nm : x1 ≤ · · · ≤ xm} similarly.

▶ Definition 25 (Cauchy’s definition of Schur polynomials). Let m > 0 be an integer and
λ = (λ1, · · · , λm) ∈ Nm

≤ an integer tuple. We define the Schur polynomial on variables
(u1, · · · , um) by

sλ(u) = sλ(u1, · · · , um) = det(u◦(λ+δ))
det(u◦δ) = det(u◦(λ+δ))

V (u) .

Here V (u) = det(u◦δ) =
∏

1≤i<j≤m(uj − ui) is the Vandermonde determinant.

It is known that Schur polynomial has an equivalent definition by Littlewood using Young
tableaux.

▶ Definition 26. Let m > 0 be an integer, and λ = (λ1, · · · , λm) ∈ Nm
≤ an integer tuple.

A semi-standard Young tableaux (SSYT) of shape λ on alphabet [m] is a left-aligned two-
dimensional rectangular array T of cells, with λi cells in the i-th row (i ∈ [m]), from bottom
to top, such that

each cell in T is assigned with an entry from 1, · · · , m;
entries weakly decrease in each row, from left to right;
entries strictly decrease in each column, from top to bottom.

Moreover, for a SSYT T , we define the type t(T ) = (t1, · · · , tm) ∈ Nm of T , where tj is the
number of cells in T assigned with entry j ∈ [m].
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▶ Definition 27 (Littlewood’s definition of Schur polynomials). Let m > 0 be an integer. For
integer tuple λ = (λ1, · · · , λm) ∈ Nm

≤ , the Schur polynomial sλ(u) can be equivalently defined
by

sλ(u) =
∑
T ∈T

ut(T ),

where T is the set of all SSYT of shape λ on alphabet [m].

5 Direct calculation of τ (M): Gaussian kernel and t-Student kernel

5.1 Gaussian kernel
In this section we show upper bounds for

τ(M) = max
b∈RD:b̸=0

∥M−1b∥∞

∥b∥∞
≤ D · max

s,t∈[D]
|M−1[s, t]|

where M is the counting matrix associated with the Gaussian kernel f(x) = e−Bx. 9 By

standard facts in linear algebra, we can rewrite |M−1[s, t]| =
∣∣∣∣det(Ms−

t− )
det(M)

∣∣∣∣ with Ms−
t− the

submatrix of M consisting of all entries but those in row s or column t.
For the simplicity of analysis, we study the counting matrix M of dimension (D + 1). A

slight modification of the main reduction can employ such a matrix to recover the distance
matrix with a redundant row: W [p, i] = #[∥x(i) − y(j)∥2

2 = p], i ∈ [n], p = {0, 1, · · · , D}.

▶ Theorem 28. Let α ∈ RD+1 be a fixed vector and β ∈ RD+1 be the identity vector. Let
M be the (D + 1) × (D + 1) counting matrix associated with Gaussian kernel f = e−Bx and

α, β. Then there exists a vector α such that τ(M) ≤
(

5e
1−e−B/D

)D

.

Proof. Let xi = exp(−Bαi), then M = [xj
i : i, j ∈ {0, · · · , D}] is a Vandermonde matrix

with | det(M)| = | det(x◦(0,··· ,D))| = V (x). On the other hand, we observe that Ms−
t− can

be viewed as a generalized Vandermonde matrix. Making use of both the algebraic and
combinatorial definition of Schur polynomials, we have10

| det(Ms−
t− )| = | det((xs−)◦(0,··· ,t−1,t+1,··· ,D))| = V (xs−)

∑
R⊆{0,··· ,D}\{s}

∏
r∈R

xr,

in which xs− denotes the vector (x0, · · · , xs−1, xs+1, · · · , xD) and
∑

R⊆{0,··· ,D}\{s}
∏

r∈R xr

≤
∏

i∈{0,··· ,D}\{s}(1 + xi) ≤ 2D. Therefore

max
s,t

| det(Ms−
t− )| ≤ 2D · max

s
V (xs−) = 2D · V (x)

min
s

∏
i∈[D]\{s}

|xi − xs|

−1

.

We now pick 0 = α0 < · · · < αD−1 < αD = 1/D such that |xi+1 − xi| = | exp(−Bαi+1) −
exp(−Bαi)| = 1

D (1 − e−B/D). Let r = 1
D (1 − e−B/D), then

9 By a straightforward reduction, KDEf (n, m, ε, B) is equivalent to KDEg(n, m, ε, B = 1) where g =
f(Bx).

10 The Schur polynomial here in fact equals an elementary symmetric polynomial.
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∏
i∈{0,··· ,D}\{s}

|xi − xs| =
(

s−1∏
i=0

(s − i)r
)(

D∏
i=s+1

(i − s)r
)

= rD · s!(D − s)! ≥ rD · ( D

2e
)D/2·2 = (1 − e−B/D

2e
)D.

Combining the calculations together, we have

τ(M) ≤ D · max
s,t

∣∣∣∣∣det(Ms−
t− )

det(M)

∣∣∣∣∣ ≤ D · 2D

min
s

∏
i∈[D]\{s}

|xi − xs|

−1

≤
(

5e

1 − e−B/D

)D

. ◀

The following hardness result for Gaussian KDE therefore arises from a combination of
the general KDE hardness Theorem 24 and the bound on τ(M) above.

▶ Theorem 29 (Hardness of Gaussian KDE). Let f(x) = e−Bx be the Gaussian kernel with
B ≥ 1. Then assuming SETH, for every q > 0, there exists C1, C ′

1, C2, C3, C ′
3, C4 ≥ 0 such

that KDEf (n, m, ε) cannot be solved in time O(n2−q) if either of the following holds:
(1) m > C1 log n, B < C ′

1 log n, 1/ε > (C2m/B)m, or
(2) C3 log∗ n < m < C ′

3(log n)/(log log n), log log(1/ε) > (log n)/m · (log m) · C log∗ n
4 .

Proof. For regime (1), first pick appropriate C ′
1 so that B/m < 1.

3nτ(M) = 3n

(
5e

1 − e−B/m

)m

≤ 3n

(
5e

B/(em)

)m

= 3 · 2C−1
1 m ·

(
5e2m

B

)m

≤
(

C2m

B

)m

for some constant C2 > 0. For regime (2), we have B/D ≤ 1 and thus

3n

(
5e

1 − e−B/D

)D

≤ 3n

(
5e2D

B

)D

≤ 3n(5e2D)D.

If m < (log n)/(log log n), log D = (log n)/m · (log m) · C log∗ m = (log log n)2(1 − o(1)) ·
C log∗ m > log log n. log(3nτ(M)) ≤ log(3n) + D log(5e2D) < C ′D log(5e2D). For some
C ′ > 0. Thus, log log(3nτ(M)) ≤ log D + log log(5e2D) ≤ (log n)/m · (log m) · C log∗ m

4 . ◀

5.2 t-Student kernel
For t-Student kernels f(x) = 1/(1 + xρ), we prove a similar bound on τ(M). The key
observation here is that both M and M t−

s− are (scaled) Cauchy matrices. For vectors
a, b ∈ Rn, the Cauchy matrix associated with a, b is defined by M [i, j] = 1/(ai + bj), i, j ∈ [n].
The following closed-form formula is known for its determinant.

▶ Theorem 30 (Cauchy determinant). Let n ≥ 1 be an integer. For a, b ∈ Rn, let M =
[1/(ai + bj)]i,j∈[n] be the associated Cauchy matrix. Then

det(M) =
∏

1≤i<j≤n(ai − aj)(bi − bj)∏
i,j∈[n](ai + bj) .

▶ Corollary 31. For a, b ∈ Rn with ai, bj ∈ (0, 1), ∀i, j ∈ [n], and s, t ∈ [n], we have∣∣∣∣ det[(1 + aibj)−1]i,j∈[n]

det[(1 + aibj)−1]i∈[n]s−,j∈[n]t−

∣∣∣∣ =

∣∣∣∣∣
∏

i∈[n]s−(ai − as)
∏

j∈[n]t−(bj − bt)∏
i∈[n](1 + aibt)

∏
j∈[n]t−(1 + asbj)

∣∣∣∣∣ .
Here [n]s− = [n]\{s}, [n]t− = [n]\{t}.
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Before proving the bound on τ(M), we gather several simple inequalities to be used.

▶ Lemma 32.
(I) Let r ≥ 1, a, b > 0 be real numbers. Then (a + b)r ≥ ar + br.

(II) Let a, b ≥ 0 be integers. Then a!b! ≥ ((⌊ a+b
2 ⌋)!)2.

Proof.
(I) Taking the derivative, one can show f(x) = (1 + x)r − xr is increasing in x for x > 0.

Thus f(b/a) = (1 + b/a)r − (b/a)r ≥ f(0) = 1. The inequality follows.
(II) For a = b = 0, the inequality is trivial. If not, we have

(
a+b

a

)
≤
(

a+b
⌈(a+b)/2⌉

)
, a!b! ≥

(⌈ a+b
2 ⌉)!(⌊ a+b

2 ⌋)! ≥ ((⌊ a+b
2 ⌋)!)2. ◀

▶ Theorem 33. Let ρ ≥ 1 be a real number. Let α ∈ RD be a fixed vector and β ∈ RD be
the identity vector. Let M be the D × D counting matrix associated with t-Student kernel
f(x) = 1/(1 + xρ) and α, β. Then there exists a vector α such that τ(M) ≤ (7e)2ρD.

Proof. The counting matrix is M = [f(αiβj)]i,j∈[D] =
[

1
1+(αiβj)ρ

]
i,j∈[D]

. For simplicity we

assume D is odd. Let s, t ∈ [D]. By corollary 31, we have∣∣∣∣∣ det(M)
det(Ms−

t− )

∣∣∣∣∣ =

∣∣∣∣∣
∏

i∈[D]s−(αρ
i − αρ

s)
∏

j∈[D]t−(βρ
j − βρ

t )∏
i∈[D](1 + αρ

i βρ
t )
∏

j∈[D]t−(1 + αρ
sβρ

j )

∣∣∣∣∣ .
We set α = β to be the scaled identity vector with αi = βi = i/D, ∀i ∈ [D]. (By rescaling
αi = i/D2, βi = i one can make β the identity vector.) Then

∏
i∈[D](1 + αρ

i βρ
t )
∏

j∈[D]t−(1 +
αρ

sβρ
j ) ≤ 22D−1,

∏
i∈[D]s−

|αρ
i − αρ

s | =
s−1∏
i=1

sρ − iρ

Dρ

D∏
i=s+1

iρ − sρ

Dρ
≥

s−1∏
i=1

(s − i)ρ

Dρ

D∏
i=s+1

(i − s)ρ

Dρ

=
(

(s − 1)!(D − s)!
DD−1

)ρ

≥

(
(⌊ D−1

2 ⌋)!
DD−1

)ρ

≥
(

D − 1
2eD

)ρ(D−1)
≥ (3e)−ρD.

Similarly,
∏

j∈[D]t− |βρ
j −βρ

t | ≥ (3e)−ρD. In conclusion, we have τ(M) ≤ D ·maxs,t

∣∣∣∣det(Ms−
t− )

det(M)

∣∣∣∣
≤ D · 22D · (3e)2ρD ≤ (7e)2ρD. ◀

Combining the bound on τ(M) above and the general KDE hardness Theorem 24, we
obtain

▶ Theorem 34 (Hardness results of t-Student KDE). Let f(x) = 1/(1 + xρ) be a t-Student
kernel parameterized by ρ ≥ 1 an absolute constant. Then assuming SETH, for every q > 0,
there exists C1, C2, C3, C ′

3, C4 ≥ 0 such that KDEf (n, m, ε) cannot be solved in time O(n2−q)
if either of the following holds:
(1) m > C1 log n, 1/ε > nC2 , or
(2) C3 log∗ n < m < C ′

3(log n)/(log log n), log log(1/ε) > (log n)/m · (log m) · C log∗ n
4 .

Here C1, C3, C ′
3 are absolute constants while C2, C4 are dependent on ρ.

Proof. Analogous to the proof of Theorem 29. ◀
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6 Cauchy-Binet Expansion

To bound τ(M) for counting matrices that are associated with more general kernels, we
establish the connection between the determinant det(M) and the Taylor coefficients of f via
Cauchy-Binet Expansion, based on a framework given in [2]. Our improvement mainly derives
from an observation that the terms in the expansion are in fact generalized Vandermonde
determinants. The additional structure in the determinants allows for simplifications in
analysis through Schur polynomials.

Define infinite matrices A : [D] × N → R, Ã : [D] × N → R, and B : N × [D] → R by

A[i, k] = αk
i , Ã[i, k] = f (k)(c)

k! αk
i , B[k, j] = βk

j .

Suppose the Taylor series of f(c+x) at c ∈ [0, 1] is absolutely convergent whenever c+x ∈ [0, 1].
Then for i, j ∈ [D], assuming c + αiβj ∈ [0, 1], we have

M [i, j] = f(c + αiβj) =
∞∑

k=0

f (k)(c)
k! αk

i βk
j =

∞∑
k=0

Ã[i, k]B[k, j].

By Cauchy-Binet formula, we expand det(M) as follows.

det(M) =
∑

n̄∈ND
<

det Ã[[D]; n̄] · det B[n̄; [D]]

=
∑

λ∈ND
≤

(
D∏

i=1

f (λi+δi)(c)
(λi + δi)!

)
det(α◦(λ+δ)) det(β◦(λ+δ)) (λ = n̄ − δ)

= V (α)V (β)
∑

λ∈ND
≤

(
D∏

i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α)sλ(β). (3)

The last step follows from the algebraic definition of Schur polynomials. Similarly,

det(Ms−
t− ) = V (αs−)V (βt−)

∑
λ∈ND−1

≤

(
D−1∏
i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(αs−)sλ(βt−). (4)

6.1 Absolutely monotonic kernels
At this point one may try bounding (3) and (4) using analytic properties of Schur polynomials.
However, for a general function f , the arbitrary signs of Taylor coefficients largely complicate
the analysis, making tight bounds out of reach. Hence we first study the easy case where
τ(M) is associated with an absolutely monotonic kernel f , i.e., f : [0, 1] → [0, 1] satisfies
f (n)(c) ≥ 0 for all n ∈ N and c > 0. We will shortly see that such kernels are in fact not
artificial as all the positive definite kernels naturally reduce to this case.

We first use the following indentity of Schur polynomials to “align” (3) and (4).

▶ Proposition 35. If λ1 ̸= 0, then s(λ1,··· ,λn)(α1 = 0, α2, · · · , αn) = 0. If λ1 = 0, then
s(λ1,··· ,λn)(α1 = 0, α2, · · · , αn) = s(λ2,··· ,λn)(α2, · · · , αn).

Proof. By the combinatorial definition of Schur polynomials, we have s(λ1,··· ,λn)(α1, α2, · · · ,

αn) =
∑

T ∈T αt(T ). where T is the set of all SSYT of shape λ = (λ1, · · · , λn) on alphabet
[n], and t(T ) denotes the type of SSYT T . Now set α1 = 0. If the letter 1 appears in a SSYT
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T , i.e. t(T )[1] > 0, then the corresponding monomial vanishes when evaluated. Therefore
the equation simplifies to s(λ1,··· ,λn)(α1, α2, · · · , αn) =

∑
T ∈T1

αt(T ) where T1 is the set of all
SSYT of shape λ on alphabet {2, 3, · · · , n}.

However, if λ1 > 0, no sequence of length n on alphabet {2, 3, · · · , n} satisfies the (strictly)
decreasing constraint in the first column of the tableau. In this case s(λ1,··· ,λn)(α1, α2, · · · , αn)
= 0. If λ1 = 0, then T1 is essentially the set of all SSYT of shape λ′ = (λ2, · · · , λn)
over alphabet {2, 3, · · · , n}. By definition, s(λ1,··· ,λn)(α1, α2, · · · , αn) =

∑
T ∈T1

αt(T ) =
s(λ2,··· ,λn)(α2, · · · , αn). ◀

In consequence, if we fix α = (α1, α2, · · · , αD) with α1 = 0, then

det(M) = V (α)V (β)
∑

λ∈ND
≤

(
D∏

i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α)sλ(β)

= V (α)V (β)f(c)
∑

λ∈ND−1
≤

(
D−1∏
i=1

f (λi+δi+1)(c)
(λi + δi+1)!

)
sλ(α1−)sλ(β1−).

Here λ1−, α1−, β1− are obtained by removing the first entry in the corresponding par-
tition/vector λ, α, β. (In the last step we abuse the notation by renaming λ1− as λ.)
Meanwhile,

max
s,t

det(Ms−
t− ) ≤

(
max

s,t
V (αs−)V (βt−)

) ∑
λ∈ND−1

≤

(
D−1∏
i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α1−)sλ(β1−).

In what follows, we let

Eλ =
(

D−1∏
i=1

f (λi+δi+1)(c)
(λi + δi+1)!

)
sλ(α1−)sλ(β1−), Fλ =

(
D−1∏
i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α1−)sλ(β1−)

denote the corresponding terms in the two sums. For absolutely monotonic function f , we
have Fλ > 0 and Eλ > 0 for all λ ∈ ND−1

≤ . Thus,

max
s,t

det(Ms−
t− )

det(M) ≤ 1
f(c) max

s,t

V (αs−)V (βt−)
V (α)V (β) max

λ∈ND−1
≤

Fλ

Eλ
. (5)

6.2 KDE hardness for positive definite kernels
To accommodate positive definite kernels, we slightly modify the reduction in Section 3.
Let k(x, y) = f(∥x − y∥2

2) be a positive definite kernel. By Schoenberg’s characterization
(Theorem 20), we have (−1)k · f (k)(t) ≥ 0 for all k ∈ N, t ≥ 0. Then for the function
g(x) = f(1 − x), it holds g(k)(t) = (−1)k · f (k)(1 − t) ≥ 0 for all k ∈ N, t ∈ [0, 1]. Namely g is
an absolutely monotonic kernel.

Next we see how KDEf can be related to τ(Mg). Let M be the D × D counting matrix
associated with g, and let W ∈ ND×n be a re-indexed distance count matrix defined by
W [p, i] = #[j ∈ [n] : ∥x(i) − y(j)∥2

2 = D − p]. Then the matrix product U = M × W gives

U [ℓ, i] =
D∑

p=1
M [ℓ, p] · W [p, i] =

D∑
p=1

g
(
αℓβp

) ∑
j∈[n]

1

[
∥x(i) − y(j)∥2

2 = D − p
]

=
∑

j∈[n]

g
(

c + αℓ · β
[
D − ∥x(i) − y(j)∥2

2

])
. (6)
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If β is the identity vector, then

U [ℓ, i] =
∑

j∈[n]

g
(

c + αℓ · (D − ∥x(i) − y(j)∥2
2)
)

=
∑

j∈[n]

f
(

1 − c − αℓD + αℓ∥x(i) − y(j)∥2
2

)
.

Constructing vectors x̃
(i)
ℓ , ỹ

(j)
ℓ ∈ Rm+1 defined by x̃

(i)
ℓ [k] =

√
α(ℓ)x(i)[k] if k ∈ [m] and

x̃
(i)
ℓ [m + 1] =

√
1 − c − αℓD; ỹ

(j)
ℓ [k] =

√
α(ℓ)y(j)[k] if k ∈ [m] and ỹ

(j)
ℓ [m + 1] = 0, we have

U [ℓ, i] =
∑

j∈[n] f(∥x̃
(i)
ℓ − ỹ

(j)
ℓ ∥2

2). In this way we show that the new product U can also be
computed using KDE subroutines, and the reduction proceeds the same way as in Section 3
to recover the (re-indexed) distance count matrix. By similar analysis, we have the following
hardness result relating the complexity of KDEf to τ(Mg).

▶ Theorem 36. Let f : [0, 1] → [0, 1] be a function and g(x) = f(1 − x). Then assuming
SETH, for every q > 0, there exists C ≥ 0 such that KDEf (n, m, (3nτ(M))−1) cannot
be solved in time O(n2−q) for any constant q > 0. if either of the following holds: (1)
m > C log n, D = m or (2) m > C log∗ n, D > mClog∗ n·(log n)/m. Here M is the D × D

counting matrix associated with function g.

6.3 Hardness of Rational Quadratic kernel
For f, α, β of certain forms, we give explicit bounds on the two terms in (5). Regarding the
ratio of Vandermonde determinants, we focus on V (xs−)/V (x) for scaled identity x defined
by xp = p/D.

▶ Proposition 37. Let ρ ≥ 1 be a real number and x ∈ [0, 1]D be the vector defined by
xi = i/D. Then for s ∈ [D] we have V (xs−)

V (x) =
∏

i∈[D]\{s} |xi − xs|−1 ≤ (3e)D.

Proof.
∏

i∈[D]\{s} |xi −xs| =
∏s−1

i=1
s−i
D ·

∏D
i=s+1

i−s
D = (s−1)!(D−s)!

DD−1 ≥
(

D−1
2eD

)(D−1) ≥ (3e)−D.
◀

Hence for vectors α defined by αℓ = ℓ/D, ℓ ∈ [D] and β defined by βp = p/D, p ∈ [D], we
have maxs,t

V (αs−)V (βt−)
V (α)V (β) ≤ (3e)2D.

For the term involving Taylor coefficients, we fix a real number σ ≥ 1 and focus on
the absolutely monotonic function f(x) = (2 − x)−σ. By calculation, for k ∈ N, f (k)(x) =
(2 − x)−(σ+k)∏k−1

i=0 (σ + i). Then for c = 0, we have

Fλ

Eλ
=
(

D−1∏
i=1

f (λi+δi)(0)
(λi + δi)!

)/(
D−1∏
i=1

f (λi+δi+1)(0)
(λi + δi+1)!

)
=

D−1∏
i=1

(
2 · 1 + λi + δi

σ + λi + δi

)
≤ 2D−1.

Combining the calculations, we obtain the following bound on τ(M).

▶ Theorem 38. Let σ ≥ 1 be a real number. Let f : [0, 1] → [0, 1] be the function
f(x) = (2 − x)−σ, and let vectors α, β ∈ RD be defined by αℓ = ℓ/D, βp = p/D. Then the
D×D counting matrix M associated with f, α, β has τ(M) ≤ D ·2σ ·(3e)2D ·2D−1 ≤ 2σ(7e)2D.

Combining the bound on τ(M) associated with f(x) = (1 + (1 − x))−σ with the hardness
of positive definite KDE Theorem 36, we obtain

▶ Theorem 39 (Hardness of Rational Quadratic KDE). Let f(x) = 1/(1 + x)σ be a Rational
Quadratic kernel parameterized by σ ≥ 1 an absolute constant. Then assuming SETH, for
every q > 0, there exists C1, C2, C3, C ′

3, C4 ≥ 0 such that KDEf (n, m, ε) cannot be solved in
time O(n2−q) for any constant q > 0. if either of the following holds:
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(1) m > C1 log n, 1/ε > nC2 , or
(2) C3 log∗ n < m < C ′

3(log n)/(log log n), log log(1/ε) > (log n)/m · (log m) · C log∗ n
4 .

Here C1, C3, C ′
3 are absolute constants while C2, C4 are dependent on σ.

Proof. Analogous to the proof of Theorem 29. ◀
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