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Abstract
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard
meta-complexity problems, such as the Minimum Circuit Size Problem (MCSP) and the Minimum
Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e.,
witness-preserving many-to-one) reductions.
In more detail:

Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-
way functions, an appropriate Gap version of MCSP is not NP-complete under randomized
Levin-reductions.
Assuming the existence of subexponentially-secure indistinguishability obfuscation,
subexponentially-secure one-way functions and injective PRGs, an appropriate Gap version of
MKTP is not NP-complete under randomized Levin-reductions.
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1 Introduction

As described by Trakhtenbrot [62], starting in the 1960s, there has been an on-going effort
studying the computational complexity of so-called “meta-complexity” problems; notably (a)
the Minimum Circuit Size problem (MCSP) [37, 62] – determining the size of the smallest
Boolean circuit that computes a given function x, and (b) the Time-Bounded Kolmogorov
Complexity Problem (MKTP) [41, 61, 16, 39, 26, 60] – determining the the length, denoted
Kt(x) of the shortest program (evaluated on some particular Universal Turing machine U) that
generates a given string x, within time t, where t = poly(|x|) is a polynomial. In particular,
a major problem since the 1960s is whether these problems, or the Gap versions of them
(where the goal is to determine whether the size is above a threshold s2 or below a threshold
s1) are NP-complete. Indeed, as recounted by [4, 30, 31], Levin is said to have delayed
the publication of his theory of NP-completeness [44] in order to show NP-completeness of
MCSP.
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36:2 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

In the following decades, there has been a lot of amazing progress – providing evidence
pointing towards both a positive and a negative answer:
Towards NP-completeness: While it is still unknown whether the original problems are

NP-complete, several generalizations of them have been proven to be NP-complete.
Most notably, Ilango first demonstrated this for an oracle version of MCSP [30]; this was
subsequently extended to a multi-bit version of MCSP referrer to as Multi-MCSP [32], to
a conditional version of the MKTP problem, McKTP [51], and to other variants [27]. [29]
recently improved the parameters of the reduction to McKTP [51], assuming that witness
encryption scheme exists. Additionally, Ilango [31] very recently demonstrates that
NP-hardness of a variant of MCSP and MKTP where the programs are allowed to access
a random oracle, yielding a heuristic NP-completeness Karp (i.e., many-one) reduction
for these problems (if instantiating the random oracle with a concrete hash function).
Finally, a recent work by Impagliazzo, Kabanets, and Volkovich [33] provides various
different results that can be interpreted as giving evidence that MCSP is NP-complete
with respect to randomized reductions.

Towards Non NP-completeness: There is also evidence pointing towards non NP com-
pleteness: Allender and Hirahara [3] showed that assuming one-way functions, the gap
version of MCSP is not NP complete for super-polynomial gap. Ko [40] showed that a
version of MKTP is not NP complete with respect to an oracle, and Ren and Santhanam
[56] gave an oracle with respect to which MCSP is not NP complete. Other works prove
limitations on the structure of reduction to meta-complexity problems. Murray and
Williams [53] prove that MCSP is not NP complete under so-called local reductions.
Kabanets and Cai [37] and Saks and Santhanam [58] show that the NP-completeness
of MCSP under Turing reductions with certain properties implies circuit lower bounds.
For example if MCSP is complete under so-called parametric honest Turing reductions,
then E ⊈ SIZE(poly). More recently, Saks and Santhanam [59] gave evidence that the
running time of any randomized non-adaptive reduction from SAT to Kt approximation
must grow with the time parameter t. These results, however, only rule out quite limited
types of reductions.

Despite this progress, the original question, however, remains wide open.

1.1 Our Results
The current paper provides strong evidence that the Gap versions of MCSP and MKTP
are not NP-complete w.r.t. Levin reductions – that is witness-preserving many-to-one
reductions. In particular, we demonstrate that under somewhat strong, but generally
believed, cryptographic hardness assumptions, the Gap version of MCSP is not NP-complete
w.r.t. Levin reductions.

Levin Reductions

The three original ways [17, 38, 45] of defining NP completeness differ in how reductions
from a language L to a language L′ are defined (see e.g., [24] for a discussion). Cook [17]
considers the most permissive notion: a Turing machine deciding L having oracle access to
a decider for L′. Karp’s notion – called a Karp reduction (or many-one reduction) is more
restrictive: it requires efficiently mapping an instance x into an instance x′ such that x ∈ L iff
x′ ∈ L′. Levin’s notion, called a Levin reduction (or a witness preserving many-one reduction)
is the most restrictive: it additionally requires efficiently mapping any witness w for x into a
witness for x′, and furthermore any witness w′ for x′ into a witness w for x. While Karp
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reductions are most commonly used, as far as we are aware, most natural NP-completeness
reductions are actually of the Levin type as well. Furthermore, for constructive applications
of NP-completeness, NP-hardness demonstrated using a Levin reduction is typically what is
needed: In particular, for cryptographic application to interactive proofs (e.g., demonstrating
that every language in NP has a zero-knowledge proof of knowledge [19], or that every
language in NP has a succinct argument [11], the notion of a Levin reduction is crucial
(see e.g., [11] that in particular notes that even the most sophisticated NP completeness
reductions, as those provided by the PCP theorem [9, 10], are Levin reductions). Our focus
here is on such Levin reductions; in particular, we will present the (conditional) impossibility
of Levin reductions for demonstrating NP-completeness; in fact, our impossibility will apply
not only to deterministic but also randomized Levin reductions (where the reduction is
allowed to fail with some small constant probability).

We mention that e.g,. the NP-completeness results of [31] and [51] rely on the NP-
completeness of approximation for the Set-Cover problem [18, 63]. In both works, the
reductions from Set-Cover to the GapMCSP and GappMKtP (or the conditional version in
the case of [51]) are (randomized) Levin reductions (see the full version of this paper for
a discussion of the result of [31]). The Set-cover NP-completeness itself relies on a long
sequence of the reductions that we have not been able to verify whether they are all Levin
(although, as mentioned above, the main technical core, the PCP theorem, is).

Our Cryptographic Hardness Assumptions: Indistinguishability Obfuscation

We will rely on the existence of indistinguishability obfuscation (iO) for circuits [12]. Roughly
speaking, an indistinguishability obfuscator is an efficient algorithm iO that given a circuit
C outputs an “obfuscated” version of C having the property that obfuscations of any two
functionally equivalent circuits are indistinguishable. Following the ground-breaking work
of [20], several heuristic candidates were proposed, as well as provably secure constructions
based on various assumptions [55, 23, 46, 64, 49, 50, 47, 6, 35, 35, 5, 21, 2, 1]. Most notable,
the recent breakthrough result presents a construction based on several well-founded (and
generally believed) hardness assumption [36]. (Constructions based on less standard, but
seemingly quantum-safe, “circular-security” assumptions also appear in [15, 22, 14]).

For our main results on MCSP, we will simply rely on indistinguishability obfuscation
and subexponentially-secure one-way function. For our results on MKTP, we will rely on iO

with subexponential security as well as other standard cryptographic assumptions such as
injective pseudorandom generators (PRGs), that e.g., are implied by the existence of one-way
permutations.

Main Theorem

We present the following main result:
Assuming the existence of indistinguishability obfuscation and subexponentially-secure
one-way function, an appropriate Gap version of MCSP is not NP-complete under
randomized Levin-reductions.
Assuming the existence of subexponentially-secure indistinguishability obfuscation,
subexponentially-secure one-way function and injective PRGs, an appropriate Gap version
of MKTP is not NP-complete under randomized Levin-reductions.

In more detail, let GapMCSP[s0, s1] be the promise problem in which given a truth table x

we need to distinguish between the following two cases:
Yes instances: There exists a circuit C of size at most s0(|x|) that computes x.
No Instances: There is no circuit of size s1(|x|) that computes x.

CCC 2024



36:4 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Our first theorem states that when the gap between s0 and s1 is large enough, and under
cryptographic assumptions, GapMCSP[s0, s1] is not NP-complete with respect to Levin
reductions.

▶ Theorem 1. Assume that iO and subexponentially-secure one-way functions exist. Then
there exists a polynomial p, such that for any pair of efficiently computable functions
s0, s1 : N → N for which s1(n) > p(s0(n)), it holds that GapMCSP[s0(n), s1(n)] is not
NP complete with respect to Levin reductions.

We remark that if all of the assumed cryptographic primitives are secure against sub-
exponential adversaries (in contrast to just polynomial adversaries), then our results rule out
also randomized Levin reductions that run in sub-exponential time.

Additionally, the assumption of subexponentially-secure one-way functions in Theorem 1
is only to handle so-called non honest reductions: A Karp reduction f is to be honest if for
every x ∈ {0, 1}∗, |f(x)| ≥ |x|δ for some constant δ > 0 (i.e., the mapping from statements x

to x′ is polynomially preserving).
To exclude only honest reductions, it is enough to assume one-way function with poly-

nomial security. Such one-way functions are known to exist assuming iO and the minimal
assumption that NP /∈ ioBPP [42]. We get the following theorem.

▶ Theorem 2. Assume that iO exists, and that NP ⊈ ioBPP. Then there exists a polynomial
p, such that for every ϵ > 0, for any pair of efficiently computable functions s0, s1 : N→ N
for which s1(n) > p(s0(n)) and s0(n) > nϵ, it holds that GapMCSP[s0(n), s1(n)] is not NP
complete with respect to honest Levin reductions.

Our second result is a similar result for the GappMKtP problem. Recall that Kt(x) is the
minimal length of a program that outputs x within t(|x|) steps. For polynomials t and p, let
GappMKtP[s0, s1] be the promise problem in which given a string x we need to distinguish
between the following two cases:

Yes instances: Kt(x) ≤ s0(|x|)
No Instances: Kp(t)(x) > s1(|x|).

We prove the following theorem.

▶ Theorem 3. Assume that subexponentially-secure iO, subexponentially-secure one-way
functions and injective PRG exist. Then there exist a polynomial q such that for any t ∈ poly
and any efficiently computable functions s0, s1 : N→ N for which s1(n) > q(log t(n), s0(n)),
and for every large enough polynomial p, it holds that GappMKtP[s0, s1] is not NP complete
with respect to Levin reductions.

Achieving a smaller gap under stronger assumptions

As discussed above, several generalizations of the GapMCSP and GappMKtP problem have
been proven NP complete. The work of [31] showed that the same problems we consider
here are NP complete relative to a random oracle. There, the gap between the Yes and No
instances is a multiplicative (1 + ϵ) gap, for a small constant ϵ > 0 while in the theorems
above we need the gap to be larger. Similarly, [51] showed that deciding a conditional version
of MKTP is NP-hard, and their result can be generalized to a gap problem with a larger
constant multiplicative factor. Hirahara [28] used a reduction from the Minimum Monotone
Satisfying Assignment problem to McKTP, resulting with a NP-hardness of the GapMcKTP
with a larger multiplicative gap, but still sub polynomial in the input length (no(1)).



N. Mazor and R. Pass 36:5

The polynomial p in Theorems 1 and 2 is the overhead of the iO algorithm we use. By
assuming a stronger assumption – that iO with a small overhead exists – we can improve the
gap. For example, we say that iO has additive overhead if on input C and security parameter
λ, the size of the obfuscated circuit is |C|+ poly(λ). If we assume iO with additive overhead,
we would get the hardness of GapMCSP also for the additive gap case. Unfortunately,
such iO constructions are currently not known (but as far as we know, there are also no
results indicating that this should be impossible). However, if we consider slightly stronger
assumptions, we can get iO for TM with a factor 2 + ϵ overhead (for any constant ϵ > 0) [8],
yielding the following theorem.1

▶ Theorem 4. Assume subexponential-secure iO, and subexponentially-secure one-way func-
tion exist and assume subexponential DDH or LWE. Then for every very constant ϵ > 0, for
every large enough polynomial p, and for every efficiently computable function s0 it holds
that GappMKtP[s0, (2 + ϵ)s0(n)] is not NP complete with respect to Levin reductions.

Proof Overview

In this proof outline, we will for simplicity focus on ruling out deterministic Levin reductions
for the GapMCSP problem. Additionally, on top of the existence of iO , we will here
assume the existence of a collision-resistant hash function; that is the existence of a family of
compressing functions such that for a randomly sampled h, it is infeasible to find two inputs
x1, x2 that “collide” (i.e., h(x1) = h(x2)) although such collision exists. (In our actual proof,
we instead rely on the weaker primitive of a target collision-resistant hash function (TCR;
also known as, universal one-way hash function [54]) which can be constructed from one-way
functions [57]. Finally, let us start by assuming that the reduction is ”honest” (i.e., mapping
statements x to statements x′ of polynomially-related length.

x = h(w̃1) (x′, w̃′1)

x = h(w1) (x′, w′1)
Levin

Reduction
iO

Levin
Reduction

Figure 1 The proof overview. Given a witness w1 such that h(w1) = x, we use the Levin reduction
to get MCSP witness. Then we use the iO to get a new MCSP witness, and use the Levin reduction
again to get back w̃1 such that h(w̃1) = x.

The key idea will be to use the Levin reduction and the iO in order to find a collision
for h. Roughly speaking, we start by sampling some w1 and compute x = h(w1); we think
of x as a statement for the language of images of h, and of w1 as the witness for x. We
next use the Levin reduction to get an MCSP statement x′ and its corresponding witness
w′1. Note that the witness w′1 is a circuit computing x′. We then obfuscate w′1 using the
iO to get a new witness w̃′1 for x′. Using the Levin reduction, we can finally turn w̃′1 into
a (hopefully new) witness w̃1 for x. Indeed, the key point is that if we had started with a

1 In a previous version of this paper, we claimed a similar result for GapMCSP using iO for circuits with
a factor 2 + ϵ overhead. iO with such small overhead w.r.t. circuits does not appear to be known; while
[8] claim an iO where the size of an obfuscation of a circuit C is of length 2|C| + poly(λ), it appears
that this “program" may need to be further interpreted, which may result in larger circuit size.

CCC 2024
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different preimage w2 ̸= w1 for x = h(w1) and done the same process, then w′2 would become
a functionally equivalent circuit to w′1 and thus by the security of the iO, the distributions
of w̃′2 and w̃′1 are computationally indistinguishable, so we conclude that w̃2 and w̃1 also are.
In particular, it follows that w̃1 ≠ w1 with probability at least 1/2, and we have thus found
a collision.

Note that we here rely on the NP-completeness of the Gap version of the MCSP problem
since when applying the iO we get a new witness for x′ but this witness (i.e, the circuit)
is bigger than the original one. In particular, the overhead of the iO translates into the
gap of the problem – for instance, if the overhead of the iO is only linear, we can handle a
linear gap, and if it has polynomial overhead then we can only rule out reductions for the
polynomial gap version of the problem.

Dealing with Non-honest Reductions

If the reduction is not honest, the statement x′ could be a lot shorter than x; the problem
then becomes if we run the iO on a security parameter that is polynomially related to |x′|
(which we require to ensure that we stay within the promise), we may no longer have security
with respect to an attacker who runs in time polynomial in |x| = n (which is required to
ensure that we find a collision). However, if we start off with a collision-resistant hash
function with sub-exponential security (i.e., 2nϵ security), we can resolve this problem using
a case-analysis. If |x′| ≤ nϵ, then we simply find a new witness w̃′ using brute-force search,
and otherwise use the iO. This ensures that we only run the iO in case the reduction behaves
”honestly”; on the other hand, when the reduction chooses a short x′, we still contradict the
subexponential security of the collision-resistant hash function.

Extensions for GappMKtP

We next generalize the above proof for the GappMKtP problem. To be able to do so, we
need a way to move from one GappMKtP witness to another, when a GappMKtP witness is
a t-time TM P of size at most s0(|x|) that outputs x. A naive approach is to first convert
the TM P into a circuit, then apply the iO for circuits, and lastly, convert the circuit back
to a TM. The problem in this approach is that since the program P outputs x, the time
bound t must be at least |x|. This means that the circuit we construct from P will have a
trivial size, and we will not be able to get back a non-trivial program that outputs x.

Luckily, we can use iO for TMs directly on P , or even it suffices to rely on a weaker
primitive of a randomized encoding. Randomized encoding for TMs is known to exist assuming
subexponential-secure iO for circuits and injective PRGs [43, 48].

Discussion

The results presented yield give a strong evidence that the GapMCSP and GappMKtP
are not NP-complete w.r.t. Levin reductions, at least when the gap is at least a factor 2.
Furthermore, although there are no known constructions of iO with only additive overhead
based on well-founded hardness assumptions, one can come up with candidate constructions
with only linear additive overhead and heuristically assume that they satisfy the notion of
indistinguishability obfuscation.2 Under these more heuristic assumptions (which in our eyes

2 In particular, take the constructions from e.g. [13, 8] and instead of encrypting the program twice under
an FHE with additive linear overhead, simply encrypt the program once. While the two encryptions are
needed for the security proof, the construction without the two encryptions seems heuristically secure.
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seem reasonable), our results thus give evidence that these problems are not NP-complete
w.r.t. Levin reductions even when the gap is a small additive term. These results thus
provide (in our eyes) convincing cryptographic evidence that the original task set out by
Levin is impossible (since he indeed defined NP-completeness through the notion of what
today is referred to as a Levin reduction.)

Of course, it could still be that a weaker notion of a reduction (e.g., a Karp) reduction
can be used to prove NP-completeness of these problems. In particular, consider the results
of [31], which shows NP-completeness of GapMCSP in the random oracle model. While, as
discussed, his reduction from (approximate) Set-Cover to GapMCSP is a Levin reductions
(see the full version of this paper), the witness preserving part of the reduction relies on
the random oracle – in particular, the witness reconstruction step relies on observing the
queries to the random oracle performed by the circuit w̃′ (i.e., the witness for the transformed
statement x′).3 If instantiating the random oracle with a concrete hashfunction h, it is no
longer clear how to perform this task – in particular if the circuit has been obfuscated so
that it (intuitively) becomes hard to find the code of h in the description of the circuit. As
such, when instantiating the random oracle with a hashfunction, the reduction most likely is
no longer a Levin reduction, but conceivably it could still be a Karp reduction.

In contrast, as was shown in [34], if iO exists and MCSP ∈ BPP (and using similar ideas,
even if GapMCSP or Gap MKTP with polynomial gap are in BPP), then NP ⊆ BPP.
Indeed, if GapMCSP[nϵ, n1−ϵ] ∈ BPP then (infinitely-often) one-way functions do not exist,
and thus by the result of [42], NP ⊆ BPP. This result gives, assuming obfuscation, a
randomized reduction from NP to GapMCSP. This reduction however is not a Karp (or
Levin) reduction.

2 Preliminaries

2.1 Notations
All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Given a set S ⊆
{0, 1}∗, we let S = {0, 1}∗ \ S. Let poly stand for the set of all polynomials. Let ppt
stand for probabilistic poly-time, and n.u.-poly-time stand for non-uniform poly-time. An
n.u.-poly-time algorithm A is equipped with a (fixed) poly-size advice string set {zn}n∈N. Let
neg stand for a negligible function. For a SAT formula ϕ over n variables and an assignment
v ∈ {0, 1}n, we use ϕ[v] ∈ {0, 1} to denote the truth value of the evaluation of ϕ on v.

2.2 Distributions and Random Variables
When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a
(discrete) distribution P, let x← P denote that x was sampled according to P. Similarly,
for a set S, let x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity
Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗

is the length of the shortest program Π = (M, y) such that, when simulated by a universal
Turing machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing

3 Interestingly, a similar method of observing the queries to the random oracle was used by [25] to show
that there is no obfuscation for circuits with oracle access to a random oracle.

CCC 2024
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Machine M and an input y, where the output of Π is defined as the output of M(y). When
there is no running time bound (i.e., the program can run in an arbitrary number of steps),
we obtain the notion of Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We
now define the notion of Kolmogorov complexity with respect to the universal TM U.

▶ Definition 5. Let t ∈ N be a number. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t) = x}

where |Π| is referred to as the description length of Π.

It is well known that for every x, Kt(x) ≤ |x|+ c, for some constant c depending only on the
choice of the universal TM U.

▶ Fact 6. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗,
and for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

In the following we fix some universal TM U and omit it from the notation.

2.4 Levin Reductions
For a relation R ⊆ {0, 1}∗ × {0, 1}∗, let L(R) =

{
x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x, w) ∈ R

}
.

We say that a relation R is the witness relation of a language L ⊆ {0, 1}∗ if L(R) = L.

▶ Definition 7 (Levin reduction). Let R1 and R2 be relations. A triplet of efficiently
computable functions (f, g, h) is a Levin reduction from R1 to R2 if

For every (x, w) ∈ R1, (f(x), g(x, w)) ∈ R2.
If (f(x), w) ∈ R2 then (x, h(x, w)) ∈ R1.

▶ Remark 8. Notice that if (f, g, h) a Levin reduction from R1 to R2, then f is a Karp
reduction from L(R1) to L(R2). Indeed, the first item above implies that if x ∈ L(R1) then
f(x) ∈ L(R2), and the second item implies the other direction.
A Levin reduction (f, g, h) is honest if there exists a constant δ > 0 such that for every large
enough n ∈ N and every x ∈ {0, 1}n, f(x) ≥ nδ.

When for two languages L1 and L2 we fix canonical relations R1 and R2, we say that
there is a Levin reduction from L1 to L2 if there is a Levin reduction from R1 to R2. We
say that L ∈ NP is NP complete under Levin reductions if there exists a Levin reduction
from SAT to L, where the canonical relation for SAT is

RSAT = {(ϕ, v) : ϕ is a SAT formula and ϕ[v] = 1}.

We also define Levin reductions for promise problems. In the following, we consider promise
problem (Y,N ) that is associated with two relations (RY ,RN ) such that RY ⊆ RN ,
where RY is the witness relation for Y, and RN is the witness relation for N . That is,
(Y,N ) = (L(RY),L(RN )).

▶ Definition 9 (Levin reduction, promise problems). Let (R1
Y ,R1

N ) and (R2
Y ,R2

N ) be pairs of
relations such that R1

Y ⊆ R1
N and R2

Y ⊆ R2
N . A triplet of efficiently computable functions

(f, g, h) is a Levin reduction from (R1
Y ,R1

N ) to (R2
Y ,R2

N ) if
For every (x, w) ∈ R1

Y , (f(x), g(x, w)) ∈ R2
Y .

If (f(x), w) ∈ R2
N then (x, h(x, w)) ∈ R1

N .
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Note that we can define reductions from language to promise problem by taking RY = RN .
Lastly, our results hold even when the reductions are allowed to be randomized. In this case,
f(x; r) can be a randomized function (that uses randomness r), and both g, h get access to r

(and possibly use more randomness). We then only require that the above requirements hold
with high probability over r.

▶ Definition 10 (Randomized Levin reduction, promise problems). Let (R1
Y ,R1

N ) and (R2
Y ,R2

N )
be pairs of relations such that R1

Y ⊆ R1
N and R2

Y ⊆ R2
N . A triplet of efficiently computable

functions (f, g, h) is a randomized Levin reduction with ϵ-error from (R1
Y ,R1

N ) to (R2
Y ,R2

N )
if

For every x ∈ L(R1
Y), with probability at least 1− ϵ over the choice of r1 the following

holds:
1. (f(x; r1), g(x, w; r1)) ∈ R2

Y , and,
2. for every w′ such that (f(x; r1), w′) ∈ R2

N it holds that

Prr2←{0,1}∗

[
(x, h(x, w′; r1, r2)) ∈ R1

N

]
≥ 1− ϵ.

For every x /∈ L(R1
N ) it holds that Prr1←{0,1}∗

[
f(x; r1) ∈ L(R2

N )
]
≤ ϵ.

2.5 Cryptographic Primitives
In this part we define the cryptographic tools we will use. We start with the definition of
one-way function.

▶ Definition 11 (One-way function). A polynomial-time computable function f : {0, 1}∗ →
{0, 1}∗ is called a one-way function if for every ppt algorithm A, there is a negligible function
µ : N→ [0, 1] such that for every n ∈ N

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ µ(n).

A one-way function is subexponentially-secure if there exists a constant δ > 0 such that
for every 2nδ time algorithm A, and for every large enough n ∈ N

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ 2−nδ

.

Next, we define iO.

▶ Definition 12 (indistinguishability obfuscation). An efficiently randomized algorithm iO is
an indistinguishability obfuscator if for every λ, n ∈ N and any circuit C : {0, 1}n → {0, 1},

Pr
Ĉ←iO(1λ,C),x←{0,1}n

[
C(x) = Ĉ(x)

]
= 1,

and for every s ∈ poly and every n.u.-poly-time algorithm A, there exists a negligible
function µ, such that for every λ ∈ N and every two circuit C, C ′ : {0, 1}n → {0, 1} with
|C| = |C ′| ≤ s(λ) and n ≤ λ,∣∣Pr

[
A(1λ, iO(1λ, C)) = 1

]
− Pr

[
A(1λ, iO(1λ, C ′)) = 1

]∣∣ ≤ µ(λ).

We say that iO has overhead p if for every C and λ,
∣∣iO(1λ, C)

∣∣ ≤ p(|C|, λ) with probability 1.

Next we define Target collision-resistant hash functions, also known as universal one-way
hash functions.
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▶ Definition 13 (Target collision resistant hash). An efficiently computable function

T : {0, 1}n → {0, 1}n−s(n)

is a Target collision resistant hash function (TCR) if s(n) ≥ 1 and for every ppt algorithm A,

Prx←{0,1}n [x′ ← A(x); T (x) = T (x′) and x ̸= x′] = neg(n).

We say that a TCR is secure against subexponential adversaries if there exists a constant
δ > 0 such that for every 2nδ time algorithm A,

Prx←{0,1}n [x′ ← A(x); T (x) = T (x′) and x ̸= x′] = neg(n).

Rompel [57] showed that TCR can be constructed from one-way functions.

▶ Theorem 14 ([57]). Assume that one-way functions exist. Then TCR T : {0, 1}n →
{0, 1}n−s(n) with s(n) ∈ ω(log n) exists.

Since the proof of the theorem above is black-box, the same holds for subexponential
adversaries.

▶ Theorem 15. Assume that subexponentially-secure one-way functions exist. Then there
exists a TCR T : {0, 1}n → {0, 1}n−s(n) secure against subexponential adversaries, with
s(n) ∈ ω(log n).

We will also use the following theorem, by [42].

▶ Theorem 16 ([42]). Assume that iO exists and NP ⊈ ioBPP. Then one-way functions
exist.

Lastly, we will also use the fact that a TCR is a one-way function.

▷ Claim 17. Let T : {0, 1}n → {0, 1}n−s(n) be a TCR with s(n) ∈ ω(log n). Then T is a
one-way function. That is, for every ppt algorithm A,

Prx←{0,1}n

[
A(f(x)) ∈ T−1(T (x))

]
= neg(n).

Moreover, if secure against subexponential adversaries, the above holds for any algorithm A
with running time at most 2nδ , for some constant δ.

We sketch the proof here.

Proof. Assume that algorithm A can invert T with non-negligible probability. We claim that
A can be used to find a collision with non-negligible probability. Indeed, let X ← {0, 1}n be
a uniformly distributed random variable. Let A′ be the algorithm that given random input
X, executes A(T (X)) and outputs its output.

Given that A(T (X)) found a pre-image x′ of T (X), we get that the input of A′, X,
uniformly distributed over the set T−1(T (x′)). Since the size of T−1(T (x′)) is large (the
probability that

∣∣T−1(T (x′))
∣∣ ≤ k is at most k · 2−s(n)), with high probability it holds that

x ̸= X, and thus A′ found a collision. ◁
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3 GapMCSP is not NP-complete under Levin Reductions

In this section we prove our main result for GapMCSP. We first define GapMCSP[s0, s1].
In the following, a circuit C computes a string x if the truth table of C is x.

▶ Definition 18. For two functions s0, s1 : N→ N, let GapMCSP[s0, s1] denote the following
promise problem.
Y = {x ∈ {0, 1}n : There exists a circuit C of size at most s0(n) that computes x}
N = {x ∈ {0, 1}n : There is no circuit of size s1(n) that computes x}

We define the relations RY and RN for GapMCSP[s0, s1] in the natural way:

RY = {(x, C) : C is a circuit of size at most s0(n) that computes x},

and,

RN = {(x, C) : C is a circuit of size at most s1(n) that computes x}.

We start with the following theorem for deterministic reductions. In Section 3.2 we prove a
similar theorem for randomized Levin reductions.

▶ Theorem 19. Let p : N×N→ N be a function. Assume that there exists iO with overhead
p, and subexponentially-secure one-way function. Then for any constant α > 0 and for any
pair of efficiently computable functions s0, s1 : N→ N for which s1(n) > p(s0(n), (s0(n))α),
it holds that GapMCSP[s0(n), s1(n)] is not NP complete with respect to Levin reductions.

Since iO is an efficient algorithm, the overhead of any iO is polynomial. Combining this
observation with Theorem 19 yields Theorem 1.

3.1 Proving Theorem 19
To prove Theorem 19, let iO be an indistinguishability obfuscator, and let p ∈ poly be
the overhead of iO. Let T : {0, 1}n → {0, 1}n−ω(log n) be a TCR with security against
subexponential algorithms.

Consider the following distribution ensemble D = {Dn}n∈N over SAT formulas and
assignments (ϕ, v). For every n ∈ N, to sample from Dn: sample a random x ∈ {0, 1}n. Let
ϕT (x) be a formula such that ϕT (x)[x′] = 1 if and only if T (x′) = T (x). Output (ϕT (x), x).
We remark that ϕT (x) only depends on the value of T (x) and not on x itself.

We start with the following claim.

▷ Claim 20. The following hold for every n ∈ N:
Pr(ϕ,v)←Dn

[ϕ[v] = 1] = 1
Pr(ϕ,v)←Dn

[∃v′ s.t. v ̸= v′ and ϕ[v′] = 1] = 1− neg(n), and,
for every ppt algorithm A

Pr(ϕ,v)←Dn
[A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1] = neg(n).

Proof. The first and last items follow directly from the definition of the distribution D and
the definition of TCR. The second item holds since T is shrinking. ◁

We also prove the following claim, which states that for any reduction f from SAT to
GapMCSP, the output of f on inputs samples from Dn must have length polynomial in n.
Here we need the subexponential security of T .
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▷ Claim 21. Let (f, g, h) be a Levin reduction from SAT to GapMCSP[s0, s1]. Then there
exists a constant δ > 0 such that

Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) ≥ nδ

]
≥ 1− neg(n)

▶ Remark 22. Claim 21 is the only place in which we use the subexponential security
assumption. We need it to make sure that (with high probability over D) |s0(f(ϕ))| is not
too small. While we can require that s0(n) ≥ nϵ for some ϵ > 0, the reduction f itself can
return short outputs.

When the reduction f is honest (that is, |f(x)| ≥ |x|α for all inputs x and for some
α > 0), we can replace the assumption on exponentially-secure one-way function with the
above requirement that s0(n) ≥ nϵ, and minimal assumption that NP ⊈ ioBPP. The latter
assumption is known to imply (together with iO) one-way function (see Theorem 16). Using
the same proof as follows we get Theorem 2.

Proof. Assume toward a contradiction that this is not the case for all constant δ > 0. We
will show how to invert T . That is, we will show an algorithm A that runs in time 2nc·δ for
some constant c such that

Prx←{0,1}n

[
A(T (x)) ∈ T−1(T (x))

]
≥ Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) < nδ

]
.

The claim will then follow by Claim 17, as by assumption Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) < nδ

]
is

non-negligible for all choices of δ > 0 (and for infinitely many n’s).
Let A be the algorithm that given y = T (x), constructs the formula ϕy, and then uses

brute force to find a minimal circuit C of size at most nδ that computes f(ϕy). Lastly, if
such C exists, A outputs h(ϕy, C).

It is not hard to see that A runs in time 2poly(nδ). By the definition of Levin reductions,
when s0(

∣∣f(ϕT (x))
∣∣) < nδ, A always outputs x′ such that T (x′) = T (x). Lastly, observe that

the distribution of ϕy for y = T (x) when x← {0, 1}n, is exactly the distribution of ϕ when
(ϕ, v)← Dn. ◁

The next lemma shows it is possible to use iO to find collisions in the TCR.

▶ Lemma 23. Let iO be an indistinguishability obfuscator with overhead p, and let s0 and s1
as in Theorem 19. Assume that there exists a Levin reduction from SAT to GapMCSP[s0, s1].
Then there exists an efficient algorithm A such that for every large enough n ∈ N

Pr(ϕ,v)←Dn
[A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1] > 1/4.

Proof. We start with the definition of A. Let f, g, h be the Levin reduction between SAT to
GapMCSP[s0, s1]. Define A(ϕ, v) = h(ϕ, iO(1|g(ϕ,v)|α , g(ϕ, v))). In the following we omit the
security parameter 1|g(ϕ,v)|α from the notation.

Next, we show that A(ϕ, v) returns v′ ̸= v that satisfies ϕ with probability at least 1/4. By
Claim 20, such v′ exists with all but negligible probability over a random sample (ϕ, v)← Dn.
For the constant δ > 0 from Claim 21 let G be the set of all (ϕ, v) such that s0(|f(ϕ)|) ≥ nδ

and that exists v′ ̸= v with ϕ[v′] = 1. By Claim 21, Pr(ϕ,v)←Dn
[(ϕ, v) ∈ G] ≥ 1− neg(n). In

the following, fix n ∈ N, and fix (ϕ, v) ∈ G, and v′ ̸= v with ϕ[v′] = 1.
By the correctness of f and g, g(ϕ, v) and g(ϕ, v′) are two circuits with size at most

s0(|f(ϕ)|) with the same truth table f(ϕ). We assume without loss of generality that
|g(ϕ, v)| = |g(ϕ, v′)| = s0(|f(ϕ)|). By the assumption on the overhead time of the obfuscator
iO, we get that the size of the output of iO(g(ϕ, v)) and iO(g(ϕ, v)) is at most

p(|g(ϕ, v)|, |g(ϕ, v)|α) = p(s0(|f(ϕ)|), (s0(|f(ϕ)|))α) < s1(|f(ϕ)|).
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Thus, the output iO(g(ϕ, v)) is a witness that f(ϕ) is not a No instance of GapMCSP[s0, s1],
and by the definition of h, h(ϕ, iO(g(ϕ, v))) returns a witness that ϕ ∈ SAT. Similarly, the
same holds for v′: h(ϕ, iO(g(ϕ, v′))) returns a witness that ϕ ∈ SAT.

Lastly, we use the security of iO to claim that h(ϕ, iO(g(ϕ, v))) ̸= v with a good probability.
By the security of the obfuscator, and since g(ϕ, v) and g(ϕ, v′) compute the same function f(ϕ)
the output distributions of iO(g(ϕ, v)) and iO(g(ϕ, v′)) are indistinguishable. Moreover, since
the iO is secure against non-uniform algorithms, the above distributions are indistinguishable
also given (ϕ, v, v′) (importantly, the size of (ϕ, v, v′) is polynomial in the security parameter
and in the size of the circuit g(ϕ, v) when s0(|f(x)|) ≥ nδ). In particular, by data processing,
the distributions h(ϕ, iO(g(x, v))) and h(ϕ, iO(g(x, v′))) must be indistinguishable.

By the definition of A, we get that

Pr[A(ϕ, v) = v] ≤ Pr[A(ϕ, v′) = v] + µ(s0(|f(ϕ)|))

for some negligible function µ. Since (ϕ, v) ∈ G, for every large enough n we get that

Pr[A(ϕ, v) = v] ≤ Pr[A(ϕ, v′) = v] + µ(s0(|f(ϕ)|)) ≤ Pr[A(ϕ, v′) ̸= v′] + 1/3,

which implies that

1− Pr[A(ϕ, v) ̸= v] ≤ Pr[A(ϕ, v′) ̸= v′] + 1/3,

or that

1/2 · (Pr[A(ϕ, v) ̸= v] + Pr[A(ϕ, v′) ̸= v′]) ≥ 1/3. (1)

To finish the proof, consider the distribution D′n, in which we sample (ϕ, v)← Dn, and then
if (ϕ, v) ∈ G, we sample a random v′ ̸= v such that ϕ[v′] = 1 (or let v′ = v if (ϕ, v) /∈ G). We
then output (ϕ, v, v′).

We get that

Pr(ϕ,v)←Dn
[A(ϕ, v) ̸= v]

≥ Pr(ϕ,v)←Dn
[A(ϕ, v) ̸= v | (ϕ, v) ∈ G] · Pr(ϕ,v)←Dn

[(ϕ, v) ∈ G]
= Pr(ϕ,v)←Dn

[A(ϕ, v) ̸= v | (ϕ, v) ∈ G] · (1− neg(n))
= Pr(ϕ,v0,v1)←D′

n
[A(ϕ, v0) ̸= v0 | (ϕ, v0) ∈ G] · (1− neg(n))

= Pr(ϕ,v0,v1)←D′
n,b←{0,1}[A(ϕ, vb) ̸= vb | (ϕ, vb) ∈ G] · (1− neg(n))

= 1/2 ·
∑

b∈{0,1}

Pr(ϕ,v0,v1)←D′
n
[A(ϕ, vb) ̸= vb | (ϕ, vb) ∈ G] · (1− neg(n))

≥ 1/3− neg(n).

where the third equality holds since the distribution of (ϕ, v0) and (ϕ, v1) are identical for
(ϕ, v0, v1)← D′n, and the last inequality by Equation (1). ◀

We are now ready to prove Theorem 19.

Proof of Theorem 19. Assume that iO and subexponential one-way functions exist. By
Theorem 15, there exists a TCR with security against subexponential adversaries.

Assume there exists Levin reduction from SAT to GapMCSP[s0, s1], and let D be the
distribution defined above. By Claim 20, there is no efficient algorithm that given a random
sample (ϕ, v) from Dn finds v′ ̸= v such that ϕ[v′] = 1 with non-negligible probability. But
by Lemma 23, there exists such an algorithm that succeeds with probability 1/4, which is a
contradiction. ◀
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3.2 Randomized Levin Reductions
In this part we generalize Theorem 19 to hold with respect to randomized reductions. We
prove the following theorem.

▶ Theorem 24. Let 0 ≤ ϵ ≤ 1/30 be a constant, and let p : N×N→ N be a function. Assume
that there exist iO with overhead p, and subexponentially-secure one-way function. Then for
any constant α > 0 and for any pair of efficiently computable functions s0, s1 : N → N for
which s1(n) > p(s0(n), (s0(n))α), it holds that GapMCSP[s0(n), s1(n)] is not NP complete
with respect to randomized Levin reductions with ϵ-error.

Theorem 1 (for randomized reductions) directly follows by Theorem 24 and the observation
that the overhead p is always bounded by polynomial. The proof of Theorem 24 is similar
to the proof of Theorem 19. Let iO be an indistinguishability obfuscator with overhead p,
and T : {0, 1}n → {0, 1}n−ω(log n) be a TCR secure against subexponential adversaries. Let
D = {Dn}n∈N be the same distribution as defined in the proof of Theorem 19.

The following claim is the analog of Claim 21 for randomized reductions.

▷ Claim 25. Let (f, g, h) be a randomized Levin reduction with ϵ-error from SAT to
GapMCSP[s0, s1]. Then there exists a constant δ > 0 such that

Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) ≥ nδ

]
≥ 1− 2ϵ− neg(n)

Proof. The proof follows the same lines as the proof of Claim 21. Specifically, let δ > 0, A
be the algorithm described in the proof of Claim 21. We will show that

Prx←{0,1}n

[
A(T (x)) ∈ T−1(T (x))

]
≥ Pr(ϕ,v)←Dn,r1←{0,1}∗

[
s0(|f(ϕ)|) < nδ

]
− 2ϵ.

The claim will then follow by Claim 17.
By the definition of randomized Levin reductions, with probability at least 1− ϵ over the

choice of r1, it holds that h succeed to convert a witness for f(ϕ; r1) to a witness for ϕ with
probability at least 1− ϵ. By the union bound, with probability at least

1− Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) < nδ

]
− ϵ

over the choice of (ϕ, v)← Dn and r1, it holds that both s0(|f(ϕ; r1)|) < nδ, and h converts
witnesses for f(ϕ; r1) to witnesses for ϕ with probability at least 1− ϵ. In this case, A finds
a witness for f(ϕ; r1) and outputs a pre-image of T with probability 1− ϵ.

Using the union bound again, we get that A finds such a pre-image with probability at
least

1− Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) ≥ nδ

]
− 2ϵ

as claimed. ◁

The next lemma generalized Lemma 23, to shows it is possible to use iO and randomized
Levin reduction to find collisions in the TCR.

▶ Lemma 26. Let iO be indistinguishability obfuscator with overhead p, and let ϵ, s0 and s1
as in Theorem 24. Assume that there exists a randomized Levin reduction with ϵ-error from
SAT to GapMCSP[s0, s1]. Then there exists an efficient algorithm A such that for every
large enough n ∈ N

Pr(ϕ,v)←Dn
[A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1] > 1/4− 7ϵ.
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Proof. We start with the definition of A. Let f, g, h be the Levin reduction between SAT to
GapMCSP[s0, s1], and define A to be the algorithm that on input ϕ, v, outputs

h(ϕ, iO(1|g(ϕ,v;r1)|α , g(ϕ, v; r1)); r1, r2),

for a random choice of randomness r1, r2 for g, h. In the following we omit the security
parameter 1|g(ϕ,v;r1)|α from the notation.

Next, we show that A(ϕ, v) returns v′ ̸= v that satisfies ϕ with probability at least 1/4.
Let G be the set of all SAT formulas ϕ such that there are v ̸= v′ such that ϕ[v] = ϕ[v′] = 1.

Let δ > 0 be the constant from Claim 25. In the following, we say that a randomness r1
is good for a formula ϕ and a satisfying assignments v, if it holds that (1) s0(|f(ϕ; r1)|) ≥ nδ,
(2) g(ϕ, v; r1) is a circuit of size at most s0(|f(ϕ; r1)|) that computes f(ϕ; r1), and (3), for any
circuit C of size less than s1(|f(ϕ; r1)|) which computes f(ϕ; r1), it holds that h(ϕ, C; r1, r2)
is a satisfying assignment for ϕ with probability at least 1− ϵ over the choice of r2. That is,
r1 is good if the output of f(ϕ; r1) is not too short, and if the reduction succeed in converting
witnesses from SAT to GapMCSP using the randomness r1.

By the definition of Levin reductions with ϵ-error a random r1 fulfils the last two
requirements with probability at least 1− ϵ. Using Claim 25 and the union bound, we get
that a random r1 is good for (ϕ, v) with probability at least 1− 3ϵ− neg(n).

For ϕ ∈ G, and two satisfying assignments v ̸= v′, let Rϕ,v,v′ be the set of all random
strings r1 such that r1 is good both for (ϕ, v) and for (ϕ, v′). Using the union bound again,
we get that

Prr1←{0,1}∗ [r1 ∈ Rϕ,v,v′ ] ≥ 1− 6ϵ− neg(n). (2)

We continue as in the proof of Lemma 23. In the following, fix ϕ ∈ G and two satisfying
assignments v ̸= v′, and fix r1 ∈ Rϕ,v,v′ .

By the definition of Rϕ,v,v′ , g(ϕ, v; r1) and g(ϕ, v′; r1) are two circuits with size at most
s0(f(ϕ)) with the same truth table f(ϕ; r1). We assume without loss of generality that
|g(ϕ, v)| = |g(ϕ, v′)| = s0(|f(ϕ)|). As in the proof of Lemma 23, by the assumption on the
overhead of the obfuscator iO, we get that the size of the output of iO(g(ϕ, v; r1)) and
iO(g(ϕ, v′; r1)) is less than s1(|f(ϕ; r1)|). Thus, the output iO(g(ϕ, v; r1)) is a witness that
f(ϕ; r1) is not a No instance of GapMCSP[s0, s1], and by the definition of h and Rϕ,v,v′ ,
h(ϕ, iO(g(ϕ, v; r1, r2))) returns a witness that ϕ ∈ SAT with probability at least 1− ϵ over
the choice of r2. Similarly, the same holds for v′: h(ϕ, iO(g(ϕ, v′))) returns a witness that
ϕ ∈ SAT with the same probability.

Lastly, we use the security of iO to claim that h(ϕ, iO(g(ϕ, v; r1); r1, r2) outputs an
satisfying assignment to ϕ which is not equal to v with a good probability. By the se-
curity of the obfuscator, and since g(ϕ, v; r1) and g(ϕ, v′; r1) computes the same function
f(ϕ; r1) the output distributions of iO(g(ϕ, v; r1)) and iO(g(ϕ, v′; r1)) are indistinguishable.
Moreover, by the non-uniform security, the above distributions are indistinguishable also given
(x, v, v′, r1). In particular, by data processing, the distributions h(ϕ, iO(g(x, v; r1)); r1, r2)
and h(ϕ, iO(g(x, v′; r1)); r1, r2) must be indistinguishable. Let A(ϕ, v; r1) be the output of
A(ϕ, v) when we fix the randomness A uses for f to be r1. In the following we assume
without loss of generality that whenever A do not output a satisfying assignment for ϕ, it
outputs ⊥. By the definition of A, when r1 ∈ Rϕ,v,v′ we get that

Pr[A(ϕ, v; r1) = v] ≤ Pr[A(ϕ, v′; r1) = v] + µ(s0(|f(ϕ)|))

for some negligible function µ. As in the proof of Lemma 23, this implies that

1/2 · (Pr[A(ϕ, v; r1) ̸= v] + Pr[A(ϕ, v′; r1) ̸= v′]) ≥ 1/3. (3)

CCC 2024



36:16 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Since h fails with probability at most ϵ, we get that

1/2 · (Pr[A(ϕ, v; r1) /∈ {v,⊥}] + Pr[A(ϕ, v′; r1) /∈ {v′,⊥}]) ≥ 1/3− ϵ. (4)

To finish the proof, consider the distribution D′n, in which we sample (ϕ, v)← Dn, and
then if ϕ ∈ G, we sample a random v′ ̸= v such that ϕ[v′] = 1 (otherwise we let v′ = v). We
then output (ϕ, v, v′).

We get that

Pr(ϕ,v)←Dn,r1←{0,1}∗ [A(ϕ, v; r1) /∈ {v,⊥}]
= Pr(ϕ,v0,v1)←D′

n,r1←{0,1}∗ [A(ϕ, v0; r1) /∈ {v0,⊥}]
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

[A(ϕ, v0; r1) /∈ {v0,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1 ]

· Pr[r1 ∈ Rϕ,v0,v1 | ϕ ∈ G] · Pr[ϕ ∈ G]
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

[A(ϕ, v0; r1) /∈ {v0,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1 ]

· (1− 6ϵ− neg(n))(1− neg(n))
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

b←{0,1}

[A(ϕ, vb; r1) /∈ {vb,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1 ]

· (1− 6ϵ− neg(n))(1− neg(n))
≥ (1/3− ϵ) · (1− 6ϵ− neg(n))(1− neg(n))
≥ 1/4− 7ϵ.

where the second inequality holds by Equation (4) and by Claim 25, the third equality holds
since the distribution of (ϕ, v0) and (ϕ, v1) are identical for (ϕ, v0, v1)← D′n, in by a similar
argument as in the proof of Lemma 23, and the last inequality holds for large enough n and
for a small enough constant ϵ. ◀

We are now ready to prove Theorem 19.

Proof of Theorem 19. Assume that iO and subexponentially-secure one-way function exist.
By Theorem 15, there exists a TCR with security against subexponential adversaries.

Assume there exists Levin reduction from SAT to GapMCSP[s0, s1], and let D be the
distribution defined above. By Claim 20, there is no efficient algorithm that given a random
sample (ϕ, v) from Dn finds v′ ̸= v such that ϕ[v′] = 1 with non-negligible probability. But
by Lemma 26, there exists such an algorithm that succeeds with probability 1/4− 7ϵ, which
is a contradiction when ϵ < 1/28. ◀

4 GappMKtP is not NP-complete under Levin Reductions

In this section we prove our result for MKtP. That is, we prove that (under cryptographic
assumptions) there is no Levin reduction from SAT to the following promise problem. For
p, t ∈ poly, let GappMKtP[s0, s1] be the following promise problem:
Y =

{
x ∈ {0, 1}n : Kt(n)(x) ≤ s0(n)

}
N =

{
x ∈ {0, 1}n : Kp(t(n))(x) > s1(n)

}
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We define the relations RY and RN for GappMKtP[s0, s1] in the natural way:

RY =
{

(x, P ) : P is a program of length at most s0(n) such that U(P, 1t(|x|)) = x
}

,

and,

RN =
{

(x, P ) : P is a program of length at most s1(n) such that U(P, 1p(t(|x|))) = x
}

.

The proof follows the same line as the proof of Theorem 19, where we replace the iO

with randomized encoding for Turing machines with indistinguishability-based security [7].

▶ Definition 27 (Randomized encoding for TM). A pair of efficient randomized algorithms
(Enc, Dec) is randomized encoding for TMs if the following holds: Let M be a TM and
x ∈ {0, 1}∗ be an input, λ ∈ N be a security parameter and let T ∈ N be a bound on the
running time of M(x). Then
1. (Correctness:) Pr

[
Dec(Enc(1λ, M, x, T )) = M(x)

]
= 1

2. (Efficiency:) Enc(1λ, M, x, T ) runs in time poly(λ, |M |, |x|, log T ) and Dec(M̂(x)) runs
in time poly(λ, |M |, |x|, t) for M̂(x)← Enc(1λ, M, x, T ) and where t ≤ T is the running
time of M(x), and,

3. (Security:) For every ppt algorithm A and every s ∈ poly there exists a negligible
function µ, such that for every TM M and two inputs x0, x1 such that M(x0) = M(x1),
|M | ≤ s(λ), |x0| ≤ s(λ), |x1| ≤ s(λ) and the running time of M on x0 at most s(λ) and
is the same as the running time of M on x1, the following holds:∣∣Pr

[
A(Enc(1λ, M, x0, T )) = 1

]
− Pr

[
A(Enc(1λ, M, x1, T )) = 1

]∣∣ = µ(λ).

We say that (Enc, Dec) has overhead p if
∣∣Enc(1λ, M, x, T )

∣∣ ≤ p(|M |, |x|, T, λ) with probabil-
ity 1.

Using randomized encoding, we get the following theorem.

▶ Theorem 28. Let 0 ≤ ϵ ≤ 1/30 be a constant. Assume that randomized encoding for
TMs with overhead q, and subexponentially-secure one-way function exists. Then there exists
a constant c ∈ N such that for every constant α > 0, for any t ∈ poly and any efficiently
computable functions s0, s1 : N→ N for which

s1(n) > q(c, s0(n) + c log(t(n)) + c log(s0(n)), log t(n), (s0(n))α),

and for every large enough polynomial p, it holds that GappMKtP[s0, s1] is not NP complete
with respect to randomized Levin reductions with ϵ-error.

By the results of [48, 43] such randomized encoding with polynomial overhead q for poly-
time TMs can be constructed assuming one-way functions, subexponentially-secure iO for
circuits and injective PRG (that can be constructed from one-way permutation). Together
with Theorem 28 we get Theorem 3. As in Theorem 19, we can relax the requirement for
subexponentially-secure one-way function if we only want to exclude honest reductions.

[8] constructed iO for TM with multiplicative overhead. By combining the construction
of randomized encoding for TMs of [48] with the iO of [8], we get randomized encoding with
multiplicative overhead.

▶ Theorem 29. Assuming subexponentially-secure iO and subexponentially secure rerandom-
izable encryption schemes, there exists a randomized encoding for TMs scheme with overhead
q(|M |, |x|, T, λ) = 2(|M |+ |x|) + poly(λ, log T ).
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We get the following corollary.

▶ Corollary 30. Let 0 ≤ ϵ ≤ 1/30 be a constant. Assume subexponential-secure iO, and
subexponentially-secure one-way function exist and assume subexponential DDH or LWE.
Then for every constant α > 0, and for any efficiently computable function s0, it holds
that GappMKtP[s0(n), (2 + α)s0(n)] is not NP complete with respect to randomized Levin
reductions with ϵ-error.

Proof of Theorem 28. For ease of notation, we explain how to modify the proof of The-
orem 19 to get the proof of Theorem 28 for deterministic reductions. Similar changes to the
proof of Theorem 24 yield the result for randomized reductions.

We only need to change the proof of Lemma 23. Let (f, g, h) be the Levin reduction
from SAT to GappMKtP[s0, s1], and assume that for every (ϕ, v) in the support of D, g(ϕ, v)
output a program of length exactly s0(|f(ϕ)|) that runs in time exactly t(|f(ϕ)|) (this can
be assume by adding O(log t(n) + log s0(n)) bits to the description of g(ϕ, v)). Let U be a
universal TM and (Enc, Dec) be randomized encoding for TMs. Consider the algorithm

A(ϕ, v) = h(ϕ, ĝ(ϕ, v))),

where ĝ(ϕ, v) is a program that runs Dec on P̂ for P̂ ← Enc(1|g(ϕ,v)|α , U, g(ϕ, v), t(|f(ϕ)|)).
That is, we replace the iO in the construction of A from the proof of Lemma 23, with a
randomized encoding of U(g(ϕ, v)). Since for every two witnesses v, v′ of ϕ it holds that
U(g(ϕ, v)) = U(g(ϕ, v′)) = f(ϕ), we get that ĝ(ϕ, v) and ĝ(ϕ, v′) are indistinguishable.

By the overhead of the randomized encoding scheme,∣∣∣ĝ(ϕ, v′)
∣∣∣ ≤ q(|U|, s0(n) + O(log(t(n)) + log(s0(n)), log t(n), |g(ϕ, v)|α).

By the efficiency of Dec, the running time of ĝ(ϕ, v′) is at most poly(s0(|f(ϕ)|), t(|f(ϕ)|)) =
poly(t(|f(ϕ)|)), where the equality holds since s0(|f(ϕ)|) ≤ |f(ϕ)|+ O(1) or the
GappMKtP[s0, s1] problem is trivial. Thus, by taking p be a polynomial that bound the
running time of ĝ(ϕ, v′), we get that ĝ(ϕ, v′) is a witness that f(ϕ) is not a No instance. The
proof continues along the same lines as the proof of Lemma 23. ◀
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