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Abstract
We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic computation
model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013), we are given a
small worktape, and a larger catalytic tape that has an arbitrary initial configuration. We may
edit this tape, but it must be exactly restored to its initial configuration at the completion of the
computation. We prove that

BPSPACE[S] ⊆ CSPACE
[
S, S2]

where BPSPACE[S] corresponds to randomized space S computation, and CSPACE [S, C] corres-
ponds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic space.
Previously, only BPSPACE[S] ⊆ CSPACE

[
S, 2O(S)] was known. In fact, we prove a general tradeoff,

that for every α ∈ [1, 1.5],

BPSPACE[S] ⊆ CSPACE
[
Sα, S3−α

]
.

We do not use the algebraic techniques of prior work on catalytic computation. Instead, we develop
an algorithm that branches based on if the catalytic tape is conditionally random, and instantiate
this primitive in a recursive framework. Our result gives an alternate proof of the best known
time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek, Theory
Comput. Sys. 2006). As a final application, we extend our results to solve search problems in
CSPACE

[
S, S2]

. As far as we are aware, this constitutes the first study of search problems in the
catalytic computing model.
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1 Introduction

In the catalytic logspace (CL) model, introduced by Buhrman, Cleve, Koucký, Loff, and
Speelman [3], there is a machine M with O(log n) bits of standard working memory, and
nc bits of catalytic memory. This catalytic memory has an arbitrary initial configuration
(perhaps data on a shared hard drive), and must be returned to exactly this configuration at
the end of the computation. Remarkably, [3] showed that CL is likely to be strictly more
powerful than L. In particular, it contains logspace-uniform TC1 and thus NL. Motivated
by this striking result, there have been several further works exploring the power of catalytic
computation [4, 12, 10, 8, 2, 9].

We parameterize catalytic computation by time, space, and catalytic space (similar
notions have been considered before, e.g. [2]).
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4:2 Derandomizing Logspace with a Small Shared Hard Drive

▶ Definition 1. Let CTISP [T (n), S(n), C(n)] be the set of languages recognized by catalytic
machines that use O(S(n)) workspace and O(C(n)) catalytic space on inputs of size n, and
run in time poly(T (n)) in the worst case.

Note that the worst-case runtime must hold over every catalytic tape, as well as every input.
Prior work has studied the ability of catalytic space to substitute for randomness, in

particular in the setting of derandomizing space-bounded computation. Let BPL be the set
of languages recognized by randomized machines that run in space O(log n) on inputs of size
n, and make two-sided error. The result of [3] implies that

BPL ⊆ CTISP [n, log n, nc]

for some constant c. In fact, we are aware of two other proofs of this fact. An unpublished
result (see the recent survey of Mertz [15] for a sketch) proves it by treating the catalytic tape
as a set of random walks, and the third follows from recent work on certified derandomization
for BPL [20, 11].

As our main result, we improve the amount of catalytic space needed to simulate BPL by
a superpolynomial amount.

▶ Theorem 2.

BPL ⊆ CTISP
[
n, log n, log2 n

]
.

Our simulation of BPL is as time- and space- efficient as the frontier result of Nisan [18],
which proves that BPL ⊆ TISP[n, log2 n], and moreover almost all the space used is catalytic.
Next, we incorporate this algorithm into a recursive framework to derive a (time-efficient)
tradeoff between the catalytic- and non-catalytic space consumption.

▶ Theorem 3. For every α ∈ [1, 1.5],

BPL ⊆ CTISP
[
2logα(n), logα(n), log3−α(n)

]
.

This result immediately gives a new proof of the best known result on time-space trandeoffs
for BPL due to Cai, Chakaravarthy, and van Melkebeek [5]. They prove BPL is contained in
TISP[2logα n, log3−α n] for every α ∈ [1, 1.5]. In fact, our result shows that for every α < 1.5,
we can achieve a simulation with equivalent time and total space, but where the majority of
the space used can be made catalytic.

Interestingly, while previous work on algorithms for catalytic computation [3, 8] primarily
used algebraic techniques involving reversible computation over a ring, our results take
a completely different approach based on conditional compressibility. We also develop
a new approach for efficient composition of catalytic algorithms, building on the well-
known composition of space-bounded algorithms. We hope that our techniques will have
broader applications, both inside and beyond the model of catalytic computation. As a final
application, we show that our ideas can be used to give nontrivial catalytic search algorithms.

1.1 Proof Overview for Theorem 2
A canonical (promise)-BPL complete problem is that of estimating transition probabilities in
read-once branching programs:
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▶ Definition 4. A read-once branching program (ROBP) B of width w and length n

and alphabet {0, 1}t is defined by a function B : [w] × {0, 1}t → [w].1 For x ∈ ({0, 1}t)n,
define

B[i, x] = B[B[. . . B[B[i, x1], x2] . . . ], xn−1], xn].

It is well known that to derandomize BPL, it suffices to estimate Prx←Un
[B[1, x] = 1] up to

error 1/3 for an ROBP B of length n, width n and alphabet {0, 1}.

The Result of Nisan

We now recall the result of [18], which itself begins with the PRG of [16]. In this PRG,
we draw ℓ = log n hash functions h1, . . . , hℓ from a pairwise independent hash family on
t = O(log nw) bits. We recursively define the PRG as follows. Let NIS0(x) = x for x ∈ {0, 1}t,
and let NISi+1(x) = (NISi(x), NISi(hi+1(x))). To analyze this PRG, fix a branching program
B : ({0, 1}t)n → {0, 1} of width w, with transition function B. Viewing this construction
from the bottom up, the first hash function h1 is good if for every every a, b ∈ [w],

Pr
x,x′←Ut

[B[B[a, x], x′] = b] ≈ Pr
x←Ut

[B[B[a, x], h1(x)] = b],

i.e. the distribution (x, h1(x)) is indistinguishable from the distribution (x, x′) by the
composition of B with itself. Since B can only pass log w bits of information from the first to
the second half, this occurs with probability 1−w−c over h1 ← H (assuming t = O(log w) is
sufficiently large). The ultimate PRG is analyzed recursively using ℓ applications of essentially
the same idea. Concretely, at the second level of the construction, we now want a hash function
h2 that fools the length n/2 program with transition function B′[a, x] = B[B[a, x], h1(x)].

While the Nisan PRG randomly selects ℓ hash functions at once, the insight of [18] was
that, given a specific program B that we want to fool, we can search for good hash functions
level by level. At level i, we find a hash function hi that fools the relevant transition function.
As this test is easy to implement in time 2O(t) for a fixed h and there are 2O(t) such h to test,
we can find such a good hash function in time 2O(t) = poly(n) per level, giving a polynomial
runtime overall.

An Algorithm From Conditional Compression

We transform this algorithm into a catalytic algorithm as follows. Suppose we have a
branching program B of width w and length n = 2ℓ, and a catalytic tape w, with an
arbitrary initial configuration. We interpret w as holding 2ℓ hash functions h1, . . . , h2ℓ, each
over t = O(log nw) bits (and note that each function can have description size exactly 2t,
as there exists a pairwise independent hash family on t bits of size 22t). Let V ∈ {0, 1, ∗}2ℓ

and initialize V = ∗2ℓ to indicate the status of each block. We then iterate through this list.
Letting the ith hash function be h̃ and the previous good hash functions be h⃗p, we check if h̃

is a good hash function, using the test as before.
If h̃ is good, we set Vi = 1, indicating h̃ is part of the list of good hashes.
If h̃ is not good, it must lie in the set BAD(h⃗p) of hash functions that fail to fool the
current transition function. But as almost all h are good, the index of h̃ in BAD(h⃗p) is
a concise description of h̃! We can then replace h̃ with this index, and free up Ω(log nw)
bits on this block of the tape. Finally, set Vi = 0 to indicate we have compressed this
block.

1 The standard definition of ROBPs permits the transition function to differ between the layers. However,
as we will always be dealing with programs where w ≥ n, and we are insensitive to polynomial losses in
the width, we can assume all transition functions are the same for clarity.
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4:4 Derandomizing Logspace with a Small Shared Hard Drive

At the end of this phase, we have either found ℓ good hash functions, or have freed up
ℓ · Ω(log nw) bits on the tape. In the latter case, we can simply search for a good set of
hash functions (on slightly fewer bits), exactly as in the algorithm of [18], and store these in
the free space of the compressed blocks. Thus, in both cases we obtain a sequence of hash
functions that together constitute a good PRG for B, and hence can construct a generator
NIS that does a good job estimating walk probabilities on B. The final step of estimating
these walks can be performed in space O(t + log nw) = O(log nw) with read-only access to
the tape w.

Finally, to return the tape to its original configuration, we work backwards over the
compressed blocks, i.e. indices i where Vi = 0. For each block, we determine the preceeding
good hash functions h⃗p, read the index of the original hash (i.e. tape configuration) in
BAD(h⃗p), then find the hash with this index by enumeration and write it to the tape.

1.2 Proof Overview for Theorem 3
To obtain a smooth tradeoff between the catalytic and non-catalytic space, our next idea is
to unify this with efficient composition of catalytic algorithms:

Composition of Catalytic Algorithms

Recall that in the conventional composition of space-bounded algorithms, we can compute
the composition of two algorithms running in space S(n) in space c · S(n), for some constant
c > 1. Our key observation is that for catalytic algorithms, we can obtain composition with
no increase in the length of the catalytic tape:

▶ Theorem 5 (Composition of Catalytic Space-Bounded Algorithms). Given two catalytic
algorithms M1,M2 computing f1, f2 respectively, each using space S(n) ≥ log n, catalytic
space C(n), and time T (n), there is a catalytic algorithm M′ using time poly (T (n)), space
O(S(n)), and catalytic space C(n) that computes f2 ◦ f1.

The proof of this result modifies the standard composition of space-bounded algorithms.
To compute M2(M1(x)), we begin to simulate Mw

2 (f1(x)) (where the superscript notation
denotes running the machine with catalytic tape w). Whenever M2 reads a bit of the input,
we simulateMw′

1 (x) to obtain the relevant bit of f1(x), where w′ is the current configuration
of the catalytic tape of M2. Since M1 is guaranteed to produce the correct answer for every
starting tape, we have thatMw′

1 (x) = f1(x). Moreover, asM1 is catalytic, it resets the tape
to w′ before returning, so M2 does not notice the call has occurred, and can continue its
computation.

We remark that we are not able to apply this theorem as-is due to issues with (essentially)
f1 being a relation with multiple valid outputs, so the actual statement we prove is more
involved. In particular, we must deal with safety reverting the catalytic tape if an intermediate
call to M1 fails.

Derandomization via Repeated Powering

Going from this to Theorem 3 requires a further ingredient, which is given by a variant of the
Saks-Zhou recursive powering scheme. Saks-Zhou [21] divides computing the nth power of an
n× n stochastic matrix M (a prBPL complete problem) into r2 iterations of computing the
2r1th power, for any r1r2 = log n. For convenience, let M0 = M and Mi = M2r1·i for i ∈ [r2].
In the original algorithm, all levels share a single set of hash functions h⃗ = (h1, . . . , hr1),
each on O(log n) bits. A random set of hash functions will do a good job computing Mi
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from Mi−1 for every i, and so we can reuse this fixed set of hash functions at every level.2
Unfortunately, such an argument is incompatible with searching for good hash functions
one by one. Since we use every hash function to produce an approximation to M1, if we
later discover a hash function is bad at powering Mi for i ≥ 1, seemingly we must destroy
all partial progress and try a new set of hash functions. Thus, the Saks-Zhou algorithm
must enumerate over h⃗ = (h1, . . . , hr1) all at once, incurring a runtime of 2Ω(r1·log n). As
the algorithm incurs a runtime of 2Ω(r2·log n) merely from the recursive composition of space
bounded algorithms, the total runtime is at least 2Ω(max{r1,r2}·log n) = 2Ω(log3/2 n) for any
setting of parameters r1 and r2. We note that the work of [5] also avoids this issue, and we
explain their differing approach in more detail in Section 1.2.

Composing Conditional Compression Algorithms

Our catalytic algorithm allows for a more efficient approach. We follow the same recursive
powering scheme as Saks-Zhou, but at each level use the algorithm of Theorem 2 that treats
w as a list of 2r1 candidate hash functions.3 Whenever we request an entry of a smaller
power, we call the next level algorithm. If that level sees that the hash functions currently
on the tape are good, it uses them to compute the requested entry. If not, it temporarily
compresses the tape, finds good hash functions in time poly(n), uses them to compute the
requested entry, then resets the tape to exactly the same configuration the calling algorithm
was expecting before returning. Thus, every level can either use the tape as-is, if it is suitable,
or quickly compute a better set of hash functions on the fly and revert before returning
control. This eliminates the 2r1 log n term in the runtime. Moreover, the O(r1 log n) bits used
to store the hash functions can be treated as catalytic space, resulting in an algorithm that
uses only O(r2 log n) bits of workspace.

Finally, for every α ∈ [1, 1.5], we can choose r1 = log2−α(n) and r2 = logα−1(n) and obtain
a algorithm that uses O(r1 log n) = O(log3−α n) catalytic space, O(r2 log n) = O(logα n)
workspace, and runs in time poly (nr2) = 2O(logα n), as claimed.

Such an approach runs into a subtle technical issue. Since the algorithm at level i may be
called many times with different starting catalytic tapes, we must ensure that the algorithm
returns the same approximate power each time, as otherwise the composition would not be
well defined. To fix this, we first define a notion of catalytic algorithms that are allowed to
return ⊥ for some initial catalytic tapes, in addition to a fixed output that is independent
of the catalytic tape. We then show how these algorithms can be composed, while still
maintaining the ability to revert the tape to the original configuration in the worst case.
Finally, we adopt the strategy of Saks and Zhou [21], and randomly perturb (or “shift”)
the matrices at each level. In our case, if a level of the algorithm determines that a shift is
bad (i.e. could produce ambiguous behavior) it aborts and returns ⊥. We show with high
probability over the shifts, this will never occur (i.e. we will not return ⊥) no matter the
tape, and so we can compose the algorithm with itself and find the desired output.

Showing that we can successfully avoid permanent damage to the tape in the case that the
shifts are bad requires further work. In particular, we ensure that our catalytic algorithms can
be reverted from any point, where our notion of reversibility requires that we do not introduce

2 There are additional complications from reusing the hash functions, but they are not the primary reason
for the high time complexity.

3 We give a “non-black-box” explanation of the final algorithm here as it illustrates the actual idea, but
our proof uses a black-box statement regarding composition of catalytic algorithms.

CCC 2024



4:6 Derandomizing Logspace with a Small Shared Hard Drive

any new configurations of the catalytic tape. We show that we can achieve this notion
without a substantial time cost, and moreover it is compatible with recursive composition.
Using this tool, we are able to return to the original tape configuration of a subroutine ever
returns ⊥.

Comparison With [5]

We briefly overview the techniques of [5], which achieves the best known time-space tradeoff
for BPL, but in which all O(log3−α n) bits of space must be standard workspace. They
likewise give a version of the Saks-Zhou result that does not incur the nr2 factor in runtime,
which we now explain. Their result follows the following recursive framework. We start with
a set of hash functions h⃗ = (h1, . . . , hℓ) that produce a good approximation of Mi (which we
denote M̃i) from Mi−1 for every i ≤ r, but does not necessarily produce a good approximation
of Mr+1 from Mr. We then search for a new set of hash functions h⃗′ = (h′1, . . . , h′ℓ) with the
following two properties. First, h⃗′ is good at approximately powering Mi for every i ≤ r (in
particular, it produces a good approximation M̃ ′

r+1). Second, after applying the random
shift and round operation to the approximations M̃i, M̃ ′

i for i ≤ r produced by the old and
new sets of hash functions, we obtain the same matrices. After doing so, we replace h⃗ with
h⃗′ and increment r. The latter requirement allows us to make progress, as we can gradually
find sets of hash functions that are good for greater powers, without destroying progress
by altering the “results” of prior computation. However, this approach does not give a
catalytic algorithm (in particular, it does not exploit the fact that bad hash functions are
compressible).

1.3 Search Problems in Catalytic Space
Finally, we show how our compression-based techniques can be extended to solve search
problems in catalytic space. As far as we are aware, we are the first to study catalytic
search algorithms. Previous work of Sivakumar [22] showed that many search problems, such
as producing a Johnson-Lindenstrauss sketch of a collection of vectors, can be reduced in
logspace to solving the following problem, which we call “mutual ROBP hitting”.

▶ Definition 6 (Mutual ROBP Hitting). Given a list of branching programs
(

B
1
, . . . , B

n
)

each of length and width n, such that E
[
B

j(Un)
]
≥ 1 − 1/n2 for every j, produce a fixed

x ∈ {0, 1}n such that∧
j∈[n]

B
j(x) = 1.

We remark that this problem is (as of now) possibly harder than the task of producing x

that satisfies a single ROBP, as it is not known to lie in BPL. Despite this, we show that we
can solve this problem in the same asymptotic bound as Theorem 2:

▶ Theorem 7. There is a CTISP
[
n, log n, log2 n

]
algorithm that solves the mutual ROBP

hitting problem.

Previously, this problem was known to be solveable in TISP[n, log2 n], so we again show that
almost all of the required space can be made catalytic.

We can immediately apply the reduction of [22] to obtain search algorithms for well-
studied problems. As one application, we obtain a catalytic algorithm which produces a
Johnson-Lindenstrauss transform: a low-dimensional embedding of a collection of vectors
that approximately preserves their ℓ2 distance. The problem of deterministically producing
such an embedding has been extensively studied [22, 1, 13, 14].
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▶ Corollary 8. There is a CTISP
[
n, log n, log2 n

]
algorithm that, given ε > 0 and a collection

of vectors v1, . . . , vn ∈ Rn, outputs vectors4 ṽ1, . . . , ṽn ∈ RO(log(n)/ε2) such that for every
i, j ∈ [n], we have

(1− ε)∥vi − vj∥2
2 ≤ ∥ṽi − ṽj∥2

2 ≤ (1 + ε)∥vi − vj∥2
2.

We prove Theorem 7 by extending our compress-or-random approach to producing a set
of hash functions that is good for a polynomial number of ROBPs at once. In more detail,
suppose the algorithm of Theorem 2 is now given a list of branching programs (B1, . . . , Bn).
The algorithm is structured as before, but now for each new hash function h̃, we test if h̃ is
good for all of the input ROBPs. If yes, we again add it to our good sublist. Otherwise, let Bj

be the first program that h̃ was not good for, and let BADj be the set of bad hash functions
for this program, given the current prefix (and note that the prefix is by construction good for
all programs). We now compress h̃ by recording j (which we require for the decompression
algorithm to recover the hash function) together with the index of h̃ in BADj . Again as
before, once we have processed all blocks, either we have found a set of hash functions that
are good for all ROBPs, or we have freed up Ω(log2 n) space. In that case, we again search
for a set of hash functions that is good for every program simultaneously. This only incurs a
mild constant factor loss in the length of each hash function, so our algorithm has the same
asymptotic performance.

1.4 Roadmap
In Section 2, we formally define the catalytic computation model, and prove Theorem 5
and Theorem 7. In Section 3, we prove Theorem 2, and in Section 4, we prove Theorem 3.
In Appendix A we provide proofs of some cited lemmas.

2 Catalytic Machines and Composition

We first formally define a catalytic Turing machine.

▶ Definition 9 (Catalytic Turing Machine [3]). A Turing machineM is a catalytic machine
using time T (n), workspace S(n), and catalytic space C(n) if it has a work tape, a read-only
input tape, a write-only output tape, and a catalytic tape w. We require that for every input
x with |x| = n and every w, Mw(x) halts in time at most T (n), using at most S(n) cells on
the worktape and C(n) cells on w. Moreover, the final configuration of w must be equal to
its initial configuration, for every x and w.

We now define the notion of a catalytic machine that computes a function. We furthermore
define the notion of partially computing a function, where on some tapes w the machine can
output a special failure symbol ⊥.

▶ Definition 10. For a function f : {0, 1}∗ → {0, 1}∗, we say a catalytic machine M
(catalytically) computes f if for every x and w, Mw(x) = f(x), and at the end of the
computation w is in its original state. We say that M partially (catalytically) computes
f if for every x and w, Mw(x) ∈ {⊥, f(x)}, and at the end of the computation (no matter
the output) w is in its original state.

4 We assume the input and output are specified to O(log n) bits of precision.

CCC 2024



4:8 Derandomizing Logspace with a Small Shared Hard Drive

Partial catalytic computation is trivial without further restrictions (as M can always output
⊥), but we require it as an intermediate step in our analyses. We require a further condition
on our machines, that they can revert the catalytic tape at any time without the catalytic
tape traversing any new configurations:5

▶ Definition 11. A catalytic machineM is reversible if for every x and initial configuration
w, at any point during the execution of Mw(x), the machine can receive an external
REVERT signal. Let P = P (w) denote all prior configurations of the catalytic tape during
the execution of Mw(x). After this signal, M must reset w to the original configuration, and
moreover every intermediate configuration of w during this process must lie in P . We require
any time bound on M to hold even in the case that M is given the REVERT command at
an arbitrary point.

2.1 Composition of Catalytic Algorithms
We state the main result of this section, which is that catalytic algorithms can be composed
without increasing the catalytic space usage. We must be careful when dealing with partial
catalytic machines, and in this case we only obtain composition if the machines are reversible
(Definition 11).

▶ Theorem 12 (Composition of Partial Catalytic Machines). Suppose reversible catalytic
machines M1,M2 partially compute f1, f2 : {0, 1}n → {0, 1}n respectively using workspace
S(n) ≥ log(n), catalytic space C(n), and time T (n). Then there is a reversible catalytic
machine M that partially computes f2 ◦ f1 using workspace 2S(n) + O(log(Sn)), catalytic
space C, and time poly(T (n)). Moreover, Mw(x) = ⊥ only if Mw

2 (f1(x)) = ⊥, or there
exists w′ such that Mw′

1 (x) = ⊥.

Proof. We proceed roughly following the standard proof for composition of space-bounded
algorithms. We maintain two sections on the worktape of size S for M1 and M2 (and
auxiliary state of size O(log(Sn)) to keep track of the location of read and write heads, and
the FSM configuration of both machines), and a single catalytic tape w.

The Simulation. We now begin to simulate Mw
2 . We first verify that Mw

1 (x) ̸= ⊥. As in
the conventional composition of space-bounded algorithms, every time M2 reads its input,
we runMw

1 (x) on a separate section of the worktape and return the relevant bit of its output,
where w is the same catalytic tape used by M2, in whatever its current configuration is at
the time of the tape read. Moreover, every timeM2 writes to the catalytic tape, resulting in
a configuration w′, we run Mw′

1 (x) and verify that it does not produce ⊥.

Computing the Function. In the case that Mw′

1 (x) = f1(x) for every configuration w′
that is encountered in this simulation and Mw

2 (f1(x)) = f2(f1(x)), it is easy to see that
Mw(x) = f2(f1(x)). Moreover, it is clear that in this case we successfully reset the tape.
Otherwise, consider the first point at which Mw′

1 (x) = ⊥. We first undo the most recent
change to the catalytic tape, and send the REVERT command to M2. Once M2 has
finished reverting, return ⊥. We claim that M2 successfully reverts the tape. This follows
from the reversibility of M2, and the fact that all calls M2 makes to its input during this

5 There are existing results related to transforming catalytic algorithms into reversible catalytic al-
gorithms [15]. However, they do not appear to maintain worst-case runtime over the catalytic tape,
which is crucial for our results.
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process are correctly answered byM1. The latter property follows as every timeM2 queries
its input during the revert process, w is in a state that was encountered during the forward
pass, and hence M1(x) produced f1(x) when initialized with this catalytic configuration (as
otherwise we would have aborted sooner).

Reversibility. Essentially the same argument establishes that M is reversible. If we receive
the REVERT command, let P (w) be the states of the catalytic tape that have been
encountered so far. First send REVERT to M1 (if operating), and once it has completed
send the REVERT command to M2. Moreover, while M2 is reverting, we claim that w
remains in P (w). This follows from the fact that M2 is reversible (as any configurations it
creates will lie in P (w)), and moreover every time M2 queries its input, any computation
done by M1 will likewise keep w in P (w), as we already called M1 with this starting
configuration in the forward pass (and M1 will not produce ⊥, as otherwise we would have
already aborted). Thus, the composed algorithm is reversible.

Time and Space. We now argue the space and time are as claimed. There are a constant
number of pointers (which we maintain on the worktape) to track the number of bits output
by M1, current tape heads, and other information. The fact that the catalytic tape size is
preserved is immediate. The call overhead adds at most a polynomial factor in the runtime,
as we runM1 at most once per step ofM2. Finally, ifM1 computes f1(x) for every catalytic
tape and M2 computes correctly on w, we successfully compute f2 ◦ f1 as claimed. ◀

We derive an easy corollary in the case of multiple composition:

▶ Corollary 13. Suppose a reversible catalytic machine M partially computes f : {0, 1}n →
{0, 1}n using workspace S(n) ≥ log n, catalytic space C, and time 2S. Then there exists a
reversible catalytic machine M′ that partially computes f ℓ using workspace O(ℓ ·S), catalytic
space C, and time 2O(ℓ·S). Moreover, for x where Mw(f i(x)) = f(f i(x)) for every w and
i ∈ {0, . . . , ℓ− 1}, M′w(x) = f ℓ(x).

3 Catalytic Derandomization From Conditional Compression

In this section we prove Theorem 2. We state all our results in terms of catalytic algorithms for
the stochastic matrix powering problem, as it is easily compatible with the recursive framework
we implement later. Recall a nonnegative matrix is stochastic (resp. substochastic) if all
row sums are 1 (resp. at most 1). For a set S, let US be the uniform distribution over S,
and let Un = U{0,1}n .

▶ Theorem 14. There is a CTISP
[
n, log n, log2 n

]
algorithm that, given n and a stochastic

matrix M ∈ [0, 1]n×n where each entry is specified with O(log n) bits of precision, outputs
M̃ ∈ [0, 1]n×n such that

∥∥∥M̃ −Mn
∥∥∥

1
≤ 1/n.

We recall the existence of efficient algorithms which canonicalize (sub)stochastic matrices,
essentially reducing the stochastic matrix powering problem to producing a PRG that fools
a branching program.

▶ Lemma 15 ([21, 19, 7]). There is a constant c > 0 and a space O(log nw/ε) algorithm
which, given ε > 0 and n, w ∈ N where w ≥ n and a substochastic matrix M ∈ [0, 1]w×w with
O(log w) bits of precision, returns a branching program

B : [(w/ε)c]× {0, 1}m → [(w/ε)c]
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4:10 Derandomizing Logspace with a Small Shared Hard Drive

of width w′ = (w/ε)c and length m = n ·O(log(w/ε)) where m is a power of two. Moreover,
letting M̃ ∈ [0, 1]w×w be the (substochastic) matrix where for i, j ∈ [w] we define6 M̃i,j =
Prx←Un [B[i, x] = j], we have

∥∥∥M̃ −Mn
∥∥∥

1
≤ ε.

As this is not the way these results are stated, we provide a translation in Appendix A. We
next define the Nisan PRG, and recall several auxiliary lemmas.

The Nisan PRG

Given a branching program, we first define the larger alphabet program obtained from
duplicating each edge:

▶ Definition 16. For t ∈ N, for B : [w] × {0, 1}n → [w] of width w, let Bt : [w] ×
({0, 1}t)n → [w] be the branching program of length n and width w over alphabet {0, 1}t

with transition function Bt[a, y] = B[a, y1], where y1 is the first bit of y ∈ {0, 1}t. Note that
Bt can be constructed in space O(log tnw) given B, and furthermore for every i, j ∈ [w],
Prx←Un [B[i, x] = j] = Prx←U({0,1}t)n [Bt[i, x] = j].

We recall a pairwise independent hash family with a very efficient description:

▶ Observation 17. For every t ∈ N, there exists a pairwise independent hash family
H : {0, 1}t → {0, 1}t such that |H| = 22t, and h ∈ H (which we associate with h ∈ {0, 1}2t)
can be evaluated in space O(t).

Given a (hash) function h : {0, 1}t → {0, 1}t and a program B, we define an operator that
applies a single level of the Nisan construction with hash function h.

▶ Definition 18. Given Bt : [w] × ({0, 1}t)n → [w] and h : {0, 1}t → {0, 1}t, let Bt,h :
[w]× ({0, 1}t)n/2 → [w] be the width w, length n/2 program with transition function

Bt,h[a, x] = Bt[Bt[a, x], h(x)].

Using a recursive application of hash functions, we can define the Nisan PRG as follows.

▶ Definition 19. For (h1, . . . , hℓ) ∈ Ht, define NIS(h1,...,hℓ) : {0, 1}t → {0, 1}t·n inductively
as follows. Let NIS0(x) = x1, and for j ∈ [ℓ]

NIS(h1,...,hj)(x) = (NIS(h1,...,hj−1)(x)||NIS(h1,...,hj−1)(hj(x))).

Note that B[·, NIS(h1,...,hℓ)(·)] and Bt,(h1,...,hℓ)[·, ·] (as defined in Definition 18) are equal as
functions.

To analyze the Nisan PRG, we define the notion of a hash function being good for
composing two functions, and a PRG being good for a function.

▶ Definition 20. For every n, w, t ∈ N and δ > 0 and f : [w] × ({0, 1}t)n → [w] and
G : {0, 1}t → ({0, 1}t)n, we say that G is δ-good for f if for every i, j ∈ [w],∣∣∣∣∣ Pr

x←Ut

[f [i, G(x)] = j]− Pr
x←U({0,1}t)n

[f [i, x] = j]

∣∣∣∣∣ ≤ δ.

Moreover, we say h ∈ H is δ-good (and δ-bad otherwise) for f : [w] × {0, 1}t → [w] if
G(x) = (x||h(x)) is δ-good for f [i, (x, y)] = f [f [i, x], y].

6 Note that this truncates the size from w′ back to w.
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We recall that a random hash function is good with high probability.

▶ Lemma 21 ([16]). For every f , Prh←Ht
[h is δ-good for f ] ≥ 1− w5(1/δ)2/2t.

(We provide a proof in Appendix A.) Moreover, a hybrid argument establishes the following.

▶ Lemma 22 ([16]). For every Bt : [w]× ({0, 1}t)n → [w] and h⃗ = (h1, . . . , hℓ), suppose for
every i ∈ [ℓ], hi is δ-good for Bt,h1,...,hi−1 . Then NISh⃗ is δ · nw-good for B.

Catalytic Derandomization

We now state the main result that powers both of our derandomizations.

▶ Theorem 23. There is a pair of reversible catalytic algorithms A,D that run in workspace
O(log nw/ε), catalytic space O(log(n) · log(nw/ε)), and time poly(nw/ε) and act as follows.
Given ε > 0 and a length n = 2ℓ, width w ROBP B : [w]× {0, 1}n → [w] where w ≥ n:

The machine Aw(B) outputs V ∈ {0, 1}2ℓ and t = O(log nw/ε) and sets the catalytic tape
to w′, such that (w′, V ) contains a (read-only) data structure supporting access to hash
functions h⃗ = (h1, . . . , hℓ) each on t bits, such that NISh⃗ is ε-good for B.
The machine Dw′(B, V ) sets the final catalytic tape configuration to w.

For the extension to search problems, we require a version which takes in a list of ROBP,
and constructs a set of hash functions that is simultaneously good for all of them. Our proof
is for this more general notion, which immediately implies Theorem 23:

▶ Theorem 24. There is a pair of reversible catalytic algorithms A,D that run in workspace
O(log nw/ε), catalytic space O(log(n) · log(nw/ε)), and time poly(nw/ε) and act as follows.
Given ε > 0 and a set of w length n = 2ℓ, width w ROBPs

B =
(

B
1
, . . . , B

w
)

with B
j : [w]× {0, 1}n → [w] where w ≥ n:

The machine Aw(B) outputs V ∈ {0, 1}2ℓ and t = O(log nw/ε) and sets the catalytic
tape to w′, such that (w′, V ) contains a (read-only) data structure supporting access to
hash functions h⃗ = (h1, . . . , hℓ) each on t bits, such that NISh⃗ is ε-good for B

j for every
j ∈ [w].
The machine Dw′(B, V ) sets the final catalytic tape configuration to w.

To make our compression and decompression algorithms work, we require that we can
determine if a hash function is good for a branching program at a certain level of the Nisan
construction, given pointers to the hash functions at the previous levels:

▶ Proposition 25. There is a space O(t + log(w/δ)) algorithm that, given n, w, t ∈ N with
w ≥ n and h̃ ∈ {0, 1}2t and B : [w]×{0, 1}n → [w] and (read only) w and pointers p1, . . . , pr

such that w[pi,...,pi+2t] = hi represents a hash function on t bits, returns if h̃ is δ-good for
Bt,(h1,...,hr).

We give a proof in Appendix A, as it essentially follows from the argument of [18]. We
can then prove the theorem:

Proof of Theorem 24. We assume without loss of generality that n, w and 1/ε are powers
of two. Set

t0 = 60 log(w/ε), t1 = 25 log(w/ε), δ = ε/nw ≥ ε/w2,
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4:12 Derandomizing Logspace with a Small Shared Hard Drive

and note that we choose t1 large enough such that a good series of hash functions (for all B
j

simultaneously) on t1 bits always exists. The algorithm works as follows. First, virtually
divide the catalytic tape as:

w =
(
w1||w2|| · · · ||w2ℓ

)
where |wi| = 2t0, which we think of as initially holding h : {0, 1}t0 → {0, 1}t0 . Note that
|w| = ℓ · 4t0 = O(log(n) log(nw/ε)) as claimed.

Next, initialize V ∈ {0, 1, ∗}2ℓ to indicate if each block is compressed, uncompressed, or
unprocessed respectively. The first two cases correspond to the following two formats of the
block:

wi =
{

h Vi = 1(
z||j||050 log(w/ε)) Vi = 0

Informally, the first corresponds to block i originally containing a good hash function for
B, and the second corresponds to block i originally containing a bad hash function for B

j ,
which is thus compressible (in fact, z represents a compressed version of the original data).
We define notation for the set of blocks in each configuration:

▶ Definition 26. For b ∈ {0, 1}, let Ib(V ) ⊆ [2ℓ] correspond to the indices such that Vi = b,
and let Sb(V ) = |Ib(V )|.

Next, we initialize a counter i = 1 for the current block. We then iterate over i =
{1, . . . , 2ℓ} until max{S1(V ), S0(V )} = ℓ.7 For each i, the algorithm works as follows. Let
h̃ = wi be the hash function (on t0 bits) obtained from the current block. We then test if h̃

is δ-good for

f j = Bj

t0,h⃗p
, for every j ∈ [w].

Where

h⃗p =
(

wI1(V )1 , . . . , wI1(V )S1(V )

)
corresponds to the hash functions on the preceding good blocks, and Bj

t0,h⃗p
is defined as

in Definition 18 applied to B
j and h⃗p. As the index set I1(V ) is easy to generate given V ,

this test can be performed in space O(log nw/ε) without modifying the catalytic tape (and
hence also in time poly(nw/ε)), by Proposition 25.

Given the results of this test, we break into cases depending on if h̃ is good:
If h̃ is δ-good for f j for every j ∈ [w], set Vi = 1.
If h̃ is δ-bad for some f j , set Vi = 0 and let j be the first index for which this holds.
Next, by enumeration over strings h ∈ {0, 1}2t0 (which we can do using the workspace),
determine the index of h̃ in the set

BADi,j =
{

h ∈ {0, 1}2t : h is δ-bad for Bj

t0,h⃗p

}
where we again perform this test using Proposition 25. Letting the index of h̃ in this set
be z, write

wi =
(

z||j||050 log(w/ε)
)

7 If we exit before i = 2ℓ, set the remaining indices of V to an arbitrary value, which we ignore for clarity
of presentation.
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(we perform this write operation left to right, and will revert it right to left). We denote
the final 50 log(w/ε) bits as free space.
Finally, we claim that we can in fact write these quantities in space |wi| = 2t0. The index
j requires log(w) bits. Moreover, we have

|BADi,j | = 22t0 · Pr
h←H

[h is δ-bad for f ]

≤ 22t0 · w5(1/δ)2/2t0 (Lemma 21)
≤ 22t0 · (w/ε)7−60

And thus log |BADi,j | ≤ 2t0−51 log(w/ε) = |wi|−51 log(w/ε). Therefore, we can record
all required information as claimed.

After processing all blocks, we obtain a catalytic tape w′ and one of two cases:
If S1(V ) = ℓ, there exist h⃗ = (h1, . . . , hℓ) corresponding to the hash functions (on t0 bits)
in I1(V ), and these functions are easy to recover from V .
Else, we must have S0(V ) = ℓ.
For i ∈ I0(V ), let Fi be the 50 log(w/ε) free bits in wi. Note that a description of a hash
function h : {0, 1}t1 → {0, 1}t1 is of size |Fi|. Iterating over i ∈ I0(V ) in increasing order,
we find (via brute force enumeration) a hash function h̃ that is δ-good for

f j = Bj

t1,h⃗p
, for every j ∈ [w].

Where

h⃗p =
(

wFI0(V )1
, . . . , wFI0(V )i−1

)
corresponds to the (δ-good) hash functions stored on the free space in the preceding
indices of I0(V ). Next, store h̃ in wFi

. Such a good hash function always exists, by
our choice of t1 and Lemma 21, and moreover testing if each candidate is good can be
computed in the desired space and time by Proposition 25. After this processing,(

wFI0(V )1
, . . . , wFI0(V )ℓ

)
contain ℓ good hash functions, which we can clearly access in read-only fashion given
given V and w′.

Thus, in both cases we obtain a set of hash functions h⃗ = (h1, . . . , hℓ) on t = O(log nw/ε)
bits that is δ-good for every one of the relevant tests, so by Lemma 22 we have that NISh⃗ is
δ · nw ≤ ε-good for B

j for every j.

Decompression and Reversibility. It suffices to show that at any point, the algorithm can
revert the tape to the original configuration w (and then D(B, V ) simply issues the REVERT
command). No matter the present configuration, we iterate through I0(V ) in descending
order. Letting the current index be i ∈ I0(V ), recall this block is of form (w′)i = (z||j||∗).
First write 050 log(w/ε) to the last indices (in reverse order to satisfy reversibility), such that
we reach the configuration after compressing the block. Then enumerate over h ∈ {0, 1}2t0

using workspace O(t0 + log(w/ε)), until we find the hash with index z in BADi,j , where
BADi,j and Bj

t0,h⃗p
are defined as before (which we still have access to because we reset the

tape in reverse order), and we determine membership by Proposition 25.
Once we find this h, write (w′)i = h (in the reverse order to satisfy reversibility) and

proceed to the next highest index in I0(V ). After this process has completed, it is clear from
construction that w has been reset to the original configuration, and that the tape never
reaches a new intermediate configuration during this process.
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Time and Space. In every step of the computation, we perform at most poly(2t0nw/ε)
work to determine if a hash function is good, find the index of a bad hash function, or find a
good hash function. Moreover, as at every point we store at most a constant number of hash
functions on the worktape, the space consumption follows. ◀

It is easy to go from Theorem 23 to Theorem 14.

Proof of Theorem 14. Let B : [poly(n)]×{0, 1}nc → [poly(n)] be the ROBP obtained from
applying Lemma 15 to M with n = n, w = n, and ε = 1/2n. We then call Theorem 23 with
B = B and ε = 1/2n2. Let h⃗ = (h1, . . . , hc log n) be the hash functions obtained from this
call, which we have implicit access to via the current state of the catalytic tape w′ and V ,
and let t = O(log n) be the domain of the hash functions. Then enumerate over x ∈ {0, 1}t

and for i, j ∈ [w] let

M̃i,j = Pr
x←Ut

[
B[i, NISh⃗(x)] = j

]
.

By Lemma 15 and Theorem 23, we have the guarantee that∥∥∥M̃ −Mn
∥∥∥

1
≤ 1

2n
+ n · 1

2n2 = 1/n. ◀

Finally, we can use Theorem 24 to prove Theorem 7.

Proof of Theorem 7. The algorithm works as follows. Given B =
(

B
1
, . . . , B

n
)

of width

and length n where E
[
B

j(Un)
]
≥ 1 − 1/n2 for every j, we call Theorem 24 with B = B

and ε = 1/2n2. Let h⃗ = (h1, . . . , hlog n) be the hash functions obtained from this call, which
we have implicit access to via the current state of the catalytic tape w′ and V , and let
t = O(log n) be the length of the domain of the hash functions. We then claim there is some
x ∈ {0, 1}t such that for all j ∈ [n],

B
j(NISh⃗(x)) = 1.

We have this as

Pr
x←Ut

 ∧
j∈[n]

B
j (

NISh⃗(x)
) ≥ 1−

∑
j∈[n]

Pr
x←Ut

[
B

j (
NISh⃗(x)

)
= 0

]
≥ 1−

∑
j∈[n]

(
Pr

x←Ut

[
B

j(Un) = 0
]

+ 1
2n2

)
≥ 1− n(2/n2) > 0

where the second inequality follows from our choice of ε. Then it is simple to find such an x

by enumeration, whereupon we compute and return NISh⃗(x) ∈ {0, 1}n, which is precisely
the solution for the mutual ROBP hitting problem. Finally, we use Theorem 24 to reset the
tape. ◀

4 Catalytic Recursive Matrix Powering

We now transform Theorem 23 into a parameterized algorithm for matrix powering.
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▶ Theorem 27. There is a catalytic machine that, given r1, r2 such that r1r2 = log(n) and
a stochastic matrix M ∈ [0, 1]n×n where each entry is specified with l = O(log n) bits of
precision, uses workspace O(r2 · log(n)), catalytic space O(r1 · log(n)), and time nO(r2), and
outputs M̃ such that ∥M̃ −Mn∥ ≤ 1/n.

Theorem 27 immediately implies Theorem 3 by setting r2 = logα−1(n) and r1 = log2−α(n)
for α ∈ [1, 1.5], and using the standard transformation of estimating the acceptance probability
of a BPL machine via stochastic matrix powering.

We first prove there exists an algorithm which computes a single intermediate power. We
must be careful to ensure that the algorithm satisfies the requirements of (partial) catalytic
computation. In particular, if the machine ever outputs an answer (rather than ⊥), this must
be the only possible answer for this input, over all possible catalytic tapes. Simultaneously,
we must ensure that the vast majority of inputs never return ⊥ no matter the initial catalytic
tape configuration.

We achieve this dual guarantee using an idea from Saks and Zhou [21]. For a given input
matrix M , we additionally take in a shift s ∈ [0, δ] for δ = 1/ poly(w/ε). After computing an
approximate power of M , we add s to each entry, and then truncate each entry to O(log w/ε)
bits of precision. In fact, we first verify that our shifted approximate power is sufficiently far
from the rounding threshold, and if not return ⊥. By doing so, we algorithmically verify that
we will never round to different thresholds over different w. Unfortunately, for some pairs
(M, s) it may be the case that we detect possible mis-rounding for some tapes w, even if all
possible approximations lie inside a single rounding interval. This can result in returning ⊥
on some tapes and a (consistent) value otherwise. However, we show that we can choose the
magnitude of s such that with high probability over s this does not occur, and we always
return a (consistent) value.

▶ Theorem 28. For every n, w ∈ N and ε > 0 where w ≥ n ≥ log w and 2−n > ε > 0,
there is a reversible catalytic machine P that uses workspace O(log w/ε), catalytic space
O(log(n) log(nw)), and time poly(nw/ε). The machine takes input s ∈ {0, 1}O(log(w/ε)) and
a substochastic matrix M ∈ [0, 1]w×w, where each entry of M is specified with l = O(log w/ε)
bits of precision. Moreover:

For every (s, M), there is substochastic M̃s (defined without reference to w) with l bits of
precision satisfying

∥∥∥M̃s −Mn
∥∥∥

1
≤ ε such that for every w,

Pw(s, M) ∈
{
⊥, M̃s

}
.

For every M , Prs[∃w, Pw(s, M) = ⊥] ≤ 1/w2.

Proof. Let B : [(w/δ)c]×{0, 1}m=n·O(log(w/δ)) → [(w/δ)c] be the result of Lemma 15 applied
to M with n = n and ε = δ to be chosen later. We compose the output of this algorithm
with Theorem 23, applied with B = B and w′ = (w/δ)c and n′ = m = O(n3) and ε = δ to
be chosen later. Let h⃗ = (h1, . . . , hℓ) be the hash functions obtained from this call, which
we have implicit access to via the current state of the catalytic tape w′ and V , and let
t = O(log w/δ) be the domain of the hash functions. Then enumerate over x ∈ {0, 1}t and
for every i, j ∈ [w] let

M̃i,j = Pr
x←Ut

[
B

[
i, NISh⃗(x)

]
= j

]
.

Next, define τ =
(
s · 2−2k

)
· J where J = 1w×w, interpreting s ∈ [2k]. We next check if any

entry of M̃ + τ is within 2δ of a multiple of 2−l, our rounding threshold. In this case, run
Dw′(B, V ) to reset the tape and return ⊥. Otherwise, let
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M̃s =
⌊
M̃ + τ

⌋
l

where ⌊·⌋l rounds each entry down to l bits of precision, and decreases the largest entry
per row such that the final matrix is substochastic. Let this matrix be M̃s. Finally, run
Dw′(B, V ), and return M̃s.

Accuracy. By our choice of error in Theorem 23 and Lemma 15, we have that∥∥∥M̃ −Mn
∥∥∥

1
≤ 2wδ

and moreover M̃ has each row sum at most 1. Furthermore, perturbing by τ and rounding
down the largest entry causes an ℓ1 error of at most 2w · 2−k. Finally, rounding each entry
down to a multiple of 2−l causes a total error of at most w · 2−l, so∥∥∥M̃s −Mn

∥∥∥ ≤ 2wδ + 2w · 2−k + w · 2−l ≤ ε

Where the final inequality comes from choosing

l = O(log(w/ε)), k = 10 · l, δ = 2−2k.

Uniqueness. We claim that for every (s, M), there is at most 1 possible non-⊥ output
over all choices of w (which we denote M̃s in the theorem statement). Let M̃w, M̃w′ be the
result of Theorem 23 on M initialized with catalytic tapes w, w′. By the accuracy guarantee
of Theorem 23, for every i, j we have∣∣∣(M̃w + τ)i,j − (M̃w′ + τ)i,j

∣∣∣ ≤
∣∣∣(M̃w + τ)i,j − (M + τ)i,j

∣∣∣ +
∣∣∣(M + τ)i,j − (M̃w′ + τ)i,j

∣∣∣ ≤ 2δ

Thus, if (M̃w′ + τ)i,j is greater than 2δ from a multiple of 2−l, we can be certain that no
tape w′ will induce an estimate that falls on the other size of the threshold, and hence all
non-⊥ outputs will be rounded consistently.

Success Probability. Furthermore, we argue that for every M , with probability at least
1− 1/w2 over s we return M̃s (not ⊥) for every initial tape configuration. Fixing arbitrary
s and i, j ∈ [w], if (M + τ)i,j is at least 3δ from every multiple of 2−l, every w will induce
an estimate (M̃ + τ)i,j that is at least 2δ from every multiple of 2−l, and hence for every
w we will not produce ⊥ due to this entry. This occurs for every i, j simultaneously with
probability at least

w2 · 2l · 6δ · 2k + 2
2k

≪ 1/w2.

Time and Space. It is clear the algorithm runs in the claimed time and space bound,
given Theorem 23.

Reversibility. As the only components of the algorithm that write to the catalytic tape are
calls to Theorem 23, reversibility follows immediately from the equivalent result for that
algorithm. ◀

We can then prove the main result.
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▶ Theorem 27. There is a catalytic machine that, given r1, r2 such that r1r2 = log(n) and
a stochastic matrix M ∈ [0, 1]n×n where each entry is specified with l = O(log n) bits of
precision, uses workspace O(r2 · log(n)), catalytic space O(r1 · log(n)), and time nO(r2), and
outputs M̃ such that ∥M̃ −Mn∥ ≤ 1/n.

Proof. Let s⃗ = (s1, . . . , sr2) ∈ {0, 1}r2·O(log n) be a vector of random shifts. Let M̃0 = M

and for i ∈ [r2] recursively define

M̃i = f
(

M̃i−1, si

)
,

where f is the function defined by Theorem 28 with ε = 1/n3 and n = 2r1 . An easy inductive
proof [19] establishes that, letting∥∥∥M̃i −M2r1·i

∥∥∥
1

= δi

we have δi+1 ≤ 1/n3 + 2r1 · δi−1 ≤ 2r1+1 · δi−1, and hence δr2 ≤ 1/n.
The final algorithm iterates over s⃗ and computes M̃r2 by applying recursive composition

of space-bounded machines Corollary 13 to the algorithm of Theorem 28 as defined above.8
The algorithm returns the first non-⊥ output. The fact that the algorithm is catalytic follows
from Corollary 13 and Theorem 28. Next, we claim there is some s⃗ where the algorithm
returns a value. Note that si is chosen obliviously to M̃i−1, and so with probability at least
1/n2 over si, on input (M̃i−1, si) the algorithm returns M̃i (i.e. not ⊥) when run with every
possible catalytic tape. Thus, there is some s⃗ where every level computes correctly.

Time and Space. Every application of Theorem 28 occurs with parameters n = 2r1 and
w = n and ε = 1/n3, such that the algorithm uses workspace O(r1 + log(n)) = O(log n),
catalytic space O(r1 · (r1 + log(n))) = O(r1 · log n), and time poly(n), and moreover the shift
s for each level is of length O(log n). Applying Corollary 13, we obtain that the composed
algorithm uses workspace O(r2 · log(n) + |s⃗|) = O(r2 · log n), catalytic space O(r1 · log n),
and runs in time nO(r2) as claimed. ◀
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▶ Lemma 29 ([16]). Let A, A′ ⊆ {0, 1}t be arbitrary subsets of density ρ = |A|/2t and
ρ′ = |A′|/2t. Then for every δ > 0,

Pr
h←H

[∣∣∣∣ Pr
x←Ut

[x ∈ A, h(x) ∈ A′]− ρρ′
∣∣∣∣ ≥ δ

]
≤ (1/δ2)/2t.

Proof of Lemma 21. For every i, k ∈ [w], let Ai,k = {x ∈ {0, 1}t : f [i, x] = k} and let
ρi,k = |Ai,k|/2t. Note that for every i, j,

Pr
x,x′←Ut

[f [f [i, x], x′] = j] =
∑

k∈[w]

ρi,kρk,j .

Thus, for every h such that for every i, k, j, Prx←Ut
[x ∈ Ai,k, h(x) ∈ Ak,j ]− ρi,kρk,j | ≤ δ/w,

we have that h is δ-good for f . By Lemma 29 this event occurs with probability 1−(w/δ)2/2t

over h← H for each pair of sets, and thus with probability 1−w3(w/δ)2/2t = 1−w5(1/δ)2/2t

for every tuple (i, j, k). ◀

We recall there is a logspace algorithm which tests if a hash function is good, given oracle
access to the function we wish to fool. We remark that there is work [17, 6, 20] on testing if
an entire PRG is good for a branching program, but we need a much weaker claim.

▶ Lemma 30 ([18]). There is a space O(t + log(w/δ)) algorithm that, given oracle access to
f : [w]× {0, 1}t → [w] and h ∈ Ht and δ > 0, tests if h is δ-good for f .

Proof. The algorithm enumerates over i, j ∈ [w]. For every i, j, the algorithm computes pi,j =
Ex,x′←Ut [f [f [i, x], x′]] (i.e. the correct probability) by enumeration over x, x′ in space O(t +
log w). Then it computes p̃i,j = Ex←Ut

[f [f [i, x], h(x)]] and rejects if the estimate is greater
than δ from the true value. Correctness and total space consumption are immediate. ◀

We can then prove that we can test if a hash function is good, given B and pointers to
preceding hash functions.

▶ Proposition 25. There is a space O(t + log(w/δ)) algorithm that, given n, w, t ∈ N with
w ≥ n and h̃ ∈ {0, 1}2t and B : [w]×{0, 1}n → [w] and (read only) w and pointers p1, . . . , pr

such that w[pi,...,pi+2t] = hi represents a hash function on t bits, returns if h̃ is δ-good for
Bt,(h1,...,hr).

Proof. By Lemma 30, it suffices to show that given i ∈ [w] and x ∈ {0, 1}t, we can compute
Bt,(h1,...,hr)[i, x]. To do this, the algorithm maintains v ∈ [w] as its current position in the
branching program (initialized to v = i) and i ∈ [n] to track the current layer. To determine
the next position, it suffices to determine the ith block of the output of NIS(h1,...,hr)(x). It is
well known that this can be computed in space O(t + log nw) given read-only access to the
set of hash functions (by walking down the binary expansion of i, denoted ⟨i⟩, and applying
hj if ⟨i⟩j = 1), which we have via the pointers. ◀
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Finally, we provide a translation of our quantization statement. We first recall a strict
specialization of the statement of [19]:

▶ Lemma 31. There exists a canonicalizer algorithm Ct that, given n, w ∈ N with w ≥ n,
takes in ε > 0 and a sub-stochastic matrix M ∈ Rw×w with each entry represented by at most
O(log w/ε) bits, runs in space O(log w/ε), and returns a branching program B of length n

and width w + 1 with alphabet {0, 1}t for t = O(log(w/ε)). Moreover, letting M̃ ∈ [0, 1]w×w

be the matrix where for i, j ∈ [w] we have

M̃i,j = Pr
x←U({0,1}t)n

[
B[i, x] = j

]
then∥∥∥M̃ −Mn

∥∥∥
1
≤ ε.

We reduce the alphabet (and slightly increase the length) as follows. We transform B into a
branching program of width (w + 1) · 2t = poly(w/ε) and length n · t = n ·O(log w/ε), where
each set of t layers reads t bits, interprets these bits as σ ∈ {0, 1}t, and takes the transition
labeled with σ in B.
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