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Abstract
We give the first explicit constant rate, constant relative distance, linear codes with an encoder
that runs in time n1+o(1) and space polylog(n) provided random access to the message. Prior to
this work, the only such codes were non-explicit, for instance repeat accumulate codes [19] and the
codes described in [26]. To construct our codes, we also give explicit, efficiently invertible, lossless
condensers with constant entropy gap and polylogarithmic seed length.

In contrast to encoders with random access to the message, we show that encoders with sequential
access to the message can not run in almost linear time and polylogarithmic space. Our notion of
sequential access is much stronger than streaming access.
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1 Introduction

In this paper, we study the time and space efficiency of encoders for error correcting codes.
An error correcting code is a function that maps any two distinct messages to codewords
that are very far apart in hamming distance. Error correcting codes [42, 27] have numerous
practical and theoretical applications. Because of these applications, both codes with efficient
encoders and lower bounds for encoders are useful. Codes can also be used as hard functions
in lower bounds.

The efficiency of encoding codes has been extensively studied. Some notions of encoding
complexity are the size and depth a circuit requires to encode the code. Spielman gave
explicit codes that could be encoded by linear sized circuits with logarithmic depth and fan
in 2 [49]. For unbounded fan in circuits, Gál, Hansen, Koucký, Pudlák, and Viola gave tight
bounds on the size and depth required to encode codes [26]. For depth 2 parity circuits, Gál
et al. showed that the minimum circuit size required to encode a constant relative distance
code was Θ(n(log(n)/ log(log(n)))2).
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In this paper, the notion of encoding complexity we focus on is the time and space
required to encode. We investigate the time and space with two different models of how the
message is accessed. One is the RAM model where any bit of the message can be accessed
in one time step. The other is a sequential model, where the message can only be accessed
through heads that can only move one space at a time.

Efficient Encoders with Random Access

Branching programs are the nonuniform version of RAM algorithms. Many problems, such as
sorting and finding unique elements, have time space lower bounds for branching programs,
e.g. [11, 52, 5, 1, 7, 6].

There are time and space lower bounds for encoding codes too. Bazzi and Mitter proved
that for any code with constant relative distance, any branching programs encoding them
in linear time require linear space [4], but they don’t give any lower bounds on space if the
encoder time is Ω(n log(n)). Self dual codes require branching programs that run in time T

and space S to have ST = Ω(n2) [45]. Some of the best lower bounds for nondeterministic
branching programs are for recognzing codewords. For any good enough code, L, we have
that any nondeterministic branching program recognising L in linear time requires linear
space [32].

Many codes can be computed either in almost linear time, or polylogarithmic space,
but not both simultaneously. For example, Reed-Solomon codes have encoders that run in
almost linear time with almost linear space, and encoders that run in polynomial time and
polylogarithmic space, but Reed-Solomon codes do not have known encoders that run in
almost linear time and polylogarithmic space. In fact, every constant rate linear code has
both a quadratic time, log space branching program and a linear time, linear space branching
program. However, not all linear codes have branching programs that are polylogarithmic
space and almost linear time.

Repeat-Accumulate (RA) codes [19] and the depth 2 circuits of [26] are both non-explicit
codes that have branching programs that run in quasilinear time and logarithmic space. The
best explicit RA codes only have relative distance O( log(N)

N ) [24]. The authors of [26] could
only partially derandomize their construction. Prior to this work, no explicit codes were
known that can be encoded simultaneously in almost linear time and polylogarithmic space.

Efficient Encoders with Sequential Access

Branching programs are a model with random access to the input. But some hardware
accesses data sequentially, and some algorithms output data sequentially. Our algorithms
with sequential access to the message will have a restricted number of heads, h, to access
the message with. These heads can only be moved one space per time step, or jumped to
the location of any other head. Even though the algorithm only has sequential access to the
input, it has random access to its smaller working space.

Sequential access arises naturally when composing bounded space algorithms. The
standard way to run one algorithm, A, on the output of another algorithm, B, space
efficiently is by running A until it wants an input bit, then running B until it outputs that
bit. This is a very sequential way to access the output of B. The obvious way to make this
faster without storing the whole output of B is to keep intermediate states of B and only
simulate B starting from the most recent intermediate state. This is like storing multiple
heads to the output of B. Copying one intermediate state over another is like jumping one
head to another.
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We emphasize that sequential access is much stronger than streaming access as the
program can choose which head moves and can read the same message many times. It is
also stronger than standard Turing Machine access as there are multiple heads and there are
head to head jumps. Other researchers have also studied models of computation with head
to head jumps [46, 36, 40].

1.1 Main Results
We give the first explicit code with constant relative distance, constant rate and an almost
linear time, polylogartihmic space RAM algorithm encoder.

▶ Theorem 1 (Explicit Almost Linear Time, Polylog Space Encodable Codes). For any ϵ > 0,
and N , there exists a linear code

C : {0, 1}N → ΣM

that has relative distance 1 − ϵ, output length M = O(N) and alphabet Σ = {0, 1}poly(1/ϵ).
Further C is computable in time N poly(2log(log(N))3

/ϵ) + 2poly(1/ϵ) and space O(log(N)2 +
log(N) poly(1/ϵ)) with random access to the message.

For constant ϵ, we have constant alphabet size, Σ = {0, 1}O(1), and further C is computable
in time N1+o(1) and space O(log(N)2).

While one might want an actually linear time, log space encoder, Bazzi and Mitter [4] es-
tablished that any linear time encoder requires linear space. So if one requires polylogarithmic
space encoders, they can’t run in linear time.

The distance of a linear code is the Hamming weight of its smallest non-zero codeword.
Hence, the idea of our code is to take any non-zero message and condense its weight in a
codeword whose length is proportional to the weight. To do that, we use a function called a
lossless condenser, so we call our codes “condenser codes”. A lossless condenser is a function
that takes an input source with entropy and a uniform seed and outputs a source that is
smaller than the input source, but still has the same entropy as the input source plus the
seed. The idea of condenser codes is to treat the input bits that are 1 as a source of entropy.
If this source can be losslessly condensed to an output with constant entropy gap, then
this can be used to give a linear function whose output has constant Hamming weight. See
Section 2.3 for details.

A condenser can be thought of as a bipartite expander graph. Expander graphs have been
used in constructing codes before, for instance for distance amplification [2] or Spielmann
codes [49]. But both of these construct codes iteratively in a way that makes it difficult to
encode both time and space efficiently. In contrast, condensers give something closer to a one-
shot construction that makes it easier to encode time and space efficiently. Expanders have
also been used to define codes using local constraints, such as with LDPC codes [20, 38, 47],
or even the c3 LTC codes [18], but these codes do not have known efficient encoders [17].

Crucially, the encoder given in Theorem 1 assumes random access to the message it
encodes. In contrast, we show that if the encoder only has sequential access to the message,
it cannot encode in almost linear time and sub-linear space:

▶ Theorem 2 (Lower Bounds For Encoders With Sequential Access). Suppose C is a code with
relative distance δ encoding N bits. Suppose A is an algorithm computing C running in time
T space S and using h sequential heads to access the message. Further assume S > h log(N).
Then

hST = Ω(δN2).

CCC 2024
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Our lower bounds on the encoders with sequential access to the message are much stronger
than those by Bazzi and Mitter [4] on encoders with random access to the message. We give
lower bounds on the space of an encoder with sequential access to the message, as long as it
runs in time ≪ N2. Since in the branching model of computation there are codes with time
O(N log(N)) and space log(N) encoders, this shows that random access to the message is
important for time and space efficiently computing a code.

A work by Bangalore, Bhadauria, Hazay and Venkitasubramaniam [3] gives a time space
lower bound for streaming algorithms encoding codes, but their result is much more restrictive.
Their result is in the streaming setting, which only allows one head at a time, and only allows
that head to move forward. In contrast, our lower bounds holds for many simultaneous heads
on the input where heads can move backward or even jump to other heads.

The sequential model of computation arises naturally when composing low space al-
gorithms. In this scenario, h = O(S), which gives a lower bound of S2T = Ω(N2).

Finally we show that our lower bound for encoding codes using sequential access to the
message, Theorem 2, is tight up to low order factors by giving an explicit code that nearly
achieves the lower bound. This code is based on a tensor code using the code in Theorem 1.

▶ Theorem 3 (Encoders With Sequential Access Meeting the Lower Bounds). For any number of
heads h ≥ 2, time T ≥ N , space S = Ω(h log(N)), relative distance δ > 0 with hST = Ω(δN2),
there exists a code with constant rate and relative distance Ω(δ) encoded by a time TNo(1),
space S polylog(N) algorithm using h sequential heads to access the message.

▶ Remark 4 (Uniformity of Results For Sequential Access). We note that our lower bounds on
sequential access hold for arbitrary operations on the working memory. That is, Theorem 2
even holds for nonuniform algorithms. But our encoders matching the lower bounds are
uniform and only needs random access to working memory. That is, Theorem 3, provides a
uniform algorithm.

1.2 Invertible Condensers
To construct the explicit codes for encoders with random access to the input, we use
condensers. Our condensers need to be efficiently invertible. That is, given an output of the
condenser, we need to efficiently iterate through all inputs that map to that output efficiently.
To simplify this, we ask that our condenser output 2 outputs, the condensed output and a
buffer so that the resulting function is invertible as a function. Additionally, our condenser
needs to be good in several other ways. It needs to be lossless, have constant entropy gap,
and have polylogarithmic seed size. See Section 2.2.1 for an informal definition of lossless
condensers or Section 5 for a formal definition.

▶ Theorem 5 (Good Invertible Condensers Exist). For every n, k and ϵ such that ϵ >

23−n/ log∗(n)log∗(n) , there is a time poly(n), space O(n2) invertible, lossless (n, k) →ϵ (m, k+d)
condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with d = O(log(n/ϵ)3) and m = k + d + O(log(1/ϵ)).

The efficiency of inverting lossless condensers is not commonly studied. However, efficiently
invertible extractors have been used in wiretap protocols [14] and non-malleable extractors
[15, 13, 37]. Lossless condensers and extractors are closely related: they are both special
cases of condensers.
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Some prior lossless condensers are invertible, such as multiplicity code based condensers
[33], but they don’t have constant entropy gap and small seed. Prior constant entropy loss
extractors [50, 25] can be used to build lossless condensers with small seed and small entropy
gap, but are not known to be invertible.

1.3 Barrier To Time-Space Efficient PCP for Delegated Computation
In delegation [21, 10, 8, 44, 30] a computation should be carried out so it can be verified in
short time. Specifically, the paper [8] poses the following challenge. Given:

A time-T and space-S computation, specified by a transition function that maps time-t
states to time t + 1 states for every 1 ≤ t < T ;
An input of size n ≤ S ≤ T ;

produce in time T polylog T and space S poly log T both the outcome of the computation
and a certificate that allows probabilistic verification in time n poly log T . The paper [8] calls
such a transformation a “complexity-preserving PCPs”.

Theorem 2 gives a barrier towards the construction of complexity-preserving PCPs. It
shows that it cannot simultaneously be that:
1. The computation is only accessed by simulating the transition function sequentially.
2. The certificate is an encoding of the computation by a good error correcting code.
Recall that known PCPs are (or can easily be modified to) encodings of the witnesses via
(highly specialized) error correcting codes. Moreover, known delegation schemes only use
blackbox access to the transition function. Therefore, Theorem 2 implies that a complexity-
preserving PCP, if possible, would require significantly different delegation protocols than
those proposed so far.

1.4 Time and Space Efficient Decoding?!
Other common notions of a code’s complexity are the time required to encode and the time
required to decode. Spielman codes [49] not only have linear time encoders, but also have
linear time decoders. But both the encoder and decoder require linear space.

Repeat accumulate codes, the codes of [26], and ours all make non-adaptive, also known
as input oblivious, queries. That is, on any message, they always query the same message bits
in the same order at the same time. While one can time and space efficiently deterministically
encode codes with non-adaptive queries, one can not efficiently decode with deterministic,
non-adaptive decoders, even with non-uniform branching programs. Gronemeier [22] proved
that any decoders which are deterministic and non-adaptive which run in time O(N1+α)
must use space Ω(N1−α). Thus one can not hope for decoders to be as efficient as encoders
without being adaptive, or randomized.

There are randomized decoders that run in No(1) space and almost linear time with random
access to the message. Specifically, good locally decodable codes have this property [35, 34].
A follow up work by the same authors [16] shows that all locally correctable codes also have
adaptive time and space efficient decoders. However, these codes have no known time and
space efficient encoders.

1.5 On Sequential Access to The Input
The model of computation with sequential access to the input is less studied than branching
programs. So we will formally define sequential access and briefly discuss some of its
properties.

CCC 2024
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▶ Definition 6 (Sequential Oracle). Let x be some specific string of length n and h be an
integer. Then a sequential oracle to x with h heads is a machine that has as state h integers
within the range [n]. It has an input tape that can take up to two integers, u1, u2 ∈ [h],
indicating up to two of the h heads, and an operation which can be one of the following:
1. Move forward. This increments the u1th head by one, if it is less than n.
2. Move backward. This decrements the u1th head by one, if it is more than 1.
3. Read. Let i be the value of the u1th head. Then this returns xi.
4. Jump to. This sets the u1th head to be the same value of the u2th head.
Any one of these operations can be done in one time step.

We call the oracle a non-reversible, sequential oracle if it can not use the “move backward”
operation.

We call the oracle a non-jumping, sequential oracle if it can not use the “jump to”
operation.

We say that an algorithm has sequential access to an input if the only way that input can
be accessed is through a sequential oracle.

We assume that all sequential oracles start with all heads at position 1.

There are two potentially contentious operations of this sequential head model: the “move
backward” operation, and the “jump to” operation. For simulating algorithms to access their
output, the move backward operation may not be possible if the algorithm is not invertible.
For hardware, often moving backward may be fine, but jumping heads is not. Our lower
bounds, Theorem 2, holds even if heads can both jump and move backward. Our upper
bounds, Theorem 3, needs heads that can jump, but not ones that move backward.1

The “jump to” operation is very powerful. Even with only head to head jumps, non-
reversible heads can simulate reversible heads with only logarithmic overhead. Thus the
resources needed when given reversible, sequential access is within a log factor of what is
needed for non-reversible, sequential access to the input.

▶ Lemma 7 (Reversibility Can Be Efficiently Simulated With Jumping). A single sequential
head to a length N input can be simulated with O(log(N)) non-reversible sequential heads to
the same input with an expected time of O(log(N)) for each head movement, and O(log(N))
space.

More generally, k sequential heads to a length N input can be simulated with O(k log(N))
non-reversible sequential heads to that same input with an expected time of O(log(N)) for
each head movement, and O(k log(N)) space.

Our sequential access to the input with reversible heads seems very similar to a Turing
machine, but the addition of multiple heads makes it much more powerful. For instance,
the classic example of a hard problem for a 1 tape Turing machine, the palindrome, takes
quadratic time on a 1 tape Turing machine [29]. Just two heads make palindromes easy to
solve in linear time. Even if one is only given O(log(N)) non-reversible heads and O(log(N))
space, palindrome can be solved in O(N log(N)) time with non-reversible, sequential access
to the input.

There has been research on multi-head Turing Machines. Savitch and Vitányi [46] studied
multi-head Turing Machines with heads that can jump to the location of other heads, like our
heads do. This model was compared to and contrasted with multi-tape turing machines in
several works [46, 36, 40]. Prior to this work, the only time space lower bounds for sequential
access are those implied by the lower bounds for branching programs.

1 Our codes can also be encoded in the same time and space bound with non-jumping sequential heads if
one allows a preprocessing step to move all the heads into an initial position before starting.
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For completeness, one might ask if non-reversible sequential access is stronger than non-
jumping sequential access and if non-jumping sequential access is stronger than non-jumping,
non-reversible access. We show that this is indeed the case in the time and space bounded
setting. Informally, we prove that

Random Access
> Sequential Access
≃ Non-Reversible Sequential Access
> Non-Jumping Sequential Access
> Non-Jumping, Non-reversible Sequential Access

That random access is more powerful than sequential access is a direct consequence of
our explicit codes in the RAM model, Theorem 1, and our code lower bounds for sequential
access to the input, Theorem 2. The other two inequalities come from our code lower bounds
for sequential access, Theorem 2, and our explicit codes for sequential access, Theorem 3.
See Section 9.3 for details.

2 Technique

For our results, we use the convention that capital letters are an exponential factor larger
than their lower case counterparts. For example, N = 2n, K = 2k and M = 2m. In particular,
our codes with efficient encoders with random access to the input are constructed using
condensers that act on the indexes of the bits in the code. So our codes are functions on N

bits, and our condensers are functions on n bits.
We start with proving our lower and upper bounds for encoders with sequential access to

the input. Then we show how to build explicit codes with efficient encoders using random
access to the input.

2.1 Sequential Access To The Message
If one only has a bounded number of heads to access the message and they can only move
one space (or jump to other heads) in one time step, can we still time and space efficiently
encode any code? We show that no codes with good distance can be time and space efficiently
computed with only sequential access to the message.

We show that given space S, time T , relative distance δ and max number of heads h

such that hST = o(δN2) that any algorithm running in time T and space S limited to at
most h sequential heads can not compute a code with relative distance δ. Further when
hST = Ω(δN2), we show that an algorithm with time close to T , space close to S, and h

heads computes a code with distance close to δ.
We start by showing the lower bound for non-adaptive sequential access to the input as a

warm up. Then we give the lower bound for even adaptive sequential access to the input.
Finally we show how to use time and space efficient codes that use random access to their
message in order to construct codes with encoders with sequential access to the input that
match our lower bounds.

2.1.1 Non-Adaptive Lower Bound
The idea is to group the message bits into intervals larger than S. So for any interval, we
think of a two person game, where one player has access to an interval when a head is in it,
and gets to communicate about the contents of that interval to a second player whenever all

CCC 2024
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heads leave that interval. We want to show that the second player can’t learn the contents
of the interval, thus must do the same thing for two different settings of that interval. The
main ideas are that:

1. When a head leaves an interval, it can only communicate S bits. Thus the second player
gets very little information about that interval every time it is visited.

2. If every head is far from an interval, it takes a lot of time to move a head back to that
interval. So for most intervals, the second player only gets information about that interval
few times.

3. If there are few heads, most intervals must have all heads very far from them at any given
time. So for most intervals, the second player has to write most output bits.

Thus for most intervals, if the second player does not get as much information about an
interval as the interval contains, then for two different messages, the second player must
get the same information for both messages. Then the second player must output the same
codeword bits for both. If the second player also writes most of the codeword, then most of
the codeword will be the same for those two messages. Thus these two messages will have
close codewords, so the code will not have good distance.

So we want that most intervals both have most output bits written when no head was
near them, and that most intervals only went from having a head in them to having all heads
far away a small number of times. Thus all the bits written when all heads were far away
from an interval must have the same output for two separate messages.

In particular, we set the number of bits in each interval to be around I = δN
8h so that

most intervals have at least one interval between them and any head at any point in time.
Since it takes at least I time steps to move a head into an interval that is distance I from
every head, the number of times an interval transitions from being far from any heads to
having a head on it is at most T

I .
For non-adaptive encoders, the argument follows fairly directly. An interval must have

been visited at least I
S times for player 2 to know enough about that interval to write different

things for every possible contents of that interval. So only ST
I2 many intervals can be visited

enough to have any distance when a head isn’t near them. Only 3h
δ of the intervals can have

a head near it when more than δ fraction of output bits are written. Thus a constant fraction
of intervals, N

I − 3h
δ = 5h

δ = 5N
8I , has at least a δ fraction of bits written when no head is

near them.
Thus to have distance δ, we need the number of intervals visited often enough, ST

I2 , to be
at least the number of intervals that often don’t have a head near them, 5N

8I . Otherwise, for
one of the rarely visited intervals, for two different messages, the encoder must write the
same thing when all heads are far from that interval. Thus the code wouldn’t have good
distance. Thus

ST

I2 ≥ 5N

8I

ST ≥ 5
8NI

ST ≥ 5
8N

δN

8h

hST ≥ 5
64δN2
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2.1.2 Adaptive Lower Bound
Adaptive lower bounds are trickier since the queries can change for different messages. As
an example, our prior lower bound even works for messages where the entire message is
zero, except for one interval. A non-adaptive algorithm can not even encode this extremely
restricted message into codewords with large distance. But a non-adaptive algorithm that
knows we will use this kind of counterexample will search for such an interval, then only
encode that interval. This cuts down the number of bits the adaptive algorithm will have to
encode by a factor of δ

8h which allows our adaptive encoder to outperform a non-adaptive
encoder on these particular kinds of counterexamples.

The issue in this counterexample is that the encoder gets to know everything outside a
target interval for free. So instead of always choosing the message outside an interval to be
zero, our counterexample will fix it in some way that will depend on the encoder, so that way
the algorithm can not know it ahead of time. So the idea essentially is to choose a random
interval and a random restriction to everything outside the interval and then try to use a
similar argument.

More specifically, we use a proof by contradiction. We say restriction of the message
is good if it restricts everything but one interval, and for most assignments to variables in
that interval, most bits are written when no head is near the interval, and heads don’t enter
the interval many times. If this holds for most assignments to the interval, the same prior
arguments work. But if no good restrictions exist, it must be because on average the intervals
are visited too many times for the number of heads and the time of the algorithm. But since
we have a bound on the time and number of heads of the algorithm, this can not happen.

2.1.3 Upper Bound
The lower bounds from the previous section is tight since we can construct codes that match
them, up to small factors. We construct these codes using a tensor code product of any code
that has a space efficient, non-adaptive encoder using random access to the message and
any other time efficient code. There is a straightforward way to time and space efficiently
compute the tensor code of any space efficient code with another code. As a reminder, a
tensor code arranges the message into a table, then one code encodes each row to construct
an intermediate table. Then the other code encodes each column of the intermediate table
to get the final result.

Specifically, for target space S, we arrange the code into S columns, each of size about
N
S . Then each row is encoded in any arbitrary time efficient linear code. And each column is
encoded in our time and space efficient code that uses random access to the message.

The time efficient way to encode the tensor code is to literally construct the intermediate
table by encoding every row, then encode every column of the intermediate table. But storing
this intermediate table is not space efficient. If the code encoding the columns is space
efficient and non-adaptive, there is an alternate, space efficient way to do this. This is to
simulate the encoder for all the columns in parallel, and every time it needs to query one of
the rows, we encode this row and then give the result to the space efficient code.

So our encoder places each of the h heads uniformly across the rows of the message so
that any row is within O(N

h ) of a head. As long as there are fewer heads than rows, since
the row encoder is time efficient, moving to the row will take more time than encoding it.
Then every query to a row during the column encoding only takes time O(N

h ). And since
the column encoder is time efficient, we only need to query the rows around N

S times. So the
total time is around T ≃ N2

hS , thus hST ≃ N2. The space is similar to S since the column
encoder is space efficient and only needs to store the state of S columns at once.

CCC 2024
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Finally, to get the tradeoff with distance, we use the same tensor code. Then we only
bother to encode the message in size Ω(δN) intervals and encode each interval independently.
If each of these smaller codes have constant relative distance, then these codes together have
relative distance Ω(δ). Using the prior time space efficient algorithms, for space S and heads
h, you can compute a code with constant distance on a size (δN) message in time about
(δN)2

hS . Doing that 1/δ times only requires time about δN2

hS , which is what we want.

2.2 Random Access To The Message

First, we recall some relevant definitions. For any alphabet Σ with a special zero character,
and any x ∈ ΣN , we say the weight of x, denoted weight(x), is the number of non-zero
symbols in x. Similarly the relative weight of x is weight(x)

N . A linear code is any code whose
encoding function is a linear function. Then the distance of a linear code is the weight of its
smallest non-zero codeword. See Section 5 for more details.

So the goal is to construct some linear function which is fast and space efficient to
compute, but has high weight for any non-zero message. Our basic strategy is to construct a
different linear function for every possible (order of magnitude of) the message weight. Then
we combine these linear functions into one linear function, such that if any linear function
outputs a high weight output, the combined linear function will too.

This high level approach is nearly identical to the codes with depth 2 circuits of Gál,
Hansen, Koucký, Pudlák, and Viola [26]. In fact, our code can also be viewed as an almost
linear sized, depth 2 circuit. But our codes are explicit, and our results require several new
ideas. For a detailed comparison, see Section 3.1.

2.2.1 Weight Fixers From Condensers

For any input range R ⊆ [N ] and relative weight δ > 0, we call a function F : {0, 1}N → ΣM

an R to δ weight fixer if for every message x with weight within R, we have that F (x) has
relative weight at least δ. We note that R is usually an interval. So our first goal is just to
construct [2i−1/2, 2i+1/2] to δ weight fixers for some δ > 0 for every i ∈ [log(N)] = [n]. For
this we use lossless condensers.

One way of looking at lossless condensers is as bipartite graphs [43, 50]. A lossless
condenser is a regular graph with left vertices L, right vertices R, with left degree DL = 2d.
We call d the seed length. We call the graph a lossless condenser for min-entropy k if for
every S ⊆ L with |S| = 2k, we have that the neighbor set of S, denoted N(S), has size
|N(S)| ≥ |S|DL(1 − ϵ). We say the condenser has constant entropy gap if |N(S)| = Ω(|R|),
that is, a constant fraction of R has a neighbor in S.

If ϵ is small, then most of elements of N(S) have one unique neighbor in S. Here, we
view L as the input bits (|L| = N), and R as the output bits (|R| = M). If the message, x,
has weight 2k, we can let S be the one bits of the message. If the condenser has constant
entropy gap, then a constant fraction of the output bits have a neighboring one bit. In fact a
constant fraction of the output bits have exactly one neighbor that is a one bit.

Our weight fixer will just xor all an output bit’s neighbors to compute its value. Then
all of the output bits with a unique one bit neighbor will output one. Since for a weight 2k

message this is a constant fraction of the output bits, this weight fixer will give a constant
relative weight output on a weight 2k input. See Figure 1 for an example of a condenser and
its corresponding weight fixer.
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Message:
11000000000000000000

Output:
001100

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0

S

N(S)

Figure 1 Lossless Condenser And {1, 2} to 1
3 Weight Fixer Example.

The lossless condensers we construct gives us, for any i, a [2i−1/2, 2i+1/2] to δ weight fixer
Fi : {0, 1}N → {0, 1}M where M = 2i2O(log(log(N))3). This 2O(log(log(N))3 factor is related to
the seed length of the condenser. Each bit in the output of Fi can be computed in time
about N/2i and space O(log(N)2), so the total time to compute the entire output of an Fi

is N2O(log(log(N))3) = N1+o(1). See Section 2.3 for more details.

2.2.2 Mixing Weight Fixers

Now we can perform a tensor like operation to mix all these weight fixers into one code. The
idea is that a code always maps non-zero inputs into a string with high weight. So if we can
partition the output of our weight fixers into small clusters so that most clusters are non
zero, applying the code to each cluster gives a large weight output.

For any input weight message, some weight fixer Fi will have large weight. So all we need
to do is make sure each cluster contains a good sample of the output of each Fi. This is easy,
just have each cluster contain a single output symbol from each Fi in any way as long as
each Fi has each of its outputs in the same number of clusters. To do this time and space
efficiently, we just use the first symbol from Fi as many times as we need to, than the second
symbol and so on.

We can visualize this mixing technique with a table. First put the output of each Fi into
a row in a table. Repeat the symbols in each row until every row is the same length. Then
encode the columns of that table with any asymptotically good code. The resulting weight
will be at least the minimum weight of any row times the distance of the code. See Figure 2
for a diagram.

To run this mixer time and space efficiently, we encode one column at a time, and store
the current symbol for each of the n = log(N) weight fixers. Then to compute the next
column, we only need to compute weight fixers who have changed their value since the last
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x

F1(x)
F2(x)
F3(x)

. . .

Fn(x)

y1 y2 y3 y4 . . . ym= C(y1) C(y2) . . . C(ym)

Figure 2 Mixing Weight Fixers F1, F2, . . . , Fn with code C.

column. For most columns steps, most weight fixers won’t use a new symbol because most
weight fixers have their symbols repeated many times. This only requires O(log(N)) space for
the current output bit of each Fi, plus the space to compute any single Fi. It only requires
the time to compute each Fi and to run C.

One issue with the approach we have described thus far is that the output length will
be at least the output length of the largest Fi, which is N2O(log(log(N))3). Thus the output
length of the code we have just described is N2O(log(log(N))3), but we need an output length
of O(N) to get constant rate. The weight fixers for larger message weights are the issue. So
instead of using our condenser based weight fixers for every message weight, we only use
them for small weight messages. We use a different weight fixer for messages with large
weights and mix the two results.

2.2.3 Weight Fixers For Large Weight Messages

For large weight messages, we use a code extremely similar to Spielman codes [49]. Spielman
codes use a recursive approach, where every level of recursion is on a smaller input and
increases the distance. We use the same codes, except that instead of recursing all the way
down to a code on a constant sized message, we stop early with a weight fixer that is just a
bit smaller than N . We call these Spielman style weight fixers.

Spielman style weight fixers always have constant rate, but the weight of messages they
can fix increases with each level of recursion. One can compute the output of Spielman
style weight fixers space efficiently, but the time increases exponentially in the number of
recursions. Thus by choosing an appropriate recursion depth, we can balance the time used
by the Spielman style weight fixers with the rate of the condenser style weight fixers.

The Spielman style weight fixer uses a lossless condenser to get a function, A : {0, 1}N →
{0, 1}N/2, such that for any input with weight less than some constant α, A gives an output
with the same weight as the input. For the lossless condensers in the Spielman style weight
fixers, we use the condensers from [12]. Then the idea is to repeatedly apply A in several
levels until you have constant relative weight, then mix all of these levels.

If one stops the recursion early, we will not have had enough rounds to concentrate the
small weight messages to be a constant fraction of the bits at any level. But each round will
still let you fix weights a constant fraction smaller. The output bits at any given level are just
some particular xor of message bits, but the number of bits you xor increases exponentially
with the depth, which is why this algorithm has time exponential in its depth.

Now choosing appropriate number of recursions for the Spielman style weight fixers gives
fixers for the very heavy messages. Light messages are handled by our weight fixers based on
condensers. But this only gives us codes with some constant distance, and we would like
codes that have arbitrarily large constant distance.
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2.2.4 Distance Amplification
A first try would be to use an off the shelf distance amplification procedure, like that of Alon,
Bruck, Naor, Naor and Roth (ABNNR)[2]. While we use the ideas of ABNNR, we can not
use it directly as it does not preserve the space and time complexity of the encoder. First we
explain ABNNR, and its limitations. Then we explain how to modify it to work for us.

The idea of ABNNR is to take a base code and a bipartite expander graph, and identify
the left hand side with the message bits, and the right hand side with the output bits. Then
the output of a right hand side vertex is just the concatenation of all its adjacent message
bits. This increases the alphabet, and if the graph is an expander, increases the weight.

Now if we just apply ABNNR directly to our final code, it is unclear how to encode the
resulting code efficiently. There is a straightforward, time efficient way to encode the code:
just compute the whole left side code, than concatenate the symbols on the right hand side.
But if one wants to do this space efficiently, then we do the following instead: for each right
hand side vertex, we compute all the left hand side bits incident to it and append them
together. The issue is that each of the left hand vertices are a function of a constant fraction
of the message bits, thus take time O(n) to compute. Spending O(n) time to compute each
of the O(n) output vertices takes quadratic time, which is too much.

Instead, we need to run distance amplification on each of the O(log(N)) weight fixers
before we combine them. Then when the bits of the weight fixer are expensive to compute,
there are fewer output bits, so the distance amplification only increases encoder time by a
constant factor. Then our mixer preserves this distance, as long as the code in the mixer
also has good distance. This allows us to get arbitrary good weight.

2.3 Invertible Condensers
Now we discuss how to modify existing condenser and extractor constructions to get invertible
condensers. To understand these condenser constructions, we need to explain an alternative,
equivalent definition of condensers. Instead of thinking of condensers as bipartite graphs,
one can also think of them as functions that take low entropy sources over long bit strings to
sources with a similar entropy over short bit strings.

Explicitly, a k entropy lossless condenser is a function C : {0, 1}n × {0, 1}d → {0, 1}m

such that for any random variable x ∈ {0, 1}n with min entropy k and Ud ∈ {0, 1}d an
independent, uniform distribution, we have that C(x, Ud) is close to a distribution with min
entropy k + d. We call m − (k + d) the entropy gap since it is the difference between the
amount of entropy that could be in an output with m bits and how much entropy is in that
output. The entropy gap of the condenser is related to the weight of the related weight fixer.
We want constant entropy gap.

The state of the art condensers based on Pavarash-Vardy codes and Multiplicity codes
[25, 33] are lossless, but require large seeds to get small entropy gaps. One can think of
extractors as a kind of condenser with no entropy gap at all. We know explicit extractors
with small seeds [51]. Unfortunately extractors must have entropy loss, and we need lossless
condensers.

One might hope for a way to combine lossless condensers and extractors to get a the
benefits of both: small entropy loss for extractors, and small entropy gap for condensers.
This is possible using the condense and extract framework [43, 50]. Next we describe the
condense and extract framework.

In the condense and extract framework, one first condenses the message to concentrate
the entropy, then extracts much of it. Then there is still some remaining entropy in the
message, conditioned on the output of the extractor, so we condense it again to a much
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Source

Condensers

U U U

E E E

U

I

I

Invertable

Invertible

Individually Invertible,
But Unclear How To

Invert Together

Figure 3 Standard Condense And Extract. Source is condensed from many times in parallel, and
the results are extracted in parallel. Legend: E, Extractor. I, identity map. U, Uniform Bits.

smaller message, which we can then more efficiently extract from. Then we repeat until
almost all the entropy has been extracted. Then to convert the final result to a lossless
condenser, we condense the remaining entropy one final time without extracting it.

Things get a bit more complicated when one requires invertibility. First, we require our
component condensers and extractors to be invertible, which is doable. But then we run into
an issue of extracting and condensing from the message many times in parallel. Now even
if we can invert each of the condensers and extractors by themselves efficiently, it remains
difficult to space and time efficiently determine which messages can give the expected output
of each extractor and condenser simultaneously.

This is solved by changing our extractors into buffered extractors, like those of [12], and
then condensing from that buffer. A buffered extractor is just an extractor with a second
output, called a buffer, which contains all the entropy the first output missed. With this
change, inversion is straightforward. For the same reason, the extractors and condensers of
[12] are also efficiently invertible.

Now it only remains to choose appropriate invertible extractors and condensers to compose
to get our final condenser. For condenser we choose the multiplicity code based condensers as
these are both efficient and are easy to invert. For extractors, we use the Trevisan extractor
[51, 41] to extract most of the entropy, and then a left-over hash lemma based extractor to
get the rest. So the final condenser runs the Trevisan extractor, condenses, runs the left-over
hash lemma extractor, and then condenses again.

The Trevisan extractor is efficiently invertible because it is a linear function conditioned
on the seed, thus can be inverted by Guassian elimination. This requires quadratic space
and polynomial time (in n = log(N)). One subtle issue is that we define invertibility of an
extractor as a literal function inversion of an extractor along with a buffer. But the Trevisan
extractor with a fixed seed is not always full rank, thus is not an invertible function. To
handle this, our extractor detects such bad seeds (which don’t extract well anyway) and just
use any arbitrary invertible function with them.

This Trevisan extractor is the main limitation in our encoders time and space. Getting
an extractor with shorter seed length will improve the time of the encoder, and a more space
efficient inversion process would improve the space of the encoder.
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Source
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Figure 4 Our Condenser. It has two extractors, a Trevisan extractor and a Left-over Hash
Lemma (LHL) based extractor. Both extractors output some uniform bits and a buffer with the
left over entropy. Before the buffer can be extracted from efficiently, it needs to be condensed first.
Legend: C, Condense. I, identity map. U, Uniform Bits. B, Buffer.

3 Comparison With Other Codes

3.1 Comparisons With Codes For Shallow Circuits
While we investigate time and space efficiency of encoding, other works have investigated the
circuit complexity of encoding codes. For instance, while Spielman codes [49] are often cited
as linear time encodable, they are also encodable by a uniform, fan-in 2, log depth circuit
with linear size. A later work by Gál, Hansen, Koucký, Pudlák, and Viola [26] considered
unbounded fan-in circuits with arbitrary gates. For any depth, Gál et al. gave tight bounds
on the size of a circuit required to encode a code with constant relative distance.

Gál et al. show that encoding any asymptotically good code with depth 2 circuits requires

Ω
(

n
(

log(n)
log(log(n))

)2
)

wires and depth 3 circuits requires Ω(n log(log(n))) wires. As depth

increases further, the number of wires required sharply decreases, with linear sized circuits at
depth log∗(n). We emphasize that [26] give both lower bounds and matching upper bounds.
However, their codes are non-explicit.

Our code constructions and the depth 2 circuits of [26] are, conceptually, extremely
similar. Their circuit constructions use what they call “range detectors” which are equivalent
to weight fixers. Its depth 2 circuits do exactly what we do: make weight fixers for each
order of magnitude, then mix them. Our encoders could also be stated as uniform, almost
linear sized, depth 2 circuits.

Derandomization of the codes of [26] was left as an open problem. They could only
achieve partial derandomization. Their partial derandomization is a variation of our mixer
(compare Theorem 19 with [26, Claim 37]), but they had no explicit constructions for weight
fixers. Our weight fixers can actually be expressed as parity gates, and our encoders can be
described as explicit depth 2 circuits of almost linear size. Thus we solve the open problem
in [26] of finding explicit codes with depth 2 circuits of almost linear size.
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Gál et al. never analyzed the time and space required to encode their codes. It is not
obvious that the codes of [26] should be encodable in almost linear time and logarithmic
space. While it is true that any constant depth, almost linear sized circuit can be evaluated in
either almost linear time and almost linear space, or logarithmic space and polynomial time,
they can’t always be computed in almost linear time and logarithmic space simultaneously.
The fully randomized codes with depth 2 encoders from [26] do not seem to have almost
linear time and log space encoders, only their partially derandomized codes do.

The main differences between their construction and ours come from the fact that ours
are explicit. We use condensers to make our weight fixers explicit, and the best known
condensers cannot make weight fixers that are as good as the randomized construction of Gál
et al. So we need several new ideas to get our codes. A few difficulties and solutions include:
1. For weight K inputs, our lossless condensers give weight fixers with output length

Ω(K2poly(log(log(N)))). When K is close to N , this is larger than N . If we used these
weight fixers for large weight messages, the output would have super linear size, so our
code would not be constant rate. So we need to construct weight fixers for large input
weight messages in a different way (through Spielman style weight fixers).
The weight fixers in [26] for weight K inputs have output length O(log

(
N
K

)
). So their

weight fixers always have less than linear output length.
2. Condensers cannot give us distance 1 − ϵ for small constant ϵ. To improve our distance,

we need to use the distance amplification of ABNNR [2], but in a special way. ABNNR
does not seem to simultaneously preserve time and space efficiency of encoding: it can do
one or the other. So we have to apply it to our weight fixers before they are mixed.
Gál et al. only gives codes with relative distance δ for some constant δ > 0, it does not
try to give large relative distance. However, if their randomized construction is modified
to give weight fixers with multiple output bits, then the same approach gives codes with
distance 1 − ϵ, codeword length O( N

ϵ2 ), alphabet {0, 1}O(log(1/ϵ)) and encoders running in
time N poly(log(N)/ϵ) and space O(log(N) log(1/ϵ)).

Thus while the high level code construction of [26] is similar to ours, we need several new
ideas to make it explicit, keep the rate constant, and the distance close to one.

3.2 Why Spielman Codes Aren’t Enough
Spielman codes [49] are well known codes that can be encoded in linear time, so it is natural
to ask whether they can also be encoded in small space. From Bazzi and Mitter [4], we know
that it’s linear time encoder cannot be sublinear space. We know of an alternate way to
encode Spielman codes in logarithmic space, but this approach requires time n1+β for some
β > 0. Standard Spielman codes have β > 1.5, but even optimizing their parameters one
cannot get β approaching zero without the relative distance of the code also approaching zero.
Subsequent improvements, like those of Guruswami and Indyk [23], still contain Spielman
codes within them, and thus suffer from the same problems with encoding efficiency.

Now we give a brief explanation of this space efficient evaluation of Spielman codes,
and why it can’t be time efficient. One can view Spielman codes [49] as a parity circuit.
Each layer in the parity circuit is given by some family of regular bipartite expanders Ai for
i ∈ [O(log(N))]. For simplicity, you can think of the circuit as identifying the gates of layer i

of the circuit with the left vertices of Ai, and the gates in layer i + 1 of the circuit with the
right vertices of A. Then the edges in A denote the inputs to the parity gates.

The obvious space efficient way to evaluate such a circuit is to recursively evaluate a gate’s
value by iterating over each input to that gate. For a depth depth circuit with fan in f with
final layer size L, this only takes space O(depth log(f)), but requires time fdepth · L. Then
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fan-in, f , is the degree of the expanders, and depth, depth, decreases with the expansion of
the expanders. Improving one hurts the other. One can improve the tradeoff by making the
expanders more imbalanced, but that hurts the distance of Spielman codes. Our one shot
approach allows us to use very imbalanced expanders without hurting our distance.

4 Open Problems

There are many open problems related to time and space efficiency of encoding.

1. Get better condensers to construct codes with more efficient encoders using random
access to the input. Our codes need, for every k ∈ [n], a lossless (n, k) →α (m, k + d)
condenser, Ck : {0, 1}n × {0, 1}d → {0, 1}mk , with constant entropy gap (mk = k + d + b

for b = O(1)) and approximation error, α, less than one half. Our codes have messages of
length N = 2n.

Improve the space of our encoder.
If each Ck is invertible in space S, then our code can be encoded in space space
S + O(n). Our condenser is constructed with a Trevisan style extractor [51, 41], which
we only know how to invert by exploiting its linearity, which takes space n2. If one
uses a more efficiently invertible condenser, that will improve the space required by
the encoder. We suspect that other condenser designs, like [25], could be made space
O(n) and poly(n) time invertible, but have not checked.
Improve the time of our encoder.
If each Ck is invertible in time T and has seed length d, then the time of our encoder
is O(N log(N)2dT ). So if one can get efficiently invertible, lossless condensers which
condense all (except Oα(1)) bits of entropy with seed length O(log(n)) , then there is
a code with an encoder that runs in time N polylog(N).
We note that if one can give an extractor with seed length O(log(n)) which extracts
all the entropy (except Oα(1) bits), then we have a lossless condenser with a similar
seed length and an encoder that runs in time N polylog(N). The best known explicit
extractors [25] require seed length O(log(n)2) to extract all (but Oα(1) bits) of the
entropy of a source. This seed length is not short enough to get a quasilinear time,
polylog space encoder.
Improve the dependence on ϵ.
A simple version of our codes only achieve constant relative distance. To get relative
distance 1 − ϵ for any constant ϵ, we use extractors. For the entropy gap b = O(1),
for every k, we need an (mk − b, ϵ) extractor E : {0, 1}mk × {0, 1}d′ → {0, 1}m′

k to get
a code with distance 1 − ϵ. If E is time T and space S invertible, then this distance
amplification increases the encoding time by a factor of O(2d′

T ) and increases space
by O(S).
For our distance amplification, we use the extractors from [12]. These use some small,
non explicit conductors of size poly(1/ϵ). Since we only find these using brute force,
this adds an extra time of 2poly(1/ϵ) and an extra space of poly(1/ϵ). Using a different
extractor that does not require a brute force search could give a better dependence
on ϵ.

2. Give a code with an encoder and decoder that run in small time and space with random
access to the input, or show they can not exist. We know from this work that there exist
codes with a time and space efficient encoder, and from follow up work [16] that there
are codes with a time and space efficient decoder. Can a single code be both time and
space efficient to encode and decode?
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3. There are other interesting properties of codes, like
Local Testability.
Local Decodability.
Relaxed Local Decodability.

In particular, let X be the interesting property (such as local test ability or local
decodability), then for the different kinds of access, we ask
a. In the sequential access setting, is there a code with X and an encoder running in

time T and space S with h = O(S) sequential heads to access the input such that
ST ≪ N2?
We proved in Theorem 3 that we can do better than this with sequential access to
the message for some codes. In particular, if S = h =

√
N , then there is a code

that can be encoded in almost linear time. So if a code cannot be encoded time and
space efficiently, it must be because of X not just because we require constant relative
distance.

b. In the random access setting, is there a code with X that can be encoded in almost
linear time and polylogarithmic space?

We know codes with time and space efficient encoders can’t have some interesting
properties. For example, self-dual codes require encoders running in time T and space S

to have ST = Ω(N2) [45].
4. Derandomize the Repeat Accumulate codes (RA codes).

Repeat accumulate codes have a simple description: first, take an input, x, and repeat it
k times (think of k = O(log(N))) to get y. Then, for some fixed random permutation π

(this is why the code is not explicit), permute y by π to get z. Finally, for every i ∈ [kN ],
the ith output bit is the xor of bits in z before index i: if the resulting codeword is C,
than Ci =

⊕
j≤i zj .

Non-explicit RA codes have faster encoders than condenser codes and are simpler to
describe. RA codes run in time O(N log(N)) and use space O(log(N)). Even with
optimal condensers, condenser codes cannot be made to run in O(N log(N)) time. This
is because condenser codes can also be described as depth 2 circuits, and Gal et al [26]
proved depth 2 circuits encoding a code require size Ω(N log(N)1.999). So there may be a
simpler, more efficient, explicit code based on RA codes.
The best known derandomization of RA codes [24] only have distance O(log(N)), i.e.
relative distance O( log(N)

N ). This low distance is inherent to the technique: the distance
is the girth of a three regular graph, and all three regular graphs have girth O(log(N)).

5 Preliminaries

In this paper, it will be convenient to use linear codes as it has a simple way to characterize
its distance. But we also want larger alphabet sizes as achieving high distance is easier with
larger alphabet. So we will define all of our functions as if they are over a binary alphabet,
but for distance we will use a larger alphabet. This doesn’t change any of the actual codes,
but simplifies some of the analysis.

A code is just a function whose outputs differ in most locations. Here is a formal definition
of an error correcting code.

▶ Definition 8 (Code, Distance, and Rate). Let Σ1 and Σ2 be any alphabets over binary
bits: Σ1 = {0, 1}a and Σ2 = {0, 1}b for some integers a and b. Then for any function
C : ΣN

1 → ΣM
2 , we say C is a code with relative distance δ if for any two x, y ∈ ΣN

1 we have
that C(x) and C(y) differ on at least δ fraction of indexes.

We say that C has rate N
M . We say that an element u ∈ ΣM

2 is a codeword of C if for
some x ∈ ΣN

1 we have that C(x) = u.
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All of our codes will be linear, so we need to define a linear function.

▶ Definition 9 (Linear Function). For any function L : {0, 1}N → {0, 1}M , we say L is linear
if every output bit of L is just a parity of some specific set of input bits.

Let Σ1 and Σ2 be any alphabets over binary bits: Σ1 = {0, 1}a and Σ2 = {0, 1}b for some
integers a and b. Then we say that any function L′ : ΣN

1 → ΣM
2 is linear if L′ viewed as a

function on individual bits is linear.

Linear codes, that is codes who are themselves linear functions, have many nice properties.
One nice property is that the distance of the code is equal to the weight of its smallest,
nonzero output. The weight of a vector is just its number of nonzero elements. Here is a
formal definition of the weight of a string.

▶ Definition 10 (Weight of a String). Let Σ be any alphabet over binary bits: Σ = {0, 1}a

for some integer a. Then for any x ∈ ΣN for some integer a, we define weight(a) to be the
number of symbols in x that are not the all 0 symbol: 0a.

The relative weight of x is weight(x)
N .

Now we can show a useful characterization of the distance of linear function.

▶ Lemma 11 (Distance of a Linear Code). Let Σ1 and Σ2 be any alphabets over binary bits:
Σ1 = {0, 1}a and Σ2 = {0, 1}b for some integers a and b. Let C : ΣN

1 → ΣM
2 be a linear

function. Then C is a code whose relative distance, δ, is the weight of its smallest non-zero
output:

δ = min
x∈ΣN

1 ,(0a)N ̸=x

weight(C(x))
M

.

Proof. See that for any two elements u, v ∈ ΣM
2 , for any index i ∈ [m] we only have

(u − v)i = 0b if u and v are equal on index i. Thus the distance between two outputs of C is
just the weight of their difference. Thus the distance of the C can be written as

δ = min
x,y∈ΣN

1 ,x ̸=y

weight(C(x) − C(y))
M

.

But since C is linear, we can just simplify C(x) − C(y) as C(x − y). Thus the distance
between C(x) and C(y) is just the weight of C(x − y). So by letting z = x − z, we can write

δ = min
z∈ΣN

1 ,z ̸=(0a)N

weight(C(z))
M

. ◀

To construct our explicit codes, we need to use pseudorandom objects called extractors
and condensers. The goal of these objects is to take inputs with some randomness and a lot of
correlations, and give a shorter output with a similar amount of randomness. Extractors want
the shorter output to look almost uniform, but often are so short they lose some randomness.
Condensers want the shorter output to contain almost all the randomness, but may not be
short enough to be close to uniform.

To formally define extractors and condensers, we need to define min entropy: H∞.
Intuitively, the min entropy is the number of bits of information one always gets from a single
output of a distribution. This is in contrast to the standard notion of entropy, which is like
the average amount of information a single output gives. Min entropy is a more convenient
notion of entropy for us.
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▶ Definition 12 (Min Entropy). For any distribution, X, over any alphabet, Σ, we define the
min entropy, H∞, of X as

H∞(X) = max
σ∈Σ

− log(Pr[X = σ]).

If X is a uniform distribution over K = 2k different elements, we call X a flat k source,
and H∞(X) = k = log(K).

Now we often don’t actually have a low min entropy source. Often there may be one or
two inputs that have a large chance of appearing, and we still need to work with these. So
we relax our requirements on distributions to not necessarily be high min entropy themselves,
but to be close to something with high min entropy. So let us define the distance of two
distributions.

▶ Definition 13 (Statistical Distance). For any distributions, X, Y over some alphabet Σ, the
distance of X to Y is

∆(X, Y ) = 1
2
∑
σ∈Σ

|| Pr[X = σ] − Pr[Y = σ]|.

If ∆(X, Y ) ≤ ϵ, we say X is an ϵ approximation of Y or that X is ϵ close to Y .

Distances in this sense compose neatly with functions in the sense that if X is an ϵ

approximation of Y , then for any function f , we have that f(X) is also an ϵ approximation
of f(Y ).

One subtlety of extractors and condensers is that there is no general function that is able
to take any input with high entropy and be able to give a smaller output without losing just
as much entropy. To do this, we need some extra structure on the input entropy. Here, we
provide that structure by giving our extractors and condensers a second, very small, uniform
input called a “seed”. In this work, we assume all condensers and extractors are seeded.

▶ Definition 14 (Seeded Extractor Definition). Let E : {0, 1}n × {0, 1}d → {0, 1}m be any
function. Let Ud be the uniform distribution over {0, 1}d.

We say E is a (k, ϵ) extractor if for any distribution, X, over {0, 1}n, with min entropy
k, we have that E(X, Ud) is ϵ close to the uniform distribution over {0, 1}m.

Condensers are defined similarly, except that we don’t enforce the output to be close
to uniform, but just some high entropy distribution. If the distribution the output is close
to has all the entropy of the original distribution plus the entropy of the seed, we call the
condenser lossless since it didn’t lose any of the input entropy.

▶ Definition 15 (Seeded Condenser Definition). Let C : {0, 1}n × {0, 1}d → {0, 1}m be any
function. Let Ud be the uniform distribution over {0, 1}d.

We say C is a (n, k) →ϵ (m, k′) condenser if for any distribution, X, over {0, 1}n with
min entropy k, we have that C(X, Ud) is ϵ close to some distribution over {0, 1}m with min
entropy k′.

If k′ = k + d, we say that C is a lossless condenser.

To prove our lower bounds for sequential access to the input, we will use a tool called
random restrictions. The idea of a random restriction is to fix some of the inputs to a
function, and not others.
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▶ Definition 16 (Restriction). A restriction of length n is just a string x∗ ∈ {0, 1, ∗}n. Any
index where x∗ is either 0 or 1 is fixed, and any index where x∗ is not fixed, we say it is free.

If x∗ is a restriction with k free indexes, and there is a binary string y ∈ {0, 1}k, then we
define the string xy = y ◦ x∗ to be the string that agrees with x∗ on indexes where x∗ is fixed,
and on the jth index that x∗ is free agrees with yj.

6 From Condensers To Codes

In this section, we will show how to construct codes using condensers. We will later show
how to construct the condensers we need.

Our codes are constructed by mixing weight fixers, so we will start by defining weight
fixers.

6.1 Weight Fixers
A weight fixer is a linear function that outputs strings with a constant relative weight, as
long as the weight of the message is within a specified range.

▶ Definition 17 (Weight Fixer). For any two alphabets, Σ1 and Σ2, any subset R ⊆ [N ] and
constant δ ∈ (0, 1

2 ), a linear function F : ΣN
1 → ΣM

2 is said to be an R to δ weight fixer if,
given any x with weight(x) ∈ R then weight(F (x)) ≥ δM .

We say that R is the input weight range, δ is the relative output weight, N is the input
length, and M is the output length.

A straightforward corollary of this definition is that any [N ] to δ weight fixer is a code
with relative distance δ, since the distance of a linear code is the weight of its smallest non
zero codeword. Thus our strategy will be to combine several weight fixers that cover different
parts of the weight range into a single weight fixer that covers the entire weight range.

For large weight messages, we can perform a repeated weight amplification type procedure
to get the appropriate weight. The exact way we perform weight amplification is similar to
Spielman’s codes and described in Section 8.

▶ Theorem 18 (Weight Fixer For Heavy messages). For some constant α > 0, and any
integers N and i, there is a [⌈N/2i⌉, N ] to α/4 weight fixer F : {0, 1}N → {0, 1}4N . Further,
for some constant, c, any bit in the output of F can be computed in time ci polylog(N) and
space O(i + log(N)).

Now that we have defined weight fixers, we will show how to efficiently mix them to get
better weight fixers, and eventually codes.

6.2 Weight Fixer Mixer
Now we show how to combine many weight fixers with different input ranges, and combine
them to get a weight fixer whose input range is their union. The idea is to arrange the output
of each weight fixer as rows in a table, where each weight fixer is repeated until they all have
the same length, then encode the columns with any arbitrary code.

While this is a geometrically easy way to think about the combination, and what we do
in the following theorem, we note it is not optimal if the weight fixers have very different
outputs. In particular for our weight fixers. Once can improve the result by splitting very
large weight fixers into multiple rows, so that all the small weight fixers don’t need to be
copied many, many times. This is what is done in [26, Claim 37], but for simplicity, we do
not do it here.
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▶ Theorem 19 (Fixer Mixer). Suppose for some ℓ, for each i ∈ [ℓ] there is an Ri to δ weight
fixer Fi : ΣN

1 → ΣMi
2 . Let C : Σℓ

2 → Σc
3 be any linear code with relative distance δ′ computable

in time T ′ and space S′.
Suppose for some R we have R ⊆

⋃
i∈[ℓ] Ri and for some length M for each i ∈ [ℓ] we

have Mi|M . Then there is an R to δδ′ weight fixer F : ΣN
1 → ΣcM

3 .
Further, if for each i ∈ [ℓ] any individual output element of Fi is computable in time Ti

and space Si, then the full output of F is computable in space

O(ℓ log(|Σ2|) + log(M)) + max{S′, max
i∈[ℓ]

Si}

and time

(T ′ + O(1))M +
∑
i∈ℓ

MiTi.

Alternatively, if for each i ∈ [ℓ] the full output of Fi is computable in time Ti and space
Si, then the full output of F is computable in space

O(ℓ log(|Σ2|) + log(M)) + S′ +
∑
i∈[ℓ]

Si

and time

(T ′ + O(1))M +
∑
i∈ℓ

Ti.

Proof. The idea of the code is simple. First, we lengthen the output of each weight fixer
so that it has length M . Then we apply C element wise to the output of each weight fixer.
More specifically, for a ∈ [M ] we define ya ∈ Σℓ

1 to be the ath column in the table. That is,
for i ∈ [ℓ] we have

(ya)i = Fi(x)⌈aMi/M⌉.

Then F just applies C to each column, ya, and concatenates them. That is for any a ∈ [M ]
and b ∈ [c] column a row b of the output is just the bth output of C(ya). That is,

F (x)(a−1)c+b = C(ya)b.

Suppose x has weight w ∈ R. Then for some i, we know w ∈ Ri. Thus Fi(x) has relative
weight δ. Thus for at least δ fraction of a, we have ya ≠ 0. For each such a, by the distance
of C, for δ′ fraction of b, we have C(ya)b ̸= 0. Therefore, for at least δδ′ fraction of (a, b)
pairs we have F (x)(a−1)c+b ̸= 0. Thus F has relative weight at least δδ′.

To encode F , we compute the code for each Fi in parallel and apply C in a straightforward
way.

If the individual bits of each weight fixer is efficient to compute, then the space can be
reused between the different weight fixers, keeping only the current bit of each Fi and some
indexes in memory. This takes space O(log(M)+ℓ log(|Σ2|))+max{S′, maxi∈[ℓ] Si}. Similarly
the time is just the sum of the time to encode with C for M times, plus some book keeping,
plus time to compute every bit of every weight fixer. This is time (T ′ + O(1))M +

∑
i∈ℓ MiTi.

If the full output of each Li is efficient to compute, the encoding algorithms is essentially
the same, only now we cannot reuse space between the different weight fixers. This is
because we need to pause each weight fixer after it outputs a bit and resume it when we
need its next one. This requires space O(ℓ log(|Σ2|) + log(M)) + S′ +

∑
i∈[ℓ] Si and time

(T ′ + O(1))M +
∑

i∈ℓ Ti, noting that in this case Ti is the time to output all bits, not just a
single one. ◀
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Now if we had weight fixers covering every input weight, then we could mix them to get
codes. Now we show how to get weight fixers from lossless, invertible condensers.

6.3 Weight Fixers From Invertible Condensers
Most of our weight fixers will be constructed through condensers. One additional, non
standard property our condensers will need is invertibility. This is because the final weight
fixer will enumerate through all the message bits whose index map to an output bits index
and xor them together to get that output bit. So it needs to be efficient to, given any output
bit index, enumerate through all the message indexes that map to that output. We call a
condenser invertible if this can be done efficiently.

To simplify our definitions and proofs slightly, we restrict ourselves to condensers that
output an index function along with its condensed output such that the two together is an
efficiently invertible function. That is, not only can we enumerate through the inputs that
give an output, but given the index of the input that gives an output, compute that specific
input efficiently.

▶ Definition 20 (Invertible Condenser). Suppose C ′ : {0, 1}n × {0, 1}d → {0, 1}m is an
(n, k) →ϵ (m, k′) condenser. Suppose there is a function I : {0, 1}n × {0, 1}d → {0, 1}n+d−m,
and define C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m by

C(x, s) = (C ′(x, s), I(x, s)).

Suppose C is a bijection with C−1 : {0, 1}m × {0, 1}n+d−m → {0, 1}n × {0, 1}d its inverse.
Then we say C is an invertible (n, k) →ϵ (m, k) condenser.

We say C is time T and space S invertible if C−1 can be computed in time T and space S.
We call C−1 the inverse of C, we call C ′ the condenser part of C, and I the index function
of C. We still call d the seed length and m the output length.

To use condensers to create weight fixers, we need the following properties. To get a
short output, we need small seed length. Since we have Theorem 18, to handle very heavy
messages, seed length polylog(n) suffices for our work. To get high weight, we need a lossless
condenser with only constant entropy gap. That is, the condenser needs to output all the
entropy and the number of bits in the output needs to be at most a constant number many
more bits than the amount of entropy. Finally, they need to be invertible in polynomial time.
Such good condensers exist.

Now we show that lossless condensers, when used as described above, give weight fixers.

▶ Theorem 21 (Lossless Condensers give Weight Fixers). Suppose you have an invertible
(n, k) →ϵ (k + d + b, k) lossless condenser

C : {0, 1}n × {0, 1}d → {0, 1}k+d+b × {0, 1}n−k−b

with seed length d that is time T and space S invertible. Let m = k + d + b.
Then there is a [2k−1/2, 2k+1/2] to

( 1
2 − 2ϵ

)
2−b weight fixer, F : {0, 1}2n → {0, 1}2m ,

with input length N = 2n and output length M = 2m whose individual output bits can be
computed in time (T + O(1))2n−k−b and space S + O(d + b + n).

Proof. Our linear function F identifies every message bit with an n bit index, i, and every
output bit with an m bit index, j. Then the output bit at index j is the parity of all message
bits xi where for some seed s we have C(i, s)1 = j. More formally:

F (x)j =
⊕

i,s:C(i,s)1=j

xi =
⊕

i∈{0,1}n−k−b

xC−1(j,i).

By inspection, one can see that the output length is 2m = M .
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To compute F (x)j , we simply have to invert C to find all 2n−k−b message bits that map
to j and xor the corresponding bits together. Since C is time T and space S invertible,
this only takes time T2n−k−b to perform each inversion plus O(2n−k−b) for book keeping.
Similarly for space we just need to keep track of which bit we are outputting, which neighbor
of that bit we are at, and the space for the inversion. This is space O(m) + O(n − k − b) + S.

To see that F is weight fixing, choose any x with weight w ∈ [2k−1/2, 2k+1/2]. Now we
show that for a large fraction of the j ∈ {0, 1}m, there is only one index ℓ and seed s with
xℓ ̸= 0 such that C(ℓ, s) = j. This would imply that for such j that

F (x)j =
⊕

i,s:C(i,s)=j

xi = xℓ ̸= 0.

If w ≥ 2k, then we will show that any specific set of 2k ones of x approximately map to
unique outputs and the extra ones can’t cancel out too much.

Take any X ⊆ {0, 1}n such that |X| = 2k and for all i ∈ X : xi = 1. Then there must
be at least (1 − ϵ)2k+d distinct indexes j such that for some index i and seed s we have
C(i, s) = j. Otherwise, we have a k entropy flat source whose output in expectation over
the seed differs from any k + d source by more than ϵ. Then at most ϵ2k+d of the index
i seed s pairs map to a j for a second time. Thus at least (1 − 2ϵ)2k+d output indexes j

have a unique index i ∈ X seed s that maps to i and with xi = 1. The rest of the at most
(
√

(2) − 1)2k ones in x and 2d seeds can only hit (
√

(2) − 1)2k+d of these.
So at least

(1 − 2ϵ −
√

(2) + 1)2k+d > (1/2 − 2ϵ)2k+d

of the output indexes j have a distinct i and s such that C(i, s) = j. Thus the output has
weight at least (1/2 − 2ϵ)2k+d. This is relative weight (1/2 − 2ϵ)2−b.

If w ≤ 2k, then we will show that any specific super set of 2k ones containing those of x

approximately map to unique outputs and the missing ones can’t can’t be too many of these.
Take any X ⊆ {0, 1}n such that |X| = 2k and for all i ∈ X : xi = 1 : x ∈ X. Then, as in

the last case, at least (1 − 2ϵ)2k+d output indexes j have a unique i ∈ X with xi and seed
s that maps to them. Now x is only missing (1 − 1√

n
)2k of the ones in X. These missing

indexes only contribute (1 − 1√
n

)2k+d ones to these output pairs.
So at least

(1 − 2ϵ − 1 + 1/
√

(2))2k+d > (1/2 − 2ϵ)2k+d

of the output indexes j have a distinct i and s such that C(i, s) = j. Thus the output has
weight at least (1/2 − 2ϵ)2k+d. This is relative weight (1/2 − 2ϵ)2−b. ◀

Now since good invertible condensers exist, and good invertible condensers give good
weight fixers, good weight fixers exist.

▶ Lemma 22 (Weight Fixers For Small Weight Messages). For some constant β > 0, for every
N = 2n and K = 2k, there is a [2k−1/2, 2k+1/2] to β weight fixer F : {0, 1}N → {0, 1}M where
M = O(K2O(log(log(N))3)). Further, any bit of F can be computed in time O(polylog(N) N

K )
and space O(log(N)2).

Proof. This is a direct application of Theorem 21 to Theorem 5. So for ϵ = 1/10, we
have from Theorem 5 a time poly(n), space O(n2) invertible, lossless (n, k) →ϵ (m, k + d)
condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with d = O(log(n/ϵ)3) = O(log(n)3) and m = k + d + O(log(1/ϵ)). Let b = m − k − d =
O(log(1/ϵ)) = O(1)
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Then from Theorem 21 there is a [2k−1/2, 2k+1/2] to
( 1

2 − 2ϵ
)

2−b weight fixer, F :
{0, 1}2n → {0, 1}2m , with message length 2n and output length 2m = O(K2log(n)3) whose
individual output bits can be computed in time poly(n)2n−k−b = O(polylog(N) N

K ) and space
O(n2 + d + b + n) = O(log(N)2). See that the output weight

( 1
2 − 2ϵ

)
2−b is a positive

constant since b is constant and 2ϵ < 1
2 . ◀

Now if we assume we have condensers, we have weight fixers. But not for arbitrarily large
constant weight. We handle that next.

6.4 Distance Amplification
So now we have weight fixers that are time and space efficient to compute for every order
of magnitude, but these weight fixers only have some constant output weight. It could be
very small. We want weight close to 1. So we apply a final weight fixer to them that takes
constant relative weight inputs and amplifies them to outputs with weight close to 1.

We note that we have to do this amplification on the individual weight fixers before we
combine them, rather than afterward. This is because our distance amplification weight
fixer queries it’s input in a random order, not sequentially. So the time to compute the
amplified weight fixer is proportional to the length of it’s output, and the cost to compute a
random symbol of it’s input. If applied after mixing all of the weight fixers, this time per
input symbol will be close to N with close to N outputs, which will take N2 time. But
when applied to an individual weight fixer, it will only increase the time it takes to output a
symbol by a constant factor.

Our weight fixer for very heavy messages uses an extractor to group message bits such
that all but ϵ fraction of groups has a one in it. Then we just output all the bits in a group
as a symbol in the alphabet. While we could output a code of all the bits in a group, we
don’t need to for our results and doing so would be unnecessarily complicated.

For this to work, we need to define an invertible extractor, similar to an invertible
condenser.

▶ Definition 23 (Invertible Extractor). Suppose E′ : {0, 1}n × {0, 1}d → {0, 1}m is (k, ϵ)
extractor. Suppose there is a buffer function B : {0, 1}n × {0, 1}d → {0, 1}n+d−m, and define
E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m by

E(x, s) = (E′(x, s), B(x, s)).

Suppose E is invertible with inverse E−1 : {0, 1}m × {0, 1}n−m × {0, 1}d → {0, 1}n. Then
we say E is an invertible extractor.

We say E is time T and space S invertible if E−1 can be computed in time T and space
S. We call E−1 the inverse of E, we call E′ the extractor part of E, and B the buffer, or
index function of E.

Now we show that using our extractors as described before gives a weight fixer.

▶ Theorem 24 (Extracters give Weight Fixers). Suppose you have an invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with seed length d that is time T and space S invertible.
Let Σ = {0, 1}2n+d−m .
Then there is a [2k, 2n] to 1 − ϵ weight fixer, F : {0, 1}2n → Σ2m , with message length 2n

and output length 2m whose individual output bits can be computed in time (T +O(1))2n+d−m

and space S + O(n + d + 2n+d−m) with just 2n+d−m queries to the message.
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Proof. This is the most crude form of ABNNR [2]. For every output bit i ∈ {0, 1}m, we let
F (x)i be the concatenation of every bit xj where for some s ∈ {0, 1}d we have E(j, s)1 = i.
This can be easily computed by inverting E for 2n+d−m many times.

For any message with at least 2k ones, by the extractor property of E, must hit at all
but ϵ fraction of outputs, otherwise the corresponding distribution could not be ϵ close to
uniform. ◀

The following extractor is a specific instantiation of [12, Theorem 7.2], which is efficiently
invertible. See the discussion in Section 7.1.

▶ Lemma 25 (Invertible, Very High Entropy Extractors Exist). For every n, k, and ϵ > 0, there
exists a time poly(n log(1/ϵ))) space O(n) + poly(2n−k/ϵ) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}k × {0, 1}n−k+d

with seed length d = O(log(n − k) + log(1/ϵ)).
This extractor requires 2poly(2n−k/ϵ) preprocessing time.

Proof. This just instantiates [12, Theorem 7.2] with t = n − k. ◀

This implies weight fixers for arbitrarily large output weights, starting from any constant
weight. We will always use the following lemma where K is within a constant factor of N .

▶ Corollary 26 (Weight Fixers with Large Output Weight). For every N = 2n, K = 2k, and
ϵ > 0, there exists a [K, N ] to 1 − ϵ weight fixer, F : {0, 1}N → ΣK , with message length N

and output length K whose individual output bits can be computed in time poly(log(N) N
ϵK )

and space O(log(N)) + poly( N
ϵK ) using poly( N

ϵK ) queries to the message.
Here, Σ = {0, 1}poly( N

Kϵ ). There is also an additional 2poly( N
ϵK ) preprocessing time.

Proof. First, we apply Lemma 25 to get a time poly(n, log(1/ϵ))) = poly(log(N) log(1/ϵ))
space O(n) + poly(2n−k/ϵ) = O(log(N)) + poly( N

ϵK ) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}k × {0, 1}n−k+d

with seed length d = O(log(n − k) + log(1/ϵ)).
See that

2n+d−k = N

K
poly( log(N/K)

ϵ
)

= poly( N

Kϵ
).

Then we can apply Theorem 24 to get a [N = 2n, K = 2k] to 1 − ϵ weight fixer,
F : {0, 1}N=2n → ΣK=2k , with message length N = 2n and output length K = 2k whose
individual output bits can be computed in time

poly(log(N) log(1/ϵ))2n+d−k = poly(log(N) N

ϵK
)

and space

S + O(n + d + 2n+d−k) = S + O(log(N/Kϵ) + N

K
poly( log(N/K)

ϵ
))

= S + poly( N

Kϵ
)

with just 2n+d−k = poly( N
Kϵ ) queries to the message.
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Here

Σ = {0, 1}2n+d−k

= {0, 1}poly( N
Kϵ ).

There is also an additional 2poly( N
ϵK ) preprocessing time. ◀

Now we can apply this to both our Spielman style weight fixer and our condenser based
weight fixer to get weight fixers for any order of magnitude message, and any constant weight
output. This corollary just applies Corollary 26 to the output of Theorem 18.

▶ Corollary 27 (Heavy Message, Very Heavy Output Fixers). Take any integer K = 2k, and
any integer N = 2n such that N ≥ K. Then for any ϵ > 0, there is a [K, N ] to 1 − ϵ weight
fixer F : {0, 1}N → ΣM where Σ = {0, 1}poly(1/ϵ) and M = O(N). Further any symbol in
the output of F can be computed in time poly( N log(N)

Kϵ ) and space O(log(N) + poly(1/ϵ)).
There is also an additional 2poly( 1

ϵ ) preprocessing time.

In the same way, this corollary just applies Corollary 26 to the output of Lemma 22.

▶ Corollary 28 (Small Message Weight, Large Output Weight Fixers). For any constant
ϵ > 0, for every N = 2n and K = 2k, there is a [2k−1/2, 2k+1/2] to 1 − ϵ weight fixer
F : {0, 1}N → ΣM where M = 2m = O(K2O(log(log(N))3)) and Σ = {0, 1}poly(1/ϵ). Further,
any symbol of F can be computed in time O( N

K poly( log(N)
ϵ )) and space O(log(N)2+poly(1/ϵ)).

There is also an additional 2poly(1/ϵ) preprocessing time.

6.5 Putting it all together
Now that we have weight fixers for every input range, and they are good, all that is left is to
assemble our final code.

Now we can combine all the condenser based weight fixers to get a single weight fixer
that works on all small messages. We recall that because of our long seed, we do not get
linear length output for all weight ranges. Thus we only combine up to some message weight
that is about N

2d where d is the seed length of the condenser. That is, we invoke the following
theorem with K N

2d .
We also don’t mix the condenser based weight fixers with the Spielman style ones at this

step either, since our weight fixer mixer adds a small overhead to the output length. As
noted before, we can fix this by giving a better weight fixer mixer. But we instead mix our
small weight fixers first, then mix our large weight fixer with the result.

▶ Lemma 29 (Mixing Small Weight Fixers To Get One Weight Fixer). For any ϵ > 0, for
any N = 2n and K = 2k, there is a [K] to 1 − ϵ weight fixer F : {0, 1}N → ΣM with
M = O(K poly(1/ϵ)2O(log(log(N))3)) and Σ = {0, 1}poly(1/ϵ). Further, the full output of F can
be computed in space

O(log(N)2 + log(N) poly(1/ϵ))

and time

N2O(log(log(N))3) poly(1/ϵ) + 2poly(1/ϵ).

Proof. The proof works by invoking Corollary 28 for every i ≤ K and combining them with
Theorem 19.
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So specifically, for every i ≤ k, Corollary 28 gives a [2i−1/2, 2i+1/2] to (1−ϵ/2) weight fixer
Fi : {0, 1}N → ΣMi

1 where Mi = O(2i2O(log(log(N))3)). Further, any bit of Fi can be computed
in time O( N

2i poly( log(N)
ϵ )) and space O(log(N)2 + poly(1/ϵ)). Here Σ1 = {0, 1}poly(1/ϵ).

There is also an additional 2poly(1/ϵ) preprocessing time. This preprocessing is the same
for each i.

Finally, to use Theorem 19, we need the existence of some efficient code, linear, code from
k poly(1/ϵ) bits to k poly(1/ϵ) symbols of O(poly(1/ϵ)) bits with distance 1 − ϵ/2. Since this
is a code on only k poly(1/ϵ) bits, we can afford to use a less efficient code. So we can for
instance use a Spielman code [48] with [2] (this is the same code as Corollary 27 with K = 1,
evaluated in a more time, less space efficient way) to get such a code, call it C : Σk

1 → Σk′

2
where Σ2 = {0, 1}poly(1/ϵ) and k′ = O(k poly(1/ϵ)).

Note that since each Mi is a power of 2, we can upper bound the least common multiple
of the Mis by some M ′ = K2O(log(log(N))3).

Now we can apply Theorem 19 to get a [K] to (1 − ϵ/2)2 > (1 − ϵ) weight fixer L :
{0, 1}N → ΣO(M ′k′)

2 . Let

M = M ′k′

= O(K log(K) poly(1/ϵ)2O(log(log(N))3)

= O(K poly(1/ϵ))2O(log(log(N))3).

Further the full output of L is computable in space

O(k log(|Σ2|) + log(M) + log(N)2 + poly(1/ϵ)) = O(log(N) poly(1/ϵ) + log(N)2)

and time

O(M polylog(N)+
∑
i∈k

2i2O(log(log(N))3) N

2i
poly( log(N)

ϵ
)) = O(N2O(log(log(N))3) poly(1/ϵ)).

Adding in the 2poly(1/ϵ) preprocessing time, this gives a total time of

N2O(log(log(N))3) poly(1/ϵ) + 2poly(1/ϵ). ◀

Now that we have a weight fixer for light messages and a weight fixer for heavy messages,
we can combine them to get a weight fixer for every message weight, which must be a code
since weight fixers are linear. We now prove Theorem 1.

▶ Theorem 1 (Explicit Almost Linear Time, Polylog Space Encodable Codes). For any ϵ > 0,
and N , there exists a linear code

C : {0, 1}N → ΣM

that has relative distance 1 − ϵ, output length M = O(N) and alphabet Σ = {0, 1}poly(1/ϵ).
Further C is computable in time N poly(2log(log(N))3

/ϵ) + 2poly(1/ϵ) and space O(log(N)2 +
log(N) poly(1/ϵ)) with random access to the message.

For constant ϵ, we have constant alphabet size, Σ = {0, 1}O(1), and further C is computable
in time N1+o(1) and space O(log(N)2).

Proof. The basic idea is to combine Lemma 29 with Corollary 27 setting

K = N

log(1/ϵ)2O(log(log(N))3) .
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This is the setting at which Lemma 29 stops having linear length, and Corollary 27 still has
almost linear time. In particular, choose c to be the constant so that the output length of
Lemma 29 is M ≤ cK(1/ϵ)c2c log(log(N))3 , and set

K = N

c(1/ϵ)c2c log(log(N))3

so that

M ≤ cK(1/ϵ)c2c log(log(N))3

= N.

Then by Lemma 29 there is a [K] to 1 − ϵ weight fixer F1 : {0, 1}N → Σ′M with
Σ′ = {0, 1}poly(1/ϵ) and M = O(K poly(1/ϵ)2O(log(log(N))3)). Further, the full output of F1
can be computed in space

O(log(N)2 + log(N) poly(1/ϵ))

and time

N2O(log(log(N))3) poly(1/ϵ) + 2poly(1/ϵ).

Using the same K with Corollary 27 gives a [K, N ] to 1−ϵ weight fixer F2 : {0, 1}N → Σ′M ′

where Σ′ = {0, 1}O(poly(1/ϵ)) and M ′ = O(N). Further any bit in the output of F can be
computed in time poly( N log(N)

Kϵ ) = poly(2log(log(N))3
/ϵ) and space O(log(N) + poly(1/ϵ)). So

one can say the entire output of F2 can be computed in time O(N poly(2log(log(N))3
/ϵ)) and

space O(log(N) + poly(1/ϵ)).
There is also an additional 2poly(1/ϵ) preprocessing time.
Now for the code needed by Theorem 19, we use the trivial code that just outputs

one symbol containing the entire message. This has distance 1, and has output alphabet
Σ = Σ′2 = {0, 1}poly(1/ϵ).

Then by Theorem 19 there is an [N ] to 1−ϵ > 1 weight fixer L : {0, 1}N → Σ2M ′=M=O(N).
That is, L is a linear code with distance 1 − ϵ.

Further, the full output of L is computable in space

O(log(N)2 + log(N) poly(1/ϵ))

and time

N poly(2log(log(N))3
/ϵ)) + 2poly(1/ϵ). ◀

7 Constructing Invertible Condensers

Our condensers need to have constant entropy gap, polylogarithmic seed length, and be
efficiently invertible. All the condenser constructions we know of do not achieve all three.

The condensers of Capalbo, Reingold, Vadhan, and Wigderson [12] require non-explicit
gadgets which take too long to find and too much space to store if the starting entropy gap
is too large. The condensers of Guruswami, Umans, and Vadhan [25] or Kalev and Ta-Shma
[33] do not have small seed length while having constant entropy gap. Another approach
would be to use very good extractors, like those of Ta-Shma, Umans, and Zuckerman [50],
then apply a condenser to concentrate the remaining entropy to get a lossless condenser with
small entropy gap. Unfortunately, the extractors of [50] or [25] don’t appear to be invertible.
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(C ′, I ′)(x, s1 ◦ s2 ◦ s3 ◦ s4) = (y1 ◦ y2 ◦ y3, w1 ◦ w2).

(y1, z1) = (E1, B1)(x, s1) Trevisan Extractor
(z2, w1) = (C1, I1)(z1, s2) Multiplicity Condenser
(y2, z3) = (E2, B2)(z2, s3) Left-over Hash Extractor
(y3, w2) = (C2, I2)(z3, s4) Iterated Multiplicity Condenser.

Figure 5 Our Condenser Diagram.

The issue with the standard condense and extract framework is that they run many
condensers on the same message in parallel. Thus even if individually each condenser is
efficiently invertible, it is unclear how to invert them all together efficiently. To see what we
mean, consider the condenser which takes a message, x, applies an extractor E to x to output
a 0.9k bits of entropy, then applies a condenser, C, to x to output a length 0.11k bit output
containing the remaining 0.1k bits of entropy. Then the final result, C ′(x) = (E(x), C(x)) is
indeed a lossless condenser with output length 1.01k, so has an entropy gap of 0.01k.

It is not clear how to both time and space efficiently invert C ′. For any (y1, y2), there
are about 2n−0.9k values of x such that E(x) = y1, and about 2n−0.11k values of x such that
C(x) = y2. It is not space efficient to hold all such x in memory, so for every x such that
E(x) = y1, we need to check it against every value of x such that C(x) = y2. This would take
time around 22n−1.01k to enumerate through every input that condenses to a given output.
When n = log(N), this is around quadratic time, which is too much for our application.

This issue is fixed if C does not condense from x directly, but instead condenses from
some index function of E, or a buffer as [12] would call it. Then as long as E and C are
invertible, we can invert C ′ in a sequential way. With this change, condensers made using a
condense then extract framework can be made efficiently invertible, as long as the component
condensers and extractors are.

Since we are not too concerned about the seed length, our construction will use the
extractors of Trevisan [51, 41]. To conserve space in the algorithm we use the explicit, log
space weak combinatorial designs of Hartman and Raz [28]. To make sure that Trevisans
extractor is invertible, we need to restrict how large k can be, and handle certain “bad” seeds.

We will also need to use a variant of the condensers of [33], and the left-over hash lemma
based extractors [31, 39] to finish extracting the rest of the bits in the input, and turn it
into a condenser. So the final condenser runs the Trevisan extractor, E1, to extract all but
O(log(n/ϵ)3) bits of entropy. Then we run the multiplicity condenser, C1, followed by the
hash based extractor, E2, to extract all but O(log(1/ϵ)) bits of entropy. Finally, we run an
iterated version of the multiplicity code condenser, C2, to condense the remaining entropy
into O(log(1/ϵ)) bits: y3 = C2(z3, s4). See Figure 5 for more explicit equations.

Before we start proving the provided condensers exist, we will give our composition
theorems.

7.1 Composition Theorems

To construct our condenser, we will compose invertible condensers and extractors together. So
we first need to define invertible extractors. Invertible extractors are the same as permutation
extractors of [12], which are themselves a special case of buffered extractors, with the extra
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condition that the buffered extractor is efficient to invert. Equivalent composition theorems
are found in [12], our only change is including inversion time and space as a consideration.
Thus all the condensers of [12] are also efficiently invertible.

For our extractor composition to work, we need the following observation of distributions.
This seems to be well known folklore, so we will not prove it here.

▶ Lemma 30 (Approximate Uniform Marginals Keep Entropy). Suppose for some joint distri-
bution, X, Y , with min entropy k, if X, Y is ϵ close to some joint distribution U, V where U

is uniform, then X, Y is also ϵ close to some distribution U, W with min entropy k for the
same, uniform U . Additionally, for any x ∈ {0, 1}|U |, we have W |U = x has entropy k − |U |.

Our next lemma just says if you apply an invertible condenser to the buffer of the
invertible extractor, you get a better invertible condenser.

▶ Lemma 31 (Invertible Condensers Compose With Extractors). Suppose there is a time T1 and
space S1 invertible, (k, ϵ1), invertible extracter E : {0, 1}n × {0, 1}d1 → {0, 1}m1 × {0, 1}n−m1

and a time T2, space S2 invertible, (n − m1, k′) →ϵ2 (m2, k − m1) invertible condenser
C : {0, 1}n−m1 × {0, 1}d2 → {0, 1}m2 × {0, 1}n−m1−m2 .

Then there is a time T1 + T2 + O(1), space O(n) + max{S1, S2} invertible, (n, k) →ϵ1+ϵ2

(m1+m2, m1+k′) condenser C ′ : {0, 1}n×{0, 1}d1+d2 → {0, 1}m1+m2 ×{0, 1}n+d1+d2−m1−m2 .

Proof. For any x ∈ {0, 1}n, s1 ∈ {0, 1}d1 , and s2 ∈ {0, 1}d2 , define

y1 = EE
s1

(x)
u = EI

s1
(x)

y2 = CC
s2

(u)
z = CI

s2
(u)

C ′C
(s1,s2)(x) = (y1, y2)

C ′I
(s1,s2)(x) = z.

Then observe that one can compute C ′−1
(s1,s2)((y1, y2), z) by

u = C−1
s2

(y2, z)
x = E−1

s1
(y1, u).

The space here is just the space to store u plus the max of the space to invert C and E.
Similarly the time is the time to invert C and the time to invert E.

Now to show that C ′C is a condenser, first see that given any X with entropy k, since EE

is a strong extractor, we have that for uniform s1, distribution s1, y1 is ϵ close to uniform.
Further, since E is invertible, the distribution s1, y1, u has the same entropy as X, thus has
entropy k + d.

By Lemma 30 we have that s1, y1, u is ϵ close to some distribution s1, U, u′ where s1 and
U are uniform, and u′ has entropy k − m1 conditioned on s1 and U . Let y′

2 = CC
s2

(u′). Then
since C is a condenser, we have that s2y′

2 is ϵ2 close to a distribution that has entropy d2 + k′

for every correlated value of s1 and U . Thus s1Us2y′
2 is ϵ2 close to a d1 + m1 + d2 + k′ source.

Thus s1, y1, s2y2 is ϵ1 + ϵ2 close to being a d1 + m1 + d2 + k′ source. Therefore, CC is a
strong (n, k) →ϵ1+ϵ2 (m1 + m2, k′), invertible extractor. ◀

The following theorem just says that if you apply an invertible condenser to the output
of a condenser you get a better condenser.

CCC 2024



5:32 Explicit Time and Space Efficient Encoders Exist Only with Random Access

▶ Theorem 32 (Invertible Condensers Compose With Condensers). Given a time T1 and space
S1 invertible (n, k) →ϵ1 (m1, k1) invertible condenser A : {0, 1}n × {0, 1}d1 → {0, 1}m1 ×
{0, 1}n−m1 and a time T2 space S2 invertible, (m1, k1) →ϵ2 (m2, k2) condenser B : {0, 1}m1 ×
{0, 1}d2 → {0, 1}m2 × {0, 1}m1−m2 .

Then there is a time T1 + T2 + O(1) space O(n) + max{S1, S2} invertible, (n, k) →ϵ1+ϵ2

(m2, k2) invertible condenser

C : {0, 1}n × {0, 1}d1+d2 → {0, 1}m2 × {0, 1}n+d1+d2−m2 .

Proof. For any x ∈ {0, 1}n, s1 ∈ {0, 1}d1 , and s2 ∈ {0, 1}d2 , define

u = AC
s1

(x)
z1 = AI

s1
(x)

y = BC
s2

(u)
z2 = BI

s2
(u)

CC
(s1,s2) = y

CI
(s1,s2) = (z1, z2).

Then observe that one can compute C−1
(s1,s2)(y, (z1, z2)) by

u = B−1
s2

(y, z2)
x = A−1

s1
(u, z1).

This only takes space that is the max of the space to invert B and the space to invert A plus
space to hold u. It also only takes the time to invert B and A plus some book keeping.

Since Ac is a strong condenser, s1, u is an ϵ1 approximation of some d1 + k1 source.
Then since Bc is a strong condenser, we have that s1, s2, y is an ϵ1 + ϵ2 approximation of a
d1 + d2 + k2 source. ◀

7.2 Our Base Condenser
For our base condensers that we compose with extractors to make our final condenser, we
use the condenser of Kalev and Ta-Shma [33]. These condensers are based on multiplicity
codes, which we find easier to understand, and thus invert, then the condensers based on
Pavarash-Vardy codes of [25]. While these condensers are great at condensing inputs with k

bits of entropy into O(k) bits of output, they can not efficiently condense inputs with k bits
of entropy to k + O(log(1/ϵ) bits, which is what we need. This is why we need to perform
composition to get our final condenser.

▶ Lemma 33 (Invertible Lossless Expander). For every field Fq and integers ℓ, s ∈ N with
15 ≤ s ≤ ℓ ≤ char(Fq), there exists an explicit graph Γ : Fℓ

q × Fq → Fs
q which is a (K, A)

expander for every K > 0 with

A = q − ℓs

2 (qK) 1
s .

Further, Γ is invertible in time O((ℓ log(q))2) and space O(ℓ log(q)).

Proof. This expander is from [33, Theorem 1.3], all we need to show is that Γ is efficiently
invertible. Examining Γ, we see it is actually a very straightforward construction based on
multiplicity codes. It views its first input as a degree at most ℓ polynomial, p, and its second
input as an evaluation point, x. Then it outputs the first s Hasse derrivatives of p evaluated
at y.
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The expander Γ can be made invertible by also evaluating the remaining ℓ − s potentially
non zero Hasse derrivatives at y to create the index function. Then one can reconstruct the
original polynomial using a Taylor expansion at y. This only takes time O((n log(q))2) and
space O(n log(q)). ◀

Kalev and Ta-Shma [33] carefully choose parameters to get very good output length, at
the cost of severe restrictions on α, k, n, and ϵ. The proof is in [33].

▶ Lemma 34 (Kalev and Ta-Shma Condensers). For every set of integers k ≤ kmax ≤ n

and ϵ > 0 with 16 log( n
ϵ )√

k
≤ α ≤ 1, there is a time O(n2) space O(n) invertible (n, k) →ϵ

(m, k + d) lossless, invertible condenser C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m with
d = (1 + 1/α) log(nkmax/ϵ) + O(1) and m ≤ (1 + α)kmax.

These limitations on the parameters of α, k, n and ϵ are inconvenient, so we give an
alternate choice of parameters that gives a worse condenser, but are easier for us to work
with.

▶ Lemma 35 (Our Basic Condenser). For every set of integers k ≤ kmax ≤ n and 1 > ϵ > 0
with 26 log(2n/ϵ) ≤ kmax ≤ n

2 , there is a time O(n2) space O(n) invertible (n, k) →ϵ (m, k+d)
lossless, invertible condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m

with d = O(log(nkmax/ϵ)) and m ≤ 2kmax + O(log(n/ϵ)).

Proof. Let q′ =
( 2nkmax

ϵ

)2, and q be any prime between q′ and 2q′. Let K = 2kmax . Then
we choose s to be the smallest integer so that qs−2 ≥ K2. Finally we set ℓ = ⌈ n

log(q) ⌉ + 2.
Now we show that we can apply Lemma 33. For this, we need to show 15 ≤ s ≤ ℓ ≤ q.

To show that 15 ≤ s, we just need to show that q13 < K2. This can be shown by

log(q13) = 13 log(q)
< 13 log(2q′)

= 13 log
(

2
(

2nkmax

ϵ

)2
)

≤ 13 log
(

2
(

n2

ϵ

)2)

< 13 log
((

2n

ϵ

)4
)

< 52 log(2n/ϵ)
< 2kmax.

Finally exponentiating both sides gives q15−2 < K2, thus s must be at least 15.
To see that s ≤ ℓ, it suffices to show that qℓ−2 ≥ K2. But this must be true since

qℓ−2 ≥ 2n ≥ 22kmax = K2. Finally it is clear that q ≥ n since q ≥ q′ > n. Thus we can apply
Lemma 33.

Due to Lemma 33, there is an explicit graph Γ : Fℓ
q ×Fq → Fs

q which is a (K, A) expander
for every K > 0 with

A = q − ℓs

2 (qK) 1
s = q

(
1 − 1

q

ℓs

2 (qK) 1
s

)
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Further, Γ is invertible in time O((ℓ log(q))2) = O(n2) and space O(ℓ log(q)) = O(n).
Now we want to show that A, the expansion rate of size K sets, is very close to q, the

degree, to get a lossless condenser. To do this, we show that 1
q

ℓs
2 (qK) 1

s is at most epsilon.
See that since qs−2 ≥ K2, we also have K ≤ qs/2−1. We also have that qs−3 < K2, thus
s < 2kmax

log(q) + 3 < 2kmax since kmax, q > 16. We also have that ℓ < n. Thus

1
q

ℓs

2 (qK) 1
s ≤ 1

q

ℓs

2 (qqs/2−1) 1
s

≤ ℓs

2√
q

<
n2kmax

2
√

q′

= ϵ/2.

Thus we can bound A by

A ≥ q(1 − ϵ/2).

Also see that qℓ > n. Then our final condenser just interprets the input as an element of
Fℓ

q, and, its seed as an element of Fq, and outputs an element of Fs
q. On a technical note, q

is not a power of 2, and in fact may be far from a power of 2. While we could work with
this, to get our stated result, we will need to sample the same element of Fq for multiple
seeds so that our distribution of seeds is approximately uniform. We can ϵ/2 approximate a
uniform distribution over Fq with log(q) + O(log(1/ϵ)) extra bits, which we do. But to avoid
collisions, we need to include the extra O(log(1/ϵ)) bits of seed in the output.

We claim this is a (n, k) →ϵ (m, k + d) condenser with seed length is d = log(q) +
O(log(1/ϵ)) = O(log(n/ϵ)), and output bit length s log(q)+O(log(1/ϵ)) = 2kmax +O(log(q)+
log(1/ϵ)) = 2kmax + O(log(n/ϵ)). The seed length and output bit is given directly from Γ
and the extra padding needed to work over bits.

To see that it is a condenser, we simply observe that any flat k source is a uniform
distribution over an element of Fℓ

q, and if our seed was uniform over Fq, then the output could
only have at most ϵ/2 fraction of collisions, thus is an ϵ/2 approximation of a k+log(q) source.
Since our seed is an ϵ/2 approximation of an element of Fq and the extra d − log(q) entropy
is copied directly to the output, our output is an ϵ approximation of a k + d source. ◀

We want to use our condenser both where k is around O(log(n/ϵ)) and when k =
O(log(1/ϵ)). Lemma 35 is already good enough when k = O(log(n)), but the restriction of
kmax = Ω(log(n/ϵ)) makes our condenser output length too long when k = O(log(1/ϵ)). By
composing this condenser with itself log∗(n) many times we get a condenser that handles
even constant entropy k. Since each successive instance is so much smaller than the first,
this gives the same asymptotic time, space, and seed length.

▶ Corollary 36 (Iterated Basic Condenser). For every set of integers k ≤ kmax ≤ n
2 and

1
2 > ϵ > 0 with 100 log(1/ϵ) ≤ kmax ≤ n, there is a time O(n2) space O(n) invertible,
(n, k) →ϵ (m, k + d) lossless, invertible condenser C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m

with d = O(log(nkmax/ϵ)) and m ≤ 2kmax + d + O(log(1/ϵ)).
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7.3 Our Condenser for Polylogarithmic Entropy
While the proceeding condensers are quite good, they cannot by themselves get a constant
entropy gap. That is, they can’t give number of output bits with m = k + O(log(1/ϵ)) unless
k = O(log(1/ϵ)). Here, we show we can give a lossless condenser, albeit with very long seed
length, that outputs all k + d bits of entropy into a length k + d + O(log(1/ϵ)) bit output.

This will just use the left-over hash lemma based extractor [31] composed with our
iterated condenser, Corollary 36 to get a condenser with an O(log(1/ϵ)) entropy gap. So
first, we will state the extractor given by the left-over hash lemma.

▶ Lemma 37 (Base Case Extractor). For any n > k > 0 and ϵ, there is a time O(n2), space
O(n) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m

with seed length d = O(n), and m = k + d − O(log(1/ϵ)).

Proof. This is an extractor based on a pairwise independent hash function. The soundness is
based on the well known leftover hash lemma. For invertibility, we just use the hash function
that views input x as an element of F2n , and the seed as two elements a, b ∈ F2n and outputs
the m least significant bits of

ax + b

and the seed. And the index function are the n − m most significant bits of ax + b. Then
inversion is straightforward. ◀

Now we can use our extractor with our multiplicity based condenser to get a new
condenser.

▶ Corollary 38 (Base Case Condenser). For any n > k > 0 and ϵ, there is a time O(n2),
space O(n) invertible, (n, k) →ϵ (m, k + d) condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with seed length d = O(n), and m = k + O(log(1/ϵ)).

Proof. By Lemma 37, there is an extractor a time O(n2), space O(n) invertible (k, ϵ/2)
extractor

E : {0, 1}n × {0, 1}d1 → {0, 1}m1 × {0, 1}n−m1

with seed length d1 = O(n), and m1 = k+d1−O(log(1/ϵ)). Let k1 = k+d1−m1 = O(log(1/ϵ))
By Corollary 36, there is a time O(n2) space O(n) invertible, strong (n − m1, k1) →ϵ/2

(d2 + O(k1), d2 + k1) invertible condenser

C1 : {0, 1}n × {0, 1}d2 → {0, 1}m2 × {0, 1}n−m2

with d2 = O(log(nkmax/ϵ)) and m2 ≤ 2k1 + d2 + O(log(1/ϵ)).
By Lemma 31 the final result is a time O(n2), space O(n) invertible (n, k) →ϵ (m1 +m2 =

k + d1 + d2 + O(log(1/ϵ)), m1 + d2 + k1 = k + d1 + d2) condenser

C : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 × {0, 1}n−m1−m2 .

Finally see that the seed length of C is d1 + d2 = O(n). ◀
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7.4 Final Condenser
Now to construct our final condenser, we first start with an invertible extractor that can
extract most of the entropy (all but polylog(n/ϵ)). We start with the time and space efficient
variation of Trevisan’s extractor [51, 41] by Hartman and Raz [28]. This extractor is invertible
because it is linear, a fact commonly used by non-malleable extractors [14, 37]. We note that
this choice of extractor (and the techniques used to invert it) are the main bottleneck to
getting log space and quasilinear time encoders. Better seed length and linear space inversion
of our condenser would give us better encoders.

The Trevisan extractor algorithm depends on two constructions, a code with good distance,
and a weak combinatorial design. We use the same code and weak design as [28].

▶ Lemma 39 (Invertible Trevisan Extractor). For every n, k and ϵ such that k ≤ n and
ϵ > 21−n/ log∗(n)log∗(n) , there is a time poly(n), space O(n2) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with seed length d = Θ(log(n/ϵ)3) and m = k

Proof. We start with the extractor in [28, Theorem 10] using ϵ/2 in place of ϵ.
This immediately gives us a (k, ϵ/2) extractor

E′ : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = O(log(n/ϵ)3) and m = k. Unfortunately, E′ is probably not invertible.
To convert it into an invertible extractor, we need to first explain how E′ is computed.

The extractor E′ is built using a code, C : {0, 1}n → {0, 1}n′ , where n′ is a power of two
and a weak combinatorial design, S : [m] → [d]log(n′). Given an input x and a seed s, the
extractor E′ outputs

y = (C(x)|s(S(1)), C(x)|s(S(2)), . . . , C(x)|s(S(m)))

where C(x)|s(S(i)) means to first concatenate the bits in s indicated by S(i), and then use
the resulting string to index into C.

Importantly, S can be computed in log(n) space and time poly(n). And C is a Reed-
Solomon code concatenated with a Hadamard code. In particular, for some a with log(n/ϵ) <

a < 4 log(n/ϵ), code C is the Reed Solomon codes over F2a with degree at most n/a composed
with the Hadamard code. The important thing about this extractor is that after a given
seed is chosen, the extractor is a linear function whose generator matrix can be found in
polynomial time and space O(n2).

So if for a given seed s, all the output bits are linearly independent, then one can create
a full rank matrix where the first k rows output the extractor by a greedy search in poly(n)
time and O(n2) space. Applying this matrix, and then appending the seed, gives the buffered
extractor. And by Guassian elimination, one can invert this matrix again in poly(n) time
and O(n2). Thus for these “good” seeds, one where the output bits are linearly independent,
one can invert this extractor efficiently.

When the seed is “bad”, that is the output bits are not linearly independent, one can also
detect this in time poly(n) and space O(n2), again using Guassian elimination. For these
bad seeds, the extractor already fails, so we just output the entire input. This is trivially
invertible.

So in our final invertible extractor, we take an input x and a seed s and first check if it is
bad. If it is, we give up and output the input and the seed. Otherwise, we output for our
extractor part E′(x, s) and for our buffer part s along with the rest of the information need
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to invert E′. The buffer here only needs to output a d bit seed, plus the information about x

missing from the extractor, which is just n − k bits, exactly what we need: an n + d − m bit
buffer.

To see the result is an extractor, all we need to note is that the seed is bad rarely. This is
because E′ outputs an ϵ/2 approximation of the uniform distribution and when a seed is bad,
since the extractor is linear, it E′ can only hit at most half the space of outputs. So when
the seed is bad, that seed has distance 1/2 from uniform. So E only doubles the error on bad
seeds and maintains the same error on all other seeds. Thus the error of E is at most ϵ. ◀

Now we can construct our final condenser by composing our invertible Trevisan Extractor,
Lemma 39 with our multiplicity condenser Lemma 35 and our base case condenser Corollary 38.
We now prove Theorem 5.

▶ Theorem 5 (Good Invertible Condensers Exist). For every n, k and ϵ such that ϵ >

23−n/ log∗(n)log∗(n) , there is a time poly(n), space O(n2) invertible, lossless (n, k) →ϵ (m, k+d)
condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with d = O(log(n/ϵ)3) and m = k + d + O(log(1/ϵ)).

Proof. For small enough constant n, we can just use the probabilistic method to find the
condenser. So take n to be a sufficiently large value. If k > n/2, we can just increase n to 2k

by padding inputs. The resulting condenser will work equally well on length n inputs.
We start by stating our extractor and two condensers we will compose along with the

parameters we use. Then we compose them from smallest to largest to get the final condenser.
By Lemma 39, we have a time poly(n), space O(n2) invertible (k, ϵ/4) extractor

E : {0, 1}n × {0, 1}d1 → {0, 1}m1 × {0, 1}n+d1−m1

with seed length d1 = Θ(log(n/ϵ)3) and m1 = k. Let n1 = n + d1 − m1 and k1 = d1.
Now to use Lemma 35, we need 26 log(64n1/ϵ) ≤ k1 ≤ n1

2 . Well since m1 = k ≤ n/2 and,
for large enough n, we have k1 = d1 = Θ(log(n/ϵ)3) < n/2 we have that

n1 = n + d1 − m1
≥ n/2 + d1

> 2k1.

Similarly for large enough n, we know that k1 = d1 = Θ(log(n/ϵ)3) > 26 log(64n1/ϵ).
So by Lemma 35, there is a time O(n2) space O(n) invertible (n1, k1) →ϵ/4 (m2, k1 + d2)

invertible condenser

C1 : {0, 1}n1 × {0, 1}d2 → {0, 1}m2 × {0, 1}n1−m2

with d2 = O(log(n1k1/ϵ)) and m2 ≤ 2k1 + O(log(n1/ϵ)).
And lastly, by Corollary 38 there is a time O(m2

2) = O(n2) space O(m2) = O(n) invertible
(m2, k1 + d2) →ϵ/2 (m3, k1 + d2 + d3) condenser

C2 : {0, 1}m2 × {0, 1}d3 → {0, 1}m3 × {0, 1}m2+d2−m3

with seed length d = O(m2) = O(log(n/ϵ)3) and output length m3 = k1+d2+d3+O(log(1/ϵ)).
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Now to compose these condensers. First, we compose C1 and C2 using Theorem 32 to
get a time O(n2) space O(n) invertible (n1, k1) → 3ϵ

4
(m3, k1 + d2 + d3) invertible condenser

C3 : {0, 1}n1 × {0, 1}d2+d3 → {0, 1}m3 × {0, 1}n1+d2+d3−m3 .

Now we compose C3 with E using Lemma 31 to get a time poly(n), space O(n2) invertible
(n, k) →ϵ (m1 + m3, m1 + k1 + d2 + d3) condenser

C ′ : {0, 1}n × {0, 1}d1+d2+d3 → {0, 1}m1+m3 × {0, 1}n+d1+d2+d3−m1−m3 .

Finally, see that see that since k1 = d1, that for d = d1 + d2 + d3 we have that m1 + m3 =
k + d + O(log(1/ϵ)) and the output entropy is m1 + d = k + d. ◀

8 Spielman Style Weight Fixers

If one does not consider decoding, one can naturally characterize Spielman codes in terms of
weight amplifiers. This perspective is useful for us, as we cannot afford to use full Spielman
codes. Instead, we only use them to amplify the weight of already heavy messages and leave
lighter messages to be fixed by our condenser based weight fixers.

The idea is to amplify the weight while reducing the output size. If you do this a few
times, it will amplify the weight until you have a heavy string at some stage. You need to
reduce the size each time so that you end up with a linear length string. Now that you know
some stage of the repeated condensing has large weight, now you apply the same weight
amplifier again on each stage and the outputs of the smaller stages, starting from the bottom,
to pull that weight back up. This is the same thing Spielman’s code does, but our analysis
can be much simpler since we are not trying to decode.

Our basic tool is a weight amplifier, which is only promised to increase the weight of any
light enough inputs by a constant factor. Notably, it could output zero weight for inputs that
are already very large. This is necessary since we also want outputs that shrink the input.

▶ Definition 40 (Weight Amplifier). For any R < N , any alphabets Σ1 and Σ2 composed
of binary bits, and constant δ > 1, a linear function A : ΣN

1 → ΣM
2 is said to be an R to δ

weight amplifier if, given any x with x with weight(x) ≤ R then weight(A(x)) ≥ δ weight(x).
We say that R is the input weight range, δ is the relative output weight, N is the input

length, and M is the output length.

The main component of our weight amplifiers are lossless expanders. The following
lossless expanders are from [12, Theorem 7.1].

▶ Lemma 41 (Constant Degree, Lossless Expanders). For some constant c, for every N, T ≤ N

and ϵ > 0, there is a D to DT regular bipartite graph G : [N ] × [D] → [N/T ] that is a(
cN

DT ϵ , D(1 − ϵ)
)

expander where D = poly(T/ϵ).
Further, G is invertible in time poly(log(N), 1/ϵ, T ) and space O(log(N) + poly(T/ϵ)).

By invertible, we mean that for some G′ : [N ] × [D] → [N/T ] × [DT ], where G′ restricted to
its first component is G, the function G′ is invertible in this time and space.

There is also an additional 2poly(1/ϵ) preprocessing time.

Proof. The same theorem is given in [12, Theorem 7.1], except that they use the language
of conductors instead of expanders. These are equivalent just by taking the log or exponent
of their parameters appropriately. All we note here is that all of the component conductors
in [12] are efficiently invertible, and thus so are their compositions. See Section 7.1 for more
details. ◀
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Now using the lossless expanders above, we can give weight amplifiers. Our weight
amplifiers, as all of our weight fixers, just output for every vertex on the right the xor of
all its adjacent message bits on the left. This structure is important to know for doing fine
grain analysis of the space used by a weight fixer that applies many weight amplifiers as
subroutines.

▶ Lemma 42 (Shrinking Weight Amplifiers Exist). For some constant α > 0 and constant c,
for every even N , there exists an αN to 2 weight amplifier A : {0, 1}N → {0, 1}N/2.

Further, given any output bit, i ∈ [N/2], the ith output bit of A is just the xor of at most
c many input bits to A, and any of those input indices can be computed in polylog(n) time
and O(log(n)) space.

Proof. This is given by first using Lemma 41 by setting with ϵ = 1
4 and T = 2 to get a

function G : [N ] × [D] → [N/2] for some constant D that is an (αN, 3
4 D) expander for some

constant α > 0. Then A just maps every bit according to G, and takes the parity of every
bit mapped to a right hand vertex. Computing this parity is efficient because G is efficiently
invertible and only requires constantly many queries since D is constant.

To see that it is a weight amplifier, we first observe that since it is a 3
4 D expander, we

must have D ≥ 4. Thus for any set, S, with less than αN left verticies, has at least D/2 ≥ 2
of its neighbors with a unique neighbor in S. Therefore, the parities in these bits must be 1,
and thus the output of L have at least 2|S| ones in it.

We note the preprocessing only takes constant time since ϵ is constant. ◀

Now one can use this shrinking weight amplifier recursively to make a constant rate,
constant distance code. This is what Spielman does. But such a code is not simultaneously
space and time efficient. Alternatively, we can apply this recursion a bounded number of
times to get a constant rate, constant weight, weight fixer that fixes already high weight
messages. Using more levels of recursion increases the range of weights that can be fixed.

▶ Lemma 43 (Single Step In Spielman Style Recursion). For the constants α > 0 and c

from Lemma 42, suppose for some N and M ≤ N there is an [M, N ] to α/4 weight fixer
F : {0, 1}N → {0, 1}4N . Further, suppose that any output bit of F is an xor of at most ℓ

different input bits to F , and any of these input bit indexes can be computed in time T and
space S.

Then there is an [M/2, 2N ] to α/4 weight fixer F ′ : {0, 1}2N → {0, 1}8N . Further any
output bit of F ′ is an xor of at most c2ℓ input bits, and any of these input bit indexes can be
computed in time T + O(polylog(N)) and space O(1) + max{S, O(log(n))}.

Proof. Our weight fixer is the same as Spielman’s: we take an input x, and first apply the
weight amplifier of Lemma 42 to get an output y. Then we apply the weight fixer from the
lemma assumption to y to get an output, z. Finally, we apply Lemma 42 to z to get the
output w. Then the final output of our weight fixer is (x, z, w). See that |x| = 2N , |y| = N ,
|z| = 4N and |w| = 2N .

To see that this works, we break our problem into cases.
1. weight(x) > 2αN . Then since x is included in the output, the relative weight of our new

fixer is at least α/4.
2. M/2 ≤ |x| ≤ 2αN , then we have that y ≥ M . Thus by the weight fixing property of F ,

we have that z has weight at least weight(z) ≥ α
4 |z| = αN . Then we break this into two

more cases.
a. weight(z) ≥ 4αN . Then the relative weight of the output is at least α/2 > α/4.
b. αN ≤ weight(z) ≤ 4αN . Then weight(w) ≥ 2 weight(z) ≥ α2N . Thus the relative

weight of the output is at least α/4.
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Now we show time and space needed to compute F ′. Output bits from x are just input
bits and can be given directly. Output bits from z are just an xor of at most ℓ different
elements from y, who are themselves an xor of at most c elements of x. Thus a bit of z just an
xor of cℓ elements of x. Any individual bit of which can be looked up in time T + polylog(n)
due to the lookup time of F and Lemma 42. The space is just to either compute the neighbor
in Lemma 42, or from F , which can be reused. Similarly, bits in w are just the xor of c bits
of z, which are xor of cℓ bits of x. So bits in w are xors of c2ℓ bits of x, whose indexes be
efficiently computed for the same reason. ◀

Now applying this recursion a bounded number of times, we can get a weight fixer which
is time and space efficient, but only fixes the weights of messages that are already heavy. We
now prove Theorem 18.

▶ Theorem 18 (Weight Fixer For Heavy messages). For some constant α > 0, and any
integers N and i, there is a [⌈N/2i⌉, N ] to α/4 weight fixer F : {0, 1}N → {0, 1}4N . Further,
for some constant, c, any bit in the output of F can be computed in time ci polylog(N) and
space O(i + log(N)).

Proof. This comes from applying Lemma 43 for i many times to the trivial weight fixer that
just repeats a K = ⌈N/2i⌉ bit input 4 times. So we start with the trivial weight fixer that
maps K bits to themselves that is a [K, K] to 1 weight fixer.

We can see that each application of Lemma 43 increases the number of bits in the input
by a factor of 2, and decreases the lower bound of the fixer range by a factor of 2, giving the
claimed fixer input range and output weight.

To see the performance, see that the outputs of F must be the xor of at most c2i input
bits, any of which can be computed in time i′ polylog(n) and space O(i+log(n)) by recursion.
Then one need only iterate through each of the c2i bits and xor them, which only takes time
c2i times the time to compute a single bits index, and space O(2i) to store which bit we are
on, plus the space to compute a single bit index. ◀

9 Encoders With Sequential Access To The Message

Now we discuss the resources needed for encoding codes in a model of computation where
the program only has sequential like access to the message. This model of computation is
useful for low space, black box composition of two low space algorithms. First we will show
lower bounds in this model. Then we will give codes that can be encoded in nearly the same
time and space as those lower bounds, proving they are tight. Finally, we will give some
basic relationships between different kinds of sequential access using these upper and lower
bounds.

9.1 Lower Bounds
Before we start our lower bounds, let us first clarify what we mean by space and time of an
algorithm.

▶ Remark 44 (Space And State Of An Algorithm). To simplify our proof here, we will refer to
the space of an algorithm as the size needed to hold its entire state, including:

Its work tape.
All head locations.
Number of bits written.
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We assume that an algorithm always prints its output bits in order, so the number of bits
written is enough to know which bit will be output next. Space does not include the bits
printed so far, or the input bits.

If one interprets the space, S, to just be the size of the work tape, since we assumed
S ≥ h log(N), using our alternative definition of space only increases S by a constant factor,
so our final results hold. So for simplicity, we assume S is the space needed to store its entire
state.
▶ Remark 45 (On Time And Uniformity). In this specific section on sequential lower bounds,
we will consider a non-uniform model of computation. We allow the algorithm with sequential
access to the input to use any function to define it’s state transitions and head movements.
The only condition is that such transitions are only functions of the working tape and
whatever bits are under the heads to the input.

In particular, the time in our algorithm lower bounds is actually the number of head
movements.

Our lower bounds work by partitioning the message into intervals and showing that most
intervals need to be visited many times for the code to have good distance. This is because
our space is bounded, so not much can be remembered about an interval when the heads
leave it. So it must be visited many times for each of the different possible messages in that
interval to have different things written to the code when no head is in that interval. Then
the fact that our access to the message is sequential and we have few heads makes visiting
an interval slow, requiring a long time to visit each interval enough times.

First, we need to formalize the idea that our algorithm can not have one of its heads enter
new intervals in the message very often. But this is not true if we just count how many times
the algorithm moves a head into an interval it was not in. As a counterexample, suppose a
head is right next to the boundary of two intervals. Then the head can move in and out of
it once every two time steps to visit it many times. In fact every interval may have been
visited many times. So we need a more strict notion of visiting an interval.

So instead, we want to only count the number of times an interval transitions from having
no head near it (so in one of its neighboring intervals) to having a head in it. In this setup,
our algorithm really has to spend a full intervals length worth of time transitioning from
having every head far from an interval to having one inside it. So to formally describe this,
we introduce interval marking, where we mark an interval when a head enters it, and only
unmark it when all heads are far. It requires a lot of time to mark an interval after it has
been unmarked.

Before we define a marking, we need to define the distance of an interval to a head. This
is defined in the obvious way.

▶ Definition 46 (Distance). For any set S ⊆ [N ] and any head locations H ⊆ [N ] we define
our distance between S and H as

∆(H, S) = min
h∈H,s∈S

|h − s|.

Now we can define our interval markings for an algorithm.

▶ Definition 47 (Interval Marking). Let A be an algorithm running in time T and space S

with sequential head access to the message and an interval length I.
For a length N message x, let m = ⌈ N

I ⌉. Partition the message into m length I intervals:
B1, . . . , Bm where Bi = (I(i − 1), Ii] with Bm = (I(m − 1), n]. A marking of the intervals is
just a set a ∈ {0, 1}m.
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For an algorithm A on a message x, for t ∈ [T ], let Ht be the set of intervals that A

running on message x has a head in at time t.
Then we inductively define a marking of A on message x. a0 has nothing marked:

a0 = 0m. At any subsequent time step t with head positions H, we define at by

at
i =


1 Ht ∩ Bi ̸= ∅
0 ∆(Ht, Bi) ≥ I

at−1
i otherwise.

The sequence a0, . . . , aT is the I marking of A on message x.
We say interval Bi is covered at time t during algorithm A if at

i = 1. We say A marks
interval Bi at time t if at

i = 1 but at−1
i = 0 and A unmarks interval Bi at time t if at

i = 0
but at−1

i = 1. We say there is a marking at time t if A marks any interval at time t, and
there was an unmarking at time t if A unmarks any interval at time t.

We now emphasize, we use markings to refer to when an interval changes from uncovered
to covered, and unmarking to when an interval changes from covered to uncovered. Marking
always refers to this change, while cover always refers to how things are. For example, number
of markings is how many times intervals change to be covered.

Now using our terminology, we can formalize our argument. First, its straightforward to
observe that if there are few heads, most intervals are uncovered as no heads are near them.

▶ Lemma 48 (Max Number Of Covered Intervals). For any algorithm A running in time T ,
space S, and h heads, at any t ∈ [T ] the total number of intervals covered in an I marking of
A on a length N message are at most 3h.

Proof. See that if for any i, interval Bi is only covered if ∆(H, Bi) < I. For any head h A

has at time t, there are only at most 3 intervals that can be within I of h. Specifically, the
one that h is in and the two next to it. Thus each individual head only covers at most 3
intervals, and there are only h heads, so only 3h intervals can be covered. ◀

Now we show that it takes a long time to mark many intervals.

▶ Lemma 49 (Max Number of Markings/Unmarkings). For any algorithm A running in time
T , space S, and h heads, any marking of A on a length N message makes at most 1 + T/I

markings, and 1 + T/I unmarkings.

Proof. The idea is that after the first step and the first marking, each interval will take time
I to get through to mark the next one. Then we only unmark an interval once it will take
time I to mark it again.

We only bound the number of markings, since the number of unmarkings is less than the
number of markings.

We formally bound the number of markings by showing each time step can only “contribute”
to marking one interval, and that every marking of an interval needs at least I “contributions”
every time it is marked.

So we say any step t contributed to a marking of interval i if the head A moves at time t

is in an interval adjacent to interval i and A moves that head toward interval i. We see that
by this definition, A only contributes to one interval i per time step, since A can only move
one head, and it either moves that head towards the interval above or below it. Let it be the
interval that A contributes to at time t.
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Suppose at any time t, the head positions of A are Ht. Then for any interval Bi see that
if ∆(Ht, Bi) ≤ I and ∆(Ht+1, Bi) < ∆(Ht, Bi) then it must be because it = i. Otherwise
the closest head to Bi must not have moved toward it. Thus for the distance to decrease
beyond I, it must be due to contributions from A.

Further, if ∆(Ht+1, Bi) < ∆(Ht, Bi), then ∆(Ht+1, Bi) = ∆(Ht, Bi) − 1 since heads can
only move one position per time step. Thus to change ∆(Ht, Bi) ≥ I to ∆(Ht+t′

, Bi) = 0
requires at least I contributions from A to Bi.

Finally, see that after the first marking of the first interval that the distance of every
uncovered interval to a head starts out at least I. And that every interval that is unmarked
also starts with distance I from any head.

Thus, after the first interval is marked, every new marking of an interval requires at least
I contributions from A. And A can only contribute to one interval per time step. Thus
A can only have at most 1 + T/I markings. Similarly, every unmarking must come from
exactly one other marking, we also have at most 1 + T/I unmarkings. ◀

Now we can handle a special case: when the encoder is non-adaptive. A non-adaptive
algorithm is an algorithm that always reads the same bits in the same order (for a given
input size), regardless of the contents of those bits. As a warm up, we will prove our lower
bounds for the non-adaptive case.

▶ Theorem 50 (Lower Bounds For Encoders With Sequential Access). Suppose C is a code
with distance δ encoding N bits. Suppose A is a non-adaptive algorithm computing C running
in time T space S and using h sequential heads to access the message. Further assume
S > h log(N). Then

hST = Ω(N2δ).

Proof. The idea is that if any message interval is not marked often enough, than the state of
the algorithm when that interval is not covered will look the same for two different contents
of that interval. Thus we can find two messages that will give exactly the same output for
any bits written while that interval is not covered. Thus if any interval is both
1. unmarked too few times and
2. uncovered when too many output bits are written
then two different messages will have encodings with little distance. We will show that most
intervals must have both if hST ≪ N2δ, so in particular some interval has both.

First we set the interval size to be I = δN
8h so there are at least N

I = 8h
δ intervals. Now

we can show that most intervals are covered when at most a δ fraction of output bits are
written. Since each head can only cover at most 3 intervals in a time step at any given time,
at any time only at most 3h intervals are covered. So at most a 3δ

8 fraction of intervals are
covered when any bit is written. Thus the number of intervals that are covered when at least
a δ fraction of the time steps output bits are written is at most 3

8 .
Now we show that few intervals are unmarked frequently. Intuitively, each time an interval

is unmarked, it reveals at most S bits about that interval, so we need an interval to be visited
I
S times for the entire interval to be revealed. So we want to bound the number of intervals
that have been unmarked I

S times.
We know from Lemma 49 that there are at most 1 + T/I ≤ 2T

I unmarkings. Then the
number of intervals that are unmarked at least I

S times is at most 2ST
I2 . Since there are at

least N
I intervals, at most 2ST

NI = 16ST h
δN2 fraction of intervals are unmarked more than I

S

times.
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Now if we assume for contradiction that hST < δN2

32 , we have that at most half of the
intervals are unmarked more than I

S times. Since at most a 3
8 fraction of the intervals have at

least a δ fraction of output bits written when they are covered, that means that a 1
8 fraction

of intervals are both
1. unmarked less than I

S times and
2. covered when less than a δ fraction of output bits are written.
Take one such interval (which is not the final interval, so has length I), call it interval Bi.

Now we will create two adversarial messages for the algorithm that will not have good
distance for the code. We do this by showing that two messages look the same when interval
Bi is not covered. Let x∗ be the restriction that sets everything outside interval Bi to zero.

Now for any assignment, y, to interval Bi, define R(y) to be the tuple of the states of the
algorithm on input xy = y ◦ x∗ every time Bi is unmarked. Since Bi is unmarked less than
I
S times, the length of R(y) is less than I. Thus for two different y, call them y1 and y2, we
have that R(y1) = R(y2). Then for input x1 = y1 ◦ x∗ and x2 = y2 ◦ x∗, we have that A acts
on x1 and x2 exactly the same when Bi is uncovered. Then since less than a δ fraction of
output bits are written when Bi is covered and A has the same output for both when Bi is
uncovered, C(x1) can only differ from C(x2) on at most a δ fraction of codeword bits.

Thus C has distance less than δ. Contradiction, so we must have hST ≥ δN2

32 =
Ω(δN2). ◀

The argument becomes a bit more complex when we allow the algorithm to be adaptive.
Specifically, which intervals are marked frequently may change depending on the message,
as are the intervals that are uncovered frequently. Specifically, our adversarial inputs set
everything outside of one interval to 0. If the algorithm knows that everything outside one
interval will be zero, than it can detect which interval is non-zero and spend all its time on
that interval.

To get around these issues, we choose messages randomly. For any random message, for
a random interval, with high probability that interval is only covered when a small fraction
of the output bits are written, and that interval is unmarked few times. Equivalently, we can
select a random interval, randomly restrict everything outside that interval, than randomly
assign that interval. These sample the same distribution, so we also have that for most
random intervals chosen, Bi, and most restrictions outside Bi, it must be that for most
assignments to Bi we have that Bi is unmarked few times and uncovered when most output
bits are written.

So we define a good restriction to be such a restriction, and then show that good
restrictions give distinct messages that have too close code words. Finally we show good
restrictions exist when hST ≪ δN2.

▶ Definition 51 (A Good Restriction of the Message). For any algorithm A with time T and
space S, given distance δ and interval length I, we say a restriction x∗ is good for interval i

with distance δ on algorithm A if the following holds.

1. x∗ fixes every bit outside of the interval Bi, and leaves every bit inside Bi unfixed.
2. Let Y be the set of assignments for Bi such that for x = y ◦ x∗ we have:

a. A on message x writes at most δ fraction of its bits when Bi is covered.
b. A on message x unmarks Bi at most 8T

N times.
We also require that |Y | > 2I/2.

Now we show that a good restriction is enough to give our lower bounds.
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▶ Lemma 52 (Good Restrictions Give Lower Bounds). Suppose A is an algorithm with time
T , space S, and h sequential heads to the message. If x∗ is good for interval i with interval
size I and distance δ, then whatever code A outputs has distance at most δ if

8ST < N(I − 1).

Proof. The idea is just to consider the Y from Definition 51. For the x that come from Y ,
we have that Bi is unmarked rarely, so rarely in fact that multiple x must have the exact
same states every time Bi is unmarked. Since the state includes the positions of the heads,
they must write the same thing when the interval is uncovered. Since the state includes the
number of bits written, they must be written at the same location when Bi is uncovered.
Thus the distance between these messages is at most what is written when Bi is covered,
which is at most a δ fraction of bits.

More rigorously, for any y ∈ Y , let xy = y ◦ x∗. By definition, A on message xy marks
Bi at most 8T

N times. Then define R(y) to be the tuple of the state of A at every step Bi

is uncovered when running on message xy. Then since the state only has S bits and Bi is
uncovered at most 8T

N times, we have

|R(y)| ≤ S
8T

N
.

Now see that since |R(y)| ≤ 8 ST
N , then the total number of distinct values for R(y) is at

most 28 ST
N . Since the restriction is good, the total number of distinct y ∈ Y is at least 2I/2.

Finally, by lemma premise, we have that 8ST < N(I − 1). Thus we can show that

8ST < N(I − 1)

8ST

N
< I − 1

28S T
N < 2I/2

Thus the number of distinct R(y) is less than the number of distinct y, so by pigeonhole
principle, there must be y1, y2 ∈ Y such that R(y1) = R(y2).

Now by definition of R(y), when running A on message xy we must have that everything
written when interval Bi is uncovered is dependent only on R(y) and x∗. In particular, R(y1)
and R(y2) write the same bits when Bi is uncovered, at the same places.

Since y1, y2 ∈ Y , we have that at most δ fraction of the bits are written when Bi is
covered, and these are the only bits where they can differ. So the distance between the
outputs of A on xy1 and xy2 is at most δ. ◀

It remains to show that there must be some good restriction if I is chosen well. Specifically
when I < Nδ

24h .

▶ Lemma 53 (Good Restrictions Exist). Suppose A is an algorithm with time T , space S,
and h sequential heads to access the message.

Then if I < Nδ
24h < N < T then there is some restriction which is good for some interval i

with distance δ on algorithm A.

Proof. Suppose by way of contradiction that every restriction is not good for any interval
with distance δ on algorithm A. The idea is to show that, in expectation, either more than
3h of intervals are covered whenever a bit is written (contradicting Lemma 48) or more than
1 + T/I intervals are marked (contradicting Lemma 49).
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So choose a random interval, i, a random restriction x∗ for every variable outside Bi. We
assumed that x∗ is bad, so with probability at least 1/2 for a random assignment, y, of the
variables in Bi will y /∈ Y for the Y defined in Definition 51. That is, with probability at
least 1/2 will we have for xy = y ◦ x∗ that algorithm A on message xy will unmark interval i

more then 8T
N times or will be covered when at least δ fraction of the output bits written.

See that xy is uniformly randomly distributed and so is i, and these are independent of
each other. Thus in expectation over a randomly chosen interval, Bi, and a randomly chosen
input, x, we have that with probability at least 1/2 algorithm A on input x either unmarks
interval Bi more then 8T

N times or interval Bi be covered when at least a δ fraction of the
output bits written. Now we show that x cannot have enough intervals covered or unmarked
to achieve this.

By Lemma 49, the total number of markings is at most T/I + 1 < 2T/I. So at most N
4I

intervals are marked more than 8T
N times. There are at least N/I intervals, so only at most

1
4 fraction of the intervals can be marked more than 8T

N times.
By Lemma 48, at any given time, at most 3h intervals can be covered. So the probability

that a random interval is covered is at most

3h

N/I
= 3hI

N

<
3hNδ

N24h

= δ

8 .

Then by a Markov inequality, the probability that a random interval is covered greater than
a δ fraction of the times an output bit is written is at most 1

8 .
Thus by a union bound, the total of fraction of intervals that are either unmarked more

than 8T
N times or covered for at least δ fraction of the times an output bit is written is 3

8 < 1
2 .

But by choice of x, these must occur for at least half i. Contradiction. So some restriction
and interval must be good with distance δ. ◀

Now that we know good restrictions exist, and good restrictions imply our lower bounds,
we can prove Theorem 2.

▶ Theorem 2 (Lower Bounds For Encoders With Sequential Access). Suppose C is a code with
relative distance δ encoding N bits. Suppose A is an algorithm computing C running in time
T space S and using h sequential heads to access the message. Further assume S > h log(N).
Then

hST = Ω(δN2).

Proof. Let I = Nδ
50h < N(δ/2)

24h . Then by Lemma 53, a good restriction with distance δ/2
exists. Then by Lemma 52, since C has distance greater than δ/2, it must be the case that
32ST ≥ NI. Thus

8ST ≥ N(I − 1)
16ST ≥ NI

= N
Nδ

50h

800STh ≥ N2δ

hST = Ω(n2δ). ◀
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9.2 Upper Bounds

The codes that achieve our upper bounds are just a tensor code. There is a natural way to
compute tensor codes in a space efficient way when one has a limited number of sequential
heads to access the message. By choosing one of the codes to be a code with time and
space efficient encoders using random access to it’s message, one can get a smooth trade off
between the time and space required to encode a code.

▶ Lemma 54 (Tensor Codes Are Efficient To Compute). Suppose there is a code C1 : {0, 1}N1 →
ΣM1

1 with relative distance δ1 computable in time T1 and space S1 where N1 ≤ M1 and
Σ1 = {0, 1}ℓ1 . Suppose there is another code C2 : {0, 1}N2 → ΣM2

2 with relative distance δ2
computable in time T2 and space S2 with non-adaptive, random access to its message where
N2 ≤ M2 and Σ2 = {0, 1}ℓ2 .

Denote the tensor code of C1 and C2 as C : {0, 1}N=N1N2 → ΣM=M1M2 , where Σ =
{0, 1}ℓ1ℓ2 . That is, C, is a tensor code on binary symbols, but we then group into the output
bits into ℓ1 by ℓ2 squares. Then C has relative distance δ1δ2.

Further, for any number of heads h ≥ 2, there is an algorithm that computes C and runs
in time O(T2

(
N
h + T1

)
) and space O(S1 + S2M1ℓ1) using at most h non-reversible sequential

heads to access the message.

Proof. In a tensor code, the message is arranged as a table, table 1, with N2 rows, each
containing N1 columns. The tensor code is the code defined by first encoding each of the
rows of table 1 with C1 to get a new table, table 2, with N2 rows and M1ℓ1 columns. Then
encode the columns of table 2 with C2 to get table 3 with M2ℓ2 rows and M1ℓ1 columns.
Finally, we group table 3 into ℓ1 by ℓ2 cells to get the final symbols of our final codeword.
We assume the message is arranged by row, with all the first N1 bits being row 1, the next
N1 bits being row 2, and so on.

Then our encoder first distributes h − 1 heads evenly between the N2 rows. Then we
simulate C2 in parallel for each of the M1ℓ1 columns, and every time they need to query a
bit from a row that has been encoded by C1, we just move the nearest head to that row,
encode it by C1, and then give that row to each of the M1ℓ1 parallel computations of C2.

The time needed for this is just the time to encode C2 the M1ℓ ≤ T1 times, plus the
number of rows that are queried (trivially bounded by T1) times the time to move a head to
that row (bounded by N2N1

h−1 = O( N
h )) and the time to encode that row T1. This takes time

at most

T2M1ℓ + T2(N2N1

h − 1 + T1) = O(T2(T1 + N

h
)).

The space is just the space to compute C1, plus the space to store the output of C1, plus
the space to hold M1ℓ1 copies of S2’s algorithm. This is just space O(S1 + S2M1ℓ1). ◀

Now applying this tensor code with any good code and our explicit time space efficient
codes shows that our lower bound on algorithms with sequential like access to the message is
almost tight. We now prove Theorem 3.

▶ Theorem 3 (Encoders With Sequential Access Meeting the Lower Bounds). For any number of
heads h ≥ 2, time T ≥ N , space S = Ω(h log(N)), relative distance δ > 0 with hST = Ω(δN2),
there exists a code with constant rate and relative distance Ω(δ) encoded by a time TNo(1),
space S polylog(N) algorithm using h sequential heads to access the message.
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Proof. To make things simple, we assume that 4S divides δN and N ′ = δN is an integer. If
not, pad S and N and decrease δ until this is true. This can be done only changing constant
factors, for instance by making each a power of 2.

Since we only need relative distance Ω(δ), we just use an efficient, constant relative
distance code on 1/δ sets of δN message bits. Since all of our codes are linear, the min
weight codeword must have weight Ω(δN), or relative weight Ω(δ). Thus final code will have
relative distance Ω(δ).

Let our first code be the Spielman code C1 : {0, 1}S → {0, 1}4S , which has some constant
relative distance, δ1 > 0, and is encodable in linear time and linear space. Then using
Theorem 1, there exists a linear code

C2 : {0, 1}N ′/4S → {0, 1}M ′

that has some constant relative distance δ2 > 0, and output length M ′ = O(N ′/S) =
O(δN/S). Note to get binary alphabet, we just output each bit of Σ individually. This hurts
distance, but only by a constant factor. Also, C is computable in time N ′

S poly(2log(log(N ′))3) =
δN
S No(1) and space O(log(N)2).

Now applying Lemma 54 with C1 and C2, we get a tensor code

C : {0, 1}N → {0, 1}M ′4S

with constant relative distance δ1δ2 > 0 and output length M ′4S = O(δN). Further, C can
be computed in time

O(δN

S
No(1)

(
δN

h
+ S

)
) =δ2N2

Sh
No(1) + δNNo(1)

and space

O(S + log(N)2S) = S polylog(N)

using only h sequential heads to access the message.
Now to compute the final code, we need only repeat this encoding procedure 1/δ times,

which uses the same space and same number of heads, but takes 1/δ times longer to get final
time of

δN2

Sh
No(1) + NNo(1) = O(TNo(1)). ◀

9.3 Basic Relations of Sequential Access
In this section, we establish some relationships between variations of sequential access. We
show whether reversibility or jumping adds power to time and space bounded algorithms
with sequential access to the input.

While reversibility, being able to move heads backward, may seem powerful, it can actually
be simulated with non-reversible, jumping heads with only a logarithmic factor overhead.
We now prove Lemma 7.

▶ Lemma 7 (Reversibility Can Be Efficiently Simulated With Jumping). A single sequential
head to a length N input can be simulated with O(log(N)) non-reversible sequential heads to
the same input with an expected time of O(log(N)) for each head movement, and O(log(N))
space.

More generally, k sequential heads to a length N input can be simulated with O(k log(N))
non-reversible sequential heads to that same input with an expected time of O(log(N)) for
each head movement, and O(k log(N)) space.
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Proof. The idea is to store one to two non-reversible heads at every order of magnitude
behind the reversible head being simulated. By being appropriately lazy with removing heads
and adding them as the simulated head moves, this can be done with only O(log(N)) heads
and only O(log(N)) time overhead. The extra O(log(N)) bits of space are just to remember
where the heads are.

More specifically, there are i levels and each responsible for its own order of magnitude.
That order of magnitude only ever removes heads that are far from the simulated head,
relative to its order of magnitude. So when a head is removed, the simulated head must use
a lot of time to force it to be added again. This requires only storing at most two heads per
order of magnitude.

Level i always stores heads that are 2i distance apart, can either store 0, 1, or 2 heads, and
these heads are always at the multiples of 2i immediately behind the head being simulated.
A new head is added to a level whenever the simulated head passes forward over a multiple of
2i, and a head is removed if either the simulated head passes over it when moving backward,
or when the level has more than 2 heads, in which case the first head is removed.

Now the trick is to move a simulated head left, instead of moving a head left (which is
not allowed), we instead have the head jump to whichever level, i, has the nearest head
behind it, and simulate it forward till it reaches one position before where it was before.

The space and number of heads is clear from the construction.
For time, we note that a left move can only trigger level i once every 2i−1 steps. To see

this, first we claim that level i is only triggered when the simulated head is at a multiple of
2i−1 minus 1. This is because for every j, level j’s earliest head is earlier than or equal to all
of level j − 1’s heads. This is straightforward from the construction as level j − 1 removes
heads before level j. Thus the last head that was passed before triggering level i must have
been in level i − 1.

After level i was triggered, there is a head in level i − 1 at least 2i−1 − 1 before the
simulated head. And we note that moving forward can never decrease the distance to the
furthest head in level i − 1 to below 2i−1. Thus to trigger level i after a move would require
2i−1 moves.

Each level, i, takes only time O(2i) when it is triggered, and it is triggered at most once
every 1

2i−1 steps. Thus each level only costs an expected constant time per simulated head
movement. There are only log(N) levels. Thus the expected time per head movement is
O(log(N)).

If there are multiple heads being simulated, this actually just makes the problem easier
as it increases our budget. When we move backward, we just use whichever head is closest
from any of our simulated heads, and we don’t remove any head at level i if it is within 2i+1

steps behind any simulated head. Jumps are cheap since we can share heads between the
simulated head being jumped and the simulated head it is jumping to. In particular, you
can’t adversarially jump simulated heads to right before expensive backward operations as
the resulting new heads will be shared with the simulated head that just jumped.

To make argument more formal in the multiple head case, we can count the time needed
to trigger a particular head at a particular location, call it j, in level i. A head can only be
triggered if there is a simulated head in front of it, and there is no head in a lower level at the
same location. If the closest head in level i − 1 was 2i−1 in front of j, then there must have
been no simulated head within 2i of j at some point, otherwise level i − 1 would have kept a
head at location j. Thus it would have taken 2i−1 steps to move a head backwards enough to
trigger level i at location j. If the closest head in level i − 1 was 2i in front of j, there must
have been no simulated head within 3 · 2i−1 of j for a similar reason, and thus a simulated
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head must have moved 2i−1 times to be in position to trigger the head in level i at j. We
call these backward movements of simulated heads within the interval [j + 2i−1, j + 3 · 2i−1)
as being dedicated to the head at j in level i.

So each position j at a level i takes at least 2i−1 backward movements dedicated to it
specifically to trigger that head. From there, a similar argument holds as the single head
case. ◀

Thus the reversible and non-reversible input are equivalent up to log factors. A similar
phenomenon happens with reversible and non reversible computation. Bennett [9] proved
that any time T space S non-reversible computation can be turned into a reversible algorithm
running in time T 1+ϵ and space O(S log(T )) for any constant ϵ > 0.

On the other hand, the jumping feature can not be efficiently simulated with non-jumping
heads. It provably requires polynomially more time or space to solve some problems with
non-jumping heads than jumping ones. One reason for this is that jumping can make it very
efficient to move many heads far distances at once by moving one head, then jumping the
others. The following result assumes our upper and lower bounds on codes in Theorem 2
and Theorem 3.

▶ Lemma 55 (Jumping Can Not Be Efficiently Simulated With Reversibility). There exists a
problem solvable in time N1+o(1) and space N1/2+o(1) with O(

√
N) jumping, non-reversible

sequential heads to access the input, but for any constant ϵ can not be solved in time o(N5/4−ϵ)
and space o(N1/2+2ϵ) with any number of non-jumping, reversible sequential heads to access
the input.

Proof. The problem is to just encode the second half of the input with the code of Theorem 3
using constant distance. This can be done easily with jumping, non-reversible heads in the
time, space, and number of heads stated.

Now by Theorem 2, to encode this second half in time T and space S would require a
number of heads that is at least

h ≥ Ω(N2

ST
).

But to actually use any of these heads, they must first pass the first half of the input. Since
we have to move the heads one at a time, this takes time

T ≥ Ω(hN)

≥ Ω(N3

ST
)

ST 2 ≥ Ω(N3)

But suppose for way of contradiction that we had such a time T = o(N5/4−ϵ and space
S = o(N1/2+2ϵ) algorithm with non-jumping sequential access to the input. Then we have
that

ST 2 ≤ o(N1/2+2ϵ+2(5/4−ϵ))
= o(N3)

which is a contradiction. ◀

Taking ϵ = 1
8 , we see that the algorithm with non-jumping heads gets both polynomially

more time and polynomially more space than the algorithm with jumping heads, but still
cannot compute the code.
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▶ Remark 56 (Non-Jumping Heads With Preprocessing). The lower bounds of Lemma 55
depend on the fact that it takes a long time to perform initial positioning of heads. This
lower bound no longer holds if we allow all the heads to be positioned in the second half of
the input before the algorithm starts.

But we can still get something even if we allow the algorithm to use any initial positioning
of heads that does not depend on the input. The idea is essentially the same, encode some
specific subset of the bits in a code, but have the specific set of bits to be encoded be part of
the input. We quickly sketch a proof outline here.

To encode a random interval with N3/4 fraction of message can be done by Theorem 3
with h = S = N1/4 in time around (N3/4)2

Sh = N with sequential access to the input. Now
consider an algorithm with non-jumping sequential access to the input with the same space
and number of heads, with some initial, static positioning of the heads. With high probability,
only a constant number of heads will be in the interval, so to encode it fast, our encoder
needs to move more heads to that interval.

To move K heads to the interval to encode, in expectation, would take time around
NK

h K = N3/4K2. Then by Theorem 2, to encode with these K heads would take time
(N3/4)2

SK = N5/4

K . No matter the setting of K, this encoding will take time Ω(N13/12).
Thus jumping sequential access still has advantage over non-jumping sequential access

even if a non-jumping algorithm is allowed to move heads into an initial position for free
before it starts reading.

So we have proven that jumping heads are polynomially more powerful than non-jumping
heads, and that jumping, non-reversible heads are within a log factor as powerful as jumping,
reversible heads. Finally, one can show that non-jumping, reversible sequential heads are
polynomially more powerful than non-jumping, non-reversible sequential heads. This is a
direct consequence of Theorem 2.

▶ Lemma 57 (Without Jumps, Reversible Heads Are More PowerFul than Non-Reversible Heads).
Encoding codes with relative distance δ with non-jumping, non-reversible heads requires space
S and number of heads h such that

h2S = Ω(δN).

Proof. This follows from the fact that Theorem 2 is actually a bound on the number of head
movements. Since heads without backwards movements or jumps cannot move backward,
there are only hN movements before all input heads are at the end of input. Thus hN ≥ T

in Theorem 2. This gives that

h2S ≥ hST

N
= Ω(δN). ◀

In particular, without jumps or backwards moves, one cannot compute an asymptotically
good code with only S = n1/3 space and only h = o(n1/3) heads, whereas with either jumping
or reversibility2, this can be achieved by using N4/3+o(1) time by Theorem 3.

2 This uses the fact that the only time jumping is used in Theorem 3 is for efficient, initial positioning.
Initial positioning of h heads only takes O(hN) time without jumping.
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