
The Entangled Quantum Polynomial Hierarchy
Collapses
Sabee Grewal # Ñ

The University of Texas at Austin, TX, USA

Justin Yirka # Ñ

The University of Texas at Austin, TX, USA

Abstract
We introduce the entangled quantum polynomial hierarchy, QEPH, as the class of problems that are
efficiently verifiable given alternating quantum proofs that may be entangled with each other. We
prove QEPH collapses to its second level. In fact, we show that a polynomial number of alternations
collapses to just two. As a consequence, QEPH = QRG(1), the class of problems having one-turn
quantum refereed games, which is known to be contained in PSPACE. This is in contrast to the
unentangled quantum polynomial hierarchy, QPH, which contains QMA(2).

We also introduce DistributionQCPH, a generalization of the quantum-classical polynomial
hierarchy QCPH where the provers send probability distributions over strings (instead of strings).
We prove DistributionQCPH = QCPH, suggesting that only quantum superposition (not classical
probability) increases the computational power of these hierarchies. To prove this equality, we
generalize a game-theoretic result of Lipton and Young (1994) which says that, without loss of
generality, the provers can send uniform distributions over a polynomial-size support. We also prove
the analogous result for the polynomial hierarchy, i.e., DistributionPH = PH.

Finally, we show that PH and QCPH are contained in QPH, resolving an open question of
Gharibian et al. (2022).
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1 Introduction

The polynomial hierarchy [26, 31] is a hierarchy of complexity classes that are known to
equal P if and only if P = NP. The hierarchy, denoted by PH, is a natural generalization
of efficient proof verification and nondeterminism and plays a central role in complexity
theory. Given its significance, it is natural to explore quantum generalizations of PH, yet
such generalizations remain understudied.

Before discussing quantum polynomial hierarchies, let us first informally define PH.
Intuitively, PH is a hierarchy of complexity classes that can solve progressively harder
problems, extending beyond both NP and coNP. One can think of PH as a public debate
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6:2 The Entangled Quantum Polynomial Hierarchy Collapses

between Alice and Bob, who take turns presenting polynomial-sized proofs (bit strings) to a
referee. At the end of the debate, the referee takes the proofs, performs a polynomial-time
classical computation, and decides a winner.

More formally, a problem is in the k-th level of the polynomial hierarchy, Σp
k, if there is a

deterministic polynomial-time verifier M (the referee) that takes proofs y1, . . . , yk and satisfies
the following conditions. On yes-instances, ∃y1∀y2∃y3 . . . such that M(y1, . . . , yk) = 1, and,
on no-instances, ∀y1∃y2∀y3 . . . such that M(y1, . . . , yk) = 0. PH is comprised of every level
Σp

k for all natural numbers k, and it is strongly believed that PH is infinite.
Gharibian, Santha, Sikora, Sundaram, and Yirka [11] studied two quantum generalizations

of PH. They generalized the class QCMA to the quantum-classical polynomial hierarchy
QCPH, the class of problems for which a quantum verifier can efficiently verify solutions
given a constant number of classical proofs from competing provers. Note that this is the
same as PH except the verifier can perform a polynomial-time quantum computation. In
the same work, they generalized the class QMA(2) to the unentangled quantum polynomial
hierarchy QPH, for which the verifier is still quantum, but the proofs are quantum mixed
states and promised to be unentangled from each other. Notably, Gharibian et al. did not
introduce a hierarchy in which the proofs can be entangled, and they did not establish a
relationship between QPH and QCPH (or even QPH and PH), leaving it unclear whether or
not QPH was at least as powerful as its classical counterpart.1 More generally, if QCPH and
QPH are indeed more powerful, it prompts the question of why: is it quantum verification,
quantum proofs, unentanglement, or some nuanced combination?

In this work, we address all of these questions. First, we ask (and answer) what problems
admit a PH-style protocol where the provers can send potentially entangled proofs. We show
that this new hierarchy – the entangled quantum polynomial hierarchy (QEPH) – behaves
drastically differently from what we believe about PH, QCPH, and QPH.

Second, we prove that PH ⊆ QCPH ⊆ QPH, confirming the intuitive relationship between
these hierarchies.

Lastly, to understand the power of quantum proofs, we introduce a generalization of
QCPH where the provers send probability distributions over classical proofs and denote the
class by DistributionQCPH. We prove that DistributionQCPH = QCPH, despite the intuition
from game theory that optimal strategies are usually mixed. Note that the only difference
between DistributionQCPH and QPH is that the proofs in QPH involve quantum superposition.
Hence, our result establishes that the increased computational power of QPH comes only
from the quantum superposition in the proofs.

1.1 Our Results
Our first main result is a characterization of our newly defined hierarchy QEPH (Definition 19)
via a collapse to its second level. This collapse is in stark contrast to our belief that PH is
infinite.

▶ Theorem 1 (Combination of Lemma 22 and Theorem 23). QEPH collapses to its second
level and equals QRG(1).

This collapse is similar to others known in quantum complexity theory, such as QIP =
QIP(3) = QMAM [20, 25], in which the protocols rely on the prover’s ability to entangle their
messages. We further compare QEPH to other complexity classes involving entangled proofs
in Related and Concurrent Work.

1 While these containments are what one might guess to be true, proving them is nontrivial.
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We show that QEPH equals QRG(1), the class of problems having one-turn quantum-
refereed games.2 QRG(1) involves a game between two competing players that each privately
sends a quantum state to a referee, who then performs a polynomial-time quantum computa-
tion to determine a winner. In 2009, Jain and Watrous [18] proved QRG(1) ⊆ PSPACE. How-
ever, it is conjectured that QRG(1) is strictly less powerful than QRG(2) = PSPACE [15, 12].
Yet despite effort, no improved upper bounds on QRG(1) have been proven in over a decade.
We suggest a new approach to improving the upper bound on QRG(1) (via the connection to
QEPH) in Open Problems.

Our collapse result is stronger than stated above. It is well-known that if one extends
PH to a polynomial number of rounds (rather than a constant number), then the resulting
class equals PSPACE [4, Theorem 4.11]. In contrast, we show that extending QEPH to a
polynomial number of rounds does not increase the power of the class.

▶ Theorem 2 (Informal version of Corollary 24). Even with a polynomial number of rounds,
QEPH collapses to its second level.

One interpretation of our collapse result is that allowing provers to entangle their proofs
gives them too much opportunity to cheat. Hence, receiving a single proof from each prover
is just as useful as receiving many entangled proofs.

Before this work, it was unclear how the quantum polynomial hierarchies compared to
one another, and if QPH even contained PH. In our second result, we establish the following
containments between the quantum and classical hierarchies, resolving an open question of
Gharibian et al. [11].

▶ Theorem 3 (Restatement of Theorem 26). PH ⊆ QCPH ⊆ QPH.

We emphasize that even PH ⊆ QPH is not obvious. Placing restrictions on the provers
can sometimes increase computational power, as was the case in, e.g., the recent results
showing that QMA+ = QMA(2)+ = NEXP [19, 5]. Meanwhile, the permissiveness of QEPH,
where we allow the provers to entangle their proofs, seems to yield a weaker class than QPH.

In our third result, we show that the power of QCPH does not change if the provers are
allowed to send probability distributions (instead of a fixed classical proof).

▶ Theorem 4 (Restatement of Corollary 31). DistributionQCPH = QCPH.

Our motivation for studying DistributionQCPH is to better understand the power of
quantum proofs. In particular, let pureQPH be the same as QPH except the quantum proofs
are pure states rather than mixed states.3 Then the only difference between pureQPH and
DistributionQCPH is that the former involves proofs that are quantum superpositions over
bit strings while the latter involves proofs that are classical distributions over bit strings.
Yet DistributionQCPH = QCPH is in the counting hierarchy [11], and pureQPH contains
QMA(2) and is contained in EXPPP [2]. Conceptually, our result says that any increase in
computational power only comes from the quantum superposition in the proofs.

Theorem 4 also goes through for PH.

▶ Theorem 5 (Restatement of Theorem 27). DistributionPH = PH.

2 The class QRG(k) and its classical analogue RG(k) have been numbered differently by different authors.
We follow recent conventions where the provers’ and the referee’s messages are counted separately. So,
e.g., in QRG(2) the referee sends one message and then the provers each simultaneously send a message.

3 It is easy to see that QPH ⊆ pureQPH since the provers can send purifications of their mixed proofs.
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6:4 The Entangled Quantum Polynomial Hierarchy Collapses

An easy consequence of our result is that DistributionPH collapses if and only if PH
collapses.4 Therefore, any attempts to collapse QCPH, QPH, or pureQPH must not collapse
DistributionPH, and so Theorem 5 rules out some approaches to collapsing these hierarchies.
In particular, one line of attack to showing QMA(2) = NEXP is to show that the ∀ quantifier
in QΣ3 does not add any computational power, because QMA(2) ⊆ QΣ3 ⊆ NEXP [11].
Theorems 4 and 5 are evidence that this line of attack will not work straightforwardly, since
showing the analogous result for DistributionPH would collapse the polynomial hierarchy.

We give a graphical description of our results and the quantum polynomial hierarchy
landscape in Figure 1.

NP

QCMA

QMA

QMA(2)

QEPH = QRG(1)

PH = DistributionPH

QCPH = DistributionQCPH

QPH

pureQPH

PSPACE

EXPPP

PPPPP

PPP

Figure 1 (Color) The quantum polynomial hierarchy landscape in light of our work. The
containments and complexity classes shown in gray were previously known, and the containments
and complexity classes in red are contributions of this work.

1.2 Main Ideas
Let us consider QEPH on an intuitive level (see Definition 19 for a formal definition). QEPH
can be thought of as a constant-round non-interactive game between two competing provers,
Alice and Bob, who take turns sending quantum registers, i.e., collections of qubits, to a
verifier. Alice and Bob are allowed to entangle their own quantum registers across turns.
The verifier then performs a polynomial-time quantum computation, measures a fixed output

4 DistributionC is not to be confused with the notation DistC, which has been used in average-case
complexity theory, e.g. DistNP and DistPH. Also, similar names like Stochastic SAT or Probabilistic
QBF have appeared in the study of randomized quantifiers. These are more similar to the Arthur-Merlin
(AM) hierarchy.
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qubit in the computational basis, and, if the verifier sees 1, they accept (Alice wins), and
reject otherwise (Bob wins). QEPH contains the decision problems for which Alice always
wins with high probability on yes-instances and Bob always wins with high probability on
no-instances. We note that in this game the moves are public, which means that Alice knows
the state of the quantum registers sent by Bob and vice versa. See Remark 21 for further
discussion of public vs. private moves in a quantum world.

To highlight the key technique in our proof that QEPH collapses (Lemma 22), we explain
how to simulate the third level of QEPH, denoted by QEΣ3, inside of the second level QEΣ2.
The proof for higher levels proceeds by induction. As we will explain formally in Section 3, a
QEΣi protocol can be written as an optimization problem with a value equal to the probability
the verifier accepts when both players use optimal strategies. In particular, Alice selects
proofs that maximize the probability of the verifier accepting, while Bob selects proofs to
minimize that probability. For QEΣ3, given a problem instance in which the verifier’s action
is encoded by an observable R, the corresponding optimization problem is

max
ρ1∈D(X1)

min
σ∈D(Y)

max
ρ2∈A

tr (R (ρ2 ⊗ σ)) ,

where D(H) denotes the set of density operators on the Hilbert space H and A := {ρ ∈
D(X1 ⊗ X2) | trX2(ρ) = ρ1}. The restriction of the second maximization to the set A is to
enforce that Alice’s second move is consistent with her first.

A straightforward analysis shows that when focusing on the inner two operators, a
min-max theorem applies, allowing us to swap the ordering of the inner minimization and
maximization. Then, because we allow entangled states, we can combine the two sequential
maximization operators into one, leaving an optimization problem corresponding to a two-
round protocol. Notably, both the three-round and two-round protocols are over the same
input and verifier, so the reduction does not increase the problem size or change the error
parameters.

It is natural to ask why our technique does not also collapse PH. In short, the above
approach fails immediately, since, for one, our collapse theorem relies on the fact that Alice
and Bob are choosing quantum proofs from compact and convex sets (see Facts 9 and 10).
In contrast, the set of classical strings is not convex.

To show that QEPH = QRG(1), we build on a previous characterization of Gharibian et
al. [11] where they showed that the second level of the unentangled quantum polynomial,
denoted by QΣ2, equals QRG(1). We extend their result in Proposition 20 to show that
QEΣ2 = QΣ2 = QRG(1), which yields our characterization that QEPH = QEΣ2 = QRG(1).
QEΣ2 = QΣ2 because, after two turns, each prover has only sent a single proof, so there is
no distinction yet to be made between the entangled versus entangled hierarchies.

We now turn to the containment QCPH ⊆ QPH, which are both defined formally in
Section 2.3. In QCPH, the verifier receives classical proofs, whereas the proofs in QPH are
unentangled quantum mixed states. One naïve approach to simulating QCPH inside of QPH
– which does not work – is for the verifier to immediately measure the quantum proofs to get
classical strings and then run the QCPH verification protocol. The reason this fails is that
the dishonest prover (i.e., the player without a winning strategy) can cheat by sending a
quantum state, rather than a classical proof. In more detail, while the honest prover has
perfect knowledge of the quantum states sent by the dishonest prover, they do not know
which particular classical strings the verifier will observe upon measurement, making it
unclear what their response should be. The definition of QCPH guarantees the correct player
has an effective response conditioned on any particular proof sent from the other player, but

CCC 2024



6:6 The Entangled Quantum Polynomial Hierarchy Collapses

this does not guarantee the correct player can succeed against a mixture of potential moves.
Unfortunately, the equilibrium point of a zero-sum game which allows for such mixed moves
will generally be mixed, rather than pure.

To overcome this, we simulate the i-th level of QCPH in the 2ki-th level of QPH, for some
constant k. We ask the provers to send k copies of each of the proofs they would send in the
QCPH protocol, which increases the number of turns by a factor of 2k. Using the groups
of k proofs, we give a simple test to ensure that no player cheats, which works as follows.
Measure each of the k proofs in the standard basis. If the outcomes are all equal, then the
test passes, and, otherwise, the test fails. We prove that this is enough to force the provers
to send computational basis states with high probability.

We remark that this bears some similarity to other protocols involving unentanglement.
Harrow and Montanaro [16] used unentanglement to force Merlin to send k-partite states,
and, recently, Jeronimo and Wu [19] use unentanglement to force Merlin to send many copies
of (approximately) the same quantum state. Both of these results fundamentally rely on the
swap test, which tests for equality between two quantum states [6]. In a similar fashion, we
use unentanglement to force the provers to send standard basis states, i.e., classical strings.
With that, we design a simulation of any QCPH protocol inside of QPH.

Finally, we discuss our proof that DistributionQCPH = QCPH (the same techniques
will also show DistributionPH = PH). In DistributionQCPH, the provers take turns sending
probability distributions over polynomial-length classical proofs. Once all of the distributions
have been sent, the verifier draws one sample from each distribution and substitutes the
samples into the verification procedure. The model is somewhat subtle. The provers have
perfect knowledge of the distributions sent by their opponent. However, they do not know
which sample the verifier will see, because the distributions are not sampled until the end
of the game. If one prefers, one can think of the distributions as quantum states that are
always measured in the computational basis by the verifier.

For classical proofs of length m, the distributions sent in DistributionQCPH can have
support of size exponential in m. Our key lemma says that the provers can send much
simpler distributions without changing the acceptance probability of the verifier too much. In
particular, we prove that the distributions sent by the provers can be uniform over poly(m)
many classical proofs and, even with this simplification, the acceptance probability of the
verifier will change by at most a small constant. This simplification lemma (Lemma 30)
generalizes a result due to Lipton and Young [24] and Althöfer [3] who showed the result
in the special case of a one-turn game. Our contribution is to generalize their result to any
constant number of turns.

With the simplification lemma, one can prove DistributionQCPH ⊆ QCPH as follows. To
send a distribution in QCPH, the provers send every classical string that is in the support
of their distribution. By our simplification lemma, there are only a polynomial number of
such strings, so all of them can be sent in a polynomially-sized classical proof. Then, since
the simplified distributions are uniform, the verifier can randomly sample one of the strings
uniformly at random. The other direction DistributionQCPH ⊇ QCPH follows from the same
techniques that prove QCPH ⊆ QPH.

1.3 Related and Concurrent Work
Early efforts to define quantum hierarchies include [34, 10].

We choose to use alternating ∃ and ∀ quantifiers to define QEPH (as was the case for
QCPH and QPH in [11]). In addition to a quantifier definition, PH can be equivalently
defined in the oracle model via constant-height towers of the form NPNPNP...

. The oracular
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definition gives rise to natural definitions of quantum polynomial hierarchies, some of which
have been studied recently. Vinkhuijzen [32] and Aaronson, Ingram, and Kretschmer [1]
study the “QMA hierarchy”, QMAH, which consists of constant-depth towers of the form
QMAQMAQMA...

.5 [32, Theorem 5] shows that QMAH is contained in the counting hierarchy
CH, while the best upperbounds for the quantifier-based hierarchies, QEPH and QPH, are
PSPACE and EXPPP, respectively.

The method of showing equivalence between the quantifier-based and oracle-based defini-
tions of PH does not appear to carry over to QEPH, QPH, or even QCPH. This seems related
to the inability to “pull quantumness out of a quantum algorithm” as we can for randomness
from randomized algorithms [1] as well as a lack of study of quantum oracle machines. We
further discuss questions regarding QMAH vs. QEPH in Open Problems.

There are several quantum complexity classes that involve provers sending possibly
entangled proofs to a quantum polynomial-time verifier. We do not attempt to survey them
here, but, for convenience, we summarize quantum complexity classes involving entangled
proofs (and their classical counterparts) in Table 1.

Our work on DistributionPH builds on previous game-theoretic characterizations in com-
plexity theory (see e.g., [9]). PH-style classes involve a debate with public communication
(perfect information), and a non-interacting, passive referee. RG-style classes involve private
communication (imperfect information) with provers sending particular strings to the referee
(perfect recall). A consequence of imperfect information is that the players must model their
competitor’s moves as probability distributions (mixed strategies) because they are never
sure which move is made. Our class DistributionPH fits into this framework in a nuanced
way. Specifically, the distributions sent are public (similar to PH); they represent a mixture
of pure moves (similar to RG); but, uniquely, the provers do not know which string will
be sampled by the referee (reminiscent of imperfect recall). This is a novel game-theoretic
model, and as we discuss further in Section 6, it is naturally motivated by a game of quantum
mixed states sent to a non-interacting referee.

Finally, the independent work of Agarwal, Gharibian, Koppula, and Rudolph [2] also
studies generalizations of the polynomial hierarchy. They prove QCPH ⊆ pureQPH, which is
similar to our Theorem 26 that QCPH ⊆ QPH. Since QPH ⊆ pureQPH is straightforward (the
provers send purifications of their proofs), our Theorem 26 implies QCPH ⊆ pureQPH. In this
sense, our containment is stronger. However, their containment has the nice (and nontrivial)
feature that the k-th level of QCPH is contained in the k-th level of pureQPH, whereas our
containment requires blowing up to the ck-th level of QPH for a constant integer c. Besides
this, Agarwal et al. contribute several more results including a theorem that if QCΣi = QCΠi

then QCPH collapses (see also [7]); a Karp-Lipton style result that QCMA ⊆ BQP/mpoly
implies QCPH collapses; a new upper bound QPH ⊆ pureQPH ⊆ EXPPP, improving on the
previous upper bound of EXPH; and a method for one-sided error-reduction of pureQPH.

1.4 Open Problems
It is well-known that PH can equivalently be defined via oracle Turing machines. This
suggests oracular definitions of quantum polynomial hierarchies, such as QMAH discussed
in Section 1.3. One could similarly define QCMAH as QCMAQCMAQCMA...

and QMA(2)H as
QMA(2)QMA(2)QMA(2)...

. We ask how these oracular hierarchies compare to the quantifier-based
ones.

5 Vinkhuijzen only allows recursive queries to QMA, whereas Aaronson, Ingram, and Kretschmer allow
recursive queries to PromiseQMA.

CCC 2024
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Table 1 Complexity classes characterizing proof verification that are related to QEPH. “C” means
classical and “Q” means quantum. For every class below, multiple provers are always competing,
and, for multi-round quantum protocols, the quantum proofs can be entangled across rounds. Public
means that the provers have full knowledge of their opponent’s previous turns.

# of # of Interaction Public or
Class Rounds Provers Proofs Verifier from referee? Private Equals

NP 1 1 C C no N/A
QMA 1 1 Q Q no N/A
IP poly 1 C C yes N/A PSPACE [28]
QIP(3) 3 1 Q Q yes N/A PSPACE [17]

PH const 2 C C no pub.
QEPH const 2 Q Q no pub. QRG(1)
RG(1) 1 2 C C no priv. S2P [3, 24]
RG(2) 2 2 C C yes priv. PSPACE [8]
RG poly 2 C C yes priv. EXP [8]
RG(pub) poly 2 C C yes pub. PSPACE [8]
QRG(1) 1 2 Q Q no priv.
QRG(2) 2 2 Q Q yes priv. PSPACE [15]
QRG poly 2 Q Q yes priv. EXP [14]

▶ Question 6. Does QEPH = QMAH? QPH = QMA(2)H? QCPH = QCMAH?

It is unclear if these hierarchies are equal, as in the classical world, or if one version
would be stronger than the other. One immediate obstacle is the fact that QEPH and QPH
are quantifying over quantum states, so perhaps it is easier to begin with QCPH, which still
quantifies over classical bits. Alas, it is still unclear if an oracle machine definition of QCPH
would be equal to a quantifier definition, since, in the oracular case, queries can be made in
superposition.

Answering Question 6 could yield progress towards characterizing QRG(1). Jain and
Watrous showed that QRG(1) ⊆ PSPACE in 2009 [18], and, since then, no improved upper
bounds have been proven despite effort [12]. Our work shows that QRG(1) = QEPH. If one
can show QEPH ⊆ QMAH, then that would imply QRG(1) ⊆ CH, because QMAH ⊆ CH [32].

More broadly, proving better upper or lower bounds on the quantum polynomial hierarchies
and finding more connections to other parts of complexity theory are important directions
for future work. For example, does any level of QPH contain PSPACE? Can one improve the
containment QPH ⊆ EXPPP? Or, how can these hierarchies be used to better understand
the relationships between QCMA, QMA, and QMA(2)?

2 Preliminaries

We introduce notation, definitions, and background that are central to our results. For the
most part, we assume familiarity with common concepts and classes in quantum and classical
complexity theory as well as quantum computing and quantum information. For a thorough
discussion of these topics, see [4, 33, 21, 27].

We will need the following version of Hoeffding’s inequality.
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▶ Fact 7 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables subject to
ai ≤ Xi ≤ bi for all i. Let X =

∑n
i=1 Xi and let µ = E[X]. Then it holds that

Pr[X − µ ≥ t] ≤ exp
(

− 2t2∑n
i=1(bi − ai)2

)
and

Pr[X − µ ≤ −t] ≤ exp
(

− 2t2∑n
i=1(bi − ai)2

)
. ⌟

2.1 Quantum Information
A quantum register refers to a collection of qubits. Associated with each register is a complex
Hilbert space, and the state of a quantum register is described by a Hermitian, positive
semi-definite matrix with trace one called a density matrix. We denote the set of n-qubit
density matrices by D(n), and the sets of linear operators and density matrices on a complex
Hilbert space H by L(H) and D(H), respectively.

For two quantum registers (X, Y) with Hilbert spaces X and Y , the combined space is the
tensor product space X ⊗ Y. The partial trace trY : L(X ⊗ Y) → L(X ) is the unique linear
map that satisfies trY(A ⊗ B) = tr(A)B for all A ∈ L(X ) and B ∈ L(Y). If the compound
register (X, Y) is in the state ρ ∈ D(X ⊗ Y), then the state of register X is trY(ρ) ∈ D(X ).
That is, operationally speaking, the partial trace is the act of ignoring (or discarding) a
quantum register. We note that the partial trace trX can be defined similarly, and, in general,
the context in which the partial trace is used should clarify which spaces are being “traced
out”.

A quantum measurement of a quantum register is described by a finite collection of
Hermitian, positive semi-definite matrices that sum to identity. Let X be a quantum register
with Hilbert space X whose state is described by ρ. Let M = {Ei | i ∈ Σ} be a quantum
measurement, where Σ is a finite alphabet. Upon measuring X with M, we observe i ∈ Σ
with probability tr(Eiρ).

2.2 A Min-Max Theorem
To prove our collapse theorem, we use a weaker version of Sion’s min-max theorem.

▶ Theorem 8 (A weaker version of Sion’s min-max theorem [29]). Let X and Y be complex
Euclidean spaces, let A ⊆ X and B ⊆ Y be convex and compact subsets, and let f : A×B → R
be a bilinear function. Then

max
a∈A

min
b∈B

f(a, b) = min
b∈B

max
a∈A

f(a, b). ⌟

It is a well-known fact that the space of density matrices is compact and convex.

▶ Fact 9 ([33, Chapter 1]). Let D(H) be the set of density matrices on a complex Hilbert
space H. D(H) is compact and convex.

It is critical for us that, even if we impose partial trace constraints on the set of density
matrices, the set remains compact and convex. We include a proof for completeness.

▶ Fact 10. Let X, Y be two quantum registers with Hilbert spaces X and Y, respectively, and
let D(X ⊗ Y) be the corresponding set of density operators. Let ρ′ ∈ D(X ) be some fixed
density matrix. Then the set

S = {ρ ∈ D(X ⊗ Y) | trY(ρ) = ρ′}

is compact and convex.

CCC 2024



6:10 The Entangled Quantum Polynomial Hierarchy Collapses

Proof. Let ρ1, ρ2 ∈ S, and define σ := θρ1 + (1 − θ)ρ2 for for θ ∈ [0, 1]. Then

trY(σ) = trY(θρ1 + (1 − θ)ρ2)
= θ trY(ρ1) + (1 − θ) trY(ρ2) (By the linearity of the partial trace.)
= θρ′ + (1 − θ)ρ′ (Because ρ1, ρ2 ∈ S.)
= ρ′,

so S is convex.
To show that S is compact, we must show that it is closed and bounded. Without loss of

generality, let X be an n-qubit register and Y be an m-qubit register. Then we can identify
S with the vector space C4n+m and observe that all entries are bounded in magnitude by
1. Therefore, S is bounded. To see that S is closed, we need the following definitions. For
x ∈ C, define fx : C4n+m → C as fx(A) = ⟨x, Ax⟩, which is continuous because the inner
product is continuous; define g : C4n+m → C4n+m as g(A) = A − A†, which is a polynomial
and therefore continuous; and, finally, define h : C4n+m → C4n as h(A) = trY(A), which is a
linear map on a finite-dimensional vector space and therefore continuous. Then

S =
⋂
x∈C

f−1
x ([0, ∞)) ∩ g−1({0}) ∩ h−1({ρ′}) ∩ tr−1({1}).

The preimage of a continuous function on a closed set is closed, and the intersection of closed
sets is closed. Therefore, S is closed. ◀

2.3 Previously Studied Hierarchies
Here, we give formal definitions of the polynomial hierarchy PH, the quantum-classical
polynomial hierarchy QCPH, and the unentangled quantum polynomial hierarchy QPH,
the latter two of which were both introduced by Gharibian et al. [11]. These classes will
appear again in Section 5 when we prove QCPH ⊆ QPH and in Section 6 when we prove
DistributionQCPH = QCPH. We defer definitions of our new classes until later, with QEPH
studied in Section 4 and DistributionQCPH in Section 6.

▶ Definition 11 (Σp
i ). A language L is in the i-th level of the polynomial hierarchy Σp

i if
there exists a polynomial-time deterministic Turing Machine M such that for any n-bit input
x,

x ∈ L ⇐⇒ ∃y1∀y2∃y3 . . . Qiyi such that M(x, y1, . . . , yi) = 1,

x ̸∈ L ⇐⇒ ∀y1∃y2∀y3 . . . Qiyi such that M(x, y1, . . . , yi) = 0,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and
|yi| ≤ p(n) for some fixed polynomial p for all i.

▶ Definition 12 (The polynomial hierarchy (PH) [31]). The Polynomial-time Hierarchy is
defined as

PH :=
∞⋃

i=0
Σp

i . ⌟

Note the union which defines PH is over values of i which are constant, independent of
a problem’s input size. Observe also that for all i, Σp

i ⊆ Σp
i+1. Additionally, PH is closed

under complement, in particular because Σp
i ⊆ Σp

i+1 ⊆ PH. The complement of Σp
i is defined

to be Πp
i , and for all i we have Σp

i ⊆ Πp
i+1 ⊆ Πp

i+2.
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The definition of PH is particularly robust. The class can be defined equivalently by
Σp

i+1 = NPΣp
i , giving a constant-height tower of NP oracles. The model of alternating

nondeterministic Turing Machines also can be used to define each level of the hierarchy. In
another direction, the Sipser–Lautemann theorem shows BPP ⊆ Σp

2 ∩ Πp
2 ⊆ PH [30, 23]. So,

natural bounded-error or probabilistic definitions of PH collapse to the standard, deterministic
definition given above. This is also true for oracle definitions, where we know MAMA...

= PH.
Even a partial survey of results regarding PH would be impossible to fit here. We finally

note that Σp
i = Σp

i+1 or Σp
i = Πp

i would both “collapse” the hierarchy so that PH = Σp
i .

These two events are analogous to P = NP or NP = coNP. Conversely, if PH collapses to any
finite level, it implies analogs of P = NP and NP = coNP must be true for some degree of
nondeterminism, at some level of the hierarchy. So, the strongly-believed conjecture that
PH is not equal to any Σp

i for fixed i is a generalization of those other strongly-believed
conjectures.

The uniform circuit model is standard for quantum complexity classes, so we give the
definition below.

▶ Definition 13 (Polynomial-time uniform family of quantum circuits). A polynomial-time
uniform family of quantum circuits is a family {Vn}n∈N such that there exists a polynomial
bounded function t : N → N and a deterministic Turing machine M acting as follows. For
every n-bit input x, M outputs in time t(n) a description of a quantum circuit Vn, which
has a designated output qubit. We say Vn accepts when we observe a 1 upon measuring the
designated output qubit in the standard basis.

We generally leave the subscript implicit and just write V . Additionally, we often consider
a single problem instance defined by an input x for the full length of an analysis. So instead
of writing V (x, y) for input x and proof y, we simply refer to V (y).

As with most quantum complexity classes, we will be working with promise problems.
Briefly, a promise problem A is a pair of non-intersecting subsets (Ayes, Ano) of {0, 1}∗. A
decision problem, or language, is a promise problem where Ayes ∪ Ano = {0, 1}∗.

We are now ready to define QCPH.

▶ Definition 14 (QCΣi [11]). A promise problem L = (Lyes, Lno) is in i-th level of the
quantum-classical polynomial hierarchy QCΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N
such that for every n-bit input x, Vn takes in proofs y1, . . . , yi ⊆ {0, 1}m(n) for fixed polynomial
m and measures a fixed output qubit to decide to accept or reject, such that

Completeness: x ∈ Lyes ⇒ ∃y1∀y2∃y3 . . . Qiyi such that Pr [V (y1, . . . , yi) accepts] ≥ c,
Soundness: x ∈ Lno ⇒ ∀y1∃y2∀y3 . . . Qiyi such that Pr [V (y1, . . . , yi) accepts] ≤ s,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and, for
all i, |yi| ≤ p(n) for a fixed polynomially bounded function p. When the completeness and
soundness parameters c, s are not specified, define

QCΣi :=
⋃

c−s∈Ω(1/ poly(n))

QCΣi(c, s). ⌟

▶ Definition 15 (The quantum-classical polynomial hierarchy (QCPH) [11]). The quantum-
classical polynomial hierarchy is defined as

QCPH :=
∞⋃

i=0
QCΣi. ⌟

Observe that QCΣ0 = BQP and QCΣ1 = QCMA. Gharibian et al. [11] proved that QCPH
is contained in PPPPP , the second level of the counting hierarchy CH.
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The definition of QCΣi to generically include QCΣi(c, s) for all c − s ≥ 1/ poly(n) is
justified in part by the result of [11] that for any such c and s, we may reduce the error such
that for any polynomially bounded function r, we have QCΣi(c, s) = QCΣi(1 − 2−r, 2−r).

The unentangled quantum polynomial hierarchy QPH is defined similarly. The only
difference is that the classical proofs are replaced by unentangled quantum proofs.

▶ Definition 16 (QΣi [11]). A promise problem L = (Lyes, Lno) is in the i-th level of the
unentangled quantum polynomial hierarchy QΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N
such that for every n-bit input x, Vn takes in quantum proofs ρ1, . . . , ρi and measures a fixed
output qubit to decide to accept or reject, such that

Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [V (ρ1, . . . , ρi) accepts] ≥ c,
Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [V (ρ1, . . . , ρi) accepts] ≤ s,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and, for all
i, ρi is a p(n)-qubit state for a fixed polynomially bounded function p. When the completeness
and soundness parameters c, s are not specified, define

QΣi :=
⋃

c−s∈Ω(1)

QΣi(c, s). ⌟

▶ Definition 17 (QPH [11]). The unentangled quantum polynomial hierarchy is defined as

QPH :=
∞⋃

i=0
QΣi. ⌟

Interestingly, QMA(2) ⊆ QΣ3, since the verifier can simply ignore the second proof.
Here, we let QΣi = QΣi(c, s) for c − s ≥ Ω(1), rather than 1/ poly(n), because we do

not currently have an error reduction result for QPH similar to the one known for QCPH
(although, [2] recently made progress in this direction).

3 The Entangled Quantum Polynomial Hierarchy

We formally define the entangled quantum polynomial hierarchy. The definition appears
more technical than for QCPH and QPH, but this is mostly just an issue of notation.

▶ Definition 18 (i-th level of the entangled quantum polynomial hierarchy (QEΣi)). A promise
problem L = (Lyes, Lno) is in QEΣi(c, s) for polynomial-time computable functions c, s : N →
[0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N such that
for every n-bit input x, Vn takes quantum proofs, measures a fixed output qubit to decide to
accept or reject, and satisfies

Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [V (ρi−1, ρi) accepts] ≥ c,
Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [V (ρi−1, ρi) accepts] ≤ s,

where each ρj is chosen from the set

Aj :=
{ {

ρ ∈ D (X1 ⊗ X3 ⊗ · · · ⊗ Xj) | if j > 1, trXj
(ρ) = ρj−2

}
if j is odd

{ρ ∈ D (X2 ⊗ X4 ⊗ · · · ⊗ Xj) | if j > 2, trXi (ρ) = ρj−2} if j is even
.

Here, Qi denotes ∃ if i is odd and ∀ otherwise, and Qi denotes the complement of Qi. For all
i, the corresponding Hilbert space Xi is a space of at most p(n) qubits for a fixed polynomial
p. When the completeness/soundness parameters are not specified, define

QEΣi :=
⋃

c−s∈Ω(1/ poly(n))

QEΣi(c, s). ⌟
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▶ Definition 19 (The entangled quantum polynomial hierarchy (QEPH)). The entangled
quantum polynomial hierarchy is defined as

QEPH =
∞⋃

i=0
QEΣi. ⌟

When introducing a complexity class, perhaps the first question one should ask is whether
or not the choice of completeness and soundness parameters actually matter. In [11, Theorem
2.6], it was shown that QCPH is robust to the choice of error parameters, but no such result
is known for QPH. In Section 4, we show that the choice of parameters does not matter for
any level of QEPH, i.e., for c, s such that c − s ≥ 1/ poly(n), QEΣi(c, s) = QEΣi( 2

3 , 1
3 ) for all

i ∈ N (see Theorem 25).
Let us also make several remarks on our definition. As for PH, the indices i in the

definition of QEPH are constants, independent of a problem’s input size, and, as one
should expect, BQP = QEΣ0 and QMA = QEΣ1. One can also define QEΠi := QEΣi and
QE∆i := QEΣi ∩ QEΠi. The players also have no incentive to entangle their moves with their
opponent because QEΣi can be modeled as a zero-sum game. Therefore, we may assume the
even and odd indexed states are unentangled.

Informally, QEΣi can be thought of as the following game, where we assume i is even
to simplify the exposition. Alice has (possibly entangled) quantum registers (A1, . . . , Ai/2),
and Bob has (possibly entangled) quantum registers (B1, . . . , Bi/2), where each register is
a number of qubits that is polynomial in the input size. The game commences as follows.
In the first round, Alice reveals the state ρ1 of A1, and then Bob reveals the state σ1 of B1.
In the second round, Alice reveals the state ρ2 of (A1, A2), and Bob reveals the state σ2 of
(B1, B2). To ensure Alice and Bob do not change their “moves” from previous rounds, we
demand that trA2(ρ2) = ρ1 and trB2(σ2) = σ1. That is, Alice and Bob cannot modify the
state of subsystems that have been revealed in previous rounds. In general, for the i-th round,
it must be that trAi(ρi) = ρi−1 and trAi(σi) = σi−1. The game continues like this until the
global states of (A1, . . . , Ai/2) and (B1, . . . , Bi/2) are known to both players and the referee.

At this point, the referee must accept or reject. The referee’s action is determined by
a polynomial-time quantum circuit and a single-qubit measurement. This action can be
equivalently expressed as a two-outcome quantum measurement {R, I − R}, where the first
observable corresponds to accepting. Then, the probability the referee accepts is equal to
tr
(
R
(
ρi/2 ⊗ σi/2

))
. We emphasize that we do not intend to actually write the observable R

corresponding to some verification circuit V . Rather, the observable R is a convenient way
to express the action of the referee.

Alice’s goal is to maximize the acceptance probability, and Bob’s goal is to minimize the
acceptance probability. Therefore, given an instance of a QEΣi problem with corresponding
observable R, we can express the acceptance probability achieved by both players playing
optimal strategies as

υ = max
ρ1∈A1

min
σ1∈B1

. . . max
ρi/2∈Ai/2

min
σ1∈Bi/2

tr
(
R
(
ρi/2 ⊗ σi/2

))
, (1)

where Ai and Bi are defined as in Definition 18, and each alternating max/min operator
corresponds to an alternation of quantifiers in Definition 18. In this work, we intend to use
Equation (1) as a tool for proving the equality of one game/problem instance to another.

Finally, as an application of Equation (1), we observe that the second levels of both
QEPH and QPH are equal to QRG(1), which is known to be contained in PSPACE.
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▶ Proposition 20 (Extension of [11, Corollary 1.9]).

QEΣ2 = QEΠ2 = QΣ2 = QΠ2 = QRG(1) ⊆ PSPACE. ⌟

Proof. In [11], it was observed that QΣ2 = QRG(1). Here, we use the same reasoning to
conclude QEΣ2 = QEΠ2 = QΣ2 = QΠ2 = QRG(1). The equivalence is clear given that the
value of a QRG(1) protocol is described by an expression identical to Equation (1) when
i = 2, which corresponds to QEΣ2 (see [18] for a formal definition of QRG(1)). Then, note
that QRG(1) is closed under complement, by a min-max theorem, implying QEΣ2 = QEΠ2.
Second, because entanglement is not a concern until one of the players makes multiple moves,
the second levels of the entangled and unentangled hierarchies are equal (similarly, the first
levels are equal to each other, as are the zeroth levels). Finally, the containment of QRG(1)
in PSPACE is due to [18, Proposition 4]. ◀

The fact that QEΣ2 = QEΠ2 = QΣ2 = QΠ2 is somewhat striking, since such an equality
in the classical setting would imply a collapse of PH [4, Theorem 5.6].6

▶ Remark 21 (Public vs. private quantum proofs). While the quantum polynomial hierarchies
are well-defined, some may object that the classes are unphysical because the provers have
full knowledge of each other’s density matrices, even though the verifier only receives a single
copy of each proof. The quantum no-cloning theorem also begs the question of how exactly
the information is communicated between the provers. This is not an issue for PH because
it is trivial to learn classical proofs given a single copy, and, for QRG, this is not an issue
because communication is private. Even in quantum complexity theory, provers which are
considered “all-powerful” are still usually considered to be bound by the laws of quantum
mechanics.

Despite being unphysical, we are content with the definition for two reasons. First, it
is a well-defined, useful theoretical tool for studying quantum information. Second, in the
case of QEPH, we show that it collapses to QEΣ2, where it is known, by a min-max theorem,
that public vs. private communication is irrelevant. So, despite starting with an unphysical
definition, we show equivalence with a class that adheres entirely to the laws of quantum
mechanics. ⌟

4 The Entangled Quantum Polynomial Hierarchy Collapses

We prove several results about the entangled quantum polynomial hierarchy. Specifically, we
prove that QEPH collapses to its second level, is equal to QRG(1), and that every level of
QEPH is robust to the choice of completeness and soundness parameters (i.e., for c, s such
that c − s ≥ 1/ poly(n), QEΣi(c, s) = QEΣi( 2

3 , 1
3 ) for all i ∈ N). We begin by proving that

the hierarchy collapses.

▶ Lemma 22. For all constants i ≥ 2, QEΣ2 = QEΣi.

Proof. Note that for all i, QEΣi−1 is trivially contained in QEΣi. We will show that for all
i > 2, QEΣi ⊆ QEΣi−1 by an induction argument, beginning with QEΣ3 ⊆ QEΣ2.

Recall from Equation (1) in Section 3 that the value of a QEΣ3 protocol is equal to

υ̂ = max
ρ1∈D(X1)

min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

6 This phenomenon of the second levels being equal is also true for TFPH, the hierarchy generalizing the
class TFNP [22].
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where R is the observable corresponding to the verifier accepting, X1, Y1, and X2 are the
Hilbert spaces containing the three proofs, and A = {ρ ∈ D(X1 ⊗ X2) | trA2(ρ) = ρ1}, which
enforces that Alice’s second proof is consistent with her first.

For any choice of ρ1 ∈ D(X1), define

υ(ρ1) = min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

so that υ̂ = maxρ1∈D(X1) υ(ρ1). Consider that D(Y1) and A are compact and convex by
Facts 9 and 10. Additionally, the function tr (R (ρ2 ⊗ σ1)) is a composition of bilinear
functions and so itself is bilinear in σ1 and ρ1. Therefore, by Theorem 8, a min-max theorem
applies and

υ(ρ1) = max
ρ2∈A

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1)) = min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

changing the optimization problem without changing the value.
Substituting this back into υ̂, we find

υ̂ = max
ρ1∈D(X1)

υ(ρ1)

= max
ρ1∈D(X1)

max
ρ2∈A

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1))

= max
ρ2∈D(X1⊗X2)

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1)) , (2)

where the final equality is clear given the definition of A.
We observe that Equation (2) matches the characterization of a QEΣ2 protocol given

in Equation (1). Therefore, we have shown the value υ̂ of an arbitrary QEΣ3 protocol is
equivalent to the value of a QEΣ2 protocol. Given an instance of a QEΣ3 problem verified
by some polynomial-time uniform circuit V – corresponding to the observable R above –
whether V is satisfiable by a QEΣ3 protocol is equivalent to whether V is satisfiable by a
QEΣ2 protocol, i.e. QEΣ3 ⊆ QEΣ2 and indeed they are equal.

By way of induction, assume QEΣ2 = QEΣi for some constant i > 2. By the same min-max
argument as just before, we may show the equivalence of the value of any QEΣi+1 protocol
to the value of a QEΣi protocol, thus showing the equivalence of the classes. Therefore, the
hierarchy QEPH collapses to QEΣ2. ◀

The equality between QEPH and QRG(1) is a straightforward consequence of the collapse
lemma.

▶ Theorem 23. QRG(1) = QEPH = QEΣ2.

Proof. Combining the results QRG(1) = QEΣ2 from Proposition 20 and QEΣ2 = QEPH
from Lemma 22 proves the equality. ◀

Next, we note that our collapse theorem can be strengthened to QEΣi = QEΣ2 for any
polynomially bounded i, rather than just constant. Like classical PH, we define QEPH as
the union of QEΣi for any constant i. This is a natural way of defining PH as it is key to
proving that if P = NP, then PH collapses. However, in contrast to collapse techniques for
classical PH, our reduction of QEΣi to QEΣ2 does not increase the problem size. In our
proof of Lemma 22, the QEΣ2 problem in Equation (2) optimizes over the same quantity as
the original QEΣi problem. Therefore, our proof applies even to a super-constant number
of rounds. The reduction is valid up to a polynomial number of rounds, after which the
concatenation of the proof registers would lead to a proof too large for the polynomial-time
verifier to accept.
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▶ Corollary 24. QEΣi = QEΣ2 for any polynomially-bounded i.

Finally, our results also prove that QEΣi is robust to the choice of error parameters.

▶ Theorem 25. For any choice of c, s such that c−s ≥ 1/ poly(n), it holds that QEΣi (c, s) =
QEΣi

( 2
3 , 1

3
)
.

Proof. The reverse containment is trivial, so we focus on proving the forward direction,
reducing QEΣi (c, s) to QEΣi

( 2
3 , 1

3
)
. Again appealing to the fact that our proof of Lemma 22

shows that a QEΣ3 problem is equivalent to a QEΣ2 problem with the same game value, we
observe that our proof implies QEΣ2(c, s) = QEΣi(c, s). Then, because the equality of QRG(1)
and QEΣ2 (Theorem 23) is also based on the optimization definition from Equation (1),
the acceptance probability remains preserved and QEΣ2(c, s) = QRG(1)(c, s). We may then
appeal to the result of [13] that a parallel repetition theorem holds for QRG(1), so that
QRG(1)(c, s) = QRG(1)

( 2
3 , 1

3
)
. By the same reasoning as a moment ago, this last class equals

QEΣ2
( 2

3 , 1
3
)
. Contracting this sequence of equalities, we conclude that QEΣi

( 2
3 , 1

3
)

equals
our original class QEΣi(c, s). ◀

5 PH and QCPH Are Contained in QPH

We prove that QCPH ⊆ QPH. While this result is what one might expect, proving this
containment was left as an option question by Gharibian et al. [11]. It is trivial to see
that PH ⊆ QCPH, and, combining these two containments, we have PH ⊆ QCPH ⊆ QPH,
establishing that quantifying over unentangled quantum proofs is at least as powerful as
quantifying over classical proofs.

The central challenge in proving that QCPH ⊆ QPH is that the proofs in QPH are allowed
to be quantum states, which, upon measurement, give rise to a distribution over classical
strings. A flawed idea is to simply measure the quantum proofs to get classical proofs, and
then run the QCPH verification protocol with no modifications. Suppose, however, that
Alice has a winning strategy in the QCPH protocol, so she always has a winning response to
any classical proof that Bob sends. When simulating this in QPH, Bob can instead send a
quantum state – a superposition over many classical proofs – preventing Alice from sending
an optimal response. In particular, Alice may not know which response to send, since she
does not know which classical proof the verifier will observe upon measurement.

We prevent this potential cheating by requiring each player to send multiple copies of
each of their proofs. We prove that this is enough to force both players to send classical
strings with high probability.

▶ Theorem 26. PH ⊆ QCPH ⊆ QPH.

The exact error parameters for Theorem 26 are stated in Equation (3) below. In
particular, the reduction is only capable of producing a QPH instance with a constant
promise gap. However, the containment does hold for any QCPH instance with at least an
inverse-polynomial promise gap, due to known error reduction for QCPH [11].

Proof. Consider any level QCΣi of QCPH. We show that for any integer k ≥ 1,

QCΣi(c, s) ⊆ QΣ2ki

(
c
(
1 − 2−k

)
, s + 2−k (1 − s)

)
. (3)
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We simulate any QCΣi protocol in QΣ2ki as follows. After the first 2k turns, the verifier
has k proofs from Alice and k proofs from Bob, and the verifier discards all k proofs from
Bob. For the next 2k turns, the verifier repeats this process, except they keep Bob’s proofs
rather than Alice’s, which we denote by σ1,1, . . . , σ1,k. This is repeated i times in total until
all 2ki turns are over. At the end of the game, the verifier has kept the following ki proofs:

ρ1,1, . . . , ρ1,k, σ1,1, . . . , σ1,k, ρ2,1, . . . , ρ2,k, . . . .

For each chunk of k proofs, the verifier measures each quantum state in the standard basis
to get k classical strings. If all k classical strings are equal, we say that the player passed
the check, and failed otherwise. If a player fails any check, then the other player is declared
the winner. If both players pass all checks, then the verifier keeps one copy of each classical
proof from each chunk and runs the QCPH verification procedure to determine the winner.

Let A = (Ayes, Ano) be a promise problem in QCΣi(c, s), and let x be some fixed input.
If x ∈ Ayes, then Alice has no incentive to cheat and so we refer to her as the honest prover,
while if x ∈ Ano, then we consider Bob the honest prover. We will define a strategy for
the honest prover and show that no matter the strategy of the dishonest prover, the honest
prover will win high probability. In particular, the honest prover’s strategy will be to always
send classical proofs, and when replying to a dishonest prover’s proof ρ =

∑
j pj |j⟩⟨j|, the

honest prover will respond as if only the string ȷ̂ with the maximum probability pȷ̂ was sent
(we arbitrarily choose to break ties by lexicographic order).

If the dishonest prover fails any check, they lose, so we assume now that the dishonest
prover passes every check. Then, since both provers pass every check, the verifier has the i

classical proofs y1, . . . , yi, where the proofs with odd indices are from Alice and the others
are from Bob. In one case, suppose that each of the dishonest prover’s moves turns out to be
as the honest prover expected. Then the situation is identical to the original QCPH instance,
and so the honest prover wins with the probability of the original protocol.

In the second case, at least one chunk of k proofs (sampled independently from k

distributions) are equal to each other but not to the proof ȷ̂ expected by the honest prover.
Any string besides ȷ̂ has pj ≤ 1/2, so the probability of this case occurring, with all k samples
matching, is at most 2−k.

Therefore, in the QPH protocol, if x ∈ Ayes, Alice wins with probability at least c
(
1 − 2−k

)
.

If x ∈ Ano, then Bob wins with probability at least (1 − s)
(
1 − 2−k

)
, so Alice wins with

probability at most

1 − (1 − s)
(
1 − 2−k

)
= s + 2−k(1 − s).

To summarize, the dishonest prover is unable to affect the outcome of the game with more
than a small probability. We conclude that QCΣi ⊆ QΣ2ki, and therefore QCPH ⊆ QPH. ◀

6 Distribution Hierarchies

We introduce another generalization of the polynomial hierarchy where the provers send
probability distributions over bit strings. This gives rise to two new hierarchies: the distri-
butional polynomial hierarchy DistributionPH and its quantum analogue DistributionQCPH,
which is the same as DistributionPH but with a quantum verifier. We will focus primar-
ily on DistributionPH since the techniques used to analyze DistributionPH will work for
DistributionQCPH as well.

CCC 2024



6:18 The Entangled Quantum Polynomial Hierarchy Collapses

DistributionPH is similar to all of the hierarchies studied in this work. In DistributionPH,
the distributions are public (the provers have full knowledge of the distributions that have
been sent), but none of the distributions are sampled until every distribution has been
sent. One can think of this as a non-interactive game, where the players use public, mixed
strategies. Importantly, the distributions are not correlated across rounds.

While DistributionPH is a classical complexity class, our motivation for studying it is to
further understand the quantum polynomial hierarchies. In particular, DistributionPH involves
proofs that are classical mixtures of bit strings. This complements pureQPH, where the proofs
are quantum superpositions of bit strings, and QPH, where the proofs are both (classical
mixtures of quantum superpositions). Does the computational power of the polynomial
hierarchy increase when the proofs only involve classical probability distributions? Or does
the increased computational power come only from the quantum superposition allowed in
QPH and pureQPH? In this section, we resolve these questions.

▶ Theorem 27. DistributionPH = PH.

That is, if the proofs are distributions over classical proofs, PH does not increase in power.
The proof of Theorem 27 relies on a technical lemma that says the distributions sent in
DistributionPH can be sparse and uniform. This lemma generalizes a result due to Lipton
and Young [24] and Althöfer [3].

In the remainder of this section, we will formally define DistributionPH, prove the technical
lemma, and prove Theorem 27. Finally, we will discuss DistributionQCPH (the same as
DistributionPH but with a quantum verifier) and the power of classical versus quantum
proofs.

We begin by formally defining DistributionPH. Let Dm denote the set of all probability
distributions over {0, 1}m. For a computation M which takes length-m strings as input and
a distribution ρ ∈ Dm, let M(ρ) implicitly refer to M(y) for y ∼ ρ, and any probability or
expectation expressed in terms of M(ρ) implicitly incorporates this sampling.

▶ Definition 28 (i-th level of the distribution polynomial hierarchy (DistributionΣi)). A promise
problem L = (Lyes, Lno) is in DistributionΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a classical polynomial-time randomized Turing Machine M

such that
Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [M(ρ1, . . . , ρi) = 1] ≥ c,
Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [M(ρ1, . . . , ρi) = 1] ≤ s,

where each ρk is a distribution in Dm for some polynomially-bounded m, and each ρk is
independent. Qi is ∃ if i is odd and ∀ otherwise, and Qi is the complement of Qi. When the
completeness/soundness parameters are not specified, define

DistributionΣi :=
⋃

c−s∈Ω(1)

DistributionΣi(c, s). ⌟

▶ Definition 29 (The distribution polynomial hierarchy (DistributionPH)). The distribution
polynomial hierarchy is defined as

DistributionPH =
∞⋃

i=0
DistributionΣi. ⌟

We make a few comments on our definition of DistributionPH. If we defined DistributionPH
without the bounded-error condition (i.e., no error probability), then it would be equal to PH.
We will also generally leave the input x implicit. Finally, if one prefers, they can equivalently
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think of the provers sending quantum mixed states that are immediately measured in the
computational basis (instead of probability distributions that are immediately sampled).
This is why we choose to denote the probability distributions as ρi in our definition.

As we discussed in Section 3 for QEPH, one can think of DistributionPH as a game, where
two competing provers take turns sending distributions over bit strings to a verifier. Then the
verifier M draws one sample from each distribution and runs a polynomial-time randomized
algorithm to determine a winner. Additionally, just like with QEPH, we can express the
acceptance probability of the verifier as the following optimization problem:

Pr[M accepts] = max
ρ1∈Dm

min
ρ2∈Dm

. . . Qi

ρi∈Dm

E[M(ρ1, . . . , ρi)],

where Qi denotes max if i is odd and min otherwise. The expectation is over the randomness
in the distributions ρ1, . . . , ρi. Note that since M(ρ1, . . . , ρi) is a Bernoulli random variable,
E[M(ρ1, . . . , ρi)] = Pr[M(ρ1, . . . , ρi) = 1].

The distributions sent in DistributionPH are over {0, 1}m for some polynomially-bounded
m, so, in general, the support can be exponentially large in m. We will prove a technical
lemma that says the provers can send uniform distributions over poly(m) bit strings without
changing the outcome of the game too much.

▶ Lemma 30. For any constant k ∈ N and any classical randomized Turing Machine M

accepting k length-m inputs, if

max
ρ1∈Dm

min
ρ2∈Dm

max
ρ3∈Dm

. . . Qk

ρk∈Dm

Pr [M(ρ1, . . . , ρk) = 1] = v,

then for any constant ϵ > 0,

max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − kϵ, v + kϵ],

where ti := ⌈m2i/2ϵ2⌉, Ut denotes the set of uniform distributions over multi-sets of size
at most t of strings in {0, 1}m, and Qk denotes max if k is odd and min otherwise. The
complement of this result also holds (i.e., when the sequence starts with min instead of max).

Proof. We will prove the claim by induction. The base case k = 2 is precisely [24, Theorem 2]
(see also [3]). Our contribution is to generalize their result to larger k.

By way of induction, suppose the claim holds for k − 1, and consider an instance with k

rounds:

v := max
ρ1∈Dm

min
ρ2∈Dm

max
ρ3∈Dm

. . . Qk

ρk∈Dm

Pr [M(ρ1, . . . , ρk) = 1] .

Because the complement of this result (where a min is first instead of a max) follows in the
same way, we omit the details.

Fix ρ1 to a distribution that maximizes the acceptance probability (and think of ρ1 as
hardcoded into the input). Consider the inner k −1 distributions ρ2, . . . , ρk. By the inductive
hypothesis, we can simplify these distributions to

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ,

while only changing the acceptance probability v by ±(k − 1)ϵ. In particular, we have that

v′ := max
ρ1∈Dm

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − (k − 1)ϵ, v + (k − 1)ϵ].
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We want to show that we can simplify the first distribution ρ1 in a similar fashion. Specifically,
we want to show

v′′ := max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − kϵ, v + kϵ].

Observe that choosing ρ1 from Utk
instead of Dm can only hurt the maximizing player.

That is, the probability that M accepts can only decrease, so v′′ ≤ v′ + ϵ ≤ v + kϵ is trivial.
All that remains is to show that v′′ ≥ v −kϵ. To prove this, it suffices to show that v′′ ≥ v′ −ϵ.

Let ρ∗
1 ∈ Dm be a distribution that maximizes the acceptance probability of M . Form a

multi-set S by drawing tk independent samples from ρ∗
1. Consider a string y ∈ S. This gives

rise to a random variable on the interval [0, 1]:

E
ρ2,...,ρk

[M(y, ρ2, . . . , ρk)],

where we are taking the expectation over optimal choices of ρ2, . . . , ρk. In expectation over
ρ∗

1, we have

E
y∼ρ∗

1

[
E

ρ2,...,ρk

[M(y, ρ2, . . . , ρk]
]

= v′.

Therefore, by Hoeffding’s inequality (Fact 7),

Pr

 1
|S|
∑
y∈S

E
ρ2,...,ρk

[M(y, ρ2, . . . , ρk)] ≤ v′ − ϵ

 ≤ exp
(
−2tkϵ2) .

To complete the proof, we must count the number of sequences of distributions the
minimizing player can send. The minimizing player sends at most k/2 of the distributions
ρ2, . . . , ρk, each of which is a uniform distribution over at most tk−1-sized subsets of {0, 1}m.
Therefore, in total, there are at most(

tk−1∑
i=1

(
2m

i

))k/2

≤

(
tk−1∑
i=1

2im

)k/2

≤
(
tk−12mtk−1

)k/2 = t
k/2
k−12kmtk−1/2

possible sequences. We want to choose tk so that

exp
(
−2tkϵ2) <

1
t
k/2
k−12kmtk−1/2

, (4)

which would imply that strictly less than 1 of the minimizing player’s sequences of distributions
can decrease v′ by more than ϵ. Or, more directly, it would imply that there are no sequences
the minimizing player can send to decrease v′ by more than ϵ. We will show that choosing
tk = m2k/2ϵ2 suffices. Substituting the definitions of tk and tk−1, Equation (4) becomes

exp
(
−m2k

)
<

ϵk

mk(k−1) 2
k
2 − km2k−1

4ϵ2 ⇐⇒ exp
(
−m2k

) mk(k−1)

ϵk
2

km2k−1
4ϵ2 − k

2 < 1. (5)

We show that the inequality in Equation (5) holds, which proves that our setting of tk is
correct.

exp
(
−m2k

) mk(k−1)

ϵk
2

km2k−1
4ϵ2 − k

2 < exp
(
−m2k

)
mk2

2
km2k−1

4ϵ2 − k
2

< mk2
2

km2k−1
4ϵ2 − k

2 −m2k

= mk2
2m2k−1( k

4ϵ2 − k

2m2k−1 −m)

< mk2
2−m2k−1

< 1.
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The first inequality holds because mk > ϵ−k for constant ϵ > 0. The second-to-last inequality
holds because

(
k

4ϵ2 − k
2m2k−1 − m

)
< −1 for constant ϵ > 0.

We conclude that v′′ ≥ v′ − ϵ ≥ v − kϵ, which completes the proof. ◀

We can now prove that DistributionPH = PH.

Proof of Theorem 27. PH ⊆ DistributionPH follows from the proof that PH ⊆ QPH. This
only achieves containment in DistributionPH with constant promise gap, and it puts the k-th
level of PH in some higher level of DistributionPH (see Theorem 26 for more detail).

To show DistributionPH ⊆ PH, we use Lemma 30. Set ϵ < 1
12k . For DistributionΣk,

Lemma 30 implies that

max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−3

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk)] ∈ [v −kϵ, v +kϵ] ⊆
[
v − 1

12 , v + 1
12

]
.

Given the DistributionΣk promise gap of 2
3 , 1

3 , this modified game has a promise gap of 7
12 , 5

12 .
We simulate this in PH as follows. To send the distribution ρi, the prover sends every

string in the support of ρi, which is only poly(n) many bits by Lemma 30. The verifier can
then take the list of strings and sample one uniformly at random. This completes the proof
since PH can simulate randomness [30, 23]. ◀

One can also define DistributionQCPH in the same way, and it follows from Theorem 27
that this class is equal to QCPH.

▶ Corollary 31. DistributionQCPH = QCPH.

The only difference between DistributionQCPH and pureQPH is that the former involves
proofs that are classical distributions over bit strings and the latter involves proofs that
are quantum superpositions over bit strings. DistributionQCPH = QCPH is in the counting
hierarchy [11], while the best known upper bound for pureQPH is EXPPP [2] and it contains
QMA(2) and QPH. The conceptual takeaway is that it is only the quantum superposition in
the proofs that gives the quantum hierarchies more computational power.

We also remark that if one allows the distributions in DistributionPH and DistributionQCPH
to be correlated, then the techniques in Lemma 22 can be used to collapse the resulting
hierarchies to the second level. The correlated version of DistributionPH collapses to S2P. The
correlated version of DistributionQCPH collapses to a quantum-classical version of QRG(1),
which, to our knowledge, has never been studied.
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