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Abstract
The following question arises naturally in the study of graph streaming algorithms:

Is there any graph problem which is “not too hard”, in that it can be solved efficiently with total
communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming
algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial nΩ(1) number of
passes?

Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case.
However, the lower bounds that they obtained are for rather non-standard graph problems.

Our first main contribution is to present the first polynomial-pass lower bounds for natural “not
too hard” graph problems studied previously in the streaming model: k-cores and degeneracy.
We devise a novel communication protocol for both problems with near-linear communication, thus
showing that k-cores and degeneracy are natural examples of “not too hard” problems. Indeed,
previous work have developed single-pass semi-streaming algorithms for approximating these problems.
In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires
(almost) Ω(n1/3) passes.

The lower bound follows by a reduction from a generalization of the hidden pointer chasing
(HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming
lower bounds.

Our second main contribution is improved round-communication lower bounds for the
underlying communication problems at the basis of these reductions:

We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal
bounds for this problem.
We further observe that all current reductions from HPC can also work with a generalized version
of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound
for this generalization.

These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming
algorithms by a polynomial factor, namely, from n1/5 to n1/3 passes.
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1 Introduction

Graph streaming algorithms process their inputs by making one or few passes over the
edges of an input graph using limited memory. Algorithms that use space proportional to
n, the number of vertices, are called semi-streaming algorithms. Since their introduction
by [36], graph streaming algorithms have become one of the main theoretical research areas
on processing massive graphs. We refer the interested reader to [53] for an introductory
survey of earlier results on this topic.

In this work, we prove a polynomial-pass lower bound for any graph streaming algorithm
that computes k-cores or degeneracy of a given graph. Our result is of interest from the
point of view of proving strong lower bounds in the graph streaming model in addition to
their direct implications for these two specific problems.

1.1 Polynomial Pass Lower Bounds in Graph Streams
Even though the study of multi-pass graph streaming algorithms started hand in hand with
single-pass algorithms in [36], our understanding of powers and limitations of multi-pass
algorithms, even for most basic problems, lags considerably behind. On one hand, for a
problem like minimum cut, we have algorithms that in just Õ(n) space and two passes
can solve the problem exactly [8]1 (see [7, Table 1] for a list of several such results). On
the other hand, for some other basic problems such as undirected shortest path, directed
reachability, and bipartite matching, the best known semi-streaming algorithms require
O(n1/2) [23], n1/2+o(1) [10,51], and n3/4+o(1) [10] passes, respectively; yet, despite significant
efforts, the best lower bound for any of these problems is still (even slightly below) Ω(log n)
passes [14,22,25,40].

A key reason behind our weaker understanding of multi-pass streaming algorithms can
be attributed to the lack of techniques for proving super-logarithmic pass lower bounds for
semi-streaming algorithms. At this point, such lower bounds are only known for a handful

1 See [61] for an implicit algorithm with the same bounds and [55] for the extension to weighted cuts in
O(log n) passes.
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of problems: clique and independent set [41], dominating set [1], Hamiltonian path [15],
maximum cut [15, 46], vertex cover and coloring [3], exact Boolean CSPs [46], triangle
detection [17,58], and diameter computation [37]. Although, for all these problems, we can
actually prove close-to-n pass lower bounds. Let us examine this dichotomy.

A quick glance at the list of problems above may suggest an intuitive difference between
these problems and the ones like reachability or shortest path: the above list consists of
problems that are computationally hard in a classical sense2, suggesting that we are dealing
with a “harder” class of problems in their case. While this intuition should not be taken
as a formal evidence – as classical computational hardness does not imply streaming lower
bounds (which are unconditional and information-theoretic) – [7] showed that one can also
formally explain this dichotomy.

In particular, [7] observed that these strong streaming lower bounds happen only when the
communication complexity of the problem at hand is Ω(n2). Such a high lower-bound on the
communication complexity immediately gives an Ω̃(n)-pass lower bound for semi-streaming
algorithms via standard reductions. Whereas, for almost all problems of interest in the
semi-streaming model, including shortest path, reachability, and bipartite matching, we
already know an Õ(n) communication upper bound3 (the protocol for bipartite matching
was only discovered in [20] after the work of [7], but Õ(n3/2) communication protocols were
known already [31,42]). We refer the reader to [7, Section 1.1] for more context regarding
these observations and prior techniques for o(log n) pass lower bounds.

Toward Stronger Streaming Lower Bounds
A natural question in light of these observations, already posed in [7], is the following:

Motivating question. Is there any graph problem which is “not too hard”, in that
it can be solved efficiently with communication (nearly) linear in the number n of
vertices, and for which, nonetheless, any semi-streaming algorithm needs a polynomial
nΩ(1) number of passes?

To address this question, [7] introduced a new (four-player) communication problem called
Hidden Pointer Chasing (HPC), which acts as a cross between Set-Intersection and
Pointer Chasing problems, which are the main problems for, respectively, proving Ω(n2)
communication lower bounds on graphs, and o(log n)-pass lower bounds for semi-streaming
algorithms.

Roughly speaking, the HPC problem is defined as follows. There are four players paired
into two groups. Each pair of players inside a group shares m instances of the Set-Intersection
problem on m elements (each of the two players holds a subset of [m] and they need to
identify the unique intersecting element). The intersecting element in each instance of each
group “points” to an instance in the other group. The goal is to start from a fixed instance,
follow these pointers for a fixed number of steps, and then return the last element reached.
See (full version [9], Definition 3.3) for the formal description.

This problem admits an efficient communication protocol with no limit on its number of
rounds, but [7] showed that any r-round protocol that aims to find the (r + 1)-th pointer in
HPC requires Ω(m2/r2) communication. This places HPC squarely in the middle of previous

2 These are standard NP-hard problems or admit some fine-grained hardness (for the latter two) [47, 60].
3 This perhaps can be seen as this: a problem whose (unbounded round) communication complexity is

already high has almost no place in the streaming model, which is a much weaker model algorithmically.
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techniques and quite suitable for performing reductions to prove streaming lower bounds even
for not-too-hard graph problems. Using this, [7] proved the first set of polynomial-pass graph
streaming lower bounds in this class of problems: computing lexicographically-first maximal
independent set (LFMIS) and s-t minimum cut on graphs with exponential edge-capacities
both require Ω̃(n1/5) passes to be solved by semi-streaming algorithms.

Despite the significant advances on multi-pass streaming lower bounds in the last couple of
years [2,11–14,22,25–27,46], there is still no other known (not-too-hard) problem that admits
a polynomial-pass lower bounds beside those of [7]. In addition, it is worth mentioning that,
strictly speaking, neither LFMIS nor the version of s-t minimum cut in [7] completely fit the
premise of our original question: LFMIS is not purely a graph problem as it is not invariant
under labeling of the vertices, and s-t minimum cut studied in [7] involves (i) making the
non-standard assumption of exponential capacities, and (ii) even for unit-capacity graphs, is
not known to admit an Õ(n) communication protocol (see [20]).

We prove polynomial-pass lower bounds for two natural graph problems, k-cores and degen-
eracy, by reduction from a harder variant of the HPC problem which we call MultiHPC. We
also present novel Õ(n) communication protocols for these two problems. These two results
together give us the first natural instances of a positive answer to our motivating question.

These results further demonstrate the power of reductions from the HPC problem, as a
technique for proving strong lower bounds in the graph streaming model, which are beyond
the reach of other techniques. With this in mind, we improve the lower bound of [7] for the
HPC problem to an optimal bound of Ω(m2/r) communication, i.e., we improve the known
bound by a factor of r. This contribution alone results in a polynomial improvement in the
number of passes, for all lower bounds that follow via reductions from HPC (for instance, it
immediately improves the bounds of [7] for LFMIS and exponential-capacity s-t minimum
cut to Ω̃(n1/4) passes).

But, as it turns out, all the known lower-bounds that follow by reduction from HPC also
follow by reduction from MultiHPC. For this variant, we can prove an Ω(m2) lower-bound
for r rounds (since the input size for MultiHPC is r · m2), and this translates to an improved
semi-streaming lower-bound of Ω̃(n1/3) passes for all of the above problems.

1.2 k-Cores and Degeneracy in Graph Streams
For any undirected graph G = (V, E) and integer k ⩾ 1, a k-core in G is a maximal set S of
vertices such that the induced subgraph of G on S, denoted by G[S], has a minimum degree
of at least k. In other words, any vertex in S has at least k other neighbors in S.

k-Cores provide a natural notion of well-connectedness in massive graphs, and as such,
computing k-cores (and more generally k-core decompositions; see, e.g., [50]) has been widely
studied in databases [21,28,49], social networks [29,30,44], machine learning [6,33,39], among
others [38,48,62].

As a result, in recent years, there has been a rapidly growing body of work on computing k-
cores on massive graphs in parallel and streaming models of computation [29,30,33,39,50,62].
In particular, [33] presented a single-pass algorithm that for any ε > 0, computes a (1 − ε)-
approximation of every k-core in G (i.e., obtains a (1 − ε)-approximate k-core decomposition)
in Õ(n/ε2) space (see also [62] for an earlier streaming algorithm and [39] for a closely related
parallel algorithm).

The degeneracy of a graph G = (V, E), denoted by κ(G), is the largest integer k ⩾ 0 such
that G contains a non-empty k-core. The simple greedy algorithm that at every step peels
off the smallest degree vertex results in the so-called degeneracy ordering of G and κ(G)
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is equal to the largest degree of a vertex removed in this peeling process [52]. Degeneracy
is a standard measure of uniform sparsity and is closely related to other such notions like
arboricity (which is within a factor 2 of degeneracy). Moreover, computing degeneracy
is a subroutine for approximating various other problems such as arboricity [5], densest
subgraph [24], (κ + 1) coloring [32].

The degeneracy problem, and closely related uniform-sparsity measures such as densest
subgraph, have also been studied extensively in the graph streaming literature [4, 16, 18,
19,34, 35,54]. In particular, [34] provided an O(log n)-pass semi-streaming algorithm that
outputs a constant factor approximation to degeneracy, and [35] subsequently improved this
to a single-pass (1 − ε)-approximation in Õ(n/ε2) space (see also [54] for densest subgraph
and [4,18] for degeneracy coloring).

In terms of lower bounds, [18] prove that any single-pass streaming algorithm that
computes the exact value of degeneracy or approximates it within an additive factor of λ

requires Ω(n2) space or Ω(n2/λ2) space respectively. Our polynomial-pass lower bounds for
k-cores and degeneracy, now in a very strong sense, rule out the possibility of extending
any prior semi-streaming algorithms computing near-optimal solutions to these problems, to
compute exactly optimal solutions.

1.3 Our Results
We give an informal presentation of our results here. The details can be found in the full
version [9]. The first main result is our polynomial-pass lower bound for k-core computation
and degeneracy.

▶ Result 1 (Formalized in full version [9], Theorem 5.1). For any integer p ⩾ 1, any p-pass
streaming algorithm for computing the degeneracy of an input n-vertex graph requires
Ω̃(n2/p3) space. In particular, any semi-streaming algorithm for the problem requires
Ω̃(n1/3) passes.
Moreover, the same lower bounds also apply to the algorithms that given any integer
k ⩾ 1, can check whether or not the input graph contains a non-empty k-core.

Result 1 provides a strongly negative answer to the question of obtaining semi-streaming
algorithms for exact computation of degeneracy and k-cores in a small number of passes.
We obtain Result 1 via a detailed and technical reduction, presented in Section 5 of the full
version [9], from a variant of the Hidden Pointer Chasing (HPC) problem of [7], which we
call Boolean Multilayer Hidden Pointer Chasing (BMHPC).

In a standard HPC problem, we are given m instances of m-bit Set-Intersection (O(m2)
bits in total) and interpret the intersection point of each instance as pointing to a different
instance among these m. We then wish to know the position we end up in after following
r + 1 pointers. In a Boolean variant, we only care to know the parity of the position we
end up in. In a Multilayer variant, we are given r different layers, each layer with its own
m instances (rm2 bits in total), where we think of the intersection points at each layer as
pointing to some instance in the next layer, and wish to know where we end up in the last
layer by following these pointers.

In addition to the reduction from BMHPC, in Section 6 of the full version [9], we present
a novel and non-trivial communication protocol that finds the degeneracy ordering (and thus
degeneracy itself) and non-empty k-cores for any given k, using only Õ(n) communication.
This communication upper bound thus places the k-core and degeneracy problems as perfect

CCC 2024
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illustrations of a positive answer to our and [7]’s motivating question outlined earlier: namely,
problems that prior techniques could not have proven any lower bound beyond log n passes.
Result 1 thus constitutes the first set of natural graph problems with polynomial pass lower
bounds for semi-streaming algorithms.

Our second main contribution is providing optimal lower bounds for the HPC problem and
all its variants (Boolean, Multilayer, and Boolean Multilayer). A communication lower-bound
of Ω( m2

r2 ) was previously known for (r − 1)-round protocols computing the r-th pointer in a
(single layer) HPC problem. We prove the following.

▶ Result 2 (Formalized in full version [9], Theorem 4.2). For any integer 1 ⩽ r = O(
√

m),
any (r − 1)-round protocol for computing the r-th pointer in the HPC problem on a
universe of size m requires Ω̃(m2/r) communication.

For any integer r ⩾ 1, any (r − 1)-round protocol for computing the r-th pointer in the
Multilayer HPC problem on a universe of size m requires Ω̃(m2) communication.

Moreover, the same lower bounds hold for the Boolean versions of the above.

Result 2, by strengthening the lower bound of [7], allows us to prove polynomially stronger
bounds on the number of passes of semi-streaming algorithms via reductions from HPC. As
it turns out, every known reduction from HPC [7] can be easily converted to a reduction
from MHPC. Our results thus imply improved pass lower bounds (from Ω̃(n1/5) to Ω̃(n1/3))
for semi-streaming algorithms solving these problems. We capture this in the next corollary.

▶ Corollary 1. For any integer p ⩾ 1, any p-pass streaming algorithm for the following
problems on n-vertex graphs requires Ω̃(n2/p3) space. In particular, any semi-streaming
algorithm for these problems require Ω̃(n1/3) passes.

Computing the minimum s-t cut value in a weighted graph (with exponential edge capacities)
Computing the lexicographically-first maximal independent set (LFMIS) of an undirected
graph

We obtain Result 2 by following the elegant analysis of pointer chasing problems due
to [63] via the triangular discrimination distance between distributions, as opposed to more
standard measures such as KL-divergence and total variation distance typically used in this
context. This in turn requires extending the notion of “almost solving” for the Set-Intersection
problem introduced by [7] (and further refined in [14]), to the triangular discrimination
distance: roughly speaking, this corresponds to proving a lower bound for communication
protocols that, instead of finding the intersecting element, change its distribution slightly
from uniform distribution. The analysis in [7] measured this change by total variation
distance, but now we need to do so by triangular discrimination distance instead. Finally,
we prove a nearly-optimal lower bound on the communication-distance tradeoff for almost
solving Set-Intersection in terms of the triangular discrimination distance.

2 Overview

In this version, we only present a high-level and informal overview of our techniques and
proofs. All the technical details and formal proofs are available in the full version [9].
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2.1 Hidden Pointer Chasing

The Multilayer Hidden Pointer Chasing (MHPC) problem, the starting point of our reductions,
is defined as follows. The problem operates on two disjoint universes X = {x1, . . . , xm} and
Y = {y1, . . . , ym}. There are four players PA, PB , PC , PD, out of which PA and PB each hold
rm subsets of Y, called Aj

x and Bj
x for x ∈ X and j ∈ [r], and PC and PD each hold rm

subsets of X , called Cj
y and Dj

y for y ∈ Y and j ∈ [r], with the promise |Aj
x ∩ Bj

x| = 1 and
|Cj

y ∩ Dj
y| = 1 for every j ∈ [r], x ∈ X and y ∈ Y . This means that each pair of sets of two of

the players, e.g. Aj
x and Bj

x defines a pointer {y} = Aj
x ∩ Bj

x, which we think of as pointing
to the pair of sets in the next layer, Cj+1

y and Dj+1
y , belonging to the other two players.

Following these pointers, and writing a singleton set as the element it contains, we define
a sequence z0 = x1, z1 = A1

z0
∩ B1

z0
, z2 = C2

z1
∩ D2

z1
, z3 = A3

z2
∩ B3

z2
, etc. In the MHPCm,r

problem, the players wish to learn zr. In the BMHPCm,r problem, the players only need to
learn one bit about zr, that is, b(zr) := i mod 2 where i is the index of zr in X or Y. Now,
there is a very obvious way of doing this in r rounds, if the correct pair of players start: the
players just follow the pointers, solving the necessary Set-Intersection instances. This costs
them r rounds with O(m) bits of communication per round, for a total of rm bits. However,
we will show:

▶ Theorem 2. Any randomized protocol with less than r rounds, or even any randomized
protocol with r rounds which is misaligned, in that the “wrong” pair of players starts to speak,
cannot solve BMHPCm,r correctly with fewer than Ω(m2) bits of communication.

This theorem is proven by combining ideas from three different previous works: [7], [14],
and [63]. But first, let us give an overall intuition for why it should be expected to hold.

In a misaligned r-round protocol for BMHPCm,r, it is players PC and PD who begin the
protocol by talking with each other. This means that the “wrong” pair of players begin to
speak, in the sense that they wish to compute the value {z1} = A1

1 ∩ B1
1 , but this instance is

with PA and PB , so they have no way to do this. So the first round cannot say anything about
z1: the best PC and PD can do is send some information about all of their Set-Intersection
instances, without knowing which one is important. This means that each bit that PC and
PD communicate with PA and PB in the first round can only reveal 1

m bits of information
about the average instance. But now in the next round, PA and PB, although they know
z1, cannot have learned much information about C2

z1
or D2

z1
. But then, how can they say

anything about {z2} = C2
z1

∩ D2
z1

? The difficult situation is now reversed! This “always one
step behind” situation is similar to what happens for pointer chasing [57,59, 63], except now
the pointers are “hidden” behind set intersection instances.

A previous paper of Assadi, Chen and Khanna [7] showed a lower-bound of Ω(m2

r2 ) for
the (single layer) Hidden Pointer Chasing problem HPCm,r, which is a version of MHPCm,r

where all the layers are identical (Aj
i , Bj

i , Cj
i , Dj

i is the same for all j ∈ [r]). The lower-bound
was proven via an information-theoretic argument. They first show that any low-round
protocol for HPC must be “almost solving” a set intersection instance on one of the rounds.
They then show that this is impossible via an information complexity argument, akin to the
lower-bound on the information complexity for set disjointness. However, a later paper by
Assadi and Raz [14] directly showed that any protocol that “almost solves” set intersection
can be used to obtain a protocol that exactly solves set intersection (hence the term “almost
solving”). This would allow us to replace the ad hoc information complexity argument
in [7], and instead appeal, in a black-box fashion, to a previously known lower-bound on the
information complexity of Set-Intersection [43].

CCC 2024
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One could take these previous lower-bounds for HPCm,r, and prove a lower-bound of Ω( m2

r )
for MHPCm,r, but not the lower-bound of Ω(m2) which we obtain here. The insufficiency
of these previous proofs comes from the notion of “almost solving” that is used. There,
a protocol is said to “almost solve” Set-Intersection if the distribution of the intersection
point is sufficiently changed by the knowledge gained from the protocol’s execution. More
precisely, if the distribution of the intersection point µ(A∩B | Π), conditioned on knowing the
transcript Π, is sufficiently far away, in total variation distance (TVD), from the distribution
of the intersection point µ(A ∩ B), as it is known before the protocol begins. The quadratic
margin in terms of r is ultimately a result of the quadratic loss between TVD and Shannon
information, in the use of Pinsker’s inequality.

This same issue was the cause of a decades-long open problem on the complexity of
(non-hidden) pointer chasing. Nisan and Wigderson proved in 1991 [56] that any r-round
protocol for pointer chasing, where the wrong player starts, needs to communicate ω( m

r2 ) bits.
But there is a simple upper bound of O(m

r ). In 2000, Klauck [45] gave a non-constructive
proof of a matching lower-bound. That is, he showed that the randomized communication
complexity is indeed Ω(m

r ), but without providing a hard distribution, which must exist
via Yao’s Principle. This problem remained open until 2019, when Yehudayoff [63] showed
that the distributional complexity of pointer chasing is Ω( m

r ) under the uniform distribution,
whenever r ≪

√
m. The proof used a measure of information called triangular discrimination,

which had never before been used in the lower-bounds literature.
Thus, being simultaneously aware of the three works of [7], [14], and [63], one is naturally

led to ask if they can be combined in such a way as to improve the m2

r2 lower bound for HPC,
to m2

r ? And could we then prove a lower bound of Ω(m2) for Multilayer HPC?
This turns out to be the case. We are not only able to prove Theorem 2, but we also

improve the lower bound for (single layer) HPC:

▶ Theorem 3. Let r = O(
√

m). Then, any randomized protocol with less than r rounds, or
even any misaligned randomized protocol with r rounds, cannot solve BHPCm,r correctly with
fewer than Ω( m2

r ) bits of communication.

The key insight in the new lower bounds is that the notion of “almost solving” an instance
of Set-Intersection can be adapted to use triangular discrimination instead of TVD. Two
issues then need to be addressed.

First, we must show that a low-round protocol for HPC or MHPC must be “almost solving”
(in the new sense) an instance of Set-Intersection in one of the rounds. The proofs follows
the general outline of [7], but need to be adapted to use triangular discrimination instead of
TVD. To see that it works, one must first understand that triangular discrimination obeys a
property analogous to TVD, saying that the expected value of f(x), when x is sampled by
some distribution µ, is not too far from the expected value of f(x) when x is sampled by a
different distribution ν, if µ and ν are close with respect to triangular discrimination. This is
obvious for TVD, but not as obvious for triangular discrimination. It is also not obvious how
to adapt the proof to Multilayer HPC, in a way that works for any number of rounds r ⩽ m.

Second, we must show that a low-information protocol that “almost solves” (in the new
sense) Set-Intersection can still be used to obtain a low-information protocol that exactly
solves Set-Intersection. The proof is similar to [14]. In that paper, a reduction is given
which solves a given Set-Intersection instance by sampling O(1) runs of a protocol that
“almost solves” Set-Intersection in terms of TVD. We reinterpret their reduction as using the
almost-solving protocol to assign scores to elements (predicting how likely they are to be the
intersecting element), and come up with a new scoring function which allows a reduction
from set intersection to almost-solving with respect to positive triangular discrimination.
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2.2 Reduction to Degeneracy

We give a high-level overview of the key idea behind the reduction from BMHPC to the
streaming problem of finding the graph degeneracy. First, suppose that we want to show a
streaming lower bound for the harder problem of finding a degeneracy ordering. In the classical
offline setting, we can obtain such an ordering by the peeling algorithm that recursively
removes the min-degree node from the graph and appends it to the end of the ordering. But
naively implementing this algorithm in the semi-streaming setting seems difficult since it is
inherently sequential. We can store the degree of each node in semi-streaming space and find
the min-degree node v in the graph. After we remove v, we need to find a min-degree node v′

in the new graph G \ {v}. But at the beginning of the stream, we did not know which node
v is, and hence might not have stored enough of its neighbors so as to update their degrees
and find v′. Hence, naively, we need to make a new pass for each peeled vertex, which takes
Θ(n) passes in total for an n-node graph. One might wonder whether any semi-streaming
algorithm for degeneracy ordering would need close to these many passes. If so, how do we
prove it?

Consider just the basic problem of finding a min-degree node in an n-node graph, which
is the primitive for finding a degeneracy ordering. It can be shown via a simple reduction
that a streaming algorithm for this problem can be used to solve SetIntn, the Set-Intersection
communication problem with universe size n. As noted above, finding the degeneracy ordering
translates to finding a sequence of nodes that have smallest degree in the remaining graph.
This means we can use it to basically solve a sequence of SetIntΘ(n) instances. These instances
are, however, not independent. The solution to the first instance gives a min-degree node in
the original graph, whose removal leads to the second instance; solving this instance reveals
the third instance, and so on and so forth. This gives a flavor of a combination of SetInt and
pointer chasing, where each pointer is revealed by solving a SetInt instance corresponding to
the previous pointer. This is precisely the concept behind HPC (or MHPC for that matter)!
Hence, it is plausible that the degeneracy ordering problem can be reduced from MHPC, and
we embark on the journey to find such a reduction.

Recall the definition of MHPC from Section 2.1. Given an instance of MHPC, we construct
the following layered graph with r + 1 layers L0, . . . , Lr. Each layer has m nodes: the nodes
in the even layers correspond to xi’s and the ones in the odd layers correspond to yi’s. The
edges of the graph are always between two consecutive layers. The players PA and PB encode
the sets A1

xi
and B1

xi
by adding edges between L0 and L1. Consider the following encoding:

for each i, j ∈ [m], if yj ∈ A1
xi

, then PA adds an edge from the ith node in L0 to the jth
node in L1. PB does the analogous construction for the elements in B1

xi
(note that this can

lead to parallel edges). PC and PD encode the sets C2
yi

and D2
yi

by adding edges between L1
and L2 in the analogous way. Again, PA and PB encode A3

yi
and B3

yi
with edges between L2

and L3, and this proceeds alternately until the relevant players add the edges between Lr

and Lr+1.
Let v0 be the first node in L0; recall that it corresponds to x1 = z0. Assume that v0 is

the min-degree node in the graph with deg(v0) = d − 1 and all other nodes have the same
degree d. Again, recall that z1 = A1

z0
∩ B1

z0
. By construction and by the unique-intersection

promise of the SetInt instances of MHPC, v0 has two parallel edges to the node representing
z1 in L1; call this node v1. To all other nodes in L1, v0 has at most one edge. Hence, when
the peeling algorithm deletes v0 from the graph, only the degree of v1 drops by 2, i.e., deg(v1)
becomes d − 2; all other nodes have at most a drop of 1 in degree, i.e., have degree ⩾ d − 1.
Thus, v1 becomes the new min-degree node in the graph. Now, when v1 is deleted, by similar
logic, the node v2 in L2, corresponding to the element z2 = C2

z1
∩ D2

z1
, becomes a min-degree
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node in the remaining graph with deg(v2) = d − 2. However, now some node in L0 might
also have degree d − 2; this is the case when z1 = A1

xi
∩ B1

xi
for some i ̸= 1 as well. Now

assume that the peeling algorithm breaks ties by choosing a node in the highest layer among
all min-degree nodes (and arbitrarily within the highest layer). Then, indeed it chooses v2
as the next node to peel (since it is the unique min-degree node in L2, again by the SetInt
promise). Thus, it follows inductively that the ith iteration of the peeling algorithm removes
the node corresponding to zi−1 in Li−1. Hence, the (r + 1)th node in the degeneracy ordering
can be used to identify zr.

The above high-level idea has quite a few strong assumptions. The challenge is now to
get rid of them. We list these challenges and then describe how we overcome them.

(i) The constructed graph has parallel edges. Then the reduction would only prove a lower
bound against algorithms that can handle multigraphs, which is much weaker than a
lower bound against algorithms that work on simple graphs.

(ii) We assume that the tie-breaking is done by the peeling algorithm so as to pick a
vertex in the highest layer. It is not at all clear how to get rid of this assumption in a
straightforward way.

(iii) We also assume that we can set the initial degrees in such a way that v0 has degree d−1
and all other nodes have degree d. It is not clear that we can do this while preserving
the relevant properties of the construction.

(iv) Even if we can overcome the above challenges and the reduction goes through, then
we prove a lower bound for finding degeneracy ordering, which is (at least formally)
harder than the problem of finding the degeneracy value. Ideally we would like to show
the lower bound for the simplest variant of the problem: checking whether degeneracy
of the graph is smaller than a given value k or not.

To get around (i), we modify the construction to have a pair of nodes represent each
element. The edge construction is done in the following way. Suppose the pair (u1, u2)
represents an element xi in layer ℓ−1, and (w1, w2) represents yj in layer ℓ. If yj ∈ Aℓ

xi
, then

we add edges from u1 to both w1 and w2. Similarly, if yj ∈ Bℓ
xi

, then we add edges from u2
to both w1 and w2. Note that if yj ∈ Aℓ

xi
∩ Bℓ

xi
, then we have all 4 cross edges between the

two pairs, and otherwise we have only 2 edges between them, one on each wi. Hence, when
u1 and u2 are removed, both w1 and w2 lose degree by 2 if yj is the intersecting element,
and otherwise they only lose degree by 1. This captures the property of the reduction that
we want, without constructing parallel edges.

For (ii), we do something more elaborate. On a high level, we duplicate each of the layers
L1, . . . , Lr to provide a “padding” between two initially-consecutive layers. This padding
has additional nodes that create an asymmetry between the layer preceding it and the one
succeeding it. This asymmetry ensures that the degrees of the nodes in the higher layer drop
more than those in the lower layer. Then, we can proceed with the peeling algorithm as
planned.

To handle (iii), we show that once we are done with the construction based on the MHPC
instance, we can consider each node, look at its degree, and add edges from it to some
auxiliary vertices so as to reach its “target degree”. We need to be careful about two things:
one, we preserve the properties of the construction so that the reduction goes through, and
two, we do not add too many new nodes that might make the bound obtained from the
reduction weak. We succeed in achieving a construction without violating the above.

Finally, for (iv), we observe that while we gave the above outline for a reduction from
MHPC, the “easier” boolean version BMHPC has a similar lower bound. We then succeed in
extending the ideas to reduce the boolean problem of “checking whether degeneracy ⩽ k”
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from the BMHPC problem, thus obtaining the desired lower bound for this simple variant.
For reduction from BMHPC, where the goal is to output just the bit b(zr) (see definition
in Section 2.1) rather than zr, we need to make non-trivial modifications in the graph: we
join the nodes which represent the bit-1 elements in the last layer, to some “special nodes”
S. The other nodes in the last layer are not joined to them. The special nodes are also
adjacent to all nodes in the other layers. We show that if b(zr) = 1, then after the peeling
algorithm removes the nodes corresponding to zr in the last layer, the degrees of the special
nodes drop enough such that all the remaining vertices get peeled one by one, while having
degree at most some value k during deletion. This implies that the graph has degeneracy
⩽ k. Otherwise, if b(zr) = 0, we show that after peeling off the nodes representing zr in the
last layer, the minimum vertex-degree in the remaining subgraph is at least k + 1, implying
that the degeneracy of the graph must be at least k + 1. We give the detailed reduction and
proof in Section 5 of the full version [9].

2.3 Communication Upper Bounds for Degeneracy
We give a short overview of the Õ(n) communication protocol for computing the degeneracy
of a graph. In the two player communication model, the edges of the input graph G are split
into two disjoint sets EA and EB given to the players Alice and Bob respectively, and they
wish to find the degeneracy of G. Note that the search problem (finding the degeneracy)
reduces to its decision counterpart (is the degeneracy ⩽ k?) by a binary search, costing
only a log n multiplicative factor in the communication cost. Hence, we focus on the version
where Alice and Bob are additionally given an integer k, and wish to decide if the degeneracy
of G is at most k.

To solve this decision problem, we implement the following version of the peeling algorithm
in a communication protocol: while there is a vertex of degree ⩽ k, remove it. If the graph
is non-empty at the end, reject, otherwise accept. The main challenge in adapting this
algorithm is that in the worst case, it seems to update the degree of almost all vertices in G

after each deletion, and there is no way to do that without a lot of communication.
However, we observe that if a vertex has degree at least k +

√
n, then it cannot be deleted

for the next
√

n iterations (since each iteration can reduce its degree by at most one). This
observation alone gives us the following Õ(n

√
n) communication protocol:

1. Compute the degree of each vertex in G.
2. Ignore all vertices of degree ⩾ k +

√
n while performing

√
n rounds of the trivial peeling

algorithm.
3. Go to Step 1.

Note that the communication in Step 2 comes from Alice and Bob sending each other
the low degree (< k +

√
n) neighbors of the vertex deleted in each iteration of the peeling

algorithm. We observe that while a vertex has degree ⩾ k +
√

n, it is not listed in Step 2,
and once its degree falls below the threshold of k +

√
n, it is listed at most

√
n times due to

Step 2. Thus, the total communication due to Step 2 over the course of the entire protocol is
bounded by Õ(n

√
n). Also, we recompute the degrees of all vertices (which costs O(n log n)

communication each time) at most
√

n times; these two facts combined give us the desired
bound.

To get an improved Õ(n) communication protocol, we extend the idea above to partition
the vertices into log n sets, where the i-th set contains vertices of degree between k + 2i−1

and k + 2i. While the global approach (of simply ignoring the high-degree vertices for
√

n

steps) does not work any more, we are able to make a more local argument as follows: for a
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vertex of degree k + ℓ to be deleted, it must lose at least ℓ neighbors, which means it must
lose ℓ/2 neighbors in either Alice’s or Bob’s edge set. But now the players can just track this
“private” loss of degree of each vertex, and communicate to update the degree of a vertex
in the i-th set only when either private degree falls by at least 2i−2. We are able to show
that the degree of each vertex is updated O(log n) times over the entire course of this new
protocol, and hence the total communication is Õ(n). We further show that this can be
extended to finding a k-core of the graph with Õ(n) communication. Thus, we establish
finding degeneracy and k-core as not-too-hard problems.
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