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Abstract
Lifting theorems are used for transferring lower bounds between Boolean function complexity
measures. Given a lower bound on a complexity measure A for some function f , we compose f

with a carefully chosen gadget function g and get essentially the same lower bound on a complexity
measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications in many
different areas such as circuit complexity, communication complexity, proof complexity, etc. One of
the main question in the context of lifting is how to choose a suitable gadget g. Generally, to get
better results, i.e., to minimize the losses when transferring lower bounds, we need the gadget to be
of a constant size (number of inputs). Unfortunately, in many settings we know lifting results only
for gadgets of size that grows with the size of f , and it is unclear whether it can be improved to
a constant size gadget. This motivates us to identify the properties of gadgets that make lifting
possible.

In this paper, we systematically study the question “For which gadgets does the lifting result
hold?” in the following four settings: lifting from decision tree depth to decision tree size, lifting
from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity
decision tree depth and size, and lifting from block sensitivity to deterministic and randomized
communication complexities. In all the cases, we prove the complete classification of gadgets by
exposing the properties of gadgets that make lifting results hold. The structure of the results shows
that there is no intermediate cases – for every gadget there is either a polynomial lifting or no lifting
at all. As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that
can be represented as f ⋄ OR ⋄ XOR for some function f .

In this extended abstract, the proofs are omitted. Full proofs are given in the full version [2].
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1 Introduction

For f : {0, 1}n → V and g : {0, 1}m → {0, 1}, a (block-)composition f ⋄ g : {0, 1}n×m → V is
defined by

(f ⋄ g)(z1, z2, . . . , zn) := f(g(z1), g(z2), . . . , g(zn)),

where each zi ∈ {0, 1}m. Usually lifting theorems have the following general form:

B(f ⋄ g) = Ω(A(f)),
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9:2 Lifting Dichotomies

where A and B are two complexity measures. Note that the hidden constant in Ω(·) may
depend on g. In this context, we call the function g a gadget and say that there is a (linear)
lifting from A to B. One of the first examples of a lifting theorem appeared in [19] where
Raz and McKenzie proved a separation for the hierarchy of monotone circuit complexity
classes within NC using a query-to-communication lifting theorem.

The need for such theorems is due to the fact that, in many cases, communication
complexity lower bounds are much more difficult to prove compared to query complexity lower
bounds. Lifting theorems proved to be useful in many other scenarios: proving communication
complexity separations [10, 11, 12, 5], proof complexity separations [9, 14, 10, 7], monotone
circuit complexity separations [19, 8], etc.

While the lifting technique is widely used in different areas we still do not quite under-
stand its limitations. In the query-to-communication lifting theorems, we want to lower
bound the deterministic/randomized communication complexity of the lifted function by
deterministic/randomized query complexity of the original function. So, these theorems
usually have the following form:

D(f ⋄ g) = DT(f) ·Θ(log n),

where the gadget g has at most logarithmic communication complexity. In all the lifting
theorems of this type, the size (the number of inputs) of the gadget g grows with the
number of inputs of f (e.g., in [17] the size of the gadget is n1+ε, where n is a number
of inputs of the lifted function). Even though some results do not depend on the gadget
size (e.g., [11]), in many scenarios the use of non-constant size gadgets leads to weaker
results in the applications (e.g., when lifting theorems are used to prove monotone circuit
lower bounds via communication complexity). It is unknown whether it is possible to prove
a query-to-communication lifting theorem with a constant size gadget, but we tend to believe
that such lifting exists.

At the same time, for other complexity measures there are lifting theorems that can
accommodate constant size gadgets. Here are some examples of such lifting theorems:
1. Lifting decision tree depth to decision tree size (XOR gadget [21]).
2. Lifting decision tree depth to parity decision tree depth/size (stifling gadgets [6]; INDEX

gadget [3]).
3. Lifting from critical block sensitivity to communication complexity (VER gadget [10]).
4. Lifting parity decision tree depth to communication complexity (XOR gadget [13]).
5. Lifting AND decision tree depth to communication complexity (AND gadget [15]).
6. Lifting block sensitivity to randomized communication complexity (AND gadget [22]).
Note that in examples 4 and 5, the communication complexity is lower bounded by some
power of the parity decision tree complexity or the AND decision tree complexity (in the
latter case, with an additional log n factor). In such cases, we say that there is a polynomial
lifting.

As mentioned earlier, lifting theorems which lower bound communication complexity
by a linear function of query complexity are only known for non-constant size gadgets.
But in case of a polynomial lifting, there are query to communication complexity lifting
theorems with constant size gadgets. E.g., in example 6 the author lifts block sensitivity
to randomized communication complexity with a constant size gadget. Given that block
sensitivity is polynomially related to query complexity, this gives a polynomial lifting from
query to communication complexity.
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All the examples of the lifting theorems with constant size gadgets that we mentioned
above use specific and simple gadgets. But what happens if we plug some other gadget? The
same proof might not work, but would the lifting result still be true? That is not always
clear. And this reflects our lack of understanding of what properties of the gadget make
lifting possible. For these theorems it is natural to pose the following question:

For which gadgets does the lifting result hold?

A systematical study of this question will help us to better understand how lifting works and
what are the requirements for the gadget. Especially it would be interesting to understand
for which gadgets lifting fails. This is what we need, for example, if we want to find a good
candidate for query-to-communication linear lifting with constant size gadget.

One of the areas that might benefit from new lifting theorem is the study of the log-rank
conjecture [18]. The log-rank conjecture states that for any function f the deterministic
communication complexity of a function is polynomially related to the logarithm of the real
rank of its associated communication matrix. Currently there is a exponential gap between
the lower bound Ω

(
log2(rank(f)

)
[11] and the upper bound O

(√
rank(f) · log rank(f)

)
[16].

It seems that the general case of this problems is out of reach now. So most of research in
this area has concentrated on the study of various complexity measures and special cases
such as composed functions (e.g., see [15]). Therefore, lifting in this area is one of the main
proof techniques.

The other area craving for new lifting theorems is proof complexity. There is a tight
connection between proof complexity and lifting theorems. For example, lifting decision
tree depth to parity decision tree depth/size from [6, 3] provides a systematic way to prove
tree-like Res(⊕) size lower bounds. It is important to mention that for proof complexity we
usually need lifting theorems that hold for relations.

Finally, we think that a large number of different applications makes lifting a technique
that is worth exploring on its own. A deeper understanding of how lifting works and what it
requires from gadgets can lead to new applications and results.

1.1 Our results and methods
In this paper, we systematically explore the question “For which gadgets does the lifting
result hold?” in several different settings. We prove complete classifications of gadgets in the
following four settings:

lifting from decision tree depth to decision tree size,
lifting from certificate complexity to conjunction DAG size,
lifting from decision tree depth to parity decision tree depth and size,
lifting from block sensitivity to deterministic and randomized communication complexities.

All these results are formulated in the form of dichotomies (a trichotomy in one of the
cases) that essentially state that there is either polynomial lifting or no lifting at all (no
intermediate cases). As a byproduct of our studies, we prove the log-rank conjecture for the
class of functions that can be represented as f ⋄OR ⋄XOR for some function f .

Now we describe the results in more detail and give an overview of the proof methods. The
proofs are omitted from this extended abstract. Full proofs are given in the full version [2].

1.1.1 Decision tree depth to size
In Section 3, we define a class of resistant gadgets (defined in Section 3.1) and prove a decision
tree depth to decision tree size lifting theorem for this class of gadgets (see Theorem 2). We
give two different proofs illustrating the ideas of two different approaches: proof by simulation
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9:4 Lifting Dichotomies

and proof using random projections. The proofs later in the paper refer to the proofs in
this simple case. The proof by simulation is constructive – it shows how given a decision
tree for the lifted function f ⋄ g one can construct a decision tree for the original function f ,
such that the depth of the new tree is bounded by a logarithm of the size of the given tree.
In the proof using random projections, we use probabilistic method to show that there is
a projection that converts the decision tree for f ⋄ g into a shallow decision tree for f .

Our goal is to prove a classification theorem, so we need to find a class of gadgets such
that lifting works only for gadgets in this class. It appears that the class of resistant gadgets is
too small for this. We define a wider class of weakly resistant gadgets (defined in Section 3.2)
and prove a certificate complexity to decision tree size lifting theorem (see Theorem 4). The
proof uses the random projections method. Note that the decision tree size is upper bounded
by the certificate complexity squared, so as a corollary we get a polynomial lifting from
decision tree depth to decision tree size (see Corollary 5).

Finally, we give a complete classification of gadget functions in the context of polynomial
lifting from decision tree depth to decision tree size. It is stated as a dichotomy result
(see Theorem 7): either a gadget is weakly resistant and there is a polynomial lifting or there
is no lifting at all.

In Section 3.4, we briefly discuss that some of the results above can be generalized to the
case of search problems. Unfortunately, that does not give a classification theorem because
decision tree depth of a search problem can be exponentially greater than its certificate
complexity. However, we state a conjecture there is a decision tree depth to decision tree
size polynomial lifting for weakly resistant gadgets.

1.1.2 Conjunction DAG width to size
In Section 4, we generalize the results from the previous section to decision conjunction
DAGs (defined in Section 4.1). First of all, in Section 4.2, we show that similarly to decision
trees where depth and size are exponentially separated, there is an exponential separation
between conjunction DAG width and size. The separation is achieved for the Tribes function.
In Section 4.3, we show that there is an exponential separation between decision tree size and
conjunction DAG size in the case of relations. Indeed, conjunction DAGs can capture the
structure of Resolution proofs, while decision trees can only capture the structure of tree-like
Resolution proofs. Thus, the separation between these proof systems implies the separation
between the measures under consideration. Finally, we argue that the lifting theorems from
Section 3 can be generalized to the case of conjunction DAGs (see Theorem 8 and Theorem 9)
using essentially the same proofs. Thus, we have a dichotomy result (see Theorem 10).

1.1.3 Decision tree depth to parity decision tree depth and size
Recently, Chattopadhyay et al. [6] showed that if g is stifling (defined in Section 5.1) then
log DTSize⊕(f ⋄ g) = Θ(DT(f)). In Section 5, we extend their result providing the complete
classification of the gadgets for decision tree depth to parity decision tree depth and size lifting.
In Section 5.2, we state and prove a “minimum weight lemma” (see Lemma 13), the technical
lemma that we will use several times. This lemma states that if the certificate complexity of
some function f is large enough in comparison to the parity certificate complexity of the
lifted function f ⋄ g at some input, then there is a substitution such that the minimal parity
certificate of f ⋄ g at this input has a large Hamming weight.

In Section 5.3, we consider the most challenging case of this setting – the case of OR
gadget. In Theorem 14, we show that there is at least a quadratic gap in the certificate
to parity certificate complexity lifting for OR gadget. If we assume that the lifting result
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in [6] holds for OR gadget as well then the quadratic separation is tight (see Proposition 15).
In Section 5.3.2, we show a polynomial (cubic) lifting for OR gadget (see Theorem 16). The
proof consists of three ingredients. First, we show that if the minimum weight of a parity
certificate for the lifted function is at least the size of the parity certificate then this certificate
covers the all-1 input for the inner function. Then we use it to upper bound the minimum
weight of a parity certificate in terms of the sizes of parity certificates for 0 and 1. And
finally, we apply the “minimum weight lemma”. In the proof of Theorem 16, we assume that
the certificate complexity of the original function is much larger than the parity certificate
complexity of the lifted function, but due to the “minimum weight lemma” it would contradict
the upper bound on the minimum weight of the parity certificate.

In Section 5.4, we prove a lifting from certificate complexity to parity decision tree size
for AND/OR gadgets, the gadgets that affine project to both binary AND and binary OR
(see Theorem 17). The proof is by simulation similar to the simulation proof in [6].

Finally, in Section 5.5, we prove the trichotomy result that gives us a complete classification
of gadgets (see Theorem 19). The classification is based on the fact that if a gadget is not
AND/OR then it is a disjunction or a conjunction of affine forms (see Lemma 18). We show
that there are only three cases possible: (1) there are simultaneously a lifting from decision
tree depth to parity decision tree depth and a lifting from certificate complexity to parity
certificate complexity (the case of AND/OR gadgets); (2) there is a lifting from decision tree
depth to parity decision tree depth but no lifting between certificate complexities (the case
of gadgets that affine project to OR); (3) there is no lifting (all other gadgets, constant or
affine).

In Section 5.6, we show an alternative proof for the lifting from decision tree depth to
parity decision tree depth using function degree and sparsity (see Theorem 20). In the proof
we show that the degree of a function is upper bounded by the logarithm of the sparsity
of the function lifted with OR gadget, and compose it with a number of previously known
inequalities. As a byproduct, we get a proof of the log-rank conjecture for the class of
functions that can be represented as f ⋄OR ⋄XOR (see Theorem 21).

1.1.4 Block sensitivity to communication complexity
In Section 6, we provide a complete classification of gadgets for lifting from block sensitivity
to deterministic and randomized communication complexities. Note that this classification
also gives us a classification of gadgets for query-to-communication polynomial lifting since
block sensitivity and query complexity are polynomially related to each other in the case of
total functions. However, since the proof goes through block sensitivity, we classify block
sensitivity to communication complexity lifting.

We start with the lifting theorem of Zhang [22] (see Theorem 23) that works for gadget
g iff both AND and OR reduce to g via a communication complexity reduction (defined
in Section 6.1). Then we show that if there is no reduction from OR to a gadget g then the
communication matrix of g is (up to rearrangement) block diagonal (see Lemma 24). This
gives us a classification of gadgets in the context of reductions from OR, AND, and XOR
(see Corollary 26 and Corollary 27).

In Section 6.2, we prove a dichotomy result for randomized communication complexity
(see Theorem 28). The proof is based on the fact that if OR does not reduce to a gadget g

then ANDn ⋄ g is essentially an instance of the equality function, and hence its randomized
communication complexity is logarithmic. If AND does not reduce to a gadget, the situation
is symmetrical (see Lemma 29). Thus, the theorem of Zhang covers all gadgets for which
there is a lifting.
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In Section 6.3, we prove the dichotomy result for deterministic communication complexity
(see Theorem 31). The proof of the dichotomy depends on a block sensitivity to deterministic
communication complexity lifting theorem that works for gadget g iff both AND and XOR
reduce to g (see Theorem 30). Together with the Zhang’s lifting theorem that give us
a complete classification of gadgets: if at least two of three functions AND, OR, XOR reduce
to gadget g then there is a block sensitivity to deterministic communication complexity
polynomial lifting. Otherwise, if at least two functions from this list do not reduce to g then g

is either a constant function or (essentially) one of the functions AND, OR, XOR. The proof
of the lifting theorem requires a number of ingredients. First of all, we compose two results
from [13, 23] to get a parity certificate to deterministic communication complexity polynomial
lifting for XOR gadget. Then we show two lower bounds for specific cases: we show that
the deterministic communication complexity of f ⋄XOR is lower bounded by the size of
any minimal sensitive block of the function f , and that the deterministic communication
complexity of f ⋄AND is lower bounded by the block sensitivity of f at the all-0 input. One
of the ingredients is again the “minimum weight lemma”. And the last one, is the lemma
that shows that parity certificates of high minimum weight always intersect with (regular)
certificates of sufficiently small size. Putting all the ingredients together we get the desired
lifting result.

2 Prerequisites

2.1 Notation
All the logarithms are base 2. We use ORn, ANDn, XORn to denote, respectively, logical
“and”, “or” and “exclusive or” of n Boolean inputs. For simplicity we also define OR := OR2,
AND := AND2, and XOR := XOR2. We use the notation xB for x ∈ {0, 1}n and B ⊆ [n]
to denote x with all the coordinates in B flipped, i.e., xi = xB

i ⇐⇒ i ̸∈ B. For
g : {0, 1}k → {0, 1}, we define1 a function gn : {0, 1}n×k → {0, 1}n such that

gn(x1, x2, . . . , xn) := (g(x1), g(x2), . . . , g(xn)).

For a function f : {0, 1}n → {0, 1}, an input x ∈ {0, 1}n, and a partial assignment σ ∈
{0, 1, ∗}n that agrees with x on all non-∗ coordinates, we use f |σ to denote a restriction of f

to σ and x|σ to denote a projection of x to the ∗-coordinates of σ. For a gadget g : {0, 1}k →
{0, 1} and a blockwise partial assignment σ ∈

(
{0, 1}k ∪{∗k}

)n (i.e., in any block of variables
that corresponds to one copy of g, the variables are either all set or all stars), we use gn(σ)
to denote the partial assignment in {0, 1, ∗}n induced by applying g to non-∗ blocks of σ.
We use “⊔” instead of “∪” to indicate a union of disjoint sets.

2.2 Complexity measures
Throughout the text, we will consider several complexity measures.

Decision tree complexity

A decision tree is a rooted binary tree with internal nodes labeled by input variables
(represent queries), edges labeled with 0 and 1, and leaves labeled by some values. Decision
tree evaluation is defined in the natural way: given an assignment for the input variables,

1 In some papers lifting theorems are formulated for the classical composition operation “◦” rather then
for the block-composition “⋄”. Note that for f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1}, f ⋄ g ≡ f ◦ gn.
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we traverse the tree starting from the root and then sequentially choose every next edge
according to the given assignments until we reach some leaf. The label of this leaf is the result
of the evaluation. A decision tree computes some function f if for all possible assignments to
the input variables the decision tree evaluates to the value of the function. For a function f ,
DT(f) denotes the minimal depth of a decision tree computing f , and DTSize(f) denotes
the minimal number of leaves in a decision tree computing f .

Parity decision tree complexity

A parity decision tree is a generalization of a decision tree where the queries are arbitrary
linear combinations of the input variables. It can be described as a rooted binary tree with
internal nodes labeled by linear combinations of the input variables, edges labeled with 0 and
1, and leaves labeled by some values. The evaluation is defined analogously. For a function f,
DT⊕(f) denotes the minimal depth of a parity decision tree computing f , and DTSize⊕(f)
denotes the minimal number of leaves in a parity decision tree computing f .

Certificate complexity

A certificate complexity is a non-deterministic analogue of the decision tree complexity.
A certificate for an input x ∈ {0, 1}n to a function f is a set S ⊆ [n] of indices such that f

restricted to all inputs that match x on S is constant, i.e., f(y) = f(x) whenever y|S = x|S .
The certificate complexity C(f, x) of f at input x is the size of the smallest certificate for x.
Finally, the certificate complexity of function f is defined as C(f) := maxx∈{0,1}n C(f, x).

Parity certificate complexity

A parity certificate for an input x ∈ {0, 1}n to a function f is a set A of linear forms such that f

is constant on the affine subspace defined by A = A(x). A parity certificate complexity C⊕(f, x)
of function f at input x is the size (number of linear forms) of the smallest parity certificate
for x. The parity certificate complexity of f is defined as C⊕(f) := maxx∈{0,1}n C⊕(f, x).

Block sensitivity

A block B ⊆ [n] is sensitive for a function f at x iff f(x) ̸= f(xB). The block sensitivity
bs(f, x) of f at x is the maximum number of disjoint sensitive blocks for f at x. The block
sensitivity bs(f) of f is the maximum sensitivity bs(f, x) over all points x ∈ {0, 1}n.

Degree and sparsity of the function

Every Boolean function defined on {0, 1}n → {0, 1} can be considered as a function
f : {−1, 1}n → {−1, 1} by substituting 0 and 1 with 1 and −1, respectively. Every such
function has a unique representation as a multilinear polynomial over R of the following form

f(x) =
∑

S⊆[n]

cSxS , where xS =
∏
i∈S

xi.

Degree of f is defined to be the degree of the corresponding polynomial, we denote it by
deg(f). Sparsity of f is the number of nonzero coefficients in this representation, we denote
it by spar(f).

CCC 2024
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Deterministic communication complexity and rank

For a function f : X × Y → Z, let’s consider the following game for two players, Alice and
Bob, that want to compute f . Alice and Bob are given x ∈ X and y ∈ Y , respectively. Their
goal is to compute f(x, y). In order to do it, the players exchange information about their
parts of the input using a simple communication channel that allows sending bit messages.
Before the game the players come up with a communication protocol that determines their
behavior on all possible inputs. The cost of a protocol is the maximum total number of bits
sent by the players over all possible inputs x ∈ X, y ∈ Y . The deterministic communication
complexity of f is the minimal cost of a deterministic communication protocol that computes
f . We denote it by D(f).

A communication matrix of the function f is a matrix Mf ∈ ZX×Y such that (Mf )x,y :=
f(x, y) for all x ∈ X, y ∈ Y . We define rank(f) to be the rank of matrix Mf .

Randomized communication complexity

In a randomized communication game, Alice and Bob have access to an unlimited amount of
random bits and they can use it to decide which bit to send next. We say that a (private
coin) randomized communication protocol Π computes a function f : X × Y → Z with error
ε if

Pr
rA,rB

[
Π(x, y, rA, rB) = f(x, y)

]
≥ 1− ε, ∀x ∈ X, y ∈ Y,

where rA and rB are the strings of random bits used by Alice and Bob, respectively. The cost
of a randomized protocol is the maximum number of bits that can be sent. We denote by
Rε(f) the minimal cost of a private coin randomized communication protocol that computes
f with error ε. A randomized communication complexity of f is defined as R(f) := R1/3(f).

3 Decision tree depth to size

We start by exploring perhaps one of the simplest scenarios, depth-to-size lifting in decision
trees and state a lifting theorem for the class of resistant gadgets.

3.1 Resistant gadgets

Urquhart [21] proved that for any function f : {0, 1}n → {0, 1},

log DTSize(f ⋄XOR) = Ω(DT(f)).

We generalize this result for the class of resistant gadgets.

▶ Definition 1. A gadget g : {0, 1}m → {0, 1} is resistant if for every i ∈ [m] and b ∈ {0, 1},
the function obtained by fixing the ith input to b is not constant. Equivalently, the minimum
certificate complexity at inputs is larger than 1. E.g., XOR function is resistant while AND
function is not.

▶ Theorem 2. For any f : {0, 1}n → {0, 1} and a resistant gadget g : {0, 1}m → {0, 1},

log DTSize(f ⋄ g) = Ω(DT(f)).
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3.2 Weakly resistant gadgets
There are gadgets, such as x ∨ (y ∧ z), which are clearly not resistant, but for which the
lifting still holds as we will show below. To capture these cases, we define a more general
class of weakly resistant gadgets.

▶ Definition 3. A gadget g : {0, 1}m → {0, 1} is weakly resistant if for every certificate α

(a partial assignment which sets the value of g) there is a partial assignment yj = b which
conflicts with α and does not make g constant.

Every resistant gadget is trivially weakly resistant: we can take any variable mentioned
in α and substitute the opposite value. The aforementioned gadget h = x ∨ (y ∧ z) is weakly
resistant (as we show below) but not resistant, since h|x=1 = 1. The gadget x∨ y is not even
weakly resistant due to the certificate x = y = 0: if we substitute x = 1 or y = 1 then the
gadget becomes constant.

Let us verify that h is weakly resistant, by considering all possible certificates:
x = 1: take x = 0.
y = z = 1: take y = 0 or z = 0.
x = y = 0: take y = 1.
x = z = 0: take z = 1.

We prove the following lifting theorem:

▶ Theorem 4. For any f : {0, 1}n → {0, 1} and a weakly resistant gadget g : {0, 1}m → {0, 1}
the following holds:

log DTSize(f ⋄ g) = Ω(C(f)).

Decision tree complexity is at most certificate complexity squared, thus we get the
following corollary.

▶ Corollary 5. For any f : {0, 1}n → {0, 1} and a weakly resistant gadget g : {0, 1}m → {0, 1}
the following holds:

log DTSize(f ⋄ g) = Ω
(√

DT(f)
)
.

We do not know whether the lower bound is tight, even for h = x ∨ (y ∧ z). At the
moment we can’t even rule out log DTSize(f ⋄h) = Ω(DT(f)). Sherstov [20, Theorem 6.4]
proved that

max
(
log rank(f ⋄AND), log rank(f ⋄OR)

)
≥ deg(f).

Since rank lower bounds decision tree size, this implies that

log DTSize(f ⋄ g) ≥ deg(f).

Note that we are not aware of any separation between DT(f) and max(C(f), deg(f)).

3.3 Gadget classification
The dichotomy result of this section is based on the following classification of gadgets.

▶ Lemma 6. For every g : {0, 1}m → {0, 1}, one of the following cases holds:
1. Function g is a (possibly empty) conjunction or a disjunction of literals.
2. Function g is weakly resistant.

CCC 2024



9:10 Lifting Dichotomies

The two cases in following dichotomy theorem correspond to the two cases of Lemma 6.

▶ Theorem 7. For every gadget g : {0, 1}m → {0, 1}, one of the following cases holds:
1. There is an infinite family of functions fn with DT(fn) → ∞ and DTSize(f ⋄ g) =

O(DT(f)).
2. For every function f , we have log DTSize(f ⋄ g) = Ω

(
DT(f)Ω(1)).

3.4 Generalization to search problems
A relation f is a subset of {0, 1}n × V . For a gadget g : {0, 1}m → {0, 1}, we define a
composition f ⋄ g ⊆ ({0, 1}m)n × V as a relation, such that

(z1, z2, . . . , zn, r) ∈ (f ⋄ g) ⇐⇒ (g(z1), g(z2), . . . , g(zn), r) ∈ f.

One can observe that the proofs of Theorems 2 and 4 work as well when we let f to be
a relation. However, the Corollary 5 does not hold for the relations since DT(f) can be
exponentially greater than C(f). As an example of this, one can take f to be a falsified
clause problem corresponding to the Pigeonhole Principle Formula over an expander graph.
It is known [4] that resolution width of any refutation for this formula at least Ω(n) (which
is greater or equal than DT(f)), but the certificate complexity is constant (since each of the
clauses of the formula is constant-sized).

However, we conjecture that lifting from decision tree depth to decision tree size can also
be proved for weakly resistant gadgets. Equivalently, this will mean that such lifting holds
for the gadget g(x, y, z) := x ∨ (y ∧ z).

4 Conjunction DAG width to size

4.1 Conjunction DAGs
Conjunction DAGs were first defined formally in [8], though they appear implicitly in previous
work. A conjunction DAG over a set of variables is a single-rooted DAG with the following
additional information:

Each internal vertex is annotated with a variable, and it has two outgoing edges, one
labeled 0 and the other one labeled 1.
Each vertex v is annotated with a partial assignment ρ(v) with the following constraint.
Suppose that v queries xi, and the answer b leads to the vertex vb. Then the partial
assignment ρ(vb) is a subset of the partial assignment ρ(v) ∪ {xi ← b}. (This is not
identical to the definition in [8], but morally the same.)
The partial assignment at the root is the empty assignment.
Each leaf is annotated with some value.

A decision DAG computes f if for every leaf ℓ annotated with yℓ, ρ(ℓ) is a yℓ-certificate of f .
Every decision tree is a decision DAG. There are three parameters of interest: the (total)

size (number of vertices), the leaf size (number of leaves), and the width (maximum number
of variables in any ρ(v)).

4.2 Size vs width
A decision tree of depth d contains at most 2d leaves, and this is tight for the parity function,
in the sense that the bound DTSize(f) ≤ 2DT(f) cannot be improved when f is the parity
function.
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Similarly, a conjunction DAG of width d contains at most
(

n
≤d

)
= O(nd) vertices, and

this is tight for the following function (also known as the Tribes function)

f(x) =

√
n∨

i=1

√
n∧

j=1
xij .

We can construct a conjunction DAG of width O(
√

n) for f as follows. We think of the
input as a matrix, where i is the row number and j is the column number. We scan each
row sequentially. If the current row consists only of 1s, we stop. Otherwise, we add the first
0 to ρ, and forget all the remaining entries of the row.

Conversely, consider the set of
√

n
√

n inputs having a single 0 per row. No two inputs
share the same certificate, and so every conjunction DAG for f must contain at least n

√
n/2

leaves.

4.3 Separation between decision tree size and conjunction DAG size
Let d(f) denotes the conjunction DAG width of a function f , which is the smallest width of
a conjunction DAG for f . Since DT(f) ≥ d(f) ≥ C(f) = Ω

(√
DT(f)

)
, in case of functions

conjunction DAG width and decision tree depth are polynomially related. In this section, we
show that in case of relations decision tree size and conjunction DAG size can be far apart.

Alekhnovich et al. [1] constructed a family of CNF contradictions ϕn with poly(n) many
variables and clauses which have a refutation in Resolution of size poly(n), but such that
any refutation in tree-like Resolution (even in regular Resolution) is of size 2Ω(n).

We can think of a Resolution proof as a conjunction DAG which solves the falsified clause
problem: given a truth assignment, find a falsified clause. This is a relation rather then
function. Similarly, a tree-like Resolution proof is a decision tree solving the same problem.

Now we are going to show that there is a function f : {0, 1}n → {0, 1} with a conjunction
DAG of size poly(n) such that DTSize(f) = 2Ω(n/ log n). Consider the contradictions ϕn

mentioned above. Index the clauses of ϕn using bitstrings of length ℓ = O(log n) in some
arbitrary way. Now consider a polynomial size Resolution proof of ϕn, and let fi be the
function mapping a truth assignment to the i-th bit of the bitstring indexing the falsified
clause found by the proof. By construction, each fi has a conjunction DAG of size poly(n).
Given decision trees for f1, . . . , fℓ, we can construct a decision tree solving the falsified clause
problem of size

∏
i DTSize(fi). Since this product must be at least 2Ω(n), we conclude that

maxi DTSize(fi) = 2Ω(n/ log n).

4.4 Gadget classification
For the case of conjunction DAGs, we can generalize Theorem 2:

▶ Theorem 8. Let f ⊆ {0, 1}×V be a relation and g : {0, 1}m → {0, 1} be a resistant gadget.
If there is a conjunction DAG of size S computing f ⋄ g, then there is a conjunction DAG of
width O(log S) computing f .

Moreover, for conjunction DAGs we can prove an analogue of Theorem 4:

▶ Theorem 9. Let f ⊆ {0, 1}×V be a relation and g : {0, 1}m → {0, 1} be a weakly resistant
gadget. If there is a conjunction DAG for f ⋄ g with S leaves, then the certificate complexity
of f is at most O(log S).
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Note that Theorem 9 gives us a lifting from certificate complexity to leaf size. Unfortunately,
in the case of the falsified clause problem for CNF, this theorem cannot be effectively used to
prove lower bounds since leaf size is usually small as well as certificate complexity. However,
this theorem still implies a dichotomy result similar to one in Theorem 7.

▶ Theorem 10. For every gadget g : {0, 1}m → {0, 1}, one of the following cases holds:
1. There exists an infinite family of functions fn such that fn ⋄ g can be computed with

a conjunction DAG having O(n) leaves, but C(fn) = Ω(n).
2. For every relation f , if we have a conjunction DAG for f ⋄ g with S leaves, then the

certificate complexity of f is at most O(log S).

5 Decision tree depth to parity decision tree depth and size

In this section, we are going to classify gadgets in the context of decision tree depth to parity
decision tree depth and size lifting. We start by restating recent result of Chattopadhyay et
al. [6]. After that we are going to state the “minimum weight lemma” (Lemma 13) that is a
technical tool we will use multiple times throughout this section and the following one. We
use this lemma to prove the lifting from certificate complexity to parity certificate complexity
with OR gadget, which is the most challenging case in the classification. Finally, we will
discuss an alternative and much simpler proof for the lifting from decision tree depth to
parity decision tree depth using degree and sparsity. In some sense, this proof should give
us a better exponent for the decision tree lifting. The main point of considering certificate
complexity lifting is that there is a non-trivial upper bound for OR gadget showing that it
is impossible to prove a linear lifting in this setting (see Theorem 14). As a byproduct, we
get a proof of the log-rank conjecture for the class of functions that can be represented as
f ⋄OR ⋄XOR.

5.1 Stifling gadgets
Chattopadhyay et al. [6] defined the following notion.

▶ Definition 11. A function g : {0, 1}m → {0, 1} is k-stifling if for every set of k coordinates
and b ∈ {0, 1} there is a way to set the remaining m− k coordinates so that the output is b

(regardless of the value of the chosen k coordinates). A function is stifling if it is 1-stifling.

Chattopadhyay et al. [6] showed that if g is stifling then log DTSize⊕(f ⋄ g) = Θ(DT(f)),
where the hidden constant can depend on g. See the full version of this paper [2] for an
exposition of their proof.

5.2 Minimum weight lemma
A parity certificate C is a system of affine equations, so it can be represented by a matrix M

and a vector v that define a linear subspace.

▶ Definition 12. A minimum weight of a parity certificate C is the minimum Hamming
weight of non-zero vectors in the row space of M .

For example, one can consider a certificate {x + y = 1, x + y + z = 0}. The minimum weight
of this certificate is equal to 1 and this corresponds to the equation z = 1. On the other
hand, the minimum weight of a certificate {x + y = 1, x + z = 0} is equal to 2.

The following lemma is a key tool that we will use both in Section 5 and in Section 6.
This lemma shows that if the certificate complexity of some function f is large enough in
comparison to the parity certificate complexity of the lifted function f ⋄ g at some input,
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then there is a substitution such that the minimal parity certificate of f ⋄ g at this input has
large Hamming weight. Informally, this means that we can make a small enough substitution,
such that the preimage of the parity certificate after the substitution will contain the points
that we are interested in.

▶ Lemma 13 (minimal weight lemma). For functions f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1}, suppose that f ⋄ g has a parity certificate complexity at most k at some point x. Let
K be a parameter. If certificate complexity of f at gn(x) is greater than k ·K then we can
find a blockwise partial assignment σ to the inputs of f ⋄ g consistent with x, such that for
some k′ ≤ k:

(f ⋄ g)|σ has a parity certificate of size k′ at x|σ whose minimum weight is at least K,
C

(
f |gn(σ), gn(x)|gn(σ)

)
> k′K.

5.3 OR gadget
5.3.1 Separation
Chattopadhyay et al. [6] showed that C⊕(f ⋄ g) = Θ(C(f)) whenever g is stifling. This
no longer holds when g is binary OR. The following theorem shows that there is at least
a quadratic gap for OR gadget in the certificate to parity certificate complexity lifting.

▶ Theorem 14. Let n = m2, and let f : {0, 1}n → {0, 1} be the function that accepts an
m×m Boolean matrix iff it has no rows of Hamming weight 1.
1. C(f) = n,
2. C⊕(f ⋄OR) ≤ 2m.

Note that if we assume that the lifting result of [6] holds for the OR gadget as well then
the quadratic separation is tight.

▶ Proposition 15. Suppose that DT⊕(f ⋄OR) = Θ(DT(f)) for all f . Then every function
f satisfies C(f) = O(C⊕(f ⋄OR)2).

5.3.2 Lifting
Given Lemma 13 we prove the following lifting theorem for the certificate complexity.

▶ Theorem 16. For every function f : {0, 1}n → {0, 1}, we have C(f) = O(C⊕(f ⋄OR)3).

This theorem leads us to the following natural question: can we improve this bound from
cubic to quadratic, so the bound matches the separation provided by Proposition 15?

5.4 AND/OR gadgets
A function g : {0, 1}m → {0, 1} affine projects to a function h : {0, 1}p → {0, 1} if there are
affine functions ℓ1, . . . , ℓm : Zp

2 → Z2 such that

g(ℓ1(z), . . . , ℓm(z)) = h(z).

A gadget g : {0, 1}m → {0, 1} is AND/OR if it affine projects to both binary AND and
binary OR. Here are some examples of AND/OR gadgets:

g(x, y, z) := x ∨ (y ∧ z). The projections: g(0, a, b) = a ∧ b and g(a, b, 1) = a ∨ b.
g(x, y, z) := [x + y + z = 1]. The projections: g(1, ā, b̄) = a ∧ b and g(ā, b̄, a⊕ b) = a ∨ b.

▶ Theorem 17. If g is an AND/OR gadget then for all functions f : {0, 1}n → {0, 1}

log DTSize⊕(f ⋄ g) ≥ C(f).
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5.5 Gadget classification

We use the following lemma to classify gadgets which are not AND/OR.

▶ Lemma 18. If g is not an AND/OR then g is a disjunction or a conjunction of affine
forms in the inputs.

Using these facts we prove the following classification of gadgets.

▶ Theorem 19. For every gadget g, one of the following cases holds:
1. There is an infinite family of functions fn with DT(fn)→∞ and DTSize⊕(fn ⋄ g) = O(1).
2. For every function f , DT⊕(f ⋄ g) = Ω

(
DT(f)Ω(1)). There is an infinite family of

functions fn with DT(fn)→∞ and DTSize(fn ⋄ g) = O(DT(f)).
3. For every function f , log DTSize⊕(f ⋄ g) = Ω

(
DT(f)Ω(1)) and C⊕(f ⋄ g) = Ω

(
C(f)Ω(1)).

The first case of theorem corresponds to affine or constant gadgets, the second case
corresponds to gadgets that affine project to either AND or OR, and the third case corresponds
to AND/OR gadgets.

5.6 Lifting for OR gadget and the log-rank conjecture

In this section, we discuss a proof of the following inequality:

▶ Theorem 20. For any function f : {0, 1}n → {0, 1},

DT(f) ≤ O
(

DT⊕(f ⋄OR)O(1)
)

.

This inequalty is a corollary of Theorem 16 using the fact that DT is polynomially related
to C, and DT⊕ is polynomially related to C⊕. In [2], we present an alternative proof of
this statement that gives as a byproduct a proof of the log-rank conjecture for a subclass of
Boolean functions that can be represented as f ⋄OR ⋄XOR for arbitrary function f .

In this section, we need a composition of a function and a gadget (XOR in this case)
in the communication complexity context. For a function f : {0, 1}n → {0, 1} we define
a function f⊕ : {0, 1}n × {0, 1}n → {0, 1}, such that f⊕(x, y) := f(x1 ⊕ y1, . . . , xn ⊕ yn), and
associate it with the following communication problem: Alice and Bob are given x and y,
respectively, and their goal is to compute f(x, y). For a subclass of such XOR functions, we
prove the following version of log-rank conjecture:

▶ Theorem 21. For any function f : {0, 1}n → {0, 1},

D((f ⋄OR)⊕) ≤ poly(log rank((f ⋄OR)⊕).

The proof is due to the following chain of inequalities.

▶ Lemma 22. For any function f : {0, 1}n → {0, 1},

DT(f) ≤ 2 deg(f)4 ≤ O((log spar(f ⋄OR))4) = O((log rank((f ⋄OR)⊕))4)
≤ O(D((f ⋄OR)⊕)4) ≤ O(DT⊕(f ⋄OR)4).
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6 Block sensitivity to communication complexity

In this section, we provide a complete classification of gadgets for lifting from block sensitivity
to deterministic and randomized communication complexities. Note that this classification
will also give us a classification of gadgets for query-to-communication polynomial lifting
since block sensitivity and query complexity are polynomially related to each other in the
case of total functions. However, since the proof goes through block sensitivity, we will
classify block sensitivity to communication complexity lifting.

6.1 Reductions in communication complexity
Let fi : Xi × Yi → {0, 1} for i = 1, 2 be two-party functions. We say that f1 reduces to f2,
denoted f1 ≤ f2, if the communication matrix of f1 is a submatrix of the communication
matrix of f2. Equivalently, f1 ≤ f2 iff there exist one-to-one mappings πA and πB such that

f1(x, y) = f2(πA(x), πB(y)), ∀(x, y) ∈ X1 × Y1.

Zhang [22] proved the following theorem:

▶ Theorem 23 (Zhang). If a two-party gadget g : X × Y → {0, 1} satisfies AND, OR ≤ g,
then for every function f : {0, 1}n → Q, the function f ⋄ g has (constant error) randomized
communication complexity Ω(bs(f)).

For the classification of gadgets, we will need the following lemma that shows that if
OR ≰ g then the communication matrix of g is block diagonal.

▶ Lemma 24. If g : X × Y → {0, 1} satisfies that OR ≰ g then there are partitions of X
and Y into disjoint sets

X = X0 ⊔ X1 ⊔ · · · ⊔ Xk and Y = Y0 ⊔ Y1 ⊔ · · · ⊔ Yk,

such that
If x ∈ Xi, y ∈ Yj, where i ̸= j, or i = 0, or j = 0, then g(x, y) = 0.
If x ∈ Xi, y ∈ Yi, where i ̸= 0, then g(x, y) = 1.

▶ Definition 25. We say that a gadget g : X × Y → {0, 1} is a blow-up of a gadget
h : Z × W → {0, 1} if there are decompositions X =

⊔
z∈Z Xz and Y =

⊔
w∈W Yw, with

Xz,Yw ̸= ∅, such that all (xz, yw) ∈ Xz × Yw satisfy g(xz, yw) = h(z, w).

For example, g is a blow-up of XOR if (up to rearrangement) it has communication
matrix of the following form

1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
...

. . .
...

...
. . .

...
0 · · · 0 1 · · · 1


If g is a blow-up of h then f ⋄ g and f ⋄h have the same communication complexity in all

models. Indeed, on the one hand, h is a restriction of g, and so a protocol for f ⋄ g can be
used to solve f ⋄h; and on the other hand, by replacing x ∈ Xz by z and y ∈ Yw by w, we
can use a protocol for f ⋄h to solve f ⋄ g.
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▶ Corollary 26. If g : X × Y → {0, 1} satisfies both OR ̸≤ g and AND ̸≤ g then either g is
constant, or it is a blow-up of XOR.

▶ Corollary 27. If g : X × Y → {0, 1} satisfies both OR ̸≤ g and XOR ̸≤ g then either g is
constant, or it is a blow-up of AND. Similarly, if AND ̸≤ g and XOR ̸≤ g then either g is
constant, or it is a blow-up of OR.

6.2 Gadget classification for randomized communication complexity

In this section we state the following dichotomy result for the randomized case.

▶ Theorem 28. For every gadget g, one of the following cases holds:
1. There is an infinite family of functions fn with bs(fn) = Ω(n) and R(fn ⋄ g) = O(log n).
2. For every function f , we have R(f ⋄ g) = Ω

(
bs(f)Ω(1)).

The second case in the theorem corresponds to AND/OR gadgets, it holds due to
Theorem 23. The first case is due to the following lemma.

▶ Lemma 29. Let g, h : X × Y → {0, 1} be gadgets such that OR ≰ g and AND ≰ h. Then

R(ANDn ⋄ g) = O(log n), R(ORn ⋄h) = O(log n).

6.3 Gadget classification for deterministic communication complexity

The following lifting theorem that implies the classification theorem.

▶ Theorem 30. If a two-party gadget g : X × Y → {0, 1} satisfies AND, XOR ≤ g, then
for every function f : {0, 1}n → {0, 1}, the function f ⋄ g has communication complexity
Ω(bs(f)k) for some fixed constant k > 0. The same is true if g satisfies OR, XOR ≤ g.

Together with Theorem 23 this gives us a complete classification of gadgets.

▶ Theorem 31. For every gadget g, one of the following cases holds:
1. There is an infinite family of functions fn with bs(fn) = Ω(n) and D(fn ⋄ g) = O(1).
2. For every function f , we have D(f ⋄ g) = Ω

(
bs(f)Ω(1)).

If AND, OR ≤ g, or AND, XOR ≤ g, or OR, XOR ≤ g, then Theorem 23 and Theorem 30
show that D(f ⋄ g) = Ω

(
bs(f)Ω(1)), so the second case holds.

If none of these cases holds, then at least two of the functions AND, OR, XOR do
not reduce to g. Corollaries 26 and 27 show that either g is constant (and so the first
case trivially holds) or it is a blow-up of one of the functions XOR, OR, AND. By taking
fn = XORn, ORn, ANDn (respectively), we get the first case of the theorem.

7 Open problems

Matching lower and upper bounds for the certificate complexity lifting

Theorem 14 shows that one there is a function f such that C(f) ≥ Ω(C⊕(f ⋄OR)2).
However, Theorem 16 shows only that C(f) ≤ O(C⊕(f ⋄OR)3). Can we show that
C(f) ≤ O(C⊕(f ⋄OR)2)?
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Generalization of current results to relations

Almost all the results discussed above were proved for Boolean functions. However, the
question of proving lifting dichotomies for relations is still open.

One motivation for studying relations instead of functions is the following: any tree-like
Resolution refutation of a CNF formula corresponds to a decision tree, solving the falsified
clause problem for this CNF (which is usually a relation rather than Boolean function).
Similarly, any tree-like Res(⊕) refutation of some CNF formula corresponds to a parity
decision tree, solving the falsified clause problem for this CNF. So, any lifting theorem from
decision trees to parity decision trees with constant size gadgets that holds for relations,
should give us a new way of proving tree-like Res(⊕) lower bounds.

Conjunction DAG to parity conjunction DAG lifting

A parity conjunction DAG is defined similarly to a conjunction DAG, with the following two
differences:

Queries are linear forms rather than variables.
Nodes are annotated by affine subspaces rather than partial assignments. The label
ρ(vb) of a child node vb, that is attached to the parent node v via an edge labeled b, is
a subspace of ρ(v) ∪ {ℓ← b}, where ℓ is the query in v.

Another possible direction of research is to prove a lifting theorem from conjunction DAG
size to parity conjunction DAG size. The motivation for this kind of lifting also comes from
the proof complexity. Dag-like Resolution refutation can be viewed as a conjunction DAG
and dag-like Res(⊕) refutation can be viewed as a parity conjunction DAG. So, proving
such lifting theorems for the relations with small enough gadgets can be used to prove lower
bounds for Res(⊕) refutations, which is a long-standing open problem in proof complexity.
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