
39th Computational Complexity
Conference

CCC 2024, July 22–25, 2024, Ann Arbor, MI, USA

Edited by

Rahul Santhanam

LIPIcs – Vo l . 300 – CCC 2024 www.dagstuh l .de/ l ip i c s

Editors

Rahul Santhanam
University of Oxford, UK
rahul.santhanam@cs.ox.ac.uk

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-331-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-331-7.

Publication date
July, 2024

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CCC.2024.0

ISBN 978-3-95977-331-7 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-8716-6091
mailto:rahul.santhanam@cs.ox.ac.uk
https://www.dagstuhl.de/dagpub/978-3-95977-331-7
https://www.dagstuhl.de/dagpub/978-3-95977-331-7
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.CCC.2024.0
https://www.dagstuhl.de/dagpub/978-3-95977-331-7
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Roberto Di Cosmo (Inria and Université Paris Cité, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University, Brno, CZ)
Meena Mahajan (Chair, Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)
Pierre Senellart (ENS, Université PSL, Paris, FR)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

CCC 2024

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Rahul Santhanam . 0:ix

Conference Organization
. 0:xi

External Reviewers
. 0:xiii–0:xiv

Regular Papers

A Technique for Hardness Amplification Against AC0

William M. Hoza . 1:1–1:20

Streaming Zero-Knowledge Proofs
Graham Cormode, Marcel Dall’Agnol, Tom Gur, and Chris Hickey 2:1–2:66

Solving Unique Games over Globally Hypercontractive Graphs
Mitali Bafna and Dor Minzer . 3:1–3:15

Derandomizing Logspace with a Small Shared Hard Drive
Edward Pyne . 4:1–4:20

Explicit Time and Space Efficient Encoders Exist Only with Random Access
Joshua Cook and Dana Moshkovitz . 5:1–5:54

The Entangled Quantum Polynomial Hierarchy Collapses
Sabee Grewal and Justin Yirka . 6:1–6:23

Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy
Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and
Sagnik Mukhopadhyay . 7:1–7:16

Asymptotically-Good RLCCs with (log n)2+o(1) Queries
Gil Cohen and Tal Yankovitz . 8:1–8:16

Lifting Dichotomies
Yaroslav Alekseev, Yuval Filmus, and Alexander Smal . 9:1–9:18

Explicit Directional Affine Extractors and Improved Hardness for Linear
Branching Programs

Xin Li and Yan Zhong . 10:1–10:14

Linear-Size Boolean Circuits for Multiselection
Justin Holmgren and Ron Rothblum . 11:1–11:20

A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas
Pavel Hrubeš . 12:1–12:11

Hard Submatrices for Non-Negative Rank and Communication Complexity
Pavel Hrubeš . 13:1–13:12

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture
Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter, and
Avi Wigderson . 14:1–14:48

Quantum Automating TC0-Frege Is LWE-Hard
Noel Arteche, Gaia Carenini, and Matthew Gray . 15:1–15:25

A Strong Direct Sum Theorem for Distributional Query Complexity
Guy Blanc, Caleb Koch, Carmen Strassle, and Li-Yang Tan . 16:1–16:30

Local Enumeration and Majority Lower Bounds
Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks, and
Navid Talebanfard . 17:1–17:25

Pseudorandomness, Symmetry, Smoothing: I
Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola 18:1–18:27

Information Dissemination via Broadcasts in the Presence of Adversarial Noise
Klim Efremenko, Gillat Kol, Dmitry Paramonov, Ran Raz, and
Raghuvansh R. Saxena . 19:1–19:33

Lower Bounds for Set-Multilinear Branching Programs
Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka 20:1–20:20

Public-Key Pseudoentanglement and the Hardness of Learning Ground State
Entanglement Structure

Adam Bouland, Bill Fefferman, Soumik Ghosh, Tony Metger, Umesh Vazirani,
Chenyi Zhang, and Zixin Zhou . 21:1–21:23

Depth-d Frege Systems Are Not Automatable Unless P = NP
Theodoros Papamakarios . 22:1–22:17

Exponential Separation Between Powers of Regular and General Resolution over
Parities

Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and Pavel Dvořák 23:1–23:32

Distribution-Free Proofs of Proximity
Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum 24:1–24:18

On the Degree of Polynomials Computing Square Roots Mod p

Kiran S. Kedlaya and Swastik Kopparty . 25:1–25:14

Dimension Independent Disentanglers from Unentanglement and Applications
Fernando Granha Jeronimo and Pei Wu . 26:1–26:28

Baby PIH: Parameterized Inapproximability of Min CSP
Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep . 27:1–27:17

Finding Missing Items Requires Strong Forms of Randomness
Amit Chakrabarti and Manuel Stoeckl . 28:1–28:20

Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity
Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira 29:1–29:56

The Computational Advantage of MIP∗ Vanishes in the Presence of Noise
Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and
Penghui Yao . 30:1–30:71

Contents 0:vii

Low-Depth Algebraic Circuit Lower Bounds over Any Field
Michael A. Forbes . 31:1–31:16

BPL ⊆ L-AC1

Kuan Cheng and Yichuan Wang . 32:1–32:14

Failure of Feasible Disjunction Property for k-DNF Resolution and NP-Hardness
of Automating It

Michal Garlík . 33:1–33:23

Search-To-Decision Reductions for Kolmogorov Complexity
Noam Mazor and Rafael Pass . 34:1–34:20

Finer-Grained Hardness of Kernel Density Estimation
Josh Alman and Yunfeng Guan . 35:1–35:21

Gap MCSP Is Not (Levin) NP -Complete in Obfustopia
Noam Mazor and Rafael Pass . 36:1–36:21

CCC 2024

Preface

The papers for this volume were accepted for presentation at the 39th Computational
Complexity Conference (CCC 2024), held from July 22-25, 2024, in Ann Arbor, USA. The
conference is organised by the Computational Complexity Foundation (CCF) in cooperation
with the ACM Special Interest Group on Algorithms and Computation Theory (SIGACT)
and the European Association for Theoretical Computer Science (EATCS).

The call for papers sought original research papers in all areas of complexity theory. Of
the 105 submissions, the program committee selected 36 for presentation at the conference.

The program committee would like to thank everyone involved in the conference, including
all those who submitted papers for consideration as well as the reviewers (listed separately)
for their scientific contributions; the board of trustees of the Computational Complexity
Foundation for their advice and assistance; the Local Arrangements Committee chair Mahdi
Cheraghchi; Adam Bouland, Nutan Limaye and Toniann Pitassi for their invited talks; and
Michael Wagner for coordinating the production of the proceedings.

Rahul Santhanam
Program Commitee Chair, on behalf of the Program Committee

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Conference Organization

Program Committee

Scott Aaronson, University of Texas at Austin
Marshall Ball, New York University
Mark Bun, Boston University
Dean Doron, Ben-Gurion University
Ankit Garg, Microsoft Research India
Alexander Golovnev, Georgetown University
Troy Lee, University of Sydney
Robert Robere, McGill University
Noga Ron-Zewi, University of Haifa
Rahul Santhanam (Chair), University of Oxford
Srikanth Srinivasan, Copenhagen University and University of Aarhus and IIT Bombay
Madhu Sudan, Harvard University
Iddo Tzameret, Imperial College

Local Arrangements Committee

Mahdi Cheraghchi (Chair), University of Michigan

Board of Trustees

Amit Chakrabarti, Dartmouth College
Mahdi Cheraghchi, University of Michigan
Valentine Kabanets (President), Simon Fraser University
Nutan Limaye, IT University of Copenhagen
Meena Mahajan, The Institute of Mathematical Sciences
Pierre McKenzie, Université de Montréal
Susanna de Rezende, Lund University
Benjamin Rossman, Duke University
Shubhangi Saraf, University of Toronto

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

External Reviewers

Prashanth Amireddy
Gal Arnon
Noel Arteche
Srinivasan Arunachalam
Roozbeh Bassirian
Amik Raj Behera
Alexander Belovs
Shalev Ben-David
Omri Ben-Eliezer
Siddarth Bhaskar
Eric Blais
Andrej Bogdanov
John Bostanci
Marco Carmosino
Diptarka Chakraborty
Sourav Chakraborty
Prerona Chatterjee
Arkadev Chattopadhyay
Eshan Chattopadhyay
Yu Chen
James Cook
Peter Crawford-Kahrl
Samir Datta
Ronald de Wolf
Yotam Dikstein
Feyza Duman Keles
Arnaud Durand
Pranjal Dutta
Pavel Dvorak
Julian Dorfler
Christian Engels
Saroja Erabelli
Bill Fefferman
Noah Fleming
Karthik Gajulapalli
Michael Garlik
Dmitry Gavinsky
Alexandru Gheorghiu
Prantar Ghosh
Suprovat Ghoshal
Eli Goldin
Jesse Goodman
Mike Goos
Joshua Grochow
Stefan Grosser

Svyatoslav Gryaznov
Jiaxin Guan
Zeyu Guo
Tuomas Hakoniemi
Peter Hall
Kristoffer Arnsfelt Hansen
Prahladh Harsha
Pooya Hatami
Edward A.Hirsch
Kaave Hosseini
William Hoza
Rahul Ilango
Dmitry Itsykson
Siddharth Iyer
Siddhartha Jain
Stacey Jeffery
Valentine Kabanets
Neeraj Kayal
Alexander Kelley
Samuel King
Alexander Knop
Tamara Kohler
Leszek Kolodziejczyk
William Kretschmer
Vaibhav Krishnan
Alexander Kulikov
Vinayak Kumar
Massimo Lauria
Victor Lecomte
Chin Ho Lee
Eunou Lee
Sihyun Lee
Jiatu Li
Jiawei Li
Zeyong Li
Nutan Limaye
Wei-Kai Lin
Qipeng Liu
Siqi Liu
Yanyi Liu
Yipan Liu
Bruno Loff
Xin Lyu
Pasin Manurangsi
Kunal Marwaha

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xiv External Reviewers

Alex May
Gilbert Maystre
Noam Mazor
Ian Mertz
Ivan Mikhailin
Alexey Milovanov
Milan Mosse
Hamoon Mousavi
Saachi Mutreja
Satyajeet Nagargoje
Naoto Ohsaka
Rafael Oliveira
Shuo Pang
Aduri Pavan
Jan Pich
Vladimir Podolskii
Pavel Pudlak
Edward Pyne
Youing Qiao
Hanlin Ren
Artur Riazanov
Kilian Risse
Sushant Sachdeva
Shay Sapir
Sidhant Saraogi
Tselil Schramm
Adrian She
Suhail Sherif
Jamie Sikora
Amit Sinhababu
Alexander Smal
Anastasia Sofronova
Dmitry Sokolov
Carmen Strassle
Sathyawageeswar Subramanian
Navid Talebanfard
Raghunath Tewari
Bhargav Thankey
Neil Thapen
Thomas Thierauf
Santhoshini Velusamy
Marc Vinyals
Ben Lee Volk
Nadezhda Voronova
Erik Waingarten
Jordi Weggemans
Huacheng Yu
Henry Yuen

Wei Zhan
Jiapeng Zhang
Rachel Zhang

A Technique for Hardness Amplification Against
AC0

William M. Hoza # Ñ

Department of Computer Science, The University of Chicago, IL, USA

Abstract
We study hardness amplification in the context of two well-known “moderate” average-case hardness
results for AC0 circuits. First, we investigate the extent to which AC0 circuits of depth d can
approximate AC0 circuits of some larger depth d + k. The case k = 1 is resolved by Håstad,
Rossman, Servedio, and Tan’s celebrated average-case depth hierarchy theorem (JACM 2017). Our
contribution is a significantly stronger correlation bound when k ≥ 3. Specifically, we show that
there exists a linear-size AC0

d+k circuit h : {0, 1}n → {0, 1} such that for every AC0
d circuit g, either

g has size exp(nΩ(1/d)), or else g agrees with h on at most a (1/2 + ε)-fraction of inputs where
ε = exp(−(1/d) · Ω(log n)k−1). For comparison, Håstad, Rossman, Servedio, and Tan’s result has
ε = n−Θ(1/d). Second, we consider the majority function. It is well known that the majority function
is moderately hard for AC0 circuits (and stronger classes). Our contribution is a stronger correlation
bound for the XOR of t copies of the n-bit majority function, denoted MAJ⊕t

n . We show that if g is
an AC0

d circuit of size S, then g agrees with MAJ⊕t
n on at most a (1/2 + ε)-fraction of inputs, where

ε =
(
O(log S)d−1/

√
n
)t.

To prove these results, we develop a hardness amplification technique that is tailored to a specific
type of circuit lower bound proof. In particular, one way to show that a function h is moderately hard
for AC0 circuits is to (a) design some distribution over random restrictions or random projections,
(b) show that AC0 circuits simplify to shallow decision trees under these restrictions/projections,
and finally (c) show that after applying the restriction/projection, h is moderately hard for shallow
decision trees with respect to an appropriate distribution. We show that (roughly speaking) if h can
be proven to be moderately hard by a proof with that structure, then XORing multiple copies of h

amplifies its hardness. Our analysis involves a new kind of XOR lemma for decision trees, which
might be of independent interest.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Bounded-depth circuits, average-case lower bounds, hardness amplification,
XOR lemmas

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.1

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/176/ [41]

Funding Part of this work was done while the author was visiting the Simons Institute for the
Theory of Computing.

Acknowledgements I thank Avishay Tal for collaboration at an early stage of this project. I thank
Li-Yang Tan for encouragement. I thank Pooya Hatami for a helpful conversation.

1 Introduction

1.1 Average-Case Circuit Lower Bounds

Circuit lower bounds are at the heart of computational complexity theory. To understand
the limitations of (extremely) efficient computation, we seek to prove that certain explicit
functions cannot be computed by certain interesting classes of Boolean circuits. In fact,
ideally, we want to prove average-case circuit lower bounds, also known as correlation bounds.
That is, we would like to prove that circuits in some class C cannot compute some function
h : {0, 1}n → {0, 1} on more than a (1/2 + ε)-fraction of inputs for some small value ε > 0:

© William M. Hoza;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 1; pp. 1:1–1:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:williamhoza@uchicago.edu
https://williamhoza.com
https://orcid.org/0000-0001-5162-9181
https://doi.org/10.4230/LIPIcs.CCC.2024.1
https://eccc.weizmann.ac.il/report/2023/176/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 A Technique for Hardness Amplification Against AC0

For every g ∈ C, Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + ε. (1)

We would like ε to be as small as possible. For example, one motivation for trying to
minimize ε comes from the Nisan-Wigderson framework for converting correlation bounds
into pseudorandom generators (PRGs) [57]. In this framework, a bound of the form (1)
implies a PRG with error εn, and in particular, the framework requires ε < 1/n.

In this work, we focus on the case that C consists of AC0 circuits, i.e., circuits made up of
AND and OR gates of unbounded fan-in, with literals and constants at the bottom. The size
of the circuit is the number of AND and OR gates, and the depth of the circuit is the length
of the longest path from an input gate to the output gate. We refer to an AC0 circuit of
depth d as an “AC0

d circuit.” We are especially interested in the constant-depth regime; this
class of circuits can be viewed as a model of constant-time parallel computation. Some of the
most celebrated theorems in circuit complexity are lower bounds on the size of AC0 circuits
computing various explicit functions. For example, if g is an AC0

d circuit, then g famously
cannot compute the parity function on n bits or the majority function on n bits, unless g

has size at least exp(cd · n1/(d−1)) [28, 1, 80, 35, 36].

1.2 Hardness Amplification and Yao’s XOR Lemma
One appealing approach for proving strong correlation bounds is to first construct a function
h that is “moderately hard” (e.g., maybe we have ε = 1/

√
n), and then apply some kind

of hardness amplification scheme that converts h into a “very hard” function (e.g., maybe
now we can take ε = n−ω(1)). The most famous method for hardness amplification is Yao’s
XOR Lemma [79, 53, 43, 29]. Starting from a hard function h : {0, 1}n → {0, 1}, this lemma
considers the new hard function h⊕t : {0, 1}nt → {0, 1} defined by h⊕t(x(1), . . . , x(t)) =⊕t

i=1 h(x(i)). One well-known version1 of Yao’s XOR Lemma says that if h is moderately
hard for MAJ ◦ C circuits, where MAJ denotes the majority function, then h⊕t is very hard
for C circuits.

In the context of relatively weak classes such as AC0, the distinction between C and
MAJ ◦ C is extremely important. Proving lower bounds on the size of MAJ ◦ C circuits is
generally much more difficult than proving lower bounds on the size of C circuits. For this
reason, there is a great deal of interest in “removing the majority gate” from Yao’s XOR
Lemma. For example, we can ask the following.

▶ Question 1.1 (Does XORing amplify hardness for AC0?). Let h : {0, 1}n → {0, 1} and let
t = log n. Assume that every constant-depth subexponential-size AC0 circuit g satisfies

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + n−Ω(1).

Does it follow that every constant-depth polynomial-size AC0 circuit g satisfies

Pr
x∈{0,1}nt

[g(x) = h⊕t(x)] ≤ 1
2 + n−ω(1)?

Several recent papers have developed and applied a refined version of Yao’s XOR Lemma
featuring an “approximate linear sum” gate instead of the traditional majority gate [22, 21,
20, 42, 19, 25]. This clever approach has been fruitful, but it is still not applicable if we

1 See, for example, Viola’s work [77].

W. M. Hoza 1:3

start with a function that is hard merely for AC0 circuits. Unfortunately, there are strong
barrier results saying that every “black-box” hardness amplification scheme must involve
some nontrivial computational overhead [74, 32, 63, 31, 62]. As a special case, this line of
work implies that Theorem 1.1 cannot be resolved affirmatively via a “black-box” hardness
amplification scheme. Thus, we have an ironic state of affairs: we have a rich toolkit for
proving lower bounds on the size of AC0 circuits, because we are able to exploit these circuits’
weaknesses, but at the same time, specifically because these circuits are too weak, we cannot
use Yao’s XOR Lemma to amplify our lower bounds.2

1.3 Our Contributions
In this work, we develop a non-black-box method for hardness amplification, applicable to
some (but not all) moderate hardness results for AC0 circuits. We use our method to amplify
two well-known average-case hardness results, discussed next.

1.3.1 Correlation Bounds for Depth Reduction Within AC0

Our first application of our hardness amplification technique concerns the role of depth in
circuit complexity. To what extent are deeper circuits more powerful than shallower circuits?
In other words, what is the marginal utility of time for parallel computation?

Surprisingly, it turns out that in many contexts, circuits can be generically and nontrivially
simulated by shallower circuits. For example:

NC1 circuits (i.e., circuits of depth O(log n) with bounded fan-in) can be simulated by
AC0

d circuits of size exp(nO(1/d)) [73, 75, 76, 71].
ACC0

d circuits (i.e., AC0
d circuits augmented with MODm gates) of size S can be simulated

by SYM ◦ AND circuits of size exp((log S)O(d)) [72, 2, 4, 81, 3, 11, 78, 24].
AC0 circuits can be approximated in various ways by low-degree polynomials [60, 66, 67,
10, 70, 55, 15, 37, 8, 59, 16, 69, 51, 34], which can be viewed as a “depth-two” model of
computation.

In light of these remarkable “depth reduction” results and their numerous applications,
we would like to know precisely when, and to what extent, depth reduction is possible.
Indeed, there is a longstanding interest in thoroughly understanding the hardness of circuit
depth reduction within AC0. Early work shows that there exists a linear-size AC0

d+1 circuit
h : {0, 1}n → {0, 1} such that every AC0

d circuit computing h must have size exp(nΩ(1/d))
[65, 80, 35]. For several decades, it was a stubborn open problem to prove a similar hierarchy
theorem in the average-case setting. O’Donnell and Wimmer essentially resolved the depth-2
vs. depth-3 case [58], and then finally Håstad, Rossman, Servedio, and Tan resolved the
general depth-d vs. depth-(d + 1) case in a breakthrough last decade [39]:

▶ Theorem 1.2 (The average-case depth hierarchy theorem [39]). Let n, d ∈ N with d ≤ α log n
log log n ,

where α > 0 is a suitable constant. There is an explicit3 AC0
d+1 circuit h : {0, 1}n → {0, 1} of

size O(n) such that for every AC0
d circuit g : {0, 1}n → {0, 1}, either g has size exp(nΩ(1/d)),

or else the following correlation bound holds:

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + n−Ω(1/d). (2)

2 The exception, of course, is if we start from a lower bound against a stronger class such as MAJ ◦ AC0.
See Klivans’ work [49].

3 I.e., the circuit h can be constructed in poly(n) time, given the parameters n and d.

CCC 2024

1:4 A Technique for Hardness Amplification Against AC0

Theorem 1.2 asserts that h is moderately hard for AC0
d circuits. Håstad, Rossman, Servedio,

and Tan identified two obstacles preventing significant improvement of the n−Ω(1/d) correlation
bound in (2):

The “hard function” h in Theorem 1.2 is monotone. By the Kahn-Kalai-Linial theorem [47],
every monotone Boolean function can be approximated by a constant or a variable with
success probability 1/2 + ω(1/n).
By the discriminator lemma [33], every linear-size AC0

d+1 circuit h, whether monotone or
not, can be approximated by a linear-size AC0

d circuit with success probability 1/2+Ω(1/n).
(See Hatami, Hoza, Tal, and Tell’s work for further details of these two arguments [40,
Appendix A].)

In this work, we overcome both obstacles by using a different, non-monotone hard function
h with depth slightly greater than d + 1. We prove an average-case lower bound for the
task of simulating AC0

d+k circuits using AC0
d circuits, with a correlation bound that gets

significantly stronger as k gets larger.

▶ Theorem 1.3 (AC0
d circuits cannot approximate AC0

d+k circuits). Let n, d, k ∈ N with k ≥ 3
and dk ≤ α log n

log log n , where α > 0 is a suitable constant. There is an explicit AC0
d+k circuit

h : {0, 1}n → {0, 1} of size O(n) such that for every AC0
d circuit g : {0, 1}n → {0, 1}, either g

has size exp(nΩ(1/d)), or else the following correlation bound holds:

Pr
x∈{0,1}n

[g(x) = h(x)] ≤ 1
2 + exp

(
−1

d
· Ω(log n)k−1

)
.

Our hard function h is the XOR of approximately logk−2 n many copies of Håstad,
Rossman, Servedio, and Tan’s hard function [39]. By combining Theorem 1.3 with the
Nisan-Wigderson framework [57] and a reduction due to Li and Zuckerman [54], we obtain
new constructions of seedless randomness extractors that are computable by small AC0

d+O(1)
circuits and that can extract from sources that are “recognizable” by large AC0

d circuits. See
the full version of this paper for details [41].

1.3.2 Correlation Bounds for XOR of Majority
Our second application of our hardness amplification technique concerns the n-bit majority
function (MAJn). It is well known that the majority function is moderately hard for AC0

circuits and more generally for AC0[⊕] circuits, i.e., AC0 circuits augmented with parity
gates.4 Specifically, based on the seminal works of Razborov and Smolensky [60, 66, 67], we
have the following correlation bound.

▶ Theorem 1.4 (Majority is moderately hard for AC0
d[⊕] circuits). Let n, d, S ∈ N with S ≥ n.

Let g : {0, 1}n → {0, 1} be an AC0
d[⊕] circuit of size S. Then

Pr
x∈{0,1}n

[g(x) = MAJn(x)] ≤ 1
2 + O(log S)d−1

√
n

.

We emphasize that we are considering the problem of computing the majority function on a
(1/2 + ε)-fraction of n-bit inputs, which is distinct from the perhaps more famous “promise
majority” problem in which we wish to compute the majority function on all inputs with
relative Hamming weight outside the interval 1/2 ± ε. It seems that O’Donnell and Wimmer
were the first to explicitly consider correlation bounds for the majority function [58].

4 Even more generally, we can consider MODq gates where q is a power of a prime – but let us focus on
parity gates for simplicity.

W. M. Hoza 1:5

The specific quantitative bound in Theorem 1.4 is actually a log-factor improvement
over what was known before, to the best of our knowledge. We therefore include a proof of
Theorem 1.4 in the full version of this paper [41, Appendix A]. (We also present a matching
AC0 construction based on prior work, showing that Theorem 1.4 is tight.) That being said,
our main focus is on the qualitative distinction between functions that are “moderately hard”
and functions that are “very hard.” The fact that the majority function is moderately hard for
AC0[⊕] circuits – for example, the correlation bound above is Θ̃(1/

√
n) in the constant-depth

polynomial-size regime – was already well-understood prior to this work.
Remarkably, this weak correlation bound is the best bound known on the correlation

between AC0[⊕] circuits and any hard function in NP.5 It is a major open problem to
construct an explicit function that is provably “very hard” for AC0[⊕] circuits. The function
MAJ⊕t

n , perhaps with t = polylog(n), seems like a reasonable candidate.
Chattopadhyay, Hatami, Hosseini, Lovett, and Zuckerman recently proved that XORing

amplifies the hardness of MAJn for constant-degree F2-polynomials [18], which can be
considered a special case of polynomial-size AC0

2[⊕] circuits. In this work, we consider a
different special case of AC0[⊕] circuits, namely AC0 circuits. Our contribution is a proof
that XORing amplifies the hardness of MAJn for AC0 circuits.

▶ Theorem 1.5 (MAJ⊕t
n is hard for AC0

d circuits). Let n, t, d, S ∈ N and let g : {0, 1}nt → {0, 1}
be an AC0

d circuit of size S. Then

Pr
x∈{0,1}nt

[
g(x) = MAJ⊕t

n (x)
]

≤ 1
2 +

(
O(log S)d−1

√
n

)t

.

1.4 Our Technique
1.4.1 XOR Lemmas for Decision Trees
Our correlation bounds are based on XOR lemmas for decision trees. Before explaining
the connection between AC0 circuits and decision trees, let us discuss the XOR lemmas for
decision trees themselves – a fascinating subject in its own right. Let h be a Boolean function
that is moderately hard for shallow decision trees: every depth-D decision tree agrees with h

on at most a (1/2 + ε)-fraction of inputs.
It is not hard to show that decision trees of that same depth D can compute h⊕t on at

most a (1/2 + ε′)-fraction of inputs, where ε′ = 1
2 · (2ε)t. (For example, this is a special case

of Shaltiel’s analysis of “fair” decision trees [61].) It turns out that a slight generalization of
that simple analysis suffices for proving our correlation bound for depth reduction within
AC0 (Theorem 1.3).

On the other hand, to get the best parameters in Theorem 1.5 (on the hardness of MAJ⊕t
n),

it turns out that we need a more sophisticated XOR lemma for decision trees, in which we
allow the tree attempting to compute h⊕t to have depth significantly larger than D.

This problem has been previously studied by Drucker [26]. Focusing on one setting of
parameters, Drucker showed that for every constant α > 0, there is a value D′ = Ω(Dt)
such that trees of depth D′ cannot compute h⊕t on more than a (1/2 + ε′)-fraction of
inputs, where ε′ = O(ε)(1−α)·t [26]. Although it comes close, this result is not quite sufficient
to prove Theorem 1.5 because of the (1 − α)-factor loss in the exponent. Furthermore,
unfortunately, the (1 − α)-factor loss is unavoidable in general, due to counterexamples

5 If we permit hard functions that satisfy less stringent explicitness conditions, then better correlation
bounds are known against AC0[⊕] and even stronger classes [77, 23, 22, 19].

CCC 2024

1:6 A Technique for Hardness Amplification Against AC0

identified by Shaltiel [61]. The idea behind these counterexamples is that although h is hard
for decision trees of depth D, it might nevertheless be easy for decision trees of depth D + 1.
In this case, for any constant c > 0, a decision tree of depth cDt can successfully compute h

on Ω(t) independent instances.
To circumvent Shaltiel’s counterexamples [61], we strengthen the assumption. We assume

that h is moderately hard for depth-D decision trees for all D simultaneously, with a
correlation bound ε that scales with the depth D according to some log-concave function
ε(D). Under this assumption, we prove the decision trees of depth Ω(Dt) have correlation at
most O(ε)t with h⊕t.

▶ Lemma 1.6 (XOR lemma for decision trees under a robust hardness assumption). Let
h : {0, 1}n → {0, 1} be a function and let ε : [0, ∞) → (0, ∞) be a log-concave function.
Assume that for every D ∈ N and every decision tree T : {0, 1}n → {0, 1} of depth at most
D, we have

Pr
x∈{0,1}n

[T (x) = h(x)] ≤ 1
2 + ε(D).

Then for every D, t ∈ N and every decision tree T : {0, 1}nt → {0, 1} of depth at most Dt/2,
we have

Pr
x∈{0,1}nt

[T (x) = h⊕t(x)] ≤ 1
2 + O(ε(D))t.

(See Lemma 3.2 for a more general statement.)

1.4.2 Amplifying the Average-Case Depth Hierarchy Theorem
Now we briefly explain how we use an XOR lemma for decision trees to prove Theorem 1.3
(our correlation bound for depth reduction within AC0). Our analysis builds on Håstad,
Rossman, Servedio, and Tan’s proof of the average-case depth hierarchy theorem [39]. Recall
that their lower bound proof is based on the concept of random projections, which generalize
traditional random restrictions. (A traditional restriction assigns values to some input
variables while keeping others “alive.” A projection can additionally merge living variables.)
To prove that their hard function h is moderately hard for AC0

d circuits, Håstad, Rossman,
Servedio, and Tan carefully designed a distribution R over projections and a distribution µ

over inputs and showed the following [39].
1. (Completion to the uniform distribution.) For every function f : {0, 1}n → {0, 1}, plugging

a uniform random x ∈ {0, 1}n into f is equivalent to first sampling a projection π ∼ R,
then independently sampling an input y ∼ µ, and finally plugging y into f |π.

2. (Simplification.) For every AC0
d circuit g, either g has size exp(nΩ(1/d)), or else with high

probability over π ∼ R, the circuit g simplifies under π in the sense that g|π can be
computed by a shallow decision tree.

3. (Maintaining structure.) With high probability over π ∼ R, the hard function h maintains
structure in the sense that h|π is moderately hard for shallow decision trees with respect
to µ.

Taken together, the three steps above imply that h is moderately hard for AC0
d circuits with

respect to a uniform random input. We call this proof structure the random simplification
method for proving correlation bounds.

As mentioned previously, our hard function is h⊕t, where h is Håstad, Rossman, Servedio,
and Tan’s hard function and t ≈ logk−2 n. To prove that h⊕t is very hard for AC0

d circuits,
we use the random simplification method. We apply R to each of the t input blocks of h⊕t

independently. By Håstad, Rossman, Servedio, and Tan’s analysis [39], each copy of h is

W. M. Hoza 1:7

likely to be moderately hard for shallow decision trees after the projection. Therefore, by
a suitable XOR lemma for decision trees, h⊕t is likely to be very hard for shallow decision
trees after the projection. Meanwhile, Håstad, Rossman, Servedio, and Tan’s simplification
arguments [39] extend to the case of several independent copies of R, completing the proof.

1.4.3 Amplifying the Hardness of the Majority Function
There are at least three known proofs that the majority function is moderately hard for
AC0 circuits: one using the Razborov-Smolensky method [27, 50, 41], one due to O’Donnell
and Wimmer [58], and one due to Tal [69]. However, none of these proofs fits into our
framework of “random simplification arguments,” so it is not clear how to combine them
with our amplification technique. (The latter two proofs do use switching lemmas, but only
in an indirect Fourier-analytic way.) For this reason, in the full version of this paper [41,
§5.1], we present yet another proof that the majority function is moderately hard for AC0

d

circuits. Our new proof does fit into our “random simplification argument” framework, and
furthermore, the “robust hardness assumption” of Lemma 1.6 is satisfied in our proof. These
features of our proof enable us to apply our new XOR lemma for decision trees to complete
our analysis of MAJ⊕t

n .

1.5 Related Work
Goldwasser, Gutfreund, Healy, Kaufman, and Rothblum designed a method for converting
worst-case hardness into moderate average-case hardness in the context of weak circuit
classes [30], which complements our work in some ways. One contrast between their work and
ours is that they merely construct a hard function with a very weak explicitness guarantee,
namely membership in EXP, whereas we study an extremely explicit hardness amplification
method, namely XORing. More recently, Chen, Lu, Lyu, and Oliveira developed a method
for constructing very hard functions for weak circuit classes starting from relatively weak
assumptions [20] – but once again, their hard functions only satisfy weak explicitness
guarantees such as membership in E.

A long sequence of works has established strong bounds on the correlation between the
parity function and AC0 circuits [28, 1, 80, 35, 36, 7, 49, 75, 9, 44, 38]. One of these works,
by Klivans [49], is especially relevant for us. Klivans’ proof is based on a result by Aspnes,
Beigel, Furst, and Rudich, who showed that if g is a MAJ ◦ AC0

d circuit, then either g has size
exp(nΩ(1/d)), or else g disagrees with the parity function on a constant fraction of inputs [6].
Klivans combined this result with Yao’s XOR Lemma to re-prove a strong (albeit not optimal)
bound on the correlation between AC0

d circuits and the parity function [49]. Klivans’ proof is
the only prior work we are aware of that uses hardness amplification methods to prove an
unconditional AC0 circuit lower bound.

Many prior works have studied XOR lemmas for various types of decision trees, along
with the closely related “direct product” and “direct sum” problems [45, 12, 56, 61, 48, 68,
5, 46, 26, 64, 52, 13, 14, 17]. However, as far as we are aware, we are the first to consider
the case that we have hardness for all depths simultaneously.

1.6 Organization
After some preliminaries, we present our XOR lemma for decision trees (Lemma 1.6) in
Section 3. Then, in Section 4, we present general lemmas showing that XORing amplifies
hardness whenever the hardness is proved via the random simplification method. The proofs
of our main results (Theorem 1.3 and Theorem 1.5) are omitted from this extended abstract,
but they can be found in the full version of this paper [41].

CCC 2024

1:8 A Technique for Hardness Amplification Against AC0

2 Preliminaries

We write N to denote the set of non-negative integers.

2.1 Boolean Functions
In the introduction, we worked with functions f : {0, 1}n → {0, 1}. Going forward, it will
be more convenient to encode a bit b ∈ {0, 1} as the value (−1)b. Thus, we will work with
functions f : {±1}n → {±1}. We continue to use the notation f⊕t, but now f⊕t denotes the
product of t copies of f on independent inputs.

We use the following notation to describe decision trees.

▶ Definition 2.1 (Decision trees). For a function f : {±1}n → {±1}, we define DTDepth(f)
to be the minimum depth of a decision tree computing f . In the other direction, for a
parameter D ∈ N, we define DTDepth[D] to be the class of all functions f : {±1}n → {±1}
that can be computed by depth-D decision trees. (The parameter n will always be clear from
context.)

2.2 Probability and Correlation
We denote random variables using boldface. We write x ∼ µ to indicate that the random
variable x is sampled from the distribution µ. If µ, µ̃ are discrete probability distributions
over some set Ω, then we consider the “total variation distance” between µ and µ̃ to be

max
S⊆Ω

(| Pr[x ∈ S] − Pr[x̃ ∈ S]|),

where x ∼ µ and x̃ ∼ µ̃. We also rely on the following alternative notion of “distance”
between probability distributions.

▶ Definition 2.2 (Max-divergence). Let µ and µ̃ be discrete probability distributions over
some set Ω. The max-divergence of µ̃ from µ is defined by

D∞(µ̃ ∥ µ) = ln
(

max
x∈Ω

(
Pr[x̃ = x]
Pr[x = x]

))
,

where x ∼ µ and x̃ ∼ µ̃.

Max-divergence and total variation distance are related by the following lemma.

▶ Lemma 2.3 (Low max-divergence ⇒ low total variation distance). Let µ and µ̃ be discrete
probability distributions over the same set Ω. Let ε = D∞(µ̃ ∥ µ). There exists a probability
distribution µ′ such that µ can be written as a convex combination µ = (1 − ε) · µ̃ + ε · µ′.
Moreover, the total variation distance between µ and µ̃ is at most ε.

Proof. If ε = 0, the lemma is trivial, so assume ε > 0. For each x ∈ Ω, define

p(x) = Pr[x = x] − (1 − ε) Pr[x̃ = x]
ε

,

where x ∼ µ and x̃ ∼ µ̃. Then
∑

x∈Ω p(x) = 1. Furthermore, p(x) ≥ 0, because

(1 − ε) Pr[x̃ = x] ≤ (1 − ε) · eε · Pr[x = x] ≤ Pr[x = x].

W. M. Hoza 1:9

Therefore, p(·) is a probability mass function, and we can let µ′ be the corresponding
probability distribution. For the “moreover” part, observe that for any S ⊆ Ω, we have

Pr[x ∈ S] = (1 − ε) · Pr[x̃ ∈ S] + ε · Pr[x′ ∈ S],

where x′ ∼ µ′. Therefore,

Pr[x ∈ S] ≤ Pr[x̃ ∈ S] + ε · Pr[x′ ∈ S] ≤ Pr[x̃ ∈ S] + ε,

and

Pr[x ∈ S] ≥ (1 − ε) · Pr[x̃ ∈ S] ≥ Pr[x̃ ∈ S] − ε. ◀

We use the following notation for product distributions.

▶ Definition 2.4 (Tensor product of probability distributions). Let µ1, . . . , µt be probability
distributions over the spaces Ω1, . . . , Ωt. Sample x1 ∼ µ1, . . . , xt ∼ µt independently. The
tensor product µ1 ⊗ · · · ⊗ µt is the probability distribution of (x1, . . . , xt). As a special case,
we define

µ⊗t = µ ⊗ µ ⊗ · · · ⊗ µ︸ ︷︷ ︸
t copies

.

We use the following standard definition to reason about average-case hardness of {±1}-
valued functions.

▶ Definition 2.5 (Correlation). Let g, h : {±1}n → R be functions and let µ be a distribution
over {±1}n. We define

Corrµ(g, h) = E
x∼µ

[g(x) · h(x)].

More generally, if C is a class of functions g : {±1}n → R, then we define

Corrµ(C, h) = max
g∈C

Corrµ(g, h).

If µ is omitted, then by default it is assumed to be the uniform distribution over {±1}n.

If g and h are {±1}-valued, then a bound |Corr(g, h)| ≤ ε is equivalent to the statement
that g agrees with h on at most a (1/2 + ε/2)-fraction of inputs, because for any two
{0, 1}-valued random variables a, b, we have Pr[a = b] = 1

2 + 1
2 E[(−1)a · (−1)b].

2.3 Generalized Restrictions
To formulate our hardness amplification technique in the clearest and most general way
possible, we work with a notion of generalized restrictions that includes restrictions and
projections as special cases. A generalized restriction, formally defined below, consists of an
arbitrary “preprocessing” step that can be applied to a Boolean function of interest.

▶ Definition 2.6 (Generalized restriction). A generalized restriction is a function π : {±1}r →
{±1}n. If f : {±1}n → {±1} is a Boolean function, then we define g|π to be the composition
g ◦ π. That is, g|π : {±1}r → {±1} is given by g|π(x) = g(π(x)).

Traditional restrictions can be viewed as a special case of generalized restrictions as
follows.

CCC 2024

1:10 A Technique for Hardness Amplification Against AC0

▶ Definition 2.7 (Traditional restrictions as generalized restrictions). A restriction is a string
ρ ∈ {+1, −1, ⋆}n. We identify ρ with a generalized restriction π : {±1}r → {±1}n, where
r = |ρ−1(⋆)|, as follows. Given y ∈ {±1}r, we let π(y) be ρ, except that the i-th star is
replaced with yi for every i ∈ [r].

Next, we consider distributions over generalized restrictions, and we explain how to interpret
the tensor product of such distributions.

▶ Definition 2.8 (Tensor product of generalized restriction distributions). Let r, n ∈ N, and
let R be a distribution over generalized restrictions π : {±1}r → {±1}n. Let π1, . . . , πt be
independent samples from R, and define π⃗ : {±1}rt → {±1}nt by concatenating, i.e.,

π⃗(y(1), . . . , y(t)) = (π1(y(1)), . . . , πt(y(t))).

Then the tensor product R⊗t is the distribution of the random variable π⃗.

2.4 Logarithmic Concavity
We recall the following standard definition.

▶ Definition 2.9 (Log-concave). A function f : [0, ∞) → (0, ∞) is log-concave if log f is
concave, i.e., for every x, y ∈ [0, ∞) and λ ∈ (0, 1), we have f(x)λ ·f(y)1−λ ≤ f(λx+(1−λ)y).

If f is log-concave, then by induction on t, we have
∏t

i=1 f(xi) ≤ f(x̄)t where x̄ = 1
t

∑t
i=1 xi.

3 XOR Lemmas for Decision Trees

In this section, we present our XOR lemma for decision trees. We begin by stating a simple
XOR lemma, in which the decision tree attempting to compute h⊕t has the same depth as
the decision tree attempting to compute h.

▶ Lemma 3.1 (Basic XOR lemma for decision trees). Let h1, . . . , ht : {±1}r → {±1} be
functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y(i)). Let µ be a distribution over {±1}r.

For every D ∈ N, we have

Corrµ⊗t(h, DTDepth[D]) ≤
t∏

i=1
Corrµ(hi, DTDepth[D]).

We were unable to find a reference for the specific statement of Lemma 3.1, but it has no
significant novelty. It is closely related to Shaltiel’s analysis of “fair” decision trees [61].
It can also be viewed as a special case of Claim 3.6 that we prove below. As discussed in
Subsection 1.4, Lemma 3.1 is sufficient for our analysis of depth-d approximators to AC0

d+k

circuits (Theorem 1.3). However, for our analysis of MAJ⊕t
n (Theorem 1.5), we need a more

sophisticated XOR lemma, stated next.

▶ Lemma 3.2 (XOR lemma for decision trees under robust hardness assumptions, general version).
Let h1, . . . , ht : {±1}r → {±1} be functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y(i)). Let

µ1, . . . , µt be distributions over {±1}r, and define µ = µ1 ⊗ · · · ⊗ µt. Let ε : [0, ∞) → (0, ∞)
be a log-concave function, and assume that for every i ∈ [t] and every D ∈ N, we have

Corrµi(hi, DTDepth[D]) ≤ ε(D).

Then for every D ∈ N, we have

Corrµ(h, DTDepth[Dt/2]) ≤ O(ε(D))t.

W. M. Hoza 1:11

The first step of the proof of Lemma 3.2 is the following claim, which enables us to relate
the success probability of a tree to the success probabilities of its subtrees.

▷ Claim 3.3 (Law of total correlation). Let h, T, E : {±1}r → {±1}. Let µ be a distribution
over {0, 1}r. For each b ∈ {±1}, let pb = Pry∼µ[E(y) = b], and let µb be the conditional
distribution (y ∼ µ | E(y) = b). Suppose that T can be decomposed in the form

T (y) =
{

T+1(y) if E(y) = +1
T−1(y) if E(y) = −1

for some T+1, T−1 : {±1}r → {±1}. Then

Corrµ(h, T) =
∑

b∈{±1}

pb · Corrµb(h, Tb).

Proof.

Corrµ(h, T) = E
y∼µ

[h(y) · T (y)]

=
∑

b∈{±1}

pb · E
y∼µ

[h(y) · T (y) | E(y) = b] (Law of total expectation)

=
∑

b∈{±1}

pb E
y∼µb

[h(y) · Tb(y)]. ◁

Next, we consider the following notion of “fair” decision trees due to Shaltiel [61].

▶ Definition 3.4 ((D1, . . . , Dt)-fair decision trees [61]). Let T : {±1}rt → {±1} be a decision
tree and let D1, . . . , Dt ∈ N. We say that T is (D1, . . . , Dt)-fair if for every input y⃗ =
(y(1), . . . , y(t)) ∈ ({±1}r)t, for every i ∈ [t], the computation T (y⃗) makes at most Di queries
to y(i).

The key to proving Lemma 3.2 is to generalize Definition 3.4 to the case of a set of tuples
(D1, . . . , Dt).

▶ Definition 3.5 (Q-fair decision trees). Let T : {±1}rt → {±1} be a decision tree and let
Q ⊆ Nt. We say that T is Q-fair if for every input y⃗ = (y(1), . . . , y(t)) ∈ ({±1}r)t, there is
some tuple (D1, . . . , Dt) ∈ Q such that for every i ∈ [t], the computation T (y⃗) makes at most
Di queries to y(i).

We emphasize that the tuple (D1, . . . , Dt) is permitted to vary from one input y⃗ to another.
Therefore, the fact that a tree is Q-fair does not necessarily imply that there is some
(D1, . . . , Dt) ∈ Q such that the tree is (D1, . . . , Dt)-fair. Given the concept of Q-fairness, it
is relatively straightforward to prove the following claim by induction on the depth of T . The
claim generalizes the analysis by Shaltiel [61], who considered the case of (D1, . . . , Dt)-fair
decision trees and focused on the uniform distribution.

▷ Claim 3.6 (XOR lemma for Q-fair decision trees). Let h1, . . . , ht : {±1}r → {±1} be
functions, and define h(y(1), . . . , y(t)) =

∏t
i=1 hi(y(i)). Let µ1, . . . , µt be distributions over

{±1}r, and define µ = µ1 ⊗ · · · ⊗ µt. Let Q ⊆ Nt and let T : {±1}rt → {±1} be a Q-fair
decision tree. Then

Corrµ(h, T) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi
(hi, DTDepth[Di]).

CCC 2024

1:12 A Technique for Hardness Amplification Against AC0

Proof. Assume without loss of generality that T never queries the same variable twice. For
the base case, if T has depth 0, then T is a constant function, so

|Corrµ(h, T)| =
t∏

i=1

∣∣∣∣ E
y(i)∼µi

[hi(y(i))]
∣∣∣∣ =

t∏
i=1

Corrµi
(hi, DTDepth[0]).

Since T is Q-fair, Q must be nonempty. The lemma follows because Corrµi(hi, DTDepth[0]) ≤
Corrµi(hi, DTDepth[Di]) for every Di ∈ N. For the inductive step, let y

(i∗)
j∗

be the variable
queried by the root of the tree. Let T+1 and T−1 be the children of the root, corresponding
to the cases y

(i∗)
j∗

= +1 and y
(i∗)
j∗

= −1 respectively. Define

Q′ = {(D1, . . . , Di∗−1, Di∗ − 1, Di∗+1, . . . , Dt) : (D1, . . . , Dt) ∈ Q and Di∗ ̸= 0}.

Then T+1 and T−1 are both Q′-fair.
For each b ∈ {±1}, define

pb = Pr
y(i∗)∼µi∗

[
y(i∗)

j∗
= b
]

.

Let µb
i∗

be the conditional distribution (y(i∗) ∼ µi∗ | y(i∗)
j∗

= b), and for i ̸= i∗, let µb
i = µi.

Let µb = µb
1 ⊗ · · · ⊗ µb

t . By Claim 3.3 and the induction hypothesis, we have

Corrµ(h, T) =
∑

b∈{±1}

pb · Corrµb(h, Tb)

≤
∑

b∈{±1}

pb ·
∑

(D1,...,Dt)∈Q′

t∏
i=1

Corrµb
i
(hi, DTDepth[Di])

=
∑

(D1,...,Dt)∈Q′

 ∑
b∈{±1}

pb · Corrµb
i∗

(hi∗ , DTDepth[Di∗])

 · Π̸=i∗(D1, . . . , Dt)

where Π̸=i∗(D1, . . . , Dt) =
∏

i∈[t],i̸=i∗
Corrµi

(hi, DTDepth[Di]). Now we bound the inner
sum. By Claim 3.3, for any Di∗ , we have

Corrµi∗
(hi∗ , DTDepth[Di∗ + 1]) ≥

∑
b∈{±1}

pb · Corrµb
i∗

(hi∗ , DTDepth[Di∗]),

because we can approximate hi∗ with respect to µi∗ by first querying y
(i∗)
j∗

and then using
optimal subtrees of depth Di∗ . For every (D1, . . . , Dt) ∈ Q′, we have (D1, . . . , Di∗−1, Di∗ +
1, Di∗+1, . . . , Dt) ∈ Q. Therefore,

Corrµ(h, T) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi
(hi, DTDepth[Di]). ◁

Given Claim 3.6, our XOR lemma for decision trees under a robust hardness assumption
(Lemma 3.2) readily follows, as we now show.

Proof of Lemma 3.2. Let T : {±1}rt → {±1} be a decision tree of depth at most Dt/2. Let
Q be the set of t-tuples (D1, . . . , Dt) ∈ Nt such that (1) D1 + · · · + Dt ≤ Dt and (2) Di is an
integer multiple of ⌈D/2⌉ for every i. We claim that T is Q-fair. Indeed, let y⃗ = (y(1), . . . , y(t))
be any input, and let Di be the number of queries that T (y⃗) makes to y(i). Let D′

i be the
smallest integer multiple of ⌈D/2⌉ such that Di ≤ D′

i. Then D′
i ≤ Di + (⌈D/2⌉ − 1), and

hence D′
1 + · · · + D′

t ≤ Dt/2 + t · (⌈D/2⌉ − 1) ≤ Dt, showing that (D′
1, . . . , D′

t) ∈ Q.

W. M. Hoza 1:13

Therefore, by Claim 3.6,

Corrµ(h, T) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi, DTDepth[Di]).

For any (D1, . . . , Dt) ∈ Q, we can define (D′
1, . . . , D′

t) such that D′
i ≥ Di and D′

1 +
· · · + D′

t is exactly Dt rather than being at most Dt. Then Corrµi(hi, DTDepth[Di]) ≤
Corrµi

(hi, DTDepth[D′
i]), so

Corrµ(h, T) ≤
∑

(D1,...,Dt)∈Q

t∏
i=1

Corrµi(hi, DTDepth[D′
i])

≤
∑

(D1,...,Dt)∈Q

t∏
i=1

ε(D′
i)

≤
∑

(D1,...,Dt)∈Q

ε(D)t (Log-concavity)

= |Q| · ε(D)t.

To bound |Q|, observe that if (D1, . . . , Dt) ∈ Q, then we can write Di = ci · ⌈D/2⌉ for
some nonnegative integers c1, . . . , ct. Furthermore, Dt ≥

∑
i ci · ⌈D/2⌉ ≥ (D/2) ·

∑
i ci, so

c1 + · · · + ct ≤ 2t. Therefore, |Q| is at most the number of ways that 2t can be partitioned
into t + 1 nonnegative integers, which is precisely

(3t
t

)
. Thus,

Corrµ(h, T) ≤
(

3t

t

)
· ε(D)t ≤ O(ε(D))t. ◀

4 XOR Lemmas for the Random Simplification Method

In this section, we prove two general “XOR lemmas for the random simplification method,”
which formalize our hardness amplification technique. The first and simpler version is as
follows.

▶ Lemma 4.1 (XOR lemma for the random simplification method, basic version). Let n, t, r, D ∈
N and ε, δ > 0. Let h : {±1}n → {±1} and g : {±1}nt → {±1} be Boolean functions, let R
be a distribution over generalized restrictions π : {±1}r → {±1}n, let µ be a distribution over
{±1}r, and assume the following.
1. (The distribution µ completes R to the uniform distribution.) If we sample π ∼ R and

y ∼ µ independently, then π(y) is a uniform random element of {±1}n.
2. (The function g simplifies under R⊗t.) We have

Pr
π⃗∼R⊗t

[
DTDepth(g|π⃗) > D

]
≤ δ.

3. (The function h retains structure under R.) We have

E
π∼R

[
Corrµ(h|π, DTDepth[D])

]
≤ ε.

Then Corr(g, h⊕t) ≤ εt + δ.

CCC 2024

1:14 A Technique for Hardness Amplification Against AC0

Proof. Sample π⃗ = (π1, . . . , πt) ∼ R⊗t and y⃗ ∼ µ⊗t independently. Let T be g|π⃗ if
DTDepth(g|π⃗) ≤ D; otherwise, let T be the constant-zero function. Assumption 1 implies
that π⃗(y⃗) is distributed uniformly over {±1}nt. Therefore,

Corr(h⊕t, g) = E⃗
π

[
Corrµ⊕t(h⊕t|π⃗, g|π⃗)

]
(Assumption 1)

≤ δ + E⃗
π

[
Corrµ⊕t(h⊕t|π⃗, T)

]
(Assumption 2)

≤ δ + E⃗
π

[
Corrµ⊕t(h⊕t|π⃗, DTDepth[D])

]
≤ δ + E⃗

π

[
t∏

i=1
Corrµ(h|πi

, DTDepth[D])
]

(Lemma 3.1)

= δ +
(

E
π∼R

[Corrµ(h|π, DTDepth[D])]
)t

(Independence)

≤ δ + εt (Assumption 3.) ◀

In the full version of this paper [41], we review the basic structure of Håstad, Rossman,
Servedio, and Tan’s proof of the average-case depth hierarchy theorem [39] and explain how
it fits into the framework of Lemma 4.1. As a result, we are able to use Lemma 4.1 to prove
our result about the average-case hardness of AC0

d+k circuits for AC0
d circuits (Theorem 1.3).

In this extended abstract, let us focus on the hardness amplification technique itself. The
conclusion of Lemma 4.1 is Corr(g, h⊕t) ≤ εt +δ. The “+ δ” term is unfortunate, since it does
not improve with increasing t. To address this weakness, we now prove a more sophisticated
version of Lemma 4.1 in which the correlation bound is O(ε)t, with no “+ δ” term, albeit
under stronger assumptions.

▶ Lemma 4.2 (Tighter XOR lemma for the random simplification method). Let n, t ∈ N
and let h : {±1}n → {±1} be a Boolean function. Let C be a class of Boolean functions
g : {±1}nt → {±1} that is closed under restrictions.6 Let r ∈ N, let R be a distribution
over generalized restrictions π : {±1}r → {±1}n, and let µ be a distribution over {±1}r. Let
ε > 0, and assume the following.
1. (The distribution µ approximately completes R to the uniform distribution.) If we sample

π ∼ R and y ∼ µ independently, and we sample x ∈ {±1}n uniformly at random, then
D∞(π(y) ∥ x) ≤ ε.

2. (The class C simplifies under R⊗t.) For every g ∈ C and every D ∈ N, we have

Pr
π⃗∼R⊗t

[DTDepth(g|π⃗) ≥ D] ≤ 2t−D.

3. (The function h retains structure under R.) For every D ∈ N and every π ∈ Supp(R),
we have

Corrµ(h|π, DTDepth[D]) ≤ ε · 2D/3.

Then Corr(C, h⊕t) ≤ O(ε)t.

Proof. Fix any g ∈ C. Our job is to analyze the correlation between g and h⊕t under a
uniform random input. By Lemma 2.3, we can sample a uniform random input by the
following procedure.

6 Every function in C has domain {±1}nt. When we say that C is closed under restrictions, we are
thinking of a restriction of g ∈ C as another function on nt bits that ignores some of its input variables.

W. M. Hoza 1:15

1. Sample π⃗ = (π1, . . . , πt) ∼ R⊗t.
2. Sample y⃗ = (y(1), . . . , y(t)) ∼ µ⊗t.
3. Sample e⃗ = (e(1), . . . , e(t)) ∼ (µ′)⊗t, where µ′ is the distribution over {±1}n from

Lemma 2.3.
4. Sample I ⊆ [t] where Pr[i ∈ I] = 1 − ε independently for every i.
5. Output the string x⃗ = (x(1), . . . , x(t)) ∈ {±1}nt, where

x(i) =
{

πi(y(i)) if i ∈ I
e(i) if i /∈ I.

Let g : {±1}nt → {±1} be the function obtained from g by plugging e(i) into each block i /∈ I
and leaving the blocks in I alive. Since g ignores the variables in blocks outside I, we have

g(x⃗) = g|π⃗(y⃗).

Similarly, define h : {±1}nt → {±1} by the formula

h(x⃗) =
(∏

i∈I

hi(x(i))
)

·

(∏
i/∈I

hi(e(i))
)

,

so that h⊕t(x⃗) = h|π⃗(y⃗). That way,

Corr(g, h⊕t) = E[g(x⃗) · h⊕t(x⃗)] = E
I,⃗e,π⃗

[Corrµ⊗t(g|π⃗, h|π⃗)].

Let D = ⌊DTDepth(g|π⃗)/|I|⌋. Then

E
I,⃗e,π⃗

[Corrµ⊗t(g|π⃗, h|π⃗)] ≤ E
I,⃗e,π⃗

[Corrµ⊗t(h|π⃗, DTDepth[(D + 1) · |I|])].

Let πI = (πi)i∈I, and define hI : {±1}n|I| → {±1} by hI((x(i))i∈I) =
∏

i∈I h(x(i)). Then for
any fixing of I, e⃗, π⃗, we have

Corrµ⊗t(h|π⃗, DTDepth[(D + 1) · |I|]) = Corrµ⊗|I|(hI|πI , DTDepth[(D + 1) · |I|]).

Now we apply Lemma 3.2. For each i ∈ I and each D ∈ N, we have

Corrµ(h|πi , DTDepth[D]) ≤ ε · 2D/3.

Furthermore, the function ε(D) = ε · 2D/3 is log-concave. Therefore, Lemma 3.2 guarantees
that

Corrµ⊗|I|(hI|πI , DTDepth[(D + 1) · |I|]) ≤ O(ε · 22·(D+1)/3)|I| = O(ε · 22D/3)|I|.

Thus, overall, we get

Corr(g, h⊕t) ≤ E
I,⃗e,π⃗

[
O
(

ε · 22D/3
)|I|
]

.

Now consider any fixing of I and e⃗. Since C is closed under restrictions, g ∈ C. Therefore,
our simplification assumption tells us that for every D ∈ N, we have

Pr
π⃗

[D = D] ≤ 2t−D·|I|.

CCC 2024

1:16 A Technique for Hardness Amplification Against AC0

Consequently,

E⃗
π

[
O
(

ε · 22D/3
)|I|
]

=
∞∑

D=0
Pr
π⃗

[D = D] · O
(

ε · 22D/3
)|I|

≤ 2t ·
∞∑

D=0
O
(

ε · 2−D/3
)|I|

≤ 2t · O

(∞∑
D=0

ε · 2−D/3

)|I|

= 2t · O(ε)|I|.

Therefore, our overall bound is given by

Corr(g, h⊕t) ≤ E
I
[2t · O(ε)|I|] = 2t ·

∑
I⊆[t]

Pr[I = I] · O(ε)|I|

= 2t ·
∑
I⊆[t]

(1 − ε)|I| · εt−|I| · O(ε)|I|

≤ O(ε)t. ◀

In the full version of this paper [41], we explain how to use Lemma 4.2 to prove our
correlation bound for MAJ⊕t

n (Theorem 1.5).

5 Directions for Further Research

The main open question related to our work is whether XORing always amplifies hardness
for AC0 circuits (cf. Theorem 1.1). We wish to also highlight the problem of proving tight
correlation bounds for depth reduction within AC0 (cf. Theorem 1.3). That is, what is the
correlation between linear-size AC0

d+k circuits and near-exponential-size AC0
d circuits?

For simplicity, let us consider the case that d and k are both constants. As discussed
previously, the extreme case k = 1 (i.e., using AC0

d circuits to approximate AC0
d+1 circuits) is

resolved by Håstad, Rossman, Servedio, and Tan’s work [39] to within polynomial factors; the
optimal correlation bound is nΘ(1). Prior work also implies near-matching upper and lower
bounds in the opposite extreme case d = 1 (i.e., using AC0

1 circuits to approximate AC0
1+k

circuits). In this case, it turns out that the optimal correlation bound is exp
(

−Θ̃(logk n)
)

.
(The approximators are based on the Linial-Nisan-Mansour theorem [55]; see the full version
of this paper [41, Appendix B] for details.)

Based on those two extreme cases, it is tempting to conjecture that for all d and k, the
optimal correlation bound should be exp

(
−Θ̃(logk n)

)
, but in truth it is not at all clear

that this is the best guess. Arguably the most interesting case is k = 2, i.e., the problem of
using AC0

d circuits to approximate AC0
d+2 circuits. On the one hand, the best method we

know for constructing such an approximator is simply to use an optimal AC0
1 approximator.

On the other hand, the best correlation bound we know for this case is Håstad, Rossman,
Servedio, and Tan’s bound [39]. We therefore have a considerable gap between the upper
and lower correlation bounds for this case, namely n−Ω(1) vs. n−Õ(logd n).

W. M. Hoza 1:17

References

1 M. Ajtai. Σ1
1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983. doi:

10.1016/0168-0072(83)90038-6.
2 Eric Allender. A note on the power of threshold circuits. In Proceedings of the 30th Symposium

on Foundations of Computer Science (FOCS), pages 580–584, 1989. doi:10.1109/SFCS.1989.
63538.

3 Eric Allender and Vivek Gore. A uniform circuit lower bound for the permanent. SIAM
Journal on Computing, 23(5):1026–1049, 1994. doi:10.1137/S0097539792233907.

4 Eric Allender and Ulrich Hertrampf. Depth reduction for circuits of unbounded fan-in. Inform.
and Comput., 112(2):217–238, 1994. doi:10.1006/inco.1994.1057.

5 Andris Ambainis, Robert Špalek, and Ronald de Wolf. A new quantum lower bound method,
with applications to direct product theorems and time-space tradeoffs. Algorithmica, 55(3):422–
461, 2009. doi:10.1007/s00453-007-9022-9.

6 James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive power of
voting polynomials. Combinatorica, 14(2):135–148, 1994. doi:10.1007/BF01215346.

7 László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy. Inform.
Process. Lett., 26(1):51–53, 1987. doi:10.1016/0020-0190(87)90036-6.

8 Louay M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM J. Comput.,
38(6):2220–2272, 2009. doi:10.1137/070691954.

9 Paul Beame, Russell Impagliazzo, and Srikanth Srinivasan. Approximating AC0 by small
height decision trees and a deterministic algorithm for #AC0SAT . In 27th Conference on
Computational Complexity (CCC), pages 117–125, 2012. doi:10.1109/CCC.2012.40.

10 Richard Beigel, Nick Reingold, and Daniel A. Spielman. The perceptron strikes back. In
Proceedings of the 6th Annual Structure in Complexity Theory Conference (SCT), pages
286–291, 1991. doi:10.1109/SCT.1991.160270.

11 Richard Beigel and Jun Tarui. On ACC. Comput. Complexity, 4(4):350–366, 1994. doi:
10.1007/BF01263423.

12 Yosi Ben-Asher and Ilan Newman. Decision trees with and, or queries. In Proceedings of
the 10th Conference on Structure in Complexity Theory (SCT), pages 74–81, 1995. doi:
10.1109/SCT.1995.514729.

13 Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and
composed functions. Theory Comput., 14:Paper No. 5, 27, 2018. doi:10.4086/toc.2018.
v014a005.

14 Eric Blais and Joshua Brody. Optimal Separation and Strong Direct Sum for Randomized
Query Complexity. In Proceedings of the 34th Computational Complexity Conference (CCC),
pages 29:1–29:17, 2019. doi:10.4230/LIPIcs.CCC.2019.29.

15 Ravi B. Boppana. The average sensitivity of bounded-depth circuits. Information Processing
Letters, 63(5):257–261, 1997. doi:10.1016/S0020-0190(97)00131-2.

16 Mark Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the ACM,
57(5), 2010.

17 Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasulu. A strong
XOR lemma for randomized query complexity, 2020. arXiv:2007.05580.

18 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, Shachar Lovett, and David Zuckerman.
XOR lemmas for resilient functions against polynomials. In Proceedings of the 52nd Symposium
on Theory of Computing (STOC), pages 234–246, 2020. doi:10.1145/3357713.3384242.

19 Lijie Chen. New Lower Bounds and Derandomization for ACC, and a Derandomization-
Centric View on the Algorithmic Method. In 14th Innovations in Theoretical Computer
Science Conference (ITCS), pages 34:1–34:15, 2023. doi:10.4230/LIPIcs.ITCS.2023.34.

20 Lijie Chen, Zhenjian Lu, Xin Lyu, and Igor C. Oliveira. Majority vs. approximate linear sum and
average-case complexity below NC1. In 48th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 51:1–51:20, 2021. doi:10.4230/LIPIcs.ICALP.2021.51.

CCC 2024

https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1016/0168-0072(83)90038-6
https://doi.org/10.1109/SFCS.1989.63538
https://doi.org/10.1109/SFCS.1989.63538
https://doi.org/10.1137/S0097539792233907
https://doi.org/10.1006/inco.1994.1057
https://doi.org/10.1007/s00453-007-9022-9
https://doi.org/10.1007/BF01215346
https://doi.org/10.1016/0020-0190(87)90036-6
https://doi.org/10.1137/070691954
https://doi.org/10.1109/CCC.2012.40
https://doi.org/10.1109/SCT.1991.160270
https://doi.org/10.1007/BF01263423
https://doi.org/10.1007/BF01263423
https://doi.org/10.1109/SCT.1995.514729
https://doi.org/10.1109/SCT.1995.514729
https://doi.org/10.4086/toc.2018.v014a005
https://doi.org/10.4086/toc.2018.v014a005
https://doi.org/10.4230/LIPIcs.CCC.2019.29
https://doi.org/10.1016/S0020-0190(97)00131-2
https://arxiv.org/abs/2007.05580
https://doi.org/10.1145/3357713.3384242
https://doi.org/10.4230/LIPIcs.ITCS.2023.34
https://doi.org/10.4230/LIPIcs.ICALP.2021.51

1:18 A Technique for Hardness Amplification Against AC0

21 Lijie Chen and Xin Lyu. Inverse-exponential correlation bounds and extremely rigid matrices
from a new derandomized XOR lemma. In Proceedings of the 53rd Symposium on Theory of
Computing (STOC), pages 761–771, 2021. doi:10.1145/3406325.3451132.

22 Lijie Chen, Xin Lyu, and R. Ryan Williams. Almost-everywhere circuit lower bounds from
non-trivial derandomization. In 61st Symposium on Foundations of Computer Science (FOCS),
pages 1–12, 2020. doi:10.1109/FOCS46700.2020.00009.

23 Lijie Chen and Hanlin Ren. Strong average-case circuit lower bounds from nontrivial
derandomization. SIAM Journal on Computing, 51(3):STOC20–115–STOC20–173, 2022.
doi:10.1137/20M1364886.

24 Shiteng Chen and Periklis A. Papakonstantinou. Depth reduction for composites. SIAM J.
Comput., 48(2):668–686, 2019. doi:10.1137/17M1129672.

25 Yeyuan Chen, Yizhi Huang, Jiatu Li, and Hanlin Ren. Range avoidance, remote point, and
hard partial truth table via satisfying-pairs algorithms. In Proceedings of the 55th Symposium
on Theory of Computing (STOC), pages 1058–1066, 2023. doi:10.1145/3564246.3585147.

26 Andrew Drucker. Improved direct product theorems for randomized query complexity. Comput.
Complexity, 21(2):197–244, 2012. doi:10.1007/s00037-012-0043-7.

27 Yuval Filmus. Smolensky’s lower bound. Unpublished, 2010. URL: https://yuvalfilmus.cs.
technion.ac.il/Manuscripts/Smolensky.pdf.

28 Merrick Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Math. Systems Theory, 17(1):13–27, 1984. doi:10.1007/BF01744431.

29 Oded Goldreich, Noam Nisan, and Avi Wigderson. On Yao’s XOR-lemma. In Studies in
complexity and cryptography, volume 6650 of Lecture Notes in Comput. Sci., pages 273–301.
Springer, Heidelberg, 2011. doi:10.1007/978-3-642-22670-0_23.

30 Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy N. Rothblum.
Verifying and decoding in constant depth. In Proceedings of the 39th Symposium on Theory of
Computing (STOC), pages 440–449, 2007. doi:10.1145/1250790.1250855.

31 Aryeh Grinberg, Ronen Shaltiel, and Emanuele Viola. Indistinguishability by adaptive
procedures with advice, and lower bounds on hardness amplification proofs. In Proceedings
of the 59th Symposium on Foundations of Computer Science (FOCS), pages 956–966, 2018.
doi:10.1109/FOCS.2018.00094.

32 Dan Gutfreund and Guy N. Rothblum. The complexity of local list decoding. In Proceedings
of the 12th International Conference on Randomization and Computation (RANDOM), pages
455–468, 2008. doi:10.1007/978-3-540-85363-3_36.

33 András Hajnal, Wolfgang Maass, Pavel Pudlák, Mario Szegedy, and György Turán. Threshold
circuits of bounded depth. Journal of Computer and System Sciences, 46(2):129–154, 1993.
doi:10.1016/0022-0000(93)90001-D.

34 Prahladh Harsha and Srikanth Srinivasan. On polynomial approximations to AC0. Random
Structures Algorithms, 54(2):289–303, 2019. doi:10.1002/rsa.20786.

35 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the 18th
Symposium on Theory of Computing (STOC), pages 6–20, 1986. doi:10.1145/12130.12132.

36 Johan Håstad. Computational limitations for small depth circuits. PhD thesis, Massachusetts
Institute of Technology, 1986.

37 Johan Håstad. A slight sharpening of LMN. Journal of Computer and System Sciences,
63(3):498–508, 2001. doi:10.1006/jcss.2001.1803.

38 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014. doi:10.1137/120897432.

39 Johan Håstad, Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth
hierarchy theorem for Boolean circuits. J. ACM, 64(5):Art. 35, 27, 2017. doi:10.1145/3095799.

40 Pooya Hatami, William M. Hoza, Avishay Tal, and Roei Tell. Depth-d threshold circuits vs.
depth-(d + 1) and-or trees. In Proceedings of the 55th Symposium on Theory of Computing
(STOC), pages 895–904, 2023. Full version: https://eccc.weizmann.ac.il/report/2022/
087/. doi:10.1145/3564246.3585216.

https://doi.org/10.1145/3406325.3451132
https://doi.org/10.1109/FOCS46700.2020.00009
https://doi.org/10.1137/20M1364886
https://doi.org/10.1137/17M1129672
https://doi.org/10.1145/3564246.3585147
https://doi.org/10.1007/s00037-012-0043-7
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://yuvalfilmus.cs.technion.ac.il/Manuscripts/Smolensky.pdf
https://doi.org/10.1007/BF01744431
https://doi.org/10.1007/978-3-642-22670-0_23
https://doi.org/10.1145/1250790.1250855
https://doi.org/10.1109/FOCS.2018.00094
https://doi.org/10.1007/978-3-540-85363-3_36
https://doi.org/10.1016/0022-0000(93)90001-D
https://doi.org/10.1002/rsa.20786
https://doi.org/10.1145/12130.12132
https://doi.org/10.1006/jcss.2001.1803
https://doi.org/10.1137/120897432
https://doi.org/10.1145/3095799
https://eccc.weizmann.ac.il/report/2022/087/
https://eccc.weizmann.ac.il/report/2022/087/
https://doi.org/10.1145/3564246.3585216

W. M. Hoza 1:19

41 William M. Hoza. A technique for hardness amplification against AC0. https://eccc.
weizmann.ac.il/report/2023/176/, 2023.

42 Xuangui Huang and Emanuele Viola. Average-case rigidity lower bounds. In Proceedings of
the 16th International Computer Science Symposium in Russia (CSR), pages 186–205, 2021.
doi:10.1007/978-3-030-79416-3_11.

43 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In 36th Symposium
on Foundations of Computer Science (FOCS), pages 538–545, 1995. doi:10.1109/SFCS.1995.
492584.

44 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm for
AC0. In Proceedings of the 23rd Symposium on Discrete Algorithms (SODA), pages 961–972,
2012. doi:10.1137/1.9781611973099.77.

45 Russell Impagliazzo, Ran Raz, and Avi Wigderson. A direct product theorem. In Proceedings
of 9th Annual Conference on Structure in Complexity Theory (SCT), pages 88–96, 1994.
doi:10.1109/SCT.1994.315814.

46 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic
and randomized decision tree complexity. Inform. Process. Lett., 110(20):893–897, 2010.
doi:10.1016/j.ipl.2010.07.020.

47 Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on boolean functions. In
Proceedings of the 29th Symposium on Foundations of Computer Science (FOCS), pages 68–80,
1988. doi:10.1109/SFCS.1988.21923.

48 Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and classical strong direct
product theorems and optimal time-space tradeoffs. SIAM J. Comput., 36(5):1472–1493, 2007.
doi:10.1137/05063235X.

49 Adam R. Klivans. On the derandomization of constant depth circuits. In Proceedings of the
5th International Workshop on Randomization and Approximation Techniques in Computer
Science (RANDOM), pages 249–260, 2001. doi:10.1007/3-540-44666-4_28.

50 Swastik Kopparty. Lecture 4: AC0 lower bounds and pseudorandomness. Scribe notes by Jason
Perry and Brian Garnett, 2013. URL: https://sites.math.rutgers.edu/~sk1233/courses/
topics-S13/lec4.pdf.

51 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0[⊕] circuits, with
applications to lower bounds and circuit compression. Theory of Computing, 14(12):1–24,
2018. doi:10.4086/toc.2018.v014a012.

52 Troy Lee and Jérémie Roland. A strong direct product theorem for quantum query complexity.
Comput. Complexity, 22(2):429–462, 2013. doi:10.1007/s00037-013-0066-8.

53 L. A. Levin. One way functions and pseudorandom generators. Combinatorica, 7(4):357–363,
1987. doi:10.1007/BF02579323.

54 Fu Li and David Zuckerman. Improved extractors for recognizable and algebraic sources.
In Proceedings of the 23rd International Conference on Randomization and Computation
(RANDOM), pages 72:1–72:22, 2019. doi:10.4230/LIPIcs.APPROX-RANDOM.2019.72.

55 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier transform,
and learnability. Journal of the ACM, 40(3):607–620, 1993. doi:10.1145/174130.174138.

56 Noam Nisan, Steven Rudich, and Michael Saks. Products and help bits in decision trees.
SIAM J. Comput., 28(3):1035–1050, 1999. doi:10.1137/S0097539795282444.

57 Noam Nisan and Avi Wigderson. Hardness vs. randomness. J. Comput. System Sci., 49(2):149–
167, 1994. doi:10.1016/S0022-0000(05)80043-1.

58 Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counterexamples.
In Proceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP), pages 195–206, 2007. doi:10.1007/978-3-540-73420-8_19.

59 Alexander Razborov. A simple proof of Bazzi’s theorem. ACM Transactions on Computation
Theory, 1(1), 2009. doi:10.1145/1490270.1490273.

CCC 2024

https://eccc.weizmann.ac.il/report/2023/176/
https://eccc.weizmann.ac.il/report/2023/176/
https://doi.org/10.1007/978-3-030-79416-3_11
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1109/SFCS.1995.492584
https://doi.org/10.1137/1.9781611973099.77
https://doi.org/10.1109/SCT.1994.315814
https://doi.org/10.1016/j.ipl.2010.07.020
https://doi.org/10.1109/SFCS.1988.21923
https://doi.org/10.1137/05063235X
https://doi.org/10.1007/3-540-44666-4_28
https://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf
https://sites.math.rutgers.edu/~sk1233/courses/topics-S13/lec4.pdf
https://doi.org/10.4086/toc.2018.v014a012
https://doi.org/10.1007/s00037-013-0066-8
https://doi.org/10.1007/BF02579323
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.72
https://doi.org/10.1145/174130.174138
https://doi.org/10.1137/S0097539795282444
https://doi.org/10.1016/S0022-0000(05)80043-1
https://doi.org/10.1007/978-3-540-73420-8_19
https://doi.org/10.1145/1490270.1490273

1:20 A Technique for Hardness Amplification Against AC0

60 Alexander A. Razborov. Lower bounds on the size of constant-depth networks over a complete
basis with logical addition. Mathematical Notes of the Academy of Science of the USSR,
41(4):333–338, 1987. doi:10.1007/BF01137685.

61 Ronen Shaltiel. Towards proving strong direct product theorems. Comput. Complexity,
12(1-2):1–22, 2003. doi:10.1007/s00037-003-0175-x.

62 Ronen Shaltiel. Is it possible to improve Yao’s XOR lemma using reductions that exploit
the efficiency of their oracle? Comput. Complexity, 32(1):Paper No. 5, 47, 2023. doi:
10.1007/s00037-023-00238-9.

63 Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM J.
Comput., 39(7):3122–3154, 2010. doi:10.1137/080735096.

64 Alexander A. Sherstov. Strong direct product theorems for quantum communication and
query complexity. SIAM J. Comput., 41(5):1122–1165, 2012. doi:10.1137/110842661.

65 Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Symposium on
Theory of Computing, pages 61–69, 1983. doi:10.1145/800061.808733.

66 Roman Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of the 19th Symposium on Theory of Computing (STOC), pages
77–82, 1987. doi:10.1145/28395.28404.

67 Roman Smolensky. On representations by low-degree polynomials. In Proceedings of 34th
Annual Symposium on Foundations of Computer Science (FOCS), pages 130–138, 1993.
doi:10.1109/SFCS.1993.366874.

68 Robert Špalek. The multiplicative quantum adversary. In Proceedings of the 23rd Conference
on Computational Complexity (CCC), pages 237–248, 2008. doi:10.1109/CCC.2008.9.

69 Avishay Tal. Tight bounds on the fourier spectrum of AC0. In Proceedings of the 32nd
Computational Complexity Conference (CCC), pages 15:1–15:31, 2017. doi:10.4230/LIPIcs.
CCC.2017.15.

70 Jun Tarui. Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy.
Theoretical Computer Science, 113(1):167–183, 1993. doi:10.1016/0304-3975(93)90214-E.

71 Roei Tell. On implications of better sub-exponential lower bounds for AC0. https://sites.
google.com/site/roeitell/Expositions, 2020.

72 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

73 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Proceedings of the
6th Symposium on Mathematical Foundations of Computer Science (MFCS), pages 162–176,
1977. doi:10.1007/3-540-08353-7_135.

74 Emanuele Viola. The complexity of hardness amplification and derandomization. PhD thesis,
Harvard University, 2006.

75 Emanuele Viola. On the power of small-depth computation. Found. Trends Theor. Comput.
Sci., 5(1):1–72, 2009. doi:10.1561/0400000033.

76 Emanuele Viola. Selected challenges in computational lower bounds. SIGACT News, 48(1):39–
45, March 2017. doi:10.1145/3061640.3061648.

77 Emanuele Viola. New lower bounds for probabilistic degree and ac0 with parity gates.
https://eccc.weizmann.ac.il/report/2020/015/, 2020.

78 Ryan Williams. Nonuniform acc circuit lower bounds. J. ACM, 61(1), January 2014. doi:
10.1145/2559903.

79 Andrew C. Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd
Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982. doi:10.1109/
SFCS.1982.45.

80 Andrew Chi-Chih Yao. Separating the polynomial-time hierarchy by oracles. In 26th Symposium
on Foundations of Computer Science (FOCS), pages 1–10, 1985. doi:10.1109/SFCS.1985.49.

81 Andrew Chi-Chih Yao. On ACC and threshold circuits. In Proceedings of the 31st Symposium
on Foundations of Computer Science (FOCS), pages 619–627, 1990. doi:10.1109/FSCS.1990.
89583.

https://doi.org/10.1007/BF01137685
https://doi.org/10.1007/s00037-003-0175-x
https://doi.org/10.1007/s00037-023-00238-9
https://doi.org/10.1007/s00037-023-00238-9
https://doi.org/10.1137/080735096
https://doi.org/10.1137/110842661
https://doi.org/10.1145/800061.808733
https://doi.org/10.1145/28395.28404
https://doi.org/10.1109/SFCS.1993.366874
https://doi.org/10.1109/CCC.2008.9
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://doi.org/10.1016/0304-3975(93)90214-E
https://sites.google.com/site/roeitell/Expositions
https://sites.google.com/site/roeitell/Expositions
https://doi.org/10.1137/0220053
https://doi.org/10.1007/3-540-08353-7_135
https://doi.org/10.1561/0400000033
https://doi.org/10.1145/3061640.3061648
https://eccc.weizmann.ac.il/report/2020/015/
https://doi.org/10.1145/2559903
https://doi.org/10.1145/2559903
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1985.49
https://doi.org/10.1109/FSCS.1990.89583
https://doi.org/10.1109/FSCS.1990.89583

Streaming Zero-Knowledge Proofs
Graham Cormode # Ñ

University of Warwick, UK

Marcel Dall’Agnol # Ñ

Princeton University, NJ, USA

Tom Gur # Ñ

University of Cambridge, UK

Chris Hickey #

University of Manchester, UK

Abstract
Streaming interactive proofs (SIPs) enable a space-bounded algorithm with one-pass access to a
massive stream of data to verify a computation that requires large space, by communicating with a
powerful but untrusted prover.

This work initiates the study of zero-knowledge proofs for data streams. We define the notion
of zero-knowledge in the streaming setting and construct zero-knowledge SIPs for the two main
algorithmic building blocks in the streaming interactive proofs literature: the sumcheck and polyno-
mial evaluation protocols. To the best of our knowledge all known streaming interactive proofs are
based on either of these tools, and indeed, this allows us to obtain zero-knowledge SIPs for central
streaming problems such as index, point and range queries, median, frequency moments, and inner
product.

Our protocols are efficient in terms of time and space, as well as communication: the verifier
algorithm’s space complexity is polylog(n) and, after a non-interactive setup that uses a random
string of near-linear length, the remaining parameters are no(1).

En route, we develop an algorithmic toolkit for designing zero-knowledge data stream protocols,
consisting of an algebraic streaming commitment protocol and a temporal commitment protocol.
Our analyses rely on delicate algebraic and information-theoretic arguments and reductions from
average-case communication complexity.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Streaming, sublinear and near linear time algorithms

Keywords and phrases Zero-knowledge proofs, streaming algorithms, computational complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.2

Related Version Full Version: https://arxiv.org/abs/2301.02161

Funding Graham Cormode: The work of Graham Cormode and Chris Hickey was supported by
European Research Council grant ERC-2014-CoG 647557.
Tom Gur : Tom Gur is supported by UKRI Future Leaders Fellowship MR/S031545/1 and EPSRC
New Horizons Grant EP/X018180/1.

Acknowledgements We thank Aditya Prakash for the proof of Claim 30, as well as Justin Thaler
and Nick Spooner for fruitful discussions and careful reading of an earlier version of this manuscript.

1 Introduction

The design and analysis of algorithms in the streaming model is an exceptionally active area
of research, particularly so in recent years (see, e.g., the surveys [46, 45, 20] and references
therein). A streaming algorithm A observes a long data stream x = (x1, . . . , xn), whose size
far exceeds A’s limited memory, one symbol at a time, and computes some pre-specified

© Graham Cormode, Marcel Dall’Agnol, Tom Gur, and Chris Hickey;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 2; pp. 2:1–2:66

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.cormode@warwick.ac.uk
http://dimacs.rutgers.edu/~graham/
https://orcid.org/0000-0002-0698-0922
mailto:dallagnol@princeton.edu
https://marceldallagnol.github.io/
https://orcid.org/0000-0002-6060-1663
mailto:tom.gur@cl.cam.ac.uk
https://www.cst.cam.ac.uk/people/tg508
https://orcid.org/0000-0001-7864-7013
mailto:cjahickey1994@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2024.2
https://arxiv.org/abs/2301.02161
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Streaming Zero-Knowledge Proofs

information about x (e.g., statistics such as the number of distinct elements). To successfully
do so, A maintains a summary of the stream that is both small and easily updateable.
Algorithmic techniques and data structures that work under such constraints underpin both
theoretical progress and real-world deployment of algorithms for massive datasets.

However, it has long been known that many natural and important problems are hard in
the streaming model [2]. This motivates the study of protocols for delegation of computation,
whereby a streaming algorithm offloads expensive operations to an untrusted party with large
memory, but can still verify (in low space) that the purported result is correct. Accordingly,
interactive proofs in the data stream model received a great deal of attention in the last
decade [24, 22, 23, 54, 11, 55, 14, 26, 21, 16, 17].

Streaming interactive proofs (SIPs) are delegation-of-computation protocols where the
computationally bounded party is bounded not in its time complexity, but rather in space
and input access. More precisely, an SIP is an interactive protocol between a powerful but
untrusted prover P and a space-bounded streaming verifier V which has sequential, one-pass
access to a massive input as well as the prover’s messages. We note that prover and verifier
observe the same stream of bits, which only the former can store in its entirety.

Remarkably, SIPs allow low-space streaming algorithms to efficiently verify key problems
in the data stream model that are completely intractable without the assistance of a prover.
Indeed, the aforementioned sequence of works constructed SIPs with polylogarithmic-space
verifiers for a large collection of problems, many of which require linear space for a streaming
algorithm alone (such as the index and frequency moment problems). The underlying power
that enables exponential separations between streaming algorithms and SIPs essentially boils
down to two powerful protocols: sumcheck and polynomial evaluation, which can in turn be
applied to a plethora of problems.

Determining the extent to which SIPs can be augmented with extra features is the natural
next step to a refined understanding of the complexity landscape around them. Our work
focuses on zero-knowledge: ensuring that the protocol reveals no information besides what it
is designed to compute. We remark that this feature widens the array of computational tasks
solvable by mutually distrusting parties, thus supporting numerous cryptographic protocols
currently in use [6, 4, 7].

Despite the fundamental role of zero-knowledge in theoretical computer science (see, e.g.,
[57, 30, 56, 31] and references therein) and the extensive study of SIPs over the last decade, no
zero-knowledge SIPs were known prior to this work. Indeed, it is not obvious a priori whether
they are at all possible: for instance, while traditional zero-knowledge prevents leakage of
information to a polynomial-time adversary about some hard computation on an input x

(e.g., a witness that certifies x is in a language), in the streaming setting a space-bounded
verifier must learn no additional information about x itself – even if its runtime is unbounded.

1.1 Zero-knowledge in the streaming model
Recall that in the traditional setting, which deals with polynomial-time algorithms, a protocol
is zero-knowledge if, for every (possibly malicious) verifier Ṽ , there exists a simulator S

Ṽ
whose output cannot be told apart (either computationally or statistically) from a real
interaction between P and Ṽ by any distinguisher D; and if this holds up to negligibly small
error, the protocol can be safely repeated or composed.

In the streaming model, algorithms are restricted to one-pass sequential access to their
input and the primary resource is space, rather than time. Accordingly, we say that an SIP
is zero-knowledge if Ṽ , S and D are streaming algorithms; when Ṽ has s bits of memory,
the simulator has roughly s space and we allow the distinguisher D to have an arbitrary
poly(s) amount of memory. (See Section 4 for formal definitions.) Albeit similar, this notion
is distinct to its poly-time analogue in two fundamental ways.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:3

Negligible distinguishing bias is a robust notion of security in the setting of polynomial-
time computation because it prevents polynomial-time adversaries from boosting their
advantage by repeating (polynomially) many executions. However, in the data stream model,
the one-pass restriction on input access precludes this strategy altogether; indeed, streaming
problems often become trivial with a single additional pass. We therefore define secure
protocols as those achieving o(1) distinguishing bias, which ensures that the probability
of information leakage tends to zero. (See Remark 14 for a more detailed discussion of
alternative “hybrid” models and security bounds.)

The second crucial distinction is that the notion of zero-knowledge for SIPs is unconditional,
i.e., does not rely on computational assumptions, faithfully to the nature of the data stream
model. This differs markedly from past work on zero-knowledge protocols where the verifier
is able to process incoming messages in a streaming fashion (e.g., [34, 22]), whose zero-
knowledge property is still with respect to the standard setting: while the honest verifier is a
streaming algorithm, the protocols are only secure against polynomial-time adversaries. In
this work, adversaries are also streaming algorithms.

This paper explores the extent to which zero knowledge streaming interactive proofs
(zkSIPs) can outperform streaming algorithms: does there exist a problem they solve more
efficiently? If so, can they do so for a natural problem such as index, or even more ambitiously,
achieve an exponential reduction in the space complexity for key problems in the data stream
model?

1.2 Main results
Our main contribution is a strong positive answer to the questions above, providing the tools
to construct zero-knowledge streaming interactive proofs for essentially any problem within
the reach of current (non-zero-knowledge) SIPs.

In more detail, our main results are zero-knowledge versions of the two building blocks
underlying all known SIPs: the sumcheck and polynomial evaluation protocols, from which
we derive zkSIPs for central streaming problems in Section 1.3. In doing so, we obtain
exponentially smaller space complexity for the fundamental index and frequency moment
problems (among others) when compared to streaming algorithms alone.

We remark that all our zkSIPs are two-stage protocols with a setup and an interactive
stage. The setup is non-interactive and consists merely of a random string (see Section 2.3),
which can be reused in multiple interactive executions (of possibly different protocols).1

With this simple preprocessing step, we achieve essentially optimal time and communication
complexities (i.e., subpolynomial or even polylogarithmic – as do the best non-zero-knowledge
SIPs – and dramatically smaller than the complexity of streaming the input) in the interactive
stage.

Sumcheck Zero-Knowledge SIP

In the sumcheck problem, the goal is to compute the sum of evaluations of a low-degree
polynomial over a large structured set (a subcube). Protocols for sumcheck are some of the
most important building blocks for interactive proofs, and are extremely useful for SIPs in
particular.

1 We also remark that omitting the setup yields an honest-verifier (but not malicious-verifier) zkSIP with
no(1) communication complexity.

CCC 2024

2:4 Streaming Zero-Knowledge Proofs

We state the following theorem in generality, but note that standard parameter settings
imply space complexity s = polylog(n) as well as O(n1+δ) (for any constant δ > 0) and
no(1) communication in the setup and interactive stages, respectively. (The time complexity
is of the same order as the communication in both stages.) This is the case in all of our
applications.

▶ Theorem 1 (Theorems 47 and 48, informally stated). There exists a zkSIP for sumcheck
where, for m-variate low-degree polynomials over F, the verifier uses s = O(m2 log |F|) bits
of space. The SIP communicates Õ(|F|m) bits in its setup and |F|log log |F|+O(1) bits in the
interactive stage.

The round complexity (the number of messages sent or received by each party throughout
the SIP) is m + O(1), a small constant larger than that of the standard sumcheck protocol.

We stress that while sumcheck is traditionally used (in the polynomial-time setting) to
verify exponentially large sums in polynomial time, this is not the goal of the streaming
variant, as sums of evaluations over a large set can be obtained incrementally for functions
computable in low space (a class that includes polynomials).

Nevertheless, the sumcheck protocol achieves exponential savings in space complexity
for problems that require large space without interaction: it enables efficient verification of
sums of polynomials implicitly defined input defines implicitly, which require linear space to
compute otherwise.

Polynomial Evaluation Zero-Knowledge SIP

We proceed to our second main result: a zero-knowledge SIP for the polynomial evaluation
problem pep, which consists of computing a low-degree polynomial at a single point (revealed
after the description of the polynomial). It allows a streaming algorithm to recover data that
was seen but not stored, by saving a small fingerprint of the stream. Similarly to sumcheck,
general-purpose pep protocols are widely applicable to the design of SIPs.

▶ Theorem 2 (Theorems 35 and 36, informally stated). There exists a zkSIP for pep where,
for m-variate low-degree polynomials over F, the verifier uses O(m log |F|) bits of space. The
communication complexity is Õ(|F|m) in the setup and poly(|F|) bits in the interactive stage.

As in Theorem 1, standard parameter settings imply zkSIPs with polylogarithmic space,
no(1) time and communication complexity (in the interactive stage)2 as well as near-linear
communication in the setup. The round complexity is O(1).

1.2.1 Streaming commitment protocols
En route to proving Theorems 1 and 2, we construct tools for the design of zkSIPs which
we find of independent interest. Namely, we provide two types of commitment protocols for
streaming algorithms.

We remark that in the polynomial-time setting, the existence of secure commitment
schemes is equivalent to the existence of one-way functions [43, 47, 42], so it may seem
surprising that our results hold unconditionally. However, in the incomparable model of
streaming algorithms, which are not time-bounded, but are instead severely constrained with
respect to space and input access, we show that no cryptographic assumption is needed.3

2 A nontrivial security guarantee still holds with polylog(n) communication, but with no(1) the protocol
becomes secure against arbitrary polylog(n)-space adversaries; see Remark 38.

3 We refer to commitment protocols rather than schemes in the streaming model to avoid ambiguity with
the polynomial-time analogue; see Definition 17.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:5

Streaming algebraic commitment protocol

The following result shows that not only does a streaming commitment protocol exist, but
that it can be made linear ; that is, the sender may commit to a sequence of messages and
decommit to a linear combination thereof, with linear coefficients of the receiver’s choosing.

▶ Theorem 3 (Theorem 24, informally stated). There exists a commitment protocol whereby
an unbounded-space sender commits a tuple α ∈ Fℓ to a streaming receiver and decommits to
a linear combination α · β, with linear coefficients β chosen by the receiver. The receiver’s
space complexity is O(ℓ log |F|) and the protocol communicates Õ

(
|F|3ℓ

)
bits.

Temporal commitment protocol

The second component is a new notion of a streaming commitment, which we call temporal.
This protocol allows a streaming verifier to “timestamp” its message, providing evidence
that it was chosen before streaming a particular input.

▶ Theorem 4 (Theorem 33, informally stated). Let Γ be an alphabet and A a space-s streaming
algorithm with s = polylog |Γ|. If A streams z ∼ Γv and v is large enough, the following
holds: independently of its computation after z, with high probability A can output at most s

symbol-certificate pairs (α, i) ∈ Γ × [v] such that α = zi.

In other words, A(z) cannot remember more than s symbol-certificate pairs for the string
z; and the bound is unchanged if A obtains information uncorrelated with z after reading
the stream.

1.3 Applications
Recall that Theorems 1 and 2 provide zero-knowledge versions of the general tools that
essentially underlie all known SIPs, namely, the sumcheck and polynomial evaluation protocols.
We demonstrate the power and flexibility of our tools by deriving from them explicit zkSIPs
for streaming problems of fundamental importance: index and frequency-moment, as
well as point-query, range-count, selection and inner-product.

As mentioned in the previous section, while the following statements highlight space
complexities, the communication complexities are no(1) in the interactive stage and O(n1+δ)
for arbitrarily small δ in the setup stage.

In the index problem, a streaming algorithm reads a length-n string x followed by an
index j ∈ [n], and its goal is to output xj . index is a hard problem for streaming algorithms,
requiring linear space to solve [49]. By instantiating our zkSIP for polynomial evaluation
with respect to the low-degree extension of the input evaluated at the index j, we obtain the
following.

▶ Corollary 5 (Corollary 39, informally stated). There exists a zkSIP for index with logarithmic
verifier space complexity.

Note that this matches the space complexity of the non-zero-knowledge SIP of [14, 15].
In the frequency-momentk (or Fk) problem, an algorithm streams x ∈ [ℓ]n and its

task is to compute Fk(x) =
∑

i∈[ℓ] φk
i , the kth moment of the frequency vector (φ1, . . . , φℓ),

where φi is the number of occurrences of i in x. This is a central problem in the streaming
literature, which is well known to require linear space to compute [2]; by instantiating our
sumcheck protocol with respect to the low-degree extension of the frequency vector, we obtain
a zero knowledge protocol for the exact computation of Fk.

CCC 2024

2:6 Streaming Zero-Knowledge Proofs

▶ Corollary 6 (Corollary 50, informally stated). For every ℓ ∈ [n] and k, there exists a zkSIP
that computes Fk with polylog(n) verifier space complexity.

Lastly, we illustrate the flexibility of our protocols by constructing additional zkSIPs for
several other problems: point-query (where the input is a stream of integer updates to an
ℓ-dimensional vector y followed by an index j and the task is to output yj); range-count
(where the input is a sequence of points in [ℓ] followed by a range R ⊆ [ℓ] and the task is to
output the number of occurrences in R); selection (which generalises the computation of
the median); and inner-product (where the task is to output the inner product between
the frequency vectors of a pair of streams).

▶ Corollary 7 (Corollaries 41, 43, 45, and 52, informally stated). There exist polylog(n)-space
zkSIPs for point-query, range-count, selection and inner-product.

1.4 Related work
This work builds on the line of research on streaming interactive proofs, initiated by [12, 13]
and actively investigated over the last decade [23, 24, 22, 11, 55, 38, 14, 26, 1, 21, 15, 29, 17].
These sublinear interactive proofs are also closely related to proofs of proximity [52, 36, 39,
40, 33, 51, 19, 32, 37, 25].

Indeed, our two main results can be seen as zero-knowledge versions of the main techniques
in [15] and [22]: respectively, a polynomial evaluation and a sumcheck protocol. (We note
that while [18] construct a zero-knowledge sumcheck protocol via an algebraic commitment
scheme, their model and techniques are completely different.)

Past work has studied zero-knowledge protocols where the verifier is able to process
incoming messages in a streaming fashion (e.g., [34, 22]), but their zero-knowledge property
is with respect to the standard, polynomial-time, setting; that is, while the honest verifier is a
streaming algorithm, the security of the protocol holds against polynomial-time adversaries,
whereas we consider adversaries that are also streaming algorithms.

We note that while unconditional cryptographic primitives such as bit commitments and
key agreement are achievable in the bounded-storage model (see, e.g., [35] and references
therein), the security guarantees are weaker, allowing at most a quadratic, rather than
arbitrary polynomial, gap between honest and malicious parties. Recent work on the
streaming variant of the model [27, 28] is more closely related to ours. However, they do not
construct commitment schemes and, more importantly, these results assume bounds on the
space of both parties; therefore, they do not immediately apply to statistically sound proof
systems such as those considered in this work.

We also note that while zero-knowledge proofs within sublinear models of computation
have been actively explored in the last decade (e.g., [8, 44]), our work is the first to do so in
the streaming model.

1.5 Open problems
This work opens several avenues for future research; in this short section, we highlight four
particularly compelling directions.

Achieving zero-knowledge versions of the main building blocks in the SIP literature
suggests a natural question: can all SIPs be endowed with zero-knowledge? That is, denoting
by SIP (respectively, zkSIP) the class of languages that admit SIPs (respectively, zkSIPs)
with polylog(n) space complexity, we raise the following problem.

▶ Open problem 1. Is SIP equal to zkSIP?

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:7

In our two-stage protocols, the communication complexity is dominated by the setup (a
reusable random string of near-linear length); the remainder of the protocol is extremely
efficient, with no(1) (or even polylog n) communication and time complexity. Making this
parameter sublinear would be a major step towards practical applicability.

▶ Open problem 2. Can zero-knowledge SIPs achieve sublinear communication complexity?

Lastly, recall that the notion of security in this work is (unconditional and) computational,
where streaming adversaries detect a simulation with at most o(1) bias. It is natural to ask
whether stronger notions are achievable – both with respect to an adversary’s capabilities
and feasible security bounds.

▶ Open problem 3. Are there SIPs with statistical (or even perfect) zero-knowledge?

▶ Open problem 4. Can security bounds of 1
poly(n) or 1

nω(1) be obtained for computational
zkSIPs?

Organisation
The rest of the paper is organised as follows. In Section 2 we give a high-level overview of
the challenges and the techniques we use to endow SIPs with zero-knowledge. We briefly
discuss the preliminaries for the technical sections in Section 3, and, in Section 4, formally
define the notion of streaming zero-knowledge and discuss key conceptual points. In Section 5
we construct the two commitment protocols that comprise the main components for our
polynomial evaluation and sumcheck protocols. We construct the protocols, prove their
zero-knowledge property and show applications for them in Sections 6 and 7, respectively.

2 Technical overview

We provide a high-level overview of the techniques we use and build upon in this paper.
For concreteness, we illustrate our methodology by focusing on the construction of zero
knowledge SIPs for one of the most fundamental problems in the data stream model: index.

We begin with a bird’s eye view of our ideas and the challenges that arise in their
implementation. The starting point of our efforts is Section 2.1, where we describe the
polynomial evaluation protocol (pep), from which a (non zero-knowledge) SIP for the index
problem follows. An attempt to make this protocol zero-knowledge faces two fundamental
challenges, which we address in Sections 2.2 and 2.3 via the construction of two types of
streaming commitment protocols.

In Section 2.4, we apply the foregoing protocols to obtain a streaming interactive proof
for index and provide an overview of the proof of its zero-knowledge property, which requires
an involved simulator argument. Finally, Section 2.5 sketches another application of this
framework that obtains an additional powerful and flexible tool: a zero-knowledge streaming
sumcheck protocol.

2.1 A starting point: the polynomial evaluation protocol
Recall that in the index problem, a streaming algorithm with s bits of memory receives a
length-n string x over an alphabet Γ, followed by a coordinate j ∈ [n], and its goal is to
output xj ∈ Γ. It is well-known that index is maximally hard for streaming algorithms,
requiring s = Ω(n) space for the output to be correct with nontrivial probability.

CCC 2024

2:8 Streaming Zero-Knowledge Proofs

First, note that obtaining an efficient SIP for index is non-trivial even without zero-
knowledge. Indeed, the naive approach of having the prover P reveal the index j before V

streams x (allowing the verifier to save xj) fails: both parties observe the same stream of
information, so P only learns j long after V has seen xj . Any communication in an SIP
before the input stream must therefore be independent of it.

Remarkably, an exponential reduction in space complexity is possible despite both prover
and verifier not knowing the index j before it appears in the stream. We recall the SIP in [15],
upon which we build, and argue why it is not zero-knowledge to begin with. Their SIP is an
application of pep, the polynomial evaluation protocol, which enables a small-space algorithm
to recover any element that was streamed but not stored, using only a small fingerprint of
the stream.

We embed the input stream into an object with algebraic structure in a space of size much
larger than n, namely, by viewing xi ∈ F, for a large enough finite field F, and considering
an m-variate low-degree polynomial x̂ that interpolates across all xi; we call the polynomial
x̂ : Fm → F of individual degree d = d(m, n) the low-degree extension (LDE) of x. (Usual
parameter settings satsify d, m ≤ log n and |F| = polylog(n).)

The protocol proceeds as follows. The verifier samples a random evaluation point ρ ∼ Fm

and computes the fingerprint x̂(ρ), which can be evaluated in low space via standard online
Lagrange interpolation. After V learns j, it enlists P in the recovery of xj : it sends P a line
L : F → Fm incident to j (viewing this index as an element of Fm) and ρ, where L(0) = j

and L(ρ) = ρ for a random ρ ∼ F, whereupon P replies with the (low-degree) univariate
polynomial x̂|L = x̂ ◦ L.

If P is honest, then V can easily recover xj = x̂(j) = x̂|L(0). However, P could easily
cheat if V made no further checks: the prover could just as well pick α ∈ F arbitrarily and
send any low-degree polynomial g such that g(0) = α to (falsely) convince V that xj = α. By
having V only accept the prover’s claim that xj = g(0) if g also agrees with the fingerprint,
i.e., if g(ρ) = x̂|L(ρ) = x̂(ρ), the verifier thwarts this (and any other) attack: since both ρ

and ρ are unknown to the prover, to convince the verifier of an incorrect answer g(0) ̸= x̂|L(0),
the prover must send a polynomial g ̸= x̂|L that agrees with x̂|L at a random point; and if F
is sufficiently large, the probability of this event (ρ being a root of the nonzero polynomial
g − x̂|L) is arbitrarily small.

The protocol outlined above is, however, not zero-knowledge: after all, V learns not only
xj , but the restriction of x̂ to an entire line L through j (see Figure 1a). Note that learning
the restriction of x̂ to (say) a random line R does not necessarily constitute leakage: V could
simply compute a few evaluations (rather than only one) of x̂|R, which fully determine the
polynomial. The issue is that L is a function of the coordinate j, which V does not know
prior to streaming x.

In the next section we will take our first steps towards making the protocol zero-knowledge,
i.e., ensuring that the verifier learns nothing beyond the value xj . Note that the honest V

only evaluates x̂|L at two points, ρ and 0; what if P could send the evaluations of x̂|L in
“locked boxes” and only open the pair that the verifier needs?

2.2 Curtailing leakage with commitments
To make the foregoing approach more precise, let us first assume the existence of a commitment
protocol that allows P to transmit any field element α to V in two steps: sending a string
commit(α), from which V is unable to extract any information about α; and later, upon the
verifier’s request, revealing a field element β such that, if β ̸= α, then V can detect that the
P is being dishonest.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:9

(a) V streams x (in blue), learns x̂(ρ) = x̂|L(ρ)
and sends L. The prover replies with x̂|L, revealing
xj and x̂(ρ) (in green) along with evaluations of x̂
that V cannot learn on its own (in red).

(b) A first attempt at preventing leakage: sending
the evaluation table of x̂|L in “locked boxes” and
only unlocking the points checked by the verifier.

Figure 1 Leakage in the SIP for index via evaluation of the bivariate polynomial x̂ : F2 → F,
and an (unsuccessful) attempt to prevent it.

With such a commitment protocol in hand, a natural attempt to prevent the pep
protocol from leaking information is to have the prover P send a commitment to x̂|L, the
restriction of the input’s LDE to the line chosen by V (rather than sending the polynomial
in the clear). That is, the prover would commit to the evaluation table of x̂|L, sending(
commit(x̂|L(ρ′)) : ρ′ ∈ F

)
, after which V can reveal its random evaluation point ρ and P

decommits only to the evaluations of 0 and ρ (see Figure 1b). This does indeed reveal less
information (2 rather than |F| evaluations of x̂), but is still far from what we set out for.

There are two severe shortcomings with this idea; we shall tackle one now and defer
the other to Section 2.3. First we need to ask: what is to prevent a cheating prover from
committing to a function g that is inconsistent with x̂|L? Indeed, since V is (by design) unable
to learn the field elements that were committed to, it cannot detect whether the function is
a low-degree polynomial; then a cheating prover may commit to any α ≠ xj = x̂|L(0) as the
claimed evaluation at 0, while committing to the correct evaluations elsewhere. The resulting
function is not a low-degree polynomial anymore, but V is oblivious to this fact.

Therefore, we require a scheme that allows not only to commit to a function, but to also
ensure it is a low-degree polynomial. We solve this problem by constructing an algebraic
commitment protocol, whereby P commits to a set of field elements and can decommit to any
linear combination of them. Then P may commit to d + 1 points – which uniquely determine
a degree-d polynomial g – and V requests a decommitment to the linear combination that
coincides with g(ρ) (see Figure 2). We next present the basic commitment protocol, and
then extend it to be algebraic.

The basic protocol

Recall that our goal is to construct a commitment protocol between asymmetric parties,
allowing a computationally unbounded P to send and later reveal a message α ∈ F to a
low-space verifier V . We focus on the first step, where P sends a hidden message, and deal
with how to reveal it later. A natural attempt is to play the prover’s strength against the

CCC 2024

2:10 Streaming Zero-Knowledge Proofs

(a) Commitments to an interpolating set of x̂|L. (b) Decommiting to a point outside the interpol-
ating set.

Figure 2 Preventing leakage by committing to x̂|L as an interpolating set for the polynomial. To
decommit to an evaluation outside the set, the scheme must be algebraic.

verifier’s weakness: we know, from the hardness of index, that the space limitation of V

prevents it from recalling an item from a long stream whose position is only revealed later;
we can thus have P send a long stream y with the message hidden at a coordinate k that is
revealed at the end.

While the idea seems intuitively sound, there are nontrivial issues to address. For example,
the string-coordinate pair (y, k) should not have any structure from which V could extract
information, which we can ensure by sampling both uniformly at random; but to prove
security for this strategy, index must be hard to solve on average. Luckily, reductions from
one-way communication complexity enable us to prove this fact: one-way protocols where
Alice receives x ∼ {0, 1}n and sends an s-bit message to Bob, who receives j ∼ [n] and
attempts to output xj , succeed with probability at most 1

2 + O(
√

s/n) [49]. We show that
the bound extends to larger alphabets, carrying over to space-s streaming algorithms (see
Proposition 21 and Lemma 25).

In short, we have P encode its message α ∈ F as the solution to a random index instance,
exploiting the problem’s average-case hardness to ensure that V is unable to extract α; more
precisely, P sends a uniformly random string-coordinate pair (y, k) and then the “correction”
γ = α − yk.4 Of course, the discussion thus far only shows how P can commit; but we also
need a decommitment protocol whereby V can check that P is being honest when it reveals
β (which may or may not coincide with the message α). Fortunately, we already have a tool
V can use to solve index with an untrusted prover’s assistance! The decommitment thus
consists of an execution of pep by P and V with respect to the instance (y, k): this allows V

to learn yk and check that γ + yk = β, i.e., that the correction γ sent earlier matches the
(alleged) message.

Recall that we are building technical tools towards a zkSIP for index, so we ultimately
exploit the hardness of a problem to solve an instance of the same problem. Should we not
expect, then, that the same leakage issues should arise with respect to the “virtual” instance

4 We remark that while replacing yik with α (rather than sending a random element and a correction
later) looks simpler, then (y, k) ceases to be a random index instance, and it is not clear how to show a
reduction from index.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:11

(y, k) as they did with the “real” instance (x, j)? While this may appear to be circular
reasoning, we stress that revealing evaluations of ŷ leaks no information whatsoever about
the input; indeed, (y, k) is a uniform random variable that is independent of (x, j). Put
differently, V only obtains information about uniformly random strings that are completely
uncorrelated with the input. See Section 5.2 for details.

Making the scheme algebraic

We now extend the foregoing idea into an algebraic protocol, which allows P to commit
to a tuple of field elements α = (α1, . . . , αℓ) and decommit to a linear combination α · β.
(Committing to a polynomial and decommitting to an evaluation follows as a special case; see
Section 5.1.) Note that such an extension seems to follow if linear combinations “commute”
with commitments; that is, by showing that linear combinations of a fingerprint (as defined
in Section 2.1) match a fingerprint of the linear combinations, we should be able to use
essentially the same strategy of the basic scheme: committing with a random index instance
and decommitting with pep. Details follow.

Consider a trivial extension of the scheme that allows P to transmit a pair of messages
α, α′ ∈ F: sending two independent commitments (y, k, α − yk) and (y′, k′, α′ − y′

k′). The
key observation is that, if V saves two fingerprints at the same evaluation point ρ, then
linear combinations and low-degree extensions do commute: for any β, β′ ∈ F, defining
z := βy + β′y′, we have ẑ(ρ) = βŷ(ρ) + β′ŷ′(ρ); in short, evaluating a low-degree extension
is a linear operation.

A problem still remains, however: since k ̸= k′ with overwhelming probability, an
execution of the pep protocol enables V to learn zk = βyk + β′y′

k; but the correction for
y′ refers to another coordinate k′ ̸= k (with overwhelming probability). We address this
issue by hiding both messages at the same index, i.e., setting k′ = k and only revealing the
coordinate after both y and y′ are sent; see Section 5.3 for details.

2.3 From honest to malicious verifiers: temporal commitments

Recall that a source of leakage in the index protocol of Section 2.1 is the prover P sending
the restriction of x̂ (the LDE of the input) to a line L in the clear. In the previous section, we
constructed a prover-to-verifier scheme that enables P to commit to a low-degree polynomial
and decommit to a single evaluation of it. We may then use it to modify the original protocol,
having P instead commit to x̂|L and decommit to the points inspected by V .

While this modification amounts to significant progress – indeed, it achieves an honest-
verifier SIP for index– there is a second major challenge to address. The issue is that if
a verifier Ṽ cheats, it can use the protocol to extract information that it could not have
learned on its own, as we will see next. The goal of this section is to describe a strategy that
prevents leakage of information without requiring that Ṽ behave honestly; in other words,
we would like to make the protocol malicious-verifier zero-knowledge.

Concretely, consider the (cheating) verifier Ṽ that ignores the input string x, reads j and
requests the line through j and j + 1 from the prover. P then commits to the restriction of
x̂ to this line and decommits to the evaluation of the LDE at both j and j + 1. This reveals
xj and xj+1 to Ṽ , which shows clearly that the modified protocol still leaks: xj is the only
information the verifier should learn that it could not have computed on its own, but the
protocol also reveals xj+1 (which is just as hard to compute as the jth coordinate).

CCC 2024

2:12 Streaming Zero-Knowledge Proofs

An idealised scenario: V -to-P commitments

Let us assume, for the moment, that there also exists a commitment protocol in the reverse
direction, allowing V to commit and later reveal a message to P . We will show how, in this
idealised setting, we can prevent information leakage altogether. Note that the difficulty
posed by a malicious verifier Ṽ is the usage of an allegedly random evaluation point ρ that
is, in reality, a function of the input.

If Ṽ proves that ρ is indeed random, however, we may conclude that Ṽ could have
computed x̂(ρ) alone – and thus that no leakage occurs. The idealised scheme allows Ṽ to
do (almost) that, by having it commit to ρ before reading the input stream and decommit to
it at a later step (after the prover’s commitment). While this does not ensure ρ is random,
the fact that Ṽ cannot decommit to anything other than ρ constrains its evaluation point to
be chosen before the input stream, so that it cannot be a function of the input.

Of course, it is not at all clear that such a commitment protocol, allowing a weak
computational party to commit to a computationally unbounded one, even exists; after all,
the commitment step generally exploits their very difference to hide the message, as we did
in the previous section. Is this just wishful thinking?

The solution: a temporal commitment

We will now see that, perhaps surprisingly, we can once again exploit the space limitation of
Ṽ to accomplish this goal. What we obtain in fact falls short of a full-fledged commitment
protocol: roughly speaking, the temporal commitment will enable a space-s verifier Ṽ to
reveal not one, but s messages. But this collection is still determined before the input, so
that it remains fit for purpose (incurring a small overhead in the simulator algorithm that
we discuss in the following section).

As discussed above, we cannot expect Ṽ to be able to send a hidden message to P :
however Ṽ may try to hide it, P can simply store the entirety of the communication and
extract the message itself. Since sending is out of the picture, could Ṽ instead commit by
receiving a message? Note that, while somewhat counter-intuitive, this would allow Ṽ to play
what is essentially its only strength, its private randomness, against P . Recall, moreover,
that there is a temporal aspect to the positions of a long stream z that Ṽ can remember: if
it remembers zi, this can be seen as evidence that i was determined no later than when z

was seen.
Let us now make the idea more precise, and construct our verifier-to-prover temporal

commitment protocol. The main idea is to impose some cost onto the ability of Ṽ to “unlock”
the decommitment from P , without overly constraining the honest verifier V . Note that after
P sends the commitment to a low-degree polynomial, having V reveal the point ρ = L(ρ)
at which it computed x̂ is not a problem (as opposed to revealing ρ before P sends the
polynomial, which allows the prover to cheat easily). Therefore, we will have Ṽ reveal its
alleged evaluation point ρ along with a certificate c(ρ) that shows Ṽ selected the point before
seeing the input stream. P will only proceed with the protocol if the certificate is valid; if
not, it aborts to prevent Ṽ from learning information beyond its reach.

Given that the verifier’s scarce resource is space, we design this certificate to require a
number of bits that is not too large and yet not negligible; then the honest V should have
no trouble, as it only needs to remember one piece of information, whereas the malicious Ṽ

described before would need to store a certificate for the evaluation point j + 1, which it
does not know before reading x.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:13

We thus prepend our index protocol with a step where P sends Ṽ a long string z

containing all possible evaluation points (i.e., the entire domain) of the low-degree extension
x̂.5 Now, if Ṽ wants the prover, in the future, to decommit to a polynomial evaluation at
the point ρ, it must offer evidence that ρ is uncorrelated with the input stream: Ṽ does so
by revealing ρ along with the coordinate i that contains ρ in z; i.e., the certificate for ρ is
c(ρ) = i, the coordinate satisfying zi = ρ.

The temporal commitment indeed achieves what we set out for: regardless of what Ṽ

does, as long as its space is bounded we are able to extract the points it may ask P for in
advance of its streaming of x (see Section 5.4). Note that the commitment is non-interactive
(consisting of a single message from P to V) and need not be rerun if the verifier streams
multiple inputs; we shall use it as the setup stage of our protocol. Its analysis is subtle and
involved: it begins with a study of a variant of index in the one-way communication model
that we call reconstruct, where, upon receipt of a message from Alice, Bob outputs a
guess for every coordinate of the input string rather than for only one. Using tools from
information theory, we obtain an upper bound on the expected number of correct coordinates,
which we call the protocol’s score.

Next, we use the expected score bound of reconstruct to prove a related upper
bound for a problem we call pair: a variant of index where Bob, rather than receiving
the coordinate to be recovered as part of the input, is free to choose it. The implication
is that any protocol for pair has a small number C of indices such that the output of the
protocol is outside C and yet correct (i.e., a pair (i, zi) with i /∈ C) with arbitrarily small
probability. This will underpin the simulator argument that ultimately shows our protocol is
zero-knowledge, which we sketch in the next section.

2.4 A sketch of the zero-knowledge index protocol

We now have all of the components necessary to sketch a zero-knowledge streaming interactive
proof for index. Recall that we constructed a prover-to-verifier algebraic commitment protocol
in Section 2.2 and a verifier-to-prover temporal commitment in Section 2.3. We will now
compose them in the appropriate order, using the temporal commitment to constrain V to
choose its inner randomness before reading the input stream; and the algebraic commitment
to ensure P only reveals what the verifier needs. The protocol follows.

Parameters

Without loss of generality, we consider the alphabet over which the input string is defined
to be a field of size |F| = q; that is, x ∈ Fn. We also fix two additional parameters, d and
m, which characterise the low-degree extension x̂ : Fm → F as an m-variate polynomial of
individual degree d. We assume all parameters are known to P and V in advance.

Setup: verifier-to-prover temporal commitment

P sends V a permutation of Fm as a string z (of length v = qm). Before receiving the string,
V samples ρ ∼ Fm and then streams z. When it sees ρ at the ℓth coordinate of z, the verifier
stores ℓ.

5 In fact, any given point has a small probability of being absent from the string. We ignore this issue in
the technical overview.

CCC 2024

2:14 Streaming Zero-Knowledge Proofs

Step 1: input streaming

V streams the input string x and records the fingerprint x̂(ρ) as well as the target index j.

Step 2: prover-to-verifier algebraic commitment

V samples ρ ∼ F and sends P the line L : F → Fm through j and ρ (satisfying L(0) = j and
L(ρ) = ρ).

P sends xj = x̂|L(0) (in the clear) and an algebraic commitment (y, γ, k) to the remainder
of an interpolating set of the degree-dm polynomial x̂|L : F → F, i.e., to the field elements
x̂|L(i) for all i ∈ [dm]. The commitment consists of a random matrix y ∼ Fdm×p with dm

rows and a large enough number p of columns; a random (column) coordinate k ∼ [p]; and
the correction tuple γ satisfying γi = x̂|L(i) − yik.

V samples (another) evaluation point σ and computes the fingerprint y(σ, β) =∑
i βiŷi(σ), where the tuple β satisfies

∑
i βix̂|L(i) = x̂(ρ);6 it also computes γ =

∑
i βiγi

and stores k.

Step 3: temporal decommitment

V reveals its fingerprint’s evaluation point ρ along with the index ℓ where it appeared in z.
The prover checks that zℓ = ρ, and only continues to the final step if the check passes.

Step 4: algebraic decommitment

P and V engage in the decommitment of the kth coordinate of the string y′ = β · y (the
linear combination of the rows yi with coefficients βi).7 V outputs the (alleged) xj if the
decommitment is consistent with x̂(ρ), and rejects otherwise.

In an honest execution of the above protocol, the final decommitment reveals

y′
k =

∑
i

βiyik

=
∑

i

βi

(
x̂|L(i) − γi

)
= x̂(ρ) − γ,

so that V , having stored x̂(ρ) and γ, can indeed perform this consistency check (which shows
the protocol is complete). The protocol’s soundness follows from that of pep, noting that
none of the mechanisms we add harm soundness (indeed, the last check relies, as does pep,
on a random evaluation of the low-degree extension), while zero-knowledge, which we discuss
next, follows from the correctness of our commitment protocols.

Proving the zero knowledge property

We conclude with a discussion of the simulator argument for the protocol laid out in this
section. Recall that proving zero-knowledge for the foregoing protocol entails the construction
of a simulator S, a streaming algorithm with knowledge of xj and roughly the same memory
as Ṽ , which is able to interact with Ṽ without it being able to tell whether it is communicating
with S or P .

6 Note that βi is determined solely by i and ρ: it is the evaluation χi(ρ) of the ith Lagrange polynomial.
7 This requires P to know the linear coefficients β, and, while we could have the verifier send them, this is

not necessary: P learns ρ in step 3, which allows it to determine ρ = L−1(ρ) and thus β = β(ρ) as well.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:15

Roughly speaking, S does the following: after the temporal commitment step, it inspects
the memory state of Ṽ and records (almost) all the points to which Ṽ can decommit; as
shown in the last section, this is a relatively small set C. It then streams the input and
records x̂(ρ) for all ρ ∈ C.8 Upon receipt of a line L from Ṽ , the simulator computes and
commits to an arbitrary low-degree polynomial g that interpolates across the points in L ∩ C.
When Ṽ requests the algebraic decommitment to obtain an evaluation of g, the simulator
checks that the evaluation point ρ is contained in C (in which case g(ρ) matches a fingerprint
x̂(ρ) known to S), proceeds with the decommitment if that is the case, and otherwise aborts.

We note that implementing the strategy above raises yet another challenge, namely,
extracting the set C of evaluation points from the description and memory state of Ṽ . This
is accomplished via a form of white-box access to Ṽ , see Section 4.

The simulator S is thus able to generate the transcript of an interaction where the
message x̂|L of the algebraic commitment is replaced with another low-degree polynomial g

whose evaluations match x̂|L at all points where Ṽ is able to temporally decommit. Then,
distinguishing between a real and a simulated transcript amounts to distinguishing an index
instance whose solution is x̂|L from one whose solution is g.

We prove that any streaming algorithm that does so with nontrivial bias implies a one-way
communication protocol for index with a small message, contradicting the known hardness
of the problem. We remark that the reduction is rather nontrivial, as we must insert an
index instance into the algebraic commitment (y, γ, k) while ensuring the decommitment
can be simulated without any knowledge about the instance. See Theorem 36 for details.

▶ Remark 8 (Superpolynomial to near-linear communication). We stress that, while we may
prove zero-knowledge with the strategy above, the natural reduction from index is over
a large alphabet Γ = Fdm. But then, for indistinguishability to follow, the length p of
the temporal commitment must be qdm, which implies superpolynomial communication
complexity.

We avoid this blowup via Lemma 25, which shows that an index (one-way) protocol for
large alphabets implies another protocol for the binary alphabet with only a mild loss to its
success probability; this restricts our ambient field to be an extension of F2, but reduces the
superpolynomial complexity to barely superlinear.

2.5 A general-purpose zero-knowledge SIP: sumcheck
Lastly, we briefly mention how the commitment protocols developed in Sections 2.2 and 2.3
can be used not only to solve index (and, more generally, the polynomial evaluation problem),
but also to construct another widely applicable tool: a streaming zero-knowledge sumcheck
protocol.

As before, we start with an SIP that is clearly not zero-knowledge: the standard sumcheck
protocol leaks hard-to-compute sums over subcubes. By carefully using the algebraic and
temporal commitment protocols, we can also endow the sumcheck protocol with zero-
knowledge in the data stream model. However, we note that doing so is considerably
more involved than in the case of index, owing to, among other reasons, several rounds of
interaction with nontrivial dependencies of messages on past communication.

More precisely, we consider a slight variation of the standard sumcheck protocol: while in
the latter every round is followed by a (random) consistency check, we instead defer all such
checks to the end. It is clear that this variant is equivalent to the standard protocol; however,

8 We note that storing C is the most space-intensive task of S, which implies a small overhead to its
space complexity as compared to Ṽ ; see Theorem 36.

CCC 2024

2:16 Streaming Zero-Knowledge Proofs

without the modification, the zero-knowledge property seems to require a strengthening of
the chained commit-decommit strategy we follow. Moreover, rather than a single algebraic
commitment followed by a (single) decommitment, the sumcheck protocol requires many
decommitments; indeed, for an m-variate polynomial f , the prover commits to m partial
sums of f , and each partial sum is involved in two decommitments (for a total of m + 1
decommitments).

Therefore, by extending the techniques that underpin our approach for the index problem
to a multi-round setting, we are able to construct a zero-knowledge sumcheck SIP. Such a
protocol can then be used to compute frequency moments and inner products, problems
known to require linear space without a prover’s assistance [2]. See Section 7 for details.

3 Preliminaries

General notation

For an integer k ≥ 1, we denote by [k] the set {1, 2, . . . , k}. Vectors are denoted with notation
analogous to that of sets, i.e., (αi : i ∈ [k]) denotes the vector (α1, . . . , αk). We use n to
denote the length of a string that is the input to an algorithm, and poly(n) (respectively,
polylog(n)) to denote an arbitrary polynomial (respectively, polylogarithmic) function in n.

We use lowercase Latin letters to denote positive integers (e.g., d, i, j, k, ℓ, m, p, v) or
strings (e.g., x, y, z); r and t often (but not always) denote random strings. Lowercase Greek
letters denote elements of a finite alphabet or field (e.g., α, β, γ), and we reserve ρ, σ for
random elements. Uppercase letters denote either algorithms (e.g., A, B, P, S, V) or sets
(e.g., C, K), with T used as the indeterminate of a polynomial.

When f and g are functions, we sometimes use α ∈ f as a shorthand for α ∈ Im f and
f|g for f ◦ g; if f is a low-degree polynomial that is communicated in an interactive protocol,
we assume it is sent in a canonical form (e.g., a line is communicated by a pair of points
f(0), f(1)). We use 1[· = x0] to denote the delta function at x0 (i.e., 1[x0 = x0] = 1 and
1[x = x0] = 0 for x ̸= x0) and log to denote log2.

As integrality issues do not substantially change any of our results, equality between
an integer and an expression (that may not necessarily evaluate to one) is assumed to be
rounded to the nearest integer.

Vectors and matrices

The notation we use for matrices is the same as for strings (lowercase Latin letters), and it
will be clear from context which is the case. When x is a matrix, we use xi to refer to the
ith row of x.

We use vectors or tuples, interchangeably, to refer to elements of a vector space over a
finite field F. Such tuples are denoted with boldface (e.g., α, β, γ) and random tuples are
(similarly to strings) denoted ρ, σ. We use α · β to denote the inner product between the
two vectors, and, when the dimension of α matches the number of rows of a matrix x, we
use α · x to denote the vector corresponding to the linear combination of the rows of x with
coefficients α, i.e.,

∑
i αixi. (Equivalently, we assume vectors to be in row form.)

Probability

We use X ∼ µ to denote a random variable with distribution µ, and, for the uniform
distribution over a set S, we write X ∼ S. We sometimes make the sources of randomness in
a probabilistic expression explicit, and when we do they are assumed to be independent; e.g.,

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:17

only when X and Y are independent do we write PX∼µ,Y ∼λ[E]. The internal randomness
of an algorithm is generally omitted; e.g., P[A(X) = 0] (if the distribution of X is known
from context) or PX∼µ[A(X) = 0] are shorthand for PX∼µ

r∼{0,1}m
[A(X; r) = 0], where r is A’s

internal randomness.
We will also make use of the following versions of the Chernoff and Hoeffding bounds.

▶ Lemma 9 (Additive Chernoff-Hoeffding bound). Let X1, . . . , Xk be independent Bernoulli
random variables distributed as X. Then, for every δ ∈ [0, 1],

Pr
[

1
k

k∑
i=1

Xi ≤ E[X] − δ

]
≤ e−2δ2k and

Pr
[

1
k

k∑
i=1

Xi ≥ E[X] + δ

]
≤ e−2δ2k.

▶ Lemma 10 (Hoeffding’s inequality). Let X1, . . . , Xk be independent random variables
distributed as X ∈ [a, b]. Then, for every δ ∈ [0, 1],

Pr
[

1
k

k∑
i=1

Xi ≤ (1 − δ)E[X]
]

≤ e
−
(

δE[X]
b−a

)2
k and

Pr
[

1
k

k∑
i=1

Xi ≥ (1 + δ)E[X]
]

≤ e
−
(

δE[X]
b−a

)2
k
.

Algorithms and protocols

We use the same term to refer to computational problems and to protocols that solve them,
but distinguish the two cases with different fonts (so that the pep and sumcheck protocols
solve the pep and sumcheck problems, respectively).

We generally use A, D, S and V to denote streaming algorithms, while P denotes an
algorithm with unbounded computational resources (including space). A(x) is the output of
an algorithm that receives x as input; when A is a streaming algorithm, x is read sequentially
in one pass, from the first symbol (x1) to the last. When A(x, y, z) reads multiple inputs,
A(y) denotes the partial execution of A after it has read x. When the entries of a length-n
string x are taken over a finite alphabet Γ, we may also use x for the equivalent bit string of
length n log |Γ|.

We shall often make use of the minimax principle, and assume, without loss of generality,
that a computationally unbounded algorithm A whose goal is to maximise some value
Ex∼µ[f(A(x))] (e.g., the probability that A(x) equals x) can be assumed to be deterministic,
and thus given by a function x 7→ a(x); equivalently, A can be taken as the deterministic
algorithm that maximises E[f ◦ a(x)] for the distribution of inputs µ.

In a protocol, two algorithms P and V interact by exchanging messages in a predefined
order; after all messages have been exchanged, V chooses an output that we denote ⟨P, V ⟩
and call the output of the protocol. When V rejects or P aborts midway through the
interaction, we assume the algorithm proceeds until the end of the protocol with dummy
messages (e.g., strings of zeroes).

The snapshot of an algorithm is synonymous to its memory state; when A reads a sequence
of more than one input, e.g., A(x, y), the “snapshot of A after x” is the snapshot immediately
before the first symbol of y is streamed (i.e., after A has read and processed the last symbol
of x). When A is interacting in a protocol and sends a message between reading x and y,
the snapshot after x is that immediately before sending the message.

CCC 2024

2:18 Streaming Zero-Knowledge Proofs

Low-degree extensions

For any field F and integer k such that |F| ≥ k, we consider [k] ⊆ F via a canonical injection
(e.g., taking the image of ℓ ∈ [k] as the field element whose binary representation is the same
as that of ℓ). Accordingly, we write ℓ ∈ F as shorthand for the field element corresponding
to the image of ℓ ∈ [k] via this canonical injection.

For a string y ∈ Fk, the low-degree extension (LDE) with degree d and dimension m where
|F| ≥ d + 1 and k ≤ (d + 1)m, denoted ŷ, is the unique m-variate polynomial of individual
degree d that coincides with y in [k]; more precisely, viewing [k] ⊆ [d + 1]m ⊆ Fm, the LDE
ŷ : Fm → F is the unique polynomial satisfying ŷ(i) = yi for all i ∈ [k]. Our notation for the
polynomial ŷ omits the degree and dimension, as they will be clear from context.

When y is a matrix, we use ŷ(α, β) to denote the linear combination of the LDEs of the
rows with linear coefficients β, i.e., ŷ(α, β) =

∑
i βiŷi(α).

3.1 Information theory
We will make use of several notions of information theory and approximations of information-
theoretic quantities. The q-ary entropy function Hq : [0, 1] → [0, 1] is

Hq(t) = t logq(q − 1) − t logq t − (1 − t) logq(1 − t) (1)

= 1
log q

(
t log(q − 1) − t log t − (1 − t) log(1 − t)

)
= 1

log q

(
t log(q − 1) + H2(t)

)
,

where Hq(0) = 0; we also use the shorthand H for H2, which simplifies to

H(t) = H(1 − t) = −t log t − (1 − t) log(1 − t). (2)

We will make use of the following approximation for the (natural) logarithm function:
for 0 ≤ t ≤ 1/2,

−t(1 + t) ≤ ln(1 − t) ≤ −t. (3)

The (relative) Hamming distance between two strings a, b ∈ Γk over a finite alphabet is
the fraction of coordinates where they differ, i.e., d(a, b) = 1

k |{i ∈ [k] : ai ̸= bi}| ∈ [0, 1]. With
γ = |Γ|, the volume of a Hamming ball B(b, δ) :=

{
a ∈ Γk : d(a, b) ≤ δ

}
of radius δ = 1 − ε,

when k is large enough and ε = k−1 polylog(k), satisfies9

γHγ (δ)k ≥ |B(b, δ)| = Ω
(

γHγ (δ)k

√
εk

)
= γHγ (δ)k

polylog(k) . (4)

The entropy of a discrete random variable X taking values in Γ is

H(X) = −
∑
α∈Γ

P[X = α] log
(
P[X = α]

)
.

9 The lower bound is a simplification of

|B(b, δ)| ≥ γHγ (δ)k · exp
(1

12k + 1 − 1
12δk

− 1
12εk

)/√
2πδ(1 − δ)k;

since 1/εk = o(1), the numerator is 1 − o(1), and the denominator is of order Θ(
√

εk) = polylog(k).
(See, e.g., [41].)

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:19

Every such random variable satisfies

H(X) ∈ [0, log |Γ|]. (5)

The conditional entropy H(X|Y) is the entropy of the conditional random variable, which
satisfies

H(X|Y) ≤ H(X). (6)

If X, Y are independent, then

H(X, Y) = H(X) + H(Y). (7)

The last property of entropy we will make use is the chain rule: for random variables
X1, . . . , Xn,

H(X1, . . . , Xn) =
n∑

i=1
H(Xi|X1, . . . , Xi−1). (8)

For ease of notation, when (X, Y) are jointly distributed over Γ2 with marginals µ and λ,
respectively, we denote the distribution of Y conditioned on X = x as λx. The KL divergence
between the distributions is

KL(µ || λ) =
∑
α∈Γ

µ(x) log µ(α)
λ(α) , (9)

which upper bounds the Euclidean distance between probability vectors via Pinsker’s in-
equality (see, e.g., [10]):

∥µ − λ∥2 ≤
KL
(
µ || λ

)
2 ln 2 . (10)

Finally, the mutual information is defined as (and equivalent to)

I(µ : λ) := I(X : Y) (11)
= I(Y : X)
= H(Y) − H(Y |X)
= EX∼µ[KL(λX || λ)].

4 Zero-knowledge streaming interactive proofs

This section motivates and provides a definition of zero-knowledge proofs in the data stream
model. We start by discussing the differences between the streaming and the traditional
settings as well as establish necessary notation. We then we provide a formal definition in
Section 4.1.

The notion of zero-knowledge proofs in a computational model should capture the intuition
that, when engaged in an interactive protocol, a verifier algorithm V should learn nothing
but the truth of some hard-to-compute statement about its input x (e.g., that x is in a
language L). For consistency with the general notion we define zero-knowledge for decision
problems in the streaming model, but remark that the definition extends to search problems
in the standard way (i.e., the verifier V learns nothing but a valid solution to the search
problem).

CCC 2024

2:20 Streaming Zero-Knowledge Proofs

In the traditional setting, V can easily store the entirety of x and make polynomial-time
computations without the assistance of a prover. This implies that the sensitive information
a zero-knowledge proof in this setting must not leak is the result of a computation on x

beyond the verifier’s reach, i.e., one that requires superpolynomial time to obtain from the
information available to V . In the streaming setting, however, the notion of “hard-to-compute”
changes dramatically: the model puts space as the primary resource, so that computations
within the reach of V are those possible with a small amount of space and sequential one-pass
access to the input (but arbitrarily large time complexity). Knowledge then essentially
corresponds to all information that V cannot compute in low space complexity using its
streaming access. As a result, zero-knowledge streaming interactive proofs (zkSIPs) must
satisfy a much more stringent requirement: that they not leak any information about the
input x itself (which in the traditional setting is fully known to the verifier).

In order to capture such a stringent notion of sensitive information, we define zkSIPs
as protocols such that no streaming algorithm can distinguish a real transcript of the
protocol from one that is generated by a (streaming) simulator. To this end, we first recall
the formalisation of streaming interactive proofs (SIPs) [24] without any zero-knowledge
requirement.

▶ Definition 11. A streaming interactive proof (SIP) for a language L is an interactive
proof defined by a pair (P, V) of algorithms: a computationally unbounded prover P and
streaming verifier V with space s = o(n). The verifier engages in an iteractive protocol with
P and streams, at a predetermined step, the bit string x ∈ {0, 1}n, which P also observes.10

At the end of the protocol, V outputs a binary decision ⟨P, V ⟩(x) satisfying
(completeness) if x ∈ L, then P[⟨P, V ⟩(x) = 1] ≥ 2/3; and
(soundness) if x /∈ L, then then P[⟨P, V ⟩(x) = 1] ≤ 1/3.

We call s the space complexity (of the verifier). Note that, while the constant 1/3 is
arbitrary, soundness amplification does not hold for streaming algorithms due to the need
to reread the input; nevertheless, many SIPs (including all those considered in this paper)
allow for improving soundness by a desired factor with a logarithmic increase to their space
complexity (see Section 5.1). We stress that Definition 11 constrains the verifier only in
terms of space, which allows arbitrarily large time complexities for both prover and verifier.
(This is similar to other settings such as communication complexity and property testing,
where the primary resources are communication and queries, respectively.)

Loosely speaking, we capture the notion of zero-knowledge in the data stream model by
saying that an SIP is zero-knowledge if there exists a streaming simulator algorithm S, with
roughly the same space as the verifier V , able to simulate a prover-verifier interaction that is
indistinguishable from a real one; that is, S generates a view of the verifier (defined next)
that no distinguisher algorithm with power comparable to V (i.e., a streaming algorithm
with roughly the same space) can tell apart from a real interaction. We stress that while the
distinguisher D is reminiscent of computational zero-knowledge, the security of our protocols
is information-theoretic and does not rely on computational assumptions.

10 The definition could allow for alternating between streaming parts of x and communicating with the
prover, as well as adaptively choosing the round(s) on which to read the input. Our protocols do
not require this flexibility, however, so we assume the entirety of x is read at a fixed step along the
communication protocol.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:21

▶ Definition 12. Let (P, V) be an SIP with a space-s verifier, where P sends k1 messages to
V before the verifier streams its input, and an additional k2 messages afterwards. Denote
the prover’s messages by y1 ∈ {0, 1}p1 , . . . , yk1+k2 ∈ {0, 1}pk1+k2 ; the input by x; and the
verifier’s and prover’s internal randomness by r and t, respectively.

The view of the verifier Ṽ , denoted View
P,Ṽ

(x, r), is the random variable defined as

View
P,Ṽ

(x, r; t) = (r, y1, . . . , yk1 , x, yk1+1, . . . , yk1+k2).11

While Definition 12 is similar to its polynomial-time analogue, we highlight an important
distinction: to faithfully correspond to what Ṽ sees, the order in which the view is streamed
must be preserved. Indeed, a step-by-step execution of Ṽ in an interaction with P corresponds
exactly to its streaming View

P,Ṽ
(x, r) one symbol at a time. Order preservation is also

consistent with the input stream x being observed by all parties simultaneously (which are,
in a simulation, Ṽ , the simulator S and a distinguisher D).

4.1 Definition
We now ready to give a formal definition of zero-knowledge streaming interactive proofs.

▶ Definition 13 (zkSIP). Let L be a language and (P, V, S) be a triplet where (P, V) is an
SIP with a space-s verifier V and S is a streaming poly(s)-space simulator with white-box
access to the verifier, streaming access to the input x and additional query access to a random
bit string t.

(P, V, S) forms a zero-knowledge streaming interactive proof (zkSIP) for L that is secure
against space-s′ adversaries if, for any space-s algorithm Ṽ and x ∈ L, the random variables
View

P,Ṽ
(x, r) and S(Ṽ , x, r) are indistinguishable by any streaming space-s′ algorithm. That

is, for every space-s′ streaming algorithm D,∣∣∣P [D(View
P,Ṽ

(x, r)
)

accepts
]

− P
[
D
(
S(Ṽ , x, r)

)
accepts

]∣∣∣ = o(1).

We note that all our applications have s = polylog(n), and the protocols are secure
against adversaries with any space s′ = poly(s) (see Remark 38).
▶ Remark 14. Recall that the analogue of Definition 13 in the polynomial-time setting requires
a much stronger notion of indistinguishability: negligible (i.e., sub-inverse-polynomial), rather
than o(1), bias. This is necessary for the notion to be robust with respect to poly-time
algorithms, as otherwise repeating polynomially many executions of D would boost its success
probability arbitrarily close to 1.

This raises a number of interesting questions on the achievable notions of security for
zkSIPs: can we obtain tighter bounds, such as 1/ poly(n) or negligible? (Perhaps even in
the statistical case?) An answer to each such question ensures security against one type of
adversary (i.e., distinguisher): we will study the natural threat model where all parties are
streaming algorithms and argue why o(1) is a sufficient bound in this case. Before doing so,
however, we briefly discuss an important alternative.

As explained above, streaming verifiers secure against polynomial-time adversaries require
negligible distinguishability. This has been previously studied, most notably for zero-
knowledge interactive proofs that reduce to evaluating low-degree polynomials defined by the
input and allow for it to be processed in a streaming fashion, such as [34]. (We stress, however,
that such protocols rely on computational assumptions.) An interesting question that we
leave to future work is whether zkSIPs can simultaneously achieve security against different
adversaries – e.g., with negligible bias for poly-time distinguishers (under cryptographic
assumptions) in addition to subconstant bias for streaming distinguishers.

CCC 2024

2:22 Streaming Zero-Knowledge Proofs

Recall that a key distinction between the poly-time and streaming settings is the one-pass
restriction of the latter, which prevents even a single repetition of (a streaming) D – indeed,
index trivialises with 2 passes (as do many fundamental streaming problems). In other
words, as the common technique of amplification is unavailable in the streaming model,
o(1) bias is a sufficiently robust requirement that guarantees the probability of information
leakage tends to 0. (We note that the weaker requirement of arbitrarily small constant bias
would also suffice, i.e., the existence of (Pε, Vε, Sε) achieving ε bias for every ε > 0. We adopt
the simpler and stronger subconstant version, which our protocols satisfy.)

The streaming simulator

For technical reasons, the simulator is given white-box access to the verifier and explicit
access to a random string. We stress that this auxiliary information is completely independent
of the input. This can viewed as allowing the verifier to obtain some computation about
auxiliary information (about its own strategy, or a uniformly chosen random string), but
learn absolutely zero information about the input stream x.

While white-box access gives the simulator S knowledge of any function of the verifier’s
strategy, we do not require such generality; indeed, we will only be interested in questions
about the most likely messages that Ṽ may send at a single point of the protocol. As such,
the weaker definition that follows is sufficient.

▶ Definition 15. Let A be a space-s streaming algorithm that reads an n-bit string y and
outputs an m-bit string z. We define white-box access to A as oracle access to a function
W with two inputs, a snapshot b ∈ {0, 1}s and a candidate output z ∈ {0, 1}m; the oracle
returns the maximum probability over all inputs y with which A, starting with memory state
b, outputs z; that is,

W(b, z) = max
y∈{0,1}n

{P[A(y) outputs z when its initial snapshot is b]} .

▶ Remark 16. While the honest verifier V does not use a large random string, malicious
verifiers Ṽ with this additional resource can readily be simulated by S as above. We assume
hereafter that Ṽ has the same resources as the honest verifier, but note that the simulations
extend straightforwardly to verifiers with both white-box access (to their strategies) and
query access to a random string.

5 Algebraic and temporal commitments

A commitment protocol is a two-party protocol (or, more accurately, a pair of protocols)
that allows the transmission of a message from one party to another to be split into two
parts: a commitment, where the message is transmitted in a form that cannot be interpreted
by the recipient; followed, at some point in the future, by a decommitment, where the sender
transmits additional information with which the recipient can read the message. (A useful
analogy is that the commitment amounts to sending a locked box containing the message,
and the decommitment to sending the key.)

In the standard setting [9] we have two parties: a sender and a receiver, which we will
refer to as prover and verifier, respectively. The prover wishes to communicate a symbol α,
and does so by first choosing a random key k and sending another string c = commit(α, k).
Then, at some point in the future, prover and verifier engage in a protocol at the end of
which the receiver obtains α = decommit(c). (We will refer to the streaming analogue as
a commitment protocol, rather than scheme, to avoid ambiguity with the polynomial-time
analogue.)

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:23

Commitment protocols are extremely useful components for the construction of interactive
protocols, and should satisfy two properties: hiding, i.e., the commitment alone should prevent
the verifier from obtaining a non-negligible amount of information about the message α; and
binding, i.e., the prover should not be able to decommit to a message that differs from the
one it committed to. We will construct a commitment protocol whose hiding property follows
from the average-case hardness of search-index for streaming algorithms, while binding
follows from the soundness of the pep protocol (which we introduce formally in Section 5.1).

We first formally define streaming commitment protocols. We note that while the
definition that follows can be generalised,12 it suffices to capture our constructions.

▶ Definition 17. A streaming commitment protocol for alphabet Γ (with security parameter
p) and space bound s consists of a function commit : Γ × K → C, where K ⊆ {0, 1}p is the
set of keys and C is the set of commitments, and a space-s SIP (P, V) which satisfy the
following conditions.

Hiding: Fix any pair of distinct messages α, β ∈ Γ and sample k ∼ K. Set c =
commit(α) = commit(α, k) and c′ = commit(β) = commit(β, k). Every (streaming) space-
s distinguisher D tells the two commitments apart with at most subconstant bias (with
respect to the parameter p); that is,

|P[D(c) accepts] − P[D(c′) accepts]| = o(1).

Binding: Fix k ∈ K and α ∈ Γ. Then

P
[
⟨P, V ⟩

(
commit(α, k), α

)
= 1
]

= 1,

and for any β ̸= α,

P
[
⟨P, V ⟩

(
commit(α, k), β

)
= 1
]

= o(1).

Note that, with some abuse of notation, the binding condition corresponds to (P, V)
being an SIP for the language L = {(commit(α, k), α) : α ∈ Γ, k ∈ K}.

The next sections introduce the commitment protocols we will use to build our protocols.
Section 5.1 begins by defining the concepts and tools we build upon: low-degree extensions
and the polynomial evaluation protocol (pep). In Section 5.2, we use them to construct
a basic scheme that allows for the communication of a single symbol (which we use as a
stepping stone), based on the hardness of index (or, more accurately, search-index); in it,
the keys are simply long strings paired with a coordinate, i.e., K = Γp × [p], and commitments
are keys appended with a single extra symbol (i.e., C ⊂ Γp+1 × [p]).

Section 5.3 then extends the construction of Section 5.2 into an algebraic commitment
protocol, which allows for the commitment of low-degree polynomials. In both the basic and
algebraic schemes, hiding is achieved by overwhelming V with “too much information”, and
can only be broken if a malicious verifier is lucky enough to retain a critical fragment of the
information stream; indeed, as we will see, breaking it amounts to solving index. Binding,
on the other hand, relies on the pep protocol, which we introduce in the next section.

While commitment protocols are not a prerequisite for a zero-knowledge protocol, they
also serve as inspiration for our second main component: Section 5.4 shows how the verifier
can perform a temporal commitment to show its alleged internal randomness is uncorrelated
with its input, and thus that it is not behaving maliciously.

12 A natural generalisation is to parameterise the bias in the hiding property as well as the completeness
and soundness in binding by εb, εc, εs ∈ (0, 1); our definition has εb, εs = o(1) and εc = 0.

CCC 2024

2:24 Streaming Zero-Knowledge Proofs

5.1 Low-degree extensions and polynomial evaluation
Fingerprinting is a technique that enables streaming algorithms to approximately verify an
arbitrary coordinate of a long string in small space. It exploits low-degree extensions (LDEs),
extremely useful objects in the design of interactive proofs more broadly.

Given a data set x, viewed as a string of n elements in a finite field F = Fq, an LDE is
a low-degree polynomial that interpolates every data point. More precisely, we may view
x as a function x : [n] → F; given a dimension m and defining the degree d as the smallest
(positive) integer such that n ≤ (d+1)m, we can also view x : [d+1]m → F by some canonical
injection [n] ↪→ [d + 1]m (padding with zeroes if n < (d + 1)m). Then, as long as q > d, we
can also view (via another canonical injection [d + 1] ↪→ F) the data set as the restriction of
a function from Fm to F.

Standard properties of polynomials imply that if this function is an m-variate polynomial
of individual degree d, then the extension is unique; we thus denote by x̂ : Fm → F the
unique degree-d polynomial whose restriction to [n] is equal to x. Explicitly, with (i1, . . . , im)
as the image of i by [n] ↪→ Fm,

x̂ =
n∑

i=1
xiχi =

∑
i1,...,im∈[d+1]

xi1,...,im
χi1,...,im

where the χi are the Lagrange basis polynomials, given by

χi(α1, . . . , αm) :=
m∏

j=1

d+1∏
k=1
k ̸=ij

αj − k

ij − k

(viewing k ∈ [d + 1] as an element of F); equivalently, the Lagrange polynomials are the
unique m-variate degree-d polynomials satisfying χi(j) = 1[i = j] when i, j ∈ [d + 1]. We
note that LDEs and Lagrange polynomials can equivalently be defined with an injection from
{0} ∪ [d], rather than [d + 1], to F; then they satisfy the previous condition for all 0 ≤ i, j ≤ d.
We will use the characterisation that is most convenient, which will be clear from context
(e.g., an LDE that involves the evaluation of a polynomial at 0 is of the latter type).

We will also use χ(α) to denote the vector
(
χ1(α), . . . , χn(α)

)
of evaluations of Lagrange

polynomials; note that this allows us to write x̂(α) as the dot product χ(α)·x of n-dimensional
vectors.

Now, given a string x ∈ Fn, a fingerprint is simply an evaluation of the LDE of x at
a random point, that is, x̂(ρ) with ρ ∼ Fm. The key property of fingerprints is that they
are extremely unlikely to match for two different strings when the underlying field is large
enough, as a consequence of the Schwartz-Zippel lemma [53, 48].

▶ Lemma 18 (Schwartz-Zippel). If x, y ∈ Fn
q are distinct, then Pρ∼Fm

[
x̂(ρ) = ŷ(ρ)

]
≤ dm/q.

Importantly for streaming algorithms, fingerprints can be computed with O(dm) time
per entry of the input and O(m) field elements (thus O(m log q) bits) of space [24].

The polynomial evaluation protocol is an interactive proof that enables a streaming
verifier with a single random evaluation f(ρ) of a degree-d polynomial f : Fm → F to
evaluate f at any other point, assisted by a prover with knowledge of f in its entirety. Note
that the prover could help the verifier compute f at a point (non-interactively) by simply
sending an interpolating set of the polynomial; but any such set has size (d + 1)m. The pep
(polynomial evaluation) protocol, detailed in Figure 3, allows us to reduce the communication
from O(dm log q) to O(dm log q) by adding interaction.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:25

Input: Explicit access to α ∈ F and a set f ⊆ {fx : x ∈ Fn} of m-variate degree-d polyno-
mials over F. Streaming access to (x, β) ∈ Fn × Fm.

V : Sample ρ ∼ Fm. Stream x and compute fx(ρ). Store β.
Compute the line L : F → Fm such that L(0) = β and L(ρ) = ρ with ρ ∼ F, then send L

to the prover.
P : Compute and send fx

|L.13

V : Compute g(ρ), where g : F → F is the degree-dm low-degree extension of the sequence of
evaluations sent by P such that g(0) = α.14Accept if g(ρ) = fx(ρ) and reject otherwise.

Figure 3 Protocol pep(f, α).

In order to better compare the original pep protocol with the zero-knowledge version that
we will construct, we consider a general problem that the protocol is able to solve (as in [15]).
We use f as shorthand for a mapping x 7→ fx (or, equivalently, a set f ⊆ {fx : x ∈ Fn})
where one evaluation fx(ρ) can be computed by a space-bounded algorithm that streams x.
The problem pep(f, α) is to decide whether fx(β) = α when the input stream is x followed
by an evaluation point β ∈ Fm.

Assuming an evaluation of fx can be computed by streaming x with O(m log q) space,
Figure 3 is a streaming interactive proof for pep(f, α) with communication complexity
O(dm log q) and verifier space complexity O(m log q). We note that pep(f, α) can easily be
modified into an algorithm for a search problem without a candidate value α for fx(β), by
having V output g(0) instead of accepting.

It is clear that V accepts in Figure 3 when P is honest; the protocol’s soundness relies on
the fact that if the prover were to send an incorrect g ̸= fx

|L, it is highly unlikely that it will
agree with the verifier’s evaluation at the (unknown) location ρ.

In conjuction with the streaming nature of LDEs, (the search version of) Figure 3
yields a simple and efficient streaming interactive proof for search-index. This SIP,
introduced by [15], has O(log n log log n) space and communication complexities for a stream
(x, j) ∈ Fn×[n] where q = |F| = polylog(n) (and β ∈ Fm is the identification of j); it is simply
an instantiation of pep where d = 2, m = log n and the function fx = x̂ is the m-variate
(multilinear) LDE of x,15 an evaluation x̂(ρ) of which can be computed incrementally as
values of x are revealed in the stream. Then x̂(ρ) = x̂|L(ρ) allows the verifier to check
that the prover is being honest (i.e., that the polynomial it sent is x̂|L), as well as to learn
xj = x̂(j) = x̂|L(0).

Observe that pep is not zero knowledge: the verifier learns all of fx
|L, which it is not

be able to construct by virtue of only learning β (and thus L) after streaming x. Note,
however, that the honest verifier only inspects two evaluations of fx

|L, namely, at 0 and ρ. In
the following sections we construct a commitment protocol that lets the prover only reveal
information about these two points, without sacrificing soundness.

13 Recall that the line L and fx
|L are sent in a canonical form: L as the evaluation L(1) and fx

|L as the
vector

(
fx ◦ L(i) : i ∈ [dm]

)
. (There is no need to send L(0) = β or fx

|L(0) = fx(β) = α, as they are
known to V .)

14 Note that the Lagrange polynomials in this case satisfy χi(j) = 1[i = j] for all 0 ≤ i, j ≤ dm.
15 The space complexity can be reduced to O(log n) with the choice of parameters for q, d and m in

Corollary 39.

CCC 2024

2:26 Streaming Zero-Knowledge Proofs

Input: explicit access to p, d, m, q ∈ N with p ≤ dm, q > d and F = Fq. Streaming access to
y ∼ Fp followed by a correction γ ∈ F and a coordinate k ∼ [p].

V : Sample ρ ∼ Fm and compute ŷ(ρ) =
∑p

i=1 χi(ρ)yi while streaming y.
Store ρ, k, γ and ŷ(ρ).

Figure 4 Protocol commit(α).

5.2 A prover-to-verifier commitment protocol
Our commitment protocol, designed to allow an unbounded-space sender to commit to a
streaming receiver, directly uses the (average-case) hardness of the index problem. By
sending a message hidden at a random coordinate, we exploit the fact that any streaming
algorithm requires a linear amount of space to be able to recall a random item from a string
after it has been seen. We begin by formally defining (the search and decision versions of)
index in the one-way communication complexity model.

▶ Definition 19. search-index, over alphabet Γ and with message length s, is the one-way
communication problem defined as follows: Alice receives a string x ∈ Γn and sends Bob an
s-bit message a = A(x). Bob receives, besides a ∈ {0, 1}s, an index j ∈ [n], and outputs a
symbol b = B(a, j) ∈ Γ. The execution succeeds if b = xj .

▶ Definition 20. decision-index(α) (with alphabet Γ and message length s) is the one-way
communication problem defined as follows: Alice receives a string x ∈ Γn and sends Bob an
s-bit message a = A(x). Bob receives, besides Alice’s message, an index j ∈ [n], and outputs
a bit b = B(a, j) ∈ {0, 1}. The execution succeeds if b = 1 when xj = α, and b = 0 otherwise.

It is well known that index is extremely hard, even on average and in the one-way
communication model with shared randomness.

▶ Proposition 21. Any one-way communication protocol (A, B) for search-index that
sends a message of length s satisfies

Px∼Γp

j∼[p]

[
B
(
A(x), j

)
= xj

]
= 1

|Γ|
+ O

(√
s

p

)
.

In other words, the chance of correctly recalling a random symbol is at best slightly
better than uniform guessing if the string p is much longer than the message length s of the
protocol. We note that this bound was known for Γ = {0, 1} [49], but it extends to larger
alphabets (we provide a proof of this fact in Appendix A.1 for completeness).

The commitment phase of our scheme exploits this hardness result directly: we take
Γ ↪→ F where F is a large enough finite field (which will allow us to use pep to decommit)
and have P send the triple (y, α − yk, k) for random y and k as a commitment to α. (In
particular, the commitment key is a random string-coordinate pair (y, k)). Loosely speaking,
the protocol has the sender communicate a random stream y with the message hidden at a
random coordinate k, which is revealed after y.

The honest verifier keeps a (random) fingerprint of y, which it can use to validate the
message at yk (see Figure 4), while the decommit stage simply instantiates pep appropriately
(see Figure 5). We note that the inputs listed in the description of the protocols are those
available to the verifier.

Now, we show that Figures 4 and 5 form a streaming commitment protocol, i.e., they
satisfy the hiding and binding properties of Definition 17 if p is large enough; these follow
from the hardness of search-index and the soundness of pep, respectively.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:27

Input: α ∈ F, as well as the (parameters and) values stored in the commit stage: k, γ, ρ, ŷ(ρ).

V : Compute and send the line L : F → Fm such that L(0) = k and L(ρ) = ρ with ρ ∼ F.
P : Send ŷ|L.
V : Compute g(ρ) and g(0), where g : F → F is the degree-dm extension of the sequence of

evaluations sent by P .
Accept if g(ρ) = ŷ(ρ) and g(0) + γ = α, rejecting otherwise.

Figure 5 Protocol decommit(α, y, k).

▶ Theorem 22. Figures 4 and 5 form a streaming commitment protocol with space complexity
s = O(m log q) when p = q3 and dm = polylog(q). The protocol is secure against poly(s)-
space adversaries and communicates O(q3 log q) bits.

Proof. First, note that the communication complexity is dominated by the prover sending
p = q3 field elements in the commit step, for a total of O(q3 log q) bits.

The binding property is an immediate consequence of the completeness and soundness
of pep: if P is honest, i.e., sends the correction γ = α − yk in the commit stage and the
polynomial ŷ|L in the decommit stage, then V accepts, as ŷ|L(ρ) = ŷ(ρ) and ŷ|L(0) + γ = α.
(Recall that the line L satisfies L(0) = k and L(ρ) = ρ.)

Now, suppose the prover replies with a polynomial g such that g(0) ̸= yk = ŷ(k) = ŷ|L(0);
then the Schwartz-Zippel lemma (Lemma 18) implies ŷ(ρ) = ŷ|L(ρ) ̸= g(ρ) except with
probability dm/q = o(1), in which case V rejects.16 Note that the verifier only needs to store
ρ ∈ Fm, k ∈ [p] and a constant number of additional field elements, for a space complexity
of O(m log q + log p) = O(m log q).

To show the hiding property, assume towards contradiction that there exists a streaming
algorithm D with space poly(s) = polylog(q) that distinguishes commitments between some
α ∈ F and α′ ∈ F \ {α} with constant bias:17 that is,

Py∼Fp

k∼[p]

[
D(y, k, α − yk) accepts

]
− Py∼Fp

k∼[p]

[
D(y, k, α′ − yk) accepts

]
≥ ε

for some ε = Ω(1). Now consider the following algorithm A for search-index over the
alphabet F with input (x, j): simulate D on the stream (x, γ, j) where γ ∼ F; output α − γ

if D accepts, and otherwise output α′ − γ. Note that A outputs correctly exactly when
γ = α − yk and D accepts, or γ = α′ − yk and D rejects; moreover, A can simulate D with
constant space overhead, so that its space complexity is also polylog(q). We will now show
that A solves search-index with a bias that is too large, contradicting Proposition 21.

Px∼Fp

j∼[p]

[
A(x, j) = xj

]
= 1

q
· Px∼Fp

j∼[p]

[
D(x, j, α − xj) accepts

]
+ 1

q
· Px∼Fp

j∼[p]

[
D(x, j, α′ − xj) rejects

]
= 1

q

(
1 + Px∼Fp

j∼[p]

[
D(x, j, α − xj) accepts

]
− Px∼Fp

j∼[p]

[
D(x, j, α′ − xj) accepts

])
≥ 1 + ε

q

= 1
q

+ Ω
(1

q

)
.

Since 1/q =
√

q/p = ω
(√

poly(s)/p
)

, owing to s = polylog(q), the result follows. ◀

16We remark that ρ need not be sampled from the entire field; the same result holds if ρ ∼ R ⊂ F
when R is large enough. This will be useful in proving that our protocols for pep and sumcheck are
zero-knowledge.

17 Note that allowing poly(s) space for D will imply a space-robust indistinguishability property; bounding
it by, say, Õ(s) or O(s2) would prove a weaker but still nontrivial statement.

CCC 2024

2:28 Streaming Zero-Knowledge Proofs

▶ Remark 23. Just as in pep, the verifier learns much more than than the message ŷ|L(0) =
α ∈ F: it learns all of ŷ|L. Crucially, however, the additional information consists of random
field elements uncorrelated with α. This enables the commitment protocol laid out in this
section to be proven zero-knowledge when the simulator has read-only access to a large
random string t, as in Definition 13. (More accurately, such a simulator can perfectly generate
the random variable that corresponds to the view resulting from the commit followed by the
decommit steps.)

Indeed, a simulator with space O(m log q) and query access to y ∼ Fp may sample k ∼ [p]
and send (y, α − yk, k) in the commit step; then, in decommit, after receiving the line L, it
computes and sends ŷ|L =

(
ŷ|L(i) : i ∈ {0} ∪ [dm]

)
by reading the string y an additional

dm + 1 times, computing and sending one LDE evaluation at a time.

However, this basic commitment protocol is not yet sufficient. As discussed in Section 2.2,
it allows P to commit (and decommit) to a single field element; but the prover should be
able to commit to a polynomial and decommit to a single evaluation thereof. In the next
section we show how to accomplish this, by modifying our scheme to make it algebraic.

5.3 Making the commitment algebraic

In this section, we will show how to modify the commitment protocol laid out in Section 5.2
so that the prover can commit to ℓ messages and decommit to a single linear combination of
the verifier’s choosing. As we shall see, this can in fact be accomplished by adapting only
the commitment step.

The idea behind this new protocol is simple, but has an important caveat. If the prover
P wishes to commit to the messages α = (α1, α2, . . . , αℓ), the obvious solution is to send
(yi, αi − yiki

, ki) for all i, a sequence of commitments to each αi. However, the indices
ki where each message is hidden are sampled independently, so that even though taking
low-degree extensions is a linear operation (i.e., the LDE of

∑
i βiyi is

∑
βiŷi), a linear

combination of the yi does not yield a commitment to a linear combination of the αi:
evaluating it at ki yields a sum where only the ith summand is guaranteed to be correct.

We can fix this problem by hiding all the messages at the same coordinate k. Then,
setting γ =

(
αi − yik : i ∈ [ℓ]

)
and γ = β · γ =

∑
βiγi, we have

γ +
(∑

βiyi

)
k

=
∑

βi(yik + γi) = α · β;

so a linear combination of commitments yields a commitment to a linear combination of the
messages. Therefore, the prover may send (y1, . . . , yℓ, γ, k) and the new protocol will satisfy
the binding property (a slightly stronger version of which, with respect to a random β, will
be necessary; we elaborate upon this later in the section).

More precisely, viewing y ∈ Fℓ×p as a matrix whose ith row is yi, the prover may send
y, say, column by column.18 The resulting string, appended with γ and k, is a random
index instance whose alphabet is Fℓ; and this enables us to show the hiding property for
algebraic-commit as we did for commit.

18 We remark that while sending y column by column naturally corresponds to an index instance with a
larger alphabet (where symbols are ℓ-tuples of field elements), since the hardness of index holds for the
stronger model of one-way communication protocols, the hiding property of the scheme is preserved
regardless of the order in which y is sent. This is important in our sumcheck protocol, where a column
cannot be sent all at once.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:29

Input: explicit access to p, m, d, q ∈ N with p ≤ dm, q > d and F = Fq; as well as linear
coefficients β ∈ Fℓ. Streaming access to y ∈ Fℓ×p followed by γ ∈ Fℓ and k ∈ [p].

V : Sample ρ ∼ Fm and compute ŷ(ρ, β) =
∑ℓ

i=1 βiŷi(ρ), a random linear fingerprint of y

with coefficients β, while streaming y.
Store ρ, k, ŷ(ρ, β) and the correction γ =

∑ℓ
i=1 βiγi.

Figure 6 Protocol algebraic-commit(α).

The result is Figure 6, which enables a prover to commit to multiple messages and
decommit (via Figure 5, using ŷ(ρ, β) as the fingerprint and β · γ as the correction) to an
arbitrary linear combination of them.

▶ Theorem 24. Figure 6 (algebraic-commit) and Figure 5 (decommit) form a streaming
commitment protocol with space complexity s = O

(
(ℓ + m) log q

)
if p = q3ℓ and dm =

polylog(q). The scheme is secure against poly(s)-space adversaries and communicates
O(ℓq3ℓ log q) bits.

Furthermore, if each linear coefficient can be computed in O(m log q) space, then s =
O(m log q).

Since the proof is a straightforward extension of Theorem 22, we defer it to Appendix A.2.
We stress that the binding property of the linear commitment protocol has an important

caveat: it is with respect to the linear combination α · β, rather than the entire tuple α.
Therefore, if the prover has knowledge of the linear coefficients, it can easily commit to a
set of messages α′ ̸= α that nonetheless decommits to the same linear combination α · β,
and P has many choices indeed: the equation

∑
βiα

′
i =

∑
βiαi is satisfied by all β in the

hyperplane (of size qℓ−1) orthogonal to α′ − α.
Since our applications require a stronger guarantee – that V should be able to detect

when P commits to α and a decommits according to α′ ̸= α – this binding property is
insufficient unless V chooses the coefficients β at random; then the linear combination of α′

matches that of α only with probability 1/q. While in our zero-knowledge protocol for pep
the coefficients are not uniform, they are a random evaluation of low-degree polynomials,
and the same reasoning holds with a small loss (see Theorem 35).

However, an important issue still remains: the exponential dependency of Theorem 24
in the number ℓ of field elements that comprise the tuple P commits and decommits to.
Concretely, in our applications we have ℓ = ω(1) but can only afford to communicate poly(q)
bits. To circumvent this issue, we shall use the following efficient reduction from index
over bits to the problem of distinguishing a commitment to a fixed element of Fℓ from a
commitment to a random one.

▶ Lemma 25. Let (A, B) be a one-way protocol with s-bit messages that distinguishes between
a length-p algebraic commitment to a fixed α ∈ Fℓ and a random commitment with advantage
ε; that is, such that∣∣∣∣∣∣∣Py∼Fℓ×p

k∼[p]

[
B
(
A(y), (αi ⊕ yik : i ∈ [ℓ]), k

)
accepts

]
− Py∼Fℓ×p

k∼[p]
τ∼Fℓ

[
B(A(y), τ , k) accepts

]∣∣∣∣∣∣∣ = ε.

Then there exists an average-case one-way communication protocol for (binary) index
over p-bit strings that communicates O(ℓ2s log2 q/ε2) bits and succeeds with probability
1 − 1

e = 1
2 + Ω(1).

CCC 2024

2:30 Streaming Zero-Knowledge Proofs

Proof. Define, for ease of notation, y(k) := (yik : i ∈ [ℓ]) (i.e., the kth column of y) and

aτ := P
[
B
(

A(y), τ ⊕ y(k), k
)

accepts
]

= E
[
B
(

A(y), τ ⊕ y(k), k
)]

,

where we interpret Bob’s output as 1 (respectively 0) when he accepts (respectively rejects).
Define, also, ετ := aα − aτ .

We first argue that, without loss of generality, we can assume F = F2 = {0, 1}. Note that,
with q = |F|,19

ε = aα − 1
qℓ

∑
τ∈Fℓ

aτ = 1
qℓ

∑
τ∈Fℓ

ετ .

Taking ℓ′ := ⌊ℓ log q⌋ and S ⊆ Fℓ as the set of size 2ℓ′ containing α and the tuples τ with
the largest ετ , and viewing {0, 1}ℓ′ ⊆ Fℓ via a bijection between {0, 1}ℓ′ and S, we have

ε′ := 1
2ℓ′

∑
τ∈{0,1}ℓ′

ετ ≥ ε

3 ,

owing to |S| ≥ qℓ/2 and ετ ≥ ετ ′ when τ ∈ S \ {α} and τ ′ ∈ Fℓ \ S. Therefore, assuming
F = F2 incurs at most a constant factor in ε and a log q factor in ℓ; we shall use ε and ℓ

(rather than ε′ and ℓ′) hereafter for simplicity of notation.
Finally, define, for each 0 ≤ i < ℓ,

εi := 1
2ℓ−i

∑
τ∈{0,1}ℓ

∀i′≤i, τi′ =αi′

ετ .

We divide the analysis into two cases: suppose, first, that εi ≥ εi−1 ·
(
1 − 1

2ℓ

)
for all i ∈ [ℓ−1].

Then, by Bernoulli’s inequality (t ≤ −1 implies (1 + t)ℓ ≥ 1 + tℓ), we have

εℓ−1 = 1
2 (aα − aα⊕ℓ) ≥

(
1 − 1

2ℓ

)ℓ

· ε ≥ ε

2 ,

where α⊕i = (α1, . . . , αi−1, 1 − αi, αi+1, . . . , αℓ). Consider the following one-way protocol
(with shared randomness) for an index instance (x, j) ∈ {0, 1}p × [p]: Alice and Bob jointly
sample 2/ε2 independent matrices y′ ∼ {0, 1}ℓ×p and permutations σ ∼ Sp; Alice sets
yi = y′

i ⊕ 1[i = ℓ] · σ(x) (where σ(x)k := xσ(k)), simulates A(y) and sends the resulting
messages in a 2s/ε2-bit string to Bob.

With knowledge of j, Bob finishes the simulations B(A(y), γ, k), using coordinate k =
σ−1(j) and correction γ = α ⊕ y′(k); he computes their empirical mean µ, outputs αℓ if
µ ≥ aα + ε/2, and outputs 1 − αℓ otherwise.

Correctness follows from the observation that, if xj = σ(x)k = αℓ, then γ = α ⊕ y(k), so
E[µ] = aα; since the (y, k) pairs are uniform and independent,

P
[
µ ≤ aα − ε

2

]
≤ 1

e

by the Chernoff-Hoeffding bound (Lemma 9, with 2/ε2 samples and δ = ε/2). Likewise,
when xj = 1 we have α = α⊕ℓ ⊕ y(k); then E[µ] = aα⊕ℓ ≤ aα − ε and an application of the
Chernoff-Hoeffding bound (with the same parameters) yields the same guarantee.

19 This assumes the acceptance probability of a commitment to α is larger than that of a random
commitment, which is without loss of generality (otherwise Bob can simply flip his output bit).

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:31

We now consider the second case: suppose εi < εi−1 ·
(
1 − 1

2ℓ

)
for some i ∈ [ℓ − 1]; we

take, without loss of generality, the minimal such i. Then

1
2ℓ−i

∑
τ∈{0,1}ℓ

∀i′≤i, τi′ =αi′

ετ ⊕i = 1
2ℓ−i

∑
τ∈{0,1}ℓ

∀i′<i, τi′ =αi′
τi=1−αi

ετ

= 2εi−1 − εi

> εi−1

(
1 + 1

2ℓ

)
,

and thus

1
2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′ =αi′

(ετ ⊕i − ετ)

 = 1
2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′ =αi′

(aτ ⊕i − aτ)

>

εi−1

ℓ

≥ ε

2ℓ
.

We will use a similar strategy to the previous case, although the expression we must
estimate involves many more terms (indeed, 2ℓ−i+1 of them). Consider the following one-way
protocol for an index instance (x, j) ∈ {0, 1}p × [p]: Alice and Bob jointly sample 64ℓ2/ε2

independent matrices y′ ∼ {0, 1}ℓ×p and permutations σ ∼ Sp; Alice sets yi′ = y′
i′ ⊕ 1[i′ =

i] · σ(x), computes and sends all messages A(y) in a 64ℓ2s/ε2-bit string to Bob.20 (Recall
that assuming F = {0, 1} incurs constant and logarithmic factors in ε and ℓ, respectively, so
that Alice’s message is O(ℓ2s log2 q/ε2) bits long.)

For each A(y) sent by Alice, Bob simulates B
(
A(y), τ ⊕ y′(k), k

)
with k = σ−1(j) for all

τ satisfying τi′ = αi′ when i′ ≤ i. He computes the empirical mean µ of

1
2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′ =αi′

(
B
(

A(y), τ ⊕i ⊕ y′(k), k
)

− B
(

A(y), τ ⊕ y′(k), k
)) ,

outputs 0 if the result is non-negative, and outputs 1 otherwise.
To prove correctness, first note that

τ ⊕ y′(k) =
{

τ ⊕ y(k), when xj = 0
τ ⊕i ⊕ y(k), when xj = 1,

so that, when xj = 0,

E[µ] = 1
2ℓ−i

 ∑
τ∈{0,1}ℓ

∀i′≤i, τi′ =αi′

(aτ ⊕i − aτ)

 >
ε

2ℓ
,

20 Note that the only difference in Alice’s strategy, as compared to the previous case, is the row where she
inserts σ(x) and the number of simulations of A.

CCC 2024

2:32 Streaming Zero-Knowledge Proofs

and when xj = 1 we have E[µ] < −ε/2ℓ (since the order of each pair of terms in the sum is
flipped).

We conclude with an application of Hoeffding’s inequality (Lemma 10, with a = −1,
b = 1, δ = 1/2 and 64ℓ2/ε2 samples): in the xj = 0 case,

P
[
µ ≤ ε

4ℓ

]
≤ 1

e
;

and, likewise, in the xj = 1 case we have P
[
µ ≥ − ε

4ℓ

]
≤ 1

e . ◀

5.4 A verifier-to-prover temporal commitment
The goal of this section is to construct the second main component towards our streaming zero-
knowledge protocols. While it is not formally a commitment protocol (as per Definition 17),
it is useful to conceptualise it as V committing to its internal randomness before the input is
streamed (hence temporal).

Roughly speaking, we would like to ensure that a malicious verifier cannot choose the
point ρ at which it (allegedly) computes its fingerprint after it sees the input (x, β), as that
would allow it to learn more than fx(β). (For example, in the index case it could claim that
ρ = j + 1 and learn x̂(j + 1) = xj+1.) We will prove, in 3 steps, a lemma formalising the
intuition that a space-s algorithm cannot remember the positions of significantly more than s

elements, which will later enable the construction of a simulator. As in the case of algebraic
commitments, we will in fact prove a stronger statement: that this holds not only in the case
of streaming algorithms, but in the stronger model of one-way communication protocols.

We first define two variants of search-index in the one-way communication complexity
model, which we call reconstruct and pair (see Definitions 26 and 27). In reconstruct,
Bob’s task is to output the symbols at every coordinate of the input z (rather than receiving
a single coordinate j and outputting only zj , as in index); in other words, Bob should
reconstruct the input as best he can. In pair, as in search-index, Bob’s task is again to
output the symbol at a single coordinate; but rather than receiving the index as part of the
input, Bob is free to choose a coordinate-symbol pair (i, α) and succeeds if α = zi. (Note
that in both reconstruct and pair, Bob does not receive any additional input besides
Alice’s message.)

Our first two steps are as follows. We first study reconstruct and show, in Lemma 28,
that if Alice’s message has s bits, Bob cannot reconstruct significantly more than s coordinates
of the input. Then, in Lemma 29, we show how this bound for reconstruct implies a
related bound for pair; more precisely, we prove that there exists a size-s set C of coordinates
such that the probability Bob outputs a correct coordinate-symbol pair (i, zi) where i /∈ C is
arbitrarily small.

While Lemma 29 immediately implies an analogous statement for streaming algorithms,
it is not yet enough for our purposes. The reason is that our verifier will read additional
information, i.e., a fixed – but unknown – pep instance (x, β) between reading a pair input
and writing its output. While it is intuitively clear that this should not help the verifier in
any way (as the pep and pair instances are uncorrelated), we still require a slight extension
of Lemma 29.

To this end we define, for each fixed string x ∈ Γn, a variant of pair that we call pair(x)
(Definition 31). The only difference between this one-way communication problem and pair
is that Bob receives the string x in addition to Alice’s message a. In Theorem 33, we show
that the existence of a set capturing most of the correct outputs of pair implies such a set
C also exists for pair(x); crucially, C is determined by a and does not depend on x. This
last result then immediately implies an analogous one for streaming algorithms.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:33

Let us begin with the definitions:

▶ Definition 26. reconstruct is the following one-way communication problem: Alice
receives a string z ∼ Γv and sends Bob an s-bit message a; after receiving a, Bob outputs a
string b ∈ Γv. The score of an execution is the number of matching coordinates between z

and b, i.e., |{i ∈ [v] : bi = zi}|.

▶ Definition 27. Let pair denote the following one-way communication problem: Alice
receives a string z ∼ Γv and sends Bob an s-bit message a; after receiving a, Bob outputs a
pair (α, i) ∈ Γ × [v]. The execution succeeds if α = zi.

Note that both are definitionally average-case problems, as z is sampled uniformly. We
now proceed to the first step towards the goal of this section: a proof that, in our parameter
settings of interest for |Γ| and s (as functions of v), the expected score of any protocol for
reconstruct is tightly constrained by the message length s.

▶ Lemma 28. Any one-way protocol for reconstruct with alphabet size |Γ| =
O(v/ log log v), |Γ| ≥ 32v/ log log v and message length s, where log v ≤ s = polylog(v),
achieves an expected score of at most s + o(s).

Proof. By the minimax theorem, we may assume Alice’s and Bob’s strategies are both
deterministic, so that there exists a set of messages A ⊆ {0, 1}s that partitions the set Γv of
input strings by {Pa : a ∈ A}, where Bob outputs b = b(a) ∈ Γv whenever z ∈ Pa.

Observe that Bob’s optimal strategy is to set bi as the most frequent symbol at the ith

coordinate among the strings of Pa; we can thus index the partition by b ∈ B := {b(a) : a ∈ A},
setting Pb = Pb(a) = Pa. (Note that while {Pb : b ∈ B} may be a smaller partition than
{Pa : a ∈ A}, the expected scores of the protocols induced by both partitions are the same.)

Define the random variable Mb := {i ∈ [v] : zi = bi}. For simplicity of notation, denote
also γ := |Γ|. Note that the expected score of this one-way protocol is

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
=
∑
b∈B

P[z ∈ Pb] · Ez∼Pb
[|Mb|]

=
∑
b∈B

|Pb|≥ s
v

· γv

2s

P[z ∈ Pb] · Ez∼Pb
[|Mb|] +

∑
b∈B

|Pb|< s
v

· γv

2s

P[z ∈ Pb] · Ez∼Pb
[|Mb|] .

We bound the first term by the largest expectation, and the second by observing that the
union of sets Pb with |Pb| ≤ s

v · γv

2s contain at most an s/v fraction of all length-v strings:

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
≤ max

b∈B

|Pb|≥ sγv

v·2s

Ez∼Pb
[|Mb|] +

∑
b∈B

|Pb|< sγv

v·2s

P[z ∈ Pb] · v

≤ max
b∈B

|Pb|≥ sγv

v·2s

Ez∼Pb
[|Mb|] + s.

Let δ ∈ (0, 1) be such that the volume of Hamming balls of radius δ is V := sγv

v·2s ≤ sγv

v2 .
(Recall that s ≥ log v.) For any b ∈ B, the set Pb that maximises

Ez∼Pb
[|Mb|] = |Pb|−1 ∑

z∈Pb

|{i ∈ [v] : zi = bi}|

CCC 2024

2:34 Streaming Zero-Knowledge Proofs

is Pb = B(b, δ′), the ball centered at b (whose radius δ′ is determined by the equality
|B(b, δ′)| = |Pb|). Since |Pb| ≥ V implies δ′ ≥ δ, we have

1
|Pb|

·
∑

z∈B(b,δ′)

|{i ∈ [v] : zi = bi}| ≤ 1
V

·
∑

z∈B(b,δ)

|{i ∈ [v] : zi = bi}|,

so it suffices to bound the right-hand side. (The inequality follows from the observation that
the left-hand side is a weighted average between the right-hand side and the expectation
over z ∼ B(b, δ′) \ B(b, δ), which is smaller.)

Define ε := 1 − δ. We aim to upper bound Ez∼Pb
[|Mb|], and set as an intermediate goal

to prove upper and lower bounds for ε. To this end, we will use the following standard
approximations (see, e.g., [41]) for H = H2 when σ (or 1 − σ) is small:

H(σ) = H(1 − σ) ∈
[
σ log 1

σ
, σ

(
log 1

σ
+ 2

ln 2

)]
(12)

We begin with the lower bound on ε, which uses the lower bound of Equation 12 and
follows by showing that the volume of a ball with radius 1 − log γ

v log log γ is larger than V ; then
δ < 1 − log γ

v log log γ , or, equivalently, ε = 1 − δ > log γ
v log log γ .

We have

Hγ

(
1 − log γ

v log log γ

)
=

(
1 − log γ

v log log γ

)
log(γ − 1) + H

(
1 − log γ

v log log γ

)
log γ

(by Equation 1)

=

(
1 − log γ

v log log γ

)
log(γ − 1) + H

(log γ
v log log γ

)
log γ

(by Equation 2)

≥

(
1 − log γ

v log log γ

) (
log γ + log

(
1 − 1

γ

))
log γ

+
log
(

v log log γ
log γ

)
v log log γ

(by Equation 12)

= 1 +
(

1
log γ

− 1
v log log γ

)
log
(

1 − 1
γ

)
+

log v
γ

+ log log log γ

v log log γ
− 1

v

≥ 1 − 1
γ ln 2

(
1 + 1

γ

)(
1

log γ
− 1

v log log γ

)
+

log v
γ

+ log log log γ

v log log γ
− 1

v
(by Equation 3)

≥ 1 − 1
γ ln 2

(
1 + 1

γ

)(
1

log γ
− 1

v log log γ

)
− 1

v

≥ 1 − 3
2v

,

where the second-to-last inequality uses v ≥ γ; and the last inequality uses γ = Θ
(

v
log log v

)
to bound the first negative term to order Θ

(
log log v
v log v

)
, so the 1/v term dominates. Therefore,

γHγ(1− log γ
v log log γ)v ≥ γv/γ3/2,

and thus, by Equation 4, the volume of a ball (centered at any point b) of radius 1− log γ
v log log γ =

1 − polylog(v)
v satisfies∣∣∣∣B(b, 1 − log γ

v log log γ

)∣∣∣∣ ≥ γHγ(1− log γ
v log log γ)v

√
log v

≥ γv

2 3
2 log γ+ 1

2 log log v

≥ γv

2 7
4 log γ

.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:35

Then

|B(b, δ)| = V = sγv

v · 2s

≤ γv polylog(v)
v2

≤ γv

2 15
8 log v

≤
∣∣∣∣B(b, 1 − log γ

v log log γ

)∣∣∣∣,
and we conclude that ε = 1 − δ > log γ

v log log γ .
We now proceed to the upper bound on ε, which will use the upper bound of Equation 12.

Since γHγ (δ)v ≥ V = sγv

v·2s (Equation 4), taking the logarithm of both sides and using
Equation 1 yields

(1 − ε) log(γ − 1) + H(1 − ε)
log γ

= Hγ(1 − ε) = Hγ(δ) ≥ 1 −
s + log v

s

v log γ
. (13)

Note that the right-hand side is 1 − o(1) because s = o(v); then, δ is within o(1) distance
of the maximiser 1 − 1/γ = 1 − o(1) of Hγ , so that δ = 1 − o(1) and ε = o(1).

This allows us to bound H(ε) = H(1 − ε) from above via Equation 12, which, combined
with Equation 13 (multiplied by log γ), implies

(1 − ε) log(γ − 1) + ε log 1
ε

+ 2ε

ln 2 ≥ log γ − s + log v − log s

v
.

Rearranging yields

ε

(
log ε + log γ + log

(
1 − 1

γ

)
− 2

ln 2

)
≤ s + log v − log s

v
+ log

(
1 − 1

γ

)
.

The bounds − log(1 − 1/γ) = O(1/γ) = O(log log v/v) (Equation 3) and s ≥ log v show
that the right-hand side is O(s/v); and Equation 3 along with log γ = log v − log log log v +
Θ(1) =

(
1 − o(1)

)
log v implies the left-hand side is Ω

(
ε(log ε + log v)

)
. Therefore, the

inequality above simplifies to

ε(log ε + log v) = O
(s

v

)
.

Now, if we had ε = Ω(s/v), then

ε(log ε + log v) = ε
(

log s − log v + log v + Ω(1)
)

= Ω(ε log s) = ω(s/v),

a contradiction. We thus conclude that ε = o(s/v) (and, in particular, that ε is both lower
and upper bounded by polylog(v)/v).

Returning to the goal of bounding the expected score, we now show that most of the
volume of a Hamming ball of radius δ is close to its boundary. More precisely, consider the
volume V ′ of a ball of radius δ′ = 1 − 2ε. As ε = v−1 polylog(v), Equation 4 applies, giving
V ′ ≤ γHγ (1−2ε) and

V = Ω
(

γHγ (1−ε)
√

εv

)
= Ω

(
γHγ (1−ε)

√
s

)
,

CCC 2024

2:36 Streaming Zero-Knowledge Proofs

so that

V ′

V
= O

(√
s · γ−(Hγ (1−ε)−Hγ (1−2ε))v

)
.

We can bound the coefficient in the exponent as follows:

Hγ(1 − ε) − Hγ(1 − 2ε) = ε log(γ − 1) + H(ε) − H(2ε)
log γ

≥ ε

log γ

(
log(γ − 1) + log 1

ε
− 2 log 1

2ε
− 4

ln 2

)
(by Equation 12)

= ε

log γ

(
log(εγ) + log

(
1 − 1

γ

)
+ 2 − 4

ln 2

)
≥ ε log log γ

log γ
,

where the last inequality follows from εγ > γ log γ
v log log γ = Θ

(
log γ

log2 log γ

)
when the constant in

Θ(·) is large enough (γ ≥ 32v/ log log v suffices, as log(1 − 1/γ)+2−4/ ln 2 > −5). Therefore,

√
s · γ−(Hγ (1−ε)−Hγ (1−2ε))v ≤

√
s · γ− εv log log γ

log γ

=
√

s · 2−εv log log γ

<
√

s · 2− log γ

=
√

s

γ

= Θ
(√

s log log v

v

)
= o(s/v),

where the last line is due to
√

s ≥
√

log v = ω(log log v) and the strict inequality to
ε > log γ

v log log γ . Therefore, V ′/V = o(s/v), showing that the volume of a ball of radius
1 − ε is indeed concentrated in points of distance at least 1 − 2ε.

Finally, we conclude that

Ez∼Γv

[∑
b∈B

1[z ∈ Pb] · |Mb|

]
≤ max

b∈B

|Pb|≥ sγv

v·2s

Ez∼Pb
[|Mb|] + s

≤ s + 1
V

·
∑

z∈B(b,δ)

|{i ∈ [v] : zi = bi}|

≤ s + V ′

V
· v +

(
1 − V ′

V

)
· 2εv

= s + o(s),

as desired. ◀

At this stage, we have an upper bound on the expected score of any one-way communication
protocol for reconstruct. The next step is to show that it implies a similar bound for the
communication problem pair; indeed, it seems intuitively clear that reconstruct is no
harder than pair, as it allows Bob to output an independent guess for each coordinate. We
formalise this intuition in the following lemma.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:37

▶ Lemma 29. Any one-way protocol for pair with alphabet size 32v
log log v ≤ |Γ| = O

(
v

log log v

)
and message length s, where log v ≤ s = polylog(v), satisfies the following: there exists an
event E (depending only on z) with P[E] = 1 − o(1) and a set C of size s (depending only
on Alice’s message) such that

P
[
Bob outputs (zi, i) with i /∈ C

∣∣E] = o(1).

Proof. We will first show how to construct a protocol for reconstruct given one for pair,
and then use Lemma 28 to conclude; as in that lemma, we define {Pa} as the partition
induced by Alice’s messages a = a(z) ∈ A (we can assume Alice to be deterministic, as
before, by the minimax theorem; then a is a random variable determined by z).

Recall that in a protocol for pair, Bob’s output is a random variable b(a) ∈ Γ × [v];21

our goal is to construct, from this random variable, an entire string y ∈ Γv and apply the
expected score bound to it. For ease of notation, when the message a is fixed we write
b = (b1, b2) = b(a); note that b is independent of the conditional distribution z ∼ Pa of the
input, since upon fixing a it is solely a function of Bob’s internal randomness. We will denote
its distribution by µ = µ(a), and the conditional distribution of b2 when b1 = i by µi.

The (pair) protocol’s success probability, conditional on receiving a, is given by
v∑

i=1
Pz∼Pa

b∼µ
[b = (zi, i)] =

v∑
i=1

Pb∼µ[b2 = i] · Pz∼Pa
b∼µ

[b1 = zi | b2 = i]

=
v∑

i=1
Pb∼µ[b2 = i] · P z∼Pa

b1∼µi

[b1 = zi].

Define y = y(a) ∈ Γv as the string whose ith coordinate is the most frequent symbol
at the ith coordinate in Pa (as before, y is the best attempt at reconstructing the input z

given to Alice). Now, consider the reconstruct protocol that outputs the string whose
ith coordinate is the random variable b1 ∼ µi. Since, for each i ∈ [v], the symbol α ∈ Γ
maximising Pz∼Pa

[α = zi] is yi, the expected score of the resulting protocol (conditioned on
a) is

v∑
i=1

Pz∼Pa
[b1 = zi | b2 = i] =

v∑
i=1

P z∼Pa
b1∼µi

[b1 = zi]

=
v∑

i=1

∑
α∈Γ

Pb1∼µi
[b1 = α] · Pz∼Pa

[α = zi]

≤
v∑

i=1
Pz∼Pa

[yi = zi]

= Ez∼Pa [|Ma|] ,

where, as before, Ma = {i ∈ [v] : yi = zi}.
Recall that in Lemma 28 we showed that, as long as |Pa| ≥ s|Γ|v

v2s , the above expectation is
o(s). To conclude, we will use the following claim, whose proof is deferred to Appendix A.3:

▷ Claim 30. Let p, q ∈ [0, 1]v be probability vectors and t ≤ v be an integer. There exists a
set C ⊆ [v] of size t such that

∑
i∈[v]\C piqi ≤ 1/t.

21 Note that, in contrast with Alice, we cannot assume Bob is deterministic. We wish to bound the number
of points in the support of b that aggregate all but a subconstant amount of probability weight in correct
solutions to the problem. This is not a function of the value of b, but of its distribution, so the minimax
principle does not apply.

CCC 2024

2:38 Streaming Zero-Knowledge Proofs

Note that while r ∈ [0, 1]v defined by ri = P[b1 = zi | b2 = i] is not a probability vector,
we may normalise it to obtain one: applying Claim 30 to p =

(
P[b2 = i] : i ∈ [v]

)
, q = r/∥r∥1

and t = s, we obtain a set Ca ⊂ [v] of size s such that

Pz∼Pa

b∼µ(a)

[
b = (zi, i) with i /∈ Ca] =

v∑
i/∈Ca

piri

= ∥r∥1

v∑
i/∈Ca

piqi

≤
∥r∥1

s

=
∑v

i=1 P[b1 = zi | b2 = i]
s

= o(1)

whenever |Pa| ≥ s|Γ|v

v2s . Finally, take Ca as given by the claim. Recall that the sets Pa of size
less than s|Γ|v

v2s cover at most a s/v = o(1) fraction of length-v strings, so that the probability
z ∼ Γv falls into the union of such sets is o(1). In the complement of this event, we have

P
[
b(a) = (zi, i) with i /∈ Ca

∣∣∣∣ |Pa| ≥ s|Γ|v

v2s

]
= 1

Pz∼Γv

[
|Pa| ≥ s|Γ|v

v2s

] ∑
a∈A

|Pa|≥ s|Γ|v

v2s

Pz∼Γv [z ∈ Pa] · Pz∼Pa

b∼µ(a)
[b = (zi, i) with i /∈ Ca]

= 1
1 − o(1) · o(1) = o(1),

which concludes the proof. ◀

With the second step of our proof finished, we already have a nontrivial result by the
known implication from hardness for one-way communication complexity: any streaming
algorithm that streams a uniformly random string z ∈ Γv and immediately outputs a pair
(α, i) has a small set C ⊂ [v] capturing most of the probability that it outputs correctly.
However, the verifier in our zero-knowledge streaming protocol will stream an index instance
between streaming z and outputting a pair. To capture this behaviour, we define a (slight)
variant of pair and prove that the result of Lemma 29 carries over to it.

▶ Definition 31. For each string x ∈ Γn, let pair(x) denote the following one-way commu-
nication problem: Alice receives a string z ∼ Γv and sends Bob an s-bit message a; Bob reads
x and a and outputs a pair (α, i) ∈ Γ × [v]. The protocol succeeds if α = zi.

We have now reached the end goal of this section:

▶ Lemma 32. Fix a (single) one-way communication protocol for pair(x) for all x ∈ Γn with
alphabet size 32v/ log log v ≤ |Γ| = O(v/ log log v) and message length log v ≤ s = polylog(v).
Then, for any x ∈ Γn, there exists an event E (that depends only on z) with P[E] = 1 − o(1)
and a set C of size s (that depends only on Alice’s message) satisfying

P
[
b(a, x) = (zi, i) with i /∈ Ca

∣∣E] = o(1).

Proof. We will make a small adaptation in one of the steps of Lemma 29 to show there is a
size-s set C independent of x that captures most of the probability of Bob’s correct outputs.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:39

Following the notation of Lemma 29, {Pa} is the partition induced by Alice’s messages
and Bob’s output is a random variable b(a(z), x) = b(a, x) ∈ Γ × [v]. We also denote the
distribution of b = b(a, x) by µ(a, x) and the conditional distribution of b1 when b2 = i by
µi(a, x).

For every x and a, the protocol’s success probability conditioned on z ∈ Pa is

v∑
i=1

Pz∼Pa

b∼µ(a,x)
[b = (zi, i)] =

v∑
i=1

Pb∼µ(a,x)[b2 = i] · Pz∼Pa

b∼µ(a,x)
[b1 = zi | b2 = i]

=
v∑

i=1
Pb∼µ(a,x)[b2 = i] · P z∼Pa

b1∼µi(a,x)
[b1 = zi].

With y = y(a) ∈ Γv as the string whose ith coordinate is the most frequent symbol at the
ith coordinate in Pa, we know that Pz∼Pa

[α = zi] is maximal when α = yi. This holds also if
α is a random variable (independent from z), so that, in particular, with r ∈ [0, 1]v defined
by

ri := max
x∈Γn

{
P z∼Pa

b1∼µi(a,x)
[b1 = zi]

}
≤ Pz∼Pa

[yi = zi]

we have ∥r∥1 = o(s) when |Pa| is sufficiently large. Defining p ∈ [0, 1]v by pi = Pb∼µ(a,x)[b2 =
i], p′ ∈ [0, 1]v by qi = ri/∥r∥1 and using Claim 30, we obtain a set Ca ⊂ [v] of size s such
that for every x ∈ Γn,

Pz∼Pa

b∼µ(a,x)

[
b = (zi, i) and i /∈ Ca] =

v∑
i=1

Pb∼µ(a,x)[b2 = i] · P z∼Pa

b1∼µi(a,x)
[b1 = zi]

≤ ∥r∥1

v∑
i/∈Ca

piqi = o(1),

and we conclude with same calculation of Lemma 29. ◀

As an immediate corollary (by taking C to be a set of symbol-coordinate pairs, rather
than only coordinates; and setting, say, C = ∅ in the complement of the event E), we have:

▶ Theorem 33. Let Γ be an alphabet of size 32v/ log log v ≤ |Γ| = Θ(v/ log log v) and fix
x ∈ Γn. Let Ṽ be a streaming space-s algorithm with log v ≤ s = polylog(v) that streams
z ∼ Γv followed by x, and outputs a pair (α, i) ∈ Γ × [v].

There exists a set C ⊂ Γ × [v] of size s, determined by the snapshot of Ṽ at the end of
the stream z, such that

P
[
Ṽ (z, x) outputs (zi, i) /∈ C

]
= o(1).

The theorem above attains what we set out for in this section: since Ṽ cannot remember
many pairs (zi, i), we may prepend to any protocol a step where P sends z to the verifier.
Then, whenever Ṽ sends an allegedly random α ∈ Γ to the prover, we ask that it also send
the coordinate i such that α = zi as evidence that α was indeed sampled in the past, i.e.,
before it finished streaming z. In other words, this step provides a temporal commitment by
means of which Ṽ can show that its internal randomness is uncorrelated with the input.

CCC 2024

2:40 Streaming Zero-Knowledge Proofs

6 A zero-knowledge SIP for polynomial evaluation

Our goal in this section will be to combine the components constructed in Sections 5.3
and 5.4 – algebraic and temporal commitment protocols – into a zero-knowledge protocol for
pep. It is useful to keep in mind that pep is a generalisation of index, and thus a protocol
for the former yields one for the latter; in other words, for concreteness one may replace pep
by index throughout this section. A formal definition of pep follows.

▶ Definition 34. Let α ∈ F and f = {fx : x ∈ Γn} be a mapping such that fx : Fm → F is a
degree-d polynomial. pep(f, α) is the language {(x, β) ∈ Γn × Fm : fx(β) = α}.

We remark that the parameters of the problem generally increase as a function of n; in
particular, the field size is always assumed to satisfy q = |F| = ω(1).

6.1 The protocol
For any mapping f and field element α, Figure 7 lays out zk-pep(f, α), our zero-knowledge
SIP for pep(f, α). Theorems 35 and 36 prove, respectively, the correctness (i.e., completeness
and soundness) and the zero-knowledge properties of zk-pep.

The protocol uses commitment (sub)protocols to allow each party to only reveal key
information after the other party gives evidence that it is being honest; this is achieved
by interspersing the commit-decommit steps of one party with those of the other. More
precisely, in the setup (Step 0) the verifier performs its (temporal) commitment; after the
input is streamed (Step 1), the prover makes its (algebraic) commitment in Step 2. Then
follow decommitments in the same order: verifier and prover decommit at Steps 3 and 4,
respectively.

For ease of notation, we use F× to denote F \ {0}, the multiplicative group of the field
F. Recall, moreover, that for a matrix y, we use ŷ(ρ, θ) ∈ F to denote an evaluation of the
low-degree extension of the string θ · y over F (see Section 3), and that χ(ρ) denotes a vector
of Lagrange polynomials (see Section 5.1); in the following protocol, the vector contains all
but the first point of the interpolating set {0} ∪ [dm] for a univariate degree-dm polynomial
over F, i.e., χ(ρ) =

(
χi(ρ) : i ∈ [dm]

)
∈ Fdm.

6.2 Analysis of the protocol
We now show that zk-pep is a valid (i.e., complete and sound) streaming interactive proof, as
well as compute its space and communication complexities.

▶ Theorem 35. Let f be such that an evaluation of the Fq-polynomial fx can be computed
by streaming x in O(m log q) space. Then, for any α ∈ Fq, Figure 7 is an SIP for pep(f, α)
with s = O(m log q) space complexity. Its communication complexity is O(qmm log2 q) in the
setup and O(d4m5q3 log q) in the interactive phase.

Proof. We will prove completeness then soundness, and compute the complexities last.

Completeness. The verifier only aborts in Step 0 (the setup) if ρ is not among the
v > qm log log q random tuples sent by the prover, an event with probability (1 − 1/qm)v ≤
e−v/qm = o(1). Otherwise, since the prover behaves honestly, in Step 2 (the algebraic
commitment) we have

yik = fx
|L(i) − γi

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:41

Input: Explicit access to F, element α ∈ F, degree d, dimension m and a mapping x 7→ fx;
streaming access to x ∈ Γn followed by β ∈ Fm.

Parameters:
Field size q = |F| satisfying dm = o(q);
Commitment lengths v = qm(log m + log log q)/32 and p = m(dmq)3;

Step 0: Temporal commitment
P : Send a string z ∼

(
Fm
)v.

V : Sample ρ ∼ Fm and stream z. For each i, check if zi = ρ and store ℓ := i if so.
Reject if ρ ̸= zi for all i ∈ [v].

Step 1: Input streaming
V : Stream x and compute fx(ρ) ∈ F. Store β ∈ Fm.

If ρ = β, check that fx(ρ) = α, accepting if so and rejecting otherwise.
Step 2: Algebraic commitment

V : Sample ρ ∼ F× \ [dm] and send the line L : F → Fm with L(0) = β and L(ρ) = ρ.
P : Send an algebraic commitment (y, γ, k) to fx

|L, i.e., (y, k) ∼ Fdm×p × [p] and γ ∈ Fdm

with γi = fx
|L(i) − yik for all i ∈ [dm].

V : Sample σ ∼ Fm and, while streaming y, compute ŷ
(
σ, χ(ρ)

)
.

Compute the correction γ = χ(ρ) · γ and save (the identification of) k ∈ Fm.
Step 3: Temporal decommitment

V : Send ρ and ℓ.
P : Check that zℓ = ρ ∈ L and ρ := L−1(ρ) /∈ {0} ∪ [dm], aborting otherwise.

Step 4: Algebraic decommitment
V : Run decommit

(
fx(ρ)−χ0(ρ)α, χ(ρ)·y, k

)
, with correction γ and fingerprint ŷ(σ, χ(ρ)).

Accept if decommit accepts and reject otherwise.

Figure 7 Protocol zk-pep(f, α).

for all i ∈ [dm].
Let w = χ(ρ) · y =

∑dm
i=1 χi(ρ)yi ∈ Fp and ŵ : Fm → F be its m-variate LDE. Recall that,

in decommit
(
fx(ρ) − χ0(ρ)α, w, k

)
(Figure 5), with correction γ and fingerprint ŷ(σ, χ(ρ)),

the verifier sends a line L′ : F → Fm with L′(0) = k, L′(σ) = σ, receives ŵ|L′ and makes two
checks: that ŵ|L′(σ) matches the fingerprint and that ŵ(0) + γ = fx(ρ) − χ0(ρ)α. Since

ŵ|L′(σ) = ŵ(σ) =
dm∑
i=1

χi(ρ)ŷi(σ) = ŷ
(
σ, χ(ρ)

)
and

ŵ(0) + γ = wk + γ =
dm∑
i=1

χi(ρ)
(
yik + γi

)
=

dm∑
i=1

χi(ρ)fx
|L(i)

= fx(ρ) − χ0(ρ)fx(β)
= fx(ρ) − χ0(ρ)α,

the verifier accepts when P is honest except with probability o(1).

CCC 2024

2:42 Streaming Zero-Knowledge Proofs

Soundness. First, note that if ρ /∈ {zi : i ∈ [v]}, the verifier rejects already in Step 0. We
can thus assume the tuple ρ equals some coordinate in z, and, since the string and tuple are
independent random variables, the distribution of ρ is still uniform conditioned on this event.
(We may also assume that ρ ̸= β, since otherwise V also rejects regardless of the prover’s
behaviour.)

The only other point where V may reject is Step 4 (the algebraic decommitment). Once
again, recall that V sends the prover a line L′ with L′(0) = k, L′(σ) = σ where σ ∼ F and
P replies with a degree-dm polynomial g : F → F that is allegedly ŵ|L′ . The verifier then
checks that g(σ) = ŷ

(
σ, χ(ρ)

)
= ŵ|L′(σ) and g(0) + γ = fx(ρ) − χ0(ρ)α, rejecting if either

equality fails to hold.
We now analyse three cases: first, suppose that g = ŵ|L′ . Then the first check passes but

g(0) + γ = wk + γ

= fx(ρ) − χ0(ρ)fx(β)
̸= fx(ρ) − χ0(ρ)α,

so the verifier rejects (with probability 1).
Suppose, now, that g(0) ̸= ŵ|L′(0). Then Lemma 18 (Schwartz-Zippel) implies g(σ) ̸=

ŵ|L′(σ), so the verifier rejects, except with probability dm/q = o(1).
Finally, suppose that g ≠ ŵ|L′ but g(0) = ŵ(0) =

∑dm
i=1 χi(ρ)yik. Then either the first

check fails, i.e., g(σ) ̸= ŷ
(
σ, χ(ρ)

)
, and V rejects; or g(σ) = ŷ

(
σ, χ(ρ)

)
, and the second

check passes if

g(0) + γ =
dm∑
i=1

χi(ρ)
(
yik + γi

)
is equal to

fx(ρ) − χ0(ρ)α = χ0(ρ)
(
fx(β) − α

)
+

dm∑
i=1

χi(ρ)fx
|L(i).

Rearranging, the second check corresponds to the following equation:

χ0(ρ)
(
fx(β) − α

)
+

dm∑
i=1

χi(ρ)
(

fx
|L(i) − γi − yik

)
= 0.

Now, consider the left-hand side of the equation as a polynomial in ρ: plugging in 0 for
the variable ρ evaluates to fx(β) − α ≠ 0, so that it is a nonzero polynomial; and, crucially,
ρ was sampled uniformly (from F× \ [dm]) and independently of the communication (in
particular, of y and γ) by V . By Lemma 18 lemma once again, the equation is satisfied with
probability at most dm/(q − dm − 1) = o(1) and soundness follows.

Communication complexity. Most of the communication occurs in Steps 0 and 2 (the
commitments), which communicate

O
(
qm(log m + log log q)m log q

)
= O

(
qmm log2 q

)
and

O (pdm log q) = O
(
d4m5q3 log q

)
bits, respectively. (The communication in other steps is significantly smaller: Step 1 has
none, while Steps 3 and 4 communicate m log q + log v = O(m log q) and O(dm log q) bits,
respectively.)

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:43

Space complexity. Apart from a constant number of elements of F (requiring O(log q) bits),
the verifier stores ℓ ∈ [v], k ∈ [p] and ρ, σ ∈ Fm. Since v ≥ p, the space complexity is
dominated by ℓ and ρ, σ. Since storing ℓ requires log v = O(m log q) bits (as does computing
fx(ρ)) while ρ and σ require m log q bits each, the space complexity follows. ◀

6.3 Zero-knowledge
Having shown that zk-pep is a valid streaming interactive proof, we now show it is also
zero-knowledge.

▶ Theorem 36. Figure 7 is zero-knowledge, secure against distinguishers with space
dm2 polylog(q). The simulator runs in O

(
(d + m log q)m log q

)
= O

(
dm2 log2 q

)
space.

Proof. Recall that an SIP with a space-s verifier is zero-knowledge against dm2 polylog(q)-
space distinguishers if there exists a streaming simulator S that satisfies the following. For any
space-s (honest or malicious) verifier Ṽ and input (x, β) where fx(β) = α, given whitebox
access to Ṽ the simulator S produces a view that is indistinguishable to a dm2 polylog(q)-
space (streaming) algorithm from the view generated by an interaction of Ṽ with the honest
prover. Note that Ṽ can be simulated in space O(s), so the space complexity of the statement
suffices to simulate the verifier of Figure 7 since s = O(m log q).

The simulator interprets its read-only random bit string as (z, y) with z ∼ Fv and
y ∼ Fdm×p (so that vm log q+pdm log q ≤ qm+8 bits suffice and an algorithm with (m+8) log q

space can address into this string). This pair will be used to simulate prover messages,
whereas the simulation of Ṽ will use a source of randomness that cannot be reread (but
has unbounded length). In the description that follows, as well as the more succinct one in
Figure 8, recall that Ṽ is assumed to only output a decision at the end of the protocol (so
that, if it decides to reject in the middle, it continues the protocol with dummy messages);
and likewise if S (or P) aborts.

In the setup, Step 0 (the temporal commitment), S simulates Ṽ (z). Then, using the
snapshot of the verifier’s memory and its whitebox access to Ṽ , the simulator finds the set
C of s elements of Fm that Ṽ may successfully decommit to with the largest probabilities.
More precisely, S calls the whitebox oracle W (see Definition 15) on the algorithm that
corresponds to the verifier immediately before streaming x, with initial memory state equal
to the current snapshot b ∈ {0, 1}s, and whose output is a pair (ρ, ℓ) at Step 3 (ignoring L,
the intermediate output at Step 2).

S initialises a(n empty) sorted list of message-probability pairs in Fm × [v] × [0, 1], and,
for all ℓ ∈ [v], uses its oracle access to both z and W to find µℓ := W

(
b, (zℓ, ℓ)

)
. If the size of

the list is smaller than s, or µℓ is larger than the smallest probability in it, S adds (zℓ, ℓ, µℓ)
to it (and removes the tuple with the smallest µℓ′ if the size of the resulting would have
exceeded s).

This yields the set C ⊂ Fm × [v] with the s most likely correct decommitments of Ṽ .
Since the string z is over the alphabet Fm, whose size satisfies

v

log log v
= qm(log m + log log q)

32 log
(
m log q + log(log m + log log q) − 5

) ≤ qm

32 ,

qm = Θ(v/ log log v) as well as s ≥ log p = Θ(log q) and s = polylog(p), Theorem 33 applies
for this parameter setting. This ensures that, except with probability o(1), the verifier Ṽ will
output either (zℓ, ℓ) ∈ C or an incorrect (ρ, ℓ) with zℓ ̸= ρ in its decommitment at Step 3.

Then S proceeds to Step 1, where it simulates Ṽ (x) and, with F := {zi : (zi, i) ∈ C},
computes fx(ρ) for every ρ ∈ F . At the start of Step 2 (the algebraic commitment), Ṽ

sends a line L. The simulator inspects the intersection of L (viewed as a set) with the set of

CCC 2024

2:44 Streaming Zero-Knowledge Proofs

fingerprints F and computes a random degree-dm polynomial g subject to the constraints
g(β) = fx

|L(β) = fx
(
L(β)

)
for all β ∈ L−1(F).22 Note that the description of g is comprised

of O(dm) field elements.
S samples k ∼ [p] then simulates Ṽ streaming y followed by γi = g(i)−yik for all i ∈ [dm]

and k; note that S is able to compute all γi from the description of g combined with its
oracle access to y.

There is no prover-to-verifier communication in Step 3 (the temporal decommitment), so
S simulates Ṽ until the verifier sends a tuple ρ ∈ Fm and an index ℓ ∈ [v]. The simulator
then checks that zℓ = ρ ∈ L and ρ := L−1(ρ) ∈ F× \ [dm]; if not, then S aborts (as P would).

Finally, in Step 4 (the algebraic decommitment), S simulates Ṽ until it sends a line
L′ : F → Fm. The only remaining part of the verifier’s view left to generate are the evaluations
of of the polynomial

∑
i∈[dm] χi(ρ)ŷi ◦ L′ for all points in [dm]. These are computed by S in

a streaming fashion using its oracle access to y.
The space complexity of S is dominated by the description of the polynomial g, which

requires O(dm log q) bits, and by the set C of s = O(m log q) elements of Fm × [v]. Since
each element requires m log q + log v = O(m log q) bits, the total space complexity is

O(dm log q + sm log q) = O ((d + m log q)m log q) = O(dm2 log2 q),

as claimed. (Apart from C, the simulator stores fx(ρ) ∈ F for every ρ ∈ C, which requires
s log q bits; and the lines L, L′ as well as k, which require O(log q) bits each.)

Now, all that remains is to prove indistinguishability by space-s′ streaming algorithms
between the output of S and a real transcript, for some s′ comparable to the space complexities
of the verifier and simulator. The following claim proves this with s′ = dm2 polylog(q) (which
is larger than both).

▷ Claim 37. Fix α ∈ F and f as in the definition of pep, an input (x, β) ∈ Fn × Fm, a
bit string r of arbitrary length and a O(m log q)-space verifier algorithm Ṽ . Let D be a
streaming algorithm with space dm2 polylog(q) such that

P
[
D
(

View
P,Ṽ

(x, r)
)

accepts
]

− P
[
D
(

S
(

Ṽ , x, r
))

accepts
]

= ε,

with View
P,Ṽ

(x, r) a view of Figure 7 and S
(

Ṽ , x, r
)

output by Figure 8. Then ε = o(1).

Assume, towards contradiction, that there exist α, f , an input (x, β) ∈ Fn ×Fm, a streaming
verifier Ṽ with O(m log q) space and a (streaming) distinguisher D with dm2 polylog(q) space
such that D distinguishes real transcripts of zk-pep(f, α) from simulations with bias ε = Ω(1)
when the input is (x, β).

Recall that we assume that Ṽ rejects only after receiving all messages from P ; therefore,
the algebraic commitment (y, γ, k) is always present in both real and simulated views. Our
goal is to show D implies a one-way protocol for index over the binary alphabet with a small
message and a large bias, using Lemma 25. We do so by constructing, from D, a one-way
communication protocol that distinguishes algebraic commitments to a fixed message α ∈ Fℓ

from algebraic commitments to a random α′ ∈ Fℓ, where ℓ ≤ dm.
As both the real and simulated transcripts are identically distributed up to (and including)

the verifier’s message in Step 2, the expected distinguishing advantage and probability of a
simulation failure (i.e., of an abortion in Step 3 due to (ρ, ℓ) /∈ C) are ε and o(1), respectively

22 Knowledge of fx(ρ) for all ρ ∈ F enables the simulator to sample from this distribution: F fixes |L ∩ F |
evaluations, and the simulator sets the dm − |L ∩ F | remaining ones uniformly.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:45

Input: Whitebox access to Ṽ ; oracle access to a length-qm+8 random bit string interpreted
as (z, y) ∈

(
Fm
)v × Fdm×p; streaming access to (x, β) ∈ Γn × Fm.

Output: View
(
z, x, β, y, γ, k, (h(i) : i ∈ [dm])

)
with k ∈ [p], γ ∈ Fdm and h : F → F.

Step 0: Temporal commitment
S: Send z.
Ṽ : Simulate until the end of this step and let b ∈ {0, 1}s be the resulting snapshot of Ṽ .

Use the whitebox oracle W to determine the set C ⊂ {(zi, i) : i ∈ [v]} of size s with
the largest W(b, (zi, i)).

Step 1: Input streaming
Ṽ : Stream x, computing and storing fx(ρ) for every ρ ∈ {zi : (zi, i) ∈ C} while simulating

the verifier.
S: Store β.

Step 2: Algebraic commitment
Ṽ : Simulate until Ṽ sends a line L, aborting if L(0) ̸= β.
S: Sample a random polynomial g : F → F of degree at most dm subject to g(0) = α

and g(β) = fx
(
L(β)

)
for all β such that (i, L(β)) ∈ C for some i ∈ [v].

Send y followed by γ =
(
g(i) − yik : i ∈ [dm]

)
and k ∼ [p].

Ṽ : Simulate until the end of the step.
Step 3: Temporal decommitment

Ṽ : Simulate until Ṽ sends ρ ∈ Fm and ℓ ∈ [v].
S: Check that zℓ = ρ ∈ L and ρ ∈ F× \ [dm], aborting if either check fails or (ρ, ℓ) /∈ C.

Step 4: Algebraic decommitment
Ṽ : Simulate until Ṽ sends a line L′ : F → Fm, aborting if L′(0) ̸= k.
S: Set ρ := L−1(ρ) and send

(∑dm
i=1 χi(ρ) · ŷi ◦ L′(j) : j ∈ [dm]

)
.

Figure 8 Simulator for Figure 7.

(over z and the bits of the verifier randomness r used until then). Therefore, there exists a
fixed prefix of the transcript that retains distinguishing advantage ε/2 and whose probability
of a simulation failure is o(1); indeed, at least an ε/2 fraction of prefixes retains advantage
ε/2 and at most an o(1) fraction yields simulation failures with Ω(1) probability, so an
ε/2 − o(1) fraction of prefixes work. We thus assume, in the one-way protocol we define
next, not only x and β to be fixed, but also the line L and z – and, consequently, the set
C ⊂ {(zi, i) : i ∈ [v]} (as well as the corresponding fx(zi)) that captures most of the weight
of correct tuples Ṽ may decommit to, as given by Theorem 33.

Viewing L as the set of pairs {(L(σ), σ) : σ ∈ F}, define ℓ := dm − |L ∩ C| and assume,23

without loss of generality, that L ∩ C = [dm] \ [ℓ]. Consider the following one-way commu-
nication protocol with shared randomness (for strings w of length p) that distinguishes a
commitment (w, k, η) to

(
fx(i) : i ∈ [ℓ]

)
from a commitment to a random message: Alice

uses S to simulate an interaction between P and Ṽ with input (x, β) and verifier randomness
r, executing D on the (partial and fixed) transcript thus obtained, until Ṽ sends a line
L : F → Fm in Step 2.

23 Note that when |L ∩ C| ≥ dm the simulator knows the entirety of fx
|L, in which case the distinguishing

bias is 0. Nonzero bias thus implies dm > |L ∩ C|.

CCC 2024

2:46 Streaming Zero-Knowledge Proofs

Figure 9 Reduction from index to distinguishability of views when ℓ = 3 and dm = 4. The
instance w is inserted into the first 2 rows of y, while y3 is filled in with joint randomness and y4 is
the solution of the linear system shown in the diagram.

Alice samples ρ′ ∼ F× \ [dm] and continues the simulation of D by feeding it y ∈ Fdm×p

defined as follows: yi := wi for i ∈ [ℓ], yi ∼ Fp for ℓ < i < dm and

ydm := χdm(ρ′)−1 ·

(
t −

dm−1∑
i=1

χi(ρ′)yi

)
,

where yℓ+1, . . . , ydm−1 and t are random strings (in Fp) shared with Bob. Note that ρ′ /∈
{0} ∪ [dm] implies χdm(ρ′) ̸= 0, so that ydm is well-defined. (See Figure 9 for a diagram of
the reduction.)

After simulating Ṽ , D and S in Step 2 with y, she sends Bob all three snapshots as well
as L and ρ′ in a dm2 polylog(q)-bit message.24 (The space complexities of Ṽ and S are both
dominated by the distinguisher’s.)

Bob, in turn, finishes the simulation of Step 2 with his (random) index k ∈ [p] and the
correction tuple γ defined as follows:25

γi =
{

ηi, if i ≤ ℓ

x̂(i) − yik, if ℓ < i < dm

and

γdm := χdm(ρ′)−1

(
fx

|L(ρ′) − χ0(ρ′)α − tk −
dm−1∑

i=1
χi(ρ′)γi

)
.

Bob proceeds to simulate Steps 3 and 4, using S to generate the remainder of the view. Note
that in the former step (ρ, ℓ) /∈ C is the only case in which S aborts when P would not,
which identifies a simulated transcript with certainty; but this is a small-probability event.
When S fails (i.e., (ρ, ℓ) /∈ C) or the field element ρ = L−1(ρ) is not equal to ρ′, Bob halts
the simulations and accepts or rejects uniformly; otherwise, he finishes the transcript by
sending the low-degree polynomial that comprises the last round. This is possible because,
while Bob does not know all ŷi, he does know the required linear combination:

dm∑
i=1

χi(ρ) · yi =
dm−1∑

i=1
χi(ρ) · yi + χdm(ρ) · χdm(ρ)−1

(
t −

dm−1∑
i=1

χi(ρ)yi

)
= t,

and since t is a (random) string known to both Alice and Bob, in particular he can compute
t̂L′ for any line L′ : Fm → F.

24We assume Bob receives the tuple η and reads C along with the corresponding evaluations from the
simulator’s snapshot; alternatively, Alice could send this information in a message that is asymptotically
no larger.

25 Recall that all yi for all ℓ < i < dm are contained in Alice and Bob’s shared randomness.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:47

Finally, Bob inspects the output of D and chooses his output accordingly, accepting if
and only if D accepts. Note that this one-way protocol succeeds

with probability 1/2 (and thus bias 0) either when S fails or when S succeeds and ρ′ ̸= ρ;
with bias ε/2 when S succeeds and ρ′ = ρ.
The latter follows from the fact that, if S succeeds and ρ′ = ρ, it produces a full transcript

where γ is a correction for the (unique) degree-dm polynomial g such that g(0) = α,
g(i) = ηi + yik for i ∈ [ℓ] and g(i) = fx(i) for i ∈ [dm] \ [ℓ] = L ∩ C.26 Therefore, if
η =

(
fx(i) − yik : i ∈ [ℓ]

)
, then γ is a correction to fx; while if η is random, then γ is a

random degree-dm polynomial that matches fx in (0 and) L ∩ C. Since D distinguishes
between the two cases with bias ε/2, then so does the one-way protocol. Therefore,

Pw∼Fℓ×p

k∼[p]

[
B
(
A(w),

(
fx(i) − wik : i ∈ [ℓ]

)
, k
)

accepts
]

− Pw∼Fℓ×p

k∼[p]
η∼Fℓ

[
B
(
A(w), η, k

)
accepts

]

= o(1) ·
(

1
2 − 1

2

)
+
(
1 − o(1)

)
·
(

1 − 1
q

)
·
(

1
2 − 1

2

)
+
(
1 − o(1)

)
· 1

q
· ε

2

≥ ε

3q
.

Finally, applying Lemma 25, we conclude that there exists a one-way binary index
protocol for strings of length p = m(dmq)3 with messages of length dm2q2ℓ2 log2 q

ε2 polylog(q) ≤
d3m4q2.01 and constant bias, a contradiction with

√
d3m4q2.01

p = o(1). ◀

▶ Remark 38. Inspecting the proof of Claim 37, we see that increasing the prover’s commitment
length allows us to achieve significantly stronger indistinguishability: with p = logω(1) n,
we have

√
s′q2ℓ2/p = o(1) for any s′ = polylog(n). This setting of p increases only the

communication complexity of the interactive phase (Steps 2–4) – which can still be bounded
by no(1) – and makes the protocol secure against polylog(n)-space distinguishers.

6.4 Applications: index, point-query, range-count and selection
From the general zk-pep(f, α) protocol, we immediately obtain a zero-knowledge streaming
interactive proof for the decision-index(α) problem (Definition 20) as a corollary:

▶ Corollary 39. Fix δ ∈ (0, 1]. For any α ∈ Fq where q = Θ
(

log1+ 2
δ n
)

, decision-index(α)
admits a zkSIP with space complexity O(log n) and communication complexities O(n1+δ) and
polylog(n) in the setup and interactive stages, respectively. The protocol is secure against
Õ
(

log2+ 2
δ n
)

-space distinguishers.

Proof. Set d = log
2
δ n and m = δ log n/2 log log n, so that dm = n and dm/q = o(1). Note,

moreover, that decision-index(α) is the polynomial evaluation problem where fx = x̂,
the low-degree extension of x (which can be computed in O(m log q) space) and β is the
identification of a coordinate j ∈ [n]. Thus, applying Figure 7 to the mapping x 7→ x̂ with
the aforementioned parameters, we obtain a protocol with verifier space complexity

26When L ∩ C ̸= [dm] \ [ℓ], the set still fixes |L ∩ C| values of g and leaves dm − |L ∩ C| to be chosen
randomly.

CCC 2024

2:48 Streaming Zero-Knowledge Proofs

O(m log q) = O

(
log n

log log n
· log log n

)
= O(log n)

and communication complexities

O(qmm log2 q) =
(

log1+ 2
δ n
) δ log n

2 log log n polylog(n)

= n1+ δ
2 polylog(n)

= O(n1+δ)

in the setup and O(d4m5q3 log q) = polylog(n) in the interactive stage; moreover, it is secure
against distinguishers with dm2 polylog(q) = Õ

(
log2+ 2

δ n
)

space. ◀

We now select a few applications of the zk-pep protocol to solve other streaming problems;
the remainder of this section follows reductions to pep due to [15].

In the point-query problem, the input is a stream of updates (u, i) ∈ Z × [ℓ] to an
ℓ-dimensional vector y initialised to zero, followed by an index j, and the task is to output
yj . A formal definition follows.27

▶ Definition 40. Let ℓ, M ∈ N and t ∈ [−M, M] ∩ Z. The language point-query(t) is
defined as(u1, k1, . . . , un, kn, j

)
:

∀i, ui ∈ [−M, M] ∩ Z and ki, j ∈ [ℓ],
∀k,
∣∣∣∑i∈[n],ki=k ui

∣∣∣ ≤ M and∑
i∈[n],ki=j ui = t

 .

▶ Corollary 41. Fix δ ∈ (0, 1]. Let ℓ, M ∈ N with ℓ ∈ [n], M = poly(n) and t ∈ [−M, M]∩Z.
There exists a zkSIP for point-query(t) with space complexity O(log2 n) and communication
complexities O(n1+δ) and polylog(n) in the setup and interactive stages, respectively.

Proof. We first note that, by an application of the Chinese Remainder Theorem (see, e.g.,
[38]), we may assume M = O(log n) at the cost of a logarithmic blowup to the space
complexity: the verifier runs Figure 7 in parallel with O(log n) fields Fq ⊃ Fp for distinct
primes p = O(log n), so that any integer in [−M, M] can be uniquely represented by
logarithmically many field elements.

We set the same parameters as in Corollary 39: degree d = log
2
δ n and m =

δ log n/2 log log n, but also ensure q = Θ
(

log1+ 2
δ n
)

is the power of a prime larger than
2M + 1 (so that elements of [−M, M] ∩ Z map to distinct field elements).

Viewing integers in [−M, M] as elements of F, we define y ∈ Fℓ by

yk :=
∑
i∈[n]
ki=k

ui,

27 We remark that point-query is formally a promise problem: the condition that coordinatewise sums
are bounded by M is assumed to hold for no-instances of the language too. However, a polynomial
bound is often trivially true (as in the applications that follow).

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:49

and the mapping x =
(
(ui, ki) : i ∈ [n]

)
7→ fx by fx := ŷ. Note that the verifier can compute

ŷ(ρ) =
∑
k∈[ℓ]

 n∑
i=1

ki=k

ui

χk(ρ)

by recording the running sum of uiχki
(ρ), a task for which O(m log q) = O(log n) space

suffices.
Applying Figure 7 with the mapping and parameters above, we obtain a zero-knowledge

SIP with space complexity O(log2 n) (due to the aforementioned logarithmic overhead),
communication complexity O(n1+δ) in the setup and polylog(n) in the interactive stage. ◀

With the protocol of Corollary 41, we obtain a zero-knowledge SIP for the range-count
problem, where the stream consists of a sequence x of elements in a set [ℓ] followed by a
subset R ⊆ [ℓ], and the task is to return the number of times an element of R appeared in
the stream. Formally,

▶ Definition 42. Let R ⊆ 2[ℓ]. The language range-count(t) is defined as

{(x, R) ∈ [ℓ]n × R : |{i ∈ [n] : xi ∈ R}| = t} .

▶ Corollary 43. Fix δ ∈ (0, 1]. For every R ⊆ 2[ℓ] of size poly(n), the language
range-count(t) admits a zkSIP with space complexity O(log2 n) and communication com-
plexities O(n1+δ) and polylog(n) in the setup and interactive stages, respectively.

Proof sketch. We run the protocol for point-query (Corollary 41) on the stream obtained
by concatenating (R′ ∈ R : xi ∈ R′) for every i ∈ [n] (which the verifier can simulate while
streaming x), followed by R (viewed as an element of [|R|]). More precisely, we redefine the
mapping x 7→ fx as what would be obtained by processing the derived stream, which avoids
the length overhead (to n|R| = poly(n), rather than n) incurred otherwise.

Since M = n is an upper bound for the number of points in any subset of [ℓ], we obtain a
protocol with the complexities as claimed. ◀

We conclude with an application of the range-count protocol to solve selection (and
median in particular). For x ∈ [ℓ]n and i ∈ [ℓ], we call φ(x) the frequency vector of x, defined
as φi(x) = |{j ∈ [n] : xj = i}| (see, also, Definition 49). A word in the language selection
consists of x along with a rank r ∈ [n] the integer k ∈ [ℓ] with this rank and offsets ϕ ∈ [n],
ϕ′ ∈ {0} ∪ [n]. (We remark that the additional parameters take into account what the verifier
learns in the search version of the SIP: not only the element k with rank r, but the values of
the cumulative frequencies up to k − 1 and up to k.)

▶ Definition 44. For ℓ ∈ [n], the language selection is defined as{
(x, k, r, ϕ, ϕ′) ∈ [ℓ]n × [ℓ] × [n] × [n] × {0} ∪ [n] :

k−1∑
i=1

φi(x) = r − ϕ and
k∑

i=1

φi(x) = r + ϕ′

}
.

▶ Corollary 45. Fix δ ∈ (0, 1]. There exists a zkSIP for selection with space complex-
ity O(log2 n) and communication complexities O(n1+δ) and polylog(n) in the setup and
interactive stages, respectively.

Proof sketch. We execute the protocol for range-count twice (by temporally committing
and streaming x only once; this can be done by saving two independent fingerprints for
fx, and only running zk-pep twice from Step 2 onwards). The class of ranges is R =
{[n] \ [i] : 0 ≤ i ≤ n}, of size O(n), and the verifier checks that the number of hits in the
ranges [n] \ [k − 1] and [n] \ [k] are r − ϕ and r + ϕ′, respectively. ◀

CCC 2024

2:50 Streaming Zero-Knowledge Proofs

Input: Explicit access to F = Fq, evaluation domain H ⊂ F, degree d, dimension m and
α ∈ F as well as f(ρ) with ρ ∼ Fm, where f : Fm → F is a degree-d polynomial.
Repeat, from i = 1 to m:

P : Send the polynomial fi(T) =
∑

βi+1,...,βm∈H f(ρ1, . . . , ρi−1, T, βi+1, . . . , βm).
V : Send ρi.

V : Check that
∑

β1∈H f1(β1) = α, f(ρ) = fm(ρm) and the intermediate polyomials satisfy∑
βi∈H fi(βi) = fi−1(ρi−1) for all 2 ≤ i < m, accepting if so and rejecting otherwise.

Figure 10 Protocol sumcheck(f, α).

7 A zero-knowledge sumcheck SIP

In the previous section we showed how Figure 3, the polynomial evaluation protocol of [24],
can be made zero-knowledge with the careful addition of algebraic and temporal commitment
protocols. Although pep is a foundational problem for streaming algorithms – generalising
index, for example – it is not immediately clear whether the same techniques enable us to
construct a zero-knowledge version of the second widely used tool in SIPs: the sumcheck
protocol. In this section, we prove that they do: Figure 11 leys out zk-sumcheck, a zkSIP for
the sumcheck problem (Definition 46) with the same components, namely, the algebraic
and temporal commitments that enabled zk-pep.

Sumcheck protocols are extremely useful building blocks for the construction of interactive
proofs; indeed, some of the most celebrated results of the last two decades rely on them, most
notably the GKR [34] and subsequent delegation-of-computation protocols (e.g., [52, 50, 51]).
Roughly speaking, they allow a verifier to check that the sum, over a subcube, of the
evaluations of a polynomial yields a prescribed field element; they save exponentially in the
communication (and time) complexity as compared to sending the entire description of the
polynomial. In particular, they enable the (exact) computation of frequency moments of
a stream via an interactive protocol in sublinear space [13], which is impossible without
interaction [2].

More precisely, let f : Fm → F be a polynomial of (individual) degree d and H ⊂ F be
an evaluation domain. One obvious way to check that

∑
β∈Hm f(β) is equal to some α ∈ F

is via the description of f (say, as a list of sufficiently many evaluations), from which the
sum can be computed directly. This requires not only the entire description of f , which has
size (d + 1)m; but also entails evaluating f over |H|m many points, implying an even larger
runtime.

The standard sumcheck protocol (Figure 10) enables a verifier V to offload this costly
computation to a powerful prover P and check the claim by communicating O(dm) field
elements in O(|H|md) time steps, with a single random evaluation of f .28

It is well known that the protocol above (always) accepts if
∑

β∈Hm f(β) = α, and rejects
with probability at least 1 − dm/q otherwise (see, e.g., [3]). As sums of polynomials can be
performed in a streaming fashion, the verifier only needs O(m log q) bits of space.

28 Figure 10 is laid out in a somewhat non-standard (but equivalent) form, with checks deferred to the
end, that more closely resembles the streaming version we construct.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:51

7.1 The protocol
We now show that the techniques of Section 5 enable us to construct a streaming zero-
knowledge variant of sumcheck(f, α), which solves the problem defined next.

▶ Definition 46. Let α ∈ F, H ⊆ F and f = {fx : x ∈ Γn} be a mapping such that fx : Fm →
F is a degree-d polynomial. sumcheck(f, α) is the language

{
x ∈ Γn :

∑
β∈Hm fx(β) = α

}
.

The techniques need to be adapted, however, with one key distinction between zk-sumcheck
and zk-pep: the prover now must make many (algebraic) commitments, each of which is
used in a pair of decommitments; moreover, the commitments cannot be sent in parallel
anymore, owing to dependencies between messages in contiguous rounds. Intuitively, neither
of these should pose too great a challenge: computing fingerprints of a set of messages
whose commitment is sent sequentially should be no easier than when they are sent in
parallel (indeed, for one-way communication protocols they are exactly equivalent); and if
one algebraic decommitment does not leak a significant amount of information, two should
not do so either.

The protocol follows. We note that (differently from Section 6) χ(ρ) denotes the vector
of Lagrange polynomials over F for degree-d univariate polynomials with interpolating set
[d + 1], i.e., χ(ρ) =

(
χi(ρ) : i ∈ [d + 1]) ∈ Fd+1.

7.2 Analysis of the protocol
We now show that zk-sumcheck is a valid (i.e., complete and sound) streaming interactive
proof, and compute its space and communication complexities.

▶ Theorem 47. Let f be such that an evaluation of the Fq-polynomial fx can be computed by
streaming x in O(m2 log q) space. For any α ∈ Fq, Figure 11 is an SIP for sumcheck(f, α)
with space complexity s = O(m2 log q), communication complexity O(qmm log2 q) in the setup
and O(qlog log qdm log q) = qlog log q poly(q) in the interactive phase.

Proof. As in Theorem 35, we first show completeness and soundness, then compute the
complexities.

Completeness. Recall that decommit(β, w, k) with correction γ accepts if (the fingerprint
matches the LDE of w and) γ + wk = β. Therefore, when P and V are both honest, the first
m − 1 decommitments of Step 4 accept, since

θ · γ(i) − χ(ρi−1) · γ(i−1) +
(

θ · y(i) − χ(ρi−1) · y(i−1)
)

k

=
d+1∑
j=1

(
θj

(
γ

(i)
j + y

(i)
jk

)
− χj(ρi−1)

(
γ

(i−1)
j + y

(i−1)
jk

))

=
d+1∑
j=1

θjfi(j) −
d+1∑
j=1

χj(ρi−1)fi−1(j)

=

∑
β∈H

fi(β)

− fi−1(ρi−1)

= 0.

CCC 2024

2:52 Streaming Zero-Knowledge Proofs

Input: Explicit access to F, element α ∈ F, degree d, dimension m, evaluation domain
H ⊂ F and mapping x 7→ fx; streaming access to x ∈ Γn.

Parameters:
Field size q = |F| satisfying dm = o(q);
Commitment lengths v = qm(log m + log log q)/96 and p = qlog log q.

Step 0: Temporal commitment
P : Send a string z ∼

(
(F \ [d + 1])m

)v.
V : Sample ρ ∼ (F \ [d + 1])m and stream z. Check if zi = ρ for each i, storing ℓ := i if

so.
Reject if ρ ̸= zi for all i ∈ [v].

Step 1: Input streaming
V : Stream x and compute fx(ρ) ∈ F.

Step 2: Algebraic commitments
P : Compute f1(T) =

∑
β2,...,βm∈H fx(T, β2 . . . , βm) and sample k ∼ [p].

V : Sample σ(1), . . . , σ(m+1) ∼ Fm. Compute χ(ρ1) . . . , χ(ρm) and the linear coefficients
θ such that

∑
β∈H g(β) =

∑
i θig(i) when g is a degree-d univariate polynomial.

Repeat, from i = 1 to m:
P : Send y(i) ∼ F(d+1)×p and γ(i) =

(
fi(j) − y

(i)
jk : j ∈ [d + 1]

)
.

V : Compute the fingerprints ŷ(i) (σ(i), χ(ρi)
)

and ŷ(i) (σ(i+1), θ
)
, as well as the dot

products χ(ρi) · γ(i) and θ · γ(i).
Send ρi.

P : If i < m, compute fi+1(T) =
∑

βi+2,...,βm∈H fx(ρ1, . . . , ρi, T, βi+2, . . . , βm).
P : Send k.

Step 3: Temporal decommitment
V : Send ℓ.
P : Check that zℓ = ρ ∈

(
F \ [d + 1]

)m, aborting otherwise.
Step 4: Algebraic decommitments

V : For all 1 < i ≤ m, run

decommit
(

0, θ · y(i) − χ(ρi−1) · y(i−1), k
)

, with

fingerprint ŷ(i) (σ(i), θ
)
−ŷ(i−1) (σ(i), χ(ρi−1)

)
and correction θ ·γ(i)−χ(ρi−1)·γ(i−1).

Run decommit
(
α, θ · y(1), k

)
with fingerprint ŷ(1) (σ(1), θ

)
and correction θ · γ(1).

Run decommit
(
fx(ρ), χ(ρm) · y(m), k

)
with fingerprint ŷ(m) (σ(m+1), χ(ρm)

)
and cor-

rection χ(ρm) · γ(m).
Accept if all decommitments accept, and reject otherwise.

Figure 11 Protocol zk-sumcheck(f, α).

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:53

Likewise, the last two decommitments accept because

θ · γ(1) +
(

θ · y(1)
)

k
=

d+1∑
j=1

θj(γ(1)
j + y

(1)
jk)

=
d+1∑
j=1

θjf1(j)

=
∑
β∈H

f1(β)

=
∑

β∈Hm

f(β)

= α

and

χ(ρm) · γ(m) +
(

χ(ρm) · y(m)
)

k
=

d+1∑
j=1

χj(ρm)(γ(m)
j + y

(m)
jk)

=
d+1∑
j=1

χj(ρm)fm(j)

= fm(ρm)
= fx(ρ),

respectively. The verifier thus accepts unless ρ ̸= {zi : i ∈ [v]} in Step 0, an event with
probability(

1 − 1
q − d − 1

)v

≤ e−v/(q−d−1)m

≤ e−v/qm

= o(1).

Soundness. We divide the behaviour of a malicious prover into three cases. The first
(and simplest) is when P̃ commits to fi for all i and decommits with polynomials whose
evaluations at 0 yield the same values as the honest prover (i.e., in decommit(β, w, k) with
γ as the correction, P̃ replies with a polynomial g such that g(0) = wk + γ). Then, since∑

β∈Hm f(β) ̸= α, the verifier rejects in decommit
(
α, θ · y(1), k

)
with probability 1.

The second case is when P̃ commits to a sequence of polynomials g1, . . . , gm such that
gi ̸= fi for some i, and decommits honestly. Then V accepts if and only if the set {gi} leads
the verifier in the standard sumcheck protocol to accept; by the soundness of that protocol,
V accepts with probability at most dm/(q − d − 1) = o(1).

The only remaining case is when P̃ commits to a sequence of polynomials {gi} (which
may or may not coincide with {fi}) and, in at least one decommitment with respect to
a string w where P̃ receives the line L, the prover replies with a degree-dm polynomial g

such that g(0) ̸= wk = ŵ|L(0). Then, since V has a fingerprint ŵ(σ) with σ ∼ Fm and a
field element σ ∼ F such that L(σ) = σ, we have g(σ) ̸= ŵ(σ) = ŵ|L(σ) with probability
dm/q = o(1) by Lemma 18 (Schwartz-Zippel), and soundness follows.

Space and communication complexities. The communication of the setup (Step 0, the
temporal commitment) is qm(log m + log log q)m log q = O(qmm log2 q) bits. The communic-
ation of the interactive phase (Steps 2–4) is dominated by the m algebraic commitments to
elements of Fd+1 with length p = qlog log q each, for a total of O(qlog log qdm log q) ≤ qlog log q+2

bits.

CCC 2024

2:54 Streaming Zero-Knowledge Proofs

The verifier’s space complexity is dominated by computing fx(ρ) and storing O(m)
elements of Fm (i.e., ρ and σ(i) for i ∈ [m + 1]), so that it is bounded by O(m2 log q). ◀

7.3 Zero-knowledge
Having shown that zk-sumcheck is a valid streaming interactive proof, we now show it is also
zero-knowledge.

▶ Theorem 48. Figure 11 is zero-knowledge against poly(q)-space streaming distinguishers.
The simulator has space complexity poly(q).

Proof. We shall prove indistinguishability as we have done earlier: with the simulator S

shown in Figure 12, we assume towards contradiction that there exists α ∈ F, an input x ∈ Fn,
internal randomness r, a space-O(m2 log q) verifier Ṽ and a poly(q)-space distinguisher D

that accepts View
P,Ṽ

(x, r) with probability ε = Ω(1) above that with which D accepts
S
(
Ṽ , x, r

)
. Then, via Lemma 25, we construct a one-way protocol for index with impossibly

large success probability.
The space complexity of S is dominated by its storing of O(m2 log q) = poly(q) elements

of Fm × [v] and by the computation of the partial sums (gi : i ∈ [m]). Note that the naive
strategy of sampling g and computing the corresponding partial sums requires Ω(dm) space;
however, [5] constructs an algorithm that can sample from the same distribution in poly(q)
time, and thus space.29 Note, moreover, that the alphabet over which z is taken has size

(q − d − 1)m = qm

(
1 − d + 1

q

)m

≥ qm

(
1 − 1

m

)m

≥ qm

3
≥ 32v

log log v
,

so that Theorem 33 applies. (The conditions (q − d − 1)m = Θ
(

v
log log v

)
and log q ≤ s =

polylog(q) are also clearly satisfied.)
We fix a string z (and thus the set C of the verifier’s likely decommitments) along with bits

of the verifier’s random string r that ensure distinguishing bias at least ε/2 and o(1) probability
of simulation failure (recall that failure corresponds to the event (ρ, ℓ) /∈ C). Consider the
following (linear) mapping between F-vector spaces: from polynomials g : Fm → F of degree
at most d that satisfy the s + 1 linear constraints of the fingerprints and subcube sum (i.e.,
g(ρ) = zi for all (zi, i) ∈ C and

∑
β∈Hm g(β) = α) to the sequence of univariate (partial sum)

polynomials
∑

βi+1,...,βm∈H g(ρ1, . . . , ρi−1, T, βi+1, . . . , βm) for all i ∈ [m] and evaluation
points ρ in C.

Let ℓ ≤ (d + 1)m be the dimension of the image of this mapping, and let ξ = ξ(ρ) ∈
F(d+1)m×ℓ be the linear coefficients that map vectors in Fℓ to partial sums (given by d + 1
evaluations) with respect to ρ. We now proceed to Alice’s strategy, who receives w ∈ Fℓ×p

29 More precisely, the algorithm of [5] allows us to sample from the distributions gi(β) for any β and i
under the uniform distribution of g satisfying a set of constraints. To sample (g1, . . . , gm), we begin
with the set of constraints induced by C and, after sampling gi(j), include the corresponding constraint
before the next sample.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:55

Input: Whitebox access to Ṽ ; oracle access to random bit string of length qm+log log q poly(q)
interpreted as the concatenation of z ∈ (Fm)v and y(i) ∈ F(d+1)×p for all i ∈ [m].

Output: View
(
z, x,

(
y(i), γ(i) : i ∈ [m]

)
, k,
(
hi : i ∈ [m + 1]

))
with z ∈

(
(F \ [d + 1])d

)v,
y(i) ∈ F(d+1)×p, γ(i) ∈ Fd+1, k ∈ [p] and hi : F → F of degree dm.

Step 0: Temporal commitment
S: Send z ∈

(
(F \ [d + 1])m

)v.
Ṽ : Simulate until the end of this step and let b ∈ {0, 1}s be the resulting snapshot of Ṽ .

Use the whitebox oracle W to determine the set C ⊂ {(zi, i) : i ∈ [v]} of size s with
the largest W(b, (zi, i)).

Step 1: Input streaming
Ṽ : Stream x, simulating the verifier while computing and storing fx(zi) for all (zi, i) ∈ C.

Step 2: Algebraic commitments
S: Take g1 : F → F of degree (at most) d under the distribution determined by sampling

g : Fm → F subject to the constraints
∑

β∈Hm g(β) = α and g(zi) = fx(zi) for all
(zi, i) ∈ C, then outputting g1(T) =

∑
β2,...,βm∈H g(T, β2 . . . , βm).

Sample k ∼ [p].
Ṽ : Simulate until the end of the step.
Repeat, from i = 1 to m:

S: Send y(i) and γ(i) =
(

gi(j) − y
(i)
jk : j ∈ [d + 1]

)
.

Ṽ : Simulate until ρi is sent (or until the end of the step when i = m).
S: If i < m, sample gi+1 under the distribution given by taking g randomly and

outputting gi+1(T) =
∑

βi+2,...,βm∈H g(ρ1, . . . , ρi, T, βi+2, . . . , βm).
S: Compute θ such that

∑
β∈H h(β) =

∑
i θih(i) when h is a degree-d univariate

polynomial, and send k.
Step 3: Temporal decommitment

Ṽ : Simulate until Ṽ sends ℓ ∈ [v].
S: Abort if zℓ ̸= ρ, ρ /∈

(
F \ [d + 1]

)m or (ρ, ℓ) /∈ C.
Step 4: Algebraic decommitments

For all 1 < i ≤ m,
Ṽ : Simulate until Ṽ sends a line Li : F → Fm.
S: Abort if Li(0) ̸= k, and otherwise send((

θ · ŷ(i) − χ(ρi) · ŷ(i−1)
)

◦ Li(j) : j ∈ [dm + 1]
)

.

Ṽ : Simulate until Ṽ sends a line L1 : F → Fm.
S: Abort if L1(0) ̸= k, and otherwise send((

θ · ŷ(1)
)

◦ L1(j) : j ∈ [dm + 1]
)

.

Ṽ : Simulate until Ṽ sends a line Lm+1 : F → Fm.
S: Abort if Lm+1(0) ̸= k, and otherwise send((

χ(ρm) · ŷ(m)
)

◦ Lm+1(j) : j ∈ [dm + 1]
)

.

Figure 12 Simulator for Figure 11.

CCC 2024

2:56 Streaming Zero-Knowledge Proofs

as input and uses a random y′(i) shared with Bob for each commitment string y(i). She will
also use t(i) for each pair y(i−1), y(i); additionally, t(1) and t(m+1) will be used for y(1) and
y(m), respectively. The t(i) will ensure Bob knows the linear combination of every algebraic
decommitment.

More precisely, Alice runs S (with the fixed string z and partially fixed r) until the end
of Step 0, determines the set C, samples ρ′ ∼ F = {zi : (zi, i) ∈ C} and sets ξ = ξ(ρ′). For
every (i, j) ∈ [m − 1] × [d] and (i, j) ∈ {m} × [d − 1], she sets y

(i)
j = y

′(i)
j + (ξ · w)(i−1)d+j .

She also sets the remaining rows (i.e., y
(i)
d+1 for all i as well as y

(m)
d) to satisfy

θ · y(1) = t(1),

θ · y(i) − χ(ρ′
i−1) · y(i−1) = t(i) for 1 < i ≤ m and

χ(ρ′
m) · y(m) = t(m+1).

Note that these are m + 1 linear constraints on m + 1 row vectors of dimension p, and
since θd+1 and χd(ρ′

m) are nonzero, there is at least one solution.30 (If some constraint is not
independent from the others, Alice replaces it with a “canonical” constraint to ensure a unique
solution, e.g., setting the linear coefficients for y

(i)
d+1 with the smallest bit representation that

makes the constraint independent.) She then simulates Step 1 and the part of Step 2 until
Ṽ (and D) finish streaming the y(i), sending the resulting snapshots of S, Ṽ and D to Bob
along with ρ′ in a poly(q)-bit message.

Bob reads his input (η, k) and sets the correction tuples γ(i) ∈ Fd+1 so as to satisfy
constraints with the same linear coefficients as y(i): he sets γ

(i)
j = (ξ · η)(i−1)d+j − y

′(i)
jk for

(i, j) ∈ [m − 1] × [d] and (i, j) ∈ {m} × [d − 1]; then sets the coordinates i = d + 1 and j ∈ [m]
as well as (i, j) = (d, m) to satisfy

θ · γ(1) = α − t
(1)
k ,

θ · γ(i) − χ(ρ′
i−1) · γ(i−1) = −t

(i)
k for 1 < i ≤ m and

χ(ρ′
m) · γ(m) = fx(ρ′) − t

(m+1)
k .

Bob then finishes the simulation of Step 2 with the coordinate k ∈ [p].
In Step 3, if ρ′ ̸= ρ or the simulation fails (i.e., zℓ = ρ but (ρ, ℓ) /∈ C), Bob accepts or

rejects uniformly at random. Otherwise, he simulates Step 4 until the protocol terminates
(which his access to the shared random strings t(i) enables him to). At the end of the
simulation, Bob accepts if and only if D accepts.

Note that, when η = τ − (wik : i ∈ [ℓ]) for a vector τ that maps to the polynomials
(gi : i ∈ [m]) via ξ = ξ(ρ), then γ

(i)
j satisfies

γ
(i)
j = (ξ · η)(i−1)d+j − y

′(i)
j

= gi(j) − (ξ · w)(i−1)d+j,k − y
′(i)
jk

= gi(j) − y
(i)
jk

for all i, j in [m − 1] × [d] and {m} × [d − 1] (equivalently, for all i, j such that y
(i)
j includes a

linear combination of the rows of w). Then the linear constraints satisfied by the other m + 1
pairs ensures the equality extends to all (i, j): for i ∈ [m], j = d + 1 and (i, j) = (m, d), we
have

30 The condition χd(ρ′
m) ̸= 0 follows from choosing ρ′

m /∈ [d + 1], and we assume the last entry of θ is
nonzero without loss of generality. Note that if θ is the zero vector the problem trivialises: in this case
the verifier does not need assistance from a prover (or even to stream x), accepting if and only if α = 0.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:57

θ · γ(1) = α − t
(1)
k

=
d+1∑
j=1

θjg(j) − t
(1)
k

=
d+1∑
j=1

θj

(
g(j) − y

(1)
jk

)
,

χ(ρm) · γ(m) = fx(ρ) − t
(m+1)
k

= gm(ρm) − t
(m+1)
k

=
d+1∑
j=1

χj(ρm)
(

gm(j) − y
(m)
jk

)
,

and, for 1 < i ≤ m,

θ · γ(i) − χ(ρi−1) · γ(i−1) = −t
(i)
k

=
d+1∑
j=1

(
χj(ρi−1)y(i−1)

jk − θjy
(i)
jk

)

=
d+1∑
j=1

θj

(
gi(j) − y

(i)
jk

)
+

d+1∑
j=1

χj(ρi−1)
(

gi−1(j) − y
(i−1)
jk

)
.

That is, since the γ(i) satisfy the same linear constraints as the vectors
(
gi(j) − y

(i)
jk : j ∈

[d + 1]
)
, it follows that they are equal. Therefore the resulting view is distributed exactly as

View
P,Ṽ

(x, r) when τ maps to the partial sums of fx (and thus ξ(ρ) · τ maps to the partial
sums with respect to ρ); and if η ∼ Fℓ, it is distributed as S(Ṽ , x, r) (unless the simulation
fails or ρ ̸= ρ′).

This one-way protocol achieves bias 0 when the simulation fails (an o(1)-probability event)
or the verifier’s temporal decommitment ρ is in C (i.e., the simulation succeeds) but ρ ̸= ρ′,
an event with conditional probability 1 − 1

|C| = 1 − 1
s . Otherwise, it achieves a bias of ε/2.

We thus have

Pw∼Fℓ×p

k∼[p]

[
B
(
A(w),

(
fx(i) − wik : i ∈ [ℓ]

)
, k
)

accepts
]

− Pw∼Fℓ×p

k∼[p]
η∼Fℓ

[B (A(w), η, k) accepts]

= o(1) · 0 +
(
1 − o(1)

)
·
(

1 − 1
s

)
· 0 +

(
1 − o(1)

)
· 1

s
· ε

2

≥ ε

3s
.

Applying Lemma 25 yields a one-way binary index protocol for strings of length p =
qlog log q with messages of length s2ℓ2 log2 q

ε2 poly(q) = poly(q) and constant bias. But this
contradicts Proposition 21’s upper bound of O

(√
poly(q)/p

)
= o(1). ◀

CCC 2024

2:58 Streaming Zero-Knowledge Proofs

7.4 Applications: frequency-moment and inner-product
We now proceed to applications of zk-sumcheck. The first is a zkSIP that (exactly) computes
frequency moments of order k > 1 (commonly denoted Fk) for a stream over an alphabet of
size ℓ, a problem known to require Ω(ℓ) space without a prover [2].

▶ Definition 49. Fix k ∈ N. For every ℓ ∈ [n] and t ∈ [nk], the
language frequency-momentk(t) is

{
x ∈ [ℓ]n :

∑
i∈[ℓ] φi(x)k = t

}
, where φi(x) :=

|{j ∈ [n] : xj = i}|.

▶ Corollary 50. Fix 1 < k ∈ N and δ ∈ (0, 1]. For every ℓ ∈ [n] and t ∈ [nk], there exists a
zero-knowledge SIP for frequency-momentk(t) with space complexity O(log2 n/ log log n).
The communication complexity is O(n1+δ) in the setup and no(1) in the interactive phase,
and the protocol is secure against polylog(n)-space distinguishers.

Proof. We set parameters analogously to Corollary 39, but take into account the factor-k
blowup in the degree of fx: set degree d = k log

2
δ n = O

(
log

2
δ n
)

, dimension m = δ log n
2 log log n ,

and take a field F of size |F| = q = Θ
(

log1+ 2
δ n
)

. The mapping x 7→ fx is defined as follows:
viewing [ℓ] ↪→ [d + 1]m ↪→ Fm and defining the frequency vector φ = φ(x) :=

(
φi(x) : i ∈ [ℓ]

)
,

set fx(α) :=
∑

i∈[d+1] φ̂(i, α)k for α ∈ Fm−1, where φ̂ is the degree-d/k extension of φ̂. Note
that fx is a (m − 1)-variate degree-d polynomial.

Using O(dm log q) = O(m2 log q) bits of space (recall that k is constant), the verifier can
compute all the low-degree extensions φ̂(i, ρ) ∈ F (by adding χxj (i, ρ) to each running sum
upon reading xj); then, after the stream, V raises each LDE to the kth power and adds the
results to obtain fx(ρ).

Applying Figure 11, the verifier checks whether∑
α∈[d+1]m−1

fx(α) =
∑

β∈[d+1]m

φ̂(β)k =
∑
i∈[ℓ]

φk
i

is equal to t. The space complexity is O(m2 log q) = O(log2 n/ log log n); the communication
complexity of the setup step is of order

qmm log2 q = n1+ δ
2 polylog(n) = O

(
n1+δ

)
,

and qlog log q poly(q) = no(1) in the interactive phase. Lastly, the protocol is secure against
distinguishers with space poly(q) = polylog(n). ◀

Our second and last last application is a small modification of the F2 protocol that allows
us to compute inner products.

▶ Definition 51. For every ℓ ∈ [n], t ∈ [n2ℓ] and field F, the language inner-product(t) is
defined as

{
(x, y) ∈ Fn × Fn : φ(x) · φ(y) =

∑
i∈[ℓ] φi(x)φi(y) = t

}
.

▶ Corollary 52. For every δ ∈ (0, 1], ℓ ∈ [n], t ∈ [n2ℓ] and field Fq with q = Θ
(

log1+ 2
δ n
)

,
there exists a zkSIP for inner-product(t) with space complexity O(log2 n/ log log n) and
communication complexities O(n1+δ) and no(1) in the setup and communication phases,
respectively.

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:59

Proof. We use the same parameter settings as Corollary 50 and define

fx,y(α) =
∑

i∈[d+1]

φ̂(x)(i, α)φ̂(y)(i, α),

a polynomial of degree 2d = 2 log
2
δ n whose evaluation the verifier computes by sav-

ing φ̂(x)(i, ρ) and φ̂(y)(i, ρ) for i ∈ [d + 1]. Figure 10 enables the verifier to check
that

∑
i∈[ℓ] φi(x)φi(y) equals t, as desired, with complexities of the same order as in

Corollary 50. ◀

We remark that while one might reduce inner product to F2, by taking the difference
between the second moment of φ(x) + φ(y) and the second moments of φ(x) and φ(y), the
resulting protocol leaks these values, and is therefore not zero-knowledge.

References
1 Amirali Abdullah, Samira Daruki, Chitradeep Dutta Roy, and Suresh Venkatasubramanian.

Streaming verification of graph properties. In Seok-Hee Hong, editor, 27th International
Symposium on Algorithms and Computation, ISAAC 2016, December 12-14, 2016, Sydney,
Australia, volume 64 of LIPIcs, pages 3:1–3:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2016. doi:10.4230/LIPIcs.ISAAC.2016.3. 6

2 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and system sciences, 58(1):137–147, 1999. 2, 5, 16,
50, 58

3 Sanjeev Arora and Boaz Barak. Computational Complexity – A Modern Approach. Cambridge
University Press, 2009. URL: http://www.cambridge.org/catalogue/catalogue.asp?isbn=
9780521424264. 50

4 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report 2018/046,
2018. 2

5 Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Riabzev,
and Nicholas Spooner. Zero knowledge protocols from succinct constraint detection. In
Yael Kalai and Leonid Reyzin, editors, Theory of Cryptography – 15th International
Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part
II, volume 10678 of Lecture Notes in Computer Science, pages 172–206. Springer, 2017.
doi:10.1007/978-3-319-70503-3_6. 54

6 Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474, 2014. 2

7 Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and
Nicholas P. Ward. Aurora: Transparent succinct arguments for R1CS. In Yuval Ishai and
Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, pages 103–128, Cham,
2019. Springer International Publishing. doi:10.1007/978-3-030-17653-2_4. 2

8 Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-knowledge proofs of
proximity. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pages 19:1–19:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ITCS.2018.19. 6

9 Manuel Blum. Coin flipping by telephone a protocol for solving impossible problems. ACM
SIGACT News, 15(1):23–27, 1983. 22

10 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford university press, 2013. 19

CCC 2024

https://doi.org/10.4230/LIPIcs.ISAAC.2016.3
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/978-3-319-70503-3_6
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.4230/LIPIcs.ITCS.2018.19

2:60 Streaming Zero-Knowledge Proofs

11 Amit Chakrabarti, Graham Cormode, Navin Goyal, and Justin Thaler. Annotations for sparse
data streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 687–706, 2014. 2, 6

12 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Annotations in data streams.
In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas,
and Wolfgang Thomas, editors, Automata, Languages and Programming, 36th International
Colloquium, ICALP 2009, Rhodes, Greece, July 5-12, 2009, Proceedings, Part I, volume
5555 of Lecture Notes in Computer Science, pages 222–234. Springer, 2009. doi:10.1007/
978-3-642-02927-1_20. 6

13 Amit Chakrabarti, Graham Cormode, Andrew McGregor, and Justin Thaler. Annotations in
data streams. ACM Trans. Algorithms, 11(1):7:1–7:30, 2014. doi:10.1145/2636924. 6, 50

14 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Ven-
katasubramanian. Verifiable stream computation and Arthur–Merlin communication. In 30th
Conference on Computational Complexity (CCC 2015), 2015. 2, 5, 6

15 Amit Chakrabarti, Graham Cormode, Andrew McGregor, Justin Thaler, and Suresh Ven-
katasubramanian. Verifiable Stream Computation and Arthur-Merlin Communication. SIAM
Journal on Computing, 48(4):1265–1299, January 2019. doi:10.1137/17M112289X. 5, 6, 8, 25,
48

16 Amit Chakrabarti and Prantar Ghosh. Streaming verification of graph computations via graph
structure. APPROX/RANDOM 2019, September 20-22, 2019, 2019. 2

17 Amit Chakrabarti, Prantar Ghosh, and Justin Thaler. Streaming verification for graph
problems: Optimal tradeoffs and nonlinear sketches. arXiv preprint, 2020. arXiv:2007.03039.
2, 6

18 Alessandro Chiesa, Michael A. Forbes, Tom Gur, and Nicholas Spooner. Spatial isolation
implies zero knowledge even in a quantum world. Journal of The ACM, 69(2):15:1–15:44, 2022.
doi:10.1145/3511100. 6

19 Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In 9th Innovations
in Theoretical Computer Science Conference (ITCS 2018), 2018. 6

20 Graham Cormode. Applications of sketching and pathways to impact. In Proceedings of
the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
PODS ’23, pages 5–10, New York, NY, USA, 2023. Association for Computing Machinery.
doi:10.1145/3584372.3589937. 1

21 Graham Cormode and Chris Hickey. Cheap checking for cloud computing: Statistical analysis
via annotated data streams. In AISTATS, 2018. 2, 6

22 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pages 90–112, 2012. 2, 3, 6

23 Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Streaming graph computations
with a helpful advisor. Algorithmica. An International Journal in Computer Science, 65(2):409–
442, 2013. 2, 6

24 Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proc. VLDB Endow., 5(1):25–36, 2011. doi:10.14778/2047485.2047488. 2, 6, 20, 24,
50

25 Marcel Dall’Agnol, Tom Gur, Subhayan Roy Moulik, and Justin Thaler. Quantum proofs of
proximity. Quantum, 6:834, October 2022. doi:10.22331/q-2022-10-13-834. 6

26 Samira Daruki, Justin Thaler, and Suresh Venkatasubramanian. Streaming verification in
data analysis. In International Symposium on Algorithms and Computation, pages 715–726,
2015. 2, 6

27 Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Authentication in the bounded storage model.
In Orr Dunkelman and Stefan Dziembowski, editors, Advances in Cryptology – EUROCRYPT
2022 – 41st Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Trondheim, Norway, May 30 – June 3, 2022, Proceedings, Part III, volume
13277 of Lecture Notes in Computer Science, pages 737–766. Springer, 2022. doi:10.1007/
978-3-031-07082-2_26. 6

https://doi.org/10.1007/978-3-642-02927-1_20
https://doi.org/10.1007/978-3-642-02927-1_20
https://doi.org/10.1145/2636924
https://doi.org/10.1137/17M112289X
https://arxiv.org/abs/2007.03039
https://doi.org/10.1145/3511100
https://doi.org/10.1145/3584372.3589937
https://doi.org/10.14778/2047485.2047488
https://doi.org/10.22331/q-2022-10-13-834
https://doi.org/10.1007/978-3-031-07082-2_26
https://doi.org/10.1007/978-3-031-07082-2_26

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:61

28 Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryptography
in the bounded storage model, revisited. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023 – 42nd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Lyon, France, April 23-27, 2023, Proceedings,
Part I, volume 14004 of Lecture Notes in Computer Science, pages 86–116. Springer, 2023.
doi:10.1007/978-3-031-30545-0_4. 6

29 Prantar Ghosh. New verification schemes for frequency-based functions on data streams.
In Nitin Saxena and Sunil Simon, editors, 40th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2020, December 14-
18, 2020, BITS Pilani, K K Birla Goa Campus, Goa, India (Virtual Conference), volume
182 of LIPIcs, pages 22:1–22:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.FSTTCS.2020.22. 6

30 Oded Goldreich. Zero-Knowledge twenty years after its invention. IACR Cryptol. ePrint Arch.,
2002:186, 2002. 2

31 Oded Goldreich. Computational complexity: A conceptual perspective. ACM Sigact News,
39(3):35–39, 2008. 2

32 Oded Goldreich and Tom Gur. Universal locally verifiable codes and 3-round interactive proofs
of proximity for CSP. Theor. Comput. Sci., 878–879:83–101, 2021. doi:10.1016/j.tcs.2021.
05.030. 6

33 Oded Goldreich, Tom Gur, and Ron D. Rothblum. Proofs of proximity for context-free
languages and read-once branching programs. Inf. Comput., 261:175–201, 2018. doi:10.1016/
j.ic.2018.02.003. 6

34 Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
Interactive proofs for muggles. In Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, pages 113–122, 2008. 3, 6, 21, 50

35 Jiaxin Guan and Mark Zhandry. Simple schemes in the bounded storage model. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019 – 38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture Notes
in Computer Science, pages 500–524. Springer, 2019. doi:10.1007/978-3-030-17659-4_17.
6

36 Tom Gur. On Locally Verifiable Proofs of Proximity. PhD thesis, The Weizmann Institute of
Science (Israel), 2017. 6

37 Tom Gur, Yang P. Liu, and Ron D. Rothblum. An exponential separation between MA and AM
proofs of proximity. Comput. Complex., 30(2):12, 2021. doi:10.1007/s00037-021-00212-3.
6

38 Tom Gur and Ran Raz. Arthur–Merlin streaming complexity. Information and Computation,
243:145–165, 2015. 6, 48

39 Tom Gur and Ron D. Rothblum. A hierarchy theorem for interactive proofs of proximity. In
Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science Conference,
ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs, pages 39:1–39:43.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ITCS.2017.39.
6

40 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Comput. Complex.,
27(1):99–207, 2018. doi:10.1007/s00037-016-0136-9. 6

41 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory, 2012. 18, 34
42 Johan Håstad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudorandom

generator from any one-way function. SIAM Journal on Computing, 28(4):1364–1396, 1999. 4
43 Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based

cryptography. In 30th Annual Symposium on Foundations of Computer Science, pages 230–235,
1989. 4

CCC 2024

https://doi.org/10.1007/978-3-031-30545-0_4
https://doi.org/10.4230/LIPIcs.FSTTCS.2020.22
https://doi.org/10.1016/j.tcs.2021.05.030
https://doi.org/10.1016/j.tcs.2021.05.030
https://doi.org/10.1016/j.ic.2018.02.003
https://doi.org/10.1016/j.ic.2018.02.003
https://doi.org/10.1007/978-3-030-17659-4_17
https://doi.org/10.1007/s00037-021-00212-3
https://doi.org/10.4230/LIPIcs.ITCS.2017.39
https://doi.org/10.1007/s00037-016-0136-9

2:62 Streaming Zero-Knowledge Proofs

44 Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-knowledge.
In Yehuda Lindell, editor, Theory of Cryptography – 11th Theory of Cryptography Conference,
TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings, volume 8349 of Lecture
Notes in Computer Science, pages 121–145. Springer, 2014. doi:10.1007/978-3-642-54242-8_
6. 6

45 Andrew McGregor. Graph stream algorithms: A survey. Sigmod Record, 43(1):9–20, May
2014. doi:10.1145/2627692.2627694. 1

46 Shanmugavelayutham Muthukrishnan. Data Streams: Algorithms and Applications. Now
Publishers Inc, 2005. 1

47 Moni Naor. Bit commitment using pseudorandomness. Journal of cryptology, 4(2):151–158,
1991. 4

48 Michael O Rabin. Fingerprinting by Random Polynomials. Center for Research in Computing
Techn., Aiken Computation Laboratory, Univ., 1981. 24

49 Anup Rao and Amir Yehudayoff. Communication Complexity: And Applications. Cambridge
University Press, 2020. 5, 10, 26, 62

50 Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Constant-round interactive proofs
for delegating computation. SIAM Journal on Computing, 50(3):STOC16–255, 2019. 50

51 Guy N. Rothblum and Ron D. Rothblum. Batch verification and proofs of proximity with
polylog overhead. In Rafael Pass and Krzysztof Pietrzak, editors, Theory of Cryptography
– 18th International Conference, TCC 2020, Durham, NC, USA, November 16-19, 2020,
Proceedings, Part II, volume 12551 of Lecture Notes in Computer Science, pages 108–138.
Springer, 2020. doi:10.1007/978-3-030-64378-2_5. 6, 50

52 Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
Delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. doi:10.1145/2488608.2488709. 6, 50

53 J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. Journal
of The Acm, 27(4):701–717, October 1980. doi:10.1145/322217.322225. 24

54 Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In Advances in Crypto-
logy–CRYPTO 2013, pages 71–89. Springer, 2013. 2

55 Justin Thaler. Semi-streaming algorithms for annotated graph streams. arXiv preprint, 2014.
arXiv:1407.3462. 2, 6

56 Salil Vadhan. The complexity of zero knowledge. In International Conference on Foundations
of Software Technology and Theoretical Computer Science, pages 52–70, 2007. 2

57 Salil Pravin Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD thesis, Massachusetts
Institute of Technology, 1999. 2

A Deferred proofs

A.1 Proof of Proposition 21
▶ Proposition 53 (Proposition 21, restated). Any one-way communication protocol for
search-index with input (x, j) ∼ Γp × [p] that sends an s-bit message succeeds with
probability at most 1

|Γ| + O
(√

s/p
)

.

Proof. Define, for ease of notation, γ = |Γ|. We follow the strategy used in [49] for the binary
case. First, note that by the minimax theorem we may assume Alice’s and Bob’s strategies
are deterministic; i.e., that Alice sends A(x) ∈ {0, 1}s and Bob outputs B(A(x), j) ∈ Γ for
some functions A and B.

https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1007/978-3-642-54242-8_6
https://doi.org/10.1145/2627692.2627694
https://doi.org/10.1007/978-3-030-64378-2_5
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1145/322217.322225
https://arxiv.org/abs/1407.3462

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:63

Let λ be the distribution of Alice’s message A = A(x) induced by the (uniform) distribution
of x, partitioning Γp into {Pa} where Pa = A−1(a) = {x ∈ Γp : A(x) = a}. Note that the
distribution of x conditioned on A = a is uniform over Pa, and that PA∼λ[A = a] = |Pa|/γp.
Then,

Px∼Γp

j∼[p]
[Bob outputs xj] =

∑
a∈{0,1}s

Px∼Γp [A(x) = a] · Px∼Γp

j∼[p]

[
b(a, j) = xj

∣∣ A(x) = a
]

=
∑

a∈{0,1}s

PA∼λ[A = a] · Px∼Pa

j∼[p]

[
b(a, j) = xj

]
= EA∼λ

j∼[p]

[
Px∼PA

[
b(A, j) = xj

]]
≤ EA∼λ

j∼[p]

[
max
α∈Γ

{Px∼PA
[xj = α]}

]
, (14)

so that we only need to bound the latter expression; note that the inequality shows Bob’s
optimal strategy is to output the most frequent symbol at the jth coordinate in PA.

Now, define µ as the uniform distribution over Γ and µi,a as the distribution of xi when
x ∼ Pa (i.e., the distribution of xi when x ∼ Γp conditioned on A(x) = a). Then, by Pinsker’s
inequality (Equation 10), for all a ∈ Im A and i ∈ [p] we have

∥µi,a − µ∥2 ≤
KL
(
µi,a || µ

)
2 ln 2

(where we use ∥·∥ as shorthand for the 2-norm ∥·∥2). Since the inequality holds for all a and
i, then it also holds for the convex combination corresponding to taking A ∼ λ and j ∼ [p]
independently (i.e., whose coefficients are P[A = a, j = i] = |Pa|

γpp). Therefore,

EA∼λ
j∼[p]

[
∥µj,A − µ∥2

]
= 1

p

p∑
i=1

EA∼λ

[
∥µi,A − µ∥2

]
≤ 1

2p ln 2

p∑
i=1

EA∼λ [KL(µi,A || µ)]

= 1
2p ln 2

p∑
i=1

I(A : xi),

where the last equality follows by the definition of mutual information (Equation 11). By
convexity of z 7→ z2, we have

EA∼λ
j∼[p]

[
∥µj,A − µ∥

]2 ≤ EA∼λ
j∼[p]

[
∥µj,A − µ∥2

]
≤ 1

2p ln 2

p∑
i=1

I(A : xi).

Recall that µi,a(α) = Px∼Pa [xi = α]. Comparing this value with the average mass 1/γ,
we have

CCC 2024

2:64 Streaming Zero-Knowledge Proofs

EA∼λ
j∼[p]

[
max
α∈Γ

{Px∼PA
[xj = α]}

]
− 1

γ
= EA∼λ

j∼[p]

[
max
α∈Γ

{
µj,A(α) − 1

γ

}]
≤ EA∼λ

j∼[p]

[
max
α∈Γ

{∣∣∣∣µj,A(α) − 1
γ

∣∣∣∣}]
≤ EA∼λ

j∼[p]

[
∥µj,A − µ∥

]
≤

√∑p
i=1 I(A : xi)

2p ln 2 ,

so that using Equation 14 and rearranging,

Px∼Γp

j∼[p]
[Bob outputs xj] ≤ 1

γ
+

√∑p
i=1 I(A : xi)

2p ln 2 .

The theorem thus reduces to showing
∑p

i=1 I(A : xi) ≤ s. By standard information-
theoretic equivalences and inequalities,

p∑
i=1

I(A : xi) =
p∑

i=1

(
H(xi) − H(xi|A)

)
(by Equation 11)

= H(x) −
p∑

i=1
H(xj |A) (by Equation 7)

≤ H(x) −
n∑

i=1
H(xi|x1, . . . , xi−1, A) (by Equation 6)

= H(x) − H(x|A) (by Equation 8)
= I(A : x) ≤ H(A) (by Equation 11)
≤ s (by Equation 5)

and the result follows. ◀

A.2 Proof of Theorem 24
▶ Theorem 54 (Theorem 24, restated). Figure 6 (algebraic-commit) and Figure 5 (decommit)
form a streaming commitment protocol with space complexity s = O

(
(ℓ + m) log q

)
if p =

q3ℓ and dm = polylog(q). The scheme is secure against poly(s)-space adversaries and
communicates O(ℓq3ℓ log q) bits.

Furthermore, if each linear coefficient can be computed in O(m log q) space, then s =
O(m log q).

Proof. We follow the same steps of Theorem 22, beginning with the binding property:
using y(i) to denote the ith column of y, when P is honest, i.e., sends the correction tuple
γ = α − y(k) in the commit stage and the polynomial ẑ|L where z = β · y in the decommit
stage, then V accepts as ẑ|L(ρ) = ẑ(ρ) = ŷ(ρ, β) and ẑ|L(0) + γ = zk + β · γ = α · β. (Recall
that the line L is such that L(0) = k and L(ρ) = ρ.)

Now, suppose P replies with a polynomial g such that g(0) ̸=
∑

i∈[ℓ] βiyik = zk = ẑ|L(0);
then the Schwartz-Zippel lemma implies g(ρ) ̸= ẑ|L(ρ) except with probability dm/q = o(1),
in which case V rejects. As the verifier only needs to store the evaluation point ρ ∈ Fm, the
coordinate k ∈ [p] and a constant number of additional field elements, its space complexity

G. Cormode, M. Dall’Agnol, T. Gur, and C. Hickey 2:65

is O(m log q) as long as each βi can be computed in this space (e.g., when βi = βi(ρ) is
the evaluation of an m-variate polynomial over F); if β must be stored in its entirety, the
complexity becomes O

(
(ℓ + m) log q

)
.

To show the hiding property, assume towards contradiction that there exists a streaming
algorithm D with space poly(s) = poly(ℓ, log q) that distinguishes commitments between
some α ∈ Fℓ and α′ ∈ F \ {α} with constant bias: that is,

Py∼Fℓ×p

k∼[p]

[
D(y, α − y(k), k) accepts

]
− Py∼Fp

k∼[p]

[
D(y, α′ − y(k), k) accepts

]
≥ ε

for some ε = Ω(1). Now consider the following one-way communication protocol for search-
index over the alphabet Fℓ with input (x, j) ∈ (Fℓ)p × [p]: Alice, viewing x as an element of
Fℓ×p, simulates D on the stream (x, γ), where γ ∼ Fℓ, and sends the polylog(p)-bit snapshot
of D to Bob, who finishes the simulation with j; if D accepts output α − γ, and otherwise
output α′ − γ. Note that Bob outputs correctly exactly when γ = α − y(k) and D accepts,
or γ = α′ − y(k) and D rejects. We will now show that the protocol solves search-index
with a bias that is too large, contradicting Proposition 21.

Px∼(Fℓ)p

j∼[p]
[Bob outputs xj]

= 1
qℓ

· Px∼(Fℓ)p

j∼[p]
[D(x, α − xj , j) accepts] + 1

qℓ
· Px∼(Fℓ)p

j∼[p]

[
D(x, α′ − xj , j) rejects

]
= 1

qℓ

(
1 + Px∼(Fℓ)p

j∼[p]
[D(x, α − xj , j) accepts] − Px∼(Fℓ)p

j∼[p]

[
D(x, α′ − xj , j) accepts

])
≥ 1 + ε

qℓ

= 1
qℓ

+ Ω
(

1
qℓ

)
.

Since q−ℓ = Ω
(√

qℓ/p
)

= ω
(√

poly(s)/p
)

, owing to s = poly(ℓ, log q), the result follows.
The communication complexity of the protocols is dominated by the prover sending ℓp field
elements, for a total of O(ℓq3ℓ log q) bits. ◀

A.3 Proof of Claim 30
▷ Claim 55 (Claim 30, restated). Let p, q ∈ [0, 1]v be probability vectors and t ∈ [v] a positive
integer. There exists a set C ⊆ [v] of size t such that

∑
i∈[v]\C piqi ≤ 1/t.

Proof. We reduce the claim to proving an upper bound on a certain optimisation problem.
Namely, let ∆ = {x ∈ [0, 1]v :

∑
i xi = 1} and ∆′ = ∆ ∩ {x ∈ [0, 1]v : x1 ≥ · · · ≥ xv} be the

v-dimensional simplex and the simplex with ordered coordinates, respectively. Define the
function f : ∆′ × ∆ → R+ by f(p, q) =

∑v
i=1 ipiqi.

Under the assumption that f(p, q) ≤ 1 for all p ∈ ∆′ and q ∈ ∆, we conclude as follows:
since p1 ≥ p2 ≥ · · · ≥ pv without loss of generality (permuting the vectors to satisfy the
condition does not affect the truth of the claim), for any t ∈ [v]

1 ≥ f(p, q) =
v∑

i=1

 v∑
j=i

pjqj

 ≥
t∑

i=1

 v∑
j=i

pjqj

implies the existence of i ∈ [t] such that

∑v
j=i pjqj ≤ 1/t. Taking C = [i − 1] completes the

proof.

CCC 2024

2:66 Streaming Zero-Knowledge Proofs

We now proceed to show f(p, q) ≤ 1. Since f is continuous with compact domain, there
exists a pair (p∗, q∗) that maximises f . Let ℓ ∈ [v] be the largest nonzero coordinate of
p∗. Then q∗

i > 0 for all i ≤ ℓ, as otherwise moving the mass p∗
i onto p∗

1 would contradict
maximality; and q∗

i = 0 for all i > ℓ, or moving q∗
i onto (say) q∗

1 likewise leads to a
contradiction.

Now, suppose (towards contradiction) ℓ > 1, take 1 < j ≤ ℓ and consider the pair (p∗, q′)
with q′

1 = 0, q′
i = q∗

1 + q∗
i and q′

j = q∗
j otherwise. Then f(p∗, q′) ≤ f(p∗, q∗) implies

ip∗
i (q∗

1 + q∗
i) ≤ p∗

1q∗
1 + ip∗

i q∗
i ,

and thus ip∗
i ≤ p∗

1 (since q∗
1 ̸= 0). But then

f(p∗, q∗) =
ℓ∑

i=1
ip∗

i q∗
i ≤ p∗

1

ℓ∑
i=1

q∗
i = p∗

1 < 1,

a contradiction, as the delta distributions at 1 achieve value 1.
We thus conclude that ℓ = 1, so the maximisers p∗, q∗ are the delta distributions at 1 and

f(p, q) ≤ f(p∗, q∗) = 1, as desired. ◁

Solving Unique Games over Globally
Hypercontractive Graphs
Mitali Bafna #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Dor Minzer #

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We study the complexity of affine Unique-Games (UG) over globally hypercontractive graphs, which
are graphs that are not small set expanders but admit a useful and succinct characterization of all
small sets that violate the small-set expansion property. This class of graphs includes the Johnson
and Grassmann graphs, which have played a pivotal role in recent PCP constructions for UG, and
their generalizations via high-dimensional expanders.

We show new rounding techniques for higher degree sum-of-squares (SoS) relaxations for worst-
case optimization. In particular, our algorithm shows how to round “low-entropy” pseudodistributions,
broadly extending the algorithmic framework of [5]. At a high level, [5] showed how to round
pseudodistributions for problems where there is a “unique” good solution. We extend their framework
by exhibiting a rounding for problems where there might be “few good solutions”.

Our result suggests that UG is easy on globally hypercontractive graphs, and therefore highlights
the importance of graphs that lack such a characterization in the context of PCP reductions for UG.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis;
Theory of computation → Complexity theory and logic

Keywords and phrases unique games, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.3

Related Version Full Version: https://arxiv.org/abs/2304.07284 [10]

Funding Dor Minzer : Supported by a Sloan Research Fellowship, NSF CCF award 2227876 and
NSF CAREER award 2239160.

1 Introduction

The main goal of this paper is to design efficient algorithms that solve instances of the Unique-
Games problem whose underlying graph is globally hypercontractive graphs, an extension of
the class of small set expanders. The motivation for our investigation is three-fold.

Candidate hard instances for Unique-Games

Recent progress towards the UGC [31, 21, 22, 32] showed that it is NP-hard to distinguish
1/2-satisfiable instances of UG from ε-satisfiable instances. These works crucially relied on
the use of globally hypercontractive graphs. Our algorithms allow us to examine the hard
instances arising from their reduction. We try to identify the source of hardness and thus
suggest a natural class of graphs that might be hard for UG (Section 1.2.1).

New rounding techniques for Higher Degree SoS

In doing so we build new rounding techniques for higher degree SoS. The study of algorithms
for UG has led to the development of general algorithmic techniques such as sophisticated
graph partitioning tools [1] and new rounding techniques for SoS [16, 13]. These techniques

© Mitali Bafna and Dor Minzer;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 3; pp. 3:1–3:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mitalib@mit.edu
https://orcid.org/0000-0002-3003-2017
mailto:dminzer@mit.edu
https://orcid.org/0000-0002-8093-1328
https://doi.org/10.4230/LIPIcs.CCC.2024.3
https://arxiv.org/abs/2304.07284
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Solving Unique Games over Globally Hypercontractive Graphs

have in turn led to breakthroughs in robust statistics [14, 37, 12] and other average case
problems [17]. The setting of SoS for worst-case optimization is much less understood though.
We give new techniques that might be useful for other problems in the worst case setting.
We elaborate on our rounding techniques in Section 1.2.2.

The emergence of Unique-Games instances in other contexts

Unique-Games instances on structured graphs naturally appear in other contexts in theoretical
computer science, and the tools developed by trying to design algorithms are often helpful. In
the context of the current paper, the type of Unique-Games instance we study turn out to be
crucial in the field of high-dimensional expanders. Indeed, in [9, 18] the authors investigate a
conjecture due to Dinur and Kaufman [20], which asks whether one can construct sparse,
low soundness, 2-query direct product testers using high dimensional expanders. The results
of [9, 18] assert that a sufficient condition for a high-dimensional expander to admit such
direct product testers is the existence of certain local algorithm to approximate affine instance
of Unique-Games defined on graphs associated with the complex; the authors refer to this
property as UG coboundary expansion. In a follow-up work in progress, the authors and
Lifshitz [8] have constructed complexes that are UG coboundary expanders, and some of the
ideas developed herein are crucial. See Section 1.2.3 for more details.

1.1 Unique-Games
The Unique Games Conjecture (UGC in short) is a central open problems in Complexity
Theory [27]. In short, the UGC says that distinguishing between almost satisfiable (value
≥ 1 − ε) and highly unsatisfiable (value ≤ ε) instances of a certain 2-variable constraint
satisfaction problem (CSP) called Unique Games is NP-hard. The primary reason for the
interest in UGC is that, if true, it implies a large number of hardness of approximation
results that are often times tight [33, 29, 4, 34, 40] (see [28, 43]). One of the most striking
consequences of UGC is that it implies that a class of semi-definite programs (SDP), namely
the basic SDP or degree 2 Sum-of-Squares, achieves the best possible approximation ratio
(among all efficient algorithms) for all CSPs [40].

▶ Definition 1. A instance of Unique-Games Ψ consists of a graph G = (V, E), a finite
alphabet Σ and a collection of constraints, Φ = {Φe}e∈E, one for each edge in G. For all
e ∈ E, the constraint Φe takes the form Φe = {(σ, ϕe(σ)) | σ ∈ Σ}, where ϕe : Σ → Σ is a
1-to-1 map.

The goal in the Unique-Games problem is to find an assignment A : V → Σ that satisfies
the maximum number of constraints possible, that is, satisfies that (A(u), A(v)) ∈ Φe for the
largest number of edges e = (u, v) ∈ E as possible. We define the value of the instance Ψ by:

val(Ψ) = max
A : V →Σ

#{e | A satisfies e}
|E|

.

With this in mind, the Unique-Games Conjecture is the following statement:

▶ Conjecture 2. For all ε, δ > 0 there is k ∈ N such that given a Unique-Games instance Ψ
with alphabet size at most k, it is NP-hard to distinguish between:

YES case: val(Ψ) ≥ 1 − ε.
NO case: val(Ψ) ≤ δ.

It turns out that the topology of the underlying graph G plays a crucial role in the
complexity of the UG instance defined over it. In particular, it turns out that UG over
expander graphs is easy:

M. Bafna and D. Minzer 3:3

▶ Definition 3. Given a regular graph G = (V, E) and a set of vertices S ⊆ V , the edge
expansion of S is defined by:

Φ(S) = Pr
u∈S,v∈Γ(u)

[v ̸∈ S] .

The results of [3, 38, 2] assert that UG instances with completeness close to 1 over expanders
are easy. A graph G is a called a (γ, ξ)-small set-expander (SSE) if for every S ⊆ V of size
at most ξ|V | it holds that Φ(S) ≥ γ. In [5], it is shown that UG is easy over “certifiable”
small-set expanders, that in fact captures all currently known small-set expanders. Thus to
find hard instances of UG, one must look beyond graphs that are expanders and small set
expanders.

1.1.1 NP-hardness Reduction for 2-2 Games and Global
Hypercontractivity

Indeed, recent progress towards UGC [31, 21, 22, 32] has utilized graphs which are not
small-set expanders. In these works it is proved that 2-to-1-Games are NP-hard (which is a
very similar problem to UG, except that each one of the maps ϕe defining the constraints is
a 2-to-1 map). This implies that for all ε > 0, given a UG instance Ψ over sufficiently large
alphabet, it is NP-hard to distinguish between the case that val(Ψ) ≥ 1/2 and the case that
val(Ψ) ≤ ε. To prove these results, these works use graphs that are not small set expanders
in two different ways:
1. Smooth Parallel Repetition: A key step in the reduction of [31, 21, 22, 32] is an application

of the Parallel Repetition Theorem [42] to get a hardness result for a sufficiently smooth
outer PCP construction. Roughly speaking, this step in the process may be associated with
the Johnson graph with a large intersection parameter. That is, with the graph J(n, ℓ, t)
in which the vertices are

([n]
ℓ

)
, and two vertices A and B are adjacent if |A ∩ B| = ℓ − t,

and we think of t as much smaller than ℓ (say, t =
√

ℓ).
2. Composition with the Grassmann encoding: The Grassmann encoding is an encoding

of linear functions based on the Grassmann graph Grass(n, ℓ) over F2. The Grassmann
graph over F2 is the graph whose vertices are all ℓ-dimensional subspaces of Fn

2 , denoted
by

[
n
ℓ

]
, and two vertices L and L′ are adjacent if dim(L ∩ L′) = ℓ − 1.

Both of the graphs above, namely the Johnson graph with large intersection sizes, as well as the
Grassmann graph, are not small set expanders. However very importantly, the class of small
sets in the Grassmann graph with bad expansion has a succinct and intuitive characterization,
and the proof of the 2-to-1 Games Theorem heavily relies on this characterization.

Though the term is not formally defined, we refer to graphs such as the Grassmann graph
above as globally hypercontractive graphs. By that, we mean that there is a collection of
“obviously-non-expanding local sets”, such that any small set that doesn’t expand well must
have a large intersection with one of the sets from the collection (see the full version of the
paper for a semi-formal definition). Aside from the Grassmann graph, this class of graphs
includes Johnson graphs with small intersection sizes [30], certain Cayley graphs over the
symmetric group [23], p-biased cubes for p = o(1), other product domains [26] as well as high
dimensional expanders [24, 7].

Thus a natural approach to isolating hard instances of UG is to study the complexity of
UG over graphs that are globally hypercontractive, in particular the Johnson and Grassmann
graphs. The study of this question was initiated in [5] for the class of Affine Unique-Games
(Definition 4) over Johnson graphs. Unfortunately their algorithm gave parameters that were
insufficient to shed light on the source of hardness in reduction above and therefore to derive
any of the consequences of our results (see full version).

CCC 2024

3:4 Solving Unique Games over Globally Hypercontractive Graphs

1.2 Our Results
Our results improve upon [5] in two main aspects: we are able to deal with instances with
arbitrarily small (but constant) completeness, and most importantly, their algorithm gets a
soundness guarantee that degrades with other parameters of the graph (which in all PCP
constructions grow with the alphabet size), whereas our doesn’t. To describe our results we
start with the definition of Affine Unique Games.

▶ Definition 4. An instance of Affine-UG is an instance of Unique-Games in which the
alphabet is the ring of integers modulo q, Zq, and all of the constraint maps ϕe are affine
shifts, that is, ϕe of the form ϕe(σ) = σ + be for some be ∈ Zq.

An equivalent but slightly different way to view the Affine-UG problem is as a system of linear
equations (X, E) over Zq. Each equation in E is of the form xi − xj = b where xi, xj ∈ X

are variables and b ∈ Zq is some constant. Despite looking very restrictive, it is known [29]
that the UGC is true if and only if it holds for the class of Affine UG and furthermore this
class captures many interesting optimization problems such as Max-Cut and graph coloring,
thus we shall focus our attention on Affine UG henceforth. 1

Our main result asserts that there is a polynomial time algorithm for solving Affine UG
over globally hypercontractive graphs. As the term globally hypercontractive graph is not
formally defined, below are some concrete instances of graphs on which this applies. In the
full version we give a semi-formal definition of globally hypercontractive graphs and also
show how our algorithm and analysis can be abstracted to solve UG on such graphs, as long
as one is provided with an SoS certificate of global hypercontractivity.

We first consider the Johnson graph with small intersection sizes, which we henceforth
refer to as the noisy-Johnson graph. This is the regime in which a characterization theorem for
non-expanding sets holds. Formally the “α-noisy” Johnson graph is J(n, ℓ, t) in the case that
t = αℓ, for α ∈ (0, 1) bounded away from 0 and thought of as a fixed constant independent
of ℓ. The first result for Johnson graphs addresses the case that the completeness of the
instance is close to 1, in which case our algorithm matches the guarantee of the algorithm
of [5] for certifiable small-set expanders, and in particular the α-noisy hypercube graph:

▶ Theorem 5. There is ε0 > 0 such that for all α ∈ (0, 1) the following holds for all
0 < ε ≤ ε0. There exists an algorithm whose running time is npoly(ℓ,|Σ|,1/ε) which, on input
Ψ which is an affine UG instance over J(n, ℓ, αℓ) promised to be at least (1 − ε)-satisfiable,
finds an assignment that satisfies at least 2−O

(√
ε

α

)
-fraction of the constraints in Ψ.

The second result addresses the case of UG instances with arbitrarily small (but bounded
away from 0) completeness, in which case our algorithm satisfies a constant fraction of the
constraints:

▶ Theorem 6. For all α ∈ (0, 1) and c > 0, there is δ > 0 such that the following holds.
There exists an algorithm whose running time is nD with D = ℓpoly(|Σ|ℓ1/c)2 which on input Ψ,
an affine UG instance over J(n, ℓ, αℓ) promised to be at least c-satisfiable, finds an assignment
that satisfies at least δ-fraction of the constraints in Ψ.

1 We remark that the reduction of [29] does not preserve the topology of the graph. We are therefore
not able to translate our results directly to the class of general UG, and believe this is an interesting
direction for further study.

2 We note that we have not optimized for D and the exp(ℓ)-dependence arises due to the degree of the SoS
proofs. We used a blackbox statement to convert some of the proofs to SoS proofs, and we conjecture
that one can in fact improve the SoS degree to O(ℓ) when done carefully.

M. Bafna and D. Minzer 3:5

We remark that the soundness guarantee in the theorems above does not depend on ℓ

(when α = Ω(1)), which in most PCP constructions grows with the alphabet size of the
instance. But note that this guarantee degrades when α = o(1) and becomes useless if α

depends on the alphabet size. In Section 1.2.1 below we discuss why this is interesting – in
fact o(1)-Noisy Johnson graphs are a natural candidate for hard instances of UG.

We can get similar results given any of the globally hypercontractive graphs mentioned
earlier. Below we give a corollary for the Grassmann graph. We show that there is a
polynomial time algorithm solving affine UG over the Grassmann graph, even on instances
with small completeness:

▶ Theorem 7. For all c > 0 there exists δ > 0 such that the following holds. There exists
an algorithm whose running time is nD with D = ℓpoly(|Σ|ℓ1/c) which on input Ψ, an affine
UG instance over Grass(n, ℓ) promised to be at least c-satisfiable, finds an assignment that
satisfies at least δ-fraction of the constraints in Ψ.

Note that since the spectral gap of the Grassmann graph is 1/2, UG algorithms over
expanders already imply Theorem 7 for c ≫ 1/2. Thus, the main contribution of Theorem 7
is the algorithm on Grassmann graphs that works for arbitrarily small completeness.

Below we state our result for random walks on high dimensional expanders (HDX), a
large class of graphs that generalize the Johnson graphs but do not necessarily possess its
strong symmetries. These include graphs stemming from cut-offs of [36]’s construction of
Ramanujan complexes, or [25]’s construction of coset complex expanders. These graphs
exhibit the nice high-dimensional expansion properties (e.g. global hypercontractivity) of
the Johnson graphs yet are substantially different in other aspects, such as being of bounded
degree.

▶ Theorem 8. For all α ∈ (0, 1) and c > 0, there exists δ > 0 such that the following holds.
Let X be any d-dimensional two-sided γ-local-spectral expander with γ ≪ oℓ(1) and d > ℓ.
There exists an algorithm whose running time is nD with D = ℓpoly(|Σ|ℓ1/c) which on input Ψ,
an affine UG instance over the canonical walk M on X(ℓ) of depth α, promised to be at least
c-satisfiable, finds an assignment that satisfies at least δ-fraction of the constraints in Ψ.

Since we have not defined any of the HDX terminology, let us note that this is indeed
a generalization of Theorem 6. The Johnson graph corresponds to the complete complex
X (which is the simplest instantiation of a two-sided local spectral expander), and the
α-noisy Johnson graph J(n, ℓ, αℓ) corresponds to a “canonical” random-walk on X(ℓ) that
goes down αℓ-levels and comes back up randomly to X(ℓ) while ensuring that it changes
exactly αℓ elements in a vertex. In fact, in the above theorem we can allow M to be any
complete random walk on X(ℓ) and our soundness guarantee will only depend on c and
certain parameters of M that are inherently independent of ℓ 3.

1.2.1 Candidate Hard Instances for Unique Games
Our results suggest that the hardness in the instances of UG obtained via the reduction of [31,
21, 22, 32] does not come from the Grassmann graph (which is globally hypercontractive),
but rather from the smooth parallel repetition step. Recall that this step uses a Johnson

3 Concretely it depends on the stripped threshold rank of M above a certain threshold as defined in [6].
For example, when M is the canonical random walk with depth α on X(ℓ), and the completeness is
c = 1 − ε, this quantity is r(M) = O(

√
ε/α) and our soundness guarantee is exp(−r), matching that of

Theorem 5.

CCC 2024

3:6 Solving Unique Games over Globally Hypercontractive Graphs

graph with a large intersection parameter (J(n, ℓ, αℓ) with α ≈ 0), that is not globally-
hypercontractive. Therefore combining the knowledge from the reduction and our algorithm
we get that the α-noisy-Johnson graphs should be hard for UG when α = o(1) and become
easy when α is bounded away from 0. This also explains why our soundness guarantee decays
with α. Indeed, we would be able to make a stronger assertion provided that our results held
for general UG (as opposed to only affine UG) or if the reduction above produced instances
of Affine UG. Though we believe an algorithm for general UG should exist along the lines of
our algorithm, we do not know how to prove so and leave this is an interesting direction to
investigate.

Albeit, ignoring the subtlety between general and affine UG, this means that the o(1)-
noisy Johnson graphs and shallow random walks on HDX provide a natural candidate for
constructing SoS lower bounds for UG.

1.2.2 New Rounding Scheme for Higher Degree SoS
Our algorithms are obtained via a novel rounding scheme and analysis for the standard higher
degree Sum-of-Squares SDP relaxation for Unique Games. Raghavendra’s [40] groundbreaking
result showing the optimality of the basic SDP for all CSPs under the UGC, led to efforts to
refute the UGC using higher degree SoS relaxations [35, 39]. The study of SoS algorithms
has since produced numerous algorithmic advances across many fronts: high-dimensional
robust statistics [14, 37, 11, 12], quantum computation [15] and algorithms for semi-random
models [17], to name a few. Most of these works use the sum-of-squares method for average-
case problems though and unfortunately there remains a dearth of techniques for analysing
higher degree SoS relaxations for worst-case optimization problems. The handful of techniques
known for worst-case rounding are the global correlation rounding technique from [16, 41]
and its generalization via reweightings in [15].

There is an intuitive reason for why this is the case: all aforementioned algorithms for
average-case problems rely on a strong “uniqueness” property for the solution space. That is,
given an average-case optimization problem, the key observation in the analysis is that the
solution to the problem is unique upto small perturbations. These algorithms then proceed
by converting a proof of uniqueness into an SoS algorithm for finding such a solution, via the
proofs-to-algorithms framework for designing Sum-of-Squares algorithms [13].

Such strong uniqueness properties are too much to expect for worst-case problems.
Recently [5] showed how to round UG instances on certifiable SSEs. The key property of
such instances was a certain “weak uniqueness” of the solution space: any two solutions to
the UG instance on an SSE are weakly correlated to each other, i.e. they “agree” on 1% of
the vertices. [5] then exploited this observation to give a novel analysis of a higher degree
SoS rounding.

For many worst-case problems though the solution space might not be so structured and
in fact could allow for many distinct solutions. It turns out that this is precisely the case for
UG on globally hypercontractive graphs. Our main technical contribution is to strengthen
and broadly extend the [5] framework. At a high-level we show that in our case, the solution
space is supported over “few good solutions”. That is, there is a small list of solutions such
that every good solution is 1% correlated with one of these. We give a new rounding for
higher degree SoS that exploits this “weak few good solutions” property. This turns out to
be significantly more challenging than the case where we have “weak uniqueness”. We expect
that with this strengthening, the framework of weak uniqueness to algorithms should be
broadly applicable for other worst-case optimization problems. In Section 2 we provide a
detailed overview of our techniques, starting out with the framework of [5].

M. Bafna and D. Minzer 3:7

1.2.3 The Emergence of Unique-Games Instances in Other Contexts
Affine instances of Unique-Games naturally appear in the context of high-dimensional
expanders. For instance, given a graph G = (V, E) and a labeling Π: E → F2, one may
think of (G, Π) as an instance of Unique-Games, wherein the goal is to find a labeling
A : V → F2 such that A(u) − A(v) = Π(u, v) for as many edges (u, v) ∈ E as possible. Note
that if (u, v, w) is a triangle in G and Π(u, v) + Π(v, w) + Π(w, u) ̸= 0, then no assignment
can simultanousely satisfy all of the edges (u, v), (v, w) and (w, u). We call such triangles
inconsistent triangles. The coboundary constant of G (with coefficients in F2) is defined as
the ratio

max
Π

1 − val(G, Π)
fraction of inconsistent triangles in G

.

The coboundary expansion of a graph (and its higher degree analogs for simplicial complexes)
are important notions of topological expansion. These notions are inherently different from
the more traditional spectral-type expansion notions studied for graphs (and simplicial
complexes), and therefore they provide us additional understanding of graphs/ complexes.
For instance, recently the works [9, 18] proved that spectral expansion of simplicial complexes
is insufficient if one wishes to construct low soundness direct product testers. Instead, one
needs spectral expansion as well as coboundary expansion with respect to some non-Abelian
groups. The connection between Unique-Games and expansion is useful in studying these
new notions of coboundary expansion, and in a recent work we use it to construct such
coboundary expanders [8, 19].

1.3 Open Problems
We end this introductory section by stating a few open directions that are of interest for
future research. Perhaps the most pertinent question that arises out of our work is whether
one can build better integrality gaps for UG:

▶ Problem 1. Can we get higher degree SoS lower bounds for UG using non-globally
hypercontractive graphs such as the Johnson graph in the o(1)-noise regime?

The second problem asks whether our results continue to hold for non-affine unique games:

▶ Problem 2. For globally hypercontractive graphs G such as the Johnson graph (with small
intersection size) and the Grassmann graph, is there a polynomial time algorithm that given
a UG instance Ψ over G with val(Ψ) ≥ 1 − ε (where ε > 0 is thought of as small), finds an
assignment satisfying at least δ fraction of the constraints in Ψ? How about the case that
val(Ψ) ≥ c, where c is bounded away from 1?

The third problem asks whether there are other combinatorial optimization problems for
which our techniques may yield improved algorithms. Informally, we show how to round SoS
relaxations for problems that admit a few good solutions. We believe that this technique
should be useful outside the context of UG – given any problem for which one can prove (in
SoS) that there are only a “few good solutions”, one can apply similar rounding techniques
to obtain one such solution.

▶ Problem 3. Can one use the low-entropy rounding framework to get improved run-time
for other combinatorial optimization problems, such as coloring 3-colorable graphs using as
few colors as possible or improved subexponential time algorithms for Max-Cut?

CCC 2024

3:8 Solving Unique Games over Globally Hypercontractive Graphs

2 Overview of Our Techniques

We now elaborate on our techniques starting with the framework of [5]. They proposed
a new technique for rounding relaxations of UG that have “low-entropy” measured via a
function called the shift-partition size. Given two fixed assignments for the instance, their
shift-partition size is roughly defined as the fraction of variables on which these assignments
agree (upto symmetry). Taking the equivalent view of the SDP solution as a distribution D
over non-integral solutions, called a pseudodistribution, the expected shift-partition size of
two random assignments drawn from D is then roughly equal to an average of local collision
probabilities under D and thus a proxy for the entropy of D. Their analysis proceeds by
showing: (1) when the expected shift-partition size (equivalently collision probability) is large,
one can round to a high-valued solution, and moreover (2) when the graph is a certifiable
small-set expander, the pseudodistribution always has large shift-partition size! They were
not able to extend this idea to get high-valued solutions for the broader class of globally
hypercontractive graphs though, since in this case the pseudodistribution might be supported
over multiple assignments and therefore does not have high collision probability. It turns
out though that even in this harder case, the pseudodistribution D × D has large expected
shift-partition size after conditioning on an event E. But they could not exploit this property
since after conditioning the shift-partition could be large for trivial reasons4 and therefore is
no longer a good proxy for the collision probability/entropy of the distribution D.

To get around this barrier, we show that after a suitable preprocessing step on the
pseudodistribution, one can in fact condition on any event E (with not too small probability)
while preserving most of the desired local independence properties of the distribution. Thus,
even after conditioning on E, the expected shift-partition size of D×D | E being large signifies
that the pseudodistribution D has high collision probability. One can then use a simple
rounding procedure to obtain a high-valued UG solution. Conditioning pseudodistributions
is one of the few ways we know of harnessing the power of higher-degree pseudodistributions,
hence we believe that the idea of gaining structural control over the distribution after
conditioning may be applicable in the analysis of other SoS algorithms too. To explain
further details, we start by describing the approach of [5].

2.1 The Approach of [5]: Rounding analysis via the Shift Partition
Fix an Affine Unique-Games instance Ψ = (G = (V, E),Fq, Φ). In the SoS relaxation of the
Unique-Games problem we have a collection of variables Xv,σ, one for pair of vertex v ∈ V

and label to it σ ∈ Σ. The output of the program is a pseudoexpectation operator Ẽ, which
assigns to each monomial involving at most d of the variables a real-number, under which:
1. The value is high:

Ẽ

 ∑
(u,v)∈E

∑
σ∈Σ

Xv,σXu,ϕu,v(σ)

 ≥ c · |E|.

2. Ẽ is a linear, positive semi-definite operator (when viewed as a matrix over RM×M where
M is the set of monomials of degree at most d/2) satisfying various Booleanity constraints
on Xu,σ.

3. Scaling: Ẽ[1] = 1.

4 In the worst case, the event E could collapse the product distribution over two random assignments to
set the second random assignment to be always equal to the first one. In this case a pair of assignments
drawn from D × D | E being equal does not say anything about the collision probability of D.

M. Bafna and D. Minzer 3:9

Morally, the pseudoexpectation Ẽ should be thought of in the following way: there is an
unknown distribution D over assignments A1, . . . , Am that each have value at least c. For
the assignment Ai we think of Boolean valued assignment to the variables Xu,σ that assigns
to a variable 1 if and only if Ai(u) = σ, and associate with it the expectation operator Ei

which maps monomials to Boolean values in the natural way according to Ai. The operator
Ẽ then is the average of the operators Ei according to i ∼ D. 5

Shift-partition

Given Ẽ, one can construct a different pseudoexpectation operator that allows access to
moments of two assignments X = Ai, X ′ = Aj where i, j ∼ D are chosen independently. In
expectation, we get that at least c2 fraction of the edges get satisfies by both X and X ′; the
algorithm attempts to satisfy these edges. Towards this end, given two fixed assignments X

and X ′ we define the shift-partition of the vertices of V : V = ∪s∈Fq Fs where for each s ∈ Fq

we define

Fs(X, X ′) = {v ∈ V | X(v) − X ′(v) = s} .

The shift-partition size is then defined as:

Ẽ
X,X′∼D

[∑
s∈Σ

(
|Fs(X, X ′)|

|V (G)|

)2
]

.

After rearranging, we get that when X and X ′ are independent, this expression is an
average of some local collision probabilities (precisely Eu,v[CP (Xu − Xv)]), and hence the
shift-partition size being large in expectation turns out to be useful for rounding.

On the other hand, observe that if an edge (u, v) ∈ E is satisfied by both X and X ′, then
X(u) − X(v) = X ′(u) − X ′(v) and rearranging we conclude that u and v are in the same
part Fs of the shift partition. We therefore conclude that in expectation over X, X ′ ∼ D at
least c2 fraction of the edges of G stay inside the same part of the shift partition, implying
that the expansion of the shift-partition is small.

Small-set expanders

If the graph G is a small-set expander, then the above implies that at least one of the sets
Fs/the shift-partition size is large and the following rounding procedure works in such cases:
1. Sample a vertex v ∈ V and choose A(v) = σ according to the distribution p(σ) = Ẽ[Xv,σ].
2. For any u ∈ V , sample A(u) according to the distribution p(a) = Ẽ[Xu,aXv,σ]

Ẽ[Xv,σ]
.

To get an understanding to why this rounding scheme works, think of X as fixed and X ′ as
random. Thus, the fact that part s of the shift partition is large implies that X ′ = X + s on
a constant fraction of the vertices. Therefore, once we sampled the assignment to v in the
first part of the algorithm, the value of s is determined. In the second step we are sampling
the assignment to other nodes conditioned on the value of v. However, there is one value
for u which is much more likely than others – namely X(u) + s, and so we can expect that
X ′(u) = X(u) + s for a constant fraction of the vertices u. In particular, for any edge (u, w)
inside Fs that is satisfied by X, we will have that the assignments sampled for u and w are

5 Formally speaking, when given Ẽ we are not guaranteed that there exists an actual distribution D over
good assignments as above, however this intuition will be good enough for the sake of this informal
presentation.

CCC 2024

3:10 Solving Unique Games over Globally Hypercontractive Graphs

X(u) + s and X(w) + s respectively with constant probability, in which case we manage to
satisfy (u, w). To analyse this rounding strategy formally, [5] crucially use the independence
of X and X ′.

In essence, the above asserts that the shift-partition being large implies that the solution
space of X must have high collision probability, which can then be used for rounding.
By that, we mean that our distribution essentially consists of only one assignment (upto
shift-symmetry) and its perturbations.

Non small-set expanders

Consider a graph which is not a small set expander, say that G is the Johnson graph
J(n, ℓ, t = ℓ/2). In that case the above reasoning no longer works as Fs may indeed be all
small sets. However, as explained earlier, using global hypercontractivity we can infer that
one of the sets Fs must posses a certain structure – it must have large density inside one
of the canonical non-expanding sets. In the case of the Johnson graph specifically, these
canonical sets take the following form:

HR =
{

A ∈
(

n

ℓ

) ∣∣∣ A ⊇ R

}
,

for R ⊂ [n] and |R| = r = O(1). In fact, global hypercontractivity gives the following
stronger structural property: the set H =

⋃
R∈R HR where R consists of all R’s inside which

some part Fs is dense, has a constant measure. Doing simple accounting, it follows that
|R| ≥ Ω(nr/ℓr) and as there are at most

(
n
r

)
different canonical sets it follows that |R|

contains an Ω(1/ℓr) fraction of these sets.
For each choice of X and X ′ though we may have a different collection of dense subcubes

R. But since R contains an Ω(1/ℓr) fraction of all the subcubes, we get that there must be
at least one subcube HR that is dense with probability Ω(1/ℓr) over X, X ′ ∼ D. Let HR

be such a subcube and ER(X, X ′) be the event that HR is dense. Ideally, at this point one
would like to condition on ER so that one of the parts inside the shift partition Fs becomes
large inside HR, and then hope that as was the case for small-set expanders, we can satisfy
many of the edges inside Fs ∩ HR.

Unfortunately, this hope does not materialize – after conditioning on ER even though
the shift-partition is large, the rounding strategy above may break. Indeed, for the rounding
procedure we wanted the values of X(u) and X ′(u) for X, X ′ ∼ D to be independent for every
vertex u. However, after conditioning the joint distribution D × D | ER over (X, X ′) might
have correlations between X and X ′. In particular this distribution could even be supported
on pairs (X, X ′) that are always equal to each other, in which case the shift-partition is
large because of trivial reasons and therefore its large size doesn’t imply anything about the
collision probability/entropy of D.

Hence in [5] the authors don’t manage to do this conditioning, and instead settle for
satisfying an Ω

(1
ℓ2r

)
-fraction of the constraints on HR. After that they iterate this algorithm

many times to satisfy an Ω
(1

ℓ2r

)
-fraction of the constraints of the whole graph.

2.2 Our Approach: Conditioning on the Event E via (Eliminating)
Global Correlations

Our main contribution to the above framework is to show that by adding an additional
preprocessing step, we can ensure that even after conditioning on the event ER above, the
assignments X and X ′ will remain highly independent. In particular, the fact that some
part in the shift partition becomes large must happen – just like in the case of small-set
expanders – due to the fact that our distribution has high collision probability.

M. Bafna and D. Minzer 3:11

As the event E = ER(X, X ′) has probability at least Ω
(1

ℓr

)
, if we are sufficiently high

up in the SoS hierarchy (Θ(ℓr) levels will do, for an overall running time of nΘ(ℓr)), we do
have access to the conditional pseudoexpectation

Ẽ[Y | E] = Ẽ[Y 1E]
Ẽ[1E]

.

This means that we can sample labels of vertices conditioned on the event E. To make this
useful though, we must change the rounding procedure. To get some intuition consider the
extreme case in which after conditioning on E(X, X ′) there are huge correlations between X

and X ′ that remain in our distribution.
Namely, suppose that after conditioning on E it holds that X(u) = X ′(u) for almost all

vertices u. In that case, if we sampled X, X ′ from D×D (not conditioned on E), we would get
that with probability at least Pr[E] ≥ Ω

(1
ℓr

)
the event E holds, in which case X and X ′ agree

on almost all vertices. This means that if D was an actual distribution the assignments have
a large global correlation: fix X ′ = X0 for X0 that satisfies PrD[E(X, X0) = 1] ≥ PrD×D[E].
Once E holds, we have that X(u) − X(v) = X0(u) − X0(v) for almost all pairs of vertices,
hence the values of the assignment X to the vertices u and v is correlated across D. Therefore,
a natural idea is to avoid this issue by transforming D to another distribution lacking global
correlations, in the sense that the assignments to a typical pair of vertices u and v are almost
independent.

For this purpose we use an idea from [41], which adapted to our setting says that for any
τ > 0 there is d = d(τ, |Σ|) such that conditioning Ẽ on the values of d randomly chosen
vertices ensures that the global correlation is at most τ . That is, the values of X(u) and X(v)
for two typical vertices u and v are at most τ -correlated, and the same holds for X ′. In the
full version of the paper we then show that if we start with such a pseudodistribution that
lacks global correlations, then one can condition on the event E and retain near independence
between the assignments X and X ′, at least on most vertices. To be more precise, we show
that for Yu,v = (X(u), X(v)) and Y ′

u,v = (X ′(u), X ′(v)), the statistical distance between
Yu,v, Y ′

u,v | E and Yu,v, Y ′
u,v is small for almost all pairs of vertices u, v.6

Using this idea we are able to get an Ω(1)-valued solution on some basic set HR. To
summarize, we first preprocess the pseudodistribution to eliminate global correlations. We
can then find an event E(X, X ′), corresponding to the fact that some part Fs in the shift
partition has becomes dense in some basic set HR. Furthermore, conditioning on E most pairs
(X(u), X(v)), (X ′(u), X ′(v)) remain almost-independent. Then running a simple rounding
procedure on HR (as in [5]), we are able to satisfy a good fraction of the edges inside HR.
HR might be a o(1) fraction of the graph though, therefore like [5] we repeat this procedure
multiple times to get an Ω(1)-valued solution for the whole graph. This gives an efficient
algorithm for affine UG over the Johnson graphs as in Theorem 5.

To prove Theorem 6 (namely, the regime where c is not close to 1) more work is needed.
Indeed, in the case that c is close to 1 we are able to conclude that essentially all edges stay
within some part Fs of the shift partition. Thus, as long as our sets HR cover a constant
fraction of the edges that stay within some Fs, they are automatically guaranteed to cover a
constant fraction of the edges that are satisfied by both X and X ′, and these are the edges
our rounding procedure manages to satisfy. If c is just bounded away from 0 we can no
longer make such an argument, and it is no longer even clear that the sets HR cover some
edges that we have a hope of satisfying.

6 To make our rounding succeed we need to use a more complicated version of Yu,v (see the full version
of the paper).

CCC 2024

3:12 Solving Unique Games over Globally Hypercontractive Graphs

2.3 Getting Small Completeness: Capturing all of the Non-expanding
Edges

To design our algorithm for the case when the completeness c is just guaranteed to be
bounded away from 0 we must first argue that in the shift partition, we are able to capture
almost all of the edges that stay within a part Fs using the basic sets HR (so as to ensure
we are including the edges that X and X ′ both satisfy).

Towards this end we require a more refined corollary of global hypercontractivity, asserting
that if we have a small set of vertices F in the Johnson graph that has edge expansion at
most 1 − η, then we can find a collection R of basic sets such that:
1. Bounded and dense: each R ∈ R has size |R| = O(1) and F is dense inside each HR.

That is, δ(F ∩ HR) ≥ Ωη(δ(HR)) for each R ∈ R.
2. Maximally dense: For all R ∈ R and all R′ ⊊ R, F is not very dense in HR′ .
3. Capture almost all non-expanding edges: Almost all the edges that stay inside F

also stay inside HR for some R ∈ R.
Indeed, we show that a global hypercontractive inequality such as the one in [30] can be used
to prove such a result (in a black-box manner).

Using this result, we are able to argue that that the edges that stay inside the subcubes
HR for R ∈ R cover most of the edges that stay within the same part in the shift partition.
There are several subtleties here that one has to deal with, for example, “regularity issues”
such as, how many different R’s cover a given edge. The goal of the second item above is to
handle such concerns, and it roughly says that no vertex nor edge gets over-counted by a
lot. After that, we are able to condition on an event E, where as before E indicates that
some part Fs becomes dense inside some basic set HR, so that the resulting distribution has
a large shift-partition inside HR. At this point, we are (morally) back to the problem of
rounding the SoS solution on a set with a large shift-partition, except that now our solution
has value c′ > 0 (as opposed to close to 1). We remark that again, we use the “elimination
of global correlations” idea presented earlier to retain near independence after conditioning.
With more care, we use a similar analysis to the one presented for completeness close to 1 to
finish the proof when c is arbitrarily small.

References
1 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique games

and related problems. J. ACM, 62(5):42:1–42:25, 2015. doi:10.1145/2775105.
2 Sanjeev Arora, Russell Impagliazzo, William Matthews, and David Steurer. Improved al-

gorithms for unique games via divide and conquer. Electron. Colloquium Comput. Complex.,
17:41, 2010. URL: http://eccc.hpi-web.de/report/2010/041, arXiv:TR10-041.

3 Sanjeev Arora, Subhash Khot, Alexandra Kolla, David Steurer, Madhur Tulsiani, and Nish-
eeth K. Vishnoi. Unique games on expanding constraint graphs are easy: extended abstract.
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 21–28, 2008. doi:10.1145/1374376.1374380.

4 Per Austrin. Balanced max 2-sat might not be the hardest. In David S. Johnson and Uriel
Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory of Computing,
San Diego, California, USA, June 11-13, 2007, pages 189–197. ACM, 2007. doi:10.1145/
1250790.1250818.

5 Mitali Bafna, Boaz Barak, Pravesh K. Kothari, Tselil Schramm, and David Steurer. Playing
unique games on certified small-set expanders. In STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1629–1642.
ACM, 2021.

https://doi.org/10.1145/2775105
http://eccc.hpi-web.de/report/2010/041
https://arxiv.org/abs/TR10-041
https://doi.org/10.1145/1374376.1374380
https://doi.org/10.1145/1250790.1250818
https://doi.org/10.1145/1250790.1250818

M. Bafna and D. Minzer 3:13

6 Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. High dimensional expanders:
Eigenstripping, pseudorandomness, and unique games. In Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 – 12, 2022, pages 1069–1128, 2022.

7 Mitali Bafna, Max Hopkins, Tali Kaufman, and Shachar Lovett. Hypercontractivity on high
dimensional expanders. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 185–194, 2022.

8 Mitali Bafna, Noam Lifshitz, and Dor Minzer. Constant degree direct product testers with
small soundness. arXiv preprint, 2024. arXiv:2402.00850.

9 Mitali Bafna and Dor Minzer. Characterizing direct product testing via coboundary expansion.
Electron. Colloquium Comput. Complex., TR23-120, 2023. arXiv:TR23-120.

10 Mitali Bafna and Dor Minzer. Solving unique games over globally hypercontractive graphs.
CoRR, abs/2304.07284, 2023. doi:10.48550/arXiv.2304.07284.

11 Ainesh Bakshi, Ilias Diakonikolas, Samuel B. Hopkins, Daniel Kane, Sushrut Karmalkar, and
Pravesh K. Kothari. Outlier-robust clustering of gaussians and other non-spherical mixtures.
In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,
NC, USA, November 16-19, 2020, pages 149–159. IEEE, 2020.

12 Ainesh Bakshi, Ilias Diakonikolas, He Jia, Daniel M. Kane, Pravesh K. Kothari, and Santosh S.
Vempala. Robustly learning mixtures of k arbitrary gaussians. In STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June 20 – 24, 2022, pages
1234–1247. ACM, 2022.

13 Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David
Steurer, and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New
York, NY, USA, May 19 – 22, 2012, pages 307–326, 2012. doi:10.1145/2213977.2214006.

14 Boaz Barak, Jonathan A. Kelner, and David Steurer. Rounding sum-of-squares relaxations.
In Symposium on Theory of Computing, STOC 2014, New York, NY, USA, May 31 – June
03, 2014, pages 31–40, 2014. doi:10.1145/2591796.2591886.

15 Boaz Barak, Pravesh K. Kothari, and David Steurer. Quantum entanglement, sum of squares,
and the log rank conjecture. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 975–988,
2017. doi:10.1145/3055399.3055488.

16 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In IEEE 52nd Annual Symposium on Foundations of
Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 472–481,
2011. doi:10.1109/FOCS.2011.95.

17 Rares-Darius Buhai, Pravesh K. Kothari, and David Steurer. Algorithms approaching the
threshold for semi-random planted clique. CoRR, abs/2212.05619, 2022. doi:10.48550/arXiv.
2212.05619.

18 Yotam Dikstein and Irit Dinur. Agreement theorems for high dimensional expanders in the
small soundness regime: the role of covers. Electron. Colloquium Comput. Complex., TR23-119,
2023. arXiv:TR23-119.

19 Yotam Dikstein, Irit Dinur, and Alexander Lubotzky. Low acceptance agreement tests via
bounded-degree symplectic hdxs, 2024. arXiv:2402.01078.

20 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 974–985. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.94.

21 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. On non-optimally
expanding sets in grassmann graphs. In Ilias Diakonikolas, David Kempe, and Monika
Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 940–951. ACM,
2018. doi:10.1145/3188745.3188806.

CCC 2024

https://arxiv.org/abs/2402.00850
https://arxiv.org/abs/TR23-120
https://doi.org/10.48550/arXiv.2304.07284
https://doi.org/10.1145/2213977.2214006
https://doi.org/10.1145/2591796.2591886
https://doi.org/10.1145/3055399.3055488
https://doi.org/10.1109/FOCS.2011.95
https://doi.org/10.48550/arXiv.2212.05619
https://doi.org/10.48550/arXiv.2212.05619
https://arxiv.org/abs/TR23-119
https://arxiv.org/abs/2402.01078
https://doi.org/10.1109/FOCS.2017.94
https://doi.org/10.1145/3188745.3188806

3:14 Solving Unique Games over Globally Hypercontractive Graphs

22 Irit Dinur, Subhash Khot, Guy Kindler, Dor Minzer, and Muli Safra. Towards a proof of the
2-to-1 games conjecture? In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, pages 376–389, 2018.

23 Yuval Filmus, Guy Kindler, Noam Lifshitz, and Dor Minzer. Hypercontractivity on the
symmetric group. arXiv preprint, 2020. arXiv:2009.05503.

24 Tom Gur, Noam Lifshitz, and Siqi Liu. Hypercontractivity on high dimensional expanders. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
176–184, 2022.

25 Tali Kaufman and Izhar Oppenheim. Construction of new local spectral high dimensional
expanders. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 773–786, 2018.

26 Peter Keevash, Noam Lifshitz, Eoin Long, and Dor Minzer. Global hypercontractivity and its
applications. arXiv preprint, 2021. arXiv:2103.04604.

27 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings on 34th Annual
ACM Symposium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada,
pages 767–775, 2002. doi:10.1145/509907.510017.

28 Subhash Khot. On the unique games conjecture (invited survey). In Proceedings of the 25th
Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Massachusetts,
USA, June 9-12, 2010, pages 99–121. IEEE Computer Society, 2010. doi:10.1109/CCC.2010.
19.

29 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable csps? SIAM J. Comput., 37(1):319–357, 2007.
doi:10.1137/S0097539705447372.

30 Subhash Khot, Dor Minzer, Dana Moshkovitz, and Muli Safra. Small set expansion in the
johnson graph. Electron. Colloquium Comput. Complex., TR18-078, 2018. arXiv:TR18-078.

31 Subhash Khot, Dor Minzer, and Muli Safra. On independent sets, 2-to-2 games, and grassmann
graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 576–589, 2017. doi:10.1145/
3055399.3055432.

32 Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in grassmann graph have
near-perfect expansion. Annals of Mathematics, 198(1):1–92, 2023.

33 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci., 74(3):335–349, 2008. doi:10.1016/j.jcss.2007.06.019.

34 Guy Kindler, Assaf Naor, and Gideon Schechtman. The UGC hardness threshold of the Lp
grothendieck problem. Math. Oper. Res., 35(2):267–283, 2010. doi:10.1287/moor.1090.0425.

35 Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
J. Optim., 11(3):796–817, 2000/01. doi:10.1137/S1052623400366802.

36 Alexander Lubotzky, Beth Samuels, and Uzi Vishne. Explicit constructions of ramanujan
complexes of type ad. European Journal of Combinatorics, 26(6):965–993, 2005.

37 Tengyu Ma, Jonathan Shi, and David Steurer. Polynomial-time tensor decompositions with
sum-of-squares. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 438–446. IEEE, 2016.

38 Konstantin Makarychev and Yury Makarychev. How to play unique games on expanders.
In Klaus Jansen and Roberto Solis-Oba, editors, Approximation and Online Algorithms –
8th International Workshop, WAOA 2010, Liverpool, UK, September 9-10, 2010. Revised
Papers, volume 6534 of Lecture Notes in Computer Science, pages 190–200. Springer, 2010.
doi:10.1007/978-3-642-18318-8_17.

39 Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

40 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 245–254, 2008. doi:10.1145/1374376.1374414.

https://arxiv.org/abs/2009.05503
https://arxiv.org/abs/2103.04604
https://doi.org/10.1145/509907.510017
https://doi.org/10.1109/CCC.2010.19
https://doi.org/10.1109/CCC.2010.19
https://doi.org/10.1137/S0097539705447372
https://arxiv.org/abs/TR18-078
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1145/3055399.3055432
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1287/moor.1090.0425
https://doi.org/10.1137/S1052623400366802
https://doi.org/10.1007/978-3-642-18318-8_17
https://doi.org/10.1145/1374376.1374414

M. Bafna and D. Minzer 3:15

41 Prasad Raghavendra and Ning Tan. Approximating csps with global cardinality constraints
using sdp hierarchies. In Proceedings of the twenty-third annual ACM-SIAM symposium on
Discrete Algorithms, pages 373–387. SIAM, 2012.

42 Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, 1998. doi:
10.1137/S0097539795280895.

43 Luca Trevisan. On khot’s unique games conjecture. Bulletin (New Series) of the American
Mathematical Society, 49(1), 2012.

CCC 2024

https://doi.org/10.1137/S0097539795280895
https://doi.org/10.1137/S0097539795280895

Derandomizing Logspace with a Small Shared Hard
Drive
Edward Pyne # Ñ

MIT, Cambridge, MA, USA

Abstract
We obtain new catalytic algorithms for space-bounded derandomization. In the catalytic computation
model introduced by (Buhrman, Cleve, Koucký, Loff, and Speelman STOC 2013), we are given a
small worktape, and a larger catalytic tape that has an arbitrary initial configuration. We may
edit this tape, but it must be exactly restored to its initial configuration at the completion of the
computation. We prove that

BPSPACE[S] ⊆ CSPACE
[
S, S2]

where BPSPACE[S] corresponds to randomized space S computation, and CSPACE [S, C] corres-
ponds to catalytic algorithms that use O(S) bits of workspace and O(C) bits of catalytic space.
Previously, only BPSPACE[S] ⊆ CSPACE

[
S, 2O(S)] was known. In fact, we prove a general tradeoff,

that for every α ∈ [1, 1.5],

BPSPACE[S] ⊆ CSPACE
[
Sα, S3−α

]
.

We do not use the algebraic techniques of prior work on catalytic computation. Instead, we develop
an algorithm that branches based on if the catalytic tape is conditionally random, and instantiate
this primitive in a recursive framework. Our result gives an alternate proof of the best known
time-space tradeoff for BPSPACE[S], due to (Cai, Chakaravarthy, and van Melkebeek, Theory
Comput. Sys. 2006). As a final application, we extend our results to solve search problems in
CSPACE

[
S, S2]

. As far as we are aware, this constitutes the first study of search problems in the
catalytic computing model.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases Catalytic computation, space-bounded computation, derandomization

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.4

Funding Supported by a Jane Street Graduate Research Fellowship.

Acknowledgements I am grateful to William Hoza for bringing the reference [5] to my attention.
I thank Dean Doron, Ian Mertz, Roei Tell, Ryan Williams, and anonymous reviewers for helpful
discussions and comments on the manuscript.

1 Introduction

In the catalytic logspace (CL) model, introduced by Buhrman, Cleve, Koucký, Loff, and
Speelman [3], there is a machine M with O(log n) bits of standard working memory, and
nc bits of catalytic memory. This catalytic memory has an arbitrary initial configuration
(perhaps data on a shared hard drive), and must be returned to exactly this configuration at
the end of the computation. Remarkably, [3] showed that CL is likely to be strictly more
powerful than L. In particular, it contains logspace-uniform TC1 and thus NL. Motivated
by this striking result, there have been several further works exploring the power of catalytic
computation [4, 12, 10, 8, 2, 9].

We parameterize catalytic computation by time, space, and catalytic space (similar
notions have been considered before, e.g. [2]).

© Edward Pyne;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:epyne@mit.edu
https://sites.google.com/view/tedpyne/home
https://orcid.org/0000-0002-3454-2057
https://doi.org/10.4230/LIPIcs.CCC.2024.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Derandomizing Logspace with a Small Shared Hard Drive

▶ Definition 1. Let CTISP [T (n), S(n), C(n)] be the set of languages recognized by catalytic
machines that use O(S(n)) workspace and O(C(n)) catalytic space on inputs of size n, and
run in time poly(T (n)) in the worst case.

Note that the worst-case runtime must hold over every catalytic tape, as well as every input.
Prior work has studied the ability of catalytic space to substitute for randomness, in

particular in the setting of derandomizing space-bounded computation. Let BPL be the set
of languages recognized by randomized machines that run in space O(log n) on inputs of size
n, and make two-sided error. The result of [3] implies that

BPL ⊆ CTISP [n, log n, nc]

for some constant c. In fact, we are aware of two other proofs of this fact. An unpublished
result (see the recent survey of Mertz [15] for a sketch) proves it by treating the catalytic tape
as a set of random walks, and the third follows from recent work on certified derandomization
for BPL [20, 11].

As our main result, we improve the amount of catalytic space needed to simulate BPL by
a superpolynomial amount.

▶ Theorem 2.

BPL ⊆ CTISP
[
n, log n, log2 n

]
.

Our simulation of BPL is as time- and space- efficient as the frontier result of Nisan [18],
which proves that BPL ⊆ TISP[n, log2 n], and moreover almost all the space used is catalytic.
Next, we incorporate this algorithm into a recursive framework to derive a (time-efficient)
tradeoff between the catalytic- and non-catalytic space consumption.

▶ Theorem 3. For every α ∈ [1, 1.5],

BPL ⊆ CTISP
[
2logα(n), logα(n), log3−α(n)

]
.

This result immediately gives a new proof of the best known result on time-space trandeoffs
for BPL due to Cai, Chakaravarthy, and van Melkebeek [5]. They prove BPL is contained in
TISP[2logα n, log3−α n] for every α ∈ [1, 1.5]. In fact, our result shows that for every α < 1.5,
we can achieve a simulation with equivalent time and total space, but where the majority of
the space used can be made catalytic.

Interestingly, while previous work on algorithms for catalytic computation [3, 8] primarily
used algebraic techniques involving reversible computation over a ring, our results take
a completely different approach based on conditional compressibility. We also develop
a new approach for efficient composition of catalytic algorithms, building on the well-
known composition of space-bounded algorithms. We hope that our techniques will have
broader applications, both inside and beyond the model of catalytic computation. As a final
application, we show that our ideas can be used to give nontrivial catalytic search algorithms.

1.1 Proof Overview for Theorem 2
A canonical (promise)-BPL complete problem is that of estimating transition probabilities in
read-once branching programs:

E. Pyne 4:3

▶ Definition 4. A read-once branching program (ROBP) B of width w and length n

and alphabet {0, 1}t is defined by a function B : [w] × {0, 1}t → [w].1 For x ∈ ({0, 1}t)n,
define

B[i, x] = B[B[. . . B[B[i, x1], x2] . . .], xn−1], xn].

It is well known that to derandomize BPL, it suffices to estimate Prx←Un
[B[1, x] = 1] up to

error 1/3 for an ROBP B of length n, width n and alphabet {0, 1}.

The Result of Nisan

We now recall the result of [18], which itself begins with the PRG of [16]. In this PRG,
we draw ℓ = log n hash functions h1, . . . , hℓ from a pairwise independent hash family on
t = O(log nw) bits. We recursively define the PRG as follows. Let NIS0(x) = x for x ∈ {0, 1}t,
and let NISi+1(x) = (NISi(x), NISi(hi+1(x))). To analyze this PRG, fix a branching program
B : ({0, 1}t)n → {0, 1} of width w, with transition function B. Viewing this construction
from the bottom up, the first hash function h1 is good if for every every a, b ∈ [w],

Pr
x,x′←Ut

[B[B[a, x], x′] = b] ≈ Pr
x←Ut

[B[B[a, x], h1(x)] = b],

i.e. the distribution (x, h1(x)) is indistinguishable from the distribution (x, x′) by the
composition of B with itself. Since B can only pass log w bits of information from the first to
the second half, this occurs with probability 1−w−c over h1 ← H (assuming t = O(log w) is
sufficiently large). The ultimate PRG is analyzed recursively using ℓ applications of essentially
the same idea. Concretely, at the second level of the construction, we now want a hash function
h2 that fools the length n/2 program with transition function B′[a, x] = B[B[a, x], h1(x)].

While the Nisan PRG randomly selects ℓ hash functions at once, the insight of [18] was
that, given a specific program B that we want to fool, we can search for good hash functions
level by level. At level i, we find a hash function hi that fools the relevant transition function.
As this test is easy to implement in time 2O(t) for a fixed h and there are 2O(t) such h to test,
we can find such a good hash function in time 2O(t) = poly(n) per level, giving a polynomial
runtime overall.

An Algorithm From Conditional Compression

We transform this algorithm into a catalytic algorithm as follows. Suppose we have a
branching program B of width w and length n = 2ℓ, and a catalytic tape w, with an
arbitrary initial configuration. We interpret w as holding 2ℓ hash functions h1, . . . , h2ℓ, each
over t = O(log nw) bits (and note that each function can have description size exactly 2t,
as there exists a pairwise independent hash family on t bits of size 22t). Let V ∈ {0, 1, ∗}2ℓ

and initialize V = ∗2ℓ to indicate the status of each block. We then iterate through this list.
Letting the ith hash function be h̃ and the previous good hash functions be h⃗p, we check if h̃

is a good hash function, using the test as before.
If h̃ is good, we set Vi = 1, indicating h̃ is part of the list of good hashes.
If h̃ is not good, it must lie in the set BAD(h⃗p) of hash functions that fail to fool the
current transition function. But as almost all h are good, the index of h̃ in BAD(h⃗p) is
a concise description of h̃! We can then replace h̃ with this index, and free up Ω(log nw)
bits on this block of the tape. Finally, set Vi = 0 to indicate we have compressed this
block.

1 The standard definition of ROBPs permits the transition function to differ between the layers. However,
as we will always be dealing with programs where w ≥ n, and we are insensitive to polynomial losses in
the width, we can assume all transition functions are the same for clarity.

CCC 2024

4:4 Derandomizing Logspace with a Small Shared Hard Drive

At the end of this phase, we have either found ℓ good hash functions, or have freed up
ℓ · Ω(log nw) bits on the tape. In the latter case, we can simply search for a good set of
hash functions (on slightly fewer bits), exactly as in the algorithm of [18], and store these in
the free space of the compressed blocks. Thus, in both cases we obtain a sequence of hash
functions that together constitute a good PRG for B, and hence can construct a generator
NIS that does a good job estimating walk probabilities on B. The final step of estimating
these walks can be performed in space O(t + log nw) = O(log nw) with read-only access to
the tape w.

Finally, to return the tape to its original configuration, we work backwards over the
compressed blocks, i.e. indices i where Vi = 0. For each block, we determine the preceeding
good hash functions h⃗p, read the index of the original hash (i.e. tape configuration) in
BAD(h⃗p), then find the hash with this index by enumeration and write it to the tape.

1.2 Proof Overview for Theorem 3
To obtain a smooth tradeoff between the catalytic and non-catalytic space, our next idea is
to unify this with efficient composition of catalytic algorithms:

Composition of Catalytic Algorithms

Recall that in the conventional composition of space-bounded algorithms, we can compute
the composition of two algorithms running in space S(n) in space c · S(n), for some constant
c > 1. Our key observation is that for catalytic algorithms, we can obtain composition with
no increase in the length of the catalytic tape:

▶ Theorem 5 (Composition of Catalytic Space-Bounded Algorithms). Given two catalytic
algorithms M1,M2 computing f1, f2 respectively, each using space S(n) ≥ log n, catalytic
space C(n), and time T (n), there is a catalytic algorithm M′ using time poly (T (n)), space
O(S(n)), and catalytic space C(n) that computes f2 ◦ f1.

The proof of this result modifies the standard composition of space-bounded algorithms.
To compute M2(M1(x)), we begin to simulate Mw

2 (f1(x)) (where the superscript notation
denotes running the machine with catalytic tape w). Whenever M2 reads a bit of the input,
we simulateMw′

1 (x) to obtain the relevant bit of f1(x), where w′ is the current configuration
of the catalytic tape of M2. Since M1 is guaranteed to produce the correct answer for every
starting tape, we have that Mw′

1 (x) = f1(x). Moreover, asM1 is catalytic, it resets the tape
to w′ before returning, so M2 does not notice the call has occurred, and can continue its
computation.

We remark that we are not able to apply this theorem as-is due to issues with (essentially)
f1 being a relation with multiple valid outputs, so the actual statement we prove is more
involved. In particular, we must deal with safety reverting the catalytic tape if an intermediate
call to M1 fails.

Derandomization via Repeated Powering

Going from this to Theorem 3 requires a further ingredient, which is given by a variant of the
Saks-Zhou recursive powering scheme. Saks-Zhou [21] divides computing the nth power of an
n× n stochastic matrix M (a prBPL complete problem) into r2 iterations of computing the
2r1th power, for any r1r2 = log n. For convenience, let M0 = M and Mi = M2r1·i for i ∈ [r2].
In the original algorithm, all levels share a single set of hash functions h⃗ = (h1, . . . , hr1),
each on O(log n) bits. A random set of hash functions will do a good job computing Mi

E. Pyne 4:5

from Mi−1 for every i, and so we can reuse this fixed set of hash functions at every level.2
Unfortunately, such an argument is incompatible with searching for good hash functions
one by one. Since we use every hash function to produce an approximation to M1, if we
later discover a hash function is bad at powering Mi for i ≥ 1, seemingly we must destroy
all partial progress and try a new set of hash functions. Thus, the Saks-Zhou algorithm
must enumerate over h⃗ = (h1, . . . , hr1) all at once, incurring a runtime of 2Ω(r1·log n). As
the algorithm incurs a runtime of 2Ω(r2·log n) merely from the recursive composition of space
bounded algorithms, the total runtime is at least 2Ω(max{r1,r2}·log n) = 2Ω(log3/2 n) for any
setting of parameters r1 and r2. We note that the work of [5] also avoids this issue, and we
explain their differing approach in more detail in Section 1.2.

Composing Conditional Compression Algorithms

Our catalytic algorithm allows for a more efficient approach. We follow the same recursive
powering scheme as Saks-Zhou, but at each level use the algorithm of Theorem 2 that treats
w as a list of 2r1 candidate hash functions.3 Whenever we request an entry of a smaller
power, we call the next level algorithm. If that level sees that the hash functions currently
on the tape are good, it uses them to compute the requested entry. If not, it temporarily
compresses the tape, finds good hash functions in time poly(n), uses them to compute the
requested entry, then resets the tape to exactly the same configuration the calling algorithm
was expecting before returning. Thus, every level can either use the tape as-is, if it is suitable,
or quickly compute a better set of hash functions on the fly and revert before returning
control. This eliminates the 2r1 log n term in the runtime. Moreover, the O(r1 log n) bits used
to store the hash functions can be treated as catalytic space, resulting in an algorithm that
uses only O(r2 log n) bits of workspace.

Finally, for every α ∈ [1, 1.5], we can choose r1 = log2−α(n) and r2 = logα−1(n) and obtain
a algorithm that uses O(r1 log n) = O(log3−α n) catalytic space, O(r2 log n) = O(logα n)
workspace, and runs in time poly (nr2) = 2O(logα n), as claimed.

Such an approach runs into a subtle technical issue. Since the algorithm at level i may be
called many times with different starting catalytic tapes, we must ensure that the algorithm
returns the same approximate power each time, as otherwise the composition would not be
well defined. To fix this, we first define a notion of catalytic algorithms that are allowed to
return ⊥ for some initial catalytic tapes, in addition to a fixed output that is independent
of the catalytic tape. We then show how these algorithms can be composed, while still
maintaining the ability to revert the tape to the original configuration in the worst case.
Finally, we adopt the strategy of Saks and Zhou [21], and randomly perturb (or “shift”)
the matrices at each level. In our case, if a level of the algorithm determines that a shift is
bad (i.e. could produce ambiguous behavior) it aborts and returns ⊥. We show with high
probability over the shifts, this will never occur (i.e. we will not return ⊥) no matter the
tape, and so we can compose the algorithm with itself and find the desired output.

Showing that we can successfully avoid permanent damage to the tape in the case that the
shifts are bad requires further work. In particular, we ensure that our catalytic algorithms can
be reverted from any point, where our notion of reversibility requires that we do not introduce

2 There are additional complications from reusing the hash functions, but they are not the primary reason
for the high time complexity.

3 We give a “non-black-box” explanation of the final algorithm here as it illustrates the actual idea, but
our proof uses a black-box statement regarding composition of catalytic algorithms.

CCC 2024

4:6 Derandomizing Logspace with a Small Shared Hard Drive

any new configurations of the catalytic tape. We show that we can achieve this notion
without a substantial time cost, and moreover it is compatible with recursive composition.
Using this tool, we are able to return to the original tape configuration of a subroutine ever
returns ⊥.

Comparison With [5]

We briefly overview the techniques of [5], which achieves the best known time-space tradeoff
for BPL, but in which all O(log3−α n) bits of space must be standard workspace. They
likewise give a version of the Saks-Zhou result that does not incur the nr2 factor in runtime,
which we now explain. Their result follows the following recursive framework. We start with
a set of hash functions h⃗ = (h1, . . . , hℓ) that produce a good approximation of Mi (which we
denote M̃i) from Mi−1 for every i ≤ r, but does not necessarily produce a good approximation
of Mr+1 from Mr. We then search for a new set of hash functions h⃗′ = (h′1, . . . , h′ℓ) with the
following two properties. First, h⃗′ is good at approximately powering Mi for every i ≤ r (in
particular, it produces a good approximation M̃ ′

r+1). Second, after applying the random
shift and round operation to the approximations M̃i, M̃ ′

i for i ≤ r produced by the old and
new sets of hash functions, we obtain the same matrices. After doing so, we replace h⃗ with
h⃗′ and increment r. The latter requirement allows us to make progress, as we can gradually
find sets of hash functions that are good for greater powers, without destroying progress
by altering the “results” of prior computation. However, this approach does not give a
catalytic algorithm (in particular, it does not exploit the fact that bad hash functions are
compressible).

1.3 Search Problems in Catalytic Space
Finally, we show how our compression-based techniques can be extended to solve search
problems in catalytic space. As far as we are aware, we are the first to study catalytic
search algorithms. Previous work of Sivakumar [22] showed that many search problems, such
as producing a Johnson-Lindenstrauss sketch of a collection of vectors, can be reduced in
logspace to solving the following problem, which we call “mutual ROBP hitting”.

▶ Definition 6 (Mutual ROBP Hitting). Given a list of branching programs
(

B
1
, . . . , B

n
)

each of length and width n, such that E
[
B

j(Un)
]
≥ 1 − 1/n2 for every j, produce a fixed

x ∈ {0, 1}n such that∧
j∈[n]

B
j(x) = 1.

We remark that this problem is (as of now) possibly harder than the task of producing x

that satisfies a single ROBP, as it is not known to lie in BPL. Despite this, we show that we
can solve this problem in the same asymptotic bound as Theorem 2:

▶ Theorem 7. There is a CTISP
[
n, log n, log2 n

]
algorithm that solves the mutual ROBP

hitting problem.

Previously, this problem was known to be solveable in TISP[n, log2 n], so we again show that
almost all of the required space can be made catalytic.

We can immediately apply the reduction of [22] to obtain search algorithms for well-
studied problems. As one application, we obtain a catalytic algorithm which produces a
Johnson-Lindenstrauss transform: a low-dimensional embedding of a collection of vectors
that approximately preserves their ℓ2 distance. The problem of deterministically producing
such an embedding has been extensively studied [22, 1, 13, 14].

E. Pyne 4:7

▶ Corollary 8. There is a CTISP
[
n, log n, log2 n

]
algorithm that, given ε > 0 and a collection

of vectors v1, . . . , vn ∈ Rn, outputs vectors4 ṽ1, . . . , ṽn ∈ RO(log(n)/ε2) such that for every
i, j ∈ [n], we have

(1− ε)∥vi − vj∥2
2 ≤ ∥ṽi − ṽj∥2

2 ≤ (1 + ε)∥vi − vj∥2
2.

We prove Theorem 7 by extending our compress-or-random approach to producing a set
of hash functions that is good for a polynomial number of ROBPs at once. In more detail,
suppose the algorithm of Theorem 2 is now given a list of branching programs (B1, . . . , Bn).
The algorithm is structured as before, but now for each new hash function h̃, we test if h̃ is
good for all of the input ROBPs. If yes, we again add it to our good sublist. Otherwise, let Bj

be the first program that h̃ was not good for, and let BADj be the set of bad hash functions
for this program, given the current prefix (and note that the prefix is by construction good for
all programs). We now compress h̃ by recording j (which we require for the decompression
algorithm to recover the hash function) together with the index of h̃ in BADj . Again as
before, once we have processed all blocks, either we have found a set of hash functions that
are good for all ROBPs, or we have freed up Ω(log2 n) space. In that case, we again search
for a set of hash functions that is good for every program simultaneously. This only incurs a
mild constant factor loss in the length of each hash function, so our algorithm has the same
asymptotic performance.

1.4 Roadmap
In Section 2, we formally define the catalytic computation model, and prove Theorem 5
and Theorem 7. In Section 3, we prove Theorem 2, and in Section 4, we prove Theorem 3.
In Appendix A we provide proofs of some cited lemmas.

2 Catalytic Machines and Composition

We first formally define a catalytic Turing machine.

▶ Definition 9 (Catalytic Turing Machine [3]). A Turing machine M is a catalytic machine
using time T (n), workspace S(n), and catalytic space C(n) if it has a work tape, a read-only
input tape, a write-only output tape, and a catalytic tape w. We require that for every input
x with |x| = n and every w, Mw(x) halts in time at most T (n), using at most S(n) cells on
the worktape and C(n) cells on w. Moreover, the final configuration of w must be equal to
its initial configuration, for every x and w.

We now define the notion of a catalytic machine that computes a function. We furthermore
define the notion of partially computing a function, where on some tapes w the machine can
output a special failure symbol ⊥.

▶ Definition 10. For a function f : {0, 1}∗ → {0, 1}∗, we say a catalytic machine M
(catalytically) computes f if for every x and w, Mw(x) = f(x), and at the end of the
computation w is in its original state. We say that M partially (catalytically) computes
f if for every x and w, Mw(x) ∈ {⊥, f(x)}, and at the end of the computation (no matter
the output) w is in its original state.

4 We assume the input and output are specified to O(log n) bits of precision.

CCC 2024

4:8 Derandomizing Logspace with a Small Shared Hard Drive

Partial catalytic computation is trivial without further restrictions (as M can always output
⊥), but we require it as an intermediate step in our analyses. We require a further condition
on our machines, that they can revert the catalytic tape at any time without the catalytic
tape traversing any new configurations:5

▶ Definition 11. A catalytic machineM is reversible if for every x and initial configuration
w, at any point during the execution of Mw(x), the machine can receive an external
REVERT signal. Let P = P (w) denote all prior configurations of the catalytic tape during
the execution of Mw(x). After this signal, M must reset w to the original configuration, and
moreover every intermediate configuration of w during this process must lie in P . We require
any time bound on M to hold even in the case that M is given the REVERT command at
an arbitrary point.

2.1 Composition of Catalytic Algorithms
We state the main result of this section, which is that catalytic algorithms can be composed
without increasing the catalytic space usage. We must be careful when dealing with partial
catalytic machines, and in this case we only obtain composition if the machines are reversible
(Definition 11).

▶ Theorem 12 (Composition of Partial Catalytic Machines). Suppose reversible catalytic
machines M1,M2 partially compute f1, f2 : {0, 1}n → {0, 1}n respectively using workspace
S(n) ≥ log(n), catalytic space C(n), and time T (n). Then there is a reversible catalytic
machine M that partially computes f2 ◦ f1 using workspace 2S(n) + O(log(Sn)), catalytic
space C, and time poly(T (n)). Moreover, Mw(x) = ⊥ only if Mw

2 (f1(x)) = ⊥, or there
exists w′ such that Mw′

1 (x) = ⊥.

Proof. We proceed roughly following the standard proof for composition of space-bounded
algorithms. We maintain two sections on the worktape of size S for M1 and M2 (and
auxiliary state of size O(log(Sn)) to keep track of the location of read and write heads, and
the FSM configuration of both machines), and a single catalytic tape w.

The Simulation. We now begin to simulate Mw
2 . We first verify that Mw

1 (x) ̸= ⊥. As in
the conventional composition of space-bounded algorithms, every time M2 reads its input,
we runMw

1 (x) on a separate section of the worktape and return the relevant bit of its output,
where w is the same catalytic tape used by M2, in whatever its current configuration is at
the time of the tape read. Moreover, every time M2 writes to the catalytic tape, resulting in
a configuration w′, we run Mw′

1 (x) and verify that it does not produce ⊥.

Computing the Function. In the case that Mw′

1 (x) = f1(x) for every configuration w′
that is encountered in this simulation and Mw

2 (f1(x)) = f2(f1(x)), it is easy to see that
Mw(x) = f2(f1(x)). Moreover, it is clear that in this case we successfully reset the tape.
Otherwise, consider the first point at which Mw′

1 (x) = ⊥. We first undo the most recent
change to the catalytic tape, and send the REVERT command to M2. Once M2 has
finished reverting, return ⊥. We claim that M2 successfully reverts the tape. This follows
from the reversibility of M2, and the fact that all calls M2 makes to its input during this

5 There are existing results related to transforming catalytic algorithms into reversible catalytic al-
gorithms [15]. However, they do not appear to maintain worst-case runtime over the catalytic tape,
which is crucial for our results.

E. Pyne 4:9

process are correctly answered by M1. The latter property follows as every time M2 queries
its input during the revert process, w is in a state that was encountered during the forward
pass, and hence M1(x) produced f1(x) when initialized with this catalytic configuration (as
otherwise we would have aborted sooner).

Reversibility. Essentially the same argument establishes that M is reversible. If we receive
the REVERT command, let P (w) be the states of the catalytic tape that have been
encountered so far. First send REVERT to M1 (if operating), and once it has completed
send the REVERT command to M2. Moreover, while M2 is reverting, we claim that w
remains in P (w). This follows from the fact that M2 is reversible (as any configurations it
creates will lie in P (w)), and moreover every time M2 queries its input, any computation
done by M1 will likewise keep w in P (w), as we already called M1 with this starting
configuration in the forward pass (and M1 will not produce ⊥, as otherwise we would have
already aborted). Thus, the composed algorithm is reversible.

Time and Space. We now argue the space and time are as claimed. There are a constant
number of pointers (which we maintain on the worktape) to track the number of bits output
by M1, current tape heads, and other information. The fact that the catalytic tape size is
preserved is immediate. The call overhead adds at most a polynomial factor in the runtime,
as we runM1 at most once per step ofM2. Finally, ifM1 computes f1(x) for every catalytic
tape and M2 computes correctly on w, we successfully compute f2 ◦ f1 as claimed. ◀

We derive an easy corollary in the case of multiple composition:

▶ Corollary 13. Suppose a reversible catalytic machine M partially computes f : {0, 1}n →
{0, 1}n using workspace S(n) ≥ log n, catalytic space C, and time 2S. Then there exists a
reversible catalytic machine M′ that partially computes f ℓ using workspace O(ℓ ·S), catalytic
space C, and time 2O(ℓ·S). Moreover, for x where Mw(f i(x)) = f(f i(x)) for every w and
i ∈ {0, . . . , ℓ− 1}, M′w(x) = f ℓ(x).

3 Catalytic Derandomization From Conditional Compression

In this section we prove Theorem 2. We state all our results in terms of catalytic algorithms for
the stochastic matrix powering problem, as it is easily compatible with the recursive framework
we implement later. Recall a nonnegative matrix is stochastic (resp. substochastic) if all
row sums are 1 (resp. at most 1). For a set S, let US be the uniform distribution over S,
and let Un = U{0,1}n .

▶ Theorem 14. There is a CTISP
[
n, log n, log2 n

]
algorithm that, given n and a stochastic

matrix M ∈ [0, 1]n×n where each entry is specified with O(log n) bits of precision, outputs
M̃ ∈ [0, 1]n×n such that

∥∥∥M̃ −Mn
∥∥∥

1
≤ 1/n.

We recall the existence of efficient algorithms which canonicalize (sub)stochastic matrices,
essentially reducing the stochastic matrix powering problem to producing a PRG that fools
a branching program.

▶ Lemma 15 ([21, 19, 7]). There is a constant c > 0 and a space O(log nw/ε) algorithm
which, given ε > 0 and n, w ∈ N where w ≥ n and a substochastic matrix M ∈ [0, 1]w×w with
O(log w) bits of precision, returns a branching program

B : [(w/ε)c]× {0, 1}m → [(w/ε)c]

CCC 2024

4:10 Derandomizing Logspace with a Small Shared Hard Drive

of width w′ = (w/ε)c and length m = n ·O(log(w/ε)) where m is a power of two. Moreover,
letting M̃ ∈ [0, 1]w×w be the (substochastic) matrix where for i, j ∈ [w] we define6 M̃i,j =
Prx←Un [B[i, x] = j], we have

∥∥∥M̃ −Mn
∥∥∥

1
≤ ε.

As this is not the way these results are stated, we provide a translation in Appendix A. We
next define the Nisan PRG, and recall several auxiliary lemmas.

The Nisan PRG

Given a branching program, we first define the larger alphabet program obtained from
duplicating each edge:

▶ Definition 16. For t ∈ N, for B : [w] × {0, 1}n → [w] of width w, let Bt : [w] ×
({0, 1}t)n → [w] be the branching program of length n and width w over alphabet {0, 1}t

with transition function Bt[a, y] = B[a, y1], where y1 is the first bit of y ∈ {0, 1}t. Note that
Bt can be constructed in space O(log tnw) given B, and furthermore for every i, j ∈ [w],
Prx←Un [B[i, x] = j] = Prx←U({0,1}t)n [Bt[i, x] = j].

We recall a pairwise independent hash family with a very efficient description:

▶ Observation 17. For every t ∈ N, there exists a pairwise independent hash family
H : {0, 1}t → {0, 1}t such that |H| = 22t, and h ∈ H (which we associate with h ∈ {0, 1}2t)
can be evaluated in space O(t).

Given a (hash) function h : {0, 1}t → {0, 1}t and a program B, we define an operator that
applies a single level of the Nisan construction with hash function h.

▶ Definition 18. Given Bt : [w] × ({0, 1}t)n → [w] and h : {0, 1}t → {0, 1}t, let Bt,h :
[w]× ({0, 1}t)n/2 → [w] be the width w, length n/2 program with transition function

Bt,h[a, x] = Bt[Bt[a, x], h(x)].

Using a recursive application of hash functions, we can define the Nisan PRG as follows.

▶ Definition 19. For (h1, . . . , hℓ) ∈ Ht, define NIS(h1,...,hℓ) : {0, 1}t → {0, 1}t·n inductively
as follows. Let NIS0(x) = x1, and for j ∈ [ℓ]

NIS(h1,...,hj)(x) = (NIS(h1,...,hj−1)(x)||NIS(h1,...,hj−1)(hj(x))).

Note that B[·, NIS(h1,...,hℓ)(·)] and Bt,(h1,...,hℓ)[·, ·] (as defined in Definition 18) are equal as
functions.

To analyze the Nisan PRG, we define the notion of a hash function being good for
composing two functions, and a PRG being good for a function.

▶ Definition 20. For every n, w, t ∈ N and δ > 0 and f : [w] × ({0, 1}t)n → [w] and
G : {0, 1}t → ({0, 1}t)n, we say that G is δ-good for f if for every i, j ∈ [w],∣∣∣∣∣ Pr

x←Ut

[f [i, G(x)] = j]− Pr
x←U({0,1}t)n

[f [i, x] = j]

∣∣∣∣∣ ≤ δ.

Moreover, we say h ∈ H is δ-good (and δ-bad otherwise) for f : [w] × {0, 1}t → [w] if
G(x) = (x||h(x)) is δ-good for f [i, (x, y)] = f [f [i, x], y].

6 Note that this truncates the size from w′ back to w.

E. Pyne 4:11

We recall that a random hash function is good with high probability.

▶ Lemma 21 ([16]). For every f , Prh←Ht
[h is δ-good for f] ≥ 1− w5(1/δ)2/2t.

(We provide a proof in Appendix A.) Moreover, a hybrid argument establishes the following.

▶ Lemma 22 ([16]). For every Bt : [w]× ({0, 1}t)n → [w] and h⃗ = (h1, . . . , hℓ), suppose for
every i ∈ [ℓ], hi is δ-good for Bt,h1,...,hi−1 . Then NISh⃗ is δ · nw-good for B.

Catalytic Derandomization

We now state the main result that powers both of our derandomizations.

▶ Theorem 23. There is a pair of reversible catalytic algorithms A,D that run in workspace
O(log nw/ε), catalytic space O(log(n) · log(nw/ε)), and time poly(nw/ε) and act as follows.
Given ε > 0 and a length n = 2ℓ, width w ROBP B : [w]× {0, 1}n → [w] where w ≥ n:

The machine Aw(B) outputs V ∈ {0, 1}2ℓ and t = O(log nw/ε) and sets the catalytic tape
to w′, such that (w′, V) contains a (read-only) data structure supporting access to hash
functions h⃗ = (h1, . . . , hℓ) each on t bits, such that NISh⃗ is ε-good for B.
The machine Dw′(B, V) sets the final catalytic tape configuration to w.

For the extension to search problems, we require a version which takes in a list of ROBP,
and constructs a set of hash functions that is simultaneously good for all of them. Our proof
is for this more general notion, which immediately implies Theorem 23:

▶ Theorem 24. There is a pair of reversible catalytic algorithms A,D that run in workspace
O(log nw/ε), catalytic space O(log(n) · log(nw/ε)), and time poly(nw/ε) and act as follows.
Given ε > 0 and a set of w length n = 2ℓ, width w ROBPs

B =
(

B
1
, . . . , B

w
)

with B
j : [w]× {0, 1}n → [w] where w ≥ n:

The machine Aw(B) outputs V ∈ {0, 1}2ℓ and t = O(log nw/ε) and sets the catalytic
tape to w′, such that (w′, V) contains a (read-only) data structure supporting access to
hash functions h⃗ = (h1, . . . , hℓ) each on t bits, such that NISh⃗ is ε-good for B

j for every
j ∈ [w].
The machine Dw′(B, V) sets the final catalytic tape configuration to w.

To make our compression and decompression algorithms work, we require that we can
determine if a hash function is good for a branching program at a certain level of the Nisan
construction, given pointers to the hash functions at the previous levels:

▶ Proposition 25. There is a space O(t + log(w/δ)) algorithm that, given n, w, t ∈ N with
w ≥ n and h̃ ∈ {0, 1}2t and B : [w]×{0, 1}n → [w] and (read only) w and pointers p1, . . . , pr

such that w[pi,...,pi+2t] = hi represents a hash function on t bits, returns if h̃ is δ-good for
Bt,(h1,...,hr).

We give a proof in Appendix A, as it essentially follows from the argument of [18]. We
can then prove the theorem:

Proof of Theorem 24. We assume without loss of generality that n, w and 1/ε are powers
of two. Set

t0 = 60 log(w/ε), t1 = 25 log(w/ε), δ = ε/nw ≥ ε/w2,

CCC 2024

4:12 Derandomizing Logspace with a Small Shared Hard Drive

and note that we choose t1 large enough such that a good series of hash functions (for all B
j

simultaneously) on t1 bits always exists. The algorithm works as follows. First, virtually
divide the catalytic tape as:

w =
(
w1||w2|| · · · ||w2ℓ

)
where |wi| = 2t0, which we think of as initially holding h : {0, 1}t0 → {0, 1}t0 . Note that
|w| = ℓ · 4t0 = O(log(n) log(nw/ε)) as claimed.

Next, initialize V ∈ {0, 1, ∗}2ℓ to indicate if each block is compressed, uncompressed, or
unprocessed respectively. The first two cases correspond to the following two formats of the
block:

wi =
{

h Vi = 1(
z||j||050 log(w/ε)) Vi = 0

Informally, the first corresponds to block i originally containing a good hash function for
B, and the second corresponds to block i originally containing a bad hash function for B

j ,
which is thus compressible (in fact, z represents a compressed version of the original data).
We define notation for the set of blocks in each configuration:

▶ Definition 26. For b ∈ {0, 1}, let Ib(V) ⊆ [2ℓ] correspond to the indices such that Vi = b,
and let Sb(V) = |Ib(V)|.

Next, we initialize a counter i = 1 for the current block. We then iterate over i =
{1, . . . , 2ℓ} until max{S1(V), S0(V)} = ℓ.7 For each i, the algorithm works as follows. Let
h̃ = wi be the hash function (on t0 bits) obtained from the current block. We then test if h̃

is δ-good for

f j = Bj

t0,h⃗p
, for every j ∈ [w].

Where

h⃗p =
(

wI1(V)1 , . . . , wI1(V)S1(V)

)
corresponds to the hash functions on the preceding good blocks, and Bj

t0,h⃗p
is defined as

in Definition 18 applied to B
j and h⃗p. As the index set I1(V) is easy to generate given V ,

this test can be performed in space O(log nw/ε) without modifying the catalytic tape (and
hence also in time poly(nw/ε)), by Proposition 25.

Given the results of this test, we break into cases depending on if h̃ is good:
If h̃ is δ-good for f j for every j ∈ [w], set Vi = 1.
If h̃ is δ-bad for some f j , set Vi = 0 and let j be the first index for which this holds.
Next, by enumeration over strings h ∈ {0, 1}2t0 (which we can do using the workspace),
determine the index of h̃ in the set

BADi,j =
{

h ∈ {0, 1}2t : h is δ-bad for Bj

t0,h⃗p

}
where we again perform this test using Proposition 25. Letting the index of h̃ in this set
be z, write

wi =
(

z||j||050 log(w/ε)
)

7 If we exit before i = 2ℓ, set the remaining indices of V to an arbitrary value, which we ignore for clarity
of presentation.

E. Pyne 4:13

(we perform this write operation left to right, and will revert it right to left). We denote
the final 50 log(w/ε) bits as free space.
Finally, we claim that we can in fact write these quantities in space |wi| = 2t0. The index
j requires log(w) bits. Moreover, we have

|BADi,j | = 22t0 · Pr
h←H

[h is δ-bad for f]

≤ 22t0 · w5(1/δ)2/2t0 (Lemma 21)
≤ 22t0 · (w/ε)7−60

And thus log |BADi,j | ≤ 2t0−51 log(w/ε) = |wi|−51 log(w/ε). Therefore, we can record
all required information as claimed.

After processing all blocks, we obtain a catalytic tape w′ and one of two cases:
If S1(V) = ℓ, there exist h⃗ = (h1, . . . , hℓ) corresponding to the hash functions (on t0 bits)
in I1(V), and these functions are easy to recover from V .
Else, we must have S0(V) = ℓ.
For i ∈ I0(V), let Fi be the 50 log(w/ε) free bits in wi. Note that a description of a hash
function h : {0, 1}t1 → {0, 1}t1 is of size |Fi|. Iterating over i ∈ I0(V) in increasing order,
we find (via brute force enumeration) a hash function h̃ that is δ-good for

f j = Bj

t1,h⃗p
, for every j ∈ [w].

Where

h⃗p =
(

wFI0(V)1
, . . . , wFI0(V)i−1

)
corresponds to the (δ-good) hash functions stored on the free space in the preceding
indices of I0(V). Next, store h̃ in wFi

. Such a good hash function always exists, by
our choice of t1 and Lemma 21, and moreover testing if each candidate is good can be
computed in the desired space and time by Proposition 25. After this processing,(

wFI0(V)1
, . . . , wFI0(V)ℓ

)
contain ℓ good hash functions, which we can clearly access in read-only fashion given
given V and w′.

Thus, in both cases we obtain a set of hash functions h⃗ = (h1, . . . , hℓ) on t = O(log nw/ε)
bits that is δ-good for every one of the relevant tests, so by Lemma 22 we have that NISh⃗ is
δ · nw ≤ ε-good for B

j for every j.

Decompression and Reversibility. It suffices to show that at any point, the algorithm can
revert the tape to the original configuration w (and then D(B, V) simply issues the REVERT
command). No matter the present configuration, we iterate through I0(V) in descending
order. Letting the current index be i ∈ I0(V), recall this block is of form (w′)i = (z||j||∗).
First write 050 log(w/ε) to the last indices (in reverse order to satisfy reversibility), such that
we reach the configuration after compressing the block. Then enumerate over h ∈ {0, 1}2t0

using workspace O(t0 + log(w/ε)), until we find the hash with index z in BADi,j , where
BADi,j and Bj

t0,h⃗p
are defined as before (which we still have access to because we reset the

tape in reverse order), and we determine membership by Proposition 25.
Once we find this h, write (w′)i = h (in the reverse order to satisfy reversibility) and

proceed to the next highest index in I0(V). After this process has completed, it is clear from
construction that w has been reset to the original configuration, and that the tape never
reaches a new intermediate configuration during this process.

CCC 2024

4:14 Derandomizing Logspace with a Small Shared Hard Drive

Time and Space. In every step of the computation, we perform at most poly(2t0nw/ε)
work to determine if a hash function is good, find the index of a bad hash function, or find a
good hash function. Moreover, as at every point we store at most a constant number of hash
functions on the worktape, the space consumption follows. ◀

It is easy to go from Theorem 23 to Theorem 14.

Proof of Theorem 14. Let B : [poly(n)]×{0, 1}nc → [poly(n)] be the ROBP obtained from
applying Lemma 15 to M with n = n, w = n, and ε = 1/2n. We then call Theorem 23 with
B = B and ε = 1/2n2. Let h⃗ = (h1, . . . , hc log n) be the hash functions obtained from this
call, which we have implicit access to via the current state of the catalytic tape w′ and V ,
and let t = O(log n) be the domain of the hash functions. Then enumerate over x ∈ {0, 1}t

and for i, j ∈ [w] let

M̃i,j = Pr
x←Ut

[
B[i, NISh⃗(x)] = j

]
.

By Lemma 15 and Theorem 23, we have the guarantee that∥∥∥M̃ −Mn
∥∥∥

1
≤ 1

2n
+ n · 1

2n2 = 1/n. ◀

Finally, we can use Theorem 24 to prove Theorem 7.

Proof of Theorem 7. The algorithm works as follows. Given B =
(

B
1
, . . . , B

n
)

of width

and length n where E
[
B

j(Un)
]
≥ 1 − 1/n2 for every j, we call Theorem 24 with B = B

and ε = 1/2n2. Let h⃗ = (h1, . . . , hlog n) be the hash functions obtained from this call, which
we have implicit access to via the current state of the catalytic tape w′ and V , and let
t = O(log n) be the length of the domain of the hash functions. We then claim there is some
x ∈ {0, 1}t such that for all j ∈ [n],

B
j(NISh⃗(x)) = 1.

We have this as

Pr
x←Ut

 ∧
j∈[n]

B
j (

NISh⃗(x)
) ≥ 1−

∑
j∈[n]

Pr
x←Ut

[
B

j (
NISh⃗(x)

)
= 0

]
≥ 1−

∑
j∈[n]

(
Pr

x←Ut

[
B

j(Un) = 0
]

+ 1
2n2

)
≥ 1− n(2/n2) > 0

where the second inequality follows from our choice of ε. Then it is simple to find such an x

by enumeration, whereupon we compute and return NISh⃗(x) ∈ {0, 1}n, which is precisely
the solution for the mutual ROBP hitting problem. Finally, we use Theorem 24 to reset the
tape. ◀

4 Catalytic Recursive Matrix Powering

We now transform Theorem 23 into a parameterized algorithm for matrix powering.

E. Pyne 4:15

▶ Theorem 27. There is a catalytic machine that, given r1, r2 such that r1r2 = log(n) and
a stochastic matrix M ∈ [0, 1]n×n where each entry is specified with l = O(log n) bits of
precision, uses workspace O(r2 · log(n)), catalytic space O(r1 · log(n)), and time nO(r2), and
outputs M̃ such that ∥M̃ −Mn∥ ≤ 1/n.

Theorem 27 immediately implies Theorem 3 by setting r2 = logα−1(n) and r1 = log2−α(n)
for α ∈ [1, 1.5], and using the standard transformation of estimating the acceptance probability
of a BPL machine via stochastic matrix powering.

We first prove there exists an algorithm which computes a single intermediate power. We
must be careful to ensure that the algorithm satisfies the requirements of (partial) catalytic
computation. In particular, if the machine ever outputs an answer (rather than ⊥), this must
be the only possible answer for this input, over all possible catalytic tapes. Simultaneously,
we must ensure that the vast majority of inputs never return ⊥ no matter the initial catalytic
tape configuration.

We achieve this dual guarantee using an idea from Saks and Zhou [21]. For a given input
matrix M , we additionally take in a shift s ∈ [0, δ] for δ = 1/ poly(w/ε). After computing an
approximate power of M , we add s to each entry, and then truncate each entry to O(log w/ε)
bits of precision. In fact, we first verify that our shifted approximate power is sufficiently far
from the rounding threshold, and if not return ⊥. By doing so, we algorithmically verify that
we will never round to different thresholds over different w. Unfortunately, for some pairs
(M, s) it may be the case that we detect possible mis-rounding for some tapes w, even if all
possible approximations lie inside a single rounding interval. This can result in returning ⊥
on some tapes and a (consistent) value otherwise. However, we show that we can choose the
magnitude of s such that with high probability over s this does not occur, and we always
return a (consistent) value.

▶ Theorem 28. For every n, w ∈ N and ε > 0 where w ≥ n ≥ log w and 2−n > ε > 0,
there is a reversible catalytic machine P that uses workspace O(log w/ε), catalytic space
O(log(n) log(nw)), and time poly(nw/ε). The machine takes input s ∈ {0, 1}O(log(w/ε)) and
a substochastic matrix M ∈ [0, 1]w×w, where each entry of M is specified with l = O(log w/ε)
bits of precision. Moreover:

For every (s, M), there is substochastic M̃s (defined without reference to w) with l bits of
precision satisfying

∥∥∥M̃s −Mn
∥∥∥

1
≤ ε such that for every w,

Pw(s, M) ∈
{
⊥, M̃s

}
.

For every M , Prs[∃w, Pw(s, M) = ⊥] ≤ 1/w2.

Proof. Let B : [(w/δ)c]×{0, 1}m=n·O(log(w/δ)) → [(w/δ)c] be the result of Lemma 15 applied
to M with n = n and ε = δ to be chosen later. We compose the output of this algorithm
with Theorem 23, applied with B = B and w′ = (w/δ)c and n′ = m = O(n3) and ε = δ to
be chosen later. Let h⃗ = (h1, . . . , hℓ) be the hash functions obtained from this call, which
we have implicit access to via the current state of the catalytic tape w′ and V , and let
t = O(log w/δ) be the domain of the hash functions. Then enumerate over x ∈ {0, 1}t and
for every i, j ∈ [w] let

M̃i,j = Pr
x←Ut

[
B

[
i, NISh⃗(x)

]
= j

]
.

Next, define τ =
(
s · 2−2k

)
· J where J = 1w×w, interpreting s ∈ [2k]. We next check if any

entry of M̃ + τ is within 2δ of a multiple of 2−l, our rounding threshold. In this case, run
Dw′(B, V) to reset the tape and return ⊥. Otherwise, let

CCC 2024

4:16 Derandomizing Logspace with a Small Shared Hard Drive

M̃s =
⌊
M̃ + τ

⌋
l

where ⌊·⌋l rounds each entry down to l bits of precision, and decreases the largest entry
per row such that the final matrix is substochastic. Let this matrix be M̃s. Finally, run
Dw′(B, V), and return M̃s.

Accuracy. By our choice of error in Theorem 23 and Lemma 15, we have that∥∥∥M̃ −Mn
∥∥∥

1
≤ 2wδ

and moreover M̃ has each row sum at most 1. Furthermore, perturbing by τ and rounding
down the largest entry causes an ℓ1 error of at most 2w · 2−k. Finally, rounding each entry
down to a multiple of 2−l causes a total error of at most w · 2−l, so∥∥∥M̃s −Mn

∥∥∥ ≤ 2wδ + 2w · 2−k + w · 2−l ≤ ε

Where the final inequality comes from choosing

l = O(log(w/ε)), k = 10 · l, δ = 2−2k.

Uniqueness. We claim that for every (s, M), there is at most 1 possible non-⊥ output
over all choices of w (which we denote M̃s in the theorem statement). Let M̃w, M̃w′ be the
result of Theorem 23 on M initialized with catalytic tapes w, w′. By the accuracy guarantee
of Theorem 23, for every i, j we have∣∣∣(M̃w + τ)i,j − (M̃w′ + τ)i,j

∣∣∣ ≤
∣∣∣(M̃w + τ)i,j − (M + τ)i,j

∣∣∣ +
∣∣∣(M + τ)i,j − (M̃w′ + τ)i,j

∣∣∣ ≤ 2δ

Thus, if (M̃w′ + τ)i,j is greater than 2δ from a multiple of 2−l, we can be certain that no
tape w′ will induce an estimate that falls on the other size of the threshold, and hence all
non-⊥ outputs will be rounded consistently.

Success Probability. Furthermore, we argue that for every M , with probability at least
1− 1/w2 over s we return M̃s (not ⊥) for every initial tape configuration. Fixing arbitrary
s and i, j ∈ [w], if (M + τ)i,j is at least 3δ from every multiple of 2−l, every w will induce
an estimate (M̃ + τ)i,j that is at least 2δ from every multiple of 2−l, and hence for every
w we will not produce ⊥ due to this entry. This occurs for every i, j simultaneously with
probability at least

w2 · 2l · 6δ · 2k + 2
2k

≪ 1/w2.

Time and Space. It is clear the algorithm runs in the claimed time and space bound,
given Theorem 23.

Reversibility. As the only components of the algorithm that write to the catalytic tape are
calls to Theorem 23, reversibility follows immediately from the equivalent result for that
algorithm. ◀

We can then prove the main result.

E. Pyne 4:17

▶ Theorem 27. There is a catalytic machine that, given r1, r2 such that r1r2 = log(n) and
a stochastic matrix M ∈ [0, 1]n×n where each entry is specified with l = O(log n) bits of
precision, uses workspace O(r2 · log(n)), catalytic space O(r1 · log(n)), and time nO(r2), and
outputs M̃ such that ∥M̃ −Mn∥ ≤ 1/n.

Proof. Let s⃗ = (s1, . . . , sr2) ∈ {0, 1}r2·O(log n) be a vector of random shifts. Let M̃0 = M

and for i ∈ [r2] recursively define

M̃i = f
(

M̃i−1, si

)
,

where f is the function defined by Theorem 28 with ε = 1/n3 and n = 2r1 . An easy inductive
proof [19] establishes that, letting∥∥∥M̃i −M2r1·i

∥∥∥
1

= δi

we have δi+1 ≤ 1/n3 + 2r1 · δi−1 ≤ 2r1+1 · δi−1, and hence δr2 ≤ 1/n.
The final algorithm iterates over s⃗ and computes M̃r2 by applying recursive composition

of space-bounded machines Corollary 13 to the algorithm of Theorem 28 as defined above.8
The algorithm returns the first non-⊥ output. The fact that the algorithm is catalytic follows
from Corollary 13 and Theorem 28. Next, we claim there is some s⃗ where the algorithm
returns a value. Note that si is chosen obliviously to M̃i−1, and so with probability at least
1/n2 over si, on input (M̃i−1, si) the algorithm returns M̃i (i.e. not ⊥) when run with every
possible catalytic tape. Thus, there is some s⃗ where every level computes correctly.

Time and Space. Every application of Theorem 28 occurs with parameters n = 2r1 and
w = n and ε = 1/n3, such that the algorithm uses workspace O(r1 + log(n)) = O(log n),
catalytic space O(r1 · (r1 + log(n))) = O(r1 · log n), and time poly(n), and moreover the shift
s for each level is of length O(log n). Applying Corollary 13, we obtain that the composed
algorithm uses workspace O(r2 · log(n) + |s⃗|) = O(r2 · log n), catalytic space O(r1 · log n),
and runs in time nO(r2) as claimed. ◀

References
1 Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary

coins. J. Comput. Syst. Sci., 66(4):671–687, 2003. doi:10.1016/S0022-0000(03)00025-4.
2 Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma. On pure space vs catalytic space.

Theor. Comput. Sci., 921:112–126, 2022. doi:10.1016/j.tcs.2022.04.005.
3 Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff, and Florian Speelman. Computing

with a full memory: catalytic space. In Symposium on Theory of Computing, STOC 2014,
pages 857–866. ACM, 2014.

4 Harry Buhrman, Michal Koucký, Bruno Loff, and Florian Speelman. Catalytic space: Non-
determinism and hierarchy. Theory Comput. Syst., 62(1):116–135, 2018. doi:10.1007/
s00224-017-9784-7.

5 Jin-yi Cai, Venkatesan T. Chakaravarthy, and Dieter van Melkebeek. Time-space tradeoff
in derandomizing probabilistic logspace. Theory Comput. Syst., 39(1):189–208, 2006. doi:
10.1007/S00224-005-1264-9.

6 Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of small
space. Theory of Computing, 18(21):1–32, 2022. doi:10.4086/toc.2022.v018a021.

8 We can define the machine to take the entire shift vector and a pointer to the index it should use, such
that we are recursively composing exactly the same machine, but we suppress this for clarity.

CCC 2024

https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1016/j.tcs.2022.04.005
https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1007/S00224-005-1264-9
https://doi.org/10.1007/S00224-005-1264-9
https://doi.org/10.4086/toc.2022.v018a021

4:18 Derandomizing Logspace with a Small Shared Hard Drive

7 Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated multiplica-
tion of stochastic matrices in small space. In Proceedings of the 55th Annual ACM Symposium
on Theory of Computing, STOC 2023, pages 35–45. ACM, 2023.

8 James Cook and Ian Mertz. Catalytic approaches to the tree evaluation problem. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
752–760. ACM, 2020.

9 James Cook and Ian Mertz. Tree evaluation is in space o(log n · log log n). Electron. Colloquium
Comput. Complex., TR23-174, 2023. arXiv:TR23-174.

10 Samir Datta, Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Random-
ized and symmetric catalytic computation. In Computer Science – Theory and Applications –
15th International Computer Science Symposium in Russia, CSR 2020, pages 211–223. Springer,
2020.

11 Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness to
randomness approach for BPL = L that uses properties of BPL. Electron. Colloquium Comput.
Complex., TR23-208, 2023. arXiv:TR23-208.

12 Chetan Gupta, Rahul Jain, Vimal Raj Sharma, and Raghunath Tewari. Unambiguous catalytic
computation. In 39th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2019, volume 150 of LIPIcs, pages 16:1–16:13, 2019.

13 Daniel M. Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit johnson-lindenstrauss
families. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques –
14th International Workshop, APPROX 2011, and 15th International Workshop, RANDOM
2011, Princeton, NJ, USA, August 17-19, 2011. Proceedings, volume 6845 of Lecture Notes in
Computer Science, pages 628–639. Springer, 2011. doi:10.1007/978-3-642-22935-0_53.

14 Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM,
61(1):4:1–4:23, 2014. doi:10.1145/2559902.

15 Ian Mertz. Reusing space: Techniques and open problems. Bulletin of EATCS, 141(3), 2023.
16 Noam Nisan. Psuedorandom generators for space-bounded computation. In Harriet Ortiz,

editor, Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17,
1990, Baltimore, Maryland, USA, pages 204–212. ACM, 1990. doi:10.1145/100216.100242.

17 Noam Nisan. On read-once vs. multiple access to randomness in logspace. Theor. Comput.
Sci., 107(1):135–144, 1993. doi:10.1016/0304-3975(93)90258-U.

18 Noam Nisan. RL <= SC. Comput. Complex., 4:1–11, 1994. doi:10.1007/BF01205052.
19 Aaron (Louie) Putterman and Edward Pyne. Near-optimal derandomization of medium-width

branching programs. In Proceedings of the 55th Annual ACM Symposium on Theory of
Computing, STOC 2023, pages 23–34, 2023.

20 Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness for log-space. In 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, pages 989–1007. IEEE, 2023. doi:10.1109/FOCS57990.2023.00061.

21 Michael E. Saks and Shiyu Zhou. BPHSpace(S) ⊆ DSP ACE(S3/2). J. Comput. Syst. Sci.,
58(2):376–403, 1999. doi:10.1006/jcss.1998.1616.

22 D. Sivakumar. Algorithmic derandomization via complexity theory. In John H. Reif, editor,
Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-21, 2002,
Montréal, Québec, Canada, pages 619–626. ACM, 2002. doi:10.1145/509907.509996.

A Proofs of Lemmas

We first prove that a hash function drawn from a pairwise independent hash family is good
for a function with high probability. To do this, we recall the hash mixing lemma:

https://arxiv.org/abs/TR23-174
https://arxiv.org/abs/TR23-208
https://doi.org/10.1007/978-3-642-22935-0_53
https://doi.org/10.1145/2559902
https://doi.org/10.1145/100216.100242
https://doi.org/10.1016/0304-3975(93)90258-U
https://doi.org/10.1007/BF01205052
https://doi.org/10.1109/FOCS57990.2023.00061
https://doi.org/10.1006/jcss.1998.1616
https://doi.org/10.1145/509907.509996

E. Pyne 4:19

▶ Lemma 29 ([16]). Let A, A′ ⊆ {0, 1}t be arbitrary subsets of density ρ = |A|/2t and
ρ′ = |A′|/2t. Then for every δ > 0,

Pr
h←H

[∣∣∣∣ Pr
x←Ut

[x ∈ A, h(x) ∈ A′]− ρρ′
∣∣∣∣ ≥ δ

]
≤ (1/δ2)/2t.

Proof of Lemma 21. For every i, k ∈ [w], let Ai,k = {x ∈ {0, 1}t : f [i, x] = k} and let
ρi,k = |Ai,k|/2t. Note that for every i, j,

Pr
x,x′←Ut

[f [f [i, x], x′] = j] =
∑

k∈[w]

ρi,kρk,j .

Thus, for every h such that for every i, k, j, Prx←Ut
[x ∈ Ai,k, h(x) ∈ Ak,j]− ρi,kρk,j | ≤ δ/w,

we have that h is δ-good for f . By Lemma 29 this event occurs with probability 1−(w/δ)2/2t

over h← H for each pair of sets, and thus with probability 1−w3(w/δ)2/2t = 1−w5(1/δ)2/2t

for every tuple (i, j, k). ◀

We recall there is a logspace algorithm which tests if a hash function is good, given oracle
access to the function we wish to fool. We remark that there is work [17, 6, 20] on testing if
an entire PRG is good for a branching program, but we need a much weaker claim.

▶ Lemma 30 ([18]). There is a space O(t + log(w/δ)) algorithm that, given oracle access to
f : [w]× {0, 1}t → [w] and h ∈ Ht and δ > 0, tests if h is δ-good for f .

Proof. The algorithm enumerates over i, j ∈ [w]. For every i, j, the algorithm computes pi,j =
Ex,x′←Ut [f [f [i, x], x′]] (i.e. the correct probability) by enumeration over x, x′ in space O(t +
log w). Then it computes p̃i,j = Ex←Ut

[f [f [i, x], h(x)]] and rejects if the estimate is greater
than δ from the true value. Correctness and total space consumption are immediate. ◀

We can then prove that we can test if a hash function is good, given B and pointers to
preceding hash functions.

▶ Proposition 25. There is a space O(t + log(w/δ)) algorithm that, given n, w, t ∈ N with
w ≥ n and h̃ ∈ {0, 1}2t and B : [w]×{0, 1}n → [w] and (read only) w and pointers p1, . . . , pr

such that w[pi,...,pi+2t] = hi represents a hash function on t bits, returns if h̃ is δ-good for
Bt,(h1,...,hr).

Proof. By Lemma 30, it suffices to show that given i ∈ [w] and x ∈ {0, 1}t, we can compute
Bt,(h1,...,hr)[i, x]. To do this, the algorithm maintains v ∈ [w] as its current position in the
branching program (initialized to v = i) and i ∈ [n] to track the current layer. To determine
the next position, it suffices to determine the ith block of the output of NIS(h1,...,hr)(x). It is
well known that this can be computed in space O(t + log nw) given read-only access to the
set of hash functions (by walking down the binary expansion of i, denoted ⟨i⟩, and applying
hj if ⟨i⟩j = 1), which we have via the pointers. ◀

CCC 2024

4:20 Derandomizing Logspace with a Small Shared Hard Drive

Finally, we provide a translation of our quantization statement. We first recall a strict
specialization of the statement of [19]:

▶ Lemma 31. There exists a canonicalizer algorithm Ct that, given n, w ∈ N with w ≥ n,
takes in ε > 0 and a sub-stochastic matrix M ∈ Rw×w with each entry represented by at most
O(log w/ε) bits, runs in space O(log w/ε), and returns a branching program B of length n

and width w + 1 with alphabet {0, 1}t for t = O(log(w/ε)). Moreover, letting M̃ ∈ [0, 1]w×w

be the matrix where for i, j ∈ [w] we have

M̃i,j = Pr
x←U({0,1}t)n

[
B[i, x] = j

]
then∥∥∥M̃ −Mn

∥∥∥
1
≤ ε.

We reduce the alphabet (and slightly increase the length) as follows. We transform B into a
branching program of width (w + 1) · 2t = poly(w/ε) and length n · t = n ·O(log w/ε), where
each set of t layers reads t bits, interprets these bits as σ ∈ {0, 1}t, and takes the transition
labeled with σ in B.

Explicit Time and Space Efficient Encoders Exist
Only with Random Access
Joshua Cook #

Department of Computer Science, University of Texas at Austin, TX, USA

Dana Moshkovitz #

Department of Computer Science, University of Texas at Austin, TX, USA

Abstract
We give the first explicit constant rate, constant relative distance, linear codes with an encoder
that runs in time n1+o(1) and space polylog(n) provided random access to the message. Prior to
this work, the only such codes were non-explicit, for instance repeat accumulate codes [19] and the
codes described in [26]. To construct our codes, we also give explicit, efficiently invertible, lossless
condensers with constant entropy gap and polylogarithmic seed length.

In contrast to encoders with random access to the message, we show that encoders with sequential
access to the message can not run in almost linear time and polylogarithmic space. Our notion of
sequential access is much stronger than streaming access.

2012 ACM Subject Classification Theory of computation → Error-correcting codes; Theory of
computation → Expander graphs and randomness extractors; Theory of computation → Streaming
models; Theory of computation → Lower bounds and information complexity

Keywords and phrases Time-Space Trade Offs, Error Correcting Codes, Encoders, Explicit Construc-
tions, Streaming Lower Bounds, Sequential Access, Time-Space Lower Bounds, Lossless Condensers,
Invertible Condensers, Condensers

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.5

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/032/

Funding This material is based upon work supported by the National Science Foundation under
grant number 2200956.

Acknowledgements Thanks to Ryan Williams for questions that eventually led to this result. Thanks
to David Zuckerman, Justin Oh, and Jesse Goodman for some advice about which extractors might
be used in our condenser construction. Thanks to Niels Kornerup for conversations about time space
lower bounds.

1 Introduction

In this paper, we study the time and space efficiency of encoders for error correcting codes.
An error correcting code is a function that maps any two distinct messages to codewords
that are very far apart in hamming distance. Error correcting codes [42, 27] have numerous
practical and theoretical applications. Because of these applications, both codes with efficient
encoders and lower bounds for encoders are useful. Codes can also be used as hard functions
in lower bounds.

The efficiency of encoding codes has been extensively studied. Some notions of encoding
complexity are the size and depth a circuit requires to encode the code. Spielman gave
explicit codes that could be encoded by linear sized circuits with logarithmic depth and fan
in 2 [49]. For unbounded fan in circuits, Gál, Hansen, Koucký, Pudlák, and Viola gave tight
bounds on the size and depth required to encode codes [26]. For depth 2 parity circuits, Gál
et al. showed that the minimum circuit size required to encode a constant relative distance
code was Θ(n(log(n)/ log(log(n)))2).

© Joshua Cook and Dana Moshkovitz;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 5; pp. 5:1–5:54

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jac22855@utexas.edu
https://orcid.org/0000-0002-4851-7573
mailto:danama@cs.utexas.edu
https://orcid.org/0000-0002-4151-568X
https://doi.org/10.4230/LIPIcs.CCC.2024.5
https://eccc.weizmann.ac.il/report/2024/032/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Explicit Time and Space Efficient Encoders Exist Only with Random Access

In this paper, the notion of encoding complexity we focus on is the time and space
required to encode. We investigate the time and space with two different models of how the
message is accessed. One is the RAM model where any bit of the message can be accessed
in one time step. The other is a sequential model, where the message can only be accessed
through heads that can only move one space at a time.

Efficient Encoders with Random Access

Branching programs are the nonuniform version of RAM algorithms. Many problems, such as
sorting and finding unique elements, have time space lower bounds for branching programs,
e.g. [11, 52, 5, 1, 7, 6].

There are time and space lower bounds for encoding codes too. Bazzi and Mitter proved
that for any code with constant relative distance, any branching programs encoding them
in linear time require linear space [4], but they don’t give any lower bounds on space if the
encoder time is Ω(n log(n)). Self dual codes require branching programs that run in time T

and space S to have ST = Ω(n2) [45]. Some of the best lower bounds for nondeterministic
branching programs are for recognzing codewords. For any good enough code, L, we have
that any nondeterministic branching program recognising L in linear time requires linear
space [32].

Many codes can be computed either in almost linear time, or polylogarithmic space,
but not both simultaneously. For example, Reed-Solomon codes have encoders that run in
almost linear time with almost linear space, and encoders that run in polynomial time and
polylogarithmic space, but Reed-Solomon codes do not have known encoders that run in
almost linear time and polylogarithmic space. In fact, every constant rate linear code has
both a quadratic time, log space branching program and a linear time, linear space branching
program. However, not all linear codes have branching programs that are polylogarithmic
space and almost linear time.

Repeat-Accumulate (RA) codes [19] and the depth 2 circuits of [26] are both non-explicit
codes that have branching programs that run in quasilinear time and logarithmic space. The
best explicit RA codes only have relative distance O(log(N)

N) [24]. The authors of [26] could
only partially derandomize their construction. Prior to this work, no explicit codes were
known that can be encoded simultaneously in almost linear time and polylogarithmic space.

Efficient Encoders with Sequential Access

Branching programs are a model with random access to the input. But some hardware
accesses data sequentially, and some algorithms output data sequentially. Our algorithms
with sequential access to the message will have a restricted number of heads, h, to access
the message with. These heads can only be moved one space per time step, or jumped to
the location of any other head. Even though the algorithm only has sequential access to the
input, it has random access to its smaller working space.

Sequential access arises naturally when composing bounded space algorithms. The
standard way to run one algorithm, A, on the output of another algorithm, B, space
efficiently is by running A until it wants an input bit, then running B until it outputs that
bit. This is a very sequential way to access the output of B. The obvious way to make this
faster without storing the whole output of B is to keep intermediate states of B and only
simulate B starting from the most recent intermediate state. This is like storing multiple
heads to the output of B. Copying one intermediate state over another is like jumping one
head to another.

J. Cook and D. Moshkovitz 5:3

We emphasize that sequential access is much stronger than streaming access as the
program can choose which head moves and can read the same message many times. It is
also stronger than standard Turing Machine access as there are multiple heads and there are
head to head jumps. Other researchers have also studied models of computation with head
to head jumps [46, 36, 40].

1.1 Main Results
We give the first explicit code with constant relative distance, constant rate and an almost
linear time, polylogartihmic space RAM algorithm encoder.

▶ Theorem 1 (Explicit Almost Linear Time, Polylog Space Encodable Codes). For any ϵ > 0,
and N , there exists a linear code

C : {0, 1}N → ΣM

that has relative distance 1 − ϵ, output length M = O(N) and alphabet Σ = {0, 1}poly(1/ϵ).
Further C is computable in time N poly(2log(log(N))3

/ϵ) + 2poly(1/ϵ) and space O(log(N)2 +
log(N) poly(1/ϵ)) with random access to the message.

For constant ϵ, we have constant alphabet size, Σ = {0, 1}O(1), and further C is computable
in time N1+o(1) and space O(log(N)2).

While one might want an actually linear time, log space encoder, Bazzi and Mitter [4] es-
tablished that any linear time encoder requires linear space. So if one requires polylogarithmic
space encoders, they can’t run in linear time.

The distance of a linear code is the Hamming weight of its smallest non-zero codeword.
Hence, the idea of our code is to take any non-zero message and condense its weight in a
codeword whose length is proportional to the weight. To do that, we use a function called a
lossless condenser, so we call our codes “condenser codes”. A lossless condenser is a function
that takes an input source with entropy and a uniform seed and outputs a source that is
smaller than the input source, but still has the same entropy as the input source plus the
seed. The idea of condenser codes is to treat the input bits that are 1 as a source of entropy.
If this source can be losslessly condensed to an output with constant entropy gap, then
this can be used to give a linear function whose output has constant Hamming weight. See
Section 2.3 for details.

A condenser can be thought of as a bipartite expander graph. Expander graphs have been
used in constructing codes before, for instance for distance amplification [2] or Spielmann
codes [49]. But both of these construct codes iteratively in a way that makes it difficult to
encode both time and space efficiently. In contrast, condensers give something closer to a one-
shot construction that makes it easier to encode time and space efficiently. Expanders have
also been used to define codes using local constraints, such as with LDPC codes [20, 38, 47],
or even the c3 LTC codes [18], but these codes do not have known efficient encoders [17].

Crucially, the encoder given in Theorem 1 assumes random access to the message it
encodes. In contrast, we show that if the encoder only has sequential access to the message,
it cannot encode in almost linear time and sub-linear space:

▶ Theorem 2 (Lower Bounds For Encoders With Sequential Access). Suppose C is a code with
relative distance δ encoding N bits. Suppose A is an algorithm computing C running in time
T space S and using h sequential heads to access the message. Further assume S > h log(N).
Then

hST = Ω(δN2).

CCC 2024

5:4 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Our lower bounds on the encoders with sequential access to the message are much stronger
than those by Bazzi and Mitter [4] on encoders with random access to the message. We give
lower bounds on the space of an encoder with sequential access to the message, as long as it
runs in time ≪ N2. Since in the branching model of computation there are codes with time
O(N log(N)) and space log(N) encoders, this shows that random access to the message is
important for time and space efficiently computing a code.

A work by Bangalore, Bhadauria, Hazay and Venkitasubramaniam [3] gives a time space
lower bound for streaming algorithms encoding codes, but their result is much more restrictive.
Their result is in the streaming setting, which only allows one head at a time, and only allows
that head to move forward. In contrast, our lower bounds holds for many simultaneous heads
on the input where heads can move backward or even jump to other heads.

The sequential model of computation arises naturally when composing low space al-
gorithms. In this scenario, h = O(S), which gives a lower bound of S2T = Ω(N2).

Finally we show that our lower bound for encoding codes using sequential access to the
message, Theorem 2, is tight up to low order factors by giving an explicit code that nearly
achieves the lower bound. This code is based on a tensor code using the code in Theorem 1.

▶ Theorem 3 (Encoders With Sequential Access Meeting the Lower Bounds). For any number of
heads h ≥ 2, time T ≥ N , space S = Ω(h log(N)), relative distance δ > 0 with hST = Ω(δN2),
there exists a code with constant rate and relative distance Ω(δ) encoded by a time TNo(1),
space S polylog(N) algorithm using h sequential heads to access the message.

▶ Remark 4 (Uniformity of Results For Sequential Access). We note that our lower bounds on
sequential access hold for arbitrary operations on the working memory. That is, Theorem 2
even holds for nonuniform algorithms. But our encoders matching the lower bounds are
uniform and only needs random access to working memory. That is, Theorem 3, provides a
uniform algorithm.

1.2 Invertible Condensers
To construct the explicit codes for encoders with random access to the input, we use
condensers. Our condensers need to be efficiently invertible. That is, given an output of the
condenser, we need to efficiently iterate through all inputs that map to that output efficiently.
To simplify this, we ask that our condenser output 2 outputs, the condensed output and a
buffer so that the resulting function is invertible as a function. Additionally, our condenser
needs to be good in several other ways. It needs to be lossless, have constant entropy gap,
and have polylogarithmic seed size. See Section 2.2.1 for an informal definition of lossless
condensers or Section 5 for a formal definition.

▶ Theorem 5 (Good Invertible Condensers Exist). For every n, k and ϵ such that ϵ >

23−n/ log∗(n)log∗(n) , there is a time poly(n), space O(n2) invertible, lossless (n, k) →ϵ (m, k+d)
condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with d = O(log(n/ϵ)3) and m = k + d + O(log(1/ϵ)).

The efficiency of inverting lossless condensers is not commonly studied. However, efficiently
invertible extractors have been used in wiretap protocols [14] and non-malleable extractors
[15, 13, 37]. Lossless condensers and extractors are closely related: they are both special
cases of condensers.

J. Cook and D. Moshkovitz 5:5

Some prior lossless condensers are invertible, such as multiplicity code based condensers
[33], but they don’t have constant entropy gap and small seed. Prior constant entropy loss
extractors [50, 25] can be used to build lossless condensers with small seed and small entropy
gap, but are not known to be invertible.

1.3 Barrier To Time-Space Efficient PCP for Delegated Computation
In delegation [21, 10, 8, 44, 30] a computation should be carried out so it can be verified in
short time. Specifically, the paper [8] poses the following challenge. Given:

A time-T and space-S computation, specified by a transition function that maps time-t
states to time t + 1 states for every 1 ≤ t < T ;
An input of size n ≤ S ≤ T ;

produce in time T polylog T and space S poly log T both the outcome of the computation
and a certificate that allows probabilistic verification in time n poly log T . The paper [8] calls
such a transformation a “complexity-preserving PCPs”.

Theorem 2 gives a barrier towards the construction of complexity-preserving PCPs. It
shows that it cannot simultaneously be that:
1. The computation is only accessed by simulating the transition function sequentially.
2. The certificate is an encoding of the computation by a good error correcting code.
Recall that known PCPs are (or can easily be modified to) encodings of the witnesses via
(highly specialized) error correcting codes. Moreover, known delegation schemes only use
blackbox access to the transition function. Therefore, Theorem 2 implies that a complexity-
preserving PCP, if possible, would require significantly different delegation protocols than
those proposed so far.

1.4 Time and Space Efficient Decoding?!
Other common notions of a code’s complexity are the time required to encode and the time
required to decode. Spielman codes [49] not only have linear time encoders, but also have
linear time decoders. But both the encoder and decoder require linear space.

Repeat accumulate codes, the codes of [26], and ours all make non-adaptive, also known
as input oblivious, queries. That is, on any message, they always query the same message bits
in the same order at the same time. While one can time and space efficiently deterministically
encode codes with non-adaptive queries, one can not efficiently decode with deterministic,
non-adaptive decoders, even with non-uniform branching programs. Gronemeier [22] proved
that any decoders which are deterministic and non-adaptive which run in time O(N1+α)
must use space Ω(N1−α). Thus one can not hope for decoders to be as efficient as encoders
without being adaptive, or randomized.

There are randomized decoders that run in No(1) space and almost linear time with random
access to the message. Specifically, good locally decodable codes have this property [35, 34].
A follow up work by the same authors [16] shows that all locally correctable codes also have
adaptive time and space efficient decoders. However, these codes have no known time and
space efficient encoders.

1.5 On Sequential Access to The Input
The model of computation with sequential access to the input is less studied than branching
programs. So we will formally define sequential access and briefly discuss some of its
properties.

CCC 2024

5:6 Explicit Time and Space Efficient Encoders Exist Only with Random Access

▶ Definition 6 (Sequential Oracle). Let x be some specific string of length n and h be an
integer. Then a sequential oracle to x with h heads is a machine that has as state h integers
within the range [n]. It has an input tape that can take up to two integers, u1, u2 ∈ [h],
indicating up to two of the h heads, and an operation which can be one of the following:
1. Move forward. This increments the u1th head by one, if it is less than n.
2. Move backward. This decrements the u1th head by one, if it is more than 1.
3. Read. Let i be the value of the u1th head. Then this returns xi.
4. Jump to. This sets the u1th head to be the same value of the u2th head.
Any one of these operations can be done in one time step.

We call the oracle a non-reversible, sequential oracle if it can not use the “move backward”
operation.

We call the oracle a non-jumping, sequential oracle if it can not use the “jump to”
operation.

We say that an algorithm has sequential access to an input if the only way that input can
be accessed is through a sequential oracle.

We assume that all sequential oracles start with all heads at position 1.

There are two potentially contentious operations of this sequential head model: the “move
backward” operation, and the “jump to” operation. For simulating algorithms to access their
output, the move backward operation may not be possible if the algorithm is not invertible.
For hardware, often moving backward may be fine, but jumping heads is not. Our lower
bounds, Theorem 2, holds even if heads can both jump and move backward. Our upper
bounds, Theorem 3, needs heads that can jump, but not ones that move backward.1

The “jump to” operation is very powerful. Even with only head to head jumps, non-
reversible heads can simulate reversible heads with only logarithmic overhead. Thus the
resources needed when given reversible, sequential access is within a log factor of what is
needed for non-reversible, sequential access to the input.

▶ Lemma 7 (Reversibility Can Be Efficiently Simulated With Jumping). A single sequential
head to a length N input can be simulated with O(log(N)) non-reversible sequential heads to
the same input with an expected time of O(log(N)) for each head movement, and O(log(N))
space.

More generally, k sequential heads to a length N input can be simulated with O(k log(N))
non-reversible sequential heads to that same input with an expected time of O(log(N)) for
each head movement, and O(k log(N)) space.

Our sequential access to the input with reversible heads seems very similar to a Turing
machine, but the addition of multiple heads makes it much more powerful. For instance,
the classic example of a hard problem for a 1 tape Turing machine, the palindrome, takes
quadratic time on a 1 tape Turing machine [29]. Just two heads make palindromes easy to
solve in linear time. Even if one is only given O(log(N)) non-reversible heads and O(log(N))
space, palindrome can be solved in O(N log(N)) time with non-reversible, sequential access
to the input.

There has been research on multi-head Turing Machines. Savitch and Vitányi [46] studied
multi-head Turing Machines with heads that can jump to the location of other heads, like our
heads do. This model was compared to and contrasted with multi-tape turing machines in
several works [46, 36, 40]. Prior to this work, the only time space lower bounds for sequential
access are those implied by the lower bounds for branching programs.

1 Our codes can also be encoded in the same time and space bound with non-jumping sequential heads if
one allows a preprocessing step to move all the heads into an initial position before starting.

J. Cook and D. Moshkovitz 5:7

For completeness, one might ask if non-reversible sequential access is stronger than non-
jumping sequential access and if non-jumping sequential access is stronger than non-jumping,
non-reversible access. We show that this is indeed the case in the time and space bounded
setting. Informally, we prove that

Random Access
> Sequential Access
≃ Non-Reversible Sequential Access
> Non-Jumping Sequential Access
> Non-Jumping, Non-reversible Sequential Access

That random access is more powerful than sequential access is a direct consequence of
our explicit codes in the RAM model, Theorem 1, and our code lower bounds for sequential
access to the input, Theorem 2. The other two inequalities come from our code lower bounds
for sequential access, Theorem 2, and our explicit codes for sequential access, Theorem 3.
See Section 9.3 for details.

2 Technique

For our results, we use the convention that capital letters are an exponential factor larger
than their lower case counterparts. For example, N = 2n, K = 2k and M = 2m. In particular,
our codes with efficient encoders with random access to the input are constructed using
condensers that act on the indexes of the bits in the code. So our codes are functions on N

bits, and our condensers are functions on n bits.
We start with proving our lower and upper bounds for encoders with sequential access to

the input. Then we show how to build explicit codes with efficient encoders using random
access to the input.

2.1 Sequential Access To The Message
If one only has a bounded number of heads to access the message and they can only move
one space (or jump to other heads) in one time step, can we still time and space efficiently
encode any code? We show that no codes with good distance can be time and space efficiently
computed with only sequential access to the message.

We show that given space S, time T , relative distance δ and max number of heads h

such that hST = o(δN2) that any algorithm running in time T and space S limited to at
most h sequential heads can not compute a code with relative distance δ. Further when
hST = Ω(δN2), we show that an algorithm with time close to T , space close to S, and h

heads computes a code with distance close to δ.
We start by showing the lower bound for non-adaptive sequential access to the input as a

warm up. Then we give the lower bound for even adaptive sequential access to the input.
Finally we show how to use time and space efficient codes that use random access to their
message in order to construct codes with encoders with sequential access to the input that
match our lower bounds.

2.1.1 Non-Adaptive Lower Bound
The idea is to group the message bits into intervals larger than S. So for any interval, we
think of a two person game, where one player has access to an interval when a head is in it,
and gets to communicate about the contents of that interval to a second player whenever all

CCC 2024

5:8 Explicit Time and Space Efficient Encoders Exist Only with Random Access

heads leave that interval. We want to show that the second player can’t learn the contents
of the interval, thus must do the same thing for two different settings of that interval. The
main ideas are that:

1. When a head leaves an interval, it can only communicate S bits. Thus the second player
gets very little information about that interval every time it is visited.

2. If every head is far from an interval, it takes a lot of time to move a head back to that
interval. So for most intervals, the second player only gets information about that interval
few times.

3. If there are few heads, most intervals must have all heads very far from them at any given
time. So for most intervals, the second player has to write most output bits.

Thus for most intervals, if the second player does not get as much information about an
interval as the interval contains, then for two different messages, the second player must
get the same information for both messages. Then the second player must output the same
codeword bits for both. If the second player also writes most of the codeword, then most of
the codeword will be the same for those two messages. Thus these two messages will have
close codewords, so the code will not have good distance.

So we want that most intervals both have most output bits written when no head was
near them, and that most intervals only went from having a head in them to having all heads
far away a small number of times. Thus all the bits written when all heads were far away
from an interval must have the same output for two separate messages.

In particular, we set the number of bits in each interval to be around I = δN
8h so that

most intervals have at least one interval between them and any head at any point in time.
Since it takes at least I time steps to move a head into an interval that is distance I from
every head, the number of times an interval transitions from being far from any heads to
having a head on it is at most T

I .
For non-adaptive encoders, the argument follows fairly directly. An interval must have

been visited at least I
S times for player 2 to know enough about that interval to write different

things for every possible contents of that interval. So only ST
I2 many intervals can be visited

enough to have any distance when a head isn’t near them. Only 3h
δ of the intervals can have

a head near it when more than δ fraction of output bits are written. Thus a constant fraction
of intervals, N

I − 3h
δ = 5h

δ = 5N
8I , has at least a δ fraction of bits written when no head is

near them.
Thus to have distance δ, we need the number of intervals visited often enough, ST

I2 , to be
at least the number of intervals that often don’t have a head near them, 5N

8I . Otherwise, for
one of the rarely visited intervals, for two different messages, the encoder must write the
same thing when all heads are far from that interval. Thus the code wouldn’t have good
distance. Thus

ST

I2 ≥ 5N

8I

ST ≥ 5
8NI

ST ≥ 5
8N

δN

8h

hST ≥ 5
64δN2

J. Cook and D. Moshkovitz 5:9

2.1.2 Adaptive Lower Bound
Adaptive lower bounds are trickier since the queries can change for different messages. As
an example, our prior lower bound even works for messages where the entire message is
zero, except for one interval. A non-adaptive algorithm can not even encode this extremely
restricted message into codewords with large distance. But a non-adaptive algorithm that
knows we will use this kind of counterexample will search for such an interval, then only
encode that interval. This cuts down the number of bits the adaptive algorithm will have to
encode by a factor of δ

8h which allows our adaptive encoder to outperform a non-adaptive
encoder on these particular kinds of counterexamples.

The issue in this counterexample is that the encoder gets to know everything outside a
target interval for free. So instead of always choosing the message outside an interval to be
zero, our counterexample will fix it in some way that will depend on the encoder, so that way
the algorithm can not know it ahead of time. So the idea essentially is to choose a random
interval and a random restriction to everything outside the interval and then try to use a
similar argument.

More specifically, we use a proof by contradiction. We say restriction of the message
is good if it restricts everything but one interval, and for most assignments to variables in
that interval, most bits are written when no head is near the interval, and heads don’t enter
the interval many times. If this holds for most assignments to the interval, the same prior
arguments work. But if no good restrictions exist, it must be because on average the intervals
are visited too many times for the number of heads and the time of the algorithm. But since
we have a bound on the time and number of heads of the algorithm, this can not happen.

2.1.3 Upper Bound
The lower bounds from the previous section is tight since we can construct codes that match
them, up to small factors. We construct these codes using a tensor code product of any code
that has a space efficient, non-adaptive encoder using random access to the message and
any other time efficient code. There is a straightforward way to time and space efficiently
compute the tensor code of any space efficient code with another code. As a reminder, a
tensor code arranges the message into a table, then one code encodes each row to construct
an intermediate table. Then the other code encodes each column of the intermediate table
to get the final result.

Specifically, for target space S, we arrange the code into S columns, each of size about
N
S . Then each row is encoded in any arbitrary time efficient linear code. And each column is
encoded in our time and space efficient code that uses random access to the message.

The time efficient way to encode the tensor code is to literally construct the intermediate
table by encoding every row, then encode every column of the intermediate table. But storing
this intermediate table is not space efficient. If the code encoding the columns is space
efficient and non-adaptive, there is an alternate, space efficient way to do this. This is to
simulate the encoder for all the columns in parallel, and every time it needs to query one of
the rows, we encode this row and then give the result to the space efficient code.

So our encoder places each of the h heads uniformly across the rows of the message so
that any row is within O(N

h) of a head. As long as there are fewer heads than rows, since
the row encoder is time efficient, moving to the row will take more time than encoding it.
Then every query to a row during the column encoding only takes time O(N

h). And since
the column encoder is time efficient, we only need to query the rows around N

S times. So the
total time is around T ≃ N2

hS , thus hST ≃ N2. The space is similar to S since the column
encoder is space efficient and only needs to store the state of S columns at once.

CCC 2024

5:10 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Finally, to get the tradeoff with distance, we use the same tensor code. Then we only
bother to encode the message in size Ω(δN) intervals and encode each interval independently.
If each of these smaller codes have constant relative distance, then these codes together have
relative distance Ω(δ). Using the prior time space efficient algorithms, for space S and heads
h, you can compute a code with constant distance on a size (δN) message in time about
(δN)2

hS . Doing that 1/δ times only requires time about δN2

hS , which is what we want.

2.2 Random Access To The Message

First, we recall some relevant definitions. For any alphabet Σ with a special zero character,
and any x ∈ ΣN , we say the weight of x, denoted weight(x), is the number of non-zero
symbols in x. Similarly the relative weight of x is weight(x)

N . A linear code is any code whose
encoding function is a linear function. Then the distance of a linear code is the weight of its
smallest non-zero codeword. See Section 5 for more details.

So the goal is to construct some linear function which is fast and space efficient to
compute, but has high weight for any non-zero message. Our basic strategy is to construct a
different linear function for every possible (order of magnitude of) the message weight. Then
we combine these linear functions into one linear function, such that if any linear function
outputs a high weight output, the combined linear function will too.

This high level approach is nearly identical to the codes with depth 2 circuits of Gál,
Hansen, Koucký, Pudlák, and Viola [26]. In fact, our code can also be viewed as an almost
linear sized, depth 2 circuit. But our codes are explicit, and our results require several new
ideas. For a detailed comparison, see Section 3.1.

2.2.1 Weight Fixers From Condensers

For any input range R ⊆ [N] and relative weight δ > 0, we call a function F : {0, 1}N → ΣM

an R to δ weight fixer if for every message x with weight within R, we have that F (x) has
relative weight at least δ. We note that R is usually an interval. So our first goal is just to
construct [2i−1/2, 2i+1/2] to δ weight fixers for some δ > 0 for every i ∈ [log(N)] = [n]. For
this we use lossless condensers.

One way of looking at lossless condensers is as bipartite graphs [43, 50]. A lossless
condenser is a regular graph with left vertices L, right vertices R, with left degree DL = 2d.
We call d the seed length. We call the graph a lossless condenser for min-entropy k if for
every S ⊆ L with |S| = 2k, we have that the neighbor set of S, denoted N(S), has size
|N(S)| ≥ |S|DL(1 − ϵ). We say the condenser has constant entropy gap if |N(S)| = Ω(|R|),
that is, a constant fraction of R has a neighbor in S.

If ϵ is small, then most of elements of N(S) have one unique neighbor in S. Here, we
view L as the input bits (|L| = N), and R as the output bits (|R| = M). If the message, x,
has weight 2k, we can let S be the one bits of the message. If the condenser has constant
entropy gap, then a constant fraction of the output bits have a neighboring one bit. In fact a
constant fraction of the output bits have exactly one neighbor that is a one bit.

Our weight fixer will just xor all an output bit’s neighbors to compute its value. Then
all of the output bits with a unique one bit neighbor will output one. Since for a weight 2k

message this is a constant fraction of the output bits, this weight fixer will give a constant
relative weight output on a weight 2k input. See Figure 1 for an example of a condenser and
its corresponding weight fixer.

J. Cook and D. Moshkovitz 5:11

Message:
11000000000000000000

Output:
001100

1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
1
0
0

S

N(S)

Figure 1 Lossless Condenser And {1, 2} to 1
3 Weight Fixer Example.

The lossless condensers we construct gives us, for any i, a [2i−1/2, 2i+1/2] to δ weight fixer
Fi : {0, 1}N → {0, 1}M where M = 2i2O(log(log(N))3). This 2O(log(log(N))3 factor is related to
the seed length of the condenser. Each bit in the output of Fi can be computed in time
about N/2i and space O(log(N)2), so the total time to compute the entire output of an Fi

is N2O(log(log(N))3) = N1+o(1). See Section 2.3 for more details.

2.2.2 Mixing Weight Fixers

Now we can perform a tensor like operation to mix all these weight fixers into one code. The
idea is that a code always maps non-zero inputs into a string with high weight. So if we can
partition the output of our weight fixers into small clusters so that most clusters are non
zero, applying the code to each cluster gives a large weight output.

For any input weight message, some weight fixer Fi will have large weight. So all we need
to do is make sure each cluster contains a good sample of the output of each Fi. This is easy,
just have each cluster contain a single output symbol from each Fi in any way as long as
each Fi has each of its outputs in the same number of clusters. To do this time and space
efficiently, we just use the first symbol from Fi as many times as we need to, than the second
symbol and so on.

We can visualize this mixing technique with a table. First put the output of each Fi into
a row in a table. Repeat the symbols in each row until every row is the same length. Then
encode the columns of that table with any asymptotically good code. The resulting weight
will be at least the minimum weight of any row times the distance of the code. See Figure 2
for a diagram.

To run this mixer time and space efficiently, we encode one column at a time, and store
the current symbol for each of the n = log(N) weight fixers. Then to compute the next
column, we only need to compute weight fixers who have changed their value since the last

CCC 2024

5:12 Explicit Time and Space Efficient Encoders Exist Only with Random Access

x

F1(x)
F2(x)
F3(x)

. . .

Fn(x)

y1 y2 y3 y4 . . . ym= C(y1) C(y2) . . . C(ym)

Figure 2 Mixing Weight Fixers F1, F2, . . . , Fn with code C.

column. For most columns steps, most weight fixers won’t use a new symbol because most
weight fixers have their symbols repeated many times. This only requires O(log(N)) space for
the current output bit of each Fi, plus the space to compute any single Fi. It only requires
the time to compute each Fi and to run C.

One issue with the approach we have described thus far is that the output length will
be at least the output length of the largest Fi, which is N2O(log(log(N))3). Thus the output
length of the code we have just described is N2O(log(log(N))3), but we need an output length
of O(N) to get constant rate. The weight fixers for larger message weights are the issue. So
instead of using our condenser based weight fixers for every message weight, we only use
them for small weight messages. We use a different weight fixer for messages with large
weights and mix the two results.

2.2.3 Weight Fixers For Large Weight Messages

For large weight messages, we use a code extremely similar to Spielman codes [49]. Spielman
codes use a recursive approach, where every level of recursion is on a smaller input and
increases the distance. We use the same codes, except that instead of recursing all the way
down to a code on a constant sized message, we stop early with a weight fixer that is just a
bit smaller than N . We call these Spielman style weight fixers.

Spielman style weight fixers always have constant rate, but the weight of messages they
can fix increases with each level of recursion. One can compute the output of Spielman
style weight fixers space efficiently, but the time increases exponentially in the number of
recursions. Thus by choosing an appropriate recursion depth, we can balance the time used
by the Spielman style weight fixers with the rate of the condenser style weight fixers.

The Spielman style weight fixer uses a lossless condenser to get a function, A : {0, 1}N →
{0, 1}N/2, such that for any input with weight less than some constant α, A gives an output
with the same weight as the input. For the lossless condensers in the Spielman style weight
fixers, we use the condensers from [12]. Then the idea is to repeatedly apply A in several
levels until you have constant relative weight, then mix all of these levels.

If one stops the recursion early, we will not have had enough rounds to concentrate the
small weight messages to be a constant fraction of the bits at any level. But each round will
still let you fix weights a constant fraction smaller. The output bits at any given level are just
some particular xor of message bits, but the number of bits you xor increases exponentially
with the depth, which is why this algorithm has time exponential in its depth.

Now choosing appropriate number of recursions for the Spielman style weight fixers gives
fixers for the very heavy messages. Light messages are handled by our weight fixers based on
condensers. But this only gives us codes with some constant distance, and we would like
codes that have arbitrarily large constant distance.

J. Cook and D. Moshkovitz 5:13

2.2.4 Distance Amplification
A first try would be to use an off the shelf distance amplification procedure, like that of Alon,
Bruck, Naor, Naor and Roth (ABNNR)[2]. While we use the ideas of ABNNR, we can not
use it directly as it does not preserve the space and time complexity of the encoder. First we
explain ABNNR, and its limitations. Then we explain how to modify it to work for us.

The idea of ABNNR is to take a base code and a bipartite expander graph, and identify
the left hand side with the message bits, and the right hand side with the output bits. Then
the output of a right hand side vertex is just the concatenation of all its adjacent message
bits. This increases the alphabet, and if the graph is an expander, increases the weight.

Now if we just apply ABNNR directly to our final code, it is unclear how to encode the
resulting code efficiently. There is a straightforward, time efficient way to encode the code:
just compute the whole left side code, than concatenate the symbols on the right hand side.
But if one wants to do this space efficiently, then we do the following instead: for each right
hand side vertex, we compute all the left hand side bits incident to it and append them
together. The issue is that each of the left hand vertices are a function of a constant fraction
of the message bits, thus take time O(n) to compute. Spending O(n) time to compute each
of the O(n) output vertices takes quadratic time, which is too much.

Instead, we need to run distance amplification on each of the O(log(N)) weight fixers
before we combine them. Then when the bits of the weight fixer are expensive to compute,
there are fewer output bits, so the distance amplification only increases encoder time by a
constant factor. Then our mixer preserves this distance, as long as the code in the mixer
also has good distance. This allows us to get arbitrary good weight.

2.3 Invertible Condensers
Now we discuss how to modify existing condenser and extractor constructions to get invertible
condensers. To understand these condenser constructions, we need to explain an alternative,
equivalent definition of condensers. Instead of thinking of condensers as bipartite graphs,
one can also think of them as functions that take low entropy sources over long bit strings to
sources with a similar entropy over short bit strings.

Explicitly, a k entropy lossless condenser is a function C : {0, 1}n × {0, 1}d → {0, 1}m

such that for any random variable x ∈ {0, 1}n with min entropy k and Ud ∈ {0, 1}d an
independent, uniform distribution, we have that C(x, Ud) is close to a distribution with min
entropy k + d. We call m − (k + d) the entropy gap since it is the difference between the
amount of entropy that could be in an output with m bits and how much entropy is in that
output. The entropy gap of the condenser is related to the weight of the related weight fixer.
We want constant entropy gap.

The state of the art condensers based on Pavarash-Vardy codes and Multiplicity codes
[25, 33] are lossless, but require large seeds to get small entropy gaps. One can think of
extractors as a kind of condenser with no entropy gap at all. We know explicit extractors
with small seeds [51]. Unfortunately extractors must have entropy loss, and we need lossless
condensers.

One might hope for a way to combine lossless condensers and extractors to get a the
benefits of both: small entropy loss for extractors, and small entropy gap for condensers.
This is possible using the condense and extract framework [43, 50]. Next we describe the
condense and extract framework.

In the condense and extract framework, one first condenses the message to concentrate
the entropy, then extracts much of it. Then there is still some remaining entropy in the
message, conditioned on the output of the extractor, so we condense it again to a much

CCC 2024

5:14 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Source

Condensers

U U U

E E E

U

I

I

Invertable

Invertible

Individually Invertible,
But Unclear How To

Invert Together

Figure 3 Standard Condense And Extract. Source is condensed from many times in parallel, and
the results are extracted in parallel. Legend: E, Extractor. I, identity map. U, Uniform Bits.

smaller message, which we can then more efficiently extract from. Then we repeat until
almost all the entropy has been extracted. Then to convert the final result to a lossless
condenser, we condense the remaining entropy one final time without extracting it.

Things get a bit more complicated when one requires invertibility. First, we require our
component condensers and extractors to be invertible, which is doable. But then we run into
an issue of extracting and condensing from the message many times in parallel. Now even
if we can invert each of the condensers and extractors by themselves efficiently, it remains
difficult to space and time efficiently determine which messages can give the expected output
of each extractor and condenser simultaneously.

This is solved by changing our extractors into buffered extractors, like those of [12], and
then condensing from that buffer. A buffered extractor is just an extractor with a second
output, called a buffer, which contains all the entropy the first output missed. With this
change, inversion is straightforward. For the same reason, the extractors and condensers of
[12] are also efficiently invertible.

Now it only remains to choose appropriate invertible extractors and condensers to compose
to get our final condenser. For condenser we choose the multiplicity code based condensers as
these are both efficient and are easy to invert. For extractors, we use the Trevisan extractor
[51, 41] to extract most of the entropy, and then a left-over hash lemma based extractor to
get the rest. So the final condenser runs the Trevisan extractor, condenses, runs the left-over
hash lemma extractor, and then condenses again.

The Trevisan extractor is efficiently invertible because it is a linear function conditioned
on the seed, thus can be inverted by Guassian elimination. This requires quadratic space
and polynomial time (in n = log(N)). One subtle issue is that we define invertibility of an
extractor as a literal function inversion of an extractor along with a buffer. But the Trevisan
extractor with a fixed seed is not always full rank, thus is not an invertible function. To
handle this, our extractor detects such bad seeds (which don’t extract well anyway) and just
use any arbitrary invertible function with them.

This Trevisan extractor is the main limitation in our encoders time and space. Getting
an extractor with shorter seed length will improve the time of the encoder, and a more space
efficient inversion process would improve the space of the encoder.

J. Cook and D. Moshkovitz 5:15

Source

U B

Trevisan Extractor

C

U B

LHL

C

U

I

I

I

Invertible

Invertible

Invertible

Invertible

Invertible

Figure 4 Our Condenser. It has two extractors, a Trevisan extractor and a Left-over Hash
Lemma (LHL) based extractor. Both extractors output some uniform bits and a buffer with the
left over entropy. Before the buffer can be extracted from efficiently, it needs to be condensed first.
Legend: C, Condense. I, identity map. U, Uniform Bits. B, Buffer.

3 Comparison With Other Codes

3.1 Comparisons With Codes For Shallow Circuits
While we investigate time and space efficiency of encoding, other works have investigated the
circuit complexity of encoding codes. For instance, while Spielman codes [49] are often cited
as linear time encodable, they are also encodable by a uniform, fan-in 2, log depth circuit
with linear size. A later work by Gál, Hansen, Koucký, Pudlák, and Viola [26] considered
unbounded fan-in circuits with arbitrary gates. For any depth, Gál et al. gave tight bounds
on the size of a circuit required to encode a code with constant relative distance.

Gál et al. show that encoding any asymptotically good code with depth 2 circuits requires

Ω
(

n
(

log(n)
log(log(n))

)2
)

wires and depth 3 circuits requires Ω(n log(log(n))) wires. As depth

increases further, the number of wires required sharply decreases, with linear sized circuits at
depth log∗(n). We emphasize that [26] give both lower bounds and matching upper bounds.
However, their codes are non-explicit.

Our code constructions and the depth 2 circuits of [26] are, conceptually, extremely
similar. Their circuit constructions use what they call “range detectors” which are equivalent
to weight fixers. Its depth 2 circuits do exactly what we do: make weight fixers for each
order of magnitude, then mix them. Our encoders could also be stated as uniform, almost
linear sized, depth 2 circuits.

Derandomization of the codes of [26] was left as an open problem. They could only
achieve partial derandomization. Their partial derandomization is a variation of our mixer
(compare Theorem 19 with [26, Claim 37]), but they had no explicit constructions for weight
fixers. Our weight fixers can actually be expressed as parity gates, and our encoders can be
described as explicit depth 2 circuits of almost linear size. Thus we solve the open problem
in [26] of finding explicit codes with depth 2 circuits of almost linear size.

CCC 2024

5:16 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Gál et al. never analyzed the time and space required to encode their codes. It is not
obvious that the codes of [26] should be encodable in almost linear time and logarithmic
space. While it is true that any constant depth, almost linear sized circuit can be evaluated in
either almost linear time and almost linear space, or logarithmic space and polynomial time,
they can’t always be computed in almost linear time and logarithmic space simultaneously.
The fully randomized codes with depth 2 encoders from [26] do not seem to have almost
linear time and log space encoders, only their partially derandomized codes do.

The main differences between their construction and ours come from the fact that ours
are explicit. We use condensers to make our weight fixers explicit, and the best known
condensers cannot make weight fixers that are as good as the randomized construction of Gál
et al. So we need several new ideas to get our codes. A few difficulties and solutions include:
1. For weight K inputs, our lossless condensers give weight fixers with output length

Ω(K2poly(log(log(N)))). When K is close to N , this is larger than N . If we used these
weight fixers for large weight messages, the output would have super linear size, so our
code would not be constant rate. So we need to construct weight fixers for large input
weight messages in a different way (through Spielman style weight fixers).
The weight fixers in [26] for weight K inputs have output length O(log

(
N
K

)
). So their

weight fixers always have less than linear output length.
2. Condensers cannot give us distance 1 − ϵ for small constant ϵ. To improve our distance,

we need to use the distance amplification of ABNNR [2], but in a special way. ABNNR
does not seem to simultaneously preserve time and space efficiency of encoding: it can do
one or the other. So we have to apply it to our weight fixers before they are mixed.
Gál et al. only gives codes with relative distance δ for some constant δ > 0, it does not
try to give large relative distance. However, if their randomized construction is modified
to give weight fixers with multiple output bits, then the same approach gives codes with
distance 1 − ϵ, codeword length O(N

ϵ2), alphabet {0, 1}O(log(1/ϵ)) and encoders running in
time N poly(log(N)/ϵ) and space O(log(N) log(1/ϵ)).

Thus while the high level code construction of [26] is similar to ours, we need several new
ideas to make it explicit, keep the rate constant, and the distance close to one.

3.2 Why Spielman Codes Aren’t Enough
Spielman codes [49] are well known codes that can be encoded in linear time, so it is natural
to ask whether they can also be encoded in small space. From Bazzi and Mitter [4], we know
that it’s linear time encoder cannot be sublinear space. We know of an alternate way to
encode Spielman codes in logarithmic space, but this approach requires time n1+β for some
β > 0. Standard Spielman codes have β > 1.5, but even optimizing their parameters one
cannot get β approaching zero without the relative distance of the code also approaching zero.
Subsequent improvements, like those of Guruswami and Indyk [23], still contain Spielman
codes within them, and thus suffer from the same problems with encoding efficiency.

Now we give a brief explanation of this space efficient evaluation of Spielman codes,
and why it can’t be time efficient. One can view Spielman codes [49] as a parity circuit.
Each layer in the parity circuit is given by some family of regular bipartite expanders Ai for
i ∈ [O(log(N))]. For simplicity, you can think of the circuit as identifying the gates of layer i

of the circuit with the left vertices of Ai, and the gates in layer i + 1 of the circuit with the
right vertices of A. Then the edges in A denote the inputs to the parity gates.

The obvious space efficient way to evaluate such a circuit is to recursively evaluate a gate’s
value by iterating over each input to that gate. For a depth depth circuit with fan in f with
final layer size L, this only takes space O(depth log(f)), but requires time fdepth · L. Then

J. Cook and D. Moshkovitz 5:17

fan-in, f , is the degree of the expanders, and depth, depth, decreases with the expansion of
the expanders. Improving one hurts the other. One can improve the tradeoff by making the
expanders more imbalanced, but that hurts the distance of Spielman codes. Our one shot
approach allows us to use very imbalanced expanders without hurting our distance.

4 Open Problems

There are many open problems related to time and space efficiency of encoding.

1. Get better condensers to construct codes with more efficient encoders using random
access to the input. Our codes need, for every k ∈ [n], a lossless (n, k) →α (m, k + d)
condenser, Ck : {0, 1}n × {0, 1}d → {0, 1}mk , with constant entropy gap (mk = k + d + b

for b = O(1)) and approximation error, α, less than one half. Our codes have messages of
length N = 2n.

Improve the space of our encoder.
If each Ck is invertible in space S, then our code can be encoded in space space
S + O(n). Our condenser is constructed with a Trevisan style extractor [51, 41], which
we only know how to invert by exploiting its linearity, which takes space n2. If one
uses a more efficiently invertible condenser, that will improve the space required by
the encoder. We suspect that other condenser designs, like [25], could be made space
O(n) and poly(n) time invertible, but have not checked.
Improve the time of our encoder.
If each Ck is invertible in time T and has seed length d, then the time of our encoder
is O(N log(N)2dT). So if one can get efficiently invertible, lossless condensers which
condense all (except Oα(1)) bits of entropy with seed length O(log(n)) , then there is
a code with an encoder that runs in time N polylog(N).
We note that if one can give an extractor with seed length O(log(n)) which extracts
all the entropy (except Oα(1) bits), then we have a lossless condenser with a similar
seed length and an encoder that runs in time N polylog(N). The best known explicit
extractors [25] require seed length O(log(n)2) to extract all (but Oα(1) bits) of the
entropy of a source. This seed length is not short enough to get a quasilinear time,
polylog space encoder.
Improve the dependence on ϵ.
A simple version of our codes only achieve constant relative distance. To get relative
distance 1 − ϵ for any constant ϵ, we use extractors. For the entropy gap b = O(1),
for every k, we need an (mk − b, ϵ) extractor E : {0, 1}mk × {0, 1}d′ → {0, 1}m′

k to get
a code with distance 1 − ϵ. If E is time T and space S invertible, then this distance
amplification increases the encoding time by a factor of O(2d′

T) and increases space
by O(S).
For our distance amplification, we use the extractors from [12]. These use some small,
non explicit conductors of size poly(1/ϵ). Since we only find these using brute force,
this adds an extra time of 2poly(1/ϵ) and an extra space of poly(1/ϵ). Using a different
extractor that does not require a brute force search could give a better dependence
on ϵ.

2. Give a code with an encoder and decoder that run in small time and space with random
access to the input, or show they can not exist. We know from this work that there exist
codes with a time and space efficient encoder, and from follow up work [16] that there
are codes with a time and space efficient decoder. Can a single code be both time and
space efficient to encode and decode?

CCC 2024

5:18 Explicit Time and Space Efficient Encoders Exist Only with Random Access

3. There are other interesting properties of codes, like
Local Testability.
Local Decodability.
Relaxed Local Decodability.

In particular, let X be the interesting property (such as local test ability or local
decodability), then for the different kinds of access, we ask
a. In the sequential access setting, is there a code with X and an encoder running in

time T and space S with h = O(S) sequential heads to access the input such that
ST ≪ N2?
We proved in Theorem 3 that we can do better than this with sequential access to
the message for some codes. In particular, if S = h =

√
N , then there is a code

that can be encoded in almost linear time. So if a code cannot be encoded time and
space efficiently, it must be because of X not just because we require constant relative
distance.

b. In the random access setting, is there a code with X that can be encoded in almost
linear time and polylogarithmic space?

We know codes with time and space efficient encoders can’t have some interesting
properties. For example, self-dual codes require encoders running in time T and space S

to have ST = Ω(N2) [45].
4. Derandomize the Repeat Accumulate codes (RA codes).

Repeat accumulate codes have a simple description: first, take an input, x, and repeat it
k times (think of k = O(log(N))) to get y. Then, for some fixed random permutation π

(this is why the code is not explicit), permute y by π to get z. Finally, for every i ∈ [kN],
the ith output bit is the xor of bits in z before index i: if the resulting codeword is C,
than Ci =

⊕
j≤i zj .

Non-explicit RA codes have faster encoders than condenser codes and are simpler to
describe. RA codes run in time O(N log(N)) and use space O(log(N)). Even with
optimal condensers, condenser codes cannot be made to run in O(N log(N)) time. This
is because condenser codes can also be described as depth 2 circuits, and Gal et al [26]
proved depth 2 circuits encoding a code require size Ω(N log(N)1.999). So there may be a
simpler, more efficient, explicit code based on RA codes.
The best known derandomization of RA codes [24] only have distance O(log(N)), i.e.
relative distance O(log(N)

N). This low distance is inherent to the technique: the distance
is the girth of a three regular graph, and all three regular graphs have girth O(log(N)).

5 Preliminaries

In this paper, it will be convenient to use linear codes as it has a simple way to characterize
its distance. But we also want larger alphabet sizes as achieving high distance is easier with
larger alphabet. So we will define all of our functions as if they are over a binary alphabet,
but for distance we will use a larger alphabet. This doesn’t change any of the actual codes,
but simplifies some of the analysis.

A code is just a function whose outputs differ in most locations. Here is a formal definition
of an error correcting code.

▶ Definition 8 (Code, Distance, and Rate). Let Σ1 and Σ2 be any alphabets over binary
bits: Σ1 = {0, 1}a and Σ2 = {0, 1}b for some integers a and b. Then for any function
C : ΣN

1 → ΣM
2 , we say C is a code with relative distance δ if for any two x, y ∈ ΣN

1 we have
that C(x) and C(y) differ on at least δ fraction of indexes.

We say that C has rate N
M . We say that an element u ∈ ΣM

2 is a codeword of C if for
some x ∈ ΣN

1 we have that C(x) = u.

J. Cook and D. Moshkovitz 5:19

All of our codes will be linear, so we need to define a linear function.

▶ Definition 9 (Linear Function). For any function L : {0, 1}N → {0, 1}M , we say L is linear
if every output bit of L is just a parity of some specific set of input bits.

Let Σ1 and Σ2 be any alphabets over binary bits: Σ1 = {0, 1}a and Σ2 = {0, 1}b for some
integers a and b. Then we say that any function L′ : ΣN

1 → ΣM
2 is linear if L′ viewed as a

function on individual bits is linear.

Linear codes, that is codes who are themselves linear functions, have many nice properties.
One nice property is that the distance of the code is equal to the weight of its smallest,
nonzero output. The weight of a vector is just its number of nonzero elements. Here is a
formal definition of the weight of a string.

▶ Definition 10 (Weight of a String). Let Σ be any alphabet over binary bits: Σ = {0, 1}a

for some integer a. Then for any x ∈ ΣN for some integer a, we define weight(a) to be the
number of symbols in x that are not the all 0 symbol: 0a.

The relative weight of x is weight(x)
N .

Now we can show a useful characterization of the distance of linear function.

▶ Lemma 11 (Distance of a Linear Code). Let Σ1 and Σ2 be any alphabets over binary bits:
Σ1 = {0, 1}a and Σ2 = {0, 1}b for some integers a and b. Let C : ΣN

1 → ΣM
2 be a linear

function. Then C is a code whose relative distance, δ, is the weight of its smallest non-zero
output:

δ = min
x∈ΣN

1 ,(0a)N ̸=x

weight(C(x))
M

.

Proof. See that for any two elements u, v ∈ ΣM
2 , for any index i ∈ [m] we only have

(u − v)i = 0b if u and v are equal on index i. Thus the distance between two outputs of C is
just the weight of their difference. Thus the distance of the C can be written as

δ = min
x,y∈ΣN

1 ,x ̸=y

weight(C(x) − C(y))
M

.

But since C is linear, we can just simplify C(x) − C(y) as C(x − y). Thus the distance
between C(x) and C(y) is just the weight of C(x − y). So by letting z = x − z, we can write

δ = min
z∈ΣN

1 ,z ̸=(0a)N

weight(C(z))
M

. ◀

To construct our explicit codes, we need to use pseudorandom objects called extractors
and condensers. The goal of these objects is to take inputs with some randomness and a lot of
correlations, and give a shorter output with a similar amount of randomness. Extractors want
the shorter output to look almost uniform, but often are so short they lose some randomness.
Condensers want the shorter output to contain almost all the randomness, but may not be
short enough to be close to uniform.

To formally define extractors and condensers, we need to define min entropy: H∞.
Intuitively, the min entropy is the number of bits of information one always gets from a single
output of a distribution. This is in contrast to the standard notion of entropy, which is like
the average amount of information a single output gives. Min entropy is a more convenient
notion of entropy for us.

CCC 2024

5:20 Explicit Time and Space Efficient Encoders Exist Only with Random Access

▶ Definition 12 (Min Entropy). For any distribution, X, over any alphabet, Σ, we define the
min entropy, H∞, of X as

H∞(X) = max
σ∈Σ

− log(Pr[X = σ]).

If X is a uniform distribution over K = 2k different elements, we call X a flat k source,
and H∞(X) = k = log(K).

Now we often don’t actually have a low min entropy source. Often there may be one or
two inputs that have a large chance of appearing, and we still need to work with these. So
we relax our requirements on distributions to not necessarily be high min entropy themselves,
but to be close to something with high min entropy. So let us define the distance of two
distributions.

▶ Definition 13 (Statistical Distance). For any distributions, X, Y over some alphabet Σ, the
distance of X to Y is

∆(X, Y) = 1
2
∑
σ∈Σ

|| Pr[X = σ] − Pr[Y = σ]|.

If ∆(X, Y) ≤ ϵ, we say X is an ϵ approximation of Y or that X is ϵ close to Y .

Distances in this sense compose neatly with functions in the sense that if X is an ϵ

approximation of Y , then for any function f , we have that f(X) is also an ϵ approximation
of f(Y).

One subtlety of extractors and condensers is that there is no general function that is able
to take any input with high entropy and be able to give a smaller output without losing just
as much entropy. To do this, we need some extra structure on the input entropy. Here, we
provide that structure by giving our extractors and condensers a second, very small, uniform
input called a “seed”. In this work, we assume all condensers and extractors are seeded.

▶ Definition 14 (Seeded Extractor Definition). Let E : {0, 1}n × {0, 1}d → {0, 1}m be any
function. Let Ud be the uniform distribution over {0, 1}d.

We say E is a (k, ϵ) extractor if for any distribution, X, over {0, 1}n, with min entropy
k, we have that E(X, Ud) is ϵ close to the uniform distribution over {0, 1}m.

Condensers are defined similarly, except that we don’t enforce the output to be close
to uniform, but just some high entropy distribution. If the distribution the output is close
to has all the entropy of the original distribution plus the entropy of the seed, we call the
condenser lossless since it didn’t lose any of the input entropy.

▶ Definition 15 (Seeded Condenser Definition). Let C : {0, 1}n × {0, 1}d → {0, 1}m be any
function. Let Ud be the uniform distribution over {0, 1}d.

We say C is a (n, k) →ϵ (m, k′) condenser if for any distribution, X, over {0, 1}n with
min entropy k, we have that C(X, Ud) is ϵ close to some distribution over {0, 1}m with min
entropy k′.

If k′ = k + d, we say that C is a lossless condenser.

To prove our lower bounds for sequential access to the input, we will use a tool called
random restrictions. The idea of a random restriction is to fix some of the inputs to a
function, and not others.

J. Cook and D. Moshkovitz 5:21

▶ Definition 16 (Restriction). A restriction of length n is just a string x∗ ∈ {0, 1, ∗}n. Any
index where x∗ is either 0 or 1 is fixed, and any index where x∗ is not fixed, we say it is free.

If x∗ is a restriction with k free indexes, and there is a binary string y ∈ {0, 1}k, then we
define the string xy = y ◦ x∗ to be the string that agrees with x∗ on indexes where x∗ is fixed,
and on the jth index that x∗ is free agrees with yj.

6 From Condensers To Codes

In this section, we will show how to construct codes using condensers. We will later show
how to construct the condensers we need.

Our codes are constructed by mixing weight fixers, so we will start by defining weight
fixers.

6.1 Weight Fixers
A weight fixer is a linear function that outputs strings with a constant relative weight, as
long as the weight of the message is within a specified range.

▶ Definition 17 (Weight Fixer). For any two alphabets, Σ1 and Σ2, any subset R ⊆ [N] and
constant δ ∈ (0, 1

2), a linear function F : ΣN
1 → ΣM

2 is said to be an R to δ weight fixer if,
given any x with weight(x) ∈ R then weight(F (x)) ≥ δM .

We say that R is the input weight range, δ is the relative output weight, N is the input
length, and M is the output length.

A straightforward corollary of this definition is that any [N] to δ weight fixer is a code
with relative distance δ, since the distance of a linear code is the weight of its smallest non
zero codeword. Thus our strategy will be to combine several weight fixers that cover different
parts of the weight range into a single weight fixer that covers the entire weight range.

For large weight messages, we can perform a repeated weight amplification type procedure
to get the appropriate weight. The exact way we perform weight amplification is similar to
Spielman’s codes and described in Section 8.

▶ Theorem 18 (Weight Fixer For Heavy messages). For some constant α > 0, and any
integers N and i, there is a [⌈N/2i⌉, N] to α/4 weight fixer F : {0, 1}N → {0, 1}4N . Further,
for some constant, c, any bit in the output of F can be computed in time ci polylog(N) and
space O(i + log(N)).

Now that we have defined weight fixers, we will show how to efficiently mix them to get
better weight fixers, and eventually codes.

6.2 Weight Fixer Mixer
Now we show how to combine many weight fixers with different input ranges, and combine
them to get a weight fixer whose input range is their union. The idea is to arrange the output
of each weight fixer as rows in a table, where each weight fixer is repeated until they all have
the same length, then encode the columns with any arbitrary code.

While this is a geometrically easy way to think about the combination, and what we do
in the following theorem, we note it is not optimal if the weight fixers have very different
outputs. In particular for our weight fixers. Once can improve the result by splitting very
large weight fixers into multiple rows, so that all the small weight fixers don’t need to be
copied many, many times. This is what is done in [26, Claim 37], but for simplicity, we do
not do it here.

CCC 2024

5:22 Explicit Time and Space Efficient Encoders Exist Only with Random Access

▶ Theorem 19 (Fixer Mixer). Suppose for some ℓ, for each i ∈ [ℓ] there is an Ri to δ weight
fixer Fi : ΣN

1 → ΣMi
2 . Let C : Σℓ

2 → Σc
3 be any linear code with relative distance δ′ computable

in time T ′ and space S′.
Suppose for some R we have R ⊆

⋃
i∈[ℓ] Ri and for some length M for each i ∈ [ℓ] we

have Mi|M . Then there is an R to δδ′ weight fixer F : ΣN
1 → ΣcM

3 .
Further, if for each i ∈ [ℓ] any individual output element of Fi is computable in time Ti

and space Si, then the full output of F is computable in space

O(ℓ log(|Σ2|) + log(M)) + max{S′, max
i∈[ℓ]

Si}

and time

(T ′ + O(1))M +
∑
i∈ℓ

MiTi.

Alternatively, if for each i ∈ [ℓ] the full output of Fi is computable in time Ti and space
Si, then the full output of F is computable in space

O(ℓ log(|Σ2|) + log(M)) + S′ +
∑
i∈[ℓ]

Si

and time

(T ′ + O(1))M +
∑
i∈ℓ

Ti.

Proof. The idea of the code is simple. First, we lengthen the output of each weight fixer
so that it has length M . Then we apply C element wise to the output of each weight fixer.
More specifically, for a ∈ [M] we define ya ∈ Σℓ

1 to be the ath column in the table. That is,
for i ∈ [ℓ] we have

(ya)i = Fi(x)⌈aMi/M⌉.

Then F just applies C to each column, ya, and concatenates them. That is for any a ∈ [M]
and b ∈ [c] column a row b of the output is just the bth output of C(ya). That is,

F (x)(a−1)c+b = C(ya)b.

Suppose x has weight w ∈ R. Then for some i, we know w ∈ Ri. Thus Fi(x) has relative
weight δ. Thus for at least δ fraction of a, we have ya ≠ 0. For each such a, by the distance
of C, for δ′ fraction of b, we have C(ya)b ̸= 0. Therefore, for at least δδ′ fraction of (a, b)
pairs we have F (x)(a−1)c+b ̸= 0. Thus F has relative weight at least δδ′.

To encode F , we compute the code for each Fi in parallel and apply C in a straightforward
way.

If the individual bits of each weight fixer is efficient to compute, then the space can be
reused between the different weight fixers, keeping only the current bit of each Fi and some
indexes in memory. This takes space O(log(M)+ℓ log(|Σ2|))+max{S′, maxi∈[ℓ] Si}. Similarly
the time is just the sum of the time to encode with C for M times, plus some book keeping,
plus time to compute every bit of every weight fixer. This is time (T ′ + O(1))M +

∑
i∈ℓ MiTi.

If the full output of each Li is efficient to compute, the encoding algorithms is essentially
the same, only now we cannot reuse space between the different weight fixers. This is
because we need to pause each weight fixer after it outputs a bit and resume it when we
need its next one. This requires space O(ℓ log(|Σ2|) + log(M)) + S′ +

∑
i∈[ℓ] Si and time

(T ′ + O(1))M +
∑

i∈ℓ Ti, noting that in this case Ti is the time to output all bits, not just a
single one. ◀

J. Cook and D. Moshkovitz 5:23

Now if we had weight fixers covering every input weight, then we could mix them to get
codes. Now we show how to get weight fixers from lossless, invertible condensers.

6.3 Weight Fixers From Invertible Condensers
Most of our weight fixers will be constructed through condensers. One additional, non
standard property our condensers will need is invertibility. This is because the final weight
fixer will enumerate through all the message bits whose index map to an output bits index
and xor them together to get that output bit. So it needs to be efficient to, given any output
bit index, enumerate through all the message indexes that map to that output. We call a
condenser invertible if this can be done efficiently.

To simplify our definitions and proofs slightly, we restrict ourselves to condensers that
output an index function along with its condensed output such that the two together is an
efficiently invertible function. That is, not only can we enumerate through the inputs that
give an output, but given the index of the input that gives an output, compute that specific
input efficiently.

▶ Definition 20 (Invertible Condenser). Suppose C ′ : {0, 1}n × {0, 1}d → {0, 1}m is an
(n, k) →ϵ (m, k′) condenser. Suppose there is a function I : {0, 1}n × {0, 1}d → {0, 1}n+d−m,
and define C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m by

C(x, s) = (C ′(x, s), I(x, s)).

Suppose C is a bijection with C−1 : {0, 1}m × {0, 1}n+d−m → {0, 1}n × {0, 1}d its inverse.
Then we say C is an invertible (n, k) →ϵ (m, k) condenser.

We say C is time T and space S invertible if C−1 can be computed in time T and space S.
We call C−1 the inverse of C, we call C ′ the condenser part of C, and I the index function
of C. We still call d the seed length and m the output length.

To use condensers to create weight fixers, we need the following properties. To get a
short output, we need small seed length. Since we have Theorem 18, to handle very heavy
messages, seed length polylog(n) suffices for our work. To get high weight, we need a lossless
condenser with only constant entropy gap. That is, the condenser needs to output all the
entropy and the number of bits in the output needs to be at most a constant number many
more bits than the amount of entropy. Finally, they need to be invertible in polynomial time.
Such good condensers exist.

Now we show that lossless condensers, when used as described above, give weight fixers.

▶ Theorem 21 (Lossless Condensers give Weight Fixers). Suppose you have an invertible
(n, k) →ϵ (k + d + b, k) lossless condenser

C : {0, 1}n × {0, 1}d → {0, 1}k+d+b × {0, 1}n−k−b

with seed length d that is time T and space S invertible. Let m = k + d + b.
Then there is a [2k−1/2, 2k+1/2] to

(1
2 − 2ϵ

)
2−b weight fixer, F : {0, 1}2n → {0, 1}2m ,

with input length N = 2n and output length M = 2m whose individual output bits can be
computed in time (T + O(1))2n−k−b and space S + O(d + b + n).

Proof. Our linear function F identifies every message bit with an n bit index, i, and every
output bit with an m bit index, j. Then the output bit at index j is the parity of all message
bits xi where for some seed s we have C(i, s)1 = j. More formally:

F (x)j =
⊕

i,s:C(i,s)1=j

xi =
⊕

i∈{0,1}n−k−b

xC−1(j,i).

By inspection, one can see that the output length is 2m = M .

CCC 2024

5:24 Explicit Time and Space Efficient Encoders Exist Only with Random Access

To compute F (x)j , we simply have to invert C to find all 2n−k−b message bits that map
to j and xor the corresponding bits together. Since C is time T and space S invertible,
this only takes time T2n−k−b to perform each inversion plus O(2n−k−b) for book keeping.
Similarly for space we just need to keep track of which bit we are outputting, which neighbor
of that bit we are at, and the space for the inversion. This is space O(m) + O(n − k − b) + S.

To see that F is weight fixing, choose any x with weight w ∈ [2k−1/2, 2k+1/2]. Now we
show that for a large fraction of the j ∈ {0, 1}m, there is only one index ℓ and seed s with
xℓ ̸= 0 such that C(ℓ, s) = j. This would imply that for such j that

F (x)j =
⊕

i,s:C(i,s)=j

xi = xℓ ̸= 0.

If w ≥ 2k, then we will show that any specific set of 2k ones of x approximately map to
unique outputs and the extra ones can’t cancel out too much.

Take any X ⊆ {0, 1}n such that |X| = 2k and for all i ∈ X : xi = 1. Then there must
be at least (1 − ϵ)2k+d distinct indexes j such that for some index i and seed s we have
C(i, s) = j. Otherwise, we have a k entropy flat source whose output in expectation over
the seed differs from any k + d source by more than ϵ. Then at most ϵ2k+d of the index
i seed s pairs map to a j for a second time. Thus at least (1 − 2ϵ)2k+d output indexes j

have a unique index i ∈ X seed s that maps to i and with xi = 1. The rest of the at most
(
√

(2) − 1)2k ones in x and 2d seeds can only hit (
√

(2) − 1)2k+d of these.
So at least

(1 − 2ϵ −
√

(2) + 1)2k+d > (1/2 − 2ϵ)2k+d

of the output indexes j have a distinct i and s such that C(i, s) = j. Thus the output has
weight at least (1/2 − 2ϵ)2k+d. This is relative weight (1/2 − 2ϵ)2−b.

If w ≤ 2k, then we will show that any specific super set of 2k ones containing those of x

approximately map to unique outputs and the missing ones can’t can’t be too many of these.
Take any X ⊆ {0, 1}n such that |X| = 2k and for all i ∈ X : xi = 1 : x ∈ X. Then, as in

the last case, at least (1 − 2ϵ)2k+d output indexes j have a unique i ∈ X with xi and seed
s that maps to them. Now x is only missing (1 − 1√

n
)2k of the ones in X. These missing

indexes only contribute (1 − 1√
n

)2k+d ones to these output pairs.
So at least

(1 − 2ϵ − 1 + 1/
√

(2))2k+d > (1/2 − 2ϵ)2k+d

of the output indexes j have a distinct i and s such that C(i, s) = j. Thus the output has
weight at least (1/2 − 2ϵ)2k+d. This is relative weight (1/2 − 2ϵ)2−b. ◀

Now since good invertible condensers exist, and good invertible condensers give good
weight fixers, good weight fixers exist.

▶ Lemma 22 (Weight Fixers For Small Weight Messages). For some constant β > 0, for every
N = 2n and K = 2k, there is a [2k−1/2, 2k+1/2] to β weight fixer F : {0, 1}N → {0, 1}M where
M = O(K2O(log(log(N))3)). Further, any bit of F can be computed in time O(polylog(N) N

K)
and space O(log(N)2).

Proof. This is a direct application of Theorem 21 to Theorem 5. So for ϵ = 1/10, we
have from Theorem 5 a time poly(n), space O(n2) invertible, lossless (n, k) →ϵ (m, k + d)
condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with d = O(log(n/ϵ)3) = O(log(n)3) and m = k + d + O(log(1/ϵ)). Let b = m − k − d =
O(log(1/ϵ)) = O(1)

J. Cook and D. Moshkovitz 5:25

Then from Theorem 21 there is a [2k−1/2, 2k+1/2] to
(1

2 − 2ϵ
)

2−b weight fixer, F :
{0, 1}2n → {0, 1}2m , with message length 2n and output length 2m = O(K2log(n)3) whose
individual output bits can be computed in time poly(n)2n−k−b = O(polylog(N) N

K) and space
O(n2 + d + b + n) = O(log(N)2). See that the output weight

(1
2 − 2ϵ

)
2−b is a positive

constant since b is constant and 2ϵ < 1
2 . ◀

Now if we assume we have condensers, we have weight fixers. But not for arbitrarily large
constant weight. We handle that next.

6.4 Distance Amplification
So now we have weight fixers that are time and space efficient to compute for every order
of magnitude, but these weight fixers only have some constant output weight. It could be
very small. We want weight close to 1. So we apply a final weight fixer to them that takes
constant relative weight inputs and amplifies them to outputs with weight close to 1.

We note that we have to do this amplification on the individual weight fixers before we
combine them, rather than afterward. This is because our distance amplification weight
fixer queries it’s input in a random order, not sequentially. So the time to compute the
amplified weight fixer is proportional to the length of it’s output, and the cost to compute a
random symbol of it’s input. If applied after mixing all of the weight fixers, this time per
input symbol will be close to N with close to N outputs, which will take N2 time. But
when applied to an individual weight fixer, it will only increase the time it takes to output a
symbol by a constant factor.

Our weight fixer for very heavy messages uses an extractor to group message bits such
that all but ϵ fraction of groups has a one in it. Then we just output all the bits in a group
as a symbol in the alphabet. While we could output a code of all the bits in a group, we
don’t need to for our results and doing so would be unnecessarily complicated.

For this to work, we need to define an invertible extractor, similar to an invertible
condenser.

▶ Definition 23 (Invertible Extractor). Suppose E′ : {0, 1}n × {0, 1}d → {0, 1}m is (k, ϵ)
extractor. Suppose there is a buffer function B : {0, 1}n × {0, 1}d → {0, 1}n+d−m, and define
E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m by

E(x, s) = (E′(x, s), B(x, s)).

Suppose E is invertible with inverse E−1 : {0, 1}m × {0, 1}n−m × {0, 1}d → {0, 1}n. Then
we say E is an invertible extractor.

We say E is time T and space S invertible if E−1 can be computed in time T and space
S. We call E−1 the inverse of E, we call E′ the extractor part of E, and B the buffer, or
index function of E.

Now we show that using our extractors as described before gives a weight fixer.

▶ Theorem 24 (Extracters give Weight Fixers). Suppose you have an invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with seed length d that is time T and space S invertible.
Let Σ = {0, 1}2n+d−m .
Then there is a [2k, 2n] to 1 − ϵ weight fixer, F : {0, 1}2n → Σ2m , with message length 2n

and output length 2m whose individual output bits can be computed in time (T +O(1))2n+d−m

and space S + O(n + d + 2n+d−m) with just 2n+d−m queries to the message.

CCC 2024

5:26 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Proof. This is the most crude form of ABNNR [2]. For every output bit i ∈ {0, 1}m, we let
F (x)i be the concatenation of every bit xj where for some s ∈ {0, 1}d we have E(j, s)1 = i.
This can be easily computed by inverting E for 2n+d−m many times.

For any message with at least 2k ones, by the extractor property of E, must hit at all
but ϵ fraction of outputs, otherwise the corresponding distribution could not be ϵ close to
uniform. ◀

The following extractor is a specific instantiation of [12, Theorem 7.2], which is efficiently
invertible. See the discussion in Section 7.1.

▶ Lemma 25 (Invertible, Very High Entropy Extractors Exist). For every n, k, and ϵ > 0, there
exists a time poly(n log(1/ϵ))) space O(n) + poly(2n−k/ϵ) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}k × {0, 1}n−k+d

with seed length d = O(log(n − k) + log(1/ϵ)).
This extractor requires 2poly(2n−k/ϵ) preprocessing time.

Proof. This just instantiates [12, Theorem 7.2] with t = n − k. ◀

This implies weight fixers for arbitrarily large output weights, starting from any constant
weight. We will always use the following lemma where K is within a constant factor of N .

▶ Corollary 26 (Weight Fixers with Large Output Weight). For every N = 2n, K = 2k, and
ϵ > 0, there exists a [K, N] to 1 − ϵ weight fixer, F : {0, 1}N → ΣK , with message length N

and output length K whose individual output bits can be computed in time poly(log(N) N
ϵK)

and space O(log(N)) + poly(N
ϵK) using poly(N

ϵK) queries to the message.
Here, Σ = {0, 1}poly(N

Kϵ). There is also an additional 2poly(N
ϵK) preprocessing time.

Proof. First, we apply Lemma 25 to get a time poly(n, log(1/ϵ))) = poly(log(N) log(1/ϵ))
space O(n) + poly(2n−k/ϵ) = O(log(N)) + poly(N

ϵK) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}k × {0, 1}n−k+d

with seed length d = O(log(n − k) + log(1/ϵ)).
See that

2n+d−k = N

K
poly(log(N/K)

ϵ
)

= poly(N

Kϵ
).

Then we can apply Theorem 24 to get a [N = 2n, K = 2k] to 1 − ϵ weight fixer,
F : {0, 1}N=2n → ΣK=2k , with message length N = 2n and output length K = 2k whose
individual output bits can be computed in time

poly(log(N) log(1/ϵ))2n+d−k = poly(log(N) N

ϵK
)

and space

S + O(n + d + 2n+d−k) = S + O(log(N/Kϵ) + N

K
poly(log(N/K)

ϵ
))

= S + poly(N

Kϵ
)

with just 2n+d−k = poly(N
Kϵ) queries to the message.

J. Cook and D. Moshkovitz 5:27

Here

Σ = {0, 1}2n+d−k

= {0, 1}poly(N
Kϵ).

There is also an additional 2poly(N
ϵK) preprocessing time. ◀

Now we can apply this to both our Spielman style weight fixer and our condenser based
weight fixer to get weight fixers for any order of magnitude message, and any constant weight
output. This corollary just applies Corollary 26 to the output of Theorem 18.

▶ Corollary 27 (Heavy Message, Very Heavy Output Fixers). Take any integer K = 2k, and
any integer N = 2n such that N ≥ K. Then for any ϵ > 0, there is a [K, N] to 1 − ϵ weight
fixer F : {0, 1}N → ΣM where Σ = {0, 1}poly(1/ϵ) and M = O(N). Further any symbol in
the output of F can be computed in time poly(N log(N)

Kϵ) and space O(log(N) + poly(1/ϵ)).
There is also an additional 2poly(1

ϵ) preprocessing time.

In the same way, this corollary just applies Corollary 26 to the output of Lemma 22.

▶ Corollary 28 (Small Message Weight, Large Output Weight Fixers). For any constant
ϵ > 0, for every N = 2n and K = 2k, there is a [2k−1/2, 2k+1/2] to 1 − ϵ weight fixer
F : {0, 1}N → ΣM where M = 2m = O(K2O(log(log(N))3)) and Σ = {0, 1}poly(1/ϵ). Further,
any symbol of F can be computed in time O(N

K poly(log(N)
ϵ)) and space O(log(N)2+poly(1/ϵ)).

There is also an additional 2poly(1/ϵ) preprocessing time.

6.5 Putting it all together
Now that we have weight fixers for every input range, and they are good, all that is left is to
assemble our final code.

Now we can combine all the condenser based weight fixers to get a single weight fixer
that works on all small messages. We recall that because of our long seed, we do not get
linear length output for all weight ranges. Thus we only combine up to some message weight
that is about N

2d where d is the seed length of the condenser. That is, we invoke the following
theorem with K N

2d .
We also don’t mix the condenser based weight fixers with the Spielman style ones at this

step either, since our weight fixer mixer adds a small overhead to the output length. As
noted before, we can fix this by giving a better weight fixer mixer. But we instead mix our
small weight fixers first, then mix our large weight fixer with the result.

▶ Lemma 29 (Mixing Small Weight Fixers To Get One Weight Fixer). For any ϵ > 0, for
any N = 2n and K = 2k, there is a [K] to 1 − ϵ weight fixer F : {0, 1}N → ΣM with
M = O(K poly(1/ϵ)2O(log(log(N))3)) and Σ = {0, 1}poly(1/ϵ). Further, the full output of F can
be computed in space

O(log(N)2 + log(N) poly(1/ϵ))

and time

N2O(log(log(N))3) poly(1/ϵ) + 2poly(1/ϵ).

Proof. The proof works by invoking Corollary 28 for every i ≤ K and combining them with
Theorem 19.

CCC 2024

5:28 Explicit Time and Space Efficient Encoders Exist Only with Random Access

So specifically, for every i ≤ k, Corollary 28 gives a [2i−1/2, 2i+1/2] to (1−ϵ/2) weight fixer
Fi : {0, 1}N → ΣMi

1 where Mi = O(2i2O(log(log(N))3)). Further, any bit of Fi can be computed
in time O(N

2i poly(log(N)
ϵ)) and space O(log(N)2 + poly(1/ϵ)). Here Σ1 = {0, 1}poly(1/ϵ).

There is also an additional 2poly(1/ϵ) preprocessing time. This preprocessing is the same
for each i.

Finally, to use Theorem 19, we need the existence of some efficient code, linear, code from
k poly(1/ϵ) bits to k poly(1/ϵ) symbols of O(poly(1/ϵ)) bits with distance 1 − ϵ/2. Since this
is a code on only k poly(1/ϵ) bits, we can afford to use a less efficient code. So we can for
instance use a Spielman code [48] with [2] (this is the same code as Corollary 27 with K = 1,
evaluated in a more time, less space efficient way) to get such a code, call it C : Σk

1 → Σk′

2
where Σ2 = {0, 1}poly(1/ϵ) and k′ = O(k poly(1/ϵ)).

Note that since each Mi is a power of 2, we can upper bound the least common multiple
of the Mis by some M ′ = K2O(log(log(N))3).

Now we can apply Theorem 19 to get a [K] to (1 − ϵ/2)2 > (1 − ϵ) weight fixer L :
{0, 1}N → ΣO(M ′k′)

2 . Let

M = M ′k′

= O(K log(K) poly(1/ϵ)2O(log(log(N))3)

= O(K poly(1/ϵ))2O(log(log(N))3).

Further the full output of L is computable in space

O(k log(|Σ2|) + log(M) + log(N)2 + poly(1/ϵ)) = O(log(N) poly(1/ϵ) + log(N)2)

and time

O(M polylog(N)+
∑
i∈k

2i2O(log(log(N))3) N

2i
poly(log(N)

ϵ
)) = O(N2O(log(log(N))3) poly(1/ϵ)).

Adding in the 2poly(1/ϵ) preprocessing time, this gives a total time of

N2O(log(log(N))3) poly(1/ϵ) + 2poly(1/ϵ). ◀

Now that we have a weight fixer for light messages and a weight fixer for heavy messages,
we can combine them to get a weight fixer for every message weight, which must be a code
since weight fixers are linear. We now prove Theorem 1.

▶ Theorem 1 (Explicit Almost Linear Time, Polylog Space Encodable Codes). For any ϵ > 0,
and N , there exists a linear code

C : {0, 1}N → ΣM

that has relative distance 1 − ϵ, output length M = O(N) and alphabet Σ = {0, 1}poly(1/ϵ).
Further C is computable in time N poly(2log(log(N))3

/ϵ) + 2poly(1/ϵ) and space O(log(N)2 +
log(N) poly(1/ϵ)) with random access to the message.

For constant ϵ, we have constant alphabet size, Σ = {0, 1}O(1), and further C is computable
in time N1+o(1) and space O(log(N)2).

Proof. The basic idea is to combine Lemma 29 with Corollary 27 setting

K = N

log(1/ϵ)2O(log(log(N))3) .

J. Cook and D. Moshkovitz 5:29

This is the setting at which Lemma 29 stops having linear length, and Corollary 27 still has
almost linear time. In particular, choose c to be the constant so that the output length of
Lemma 29 is M ≤ cK(1/ϵ)c2c log(log(N))3 , and set

K = N

c(1/ϵ)c2c log(log(N))3

so that

M ≤ cK(1/ϵ)c2c log(log(N))3

= N.

Then by Lemma 29 there is a [K] to 1 − ϵ weight fixer F1 : {0, 1}N → Σ′M with
Σ′ = {0, 1}poly(1/ϵ) and M = O(K poly(1/ϵ)2O(log(log(N))3)). Further, the full output of F1
can be computed in space

O(log(N)2 + log(N) poly(1/ϵ))

and time

N2O(log(log(N))3) poly(1/ϵ) + 2poly(1/ϵ).

Using the same K with Corollary 27 gives a [K, N] to 1−ϵ weight fixer F2 : {0, 1}N → Σ′M ′

where Σ′ = {0, 1}O(poly(1/ϵ)) and M ′ = O(N). Further any bit in the output of F can be
computed in time poly(N log(N)

Kϵ) = poly(2log(log(N))3
/ϵ) and space O(log(N) + poly(1/ϵ)). So

one can say the entire output of F2 can be computed in time O(N poly(2log(log(N))3
/ϵ)) and

space O(log(N) + poly(1/ϵ)).
There is also an additional 2poly(1/ϵ) preprocessing time.
Now for the code needed by Theorem 19, we use the trivial code that just outputs

one symbol containing the entire message. This has distance 1, and has output alphabet
Σ = Σ′2 = {0, 1}poly(1/ϵ).

Then by Theorem 19 there is an [N] to 1−ϵ > 1 weight fixer L : {0, 1}N → Σ2M ′=M=O(N).
That is, L is a linear code with distance 1 − ϵ.

Further, the full output of L is computable in space

O(log(N)2 + log(N) poly(1/ϵ))

and time

N poly(2log(log(N))3
/ϵ)) + 2poly(1/ϵ). ◀

7 Constructing Invertible Condensers

Our condensers need to have constant entropy gap, polylogarithmic seed length, and be
efficiently invertible. All the condenser constructions we know of do not achieve all three.

The condensers of Capalbo, Reingold, Vadhan, and Wigderson [12] require non-explicit
gadgets which take too long to find and too much space to store if the starting entropy gap
is too large. The condensers of Guruswami, Umans, and Vadhan [25] or Kalev and Ta-Shma
[33] do not have small seed length while having constant entropy gap. Another approach
would be to use very good extractors, like those of Ta-Shma, Umans, and Zuckerman [50],
then apply a condenser to concentrate the remaining entropy to get a lossless condenser with
small entropy gap. Unfortunately, the extractors of [50] or [25] don’t appear to be invertible.

CCC 2024

5:30 Explicit Time and Space Efficient Encoders Exist Only with Random Access

(C ′, I ′)(x, s1 ◦ s2 ◦ s3 ◦ s4) = (y1 ◦ y2 ◦ y3, w1 ◦ w2).

(y1, z1) = (E1, B1)(x, s1) Trevisan Extractor
(z2, w1) = (C1, I1)(z1, s2) Multiplicity Condenser
(y2, z3) = (E2, B2)(z2, s3) Left-over Hash Extractor
(y3, w2) = (C2, I2)(z3, s4) Iterated Multiplicity Condenser.

Figure 5 Our Condenser Diagram.

The issue with the standard condense and extract framework is that they run many
condensers on the same message in parallel. Thus even if individually each condenser is
efficiently invertible, it is unclear how to invert them all together efficiently. To see what we
mean, consider the condenser which takes a message, x, applies an extractor E to x to output
a 0.9k bits of entropy, then applies a condenser, C, to x to output a length 0.11k bit output
containing the remaining 0.1k bits of entropy. Then the final result, C ′(x) = (E(x), C(x)) is
indeed a lossless condenser with output length 1.01k, so has an entropy gap of 0.01k.

It is not clear how to both time and space efficiently invert C ′. For any (y1, y2), there
are about 2n−0.9k values of x such that E(x) = y1, and about 2n−0.11k values of x such that
C(x) = y2. It is not space efficient to hold all such x in memory, so for every x such that
E(x) = y1, we need to check it against every value of x such that C(x) = y2. This would take
time around 22n−1.01k to enumerate through every input that condenses to a given output.
When n = log(N), this is around quadratic time, which is too much for our application.

This issue is fixed if C does not condense from x directly, but instead condenses from
some index function of E, or a buffer as [12] would call it. Then as long as E and C are
invertible, we can invert C ′ in a sequential way. With this change, condensers made using a
condense then extract framework can be made efficiently invertible, as long as the component
condensers and extractors are.

Since we are not too concerned about the seed length, our construction will use the
extractors of Trevisan [51, 41]. To conserve space in the algorithm we use the explicit, log
space weak combinatorial designs of Hartman and Raz [28]. To make sure that Trevisans
extractor is invertible, we need to restrict how large k can be, and handle certain “bad” seeds.

We will also need to use a variant of the condensers of [33], and the left-over hash lemma
based extractors [31, 39] to finish extracting the rest of the bits in the input, and turn it
into a condenser. So the final condenser runs the Trevisan extractor, E1, to extract all but
O(log(n/ϵ)3) bits of entropy. Then we run the multiplicity condenser, C1, followed by the
hash based extractor, E2, to extract all but O(log(1/ϵ)) bits of entropy. Finally, we run an
iterated version of the multiplicity code condenser, C2, to condense the remaining entropy
into O(log(1/ϵ)) bits: y3 = C2(z3, s4). See Figure 5 for more explicit equations.

Before we start proving the provided condensers exist, we will give our composition
theorems.

7.1 Composition Theorems

To construct our condenser, we will compose invertible condensers and extractors together. So
we first need to define invertible extractors. Invertible extractors are the same as permutation
extractors of [12], which are themselves a special case of buffered extractors, with the extra

J. Cook and D. Moshkovitz 5:31

condition that the buffered extractor is efficient to invert. Equivalent composition theorems
are found in [12], our only change is including inversion time and space as a consideration.
Thus all the condensers of [12] are also efficiently invertible.

For our extractor composition to work, we need the following observation of distributions.
This seems to be well known folklore, so we will not prove it here.

▶ Lemma 30 (Approximate Uniform Marginals Keep Entropy). Suppose for some joint distri-
bution, X, Y , with min entropy k, if X, Y is ϵ close to some joint distribution U, V where U

is uniform, then X, Y is also ϵ close to some distribution U, W with min entropy k for the
same, uniform U . Additionally, for any x ∈ {0, 1}|U |, we have W |U = x has entropy k − |U |.

Our next lemma just says if you apply an invertible condenser to the buffer of the
invertible extractor, you get a better invertible condenser.

▶ Lemma 31 (Invertible Condensers Compose With Extractors). Suppose there is a time T1 and
space S1 invertible, (k, ϵ1), invertible extracter E : {0, 1}n × {0, 1}d1 → {0, 1}m1 × {0, 1}n−m1

and a time T2, space S2 invertible, (n − m1, k′) →ϵ2 (m2, k − m1) invertible condenser
C : {0, 1}n−m1 × {0, 1}d2 → {0, 1}m2 × {0, 1}n−m1−m2 .

Then there is a time T1 + T2 + O(1), space O(n) + max{S1, S2} invertible, (n, k) →ϵ1+ϵ2

(m1+m2, m1+k′) condenser C ′ : {0, 1}n×{0, 1}d1+d2 → {0, 1}m1+m2 ×{0, 1}n+d1+d2−m1−m2 .

Proof. For any x ∈ {0, 1}n, s1 ∈ {0, 1}d1 , and s2 ∈ {0, 1}d2 , define

y1 = EE
s1

(x)
u = EI

s1
(x)

y2 = CC
s2

(u)
z = CI

s2
(u)

C ′C
(s1,s2)(x) = (y1, y2)

C ′I
(s1,s2)(x) = z.

Then observe that one can compute C ′−1
(s1,s2)((y1, y2), z) by

u = C−1
s2

(y2, z)
x = E−1

s1
(y1, u).

The space here is just the space to store u plus the max of the space to invert C and E.
Similarly the time is the time to invert C and the time to invert E.

Now to show that C ′C is a condenser, first see that given any X with entropy k, since EE

is a strong extractor, we have that for uniform s1, distribution s1, y1 is ϵ close to uniform.
Further, since E is invertible, the distribution s1, y1, u has the same entropy as X, thus has
entropy k + d.

By Lemma 30 we have that s1, y1, u is ϵ close to some distribution s1, U, u′ where s1 and
U are uniform, and u′ has entropy k − m1 conditioned on s1 and U . Let y′

2 = CC
s2

(u′). Then
since C is a condenser, we have that s2y′

2 is ϵ2 close to a distribution that has entropy d2 + k′

for every correlated value of s1 and U . Thus s1Us2y′
2 is ϵ2 close to a d1 + m1 + d2 + k′ source.

Thus s1, y1, s2y2 is ϵ1 + ϵ2 close to being a d1 + m1 + d2 + k′ source. Therefore, CC is a
strong (n, k) →ϵ1+ϵ2 (m1 + m2, k′), invertible extractor. ◀

The following theorem just says that if you apply an invertible condenser to the output
of a condenser you get a better condenser.

CCC 2024

5:32 Explicit Time and Space Efficient Encoders Exist Only with Random Access

▶ Theorem 32 (Invertible Condensers Compose With Condensers). Given a time T1 and space
S1 invertible (n, k) →ϵ1 (m1, k1) invertible condenser A : {0, 1}n × {0, 1}d1 → {0, 1}m1 ×
{0, 1}n−m1 and a time T2 space S2 invertible, (m1, k1) →ϵ2 (m2, k2) condenser B : {0, 1}m1 ×
{0, 1}d2 → {0, 1}m2 × {0, 1}m1−m2 .

Then there is a time T1 + T2 + O(1) space O(n) + max{S1, S2} invertible, (n, k) →ϵ1+ϵ2

(m2, k2) invertible condenser

C : {0, 1}n × {0, 1}d1+d2 → {0, 1}m2 × {0, 1}n+d1+d2−m2 .

Proof. For any x ∈ {0, 1}n, s1 ∈ {0, 1}d1 , and s2 ∈ {0, 1}d2 , define

u = AC
s1

(x)
z1 = AI

s1
(x)

y = BC
s2

(u)
z2 = BI

s2
(u)

CC
(s1,s2) = y

CI
(s1,s2) = (z1, z2).

Then observe that one can compute C−1
(s1,s2)(y, (z1, z2)) by

u = B−1
s2

(y, z2)
x = A−1

s1
(u, z1).

This only takes space that is the max of the space to invert B and the space to invert A plus
space to hold u. It also only takes the time to invert B and A plus some book keeping.

Since Ac is a strong condenser, s1, u is an ϵ1 approximation of some d1 + k1 source.
Then since Bc is a strong condenser, we have that s1, s2, y is an ϵ1 + ϵ2 approximation of a
d1 + d2 + k2 source. ◀

7.2 Our Base Condenser
For our base condensers that we compose with extractors to make our final condenser, we
use the condenser of Kalev and Ta-Shma [33]. These condensers are based on multiplicity
codes, which we find easier to understand, and thus invert, then the condensers based on
Pavarash-Vardy codes of [25]. While these condensers are great at condensing inputs with k

bits of entropy into O(k) bits of output, they can not efficiently condense inputs with k bits
of entropy to k + O(log(1/ϵ) bits, which is what we need. This is why we need to perform
composition to get our final condenser.

▶ Lemma 33 (Invertible Lossless Expander). For every field Fq and integers ℓ, s ∈ N with
15 ≤ s ≤ ℓ ≤ char(Fq), there exists an explicit graph Γ : Fℓ

q × Fq → Fs
q which is a (K, A)

expander for every K > 0 with

A = q − ℓs

2 (qK) 1
s .

Further, Γ is invertible in time O((ℓ log(q))2) and space O(ℓ log(q)).

Proof. This expander is from [33, Theorem 1.3], all we need to show is that Γ is efficiently
invertible. Examining Γ, we see it is actually a very straightforward construction based on
multiplicity codes. It views its first input as a degree at most ℓ polynomial, p, and its second
input as an evaluation point, x. Then it outputs the first s Hasse derrivatives of p evaluated
at y.

J. Cook and D. Moshkovitz 5:33

The expander Γ can be made invertible by also evaluating the remaining ℓ − s potentially
non zero Hasse derrivatives at y to create the index function. Then one can reconstruct the
original polynomial using a Taylor expansion at y. This only takes time O((n log(q))2) and
space O(n log(q)). ◀

Kalev and Ta-Shma [33] carefully choose parameters to get very good output length, at
the cost of severe restrictions on α, k, n, and ϵ. The proof is in [33].

▶ Lemma 34 (Kalev and Ta-Shma Condensers). For every set of integers k ≤ kmax ≤ n

and ϵ > 0 with 16 log(n
ϵ)√

k
≤ α ≤ 1, there is a time O(n2) space O(n) invertible (n, k) →ϵ

(m, k + d) lossless, invertible condenser C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m with
d = (1 + 1/α) log(nkmax/ϵ) + O(1) and m ≤ (1 + α)kmax.

These limitations on the parameters of α, k, n and ϵ are inconvenient, so we give an
alternate choice of parameters that gives a worse condenser, but are easier for us to work
with.

▶ Lemma 35 (Our Basic Condenser). For every set of integers k ≤ kmax ≤ n and 1 > ϵ > 0
with 26 log(2n/ϵ) ≤ kmax ≤ n

2 , there is a time O(n2) space O(n) invertible (n, k) →ϵ (m, k+d)
lossless, invertible condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m

with d = O(log(nkmax/ϵ)) and m ≤ 2kmax + O(log(n/ϵ)).

Proof. Let q′ =
(2nkmax

ϵ

)2, and q be any prime between q′ and 2q′. Let K = 2kmax . Then
we choose s to be the smallest integer so that qs−2 ≥ K2. Finally we set ℓ = ⌈ n

log(q) ⌉ + 2.
Now we show that we can apply Lemma 33. For this, we need to show 15 ≤ s ≤ ℓ ≤ q.

To show that 15 ≤ s, we just need to show that q13 < K2. This can be shown by

log(q13) = 13 log(q)
< 13 log(2q′)

= 13 log
(

2
(

2nkmax

ϵ

)2
)

≤ 13 log
(

2
(

n2

ϵ

)2)

< 13 log
((

2n

ϵ

)4
)

< 52 log(2n/ϵ)
< 2kmax.

Finally exponentiating both sides gives q15−2 < K2, thus s must be at least 15.
To see that s ≤ ℓ, it suffices to show that qℓ−2 ≥ K2. But this must be true since

qℓ−2 ≥ 2n ≥ 22kmax = K2. Finally it is clear that q ≥ n since q ≥ q′ > n. Thus we can apply
Lemma 33.

Due to Lemma 33, there is an explicit graph Γ : Fℓ
q ×Fq → Fs

q which is a (K, A) expander
for every K > 0 with

A = q − ℓs

2 (qK) 1
s = q

(
1 − 1

q

ℓs

2 (qK) 1
s

)

CCC 2024

5:34 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Further, Γ is invertible in time O((ℓ log(q))2) = O(n2) and space O(ℓ log(q)) = O(n).
Now we want to show that A, the expansion rate of size K sets, is very close to q, the

degree, to get a lossless condenser. To do this, we show that 1
q

ℓs
2 (qK) 1

s is at most epsilon.
See that since qs−2 ≥ K2, we also have K ≤ qs/2−1. We also have that qs−3 < K2, thus
s < 2kmax

log(q) + 3 < 2kmax since kmax, q > 16. We also have that ℓ < n. Thus

1
q

ℓs

2 (qK) 1
s ≤ 1

q

ℓs

2 (qqs/2−1) 1
s

≤ ℓs

2√
q

<
n2kmax

2
√

q′

= ϵ/2.

Thus we can bound A by

A ≥ q(1 − ϵ/2).

Also see that qℓ > n. Then our final condenser just interprets the input as an element of
Fℓ

q, and, its seed as an element of Fq, and outputs an element of Fs
q. On a technical note, q

is not a power of 2, and in fact may be far from a power of 2. While we could work with
this, to get our stated result, we will need to sample the same element of Fq for multiple
seeds so that our distribution of seeds is approximately uniform. We can ϵ/2 approximate a
uniform distribution over Fq with log(q) + O(log(1/ϵ)) extra bits, which we do. But to avoid
collisions, we need to include the extra O(log(1/ϵ)) bits of seed in the output.

We claim this is a (n, k) →ϵ (m, k + d) condenser with seed length is d = log(q) +
O(log(1/ϵ)) = O(log(n/ϵ)), and output bit length s log(q)+O(log(1/ϵ)) = 2kmax +O(log(q)+
log(1/ϵ)) = 2kmax + O(log(n/ϵ)). The seed length and output bit is given directly from Γ
and the extra padding needed to work over bits.

To see that it is a condenser, we simply observe that any flat k source is a uniform
distribution over an element of Fℓ

q, and if our seed was uniform over Fq, then the output could
only have at most ϵ/2 fraction of collisions, thus is an ϵ/2 approximation of a k+log(q) source.
Since our seed is an ϵ/2 approximation of an element of Fq and the extra d − log(q) entropy
is copied directly to the output, our output is an ϵ approximation of a k + d source. ◀

We want to use our condenser both where k is around O(log(n/ϵ)) and when k =
O(log(1/ϵ)). Lemma 35 is already good enough when k = O(log(n)), but the restriction of
kmax = Ω(log(n/ϵ)) makes our condenser output length too long when k = O(log(1/ϵ)). By
composing this condenser with itself log∗(n) many times we get a condenser that handles
even constant entropy k. Since each successive instance is so much smaller than the first,
this gives the same asymptotic time, space, and seed length.

▶ Corollary 36 (Iterated Basic Condenser). For every set of integers k ≤ kmax ≤ n
2 and

1
2 > ϵ > 0 with 100 log(1/ϵ) ≤ kmax ≤ n, there is a time O(n2) space O(n) invertible,
(n, k) →ϵ (m, k + d) lossless, invertible condenser C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m

with d = O(log(nkmax/ϵ)) and m ≤ 2kmax + d + O(log(1/ϵ)).

J. Cook and D. Moshkovitz 5:35

7.3 Our Condenser for Polylogarithmic Entropy
While the proceeding condensers are quite good, they cannot by themselves get a constant
entropy gap. That is, they can’t give number of output bits with m = k + O(log(1/ϵ)) unless
k = O(log(1/ϵ)). Here, we show we can give a lossless condenser, albeit with very long seed
length, that outputs all k + d bits of entropy into a length k + d + O(log(1/ϵ)) bit output.

This will just use the left-over hash lemma based extractor [31] composed with our
iterated condenser, Corollary 36 to get a condenser with an O(log(1/ϵ)) entropy gap. So
first, we will state the extractor given by the left-over hash lemma.

▶ Lemma 37 (Base Case Extractor). For any n > k > 0 and ϵ, there is a time O(n2), space
O(n) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n−m

with seed length d = O(n), and m = k + d − O(log(1/ϵ)).

Proof. This is an extractor based on a pairwise independent hash function. The soundness is
based on the well known leftover hash lemma. For invertibility, we just use the hash function
that views input x as an element of F2n , and the seed as two elements a, b ∈ F2n and outputs
the m least significant bits of

ax + b

and the seed. And the index function are the n − m most significant bits of ax + b. Then
inversion is straightforward. ◀

Now we can use our extractor with our multiplicity based condenser to get a new
condenser.

▶ Corollary 38 (Base Case Condenser). For any n > k > 0 and ϵ, there is a time O(n2),
space O(n) invertible, (n, k) →ϵ (m, k + d) condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with seed length d = O(n), and m = k + O(log(1/ϵ)).

Proof. By Lemma 37, there is an extractor a time O(n2), space O(n) invertible (k, ϵ/2)
extractor

E : {0, 1}n × {0, 1}d1 → {0, 1}m1 × {0, 1}n−m1

with seed length d1 = O(n), and m1 = k+d1−O(log(1/ϵ)). Let k1 = k+d1−m1 = O(log(1/ϵ))
By Corollary 36, there is a time O(n2) space O(n) invertible, strong (n − m1, k1) →ϵ/2

(d2 + O(k1), d2 + k1) invertible condenser

C1 : {0, 1}n × {0, 1}d2 → {0, 1}m2 × {0, 1}n−m2

with d2 = O(log(nkmax/ϵ)) and m2 ≤ 2k1 + d2 + O(log(1/ϵ)).
By Lemma 31 the final result is a time O(n2), space O(n) invertible (n, k) →ϵ (m1 +m2 =

k + d1 + d2 + O(log(1/ϵ)), m1 + d2 + k1 = k + d1 + d2) condenser

C : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 × {0, 1}n−m1−m2 .

Finally see that the seed length of C is d1 + d2 = O(n). ◀

CCC 2024

5:36 Explicit Time and Space Efficient Encoders Exist Only with Random Access

7.4 Final Condenser
Now to construct our final condenser, we first start with an invertible extractor that can
extract most of the entropy (all but polylog(n/ϵ)). We start with the time and space efficient
variation of Trevisan’s extractor [51, 41] by Hartman and Raz [28]. This extractor is invertible
because it is linear, a fact commonly used by non-malleable extractors [14, 37]. We note that
this choice of extractor (and the techniques used to invert it) are the main bottleneck to
getting log space and quasilinear time encoders. Better seed length and linear space inversion
of our condenser would give us better encoders.

The Trevisan extractor algorithm depends on two constructions, a code with good distance,
and a weak combinatorial design. We use the same code and weak design as [28].

▶ Lemma 39 (Invertible Trevisan Extractor). For every n, k and ϵ such that k ≤ n and
ϵ > 21−n/ log∗(n)log∗(n) , there is a time poly(n), space O(n2) invertible (k, ϵ) extractor

E : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with seed length d = Θ(log(n/ϵ)3) and m = k

Proof. We start with the extractor in [28, Theorem 10] using ϵ/2 in place of ϵ.
This immediately gives us a (k, ϵ/2) extractor

E′ : {0, 1}n × {0, 1}d → {0, 1}m

with seed length d = O(log(n/ϵ)3) and m = k. Unfortunately, E′ is probably not invertible.
To convert it into an invertible extractor, we need to first explain how E′ is computed.

The extractor E′ is built using a code, C : {0, 1}n → {0, 1}n′ , where n′ is a power of two
and a weak combinatorial design, S : [m] → [d]log(n′). Given an input x and a seed s, the
extractor E′ outputs

y = (C(x)|s(S(1)), C(x)|s(S(2)), . . . , C(x)|s(S(m)))

where C(x)|s(S(i)) means to first concatenate the bits in s indicated by S(i), and then use
the resulting string to index into C.

Importantly, S can be computed in log(n) space and time poly(n). And C is a Reed-
Solomon code concatenated with a Hadamard code. In particular, for some a with log(n/ϵ) <

a < 4 log(n/ϵ), code C is the Reed Solomon codes over F2a with degree at most n/a composed
with the Hadamard code. The important thing about this extractor is that after a given
seed is chosen, the extractor is a linear function whose generator matrix can be found in
polynomial time and space O(n2).

So if for a given seed s, all the output bits are linearly independent, then one can create
a full rank matrix where the first k rows output the extractor by a greedy search in poly(n)
time and O(n2) space. Applying this matrix, and then appending the seed, gives the buffered
extractor. And by Guassian elimination, one can invert this matrix again in poly(n) time
and O(n2). Thus for these “good” seeds, one where the output bits are linearly independent,
one can invert this extractor efficiently.

When the seed is “bad”, that is the output bits are not linearly independent, one can also
detect this in time poly(n) and space O(n2), again using Guassian elimination. For these
bad seeds, the extractor already fails, so we just output the entire input. This is trivially
invertible.

So in our final invertible extractor, we take an input x and a seed s and first check if it is
bad. If it is, we give up and output the input and the seed. Otherwise, we output for our
extractor part E′(x, s) and for our buffer part s along with the rest of the information need

J. Cook and D. Moshkovitz 5:37

to invert E′. The buffer here only needs to output a d bit seed, plus the information about x

missing from the extractor, which is just n − k bits, exactly what we need: an n + d − m bit
buffer.

To see the result is an extractor, all we need to note is that the seed is bad rarely. This is
because E′ outputs an ϵ/2 approximation of the uniform distribution and when a seed is bad,
since the extractor is linear, it E′ can only hit at most half the space of outputs. So when
the seed is bad, that seed has distance 1/2 from uniform. So E only doubles the error on bad
seeds and maintains the same error on all other seeds. Thus the error of E is at most ϵ. ◀

Now we can construct our final condenser by composing our invertible Trevisan Extractor,
Lemma 39 with our multiplicity condenser Lemma 35 and our base case condenser Corollary 38.
We now prove Theorem 5.

▶ Theorem 5 (Good Invertible Condensers Exist). For every n, k and ϵ such that ϵ >

23−n/ log∗(n)log∗(n) , there is a time poly(n), space O(n2) invertible, lossless (n, k) →ϵ (m, k+d)
condenser

C : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}n+d−m

with d = O(log(n/ϵ)3) and m = k + d + O(log(1/ϵ)).

Proof. For small enough constant n, we can just use the probabilistic method to find the
condenser. So take n to be a sufficiently large value. If k > n/2, we can just increase n to 2k

by padding inputs. The resulting condenser will work equally well on length n inputs.
We start by stating our extractor and two condensers we will compose along with the

parameters we use. Then we compose them from smallest to largest to get the final condenser.
By Lemma 39, we have a time poly(n), space O(n2) invertible (k, ϵ/4) extractor

E : {0, 1}n × {0, 1}d1 → {0, 1}m1 × {0, 1}n+d1−m1

with seed length d1 = Θ(log(n/ϵ)3) and m1 = k. Let n1 = n + d1 − m1 and k1 = d1.
Now to use Lemma 35, we need 26 log(64n1/ϵ) ≤ k1 ≤ n1

2 . Well since m1 = k ≤ n/2 and,
for large enough n, we have k1 = d1 = Θ(log(n/ϵ)3) < n/2 we have that

n1 = n + d1 − m1
≥ n/2 + d1

> 2k1.

Similarly for large enough n, we know that k1 = d1 = Θ(log(n/ϵ)3) > 26 log(64n1/ϵ).
So by Lemma 35, there is a time O(n2) space O(n) invertible (n1, k1) →ϵ/4 (m2, k1 + d2)

invertible condenser

C1 : {0, 1}n1 × {0, 1}d2 → {0, 1}m2 × {0, 1}n1−m2

with d2 = O(log(n1k1/ϵ)) and m2 ≤ 2k1 + O(log(n1/ϵ)).
And lastly, by Corollary 38 there is a time O(m2

2) = O(n2) space O(m2) = O(n) invertible
(m2, k1 + d2) →ϵ/2 (m3, k1 + d2 + d3) condenser

C2 : {0, 1}m2 × {0, 1}d3 → {0, 1}m3 × {0, 1}m2+d2−m3

with seed length d = O(m2) = O(log(n/ϵ)3) and output length m3 = k1+d2+d3+O(log(1/ϵ)).

CCC 2024

5:38 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Now to compose these condensers. First, we compose C1 and C2 using Theorem 32 to
get a time O(n2) space O(n) invertible (n1, k1) → 3ϵ

4
(m3, k1 + d2 + d3) invertible condenser

C3 : {0, 1}n1 × {0, 1}d2+d3 → {0, 1}m3 × {0, 1}n1+d2+d3−m3 .

Now we compose C3 with E using Lemma 31 to get a time poly(n), space O(n2) invertible
(n, k) →ϵ (m1 + m3, m1 + k1 + d2 + d3) condenser

C ′ : {0, 1}n × {0, 1}d1+d2+d3 → {0, 1}m1+m3 × {0, 1}n+d1+d2+d3−m1−m3 .

Finally, see that see that since k1 = d1, that for d = d1 + d2 + d3 we have that m1 + m3 =
k + d + O(log(1/ϵ)) and the output entropy is m1 + d = k + d. ◀

8 Spielman Style Weight Fixers

If one does not consider decoding, one can naturally characterize Spielman codes in terms of
weight amplifiers. This perspective is useful for us, as we cannot afford to use full Spielman
codes. Instead, we only use them to amplify the weight of already heavy messages and leave
lighter messages to be fixed by our condenser based weight fixers.

The idea is to amplify the weight while reducing the output size. If you do this a few
times, it will amplify the weight until you have a heavy string at some stage. You need to
reduce the size each time so that you end up with a linear length string. Now that you know
some stage of the repeated condensing has large weight, now you apply the same weight
amplifier again on each stage and the outputs of the smaller stages, starting from the bottom,
to pull that weight back up. This is the same thing Spielman’s code does, but our analysis
can be much simpler since we are not trying to decode.

Our basic tool is a weight amplifier, which is only promised to increase the weight of any
light enough inputs by a constant factor. Notably, it could output zero weight for inputs that
are already very large. This is necessary since we also want outputs that shrink the input.

▶ Definition 40 (Weight Amplifier). For any R < N , any alphabets Σ1 and Σ2 composed
of binary bits, and constant δ > 1, a linear function A : ΣN

1 → ΣM
2 is said to be an R to δ

weight amplifier if, given any x with x with weight(x) ≤ R then weight(A(x)) ≥ δ weight(x).
We say that R is the input weight range, δ is the relative output weight, N is the input

length, and M is the output length.

The main component of our weight amplifiers are lossless expanders. The following
lossless expanders are from [12, Theorem 7.1].

▶ Lemma 41 (Constant Degree, Lossless Expanders). For some constant c, for every N, T ≤ N

and ϵ > 0, there is a D to DT regular bipartite graph G : [N] × [D] → [N/T] that is a(
cN

DT ϵ , D(1 − ϵ)
)

expander where D = poly(T/ϵ).
Further, G is invertible in time poly(log(N), 1/ϵ, T) and space O(log(N) + poly(T/ϵ)).

By invertible, we mean that for some G′ : [N] × [D] → [N/T] × [DT], where G′ restricted to
its first component is G, the function G′ is invertible in this time and space.

There is also an additional 2poly(1/ϵ) preprocessing time.

Proof. The same theorem is given in [12, Theorem 7.1], except that they use the language
of conductors instead of expanders. These are equivalent just by taking the log or exponent
of their parameters appropriately. All we note here is that all of the component conductors
in [12] are efficiently invertible, and thus so are their compositions. See Section 7.1 for more
details. ◀

J. Cook and D. Moshkovitz 5:39

Now using the lossless expanders above, we can give weight amplifiers. Our weight
amplifiers, as all of our weight fixers, just output for every vertex on the right the xor of
all its adjacent message bits on the left. This structure is important to know for doing fine
grain analysis of the space used by a weight fixer that applies many weight amplifiers as
subroutines.

▶ Lemma 42 (Shrinking Weight Amplifiers Exist). For some constant α > 0 and constant c,
for every even N , there exists an αN to 2 weight amplifier A : {0, 1}N → {0, 1}N/2.

Further, given any output bit, i ∈ [N/2], the ith output bit of A is just the xor of at most
c many input bits to A, and any of those input indices can be computed in polylog(n) time
and O(log(n)) space.

Proof. This is given by first using Lemma 41 by setting with ϵ = 1
4 and T = 2 to get a

function G : [N] × [D] → [N/2] for some constant D that is an (αN, 3
4 D) expander for some

constant α > 0. Then A just maps every bit according to G, and takes the parity of every
bit mapped to a right hand vertex. Computing this parity is efficient because G is efficiently
invertible and only requires constantly many queries since D is constant.

To see that it is a weight amplifier, we first observe that since it is a 3
4 D expander, we

must have D ≥ 4. Thus for any set, S, with less than αN left verticies, has at least D/2 ≥ 2
of its neighbors with a unique neighbor in S. Therefore, the parities in these bits must be 1,
and thus the output of L have at least 2|S| ones in it.

We note the preprocessing only takes constant time since ϵ is constant. ◀

Now one can use this shrinking weight amplifier recursively to make a constant rate,
constant distance code. This is what Spielman does. But such a code is not simultaneously
space and time efficient. Alternatively, we can apply this recursion a bounded number of
times to get a constant rate, constant weight, weight fixer that fixes already high weight
messages. Using more levels of recursion increases the range of weights that can be fixed.

▶ Lemma 43 (Single Step In Spielman Style Recursion). For the constants α > 0 and c

from Lemma 42, suppose for some N and M ≤ N there is an [M, N] to α/4 weight fixer
F : {0, 1}N → {0, 1}4N . Further, suppose that any output bit of F is an xor of at most ℓ

different input bits to F , and any of these input bit indexes can be computed in time T and
space S.

Then there is an [M/2, 2N] to α/4 weight fixer F ′ : {0, 1}2N → {0, 1}8N . Further any
output bit of F ′ is an xor of at most c2ℓ input bits, and any of these input bit indexes can be
computed in time T + O(polylog(N)) and space O(1) + max{S, O(log(n))}.

Proof. Our weight fixer is the same as Spielman’s: we take an input x, and first apply the
weight amplifier of Lemma 42 to get an output y. Then we apply the weight fixer from the
lemma assumption to y to get an output, z. Finally, we apply Lemma 42 to z to get the
output w. Then the final output of our weight fixer is (x, z, w). See that |x| = 2N , |y| = N ,
|z| = 4N and |w| = 2N .

To see that this works, we break our problem into cases.
1. weight(x) > 2αN . Then since x is included in the output, the relative weight of our new

fixer is at least α/4.
2. M/2 ≤ |x| ≤ 2αN , then we have that y ≥ M . Thus by the weight fixing property of F ,

we have that z has weight at least weight(z) ≥ α
4 |z| = αN . Then we break this into two

more cases.
a. weight(z) ≥ 4αN . Then the relative weight of the output is at least α/2 > α/4.
b. αN ≤ weight(z) ≤ 4αN . Then weight(w) ≥ 2 weight(z) ≥ α2N . Thus the relative

weight of the output is at least α/4.

CCC 2024

5:40 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Now we show time and space needed to compute F ′. Output bits from x are just input
bits and can be given directly. Output bits from z are just an xor of at most ℓ different
elements from y, who are themselves an xor of at most c elements of x. Thus a bit of z just an
xor of cℓ elements of x. Any individual bit of which can be looked up in time T + polylog(n)
due to the lookup time of F and Lemma 42. The space is just to either compute the neighbor
in Lemma 42, or from F , which can be reused. Similarly, bits in w are just the xor of c bits
of z, which are xor of cℓ bits of x. So bits in w are xors of c2ℓ bits of x, whose indexes be
efficiently computed for the same reason. ◀

Now applying this recursion a bounded number of times, we can get a weight fixer which
is time and space efficient, but only fixes the weights of messages that are already heavy. We
now prove Theorem 18.

▶ Theorem 18 (Weight Fixer For Heavy messages). For some constant α > 0, and any
integers N and i, there is a [⌈N/2i⌉, N] to α/4 weight fixer F : {0, 1}N → {0, 1}4N . Further,
for some constant, c, any bit in the output of F can be computed in time ci polylog(N) and
space O(i + log(N)).

Proof. This comes from applying Lemma 43 for i many times to the trivial weight fixer that
just repeats a K = ⌈N/2i⌉ bit input 4 times. So we start with the trivial weight fixer that
maps K bits to themselves that is a [K, K] to 1 weight fixer.

We can see that each application of Lemma 43 increases the number of bits in the input
by a factor of 2, and decreases the lower bound of the fixer range by a factor of 2, giving the
claimed fixer input range and output weight.

To see the performance, see that the outputs of F must be the xor of at most c2i input
bits, any of which can be computed in time i′ polylog(n) and space O(i+log(n)) by recursion.
Then one need only iterate through each of the c2i bits and xor them, which only takes time
c2i times the time to compute a single bits index, and space O(2i) to store which bit we are
on, plus the space to compute a single bit index. ◀

9 Encoders With Sequential Access To The Message

Now we discuss the resources needed for encoding codes in a model of computation where
the program only has sequential like access to the message. This model of computation is
useful for low space, black box composition of two low space algorithms. First we will show
lower bounds in this model. Then we will give codes that can be encoded in nearly the same
time and space as those lower bounds, proving they are tight. Finally, we will give some
basic relationships between different kinds of sequential access using these upper and lower
bounds.

9.1 Lower Bounds
Before we start our lower bounds, let us first clarify what we mean by space and time of an
algorithm.

▶ Remark 44 (Space And State Of An Algorithm). To simplify our proof here, we will refer to
the space of an algorithm as the size needed to hold its entire state, including:

Its work tape.
All head locations.
Number of bits written.

J. Cook and D. Moshkovitz 5:41

We assume that an algorithm always prints its output bits in order, so the number of bits
written is enough to know which bit will be output next. Space does not include the bits
printed so far, or the input bits.

If one interprets the space, S, to just be the size of the work tape, since we assumed
S ≥ h log(N), using our alternative definition of space only increases S by a constant factor,
so our final results hold. So for simplicity, we assume S is the space needed to store its entire
state.
▶ Remark 45 (On Time And Uniformity). In this specific section on sequential lower bounds,
we will consider a non-uniform model of computation. We allow the algorithm with sequential
access to the input to use any function to define it’s state transitions and head movements.
The only condition is that such transitions are only functions of the working tape and
whatever bits are under the heads to the input.

In particular, the time in our algorithm lower bounds is actually the number of head
movements.

Our lower bounds work by partitioning the message into intervals and showing that most
intervals need to be visited many times for the code to have good distance. This is because
our space is bounded, so not much can be remembered about an interval when the heads
leave it. So it must be visited many times for each of the different possible messages in that
interval to have different things written to the code when no head is in that interval. Then
the fact that our access to the message is sequential and we have few heads makes visiting
an interval slow, requiring a long time to visit each interval enough times.

First, we need to formalize the idea that our algorithm can not have one of its heads enter
new intervals in the message very often. But this is not true if we just count how many times
the algorithm moves a head into an interval it was not in. As a counterexample, suppose a
head is right next to the boundary of two intervals. Then the head can move in and out of
it once every two time steps to visit it many times. In fact every interval may have been
visited many times. So we need a more strict notion of visiting an interval.

So instead, we want to only count the number of times an interval transitions from having
no head near it (so in one of its neighboring intervals) to having a head in it. In this setup,
our algorithm really has to spend a full intervals length worth of time transitioning from
having every head far from an interval to having one inside it. So to formally describe this,
we introduce interval marking, where we mark an interval when a head enters it, and only
unmark it when all heads are far. It requires a lot of time to mark an interval after it has
been unmarked.

Before we define a marking, we need to define the distance of an interval to a head. This
is defined in the obvious way.

▶ Definition 46 (Distance). For any set S ⊆ [N] and any head locations H ⊆ [N] we define
our distance between S and H as

∆(H, S) = min
h∈H,s∈S

|h − s|.

Now we can define our interval markings for an algorithm.

▶ Definition 47 (Interval Marking). Let A be an algorithm running in time T and space S

with sequential head access to the message and an interval length I.
For a length N message x, let m = ⌈ N

I ⌉. Partition the message into m length I intervals:
B1, . . . , Bm where Bi = (I(i − 1), Ii] with Bm = (I(m − 1), n]. A marking of the intervals is
just a set a ∈ {0, 1}m.

CCC 2024

5:42 Explicit Time and Space Efficient Encoders Exist Only with Random Access

For an algorithm A on a message x, for t ∈ [T], let Ht be the set of intervals that A

running on message x has a head in at time t.
Then we inductively define a marking of A on message x. a0 has nothing marked:

a0 = 0m. At any subsequent time step t with head positions H, we define at by

at
i =

1 Ht ∩ Bi ̸= ∅
0 ∆(Ht, Bi) ≥ I

at−1
i otherwise.

The sequence a0, . . . , aT is the I marking of A on message x.
We say interval Bi is covered at time t during algorithm A if at

i = 1. We say A marks
interval Bi at time t if at

i = 1 but at−1
i = 0 and A unmarks interval Bi at time t if at

i = 0
but at−1

i = 1. We say there is a marking at time t if A marks any interval at time t, and
there was an unmarking at time t if A unmarks any interval at time t.

We now emphasize, we use markings to refer to when an interval changes from uncovered
to covered, and unmarking to when an interval changes from covered to uncovered. Marking
always refers to this change, while cover always refers to how things are. For example, number
of markings is how many times intervals change to be covered.

Now using our terminology, we can formalize our argument. First, its straightforward to
observe that if there are few heads, most intervals are uncovered as no heads are near them.

▶ Lemma 48 (Max Number Of Covered Intervals). For any algorithm A running in time T ,
space S, and h heads, at any t ∈ [T] the total number of intervals covered in an I marking of
A on a length N message are at most 3h.

Proof. See that if for any i, interval Bi is only covered if ∆(H, Bi) < I. For any head h A

has at time t, there are only at most 3 intervals that can be within I of h. Specifically, the
one that h is in and the two next to it. Thus each individual head only covers at most 3
intervals, and there are only h heads, so only 3h intervals can be covered. ◀

Now we show that it takes a long time to mark many intervals.

▶ Lemma 49 (Max Number of Markings/Unmarkings). For any algorithm A running in time
T , space S, and h heads, any marking of A on a length N message makes at most 1 + T/I

markings, and 1 + T/I unmarkings.

Proof. The idea is that after the first step and the first marking, each interval will take time
I to get through to mark the next one. Then we only unmark an interval once it will take
time I to mark it again.

We only bound the number of markings, since the number of unmarkings is less than the
number of markings.

We formally bound the number of markings by showing each time step can only “contribute”
to marking one interval, and that every marking of an interval needs at least I “contributions”
every time it is marked.

So we say any step t contributed to a marking of interval i if the head A moves at time t

is in an interval adjacent to interval i and A moves that head toward interval i. We see that
by this definition, A only contributes to one interval i per time step, since A can only move
one head, and it either moves that head towards the interval above or below it. Let it be the
interval that A contributes to at time t.

J. Cook and D. Moshkovitz 5:43

Suppose at any time t, the head positions of A are Ht. Then for any interval Bi see that
if ∆(Ht, Bi) ≤ I and ∆(Ht+1, Bi) < ∆(Ht, Bi) then it must be because it = i. Otherwise
the closest head to Bi must not have moved toward it. Thus for the distance to decrease
beyond I, it must be due to contributions from A.

Further, if ∆(Ht+1, Bi) < ∆(Ht, Bi), then ∆(Ht+1, Bi) = ∆(Ht, Bi) − 1 since heads can
only move one position per time step. Thus to change ∆(Ht, Bi) ≥ I to ∆(Ht+t′

, Bi) = 0
requires at least I contributions from A to Bi.

Finally, see that after the first marking of the first interval that the distance of every
uncovered interval to a head starts out at least I. And that every interval that is unmarked
also starts with distance I from any head.

Thus, after the first interval is marked, every new marking of an interval requires at least
I contributions from A. And A can only contribute to one interval per time step. Thus
A can only have at most 1 + T/I markings. Similarly, every unmarking must come from
exactly one other marking, we also have at most 1 + T/I unmarkings. ◀

Now we can handle a special case: when the encoder is non-adaptive. A non-adaptive
algorithm is an algorithm that always reads the same bits in the same order (for a given
input size), regardless of the contents of those bits. As a warm up, we will prove our lower
bounds for the non-adaptive case.

▶ Theorem 50 (Lower Bounds For Encoders With Sequential Access). Suppose C is a code
with distance δ encoding N bits. Suppose A is a non-adaptive algorithm computing C running
in time T space S and using h sequential heads to access the message. Further assume
S > h log(N). Then

hST = Ω(N2δ).

Proof. The idea is that if any message interval is not marked often enough, than the state of
the algorithm when that interval is not covered will look the same for two different contents
of that interval. Thus we can find two messages that will give exactly the same output for
any bits written while that interval is not covered. Thus if any interval is both
1. unmarked too few times and
2. uncovered when too many output bits are written
then two different messages will have encodings with little distance. We will show that most
intervals must have both if hST ≪ N2δ, so in particular some interval has both.

First we set the interval size to be I = δN
8h so there are at least N

I = 8h
δ intervals. Now

we can show that most intervals are covered when at most a δ fraction of output bits are
written. Since each head can only cover at most 3 intervals in a time step at any given time,
at any time only at most 3h intervals are covered. So at most a 3δ

8 fraction of intervals are
covered when any bit is written. Thus the number of intervals that are covered when at least
a δ fraction of the time steps output bits are written is at most 3

8 .
Now we show that few intervals are unmarked frequently. Intuitively, each time an interval

is unmarked, it reveals at most S bits about that interval, so we need an interval to be visited
I
S times for the entire interval to be revealed. So we want to bound the number of intervals
that have been unmarked I

S times.
We know from Lemma 49 that there are at most 1 + T/I ≤ 2T

I unmarkings. Then the
number of intervals that are unmarked at least I

S times is at most 2ST
I2 . Since there are at

least N
I intervals, at most 2ST

NI = 16ST h
δN2 fraction of intervals are unmarked more than I

S

times.

CCC 2024

5:44 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Now if we assume for contradiction that hST < δN2

32 , we have that at most half of the
intervals are unmarked more than I

S times. Since at most a 3
8 fraction of the intervals have at

least a δ fraction of output bits written when they are covered, that means that a 1
8 fraction

of intervals are both
1. unmarked less than I

S times and
2. covered when less than a δ fraction of output bits are written.
Take one such interval (which is not the final interval, so has length I), call it interval Bi.

Now we will create two adversarial messages for the algorithm that will not have good
distance for the code. We do this by showing that two messages look the same when interval
Bi is not covered. Let x∗ be the restriction that sets everything outside interval Bi to zero.

Now for any assignment, y, to interval Bi, define R(y) to be the tuple of the states of the
algorithm on input xy = y ◦ x∗ every time Bi is unmarked. Since Bi is unmarked less than
I
S times, the length of R(y) is less than I. Thus for two different y, call them y1 and y2, we
have that R(y1) = R(y2). Then for input x1 = y1 ◦ x∗ and x2 = y2 ◦ x∗, we have that A acts
on x1 and x2 exactly the same when Bi is uncovered. Then since less than a δ fraction of
output bits are written when Bi is covered and A has the same output for both when Bi is
uncovered, C(x1) can only differ from C(x2) on at most a δ fraction of codeword bits.

Thus C has distance less than δ. Contradiction, so we must have hST ≥ δN2

32 =
Ω(δN2). ◀

The argument becomes a bit more complex when we allow the algorithm to be adaptive.
Specifically, which intervals are marked frequently may change depending on the message,
as are the intervals that are uncovered frequently. Specifically, our adversarial inputs set
everything outside of one interval to 0. If the algorithm knows that everything outside one
interval will be zero, than it can detect which interval is non-zero and spend all its time on
that interval.

To get around these issues, we choose messages randomly. For any random message, for
a random interval, with high probability that interval is only covered when a small fraction
of the output bits are written, and that interval is unmarked few times. Equivalently, we can
select a random interval, randomly restrict everything outside that interval, than randomly
assign that interval. These sample the same distribution, so we also have that for most
random intervals chosen, Bi, and most restrictions outside Bi, it must be that for most
assignments to Bi we have that Bi is unmarked few times and uncovered when most output
bits are written.

So we define a good restriction to be such a restriction, and then show that good
restrictions give distinct messages that have too close code words. Finally we show good
restrictions exist when hST ≪ δN2.

▶ Definition 51 (A Good Restriction of the Message). For any algorithm A with time T and
space S, given distance δ and interval length I, we say a restriction x∗ is good for interval i

with distance δ on algorithm A if the following holds.

1. x∗ fixes every bit outside of the interval Bi, and leaves every bit inside Bi unfixed.
2. Let Y be the set of assignments for Bi such that for x = y ◦ x∗ we have:

a. A on message x writes at most δ fraction of its bits when Bi is covered.
b. A on message x unmarks Bi at most 8T

N times.
We also require that |Y | > 2I/2.

Now we show that a good restriction is enough to give our lower bounds.

J. Cook and D. Moshkovitz 5:45

▶ Lemma 52 (Good Restrictions Give Lower Bounds). Suppose A is an algorithm with time
T , space S, and h sequential heads to the message. If x∗ is good for interval i with interval
size I and distance δ, then whatever code A outputs has distance at most δ if

8ST < N(I − 1).

Proof. The idea is just to consider the Y from Definition 51. For the x that come from Y ,
we have that Bi is unmarked rarely, so rarely in fact that multiple x must have the exact
same states every time Bi is unmarked. Since the state includes the positions of the heads,
they must write the same thing when the interval is uncovered. Since the state includes the
number of bits written, they must be written at the same location when Bi is uncovered.
Thus the distance between these messages is at most what is written when Bi is covered,
which is at most a δ fraction of bits.

More rigorously, for any y ∈ Y , let xy = y ◦ x∗. By definition, A on message xy marks
Bi at most 8T

N times. Then define R(y) to be the tuple of the state of A at every step Bi

is uncovered when running on message xy. Then since the state only has S bits and Bi is
uncovered at most 8T

N times, we have

|R(y)| ≤ S
8T

N
.

Now see that since |R(y)| ≤ 8 ST
N , then the total number of distinct values for R(y) is at

most 28 ST
N . Since the restriction is good, the total number of distinct y ∈ Y is at least 2I/2.

Finally, by lemma premise, we have that 8ST < N(I − 1). Thus we can show that

8ST < N(I − 1)

8ST

N
< I − 1

28S T
N < 2I/2

Thus the number of distinct R(y) is less than the number of distinct y, so by pigeonhole
principle, there must be y1, y2 ∈ Y such that R(y1) = R(y2).

Now by definition of R(y), when running A on message xy we must have that everything
written when interval Bi is uncovered is dependent only on R(y) and x∗. In particular, R(y1)
and R(y2) write the same bits when Bi is uncovered, at the same places.

Since y1, y2 ∈ Y , we have that at most δ fraction of the bits are written when Bi is
covered, and these are the only bits where they can differ. So the distance between the
outputs of A on xy1 and xy2 is at most δ. ◀

It remains to show that there must be some good restriction if I is chosen well. Specifically
when I < Nδ

24h .

▶ Lemma 53 (Good Restrictions Exist). Suppose A is an algorithm with time T , space S,
and h sequential heads to access the message.

Then if I < Nδ
24h < N < T then there is some restriction which is good for some interval i

with distance δ on algorithm A.

Proof. Suppose by way of contradiction that every restriction is not good for any interval
with distance δ on algorithm A. The idea is to show that, in expectation, either more than
3h of intervals are covered whenever a bit is written (contradicting Lemma 48) or more than
1 + T/I intervals are marked (contradicting Lemma 49).

CCC 2024

5:46 Explicit Time and Space Efficient Encoders Exist Only with Random Access

So choose a random interval, i, a random restriction x∗ for every variable outside Bi. We
assumed that x∗ is bad, so with probability at least 1/2 for a random assignment, y, of the
variables in Bi will y /∈ Y for the Y defined in Definition 51. That is, with probability at
least 1/2 will we have for xy = y ◦ x∗ that algorithm A on message xy will unmark interval i

more then 8T
N times or will be covered when at least δ fraction of the output bits written.

See that xy is uniformly randomly distributed and so is i, and these are independent of
each other. Thus in expectation over a randomly chosen interval, Bi, and a randomly chosen
input, x, we have that with probability at least 1/2 algorithm A on input x either unmarks
interval Bi more then 8T

N times or interval Bi be covered when at least a δ fraction of the
output bits written. Now we show that x cannot have enough intervals covered or unmarked
to achieve this.

By Lemma 49, the total number of markings is at most T/I + 1 < 2T/I. So at most N
4I

intervals are marked more than 8T
N times. There are at least N/I intervals, so only at most

1
4 fraction of the intervals can be marked more than 8T

N times.
By Lemma 48, at any given time, at most 3h intervals can be covered. So the probability

that a random interval is covered is at most

3h

N/I
= 3hI

N

<
3hNδ

N24h

= δ

8 .

Then by a Markov inequality, the probability that a random interval is covered greater than
a δ fraction of the times an output bit is written is at most 1

8 .
Thus by a union bound, the total of fraction of intervals that are either unmarked more

than 8T
N times or covered for at least δ fraction of the times an output bit is written is 3

8 < 1
2 .

But by choice of x, these must occur for at least half i. Contradiction. So some restriction
and interval must be good with distance δ. ◀

Now that we know good restrictions exist, and good restrictions imply our lower bounds,
we can prove Theorem 2.

▶ Theorem 2 (Lower Bounds For Encoders With Sequential Access). Suppose C is a code with
relative distance δ encoding N bits. Suppose A is an algorithm computing C running in time
T space S and using h sequential heads to access the message. Further assume S > h log(N).
Then

hST = Ω(δN2).

Proof. Let I = Nδ
50h < N(δ/2)

24h . Then by Lemma 53, a good restriction with distance δ/2
exists. Then by Lemma 52, since C has distance greater than δ/2, it must be the case that
32ST ≥ NI. Thus

8ST ≥ N(I − 1)
16ST ≥ NI

= N
Nδ

50h

800STh ≥ N2δ

hST = Ω(n2δ). ◀

J. Cook and D. Moshkovitz 5:47

9.2 Upper Bounds

The codes that achieve our upper bounds are just a tensor code. There is a natural way to
compute tensor codes in a space efficient way when one has a limited number of sequential
heads to access the message. By choosing one of the codes to be a code with time and
space efficient encoders using random access to it’s message, one can get a smooth trade off
between the time and space required to encode a code.

▶ Lemma 54 (Tensor Codes Are Efficient To Compute). Suppose there is a code C1 : {0, 1}N1 →
ΣM1

1 with relative distance δ1 computable in time T1 and space S1 where N1 ≤ M1 and
Σ1 = {0, 1}ℓ1 . Suppose there is another code C2 : {0, 1}N2 → ΣM2

2 with relative distance δ2
computable in time T2 and space S2 with non-adaptive, random access to its message where
N2 ≤ M2 and Σ2 = {0, 1}ℓ2 .

Denote the tensor code of C1 and C2 as C : {0, 1}N=N1N2 → ΣM=M1M2 , where Σ =
{0, 1}ℓ1ℓ2 . That is, C, is a tensor code on binary symbols, but we then group into the output
bits into ℓ1 by ℓ2 squares. Then C has relative distance δ1δ2.

Further, for any number of heads h ≥ 2, there is an algorithm that computes C and runs
in time O(T2

(
N
h + T1

)
) and space O(S1 + S2M1ℓ1) using at most h non-reversible sequential

heads to access the message.

Proof. In a tensor code, the message is arranged as a table, table 1, with N2 rows, each
containing N1 columns. The tensor code is the code defined by first encoding each of the
rows of table 1 with C1 to get a new table, table 2, with N2 rows and M1ℓ1 columns. Then
encode the columns of table 2 with C2 to get table 3 with M2ℓ2 rows and M1ℓ1 columns.
Finally, we group table 3 into ℓ1 by ℓ2 cells to get the final symbols of our final codeword.
We assume the message is arranged by row, with all the first N1 bits being row 1, the next
N1 bits being row 2, and so on.

Then our encoder first distributes h − 1 heads evenly between the N2 rows. Then we
simulate C2 in parallel for each of the M1ℓ1 columns, and every time they need to query a
bit from a row that has been encoded by C1, we just move the nearest head to that row,
encode it by C1, and then give that row to each of the M1ℓ1 parallel computations of C2.

The time needed for this is just the time to encode C2 the M1ℓ ≤ T1 times, plus the
number of rows that are queried (trivially bounded by T1) times the time to move a head to
that row (bounded by N2N1

h−1 = O(N
h)) and the time to encode that row T1. This takes time

at most

T2M1ℓ + T2(N2N1

h − 1 + T1) = O(T2(T1 + N

h
)).

The space is just the space to compute C1, plus the space to store the output of C1, plus
the space to hold M1ℓ1 copies of S2’s algorithm. This is just space O(S1 + S2M1ℓ1). ◀

Now applying this tensor code with any good code and our explicit time space efficient
codes shows that our lower bound on algorithms with sequential like access to the message is
almost tight. We now prove Theorem 3.

▶ Theorem 3 (Encoders With Sequential Access Meeting the Lower Bounds). For any number of
heads h ≥ 2, time T ≥ N , space S = Ω(h log(N)), relative distance δ > 0 with hST = Ω(δN2),
there exists a code with constant rate and relative distance Ω(δ) encoded by a time TNo(1),
space S polylog(N) algorithm using h sequential heads to access the message.

CCC 2024

5:48 Explicit Time and Space Efficient Encoders Exist Only with Random Access

Proof. To make things simple, we assume that 4S divides δN and N ′ = δN is an integer. If
not, pad S and N and decrease δ until this is true. This can be done only changing constant
factors, for instance by making each a power of 2.

Since we only need relative distance Ω(δ), we just use an efficient, constant relative
distance code on 1/δ sets of δN message bits. Since all of our codes are linear, the min
weight codeword must have weight Ω(δN), or relative weight Ω(δ). Thus final code will have
relative distance Ω(δ).

Let our first code be the Spielman code C1 : {0, 1}S → {0, 1}4S , which has some constant
relative distance, δ1 > 0, and is encodable in linear time and linear space. Then using
Theorem 1, there exists a linear code

C2 : {0, 1}N ′/4S → {0, 1}M ′

that has some constant relative distance δ2 > 0, and output length M ′ = O(N ′/S) =
O(δN/S). Note to get binary alphabet, we just output each bit of Σ individually. This hurts
distance, but only by a constant factor. Also, C is computable in time N ′

S poly(2log(log(N ′))3) =
δN
S No(1) and space O(log(N)2).

Now applying Lemma 54 with C1 and C2, we get a tensor code

C : {0, 1}N → {0, 1}M ′4S

with constant relative distance δ1δ2 > 0 and output length M ′4S = O(δN). Further, C can
be computed in time

O(δN

S
No(1)

(
δN

h
+ S

)
) =δ2N2

Sh
No(1) + δNNo(1)

and space

O(S + log(N)2S) = S polylog(N)

using only h sequential heads to access the message.
Now to compute the final code, we need only repeat this encoding procedure 1/δ times,

which uses the same space and same number of heads, but takes 1/δ times longer to get final
time of

δN2

Sh
No(1) + NNo(1) = O(TNo(1)). ◀

9.3 Basic Relations of Sequential Access
In this section, we establish some relationships between variations of sequential access. We
show whether reversibility or jumping adds power to time and space bounded algorithms
with sequential access to the input.

While reversibility, being able to move heads backward, may seem powerful, it can actually
be simulated with non-reversible, jumping heads with only a logarithmic factor overhead.
We now prove Lemma 7.

▶ Lemma 7 (Reversibility Can Be Efficiently Simulated With Jumping). A single sequential
head to a length N input can be simulated with O(log(N)) non-reversible sequential heads to
the same input with an expected time of O(log(N)) for each head movement, and O(log(N))
space.

More generally, k sequential heads to a length N input can be simulated with O(k log(N))
non-reversible sequential heads to that same input with an expected time of O(log(N)) for
each head movement, and O(k log(N)) space.

J. Cook and D. Moshkovitz 5:49

Proof. The idea is to store one to two non-reversible heads at every order of magnitude
behind the reversible head being simulated. By being appropriately lazy with removing heads
and adding them as the simulated head moves, this can be done with only O(log(N)) heads
and only O(log(N)) time overhead. The extra O(log(N)) bits of space are just to remember
where the heads are.

More specifically, there are i levels and each responsible for its own order of magnitude.
That order of magnitude only ever removes heads that are far from the simulated head,
relative to its order of magnitude. So when a head is removed, the simulated head must use
a lot of time to force it to be added again. This requires only storing at most two heads per
order of magnitude.

Level i always stores heads that are 2i distance apart, can either store 0, 1, or 2 heads, and
these heads are always at the multiples of 2i immediately behind the head being simulated.
A new head is added to a level whenever the simulated head passes forward over a multiple of
2i, and a head is removed if either the simulated head passes over it when moving backward,
or when the level has more than 2 heads, in which case the first head is removed.

Now the trick is to move a simulated head left, instead of moving a head left (which is
not allowed), we instead have the head jump to whichever level, i, has the nearest head
behind it, and simulate it forward till it reaches one position before where it was before.

The space and number of heads is clear from the construction.
For time, we note that a left move can only trigger level i once every 2i−1 steps. To see

this, first we claim that level i is only triggered when the simulated head is at a multiple of
2i−1 minus 1. This is because for every j, level j’s earliest head is earlier than or equal to all
of level j − 1’s heads. This is straightforward from the construction as level j − 1 removes
heads before level j. Thus the last head that was passed before triggering level i must have
been in level i − 1.

After level i was triggered, there is a head in level i − 1 at least 2i−1 − 1 before the
simulated head. And we note that moving forward can never decrease the distance to the
furthest head in level i − 1 to below 2i−1. Thus to trigger level i after a move would require
2i−1 moves.

Each level, i, takes only time O(2i) when it is triggered, and it is triggered at most once
every 1

2i−1 steps. Thus each level only costs an expected constant time per simulated head
movement. There are only log(N) levels. Thus the expected time per head movement is
O(log(N)).

If there are multiple heads being simulated, this actually just makes the problem easier
as it increases our budget. When we move backward, we just use whichever head is closest
from any of our simulated heads, and we don’t remove any head at level i if it is within 2i+1

steps behind any simulated head. Jumps are cheap since we can share heads between the
simulated head being jumped and the simulated head it is jumping to. In particular, you
can’t adversarially jump simulated heads to right before expensive backward operations as
the resulting new heads will be shared with the simulated head that just jumped.

To make argument more formal in the multiple head case, we can count the time needed
to trigger a particular head at a particular location, call it j, in level i. A head can only be
triggered if there is a simulated head in front of it, and there is no head in a lower level at the
same location. If the closest head in level i − 1 was 2i−1 in front of j, then there must have
been no simulated head within 2i of j at some point, otherwise level i − 1 would have kept a
head at location j. Thus it would have taken 2i−1 steps to move a head backwards enough to
trigger level i at location j. If the closest head in level i − 1 was 2i in front of j, there must
have been no simulated head within 3 · 2i−1 of j for a similar reason, and thus a simulated

CCC 2024

5:50 Explicit Time and Space Efficient Encoders Exist Only with Random Access

head must have moved 2i−1 times to be in position to trigger the head in level i at j. We
call these backward movements of simulated heads within the interval [j + 2i−1, j + 3 · 2i−1)
as being dedicated to the head at j in level i.

So each position j at a level i takes at least 2i−1 backward movements dedicated to it
specifically to trigger that head. From there, a similar argument holds as the single head
case. ◀

Thus the reversible and non-reversible input are equivalent up to log factors. A similar
phenomenon happens with reversible and non reversible computation. Bennett [9] proved
that any time T space S non-reversible computation can be turned into a reversible algorithm
running in time T 1+ϵ and space O(S log(T)) for any constant ϵ > 0.

On the other hand, the jumping feature can not be efficiently simulated with non-jumping
heads. It provably requires polynomially more time or space to solve some problems with
non-jumping heads than jumping ones. One reason for this is that jumping can make it very
efficient to move many heads far distances at once by moving one head, then jumping the
others. The following result assumes our upper and lower bounds on codes in Theorem 2
and Theorem 3.

▶ Lemma 55 (Jumping Can Not Be Efficiently Simulated With Reversibility). There exists a
problem solvable in time N1+o(1) and space N1/2+o(1) with O(

√
N) jumping, non-reversible

sequential heads to access the input, but for any constant ϵ can not be solved in time o(N5/4−ϵ)
and space o(N1/2+2ϵ) with any number of non-jumping, reversible sequential heads to access
the input.

Proof. The problem is to just encode the second half of the input with the code of Theorem 3
using constant distance. This can be done easily with jumping, non-reversible heads in the
time, space, and number of heads stated.

Now by Theorem 2, to encode this second half in time T and space S would require a
number of heads that is at least

h ≥ Ω(N2

ST
).

But to actually use any of these heads, they must first pass the first half of the input. Since
we have to move the heads one at a time, this takes time

T ≥ Ω(hN)

≥ Ω(N3

ST
)

ST 2 ≥ Ω(N3)

But suppose for way of contradiction that we had such a time T = o(N5/4−ϵ and space
S = o(N1/2+2ϵ) algorithm with non-jumping sequential access to the input. Then we have
that

ST 2 ≤ o(N1/2+2ϵ+2(5/4−ϵ))
= o(N3)

which is a contradiction. ◀

Taking ϵ = 1
8 , we see that the algorithm with non-jumping heads gets both polynomially

more time and polynomially more space than the algorithm with jumping heads, but still
cannot compute the code.

J. Cook and D. Moshkovitz 5:51

▶ Remark 56 (Non-Jumping Heads With Preprocessing). The lower bounds of Lemma 55
depend on the fact that it takes a long time to perform initial positioning of heads. This
lower bound no longer holds if we allow all the heads to be positioned in the second half of
the input before the algorithm starts.

But we can still get something even if we allow the algorithm to use any initial positioning
of heads that does not depend on the input. The idea is essentially the same, encode some
specific subset of the bits in a code, but have the specific set of bits to be encoded be part of
the input. We quickly sketch a proof outline here.

To encode a random interval with N3/4 fraction of message can be done by Theorem 3
with h = S = N1/4 in time around (N3/4)2

Sh = N with sequential access to the input. Now
consider an algorithm with non-jumping sequential access to the input with the same space
and number of heads, with some initial, static positioning of the heads. With high probability,
only a constant number of heads will be in the interval, so to encode it fast, our encoder
needs to move more heads to that interval.

To move K heads to the interval to encode, in expectation, would take time around
NK

h K = N3/4K2. Then by Theorem 2, to encode with these K heads would take time
(N3/4)2

SK = N5/4

K . No matter the setting of K, this encoding will take time Ω(N13/12).
Thus jumping sequential access still has advantage over non-jumping sequential access

even if a non-jumping algorithm is allowed to move heads into an initial position for free
before it starts reading.

So we have proven that jumping heads are polynomially more powerful than non-jumping
heads, and that jumping, non-reversible heads are within a log factor as powerful as jumping,
reversible heads. Finally, one can show that non-jumping, reversible sequential heads are
polynomially more powerful than non-jumping, non-reversible sequential heads. This is a
direct consequence of Theorem 2.

▶ Lemma 57 (Without Jumps, Reversible Heads Are More PowerFul than Non-Reversible Heads).
Encoding codes with relative distance δ with non-jumping, non-reversible heads requires space
S and number of heads h such that

h2S = Ω(δN).

Proof. This follows from the fact that Theorem 2 is actually a bound on the number of head
movements. Since heads without backwards movements or jumps cannot move backward,
there are only hN movements before all input heads are at the end of input. Thus hN ≥ T

in Theorem 2. This gives that

h2S ≥ hST

N
= Ω(δN). ◀

In particular, without jumps or backwards moves, one cannot compute an asymptotically
good code with only S = n1/3 space and only h = o(n1/3) heads, whereas with either jumping
or reversibility2, this can be achieved by using N4/3+o(1) time by Theorem 3.

2 This uses the fact that the only time jumping is used in Theorem 3 is for efficient, initial positioning.
Initial positioning of h heads only takes O(hN) time without jumping.

CCC 2024

5:52 Explicit Time and Space Efficient Encoders Exist Only with Random Access

References
1 Karl Abrahamson. Time-space tradeoffs for algebraic problems on general sequential machines.

Journal of Computer and System Sciences, 43(2):269–289, 1991. doi:10.1016/0022-0000(91)
90014-V.

2 N. Alon, J. Bruck, J. Naor, M. Naor, and R.M. Roth. Construction of asymptotically good low-
rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information
Theory, 38(2):509–516, 1992. doi:10.1109/18.119713.

3 Laasya Bangalore, Rishabh Bhadauria, Carmit Hazay, and Muthuramakrishnan Venkitas-
ubramaniam. On black-box constructions of time and space efficient sublinear arguments
from symmetric-key primitives. In Theory of Cryptography: 20th International Conference,
TCC 2022, Chicago, IL, USA, November 7–10, 2022, Proceedings, Part I, pages 417–446.
Springer-Verlag, 2022. doi:10.1007/978-3-031-22318-1_15.

4 L.M.J. Bazzi and S.K. Mitter. Endcoding complexity versus minimum distance. IEEE
Transactions on Information Theory, 51(6):2103–2112, 2005. doi:10.1109/TIT.2005.847727.

5 P. Beame. A general sequential time-space tradeoff for finding unique elements. In Proceedings of
the Twenty-First Annual ACM Symposium on Theory of Computing, STOC ’89, pages 197–203,
New York, NY, USA, 1989. Association for Computing Machinery. doi:10.1145/73007.73026.

6 Paul Beame and Niels Kornerup. Cumulative memory lower bounds for randomized and
quantum computation. In Kousha Etessami, Uriel Feige, and Gabriele Puppis, editors, 50th
International Colloquium on Automata, Languages, and Programming (ICALP 2023), volume
261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 17:1–17:20, Dagstuhl,
Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
ICALP.2023.17.

7 Paul Beame, Michael Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower bounds
for randomized computation of decision problems. J. ACM, 50(2):154–195, 2003. doi:
10.1145/636865.636867.

8 Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, and Eran Tromer. On the concrete
efficiency of probabilistically-checkable proofs. In Proceedings of the Forty-Fifth Annual ACM
Symposium on Theory of Computing, STOC ’13, pages 585–594. Association for Computing
Machinery, 2013. doi:10.1145/2488608.2488681.

9 Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Comput.,
18(4):766–776, 1989. doi:10.1137/0218053.

10 Nir Bitansky and Alessandro Chiesa. Succinct arguments from multi-prover interactive proofs
and their efficiency benefits. In Proceedings of the 32nd Annual Cryptology Conference on
Advances in Cryptology — CRYPTO 2012 - Volume 7417, pages 255–272, Berlin, Heidelberg,
2012. Springer-Verlag. doi:10.1007/978-3-642-32009-5_16.

11 A. Borodin and S. Cook. A time-space tradeoff for sorting on a general sequential model of
computation. SIAM J. Comput., 11(2):287–297, 1982. doi:10.1137/0211022.

12 M. Capalbo, O. Reingold, S. Vadhan, and A. Wigderson. Randomness conductors and constant-
degree lossless expanders. In Proceedings 17th IEEE Annual Conference on Computational
Complexity, pages 8–8, 2002. doi:10.1109/CCC.2002.1004327.

13 Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes, with
their many tampered extensions. In Proceedings of the Forty-Eighth Annual ACM Symposium
on Theory of Computing, STOC ’16, pages 285–298. Association for Computing Machinery,
2016. doi:10.1145/2897518.2897547.

14 M. Cheraghchi, F. Didier, and A. Shokrollahi. Invertible extractors and wiretap protocols.
IEEE Trans. Inf. Theor., 58(2):1254–1274, 2012. doi:10.1109/TIT.2011.2170660.

15 Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding against bit-wise and
split-state tampering. J. Cryptol., 30(1):191–241, 2017. doi:10.1007/s00145-015-9219-z.

16 Joshua Cook and Dana Moshkovitz. Time and space efficient deterministic decoders. Elec-
tronic Colloquium on Computational Complexity, 2024. URL: https://eccc.weizmann.ac.
il/report/2024/110/.

17 Yotam Dikstein, Irit Dinur, and Shiri Sivan. The linear time encoding scheme fails to encode,
2023. arXiv:2312.16125.

https://doi.org/10.1016/0022-0000(91)90014-V
https://doi.org/10.1016/0022-0000(91)90014-V
https://doi.org/10.1109/18.119713
https://doi.org/10.1007/978-3-031-22318-1_15
https://doi.org/10.1109/TIT.2005.847727
https://doi.org/10.1145/73007.73026
https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://doi.org/10.1145/636865.636867
https://doi.org/10.1145/636865.636867
https://doi.org/10.1145/2488608.2488681
https://doi.org/10.1137/0218053
https://doi.org/10.1007/978-3-642-32009-5_16
https://doi.org/10.1137/0211022
https://doi.org/10.1109/CCC.2002.1004327
https://doi.org/10.1145/2897518.2897547
https://doi.org/10.1109/TIT.2011.2170660
https://doi.org/10.1007/s00145-015-9219-z
https://eccc.weizmann.ac.il/report/2024/110/
https://eccc.weizmann.ac.il/report/2024/110/
https://arxiv.org/abs/2312.16125

J. Cook and D. Moshkovitz 5:53

18 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable
codes with constant rate, distance, and locality. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2022, pages 357–374. Association for
Computing Machinery, 2022. doi:10.1145/3519935.3520024.

19 Dariush Divsalar, Hui Jin, and Robert J. McEliece. Coding theorems for ’turbo-like’ codes. In
Proceedings 36th Annual Allerton Conference on Communication, Control, and Computing,
pages 201–210, 1998. URL: https://api.semanticscholar.org/CorpusID:1045655.

20 R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory,
8(1):21–28, 1962. doi:10.1109/TIT.1962.1057683.

21 Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation:
Interactive proofs for muggles. J. ACM, 62(4), September 2015. doi:10.1145/2699436.

22 André Gronemeier. A note on the decoding complexity of error-correcting codes. Inf. Process.
Lett., 100(3):116–119, 2006. doi:10.1016/j.ipl.2006.06.006.

23 V. Guruswami and P. Indyk. Linear-time encodable/decodable codes with near-optimal rate.
IEEE Transactions on Information Theory, 51(10):3393–3400, 2005. doi:10.1109/TIT.2005.
855587.

24 Venkatesan Guruswami and Widad Machmouchi. Explicit interleavers for a repeat accumulate
accumulate (raa) code construction. In 2008 IEEE International Symposium on Information
Theory, pages 1968–1972, 2008. doi:10.1109/ISIT.2008.4595333.

25 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from parvaresh-vardy codes. In Twenty-Second Annual IEEE Conference
on Computational Complexity (CCC’07), pages 96–108, 2007. doi:10.1109/CCC.2007.38.

26 Anna Gál, Kristoffer Arnsfelt Hansen, Michal Koucký, Pavel Pudlák, and Emanuele Viola.
Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary
gates. IEEE Transactions on Information Theory, 59(10):6611–6627, 2013. doi:10.1109/TIT.
2013.2270275.

27 R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, 1950. doi:10.1002/j.1538-7305.1950.tb00463.x.

28 Tzvika Hartman and Ran Raz. On the distribution of the number of roots of polynomials
and explicit weak designs. Random Struct. Algorithms, 23(3):235–263, October 2003. doi:
10.1002/rsa.10095.

29 F.C. Hennie. One-tape, off-line turing machine computations. Information and Control,
8(6):553–578, 1965. doi:10.1016/S0019-9958(65)90399-2.

30 Justin Holmgren and Ron Rothblum. Delegating computations with (almost) minimal time
and space overhead. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 124–135, 2018. doi:10.1109/FOCS.2018.00021.

31 R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions.
In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, pages 12–24. Association for Computing Machinery, 1989. doi:10.1145/73007.73009.

32 S. Jukna. A nondeterministic space-time tradeoff for linear codes. Information Processing
Letters, 109(5):286–289, 2009. doi:10.1016/j.ipl.2008.11.001.

33 Itay Kalev and Amnon Ta-Shma. Unbalanced Expanders from Multiplicity Codes. In Amit
Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and Combin-
atorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022), volume 245
of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:14, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.12.

34 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally-correctable
and locally-testable codes with sub-polynomial query complexity. In Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 202–215.
Association for Computing Machinery, 2016. doi:10.1145/2897518.2897523.

35 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. J. ACM, 61(5), 2014. doi:10.1145/2629416.

CCC 2024

https://doi.org/10.1145/3519935.3520024
https://api.semanticscholar.org/CorpusID:1045655
https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1145/2699436
https://doi.org/10.1016/j.ipl.2006.06.006
https://doi.org/10.1109/TIT.2005.855587
https://doi.org/10.1109/TIT.2005.855587
https://doi.org/10.1109/ISIT.2008.4595333
https://doi.org/10.1109/CCC.2007.38
https://doi.org/10.1109/TIT.2013.2270275
https://doi.org/10.1109/TIT.2013.2270275
https://doi.org/10.1002/j.1538-7305.1950.tb00463.x
https://doi.org/10.1002/rsa.10095
https://doi.org/10.1002/rsa.10095
https://doi.org/10.1016/S0019-9958(65)90399-2
https://doi.org/10.1109/FOCS.2018.00021
https://doi.org/10.1145/73007.73009
https://doi.org/10.1016/j.ipl.2008.11.001
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.12
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.12
https://doi.org/10.1145/2897518.2897523
https://doi.org/10.1145/2629416

5:54 Explicit Time and Space Efficient Encoders Exist Only with Random Access

36 S. Rao Kosaraju. Real-time simulation of concatenable double-ended queues by double-ended
queues (preliminary version). In Proceedings of the Eleventh Annual ACM Symposium on
Theory of Computing, STOC ’79, pages 346–351. Association for Computing Machinery, 1979.
doi:10.1145/800135.804427.

37 Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 1144–1156. Association for Computing Machinery, 2017. doi:
10.1145/3055399.3055486.

38 D. J. C. Mackay and Radford M. Neal. Near shannon limit performance of low density parity
check codes. Electronics Letters, 33:457–458, 1996. URL: https://api.semanticscholar.
org/CorpusID:122801915.

39 Noam Nisan and David Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci.,
52(1):43–52, 1996. doi:10.1006/jcss.1996.0004.

40 Wolfgang J. Paul, Joel I. Seiferas, and Janos Simon. An information-theoretic approach to
time bounds for on-line computation (preliminary version). In Proceedings of the Twelfth
Annual ACM Symposium on Theory of Computing, STOC ’80, pages 357–367. Association for
Computing Machinery, 1980. doi:10.1145/800141.804685.

41 Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the
error in trevisan’s extractors. In Proceedings of the Thirty-First Annual ACM Symposium on
Theory of Computing, STOC ’99, pages 149–158. Association for Computing Machinery, 1999.
doi:10.1145/301250.301292.

42 I.S. Reed. A brief history of the development of error correcting codes. Computers &
Mathematics with Applications, 39(11):89–93, 2000. doi:10.1016/S0898-1221(00)00112-7.

43 O. Reingold, R. Shaltiel, and A. Wigderson. Extracting randomness via repeated condensing.
In Proceedings 41st Annual Symposium on Foundations of Computer Science, pages 22–31,
2000. doi:10.1109/SFCS.2000.892008.

44 Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. In Proceedings of the Forty-Eighth Annual ACM Symposium on
Theory of Computing, STOC ’16, pages 49–62. Association for Computing Machinery, 2016.
doi:10.1145/2897518.2897652.

45 Nandakishore Santhi and Alexander Vardy. Minimum distance of codes and their branching
program complexity. In 2006 IEEE International Symposium on Information Theory, pages
1490–1494, 2006. doi:10.1109/ISIT.2006.262116.

46 Walter J. Savitch and Paul M. B. Vitányi. Linear time simulation of multihead turing machines
with head-to-head jumps. In Proceedings of the Fourth Colloquium on Automata, Languages
and Programming, pages 453–464, Berlin, Heidelberg, 1977. Springer-Verlag.

47 M. Sipser and D.A. Spielman. Expander codes. IEEE Transactions on Information Theory,
42(6):1710–1722, 1996. doi:10.1109/18.556667.

48 D.A. Spielman. Linear-time encodable and decodable error-correcting codes. IEEE Transactions
on Information Theory, 42(6):1723–1731, 1996. doi:10.1109/18.556668.

49 Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. In Proceedings
of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’95, pages
388–397. Association for Computing Machinery, 1995. doi:10.1145/225058.225165.

50 Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Loss-less condensers, unbalanced
expanders, and extractors. In Proceedings of the Thirty-Third Annual ACM Symposium on
Theory of Computing, STOC ’01, pages 143–152. Association for Computing Machinery, 2001.
doi:10.1145/380752.380790.

51 Luca Trevisan. Construction of extractors using pseudo-random generators (extended abstract).
In Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, STOC
’99, pages 141–148. Association for Computing Machinery, 1999. doi:10.1145/301250.301289.

52 Yaacov Yesha. Time-space tradeoffs for matrix multiplication and the discrete fourier transform
on any general sequential random-access computer. Journal of Computer and System Sciences,
29(2):183–197, 1984. doi:10.1016/0022-0000(84)90029-1.

https://doi.org/10.1145/800135.804427
https://doi.org/10.1145/3055399.3055486
https://doi.org/10.1145/3055399.3055486
https://api.semanticscholar.org/CorpusID:122801915
https://api.semanticscholar.org/CorpusID:122801915
https://doi.org/10.1006/jcss.1996.0004
https://doi.org/10.1145/800141.804685
https://doi.org/10.1145/301250.301292
https://doi.org/10.1016/S0898-1221(00)00112-7
https://doi.org/10.1109/SFCS.2000.892008
https://doi.org/10.1145/2897518.2897652
https://doi.org/10.1109/ISIT.2006.262116
https://doi.org/10.1109/18.556667
https://doi.org/10.1109/18.556668
https://doi.org/10.1145/225058.225165
https://doi.org/10.1145/380752.380790
https://doi.org/10.1145/301250.301289
https://doi.org/10.1016/0022-0000(84)90029-1

The Entangled Quantum Polynomial Hierarchy
Collapses
Sabee Grewal # Ñ

The University of Texas at Austin, TX, USA

Justin Yirka # Ñ

The University of Texas at Austin, TX, USA

Abstract
We introduce the entangled quantum polynomial hierarchy, QEPH, as the class of problems that are
efficiently verifiable given alternating quantum proofs that may be entangled with each other. We
prove QEPH collapses to its second level. In fact, we show that a polynomial number of alternations
collapses to just two. As a consequence, QEPH = QRG(1), the class of problems having one-turn
quantum refereed games, which is known to be contained in PSPACE. This is in contrast to the
unentangled quantum polynomial hierarchy, QPH, which contains QMA(2).

We also introduce DistributionQCPH, a generalization of the quantum-classical polynomial
hierarchy QCPH where the provers send probability distributions over strings (instead of strings).
We prove DistributionQCPH = QCPH, suggesting that only quantum superposition (not classical
probability) increases the computational power of these hierarchies. To prove this equality, we
generalize a game-theoretic result of Lipton and Young (1994) which says that, without loss of
generality, the provers can send uniform distributions over a polynomial-size support. We also prove
the analogous result for the polynomial hierarchy, i.e., DistributionPH = PH.

Finally, we show that PH and QCPH are contained in QPH, resolving an open question of
Gharibian et al. (2022).

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Complexity classes; Theory of computation → Quantum complexity theory

Keywords and phrases Polynomial hierarchy, Entangled proofs, Correlated proofs, Minimax

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.6

Related Version Previous Version: https://arxiv.org/abs/2401.01453v1

Funding Supported via Scott Aaronson by a Vannevar Bush Fellowship from the US Department of
Defense, the NSF QLCI program (Grant No. OMA-2016245), and a Simons Investigator Award,
the Simons “It from Qubit” collaboration. This material is based upon work supported by the U.S.
Department of Energy, Office of Science, National Quantum Information Science Research Centers,
Quantum Systems Accelerator.

Acknowledgements We thank Khang Le, Daniel Liang, William Kretschmer, Siddhartha Jain, and
Scott Aaronson for helpful conversations. Joshua Cook was especially helpful at early stages of this
project. We thank John Watrous for identifying an error in an earlier draft of this work.

1 Introduction

The polynomial hierarchy [26, 31] is a hierarchy of complexity classes that are known to
equal P if and only if P = NP. The hierarchy, denoted by PH, is a natural generalization
of efficient proof verification and nondeterminism and plays a central role in complexity
theory. Given its significance, it is natural to explore quantum generalizations of PH, yet
such generalizations remain understudied.

Before discussing quantum polynomial hierarchies, let us first informally define PH.
Intuitively, PH is a hierarchy of complexity classes that can solve progressively harder
problems, extending beyond both NP and coNP. One can think of PH as a public debate

© Sabee Grewal and Justin Yirka;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 6; pp. 6:1–6:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sabee@cs.utexas.edu
https://sabeegrewal.com/
https://orcid.org/0000-0002-8241-560X
mailto:yirka@utexas.edu
https://justinyirka.com/
https://orcid.org/0000-0001-6173-2465
https://doi.org/10.4230/LIPIcs.CCC.2024.6
https://arxiv.org/abs/2401.01453v1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 The Entangled Quantum Polynomial Hierarchy Collapses

between Alice and Bob, who take turns presenting polynomial-sized proofs (bit strings) to a
referee. At the end of the debate, the referee takes the proofs, performs a polynomial-time
classical computation, and decides a winner.

More formally, a problem is in the k-th level of the polynomial hierarchy, Σp
k, if there is a

deterministic polynomial-time verifier M (the referee) that takes proofs y1, . . . , yk and satisfies
the following conditions. On yes-instances, ∃y1∀y2∃y3 . . . such that M(y1, . . . , yk) = 1, and,
on no-instances, ∀y1∃y2∀y3 . . . such that M(y1, . . . , yk) = 0. PH is comprised of every level
Σp

k for all natural numbers k, and it is strongly believed that PH is infinite.
Gharibian, Santha, Sikora, Sundaram, and Yirka [11] studied two quantum generalizations

of PH. They generalized the class QCMA to the quantum-classical polynomial hierarchy
QCPH, the class of problems for which a quantum verifier can efficiently verify solutions
given a constant number of classical proofs from competing provers. Note that this is the
same as PH except the verifier can perform a polynomial-time quantum computation. In
the same work, they generalized the class QMA(2) to the unentangled quantum polynomial
hierarchy QPH, for which the verifier is still quantum, but the proofs are quantum mixed
states and promised to be unentangled from each other. Notably, Gharibian et al. did not
introduce a hierarchy in which the proofs can be entangled, and they did not establish a
relationship between QPH and QCPH (or even QPH and PH), leaving it unclear whether or
not QPH was at least as powerful as its classical counterpart.1 More generally, if QCPH and
QPH are indeed more powerful, it prompts the question of why: is it quantum verification,
quantum proofs, unentanglement, or some nuanced combination?

In this work, we address all of these questions. First, we ask (and answer) what problems
admit a PH-style protocol where the provers can send potentially entangled proofs. We show
that this new hierarchy – the entangled quantum polynomial hierarchy (QEPH) – behaves
drastically differently from what we believe about PH, QCPH, and QPH.

Second, we prove that PH ⊆ QCPH ⊆ QPH, confirming the intuitive relationship between
these hierarchies.

Lastly, to understand the power of quantum proofs, we introduce a generalization of
QCPH where the provers send probability distributions over classical proofs and denote the
class by DistributionQCPH. We prove that DistributionQCPH = QCPH, despite the intuition
from game theory that optimal strategies are usually mixed. Note that the only difference
between DistributionQCPH and QPH is that the proofs in QPH involve quantum superposition.
Hence, our result establishes that the increased computational power of QPH comes only
from the quantum superposition in the proofs.

1.1 Our Results
Our first main result is a characterization of our newly defined hierarchy QEPH (Definition 19)
via a collapse to its second level. This collapse is in stark contrast to our belief that PH is
infinite.

▶ Theorem 1 (Combination of Lemma 22 and Theorem 23). QEPH collapses to its second
level and equals QRG(1).

This collapse is similar to others known in quantum complexity theory, such as QIP =
QIP(3) = QMAM [20, 25], in which the protocols rely on the prover’s ability to entangle their
messages. We further compare QEPH to other complexity classes involving entangled proofs
in Related and Concurrent Work.

1 While these containments are what one might guess to be true, proving them is nontrivial.

S. Grewal and J. Yirka 6:3

We show that QEPH equals QRG(1), the class of problems having one-turn quantum-
refereed games.2 QRG(1) involves a game between two competing players that each privately
sends a quantum state to a referee, who then performs a polynomial-time quantum computa-
tion to determine a winner. In 2009, Jain and Watrous [18] proved QRG(1) ⊆ PSPACE. How-
ever, it is conjectured that QRG(1) is strictly less powerful than QRG(2) = PSPACE [15, 12].
Yet despite effort, no improved upper bounds on QRG(1) have been proven in over a decade.
We suggest a new approach to improving the upper bound on QRG(1) (via the connection to
QEPH) in Open Problems.

Our collapse result is stronger than stated above. It is well-known that if one extends
PH to a polynomial number of rounds (rather than a constant number), then the resulting
class equals PSPACE [4, Theorem 4.11]. In contrast, we show that extending QEPH to a
polynomial number of rounds does not increase the power of the class.

▶ Theorem 2 (Informal version of Corollary 24). Even with a polynomial number of rounds,
QEPH collapses to its second level.

One interpretation of our collapse result is that allowing provers to entangle their proofs
gives them too much opportunity to cheat. Hence, receiving a single proof from each prover
is just as useful as receiving many entangled proofs.

Before this work, it was unclear how the quantum polynomial hierarchies compared to
one another, and if QPH even contained PH. In our second result, we establish the following
containments between the quantum and classical hierarchies, resolving an open question of
Gharibian et al. [11].

▶ Theorem 3 (Restatement of Theorem 26). PH ⊆ QCPH ⊆ QPH.

We emphasize that even PH ⊆ QPH is not obvious. Placing restrictions on the provers
can sometimes increase computational power, as was the case in, e.g., the recent results
showing that QMA+ = QMA(2)+ = NEXP [19, 5]. Meanwhile, the permissiveness of QEPH,
where we allow the provers to entangle their proofs, seems to yield a weaker class than QPH.

In our third result, we show that the power of QCPH does not change if the provers are
allowed to send probability distributions (instead of a fixed classical proof).

▶ Theorem 4 (Restatement of Corollary 31). DistributionQCPH = QCPH.

Our motivation for studying DistributionQCPH is to better understand the power of
quantum proofs. In particular, let pureQPH be the same as QPH except the quantum proofs
are pure states rather than mixed states.3 Then the only difference between pureQPH and
DistributionQCPH is that the former involves proofs that are quantum superpositions over
bit strings while the latter involves proofs that are classical distributions over bit strings.
Yet DistributionQCPH = QCPH is in the counting hierarchy [11], and pureQPH contains
QMA(2) and is contained in EXPPP [2]. Conceptually, our result says that any increase in
computational power only comes from the quantum superposition in the proofs.

Theorem 4 also goes through for PH.

▶ Theorem 5 (Restatement of Theorem 27). DistributionPH = PH.

2 The class QRG(k) and its classical analogue RG(k) have been numbered differently by different authors.
We follow recent conventions where the provers’ and the referee’s messages are counted separately. So,
e.g., in QRG(2) the referee sends one message and then the provers each simultaneously send a message.

3 It is easy to see that QPH ⊆ pureQPH since the provers can send purifications of their mixed proofs.

CCC 2024

6:4 The Entangled Quantum Polynomial Hierarchy Collapses

An easy consequence of our result is that DistributionPH collapses if and only if PH
collapses.4 Therefore, any attempts to collapse QCPH, QPH, or pureQPH must not collapse
DistributionPH, and so Theorem 5 rules out some approaches to collapsing these hierarchies.
In particular, one line of attack to showing QMA(2) = NEXP is to show that the ∀ quantifier
in QΣ3 does not add any computational power, because QMA(2) ⊆ QΣ3 ⊆ NEXP [11].
Theorems 4 and 5 are evidence that this line of attack will not work straightforwardly, since
showing the analogous result for DistributionPH would collapse the polynomial hierarchy.

We give a graphical description of our results and the quantum polynomial hierarchy
landscape in Figure 1.

NP

QCMA

QMA

QMA(2)

QEPH = QRG(1)

PH = DistributionPH

QCPH = DistributionQCPH

QPH

pureQPH

PSPACE

EXPPP

PPPPP

PPP

Figure 1 (Color) The quantum polynomial hierarchy landscape in light of our work. The
containments and complexity classes shown in gray were previously known, and the containments
and complexity classes in red are contributions of this work.

1.2 Main Ideas
Let us consider QEPH on an intuitive level (see Definition 19 for a formal definition). QEPH
can be thought of as a constant-round non-interactive game between two competing provers,
Alice and Bob, who take turns sending quantum registers, i.e., collections of qubits, to a
verifier. Alice and Bob are allowed to entangle their own quantum registers across turns.
The verifier then performs a polynomial-time quantum computation, measures a fixed output

4 DistributionC is not to be confused with the notation DistC, which has been used in average-case
complexity theory, e.g. DistNP and DistPH. Also, similar names like Stochastic SAT or Probabilistic
QBF have appeared in the study of randomized quantifiers. These are more similar to the Arthur-Merlin
(AM) hierarchy.

S. Grewal and J. Yirka 6:5

qubit in the computational basis, and, if the verifier sees 1, they accept (Alice wins), and
reject otherwise (Bob wins). QEPH contains the decision problems for which Alice always
wins with high probability on yes-instances and Bob always wins with high probability on
no-instances. We note that in this game the moves are public, which means that Alice knows
the state of the quantum registers sent by Bob and vice versa. See Remark 21 for further
discussion of public vs. private moves in a quantum world.

To highlight the key technique in our proof that QEPH collapses (Lemma 22), we explain
how to simulate the third level of QEPH, denoted by QEΣ3, inside of the second level QEΣ2.
The proof for higher levels proceeds by induction. As we will explain formally in Section 3, a
QEΣi protocol can be written as an optimization problem with a value equal to the probability
the verifier accepts when both players use optimal strategies. In particular, Alice selects
proofs that maximize the probability of the verifier accepting, while Bob selects proofs to
minimize that probability. For QEΣ3, given a problem instance in which the verifier’s action
is encoded by an observable R, the corresponding optimization problem is

max
ρ1∈D(X1)

min
σ∈D(Y)

max
ρ2∈A

tr (R (ρ2 ⊗ σ)) ,

where D(H) denotes the set of density operators on the Hilbert space H and A := {ρ ∈
D(X1 ⊗ X2) | trX2(ρ) = ρ1}. The restriction of the second maximization to the set A is to
enforce that Alice’s second move is consistent with her first.

A straightforward analysis shows that when focusing on the inner two operators, a
min-max theorem applies, allowing us to swap the ordering of the inner minimization and
maximization. Then, because we allow entangled states, we can combine the two sequential
maximization operators into one, leaving an optimization problem corresponding to a two-
round protocol. Notably, both the three-round and two-round protocols are over the same
input and verifier, so the reduction does not increase the problem size or change the error
parameters.

It is natural to ask why our technique does not also collapse PH. In short, the above
approach fails immediately, since, for one, our collapse theorem relies on the fact that Alice
and Bob are choosing quantum proofs from compact and convex sets (see Facts 9 and 10).
In contrast, the set of classical strings is not convex.

To show that QEPH = QRG(1), we build on a previous characterization of Gharibian et
al. [11] where they showed that the second level of the unentangled quantum polynomial,
denoted by QΣ2, equals QRG(1). We extend their result in Proposition 20 to show that
QEΣ2 = QΣ2 = QRG(1), which yields our characterization that QEPH = QEΣ2 = QRG(1).
QEΣ2 = QΣ2 because, after two turns, each prover has only sent a single proof, so there is
no distinction yet to be made between the entangled versus entangled hierarchies.

We now turn to the containment QCPH ⊆ QPH, which are both defined formally in
Section 2.3. In QCPH, the verifier receives classical proofs, whereas the proofs in QPH are
unentangled quantum mixed states. One naïve approach to simulating QCPH inside of QPH
– which does not work – is for the verifier to immediately measure the quantum proofs to get
classical strings and then run the QCPH verification protocol. The reason this fails is that
the dishonest prover (i.e., the player without a winning strategy) can cheat by sending a
quantum state, rather than a classical proof. In more detail, while the honest prover has
perfect knowledge of the quantum states sent by the dishonest prover, they do not know
which particular classical strings the verifier will observe upon measurement, making it
unclear what their response should be. The definition of QCPH guarantees the correct player
has an effective response conditioned on any particular proof sent from the other player, but

CCC 2024

6:6 The Entangled Quantum Polynomial Hierarchy Collapses

this does not guarantee the correct player can succeed against a mixture of potential moves.
Unfortunately, the equilibrium point of a zero-sum game which allows for such mixed moves
will generally be mixed, rather than pure.

To overcome this, we simulate the i-th level of QCPH in the 2ki-th level of QPH, for some
constant k. We ask the provers to send k copies of each of the proofs they would send in the
QCPH protocol, which increases the number of turns by a factor of 2k. Using the groups
of k proofs, we give a simple test to ensure that no player cheats, which works as follows.
Measure each of the k proofs in the standard basis. If the outcomes are all equal, then the
test passes, and, otherwise, the test fails. We prove that this is enough to force the provers
to send computational basis states with high probability.

We remark that this bears some similarity to other protocols involving unentanglement.
Harrow and Montanaro [16] used unentanglement to force Merlin to send k-partite states,
and, recently, Jeronimo and Wu [19] use unentanglement to force Merlin to send many copies
of (approximately) the same quantum state. Both of these results fundamentally rely on the
swap test, which tests for equality between two quantum states [6]. In a similar fashion, we
use unentanglement to force the provers to send standard basis states, i.e., classical strings.
With that, we design a simulation of any QCPH protocol inside of QPH.

Finally, we discuss our proof that DistributionQCPH = QCPH (the same techniques
will also show DistributionPH = PH). In DistributionQCPH, the provers take turns sending
probability distributions over polynomial-length classical proofs. Once all of the distributions
have been sent, the verifier draws one sample from each distribution and substitutes the
samples into the verification procedure. The model is somewhat subtle. The provers have
perfect knowledge of the distributions sent by their opponent. However, they do not know
which sample the verifier will see, because the distributions are not sampled until the end
of the game. If one prefers, one can think of the distributions as quantum states that are
always measured in the computational basis by the verifier.

For classical proofs of length m, the distributions sent in DistributionQCPH can have
support of size exponential in m. Our key lemma says that the provers can send much
simpler distributions without changing the acceptance probability of the verifier too much. In
particular, we prove that the distributions sent by the provers can be uniform over poly(m)
many classical proofs and, even with this simplification, the acceptance probability of the
verifier will change by at most a small constant. This simplification lemma (Lemma 30)
generalizes a result due to Lipton and Young [24] and Althöfer [3] who showed the result
in the special case of a one-turn game. Our contribution is to generalize their result to any
constant number of turns.

With the simplification lemma, one can prove DistributionQCPH ⊆ QCPH as follows. To
send a distribution in QCPH, the provers send every classical string that is in the support
of their distribution. By our simplification lemma, there are only a polynomial number of
such strings, so all of them can be sent in a polynomially-sized classical proof. Then, since
the simplified distributions are uniform, the verifier can randomly sample one of the strings
uniformly at random. The other direction DistributionQCPH ⊇ QCPH follows from the same
techniques that prove QCPH ⊆ QPH.

1.3 Related and Concurrent Work
Early efforts to define quantum hierarchies include [34, 10].

We choose to use alternating ∃ and ∀ quantifiers to define QEPH (as was the case for
QCPH and QPH in [11]). In addition to a quantifier definition, PH can be equivalently
defined in the oracle model via constant-height towers of the form NPNPNP...

. The oracular

S. Grewal and J. Yirka 6:7

definition gives rise to natural definitions of quantum polynomial hierarchies, some of which
have been studied recently. Vinkhuijzen [32] and Aaronson, Ingram, and Kretschmer [1]
study the “QMA hierarchy”, QMAH, which consists of constant-depth towers of the form
QMAQMAQMA...

.5 [32, Theorem 5] shows that QMAH is contained in the counting hierarchy
CH, while the best upperbounds for the quantifier-based hierarchies, QEPH and QPH, are
PSPACE and EXPPP, respectively.

The method of showing equivalence between the quantifier-based and oracle-based defini-
tions of PH does not appear to carry over to QEPH, QPH, or even QCPH. This seems related
to the inability to “pull quantumness out of a quantum algorithm” as we can for randomness
from randomized algorithms [1] as well as a lack of study of quantum oracle machines. We
further discuss questions regarding QMAH vs. QEPH in Open Problems.

There are several quantum complexity classes that involve provers sending possibly
entangled proofs to a quantum polynomial-time verifier. We do not attempt to survey them
here, but, for convenience, we summarize quantum complexity classes involving entangled
proofs (and their classical counterparts) in Table 1.

Our work on DistributionPH builds on previous game-theoretic characterizations in com-
plexity theory (see e.g., [9]). PH-style classes involve a debate with public communication
(perfect information), and a non-interacting, passive referee. RG-style classes involve private
communication (imperfect information) with provers sending particular strings to the referee
(perfect recall). A consequence of imperfect information is that the players must model their
competitor’s moves as probability distributions (mixed strategies) because they are never
sure which move is made. Our class DistributionPH fits into this framework in a nuanced
way. Specifically, the distributions sent are public (similar to PH); they represent a mixture
of pure moves (similar to RG); but, uniquely, the provers do not know which string will
be sampled by the referee (reminiscent of imperfect recall). This is a novel game-theoretic
model, and as we discuss further in Section 6, it is naturally motivated by a game of quantum
mixed states sent to a non-interacting referee.

Finally, the independent work of Agarwal, Gharibian, Koppula, and Rudolph [2] also
studies generalizations of the polynomial hierarchy. They prove QCPH ⊆ pureQPH, which is
similar to our Theorem 26 that QCPH ⊆ QPH. Since QPH ⊆ pureQPH is straightforward (the
provers send purifications of their proofs), our Theorem 26 implies QCPH ⊆ pureQPH. In this
sense, our containment is stronger. However, their containment has the nice (and nontrivial)
feature that the k-th level of QCPH is contained in the k-th level of pureQPH, whereas our
containment requires blowing up to the ck-th level of QPH for a constant integer c. Besides
this, Agarwal et al. contribute several more results including a theorem that if QCΣi = QCΠi

then QCPH collapses (see also [7]); a Karp-Lipton style result that QCMA ⊆ BQP/mpoly
implies QCPH collapses; a new upper bound QPH ⊆ pureQPH ⊆ EXPPP, improving on the
previous upper bound of EXPH; and a method for one-sided error-reduction of pureQPH.

1.4 Open Problems
It is well-known that PH can equivalently be defined via oracle Turing machines. This
suggests oracular definitions of quantum polynomial hierarchies, such as QMAH discussed
in Section 1.3. One could similarly define QCMAH as QCMAQCMAQCMA...

and QMA(2)H as
QMA(2)QMA(2)QMA(2)...

. We ask how these oracular hierarchies compare to the quantifier-based
ones.

5 Vinkhuijzen only allows recursive queries to QMA, whereas Aaronson, Ingram, and Kretschmer allow
recursive queries to PromiseQMA.

CCC 2024

6:8 The Entangled Quantum Polynomial Hierarchy Collapses

Table 1 Complexity classes characterizing proof verification that are related to QEPH. “C” means
classical and “Q” means quantum. For every class below, multiple provers are always competing,
and, for multi-round quantum protocols, the quantum proofs can be entangled across rounds. Public
means that the provers have full knowledge of their opponent’s previous turns.

of # of Interaction Public or
Class Rounds Provers Proofs Verifier from referee? Private Equals

NP 1 1 C C no N/A
QMA 1 1 Q Q no N/A
IP poly 1 C C yes N/A PSPACE [28]
QIP(3) 3 1 Q Q yes N/A PSPACE [17]

PH const 2 C C no pub.
QEPH const 2 Q Q no pub. QRG(1)
RG(1) 1 2 C C no priv. S2P [3, 24]
RG(2) 2 2 C C yes priv. PSPACE [8]
RG poly 2 C C yes priv. EXP [8]
RG(pub) poly 2 C C yes pub. PSPACE [8]
QRG(1) 1 2 Q Q no priv.
QRG(2) 2 2 Q Q yes priv. PSPACE [15]
QRG poly 2 Q Q yes priv. EXP [14]

▶ Question 6. Does QEPH = QMAH? QPH = QMA(2)H? QCPH = QCMAH?

It is unclear if these hierarchies are equal, as in the classical world, or if one version
would be stronger than the other. One immediate obstacle is the fact that QEPH and QPH
are quantifying over quantum states, so perhaps it is easier to begin with QCPH, which still
quantifies over classical bits. Alas, it is still unclear if an oracle machine definition of QCPH
would be equal to a quantifier definition, since, in the oracular case, queries can be made in
superposition.

Answering Question 6 could yield progress towards characterizing QRG(1). Jain and
Watrous showed that QRG(1) ⊆ PSPACE in 2009 [18], and, since then, no improved upper
bounds have been proven despite effort [12]. Our work shows that QRG(1) = QEPH. If one
can show QEPH ⊆ QMAH, then that would imply QRG(1) ⊆ CH, because QMAH ⊆ CH [32].

More broadly, proving better upper or lower bounds on the quantum polynomial hierarchies
and finding more connections to other parts of complexity theory are important directions
for future work. For example, does any level of QPH contain PSPACE? Can one improve the
containment QPH ⊆ EXPPP? Or, how can these hierarchies be used to better understand
the relationships between QCMA, QMA, and QMA(2)?

2 Preliminaries

We introduce notation, definitions, and background that are central to our results. For the
most part, we assume familiarity with common concepts and classes in quantum and classical
complexity theory as well as quantum computing and quantum information. For a thorough
discussion of these topics, see [4, 33, 21, 27].

We will need the following version of Hoeffding’s inequality.

S. Grewal and J. Yirka 6:9

▶ Fact 7 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables subject to
ai ≤ Xi ≤ bi for all i. Let X =

∑n
i=1 Xi and let µ = E[X]. Then it holds that

Pr[X − µ ≥ t] ≤ exp
(

− 2t2∑n
i=1(bi − ai)2

)
and

Pr[X − µ ≤ −t] ≤ exp
(

− 2t2∑n
i=1(bi − ai)2

)
. ⌟

2.1 Quantum Information
A quantum register refers to a collection of qubits. Associated with each register is a complex
Hilbert space, and the state of a quantum register is described by a Hermitian, positive
semi-definite matrix with trace one called a density matrix. We denote the set of n-qubit
density matrices by D(n), and the sets of linear operators and density matrices on a complex
Hilbert space H by L(H) and D(H), respectively.

For two quantum registers (X, Y) with Hilbert spaces X and Y , the combined space is the
tensor product space X ⊗ Y . The partial trace trY : L(X ⊗ Y) → L(X) is the unique linear
map that satisfies trY(A ⊗ B) = tr(A)B for all A ∈ L(X) and B ∈ L(Y). If the compound
register (X, Y) is in the state ρ ∈ D(X ⊗ Y), then the state of register X is trY(ρ) ∈ D(X).
That is, operationally speaking, the partial trace is the act of ignoring (or discarding) a
quantum register. We note that the partial trace trX can be defined similarly, and, in general,
the context in which the partial trace is used should clarify which spaces are being “traced
out”.

A quantum measurement of a quantum register is described by a finite collection of
Hermitian, positive semi-definite matrices that sum to identity. Let X be a quantum register
with Hilbert space X whose state is described by ρ. Let M = {Ei | i ∈ Σ} be a quantum
measurement, where Σ is a finite alphabet. Upon measuring X with M, we observe i ∈ Σ
with probability tr(Eiρ).

2.2 A Min-Max Theorem
To prove our collapse theorem, we use a weaker version of Sion’s min-max theorem.

▶ Theorem 8 (A weaker version of Sion’s min-max theorem [29]). Let X and Y be complex
Euclidean spaces, let A ⊆ X and B ⊆ Y be convex and compact subsets, and let f : A×B → R
be a bilinear function. Then

max
a∈A

min
b∈B

f(a, b) = min
b∈B

max
a∈A

f(a, b). ⌟

It is a well-known fact that the space of density matrices is compact and convex.

▶ Fact 9 ([33, Chapter 1]). Let D(H) be the set of density matrices on a complex Hilbert
space H. D(H) is compact and convex.

It is critical for us that, even if we impose partial trace constraints on the set of density
matrices, the set remains compact and convex. We include a proof for completeness.

▶ Fact 10. Let X, Y be two quantum registers with Hilbert spaces X and Y, respectively, and
let D(X ⊗ Y) be the corresponding set of density operators. Let ρ′ ∈ D(X) be some fixed
density matrix. Then the set

S = {ρ ∈ D(X ⊗ Y) | trY(ρ) = ρ′}

is compact and convex.

CCC 2024

6:10 The Entangled Quantum Polynomial Hierarchy Collapses

Proof. Let ρ1, ρ2 ∈ S, and define σ := θρ1 + (1 − θ)ρ2 for for θ ∈ [0, 1]. Then

trY(σ) = trY(θρ1 + (1 − θ)ρ2)
= θ trY(ρ1) + (1 − θ) trY(ρ2) (By the linearity of the partial trace.)
= θρ′ + (1 − θ)ρ′ (Because ρ1, ρ2 ∈ S.)
= ρ′,

so S is convex.
To show that S is compact, we must show that it is closed and bounded. Without loss of

generality, let X be an n-qubit register and Y be an m-qubit register. Then we can identify
S with the vector space C4n+m and observe that all entries are bounded in magnitude by
1. Therefore, S is bounded. To see that S is closed, we need the following definitions. For
x ∈ C, define fx : C4n+m → C as fx(A) = ⟨x, Ax⟩, which is continuous because the inner
product is continuous; define g : C4n+m → C4n+m as g(A) = A − A†, which is a polynomial
and therefore continuous; and, finally, define h : C4n+m → C4n as h(A) = trY(A), which is a
linear map on a finite-dimensional vector space and therefore continuous. Then

S =
⋂
x∈C

f−1
x ([0, ∞)) ∩ g−1({0}) ∩ h−1({ρ′}) ∩ tr−1({1}).

The preimage of a continuous function on a closed set is closed, and the intersection of closed
sets is closed. Therefore, S is closed. ◀

2.3 Previously Studied Hierarchies
Here, we give formal definitions of the polynomial hierarchy PH, the quantum-classical
polynomial hierarchy QCPH, and the unentangled quantum polynomial hierarchy QPH,
the latter two of which were both introduced by Gharibian et al. [11]. These classes will
appear again in Section 5 when we prove QCPH ⊆ QPH and in Section 6 when we prove
DistributionQCPH = QCPH. We defer definitions of our new classes until later, with QEPH
studied in Section 4 and DistributionQCPH in Section 6.

▶ Definition 11 (Σp
i). A language L is in the i-th level of the polynomial hierarchy Σp

i if
there exists a polynomial-time deterministic Turing Machine M such that for any n-bit input
x,

x ∈ L ⇐⇒ ∃y1∀y2∃y3 . . . Qiyi such that M(x, y1, . . . , yi) = 1,

x ̸∈ L ⇐⇒ ∀y1∃y2∀y3 . . . Qiyi such that M(x, y1, . . . , yi) = 0,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and
|yi| ≤ p(n) for some fixed polynomial p for all i.

▶ Definition 12 (The polynomial hierarchy (PH) [31]). The Polynomial-time Hierarchy is
defined as

PH :=
∞⋃

i=0
Σp

i . ⌟

Note the union which defines PH is over values of i which are constant, independent of
a problem’s input size. Observe also that for all i, Σp

i ⊆ Σp
i+1. Additionally, PH is closed

under complement, in particular because Σp
i ⊆ Σp

i+1 ⊆ PH. The complement of Σp
i is defined

to be Πp
i , and for all i we have Σp

i ⊆ Πp
i+1 ⊆ Πp

i+2.

S. Grewal and J. Yirka 6:11

The definition of PH is particularly robust. The class can be defined equivalently by
Σp

i+1 = NPΣp
i , giving a constant-height tower of NP oracles. The model of alternating

nondeterministic Turing Machines also can be used to define each level of the hierarchy. In
another direction, the Sipser–Lautemann theorem shows BPP ⊆ Σp

2 ∩ Πp
2 ⊆ PH [30, 23]. So,

natural bounded-error or probabilistic definitions of PH collapse to the standard, deterministic
definition given above. This is also true for oracle definitions, where we know MAMA...

= PH.
Even a partial survey of results regarding PH would be impossible to fit here. We finally

note that Σp
i = Σp

i+1 or Σp
i = Πp

i would both “collapse” the hierarchy so that PH = Σp
i .

These two events are analogous to P = NP or NP = coNP. Conversely, if PH collapses to any
finite level, it implies analogs of P = NP and NP = coNP must be true for some degree of
nondeterminism, at some level of the hierarchy. So, the strongly-believed conjecture that
PH is not equal to any Σp

i for fixed i is a generalization of those other strongly-believed
conjectures.

The uniform circuit model is standard for quantum complexity classes, so we give the
definition below.

▶ Definition 13 (Polynomial-time uniform family of quantum circuits). A polynomial-time
uniform family of quantum circuits is a family {Vn}n∈N such that there exists a polynomial
bounded function t : N → N and a deterministic Turing machine M acting as follows. For
every n-bit input x, M outputs in time t(n) a description of a quantum circuit Vn, which
has a designated output qubit. We say Vn accepts when we observe a 1 upon measuring the
designated output qubit in the standard basis.

We generally leave the subscript implicit and just write V . Additionally, we often consider
a single problem instance defined by an input x for the full length of an analysis. So instead
of writing V (x, y) for input x and proof y, we simply refer to V (y).

As with most quantum complexity classes, we will be working with promise problems.
Briefly, a promise problem A is a pair of non-intersecting subsets (Ayes, Ano) of {0, 1}∗. A
decision problem, or language, is a promise problem where Ayes ∪ Ano = {0, 1}∗.

We are now ready to define QCPH.

▶ Definition 14 (QCΣi [11]). A promise problem L = (Lyes, Lno) is in i-th level of the
quantum-classical polynomial hierarchy QCΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N
such that for every n-bit input x, Vn takes in proofs y1, . . . , yi ⊆ {0, 1}m(n) for fixed polynomial
m and measures a fixed output qubit to decide to accept or reject, such that

Completeness: x ∈ Lyes ⇒ ∃y1∀y2∃y3 . . . Qiyi such that Pr [V (y1, . . . , yi) accepts] ≥ c,
Soundness: x ∈ Lno ⇒ ∀y1∃y2∀y3 . . . Qiyi such that Pr [V (y1, . . . , yi) accepts] ≤ s,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and, for
all i, |yi| ≤ p(n) for a fixed polynomially bounded function p. When the completeness and
soundness parameters c, s are not specified, define

QCΣi :=
⋃

c−s∈Ω(1/ poly(n))

QCΣi(c, s). ⌟

▶ Definition 15 (The quantum-classical polynomial hierarchy (QCPH) [11]). The quantum-
classical polynomial hierarchy is defined as

QCPH :=
∞⋃

i=0
QCΣi. ⌟

Observe that QCΣ0 = BQP and QCΣ1 = QCMA. Gharibian et al. [11] proved that QCPH
is contained in PPPPP , the second level of the counting hierarchy CH.

CCC 2024

6:12 The Entangled Quantum Polynomial Hierarchy Collapses

The definition of QCΣi to generically include QCΣi(c, s) for all c − s ≥ 1/ poly(n) is
justified in part by the result of [11] that for any such c and s, we may reduce the error such
that for any polynomially bounded function r, we have QCΣi(c, s) = QCΣi(1 − 2−r, 2−r).

The unentangled quantum polynomial hierarchy QPH is defined similarly. The only
difference is that the classical proofs are replaced by unentangled quantum proofs.

▶ Definition 16 (QΣi [11]). A promise problem L = (Lyes, Lno) is in the i-th level of the
unentangled quantum polynomial hierarchy QΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N
such that for every n-bit input x, Vn takes in quantum proofs ρ1, . . . , ρi and measures a fixed
output qubit to decide to accept or reject, such that

Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [V (ρ1, . . . , ρi) accepts] ≥ c,
Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [V (ρ1, . . . , ρi) accepts] ≤ s,

where Qi denotes ∃ if i is odd and ∀ otherwise, Qi denotes the complement of Qi, and, for all
i, ρi is a p(n)-qubit state for a fixed polynomially bounded function p. When the completeness
and soundness parameters c, s are not specified, define

QΣi :=
⋃

c−s∈Ω(1)

QΣi(c, s). ⌟

▶ Definition 17 (QPH [11]). The unentangled quantum polynomial hierarchy is defined as

QPH :=
∞⋃

i=0
QΣi. ⌟

Interestingly, QMA(2) ⊆ QΣ3, since the verifier can simply ignore the second proof.
Here, we let QΣi = QΣi(c, s) for c − s ≥ Ω(1), rather than 1/ poly(n), because we do

not currently have an error reduction result for QPH similar to the one known for QCPH
(although, [2] recently made progress in this direction).

3 The Entangled Quantum Polynomial Hierarchy

We formally define the entangled quantum polynomial hierarchy. The definition appears
more technical than for QCPH and QPH, but this is mostly just an issue of notation.

▶ Definition 18 (i-th level of the entangled quantum polynomial hierarchy (QEΣi)). A promise
problem L = (Lyes, Lno) is in QEΣi(c, s) for polynomial-time computable functions c, s : N →
[0, 1] if there exists a polynomial-time uniform family of quantum circuits {Vn}n∈N such that
for every n-bit input x, Vn takes quantum proofs, measures a fixed output qubit to decide to
accept or reject, and satisfies

Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [V (ρi−1, ρi) accepts] ≥ c,
Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [V (ρi−1, ρi) accepts] ≤ s,

where each ρj is chosen from the set

Aj :=
{ {

ρ ∈ D (X1 ⊗ X3 ⊗ · · · ⊗ Xj) | if j > 1, trXj
(ρ) = ρj−2

}
if j is odd

{ρ ∈ D (X2 ⊗ X4 ⊗ · · · ⊗ Xj) | if j > 2, trXi (ρ) = ρj−2} if j is even
.

Here, Qi denotes ∃ if i is odd and ∀ otherwise, and Qi denotes the complement of Qi. For all
i, the corresponding Hilbert space Xi is a space of at most p(n) qubits for a fixed polynomial
p. When the completeness/soundness parameters are not specified, define

QEΣi :=
⋃

c−s∈Ω(1/ poly(n))

QEΣi(c, s). ⌟

S. Grewal and J. Yirka 6:13

▶ Definition 19 (The entangled quantum polynomial hierarchy (QEPH)). The entangled
quantum polynomial hierarchy is defined as

QEPH =
∞⋃

i=0
QEΣi. ⌟

When introducing a complexity class, perhaps the first question one should ask is whether
or not the choice of completeness and soundness parameters actually matter. In [11, Theorem
2.6], it was shown that QCPH is robust to the choice of error parameters, but no such result
is known for QPH. In Section 4, we show that the choice of parameters does not matter for
any level of QEPH, i.e., for c, s such that c − s ≥ 1/ poly(n), QEΣi(c, s) = QEΣi(2

3 , 1
3) for all

i ∈ N (see Theorem 25).
Let us also make several remarks on our definition. As for PH, the indices i in the

definition of QEPH are constants, independent of a problem’s input size, and, as one
should expect, BQP = QEΣ0 and QMA = QEΣ1. One can also define QEΠi := QEΣi and
QE∆i := QEΣi ∩ QEΠi. The players also have no incentive to entangle their moves with their
opponent because QEΣi can be modeled as a zero-sum game. Therefore, we may assume the
even and odd indexed states are unentangled.

Informally, QEΣi can be thought of as the following game, where we assume i is even
to simplify the exposition. Alice has (possibly entangled) quantum registers (A1, . . . , Ai/2),
and Bob has (possibly entangled) quantum registers (B1, . . . , Bi/2), where each register is
a number of qubits that is polynomial in the input size. The game commences as follows.
In the first round, Alice reveals the state ρ1 of A1, and then Bob reveals the state σ1 of B1.
In the second round, Alice reveals the state ρ2 of (A1, A2), and Bob reveals the state σ2 of
(B1, B2). To ensure Alice and Bob do not change their “moves” from previous rounds, we
demand that trA2(ρ2) = ρ1 and trB2(σ2) = σ1. That is, Alice and Bob cannot modify the
state of subsystems that have been revealed in previous rounds. In general, for the i-th round,
it must be that trAi(ρi) = ρi−1 and trAi(σi) = σi−1. The game continues like this until the
global states of (A1, . . . , Ai/2) and (B1, . . . , Bi/2) are known to both players and the referee.

At this point, the referee must accept or reject. The referee’s action is determined by
a polynomial-time quantum circuit and a single-qubit measurement. This action can be
equivalently expressed as a two-outcome quantum measurement {R, I − R}, where the first
observable corresponds to accepting. Then, the probability the referee accepts is equal to
tr
(
R
(
ρi/2 ⊗ σi/2

))
. We emphasize that we do not intend to actually write the observable R

corresponding to some verification circuit V . Rather, the observable R is a convenient way
to express the action of the referee.

Alice’s goal is to maximize the acceptance probability, and Bob’s goal is to minimize the
acceptance probability. Therefore, given an instance of a QEΣi problem with corresponding
observable R, we can express the acceptance probability achieved by both players playing
optimal strategies as

υ = max
ρ1∈A1

min
σ1∈B1

. . . max
ρi/2∈Ai/2

min
σ1∈Bi/2

tr
(
R
(
ρi/2 ⊗ σi/2

))
, (1)

where Ai and Bi are defined as in Definition 18, and each alternating max/min operator
corresponds to an alternation of quantifiers in Definition 18. In this work, we intend to use
Equation (1) as a tool for proving the equality of one game/problem instance to another.

Finally, as an application of Equation (1), we observe that the second levels of both
QEPH and QPH are equal to QRG(1), which is known to be contained in PSPACE.

CCC 2024

6:14 The Entangled Quantum Polynomial Hierarchy Collapses

▶ Proposition 20 (Extension of [11, Corollary 1.9]).

QEΣ2 = QEΠ2 = QΣ2 = QΠ2 = QRG(1) ⊆ PSPACE. ⌟

Proof. In [11], it was observed that QΣ2 = QRG(1). Here, we use the same reasoning to
conclude QEΣ2 = QEΠ2 = QΣ2 = QΠ2 = QRG(1). The equivalence is clear given that the
value of a QRG(1) protocol is described by an expression identical to Equation (1) when
i = 2, which corresponds to QEΣ2 (see [18] for a formal definition of QRG(1)). Then, note
that QRG(1) is closed under complement, by a min-max theorem, implying QEΣ2 = QEΠ2.
Second, because entanglement is not a concern until one of the players makes multiple moves,
the second levels of the entangled and unentangled hierarchies are equal (similarly, the first
levels are equal to each other, as are the zeroth levels). Finally, the containment of QRG(1)
in PSPACE is due to [18, Proposition 4]. ◀

The fact that QEΣ2 = QEΠ2 = QΣ2 = QΠ2 is somewhat striking, since such an equality
in the classical setting would imply a collapse of PH [4, Theorem 5.6].6

▶ Remark 21 (Public vs. private quantum proofs). While the quantum polynomial hierarchies
are well-defined, some may object that the classes are unphysical because the provers have
full knowledge of each other’s density matrices, even though the verifier only receives a single
copy of each proof. The quantum no-cloning theorem also begs the question of how exactly
the information is communicated between the provers. This is not an issue for PH because
it is trivial to learn classical proofs given a single copy, and, for QRG, this is not an issue
because communication is private. Even in quantum complexity theory, provers which are
considered “all-powerful” are still usually considered to be bound by the laws of quantum
mechanics.

Despite being unphysical, we are content with the definition for two reasons. First, it
is a well-defined, useful theoretical tool for studying quantum information. Second, in the
case of QEPH, we show that it collapses to QEΣ2, where it is known, by a min-max theorem,
that public vs. private communication is irrelevant. So, despite starting with an unphysical
definition, we show equivalence with a class that adheres entirely to the laws of quantum
mechanics. ⌟

4 The Entangled Quantum Polynomial Hierarchy Collapses

We prove several results about the entangled quantum polynomial hierarchy. Specifically, we
prove that QEPH collapses to its second level, is equal to QRG(1), and that every level of
QEPH is robust to the choice of completeness and soundness parameters (i.e., for c, s such
that c − s ≥ 1/ poly(n), QEΣi(c, s) = QEΣi(2

3 , 1
3) for all i ∈ N). We begin by proving that

the hierarchy collapses.

▶ Lemma 22. For all constants i ≥ 2, QEΣ2 = QEΣi.

Proof. Note that for all i, QEΣi−1 is trivially contained in QEΣi. We will show that for all
i > 2, QEΣi ⊆ QEΣi−1 by an induction argument, beginning with QEΣ3 ⊆ QEΣ2.

Recall from Equation (1) in Section 3 that the value of a QEΣ3 protocol is equal to

υ̂ = max
ρ1∈D(X1)

min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

6 This phenomenon of the second levels being equal is also true for TFPH, the hierarchy generalizing the
class TFNP [22].

S. Grewal and J. Yirka 6:15

where R is the observable corresponding to the verifier accepting, X1, Y1, and X2 are the
Hilbert spaces containing the three proofs, and A = {ρ ∈ D(X1 ⊗ X2) | trA2(ρ) = ρ1}, which
enforces that Alice’s second proof is consistent with her first.

For any choice of ρ1 ∈ D(X1), define

υ(ρ1) = min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

so that υ̂ = maxρ1∈D(X1) υ(ρ1). Consider that D(Y1) and A are compact and convex by
Facts 9 and 10. Additionally, the function tr (R (ρ2 ⊗ σ1)) is a composition of bilinear
functions and so itself is bilinear in σ1 and ρ1. Therefore, by Theorem 8, a min-max theorem
applies and

υ(ρ1) = max
ρ2∈A

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1)) = min
σ1∈D(Y1)

max
ρ2∈A

tr (R (ρ2 ⊗ σ1)) ,

changing the optimization problem without changing the value.
Substituting this back into υ̂, we find

υ̂ = max
ρ1∈D(X1)

υ(ρ1)

= max
ρ1∈D(X1)

max
ρ2∈A

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1))

= max
ρ2∈D(X1⊗X2)

min
σ1∈D(Y1)

tr (R (ρ2 ⊗ σ1)) , (2)

where the final equality is clear given the definition of A.
We observe that Equation (2) matches the characterization of a QEΣ2 protocol given

in Equation (1). Therefore, we have shown the value υ̂ of an arbitrary QEΣ3 protocol is
equivalent to the value of a QEΣ2 protocol. Given an instance of a QEΣ3 problem verified
by some polynomial-time uniform circuit V – corresponding to the observable R above –
whether V is satisfiable by a QEΣ3 protocol is equivalent to whether V is satisfiable by a
QEΣ2 protocol, i.e. QEΣ3 ⊆ QEΣ2 and indeed they are equal.

By way of induction, assume QEΣ2 = QEΣi for some constant i > 2. By the same min-max
argument as just before, we may show the equivalence of the value of any QEΣi+1 protocol
to the value of a QEΣi protocol, thus showing the equivalence of the classes. Therefore, the
hierarchy QEPH collapses to QEΣ2. ◀

The equality between QEPH and QRG(1) is a straightforward consequence of the collapse
lemma.

▶ Theorem 23. QRG(1) = QEPH = QEΣ2.

Proof. Combining the results QRG(1) = QEΣ2 from Proposition 20 and QEΣ2 = QEPH
from Lemma 22 proves the equality. ◀

Next, we note that our collapse theorem can be strengthened to QEΣi = QEΣ2 for any
polynomially bounded i, rather than just constant. Like classical PH, we define QEPH as
the union of QEΣi for any constant i. This is a natural way of defining PH as it is key to
proving that if P = NP, then PH collapses. However, in contrast to collapse techniques for
classical PH, our reduction of QEΣi to QEΣ2 does not increase the problem size. In our
proof of Lemma 22, the QEΣ2 problem in Equation (2) optimizes over the same quantity as
the original QEΣi problem. Therefore, our proof applies even to a super-constant number
of rounds. The reduction is valid up to a polynomial number of rounds, after which the
concatenation of the proof registers would lead to a proof too large for the polynomial-time
verifier to accept.

CCC 2024

6:16 The Entangled Quantum Polynomial Hierarchy Collapses

▶ Corollary 24. QEΣi = QEΣ2 for any polynomially-bounded i.

Finally, our results also prove that QEΣi is robust to the choice of error parameters.

▶ Theorem 25. For any choice of c, s such that c−s ≥ 1/ poly(n), it holds that QEΣi (c, s) =
QEΣi

(2
3 , 1

3
)
.

Proof. The reverse containment is trivial, so we focus on proving the forward direction,
reducing QEΣi (c, s) to QEΣi

(2
3 , 1

3
)
. Again appealing to the fact that our proof of Lemma 22

shows that a QEΣ3 problem is equivalent to a QEΣ2 problem with the same game value, we
observe that our proof implies QEΣ2(c, s) = QEΣi(c, s). Then, because the equality of QRG(1)
and QEΣ2 (Theorem 23) is also based on the optimization definition from Equation (1),
the acceptance probability remains preserved and QEΣ2(c, s) = QRG(1)(c, s). We may then
appeal to the result of [13] that a parallel repetition theorem holds for QRG(1), so that
QRG(1)(c, s) = QRG(1)

(2
3 , 1

3
)
. By the same reasoning as a moment ago, this last class equals

QEΣ2
(2

3 , 1
3
)
. Contracting this sequence of equalities, we conclude that QEΣi

(2
3 , 1

3
)

equals
our original class QEΣi(c, s). ◀

5 PH and QCPH Are Contained in QPH

We prove that QCPH ⊆ QPH. While this result is what one might expect, proving this
containment was left as an option question by Gharibian et al. [11]. It is trivial to see
that PH ⊆ QCPH, and, combining these two containments, we have PH ⊆ QCPH ⊆ QPH,
establishing that quantifying over unentangled quantum proofs is at least as powerful as
quantifying over classical proofs.

The central challenge in proving that QCPH ⊆ QPH is that the proofs in QPH are allowed
to be quantum states, which, upon measurement, give rise to a distribution over classical
strings. A flawed idea is to simply measure the quantum proofs to get classical proofs, and
then run the QCPH verification protocol with no modifications. Suppose, however, that
Alice has a winning strategy in the QCPH protocol, so she always has a winning response to
any classical proof that Bob sends. When simulating this in QPH, Bob can instead send a
quantum state – a superposition over many classical proofs – preventing Alice from sending
an optimal response. In particular, Alice may not know which response to send, since she
does not know which classical proof the verifier will observe upon measurement.

We prevent this potential cheating by requiring each player to send multiple copies of
each of their proofs. We prove that this is enough to force both players to send classical
strings with high probability.

▶ Theorem 26. PH ⊆ QCPH ⊆ QPH.

The exact error parameters for Theorem 26 are stated in Equation (3) below. In
particular, the reduction is only capable of producing a QPH instance with a constant
promise gap. However, the containment does hold for any QCPH instance with at least an
inverse-polynomial promise gap, due to known error reduction for QCPH [11].

Proof. Consider any level QCΣi of QCPH. We show that for any integer k ≥ 1,

QCΣi(c, s) ⊆ QΣ2ki

(
c
(
1 − 2−k

)
, s + 2−k (1 − s)

)
. (3)

S. Grewal and J. Yirka 6:17

We simulate any QCΣi protocol in QΣ2ki as follows. After the first 2k turns, the verifier
has k proofs from Alice and k proofs from Bob, and the verifier discards all k proofs from
Bob. For the next 2k turns, the verifier repeats this process, except they keep Bob’s proofs
rather than Alice’s, which we denote by σ1,1, . . . , σ1,k. This is repeated i times in total until
all 2ki turns are over. At the end of the game, the verifier has kept the following ki proofs:

ρ1,1, . . . , ρ1,k, σ1,1, . . . , σ1,k, ρ2,1, . . . , ρ2,k,

For each chunk of k proofs, the verifier measures each quantum state in the standard basis
to get k classical strings. If all k classical strings are equal, we say that the player passed
the check, and failed otherwise. If a player fails any check, then the other player is declared
the winner. If both players pass all checks, then the verifier keeps one copy of each classical
proof from each chunk and runs the QCPH verification procedure to determine the winner.

Let A = (Ayes, Ano) be a promise problem in QCΣi(c, s), and let x be some fixed input.
If x ∈ Ayes, then Alice has no incentive to cheat and so we refer to her as the honest prover,
while if x ∈ Ano, then we consider Bob the honest prover. We will define a strategy for
the honest prover and show that no matter the strategy of the dishonest prover, the honest
prover will win high probability. In particular, the honest prover’s strategy will be to always
send classical proofs, and when replying to a dishonest prover’s proof ρ =

∑
j pj |j⟩⟨j|, the

honest prover will respond as if only the string ȷ̂ with the maximum probability pȷ̂ was sent
(we arbitrarily choose to break ties by lexicographic order).

If the dishonest prover fails any check, they lose, so we assume now that the dishonest
prover passes every check. Then, since both provers pass every check, the verifier has the i

classical proofs y1, . . . , yi, where the proofs with odd indices are from Alice and the others
are from Bob. In one case, suppose that each of the dishonest prover’s moves turns out to be
as the honest prover expected. Then the situation is identical to the original QCPH instance,
and so the honest prover wins with the probability of the original protocol.

In the second case, at least one chunk of k proofs (sampled independently from k

distributions) are equal to each other but not to the proof ȷ̂ expected by the honest prover.
Any string besides ȷ̂ has pj ≤ 1/2, so the probability of this case occurring, with all k samples
matching, is at most 2−k.

Therefore, in the QPH protocol, if x ∈ Ayes, Alice wins with probability at least c
(
1 − 2−k

)
.

If x ∈ Ano, then Bob wins with probability at least (1 − s)
(
1 − 2−k

)
, so Alice wins with

probability at most

1 − (1 − s)
(
1 − 2−k

)
= s + 2−k(1 − s).

To summarize, the dishonest prover is unable to affect the outcome of the game with more
than a small probability. We conclude that QCΣi ⊆ QΣ2ki, and therefore QCPH ⊆ QPH. ◀

6 Distribution Hierarchies

We introduce another generalization of the polynomial hierarchy where the provers send
probability distributions over bit strings. This gives rise to two new hierarchies: the distri-
butional polynomial hierarchy DistributionPH and its quantum analogue DistributionQCPH,
which is the same as DistributionPH but with a quantum verifier. We will focus primar-
ily on DistributionPH since the techniques used to analyze DistributionPH will work for
DistributionQCPH as well.

CCC 2024

6:18 The Entangled Quantum Polynomial Hierarchy Collapses

DistributionPH is similar to all of the hierarchies studied in this work. In DistributionPH,
the distributions are public (the provers have full knowledge of the distributions that have
been sent), but none of the distributions are sampled until every distribution has been
sent. One can think of this as a non-interactive game, where the players use public, mixed
strategies. Importantly, the distributions are not correlated across rounds.

While DistributionPH is a classical complexity class, our motivation for studying it is to
further understand the quantum polynomial hierarchies. In particular, DistributionPH involves
proofs that are classical mixtures of bit strings. This complements pureQPH, where the proofs
are quantum superpositions of bit strings, and QPH, where the proofs are both (classical
mixtures of quantum superpositions). Does the computational power of the polynomial
hierarchy increase when the proofs only involve classical probability distributions? Or does
the increased computational power come only from the quantum superposition allowed in
QPH and pureQPH? In this section, we resolve these questions.

▶ Theorem 27. DistributionPH = PH.

That is, if the proofs are distributions over classical proofs, PH does not increase in power.
The proof of Theorem 27 relies on a technical lemma that says the distributions sent in
DistributionPH can be sparse and uniform. This lemma generalizes a result due to Lipton
and Young [24] and Althöfer [3].

In the remainder of this section, we will formally define DistributionPH, prove the technical
lemma, and prove Theorem 27. Finally, we will discuss DistributionQCPH (the same as
DistributionPH but with a quantum verifier) and the power of classical versus quantum
proofs.

We begin by formally defining DistributionPH. Let Dm denote the set of all probability
distributions over {0, 1}m. For a computation M which takes length-m strings as input and
a distribution ρ ∈ Dm, let M(ρ) implicitly refer to M(y) for y ∼ ρ, and any probability or
expectation expressed in terms of M(ρ) implicitly incorporates this sampling.

▶ Definition 28 (i-th level of the distribution polynomial hierarchy (DistributionΣi)). A promise
problem L = (Lyes, Lno) is in DistributionΣi(c, s) for polynomial-time computable functions
c, s : N → [0, 1] if there exists a classical polynomial-time randomized Turing Machine M

such that
Completeness: x ∈ Lyes ⇒ ∃ρ1∀ρ2∃ρ3 . . . Qiρi such that Pr [M(ρ1, . . . , ρi) = 1] ≥ c,
Soundness: x ∈ Lno ⇒ ∀ρ1∃ρ2∀ρ3 . . . Qiρi such that Pr [M(ρ1, . . . , ρi) = 1] ≤ s,

where each ρk is a distribution in Dm for some polynomially-bounded m, and each ρk is
independent. Qi is ∃ if i is odd and ∀ otherwise, and Qi is the complement of Qi. When the
completeness/soundness parameters are not specified, define

DistributionΣi :=
⋃

c−s∈Ω(1)

DistributionΣi(c, s). ⌟

▶ Definition 29 (The distribution polynomial hierarchy (DistributionPH)). The distribution
polynomial hierarchy is defined as

DistributionPH =
∞⋃

i=0
DistributionΣi. ⌟

We make a few comments on our definition of DistributionPH. If we defined DistributionPH
without the bounded-error condition (i.e., no error probability), then it would be equal to PH.
We will also generally leave the input x implicit. Finally, if one prefers, they can equivalently

S. Grewal and J. Yirka 6:19

think of the provers sending quantum mixed states that are immediately measured in the
computational basis (instead of probability distributions that are immediately sampled).
This is why we choose to denote the probability distributions as ρi in our definition.

As we discussed in Section 3 for QEPH, one can think of DistributionPH as a game, where
two competing provers take turns sending distributions over bit strings to a verifier. Then the
verifier M draws one sample from each distribution and runs a polynomial-time randomized
algorithm to determine a winner. Additionally, just like with QEPH, we can express the
acceptance probability of the verifier as the following optimization problem:

Pr[M accepts] = max
ρ1∈Dm

min
ρ2∈Dm

. . . Qi

ρi∈Dm

E[M(ρ1, . . . , ρi)],

where Qi denotes max if i is odd and min otherwise. The expectation is over the randomness
in the distributions ρ1, . . . , ρi. Note that since M(ρ1, . . . , ρi) is a Bernoulli random variable,
E[M(ρ1, . . . , ρi)] = Pr[M(ρ1, . . . , ρi) = 1].

The distributions sent in DistributionPH are over {0, 1}m for some polynomially-bounded
m, so, in general, the support can be exponentially large in m. We will prove a technical
lemma that says the provers can send uniform distributions over poly(m) bit strings without
changing the outcome of the game too much.

▶ Lemma 30. For any constant k ∈ N and any classical randomized Turing Machine M

accepting k length-m inputs, if

max
ρ1∈Dm

min
ρ2∈Dm

max
ρ3∈Dm

. . . Qk

ρk∈Dm

Pr [M(ρ1, . . . , ρk) = 1] = v,

then for any constant ϵ > 0,

max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − kϵ, v + kϵ],

where ti := ⌈m2i/2ϵ2⌉, Ut denotes the set of uniform distributions over multi-sets of size
at most t of strings in {0, 1}m, and Qk denotes max if k is odd and min otherwise. The
complement of this result also holds (i.e., when the sequence starts with min instead of max).

Proof. We will prove the claim by induction. The base case k = 2 is precisely [24, Theorem 2]
(see also [3]). Our contribution is to generalize their result to larger k.

By way of induction, suppose the claim holds for k − 1, and consider an instance with k

rounds:

v := max
ρ1∈Dm

min
ρ2∈Dm

max
ρ3∈Dm

. . . Qk

ρk∈Dm

Pr [M(ρ1, . . . , ρk) = 1] .

Because the complement of this result (where a min is first instead of a max) follows in the
same way, we omit the details.

Fix ρ1 to a distribution that maximizes the acceptance probability (and think of ρ1 as
hardcoded into the input). Consider the inner k −1 distributions ρ2, . . . , ρk. By the inductive
hypothesis, we can simplify these distributions to

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ,

while only changing the acceptance probability v by ±(k − 1)ϵ. In particular, we have that

v′ := max
ρ1∈Dm

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − (k − 1)ϵ, v + (k − 1)ϵ].

CCC 2024

6:20 The Entangled Quantum Polynomial Hierarchy Collapses

We want to show that we can simplify the first distribution ρ1 in a similar fashion. Specifically,
we want to show

v′′ := max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−2

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk) = 1] ∈ [v − kϵ, v + kϵ].

Observe that choosing ρ1 from Utk
instead of Dm can only hurt the maximizing player.

That is, the probability that M accepts can only decrease, so v′′ ≤ v′ + ϵ ≤ v + kϵ is trivial.
All that remains is to show that v′′ ≥ v −kϵ. To prove this, it suffices to show that v′′ ≥ v′ −ϵ.

Let ρ∗
1 ∈ Dm be a distribution that maximizes the acceptance probability of M . Form a

multi-set S by drawing tk independent samples from ρ∗
1. Consider a string y ∈ S. This gives

rise to a random variable on the interval [0, 1]:

E
ρ2,...,ρk

[M(y, ρ2, . . . , ρk)],

where we are taking the expectation over optimal choices of ρ2, . . . , ρk. In expectation over
ρ∗

1, we have

E
y∼ρ∗

1

[
E

ρ2,...,ρk

[M(y, ρ2, . . . , ρk]
]

= v′.

Therefore, by Hoeffding’s inequality (Fact 7),

Pr

 1
|S|
∑
y∈S

E
ρ2,...,ρk

[M(y, ρ2, . . . , ρk)] ≤ v′ − ϵ

 ≤ exp
(
−2tkϵ2) .

To complete the proof, we must count the number of sequences of distributions the
minimizing player can send. The minimizing player sends at most k/2 of the distributions
ρ2, . . . , ρk, each of which is a uniform distribution over at most tk−1-sized subsets of {0, 1}m.
Therefore, in total, there are at most(

tk−1∑
i=1

(
2m

i

))k/2

≤

(
tk−1∑
i=1

2im

)k/2

≤
(
tk−12mtk−1

)k/2 = t
k/2
k−12kmtk−1/2

possible sequences. We want to choose tk so that

exp
(
−2tkϵ2) <

1
t
k/2
k−12kmtk−1/2

, (4)

which would imply that strictly less than 1 of the minimizing player’s sequences of distributions
can decrease v′ by more than ϵ. Or, more directly, it would imply that there are no sequences
the minimizing player can send to decrease v′ by more than ϵ. We will show that choosing
tk = m2k/2ϵ2 suffices. Substituting the definitions of tk and tk−1, Equation (4) becomes

exp
(
−m2k

)
<

ϵk

mk(k−1) 2
k
2 − km2k−1

4ϵ2 ⇐⇒ exp
(
−m2k

) mk(k−1)

ϵk
2

km2k−1
4ϵ2 − k

2 < 1. (5)

We show that the inequality in Equation (5) holds, which proves that our setting of tk is
correct.

exp
(
−m2k

) mk(k−1)

ϵk
2

km2k−1
4ϵ2 − k

2 < exp
(
−m2k

)
mk2

2
km2k−1

4ϵ2 − k
2

< mk2
2

km2k−1
4ϵ2 − k

2 −m2k

= mk2
2m2k−1(k

4ϵ2 − k

2m2k−1 −m)

< mk2
2−m2k−1

< 1.

S. Grewal and J. Yirka 6:21

The first inequality holds because mk > ϵ−k for constant ϵ > 0. The second-to-last inequality
holds because

(
k

4ϵ2 − k
2m2k−1 − m

)
< −1 for constant ϵ > 0.

We conclude that v′′ ≥ v′ − ϵ ≥ v − kϵ, which completes the proof. ◀

We can now prove that DistributionPH = PH.

Proof of Theorem 27. PH ⊆ DistributionPH follows from the proof that PH ⊆ QPH. This
only achieves containment in DistributionPH with constant promise gap, and it puts the k-th
level of PH in some higher level of DistributionPH (see Theorem 26 for more detail).

To show DistributionPH ⊆ PH, we use Lemma 30. Set ϵ < 1
12k . For DistributionΣk,

Lemma 30 implies that

max
ρ1∈Utk

min
ρ2∈Utk−1

max
ρ3∈Utk−3

. . . Qk

ρk∈Ut1

Pr [M(ρ1, . . . , ρk)] ∈ [v −kϵ, v +kϵ] ⊆
[
v − 1

12 , v + 1
12

]
.

Given the DistributionΣk promise gap of 2
3 , 1

3 , this modified game has a promise gap of 7
12 , 5

12 .
We simulate this in PH as follows. To send the distribution ρi, the prover sends every

string in the support of ρi, which is only poly(n) many bits by Lemma 30. The verifier can
then take the list of strings and sample one uniformly at random. This completes the proof
since PH can simulate randomness [30, 23]. ◀

One can also define DistributionQCPH in the same way, and it follows from Theorem 27
that this class is equal to QCPH.

▶ Corollary 31. DistributionQCPH = QCPH.

The only difference between DistributionQCPH and pureQPH is that the former involves
proofs that are classical distributions over bit strings and the latter involves proofs that
are quantum superpositions over bit strings. DistributionQCPH = QCPH is in the counting
hierarchy [11], while the best known upper bound for pureQPH is EXPPP [2] and it contains
QMA(2) and QPH. The conceptual takeaway is that it is only the quantum superposition in
the proofs that gives the quantum hierarchies more computational power.

We also remark that if one allows the distributions in DistributionPH and DistributionQCPH
to be correlated, then the techniques in Lemma 22 can be used to collapse the resulting
hierarchies to the second level. The correlated version of DistributionPH collapses to S2P. The
correlated version of DistributionQCPH collapses to a quantum-classical version of QRG(1),
which, to our knowledge, has never been studied.

References
1 Scott Aaronson, DeVon Ingram, and William Kretschmer. The Acrobatics of BQP. In 37th

Computational Complexity Conference (CCC 2022), Leibniz International Proceedings in
Informatics (LIPIcs), pages 20:1–20:17, 2022. doi:10.4230/LIPIcs.CCC.2022.20.

2 Avantika Agarwal, Sevag Gharibian, Venkata Koppula, and Dorian Rudolph. Quantum
Polynomial Hierarchies: Karp-Lipton, error reduction, and lower bounds, 2024. arXiv:
2401.01633.

3 Ingo Althöfer. On sparse approximations to randomized strategies and convex combinations.
Linear Algebra and its Applications, 199:339–355, 1994. Special Issue Honoring Ingram Olkin.
doi:10.1016/0024-3795(94)90357-3.

4 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009. doi:10.1017/CBO9780511804090.

5 Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and proofs
without relative phase, 2023. arXiv:2306.13247.

CCC 2024

https://doi.org/10.4230/LIPIcs.CCC.2022.20
https://arxiv.org/abs/2401.01633
https://arxiv.org/abs/2401.01633
https://doi.org/10.1016/0024-3795(94)90357-3
https://doi.org/10.1017/CBO9780511804090
https://arxiv.org/abs/2306.13247

6:22 The Entangled Quantum Polynomial Hierarchy Collapses

6 Harry Buhrman, Richard Cleve, John Watrous, and Ronald de Wolf. Quantum fingerprinting.
Physical Review Letters, 87(16):167902, 2001. doi:10.1103/PhysRevLett.87.167902.

7 Chirag Falor, Shu Ge, and Anand Natarajan. A Collapsible Polynomial Hierarchy for Promise
Problems, 2023. arXiv:2311.12228.

8 Uriel Feige and Joe Kilian. Making Games Short (Extended Abstract). In Proceedings of the
Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 506–516, New York,
NY, USA, 1997. Association for Computing Machinery. doi:10.1145/258533.258644.

9 J. Feigenbaum, D. Koller, and P. Shor. A Game-Theoretic Classification of Interactive
Complexity Classes. In Proceedings of Structure in Complexity Theory. Tenth Annual IEEE
Conference, pages 227–237, 1995. doi:10.1109/SCT.1995.514861.

10 Sevag Gharibian and Julia Kempe. Hardness of approximation for quantum problems. In
International Colloquium on Automata, Languages, and Programming, pages 387–398. Springer,
2012. doi:10.1007/978-3-642-31594-7_33.

11 Sevag Gharibian, Miklos Santha, Jamie Sikora, Aarthi Sundaram, and Justin Yirka. Quantum
generalizations of the Polynomial Hierarchy with applications to QMA(2). Computational
Complexity, 31(2):13, 2022. doi:10.1007/s00037-022-00231-8.

12 Soumik Ghosh and John Watrous. Complexity limitations on one-turn quantum refereed games.
Theory of Computing Systems, 67(2):383–412, 2023. doi:10.1007/s00224-022-10105-9.

13 Gus Gutoski and John Watrous. Quantum interactive proofs with competing provers. In
STACS 2005: 22nd Annual Symposium on Theoretical Aspects of Computer Science, pages
605–616. Springer, 2005. doi:10.1007/978-3-540-31856-9_50.

14 Gus Gutoski and John Watrous. Toward a General Theory of Quantum Games. In Proceedings
of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pages 565–574, New
York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/1250790.1250873.

15 Gus Gutoski and Xiaodi Wu. Parallel Approximation of Min-Max Problems. Computational
Complexity, 22:385–428, 2013. doi:10.1007/s00037-013-0065-9.

16 Aram W. Harrow and Ashley Montanaro. Testing Product States, Quantum Merlin-Arthur
Games and Tensor Optimization. J. ACM, 60(1), 2013. doi:10.1145/2432622.2432625.

17 Rahul Jain, Zhengfeng Ji, Sarvagya Upadhyay, and John Watrous. QIP = PSPACE. Journal
of the ACM (JACM), 58(6):1–27, 2011. doi:10.1145/2049697.2049704.

18 Rahul Jain and John Watrous. Parallel Approximation of Non-interactive Zero-sum Quantum
Games. In 24th Annual IEEE Conference on Computational Complexity, pages 243–253, 2009.
doi:10.1109/CCC.2009.26.

19 Fernando Granha Jeronimo and Pei Wu. The power of unentangled quantum proofs with
non-negative amplitudes. In Proceedings of the 55th Annual ACM Symposium on Theory
of Computing, STOC 2023, pages 1629–1642, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3564246.3585248.

20 Alexei Kitaev and John Watrous. Parallelization, amplification, and exponential time simula-
tion of quantum interactive proof systems. In Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing, pages 608–617, 2000. doi:10.1145/335305.335387.

21 Alexei Y. Kitaev, Alexander Shen, and Mikhail N. Vyalyi. Classical and Quantum Computation.
American Mathematical Soc., 2002. doi:10.1090/gsm/047.

22 Robert Kleinberg, Oliver Korten, Daniel Mitropolsky, and Christos Papadimitriou. Total
Functions in the Polynomial Hierarchy. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021), volume 185 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 44:1–44:18, 2021. doi:10.4230/LIPIcs.ITCS.2021.44.

23 Clemens Lautemann. BPP and the polynomial hierarchy. Information Processing Letters,
17(4):215–217, 1983. doi:10.1016/0020-0190(83)90044-3.

24 Richard J. Lipton and Neal E. Young. Simple Strategies for Large Zero-Sum Games with
Applications to Complexity Theory. In Proceedings of the 26th Annual ACM Symposium on
Theory of Computing, pages 734–740, 1994. doi:10.1145/195058.195447.

https://doi.org/10.1103/PhysRevLett.87.167902
https://arxiv.org/abs/2311.12228
https://doi.org/10.1145/258533.258644
https://doi.org/10.1109/SCT.1995.514861
https://doi.org/10.1007/978-3-642-31594-7_33
https://doi.org/10.1007/s00037-022-00231-8
https://doi.org/10.1007/s00224-022-10105-9
https://doi.org/10.1007/978-3-540-31856-9_50
https://doi.org/10.1145/1250790.1250873
https://doi.org/10.1007/s00037-013-0065-9
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1145/2049697.2049704
https://doi.org/10.1109/CCC.2009.26
https://doi.org/10.1145/3564246.3585248
https://doi.org/10.1145/335305.335387
https://doi.org/10.1090/gsm/047
https://doi.org/10.4230/LIPIcs.ITCS.2021.44
https://doi.org/10.1016/0020-0190(83)90044-3
https://doi.org/10.1145/195058.195447

S. Grewal and J. Yirka 6:23

25 Chris Marriott and John Watrous. Quantum Arthur–Merlin Games. Computational Complexity,
14(2):122–152, 2005. doi:10.1007/s00037-005-0194-x.

26 A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential space. In 13th Annual Symposium on Switching and Automata
Theory (SWAT 1972), pages 125–129, 1972. doi:10.1109/SWAT.1972.29.

27 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010. doi:10.1017/CBO9780511976667.

28 Adi Shamir. IP = PSPACE. J. ACM, 39(4):869–877, 1992. doi:10.1145/146585.146609.
29 Maurice Sion. On General Minimax Theorems. Pacific Journal of Mathematics, 1958.

doi:10.2140/pjm.1958.8.171.
30 Michael Sipser. A Complexity Theoretic Approach to Randomness. In Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing, pages 330–335. Association for
Computing Machinery, 1983. doi:10.1145/800061.808762.

31 Larry J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, 3(1):1–
22, 1976. doi:10.1016/0304-3975(76)90061-X.

32 Lieuwe Vinkhuijzen. A Quantum Polynomial Hierarchy and a Simple Proof of Vyalyi’s Theorem.
Master’s thesis, Leiden University, 2018. URL: https://theses.liacs.nl/1505.

33 John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.
doi:10.1017/9781316848142.

34 Tomoyuki Yamakami. Quantum NP and a Quantum Hierarchy. In Foundations of Information
Technology in the Era of Networking and Mobile Computing, volume 96 of IFIP — The Inter-
national Federation for Information Processing, pages 323–336, Boston, MA, 2002. Springer.
doi:10.1007/978-0-387-35608-2_27.

CCC 2024

https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1109/SWAT.1972.29
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1145/146585.146609
https://doi.org/10.2140/pjm.1958.8.171
https://doi.org/10.1145/800061.808762
https://doi.org/10.1016/0304-3975(76)90061-X
https://theses.liacs.nl/1505
https://doi.org/10.1017/9781316848142
https://doi.org/10.1007/978-0-387-35608-2_27

Polynomial Pass Semi-Streaming Lower Bounds for
K-Cores and Degeneracy
Sepehr Assadi # Ñ

Cheriton School of Computer Science, University of Waterloo, Canada

Prantar Ghosh # Ñ

Department of Computer Science, Georgetown University, Washington, DC, USA

Bruno Loff # Ñ

Department of Mathematics and LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

Parth Mittal # Ñ

University of Waterloo, Canada

Sagnik Mukhopadhyay # Ñ

University of Sheffield, UK

Abstract
The following question arises naturally in the study of graph streaming algorithms:

Is there any graph problem which is “not too hard”, in that it can be solved efficiently with total
communication (nearly) linear in the number n of vertices, and for which, nonetheless, any streaming
algorithm with Õ(n) space (i.e., a semi-streaming algorithm) needs a polynomial nΩ(1) number of
passes?

Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case.
However, the lower bounds that they obtained are for rather non-standard graph problems.

Our first main contribution is to present the first polynomial-pass lower bounds for natural “not
too hard” graph problems studied previously in the streaming model: k-cores and degeneracy.
We devise a novel communication protocol for both problems with near-linear communication, thus
showing that k-cores and degeneracy are natural examples of “not too hard” problems. Indeed,
previous work have developed single-pass semi-streaming algorithms for approximating these problems.
In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires
(almost) Ω(n1/3) passes.

The lower bound follows by a reduction from a generalization of the hidden pointer chasing
(HPC) problem of Assadi, Chen, and Khanna, which is also the basis of their earlier semi-streaming
lower bounds.

Our second main contribution is improved round-communication lower bounds for the
underlying communication problems at the basis of these reductions:

We improve the previous lower bound of Assadi, Chen, and Khanna for HPC to achieve optimal
bounds for this problem.
We further observe that all current reductions from HPC can also work with a generalized version
of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound
for this generalization.

These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming
algorithms by a polynomial factor, namely, from n1/5 to n1/3 passes.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Lower bounds and information complexity; Theory of
computation → Graph algorithms analysis

Keywords and phrases Graph streaming, Lower bounds, Communication complexity, k-Cores and
degeneracy

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.7

Related Version Full Version: http://arxiv.org/abs/2405.14835 [9]

© Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and
Sagnik Mukhopadhyay;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 7; pp. 7:1–7:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr@assadi.info
https://sepehr.assadi.info/
https://orcid.org/0009-0006-8914-5995
mailto:prantar.ghosh@gmail.com
https://sites.google.com/view/prantarg/home
https://orcid.org/0009-0006-9172-6553
mailto:bruno.loff@gmail.com
https://brunoloff.wordpress.com/
https://orcid.org/0000-0001-7562-457X
mailto:parth.mittal@uwaterloo.ca
https://parthmittal.github.io/
https://orcid.org/0009-0003-5608-9163
mailto:schwagznikst@gmail.com
https://sagnikm.github.io/
https://orcid.org/0000-0002-3722-4679
https://doi.org/10.4230/LIPIcs.CCC.2024.7
http://arxiv.org/abs/2405.14835
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

Funding Sepehr Assadi: Supported in part by a Sloan Research Fellowship, an NSERC Discovery
Grant, a University of Waterloo startup grant, and a Faculty of Math Research Chair grant.
Prantar Ghosh: Supported in part by NSF under award 1918989. Part of this work was done while
he was at DIMACS, Rutgers University, supported in part by a grant (820931) to DIMACS from
the Simons Foundation.
Bruno Loff : Funded by the European Union (ERC, HOFGA, 101041696). Views and opinions
expressed are however those of the author(s) only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the European Union nor the granting authority can
be held responsible for them. He was also supported by FCT through the LASIGE Research Unit, ref.
UIDB/00408/2020 and ref. UIDP/00408/2020, and by CMAFcIO, FCT Project UIDB/04561/2020,
https://doi.org/10.54499/UIDB/04561/2020.
Parth Mittal: Supported by a David R. Cheriton Graduate Scholarship and Sepehr Assadi’s Sloan
Research Fellowship, an NSERC Discovery grant, and a startup grant from University of Waterloo.
Sagnik Mukhopadhyay: Partially funded by the UKRI New Investigator Award, ref. EP/X03805X/1.

Acknowledgements The first named author would like to thank Yu Chen and Sanjeev Khanna for
their collaboration in [7] that was the starting point of this project and Madhu Sudan for helpful
conversations.

1 Introduction

Graph streaming algorithms process their inputs by making one or few passes over the
edges of an input graph using limited memory. Algorithms that use space proportional to
n, the number of vertices, are called semi-streaming algorithms. Since their introduction
by [36], graph streaming algorithms have become one of the main theoretical research areas
on processing massive graphs. We refer the interested reader to [53] for an introductory
survey of earlier results on this topic.

In this work, we prove a polynomial-pass lower bound for any graph streaming algorithm
that computes k-cores or degeneracy of a given graph. Our result is of interest from the
point of view of proving strong lower bounds in the graph streaming model in addition to
their direct implications for these two specific problems.

1.1 Polynomial Pass Lower Bounds in Graph Streams
Even though the study of multi-pass graph streaming algorithms started hand in hand with
single-pass algorithms in [36], our understanding of powers and limitations of multi-pass
algorithms, even for most basic problems, lags considerably behind. On one hand, for a
problem like minimum cut, we have algorithms that in just Õ(n) space and two passes
can solve the problem exactly [8]1 (see [7, Table 1] for a list of several such results). On
the other hand, for some other basic problems such as undirected shortest path, directed
reachability, and bipartite matching, the best known semi-streaming algorithms require
O(n1/2) [23], n1/2+o(1) [10,51], and n3/4+o(1) [10] passes, respectively; yet, despite significant
efforts, the best lower bound for any of these problems is still (even slightly below) Ω(log n)
passes [14,22,25,40].

A key reason behind our weaker understanding of multi-pass streaming algorithms can
be attributed to the lack of techniques for proving super-logarithmic pass lower bounds for
semi-streaming algorithms. At this point, such lower bounds are only known for a handful

1 See [61] for an implicit algorithm with the same bounds and [55] for the extension to weighted cuts in
O(log n) passes.

https://doi.org/10.54499/UIDB/04561/2020
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/X03805X/1

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:3

of problems: clique and independent set [41], dominating set [1], Hamiltonian path [15],
maximum cut [15, 46], vertex cover and coloring [3], exact Boolean CSPs [46], triangle
detection [17,58], and diameter computation [37]. Although, for all these problems, we can
actually prove close-to-n pass lower bounds. Let us examine this dichotomy.

A quick glance at the list of problems above may suggest an intuitive difference between
these problems and the ones like reachability or shortest path: the above list consists of
problems that are computationally hard in a classical sense2, suggesting that we are dealing
with a “harder” class of problems in their case. While this intuition should not be taken
as a formal evidence – as classical computational hardness does not imply streaming lower
bounds (which are unconditional and information-theoretic) – [7] showed that one can also
formally explain this dichotomy.

In particular, [7] observed that these strong streaming lower bounds happen only when the
communication complexity of the problem at hand is Ω(n2). Such a high lower-bound on the
communication complexity immediately gives an Ω̃(n)-pass lower bound for semi-streaming
algorithms via standard reductions. Whereas, for almost all problems of interest in the
semi-streaming model, including shortest path, reachability, and bipartite matching, we
already know an Õ(n) communication upper bound3 (the protocol for bipartite matching
was only discovered in [20] after the work of [7], but Õ(n3/2) communication protocols were
known already [31,42]). We refer the reader to [7, Section 1.1] for more context regarding
these observations and prior techniques for o(log n) pass lower bounds.

Toward Stronger Streaming Lower Bounds
A natural question in light of these observations, already posed in [7], is the following:

Motivating question. Is there any graph problem which is “not too hard”, in that
it can be solved efficiently with communication (nearly) linear in the number n of
vertices, and for which, nonetheless, any semi-streaming algorithm needs a polynomial
nΩ(1) number of passes?

To address this question, [7] introduced a new (four-player) communication problem called
Hidden Pointer Chasing (HPC), which acts as a cross between Set-Intersection and
Pointer Chasing problems, which are the main problems for, respectively, proving Ω(n2)
communication lower bounds on graphs, and o(log n)-pass lower bounds for semi-streaming
algorithms.

Roughly speaking, the HPC problem is defined as follows. There are four players paired
into two groups. Each pair of players inside a group shares m instances of the Set-Intersection
problem on m elements (each of the two players holds a subset of [m] and they need to
identify the unique intersecting element). The intersecting element in each instance of each
group “points” to an instance in the other group. The goal is to start from a fixed instance,
follow these pointers for a fixed number of steps, and then return the last element reached.
See (full version [9], Definition 3.3) for the formal description.

This problem admits an efficient communication protocol with no limit on its number of
rounds, but [7] showed that any r-round protocol that aims to find the (r + 1)-th pointer in
HPC requires Ω(m2/r2) communication. This places HPC squarely in the middle of previous

2 These are standard NP-hard problems or admit some fine-grained hardness (for the latter two) [47, 60].
3 This perhaps can be seen as this: a problem whose (unbounded round) communication complexity is

already high has almost no place in the streaming model, which is a much weaker model algorithmically.

CCC 2024

7:4 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

techniques and quite suitable for performing reductions to prove streaming lower bounds even
for not-too-hard graph problems. Using this, [7] proved the first set of polynomial-pass graph
streaming lower bounds in this class of problems: computing lexicographically-first maximal
independent set (LFMIS) and s-t minimum cut on graphs with exponential edge-capacities
both require Ω̃(n1/5) passes to be solved by semi-streaming algorithms.

Despite the significant advances on multi-pass streaming lower bounds in the last couple of
years [2,11–14,22,25–27,46], there is still no other known (not-too-hard) problem that admits
a polynomial-pass lower bounds beside those of [7]. In addition, it is worth mentioning that,
strictly speaking, neither LFMIS nor the version of s-t minimum cut in [7] completely fit the
premise of our original question: LFMIS is not purely a graph problem as it is not invariant
under labeling of the vertices, and s-t minimum cut studied in [7] involves (i) making the
non-standard assumption of exponential capacities, and (ii) even for unit-capacity graphs, is
not known to admit an Õ(n) communication protocol (see [20]).

We prove polynomial-pass lower bounds for two natural graph problems, k-cores and degen-
eracy, by reduction from a harder variant of the HPC problem which we call MultiHPC. We
also present novel Õ(n) communication protocols for these two problems. These two results
together give us the first natural instances of a positive answer to our motivating question.

These results further demonstrate the power of reductions from the HPC problem, as a
technique for proving strong lower bounds in the graph streaming model, which are beyond
the reach of other techniques. With this in mind, we improve the lower bound of [7] for the
HPC problem to an optimal bound of Ω(m2/r) communication, i.e., we improve the known
bound by a factor of r. This contribution alone results in a polynomial improvement in the
number of passes, for all lower bounds that follow via reductions from HPC (for instance, it
immediately improves the bounds of [7] for LFMIS and exponential-capacity s-t minimum
cut to Ω̃(n1/4) passes).

But, as it turns out, all the known lower-bounds that follow by reduction from HPC also
follow by reduction from MultiHPC. For this variant, we can prove an Ω(m2) lower-bound
for r rounds (since the input size for MultiHPC is r · m2), and this translates to an improved
semi-streaming lower-bound of Ω̃(n1/3) passes for all of the above problems.

1.2 k-Cores and Degeneracy in Graph Streams
For any undirected graph G = (V, E) and integer k ⩾ 1, a k-core in G is a maximal set S of
vertices such that the induced subgraph of G on S, denoted by G[S], has a minimum degree
of at least k. In other words, any vertex in S has at least k other neighbors in S.

k-Cores provide a natural notion of well-connectedness in massive graphs, and as such,
computing k-cores (and more generally k-core decompositions; see, e.g., [50]) has been widely
studied in databases [21,28,49], social networks [29,30,44], machine learning [6,33,39], among
others [38,48,62].

As a result, in recent years, there has been a rapidly growing body of work on computing k-
cores on massive graphs in parallel and streaming models of computation [29,30,33,39,50,62].
In particular, [33] presented a single-pass algorithm that for any ε > 0, computes a (1 − ε)-
approximation of every k-core in G (i.e., obtains a (1 − ε)-approximate k-core decomposition)
in Õ(n/ε2) space (see also [62] for an earlier streaming algorithm and [39] for a closely related
parallel algorithm).

The degeneracy of a graph G = (V, E), denoted by κ(G), is the largest integer k ⩾ 0 such
that G contains a non-empty k-core. The simple greedy algorithm that at every step peels
off the smallest degree vertex results in the so-called degeneracy ordering of G and κ(G)

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:5

is equal to the largest degree of a vertex removed in this peeling process [52]. Degeneracy
is a standard measure of uniform sparsity and is closely related to other such notions like
arboricity (which is within a factor 2 of degeneracy). Moreover, computing degeneracy
is a subroutine for approximating various other problems such as arboricity [5], densest
subgraph [24], (κ + 1) coloring [32].

The degeneracy problem, and closely related uniform-sparsity measures such as densest
subgraph, have also been studied extensively in the graph streaming literature [4, 16, 18,
19,34, 35,54]. In particular, [34] provided an O(log n)-pass semi-streaming algorithm that
outputs a constant factor approximation to degeneracy, and [35] subsequently improved this
to a single-pass (1 − ε)-approximation in Õ(n/ε2) space (see also [54] for densest subgraph
and [4, 18] for degeneracy coloring).

In terms of lower bounds, [18] prove that any single-pass streaming algorithm that
computes the exact value of degeneracy or approximates it within an additive factor of λ

requires Ω(n2) space or Ω(n2/λ2) space respectively. Our polynomial-pass lower bounds for
k-cores and degeneracy, now in a very strong sense, rule out the possibility of extending
any prior semi-streaming algorithms computing near-optimal solutions to these problems, to
compute exactly optimal solutions.

1.3 Our Results
We give an informal presentation of our results here. The details can be found in the full
version [9]. The first main result is our polynomial-pass lower bound for k-core computation
and degeneracy.

▶ Result 1 (Formalized in full version [9], Theorem 5.1). For any integer p ⩾ 1, any p-pass
streaming algorithm for computing the degeneracy of an input n-vertex graph requires
Ω̃(n2/p3) space. In particular, any semi-streaming algorithm for the problem requires
Ω̃(n1/3) passes.
Moreover, the same lower bounds also apply to the algorithms that given any integer
k ⩾ 1, can check whether or not the input graph contains a non-empty k-core.

Result 1 provides a strongly negative answer to the question of obtaining semi-streaming
algorithms for exact computation of degeneracy and k-cores in a small number of passes.
We obtain Result 1 via a detailed and technical reduction, presented in Section 5 of the full
version [9], from a variant of the Hidden Pointer Chasing (HPC) problem of [7], which we
call Boolean Multilayer Hidden Pointer Chasing (BMHPC).

In a standard HPC problem, we are given m instances of m-bit Set-Intersection (O(m2)
bits in total) and interpret the intersection point of each instance as pointing to a different
instance among these m. We then wish to know the position we end up in after following
r + 1 pointers. In a Boolean variant, we only care to know the parity of the position we
end up in. In a Multilayer variant, we are given r different layers, each layer with its own
m instances (rm2 bits in total), where we think of the intersection points at each layer as
pointing to some instance in the next layer, and wish to know where we end up in the last
layer by following these pointers.

In addition to the reduction from BMHPC, in Section 6 of the full version [9], we present
a novel and non-trivial communication protocol that finds the degeneracy ordering (and thus
degeneracy itself) and non-empty k-cores for any given k, using only Õ(n) communication.
This communication upper bound thus places the k-core and degeneracy problems as perfect

CCC 2024

7:6 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

illustrations of a positive answer to our and [7]’s motivating question outlined earlier: namely,
problems that prior techniques could not have proven any lower bound beyond log n passes.
Result 1 thus constitutes the first set of natural graph problems with polynomial pass lower
bounds for semi-streaming algorithms.

Our second main contribution is providing optimal lower bounds for the HPC problem and
all its variants (Boolean, Multilayer, and Boolean Multilayer). A communication lower-bound
of Ω(m2

r2) was previously known for (r − 1)-round protocols computing the r-th pointer in a
(single layer) HPC problem. We prove the following.

▶ Result 2 (Formalized in full version [9], Theorem 4.2). For any integer 1 ⩽ r = O(
√

m),
any (r − 1)-round protocol for computing the r-th pointer in the HPC problem on a
universe of size m requires Ω̃(m2/r) communication.

For any integer r ⩾ 1, any (r − 1)-round protocol for computing the r-th pointer in the
Multilayer HPC problem on a universe of size m requires Ω̃(m2) communication.

Moreover, the same lower bounds hold for the Boolean versions of the above.

Result 2, by strengthening the lower bound of [7], allows us to prove polynomially stronger
bounds on the number of passes of semi-streaming algorithms via reductions from HPC. As
it turns out, every known reduction from HPC [7] can be easily converted to a reduction
from MHPC. Our results thus imply improved pass lower bounds (from Ω̃(n1/5) to Ω̃(n1/3))
for semi-streaming algorithms solving these problems. We capture this in the next corollary.

▶ Corollary 1. For any integer p ⩾ 1, any p-pass streaming algorithm for the following
problems on n-vertex graphs requires Ω̃(n2/p3) space. In particular, any semi-streaming
algorithm for these problems require Ω̃(n1/3) passes.

Computing the minimum s-t cut value in a weighted graph (with exponential edge capacities)
Computing the lexicographically-first maximal independent set (LFMIS) of an undirected
graph

We obtain Result 2 by following the elegant analysis of pointer chasing problems due
to [63] via the triangular discrimination distance between distributions, as opposed to more
standard measures such as KL-divergence and total variation distance typically used in this
context. This in turn requires extending the notion of “almost solving” for the Set-Intersection
problem introduced by [7] (and further refined in [14]), to the triangular discrimination
distance: roughly speaking, this corresponds to proving a lower bound for communication
protocols that, instead of finding the intersecting element, change its distribution slightly
from uniform distribution. The analysis in [7] measured this change by total variation
distance, but now we need to do so by triangular discrimination distance instead. Finally,
we prove a nearly-optimal lower bound on the communication-distance tradeoff for almost
solving Set-Intersection in terms of the triangular discrimination distance.

2 Overview

In this version, we only present a high-level and informal overview of our techniques and
proofs. All the technical details and formal proofs are available in the full version [9].

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:7

2.1 Hidden Pointer Chasing

The Multilayer Hidden Pointer Chasing (MHPC) problem, the starting point of our reductions,
is defined as follows. The problem operates on two disjoint universes X = {x1, . . . , xm} and
Y = {y1, . . . , ym}. There are four players PA, PB , PC , PD, out of which PA and PB each hold
rm subsets of Y, called Aj

x and Bj
x for x ∈ X and j ∈ [r], and PC and PD each hold rm

subsets of X , called Cj
y and Dj

y for y ∈ Y and j ∈ [r], with the promise |Aj
x ∩ Bj

x| = 1 and
|Cj

y ∩ Dj
y| = 1 for every j ∈ [r], x ∈ X and y ∈ Y . This means that each pair of sets of two of

the players, e.g. Aj
x and Bj

x defines a pointer {y} = Aj
x ∩ Bj

x, which we think of as pointing
to the pair of sets in the next layer, Cj+1

y and Dj+1
y , belonging to the other two players.

Following these pointers, and writing a singleton set as the element it contains, we define
a sequence z0 = x1, z1 = A1

z0
∩ B1

z0
, z2 = C2

z1
∩ D2

z1
, z3 = A3

z2
∩ B3

z2
, etc. In the MHPCm,r

problem, the players wish to learn zr. In the BMHPCm,r problem, the players only need to
learn one bit about zr, that is, b(zr) := i mod 2 where i is the index of zr in X or Y. Now,
there is a very obvious way of doing this in r rounds, if the correct pair of players start: the
players just follow the pointers, solving the necessary Set-Intersection instances. This costs
them r rounds with O(m) bits of communication per round, for a total of rm bits. However,
we will show:

▶ Theorem 2. Any randomized protocol with less than r rounds, or even any randomized
protocol with r rounds which is misaligned, in that the “wrong” pair of players starts to speak,
cannot solve BMHPCm,r correctly with fewer than Ω(m2) bits of communication.

This theorem is proven by combining ideas from three different previous works: [7], [14],
and [63]. But first, let us give an overall intuition for why it should be expected to hold.

In a misaligned r-round protocol for BMHPCm,r, it is players PC and PD who begin the
protocol by talking with each other. This means that the “wrong” pair of players begin to
speak, in the sense that they wish to compute the value {z1} = A1

1 ∩ B1
1 , but this instance is

with PA and PB , so they have no way to do this. So the first round cannot say anything about
z1: the best PC and PD can do is send some information about all of their Set-Intersection
instances, without knowing which one is important. This means that each bit that PC and
PD communicate with PA and PB in the first round can only reveal 1

m bits of information
about the average instance. But now in the next round, PA and PB, although they know
z1, cannot have learned much information about C2

z1
or D2

z1
. But then, how can they say

anything about {z2} = C2
z1

∩ D2
z1

? The difficult situation is now reversed! This “always one
step behind” situation is similar to what happens for pointer chasing [57, 59, 63], except now
the pointers are “hidden” behind set intersection instances.

A previous paper of Assadi, Chen and Khanna [7] showed a lower-bound of Ω(m2

r2) for
the (single layer) Hidden Pointer Chasing problem HPCm,r, which is a version of MHPCm,r

where all the layers are identical (Aj
i , Bj

i , Cj
i , Dj

i is the same for all j ∈ [r]). The lower-bound
was proven via an information-theoretic argument. They first show that any low-round
protocol for HPC must be “almost solving” a set intersection instance on one of the rounds.
They then show that this is impossible via an information complexity argument, akin to the
lower-bound on the information complexity for set disjointness. However, a later paper by
Assadi and Raz [14] directly showed that any protocol that “almost solves” set intersection
can be used to obtain a protocol that exactly solves set intersection (hence the term “almost
solving”). This would allow us to replace the ad hoc information complexity argument
in [7], and instead appeal, in a black-box fashion, to a previously known lower-bound on the
information complexity of Set-Intersection [43].

CCC 2024

7:8 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

One could take these previous lower-bounds for HPCm,r, and prove a lower-bound of Ω(m2

r)
for MHPCm,r, but not the lower-bound of Ω(m2) which we obtain here. The insufficiency
of these previous proofs comes from the notion of “almost solving” that is used. There,
a protocol is said to “almost solve” Set-Intersection if the distribution of the intersection
point is sufficiently changed by the knowledge gained from the protocol’s execution. More
precisely, if the distribution of the intersection point µ(A∩B | Π), conditioned on knowing the
transcript Π, is sufficiently far away, in total variation distance (TVD), from the distribution
of the intersection point µ(A ∩ B), as it is known before the protocol begins. The quadratic
margin in terms of r is ultimately a result of the quadratic loss between TVD and Shannon
information, in the use of Pinsker’s inequality.

This same issue was the cause of a decades-long open problem on the complexity of
(non-hidden) pointer chasing. Nisan and Wigderson proved in 1991 [56] that any r-round
protocol for pointer chasing, where the wrong player starts, needs to communicate ω(m

r2) bits.
But there is a simple upper bound of O(m

r). In 2000, Klauck [45] gave a non-constructive
proof of a matching lower-bound. That is, he showed that the randomized communication
complexity is indeed Ω(m

r), but without providing a hard distribution, which must exist
via Yao’s Principle. This problem remained open until 2019, when Yehudayoff [63] showed
that the distributional complexity of pointer chasing is Ω(m

r) under the uniform distribution,
whenever r ≪

√
m. The proof used a measure of information called triangular discrimination,

which had never before been used in the lower-bounds literature.
Thus, being simultaneously aware of the three works of [7], [14], and [63], one is naturally

led to ask if they can be combined in such a way as to improve the m2

r2 lower bound for HPC,
to m2

r ? And could we then prove a lower bound of Ω(m2) for Multilayer HPC?
This turns out to be the case. We are not only able to prove Theorem 2, but we also

improve the lower bound for (single layer) HPC:

▶ Theorem 3. Let r = O(
√

m). Then, any randomized protocol with less than r rounds, or
even any misaligned randomized protocol with r rounds, cannot solve BHPCm,r correctly with
fewer than Ω(m2

r) bits of communication.

The key insight in the new lower bounds is that the notion of “almost solving” an instance
of Set-Intersection can be adapted to use triangular discrimination instead of TVD. Two
issues then need to be addressed.

First, we must show that a low-round protocol for HPC or MHPC must be “almost solving”
(in the new sense) an instance of Set-Intersection in one of the rounds. The proofs follows
the general outline of [7], but need to be adapted to use triangular discrimination instead of
TVD. To see that it works, one must first understand that triangular discrimination obeys a
property analogous to TVD, saying that the expected value of f(x), when x is sampled by
some distribution µ, is not too far from the expected value of f(x) when x is sampled by a
different distribution ν, if µ and ν are close with respect to triangular discrimination. This is
obvious for TVD, but not as obvious for triangular discrimination. It is also not obvious how
to adapt the proof to Multilayer HPC, in a way that works for any number of rounds r ⩽ m.

Second, we must show that a low-information protocol that “almost solves” (in the new
sense) Set-Intersection can still be used to obtain a low-information protocol that exactly
solves Set-Intersection. The proof is similar to [14]. In that paper, a reduction is given
which solves a given Set-Intersection instance by sampling O(1) runs of a protocol that
“almost solves” Set-Intersection in terms of TVD. We reinterpret their reduction as using the
almost-solving protocol to assign scores to elements (predicting how likely they are to be the
intersecting element), and come up with a new scoring function which allows a reduction
from set intersection to almost-solving with respect to positive triangular discrimination.

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:9

2.2 Reduction to Degeneracy

We give a high-level overview of the key idea behind the reduction from BMHPC to the
streaming problem of finding the graph degeneracy. First, suppose that we want to show a
streaming lower bound for the harder problem of finding a degeneracy ordering. In the classical
offline setting, we can obtain such an ordering by the peeling algorithm that recursively
removes the min-degree node from the graph and appends it to the end of the ordering. But
naively implementing this algorithm in the semi-streaming setting seems difficult since it is
inherently sequential. We can store the degree of each node in semi-streaming space and find
the min-degree node v in the graph. After we remove v, we need to find a min-degree node v′

in the new graph G \ {v}. But at the beginning of the stream, we did not know which node
v is, and hence might not have stored enough of its neighbors so as to update their degrees
and find v′. Hence, naively, we need to make a new pass for each peeled vertex, which takes
Θ(n) passes in total for an n-node graph. One might wonder whether any semi-streaming
algorithm for degeneracy ordering would need close to these many passes. If so, how do we
prove it?

Consider just the basic problem of finding a min-degree node in an n-node graph, which
is the primitive for finding a degeneracy ordering. It can be shown via a simple reduction
that a streaming algorithm for this problem can be used to solve SetIntn, the Set-Intersection
communication problem with universe size n. As noted above, finding the degeneracy ordering
translates to finding a sequence of nodes that have smallest degree in the remaining graph.
This means we can use it to basically solve a sequence of SetIntΘ(n) instances. These instances
are, however, not independent. The solution to the first instance gives a min-degree node in
the original graph, whose removal leads to the second instance; solving this instance reveals
the third instance, and so on and so forth. This gives a flavor of a combination of SetInt and
pointer chasing, where each pointer is revealed by solving a SetInt instance corresponding to
the previous pointer. This is precisely the concept behind HPC (or MHPC for that matter)!
Hence, it is plausible that the degeneracy ordering problem can be reduced from MHPC, and
we embark on the journey to find such a reduction.

Recall the definition of MHPC from Section 2.1. Given an instance of MHPC, we construct
the following layered graph with r + 1 layers L0, . . . , Lr. Each layer has m nodes: the nodes
in the even layers correspond to xi’s and the ones in the odd layers correspond to yi’s. The
edges of the graph are always between two consecutive layers. The players PA and PB encode
the sets A1

xi
and B1

xi
by adding edges between L0 and L1. Consider the following encoding:

for each i, j ∈ [m], if yj ∈ A1
xi

, then PA adds an edge from the ith node in L0 to the jth
node in L1. PB does the analogous construction for the elements in B1

xi
(note that this can

lead to parallel edges). PC and PD encode the sets C2
yi

and D2
yi

by adding edges between L1
and L2 in the analogous way. Again, PA and PB encode A3

yi
and B3

yi
with edges between L2

and L3, and this proceeds alternately until the relevant players add the edges between Lr

and Lr+1.
Let v0 be the first node in L0; recall that it corresponds to x1 = z0. Assume that v0 is

the min-degree node in the graph with deg(v0) = d − 1 and all other nodes have the same
degree d. Again, recall that z1 = A1

z0
∩ B1

z0
. By construction and by the unique-intersection

promise of the SetInt instances of MHPC, v0 has two parallel edges to the node representing
z1 in L1; call this node v1. To all other nodes in L1, v0 has at most one edge. Hence, when
the peeling algorithm deletes v0 from the graph, only the degree of v1 drops by 2, i.e., deg(v1)
becomes d − 2; all other nodes have at most a drop of 1 in degree, i.e., have degree ⩾ d − 1.
Thus, v1 becomes the new min-degree node in the graph. Now, when v1 is deleted, by similar
logic, the node v2 in L2, corresponding to the element z2 = C2

z1
∩ D2

z1
, becomes a min-degree

CCC 2024

7:10 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

node in the remaining graph with deg(v2) = d − 2. However, now some node in L0 might
also have degree d − 2; this is the case when z1 = A1

xi
∩ B1

xi
for some i ̸= 1 as well. Now

assume that the peeling algorithm breaks ties by choosing a node in the highest layer among
all min-degree nodes (and arbitrarily within the highest layer). Then, indeed it chooses v2
as the next node to peel (since it is the unique min-degree node in L2, again by the SetInt
promise). Thus, it follows inductively that the ith iteration of the peeling algorithm removes
the node corresponding to zi−1 in Li−1. Hence, the (r + 1)th node in the degeneracy ordering
can be used to identify zr.

The above high-level idea has quite a few strong assumptions. The challenge is now to
get rid of them. We list these challenges and then describe how we overcome them.

(i) The constructed graph has parallel edges. Then the reduction would only prove a lower
bound against algorithms that can handle multigraphs, which is much weaker than a
lower bound against algorithms that work on simple graphs.

(ii) We assume that the tie-breaking is done by the peeling algorithm so as to pick a
vertex in the highest layer. It is not at all clear how to get rid of this assumption in a
straightforward way.

(iii) We also assume that we can set the initial degrees in such a way that v0 has degree d−1
and all other nodes have degree d. It is not clear that we can do this while preserving
the relevant properties of the construction.

(iv) Even if we can overcome the above challenges and the reduction goes through, then
we prove a lower bound for finding degeneracy ordering, which is (at least formally)
harder than the problem of finding the degeneracy value. Ideally we would like to show
the lower bound for the simplest variant of the problem: checking whether degeneracy
of the graph is smaller than a given value k or not.

To get around (i), we modify the construction to have a pair of nodes represent each
element. The edge construction is done in the following way. Suppose the pair (u1, u2)
represents an element xi in layer ℓ− 1, and (w1, w2) represents yj in layer ℓ. If yj ∈ Aℓ

xi
, then

we add edges from u1 to both w1 and w2. Similarly, if yj ∈ Bℓ
xi

, then we add edges from u2
to both w1 and w2. Note that if yj ∈ Aℓ

xi
∩ Bℓ

xi
, then we have all 4 cross edges between the

two pairs, and otherwise we have only 2 edges between them, one on each wi. Hence, when
u1 and u2 are removed, both w1 and w2 lose degree by 2 if yj is the intersecting element,
and otherwise they only lose degree by 1. This captures the property of the reduction that
we want, without constructing parallel edges.

For (ii), we do something more elaborate. On a high level, we duplicate each of the layers
L1, . . . , Lr to provide a “padding” between two initially-consecutive layers. This padding
has additional nodes that create an asymmetry between the layer preceding it and the one
succeeding it. This asymmetry ensures that the degrees of the nodes in the higher layer drop
more than those in the lower layer. Then, we can proceed with the peeling algorithm as
planned.

To handle (iii), we show that once we are done with the construction based on the MHPC
instance, we can consider each node, look at its degree, and add edges from it to some
auxiliary vertices so as to reach its “target degree”. We need to be careful about two things:
one, we preserve the properties of the construction so that the reduction goes through, and
two, we do not add too many new nodes that might make the bound obtained from the
reduction weak. We succeed in achieving a construction without violating the above.

Finally, for (iv), we observe that while we gave the above outline for a reduction from
MHPC, the “easier” boolean version BMHPC has a similar lower bound. We then succeed in
extending the ideas to reduce the boolean problem of “checking whether degeneracy ⩽ k”

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:11

from the BMHPC problem, thus obtaining the desired lower bound for this simple variant.
For reduction from BMHPC, where the goal is to output just the bit b(zr) (see definition
in Section 2.1) rather than zr, we need to make non-trivial modifications in the graph: we
join the nodes which represent the bit-1 elements in the last layer, to some “special nodes”
S. The other nodes in the last layer are not joined to them. The special nodes are also
adjacent to all nodes in the other layers. We show that if b(zr) = 1, then after the peeling
algorithm removes the nodes corresponding to zr in the last layer, the degrees of the special
nodes drop enough such that all the remaining vertices get peeled one by one, while having
degree at most some value k during deletion. This implies that the graph has degeneracy
⩽ k. Otherwise, if b(zr) = 0, we show that after peeling off the nodes representing zr in the
last layer, the minimum vertex-degree in the remaining subgraph is at least k + 1, implying
that the degeneracy of the graph must be at least k + 1. We give the detailed reduction and
proof in Section 5 of the full version [9].

2.3 Communication Upper Bounds for Degeneracy
We give a short overview of the Õ(n) communication protocol for computing the degeneracy
of a graph. In the two player communication model, the edges of the input graph G are split
into two disjoint sets EA and EB given to the players Alice and Bob respectively, and they
wish to find the degeneracy of G. Note that the search problem (finding the degeneracy)
reduces to its decision counterpart (is the degeneracy ⩽ k?) by a binary search, costing
only a log n multiplicative factor in the communication cost. Hence, we focus on the version
where Alice and Bob are additionally given an integer k, and wish to decide if the degeneracy
of G is at most k.

To solve this decision problem, we implement the following version of the peeling algorithm
in a communication protocol: while there is a vertex of degree ⩽ k, remove it. If the graph
is non-empty at the end, reject, otherwise accept. The main challenge in adapting this
algorithm is that in the worst case, it seems to update the degree of almost all vertices in G

after each deletion, and there is no way to do that without a lot of communication.
However, we observe that if a vertex has degree at least k +

√
n, then it cannot be deleted

for the next
√

n iterations (since each iteration can reduce its degree by at most one). This
observation alone gives us the following Õ(n

√
n) communication protocol:

1. Compute the degree of each vertex in G.
2. Ignore all vertices of degree ⩾ k +

√
n while performing

√
n rounds of the trivial peeling

algorithm.
3. Go to Step 1.

Note that the communication in Step 2 comes from Alice and Bob sending each other
the low degree (< k +

√
n) neighbors of the vertex deleted in each iteration of the peeling

algorithm. We observe that while a vertex has degree ⩾ k +
√

n, it is not listed in Step 2,
and once its degree falls below the threshold of k +

√
n, it is listed at most

√
n times due to

Step 2. Thus, the total communication due to Step 2 over the course of the entire protocol is
bounded by Õ(n

√
n). Also, we recompute the degrees of all vertices (which costs O(n log n)

communication each time) at most
√

n times; these two facts combined give us the desired
bound.

To get an improved Õ(n) communication protocol, we extend the idea above to partition
the vertices into log n sets, where the i-th set contains vertices of degree between k + 2i−1

and k + 2i. While the global approach (of simply ignoring the high-degree vertices for
√

n

steps) does not work any more, we are able to make a more local argument as follows: for a

CCC 2024

7:12 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

vertex of degree k + ℓ to be deleted, it must lose at least ℓ neighbors, which means it must
lose ℓ/2 neighbors in either Alice’s or Bob’s edge set. But now the players can just track this
“private” loss of degree of each vertex, and communicate to update the degree of a vertex
in the i-th set only when either private degree falls by at least 2i−2. We are able to show
that the degree of each vertex is updated O(log n) times over the entire course of this new
protocol, and hence the total communication is Õ(n). We further show that this can be
extended to finding a k-core of the graph with Õ(n) communication. Thus, we establish
finding degeneracy and k-core as not-too-hard problems.

References
1 Sepehr Assadi A. Tight space-approximation tradeoff for the multi-pass streaming set cover

problem. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS 2017, Chicago, IL, USA, May 14-19, 2017, pages 321–335, 2017.

2 Sepehr Assadi A. A two-pass (conditional) lower bound for semi-streaming maximum matching.
In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9–12, 2022, pages 708–742. SIAM, 2022.

3 Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher lower
bounds. ACM Trans. Algorithms, 17(4):30:1–30:40, 2021.

4 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex coloring. In
Jaroslaw Byrka and Raghu Meka, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference, volume 176 of LIPIcs, pages 6:1–6:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020.

5 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

6 J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani. Large
scale networks fingerprinting and visualization using the k-core decomposition. In Advances
in Neural Information Processing Systems 18 [Neural Information Processing Systems, NIPS
2005, December 5-8, 2005, Vancouver, British Columbia, Canada], pages 41–50, 2005.

7 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Polynomial pass lower bounds for graph
streaming algorithms. In STOC, pages 265–276. ACM, 2019.

8 Sepehr Assadi and Aditi Dudeja. A simple semi-streaming algorithm for global minimum cuts.
In SOSA, pages 172–180. SIAM, 2021.

9 Sepehr Assadi, Prantar Ghosh, Bruno Loff, Parth Mittal, and Sagnik Mukhopadhyay. Poly-
nomial pass semi-streaming lower bounds for k-cores and degeneracy. arXiv preprint, 2024.
arXiv:2405.14835.

10 Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal space. In SODA, pages 627–669. SIAM, 2022.

11 Sepehr Assadi, Gillat Kol, Raghuvansh Saxena, and Huacheng Yu. Multi-pass graph streaming
lower bounds for cycle counting, max-cut, matching size, and other problems. In 61st Annual
IEEE Symposium on Foundations of Computer Science, FOCS (to appear), 2020.

12 Sepehr Assadi, Gillat Kol, and Zhijun Zhang. Rounds vs communication tradeoffs for maximal
independent sets. In 63rd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages 1193–1204. IEEE,
2022.

13 Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation
and property testing via a streaming XOR lemma. In Samir Khuller and Virginia Vassilevska
Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing,
Virtual Event, Italy, June 21-25, 2021, pages 612–625. ACM, 2021.

https://arxiv.org/abs/2405.14835

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:13

14 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In FOCS, pages 342–353. IEEE, 2020.

15 Nir Bachrach, Keren Censor-Hillel, Michal Dory, Yuval Efron, Dean Leitersdorf, and Ami Paz.
Hardness of distributed optimization. In Peter Robinson and Faith Ellen, editors, Proceedings
of the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 – August 2, 2019, pages 238–247. ACM, 2019.

16 Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming and
mapreduce. PVLDB, 5(5):454–465, 2012.

17 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA.,
pages 623–632, 2002.

18 Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy in
streaming and other space-conscious models. In 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), pages 11:1–11:21, 2020.

19 Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos E. Tsouraka-
kis. Space- and time-efficient algorithm for maintaining dense subgraphs on one-pass dynamic
streams. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 173–182, 2015.

20 Joakim Blikstad, Jan van den Brand, Yuval Efron, Sagnik Mukhopadhyay, and Danupon
Nanongkai. Nearly optimal communication and query complexity of bipartite matching. In
FOCS, pages 1174–1185. IEEE, 2022. doi:10.1109/FOCS54457.2022.00113.

21 Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich. Core
decomposition of uncertain graphs. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec,
Wei Wang, and Rayid Ghani, editors, The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA – August 24–27, 2014,
pages 1316–1325. ACM, 2014.

22 Amit Chakrabarti, Prantar Ghosh, Andrew McGregor, and Sofya Vorotnikova. Vertex ordering
problems in directed graph streams. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
1786–1802, 2020.

23 Yi-Jun Chang, Martin Farach-Colton, Tsan-sheng Hsu, and Meng-Tsung Tsai. Streaming
complexity of spanning tree computation. In 37th International Symposium on Theoretical
Aspects of Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, pages
34:1–34:19, 2020.

24 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Klaus Jansen and Samir Khuller, editors, Approximation Algorithms for Combinatorial
Optimization, Third International Workshop, APPROX 2000, Saarbrücken, Germany, Septem-
ber 5-8, 2000, Proceedings, volume 1913 of Lecture Notes in Computer Science, pages 84–95.
Springer, 2000.

25 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng
Yu. Almost optimal super-constant-pass streaming lower bounds for reachability. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT
Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 570–583.
ACM, 2021.

26 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng
Yu. Near-optimal two-pass streaming algorithm for sampling random walks over directed
graphs. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 52:1–52:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

CCC 2024

https://doi.org/10.1109/FOCS54457.2022.00113

7:14 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

27 Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, and Huacheng
Yu. Towards multi-pass streaming lower bounds for optimal approximation of max-cut.
In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the 2023 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January 22-25, 2023, pages
878–924. SIAM, 2023.

28 Deming Chu, Fan Zhang, Xuemin Lin, Wenjie Zhang, Ying Zhang, Yinglong Xia, and Chenyi
Zhang. Finding the best k in core decomposition: A time and space optimal solution. In 36th
IEEE International Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April
20-24, 2020, pages 685–696. IEEE, 2020.

29 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Julienne: A framework for parallel
graph algorithms using work-efficient bucketing. In Christian Scheideler and Mohammad Taghi
Hajiaghayi, editors, Proceedings of the 29th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA 2017, Washington DC, USA, July 24-26, 2017, pages 293–304. ACM,
2017.

30 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient parallel graph
algorithms can be fast and scalable. In Christian Scheideler and Jeremy T. Fineman, editors,
Proceedings of the 30th on Symposium on Parallelism in Algorithms and Architectures, SPAA
2018, Vienna, Austria, July 16-18, 2018, pages 393–404. ACM, 2018.

31 Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interaction.
Games Econ. Behav., 118:589–608, 2019.

32 Paul Erdős and András Hajnal. On chromatic number of graphs and set-systems. Acta Math.
Acad. Sci. Hungar, 17(61-99):1, 1966.

33 Hossein Esfandiari, Silvio Lattanzi, and Vahab S. Mirrokni. Parallel and streaming algorithms
for k-core decomposition. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 1396–1405. PMLR, 2018.

34 Martin Farach-Colton and Meng-Tsung Tsai. Computing the degeneracy of large graphs. In
Alberto Pardo and Alfredo Viola, editors, LATIN 2014: Theoretical Informatics – 11th Latin
American Symposium, Montevideo, Uruguay, March 31 – April 4, 2014. Proceedings, volume
8392 of Lecture Notes in Computer Science, pages 250–260. Springer, 2014.

35 Martin Farach-Colton and Meng-Tsung Tsai. Tight approximations of degeneracy in large
graphs. In LATIN 2016: Theoretical Informatics – 12th Latin American Symposium, Ensenada,
Mexico, April 11-15, 2016, Proceedings, pages 429–440, 2016.

36 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.

37 Silvio Frischknecht, Stephan Holzer, and Roger Wattenhofer. Networks cannot compute their
diameter in sublinear time. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 1150–1162. SIAM, 2012.

38 Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano. Core
decomposition in multilayer networks: Theory, algorithms, and applications. ACM Trans.
Knowl. Discov. Data, 14(1):11:1–11:40, 2020.

39 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrovic. Improved parallel algorithms for
density-based network clustering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June
2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research,
pages 2201–2210. PMLR, 2019.

40 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,
K.lo Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013.

S. Assadi, P. Ghosh, B. Loff, P. Mittal, and S. Mukhopadhyay 7:15

41 Magnús M. Halldórsson, Xiaoming Sun, Mario Szegedy, and Chengu Wang. Streaming and
communication complexity of clique approximation. In Automata, Languages, and Programming
– 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings,
Part I, pages 449–460, 2012.

42 Gábor Ivanyos, Hartmut Klauck, Troy Lee, Miklos Santha, and Ronald de Wolf. New bounds
on the classical and quantum communication complexity of some graph properties. In FSTTCS,
volume 18 of LIPIcs, pages 148–159. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2012.

43 T. S. Jayram, Ravi Kumar, and D. Sivakumar. Two applications of information complexity.
In STOC, pages 673–682. ACM, 2003.

44 Wissam Khaouid, Marina Barsky, S. Venkatesh, and Alex Thomo. K-core decomposition of
large networks on a single PC. Proc. VLDB Endow., 9(1):13–23, 2015.

45 Hartmut Klauck. On quantum and probabilistic communication: Las vegas and one-way
protocols. In 32nd Annual ACM Symposium on Theory of Computing (STOC), pages 644–651,
2000.

46 Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, and Huacheng Yu. Characterizing
the multi-pass streaming complexity for solving boolean csps exactly. In Yael Tauman Kalai,
editor, 14th Innovations in Theoretical Computer Science Conference, ITCS 2023, January
10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume 251 of LIPIcs, pages 80:1–80:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

47 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 1272–1287. SIAM, 2016.

48 Chao Li, Li Wang, Shiwen Sun, and Chengyi Xia. Identification of influential spreaders based
on classified neighbors in real-world complex networks. Appl. Math. Comput., 320:512–523,
2018.

49 Conggai Li, Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. Efficient
progressive minimum k-core search. Proc. VLDB Endow., 13(3):362–375, 2019.

50 Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian Shun. Parallel
batch-dynamic algorithms for k-core decomposition and related graph problems. In Kunal
Agrawal and I-Ting Angelina Lee, editors, SPAA ’22: 34th ACM Symposium on Parallelism
in Algorithms and Architectures, Philadelphia, PA, USA, July 11–14, 2022, pages 191–204.
ACM, 2022.

51 Yang P. Liu, Arun Jambulapati, and Aaron Sidford. Parallel reachability in almost linear
work and square root depth. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 1664–1686. IEEE Computer Society, 2019.

52 David W. Matula and Leland L. Beck. Smallest-last ordering and clustering and graph coloring
algorithms. J. ACM, 30(3):417–427, 1983.

53 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Rec., 43(1):9–20, 2014.
54 Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T. Vu. Densest subgraph in

dynamic graph streams. In Mathematical Foundations of Computer Science 2015 – 40th
International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part II,
pages 472–482, 2015.

55 Sagnik Mukhopadhyay and Danupon Nanongkai. Weighted min-cut: sequential, cut-query, and
streaming algorithms. In STOC, pages 496–509. ACM, 2020. doi:10.1145/3357713.3384334.

56 Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. In Proceedings
of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991, New Orleans,
Louisiana, USA, pages 419–429, 1991.

57 Noam Nisan and Avi Wigderson. Rounds in communication complexity revisited. SIAM J.
Comput., 22(1):211–219, 1993.

CCC 2024

https://doi.org/10.1145/3357713.3384334

7:16 Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy

58 Christos H. Papadimitriou and Michael Sipser. Communication complexity. J. Comput. Syst.
Sci., 28(2):260–269, 1984.

59 Stephen Ponzio, Jaikumar Radhakrishnan, and Srinivasan Venkatesh. The communication
complexity of pointer chasing: Applications of entropy and sampling. In Proceedings of the
Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta,
Georgia, USA, pages 602–611, 1999.

60 Liam Roditty and Virginia Vassilevska Williams. Fast approximation algorithms for the
diameter and radius of sparse graphs. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum,
editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 515–524. ACM, 2013.

61 Aviad Rubinstein, Tselil Schramm, and S. Matthew Weinberg. Computing exact minimum
cuts without knowing the graph. In ITCS, volume 94 of LIPIcs, pages 39:1–39:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ITCS.2018.39.

62 Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V.
Çatalyürek. Streaming algorithms for k-core decomposition. Proc. VLDB Endow., 6(6):433–444,
2013.

63 Amir Yehudayoff. Pointer chasing via triangular discrimination. Comb. Probab. Comput.,
29(4):485–494, 2020.

https://doi.org/10.4230/LIPIcs.ITCS.2018.39

Asymptotically-Good RLCCs with (log n)2+o(1)

Queries
Gil Cohen #

Department of Computer Science, Tel Aviv University, Israel

Tal Yankovitz #

Department of Computer Science, Tel Aviv University, Israel

Abstract
Recently, Kumar and Mon reached a significant milestone by constructing asymptotically good
relaxed locally correctable codes (RLCCs) with poly-logarithmic query complexity. Specifically, they
constructed n-bit RLCCs with O(log69 n) queries. Their construction relies on a clever reduction
to locally testable codes (LTCs), capitalizing on recent breakthrough works in LTCs. As for lower
bounds, Gur and Lachish (SICOMP 2021) proved that any asymptotically-good RLCC must make
Ω̃(

√
log n) queries. Hence emerges the intriguing question regarding the identity of the least value

1
2 ≤ e ≤ 69 for which asymptotically-good RLCCs with query complexity (log n)e+o(1) exist.

In this work, we make substantial progress in narrowing the gap by devising asymptotically-good
RLCCs with a query complexity of (log n)2+o(1). The key insight driving our work lies in recognizing
that the strong guarantee of local testability overshoots the requirements for the Kumar-Mon
reduction. In particular, we prove that we can replace the LTCs by “vanilla” expander codes which
indeed have the necessary property: local testability in the code’s vicinity.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Relaxed locally decodable codes, Relxaed locally correctable codes, RLCC,
RLDC

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.8

Funding The research leading to these results has received funding from the ERC starting grant
949499 and from the Israel Science Foundation grant 1569/18.

Acknowledgements We are grateful to Marcel Dall’Agnol and Pedro Paredes for identifying an
inaccuracy in our original proof, which has been corrected in this revision.

1 Introduction

Error correcting codes with “local guarantees” play a pivotal role in modern coding theory,
and their study is highly motivated by applications to theoretical computer science. Of
particular interest are locally decodable codes (LDCs), introduced by Katz and Trevisan [34],
and locally correctable codes (LCCs) that originated in works on program checking [6, 38].
These are codes that admit highly efficient procedures for recovering a single data symbol.
LDCs allow one to decode a specific symbol of the message while querying only a small
number of symbols of the received, possibly corrupted, codeword. On the other hand, LCCs
offer a method to recover any desired symbol of the codeword using only a few queries.

In their influential work, Ben-Sasson, Goldreich, Harsha, Sudan and Vadhan [2] introduced
a natural relaxation of LDCs dubbed relaxed locally decodable codes (RLDCs). In essence,
RLDCs allow the decoder to abort in the face of corruption, while still being required to
always succeed when provided access to a codeword. The natural counterpart to LCCs, known
as relaxed locally correctable codes (RLCCs), was later introduced by Gur, Ramnarayan, and
Rothblum [28]. For linear codes, RLCCs directly induce RLDCs, and so in this case it can be

© Gil Cohen and Tal Yankovitz;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 8; pp. 8:1–8:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gil@tauex.tau.ac.il
https://orcid.org/0000-0003-2409-2192
mailto:talyankovitz@mail.tau.ac.il
https://orcid.org/0000-0001-9975-9751
https://doi.org/10.4230/LIPIcs.CCC.2024.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

easily seen that RLCCs are stronger objects. 1 LDCs, LCCs and their relaxed counterparts
have attracted significant attention. The reader is referred to [31, 45, 16, 18, 26, 36, 39, 32,
25, 28, 17, 27, 10, 11, 14, 5, 19, 21] and references therein. RLDC have found applications to
PCPs [40, 42], property testing [7], privacy [23], and probabilistic proof systems [22, 29, 30],
to name a few.

For simplicity, in this introductory part we focus on binary codes. Formally, a (q, δ, ε)
RLCC is an error correcting code C ⊆ {0, 1}n that is equipped with a randomized “correction
procedure”

Cor : {0, 1}n × [n] → {0, 1} ∪ {⊥}

that makes at most q queries to its n-bit input, and have the following guarantees:
1. For every codeword c ∈ C, Cor(c, i) = ci for every i ∈ [n], with certainty.
2. For every w ∈ {0, 1}n of distance at most δn from some codeword c ∈ C, and for every

i ∈ [n], it holds that Cor(w, i) ∈ {ci, ⊥} with probability at least 1 − ε.

We designate δ as the correction radius of the RLCC, emphasizing that, as a direct
implication, δ serves as a lower bound on the code’s relative-distance. In this paper we
consider asymptotically-good RLCCs, by which we mean RLCCs with a constant rate and a
constant correction radius. The reader may consult [9], and references therein, to learn more
about the constant query regime.

In their work, Gur, Ramnarayan and Rothblum [28] constructed asymptotically-good
RLCCs and RLDCs with query complexity (log n)O(log log n). This offers a significant saving
over the query complexity of the state-of-the-art LCCs and LDCs, q = 2Õ(

√
log n), obtained by

Kopparty, Meir, Ron-Zewi, and Saraf [35]. Interestingly, the RLCC of [28] draws inspiration
from the ideas presented in the construction of locally testable codes (LTCs) that appears in
[35], rather than building on the LCC construction from the same paper. The construction
is based on a repeated application of tensoring and distance amplification.

Continuing along a similar framework, but employing a more rate-efficient ingredient
instead of tensoring, Cohen and Yankovitz [12] obtained asymptotically-good linear RLCCs,
hence also RLDCs, with query complexity (log n)O(log log log n). This somewhat unnatural
looking function, also taking into account the Ω̃(

√
log n) lower bound on the query complexity

of asymptotically-good RLCCs [27] 2 gave some hope that a query complexity of (log n)O(1)

is achievable.
Indeed, this hope was realized in an exciting recent work by Kumar and Mon [37] who

obtained RLCCs with query complexity O(log69 n). Their proof builds on a reduction to
LTCs, cementing the intuitive connection between RLCCs and LTCs, as hinted in the work
of [28], and building on the recent breakthrough in LTCs construction by Dinur, Evra, Livne,
Lubotzky, and Mozes [15] 3.

1.1 Our result
The works of Kumar and Mon [37] and Gur and Lachish [27] leave us with the fundamental
question regarding the identity of the least value 1

2 ≤ e ≤ 69 for which asymptotically-
good RLCCs with (log n)e+o(1) queries exist. In this work, we make significant progress in
narrowing the gap by proving that e ≤ 2.

1 For the case of non-linear codes, see [4], Theorem A.6.
2 In the case of non-adaptive RLDCs, a slightly stronger lower bound of Ω(

√
log n) is known [21]. By

combining this result with [19], the strengthened lower bound of Ω(
√

log n) can be extended to encompass
all linear RLDCs as well.

3 Kumar and Mon require LTCs with rate approaching 1, hence they could not use the independently
discovered LTCs by Panteleev and Kalachev [41].

G. Cohen and T. Yankovitz 8:3

▶ Theorem 1 (Main result). For every δ < 1 and for infinitely many n-s there exists an
explicit binary asymptotically-good linear RLCC (hence also RLDC) of block-length n having
correction radius δ, rate 1 − δ1−o(1) − on(1), and query complexity

q = (log n)2+o(1).

Although Kumar and Mon did not explicitly focus on optimizing the exponent in their
query complexity, it appears that achieving an exponent as low as 2 is not feasible using
existing LTCs within their framework. We believe that the realization that a more “economi-
cal” primitive, substituting the LTCs employed by Kumar and Mon, can be employed, plays
a pivotal role in achieving such a low query complexity. On the flip side, we believe that new
ideas are required to go below log2 n queries, if at all possible.

The exact asymptotic behavior of the query complexity q which is hidden, by design, under
the on(1)-notation is q = (log n)2+ε(n), where ε(n) = (log log log n)3

log log n . Similarly, the precise
asymptotic behavior underlying the term δ1−o(1) that appears in the bound on the rate is
δ · 2O((log log 1

δ)3). These expressions are derived from the parameters of the lossless expander
utilized in our work [8]. While it is possible that slight improvements could be achieved by
employing newer constructions of randomness extractors in place of the ingredients used
within [8], we have not made any specific attempts to optimize the o(1) terms. At any rate,
the reader is referred to Theorem 12 for the formal statement.

We emphasize that even from an information theoretic standpoint, the question of
the lowest achievable query complexity for an asymptotically-good RLCC is intriguing.
Explicitness aside, we can obtain a slightly reduced query complexity, q = O(log2 n · log log n).
Moreover, in such case the rate comes quite close to the Gilbert-Varshamov bound,

ρ = 1 − O

(
δ log 1

δ

)
− o(1).

In fact, we can construct RLCCs with these parameters in quasi-polynomial time, namely,
2(log n)O(1) by instantiating our construction with another expander construction that appears
in [8].

2 Proof Overview

An LTC (Locally Testable Code) is a type of error correcting code that incorporates a
local tester–an algorithm that performs a limited number of queries on the received word
w ∈ {0, 1}n and rejects it with a probability proportional to its distance from the code.
Importantly, a tester never rejects a valid codeword. LTCs with such a guarantee are
occasionally referred to as strong LTCs in the literature to differentiate them from an
alternative, weaker definition, which only requires the tester to reject words that are sufficiently
distant from the code. It is important to recognize that LTCs must in particular handle
words that are very far from the code, which constitute the vast majority, “unstructured”
portion of {0, 1}n. For a more comprehensive exploration of LTCs, we recommend referring
to Goldreich’s lecture notes [20].

The key insight driving our work lies in recognizing that the strong guarantee of local
testability overshoots the requirements for the Kumar-Mon reduction. Expander codes,
although provably not full-fledged LTCs in general, satisfy the required property, namely, all
expander codes are locally testable in their vicinity. We make this more precise in Section 2.1
below where we also recall the definition of expander codes. Then, in Section 2.2, we explain
how to obtain our RLCCs by instantiating the Kumar-Mon reduction with expander codes
instead of with LTCs.

CCC 2024

8:4 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

The fact that expander codes are locally testable in the vicinity of the code can be derived
as a consequence of the analysis of the sequential decoding algorithm for expander codes.
The reader is referred to Section 2.3.1 in Spielman’s PhD Thesis [44] and to the discussion
in Chapter 5. Interestingly, in his lecture notes, Goldreich [20] discusses offhand a variant
of what we call local testability in the vicinity of the code (see Definition 10 in the notes),
remarks that this definition may potentially be useful despite being highly non-intuitive in
the context of PCPs, and refers to the abovementioned discussion in Spielman’s thesis.4

For the sake of completeness, we provide a simple proof for the testability of expander
codes in their vicinity without relying on a full decoding argument. This streamlined approach
helps clarify the concept and establishes the essential property of local testability which is
necessary for the reduction.

2.1 Expander codes are locally testable in their vicinity
2.1.1 Expander codes
Let us begin by revisiting the notion of expander codes, introduced by Sipser and Spielman [43].
Let G = (L, R, E) be a bipartite d-left-regular graph. Denote |L| = n and |R| = τn. The
graph G is said to be a (γ, (1 − ε)d)-lossless expander if for every S ⊆ L of size |S| ≤ γn,
the set of neighbors of S, denoted Γ(S), is of size at least (1 − ε)d|S|. Additionally, we
define Γu(S) as the set of unique neighbors of S which consists of all vertices v ∈ R such that
|Γ(v) ∩ S| = 1. It is easy to prove that

|Γ(S)| ≥ (1 − ε)d|S| =⇒ |Γu(S)| ≥ (1 − 2ε)d|S|.

Moving forward, we will assume that ε is a small enough constant such that the right-hand
side of the aforementioned equation remains nontrivial. For instance, we can take ε = 1

4 as
one possible choice. Accordingly, we will refer to the graph G satisfying the condition for
this chosen value of ε as a γ-lossless expander for brevity.

By employing the probabilistic method, it is possible to prove the existence of γ-lossless
expanders for every desired sizes |L| = n, |R| = τn, where the left-degree d = O

(
log 1

τ

)
,

and γ = O(τ
d). For the sake of simplicity and convenience, we shall use such an expander

throughout this informal section. In Section 2.2.4, we will briefly discuss the modifications in
parameters if we choose to work with the explicit expander from the work of [8].

With the expander G, we associate a binary code EC(G) on block-length n, dubbed the
expander code associated with G as follows. Every vertex v ∈ R is thought of as a constraint,
namely, for x ∈ {0, 1}n to be a codeword, we require that for every v ∈ R, the parity of
the bits {xu | u ∈ Γ(v)} equals 0 (where we identify the set L with the index set [n]). It
readily follows that EC(G) has rate at least 1 − τ , and it is not hard to show that the code
has relative-distance at least γ.5

2.1.2 Expander codes are locally testable in their vicinity
We turn to show that EC(G) is locally testable in its vicinity. Let w ∈ {0, 1}n be word of
distance exactly γ′n from EC(G), let c ∈ EC(G) be a word closest to w, and let S ⊆ L be
the set that corresponds to w and c, S = {i | wi ̸= ci}. We assume that γ′ ≤ γ, reflecting
the fact that we are in the vicinity of the code. Our tester will simply sample a right vertex
v at random and rejects if the constraint associated with v is unsatisfied.

4 A notion similar, though not identical, to codes that are locally testable at their vicinity appears in [3]
and is dubbed semi-LTC. We also remark that the given proof for Proposition 6.2 of [3] proves that
expander codes are locally testable at their vicinity.

5 In fact, stronger bounds on the relative-distance are known though they will not be necessary for our
purposes.

G. Cohen and T. Yankovitz 8:5

Note that the tester will reject whenever v is sampled from Γu(S). Thus, the probability
of rejection is bounded below by

|Γu(S)|
|R|

≥ d|S|
2τn

= dγ′

2τ
.

Plugging the parameters of the non-explicit expander above, we get that the rejection
probability is bounded below by Ω(γ′

γ). In particular, if w is at the “outskirts” of the
expander code, namely, γ′ ≤ γ yet γ′ = Ω(γ), then the rejection probability is constant. Of
course, the rejection probability can be amplified to 1 − 2−t by repeating the process for O(t)
times.

As for the query complexity, for simplicity assume that G is also c-right regular. Then,
the query complexity required for obtaining a constant rejection probability is

c = d

τ
= O

(
1
τ

log 1
τ

)
.

2.2 RLCCs from expander codes
2.2.1 The construction
The key distinction between RLCCs and LTCs, whether they are full-fledged LTCs or only
guaranteed to work in their vicinity, lies in the fact that RLCCs are also provided with an
index i ∈ [n] indicating the specific bit to be corrected. To bridge this gap, following Kumar
and Mon [37], we define our RLCC using a binary tree 6 of expander codes so as to make
sure that any index i participates in expander codes of increasing size. This allows one to
“zoom in” on the i-th bit using expander codes. We elaborate on this next.

Assume for simplicity that n = 2m. We take a sequence of m expander codes
C0, C1, . . . , Cm−1 on block-lengths n, n

2 , n
4 , . . ., respectively 7. All these expander codes

share the same parameters as in Section 2.1, namely, all expanders have the same left and
right degrees d, c, hence the same τ , as well as the same parameter γ.

Our RLCC, denoted C ′, is obtained by intersecting the code C0 on the index set [n] with
the code C1 on both the index set [n

2] and n
2 + [n

2]. Put differently, we impose the linear
constraints of C1 on both the first half and second half of the bits. The linear constraints of
the code C2 are enforced onto the four blocks [n

4], n
4 + [n

4], n
2 + [n

4], and 3n
4 + [n

4], and so
forth in a binary tree fashion. It is evident that the rate of the resulting code, C ′, is at least
1 − mτ , which implies that we need to select τ < 1

m = 1
log n to satisfy the rate constraint.

2.2.2 The tester and its analysis
Our claim is that C ′ is an RLCC with correction radius γ

2 = Ω(1
log n·log log n) using the

corrector we describe and analyze next. In Section 2.2.3 we explain how to modify the
construction slightly so as to obtain any desired correction radius. Before we begin, we
remark that it is readily seen that the corrector described below never aborts and always
outputs the correct bit given oracle access to a codeword of C ′. Therefore, we focus on the
scenario where a word w ∈ {0, 1}n \ C ′ is given, with a distance at most γ

2 · n from the code
C ′. In this case, our objective is to either abort or output the i-th bit of the unique codeword
closest to w. Indeed, as C ′ ⊆ C0, and since C0 has relative-distance at least γ, there exists a
unique codeword c ∈ C ′ that is of distance at most γ

2 · n from w.

6 Kumar and Mon work with larger arity. Moreover, their tree does not necessarily induce a sequence of
partitions that are exactly cascaded as in our construction, but this is a mere technicality.

7 Technically, we will need to stop before reaching 1-bit block-length though this is a mere technicality
which we ignore for the sake of simplicity in this informal discussion.

CCC 2024

8:6 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

With this in mind, let us consider a specific index i ∈ [n], and let B be either [n
2] or

n
2 + [n

2], depending on which of these blocks contains i. We define ε such that ε · n
2 is the

distance between wB and cB - the projections of w, c onto block B, respectively. We know
that ε ≤ γ as in the worst case all γ

2 · n = γ · |B| errors could fall into B. We consider the
two possible cases based on whether the ratio of errors deteriorates or not when moving to
block B, i.e., whether ε ≤ γ

2 or not.
Assume that ε > γ

2 . As we also know that ε ≤ γ, namely, wB is in the vicinity of the
code C1, we may invoke C1-s tester, and by making

O

(
t · 1

τ
log 1

τ

)
= O(t · log n · log log n)

queries to wB , reject with probability 1 − 2−t. Hence, if the tester ended up not aborting, we
may assume that we are in the case ε ≤ γ

2 , and our assumption will be wrong with probability
at most 2−t. Thus, unless the tester aborted, we can safely recurse to B. In more detail,
since wB is of distance at most γ

2 · |B| from cB , and since C1 is a code with relative-distance
γ on the index set B that participates in the intersection defining C ′, we know that cB is
the unique codeword of C1 that is γ

2 · |B|-close to wB . This is precisely the same guarantee
we started with and, importantly, we maintain the invariant that the projection of c to the
block is the closest codeword to w’s projection to that block, with respect to the suitable
code. Hence, if and when the time comes to return the i-th bit, it will be that bit of c that is
returned rather than the bit of another codeword. This invariant allows us to recurse to B.

If in any of the m = log n levels of recursion the tester aborts, the corrector succeeds.
Otherwise, the code Cm is invoked and returns the correct bit except in case where the
corrector should have aborted. By a union bound over the m levels, this event occurs with
probability at most 2−tm. Setting t = O(log m) = O(log log n), the total number of queries
made is

O (mt · log n · log log n) = O
(

(log n · log log n)2
)

.

We remark that the factor of t = O(log log n) can be removed as the union bound can be
avoided with some care.

2.2.3 Improving the correction radius
To achieve any desired correction radius δ0 < 1, we can easily modify the construction.
Simply take the expander code C0 to have relative-distance γ0 = 2δ0 and rate

1 − τ0 = 1 − O

(
δ0 log 1

δ0

)
,

while keeping the parameters of the remaining codes C1, . . . , Cm unchanged. The rate of the
resulting code, denoted C ′′, is given by 1 − (τ0 + (m − 1)τ) , point being that we can afford
taking C0 to be a high-rate code as we only “pay” τ0 once rather than m times.

In the modified construction, the corrector remains unchanged with the exception of an
initial phase. In this initial phase, we invoke C0-s tester (which, as the perceptive reader
may have noted, has not been used in Section 2.2.2) to check whether the number of errors
is less than γ

2 · |B|. The probability to catch an unsatisfied constraint is no longer constant
as before; instead, it becomes

Ω
(

γ

γ0

)
= Ω

(
1

log n · log log n

)
.

G. Cohen and T. Yankovitz 8:7

To ensure a constant rejection probability, we need to sample not just one but Θ
(

γ0
γ

)
right vertices and query their neighbors. If we denote the right-degree of the expander
underlying C0 by c0, this will result in a total number of

O

(
γ0

γ
· c0

)
= O

(
1
γ

)
= O (log n · log log n)

queries. Note that we have used the fact that in the probabilistic construction, c0γ0 = O(1).
If C0-s corrector does not reject, we maintain the same guarantee we had before regarding

the number of errors in B, and we can proceed with the same strategy as previously described.
Hence, with the same query complexity of O(log2 n · log log n), it is possible to obtain any
distance δ0 and rate 1 − O(δ0 log 1

δ0
) − o(1).

A remark regarding the bi-regularity assumption

We wish to draw attention to an issue that might be easily overlooked regarding the initial
phase discussed above in the absence of bi-regularity. Throughout this informal proof overview,
we are working under the premise that the expander that is underlying the expander code is
bi-regular. This can be assumed to be the case for the probabilistic construction though not
necessarily for the expander that we are using for our RLCC construction [8].

In the absence of bi-regularity, one can proceed by defining the tester as follows: When
sampling a right vertex, query its neighbors only if its degree is at most κc, where κ serves
as a cutoff parameter and c now stands for the average right degree. That is, if the degree
exceeds this threshold, the vertex is ignored for the purpose of testing. As a result, the “heavy”
constraints are embedded in the code’s definition, yet they are not utilized by the tester. This
seemingly minor technicality has a rather surprising impact on the parameters: the query
complexity of the tester in the initial phase alone now becomes (log n)2+o(1). However, this
increase is affordable, given that it applies only to the initial phase. As we progress through
the remaining log n levels, the query complexity for each level remains at (log n)1+o(1).

2.2.4 Explicitness
Capalbo, Reingold, Vadhan and Wigderson [8] constructed explicit γ-lossless expanders with
near-optimal parameters. 8 Quantitatively, following the notation in Section 2.1.1, their
construction has degree

d = 2O
(
(log log 1

τ)3)
=

(
1
τ

)o(1)
,

which should be compared with d = O(log 1
τ) obtained using the probabilistic construction,

while maintaining γ = O
(

τ
d

)
. As before, the probability of the expander code’s tester to

reject a word from the outskirts of the code is constant. Hence, the query complexity is,
again, the right degree, whose average is

c = d

τ
= 1

τ
· 2O

(
(log log 1

τ)3)
=

(
1
τ

)1+o(1)
.

8 A lot of work has been done, much of it very recently, on simplifying the [8] construction and on
obtaining different variants of lossless expanders such as unique neighbor expanders, however, none of
these works seem to be sufficient for our needs. The reader may consult [1, 13, 24, 33] and references
therein.

CCC 2024

8:8 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

Recall that, due to rate considerations, τ is taken to be 1
log n , thus the query complexity of the

expander code’s tester is (log n)1+o(1). The overall query complexity of the resulted RLCC’s
corrector is then m · (log n)1+o(1) = (log n)2+o(1), where the handling of the non-bi-regularity
is as described in the previous paragraph (see the proof for Theorem 12 at the technical
part).

3 Preliminaries

3.1 Notations and conventions
Unless stated otherwise, all logarithms in this paper are taken to the base 2. The set of
natural numbers is N = {0, 1, 2, . . .}. For n ∈ N, n ≥ 1, we use [n] to denote the set {1, . . . , n}.
For q ∈ N, q ≥ 2, we use Hq to denote the q-ary entropy function, and H = H2 to denote the
binary entropy function.

For a finite set N , we refer to a function v ∈ FN as a vector and we say that it is indexed
by N . For a vector v ∈ FN and i ∈ N we use vi as a shorthand for v(i). For a vector v ∈ FN

and a set N ′ ⊆ N we denote by vN ′ the vector v′ ∈ FN ′ such that v′
i = vi for every i ∈ N ′.

For two vectors u, v ∈ FN , their (absolute) hamming distance is |{i ∈ N | ui ̸= vi}|, which
we denote by Dist(u, v), and their relative hamming distance is Dist(u,v)

|N | , which we denote by
RelDist(u, v).

3.2 Error correcting codes
We start by recalling the definition of an error correcting code. In this work we only consider
linear codes. The definition below is standard, however, for our purposes we find it convenient
to work with an arbitrary index set rather than the usual set [n], and so the reader may
benefit from glancing over the definition.

▶ Definition 2. For a finite set N of size |N | = n and a field F, a code is a linear subspace
C ⊆ FN . We say that the code C is indexed by N and that it is over F. The length of the
code is n. The dimension of the code, usually denoted by k, is the dimension of C over F.
The (non-local) distance of the code, denoted by d, is minc,c′∈C,c ̸=c′ Dist(c, c′). The rate of
the code, typically denoted by ρ, is k

n . The (non-local) relative-distance of the code is defined
to be d

n . The elements of C are called codewords.

3.3 Relaxed locally correctable codes
We turn to recall the definition of relaxed locally correctable codes as put forth by Gur,
Ramnarayan and Rothblum [28].

▶ Definition 3. A code C ⊆ FN is called a (q, δ, ε)-RLCC (relaxed locally correctable code,
abbreviated) if there exists a randomized procedure Cor : FN ×N → F∪{⊥} with the following
guarantees:

For every i ∈ N , c ∈ C and w ∈ FN , satisfying RelDist(w, c) ≤ δ, Cor(w, i) ∈ {ci, ⊥} with
probability at least 1 − ε.
Cor(c, i) = ci with probability one on any c ∈ C and i ∈ N .
Cor(w, i) always makes at most q queries to w.

We refer to Cor as the local corrector (or the corrector). The parameter δ is called the
correction radius, and the parameter q is called the query complexity.

G. Cohen and T. Yankovitz 8:9

The error parameter of an RLCC can be easily amplified at low cost to the query
complexity, as stated in the following claim (for a simple proof see, e.g., [12]).

▷ Claim 4. Let C ⊆ FN be a (q, δ, ε)-RLCC. Then, for any h ∈ N, C is also an (hq, δ, εh)-
RLCC.

3.4 Expanders and expander codes
We set some standard notation. Let G = (V, E) be an undirected graph. For v ∈ V we define
Γ(v) as the set of neighbors of v in G, and let deg(v) be the degree of v. For a set of vertices
S ⊆ V , we let Γ(S) = ∪v∈SΓ(v), and define

Γu(S) = {v ∈ V | v is adjacent to exactly one u ∈ S}.

▶ Definition 5 (Unique-neighbor expanders). A left-d-regular bipartite graph G = (L, R, E)
is a (γ, α)-unique-neighbor expander if for every S ⊆ U such that |S| ≤ γ|L|, it holds that
|Γu(S)| ≥ αd|S|.

The following theorem readily follows by the construction of lossless conductors as given
by Theorem 7.3 in [8].

▶ Theorem 6 ([8]). There exist universal constants c0 ≥ 1 and β ≤ 1 such that the following
holds. For every n and m ≤ n, there exists an explicit (γ, α)-unique-neighbor expander
G = (L, R, E) with |L| = 2n, |R| = 2m, having left degree

d ≤ 2c0·log3(n−m),

where α = Ω(1), and γ = β · 2m−n

d .

▶ Definition 7 (Expander codes). Let G = (L, R, E) be a bipartite graph and let F be a field.
The expander code associated with G is defined by

ECF(G) =

w ∈ FL
∣∣ ∀v ∈ R

∑
u∈Γ(v)

wu = 0

 .

We usually omit the subscript F when the field is clear from context.

It is easy to see that the rate of ECF(G) is at least 1 − |R|
|L| .

4 Vicinity Locally Testable Codes

In this section we give the formal definition of local testability in the vicinity of the code and
prove that expander codes have this property.

▶ Definition 8 (VLTCs). A code C ⊆ FN is called a (q, δ, κ, σ)-VLTC (vicinity locally testable
code, abbreviated) if there exists a randomized procedure

Tes : FN → {◦, ⊥}

with the following guarantees:
For every c ∈ C and w ∈ FN , satisfying RelDist(w, c) ≤ δ,

Pr[Tes(w) =⊥] ≥ κ · RelDist(w, c) − σ;

CCC 2024

8:10 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

Tes(c) = ◦ with probability one on any c ∈ C.
Tes(w) always makes at most q queries to w.

We call Tes a local tester (or tester for short). The parameter q is referred to as the query
complexity.

We move to show that expander codes constructed from unique-neighbor expanders are
VLTCs.

▶ Lemma 9. Let G = (L, R, E) be a d-left-regular (γ, α)-unique-neighbor expander with
average right-degree c̄. Then, for every b > 1, EC(G) is a

(
bc̄, γ, αc̄, 1

b

)
-VLTC.

Proof. Define

R′ = {v ∈ R | deg(v) ≤ bc̄} .

By an averaging argument, |R′| ≥ (1 − 1
b)|R|. The tester for EC(G), given oracle access to

w ∈ FL, proceeds as follows:
1. Sample v ∈ R′ uniformly at random.
2. Query w on Γ(v).
3. Output ◦ if

∑
u∈Γ(v) wu = 0; and ⊥ otherwise.

As the sampled vertex v is in R′, the query complexity of the tester is indeed bounded above
by bc̄. Further, when w ∈ EC(G), the tester outputs ◦ with certainty.

Consider then a word w ∈ FL such that RelDist(w, c) ≤ γ for some codeword c ∈ EC(G).
Let

S = {v ∈ L | wv ̸= cv}.

As |S| ≤ γ|L| we have that |Γu(S)| ≥ αd|S|. Notice that if the vertex v that is sampled in
Step 1 lies in Γu(S) then the tester outputs ⊥. Therefore, the probability of the tester to
output ⊥ is at least

|Γu(S)| − |R \ R′|
|R|

≥ αd|S|
|R|

− 1
b

= α · d|L|
|R|

· |S|
|L|

− 1
b

= αc̄ · RelDist(w, c) − 1
b

,

which concludes the proof. ◀

We will use the following easy claim.

▷ Claim 10. Let C ⊆ FN be a (q, δ, κ, σ)-VLTC with a tester Tes, and further let c ∈ C

and w ∈ FN be such that α ≤ RelDist(w, c) ≤ δ. Assume that we run Tes(w) for g times,
independently. Then, the probability that one of the simulations outputted ⊥ is at least
1 − e−βg, where β = κα − σ.

Proof. The probability that a single simulation of Tes(w) outputs ⊥ is at least

κ · RelDist(w, c) − σ ≥ κα − σ = β.

The probability that all the simulations output ◦ is thus (1 − β)g ≤ e−βg. ◁

G. Cohen and T. Yankovitz 8:11

5 RLCCs from VLTCs

Following a similar argument to the one underlying the Kumar-Mon reduction, the following
proposition states that a sequence of VLTCs can be used to construct an RLCC.

▶ Proposition 11. Let C1 ⊆ FN1 , . . . , Cm ⊆ FNm be codes with rates ρ1, . . . , ρm, respectively,
such that for every i ∈ [m − 1], Ci is a (q′, δ′, κ′, σ′)-VLTC, and Cm is a (q, δ, κ, σ)-VLTC.
Further assume that |N1| ≤ 1

δ′ , |Nm| = n, and for every 1 < i ≤ m, |Ni| = 2|Ni−1|. Then,
for every g ∈ N, there exists an ((m − 1)q′ + gq + 1, δ, ε)-RLCC C ⊆ F[n] with rate

ρ ≥ 1 −
m∑

i=1
(1 − ρi),

where

ε ≤ 1 − min
{

κ′δ′

2 − σ′, eg(σ− κδ′
2)

}
.

Moreover, if the codes C1, . . . , Cm are explicit, then so is the resulting code C.

Proof. We start by describing how the code C is constructed.

The code construction. Let P1, . . . , Pm be an arbitrary fixed sequence of partitions of [n],
satisfying that for every i ∈ [m], Pi has 2m−i equal-size parts denoted {Bi

1, . . . , Bi
2m−i}, and

that for every 1 < i ≤ m, Pi−1 is a sub-partition of Pi (that is, for every B ∈ Pi−1, there
exists B′ ∈ Pi such that B ⊆ B′). For every i ∈ [m] and B ∈ Pi let fi,B : B → Ni be an
arbitrary bijection, and define

Ci,B = {c ◦ fi,B | c ∈ Ci}.

Finally, define the code

C =
{

w ∈ F[n] | ∀i ∈ [m], B ∈ Pi : wB ∈ Ci,B

}
.

The moreover part of the proof readily follows. The efficiency of the corrector will be self
evident as well once the corrector is presented.

Rate analysis. For every i ∈ [m] and B ∈ Pi, the number of linear constraints required to
impose so that wB ∈ Ci,B is at most (1 − ρi)|Ni|. Therefore, the total number of constraints
in the definition of the code C is bounded above by

m∑
i=1

|Pi|(1 − ρi)|Ni| =
m∑

i=1
n(1 − ρi),

which establishes the lower bound on the rate of C.

The corrector. We turn to describe a corrector Cor : F[n] × [n] → F ∪ {⊥} for C. As for
every i ∈ [m], Ci is a VLTC, it is immediate that so is Ci,B for every B ∈ Pi, with the same
parameters as Ci. The local tester for Ci,B that is induced in the natural way from the local
tester for Ci is denoted

Tesi,B : FB → {◦, ⊥}.

Let w ∈ F[n] and j ∈ [n]. Let r1 = r1(j), . . . , rm = rm(j) be the indices of blocks within
the corresponding partitions P1, . . . , Pm such that j ∈ B1

r1
⊆ · · · ⊆ Bm

rm
. The corrector

Cor(w, j) proceeds as follows:

CCC 2024

8:12 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

1. For i = 1, . . . , m − 1, simulate Tesi,Bi
ri

(wBi
ri

).
2. Simulate Tesm,Bm

rm
(wBm

rm
) for g times.

3. If any of the simulations outputted ⊥, output ⊥; otherwise, output wj .

Query analysis. As Cor simulates m − 1 testers with query complexity q′, and invokes g

simulations of one tester with query complexity q, the overall query complexity is (m − 1)q′ +
gq + 1, accounting also for querying wj .

Correctness. Clearly, if w is a codeword of C then wBi
ri

∈ Ci,Bi
ri

for every i ∈ [m], and
so Tesi,Bi

ri
(wBi

ri
) = ◦ with certainty. Therefore, Cor(w, j) = wj with certainty, as required.

Assume that w ∈ F[n] is such that Dist(w, c) ≤ δn for c ∈ C. Since Cor(w, j) always either
outputs ⊥ or wj , it suffices to show that if wj ̸= cj then the corrector outputs ⊥ with
probability at least 1 − ε. Towards this end, assume wj ̸= cj , and hence wB1

r1
̸= cB1

r1
, and

further note that wBm
rm

= w and cBm
rm

= c. For every i ∈ [m − 1] define δi = δ′, and let
δm = δ. Since, per our assumption, |N1| ≤ 1

δ′ , we have that

RelDist
(

wB1
r1

, cB1
r1

)
≥ δ′ = δ1,

whereas

RelDist
(

wBm
rm

, cBm
rm

)
≤ δ = δm.

Let ι ∈ {2, 3, . . . , m} be any index satisfying that

RelDist
(

wBι−1
rι−1

, cBι−1
rι−1

)
≥ δι−1

RelDist
(

wBι
rι

, cBι
rι

)
≤ δι.

By the above account, ι is well-defined. Since Bι−1
rι−1

⊆ Bι
rι

and |Bι−1
rι−1

| = 1
2 |Bι

rι
|, we have

that

δι−1

2 ≤ RelDist
(

wBι
rι

, cBι
rι

)
≤ δι.

If ι < m, as Tesι,Bι
rι

is a local tester for the (q′, δι, κ′, σ′)-VLTC Ci,Bι
rι

and since cBι
rι

∈ Cι,Bι
rι

,
it holds that Tesι,Bι

rι
(wBι

rι
) outputs ⊥ with probability at least

κ′δι−1

2 − σ′ = κ′δ′

2 − σ′.

If otherwise ι = m then we set

β = κδm−1

2 − σ = κδ′

2 − σ

and then by Claim 10 one of the g simulations of Tesm,Bm
rm

((wBm
rm

)) with probability at least
1 − e−βg. Thus, Cor(w, j) outputs ⊥ with probability at least min{ κ′δ′

2 − σ′, 1 − e−βg}, as
required. ◀

We are now ready to prove our main theorem.

G. Cohen and T. Yankovitz 8:13

▶ Theorem 12. For every finite field F, n which is a power of 2, and δ > 0, there exists an
explicit (q, δ, 1

3)-RLCC C ⊆ F[n] with query complexity

q = (log n)2+o(1),

and rate

ρ = 1 − δ · 2O
(
(log log 1

δ)3)
− o(1).

Proof. Write n = 2r, and let

ℓ = r log r = log n · log log n.

Due to the claimed tradeoff between the rate and the correction radius, we may as well
assume that δ ≥ 1

2⌈log ℓ⌉ . We proceed to describe the sequence of expander codes that we will
use, which consists of s = r − ⌈log ℓ⌉ + 1 codes. For every i ∈ [s], the block-length of the i-th
code is

ni = 2⌈log ℓ⌉+i−1.

Note that, in particular, ns = n. Further, the number of linear constraints defining the i-th
code is mi = 2i−1 for i ∈ [s − 1], whereas the for the s-th code,

ms = 2r−⌊log 1
δ +log β−c0 log3(log 1

δ)⌋,

where β is the constant from Theorem 6.
Invoking Theorem 6, for every i ∈ [s] let Gi = (Li, Ri, Ei) be a di-left-regular bipartite

graph with |Li| = ni and |Ri| = mi which is a (δi, α)-unique-neighbor expander for α = Ω(1),
such that for i ∈ [s − 1],

di ≤ 2c0 log3(⌈log ℓ⌉) ≜ d,

δi ≥ β

d · 2⌈log ℓ⌉ ≜ δ′,

and

ds ≤ 2c0 log3(log 1
δ),

δs ≥ β

ds · 2⌊log(1/δ)+log(β)−c0 log3(log(1/δ))⌋ ≥ δ.

The sequence of codes is defined by setting, for every i ∈ [s], Ci = EC(Gi).
We turn to address the VLTC-ness of C1, . . . , Cs. Set b = 4

αβ and bs = 4ms

αδ′dsns
. By

Lemma 9, for every i ∈ [s − 1], Ci is a(
bdini

mi
≤ bd2⌈log ℓ⌉, δ′, αd2⌈log ℓ⌉,

1
b

)
-VLTC,

and Cs is a(
bsdsns

ms
, δ, α

dsns

ms
,

1
bs

)
-VLTC.

We further set g = 4ms

αδ′dsns
. We can now invoke Proposition 11 (indeed, the proposition’s

prerequisites are met, i.e., n1 = 2⌈log ℓ⌉ < 1
δ′ , ni = 2ni−1, and ns = n) with our choice of g to

obtain a code C ⊆ F[n] which is an(
(s − 1)bd2⌈log ℓ⌉ + g

bsdsns

ms
+ 1 = O(sbdℓ + δ/(δ′)2), δ, ε

)
-RLCC,

CCC 2024

8:14 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

where

ε ≤ 1 − min
{

1
2αd2⌈log ℓ⌉δ′ − 1

b
, (1/e)g(αdsnsδ′/(2ms)−1/bs) = (1/e)gαdsnsδ′/(4ms) = 1/e

}
.

As
1
2αd2⌈log ℓ⌉δ′ − 1

b
= αβ

2 − 1
b

= αβ

2 − αβ

4

= αβ

4 ,

we see that ε ≤ 1 − min{ αβ
4 , 1/e}. To decrease the error to 1

3 , we apply Claim 4 with
h = O(1), and get that C is also a (q, δ, 1

3)-RLCC for

q = O
(
sbdℓ + δ/(δ′)2)

= O
(
sd2ℓ + δd2ℓ2)

.

Recall that s ≤ log n,

d = 2O((log log r)3) = 2O((log log log n)3)

and ℓ = O(log n · log log n). Therefore,

q = O
(
sd2ℓ + d2ℓ2)

= O
(
d2ℓ2)

= log2 n · 2O((log log log n)3) = (log n)2+o(1).

Lastly, as the rate ρi of every code Ci in the sequence is at least 1 − mi

ni
, Proposition 11

implies that the rate ρ of C is lower bounded by

ρ ≥ 1 −
s∑

i=1

(
mi

ni

)
= 1 − (s − 1) 1

2⌈log ℓ⌉ − 1
2⌊log 1

δ +log β−c0 log3(log 1
δ)⌋

= 1 − O
(s

ℓ

)
− δ · 2O(log3(log 1

δ))

= 1 − O
(r

ℓ

)
− δ · 2O(log3(log 1

δ))

= 1 − δ · 2O(log3(log 1
δ)) − o(1).

This concludes the proof. ◀

References
1 Ron Asherov and Irit Dinur. Bipartite unique-neighbour expanders via Ramanujan graphs.

arXiv preprint, 2023. arXiv:2301.03072.
2 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust

PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006.

3 Eli Ben-Sasson and Michael Viderman. Composition of semi-ltcs by two-wise tensor products.
computational complexity, 24:601–643, 2015.

4 Arnab Bhattacharyya, Sivakanth Gopi, and Avishay Tal. Lower bounds for 2-query LCCs
over large alphabet. arXiv preprint, 2016. arXiv:1611.06980.

5 Alexander R. Block, Jeremiah Blocki, Kuan Cheng, Elena Grigorescu, Xin Li, Yu Zheng,
and Minshen Zhu. On relaxed locally decodable codes for Hamming and insertion-deletion
errors. In 38th Computational Complexity Conference, volume 264 of LIPIcs. Leibniz Int. Proc.
Inform., pages Paper No. 14, 25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/lipics.ccc.2023.14.

https://arxiv.org/abs/2301.03072
https://arxiv.org/abs/1611.06980
https://doi.org/10.4230/lipics.ccc.2023.14

G. Cohen and T. Yankovitz 8:15

6 Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal of
the ACM (JACM), 42(1):269–291, 1995.

7 Clément L Canonne and Tom Gur. An adaptivity hierarchy theorem for property testing.
Computational Complexity, 27(4):671–716, 2018.

8 Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness conductors
and constant-degree lossless expanders. In Proceedings of the Thirty-Fourth Annual ACM
Symposium on Theory of Computing, pages 659–668. ACM, New York, 2002. doi:10.1145/
509907.510003.

9 Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes with
nearly-linear block length and constant query complexity. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1395–1411. SIAM, 2020.

10 Gil Cohen and Tal Yankovitz. Rate amplification and query-efficient distance amplification
for linear LCC and LDC. In 36th Computational Complexity Conference (CCC 2021). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

11 Gil Cohen and Tal Yankovitz. LCC and LDC: Tailor-made distance amplification and a
refined separation. In 49th EATCS International Conference on Automata, Languages, and
Programming, volume 229 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 44, 20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/lipics.icalp.2022.44.

12 Gil Cohen and Tal Yankovitz. Relaxed locally decodable and correctable codes: beyond
tensoring. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science—
FOCS 2022, pages 24–35. IEEE Computer Soc., Los Alamitos, CA, 2022.

13 Itay Cohen, Roy Roth, and Amnon Ta-Shma. HDX condensers. In Electronic Colloquium on
Computational Complexity (ECCC), 2023.

14 Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algorithms
with applications to coding, testing, and privacy. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1651–1665. SIAM, 2021.

15 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable
codes with constant rate, distance, and locality. In STOC ’22—Proceedings of the 54th Annual
ACM SIGACT Symposium on Theory of Computing, pages 357–374. ACM, New York, 2022.

16 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM Journal
on Computing, 40(4):1154–1178, 2011.

17 Zeev Dvir, Sivakanth Gopi, Yuzhou Gu, and Avi Wigderson. Spanoids—an abstraction of
spanning structures, and a barrier for LCCs. SIAM Journal on Computing, 49(3):465–496,
2020.

18 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal on
Computing, 41(6):1694–1703, 2012.

19 Guy Goldberg. Linear relaxed locally decodable and correctable codes do not need adaptivity
and two-sided error. In Electron. Colloquium Comput. Complex., 2023.

20 Oded Goldreich. Lecture notes on locally testable codes and proofs, 2016. URL: https:
//www.wisdom.weizmann.ac.il/~oded/PDF/pt-ltc.pdf.

21 Oded Goldreich. On the lower bound on the length of relaxed locally decodable codes. In
Electronic Colloquium on Computational Complexity (ECCC), 2023.

22 Oded Goldreich and Tom Gur. Universal locally verifiable codes and 3-round interactive proofs
of proximity for csp. Theoretical Computer Science, 878:83–101, 2021.

23 Oded Goldreich, Howard Karloff, Leonard J Schulman, and Luca Trevisan. Lower bounds for
linear locally decodable codes and private information retrieval. In Proceedings 17th IEEE
Annual Conference on Computational Complexity, pages 175–183. IEEE, 2002.

24 Louis Golowich. New explicit constant-degree lossless expanders. arXiv preprint, 2023.
arXiv:2306.07551.

25 Sivakanth Gopi, Swastik Kopparty, Rafael Oliveira, Noga Ron-Zewi, and Shubhangi Saraf.
Locally testable and locally correctable codes approaching the Gilbert-Varshamov bound.
IEEE Transactions on Information Theory, 64(8):5813–5831, 2018.

CCC 2024

https://doi.org/10.1145/509907.510003
https://doi.org/10.1145/509907.510003
https://doi.org/10.4230/lipics.icalp.2022.44
https://www.wisdom.weizmann.ac.il/~oded/PDF/pt-ltc.pdf
https://www.wisdom.weizmann.ac.il/~oded/PDF/pt-ltc.pdf
https://arxiv.org/abs/2306.07551

8:16 Asymptotically-Good RLCCs with (log n)2+o(1) Queries

26 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
In Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages
529–540. ACM, 2013.

27 Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. SIAM
Journal on Computing, 50(2):788–813, 2021.

28 Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes. Theory
of Computing, 16(1):1–68, 2020.

29 Tom Gur and Ron D Rothblum. A hierarchy theorem for interactive proofs of proximity. In
8th Innovations in Theoretical Computer Science Conference (ITCS 2017). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2017.

30 Tom Gur and Ron D Rothblum. Non-interactive proofs of proximity. computational complexity,
27(1):99–207, 2018.

31 Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with near-
optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

32 Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
codes. Information and Computation, 243:178–190, 2015.

33 Jun-Ting Hsieh, Theo McKenzie, Sidhanth Mohanty, and Pedro Paredes. Explicit two-sided
unique-neighbor expanders. arXiv preprint, 2023. arXiv:2302.01212.

34 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 80–86, 2000.

35 Swastik Kopparty, Or Meir, Noga Ron-Zewi, and Shubhangi Saraf. High-rate locally correctable
and locally testable codes with sub-polynomial query complexity. Journal of the ACM (JACM),
64(2):11, 2017.

36 Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with sublinear-time
decoding. Journal of the ACM (JACM), 61(5):28, 2014.

37 Vinayak Kumar and Geoffrey Mon. Relaxed local correctability from local testing. In Electron.
Colloquium Comput. Complex., 2023.

38 Richard J Lipton. Efficient checking of computations. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 207–215. Springer, 1990.

39 Or Meir. Locally correctable and testable codes approaching the Singleton bound. In Electronic
Colloquium on Computational Complexity (ECCC), volume 21(107), page 14, 2014.

40 Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. Journal of the ACM
(JACM), 57(5):1–29, 2008.

41 Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable classical
LDPC codes. In STOC ’22—Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 375–388. ACM, New York, 2022.

42 Noga Ron-Zewi and Ron D Rothblum. Local proofs approaching the witness length. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 846–857.
IEEE, 2020.

43 Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Trans. Inform. Theory, 42(6,
part 1):1710–1722, 1996. Codes and complexity. doi:10.1109/18.556667.

44 Daniel Alan Spielman. Computationally efficient error-correcting codes and holographic proofs.
ProQuest LLC, Ann Arbor, MI, 1995. Thesis (Ph.D.) – Massachusetts Institute of Technology.
URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:
ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0576626.

45 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. Journal
of the ACM (JACM), 55(1):1–16, 2008.

https://arxiv.org/abs/2302.01212
https://doi.org/10.1109/18.556667
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0576626
http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0576626

Lifting Dichotomies
Yaroslav Alekseev #

Technion – Israel Institute of Technology, Haifa, Israel

Yuval Filmus #

Technion – Israel Institute of Technology, Haifa, Israel

Alexander Smal #

Technion – Israel Institute of Technology, Haifa, Israel

Abstract
Lifting theorems are used for transferring lower bounds between Boolean function complexity
measures. Given a lower bound on a complexity measure A for some function f , we compose f

with a carefully chosen gadget function g and get essentially the same lower bound on a complexity
measure B for the lifted function f ⋄ g. Lifting theorems have a number of applications in many
different areas such as circuit complexity, communication complexity, proof complexity, etc. One of
the main question in the context of lifting is how to choose a suitable gadget g. Generally, to get
better results, i.e., to minimize the losses when transferring lower bounds, we need the gadget to be
of a constant size (number of inputs). Unfortunately, in many settings we know lifting results only
for gadgets of size that grows with the size of f , and it is unclear whether it can be improved to
a constant size gadget. This motivates us to identify the properties of gadgets that make lifting
possible.

In this paper, we systematically study the question “For which gadgets does the lifting result
hold?” in the following four settings: lifting from decision tree depth to decision tree size, lifting
from conjunction DAG width to conjunction DAG size, lifting from decision tree depth to parity
decision tree depth and size, and lifting from block sensitivity to deterministic and randomized
communication complexities. In all the cases, we prove the complete classification of gadgets by
exposing the properties of gadgets that make lifting results hold. The structure of the results shows
that there is no intermediate cases – for every gadget there is either a polynomial lifting or no lifting
at all. As a byproduct of our studies, we prove the log-rank conjecture for the class of functions that
can be represented as f ⋄ OR ⋄ XOR for some function f .

In this extended abstract, the proofs are omitted. Full proofs are given in the full version [2].

2012 ACM Subject Classification Theory of computation → Communication complexity; Theory of
computation → Oracles and decision trees

Keywords and phrases decision trees, log-rank conjecture, lifting, parity decision trees

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.9

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/037/ [2]

Funding This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 802020-ERC-HARMONIC. Alexander Smal has
received funding from the European Union’s Horizon 2020 research and innovation program under
grant agreement No 852870-ERC-SUBMODULAR.

1 Introduction

For f : {0, 1}n → V and g : {0, 1}m → {0, 1}, a (block-)composition f ⋄ g : {0, 1}n×m → V is
defined by

(f ⋄ g)(z1, z2, . . . , zn) := f(g(z1), g(z2), . . . , g(zn)),

where each zi ∈ {0, 1}m. Usually lifting theorems have the following general form:

B(f ⋄ g) = Ω(A(f)),
© Yaroslav Alekseev, Yuval Filmus, and Alexander Smal;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tolstreg@gmail.com
https://orcid.org/0000-0003-3196-6919
mailto:yuvalfi@cs.technion.ac.il
https://orcid.org/0000-0002-1739-0872
mailto:avsmal@gmail.com
https://orcid.org/0000-0002-8241-5503
https://doi.org/10.4230/LIPIcs.CCC.2024.9
https://eccc.weizmann.ac.il/report/2024/037/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Lifting Dichotomies

where A and B are two complexity measures. Note that the hidden constant in Ω(·) may
depend on g. In this context, we call the function g a gadget and say that there is a (linear)
lifting from A to B. One of the first examples of a lifting theorem appeared in [19] where
Raz and McKenzie proved a separation for the hierarchy of monotone circuit complexity
classes within NC using a query-to-communication lifting theorem.

The need for such theorems is due to the fact that, in many cases, communication
complexity lower bounds are much more difficult to prove compared to query complexity lower
bounds. Lifting theorems proved to be useful in many other scenarios: proving communication
complexity separations [10, 11, 12, 5], proof complexity separations [9, 14, 10, 7], monotone
circuit complexity separations [19, 8], etc.

While the lifting technique is widely used in different areas we still do not quite under-
stand its limitations. In the query-to-communication lifting theorems, we want to lower
bound the deterministic/randomized communication complexity of the lifted function by
deterministic/randomized query complexity of the original function. So, these theorems
usually have the following form:

D(f ⋄ g) = DT(f) ·Θ(log n),

where the gadget g has at most logarithmic communication complexity. In all the lifting
theorems of this type, the size (the number of inputs) of the gadget g grows with the
number of inputs of f (e.g., in [17] the size of the gadget is n1+ε, where n is a number
of inputs of the lifted function). Even though some results do not depend on the gadget
size (e.g., [11]), in many scenarios the use of non-constant size gadgets leads to weaker
results in the applications (e.g., when lifting theorems are used to prove monotone circuit
lower bounds via communication complexity). It is unknown whether it is possible to prove
a query-to-communication lifting theorem with a constant size gadget, but we tend to believe
that such lifting exists.

At the same time, for other complexity measures there are lifting theorems that can
accommodate constant size gadgets. Here are some examples of such lifting theorems:
1. Lifting decision tree depth to decision tree size (XOR gadget [21]).
2. Lifting decision tree depth to parity decision tree depth/size (stifling gadgets [6]; INDEX

gadget [3]).
3. Lifting from critical block sensitivity to communication complexity (VER gadget [10]).
4. Lifting parity decision tree depth to communication complexity (XOR gadget [13]).
5. Lifting AND decision tree depth to communication complexity (AND gadget [15]).
6. Lifting block sensitivity to randomized communication complexity (AND gadget [22]).
Note that in examples 4 and 5, the communication complexity is lower bounded by some
power of the parity decision tree complexity or the AND decision tree complexity (in the
latter case, with an additional log n factor). In such cases, we say that there is a polynomial
lifting.

As mentioned earlier, lifting theorems which lower bound communication complexity
by a linear function of query complexity are only known for non-constant size gadgets.
But in case of a polynomial lifting, there are query to communication complexity lifting
theorems with constant size gadgets. E.g., in example 6 the author lifts block sensitivity
to randomized communication complexity with a constant size gadget. Given that block
sensitivity is polynomially related to query complexity, this gives a polynomial lifting from
query to communication complexity.

Y. Alekseev, Y. Filmus, and A. Smal 9:3

All the examples of the lifting theorems with constant size gadgets that we mentioned
above use specific and simple gadgets. But what happens if we plug some other gadget? The
same proof might not work, but would the lifting result still be true? That is not always
clear. And this reflects our lack of understanding of what properties of the gadget make
lifting possible. For these theorems it is natural to pose the following question:

For which gadgets does the lifting result hold?

A systematical study of this question will help us to better understand how lifting works and
what are the requirements for the gadget. Especially it would be interesting to understand
for which gadgets lifting fails. This is what we need, for example, if we want to find a good
candidate for query-to-communication linear lifting with constant size gadget.

One of the areas that might benefit from new lifting theorem is the study of the log-rank
conjecture [18]. The log-rank conjecture states that for any function f the deterministic
communication complexity of a function is polynomially related to the logarithm of the real
rank of its associated communication matrix. Currently there is a exponential gap between
the lower bound Ω

(
log2(rank(f)

)
[11] and the upper bound O

(√
rank(f) · log rank(f)

)
[16].

It seems that the general case of this problems is out of reach now. So most of research in
this area has concentrated on the study of various complexity measures and special cases
such as composed functions (e.g., see [15]). Therefore, lifting in this area is one of the main
proof techniques.

The other area craving for new lifting theorems is proof complexity. There is a tight
connection between proof complexity and lifting theorems. For example, lifting decision
tree depth to parity decision tree depth/size from [6, 3] provides a systematic way to prove
tree-like Res(⊕) size lower bounds. It is important to mention that for proof complexity we
usually need lifting theorems that hold for relations.

Finally, we think that a large number of different applications makes lifting a technique
that is worth exploring on its own. A deeper understanding of how lifting works and what it
requires from gadgets can lead to new applications and results.

1.1 Our results and methods
In this paper, we systematically explore the question “For which gadgets does the lifting
result hold?” in several different settings. We prove complete classifications of gadgets in the
following four settings:

lifting from decision tree depth to decision tree size,
lifting from certificate complexity to conjunction DAG size,
lifting from decision tree depth to parity decision tree depth and size,
lifting from block sensitivity to deterministic and randomized communication complexities.

All these results are formulated in the form of dichotomies (a trichotomy in one of the
cases) that essentially state that there is either polynomial lifting or no lifting at all (no
intermediate cases). As a byproduct of our studies, we prove the log-rank conjecture for the
class of functions that can be represented as f ⋄OR ⋄XOR for some function f .

Now we describe the results in more detail and give an overview of the proof methods. The
proofs are omitted from this extended abstract. Full proofs are given in the full version [2].

1.1.1 Decision tree depth to size
In Section 3, we define a class of resistant gadgets (defined in Section 3.1) and prove a decision
tree depth to decision tree size lifting theorem for this class of gadgets (see Theorem 2). We
give two different proofs illustrating the ideas of two different approaches: proof by simulation

CCC 2024

9:4 Lifting Dichotomies

and proof using random projections. The proofs later in the paper refer to the proofs in
this simple case. The proof by simulation is constructive – it shows how given a decision
tree for the lifted function f ⋄ g one can construct a decision tree for the original function f ,
such that the depth of the new tree is bounded by a logarithm of the size of the given tree.
In the proof using random projections, we use probabilistic method to show that there is
a projection that converts the decision tree for f ⋄ g into a shallow decision tree for f .

Our goal is to prove a classification theorem, so we need to find a class of gadgets such
that lifting works only for gadgets in this class. It appears that the class of resistant gadgets is
too small for this. We define a wider class of weakly resistant gadgets (defined in Section 3.2)
and prove a certificate complexity to decision tree size lifting theorem (see Theorem 4). The
proof uses the random projections method. Note that the decision tree size is upper bounded
by the certificate complexity squared, so as a corollary we get a polynomial lifting from
decision tree depth to decision tree size (see Corollary 5).

Finally, we give a complete classification of gadget functions in the context of polynomial
lifting from decision tree depth to decision tree size. It is stated as a dichotomy result
(see Theorem 7): either a gadget is weakly resistant and there is a polynomial lifting or there
is no lifting at all.

In Section 3.4, we briefly discuss that some of the results above can be generalized to the
case of search problems. Unfortunately, that does not give a classification theorem because
decision tree depth of a search problem can be exponentially greater than its certificate
complexity. However, we state a conjecture there is a decision tree depth to decision tree
size polynomial lifting for weakly resistant gadgets.

1.1.2 Conjunction DAG width to size
In Section 4, we generalize the results from the previous section to decision conjunction
DAGs (defined in Section 4.1). First of all, in Section 4.2, we show that similarly to decision
trees where depth and size are exponentially separated, there is an exponential separation
between conjunction DAG width and size. The separation is achieved for the Tribes function.
In Section 4.3, we show that there is an exponential separation between decision tree size and
conjunction DAG size in the case of relations. Indeed, conjunction DAGs can capture the
structure of Resolution proofs, while decision trees can only capture the structure of tree-like
Resolution proofs. Thus, the separation between these proof systems implies the separation
between the measures under consideration. Finally, we argue that the lifting theorems from
Section 3 can be generalized to the case of conjunction DAGs (see Theorem 8 and Theorem 9)
using essentially the same proofs. Thus, we have a dichotomy result (see Theorem 10).

1.1.3 Decision tree depth to parity decision tree depth and size
Recently, Chattopadhyay et al. [6] showed that if g is stifling (defined in Section 5.1) then
log DTSize⊕(f ⋄ g) = Θ(DT(f)). In Section 5, we extend their result providing the complete
classification of the gadgets for decision tree depth to parity decision tree depth and size lifting.
In Section 5.2, we state and prove a “minimum weight lemma” (see Lemma 13), the technical
lemma that we will use several times. This lemma states that if the certificate complexity of
some function f is large enough in comparison to the parity certificate complexity of the
lifted function f ⋄ g at some input, then there is a substitution such that the minimal parity
certificate of f ⋄ g at this input has a large Hamming weight.

In Section 5.3, we consider the most challenging case of this setting – the case of OR
gadget. In Theorem 14, we show that there is at least a quadratic gap in the certificate
to parity certificate complexity lifting for OR gadget. If we assume that the lifting result

Y. Alekseev, Y. Filmus, and A. Smal 9:5

in [6] holds for OR gadget as well then the quadratic separation is tight (see Proposition 15).
In Section 5.3.2, we show a polynomial (cubic) lifting for OR gadget (see Theorem 16). The
proof consists of three ingredients. First, we show that if the minimum weight of a parity
certificate for the lifted function is at least the size of the parity certificate then this certificate
covers the all-1 input for the inner function. Then we use it to upper bound the minimum
weight of a parity certificate in terms of the sizes of parity certificates for 0 and 1. And
finally, we apply the “minimum weight lemma”. In the proof of Theorem 16, we assume that
the certificate complexity of the original function is much larger than the parity certificate
complexity of the lifted function, but due to the “minimum weight lemma” it would contradict
the upper bound on the minimum weight of the parity certificate.

In Section 5.4, we prove a lifting from certificate complexity to parity decision tree size
for AND/OR gadgets, the gadgets that affine project to both binary AND and binary OR
(see Theorem 17). The proof is by simulation similar to the simulation proof in [6].

Finally, in Section 5.5, we prove the trichotomy result that gives us a complete classification
of gadgets (see Theorem 19). The classification is based on the fact that if a gadget is not
AND/OR then it is a disjunction or a conjunction of affine forms (see Lemma 18). We show
that there are only three cases possible: (1) there are simultaneously a lifting from decision
tree depth to parity decision tree depth and a lifting from certificate complexity to parity
certificate complexity (the case of AND/OR gadgets); (2) there is a lifting from decision tree
depth to parity decision tree depth but no lifting between certificate complexities (the case
of gadgets that affine project to OR); (3) there is no lifting (all other gadgets, constant or
affine).

In Section 5.6, we show an alternative proof for the lifting from decision tree depth to
parity decision tree depth using function degree and sparsity (see Theorem 20). In the proof
we show that the degree of a function is upper bounded by the logarithm of the sparsity
of the function lifted with OR gadget, and compose it with a number of previously known
inequalities. As a byproduct, we get a proof of the log-rank conjecture for the class of
functions that can be represented as f ⋄OR ⋄XOR (see Theorem 21).

1.1.4 Block sensitivity to communication complexity
In Section 6, we provide a complete classification of gadgets for lifting from block sensitivity
to deterministic and randomized communication complexities. Note that this classification
also gives us a classification of gadgets for query-to-communication polynomial lifting since
block sensitivity and query complexity are polynomially related to each other in the case of
total functions. However, since the proof goes through block sensitivity, we classify block
sensitivity to communication complexity lifting.

We start with the lifting theorem of Zhang [22] (see Theorem 23) that works for gadget
g iff both AND and OR reduce to g via a communication complexity reduction (defined
in Section 6.1). Then we show that if there is no reduction from OR to a gadget g then the
communication matrix of g is (up to rearrangement) block diagonal (see Lemma 24). This
gives us a classification of gadgets in the context of reductions from OR, AND, and XOR
(see Corollary 26 and Corollary 27).

In Section 6.2, we prove a dichotomy result for randomized communication complexity
(see Theorem 28). The proof is based on the fact that if OR does not reduce to a gadget g

then ANDn ⋄ g is essentially an instance of the equality function, and hence its randomized
communication complexity is logarithmic. If AND does not reduce to a gadget, the situation
is symmetrical (see Lemma 29). Thus, the theorem of Zhang covers all gadgets for which
there is a lifting.

CCC 2024

9:6 Lifting Dichotomies

In Section 6.3, we prove the dichotomy result for deterministic communication complexity
(see Theorem 31). The proof of the dichotomy depends on a block sensitivity to deterministic
communication complexity lifting theorem that works for gadget g iff both AND and XOR
reduce to g (see Theorem 30). Together with the Zhang’s lifting theorem that give us
a complete classification of gadgets: if at least two of three functions AND, OR, XOR reduce
to gadget g then there is a block sensitivity to deterministic communication complexity
polynomial lifting. Otherwise, if at least two functions from this list do not reduce to g then g

is either a constant function or (essentially) one of the functions AND, OR, XOR. The proof
of the lifting theorem requires a number of ingredients. First of all, we compose two results
from [13, 23] to get a parity certificate to deterministic communication complexity polynomial
lifting for XOR gadget. Then we show two lower bounds for specific cases: we show that
the deterministic communication complexity of f ⋄XOR is lower bounded by the size of
any minimal sensitive block of the function f , and that the deterministic communication
complexity of f ⋄AND is lower bounded by the block sensitivity of f at the all-0 input. One
of the ingredients is again the “minimum weight lemma”. And the last one, is the lemma
that shows that parity certificates of high minimum weight always intersect with (regular)
certificates of sufficiently small size. Putting all the ingredients together we get the desired
lifting result.

2 Prerequisites

2.1 Notation
All the logarithms are base 2. We use ORn, ANDn, XORn to denote, respectively, logical
“and”, “or” and “exclusive or” of n Boolean inputs. For simplicity we also define OR := OR2,
AND := AND2, and XOR := XOR2. We use the notation xB for x ∈ {0, 1}n and B ⊆ [n]
to denote x with all the coordinates in B flipped, i.e., xi = xB

i ⇐⇒ i ̸∈ B. For
g : {0, 1}k → {0, 1}, we define1 a function gn : {0, 1}n×k → {0, 1}n such that

gn(x1, x2, . . . , xn) := (g(x1), g(x2), . . . , g(xn)).

For a function f : {0, 1}n → {0, 1}, an input x ∈ {0, 1}n, and a partial assignment σ ∈
{0, 1, ∗}n that agrees with x on all non-∗ coordinates, we use f |σ to denote a restriction of f

to σ and x|σ to denote a projection of x to the ∗-coordinates of σ. For a gadget g : {0, 1}k →
{0, 1} and a blockwise partial assignment σ ∈

(
{0, 1}k ∪{∗k}

)n (i.e., in any block of variables
that corresponds to one copy of g, the variables are either all set or all stars), we use gn(σ)
to denote the partial assignment in {0, 1, ∗}n induced by applying g to non-∗ blocks of σ.
We use “⊔” instead of “∪” to indicate a union of disjoint sets.

2.2 Complexity measures
Throughout the text, we will consider several complexity measures.

Decision tree complexity

A decision tree is a rooted binary tree with internal nodes labeled by input variables
(represent queries), edges labeled with 0 and 1, and leaves labeled by some values. Decision
tree evaluation is defined in the natural way: given an assignment for the input variables,

1 In some papers lifting theorems are formulated for the classical composition operation “◦” rather then
for the block-composition “⋄”. Note that for f : {0, 1}n → {0, 1} and g : {0, 1}k → {0, 1}, f ⋄ g ≡ f ◦ gn.

Y. Alekseev, Y. Filmus, and A. Smal 9:7

we traverse the tree starting from the root and then sequentially choose every next edge
according to the given assignments until we reach some leaf. The label of this leaf is the result
of the evaluation. A decision tree computes some function f if for all possible assignments to
the input variables the decision tree evaluates to the value of the function. For a function f ,
DT(f) denotes the minimal depth of a decision tree computing f , and DTSize(f) denotes
the minimal number of leaves in a decision tree computing f .

Parity decision tree complexity

A parity decision tree is a generalization of a decision tree where the queries are arbitrary
linear combinations of the input variables. It can be described as a rooted binary tree with
internal nodes labeled by linear combinations of the input variables, edges labeled with 0 and
1, and leaves labeled by some values. The evaluation is defined analogously. For a function f,
DT⊕(f) denotes the minimal depth of a parity decision tree computing f , and DTSize⊕(f)
denotes the minimal number of leaves in a parity decision tree computing f .

Certificate complexity

A certificate complexity is a non-deterministic analogue of the decision tree complexity.
A certificate for an input x ∈ {0, 1}n to a function f is a set S ⊆ [n] of indices such that f

restricted to all inputs that match x on S is constant, i.e., f(y) = f(x) whenever y|S = x|S .
The certificate complexity C(f, x) of f at input x is the size of the smallest certificate for x.
Finally, the certificate complexity of function f is defined as C(f) := maxx∈{0,1}n C(f, x).

Parity certificate complexity

A parity certificate for an input x ∈ {0, 1}n to a function f is a set A of linear forms such that f

is constant on the affine subspace defined by A = A(x). A parity certificate complexity C⊕(f, x)
of function f at input x is the size (number of linear forms) of the smallest parity certificate
for x. The parity certificate complexity of f is defined as C⊕(f) := maxx∈{0,1}n C⊕(f, x).

Block sensitivity

A block B ⊆ [n] is sensitive for a function f at x iff f(x) ̸= f(xB). The block sensitivity
bs(f, x) of f at x is the maximum number of disjoint sensitive blocks for f at x. The block
sensitivity bs(f) of f is the maximum sensitivity bs(f, x) over all points x ∈ {0, 1}n.

Degree and sparsity of the function

Every Boolean function defined on {0, 1}n → {0, 1} can be considered as a function
f : {−1, 1}n → {−1, 1} by substituting 0 and 1 with 1 and −1, respectively. Every such
function has a unique representation as a multilinear polynomial over R of the following form

f(x) =
∑

S⊆[n]

cSxS , where xS =
∏
i∈S

xi.

Degree of f is defined to be the degree of the corresponding polynomial, we denote it by
deg(f). Sparsity of f is the number of nonzero coefficients in this representation, we denote
it by spar(f).

CCC 2024

9:8 Lifting Dichotomies

Deterministic communication complexity and rank

For a function f : X × Y → Z, let’s consider the following game for two players, Alice and
Bob, that want to compute f . Alice and Bob are given x ∈ X and y ∈ Y , respectively. Their
goal is to compute f(x, y). In order to do it, the players exchange information about their
parts of the input using a simple communication channel that allows sending bit messages.
Before the game the players come up with a communication protocol that determines their
behavior on all possible inputs. The cost of a protocol is the maximum total number of bits
sent by the players over all possible inputs x ∈ X, y ∈ Y . The deterministic communication
complexity of f is the minimal cost of a deterministic communication protocol that computes
f . We denote it by D(f).

A communication matrix of the function f is a matrix Mf ∈ ZX×Y such that (Mf)x,y :=
f(x, y) for all x ∈ X, y ∈ Y . We define rank(f) to be the rank of matrix Mf .

Randomized communication complexity

In a randomized communication game, Alice and Bob have access to an unlimited amount of
random bits and they can use it to decide which bit to send next. We say that a (private
coin) randomized communication protocol Π computes a function f : X × Y → Z with error
ε if

Pr
rA,rB

[
Π(x, y, rA, rB) = f(x, y)

]
≥ 1− ε, ∀x ∈ X, y ∈ Y,

where rA and rB are the strings of random bits used by Alice and Bob, respectively. The cost
of a randomized protocol is the maximum number of bits that can be sent. We denote by
Rε(f) the minimal cost of a private coin randomized communication protocol that computes
f with error ε. A randomized communication complexity of f is defined as R(f) := R1/3(f).

3 Decision tree depth to size

We start by exploring perhaps one of the simplest scenarios, depth-to-size lifting in decision
trees and state a lifting theorem for the class of resistant gadgets.

3.1 Resistant gadgets

Urquhart [21] proved that for any function f : {0, 1}n → {0, 1},

log DTSize(f ⋄XOR) = Ω(DT(f)).

We generalize this result for the class of resistant gadgets.

▶ Definition 1. A gadget g : {0, 1}m → {0, 1} is resistant if for every i ∈ [m] and b ∈ {0, 1},
the function obtained by fixing the ith input to b is not constant. Equivalently, the minimum
certificate complexity at inputs is larger than 1. E.g., XOR function is resistant while AND
function is not.

▶ Theorem 2. For any f : {0, 1}n → {0, 1} and a resistant gadget g : {0, 1}m → {0, 1},

log DTSize(f ⋄ g) = Ω(DT(f)).

Y. Alekseev, Y. Filmus, and A. Smal 9:9

3.2 Weakly resistant gadgets
There are gadgets, such as x ∨ (y ∧ z), which are clearly not resistant, but for which the
lifting still holds as we will show below. To capture these cases, we define a more general
class of weakly resistant gadgets.

▶ Definition 3. A gadget g : {0, 1}m → {0, 1} is weakly resistant if for every certificate α

(a partial assignment which sets the value of g) there is a partial assignment yj = b which
conflicts with α and does not make g constant.

Every resistant gadget is trivially weakly resistant: we can take any variable mentioned
in α and substitute the opposite value. The aforementioned gadget h = x ∨ (y ∧ z) is weakly
resistant (as we show below) but not resistant, since h|x=1 = 1. The gadget x∨ y is not even
weakly resistant due to the certificate x = y = 0: if we substitute x = 1 or y = 1 then the
gadget becomes constant.

Let us verify that h is weakly resistant, by considering all possible certificates:
x = 1: take x = 0.
y = z = 1: take y = 0 or z = 0.
x = y = 0: take y = 1.
x = z = 0: take z = 1.

We prove the following lifting theorem:

▶ Theorem 4. For any f : {0, 1}n → {0, 1} and a weakly resistant gadget g : {0, 1}m → {0, 1}
the following holds:

log DTSize(f ⋄ g) = Ω(C(f)).

Decision tree complexity is at most certificate complexity squared, thus we get the
following corollary.

▶ Corollary 5. For any f : {0, 1}n → {0, 1} and a weakly resistant gadget g : {0, 1}m → {0, 1}
the following holds:

log DTSize(f ⋄ g) = Ω
(√

DT(f)
)
.

We do not know whether the lower bound is tight, even for h = x ∨ (y ∧ z). At the
moment we can’t even rule out log DTSize(f ⋄h) = Ω(DT(f)). Sherstov [20, Theorem 6.4]
proved that

max
(
log rank(f ⋄AND), log rank(f ⋄OR)

)
≥ deg(f).

Since rank lower bounds decision tree size, this implies that

log DTSize(f ⋄ g) ≥ deg(f).

Note that we are not aware of any separation between DT(f) and max(C(f), deg(f)).

3.3 Gadget classification
The dichotomy result of this section is based on the following classification of gadgets.

▶ Lemma 6. For every g : {0, 1}m → {0, 1}, one of the following cases holds:
1. Function g is a (possibly empty) conjunction or a disjunction of literals.
2. Function g is weakly resistant.

CCC 2024

9:10 Lifting Dichotomies

The two cases in following dichotomy theorem correspond to the two cases of Lemma 6.

▶ Theorem 7. For every gadget g : {0, 1}m → {0, 1}, one of the following cases holds:
1. There is an infinite family of functions fn with DT(fn) → ∞ and DTSize(f ⋄ g) =

O(DT(f)).
2. For every function f , we have log DTSize(f ⋄ g) = Ω

(
DT(f)Ω(1)).

3.4 Generalization to search problems
A relation f is a subset of {0, 1}n × V . For a gadget g : {0, 1}m → {0, 1}, we define a
composition f ⋄ g ⊆ ({0, 1}m)n × V as a relation, such that

(z1, z2, . . . , zn, r) ∈ (f ⋄ g) ⇐⇒ (g(z1), g(z2), . . . , g(zn), r) ∈ f.

One can observe that the proofs of Theorems 2 and 4 work as well when we let f to be
a relation. However, the Corollary 5 does not hold for the relations since DT(f) can be
exponentially greater than C(f). As an example of this, one can take f to be a falsified
clause problem corresponding to the Pigeonhole Principle Formula over an expander graph.
It is known [4] that resolution width of any refutation for this formula at least Ω(n) (which
is greater or equal than DT(f)), but the certificate complexity is constant (since each of the
clauses of the formula is constant-sized).

However, we conjecture that lifting from decision tree depth to decision tree size can also
be proved for weakly resistant gadgets. Equivalently, this will mean that such lifting holds
for the gadget g(x, y, z) := x ∨ (y ∧ z).

4 Conjunction DAG width to size

4.1 Conjunction DAGs
Conjunction DAGs were first defined formally in [8], though they appear implicitly in previous
work. A conjunction DAG over a set of variables is a single-rooted DAG with the following
additional information:

Each internal vertex is annotated with a variable, and it has two outgoing edges, one
labeled 0 and the other one labeled 1.
Each vertex v is annotated with a partial assignment ρ(v) with the following constraint.
Suppose that v queries xi, and the answer b leads to the vertex vb. Then the partial
assignment ρ(vb) is a subset of the partial assignment ρ(v) ∪ {xi ← b}. (This is not
identical to the definition in [8], but morally the same.)
The partial assignment at the root is the empty assignment.
Each leaf is annotated with some value.

A decision DAG computes f if for every leaf ℓ annotated with yℓ, ρ(ℓ) is a yℓ-certificate of f .
Every decision tree is a decision DAG. There are three parameters of interest: the (total)

size (number of vertices), the leaf size (number of leaves), and the width (maximum number
of variables in any ρ(v)).

4.2 Size vs width
A decision tree of depth d contains at most 2d leaves, and this is tight for the parity function,
in the sense that the bound DTSize(f) ≤ 2DT(f) cannot be improved when f is the parity
function.

Y. Alekseev, Y. Filmus, and A. Smal 9:11

Similarly, a conjunction DAG of width d contains at most
(

n
≤d

)
= O(nd) vertices, and

this is tight for the following function (also known as the Tribes function)

f(x) =

√
n∨

i=1

√
n∧

j=1
xij .

We can construct a conjunction DAG of width O(
√

n) for f as follows. We think of the
input as a matrix, where i is the row number and j is the column number. We scan each
row sequentially. If the current row consists only of 1s, we stop. Otherwise, we add the first
0 to ρ, and forget all the remaining entries of the row.

Conversely, consider the set of
√

n
√

n inputs having a single 0 per row. No two inputs
share the same certificate, and so every conjunction DAG for f must contain at least n

√
n/2

leaves.

4.3 Separation between decision tree size and conjunction DAG size
Let d(f) denotes the conjunction DAG width of a function f , which is the smallest width of
a conjunction DAG for f . Since DT(f) ≥ d(f) ≥ C(f) = Ω

(√
DT(f)

)
, in case of functions

conjunction DAG width and decision tree depth are polynomially related. In this section, we
show that in case of relations decision tree size and conjunction DAG size can be far apart.

Alekhnovich et al. [1] constructed a family of CNF contradictions ϕn with poly(n) many
variables and clauses which have a refutation in Resolution of size poly(n), but such that
any refutation in tree-like Resolution (even in regular Resolution) is of size 2Ω(n).

We can think of a Resolution proof as a conjunction DAG which solves the falsified clause
problem: given a truth assignment, find a falsified clause. This is a relation rather then
function. Similarly, a tree-like Resolution proof is a decision tree solving the same problem.

Now we are going to show that there is a function f : {0, 1}n → {0, 1} with a conjunction
DAG of size poly(n) such that DTSize(f) = 2Ω(n/ log n). Consider the contradictions ϕn

mentioned above. Index the clauses of ϕn using bitstrings of length ℓ = O(log n) in some
arbitrary way. Now consider a polynomial size Resolution proof of ϕn, and let fi be the
function mapping a truth assignment to the i-th bit of the bitstring indexing the falsified
clause found by the proof. By construction, each fi has a conjunction DAG of size poly(n).
Given decision trees for f1, . . . , fℓ, we can construct a decision tree solving the falsified clause
problem of size

∏
i DTSize(fi). Since this product must be at least 2Ω(n), we conclude that

maxi DTSize(fi) = 2Ω(n/ log n).

4.4 Gadget classification
For the case of conjunction DAGs, we can generalize Theorem 2:

▶ Theorem 8. Let f ⊆ {0, 1}×V be a relation and g : {0, 1}m → {0, 1} be a resistant gadget.
If there is a conjunction DAG of size S computing f ⋄ g, then there is a conjunction DAG of
width O(log S) computing f .

Moreover, for conjunction DAGs we can prove an analogue of Theorem 4:

▶ Theorem 9. Let f ⊆ {0, 1}×V be a relation and g : {0, 1}m → {0, 1} be a weakly resistant
gadget. If there is a conjunction DAG for f ⋄ g with S leaves, then the certificate complexity
of f is at most O(log S).

CCC 2024

9:12 Lifting Dichotomies

Note that Theorem 9 gives us a lifting from certificate complexity to leaf size. Unfortunately,
in the case of the falsified clause problem for CNF, this theorem cannot be effectively used to
prove lower bounds since leaf size is usually small as well as certificate complexity. However,
this theorem still implies a dichotomy result similar to one in Theorem 7.

▶ Theorem 10. For every gadget g : {0, 1}m → {0, 1}, one of the following cases holds:
1. There exists an infinite family of functions fn such that fn ⋄ g can be computed with

a conjunction DAG having O(n) leaves, but C(fn) = Ω(n).
2. For every relation f , if we have a conjunction DAG for f ⋄ g with S leaves, then the

certificate complexity of f is at most O(log S).

5 Decision tree depth to parity decision tree depth and size

In this section, we are going to classify gadgets in the context of decision tree depth to parity
decision tree depth and size lifting. We start by restating recent result of Chattopadhyay et
al. [6]. After that we are going to state the “minimum weight lemma” (Lemma 13) that is a
technical tool we will use multiple times throughout this section and the following one. We
use this lemma to prove the lifting from certificate complexity to parity certificate complexity
with OR gadget, which is the most challenging case in the classification. Finally, we will
discuss an alternative and much simpler proof for the lifting from decision tree depth to
parity decision tree depth using degree and sparsity. In some sense, this proof should give
us a better exponent for the decision tree lifting. The main point of considering certificate
complexity lifting is that there is a non-trivial upper bound for OR gadget showing that it
is impossible to prove a linear lifting in this setting (see Theorem 14). As a byproduct, we
get a proof of the log-rank conjecture for the class of functions that can be represented as
f ⋄OR ⋄XOR.

5.1 Stifling gadgets
Chattopadhyay et al. [6] defined the following notion.

▶ Definition 11. A function g : {0, 1}m → {0, 1} is k-stifling if for every set of k coordinates
and b ∈ {0, 1} there is a way to set the remaining m− k coordinates so that the output is b

(regardless of the value of the chosen k coordinates). A function is stifling if it is 1-stifling.

Chattopadhyay et al. [6] showed that if g is stifling then log DTSize⊕(f ⋄ g) = Θ(DT(f)),
where the hidden constant can depend on g. See the full version of this paper [2] for an
exposition of their proof.

5.2 Minimum weight lemma
A parity certificate C is a system of affine equations, so it can be represented by a matrix M

and a vector v that define a linear subspace.

▶ Definition 12. A minimum weight of a parity certificate C is the minimum Hamming
weight of non-zero vectors in the row space of M .

For example, one can consider a certificate {x + y = 1, x + y + z = 0}. The minimum weight
of this certificate is equal to 1 and this corresponds to the equation z = 1. On the other
hand, the minimum weight of a certificate {x + y = 1, x + z = 0} is equal to 2.

The following lemma is a key tool that we will use both in Section 5 and in Section 6.
This lemma shows that if the certificate complexity of some function f is large enough in
comparison to the parity certificate complexity of the lifted function f ⋄ g at some input,

Y. Alekseev, Y. Filmus, and A. Smal 9:13

then there is a substitution such that the minimal parity certificate of f ⋄ g at this input has
large Hamming weight. Informally, this means that we can make a small enough substitution,
such that the preimage of the parity certificate after the substitution will contain the points
that we are interested in.

▶ Lemma 13 (minimal weight lemma). For functions f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1}, suppose that f ⋄ g has a parity certificate complexity at most k at some point x. Let
K be a parameter. If certificate complexity of f at gn(x) is greater than k ·K then we can
find a blockwise partial assignment σ to the inputs of f ⋄ g consistent with x, such that for
some k′ ≤ k:

(f ⋄ g)|σ has a parity certificate of size k′ at x|σ whose minimum weight is at least K,
C

(
f |gn(σ), gn(x)|gn(σ)

)
> k′K.

5.3 OR gadget
5.3.1 Separation
Chattopadhyay et al. [6] showed that C⊕(f ⋄ g) = Θ(C(f)) whenever g is stifling. This
no longer holds when g is binary OR. The following theorem shows that there is at least
a quadratic gap for OR gadget in the certificate to parity certificate complexity lifting.

▶ Theorem 14. Let n = m2, and let f : {0, 1}n → {0, 1} be the function that accepts an
m×m Boolean matrix iff it has no rows of Hamming weight 1.
1. C(f) = n,
2. C⊕(f ⋄OR) ≤ 2m.

Note that if we assume that the lifting result of [6] holds for the OR gadget as well then
the quadratic separation is tight.

▶ Proposition 15. Suppose that DT⊕(f ⋄OR) = Θ(DT(f)) for all f . Then every function
f satisfies C(f) = O(C⊕(f ⋄OR)2).

5.3.2 Lifting
Given Lemma 13 we prove the following lifting theorem for the certificate complexity.

▶ Theorem 16. For every function f : {0, 1}n → {0, 1}, we have C(f) = O(C⊕(f ⋄OR)3).

This theorem leads us to the following natural question: can we improve this bound from
cubic to quadratic, so the bound matches the separation provided by Proposition 15?

5.4 AND/OR gadgets
A function g : {0, 1}m → {0, 1} affine projects to a function h : {0, 1}p → {0, 1} if there are
affine functions ℓ1, . . . , ℓm : Zp

2 → Z2 such that

g(ℓ1(z), . . . , ℓm(z)) = h(z).

A gadget g : {0, 1}m → {0, 1} is AND/OR if it affine projects to both binary AND and
binary OR. Here are some examples of AND/OR gadgets:

g(x, y, z) := x ∨ (y ∧ z). The projections: g(0, a, b) = a ∧ b and g(a, b, 1) = a ∨ b.
g(x, y, z) := [x + y + z = 1]. The projections: g(1, ā, b̄) = a ∧ b and g(ā, b̄, a⊕ b) = a ∨ b.

▶ Theorem 17. If g is an AND/OR gadget then for all functions f : {0, 1}n → {0, 1}

log DTSize⊕(f ⋄ g) ≥ C(f).

CCC 2024

9:14 Lifting Dichotomies

5.5 Gadget classification

We use the following lemma to classify gadgets which are not AND/OR.

▶ Lemma 18. If g is not an AND/OR then g is a disjunction or a conjunction of affine
forms in the inputs.

Using these facts we prove the following classification of gadgets.

▶ Theorem 19. For every gadget g, one of the following cases holds:
1. There is an infinite family of functions fn with DT(fn)→∞ and DTSize⊕(fn ⋄ g) = O(1).
2. For every function f , DT⊕(f ⋄ g) = Ω

(
DT(f)Ω(1)). There is an infinite family of

functions fn with DT(fn)→∞ and DTSize(fn ⋄ g) = O(DT(f)).
3. For every function f , log DTSize⊕(f ⋄ g) = Ω

(
DT(f)Ω(1)) and C⊕(f ⋄ g) = Ω

(
C(f)Ω(1)).

The first case of theorem corresponds to affine or constant gadgets, the second case
corresponds to gadgets that affine project to either AND or OR, and the third case corresponds
to AND/OR gadgets.

5.6 Lifting for OR gadget and the log-rank conjecture

In this section, we discuss a proof of the following inequality:

▶ Theorem 20. For any function f : {0, 1}n → {0, 1},

DT(f) ≤ O
(

DT⊕(f ⋄OR)O(1)
)

.

This inequalty is a corollary of Theorem 16 using the fact that DT is polynomially related
to C, and DT⊕ is polynomially related to C⊕. In [2], we present an alternative proof of
this statement that gives as a byproduct a proof of the log-rank conjecture for a subclass of
Boolean functions that can be represented as f ⋄OR ⋄XOR for arbitrary function f .

In this section, we need a composition of a function and a gadget (XOR in this case)
in the communication complexity context. For a function f : {0, 1}n → {0, 1} we define
a function f⊕ : {0, 1}n × {0, 1}n → {0, 1}, such that f⊕(x, y) := f(x1 ⊕ y1, . . . , xn ⊕ yn), and
associate it with the following communication problem: Alice and Bob are given x and y,
respectively, and their goal is to compute f(x, y). For a subclass of such XOR functions, we
prove the following version of log-rank conjecture:

▶ Theorem 21. For any function f : {0, 1}n → {0, 1},

D((f ⋄OR)⊕) ≤ poly(log rank((f ⋄OR)⊕).

The proof is due to the following chain of inequalities.

▶ Lemma 22. For any function f : {0, 1}n → {0, 1},

DT(f) ≤ 2 deg(f)4 ≤ O((log spar(f ⋄OR))4) = O((log rank((f ⋄OR)⊕))4)
≤ O(D((f ⋄OR)⊕)4) ≤ O(DT⊕(f ⋄OR)4).

Y. Alekseev, Y. Filmus, and A. Smal 9:15

6 Block sensitivity to communication complexity

In this section, we provide a complete classification of gadgets for lifting from block sensitivity
to deterministic and randomized communication complexities. Note that this classification
will also give us a classification of gadgets for query-to-communication polynomial lifting
since block sensitivity and query complexity are polynomially related to each other in the
case of total functions. However, since the proof goes through block sensitivity, we will
classify block sensitivity to communication complexity lifting.

6.1 Reductions in communication complexity
Let fi : Xi × Yi → {0, 1} for i = 1, 2 be two-party functions. We say that f1 reduces to f2,
denoted f1 ≤ f2, if the communication matrix of f1 is a submatrix of the communication
matrix of f2. Equivalently, f1 ≤ f2 iff there exist one-to-one mappings πA and πB such that

f1(x, y) = f2(πA(x), πB(y)), ∀(x, y) ∈ X1 × Y1.

Zhang [22] proved the following theorem:

▶ Theorem 23 (Zhang). If a two-party gadget g : X × Y → {0, 1} satisfies AND, OR ≤ g,
then for every function f : {0, 1}n → Q, the function f ⋄ g has (constant error) randomized
communication complexity Ω(bs(f)).

For the classification of gadgets, we will need the following lemma that shows that if
OR ≰ g then the communication matrix of g is block diagonal.

▶ Lemma 24. If g : X × Y → {0, 1} satisfies that OR ≰ g then there are partitions of X
and Y into disjoint sets

X = X0 ⊔ X1 ⊔ · · · ⊔ Xk and Y = Y0 ⊔ Y1 ⊔ · · · ⊔ Yk,

such that
If x ∈ Xi, y ∈ Yj, where i ̸= j, or i = 0, or j = 0, then g(x, y) = 0.
If x ∈ Xi, y ∈ Yi, where i ̸= 0, then g(x, y) = 1.

▶ Definition 25. We say that a gadget g : X × Y → {0, 1} is a blow-up of a gadget
h : Z × W → {0, 1} if there are decompositions X =

⊔
z∈Z Xz and Y =

⊔
w∈W Yw, with

Xz,Yw ̸= ∅, such that all (xz, yw) ∈ Xz × Yw satisfy g(xz, yw) = h(z, w).

For example, g is a blow-up of XOR if (up to rearrangement) it has communication
matrix of the following form

1 · · · 1 0 · · · 0
...

. . .
...

...
. . .

...
1 · · · 1 0 · · · 0
0 · · · 0 1 · · · 1
...

. . .
...

...
. . .

...
0 · · · 0 1 · · · 1

If g is a blow-up of h then f ⋄ g and f ⋄h have the same communication complexity in all

models. Indeed, on the one hand, h is a restriction of g, and so a protocol for f ⋄ g can be
used to solve f ⋄h; and on the other hand, by replacing x ∈ Xz by z and y ∈ Yw by w, we
can use a protocol for f ⋄h to solve f ⋄ g.

CCC 2024

9:16 Lifting Dichotomies

▶ Corollary 26. If g : X × Y → {0, 1} satisfies both OR ̸≤ g and AND ̸≤ g then either g is
constant, or it is a blow-up of XOR.

▶ Corollary 27. If g : X × Y → {0, 1} satisfies both OR ̸≤ g and XOR ̸≤ g then either g is
constant, or it is a blow-up of AND. Similarly, if AND ̸≤ g and XOR ̸≤ g then either g is
constant, or it is a blow-up of OR.

6.2 Gadget classification for randomized communication complexity

In this section we state the following dichotomy result for the randomized case.

▶ Theorem 28. For every gadget g, one of the following cases holds:
1. There is an infinite family of functions fn with bs(fn) = Ω(n) and R(fn ⋄ g) = O(log n).
2. For every function f , we have R(f ⋄ g) = Ω

(
bs(f)Ω(1)).

The second case in the theorem corresponds to AND/OR gadgets, it holds due to
Theorem 23. The first case is due to the following lemma.

▶ Lemma 29. Let g, h : X × Y → {0, 1} be gadgets such that OR ≰ g and AND ≰ h. Then

R(ANDn ⋄ g) = O(log n), R(ORn ⋄h) = O(log n).

6.3 Gadget classification for deterministic communication complexity

The following lifting theorem that implies the classification theorem.

▶ Theorem 30. If a two-party gadget g : X × Y → {0, 1} satisfies AND, XOR ≤ g, then
for every function f : {0, 1}n → {0, 1}, the function f ⋄ g has communication complexity
Ω(bs(f)k) for some fixed constant k > 0. The same is true if g satisfies OR, XOR ≤ g.

Together with Theorem 23 this gives us a complete classification of gadgets.

▶ Theorem 31. For every gadget g, one of the following cases holds:
1. There is an infinite family of functions fn with bs(fn) = Ω(n) and D(fn ⋄ g) = O(1).
2. For every function f , we have D(f ⋄ g) = Ω

(
bs(f)Ω(1)).

If AND, OR ≤ g, or AND, XOR ≤ g, or OR, XOR ≤ g, then Theorem 23 and Theorem 30
show that D(f ⋄ g) = Ω

(
bs(f)Ω(1)), so the second case holds.

If none of these cases holds, then at least two of the functions AND, OR, XOR do
not reduce to g. Corollaries 26 and 27 show that either g is constant (and so the first
case trivially holds) or it is a blow-up of one of the functions XOR, OR, AND. By taking
fn = XORn, ORn, ANDn (respectively), we get the first case of the theorem.

7 Open problems

Matching lower and upper bounds for the certificate complexity lifting

Theorem 14 shows that one there is a function f such that C(f) ≥ Ω(C⊕(f ⋄OR)2).
However, Theorem 16 shows only that C(f) ≤ O(C⊕(f ⋄OR)3). Can we show that
C(f) ≤ O(C⊕(f ⋄OR)2)?

Y. Alekseev, Y. Filmus, and A. Smal 9:17

Generalization of current results to relations

Almost all the results discussed above were proved for Boolean functions. However, the
question of proving lifting dichotomies for relations is still open.

One motivation for studying relations instead of functions is the following: any tree-like
Resolution refutation of a CNF formula corresponds to a decision tree, solving the falsified
clause problem for this CNF (which is usually a relation rather than Boolean function).
Similarly, any tree-like Res(⊕) refutation of some CNF formula corresponds to a parity
decision tree, solving the falsified clause problem for this CNF. So, any lifting theorem from
decision trees to parity decision trees with constant size gadgets that holds for relations,
should give us a new way of proving tree-like Res(⊕) lower bounds.

Conjunction DAG to parity conjunction DAG lifting

A parity conjunction DAG is defined similarly to a conjunction DAG, with the following two
differences:

Queries are linear forms rather than variables.
Nodes are annotated by affine subspaces rather than partial assignments. The label
ρ(vb) of a child node vb, that is attached to the parent node v via an edge labeled b, is
a subspace of ρ(v) ∪ {ℓ← b}, where ℓ is the query in v.

Another possible direction of research is to prove a lifting theorem from conjunction DAG
size to parity conjunction DAG size. The motivation for this kind of lifting also comes from
the proof complexity. Dag-like Resolution refutation can be viewed as a conjunction DAG
and dag-like Res(⊕) refutation can be viewed as a parity conjunction DAG. So, proving
such lifting theorems for the relations with small enough gadgets can be used to prove lower
bounds for Res(⊕) refutations, which is a long-standing open problem in proof complexity.

References
1 Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential

separation between regular and general resolution. Theory Comput., 3:81–102, 2007. doi:
10.4086/toc.2007.v003a005.

2 Yaroslav Alekseev, Yuval Filmus, and Alexander Smal. Lifting dichotomies. Electron. Col-
loquium Comput. Complex., pages TR24–037, 2024. URL: https://eccc.weizmann.ac.il/
report/2024/037.

3 Paul Beame and Sajin Koroth. On disperser/lifting properties of the index and inner-product
functions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume
251 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ITCS.2023.14.

4 Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. J.
ACM, 48(2):149–169, March 2001. doi:10.1145/375827.375835.

5 Arkadev Chattopadhyay, Michal Koucký, Bruno Loff, and Sagnik Mukhopadhyay. Simulation
theorems via pseudo-random properties. Comput. Complex., 28(4):617–659, December 2019.
doi:10.1007/s00037-019-00190-7.

6 Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting to
parity decision trees via stifling, 2022. doi:10.48550/arXiv.2211.17214.

7 Susanna de Rezende, Or Meir, Jakob Nordstrom, Toniann Pitassi, Robert Robere, and Marc
Vinyals. Lifting with simple gadgets and applications to circuit and proof complexity. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 24–30,
November 2020. doi:10.1109/FOCS46700.2020.00011.

CCC 2024

https://doi.org/10.4086/toc.2007.v003a005
https://doi.org/10.4086/toc.2007.v003a005
https://eccc.weizmann.ac.il/report/2024/037
https://eccc.weizmann.ac.il/report/2024/037
https://doi.org/10.4230/LIPICS.ITCS.2023.14
https://doi.org/10.1145/375827.375835
https://doi.org/10.1007/s00037-019-00190-7
https://doi.org/10.48550/arXiv.2211.17214
https://doi.org/10.1109/FOCS46700.2020.00011

9:18 Lifting Dichotomies

8 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from Resolution. Theory Comput., 16:Paper No. 13, 30, 2020. doi:10.4086/toc.2020.
v016a013.

9 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM Journal on Computing, 45(5):1835–1869, 2016. doi:10.1137/
15M103145X.

10 Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity.
SIAM J. Comput., 47(5):1778–1806, 2018. doi:10.1137/16M1082007.

11 Mika Göös, Toniann Pitassi, and Thomas Watson. Deterministic communication vs. partition
number. SIAM Journal on Computing, 47(6):2435–2450, 2018. doi:10.1137/16M1059369.

12 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
132–143, 2017. doi:10.1109/FOCS.2017.21.

13 Hamed Hatami, Kaave Hosseini, and Shachar Lovett. Structure of protocols for XOR functions.
SIAM J. Comput., 47(1):208–217, 2018. doi:10.1137/17M1136869.

14 Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communica-
tion complexity hardness to time-space trade-offs in proof complexity [extended abstract]. In
STOC’12 – Proceedings of the 2012 ACM Symposium on Theory of Computing, pages 233–247.
ACM, New York, 2012. doi:10.1145/2213977.2214000.

15 Alexander Knop, Shachar Lovett, Sam McGuire, and Weiqiang Yuan. Log-rank and lifting for
AND-functions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2021, pages 197–208, New York, NY, USA, 2021. Association for Computing
Machinery. doi:10.1145/3406325.3450999.

16 Shachar Lovett. Communication is bounded by root of rank. J. ACM, 63(1), February 2016.
doi:10.1145/2724704.

17 Shachar Lovett, Raghu Meka, Ian Mertz, Toniann Pitassi, and Jiapeng Zhang. Lifting with
Sunflowers. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Science
Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 104:1–104:24, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ITCS.2022.104.

18 László Lovász and Michael Saks. Lattices, mobius functions and communications complexity.
In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science, pages
81–90, 1988. doi:10.1109/SFCS.1988.21924.

19 Ran Raz and Pierre Mckenzie. Separation of the monotone NC hierarchy. Combinatorica, 19,
September 1999. doi:10.1007/s004930050062.

20 Alexander A. Sherstov. On quantum-classical equivalence for composed communication
problems. Quantum Inf. Comput., 10(5-6):435–455, 2010.

21 Alasdair Urquhart. The depth of resolution proofs. Studia Logica: An International Journal
for Symbolic Logic, 99(1/3):349–364, 2011. URL: http://www.jstor.org/stable/41475208.

22 Shengyu Zhang. On the tightness of the Buhrman–Cleve–Wigderson simulation. In Proceedings
of the 20th International Symposium on Algorithms and Computation, ISAAC ’09, pages 434–
440, Berlin, Heidelberg, 2009. Springer-Verlag. doi:10.1007/978-3-642-10631-6_45.

23 Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of Boolean functions.
Theoretical Computer Science, 411(26):2612–2618, 2010. doi:10.1016/j.tcs.2010.03.027.

https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.4086/toc.2020.v016a013
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/15M103145X
https://doi.org/10.1137/16M1082007
https://doi.org/10.1137/16M1059369
https://doi.org/10.1109/FOCS.2017.21
https://doi.org/10.1137/17M1136869
https://doi.org/10.1145/2213977.2214000
https://doi.org/10.1145/3406325.3450999
https://doi.org/10.1145/2724704
https://doi.org/10.4230/LIPIcs.ITCS.2022.104
https://doi.org/10.1109/SFCS.1988.21924
https://doi.org/10.1007/s004930050062
http://www.jstor.org/stable/41475208
https://doi.org/10.1007/978-3-642-10631-6_45
https://doi.org/10.1016/j.tcs.2010.03.027

Explicit Directional Affine Extractors and Improved
Hardness for Linear Branching Programs
Xin Li #

Johns Hopkins University, Baltimore, MD, USA

Yan Zhong #

Johns Hopkins University, Baltimore, MD, USA

Abstract
Affine extractors give some of the best-known lower bounds for various computational models, such
as AC0 circuits, parity decision trees, and general Boolean circuits. However, they are not known to
give strong lower bounds for read-once branching programs (ROBPs). In a recent work, Gryaznov,
Pudlák, and Talebanfard (CCC’ 22) introduced a stronger version of affine extractors known as
directional affine extractors, together with a generalization of ROBPs where each node can make
linear queries, and showed that the former implies strong lower bound for a certain type of the
latter known as strongly read-once linear branching programs (SROLBPs). Their main result gives
explicit constructions of directional affine extractors for entropy k > 2n/3, which implies average-case
complexity 2n/3−o(n) against SROLBPs with exponentially small correlation. A follow-up work by
Chattopadhyay and Liao (CCC’ 23) improves the hardness to 2n−o(n) at the price of increasing
the correlation to polynomially large, via a new connection to sumset extractors introduced by
Chattopadhyay and Li (STOC’ 16) and explicit constructions of such extractors by Chattopadhyay
and Liao (STOC’ 22). Both works left open the questions of better constructions of directional
affine extractors and improved average-case complexity against SROLBPs in the regime of small
correlation.

This paper provides a much more in-depth study of directional affine extractors, SROLBPs, and
ROBPs. Our main results include:

An explicit construction of directional affine extractors with k = o(n) and exponentially small
error, which gives average-case complexity 2n−o(n) against SROLBPs with exponentially small
correlation, thus answering the two open questions raised in previous works.
An explicit function in AC0 that gives average-case complexity 2(1−δ)n against ROBPs with
negligible correlation, for any constant δ > 0. Previously, no such average-case hardness is
known, and the best size lower bound for any function in AC0 against ROBPs is 2Ω(n).

One of the key ingredients in our constructions is a new linear somewhere condenser for affine
sources, which is based on dimension expanders. The condenser also leads to an unconditional
improvement of the entropy requirement of explicit affine extractors with negligible error. We
further show that the condenser also works for general weak random sources, under the Polynomial
Freiman-Ruzsa Theorem in Fn

2 , recently proved by Gowers, Green, Manners, and Tao (arXiv’ 23).

2012 ACM Subject Classification Theory of computation → Expander graphs and randomness ex-
tractors; Theory of computation → Circuit complexity; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases Randomness Extractors, Affine, Read-once Linear Branching Programs,
Low-degree polynomials, AC0 circuits

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.10

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/058/

Funding Xin Li: Supported by NSF CAREER Award CCF-1845349 and NSF Award CCF-2127575.
Yan Zhong: Supported by NSF CAREER Award CCF-1845349.

Acknowledgements We thank anonymous reviewers for their helpful comments and a reviewer for
pointing us to [20].

© Xin Li and Yan Zhong;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lixints@cs.jhu.edu
https://orcid.org/0000-0002-9408-2451
mailto:yzhong36@jhu.edu
https://orcid.org/0009-0000-1960-833X
https://doi.org/10.4230/LIPIcs.CCC.2024.10
https://eccc.weizmann.ac.il/report/2023/058/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Directional Affine Extractors and Linear Branching Programs

1 Introduction

Randomness extractors are functions that extract almost uniform random bits from weak
random sources that have poor quality. Although the original motivation of randomness
extractors comes from bridging the gap between the quality of randomness required in
typical applications and that available in practice, as pseudorandom objects, they turn out
to have broad applications in computer science. For example, the kind of extractors known
as affine extractors are shown to be closely connected to complexity theory. Indeed, they
give strong size lower bounds for AC0 circuits (constant depth circuits with NOT gates and
unbounded fan-in AND, OR gates) by the standard switching lemma [23], and are shown
to give exponential size lower bounds for DNF circuits with a bottom layer of parity gates,
together with strong average-case hardness for parity decision trees [14]. Via sophisticated
gate elimination techniques, they also give the best-known size lower bounds for general
Boolean circuits [16, 18, 28]. We define affine extractors below.

▶ Definition 1 (Affine extractor). An (n, k) affine source is the uniform distribution over some
affine subspace with dimension k, of the vector space Fn

2 .1 A function Ext : {0, 1}n → {0, 1}m

is an affine extractor for entropy k with error ε if for every (n, k) affine source X, we have

Ext(X) ≈ε Um,

where Um stands for the uniform distribution over {0, 1}m, and ≈ε means ε close in statistical
distance. We say Ext is explicit if it is computable by a polynomial-time algorithm.

However, affine extractors are not known to imply strong lower bounds for computational
models that measure space complexity. For example, a natural model in this context is a
branching program, which is a directed acyclic graph with one source and two sinks, and
each non-sink node has out-degree 2. To define the computation of the branching program,
one marks each non-sink node with the index of an input bit, and labels the two outgoing
edges by 0 and 1, respectively. Furthermore, one sink is labeled by 1 and the other is labeled
by 0. The program now computes any input by following the natural path from the source
to one sink, while reading the corresponding input bits and going through the corresponding
edges. The program accepts the input if and only if the path ends in the sink with label 1,
and the size of the branching program is defined as the number of its nodes, which roughly
corresponds to 2O(s) where s is the space complexity of the computation.

Proving non-trivial lower bounds of an explicit function for general branching programs
turns out to be a challenging problem. The best known bound is Ω(n2

log2 n
) [33] after decades

of effort, which is not enough to separate P from LOGSPACE. Thus, most research on
lower bounds for branching programs has focused on restricted models, and the most well-
studied is the model of read-once branching program, where on any computational path,
any input bit is read at most once. Exponential lower bounds are known in this model
[41, 43, 17, 24, 27, 39, 36, 19, 5, 1, 26], however, it is not clear if affine extractors imply
strong lower bounds here. For example, the inner product is a good affine extractor for any
entropy k > n/2, but it can be computed by a read-once branching program of size O(n).

In a recent work [22], Gryaznov, Pudlák, and Talebanfard introduced a generalization of
affine extractors called directional affine extractors and a generalization of standard read-once
branching programs called read-once linear branching programs, and show that explicit
constructions of the former imply strong lower bounds for certain cases of the latter. We
define the two generalizations below.

1 More generally, affine sources and affine extractors can be defined over any finite field, but in this paper
we focus on the binary field F2.

X. Li and Y. Zhong 10:3

▶ Definition 2 (Directional affine extractor). A function DAExt : {0, 1}n → {0, 1}m is a
directional affine extractor for entropy k with error ε if for every (n, k) affine source X and
every non-zero vector a ∈ Fn

2 , we have

(DAExt(X), DAExt(X + a)) ≈ε (Um, DAExt(X + a)).

We say the function is a (zero-error) directional affine disperser if there exists some b ∈ {0, 1}m

such that∣∣∣Supp (DAExt(X) | DAExt(X + a) = b)
∣∣∣ = 2m.

▶ Remark 3. Our definition is slightly more general than the definition in [22], since we allow
the extractor to output more than one bits. In the special case of m = 1, our definition
implies that in [22], the reverse is also true up to a small loss in parameters as shown in [12].

▶ Definition 4 (Linear branching program [22]). A linear branching program on Fn
2 is a

directed acyclic graph P with the following properties:
There is only one source s in P .
There are two sinks in P , labeled with 0 and 1 respectively.
Every non-sink node v is labeled with a linear function ℓv : Fn

2 → F2. Moreover, there are
exactly two outgoing edges from v, one is labeled with 1 and the other is labeled with 0.

The size of P is the number of non-sink nodes in P . P computes a Boolean function
f : {0, 1}n → {0, 1} in the following way. For every input x ∈ Fn

2 , P follows the computation
path by starting from s, and when on a non-sink node v, moves to the next node following
the edge with label ℓv(x) ∈ {0, 1}. The computation ends when the path ends at a sink, and
f(x) is defined to be the label on this sink.

[22] defines two kinds of read-once linear branching programs (ROLBP for short). Spe-
cifically, given any linear branching program P and any node v in P , let Prev denote the
span of all linear queries that appear on any path from the source to v, excluding the query
ℓv. Let Postv denote the span of all linear queries in the subprogram starting at v.

▶ Definition 5 (Weakly read-once linear branching program). A linear branching program P

is weakly read-once if for every inner node v of P , it holds that ℓv /∈ Prev.

▶ Definition 6 (Strongly read-once linear branching program). A linear branching program P

is strongly read-once if for every inner node v of P , it holds that Prev ∩ Postv = {0}.

In this paper, we will focus on strongly read-once linear branching programs, and use
SROLBP as a shorthand. As observed in [22] and [12], even the more restricted SROLBPs
generalize several important and well-studied computational models, for example, decision
trees, parity decision trees, and standard read-once branching programs. These models have
applications in diverse areas, such as learning theory, streaming algorithms, communication
complexity and query complexity. Thus, just as the natural generalizations from AC0 circuits
to AC0[⊕] circuits (AC0 with parity gates), and from decision trees to parity decision trees,
studying the generalization from ROBPs to ROLBPs is also a natural direction. In addition,
as observed in [22], parity decision trees are the only case in AC0[⊕] for which we have strong
average-case lower bounds, and they are closely related to tree-like resolution refutation proof
systems. Thus studying ROLBPs as a generalization of parity decision trees is of particular
interest (in fact, this is the original motivation in [22]). We now define two complexity
measures of SROLBPs below.

CCC 2024

10:4 Directional Affine Extractors and Linear Branching Programs

▶ Definition 7. For a Boolean function f : {0, 1}n → {0, 1}, let SROLBP(f) denote the
smallest possible size of a strongly read-once linear branching program that computes f ,
and SROLBPε(f) denote the smallest possible size of a strongly read-once linear branching
program P such that

Prx←U Fn
2
[P (x) = f(X)] ≥ 1

2 + ε.

The definition can be adapted to ROBPs naturally.

The main contribution of [22] is to show that directional affine extractors give strong
average-case hardness for SROLBPs. Specifically, they show that for any directional affine
extractor DAExt for entropy k with error ε, we have SROLBP√

ε/2(DAExt) ≥ ε2n−k−1. In
addition, they give an explicit construction of directional affine extractor for k ≥ 2n

3 + c

with ε ≤ 2−c, which also implies exponential average-case hardness for SROLBPs of size
up to 2 n

3−o(n). Thus, directional affine extractors are indeed stronger than standard affine
extractors and give strong lower bounds in more computational models. [22] left open the
question of explicit constructions of directional affine extractors for k = o(n).

In a follow-up work, Chattopadhyay and Liao [12] showed that another kind of extractors,
known as sumset extractors, also give strong average-case hardness for SROLBPs. These
extractors were introduced by Chattopadhyay and Li [9], which are extractors that work for
the sum of two (or more) independent weak random sources. By using existing constructions
of such extractors in [11], they give an explicit function Ext such that SROLBPn−Ω(1)(Ext) ≥
2n−logO(1) n, i.e., the branching program size lower bound becomes close to optimal, but the
correlation increases from exponentially small to polynomially large. Similarly, [12] left open
the question of obtaining improved average-case hardness against SROLBPs in the small
correlation regime.

We remark that directional affine extractors are a special case of affine non-malleable
extractors, which are defined by Chattopadhyay and Li [10]. Roughly, an affine non-malleable
extractor is an affine extractor such that the output is still close to uniform, even conditioned
on the output of the extractor where the input affine source is modified by any affine function
with no fixed points.

In this context, directional affine extractors just correspond to the case where the
tampering function adds a non-zero affine shift to the source. Previously, the best affine
non-malleable extractor due to Li [32] works for entropy k ≥ (1 − γ)n for some small constant
γ < 1/3 with error 2−Ω(n). Thus this does not give a better construction of directional
affine extractors. However, [32] does give an improved sumset extractor, which yields an
explicit function Ext such that SROLBPε(Ext) ≥ 2n−O(log n) for any constant ε > 0, i.e., the
branching program size lower bound becomes optimal up to the constant in O(.), but the
correlation increases to any constant.

1.1 Our Results
In this paper, we present a much more in-depth study of directional affine extractors, affine
non-malleable extractors, SROLBPs, and standard ROBPs. To begin with, we observe that
it is not a prior clear that SROLBPs are more powerful than standard ROBPs. Indeed, it is
easy to see that AC0[⊕] and parity decision trees are exponentially more powerful than AC0

circuits and standard decision trees, respectively, since parity requires exponential size AC0

circuits and decision trees. However, any parity function can be computed by an ROBP of
size O(n). Nevertheless, there are previous works [34, 25, 20] which showed that computing

X. Li and Y. Zhong 10:5

explicit characteristic functions of certain affine subspaces require ROBPs of size 2Ω(n) (e.g.,
the satisfiable Tseitin formulas in [20]). Since such functions are easily computable by an
SROLBP of size O(n), this provides a separation between SROLBP and ROBP and shows
that indeed SROLBPs are exponentially more powerful than ROBPs.

In turn, this further demonstrates that directional affine extractors have stronger properties
than standard affine extractors, as they imply strong lower bounds for SROLBPs. Next, we
give explicit constructions of directional affine extractors with much better parameters than
that in [22]. Our construction works for any linear entropy with exponentially small error.

▶ Theorem 8. For any constant 0 < δ ≤ 1, there exists a family of explicit directional affine
extractors DAExt : {0, 1}n → {0, 1}m for entropy k ≥ δn with error ε = 2−Ω(n) and output
length m = Ω(n).

In fact, our construction can work for slightly sub-linear entropy.

▶ Theorem 9. There exists a constant c > 1 and an explicit family of directional affine
extractors DAExt : {0, 1}n → {0, 1}m for entropy k ≥ cn(log log log n)2/ log log n with error
ε = 2−nΩ(1) and output length m = nΩ(1), as well as an explicit family of directional affine
dispersers for entropy k ≥ cn(log log n)2/ log n with m = nΩ(1).

This theorem immediately gives much improved average-case hardness for SROLBPs.

▶ Theorem 10. There is an explicit function DAExt such that SROLBP2−nΩ(1) (DAExt) ≥

2n−Õ(n
log log n), where Õ(.) hides (log log log n)2 factors.

In particular, we can achieve exponentially small correlation while obtaining a 2n−o(n) size
lower bound for SROLBPs, which is almost optimal. This significantly improves the 2n/3−o(n)

size lower bound in [22] and the polynomially large correlation in [12]. Thus, Theorem 9 and
10 provide positive answers to the two open questions in [22] and [12] mentioned before.

We remark that under our new definition, a directional affine extractor is strictly stronger
than a standard affine extractor. Thus Theorem 9 also improves the entropy requirement of
negligible error affine extractors, from the previously best-known result of n√

log log n
[42, 29]

to cn(log log log n)2

log log n .
We also revisit the hardness results for standard ROBPs. As mentioned before, exponential

and even close to optimal size lower bounds are known for explicit functions in this model,
where the current best result is an explicit function that requires ROBPs (in fact, SROLBPs)
of size 2n−O(log n) [32]. However, there has also been a lot of interest in finding functions in
lower complexity classes that give strong lower bounds for ROBPs. It is clear that the class
NC0 is not sufficient. Thus the next possible class is AC0. Indeed there are previous works
giving explicit AC0 functions that require ROBPs of size 2Ω(

√
n)[24, 27, 19, 5] and even 2Ω(n)

[20], yet there is no average-case hardness as far as we know. Here, we improve both the
size lower bound and the average-case hardness by giving an explicit AC0 function that has
negligible correlation with ROBPs of size 2(1−δ)n for any constant δ > 0.

▶ Theorem 11. For any constant δ > 0 there is an explicit function AC0-Ext in AC0 such
that ROBP2−poly log n(AC0-Ext) ≥ 2(1−δ)n.

One of the key ingredients in our constructions is a new linear somewhere condenser for
affine sources. Specifically, we have

▶ Definition 12. For any 0 < δ < γ < 1, a function SCond : Fn
2 → (Fm

2)ℓ is a (δ, γ) affine
somewhere condenser, if it satisfies the following property: for any affine source X over Fn

2
with entropy δn, let (Y1, · · · , Yℓ) = SCond(X) ∈ (Fm

2)ℓ, then there exists at least one i ∈ [ℓ]
such that Yi is an affine source over Fm

2 with entropy at least γm.

CCC 2024

10:6 Directional Affine Extractors and Linear Branching Programs

▶ Theorem 13. There exists a constant β > 0 such that for any 0 < δ ≤ 1/2, there is an
explicit (δ, 1/2 + β) affine somewhere condenser SCond : Fn

2 → (Fm
2)t, where t = poly(1/δ)

and m = n/poly(1/δ). Moreover, SCond is a linear function.

We further show that (a slight modification of) this condenser works for general weak
random sources, under the well-known Polynomial Freiman-Ruzsa Theorem in Fn

2 , once one
of the most important conjectures in additive combinatorics and very recently proved by
Gowers, Green, Manners, and Tao [21].

Previously, all condensers of this kind are based on sum-product theorems, and the function
is a polynomial with degree poly(1/δ) [3, 38, 44]. In contrast, there exist constructions of
linear seeded extractors, where if one lists the outputs of the extractor for all possible seeds,
then we get a somewhere random source such that at least one output is close to uniform, and
the function is a linear function. However, in many applications such as ours, one needs to use
a somewhere condenser instead of simply listing all outputs of an extractor, since the former
only gives a small number (e.g., a constant) of outputs as opposed to poly(n) outputs from
the extractor. Hence, our linear somewhere condenser complements the existing sum-product
theorem based somewhere condensers. Moreover, our construction of the condenser is based
on dimension expanders, which are algebraic pseudorandom objects previously studied based
on their own interests, with no clear applications in computer science as far as we know.
Thus, our construction can be viewed as one of the first applications of dimension expanders
in computer science.

Finally, we study the question of whether directional affine extractors can give strong
lower bounds for the class of AC0[⊕] in a black box way. Cohen and Tal [15] showed via
probablistic methods that standard affine extractors do not suffice since depth-3 AC0[⊕]
circuits can compute optimal affine extractors. Using a slightly modified argument as that
in [15], we show that even the stronger version of directional affine extractors does not suffice.
Specifically, depth-3 AC0[⊕] circuits can also compute optimal directional affine extractors.
This in turn provides a strong separation of AC0[⊕] from SROLBP.

▶ Theorem 14. There exists a function f : {0, 1}n → {0, 1} which is a directional affine
extractor for entropy k with error ε, where k = log n

ε2 + log log n
ε2 + O(1) such that the

following properties hold.
1. f is a polynomial of degree log n

ε2 + log log n
ε2 + O(1).

2. f can be realized by a XOR-AND-XOR circuit of size O((n/ε)2 · log3(n/ε)).
3. f can be realized by a De Morgan formula of size O((n5/ε2) · log3(n/ε)).

2 Overview of the Techniques

Here we give a sketch of the main ideas used in this paper. For clarity, we shall be informal
at places and ignore some technical details.

2.1 Directional affine extractors
Our starting point is the construction of affine extractors by Li [29], which works for sub-linear
entropy with exponentially small error. We first briefly recall the construction there. Divide
an affine source X of entropy rate δ into O(1/δ) blocks. By choosing the size of the blocks
appropriately, one can show that there exists a “good” block Xg of entropy rate Ω(δ), and the
source X still has a lot of entropy conditioned on Xg (i.e., we get an affine block source). If
we know the position of Xg, randomness extraction is easy: we apply a somewhere condenser
(e.g., those in [3, 38, 44]) to condense Xg into a matrix with a constant number of rows,

X. Li and Y. Zhong 10:7

such that at least one row has entropy rate 1 − δ/2. At this point, we can apply a linear
two-source extractor (e.g., the inner product function) to each row of the matrix and the
source X to get an affine somewhere random source, conditioned on the fixing of Xg. This
is another matrix with a constant number of rows, such that at least one row is uniform,
and one can apply existing techniques to deterministically extract random bits from this
source [37].

However, when δ is small, we don’t know which block Xg is good. Thus in [29], the
construction tries all blocks, and then combines them together. To make this process work,
the construction crucially maintains the following property: (*) for each block Xi, the output
bits produced from this block are constant degree polynomials of the input bits, and the
degrees decrease geometrically from the first block to the last block. With this property,
the analysis goes by focusing on the first good block Xg. Notice that we can fix all the
outputs produced from blocks before Xg, while all outputs produced from blocks after Xg

have degrees less than those from Xg. Thus if we take the XOR of all these outputs, an XOR
lemma of polynomials [40, 4] guarantees the final output is still close to uniform. We note
that the XOR lemma of polynomials only works for degree up to log n. Hence it is important
to keep the degree c of the outputs from each block to be as small as possible. Roughly, we
will need cO(1/δ) < log n.

Our strategy now is to adapt this construction to directional affine extractors. Towards
this, we use techniques from constructions of non-malleable extractors since, as we remark
before, directional affine extractors are a special case of affine non-malleable extractors.
Recent constructions of non-malleable extractors usually consist of two steps: first, generate
a small advice that is different from the tampered version with high probability, and then use
the advice together with other tools (e.g., correlation breakers) to achieve non-malleability.
Thus, our goal is to adapt these two steps to directional affine extractors while, at the same
time, still maintaining property (*), which is crucial to achieving any linear entropy or slightly
sub-linear entropy. We now explain both steps.

As before, for each block Xi we will get an output Ui, which is close to uniform if Xi is a
good block. Divide Ui into two parts Ui = Ui1 ◦ Ui2. We will use Ui1 to generate the advice
and Ui2 for the rest of the construction. Notice that from the tampered input X ′ = X + a

we also have a tampered version U ′i = U ′i1 ◦ U ′i2. In the following, we will always use letters
with prime to denote the corresponding random variables produced from the tampered input.
If Ui1 ̸= U ′i1 then we are done, otherwise we use Ui1 = U ′i1 to sample some Ω(δ2n) bits Hi

from an encoding of X, using an asymptotically good binary linear code. Since X ′ = X + a,
we have that Hi + H ′i basically corresponds to the sampled bits from the encoding of a. Thus
Hi ̸= H ′i with high probability by the distance of the linear code. However, we cannot just do
sampling naively since we need to keep the degree to be a constant. Therefore, we also divide
both Ui1 and the encoding of X into Ω(δ2n) blocks where each block contains a constant
number of bits, and use each block of Ui1 to sample one bit from the corresponding block
of the encoding of X. By the distance property of the code, there are Ω(δ2n) blocks of the
encoding of X and X ′ that are different. Thus we still have Hi ̸= H ′i with high probability,
and now each bit of Hi is a constant degree polynomial of the bits of Ui1 and X. The advice
string is now Ui1 ◦ Hi.

Once we have the advice, we can append it to another string extracted from X by
using a linear seeded extractor and Ui2 as the seed. Now notice that the string produced
from X is different from the string produced from X ′ with high probability, and they are
linearly correlated conditioned on the fixing of (Ui, U ′i). Thus we can apply, for example,
a known affine non-malleable extractor (the state-of-the-art affine non-malleable extractor

CCC 2024

10:8 Directional Affine Extractors and Linear Branching Programs

with negligible error only works for high entropy). However, the known construction of affine
non-malleable extractor in [10] has super constant degree. Indeed, even one application of
this extractor results in a polynomial of degree larger than log n, which already defeats our
purpose to get a directional affine extractor (we can still get a directional affine disperser,
though).

To solve this problem, we develop new ideas that make use of the special structure of
X ′ = X + a. Recall that in our construction, for every block Xi we get a Ui2, which is close
to uniform if Xi is good, and X still has enough entropy conditioned on Xi. Our idea now is
to use a seeded non-malleable extractor snmExt instead, which is an extractor with a uniform
random seed, such that if an adversary tampers with the seed but not the source, then the
output of the extractor on the original inputs is close to uniform given the output on the
tampered inputs. By appending the advice string to Ui2 and getting Ũi = Ui ◦ Hi, we have
Ũi ̸= Ũ ′i with high probability, and the seed Ũi has high entropy if Hi has small size, which
suffices for the seeded non-malleable extractor as long as the extractor is strong. Now, if
the seeded non-malleable extractor is also linear conditioned on any fixing of the seed, then
we have snmExt(X ′, Ũ ′i) = snmExt(X, Ũ ′i) + snmExt(a, Ũ ′i). Since snmExt(X, Ũi) is close to
uniform given snmExt(X, Ũ ′i) (because it is a non-malleable extractor), and the extractor is
strong (we can fix the seeds (Ũi, Ũ ′i)), this implies that snmExt(X, Ũi) is close to uniform
given snmExt(X ′, Ũ ′i). 2

Luckily, there are previous constructions of linear seeded non-malleable extractors due to
Li [30], which are based on the inner product function. Moreover, this extractor also has
the property that each output bit is a constant degree polynomial of the input bits. Thus
everything seems to work out, except for one problem: the non-malleable extractor in [30]
only works when the source has entropy rate > 1/2, but here our goal is to work for any linear
(or slightly sub-linear) entropy. A natural idea would be to use the somewhere condenser
(e.g., in [3, 38, 44]) to boost the entropy rate of X. However, all known condensers of this
kind are based on sum-product theorems, which are non-linear functions, and applying them
changes the structure of X ′ = X + a, which is important for our construction. Another idea
is to apply a linear seeded extractor to X and try all possible seeds. This indeed keeps the
structure of X ′ = X + a, but will result in a poly(n) number of outputs, and combining them
together will result in a polynomial of large, super constant degree.

This motivates another key ingredient in our construction, a new linear somewhere
condenser for affine sources. In short, we construct a linear function which, given any affine
source on n bits with entropy rate 0 < δ ≤ 1/2, outputs poly(1/δ) rows such that each
row has n/poly(1/δ) bits, and at least one row has entropy rate 1/2 + β for some absolute
constant β > 0. This complements the sum-product based somewhere condensers, and can
be viewed as a separate contribution of our work. We will explain the construction of this
condenser later, but finish the description of our directional affine extractor here, assuming
that we have the linear somewhere condenser.

The rest of the construction roughly goes as follows. We apply the linear somewhere
condenser to the source X to get a constant number of rows, then apply snmExt to each row
using Ũi as the seed. Thus we get a constant number of outputs such that at least one of
them is close to uniform conditioned on the corresponding tampered output. Now we apply
an affine correlation breaker such as those in [31, 8, 11] to further break the correlations
between different outputs, and combine these outputs together by taking the XOR. The

2 The actual analysis involves more details since here X is not independent of (Ũi, Ũ ′
i), but the property

still holds due to the affine structure. We omit the details here.

X. Li and Y. Zhong 10:9

correlation breaker guarantees that the final output is close to uniform conditioned on the
tampered output. To keep the degree small, we need to replace all seeded extractors used in
the correlation breaker with a constant degree linear seeded extractor in [29]. This keeps
the output bits to be constant degree polynomials of the input bits, and the remaining
construction is essentially the same as that in [29].

2.2 Linear somewhere condenser
We now describe our construction of the linear somewhere condenser. This is based on another
pseudorandom object known as dimension expander. Informally, a dimension expander is a set
of linear mappings from a vector space Fn to itself, such that for any linear subspace V ⊂ F n

with small dimension k ≤ n/2, the span of the union of all the images of V under the set of
linear mappings has dimension at least (1 + α)k for some absolute constant α > 0. Readers
familiar with expander graphs can see that this is a linear algebraic analog of expander graphs.
Thus, it is desirable to give explicit constructions of the set of linear mappings which has as
few number of mappings as possible, where this number d is called the degree. Dimension
expanders were first introduced by Barak, Impagliazzo, Shpilka, and Wigderson [2], who also
showed the existence of such objects. Later, Bourgain and Yehudayoff [6, 7] gave explicit
constructions of dimension expanders with degree d = O(1) over any field. Interestingly,
as far as we know, there are no previous applications of dimension expanders in computer
science, and they are mainly studied based on their own interests and connections to other
algebraic pseudorandom objects. Thus our construction can be viewed as one of the first
applications of dimension expanders in computer science.

Given an explicit dimension expander {Ti}i∈[d] where each Ti is a linear mapping, and any
affine source X with entropy rate δ ≤ 1/2, we first construct a basic somewhere condenser as
follows. Divide X equally into X = X1 ◦ X2, and our condenser produces 2d + 2 outputs:
(X1, X2, {X1 + Ti(X2)}i∈[d], {Ti(X1) + X2}i∈[d]). We show that at least one output has
entropy rate (1 + γ)δ for some constant γ > 0, and we give some intuition below. By
the structure of affine sources, one can show that there exists another affine source X3
independent of X1 such that X2 = X3 + L(X1) for some linear function L. Let H(X1) = s,
H(X3) = r and H(L(X1)) = t, then we have s + r = δn. If either s or r is small, e.g.,
s ≪ δn/2, then we must have r ≫ δn/2 and thus H(X2) = r + t ≥ (1 + γ)δn/2. Therefore
the entropy rate of X2 is at least (1 + γ)δ. The case of r ≪ δn/2 is similar. Hence, we only
need to consider the case where s ≈ δn/2 and r ≈ δn/2, and notice that we must have either
s ≤ δn/2 or r ≤ δn/2. Furthermore, in this case, t must be small, since otherwise, we would
again have H(X2) = r + t ≥ (1 + γ)δn/2.

For simplicity, assume that s = r = δn/2, and t = 0. Hence both X1 and X2 have
entropy rate δ ≤ 1/2, and they are independent. Without loss of generality, assume the
supports of both X1 and X2 are linear subspaces. By the property of the dimension expander,
Span(∪i∈[d]Ti(X1)) has dimension at least (1 + α)δn/2. We now argue that there exists an
i ∈ [d] such that the support of Ti(X1) + X2 has dimension at least (1 + α/d)δn/2, which
implies that Ti(X1) + X2 has entropy rate at least (1 + α/d)δ. To see this, assume otherwise,
then for any i ∈ [d], any vector in the support of Ti(X1) + X2 can be expressed as a linear
combination of the r = δn/2 basis vectors in the support of X2 and < (α/d)δn/2 other vectors.
This implies that Span(∪i∈[d]Ti(X1)) has dimension < δn/2 + d · (α/d)δn/2 = (1 + α)δn/2,
since any vector in Span(∪i∈[d]Ti(X1)) can be expressed as a linear combination of the
r = δn/2 basis vectors in the support of X2 and < d · (α/d)δn/2 other vectors. This
contradicts the property of the dimension expander.

CCC 2024

10:10 Directional Affine Extractors and Linear Branching Programs

Thus, in all cases, we get the desired entropy rate boost. Our final somewhere condenser
involves repeated uses of the basic condenser, as in previous works. It is easy to see that
the entropy rate of at least one output will increase to 1/2 + β for some absolute constant
β > 0 after O(log(1/δ)) uses of the basic condenser. The number of outputs is, therefore,
poly(1/δ) and each output has n/poly(1/δ) bits. Finally, it is clear that the condenser is a
linear function.

Once we have this linear condenser, we can even replace the somewhere condensers used
in [29] by the new condenser. This further reduces the degree of the polynomials of the
output bits (since previous somewhere condensers are polynomials instead of linear functions).
Therefore we can push the entropy requirement of our directional affine extractor to be even
better than that in [29], from n√

log log n
to cn(log log log n)2

log log n .
We show that a slight modification of our linear condenser also works for general weak

random sources, under the Polynomial Freiman-Ruzsa Theorem. Roughly, the idea is to use
a careful analysis of subsources and collision probability. Specifically, it is known that if the
collision probability of a distribution is small, then the distribution is close to having high
min-entropy. On the other hand, if the collision probability is large, then (without loss of
generality) assuming the distribution is the uniform distribution over some unknown subset,
existing results in additive combinatorics imply that there is a large subset A in the support
of the distribution such that the size of A + A is not much larger than A. The Polynomial
Freiman-Ruzsa Theorem then implies that there is another large subset A′ ⊂ A which is
“close” to an affine subspace, which roughly reduces the analysis to the case of affine sources.

2.3 AC0 average-case hardness for ROBPs
To show AC0 average-case hardness for ROBPs, we use a standard observation that if one
conditions on an inner node, then the input bits priori to this node and the input bits after
this node are still independent. We then construct an appropriate extractor in AC0, which
we call AC0-Ext, for sources with such a structure. Specifically, given any ROBP of size s and
any constant δ > 0, we can find a cut or anti-chain (a maximal subset of vertices such that
none of which is an ancestor of any other vertex) of size O(s) at roughly depth δn above the
sinks, so that conditioned on the fixing of any vertex in the cut, the input uniform random
string X now becomes two independent weak sources A and B, where A corresponds to the
first part of the program and B corresponds to the second part. Since we don’t know the
order of bits queried by the ROBP, the bits of the two sources are interleaved, and we view
X = A + B. Using a standard averaging argument, one can show that with high probability,
the following properties are satisfied: (1) A and B are supported on disjoint subsets of input
bits; (2) A has min-entropy roughly (1 − δ)n − log s and B has min-entropy δn; and (3) B is
an oblivious bit-fixing source, which is obtained by fixing some unknown bits in a uniform
random string. If s ≤ 2(1−2δ)n then both A and B have entropy rate roughly δ. Now, our
goal is to construct an extractor in AC0 for sources with this structure, that is also strong in
B. This means that even if we condition on the fixing of the vertex in the cut and B, the
output of the extractor is still close to uniform. On the other hand, the output of the ROBP
is completely determined by the vertex and B. Thus our extractor is average-case hard for
ROBPs of size up to 2(1−2δ)n.

As usual, the function AC0-Ext will be compositions of different, more basic extractors
as building blocks. Thus we need all these building blocks to be computable in AC0. Here,
we leverage the constructions from two previous works on extractors in AC0: (1) the AC0-
computable extractors AC0-BFExt for bit-fixing source by Cheng and Li [13], and (2) the
AC0-computable strong linear seeded extractors AC0-LExt by Papakonstantinou, Woodruff,
and Yang [35].

X. Li and Y. Zhong 10:11

Now we can describe our main idea of construction. Divide X into t = O(1/δ) blocks,
and by an averaging argument, there exists a block Bg of B with entropy rate Ω(δ). Now
for the block Xg = Ag + Bg, we can fix Ag so that Xg is an oblivious bit-fixing source of
entropy rate Ω(δ) and is a deterministic function of B. We next fix the bits from B outside
of the g-th block so that the source X outside of Xg is a deterministic function of A and
thus independent of Xg. Moreover, A and X still have enough entropy left.

Applying the above-mentioned extractor AC0-BFExt for bit-fixing sources to each block
Xi, we convert X into a somewhere random source Y = Y1 ◦ · · · ◦ Yt where the row Yg is a
deterministic function of Bg and close to uniform, while all the other rows are deterministic
functions of A. At this point, we can simply take the XOR of the Yi’s to obtain a close-to-
uniform output. However, as mentioned before, we need the extractor to be strong in B and
this simple approach is not sufficient. Instead, we fix all the outputs produced by AC0-BFExt
for Xi where i ̸= g. Note that these are all deterministic functions of A. Thus conditioned on
this fixing, Y becomes a deterministic function of B, which is independent of A. Moreover, as
long as the output size of AC0-BFExt is not too large, A still has enough entropy left. Since
X = A + B, we can now apply a strong t-affine correlation breaker as in [31, 11] with each
Yi as the seed to extract from X a random string, and take the XOR of them. The property
of the correlation breaker guarantees that the string produced from Yg and X is close to
uniform conditioned on all the other outputs and Y . Hence the XOR is also close to uniform
conditioned on B. To ensure the correlation breaker is computable in AC0, we replace all the
strong (linear) seeded extractors in the known constructions of t-affine correlation breakers
with the above-mentioned AC0-LExt. Since t = O(1/δ) is a constant, the correlation breaker
involves a constant number of compositions of AC0-LExt, which is still in AC0.

3 Open Problems

Our work leaves several natural open problems. The most obvious is to further improve the
constructions of directional affine extractors and the average-case hardness for SROLBPs.
It would also be quite interesting to show any hardness of explicit functions for WROLBPs,
which appears to require new ideas. Finally, it is an interesting question to see if there exist
functions in AC0 that achieve optimal hardness for ROBPs, or strong hardness for SROLBPs.

References

1 Alexander E. Andreev, Juri L. Baskakov, Andrea E. F. Clementi, and José D. P. Rolim.
Small pseudo-random sets yield hard functions: New tight explict lower bounds for branching
programs. In Jirí Wiedermann, Peter van Emde Boas, and Mogens Nielsen, editors, Automata,
Languages and Programming, 26th International Colloquium, ICALP’99, Prague, Czech
Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes in Computer Science,
pages 179–189. Springer, 1999. doi:10.1007/3-540-48523-6_15.

2 Boaz Barak, Russel Impagliazzo, Amir Shpilka, and Avi Wigderson. Definition and existence
of dimension expanders. Discussion (no written record), 2004.

3 Boaz Barak, Guy Kindler, Ronen Shaltiel, Benny Sudakov, and Avi Wigderson. Simulating
independence: New constructions of condensers, Ramsey graphs, dispersers, and extractors. In
Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 1–10, 2005.

4 Arnab Bhattacharyya, Swastik Kopparty, Grant Schoenebeck, Madhu Sudan, and David
Zuckerman. Optimal testing of reed-muller codes. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA,
pages 488–497. IEEE Computer Society, 2010. doi:10.1109/FOCS.2010.54.

CCC 2024

https://doi.org/10.1007/3-540-48523-6_15
https://doi.org/10.1109/FOCS.2010.54

10:12 Directional Affine Extractors and Linear Branching Programs

5 Beate Bollig and Ingo Wegener. A very simple function that requires exponential size read-once
branching programs. Inf. Process. Lett., 66(2):53–57, 1998. doi:10.1016/S0020-0190(98)
00042-8.

6 Jean Bourgain. Expanders and dimensional expansion. Comptes Rendus Mathematique,
347(7):357–362, 2009.

7 Jean Bourgain and Amir Yehudayoff. Expansion in SL2(R) and monotone expanders. Geometric
and Functional Analysis, 23(1):1–41, 2013.

8 Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 622–633, 2022. doi:10.1109/FOCS52979.2021.00067.

9 Eshan Chattopadhyay and Xin Li. Extractors for sumset sources. In Daniel Wichs and Yishay
Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC, Cambridge, MA, USA, June 18-21, 2016, pages 299–311. ACM, 2016.
doi:10.1145/2897518.2897643.

10 Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-depth circuits,
and affine functions. In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1171–1184. ACM, 2017. doi:10.1145/3055399.3055483.

11 Eshan Chattopadhyay and Jyun-Jie Liao. Extractors for sum of two sources. In Stefano
Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 1584–1597. ACM, 2022.
doi:10.1145/3519935.3519963.

12 Eshan Chattopadhyay and Jyun-Jie Liao. Hardness against linear branching programs and
more. In Proceedings of the Conference on Proceedings of the 38th Computational Complexity
Conference, CCC ’23, Dagstuhl, DEU, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

13 Kuan Cheng and Xin Li. Randomness extraction in AC0 and with small locality. In Eric Blais,
Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 37:1–37:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.
37.

14 Gil Cohen and Igor Shinkar. The complexity of DNF of parities. In Madhu Sudan, editor,
Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science,
Cambridge, MA, USA, January 14-16, 2016, pages 47–58. ACM, 2016. doi:10.1145/2840728.
2840734.

15 Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and applica-
tions. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2015, 2015.

16 Evgeny Demenkov and Alexander Kulikov. An elementary proof of 3n-o(n) lower bound on
the circuit complexity of affine dispersers. In Proceedings of the 36th international conference
on Mathematical foundations of computer science, pages 256–265, 2011.

17 Paul E. Dunne. Lower bounds on the complexity of 1-time only branching programs. In Lothar
Budach, editor, Fundamentals of Computation Theory, FCT ’85, Cottbus, GDR, September
9-13, 1985, volume 199 of Lecture Notes in Computer Science, pages 90–99. Springer, 1985.
doi:10.1007/BFb0028795.

18 Magnus Gausdal Find, Alexander Golovnev, Edward A. Hirsch, and Alexander S. Kulikov. A
better-than-3n lower bound for the circuit complexity of an explicit function. In 2016 IEEE
57th Annual Symposium on Foundations of Computer Science (FOCS), pages 89–98, 2016.
doi:10.1109/FOCS.2016.19.

19 Anna Gál. A simple function that requires exponential size read-once branching programs.
Inf. Process. Lett., 62(1):13–16, 1997. doi:10.1016/S0020-0190(97)00041-0.

https://doi.org/10.1016/S0020-0190(98)00042-8
https://doi.org/10.1016/S0020-0190(98)00042-8
https://doi.org/10.1109/FOCS52979.2021.00067
https://doi.org/10.1145/2897518.2897643
https://doi.org/10.1145/3055399.3055483
https://doi.org/10.1145/3519935.3519963
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.37
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.37
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1145/2840728.2840734
https://doi.org/10.1007/BFb0028795
https://doi.org/10.1109/FOCS.2016.19
https://doi.org/10.1016/S0020-0190(97)00041-0

X. Li and Y. Zhong 10:13

20 Ludmila Glinskih and Dmitry Itsykson. Satisfiable Tseitin Formulas Are Hard for Non-
deterministic Read-Once Branching Programs. In Kim G. Larsen, Hans L. Bodlaender, and
Jean-Francois Raskin, editors, 42nd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 26:1–26:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.MFCS.2017.26.

21 W. T. Gowers, Ben Green, Freddie Manners, and Terence Tao. On a conjecture of marton,
2023. arXiv:2311.05762.

22 Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear Branching Programs and
Directional Affine Extractors. In 37th Computational Complexity Conference (CCC 2022),
volume 234, pages 4:1–4:16, 2022.

23 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Juris Hartmanis,
editor, Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 6–20. ACM, 1986. doi:10.1145/12130.12132.

24 Stasys Jukna. Entropy of contact circuits and lower bounds on their complexity. Theor.
Comput. Sci., 57:113–129, 1988. doi:10.1016/0304-3975(88)90166-1.

25 Stasys Jukna. A note on read-k times branching programs. RAIRO - Theoretical Informatics
and Applications, 28:75–83, January 1995.

26 Valentine Kabanets. Almost k-wise independence and hard boolean functions. Theor. Comput.
Sci., 297(1-3):281–295, 2003. doi:10.1016/S0304-3975(02)00643-6.

27 Matthias Krause, Christoph Meinel, and Stephan Waack. Separating the eraser turing
machine classes Le, NLe, co-NLe and Pe. Theor. Comput. Sci., 86(2):267–275, 1991. doi:
10.1016/0304-3975(91)90021-S.

28 Jiatu Li and Tianqi Yang. 3.1n - o(n) circuit lower bounds for explicit functions. In Proceedings
of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages
1180–1193, New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/
3519935.3519976.

29 Xin Li. A new approach to affine extractors and dispersers. In Proceedings of the 26th Annual
IEEE Conference on Computational Complexity, CCC, 2011.

30 Xin Li. Non-malleable extractors, two-source extractors and privacy amplification. In 2012
IEEE 53rd Annual Symposium on Foundations of Computer Science, 2012.

31 Xin Li. Improved non-malleable extractors, non-malleable codes and independent source
extractors. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, STOC 2017, pages
1144–1156, New York, NY, USA, 2017. Association for Computing Machinery.

32 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. Technical
report, Arxiv, 2023. arXiv:2303.06802.

33 E. I. Nechiporuk. On a boolean function. Doklady of the Academy of Sciences of the USSR,
164(4):765–766, 1966.

34 EA Okolnishnikova. On lower bounds for branching programs. Siberian Advances in Mathem-
atics, 3:152–156, January 1993.

35 Periklis A Papakonstantinou, David P Woodruff, and Guang Yang. True randomness from big
data. Scientific reports, 6:33740, 2016.

36 Stephen Ponzio. A lower bound for integer multiplication with read-once branching programs.
SIAM Journal on Computing, 28(3):798–815, 1998. doi:10.1137/S0097539795290349.

37 Anup Rao. Extractors for low-weight affine sources. In Proceedings of the 2009 24th Annual
IEEE Conference on Computational Complexity, CCC ’09, pages 95–101. IEEE Computer
Society, 2009.

38 Ran Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pages 11–20, 2005.

39 Janos Simon and Mario Szegedy. A new lower bound theorem for read-only-once branching
programs and its applications. In Advances In Computational Complexity Theory, 1992.

CCC 2024

https://doi.org/10.4230/LIPIcs.MFCS.2017.26
https://arxiv.org/abs/2311.05762
https://doi.org/10.1145/12130.12132
https://doi.org/10.1016/0304-3975(88)90166-1
https://doi.org/10.1016/S0304-3975(02)00643-6
https://doi.org/10.1016/0304-3975(91)90021-S
https://doi.org/10.1016/0304-3975(91)90021-S
https://doi.org/10.1145/3519935.3519976
https://doi.org/10.1145/3519935.3519976
https://arxiv.org/abs/2303.06802
https://doi.org/10.1137/S0097539795290349

10:14 Directional Affine Extractors and Linear Branching Programs

40 Emanuele Viola and Avi Wigderson. Norms, xor lemmas, and lower bounds for polynomials
and protocols. Theory of Computing, 4(7):137–168, 2008. doi:10.4086/toc.2008.v004a007.

41 Ingo Wegener. On the complexity of branching programs and decision trees for clique functions.
J. ACM, 35(2):461–471, 1988. doi:10.1145/42282.46161.

42 Amir Yehudayoff. Affine extractors over prime fields. Combinatorica, 31(2):245–256, 2011.
43 Stanislav Zák. An exponential lower bound for one-time-only branching programs. In Michal

Chytil and Václav Koubek, editors, Mathematical Foundations of Computer Science 1984,
Praha, Czechoslovakia, September 3-7, 1984, Proceedings, volume 176 of Lecture Notes in
Computer Science, pages 562–566. Springer, 1984. doi:10.1007/BFb0030340.

44 David Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. In Theory of Computing, 2007.

https://doi.org/10.4086/toc.2008.v004a007
https://doi.org/10.1145/42282.46161
https://doi.org/10.1007/BFb0030340

Linear-Size Boolean Circuits for Multiselection
Justin Holmgren #

NTT Research, Sunnyvale, CA, USA

Ron Rothblum #

Technion, Haifa, Israel

Abstract
We study the circuit complexity of the multiselection problem: given an input string x ∈ {0, 1}n

along with indices i1, . . . , iq ∈ [n], output (xi1 , . . . , xiq). A trivial lower bound for the circuit size is
the input length n + q · log(n), but the straightforward construction has size Θ(q · n).

Our main result is an O(n + q · log3(n))-size and O(log(n + q))-depth circuit for multiselection.
In particular, for any q ≤ n/ log3(n) the circuit has linear size and logarithmic depth. Prior to our
work no linear-size circuit for multiselection was known for any q = ω(1) and regardless of depth.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Private Information Retrieval, Batch Selection, Boolean Circuits

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.11

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/113/

Funding Ron Rothblum: Ron Rothblum is funded by the European Union (ERC, FASTPROOF,
101041208). Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the European Research Council. Neither the
European Union nor the granting authority can be held responsible for them.

Acknowledgements We thank Yuval Ishai for useful discussions and his encouragement and an
anonymous reviewer for useful comments.

1 Introduction

In the selection problem, also commonly called multiplexing, one is given a long string
x ∈ {0, 1}n and an index i ∈ [n], and the goal is to output xi. Selection is one of the basic
operations in the word RAM model (and indeed costs unit time in that model). Implementing
it by a Boolean circuit however is more involved and requires a circuit of size Θ(n).1

In this work we investigate a natural generalization of selection, which we call multiselec-
tion; now rather than a single index, one is given indices i1, . . . , iq ∈ [n], and the goal is to
compute (xi1 , . . . , xiq

). We denote this function by Seln→q. Multiselection is trivial in the
word RAM model of computation (it costs Θ(q) operations with any standard instruction
set). We focus on implementing multiselection by small Boolean circuits, where here and
throughout this work all circuits have bounded fan-in. In this setting, we do not have
matching upper and lower bounds. The best circuit size lower bound for multiselection is
the input length n + q · log n. On the other hand, the straightforward construction (which
selects each index separately) is much larger, with size Θ(n · q). A slightly more sophisticated
approach reduces to sorting, and results in a circuit of size Θ(n log2 n) for any q = O(n).
Somewhat surprisingly, it appears that multiselection has not been systematically studied and
in particular we are not aware of essentially any other upper bounds (see further discussion
in Section 1.1).

1 The Ω(n) lower bound simply comes from the input size (which is a circuit size lower bound for any
function in which each input has non-zero influence). The upper bound follows from a simple divide
and conquer approach (cf. [27, Lemma 2.5.5] or Proposition 2).

© Justin Holmgren and Ron Rothblum;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:justin.holmgren@ntt-research.com
https://orcid.org/0000-0002-6343-4821
mailto:rothblum@cs.technion.ac.il
https://orcid.org/0000-0001-5481-7276
https://doi.org/10.4230/LIPIcs.CCC.2024.11
https://eccc.weizmann.ac.il/report/2023/113/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Linear-Size Boolean Circuits for Multiselection

Our main result is an O(n)-size, and O(log n)-depth, Boolean circuit for multiselection
for any q ≤ O(n/ log3(n)). More generally: [Main Theorem] For all n, q ∈ Z+ there is a
Boolean circuit computing Seln→q of size O(n + q · log3(n)) and depth O(log(n + q)). To
the best of our knowledge, no linear-size circuit for multiselection was previously known for
any q = ω(1), even without any restriction on the depth.

The main technical tools used in our construction are self-routing superconcentrators [25]
and low-depth quasi-linear size sorting networks [1]. We also discuss applications of our
linear-size multiselection circuit to problems in cryptography in Appendix A.

▶ Remark 1 (Uniformity). The circuits that we construct to prove Section 1 are log-space
uniform, meaning that they can be generated in logarithmic space (and polynomial-time) by a
uniform algorithm, given 1n as input. Motivated by some of our applications, in Appendix B
we also show an extension of the result with a linear-time uniform generation algorithm (on
a word RAM machine), but only for q < nε, where ε > 0 is a universal constant.

1.1 Related Work

1.1.1 Tight Compaction
Several recent works [5, 22, 4, 3] study the related and central problem of tight compaction,
in which the task is to retrieve all “marked” symbols of a string x (in any order). Although
this has a similar flavor to multiselection, there are several important differences. First,
compaction circuits assume that each symbol xi of x is marked with a bit bi indicating
whether or not xi is to be selected. In multiselection, we are instead given a list of indices
i1, . . . , iq that should be selected. Given such a list, we know how to compute (b1, . . . , bn)
with circuits only of size Ω(n log2 n). Second, the ordering of a compaction circuit’s output
is unconstrained, while the ordering of a multiselection circuit’s output is determined by the
ordering of its input indices i1, . . . , iq.

We address similar issues in our approach to constructing multiselection circuits. Interest-
ingly, our construction implicitly utilizes a variant of compaction that can be instantiated in
linear size using the [5] construction. We discuss this point further in our technical overview.

1.1.2 Uniselection Lower Bounds.
As noted above, it is easy to construct an O(n)-size circuit for the uniselection problem (i.e.,
the case of q = 1). Interestingly though, the uniselection problem has been a source for
some of the best known circuit and formula lower bounds that are known (for any explicit
function).

In particular, Paul [24] gave a 2n − o(n) lower bound on the circuit complexity of
uniselection (over any 2-bit gate basis). Blum [7] gave a 3n−o(n) lower bound for computing
a closely related function (as a matter of fact this function involves computing a multiselection
with q = 3 and applying a simple gadget function to the result). Nechiporuk [23] proved a
quadratic lower bound on the formula size for a modified selection function and Andreev [2]
proved an n2.5−o(1) lower bound on the de Morgan formula size of roughly the same function.

2 Technical Overview

In this section we give an overview of the proof techniques underlying the proof of Section 1.
In this overview we focus on achieving a linear-size multiselection circuit and defer the
additional complications needed to simultaneously achieve logarithmic-depth to the technical
sections.

J. Holmgren and R. Rothblum 11:3

The main technical tool that we use in our construction is a superconcentrator. Recall
that a superconcentrator [28] is a constant-degree directed acyclic graph with O(n) vertices,
n of which are sources and n of which are sinks, with the property that for any q ≤ n, any
set S of sources, and any set T of sinks with |S| = |T | = q, there exist q vertex-disjoint paths
from S to T .

2.1 Weak multiselection from superconcentrators
We first use superconcentrators to construct linear-size circuits for a weak form of multiselec-
tion (to be described shortly) and then show how to upgrade this construction to a circuit
for full-fledged multiselection.

By replacing each vertex of a superconcentrator with a constant-sized routing gadget, we
obtain for every q ≤ n a circuit Ĉ of size O(n) that implements the following weak form of
multiselection: For any list of distinct indices i = (i1, . . . , iq) ∈ [n]q, there exists an “advice
string” î ∈ {0, 1}Θ(n) and a reordering j1, . . . , jq of i1, . . . , iq such that Ĉ(x, î) = (xj1 , . . . , xjq

),
for all x ∈ {0, 1}n. The string î describes the q vertex-disjoint paths from the source vertices
i1, i2, . . . , iq, to the sinks 1, 2, . . . , q, by specifying how each vertex’s routing gadget should
be configured.

This weak form of multiselection suffers from three drawbacks, which we will repair one
by one:
1. The cost of computing î might be large, and in particular super-linear in the length of x,
2. The output of Ĉ is misordered – it is (xj1 , . . . , xjq) instead of (xi1 , . . . , xiq), and
3. The input i is required to consist of distinct indices in [n].

2.2 Amortizing the computation of the advice string
We address issue 1 by (temporarily) switching to a larger alphabet, which allows to amortize
the cost of computing the advice string î. We refer to the latter as a “block multiselector”.
Later we will show how to use a block multiselector to construct our desired (binary alphabet)
multiselector.

In more detail, consider a generalization of multiselection, over an alphabet Σ = {0, 1}s.
The input is now a string x ∈ Σn and indices i1, . . . , iq ∈ [n] and the goal, as before, is to
output (xi1 , . . . , xiq

) ∈ Σq. Jumping ahead, it will suffice for us to set the block size s to be
poly-logarithmic in n.

To construct the block multiselector, denoted Ĉs, we simply take s copies of Ĉ so that the
jth copy gets as input the jth bit of each input block and produces the jth bit of each output
block; all copies of Ĉ share the same advice string input. This circuit Ĉs has the property that
for all i ∈ [n]q (consisting of distinct elements), there exists î ∈ {0, 1}Θ(n) and a reordering
j = (j1, . . . , jq) of i such that for all x ∈

(
{0, 1}s

)n, it holds that Ĉs(x, î) = (xj1 , . . . , xjq
).

The size of Ĉs is O(n · s), but the computation of î from i1, . . . , iq is entirely independent
of s. Thus, by choosing s to be sufficiently large, we can hope to amortize the computation of
î relative to our input length, which is Ω(n ·s). There is an O(n log2(n)) circuit for computing
î for Pippenger’s self-routing superconcentrators [25], so by using these in the prior step it
suffices now to set s = log2(n).

Overall, we obtain a linear-size block multiselector Cs (i.e., of size O(n · s)), for block
size s = log2(n) and number of queries q ≤ n, with the following property: for all distinct
i1, . . . , iq ∈ [n]q, there exists a reordering j1, . . . , jq of i1, . . . , iq such that Cs(x, i1, . . . , iq) =
(xj1 , . . . , xjq), for all x ∈

(
{0, 1}s

)n. We note that such a circuit could also be constructed
using linear-size circuits for tight compaction [5], in conjunction with Lemma 21.

CCC 2024

11:4 Linear-Size Boolean Circuits for Multiselection

2.3 Reordering the outputs and handling non-unique inputs
We next simultaneously resolve issues 2 (misordered output) and 3 (the restriction of unique
indices). The high level idea is to append to each of the blocks its (original) block index.
This means that after applying the block-multiselector from the previous step, we still keep
track of the original location of this block, which we can combine with i1, . . . , iq to rearrange
the output blocks in the desired order (and handle multiplicities appropriately).

In more detail, on input x ∈
(
{0, 1}s

)n and i ∈ [n]q, we construct the string x′ :=(
(1, x1), . . . , (n, xn)

)
∈ ({0, 1}log(n)+s)n as well as an index string i′ ∈ [n]q that consists of a

sequence of distinct elements that contains all elements of i (the string i′ can be constructed
by sorting i1, . . . , iq, removing duplicates, and adding suitable padding). We then invoke
Cs+log n on input (x′, i′) to obtain the set{

(i′
1, xi′

1
), . . . , (i′

q, xi′
q
)
}

, (1)

represented as a list of elements (in some order).
We next combine (1) with{

(1, i1), . . . , (q, iq)
}

(2)

to obtain{
(1, i1, xi1), . . . , (q, iq, xiq

)
}

(3)

using the same representations of sets. This step, which can be viewed as an inner join (cf
the database literature), combines the two lists based on the common keys i1, . . . , iq. It can
be implemented in quasilinear size using sorting circuits. Once we have constructed the set
in Equation (3) in some arbitrary order, we can sort its elements by their first coordinate to
obtain the ordered list

(
(1, i1, xi1), . . . , (q, iq, xiq

)
)
, from which we can read off (xi1 , . . . , xiq

).
The dominant costs in this construction arise from the usage of sorting circuits. In each

instance, standard sorting circuits are applicable, with size Õ(q) · (s + log n). If we use the
sorting circuits of [1], then the Õ(q) factor is in fact O(q log q), so (with s = log2(n)) it
suffices to set q ≤ n/ log3(n).

To summarize, we have now built a linear-size block-multiselection circuit for querying
q = n/ log3(n) blocks of size s = log2(n).

2.4 From block-multiselection back to bit-multiselection
Finally, we return to our original goal of multiselection over {0, 1}. We do so as follows: given
queries i1, . . . , iq to bits of a string x, we group the bits of x into s-bit blocks B1, . . . , Bn/s. We
view each index ij as consisting of a prefix pj ∈ [n/s] (specifying the block index) and a suffix
rj ∈ [s] (specifying the internal index within the block). We apply the multiselection circuit of
the previous step to obtain blocks Bp1 , . . . , Bpq

indexed by the log(n/s)-bit prefixes p1, . . . , pq

of i1, . . . , iq. We then use q copies of a (uni-)selection circuit to obtain and output the rth
j

bit from each block Bpj
. The circuit implements the desired multiselection functionality and

has size O((n/s) · s + q · s) = O(n).

2.5 Achieving low-depth
A straightforward implementiation of our construction has depth polylog(n). Improving
this to O(log n) requires significant care. For example, while we can use a logarithmic
depth sorting network [1], that network uses abstract comparator gates. When working over

J. Holmgren and R. Rothblum 11:5

a large alphabet, the implementation of each comparator gate has super-constant depth
(when implemented as a Boolean circuit), and so the resulting overall depth is ostensibly
super-logarithmic. Nevertheless, we are able to provide suitable implementations of all of the
gadgets so that the overall construction achieves logarithmic depth.

3 Preliminaries

We assume that the reader is familiar with the notion of a Boolean circuit and the associated
function that it computes. We emphasize that, unless otherwise stated, throughout this work
by “circuit” we refer to constant fan-in circuits over the standard De Morgan base.

3.1 Uniformity
We say that a family C = {Cn}n∈Z+ of Boolean circuits is log-space uniform if there exists a
Turing machine that on input 1n uses O(log n) space and prints the description of the circuit
Cn, on a write-only output tape. The description is a listing of the gates in an (arbitrary)
topological ordering along with a specification of the gate operation and pointers to each of
its inputs. In Appendix B we also discuss an extension of our main result for linear-time
uniformity.

3.2 Boolean Circuits for Uniselection
The following standard proposition gives a linear-size circuit, that given a string x ∈ Σn, over
an alphabet Σ, and an index i ∈ [n], outputs the symbol xi (in other words, a multiplexer).

▶ Proposition 2. Let s = s(n) ∈ Z+ and let Σ = {0, 1}s. There exists a log-space uniform
Boolean circuit for Seln→1

Σ with size O(n · s) and depth O(log n)

Proof. Without loss of generality assume that s = 1 (for s > 1 we can use s parallel copies
of the circuit for s = 1). The circuit follows a divide and conquer strategy. Assume for
simplicity that n is a power of 2. Let x ∈ {0, 1}n and i ∈ [n] be the inputs. Let i1 denote the
most significant bit of i and let i′ denote the remaining bits (i.e., i′ ∈ [n/2]). To select the ith

bit of x, the circuit recursively selects the (i′)th bit of both the lower and upper halves of x.
Then, based on i1, it decides which of the two bits to output. Overall the circuit size satisfies
the recursion: S(n) = 2S(n/2) + O(1) and the depth satisfies D(n) = D(n/2) + O(1). The
proposition follows. ◀

3.3 Small-Size Sorting Circuits
Our circuits for multiselection heavily rely on circuits for sorting integers.

▶ Lemma 3. For every k = k(n) and m = m(n), there is a log-space uniform Boolean circuit
of size O(n ·m · log n) for sorting n integers of m bits.

This lemma follows immediately from the sorting networks of Ajtai, Komlós, and Szemerédi [1].
In order to make our multiselection circuit have logarithmic depth, we need a refined version
of Lemma 3, which we present in Section 4.

4 Low-Depth Sorting of Logarithmic-Length Keys

We first recall what it means to sort with respect to a partial ordering.

▶ Definition 4. Let Σ be a finite set. We say that x, y ∈ Σn are reorderings of each other if
for some permutation π : [n]→ [n], it holds that xi = yπ(i), for all i ∈ [n].

CCC 2024

11:6 Linear-Size Boolean Circuits for Multiselection

▶ Definition 5. Let Σ be a finite set with a strict partial ordering ≺. A Boolean circuit is
said to sort Σn with respect to ≺ if on any input x ∈ Σn, it outputs a reordering y of x such
that for any i, j ∈ [n], yi ≺ yj =⇒ i < j.

In particular, we will focus on a partial ordering that compares integers by their k most
significant bits. That is, for any m ∈ Z+ and any x, y ∈ {0, 1}m, we write x ≺k y to denote
that (x1, . . . , xk) lexicographically precedes (y1, . . . , yk).

▶ Lemma 6. For every m = m(n) and k ∈ [m], there is a log-space uniform Boolean circuit
of size O(n ·m · log n) and depth O(k + log n) for sorting

(
{0, 1}m

)n with respect to ≺k.

We are mainly interested in the setting k = Θ(log n), in which case the constructed Boolean
circuit has size O(n ·m · log n) and depth O(log n).

To the best of our knowledge Lemma 6 was not previously known. The straight-forward
circuit based on AKS networks yields circuits with matching size O(n ·m · log n) but depth
O(log n · log k). Kospanov [17] obtained circuits with better depth O(log n + log k) but much
larger size O(n2 · k). A recent work of [18] obtains size O(n · k2) and depth O(log n + k log k),
which is better for some values of k = o(log n), but worse in our regime of k = Θ(log n). The
work of Lin and Shi [22, Theorem 1.1] similarly constructs circuits with size O(n ·m · log n)
and depth O(log n) when n > 24k+7, but not for all values of k = Θ(log n).

4.1 Sorting Networks
Our sorting circuits rely on sorting networks, which are generic constructions of n-input
sorting circuits from 2-input sorting circuits.

▶ Definition 7 (Sorting Networks). An n-input sorting network is a circuit C with n inputs
and n outputs, and with all gates having fan-in and fan-out two, such that for any set Σ with
strict partial ordering ≺, if each gate of C is replaced by a circuit that sorts Σ2 with respect
to ≺, then the resulting circuit sorts Σn with respect to ≺.

For the best asymptotic size and depth, we use the celebrated sorting network of Ajtai,
Komlós, and Szemerédi [1].

▶ Lemma 8 ([1]). There is a (log-space uniform) n-input sorting network with size O(n log n)
and depth O(log n).

4.2 From Sorting Networks to Boolean Circuits
We prove Lemma 6 by combining the following lemma with Lemma 8.

▶ Lemma 9. Suppose that there is a log-space uniform sorting network on n elements with
size S = S(n) and depth D = D(n). Then, for all m = m(n) and k ∈ [m], there is a log-space
uniform Boolean circuit with size O(S ·m) and depth O(D + k) for sorting

(
{0, 1}m

)n with
respect to ≺k.

Proof. Starting with an n-input sorting network A with size S and depth D, we obtain a
Boolean circuit C from A by replacing each gate with a Boolean circuit Sort(2)

k,m that sorts(
{0, 1}m

)2 with respect to ≺k. With this approach it is easy to make C have size O(S ·m) –
since Sort(2)

k,m merely needs to have size O(m).
Depth seems to pose more of a difficulty. Locality considerations imply that Sort(2)

k,m must
have depth at least Ω(log k) (e.g. the least significant bit of either output of Sort(2)

k,m(x, y)
depends on all of the k most significant bits of x and y). Thus, it might seem that this
approach dooms C to have depth Ω(D · log k).

J. Holmgren and R. Rothblum 11:7

We circumvent this difficulty by noting that although input-to-output paths in C are
concatenations of D input-to-output paths in Sort(2)

k,m, these D paths cannot all be worst-case.
In particular, the ith output bit of one copy of Sort(2)

k,m is only connected to the jth input bit
of another copy if i ≡ j (mod m) (see Figure 1).

Figure 1 The four different ways that we can connect one copy of Sort(2)
k,n to another. In this

depiction, a copy of Sort(2)
k,n is depicted by a rectangle, with inputs incident to the bottom edge and

output incident to the top. The left half corresponds to the first input/output, and the right half to
the second.

We leverage this with the following lemma, whose proof we defer momentarily.

▶ Lemma 10. For any m = m(n) and k ∈ [m], there is a log-space uniform Boolean
circuit Sort(2)

k,m with size O(m) that sorts
(
{0, 1}m

)2 with respect to ≺k and has the following
additional property:

For all î, ĵ ∈ [m] and i, j ∈ [2m] with i ≡ î (mod m) and j ≡ ĵ (mod m), every path in
Sort(2)

k,m from the ith input vertex to the jth output vertex has length O
(
min(j, k)−min(i, k)+1

)
.

In particular there is no such path if k > i > j.

Assuming Lemma 10, consider any input-to-output path p in C. We write p as a composition
of paths p1 ◦ · · · ◦ pD, where each pℓ is an input-to-output path of some copy of Sort(2)

k,m.
Define iℓ, jℓ ∈ [2m] so that pℓ starts at the ith

ℓ input and ends at the jth
ℓ output of that copy,

and define îℓ, ĵℓ ∈ [m] such that iℓ ≡ îℓ (mod m) and jℓ ≡ ĵℓ (mod m). By the observation
above, we have ĵℓ = îℓ+1 for all ℓ ∈ [D − 1], and by Lemma 10, we have for some constant L

that |pℓ| ≤ L ·
(

min(ĵℓ, k)−min(̂iℓ, k)+1
)
.

Putting this together, we bound

|p| =
D∑

ℓ=1
|pℓ|

≤
D∑

ℓ=1
L ·

(
min(ĵℓ, k)−min(̂iℓ, k) + 1

)
= L ·

(
min(ĵD, k)−min(̂i1, k) + D

)
(telescoping sum because ĵℓ = îℓ+1 for ℓ ∈ [D − 1])

≤ L · (k + D)
= O(k + D). ◀

It remains to prove Lemma 10.

CCC 2024

11:8 Linear-Size Boolean Circuits for Multiselection

Proof of Lemma 10. We use the straightforward construction that compares the elements
bit-by-bit starting with their most significant bits. In more detail, we will construct a circuit
S̃ort

(2)
k,m : {≺, ?,≻} × {0, 1}m × {0, 1}m that has the functionality

S̃ort
(2)
k,m(?, x, y) =

{
(x, y) if x ≺ y
(y, x) otherwise.

S̃ort
(2)
k,m(≺, x, y) = (x, y)

S̃ort
(2)
k,m(≻, x, y) = (y, x)

and we define Sort(2)
k,m = S̃ort

(2)
k,m(?, ·, ·). This clearly gives the desired functionality. The first

input symbol aids in recursively constructing the circuit for S̃ort
(2)
k,m, and is meant to indicate

whether the global decision on the comparison between x and y is (1) still undecided (?), (2)
decided toward x or (3) decided toward y.

Our construction of S̃ort
(2)
k,m is recursive. If k = 0, then we define S̃ort

(2)
k,m to be the

identity function. For k > 0, S̃ort
(2)
k,m takes input (c, x, y), it first computes

(c′, a1, b1) =

(≺, x1, y1) if c = ≺ or (c = ? and x1 < y1)
(?, x1, y1) if c = ? and x1 = y1

(≻, y1, x1) if c = ≻ or (c = ? and x1 > y1).

Then, with x′ and y′ denoting (x2, . . . , xm) and (y2, . . . , ym), it computes

(a′, b′) = S̃ort
(2)
k−1,m−1(c′, x′, y′).

Finally it outputs
(
a1 ◦ a′, b1 ◦ b′), where ◦ denotes string concatenation.

It is easy to check the correctness of this construction.

Circuit Size. Let S(k, m) denote the size of S̃ort
(2)
k,m. For k = 0 we clearly have S(k, m) =

O(m). For larger k, the recursive construction gives S(k, m) = S(k− 1, m− 1) + O(1), so by
induction S(k, m) = O(m) for all k ≤ m.

Input-to-Output Path Lengths. We now bound the length of different input-to-output
paths in S̃ort

(2)
k,m. As in the construction above, denote the input to S̃ort

(2)
k,m by (c, x, y) and

denote the output by (a, b).

▷ Claim 11. There exists a constant L such that any path in S̃ort
(2)
k,m from an input {xi, yi}

to an output {aj , bj} has length at most L · (j − i + 1), and any path from the input c to an
output {aj , bj} has length at most L · j.

In particular any path to an output {aj , bj} has length at most L · j.

Proof. Let (x′, y′) denote the input to the recursive call to S̃ort
(2)
k−1,m−1 and let (a′, b′) denote

the output of this call.

J. Holmgren and R. Rothblum 11:9

We consider several cases separately:
Paths to {a1, b1} have length bounded by an absolute constant because a1 and b1 are
just a (constant-sized) function of the inputs (c, x1, y1). If L is sufficiently large then this
constant is at most L.
For j > 1, paths from {c, x1, y1} to aj (= a′

j−1) consist of a path through a constant-sized

circuit (the computation of c′) concatenated with a path to a′
j−1 in S̃ort

(2)
k−1,m−1. By

induction the latter path has length at most L · (j − 1), so if L is sufficiently large then
the total path length is at most L · j.
For i > 1 and j > 1, paths from {xi, yi} to {aj , bj} are just paths from {x′

i−1, y′
i−1} to

{a′
j−1, b′

j−1} and thus by induction they have length at most L · (j − i + 1). ◁

Returning to Sort(2)
k,m = S̃ort

(2)
k,m(?, ·, ·) (without the tilde), we can see that any input-to-output

path in Sort(2)
k,m directly corresponds to an input-to-output path in S̃ort

(2)
k,m whose length is

appropriately bounded by Claim 11. That concludes the proof of Lemma 10. ◀

5 Unordered Multiselection Over Large Alphabets

In this section we construct a circuit that implements a relaxation of multiselection. Informally,
this relaxation allows the output elements to appear in any order (and possibly with
repetitions), rather than the same order in which they were queried. Additionally, rather
than selecting individual bits (which is our eventual goal) - we consider a generalization to a
larger alphabet size.

▶ Definition 12. Unordered multiselection (with q queries, over alphabet Σ) is the search
problem defined by the relation

S̃el
n→q

Σ
def=

{(
(x, i), y

)
∈

(
Σn × [n]q)× (Σ ∪ {⊥})q :

{
yk : yk ̸= ⊥

}
k∈[q] =

{
xik

}
k∈[q]

}
.

5.1 Superconcentrators and Routing
We recall the notion of a superconcentrator, which is the main technical tool involved in our
construction of Boolean circuits for unordered multiselection.

▶ Definition 13 (Networks). A network N is a tuple N = (V, E, A, B), where G = (V, E) is
a directed acyclic graph and A, B ⊆ V are respectively sets of sources and sinks in G.

If |A| = |B| = n, then N is said to be an n-network. The size of N , denoted by |N |, is
defined to be |E|; the degree of N is the degree of G; and the depth of N is the longest path
length in G.

A family of n-networks {Nn}n∈Z+ is said to be log-space uniform if there an algorithm that
on input 1n runs in O(log n) space and outputs G (say with an adjacency list representation)
and A, B (say represented by indicator strings).

▶ Definition 14 (Superconcentrators). An n-network N = (V, E, A, B) is said to be a
superconcentrator if for all q ∈ [n] and all subsets X ⊆ A and Y ⊆ B with |X| = |Y | = q,
there exist q vertex-disjoint paths from X to Y .

▶ Definition 15. Let S = (V, E, A, B) be an n-superconcentrator. The routing problem for S
is a search problem RouteS whose input is a pair of (indicator strings for) sets X ⊆ A, Y ⊆ B

with |X| = |Y |. A valid corresponding output is any (indicator string for a) set R ⊆ E of
edges such that R is a union of q vertex-disjoint paths from X to Y , where q = |X| = |Y |.

CCC 2024

11:10 Linear-Size Boolean Circuits for Multiselection

Note that whenever S is an n-superconcentrator, the search problem RouteS is total. Naturally,
it is desirable for a superconcentrator S to admit efficient algorithms for RouteS . The state
of the art in this respect is Pippenger’s construction of a “self-routing” superconcentrator.

Informally, a delay-d self-routing protocol for a superconcentrator (V, E, A, B) associates
each vertex v ∈ V with a finite automaton that can communicate synchronously with the
automata on neighboring vertices (where u is said to neighbor v if (u, v) or (v, u) is in E). For
any sets X ⊆ A and Y ⊆ B with |X| = |Y | = q, if the automata in X and Y are initialized
with state 1, and all other automata are initialized with state 0, then in d steps the automata
jointly compute q vertex-disjoint paths from X to Y by on the dth step transmitting 1 on all
edges in those paths and 0 on other edges.

▶ Definition 16. A self-routing protocol with delay d for an n-superconcentrator S =
(V, E, A, B) is a tuple (Σ, δ), where:

Σ is a finite “alphabet” set that contains {0, 1}; and
δ : ΣV ∪E → ΣV ∪E is a function such that:

for every vertex v ∈ V with incident edges Ev, δ(q)v depends as a function of q only
on

(
qe)e∈Ev.

for every edge e = (u, v) ∈ E, δ(q)e depends as a function of q only on qu and qv.
For any sets X ⊆ A and Y ⊆ B with |X| = |Y |, if we define q(0) ∈ ΣV ∪E by

q(0)
v

def=
{

1 if v ∈ X ∪ Y

0 if v ∈ V \ (X ∪ Y)

and q
(0)
e

def= 0 for all e ∈ E, then the set

R
def=

{
e ∈ E : δd(q(0))e = 1

}
satisfies

(
(1X , 1Y), 1R

)
∈ RouteS .

Such a self-routing protocol for an n-superconcentrator is said to be log-space uniform if
there is a log-space Turing machine that on input 1n outputs:

a description of Σ;
for each v ∈ V with incident edges Ev, the truth table for δ(q)v as a function of (qe)e∈Ev

.
for each e = (u, v) ∈ E, the truth table for δ(q)e as a function of (qu, qv).

▶ Definition 17. A self-routing superconcentrator is a superconcentrator S with an associated
self-routing protocol (Σ, δ) for S. A self-routing superconcentrator is said to be log-space
uniform if both the superconcentrator and the associated self-routing protocol are log-space
uniform.

▶ Theorem 18 ([25]). There exists a log-space uniform self-routing n-superconcentrator S
with size O(n), degree O(1), and depth O(log n), where the self-routing protocol has alphabet
size O(1) and delay O(log n).

▶ Corollary 19. There exists a log-space uniform n-superconcentrator S with size O(n),
degree O(1), and depth O(log n), such that RouteS is solvable by a log-space uniform Boolean
circuit of size O(n log n) and depth O(log n).

Proof. Let S = (V, E, A, B) be the log-space uniform self-routing superconcentrator given by
Theorem 18, let the self-routing protocol be given by (Σ, δ), and let d = O(log n) denote the
delay of this self-routing protocol. To prove the corollary, we need to construct a log-space
uniform Boolean circuit for solving RouteS , with size O(n log n) and depth O(log n).

J. Holmgren and R. Rothblum 11:11

We are given 1X and 1Y . The circuit starts by computing q(0) ∈ ΣV ∪E as defined in
Definition 16. By construction this can be done with a circuitry of size O(n) and depth O(1).
The circuit next computes δd(q(0)). Recall that each output symbol of δ(q) depends on at
most deg(S) = O(1) symbols of q. Since the alphabet Σ is also constant-sized, this means
that δ is implementable by a (log-space uniform) circuit of size O(|V ∪E|) = O(n) and depth
O(1). Iterating this circuit d times, we compute δd(q(0)) with log-space uniform circuitry of
size O(d · n) and depth O(d). Finally, we extract from δd(q(0)) the indicator string 1R for
the set

R
def=

{
e ∈ E : δd(q(0))e = 1

}
.

This takes (log-space uniform) circuitry of size O(|E|) = O(n) and depth O(1).
In total, this circuit for computing 1R is log-space uniform and has size O(n · d) =

O(n log n) and depth O(d) = O(log n). By the definition of a self-routing protocol, R satisfies(
(1X , 1Y), 1R

)
∈ RouteS , i.e. the circuit solves RouteS . ◀

5.2 From Superconcentrators To Unordered Multiselection
▶ Proposition 20. Let n ∈ Z+, let s = s(n) satisfy s = Ω(log2 n), and let Σ = {0, 1}s. For
any q = q(n) ∈ [n] there exists a log-space uniform Boolean circuit for S̃el

n→q

Σ with size
O(n · s) and depth O(log n).

Proof. Let S = (V, E, A, B) be a log-space uniform n-superconcentrator with size O(n), depth
O(log n), degree O(1) such that RouteS is solvable by a log-space uniform Boolean circuit
of size O(n log n) and depth O(log n). (Such an S is guaranteed to exist by Corollary 19).
Order the elements of A and B arbitrarily so that A = {a1, . . . , an} and B = {b1, . . . , bn}.

The Circuit. Our circuit, taking as input x ∈ Σn and (i1, . . . , iq) ∈ [n]q, is constructed in
two parts.

The first part of our circuit computes indicator strings 1X ∈ {0, 1}A, 1Y ∈ {0, 1}B , and
1R ∈ {0, 1}E for sets X ⊆ A, Y ⊆ B, and R ⊆ E defined as follows. The set X is defined
as {ai1 , . . . , aiq

}, Y is defined as {b1, . . . , bq′}, where q′ is the cardinality of X (which may
be smaller than q due to repetitions), and R is the edges of q′ vertex-disjoint paths from X

to Y .
The second part of our circuit consists of a gadget gv for each vertex v ∈ V . For a vertex

v ∈ A, say v = aj , the gadget gv simply outputs xj if v ∈ X and ⊥ otherwise. For other v,
i.e. with positive in-degree d, the gadget gv is a circuit for Seld→1

Σ∪{⊥} (e.g. the circuit from
Proposition 2). To construct the inputs for gv, first order the in-neighbors of v arbitrarily
as u1, . . . , ud. The data input for gv is then constructed by taking the ith symbol, for any
i ∈ [d], to be the output of gui

. The selector input for gv is constructed to be (the unique)
i⋆ ∈ [d] such that (ui⋆ , v) ∈ R if such an i⋆ exists, and arbitrary otherwise.

Finally, the outputs of our circuit are the outputs of gb1 , . . . , gbq
.

Size and Depth. In the first part of our circuit, the computation of 1X uses log-space
uniform circuitry of size O(n log2 n) = O(n ·s) and depth O(log n) by Lemma 21 below. Next,
1Y is obtained by sorting 1X with log-space uniform circuitry of size O(n log n) and depth
O(log n) (this is possible by Lemma 8). Finally, the computation of 1R uses log-space uniform
circuitry of size O(n log n) and depth O(log n) because of our choice of superconcentrator S.
In total the circuitry of this part has size O(n · s) and depth O(log n).

CCC 2024

11:12 Linear-Size Boolean Circuits for Multiselection

In the second part of our circuit, there are O(n) gadgets (because S has size O(n)), and
each gadget has size O(s) (because S has constant degree). Additionally for each non-source
gadget there is constant-sized circuitry to compute the selector input as a function of 1R

(again because S has constant degree). In total the circuitry size is O(n · s). As for depth,
each gadget has constant depth. Since the output of gadget u is an input to gadget v iff (u, v)
is an element of E, and S has depth O(log n), the circuitry here also has depth O(log n).

Correctness. The main claim that we use to establish correctness is that for every ai ∈ X

and every vertex v ∈ V , if v lies on a path in R from ai to B, then the output of gv is xi,
and otherwise the output of gv is ⊥. Here ai is well-defined as a partial function of v because
R consists only of vertex-disjoint paths. This claim suffices for correctness because there are
paths in R from each aik

to B, but not from any a ∈ A \ {i1, . . . , iq}, so the set of non-⊥
outputs is exactly {xi1 , . . . , xiq

}.
We prove the claim by induction on the depth of v (i.e. the maximum length of a path

ending in v). The base case is when v has depth 0, i.e. v is a source vertex ai in (V, E). In
this case we defined gv to output xi.

For the inductive step, consider a vertex v with positive depth, and suppose that the
claim holds for all u of lesser depth, and in particular for the in-neighbors u1, . . . , ud of v.
Now if v lies on a path p from some ai to Y , this path must go through uj for some j ∈ [d],
and then the inductive hypothesis implies that the output of guj

is xi. The construction of
the selector input for gv ensures that gv also outputs xi, which completes the proof of the
claim. ◀

5.3 Computing Set Indicator Strings
▶ Lemma 21. For q = q(n) ∈ Z+, there is a log-space uniform Boolean circuit with size
O

(
(n + q) · log2(n + q)

)
and depth O

(
log(n + q)

)
that maps (i1, . . . , iq) ∈ [n]q to the indicator

string 1{i1,...,iq} ∈ {0, 1}n.

Proof. On input (i1, . . . , iq), the circuit performs the following steps:
1. Construct the list (1, . . . , n, i1, . . . , iq) ∈ [n]n+q, and sort it to obtain a non-decreasing list

(ji)i∈[n+q] with the property that ji appears more than once in the list iff ji ∈ {i1, . . . , iq}.
This can be done with circuitry of size O

(
(n + q) · log2(n + q)

)
and depth O

(
log(n + q)

)
by Lemma 6.

2. Label ji with 0 if the value ji appears once in the list. If ji appears more than once, we
label the first occurrence with 1 and all other occurrences with ⊥. This labels ji with 1
only if ji is in {i1, . . . , iq}, and labels ji with 0 only if it isn’t.
More explicitly, we compute labels

bi =

⊥ if i > 1 and ji−1 = ji

1 otherwise, if i < n + q and ji = ji+1

0 otherwise

for i ∈ [n + q]. This can be done with circuitry of size O
(
(n + q) log n

)
and depth

O(log log n): first compute in parallel for each i ∈ [n + q − 1] whether or not ji = ji+1
(this circuit has size O(log n) and depth O(log log n)), and then compute each bi with a
constant-sized circuit.

3. Sort the list
(
(ji, bi)

)
i∈[n+q] in order of increasing ji, except that if bi = ⊥ we treat ji as

+∞. That is, we prepend each ji with 1 if bi = ⊥ and with 0 otherwise. We then take
the first n elements of the result to obtain a list

(
(i, b′

i)
)

i∈[n] such that b′
i ∈ {0, 1} satisfies

J. Holmgren and R. Rothblum 11:13

b′
i =

{
1 if i ∈ {i1, . . . , iq}
0 otherwise.

In other words, (b′
1, . . . , b′

n) is 1{i1,...,iq}, which is our desired output. This step can
be done with circuitry of size O

(
(n + q) · log2(n + q)

)
and depth O

(
log(n + q)

)
by

Lemma 6. ◀

6 From Unordered to Ordered Multiselection

In this section we construct a circuit for ordered multiselection over a large alphabet from a
circuit for unordered multiselection over a slightly larger alphabet.

▶ Lemma 22. Let q = q(n) ∈ [n] and s = s(n) = Ω(log n) be integer functions of n, let
Σ = {0, 1}s, let Σ̃ = [n]× Σ, and suppose there is a (log-space uniform) Boolean circuit for
S̃el

n/s→q

Σ̃ with size S and depth D.
Then there is a (log-space uniform) Boolean circuit for Seln→q

Σ with size S + O(q · s · log q)
and depth D + O(log n).

Combining Lemma 22 with Proposition 20 gives the following corollary.

▶ Corollary 23. Let s = s(n) satisfy s = Ω(log2 n), let Σ = {0, 1}s, and let q = q(n) ∈ [n].
Then there is a log-space uniform Boolean circuit for Seln→q

Σ with size O(n · s + q · s · log n)
and depth O(log n).

6.1 Boolean Circuits for Inner Joins
The main tool that we use in the proof of Lemma 22 is Boolean circuitry for computing an
inner join of two relations (cf. relational databases [12]).

▶ Definition 24. If R ⊆ W ×X and S ⊆ X × Y are relations, the inner join of R and S
(which we denote by R ▷◁ S) is

R ▷◁ S def=
{

(w, x, y) : (w, x) ∈ R ∧ (x, y) ∈ S
}

.

To our knowledge, prior work on the computational complexity of computing joins has
focused on algorithms in the RAM or PRAM models of computation, as opposed to Boolean
circuits.

We focus for simplicity on a special case. First, we require that the relation S is a partial
function. That is, for every x ∈ X there is at most one y ∈ Y such that (x, y) ∈ S. The
partial function requirement prevents |R ▷◁ S| from being larger than |R|. We also require
that for every (w, x) ∈ R there exists some (x, y) ∈ S.

The following proposition says that inner joins in this special case are computable by
(uniform) Boolean circuits of logarithmic depth and nearly linear size.

▶ Proposition 25. Let n, m be positive integers, let W and Y be sets whose elements are
represented by s-bit strings, and let X be a finite set whose elements are represented by k-bit
strings.

There exists a log-space uniform Boolean circuit of size O(q · (k + s) · log q) and depth
O(k + log q) that takes as input a relation R ⊆ W × X and a partial function f ⊆ X × Y
with |R| ≤ q, |f | ≤ q, and {x : ∃w, (w, x) ∈ R} ⊆ {x : ∃y, (x, y) ∈ f}, and outputs R ▷◁ f .

Here sets are represented by an arbitrarily ordered listing of their elements, padded with
⊥ elements as needed to have length q.

CCC 2024

11:14 Linear-Size Boolean Circuits for Multiselection

Proof. Denote the elements of {x : ∃y, (x, y) ∈ f} by x1, . . . , xk, where x1 < · · · < xk. For
i ∈ [k], let Wi denote the set

{
w : (w, xi) ∈ R

}
, and let ni denote |Wi|. With this notation,

our desired output is a list of length q whose non-⊥ elements in some order are precisely(
w, xi, f(xi)

)
i∈[k],w∈Wi

.
We first construct a list with at most 2q elements in (W ∪ {⋆}) × X × (Y ∪ {⋆}),

namely
{

(xi, w, ⋆)
}

i∈[k],w∈Wi
and

{(
xi, ⋆, f(xi)

)}
i∈[k]

. Such a list is readily obtained by

concatenating the listings of R and f (with the natural embeddings of W ×X and X ×Y in
(W ∪ ⋆)×X × (Y ∪ ⋆)).

We sort this list with respect to the partial ordering that defines (w, x, y) ≺ (w′, x′, y′) iff
x < x′ or x = x′ and w = ⋆ and w′ ̸= ⋆. By Lemma 6 this can be done with circuitry of size
O(q · (k + s) · log q) and depth O(log q). This yields a list L composed of k blocks, the ith of
which has length ni + 1 and is((

⋆, xi, f(xi)
)
, (wi,1, xi, ⋆), . . . , (wi,ni , xi, ⋆)

)
,

where {wi1 , . . . , wi,ni
} = Wi.

With local processing, we obtain two lists Lf and LS where the ith block of Lf is(
f(xi),⊥, . . . ,⊥︸ ︷︷ ︸

ni times

)
(4)

and the ith block of LS is(
⊥, (wi,1, xi), . . . , (wi,ni

, xi)
)
. (5)

Using Lemma 26 below, we map Lf to a list whose ith block is(
f(xi), . . . , f(xi)︸ ︷︷ ︸

ni + 1 times

)
. (6)

We then locally combine (6) with (5) to obtain a list whose ith block is(
⊥,

(
(wi,1, xi, f(xi)

)
, . . . , (wi,ni , xi, f(xi)

))
. (7)

A final sorting step sends the ⊥ elements to the back of the list, which allows us to
conclude by truncating the list to length n. This step can also be done with circuitry of size
O(q · (k + s) · log q) and depth O(log q) by Lemma 6. ◀

▶ Lemma 26. For n, s ∈ Z+, there is a (logspace-uniform) constant fan-in Boolean circuit
of size O(n · s) and depth O(log n) that takes as input x ∈ ({0, 1}s ∪ {⊥})n with x1 ̸= ⊥, and
outputs y ∈

(
{0, 1}s

)n such that

yi =
{

xi if xi ̸= ⊥
yi−1 otherwise.

Equivalently, yi = xji
, where ji = max{j : 1 ≤ j ≤ i ∧ xj ̸= ⊥} (this maximum is guaranteed

to be over a non-empty set because x1 ̸= ⊥).

Proof. Without loss of generality we can assume that s = 1 because for s > 1 we can use s

copies of the circuit for the s = 1 case.

J. Holmgren and R. Rothblum 11:15

Consider the binary operation ⋆ : {0, 1,⊥} × {0, 1,⊥} → {0, 1,⊥} defined by

τ ⋆ υ =
{

τ if υ = ⊥
υ if υ ̸= ⊥.

It is clear that our desired y has y1 = x1 and yi = yi−1 ⋆ xi for i > 1.
We now observe that ⋆ is an associative operation. To see this, consider any σ, τ, υ ∈

{0, 1,⊥} and consider separately the cases υ = ⊥ and υ ̸= ⊥. If υ = ⊥ then (σ ⋆ τ) ⋆ υ =
σ ⋆ τ = σ ⋆ (τ ⋆ υ). If υ ̸= ⊥ then (σ ⋆ τ) ⋆ υ = υ = σ ⋆ υ = σ ⋆ (τ ⋆ υ).

Now we use a classic result of Ladner and Fischer [20] that for any associative operation
⋆ : Σ× Σ→ Σ and n ∈ Z+, there exists a (log-space uniform) circuit of size O(n) and depth
O(log n) (with only ⋆-gates) that computes all ⋆-prefix products. That is, the circuit takes
as input x ∈ Σn and outputs y such that yi = x1 ⋆ · · · ⋆ xi.

In our case, ⋆ is computable by a Boolean circuit of constant size, so replacing ⋆-gates by
such a circuit finishes the proof. ◀

6.2 A Circuit for Ordered Multiselection

We are now ready to prove Lemma 22.

Proof of Lemma 22. Let C̃ be a circuit for S̃el
n→q

Σ̃ .

The Circuit. Our circuit for Seln→q
Σ takes as input (x, i) ∈ Σn × [n]q and consists of the

following stages:
1. Compute x̃ ∈ Σ̃n, defined so that x̃i = (i, xi) for i ∈ [n], and compute a list representation

of

I =
{

(1, i1), . . . , (q, iq)
}

.

2. Compute ỹ← C̃(x̃, i) to obtain ỹ ∈
(
Σ̃ ∪ {⊥}

)q such that

{ỹk : ỹk ̸= ⊥}k∈[q] = {x̃ik
}k∈[q] =

{
(ik, xik

)
}

k∈[q].

In particular, each ỹk that is not equal to ⊥ has the form (i, xi) for some i ∈ [n].
3. Deduplicate ỹ to obtain a list representation of the partial function

Y =
{

(ik, xik
)
}

k∈[q].

This involves sorting the non-⊥ symbols
{

(ik, xik
)
}

of ỹ in order of increasing ik (this
can be done with circuitry of size O(n · s · log n) and depth O(log n) by Lemma 6).

4. Apply the circuit given by Proposition 25 to I and Y to compute a list representation of

I ▷◁ Y =
{

(k, ik, xik
)
}

k∈[q].

5. Sort the list representation of I ▷◁ Y in order of increasing k, and read off the desired
output (xi1 , . . . , xik

).

CCC 2024

11:16 Linear-Size Boolean Circuits for Multiselection

Size and Depth. The “computation” of x̃ from x and of I from i is just adding constant
values, so it can certainly be done by a (log-space uniform) Boolean circuit of size O

(
n · (s +

log n)
)

and depth O(1).
By assumption, C̃ is a circuit of size S and depth D.
Via sorting (Lemma 6), one can deduplicate ỹ with circuitry of size O(q ·(s+log n)·log q) =

O(q · s · log q) and depth O(log n).
By Proposition 25, the computation of I ▷◁ Y can also be done with circuitry of size

O(q · (s + log n) · log q) = O(q · s · log n) and depth O(log n).
Sorting the elements of I ▷◁ Y again takes log-space uniform circuitry of size O(q · s · log q)

and depth O(log n) by Lemma 6.
In total our constructed circuit has size S + O(q · s · log q) and depth D + O(log n). ◀

7 Binary Multiselection and Proof of Main Theorem

Next, we use the multiselection circuit over large alphabets to obtain a binary multiselection
circuit.

▶ Lemma 27. Let q = q(n) and s = s(n) be integer functions of n, let Σ = {0, 1}s, and let
Cn be a (log-space uniform) Boolean circuit for Seln/s→q

Σ with size S and depth D.
Then there is a (log-space uniform) Boolean circuit C ′

n for Seln→q
{0,1} with size S + O(q · s)

and depth D + O(log s).

Proof. On data input x ∈ {0, 1}n and selector input (i1, . . . , iq) ∈ [n]q, C ′
n performs the

following steps:
1. View x ∈ {0, 1}n as X ∈ Σn/s by setting Xi =

(
x(i−1)·s+1, . . . , xi·s

)
. View each ij as a

log n-bit string with prefix pj ∈ {0, 1}log n−log s and a suffix sj ∈ {0, 1}log s. This is just
relabeling wires, so it requires no circuitry.

2. Compute (Xp1 , . . . , Xpq
) ← Cn

(
X, (p1, . . . , pq)

)
. This requires circuitry of size S and

depth D.
3. For each j ∈ [q] in parallel, compute xij = Sels→1

{0,1}
(
Xpj , (sj)

)
. By Proposition 2, for each

j ∈ [q] this requires circuitry of size O(s) and depth O(log s), for a total circuitry size of
O(q · s) and depth O(log s).

4. Output (xi1 , . . . , xiq
). ◀

We can now prove our main theorem, which we recall here for convenience.
[Main Theorem] For all n, q ∈ Z+ there is a Boolean circuit computing Seln→q of size

O(n + q · log3(n)) and depth O(log(n + q)).

Proof. Set s(n) = log2 n and let Σ = {0, 1}s. By Corollary 23, there exists a log-space
uniform circuit for Seln/s→q

Σ with size O(s · n/s + q · s · log n) = O(n + q log3 n) and depth
O

(
log(n/s)

)
= O(log n). Applying Lemma 27 to this circuit yields a log-space uniform circuit

for Seln→q
{0,1} with size O

(
n + q · (log3 n + s)

)
= O(n + q · log3 n) and depth O(log n + log s) =

O(log n). ◀

References
1 M. Ajtai, J. Komlós, and E. Szemerédi. An 0(n log n) sorting network. In Proceedings of the

Fifteenth Annual ACM Symposium on Theory of Computing, STOC ’83, pages 1–9, New York,
NY, USA, 1983. Association for Computing Machinery. doi:10.1145/800061.808726.

2 Alexander Andreev. On a method for obtaining more than quadratic effective lower bounds
for the complexity of π-scheme. Moscow University Mathematics Bulletin, 42(1):63–66, 1987.

https://doi.org/10.1145/800061.808726

J. Holmgren and R. Rothblum 11:17

3 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Kartik Nayak, Enoch Peserico, and Elaine Shi.
Optorama: Optimal oblivious RAM. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology - EUROCRYPT 2020 - 39th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings,
Part II, volume 12106 of Lecture Notes in Computer Science, pages 403–432. Springer, 2020.
doi:10.1007/978-3-030-45724-2_14.

4 Gilad Asharov, Ilan Komargodski, Wei-Kai Lin, Enoch Peserico, and Elaine Shi. Oblivious
parallel tight compaction. In ITC, volume 163 of LIPIcs, pages 11:1–11:23. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020.

5 Gilad Asharov, Wei-Kai Lin, and Elaine Shi. Sorting short keys in circuits of size o(n log n).
SIAM J. Comput., 51(3):424–466, 2022. doi:10.1137/20m1380983.

6 Amos Beimel, Yuval Ishai, and Tal Malkin. Reducing the servers computation in private
information retrieval: PIR with preprocessing. In CRYPTO, volume 1880 of Lecture Notes in
Computer Science, pages 55–73. Springer, 2000.

7 Norbert Blum. A boolean function requiring 3n network size. Theor. Comput. Sci., 28:337–345,
1984. doi:10.1016/0304-3975(83)90029-4.

8 Elette Boyle, Yuval Ishai, Rafael Pass, and Mary Wootters. Can we access a database both
locally and privately? In TCC (2), volume 10678 of Lecture Notes in Computer Science, pages
662–693. Springer, 2017.

9 Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Leveraging linear
decryption: Rate-1 fully-homomorphic encryption and time-lock puzzles. In TCC (2), volume
11892 of Lecture Notes in Computer Science, pages 407–437. Springer, 2019.

10 Ran Canetti, Justin Holmgren, and Silas Richelson. Towards doubly efficient private informa-
tion retrieval. In TCC (2), volume 10678 of Lecture Notes in Computer Science, pages 694–726.
Springer, 2017.

11 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, 1998. doi:10.1145/293347.293350.

12 Edgar F Codd. A relational model of data for large shared data banks. Communications of
the ACM, 13(6):377–387, 1970.

13 Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption with polylog
overhead. In EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465–482.
Springer, 2012.

14 Justin Holmgren and Ron D. Rothblum. Faster sounder succinct arguments and IOPs. In
CRYPTO (1), volume 13507 of Lecture Notes in Computer Science, pages 474–503. Springer,
2022.

15 Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Batch codes and their
applications. In STOC, pages 262–271. ACM, 2004.

16 Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended abstract). In
STOC, pages 723–732. ACM, 1992.

17 É Sh Kospanov. Scheme realization of the sorting problem. Diskretnyi Analiz i Issledovanie
Operatsii, 1(1):13–19, 1994.

18 Michal Koucký and Karel Král. Sorting short integers. In ICALP, volume 198 of LIPIcs,
pages 88:1–88:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

19 Eyal Kushilevitz and Rafail Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In 38th Annual Symposium on Foundations
of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997, pages
364–373. IEEE Computer Society, 1997. doi:10.1109/SFCS.1997.646125.

20 Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):831–838,
October 1980. doi:10.1145/322217.322232.

21 Wei-Kai Lin, Ethan Mook, and Daniel Wichs. Doubly efficient private information retrieval
and fully homomorphic ram computation from ring lwe. Cryptology ePrint Archive, Paper
2022/1703, 2022. URL: https://eprint.iacr.org/2022/1703.

22 Wei-Kai Lin and Elaine Shi. Optimal sorting circuits for short keys. CoRR, abs/2102.11489,
2021. arXiv:2102.11489.

CCC 2024

https://doi.org/10.1007/978-3-030-45724-2_14
https://doi.org/10.1137/20m1380983
https://doi.org/10.1016/0304-3975(83)90029-4
https://doi.org/10.1145/293347.293350
https://doi.org/10.1109/SFCS.1997.646125
https://doi.org/10.1145/322217.322232
https://eprint.iacr.org/2022/1703
https://arxiv.org/abs/2102.11489

11:18 Linear-Size Boolean Circuits for Multiselection

23 È. I. Nechiporuk. A Boolean function. Sov. Math., Dokl., 7:999–1000, 1966.
24 Wolfgang J. Paul. A 2.5 n-lower bound on the combinational complexity of boolean functions.

SIAM J. Comput., 6(3):427–443, 1977. doi:10.1137/0206030.
25 Nicholas Pippenger. Self-routing superconcentrators. J. Comput. Syst. Sci., 52(1):53–60, 1996.

doi:10.1006/jcss.1996.0005.
26 Noga Ron-Zewi and Ron D. Rothblum. Proving as fast as computing: succinct arguments

with constant prover overhead. In STOC, pages 1353–1363. ACM, 2022.
27 John E. Savage. Models of computation - exploring the power of computing. Addison-Wesley,

1998.
28 Leslie G. Valiant. On non-linear lower bounds in computational complexity. In William C.

Rounds, Nancy Martin, Jack W. Carlyle, and Michael A. Harrison, editors, Proceedings of
the 7th Annual ACM Symposium on Theory of Computing, May 5-7, 1975, Albuquerque, New
Mexico, USA, pages 45–53. ACM, 1975. doi:10.1145/800116.803752.

A Applications

While we find the multiselection problem to be basic and natural, we additionally mention
two concrete applications of the linear-sized multiselection circuit of Section 1 to problems in
cryptography.

A.1 Application 1: Simplifying Efficient Arguments
Recently there has been a great deal of interest, both in theory and in practice, in developing
efficient argument-systems (aka computationally sound proofs), proving for example that a
given formula is satisfiable with a proof that is much shorter than the satisfying assignment
(and is also very efficiently verifiable). A key bottleneck in such proof-systems is the efficiency
of proving correctness, relative to the cost of merely computing the function.

Recent works [26, 14] consider the setting of Boolean circuits and construct provers
whose size is linear in the size of the original computation. These works, following Kilian’s
pioneering work [16], use a (generalization of a) PCP which is compiled into a succinct
argument by sending a short hash of the PCP and then decommiting to desired locations
that are sampled by the verifier. This naturally requires multiselection: the prover needs to
restrict the PCP proof string to the selected indices. Thus, to get a linear-size prover, these
works need a linear-size multiselection gadget.

Both [26] and [14] relied on ad-hoc solutions leveraging application-specific structure of
the queries (i1, . . . , iq) and expended considerable effort to guarantee this structure. For
example in the case of [14], a new local testing procedure was presented for tensor codes,
with the novel property that the local testing queries were efficiently “multiselectable”.

Section 1 makes this work unnecessary by removing the burden of worrying about a
particular query structure. This significantly simplifies these works (especially [14]) and is
likely to simplify similar future works.

A.2 Application 2: More Efficient Batch PIR
Private information retrieval (PIR) [11, 19] is a process by which a client with an index
i ∈ [n] obtains an element xi from a server with a database x ∈ Σn while (computationally)
hiding all information about i from the server. Batch PIR has just one modification: the
client has multiple indices i1, . . . , iq, and correspondingly obtains xi1 , . . . , xiq

. We call q

the batch size. Thus the standard notion of PIR, which we also refer to as non-batch PIR,
corresponds to the case q = 1. The raison d’être of batch PIR is that the server’s running
time can be much less than q times the cost of non-batch PIR.

https://doi.org/10.1137/0206030
https://doi.org/10.1006/jcss.1996.0005
https://doi.org/10.1145/800116.803752

J. Holmgren and R. Rothblum 11:19

Indeed, our Section 1 implies the following corollary: if the ring learning with errors2

(ring LWE) assumption holds, then for every batch size q ≤ n/ log3 n and every constant
ϵ > 0, there is a batch PIR protocol in which:

the server’s running time is n · polylog(λ), where λ is a computational security parameter,
the client-to-server communication is (1 + ϵ) · q · log n + poly(λ),
the server-to-client communication is (1 + ϵ) · q + poly(λ), and
the client’s running time is q · log n · polylog(λ) + poly(λ).

In a nutshell, the idea is for the client to send an encryption cti of the indices i =
(i1, . . . , iq) under a fully homomorphic encryption (FHE) scheme with the appropriate
efficiency properties. The server, holding database x ∈ {0, 1}n, homomorphically evaluates
Seln→q(x, ·) (represented by the circuit of Section 1) on cti and sends the result to the client,
which decrypts to obtain its output.

As for efficiency, homomorphic evaluation should satisfy two properties. First, the cost
of homomorphically evaluating a circuit C should be |C| · polylog(λ) (at least when C is
the circuit for Seln→q constructed in Section 1). Second, the ciphertexts resulting from
homomorphic evaluation should have rate 1. If the ring LWE assumption holds, then one
way to obtain such an FHE scheme is by combining the work of [13], which constructs FHE
with polylog(λ) evaluation overhead3, with the work of [9], which for any constant ϵ > 0
constructs FHE in which evaluated ciphertexts have rate 1− ϵ.

A.3 Prior Work
A.3.1 Batch PIR via Batch Codes
One major alternative approach to batch PIR is a reduction to non-batch PIR using batch
codes [15], which encode a database x ∈ {0, 1}n as a string X ∈

(
{0, 1}N/m

)m such that to
recover any q bits of x, it suffices to read one bit from each N/m-bit block of X. Here N , m,
and q are parameters of the batch code. By retrieving each of these m bits with a non-batch
PIR protocol, we obtain a batch PIR protocol with batch size q, server running time ≈ N ,
and communication ≈ m.

To replicate our batch PIR result via this approach, one would need batch codes with
m ≈ k and N ≈ n for q at least ω(1). However, no such codes are known (see the table in
Section 1.2 of [15]).

A.3.2 Doubly Efficient PIR.
A recent breakthrough result of Lin, Mook, and Wichs [21] shows how to achieve doubly
efficient PIR (DEPIR) [6, 10, 8], i.e. PIR where the server’s running time is sublinear in
the database length (after a one-time deterministic preprocessing step), under the ring LWE
assumption. Among other benefits, this allows the server’s work to increase sublinearly with
the number of queries, similarly to batch PIR. Amazingly, unlike in batch PIR, this is true
even if the queries come from independent clients.

One can generically construct batch PIR protocols from DEPIR protocols, although as
we now explain, our construction of batch PIR is more efficient than what one would obtain
from [21]. Their DEPIR protocol exhibits a tunable trade-off between the server’s online
time and preprocessing time. They present two specific parameter settings:

2 If we instead assume only standard LWE, we obtain a similar result but with all polylog(λ) factors
replaced by poly(λ).

3 The work of [13] obtains this overhead only for circuits of width at least λ.

CCC 2024

11:20 Linear-Size Boolean Circuits for Multiselection

(Online-Optimized) The online time is polylog(n) · poly(λ), but the preprocessing time
is n1+ϵ · poly(λ) for any constant ϵ > 0.
(Preprocessing-Optimized) The preprocessing time is n · 2Θ̃(

√
log n) · poly(λ), but the

online time is 2Θ̃(
√

log n) · poly(λ).

In contrast to our batch PIR construction, their doubly efficient PIR server’s total running
time with either parameter setting never depends only linearly on n, and the server’s per-
query running time (including the amortized cost of pre-processing) is not polylogarithmic
in n unless the number of queries is larger than the database.

B Linear-time Uniformity

In this section we briefly discuss an extension of our multiselection circuit that can be
generated by a linear-time algorithm (rather than log-space uniformity as in Section 1). The
specific notion of uniformity that we consider here is constructability by an algorithm in
the standard word RAM model, that on input 1n, runs in O(n) time, using words of size
O(log n) and a standard instruction set.

▶ Theorem 28 (Linear-time Uniformity). There exists a constant ϵ > 0 such that for every
q = q(n) ≤ nϵ, there exists a linear-time uniform Boolean circuit computing Seln→q of
linear-size and logarithmic-depth.

Proof Sketch. As a matter of fact, we show how one can generically take any nc-time-uniform
multiselection circuit for c ≥ 1 (e.g., those of Section 1) and transform it into a linear-time
uniform multiselection circuit (for a somewhat smaller number of queries), while preserving
the linear-size and logarithmic depth.

The idea is to first generate a multiselection circuit C for input strings of length n′ = n1/c.
By assumption, this can be done in time O

(
(n′)c

)
= O(n). The multiselection is then

constructed as follows: we partition the input string x ∈ {0, 1}n into n′ blocks of size
n/n′ = n1−1/c bits each. We then run n1−1/c copies of C, where the i-th copy is given the
i-th bit of each of the blocks. The output of these circuit copies of C can be interpreted as q

blocks in which our desired indices lie. We then apply a direct (uni-)selector to each block to
obtain the desired bit. This step can be implemented by q circuits, each of size O(n1−1/c).
As long as q = O(n1/c), the constructed circuit has linear-size and logarithmic depth.

To generate the circuit, our algorithm first generates the base multi-selector circuit which
as noted above, takes time O(n). Once that circuit is generated, creating the n1−1/c copies
(with suitable input wiring) can be done in time O(n1/c · n1−1/c) = O(n). The additional
circuitry can also be constructed in O(q · n1−1/c) = O(n) time. ◀

A Subquadratic Upper Bound on Sum-Of-Squares
Composition Formulas
Pavel Hrubeš # Ñ

Institute of Mathematics of ASCR, Prague, Czech Republic

Abstract
For every n, we construct a sum-of-squares identity

(
n∑

i=1

x2
i)(

n∑
j=1

y2
j) =

s∑
k=1

f2
k ,

where fk are bilinear forms with complex coefficients and s = O(n1.62). Previously, such a con-
struction was known with s = O(n2/ log n). The same bound holds over any field of positive
characteristic.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Sum-of-squares composition formulas, Hurwitz’s problem, non-commutative
arithmetic circuit

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.12

Funding Pavel Hrubeš : This work was supported by Czech Science Foundation GAČR grant
19-27871X.

1 Introduction

The problem of Hurwitz [8] asks for which integers n, m, s does there exist a sum-of-squares
identity

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

m) = f2
1 + · · · + f2

s , (1)

where f1, . . . , fs are bilinear forms in x and y with complex coefficients. Historically, the
problem was motivated by existence of non-trivial identities with n = m = s. Starting with
the obvious x2

1y2
1 = (x1y1)2, the first remarkable identity is

(x2
1 + x2

2)(y2
1 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2 .

It can be interpreted as asserting multiplicativity of the norm on complex numbers. Euler’s
4-square identity is an example with n, m, s = 4 which has later been interpreted as multi-
plicativity of the norm on quaternions. The final one is an 8-square identity which arises in
connection to the algebra of octonions.

A classical result of Hurwitz [8] shows that these are the only cases: an identity (1) exists
with m, s = n iff n ∈ {1, 2, 4, 8}. An extension of this result is given by Hurwitz-Radon
theorem [11]: an identity (1) exists with s = n iff m ≤ ρ(n), where ρ(n) is the Hurwitz-Radon
number. The value of ρ(n) is known exactly. For every n, ρ(n) ≤ n and equality is achieved
only in the cases n ∈ {1, 2, 4, 8}. Asymptotically, ρ(n) lies between 2 log2 n and 2 log2 n + 2
if n is a power of 2. As shown in [12], Hurwitz-Radon theorem remains valid over any
field of characteristic different from two. Hurwitz’s problem is an intriguing question with
connections to several branches of mathematics. We recommend D. Shapiro’s monograph [13]
on this subject.

© Pavel Hrubeš;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 12; pp. 12:1–12:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pahrubes@gmail.com
https://users.math.cas.cz/~hrubes
https://orcid.org/0000-0003-4526-4934
https://doi.org/10.4230/LIPIcs.CCC.2024.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Let σ(n) denote the smallest s such that an identity (1) with m = n exists. While
Hurwitz-Radon theorem solves the case s = n exactly, even the asymptotic behavior of σ(n)
is not known. Elementary bounds1 are n ≤ σ(n) ≤ n2. Hurwitz’s theorem implies that the
first inequality is strict if n is sufficiently large. Using Hurwitz-Radon theorem, the upper
bound can be improved to

σ(n) ≤ O(n2/ log n) .

As far as we are aware, this was the best asymptotic upper bound previously known. In this
paper, we will improve it to a truly subquadratic bound

σ(n) ≤ O(n1.62) . (2)

A specific motivation for this problem comes from arithmetic circuit complexity. In [6],
Wigderson, Yehudayoff and the current author related the sum-of-squares problem with
complexity of non-commutative computations. Non-commutative arithmetic circuit is a
model for computing polynomials whose variables do not multiplicatively commute. Since
the seminal paper of Nisan [10], it has been an open problem to give a superpolynomial lower
bound on circuit size in this model. In [6], it has been shown that a superlinear lower bound
of Ω(n1+ϵ) on σ(n) translates to an exponential lower bound in the non-commutative setting.
Hence, providing asymptotic lower bounds on Hurwitz’s problem can be seen as a concrete
approach towards answering Nisan’s question. A more general, and hence less concrete,
result of this flavor was given by Carmosino et al. in [1]. In an attempt to implement
the sum-of-squares approach, the authors from [6] gave an Ω(n6/5) lower bound under the
assumption that the identity (1) involves integer coefficients only [7]. However, the upper
bound (2) goes in the opposite direction. Since it is superlinear, it does not immediately
frustrate the approach from [6], it merely dampens its optimism.

2 The main result

Let F be a field. Define σF(n, m) as the smallest s such that there exist bilienear2f1, . . . , fs ∈
F[x1, . . . , xn, y1, . . . ym] satisfying (1). Furthermore, let σF(n) := σF(n, n).

▶ Theorem 1. Let F be either C or a field of positive characteristic. Then σF(n) ≤ O(nc)
where c < 1.62.

This will be proved in Section 4. In Section 5.1, we will give a modification of Theorem 1
that applies to any field.
▶ Remark 2.

(i) If the field has characteristic two, Theorem 1 is trivial. Since (
∑

i x2
i)(

∑
j y2

j) =
(
∑

i,j xiyj)2, we have σF(n, m) = 1.
(ii) Instead of C, the result holds also over Gaussian rationals Q(i).

Notation

Given vectors u, v ∈ Fn, ⟨u, v⟩ :=
∑n

i=1 uivi is their inner product. For a set S,
(

S
k

)
denotes

the set of k-element subsets of S and
(

S
≤k

)
the set of subsets with at most k elements.(

n
≤k

)
:=

∑k
i=0

(
n
i

)
. [n] is the set {1, . . . , n}.

1 The former is obtained by substituting (1, 0, . . . , 0) for the y variables, the latter by writing
(
∑

x2
i)(

∑
j

y2
j) =

∑
i,j

(xiyj)2.
2 Namely, of the form

∑
i,j

ai,jxiyj .

P. Hrubeš 12:3

3 Hurwitz-Radon conditions

In this section, we give some well-known properties of σ that we will need later.
The definition immediately implies thet σF(n, m) is symmetric, subadditive, and monotone:

σF(n, m) = σF(m, n) ,

σF(n, m1 + m2) ≤ σF(n, m1) + σF(n, m2) ,

σF(n, m) ≤ σF(n, m′) , m ≤ m′ . (3)

The following lemma gives a characterization of σ in terms of Hurwitz-Radon conditions (4).
A proof can be found, e.g., in [13], but we present it for completeness.

▶ Lemma 3. Let F be a field of characteristic different from two. Then σF(n, m) equals the
smallest s such that there exist matrices H1, . . . , Hm ∈ Fn×s satisfying

HiH
t
i = In ,

HiH
t
j + HjHt

i = 0 , i ̸= j , (4)

for every i, j ∈ [m].

Proof. Let f1, . . . , fs be bilinear polynomials in variables x1, . . . , xn and y1, . . . , ym. Then
the vector f̄ = (f1, . . . , fs) can be written as

f̄ =
n∑

i=1
x̄Hiyi ,

where x̄ = (x1, . . . , xn) and Hi ∈ Fn×s. Hence
s∑

k=1
f2

k = f̄ f̄ t =
∑

i

y2
i x̄HiH

t
i x̄t +

∑
i<j

yiyj x̄(HiH
t
j + HjHt

i)x̄t .

If the matrices satisfy (4), this equals
∑

i y2
i x̄Inx̄t = (y2

1 + · · · + y2
m)(x2

1 + · · · + x2
n), which

gives a sum-of-squares identity with s squares. Conversely, if (y2
1 + · · · + y2

m)(x2
1 + · · · + x2

n) =∑
f2

k , we must have x̄HiH
t
i x̄t = x2

1 + · · · + x2
n and x̄(HiH

t
j + HjHt

i)x̄t = 0. In characteristic
different from 2, this is possible only if the conditions (4) are satisfied. ◀

Given a natural number of the form n = 2ka where a is odd, the Hurwitz-Radon number
is defined as

ρ(n) =

2k + 1 , if k = 0
2k , if k = 1
2k , if k = 2
2k + 2 , if k = 3

mod 4

Observe that

2 log2 n ≤ ρ(n) ≤ 2 log2(n) + 2 ,

whenever n is a power of two.
Square matrices A1, A2 anticommute if A1A2 = −A2A1. A family of square matrices

A1, . . . , At will be called anticommuting if Ai, Aj anticommute for every i ̸= j.
The following lemma is a key ingredient in the proof of Hurwitz-Radon theorem. A

self-contained construction can be found in [2].

CCC 2024

12:4 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

▶ Lemma 4. For every n, there exists an anticommuting family of t = ρ(n) − 1 integer
matrices e1, . . . , et ∈ Zn×n which are orthonormal and antisymmetric (i.e., eie

t
i = In and

ei = −et
i).

▶ Remark 5. A straightforward construction (see, e.g., [5]) gives an anticommuting family of
t = 2 log2 n + 1 integer matrices e1, . . . , et ∈ Zn×n with e2

i = ±In whenever n is a power of
two. With minor modifications, these matrices could be used in the subsequent construction
instead.

4 The construction

Let e1, . . . , et be a set of square matrices. Given A = {i1, . . . , ik} ⊆ [t] with i1 < · · · < ik, let
eA :=

∏k
j=1 eij .

▶ Lemma 6. Let e1, . . . , et be a set of anticommuting matrices. If A, B ⊆ [t] have even size
(resp. odd size) then eA, eB anticommute assuming |A ∩ B| is odd (resp. even).

Proof. Since ei anticommutes with every ej , j ̸= i, but commutes with itself, we obtain

eAei = (−1)|A\{i}|eieA .

This implies that

eAeB = (−1)qeBeA ,

where q = |A| · |B| − |A ∩ B|. Hence if A, B are even (resp. odd) and their intersection is
odd (resp. even), q is odd and eA, eB anticommute. ◀

Given integers 0 ≤ k ≤ t, a (k, t)-parity representation of dimension s over a field F is a
map ξ :

([t]
k

)
→ Fs such that for every A, B ∈

([t]
k

)
⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and (|A ∩ B| = k mod 2) . (5)

▶ Lemma 7. Let 0 ≤ k ≤ t. Over C, there exists a (k, t)-parity representation of dimension(
t

≤⌊k/2⌋
)
. If F is a field of odd characteristic p, there exists a (k, t)-parity representation of

dimension (p − 1)
(

t
≤⌊k/2⌋

)
.

The case of odd characteristic will be proved in the Appendix.

Proof of Lemma 7 over C. Let 0 ≤ k ≤ t be given and d := ⌊k/2⌋.
For a ∈ {0, 1}t, let |a| be the number of ones in a. Recall that a polynomial is multilinear,

if every variable in it has individual degree at most one. We first observe:

▷ Claim 8. There exists a multilinear polynomial f ∈ Q(x1, . . . , xt) of degree at most d

such that for every a ∈ {0, 1}t

f(a) =
{

1 , if |a| = k

0 , if |a| < k and (|a| = k mod 2) .
(6)

Proof of Claim. Consider the polynomial

g(x1, . . . , xt) := c
∏

0≤i<k, i=k mod 2
(

t∑
j=1

xj − i) .

P. Hrubeš 12:5

Then g has degree d and we can choose c ∈ Q so that g satisfies (6). Since we care about
inputs from {0, 1}t, g can be rewritten as a multilinear polynomial f of degree at most d.

◁

Since f is multilinear, we can write it as

f(x1, . . . , xt) =
∑

C∈([t]
≤d)

αC

∏
i∈C

xi ,

where αC are rational coefficients. Identifying a subset A of [t] with its characteristic vector
in {0, 1}t, we have

f(A) =
∑

C⊆A

αC .

Let s :=
(

t
≤d

)
. Given A ∈

([t]
k

)
, let ξ(A) ∈ Cs be the vector whose coordinates are indexed

by subsets C ∈
([t]

≤d

)
such that

ξ(A)C =
{

(αC)1/2 , if C ⊆ A

0 , if C ̸⊆ A .

This guarantees

⟨ξ(A), ξ(B)⟩ =
∑

C

ξ(A)Cξ(B)C =
∑

C⊆A∩B

αC = f(A ∩ B) .

Hence conditions (6) translate to the desired properties of the map ξ. ◀

Combining Lemma 6 and 7, we obtain the following bound on σ:

▶ Theorem 9. Let n be a non-negative integer. Let 0 ≤ k ≤ ρ(n) − 1 and m :=
(

ρ(n)−1
k

)
.

Then

σC(n, m) ≤ n ·
(

ρ(n) − 1
≤ ⌊k/2⌋

)
.

If F is a field of odd characteristic p then

σF(n, m) ≤ (p − 1)n ·
(

ρ(n) − 1
≤ ⌊k/2⌋

)
.

Proof. Let n, k, m be as in the assumption. Let e1, . . . , et be the matrices from Lemma 4
with t = ρ(n) − 1. Let ξ be the (k, t)-parity representation given by the previous lemma. For
A ∈

([t]
k

)
, let

HA := eA ⊗ ξ(A) ,

where eA is defined as in Lemma 6, ξ(A) is viewed as a row vector, and ⊗ is the Kronecker
(tensor) product.

Note that each HA has dimension n × (ns) where s is the dimension of the parity
representation, and there are m =

(
t
k

)
such matrices HA. By Lemma 3, it is sufficient to

show that the system of matrices HA, A ∈
([t]

k

)
, satisfies Hurwitz-Radon conditions (4).

We have

HAHt
B = (eAet

B) ⊗ (ξ(A)ξ(B)t) = ⟨ξ(A), ξ(B)⟩ · eAet
B .

CCC 2024

12:6 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Since every ei is orthonormal, we have eAet
A = In. From (5), we have ⟨ξ(A), ξ(A)⟩ = 1 and

hence

HAHt
A = In .

If A ̸= B then

HAHt
B + HBHt

A = ⟨ξ(A), ξ(B)⟩ · (eAet
B + eBet

A) . (7)

If |A ∩ B| = k mod 2 then ⟨ξ(A), ξ(B)⟩ = 0 by (5) and hence (7) equals zero. If |A ∩ B| ̸=
k mod 2 then eAet

B + eBet
A = 0. This is because eAeB = −eBeA by Lemma 6 and that, since

ei are antisymmetric, eA, eB are either both symmetric or both antisymmetric. Therefore (7)
equals zero for every A ̸= B ∈

([t]
k

)
. ◀

Theorem 1 is an application of Theorem 9.

Proof of Theorem 1. Assume first that n is a power of 16. This gives ρ(n) = 2 log2(n) + 1.
Let k be the smallest integer with n ≤

(2 log2 n
k

)
=: m. From the previous theorem and

monotonicity of σ (cf. (3)), we obtain

σF(n) ≤ σF(n, m) ≤ cns ,

where the constant c depends on the field only and s :=
(2 log2 n

≤⌊k/2⌋
)
.

We have k = 2(α + ϵn) log2 n where α ∈ (0, 1
2) is such that H(α) = 1/2 (H is the binary

entropy function) and ϵn → 0 as n approaches infinity. We also have

s ≤ 22H(α+ϵn
2) log2 n = n2H(α

2)+ϵ′
n ,

where ϵ′
n → 0. Hence

σF(n) ≤ cn1+2H(α
2)+ϵ′

n .

The numerical value of α is 0.11 . . . which leads to σF(n) ≤ cn1.615+ϵ′
n ≤ O(n1.616).

If n is not a power of 16, take n′ with n < n′ < 16n which is. By monotonicity of σ, we
have σF(n) ≤ σF(n′). ◀

4.1 Comments
▶ Remark 10.

(i) IInstead of C, the proof of Theorem 9 applies to any field where all rationals have a
square root. However, Theorem 1 holds also over Gaussian rationals Q(i) (cf. Section
5.1).

(ii) In positive characteristic, the bounds in Lemma 7 and Theorem 9 can sometimes be
improved: if F ⊇ Fp2 , the factor (p − 1) can be dropped. For certain values of k,(

t
≤⌊k/2⌋

)
can be replaced with

(
t

⌊k/2⌋
)

(cf. Remark 19).

An improvement on the dimension of parity representation in Lemma 7, if possible, will
lead to an improvement in Theorem 1. However, this dimension cannot be too small:
▶ Remark 11. If k is even, every (k, t)-parity representation must have dimension at least
s =

(⌊t/2⌋
k/2

)
over any field. This is because there exists a family A of k-element subsets

of [t] whose pairwise intersection is even, and |A| = s . The map ξ must assign linearly
independent vectors to elements of A. Similarly for k odd.

P. Hrubeš 12:7

On the other hand,
(

t
≤⌊k/2⌋

)
in Lemma 7 can be replaced with

(
t

≤⌊t−k/2⌋
)

which gives
a smaller bound if if k > t/2. This is because we can instead work with complements of
A ∈

([t]
k

)
.

The notion of (k, t)-parity representation can be restated in the language of orthonormal
representations of graphs of Lovász [9]. Given a graph G with vertex set V , its orthonormal
representation is a map ξ(V) :→ Fs such that for every u, v ∈ V

⟨ξ(u), ξ(u)⟩ = 1 ,

⟨ξ(u), ξ(v)⟩ = 0 , if u ̸= v are not adjacent in G.

In this language, (k, t)-parity representation is an orthonormal representation of the following
combinatorial Knesser-type graph Gk,t: vertices of Gk,t are k-element subsets of [t]. There is
an edge between u and v iff |u ∩ v| ̸= k mod 2. Orthogonal representations of related graphs
have been studied by Haviv in [4, 3].

5 Modifications and extensions

5.1 A sum of bilinear products
Define βF(n) as the smallest s such there exists an identity

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = f1f ′
1 + · · · + fsf ′

s , (8)

where f1, . . . , fs and f ′
1, . . . , f ′

s are bilinear forms with coefficients from F.
We have βF(n) ≤ σF(n). In some contexts, β is a more natural quantity than σ. In this

section, we give a modification of Theorem 1 in terms of β:

▶ Theorem 12. Over any field, βF(n) ≤ O(nc) where c < 1.62.

▶ Remark 13. In characteristic different from two, we have ff ′ =
(

f+f ′

2

)2
−

(
f−f ′

2

)2
, which

allows to rewrite (8) as

(x2
1 + · · · + x2

n)(y2
1 + · · · + y2

n) = g2
1 + · · · + g2

s − h2
1 − · · · − h2

s .

It follows that

σF(n) ≤ 2βF(n) , if F contains a square root of − 1 ,

σF(n) ≤ pβF(n) , if F has characteristic p > 0 .

We conclude that, first, Theorem 1 is a consequence of Theorem 12 and, second, Theorem 1
holds also over Gaussian rationals Q(i).

The proof of Theorem 12 is a straightforward modification of that of Theorem 1 and we
only highlight the main points.

The following is an analogy of Lemma 3:

▶ Lemma 14. Assume that there are matrices H1, . . . Hm, H̃1, . . . , H̃m ∈ Fn×s satisfying

HiH̃
t
i = In , HiH̃

t
j + HjH̃t

i = 0 , i ̸= j,

for every i, j ∈ [m]. Then βF(n, m) ≤ s.

CCC 2024

12:8 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

Proof. Define

(f1, . . . , fs) =
n∑

i=1
x̄Hiyi , (f ′

1, . . . , f ′
s) =

n∑
i=1

x̄H̃iyi .

Hence
s∑

k=1
fkf ′

k = (f1, . . . , fs)(f ′
1, . . . , f ′

s)t =
∑

i

y2
i x̄HiH̃

t
i x̄t +

∑
i<j

yiyj x̄(HiH̃
t
j + HjH̃t

i)x̄t .

This equals
∑

i y2
i x̄Inx̄t = (y2

1 + · · · + y2
m)(x2

1 + · · · + x2
n) as required. ◀

▶ Lemma 15. For 0 ≤ k ≤ t and any field F of characteristic different from two, there exists
a pair of maps ξ, ξ̃ :

([t]
k

)
→ Fs with s =

(
t

≤⌊k/2⌋
)

such that for every A, B ∈
([t]

k

)
⟨ξ(A), ξ̃(A)⟩ = 1 ,

⟨ξ(A), ξ̃(B)⟩ = ⟨ξ(B), ξ̃(A)⟩ ,

⟨ξ(A), ξ̃(B)⟩ = 0 , if A ̸= B and (|A ∩ B| = k mod 2) .

Proof. The proof is almost the same as that of Lemma 7. Equipped with the polynomial f

from Claim 8 or Lemma 17, it is is sufficient to modify the definition of ξ as follows:

ξ(A)C =
{

αC , if C ⊆ A

0 , if C ̸⊆ A .
, ξ̃(A)C =

{
1 , if C ⊆ A

0 , if C ̸⊆ A .
◀

Proof sketch of Thoreom 12. In Theorem 9, replace the matrices HA by the pair

HA := eA ⊗ ξ(A) , H̃A = eA ⊗ ξ̃(A) .

They satisfy the conditions from Lemma 14 and we can proceed as in Theorem 1. ◀

5.2 A tensor product construction
We now outline an alternative construction of non-trivial sum-of-squares identities. While it
gives different types of identities, it does not seem to give better bounds asymptotically.

Instead of the products of anticommuting matrices eA, one can take the tensor product of
matrices satisfying Hurwitz-Radon conditions (4). Namely, given such matrices H1, . . . , Hm ∈
Fn×s, and a ∈ [m]ℓ, let

Ha := Ha1 ⊗ Ha2 · · · ⊗ Haℓ
.

Observe that every Ha satisfies HaHt
a = Inℓ and that

HaHt
b + HbHt

a = 0 ,

whenever a and b have odd Hamming distance (i.e., they differ in an odd number of
coordinates). As in Lemma 7, we can find a map ξ : [m]ℓ → Cs with s ≤ (4m)ℓ/2 such that

⟨ξ(a), ξ(a)⟩ = 1 ,

⟨ξ(a), ξ(b)⟩ = 0 , if a ̸= b have even Hamming distance.

This gives for every ℓ

σC(nℓ, mℓ) ≤ σC(n, m)ℓ(4m)ℓ/2

For example, starting with σC(8, 8) = 8, we have

σC(8ℓ, 8ℓ) ≤ 811ℓ/6 .

P. Hrubeš 12:9

6 Open problems

Let Event denote the set of even-sized subsets of [t]. A map ξ : Event → Fs will be called a
t-parity representation of dimension s if for every A, B ∈ Event

⟨ξ(A), ξ(A)⟩ = 1 ,

⟨ξ(A), ξ(B)⟩ = 0 , if A ̸= B and |A ∩ B| is even.

▶ Problem 1. Over C, does there exist a t-parity representation of dimension 2(0.5+o(1))t?

If this were the case, we could improve the bound of Theorem 1 to σC(n, n) ≤ n1.5+o(1).
A more surprising consequence would be that

σC(n, n2) ≤ n2+o(1) .

The constant 0.5 in Problem 1 cannot be improved: since there exists a family of 2⌊t/2⌋ subsets
of [t] with pairwise even intersection, every t-parity representation must have dimension at
least 2⌊t/2⌋ (cf. Remark 11). On the other hand, Lemma 7 implies that there exists a t-parity
representation of dimension at most 2(H(0.25)+o(1))t < 20.82t.

Our results do not apply to sum-of-squares composition formulas over the real numbers.
Since R is one of the most natural choices of the underlying field, it is desirable to extend
the construction in this direction. This motivates the following:

▶ Problem 2. Over R, does there exist a t-parity representation of dimension O(2ct) with
c < 1?

References
1 Marco L. Carmosino, Russell Impagliazzo, Shachar Lovett, and Ivan Mihajlin. Hardness

amplification for non-commutative arithmetic circuits. In Proceedings of the 33rd Computational
Complexity Conference, CCC ’18, 2018.

2 A. Geramita and N. Pullman. A theorem of Hurwitz and Radon and orthogonal projective
modules. Proceedings of The American Mathematical Society, 42:51–51, January 1974. doi:
10.1090/S0002-9939-1974-0332764-4.

3 I. Haviv. On minrank and the Lovász Theta function. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, 2018.

4 I. Haviv. Topological bounds on the dimension of orthogonal representations of graphs.
European Journal of Combinatorics, 81:84–97, 2019.

5 P. Hrubeš. On families of anticommuting matrices. Linear Algebra and Applications, 493:494–
507, 2016.

6 P. Hrubeš, A. Wigderson, and A. Yehudayoff. Non-commutative circuits and the sum of
squares problem. In STOC’ 10 Proceedings of the 42nd symposium on Theory of Computing,
pages 667–676, 2010.

7 P. Hrubeš, A. Wigderson, and A. Yehudayoff. An asymptotic bound on the composition
number of integer sums of squares formulas. Canadian Mathematical Bulletin, 56:70–79, 2013.

8 A. Hurwitz. Über die Komposition der quadratischen Formen von beliebigvielen Variabeln.
Nach. Ges. der Wiss. Göttingen, pages 309–316, 1898.

9 L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1–7, 1979.
10 N. Nisan. Lower bounds for non-commutative computation. In Proceeding of the 23th STOC,

pages 410–418, 1991.
11 J. Radon. Lineare scharen orthogonalen Matrizen. Abh. Math. Sem. Univ. Hamburg, 1(2-14),

1922.
12 D. B. Shapiro. Quadratic forms and similarities. Bull. Amer. Math. Soc., 81(6), 1975.
13 D. B. Shapiro. Compositions of quadratic forms. De Gruyter expositions in mathematics 33,

2000.

CCC 2024

https://doi.org/10.1090/S0002-9939-1974-0332764-4
https://doi.org/10.1090/S0002-9939-1974-0332764-4

12:10 A Subquadratic Upper Bound on Sum-Of-Squares Composition Formulas

A Proof of Lemma 7 in positive characteristic

Given non-negative integers n̄ = (n1, . . . , nd) let B(n̄) be the d × d matrix {B(n̄)i,j}i,j∈[d]
with

B(n̄)i,j =
(

nj

i − 1

)
.

We assume that
(

n
k

)
= 0 whenever n < k; this guarantees

(
n
k

)
= n(n−1)···(n−k+1)

k! .

▶ Lemma 16. If n̄ = (r, r + 2, . . . , r + 2(d − 1)) for some non-negative integer r then
det(B(n̄)) = 2(d

2).

Proof. We claim that

det(B(n̄)) = (
d−1∏
i=1

i!)−1 det(V (n̄)) ,

where V (n̄) is the Vandermonde matrix with entries V (n̄)i,j = ni−1
j . To see this, multiply

every i-th row of B(n̄) by (i − 1)! to obtain matrix B′(n̄) with

det(B′(n̄)) = (
d−1∏
i=1

i!) det(B(n̄)) .

An i-th row ri of B′(n̄) is of the form (ni−1
1 +gi(n1), . . . , ni

d +gi(nd)) where gi is a polynomial
of degree < (i − 1). This means that ri equals the i-th row of V (n̄) plus a suitable linear of
combination of the preceding rows of V (n̄). Therefore, det(B′(n̄)) = det(V (n̄)).

Given n̄ as in the assumption, we obtain

det(V (n̄)) =
∏

1≤j1<j2≤d

(nj2 − nj1) =
∏

1≤j1<j2≤d

(2j2 − 2j1)

= 2(d
2)

∏
1≤j1<j2≤d

(j2 − j1) = 2(d
2)

d−1∏
i=1

i! .

This shows that det(B(n̄)) = 2(d
2). ◀

▶ Lemma 17. Let p be an odd prime. Given 0 ≤ k ≤ t, there exists a multilinear polynomial
f ∈ Fp(x1, . . . , xt) of degree at most d = ⌊k/2⌋ such that for every a ∈ {0, 1}t

f(a) =
{

1 , if |a| = k

0 , if |a| < k and (|a| = k mod 2) .

Proof. We look for f of the form f =
∑d

j=0 cjSj
t where Sj

t is the elementary symmetric
polynomial Sj

t =
∑

|A|=j

∏
i∈A xi. Given a ∈ {0, 1}t,

f(a) =
d∑

j=0
cj

(
|a|
j

)
mod p .

We are therefore looking for a solution of the linear system

B(n̄) (c0 . . . , cd)t = (0, . . . , 0, 1)t
,

where n̄ = (0, 2, . . . , 2d), if k is even, and n̄ = (1, 3, . . . , 2d + 1), if k is odd. By the previous
lemma, B(n̄) is invertible over Fp and such a solution exists. ◀

P. Hrubeš 12:11

▶ Lemma 18. If F is a field of odd characteristic p, there exists a (k, t)-parity representation
of dimension (p − 1)

(
t

≤⌊k/2⌋
)
.

Proof. If every element of Fp has a square root in F, the proof is the same as over C. In
general, proceed as follows. Since every non-zero element of Fp is a sum of at most (p − 1)
ones, we can write

f(x1, . . . , xt) =
∑
C∈C

∏
i∈C

xi ,

where C is a multiset of s ≤ (p − 1)
(

t
≤d

)
subsets of [t]. For A ∈

([t]
k

)
, let ξ(A) ∈ Fs be a vector

whose coordinates are indexed by elements C of C so that

ξ(A)C =
{

1 , if C ⊆ A

0 , if C ̸⊆ A .
◀

▶ Remark 19.
(i) Over Fp2 or a larger field, the factor of (p − 1) in Lemma 18 can be dropped. This is

because every element of Fp has a square root in Fp2 .
(ii) For specific values of k, a stronger bound is possible. For example, if k = 2pℓ − 1, there

is a (k, t)-parity representation of dimension
(

t
⌊k/2⌋

)
. It follows from Lucas’ theorem

that in this case, f in Lemma 17 can be taken simply as the elementary symmetric
polynomial of degree ⌊k/2⌋. This polynomial has only

(
t

⌊k/2⌋
)

monomials.

CCC 2024

Hard Submatrices for Non-Negative Rank and
Communication Complexity
Pavel Hrubeš # Ñ

Institute of Mathematics of ASCR, Prague, Czech Republic

Abstract
Given a non-negative real matrix M of non-negative rank at least r, can we witness this fact by a
small submatrix of M? While Moitra (SIAM J. Comput. 2013) proved that this cannot be achieved
exactly, we show that such a witnessing is possible approximately: an m × n matrix of non-negative
rank r always contains a submatrix with at most r3 rows and columns with non-negative rank at
least Ω(r

log n log m
). A similar result is proved for the 1-partition number of a Boolean matrix and,

consequently, also for its two-player deterministic communication complexity. Tightness of the latter
estimate is closely related to the log-rank conjecture of Lovász and Saks.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Non-negative rank, communication complexity, extension complexity

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.13

Funding Pavel Hrubeš : This work was supported by Czech Science Foundation GAČR grant
19-27871X.

Acknowledgements The author wants to thank Anup Rao for useful comments.

1 Introduction

The rank of a matrix is one of the most versatile concepts from linear algebra. A basic
property of matrix rank is the following: if a matrix M has rank at least r then it contains
an r × r submatrix of rank r. Put differently, the fact that rk(M) ≥ r can be witnessed by a
hard r × r submatrix. Can we extend this witnessing property to other matrix complexity
measures? We will consider two such measures: the non-negative rank of a non-negative real
matrix and the 1-partition number of a Boolean matrix.

Given a matrix with non-negative real entries, its non-negative rank is defined similarly
to rank, except that we want to express the matrix as a sum of non-negative rank-one
matrices. This quantity has numerous applications in communication complexity and linear
optimization [20], and other fileds (cf. [15]). In [20], Yannakakis has discovered a geometric
interpretation of non-negative rank in terms of linear projections of polytopes. This connection
has been extended and exploited in many subsequent results, see, e.g., [18, 2, 5], including
the current paper.

If M is a 0, 1-matrix, its 1-partition number can be defined as the smallest r such that
M can be written as a sum of r rank-one Boolean matrices. This is an important concept in
communication complexity [11, 16]. Interpreting a 0, 1-matrix as the adjacency matrix of a
bipartite graph, it is also equivalent to the biclique partition number (see [3] and references
within).

If M has non-negative rank ≥ r, can this fact be witnessed by a small submatrix? The
short answer is no. In [15], Moitra presented an n × n matrix M of non-negative rank 4
such that every submatrix with less than n/3 columns has non-negative rank at most 3 – in
particular, M contains no constant-size submatrix of non-negative rank 4. In Section 6.3, we
will give a different example where the gap is more dramatic. Similarly, we will see that the
most optimistic form of witnessing fails for 1-partition number. On the positive side, we will

© Pavel Hrubeš;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 13; pp. 13:1–13:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pahrubes@gmail.com
https://users.math.cas.cz/~hrubes
https://orcid.org/0000-0003-4526-4934
https://doi.org/10.4230/LIPIcs.CCC.2024.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Hard Submatrices for Non-Negative Rank and Communication Complexity

show that a weaker form of witnessing nevertheless holds: if a matrix has non-negative rank
r then it contains a submatrix of size bounded by a polynomial in r whose non-negative rank
is close to r; similarly for 1-partition number.

The two-player deterministic communication complexity of M can be characterized by the
logarithm of the 1-partition number of M . Hence our witnessing result for 1-partition number
can be restated in the language of communication complexity: if a Boolean function has a large
communication complexity, this fact can be approximately witnessed by a relatively small
set of inputs. It should be noted that this statement immediately follows from the log-rank
conjecture of Lovász and Saks (presented in [14]). This conjecture relates the communication
complexity of a Boolean matrix with its rank. It implies that for a Boolean matrix M ,
the three parameters – rank, 1-partition number, non-negative rank – are essentially the
same, with their logarithm being polynomially related to the communication complexity
of M . This allows us deduce a witnessing property for these measures from the witnessing
property of matrix rank. Our result to confirms this prediction of the conjecture and it may
therefore be interpreted as a vote in its favor. On the other hand, the log-rank conjecture
implies a stronger form of witnessing than what we actually prove. Hence, in principle, a
counterexample to the conjecture may be given by a matrix for which this predicted form of
witnessing fails (see Section 5 for more details). According to [6], the witnessing problem for
communication complexity has been previously posed by H. Halemi.

Our witnessing results could be easily converted to non-trivial approximation algorithms
to compute non-negative rank or the 1-partition number. These algorithms would run in
polynomial time whenever the complexity parameter in question is fixed. Interestingly, exact
algorithms of this form were given by Moitra [15] and Chandran et al. [3]. While there
are similarities between these algorithms and the witnessing perspective, these algorithms
ultimately do not search for a witness.

On a more abstract level, the witnessing problem can be posed with respect to any com-
plexity measure whatsoever. A related result in Boolean circuit complexity are “anticheckers”
of Lipton and Young [13]. In their work, it is shown that if a Boolean function f requires a
Boolean circuit of size s then there is a subset of inputs of size roughly s such that f restricted
to this subset still requires circuit size roughly s. A related topic are “hard-core predicates”
of Impagliazzo [10]. Recently, Göös et al. [6] studied deterministic query complexity from
this perspective. An example from the opposite side of the spectrum is the chromatic number
of a graph. It is known that a large chromatic number imposes almost no local structure on
a graph and cannot be witnessed by a small subgraph [4, 17].

2 Main results

Given an m × n matrix M with real non-negative entries, its non-negative rank, rk+(M), is
the smallest s such that M can be written as

M = LR ,

where L and R are non-negative matrices of dimensions m × s and s × n, respectively.
We will show that every M with large non-negative rank contains a relatively small

submatrix of large non-negative rank.

▶ Theorem 1. Let M be an m × n non-negative real matrix with n ≥ 2. Then for every
k ≤ n, M contains an m × k submatrix of k columns with non-negative rank Ω(R), where
R := min

(
(k

log n) 1
3 , rk+(M)

log n

)
.

P. Hrubeš 13:3

A remarkable consequence is the following:
M contains an s1 × s2 submatrix with s1, s2 ≤ rk+(M)3 and non-negative rank
Ω(rk+(M)

log n log m). Moreover, If M is a square matrix then so is the submatrix.

In some cases, a stronger conclusion is possible. For example, if rk+(M) = n then
every m × k submatrix of M has non-negative rank k. Theorem 1 becomes interesting if
log n ≪ rk+(M) ≪ n. For example, if M is n × n with rk+(M) roughly nϵ, we obtain an
n3ϵ × n3ϵ submatrix of non-negative rank roughly nϵ, and also an nϵ × nϵ submatrix of
non-negative rank roughly nϵ/3. How far from truth is the estimate from Theorem 1 is an
interesting question. In Section 6.3, we will see that the result gives a qualitatively correct
picture: the exponent 1/3 can be replaced by 1/2 at best.

Given a Boolean matrix M ∈ {0, 1}m×n, let us define its 1-partition number, χ1(M), as
the smallest s such that M can be written as

M = LR , with L ∈ {0, 1}m×s , R ∈ {0, 1}s×m ,

where the operations are over R. The definition emphasizes the analogy with rk+, and χ1 is
also sometimes referred to as binary rank. On the other hand, the phrase “partition number”
comes from communication complexity. The name is justified: it is easy to see that χ1(M)
equals the smallest s such that the 1-entries of M can be partitioned into s 1-monochromatic
rectangles (i.e., rank-one Boolean matrices). Finally, when M is viewed as the adjacency
matrix of a bipartite graph, χ1(M) also appears under the name biclique partition number [3].

In the case of χ1, we obtain a similar but simpler result:

▶ Theorem 2. Let M be an m × n Boolean matrix with n ≥ 2. Then for every k ≤ n, M

contains an m × k submatrix of k columns with 1-partition number Ω(min(
√

k, χ1(M)
log n)).

One consequence is the following (cf. Corollary 6):
if χ1(M) = p then M contains a p × p submatrix with 1-partition number Ω(p1/4).

The results on 1-partition number imply similar statements in communication complexity;
they will be presented in Section 5. Whether these witnessing results can be significantly
improved is an intriguing question. It is intimately related to the log-rank conjecture; this
connection is discussed in Section 5.

Theorems 1 and 2 are proved in Sections 6.2 and 4, respectively. The proof of Theorem 2
is self-contained. Theorem 1 uses geometrical interpretation of non-negative rank in terms
of extended formulations of polytopes and also employs known bounds on complexity of
quantifier elimination.

Notation

All logarithms are in base 2 and [n] := {1, . . . , n}.

3 A combinatorial lemma

Both Theorems 1 and 2 rely on a simple combinatorial lemma.

▶ Lemma 3. Let A ⊆ 2[n] be a family of subsets of [n]. Assume that 1 ≤ k ≤ n is such that
every k-element subset of [n] is contained in some A ∈ A. Then there exists a subfamily
A′ ⊆ A of size |A′| ≤ O(|A| 1

k log(n/k)) with
⋃

A′ = [n]. In particular, if |A| ≤ 2k then
|A′| ≤ O(log n).

CCC 2024

13:4 Hard Submatrices for Non-Negative Rank and Communication Complexity

Proof. Assume that |A| ≤ ak. Let t be the size of a largest set in A. Then we have(
n

k

)
≤ ak

(
t

k

)
.

Hence t ≥ n
ea , using the estimates (n

k)k ≤
(

n
k

)
,

(
t
k

)
≤ (et

k)k. Take some A0 ∈ A of size t. Let

A1 := {A \ A0 : A ∈ A} .

Then every subset of U1 := [n] \ A0 of size at most k is contained in some member of A1.
The size of U1 is at most n(1 − 1

ea). Similarly, take a largest set A1 from A1 and obtain a
new family A2 ⊆ 2U2 on U2 := U1 \ A1. After s steps, the size of Us is at most n(1 − 1

ea)s

and after s ≤ O(a log(n/k)) steps we have |Us| ≤ k. This guarantees that the largest set in
As is Us itself and [n] =

⋃s
i=0 As. By construction, every Ai is contained in some element of

the original family A. ◀

For some range of parameters, the lemma can be also proved from the Min Max Theorem
of Lipton and Young in [13] which would also give an approximate version of it.

An application (which will not be explicitly used) is the following. A subadditive measure
on [n] is a function µ : 2[n] → R such that µ(A1 ∪ A2) ≤ µ(A1) + µ(A2) holds for every
A1, A2 ⊆ [n].

▶ Corollary 4. Let µ be a subadditive measure on [n]. Assume 1 ≤ k ≤ n and that every
k-element subset of [n] has measure at most s. Let N be the number of ⊆-maximal subsets
of [n] of measure at most s. Then µ([n]) ≤ O(sN

1
k log(n/k))).

4 1-Partition number

In this section, we prove Theorem 2.
Let M be an m × n matrix with rows indexed by [n] = {1, . . . , n}. Given A ⊆ [n], MA

denotes the submatrix obtained by removing the rows outside of A from M . Observe that1

χ1(MA1∪A2) ≤ χ1(MA1) + χ1(MA2) , (1)

and so χ1(MA) can be viewed as a subadditive measure on [n] whenever M is fixed.
If a matrix M has rank r, its rows are a linear combination of a subset of r rows of M .

This means that every column of M is determined by a fixed subset of r coordinates. If M

is Boolean, this leads to the following useful fact:
if M has distinct columns then n ≤ 2rk(M) (similarly for rows).

▶ Lemma 5. Let M be an m × n Boolean matrix of rank r. Given s ∈ [n], let A be the
collection of maximal subsets A ⊆ [n] with χ1(MA) ≤ s (i.e., χ1(MA) ≤ s and χ1(MA′) > s

for every A′ ⊋ A). Then |A| ≤ 2(r+s)2 .

Proof. Let v1, . . . , vn ∈ Rm be the columns of M . Given L ∈ {0, 1}m×s, let

L∗ := {i ∈ [n] : ∃y ∈ {0, 1}s vi = Ly} .

Let L := {L∗ : L ∈ {0, 1}m×s}.

1 If A1, A2 are disjoint, this is quite obvious. Otherwise consider A1, A2 \ A1.

P. Hrubeš 13:5

We claim that A ⊆ L. If χ1(MA) ≤ s, we can write MA = LR with L ∈ {0, 1}m×s and
R ∈ {0, 1}s×|A|. This means that every vi, i ∈ A, is a Boolean linear combination of the
columns of L and A ⊆ L∗. Furthermore, if A is maximal, we must have A = L∗.

We now want to estimate the size of L. The set L∗ consists of indices i ∈ [n] so that
there exists x ∈ Rn, y ∈ Rs satisfying

Mx − Ly = 0 (2)

such that y ∈ {0, 1}s and x is the i-th unit vector. Since M has rank r and L has rank at
most s, the system (2) is equivalent to a subsystem of t := min((s + r), m) equations. These
correspond to rows of the matrix (M, L). Hence, in order to determine L∗, it is sufficient
to specify a t-element subset of [m] together with the t × s submatrix of L. This gives the
estimate

|L| ≤
(

m

t

)
2ts ≤ 2t(s+log m) .

Finally, we can assume that M has distinct rows and so log m ≤ r, obtaining the bound
2(r+s)2 . ◀

▶ Theorem 2 (restated). Let M be an m×n Boolean matrix with n ≥ 2. Then for every k ≤ n,
M contains an m × k submatrix of k columns with 1-partition number Ω(min(

√
k, χ1(M)

log n)).

Proof. Let r be the rank of M . We will assume r ≤ k1/2

2 . Otherwise, observe that M

contains a full rank r × r submatrix, χ1 is lower-bounded by rank, and the conclusion of the
theorem follows.

Let s be the maximum χ1(MA) over all A ⊆ [n] of size k. Let A be the family from
the previous lemma. If |A| ≥ 2k, we have 2k ≤ 2(s+r)2 and therefore s ≥ k1/2

2 from the
assumption on r.

Assume |A| ≤ 2k. By Lemma 3, there exists a subfamily A′ ⊆ A of size O(log n) which
covers [n]. Using (1), this implies χ1(M) ≤ O(s log n) and so s ≥ Ω(χ1(M)/ log n). ◀

▶ Corollary 6. Let M be as above with χ1(M) = p. Then M contains
(i) a submatrix of at most p2 columns with partition number Ω(p/ log n),
(ii) a submatrix with at most p2 rows and columns with partition number Ω(p/(log n log m)).

If M is a square matrix then so is the submatrix.
(iii) a submatrix with p columns with partition number Ω(p 1

2)
(iv) a p × p submatrix with partition number Ω(p 1

4).

Proof. Part (i). If n ≤ p2, M itself satisfies the statement. Otherwise apply the theorem
with k = p2.

Part (ii). Apply (i) again to the transpose of the submatrix obtained in (i). If m = n, we
can enlarge the submatrix to a square matrix.

Part (iii). Without loss of generality, we can assume that the columns of M are distinct.
This implies that M has rank at least log n. If √

p ≤ p/ log n, apply the theorem to obtain
the desired matrix. Otherwise, we have p ≥ log2 n. M contains a submatrix of p columns of
rank at least min(p, log n) ≥ √

p.
Part (iv) follows by taking the submatrix from (iii), and applying (iii) to its transpose. ◀

▶ Remark 7. The bound of Theorem 2 can be slightly improved to give
Ω(

√
k log(1 + χ1(M)

k1/2 log n
)), as long as k1/2 ≤ χ1(M)/ log n. For example, if k = χ1(M)/ log n,

we obtain a submatrix of k columns with 1-partition number Ω(
√

k log k).

CCC 2024

13:6 Hard Submatrices for Non-Negative Rank and Communication Complexity

Furthermore, M always contains a submatrix M ′ of k columns with χ1(M ′) ≥ χ1(M) ·⌈
n
k

⌉−1, which gives better parameters if χ1(M) is close to n.

4.1 A somewhat non-trivial example
We now give a finite example which shows that the most optimistic form of witnessing fails
for χ1.

▶ Theorem 8. There exists a 5 × 6 Boolean matrix M with χ1(M) = 5 such that every 5 × 5
submatrix of M has 1-partition number at most 4.

Proof. Let

M :=

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0
0 0 0 1 1 1
1 1 1 1 1 1

 .

We first argue that χ1(M) > 4, which implies χ1(M) = 5 since M has 5 rows.
Suppose that χ1(M) ≤ 4. Then there exists a set of Boolean row-vectors V = {v1, . . . , v4}

such that every row of M is their Boolean linear combination; i.e., of the form
∑

i∈A vi for
some A ⊆ {1, . . . , 4}. Note that in this expression, the non-zero coordinates of vi, i ∈ A, are
a subset of the non-zero coordinates of the given row. Using this observation, it is easy to
see that V must consist of the first 4 rows of M . If χ1(M) ≤ 4 this means that the last row
of M is a Boolean combination of the first four rows, which is clearly impossible.

We now show that every submatrix obtained by removing a column from M has χ1 at
most 4.

First, assume that M ′ has been obtained by removing the third column. The resulting
matrix, together with a partition into four 1-monochromatic rectangles a, b, c, d, is as follows:

M ′ =

1 0 0 1 1
0 1 1 0 1
0 0 1 1 0
0 0 1 1 1
1 1 1 1 1

 ,

a 0 0 a b

0 c c 0 b

0 0 d d 0
0 0 d d b

a c c a b

 .

Second, assume that M ′′ has been obtained by removing the last column. The resulting
matrix, together with its partition, is the following:

M ′′ =

1 0 0 0 1
0 1 0 1 0
0 0 1 1 1
0 0 0 1 1
1 1 1 1 1

 ,

a 0 0 0 a

0 b 0 b 0
0 0 c d d

0 0 0 d d

a b c b a

 .

Finally, note that if we remove from M the first or the second column, we obtain M ′ (up
to a permutation of rows and columns). And, if we remove the fourth or fifth column, we
obtain M ′′. Hence indeed, every 5 × 5 submatrix has χ1 at most 4 ◀

By placing n copies of the matrix from Theorem 8 on diagonal, we obtain:

▶ Corollary 9. For every n, there exists a 5n × 6n Boolean matrix M with χ1(M) = 5n such
that every submatrix obtained by removing a column of M has 1-partition number strictly
less than 5n.

P. Hrubeš 13:7

5 Communication complexity, and a comparison with the log-rank
conjecture

Given an m × n Boolean matrix M , consider the following two-player game: Alice knows
i ∈ [m], Bob knows j ∈ [n], and they are supposed to compute the value of Mi,j . Denote
by cc(M) the deterministic communication complexity of this game. For details about the
communication model, see for example [11, 16].

In order to relate communication complexity with χ1, we need the following classical fact
(the first inequality is due to Yao, the second is due to Yannakakis [20]): if M is non-constant
then

log(χ1(M) + 1) ≤ cc(M) ≤ O(log2 χ1(M)) . (3)

▶ Proposition 10. Let M be a Boolean matrix with communication complexity c. Then
there exist k ≥ Ω(

√
c) and a 2k × 2k submatrix of M with communication complexity at least

k/4 − O(1).

Proof. From (3), there exists k ≥ Ω(
√

c) with χ1(M) ≥ 2k. Corollary 6, part (iv), gives
2k × 2k submatrix M ′ with χ1(M ′) ≥ Ω(2k/4). By (3), we have cc(M ′) ≥ k/4 − O(1). ◀

It is worthwhile to compare this with what is predicted by the log-rank conjecture [14] of
Lovász and Saks.

▶ Log-rank conjecture. There is a constant α such that cc(M) ≤ O(logα(rk(M))) for any
non-zero Boolean matrix M .

▶ Proposition 11. Assume the log-rank conjecture. Then every Boolean matrix with commu-
nication complexity c contains a 2k × 2k submatrix M ′ with χ1(M ′) = 2k, communication
complexity k + 1, and k ≥ Ω(c1/α).

Proof. If M has communication complexity c then, by the log-rank conjecture, M has rank
at least 2k with k ≥ Ω(c1/α). Hence M contains a full-rank 2k × 2k submatrix M ′. Since
χ1(M ′) ≥ rk(M ′), we have χ1(M ′) = 2k. If c is sufficiently large, so that k ≥ 1, then M ′ is
non-constant and we obtain cc(M ′) ≥ k + 1 by (3). ◀

This is almost what has been proved in Proposition 10. One difference is that the constant
α in Proposition 11 is unconditionally set to 2 in Proposition 10. However, there is a more
important qualitative difference. The submatrix presented in Proposition 11 has highest
possible communication complexity: the protocol in which Alice sends her input to Bob and
Bob sends back the answer (or vice versa), is optimal. Any other protocol cannot save even
one bit of communication. In contrast, Proposition 10 presents a submatrix with only a
very high communication complexity. To summarize, Proposition 10 confirms a prediction
of the log-rank conjecture. But with worse parameters than what the conjecture predicts:
consequently the bound in the proposition is far from from tight, or the conjecture is false.

Another consequence is:

▶ Remark 12. In order to solve the log-rank conjecture, it is sufficient to focus on 2k × 2k

matrices with communication complexity at least k/4 − O(1).

CCC 2024

13:8 Hard Submatrices for Non-Negative Rank and Communication Complexity

6 Non-negative rank

6.1 Extended formulations and separation complexity
Let us first make a short detour into extended formulations of convex polyhedra.

A polyhedron P ⊆ Rr is a (possibly unbounded) set defined by a finite number of linear
constraints. Following [20, 18, 2], define the extension complexity of P , xc(P), as the smallest
s such that P is a linear projection of a polyhedron Q ⊆ Rm where Q can be defined using s

inequalities (and any number of equalities). Observe that P with extension complexity s can
be expressed in the standard form

x ∈ P iff ∃y∈Rs Cx + Dy = b, y ≥ 0 ,

where C ∈ Rt×r, D ∈ Rt×s and b ∈ Rt for some t.
Let V be a finite subset of Rr. Given A ⊆ V , its separation complexity, sepV (A), is the

minimum xc(P) over all polyhedra P ⊆ Rr with2

P ∩ V = A ;

such a P is called a separating polyhedron for A. In other words, sepV (A) is the smallest s

so that we can distinguish points in A from points in V \ A by means of a linear program
with s inequalities. Moreover, such a program can be rewritten as

x ∈ A iff (x ∈ V and ∃y∈Rs Cx + Dy = b, y ≥ 0) .

The notion of separation complexity has been studied in [7, 8, 9] in the case when
V = {0, 1}n is the Boolean cube. The following theorem is of independent interest and can
be seen as an extension of similar results in [7, 9]. The proof is a considerable simplification
of the previous ones.

▶ Theorem 13. Let V be a non-empty finite subset of Rr. Given a parameter s ≥ 1, let A
be the collection of subsets A of V with sepV (A) ≤ s. Then

|A| ≤ 2O(s(r+s)2 log |V |) .

The proof is delegated to the appendix.
An immediate consequence of Theorem 13 is a theorem from [9]:
if V = {0, 1}n then there exists A ⊆ V with sepV (A) ≥ 2n

1
3 (1−o(1))

.

6.2 Submatrices of large non-negative rank
In order to apply Theorem 13, we also need a connection between extension complexity
and non-negative rank. This is provided by the notion of slack matrix introduced in [20].
Following [20, 2], we now define what it is. Let V be a sequence v1, . . . , vm1 of points in Rr

and L(x) a system ℓ1(x) ≥ b1, . . . , ℓm2(x) ≥ bm2 of inequalities in Rr. The slack matrix with
respect to V and L(x) is the m2 × m1 matrix S such that

Si,j = ℓi(vj) − bi .

Let P0 := conv(V) be the convex hull of V and P1 := {x ∈ Rr : L(x) holds}. If P0 ⊆ P1
then S is non-negative. In [2], we can find:

2 If no such polyhedron exists, which may happen if V is not convexly independent, we set sepV (A) := ∞.

P. Hrubeš 13:9

▶ Lemma 14 ([2]). Let P0 ⊆ P1 and S be as above. Define xc(P0, P1) as the minimum xc(P)
over all polyhedra with P0 ⊆ P ⊆ P1. Then

rk+S − 1 ≤ xc(P0, P1) ≤ rk+S .

▶ Theorem 1 (restated). Let M be an m × n non-negative real matrix with n ≥ 2. Then for
every k ≤ n, M contains an m × k submatrix of k columns with non-negative rank Ω(R),
where R := min

(
(k

log n) 1
3 , rk+(M)

log n

)
.

Proof. Let r be the rank of M . We can write M = LR where L ∈ Rm×r, R ∈ Rr×n. Let
V ⊆ Rr be the set of columns v1, . . . vn of R. (Without loss of generality, the columns of M

are distinct). Given A ⊆ [n], let MA be the submatrix obtained by deleting columns outside
of A from M . Also let VA := {vi : i ∈ A}. Then MA can be interpreted as the slack matrix
of the polytope PA = conv(VA) and the polyhedron Q = {x ∈ Rd : Lx ≥ 0}.

Suppose that for every A of size k, rk+(MA) ≤ s. Then for every such A, there is a
polyhedron QA with VA ⊆ QA ⊆ Q with xc(QA) ≤ s. Let A∗ := V ∩ QA. Then QA is
a separating polyhedron for A∗ ⊇ A. Let A be the collection of A∗ over all A of size k.
Theorem 13 implies

|A| ≤ 2c log n(s+r)3
,

where c is an absolute constant.
We will assume r ≤ (k

2c log n)1/3. Otherwise M contains a full rank r × r submatrix, rk+
is lower-bounded by rank, and the conclusion of the theorem follows.

If |A| ≥ 2k, we obtain c log n(s + r)3 ≥ k and hence s ≥ Ω((k/ log n)1/3) from the
assumption on r.

Assume |A| ≤ 2k. By Lemma 3, there exists a subfamily A′ ⊆ A of size O(log n) which
covers [n]. This implies (note that (1) holds also for non-negative rank) rk+(M) ≤ O(s log n)
and s ≥ Ω(rk+(M)/ log n). ◀

The following is proved similarly to Corollary 6:

▶ Corollary 15. Let M be a non-negative m × n matrix with rk+(M) = p. Then M contains
(i) an s1 × s2 submatrix with s1, s2 ≤ p3 with non-negative rank Ω(p

log n log m). If m = n,
we can assume s1 = s2.

(ii) a p × p submatrix with non-negative rank Ω(p
1
3

log
1
3 n log m

).

6.3 Tightness
In [15], Moitra has constructed a non-negative matrix M with the following properties:

M is 3rn × 3rn, rk+(M) ≥ 4r, any submatrix with < n columns has non-negative rank
at most 3r.

Observe that in order to witness the non-negative rank of this M exactly, one needs a
constant fraction of the columns of M . On the other hand, the gap between the non-negative
rank of M and that of its submatrices is quite mild.

We now give a different example which is of a similar flavor as the bound from Theorem 1.
It also shows that the constant 1

3 in the theorem can be replaced by 1
2 at best. The example

follows from very non-trivial results of Kwan et al. [12]. A similar bound would follow from
the more general result of Shitov [19].

CCC 2024

13:10 Hard Submatrices for Non-Negative Rank and Communication Complexity

▶ Theorem 16. For every n, there exists an n × n matrix with non-negative rank Ω(
√

n)
such that every n × k submatrix has non-negative rank O(

√
k).

Proof. From [12], there exists an n-vertex polygon P ⊆ R2 with vertices lying on the
unit circle with extension complexity Ω(

√
n). Let M be its slack matrix with columns

corresponding to vertices v1, . . . , vn of P . From Lemma 14, we have rk+(M) ≥ Ω(
√

n).
Given an n × k submatrix M ′ with columns i1, . . . , ik, Lemma 14 shows that rk+(M ′) is at
most the extension complexity of conv(vi1 , . . . , vik

) (plus 1). Using another result from [12],
every k-gon with vertices on the unit circle has extension complexity at most O(

√
k). ◀

7 Open problems

Our first two open problems are concerned with tightness of the bounds in Theorems 1 and 2.

▶ Open problem 1. Let M be m × n non-negative matrix. Does M contain a submatrix of
at most rk+(M)2 columns with non-negative rank Ω(rk+(M))?

▶ Open problem 2. Find a Boolean matrix M with χ1(M) = p such that every p × p

submatrix has 1-partitition number much smaller than p.

As far as we can see, the bound from Problem 1 is consistent with what we know about
non-negative rank, and would be optimal. The task is to improve Corollary 15(i) in two
different ways: first, to reduce the dependence on rk+(M) from cubic to quadratic and,
second, to eliminate the logarithmic dependence on the size of M altogether. For Problem
2, Theorem 8 gives an M with submatrices of χ1 strictly less than p; there should exist a
construction with a larger gap.

As discussed in Section 5, in order to solve the log-rank conjecture, it is enough to focus
on matrices with large 1-partition number. The following is the extreme case of this question:

▶ Open problem 3. Suppose M is n × n Boolean matrix with χ1(M) = n. How small can
the rank of M be?

References
1 S. Basu, R. Pollack, and M.F. Roy. Algorithms in real algebraic geometry. Springer-Verlag,

2006.
2 G. Braun, S. Fiorini, S. Pokutta, and D. Steuer. Approximation limits of linear programs

(beyond hierarchies). Math. of Operations Research, 40(3), 2015.
3 S. Chandran, D. Issac, and A. Karrenbauer. On the parameterized complexity of biclique

cover and partition. In International Symposium on Parameterized and Exact Computation,
2016.

4 P. Erdös. Problems and results in combinatorial analysis and graph theory. Annals of Discrete
Mathematics, 38:81–92, 1988.

5 S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. de Wolf. Linear vs. semidefinite
extended formulations: exponential separation and strong lower bounds. In Symposium on the
Theory of Computing, 2011.

6 M. Göös, I. Newman, A. Riazanov, and D. Sokolov. Hardness condensation by restriction.
ECCC, 2023.

7 P. Hrubeš. On ϵ-sensitive monotone computations. Computational Complexity, 29(2), 2020.
8 P. Hrubeš. On the complexity of computing a random Boolean function over the reals. Theory

of Computing, 16(9):1–12, 2020.
9 P. Hrubeš and N. Talebanfard. On the extension complexity of polytopes separating subsets

of the Boolean cube. Disc. and Comp. Geom., 70(1), 2022.

P. Hrubeš 13:11

10 R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of IEEE
36th Annual Foundations of Computer Science, pages 538–545, 1995.

11 Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University Press,
1996.

12 Matthew Kwan, Lisa Sauermann, and Yufei Zhao. Extension complexity of low-dimensional
polytopes. Transactions of the American Mathematical Society, 375(6), 2022.

13 Richard Lipton and Neal Young. Simple strategies for large zero-sum games with applications
to complexity theory. CoRR, cs.CC/0205035, May 2002. doi:10.1145/195058.195447.

14 L. Lovász and M. Saks. Lattices, mobius functions and communications complexity. In 29th
Annual Symposium on Foundations of Computer Science (FOCS 1988), pages 81–90, 1988.

15 Ankur Moitra. An almost optimal algorithm for computing nonnegative rank. In SIAM J.
Comput., 2013. URL: https://api.semanticscholar.org/CorpusID:1920044.

16 Anup Rao and Amir Yehudayoff. Communication Complexity: and Applications. Cambridge
University Press, 2020.

17 V. Rödl and R. A. Duke. On graphs with small subgraphs of large chromatic number. Graphs
and Combinatorics, 1:91–96, 1985.

18 Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formulations. CoRR,
abs/1105.0036, 2011. arXiv:1105.0036.

19 Y. Shitov. Sublinear extension of polygons. arXiv, 2014. arXiv:1412.0728.
20 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.

Journal of Computer and System Sciences, 43(3):441–466, 1991.

A Proof of Theorem 13

The proof uses known results on quantifier elimination which we first outline. We follow
the monograph of Basu, Pollack and Roy [1]. Theorem 13 requires an elimination of only a
single block of existential quantifiers, so we focus on this case only.

For b ∈ R, let

sgn(b) :=

1 , b > 0 ,

0 , b = 0 ,

−1 , b < 0 .

Given b = ⟨b1, . . . , bm⟩ ∈ Rm, let sgn(b) := ⟨sgn(b1), . . . , sgn(bm)⟩ ∈ {−1, 0, 1}m. Let
F = F (z, y) be a sequence of m polynomials f1, . . . , fm ∈ R[z, y] in variables z = {z1, . . . , zk1}
and y = {y1, . . . , yk2}. Given a ∈ Rk1 , define SGN1(F, a) ⊆ {−1, 0, 1}m

SGN1(F, a) := {sgn(F (a, b)) : b ∈ Rk2} .

Let

SGN(F) := {SGN1(F, a) : a ∈ Rk1} .

Theorem 14.16 from [1] provides the following bound on the size of SGN:

▶ Theorem ([1]). If every polynomial in F has degree at most d then

|SGN(F)| ≤ m(k1+1)(k2+1)dO(k1)O(k2) . (4)

We now apply this result to the case of Theorem 13. Let V, s, A be as in the assumption.
Every A ∈ A can be described by a linear system with s inequalities. Namely, for every
x ∈ V ,

x ∈ A iff ∃y∈Rs Cx + Dy = b, y ≥ 0 , (5)

where C ∈ Rt×r, D ∈ Rt×s and b ∈ Rt. Since Cx + Dy = b is a system of equations in r + s

variables x, y, we can also assume t = r + s.

CCC 2024

https://doi.org/10.1145/195058.195447
https://api.semanticscholar.org/CorpusID:1920044
https://arxiv.org/abs/1105.0036
https://arxiv.org/abs/1412.0728

13:12 Hard Submatrices for Non-Negative Rank and Communication Complexity

Let us view the parameters C, D, b in (5) as variables. Let z be the set of these variables,
of size k1 = (r +s)(r +s+1). Given v ∈ V , let Fv(z, y) be the sequence of (r +s) polynomials

Cv + Dy − b

in variables z and y = {y1, . . . , ys}. Let F (z, y) be the union of Fv(z, y) over all v ∈ V ,
together with the polynomials y1, . . . , ys. Hence F consists of m = s + |V |(r + s) polynomials
of degree at most two.

F (z, y) is set up so that

|A| ≤ |SGN(F)| .

To see this, observe that whenever the parameters z are fixed, the set A ⊆ V given by (5) is
uniquely determined by SGN1(F (z, y)). Since every A ∈ A is obtained by some fixing of the
parameters, we indeed obtain |A| ≤ |SGN(F (z, y))|.

Finally, we can apply (4) to estimate |SGN(F)| with m = s + |V |(r + s), k1 = (r + s)(r +
s + 1), k2 = s, and d = 2. To simplify the expression, we can assume s + r ≤ |V |; otherwise
the upper bound asserted in Theorem 13 exceeds the trivial bound |A| ≤ 2|V |. This means
that m ≤ 2|V |2. If we loosen the bound (4) as |SGN(F)| ≤ (dm)O(k1)O(k2), we obtain (recall
that s ≥ 1)

|SGN(F)| ≤ 2O(s(s+r)2 log |V |) ,

as required.

Complexity of Robust Orbit Problems for Torus
Actions and the abc-Conjecture
Peter Bürgisser #

Institute of Mathematics, Technische Universität Berlin, Germany

Mahmut Levent Doğan #

Institute of Mathematics, Technische Universität Berlin, Germany

Visu Makam #

Radix Trading, Amsterdam, The Netherlands

Michael Walter #

Faculty of Computer Science, Ruhr-Universität Bochum, Germany

Avi Wigderson #

School of Mathematics, Institute for Advanced Study, Princeton, NJ, USA

Abstract
When a group acts on a set, it naturally partitions it into orbits, giving rise to orbit problems. These
are natural algorithmic problems, as symmetries are central in numerous questions and structures in
physics, mathematics, computer science, optimization, and more. Accordingly, it is of high interest to
understand their computational complexity. Recently, [16] gave the first polynomial-time algorithms
for orbit problems of torus actions, that is, actions of commutative continuous groups on Euclidean
space. In this work, motivated by theoretical and practical applications, we study the computational
complexity of robust generalizations of these orbit problems, which amount to approximating the
distance of orbits in Cn up to a factor γ ≥ 1. In particular, this allows deciding whether two
inputs are approximately in the same orbit or far from being so. On the one hand, we prove the
NP-hardness of this problem for γ = nΩ(1/ log log n) by reducing the closest vector problem for lattices
to it. On the other hand, we describe algorithms for solving this problem for an approximation
factor γ = exp(poly(n)). Our algorithms combine tools from invariant theory and algorithmic lattice
theory, and they also provide group elements witnessing the proximity of the given orbits (in contrast
to the algebraic algorithms of prior work). We prove that they run in polynomial time if and only if
a version of the famous number-theoretic abc-conjecture holds – establishing a new and surprising
connection between computational complexity and number theory.

2012 ACM Subject Classification Computing methodologies → Algebraic algorithms; Computing
methodologies → Combinatorial algorithms; Theory of computation → Algebraic complexity theory

Keywords and phrases computational invariant theory, geometric complexity theory, orbit problems,
abc-conjecture, closest vector problem

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.14

Related Version ArXiv Version: https://arxiv.org/abs/2405.15368

Funding Peter Bürgisser : Supported by the ERC under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 787840).
Mahmut Levent Doğan: Supported by the ERC under the European Union’s Horizon 2020 research
and innovation programme (grant agreement no. 787840).
Visu Makam: Partially supported by NSF Grant CCF-1900460 and the University of Melbourne.
Michael Walter : Supported by the European Union (ERC, SYMOPTIC, 101040907), by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy
– EXC 2092 CASA – 390781972, by the BMBF (QuBRA, 13N16135), and by the Dutch Research
Council (NWO grant OCENW.KLEIN.267).
Avi Wigderson: Supported by the NSF Grant CCF-1900460.

© Peter Bürgisser, Mahmut Levent Doğan, Visu Makam, Michael Walter,
and Avi Wigderson;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 14; pp. 14:1–14:48

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbuerg@math.tu-berlin.de
https://orcid.org/0000-0001-8169-0514
mailto:dogan@math.tu-berlin.de
https://orcid.org/0000-0003-3244-8064
mailto:visu@umich.edu
https://orcid.org/0000-0001-8470-7860
mailto:michael.walter@rub.de
https://orcid.org/0000-0002-3073-1408
mailto:avi@ias.edu
https://doi.org/10.4230/LIPIcs.CCC.2024.14
https://arxiv.org/abs/2405.15368
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Acknowledgements The authors thank Matías Bender, Alperen A. Ergür, Jonathan Leake, and
Philipp Reichenbach for productive discussions.

1 Introduction

Computational invariant theory was a central topic of 19th century algebra, see the historical
account in [57]. In the second half of the 20th century, structural progress was made through
Mumford’s invention of geometric invariant theory [73] and computational progress came
through the theory of Gröbner bases, see [84]. More recently, it was realized that algorithmic
questions in invariant and representation theory are deeply connected with the core complexity
questions of P vs. NP and VP vs. VNP.

On the one hand, Mulmuley and Sohoni’s Geometric Complexity Theory (GCT) [71]
highlights the inherent symmetries of complete problems of these complexity classes. This
was the starting point of several specific invariant theoretic and representation theoretic
attacks on the VP vs. VNP questions, which has led to many new questions, techniques, and
much faster algorithms: for example, see [70, 31, 15, 63].

The other connection is through the work of Impagliazzo and Kabanets [52], which uses
Valiant’s completeness theory for VP and VNP to construct efficient deterministic algorithms
for the basic PIT (Polynomial Identity Testing) problem. This problem, again thanks to
Valiant’s completeness result, has natural symmetries which resemble basic problems of
invariant theory. Major progress was recently achieved in this direction in [40, 33, 50, 51, 25].
This work was followed by [26, 43, 49, 34, 19, 18, 20, 17]; we refer to [17] for a description of
the state-of-art.

In addition to these fundamental connections to computational complexity, orbit problems
appear in many other areas, for example in physics, since the symmetries are often given
by the actions of Lie groups, see [6, 65, 39]. Recently, a connection of algebraic statistics to
orbit problems was discovered [4, 5]: the problem of finding maximum likelihood estimates in
certain statistical models and the “flip flop” algorithm from statistics is precisely related to
the invariant theory and the scaling algorithms of [33, 19]; see also [32, 27, 28]. In particular,
the setting of log-linear models in [5] relates precisely to the setting of this work.

1.1 Background and high-level summary of results
In this paper, we study actions of the commutative group T := (C×)d and its subgroup K :=
(S1)d on vector spaces V := Cn.1 The group T is called an algebraic torus of rank d, and the
subgroup K is known as a compact torus. The action of either group partitions the vector
space V into orbits. That is, for a vector v ∈ V , we consider the set of all vectors reachable
from v by applying group elements:

Ov := {t · v | t ∈ T}, Cv := {k · v | k ∈ K}.

The sets Ov and Cv are called the T -orbit and K-orbit of v, respectively. As K is compact,
so is Cv. However, the T -orbit Ov is in general not closed and hence it is natural to also
consider its orbit closure Ov.2 See Figure 1 for two illustrative examples. While torus actions
are very well-understood from a structural perspective, they give rise to interesting and
challenging computational problems:

1 Here, C× denotes the multiplicative group of the nonzero complex numbers and S1 := {z ∈ C | |z| = 1}.
2 We take the closure with respect to either the Euclidean or the Zariski topology, as they coincide

here [72, I §10].

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:3

v

w

w
v

Figure 1 (a) Action of T = C× on V = C2 given by t ·(x, y) = (tx, ty): All orbits are lines through
the origin, with the origin excluded. Thus, all orbit closures intersect in the origin. (b) Action
of T = C× on V = C2 given by t · (x, y) = (tx, t−1y): All orbits of vectors with non-zero coordinates
x, y ̸= 0 are closed (they are hyperbolas).

▶ Problem 1.1. Given a torus action on a vector space V and v, w ∈ V :
1. Orbit equality: Decide if Ov = Ow.
2. Orbit closure intersection: Decide if Ov ∩ Ow ̸= ∅.
3. Orbit closure containment: Decide if Ow ⊆ Ov.
4. Compact orbit equality: Decide if Cv = Cw.

These problems capture and relate to a broad class of “isomorphism”, “classification”,
or “transformation” problems. Their computational complexity was determined only very
recently: [16] found that all four problems can be decided in polynomial time. This is perhaps
surprising, because for actions of noncommutative groups these problems are believed to
differ in their computational complexity and, e.g., Problem 1.1 (3) is known to be hard for
some actions [10].

In many applications, e.g., the ones in statistics or physics mentioned above, the vectors
v, w are not given exactly, but only up to a certain error. If this is the case, the orbit equality
problem has to be replaced by a robust generalization, which meaningfully tolerates small
perturbations in the input.

The goal of this paper is to define such robust generalizations of the orbit equality problem
and to investigate their computational complexity. More precisely, we aim to approximate the
distance between two orbits given by vectors v, w ∈ Cn up to an approximation factor γ > 1.
In particular, this allows deciding whether two points are approximately in the same orbit or
far from being so.

At first glance, this appears to simplify the situation, since we no longer need to distinguish
between an orbit and its closure. However, surprisingly, the picture arising is far more intricate
than for the problems that were dealt with in [16]. On the one hand, we prove NP-hardness
when γ = nΩ(1/log log n). On the other hand, using a combination of tools from invariant
theory and algorithmic lattice theory, we give algorithms that achieve an approximation
factor γ = exp(poly(n)) and run in polynomial time if and only if a version of the well-known
number-theoretic abc-conjecture holds! Our algorithms also return a witness t ∈ T such that
the distance between t · v and w is at most γ times the distance between the orbits. We give
precise technical statements below.

We note that our results are not the first examples of an open problem in number theory
having an impact on the complexity of algorithms. As is widely known, the generalized
(or extended) Riemann hypothesis has been used, e.g., for testing primality in polynomial

CCC 2024

14:4 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

time [68] (an unconditional deterministic polynomial time algorithm was later given in [1]),
the containment of knottedness in NP [58], or the containment of Hilbert’s Nullstellensatz
in the polynomial hierarchy [56]. To our best knowledge, however, our work, together
with [30, 78], constitutes one of the first examples that the abc-conjecture has some bearing
on the performance of numerical algorithms.

In the remainder of this introduction we first recap the structure of torus actions and
define the input model and complexity parameters used in all our computational problems,
algorithms, and results (Section 1.2). We then state the computational problems (Section 1.3)
and discuss our hardness and algorithmic results (Sections 1.4 and 1.5). Next, we explain
how the “separation hypotheses” that ensure that our algorithms run in polynomial time are
intimately related to well-known variants of the abc-conjecture in number theory (Section 1.6).
Finally, we sketch the proof idea of our lattice lifting result (Section 1.7), and we conclude
with open problems for future research (Section 1.9).

1.2 Torus actions: structure, input model, parameters

Every rational action of T = (C×)d or K = (S1)d on a finite-dimensional complex vector
space V = Cn can be parameterized by a weight matrix M ∈ Zd×n, as follows: For
t = (t1, t2, . . . , td) ∈ T and v = (v1, v2, . . . , vn) ∈ V ,

t · v :=
(
v1

d∏
i=1

tMi1
i , v2

d∏
i=1

tMi2
i , . . . , vn

d∏
i=1

tMin
i

)
. (1.1)

See Figure 1 for two examples with weight matrix M = (1 1) and M = (1 −1), respectively.
Our computational problems and algorithms take as their input torus actions as well

as vectors v, w ∈ Cn. The former are encoded in terms of the weight matrix M , with each
entry represented in binary. The latter are assumed to be vectors v, w ∈ Q(i)n, i.e., their
components are Gaussian rationals (complex numbers of the form q + i r with q, r ∈ Q) and
given by encoding the numerators and denominators of the real and imaginary parts in
binary.

Throughout the paper, we denote by B the maximum bit-length of the entries of M , and
by b the maximum bit-length of the components of v and w, respectively. The parameters B
and b will have different effects in the bounds.

1.3 Robust orbit problems: definitions

We will now define precisely the computational problems that we address in this paper. Given
a torus action on a vector space V = Cn and two vectors v, w ∈ V , we wish to approximate
the distance of the orbit under either the action of the algebraic torus T or the compact
torus K.

We start with the latter. Because K = (S1)d is compact, so are its orbits. Thus, if two
K-orbits are distinct then they must have a finite distance with respect to any norm on V . We
find it natural to use the Euclidean norm ∥v∥ :=

√∑n
j=1|vj |2. Given two vectors v, w ∈ Cn,

we denote their Euclidean distance by dist(v, w) := ∥v − w∥ and we extend this notation
to arbitrary subsets A,B ⊆ Cn by setting dist(A,B) := infa∈A,b∈B∥a − b∥. Then we are
interested in the following approximation problem, where the approximation factor γ is a
parameter that may depend on d, n, b, or B.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:5

▶ Problem 1.2. The compact orbit distance approximation problem with approximation
factor γ ≥ 1 is defined as follows: Given v, w ∈ (S1)n, compute a number D such that

dist(Cv, Cw) ≤ D ≤ γ dist(Cv, Cw).

We now consider the algebraic torus T = (C×)d. Since it not compact, in general neither
are its orbits and hence two distinct orbits need not have any finite distance – in other words,
we can have Ov ≠ Ow but dist(Ov,Ow) = 0. This can be due to two phenomena: (a) when
orbits are not closed, they can still intersect in their closure; (b) even if orbits are closed,
they may still become arbitrarily close at infinity. See Figure 1 for an illustration. The first
phenomenon is natural: if Ov ∩ Ow ̸= ∅ then it can be natural to define the distance to be
zero. The second phenomenon however is undesirable – clearly we would like to be able
to tell apart, e.g., the two hyperbolas in Figure 1 (b)! To overcome this problem, we will
instead consider a logarithmic distance, which always assigns a positive distance between
distinct orbits, even when their closures intersect.

For simplicity, we assume that v, w have non-zero coordinates, that is, they are elements
of (C×)n ⊆ V . The key idea is to “linearize” or “flatten” the group action by using the
(coordinatewise) complex logarithm map:

Log : (C×)n → Cn/2π iZn, v 7→ (log v1, log v2, . . . , log vn), (1.2)

which is a group isomorphism. This is natural because it converts the multiplicative action
of T into an additive one. Indeed, one finds from (1.1) that Log maps any T -orbit Ov to the
image of the affine subspace im(MT)+Log(v) under the quotient map Cn → Cn/2π iZn. For
distinct orbits these will have a finite Euclidean distance because the corresponding subspaces
are parallel (see Figure 2). This motivates using the following distance: Given v, w ∈ (C×)n,
we define their logarithmic distance by

δlog(v, w) := dist(Log(v) + 2π iZn,Log(w) + 2π iZn) := min
α∈2π i Zn

∥Log(v)−Log(w)−α∥, (1.3)

using the natural Euclidean distance on the quotient Cn/2π iZn, and we extend this to
arbitrary subsets A,B ⊆ (C×)n as above. In particular, we have δlog(Ov,Ow) = 0 if and only
if Ov = Ow, which is exactly the property that we wanted. Thus we arrive at the following
approximation problem, where the approximation factor γ may depend on d, n, b, or B as
above.3

▶ Problem 1.3. The algebraic orbit distance approximation problem with approximation
factor γ ≥ 1 is defined as follows: Given v, w ∈ (C×)n, compute a number D such that

δlog(Ov,Ow) ≤ D ≤ γ δlog(Ov,Ow).

1.4 Robust orbit problems: hardness
The appearance of a lattice in the above suggests that there might be some hardness lurking
behind this problem. In fact, we find that both orbit distance approximation problems are
NP-hard for a sufficiently small approximation factor. We will prove the following in Section 6
by showing that there is a polynomial time reduction from the closest vector problem (CVP)
to Problems 1.2 and 1.3.

3 One can also use the metric δlog in definition of Problem 1.2 in place of dist. However, this is essentially
equivalent, since for v, w ∈ (S1)n the two metrics are related by 2

π δlog(v, w) ≤ dist(v, w) ≤ δlog(v, w),
see Section 3.

CCC 2024

14:6 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

w

v

Log v

Logw

Log

Figure 2 The logarithm maps the “hyperbolic” orbits (left) into parallel “lines” (right), which
have a finite Euclidean distance. We define the logarithmic distance of the former as the Euclidean
distance of the latter.

▶ Theorem 1.4. There is a constant c > 0 such that Problems 1.2 and 1.3 for γ = nc/ log log n

are NP-hard.

We note that a solution to Problem 1.2 allows distinguishing between the
cases dist(Cv, Cw) ≤ ε and dist(Cv, Cw) ≥ γε on input ε, and similarly for Problem 1.3. The
CVP problem has recently attracted significant interest due to its relevance to lattice-based
cryptosystems, which are conjectured to be secure against quantum computers [37, 47, 48, 35].

Interestingly, our reduction from CVP is not straightforward, but rather uses a quantitative
lattice lifting result in the spirit of [23] that might be of independent interest. We sketch
the main idea for the K-action and for δlog instead of the Euclidean distance (which by
Footnote 3 makes no difference). Let θ := 1

2π i Log(v) and ϕ := 1
2π i Log(w). Then,

1
2π δlog(Cv, Cw) = dist(P (θ − ϕ), P (Zn)), (1.4)

where P denotes the orthogonal projection from Rn onto the orthogonal complement of
the row space of M . Note that the right-hand side quantity amounts to a CVP for the
lattice P (Zn). Our lattice lifting result states that, up to scaling, every full-dimensional
lattice L can be obtained as the orthogonal projection of a cubic lattice Zn, where n is not
much larger than dim(L). Moreover, this projection can be computed in polynomial time.
This yields the desired reduction from CVP.

▶ Theorem 1.5 (Lattice lifting). Suppose L ⊂ Rm is a lattice of rank m given by a generator
matrix G ∈ Zm×m, i.e., L = G(Zm). Then we can, in polynomial time, compute n ≥ m, a
scaling factor s ∈ Z>0, and an orthonormal basis v1, v2, . . . , vn ∈ Qn such that

L = s P (L′), where L′ := Zv1 + Zv2 + · · · + Zvn

and P : Rn → Rm denotes the orthogonal projection onto the first m coordinates. Moreover,
we may assume that n = O(m logm+m log⟨G⟩), where ⟨G⟩ denotes the bit-length of G.

To the best of our knowledge, Theorem 1.5 was not previously observed in the literature.
We sketch its proof in Section 1.7 below and give the full proof in Section 6.2.

1.5 Robust orbit problems: algorithms
The picture changes markedly if we allow for larger approximation ratios γ, where we recall
that B denotes the maximum bit-length of the entries of M . Roughly speaking, our intuitive
result is the following:

If the distance between any two distinct orbits is no smaller than exp(− poly(d, n,B, b)),
then these distances can be approximated to γ = exp(poly(d, n,B)) in polynomial time.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:7

To state this precisely, let us define the compact and the algebraic separation parameters as

sepK(d, n,B, b) := min
M,v,w

dist(Cv, Cw) and sepT (d, n,B, b) := min
M,v,w

δlog(Ov,Ow), (1.5)

respectively, where the minima are taken over all weight matrices M ∈ Zd×n with entries
of maximum bit-length at most B and over all vectors v, w ∈ (Q(i)×)n with components of
bit-length at most b such that v and w are in distinct orbits.

▶ Separation Hypothesis 1.6 (for the compact torus).
sepK(d, n,B, b) ≥ exp(− poly(d, n, b, B)).

▶ Separation Hypothesis 1.7 (for the algebraic torus).
sepT (d, n,B, b) ≥ exp(− poly(d, n, b, B)).

The latter hypothesis is readily seen to imply the former (this follows essentially from
Footnote 3, see Corollary 3.9). While both hypotheses appear geometric in nature, it turns
out that they are intimately related to well-known quantitative versions of the abc-conjecture
in number theory. We will explain this connection in Section 1.6. Asssuming these hypotheses,
we can solve the orbit distance approximation problems with an exponential approximation
factor:

▶ Theorem 1.8. If Separation Hypothesis 1.6 holds, then there is a polynomial-time algorithm
that solves Problem 1.2 for an approximation factor γ = exp(poly(d, n,B)). Similarly,
if Separation Hypothesis 1.7 holds, then there is a polynomial-time algorithm that solves
Problem 1.3 for γ = exp(poly(d, n,B)).

In fact, we show in Section 5 without any hypotheses that for γ = exp(poly(d, n,B)),
there is an algorithm solving Problem 1.3 in time O(poly(d, b, n,B) log(sep−1

T (d, n,B, b))),
and similarly for Problem 1.2. This algorithm runs in polynomial time if and only if the
separation hypothesis is true, see Remark 5.11. Our algorithm also solves the corresponding
search problem (see Theorem 5.4): When Ov ≠ Ow, it finds a group element t ∈ T such that

δlog(t · v, w) ≤ γ δlog(Ov,Ow). (1.6)

In particular, t can serve as a witness of the approximate distance of the orbits. In general,
the coordinates of any t satisfying Equation (1.6) may require a superpolynomial bit-length.
Accordingly, our algorithm will output instead a vector x ∈ Q(i)d such that t = Exp(x).
When Ov = Ow, then it will in general not be possible to output such a group element,
since t · v = w will in general not have a rational solution (neither in t nor in x).

To explain the main idea behind proving Theorem 1.8 and motivate the separation
hypothesis, we recall the algorithm for solving the orbit equality problem in [16]. For
simplicity, we consider vectors v, w ∈ (C×)n with closed T -orbits. The algorithm in [16] first
computes a basis B of the lattice K := {α ∈ Zn | Mα = 0} in polynomial time. Each basis
vector α ∈ B determines an invariant function (Laurent monomials) of the form

fα(x) := xα1
1 xα2

2 . . . xαn
n .

Then, Ov = Ow if and only if v and w take the same value on all these functions [16,
Corollary 5.2]. Even though the α have polynomial bit-length, testing whether fα(v) = fα(w)
is not obvious, as the bit-length of the evaluations can be exponentially large in the input
size. Nevertheless, it is possible to determine equality of these numbers in polynomial time
without actually computing them, see [16, Proposition 5.5].

CCC 2024

14:8 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

When dealing with the problem of approximating orbit distances, one may use similar
ideas. One finds that one now needs to test whether fα(v) and fα(w) are close (rather than
equal), for a suitable choice of a metric. This turns out to be substantially more difficult
than the equality testing,4 and indeed it must be by the hardness results in Section 1.4. To
solve it with an exponential approximation factor we can proceed as follows: Let H ∈ Zk×n

denote the matrix with rows the vectors in B. We prove in Section 3 that the logarithmic
distance between the orbits Ov and Ow can be approximated by ∥H Log(v) −H Log(w)∥,
up to a factor σmax(H)/σmin(H) = exp(poly(d, n,B)). Here, σmax(H), σmin(H) denote
the largest and smallest singular values of H, respectively. It remains to approximate
∥H Log(v) − H Log(w)∥ with relative error. The key challenge is in computing rational
approximations of the logarithms. This can be done by standard algorithms, but we have
to make sure that polynomially many bits of accuracy are sufficient. This is guaranteed by
the separation hypothesis! The idea of relating the distance between two orbits with the
difference between the values that the invariants take on these orbits, and approximating
the distance between the orbits in this way is inspired by the invariant theory and it will be
important later when we explain the close relationship between the robust orbit problems
and the abc-conjecture. On the other hand, we will also develop an alternative algorithm to
the robust orbit problems in Section 6.1 by providing a polynomial time reduction to CVP
under the assumption that Separation Hypothesis 1.7 is true by using Equation (1.4).

Finally, we study the complexity of the orbit distance approximation problems when n is
fixed. In this situation, Separation Hypotheses 1.6 and 1.7 are true, as we will discuss in
Section 1.6, and hence there are polynomial-time algorithms for Problems 1.2 and 1.3 with
γ = exp(poly(d,B)). However, we can in fact choose γ to be much smaller:

▶ Theorem 1.9. For fixed n, Problem 1.2 can be solved in polynomial time for the approxi-
mation factor γ = 2.

▶ Theorem 1.10. For fixed n, and any fixed γ > 1, Problem 1.3 can be solved in polynomial
time. More specifically, there is a polynomial-time algorithm that on input M ∈ Zd×n, v, w ∈
Q(i)n, and ε > 0 outputs a number D such that δlog(Ov,Ow) ≤ D ≤ (1 + ε) δlog(Ov,Ow).

We prove these results at the end of Section 6.1.

1.6 Separation hypotheses and the abc-conjecture
The famous abc-conjecture by Oesterlé and Masser [75] states that for every ε > 0 there
exists κε > 0 such that, if a and b are coprime positive integers and c = a+ b, then

c < κε rad(abc)1+ε,

where rad(abc) is the radical of abc, i.e., the product of all primes dividing abc. Motivated
by an earlier conjecture of Szpiro, the abc-conjecture is one of the most important open
problems in number theory, due to its many consequences [38, 88].

Baker [8] observed that the abc-conjecture is intimately related to lower bounds for linear
forms in logarithms. Let v1, v2, . . . , vn be positive integers and e1, e2, . . . , en be integers such
that the product ve1

1 v
e2
2 · · · ven

n ̸= 1 is different from one. How close to 1 can such a product
be? Equivalently, how close can the linear combination of logarithms,

Λ(v, e) := e1 log v1 + . . .+ en log vn, (1.7)

4 Just testing an inequality fα(v) ≥ fα(w) in polynomial time is only known assuming a certain
strengthening of the abc-conjecture; see [30].

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:9

be to zero? We note that if |ve1
1 . . . ven

n − 1| ≤ 1
2 , then

1
2 |Λ(v, e)| ≤ |ve1

1 · · · ven
n − 1| ≤ 2|Λ(v, e)|,

so lower bounds for |Λ(v, e)| and for |ve1
1 . . . ven

n − 1| are equivalent; see Equation (4.4).
Improving work by Baker and Wüstholz [89], Matveev [66] proved that if Λ(v, e) ̸= 0, then

|Λ(v, e)| ≥ e−B·bO(n)
. (1.8)

Here and below B and b denote upper bounds on the bit-length of the ej and vj , respectively.
Note that for fixed n, this bound is polynomial in B and b. Furthermore, every lower bound
for |Λ(v, e)| implies a version of the abc-conjecture: Stewart, Yu and Tijdemann [82, 81] used
the Baker-Wüstholz-Matveev bound (1.8) and its p-adic version by Van der Poorten [85] to
prove the inequality

log c < κε rad(abc) 1
3 +ε.

To our knowledge, this bound is the strongest bound to date given towards a solution to
the abc-conjecture and demonstrates the strong connection between the abc-conjecture and
lower bounds for linear forms in logarithms. Baker [8] proved that a stronger lower bound
than (1.8) (together with its p-adic version) is equivalent to a certain strengthening of the
abc-conjecture. We will say more about this connection in Section 4.

It is widely conjectured that (1.8) is not optimal. In particular, famous conjectures
in number theory, such as Waldschmidt’s conjectures [86, Conjecture 14.25, p. 547], [87,
Conjecture 4.14], or the Lang-Waldschmidt conjecture for Gaussian rationals [59, Introduction
to Chapters X and XI] imply that the following hypothesis holds (in fact, they make even
stronger predictions!):

▶ Number-Theoretic Hypothesis 1.11. For any n ∈ Z≥0, v1, v2, . . . , vn ∈ Q(i)×, and
e1, e2, . . . , en ∈ Z such that, with Log the principal branch of the complex logarithm,

Λ(v, e) := e1 Log v1 + e2 Log v2 + · · · + en Log vn ̸= 0,

we have

|Λ(v, e)| ≥ exp(− poly(n, b,B)),

where B and b are the maximum bit-lengths of the ej and vj, respectively.

Here we prove a novel connection between this number-theoretic conjecture and the
separation hypothesis of group orbits, which can be seen as further evidence for the latter:

▶ Theorem 1.12. Separation Hypothesis 1.7 and Number-Theoretic Hypothesis 1.11 are equiv-
alent. Moreover, Separation Hypothesis 1.6 is equivalent to Number-Theoretic Hypothesis 1.11
when the latter is restricted to |v1| = · · · = |vn| = 1.

We prove this in Section 4 by using similar ideas as sketched in Section 1.5. There, we also
show that Matveev’s bound (1.8) implies the lower bound sepT (d, n,B, b) ≥ e−BO(1)·bO(n) ,
which is only exponentially small for constant n.

CCC 2024

14:10 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

1.7 Proof sketch of the lattice lifting theorem
We now give a summary of the idea behind the proof of Theorem 1.5. We call a collection
u1, u2, . . . , un of vectors in Rm, n ≥ m, an eutactic star of scale s if each uj can be extended
to a vector vj ∈ Rn such that the vj are pairwise orthogonal and of the same norm s. Note
that ui = P (vi) where P denotes the projection onto the first m coordinates. Let X ∈ Rm×n

denote the matrix whose i-th column is ui. It is easy to see that the collection u1, u2, . . . , un

forms an eutactic star of scale s iff XXT = s2Im.
Assume that the lattice L ⊂ Rm is given as the Z-span of the columns of the matrix

G ∈ Zm×m. Our aim is to understand when L is generated (as a lattice) by an eutactic star.
We first note that the collection u1, u2, . . . , un is contained in L iff there exists an integer
matrix L ∈ Zm×n such that X = GL. To enforce further that the vectors ui generate L
as a lattice, we require L to be right invertible, meaning there exists R ∈ Zn×m such that
LR = Im. In Proposition 6.8 we prove:

L is generated by an eutactic star of scale s ∈ Z>0 ⇐⇒
∃ right invertible L ∈ Zm×n s.t. (GL)(GL)T = s2Im.

Therefore, writing L as in Theorem 1.5 amounts to finding such L and s. In Section 6.3 we
show that for given G ∈ Zm×m, such L and s can be computed in polynomial time. For this,
we choose the integer s so large that the matrix

A := s2(G−1G−T) − Im.

is positive definite. In Theorem 6.10 we prove that a decomposition of the form A = (L′)(L′)T

can be computed in polynomial time (efficient Waring decomposition). Note that this amounts
to writing the given positive definite quadratic form xTAx as sum of squares of rational
linear forms. Such decompositions are known to exist if n = m + 3 [69], and randomized
polynomial time algorithms computing them are available [77]. However, to the best of our
knowledge, it is open whether such small decompositions can be computed in deterministic
polynomial time. Instead, we will use the simple Lemma 6.12, which writes an integer D
as a sum of O(log logD) many squares, but can be easily shown to run in deterministic
polynomial time. Finally, one checks that L :=

[
Im L′] satisfies (GL)(GL)T = s2Im, which

is what we wanted to get.

1.8 The method of Kempf-Ness
A major challenge is to extend the results in this paper beyond torus actions! The Kempf-Ness
theorem [55] indicates a strategy to do so. This is a general theorem on rational actions
of reductive algebraic groups, that in principle allows to reduce orbit closure intersection
problems to compact orbit equality problems. It states that the vectors of minimal norm
in the orbit closure of v ∈ V form a single K-orbit that we denote by Cv⋆ . Here K denotes
a maximal compact subgroup of a reductive algebraic group G that is assumed to act
isometrically on V = Cn. Moreover, the Kempf-Ness theorem states that for v, w ∈ Cn,

Ov ∩ Ow ̸= ∅ ⇐⇒ Cv⋆ = Cw⋆ .

In an ideal world, this reduces the problem of testing Ov ∩ Ow ≠ ∅ to the problem of testing
Cv⋆ = Cw⋆ , provided that we can compute v⋆ on input v. Unfortunately, even when the
coordinates of v are rational, v⋆ may not have rational entries. Instead one may work with
a numerical approximation of v⋆. This was successfully carried out in [3] for the left-right
action on tuples of complex matrices. As a result, polynomial time algorithms for the orbit
closure problems for the left-right action were obtained along this way.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:11

For torus actions, approximating v⋆ becomes a convex optimization problem. More
precisely, we consider the Kempf-Ness function corresponding to v,

f(x) := log ∥ex/2 · v∥2 = log
(n∑

i=1
qi e

ωT
i x

)
,

where ω1, ω2, . . . , ωn ∈ Zd denote the columns of M and qi := |vi|2. We have minx f(x) =
2 log ∥v⋆∥ by the definition of v⋆. This function finds applications in a surprising number
of different areas: In machine learning [21, 22, 46, 64], f(x) is known as the log-sum-
exp function and it is used as a smooth approximation to the piecewise affine function
L(x) := maxi

(
⟨x, ωi⟩ + log qi

)
: we have L(x) ≤ f(x) ≤ L(x) + log n. The optimization of

the Kempf-Ness function also has uses in the area of statistical physics: The convex program
infx f(x) is the Lagrange dual of an entropy maximization problem with mean constraints.
More precisely, one has

inf
x
f(x) = sup

{
−DKL(p||q)

∣∣∣ n∑
i=1

piωi = 0,
n∑

i=1
pi = 1, ∀i, pi ≥ 0

}
where DKL(p||q) :=

∑n
i=1 pi log(pi/qi) denotes the Kullback-Leibler divergence between the

probability distribution p and (possibly non-normalized) distribution q. For more on this
connection, we refer to [80, 83, 60, 20].

In Section 7, we consider the problem of approximating the optimal solution of f(x).
We conjecture that a point x ∈ Rd that is ε-close to arg min f(x) in the Euclidean distance
can be computed in polynomial time, see Conjecture 7.3. We show that if the conjecture
is true then the logarithmic distance δlog(Cv⋆ , Cw⋆) between two Kempf-Ness orbits can be
efficiently approximated. This leads to new polynomial time algorithms for the orbit equality
problems, provided the separation hypothesis holds. We interpret our finding as some positive
evidence towards the feasibility of the Kempf-Ness approach in more general settings, but
also interpret it as a warning about the difficulties to be encountered.

1.9 Conclusion and outlook

Summarizing, we defined the problem of approximating orbit distances for torus actions
and showed that these problems are NP-hard for an almost-polynomial factor, but can be
solved in polynomial time within an at most single exponentially large factor under the
assumption that a variant of the famous abc-conjecture is true. Our results point to an
exciting connection between orbit problems and deep theorems and conjectures in the areas
of number theory and algorithmic lattice theory.

Let us point out that our approximation algorithm for the robust orbit problem, jointly
with our reduction result from CVP to this problem, yield a new polynomial time approxi-
mation algorithm for CVP, which is not based on the LLL algorithm. Unfortunately, the
resulting approximation factor γ not only depends on the rank m of the lattice, but also on
the bit-length of the generators of the lattice, which cannot compete with the well-known
2O(m)-approximation algorithms for CVP (see, for example, [67, Lemma 2.12]). It is an
interesting question whether competitive algorithms for CVP can be developed along this
way and whether there are other uses of our lattice lifting result (Theorem 1.5). A further
interesting problem is if one can remove the separation hypothesis by allowing for significantly
larger approximation factors γ.

CCC 2024

14:12 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

1.10 Organization of the paper
The preliminary Section 2 collects known facts from different areas that we need to establish
our main results. Section 3 is devoted to an analysis of the structure of the orbits in the loga-
rithmic space Cn/2π iZn, and the logarithmic distance metric δlog defined in Equation (1.3).
We show that δlog(Ov,Ow) is approximated by a linear form in Log v,Logw. The goal of
Section 4 is to explain the connection between the abc-conjecture and Number-Theoretic
Hypothesis 1.11 in more detail and to formally prove Theorem 1.12. Section 5 describes our
algorithms to solve Problem 1.3 and Problem 1.2 in polynomial time, proving Theorem 1.8.
The goal of Section 6 is to prove the hardness results by reducing the closest vector problem
to the orbit distance problems (Problem 1.2 and Problem 1.3). There, we also provide the
proof of Theorem 1.5 on efficient lattice lifting and we prove Theorem 1.9 and Theorem 1.10.
Finally, Section 7 is devoted to the analysis of the Kempf-Ness approach for general torus
actions. We conjecture a result on the complexity of approximating the optimal solution of
the Kempf-Ness function and based on that, we devise a numerical algorithm for deciding the
equality of two orbits, which runs in polynomial time if Separation Hypothesis 1.7 is true.

2 Preliminaries

The goal of this section is to collect known facts from different areas: invariants for torus
actions, singular values of matrices, the complexity of numerically computing elementary
functions. We end with general observations on quotient metrics.

2.1 Notation
Throughout the paper, T = (C×)d denotes the algebraic torus of rank d and V = Cn. We
always denote by M ∈ Zd×n a weight matrix that determines the action of T on V . The
Euclidean norm of v ∈ Cn is denoted ∥v∥. We write dist(v, w) := ∥v − w∥ for the Euclidean
distance of v, w ∈ Cn and we extend this notation to nonempty subsets A,B ⊆ Cn by
setting dist(A,B) := infa∈A,b∈B∥a− b∥.

We denote by ℜ(z) and ℑ(z) the real and imaginary part of a complex number z ∈ C,
respectively. Moreover, log(z) ∈ C/2π iZ denotes complex logarithm. The componentwise
defined logarithm and exponentiation functions are denoted by Log : (C×)n → Cn/2π iZn

and Exp : Cn/2π iZn → (C×)n.
The letters v, w denote vectors in V , while the Greek letters η, ζ refer to vectors that are

exponentiated, as in v = Exp(η). We always denote by b a bound for the bit-lengths of the
components of the input vectors v, w ∈ Q(i)n (or η, ζ), and B always denotes a bound for
the bit-length of the entries of the weight matrix M ∈ Zd×n.

2.2 Invariant theory of torus actions
In this section, we present a brief summary of the setting and the results of [16]. We will
discuss the proof strategy sketched in Section 1.5 in more detail. As always, T = (C×)d is
the d-dimensional torus and V = Cn.

Any rational action of T on V , up to some base change, can be simultaneously diagonalized
and brought to the form Equation (1.1). The matrix M = [Mij] ∈ Zd×n occurring in
Equation (1.1) is called the weight matrix and its columns ω1, ω2, . . . , ωn ∈ Zd are called the
weights of the action. There is an induced action of T on the polynomial ring C[x1, x2, . . . , xn],
given by

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:13

(t · f)(v) := f(t−1 · v), f ∈ C[x1, x2, . . . , xn], t ∈ T, v ∈ V.

A polynomial invariant is a fixed point of this action, i.e., t · f = f for all t ∈ T . Note that a
polynomial is an invariant iff it is constant along orbits. We denote the ring of polynomial
invariants by C[V]T . For a monomial xα := xα1xα2 . . . xαn ∈ C[x1, x2, . . . , xn], we have

xα(t · v) = tMαxα(v), (2.1)

Equation (2.1) implies that the line Cxα is preserved by the action of T . Moreover, xα is an
invariant iff Mα = 0. Hence a polynomial f is an invariant if and only if each monomial
appearing in f is invariant. In particular, the space of invariant polynomials is linearly
spanned by the invariant monomials.

The action of T leaves X := (C×)n invariant. We have an induced action of T on the
algebra

C[X] = C[x1, x
−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n],

of Laurent polynomials, the ring of regular functions C[X] of X, which is easier to study.
The above observations extend: Equation (2.1) also holds for Laurent monomials xα with
exponent vector α ∈ Zn, which is thus invariant iff Mα = 0. The space of invariant Laurent
polynomials is linearly spanned by the invariant Laurent monomials. We call

K := {α ∈ Zn | Mα = 0}, (2.2)

the lattice of rational invariants defined by M . Note that the rank of K is given by
k = n− rkM .

Thus α1, α2, . . . , αk is a lattice basis of K, then the Laurent monomials xα1 , xα2 , . . . , xαk

generate C[X]T as an algebra. Then, for v, w ∈ (C×)n, we have (see [16, Proposition 4.1])

Ov = Ow ⇐⇒ ∀i ∈ [k] xαi(v) = xαi(w). (2.3)

There is an analogous result for the orbits of the compact torus K = (S1)d (see [16,
Proposition 8.1]): For two vectors v, w ∈ (C×)n, we have

Cv = Cw ⇐⇒ ∀α ∈ K, xα(v) = xα(w) and ∀i ∈ [n], |vi| = |wi|
⇐⇒ Ov = Ow and ∀i ∈ [n], |vi| = |wi|. (2.4)

The next theorem (see [16, Corollary 4.4 and Proposition 5.5]) shows that one can decide
Ov = Ow in polynomial time.

▶ Theorem 2.1.
(a) We can compute in poly(d, n,B)-time a basis for the lattice K of T -invariant Laurent

monomials. In particular, basis elements of K have bit-lengths bounded by poly(d, n,B).
(b) Suppose v, w ∈ (Q(i)×)n and α ∈ Zn. Then in poly(n, b, ⟨α⟩)-time one can decide

whether xα(v) = xα(w).

Let H ∈ Zk×n be a matrix whose rows αT
1 , α

T
2 , . . . , α

T
k form a basis of the lattice K

defined by M , see Equation (2.2). We call H a matrix of rational invariants.

▶ Proposition 2.2. We have kerH = imMT and rkH = k. Moreover, H(Zn) = Zk, i.e.,
for every β ∈ Zk, there exists α ∈ Zn such that Hα = β. If the rows of H are produced from
M by a polynomial time algorithm (as in Theorem 2.1), then the bit-length of H is at most
poly(d, n,B).

CCC 2024

14:14 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Proof. The first claim is obvious from the construction of K and H. The second claim is
obvious. For the third claim, we are going to use the integral analogue of Farkas’ lemma
(see [79, Corollary 4.1a]), which states that for H ∈ Zk×n, β ∈ Zk,

Hα = β has a solution α ∈ Zn ⇐⇒ ∀γ ∈ Qk with HT γ ∈ Zn, it holds that βT γ ∈ Z.

To reach a contradiction, suppose H(Zn) ̸= Zk, i.e., there exists a vector β ∈ Zk \H(Zn).
Then there exists a rational vector γ ∈ Qk such that HT γ ∈ Zn but βT γ ̸∈ Z.

We note that if HT γ ∈ Zn for some γ ∈ Qk, then HT γ ∈ K since MHT = 0. Moreover,
since the rows of H generate K, we further have HT γ = HT γ̃ for some integral vector γ̃ ∈ Zk.
However, rkH = k so we must have γ = γ̃, so γ is integral. This contradicts βT γ ̸∈ Z. ◀

▶ Remark 2.3. The property that H(Zn) = Zk will be used frequently throughout the paper.
We note that this is equivalent to the diagonal entries of the Smith normal form of H being
all one. Moreover, the proof of Proposition 2.2 shows that H(Zn) = Zk holds whenever the
rows of H form a basis of a saturated lattice in Zn with rank k. We recall that this means
for s ∈ Z>0 and α ∈ Zn, sα ∈ K implies α ∈ K.
▶ Remark 2.4. We could ignore the dependence of the complexity parameters on d since
d ≤ n can be assumed without loss of generality. For seeing this, assume d > n and let
A ∈ Zd×n denote the (row reduced) Hermite normal form of the weight matrix M ∈ Zd×n.
Then the orbits with respect to the actions defined by M and by A are the same. However,
since the last d− n rows of A are zero, the last d− n coordinates of the torus act trivially on
V and can be ignored.

2.3 Singular values
Suppose k ≤ n. For H ∈ Ck×n, there exist unitary matrices X ∈ U(k), Y ∈ U(n) such that
XHY is a diagonal matrix with non-negative real diagonal entries σ1 ≥ σ2 ≥ · · · ≥ σk ≥ 0.
The values σi are called the singular values of the matrix H. We denote by σmax(H) := σ1
and σmin(H) := σk. We have σmin(H) ̸= 0 if and only if rkH = k. Recall that ∥x∥ stands for
the Euclidean norm of x ∈ Cn and dist denotes the corresponding distance for subsets of Cn.

The maximum and the minimum singular values σmax(H), σmin(H) are characterized by
the following properties:

σmax(H) = max
∥x∥=1

∥Hx∥ and ∀x ∥Hx∥ ≥ σmin(H) · dist(x, kerH). (2.5)

▶ Lemma 2.5. Suppose k ≤ n and H ∈ Ck×n. For nonempty subsets A,B ⊂ Cn we have

σmin(H) dist(A+kerH,B+kerH) ≤ dist(HA,HB) ≤ σmax(H) dist(A+kerH,B+kerH).

Proof. We first note that dist(A + kerH,B + kerH) is the infimum of ∥a − b + u∥ over
a ∈ A, b ∈ B, u ∈ kerH, and dist(HA,HB) is the infimum of ∥H(a− b)∥ over a ∈ A, b ∈ B.

For any a ∈ A, b ∈ B and u ∈ kerH we have, by the equation in (2.5),

dist(HA,HB) ≤ ∥H(a− b)∥ = ∥H(a− b+ u)∥ ≤ σmax(H) ∥a− b+ u∥.

Taking the infimum over a, b, u we have dist(HA,HB) ≤ σmax(H) dist(A+kerH,B+kerH).
For the other inequality we use the inequality in (2.5): For any a ∈ A, b ∈ B

∥H(a− b)∥ ≥ σmin(H) dist(a− b, kerH) ≥ σmin(H) dist(A+ kerH,B + kerH).

Taking the infimum over a, b we get dist(HA,HB) ≥ σmin(H) dist(A+kerH,B+kerH). ◀

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:15

The distance dist(A + kerH,B + kerH) depends only on kerH but not on H itself.
Consequently, Lemma 2.5 gives different approximations for different matrices with the same
kernels. The optimal choice is the orthogonal projection onto ker(H)⊥. The singular values
of the orthogonal projection are all 1, so in this case the inequality from Lemma 2.5 becomes
an equality and we get the following.

▶ Corollary 2.6. For nonempty subsets A,B ⊂ Cn and an orthogonal projection P : Cn → Cn,
we have

dist(A+ kerP,B) = dist(A+ kerP,B + kerP) = dist(P (A), P (B)).

We will use Lemma 2.5 mostly in the case where H is the matrix of rational invariants
defined in the previous section. In this case H is integral and the singular values can be
bounded in terms of the bit-length of H.

▶ Lemma 2.7. Suppose k ≤ n and H ∈ Zk×n is an integer matrix of rank rkH = k. Then

σmax(H) ≤ n∥H∥max, σmin(H) ≥ n−(n−1)∥H∥−(n−1)
max ,

where ∥H∥max := maxi,j |Hij | is the max norm of H. Consequently, if B := ⟨H⟩ is the
bit-length of H, then

κ(H) := σmax(H)/σmin(H) ≤ nn2Bn.

Given an H as above, one can compute in polynomial time a number D ∈ Q such that
σmin(H) ≤ D ≤ 2σmin(H).

Proof. The upper bound on σmax(H) follows from ∥Hx∥ ≤
√
nk∥H∥max∥x∥. For the lower

bound, note that the product of the singular values of H equals
∏k

i=1 σi(H) =
√

det(HHT).
Since H has rank k, the matrix HHT is invertible and positive definite. Hence, det(HHT) ≥ 1
and we deduce with part one that

σmin(H) ≥ σmax(H)1−k
√

det(HHT) ≥ n−(k−1)∥H∥−(k−1)
max ≥ n−(n−1)∥H∥−(n−1)

max ,

which shows the second inequality.
We refer to [76] for the algorithmic claim on computing σmin(H). ◀

2.4 Complexity of elementary functions
Two important functions used in this paper are the complex logarithm and exponentiation,
log and exp. Both functions are transcendental and rarely assume rational values on rational
inputs. Fortunately, they can be efficiently approximated by rational functions with the
arithmetic mean-geometric mean iteration of Gauss, Lagrange and Legendre. We refer to
the paper [13] and the book [12] for a detailed study of the AM-GM iteration and for the
following results.

▶ Lemma 2.8. Suppose log denotes the standard branch of the complex logarithm whose
imaginary part satisfies ℑ(log(z)) ∈ (−π, π], and Log is the componentwise logarithm. As-
sume that v ∈ (Q(i)×)n is a vector with Gaussian rational entries. Given ε ∈ Q>0, in
poly(n, ⟨v⟩, log ε−1)-time we can compute an approximation to Log v with absolute error ε.
That is, we can compute a vector η ∈ Qn + 2π iQn such that

∥ Log v − η∥ < ε.

CCC 2024

14:16 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

▶ Lemma 2.9. Suppose exp denotes the complex exponentation, exp(ρ+ i θ) = eρ(cos(θ) +
i sin(θ)) and Exp is the componentwise exp. Assume that η ∈ Qn + 2π iQn. Given ε ∈ Q>0,
in poly(n, ⟨η⟩, log ε−1)-time we can compute an approximation to Exp(η) with relative error ε.
That is, we can compute a vector v ∈ (Q(i)×)n such that

∥ Exp(η) − v∥
∥ Exp(η)∥ < ε.

2.5 Quotient topology and quotient metric
Throughout the paper, we consider various group actions on various metric spaces. The
orbit space, i.e., the set of orbits of the action, has a natural quotient topology and it is
an important question for us to decide when it is possible to carry over the metric space
structure to the orbit space. This is possible in all cases we consider in this section.

▶ Definition 2.10. Suppose X is a topological space and ∼ is an equivalence relation on X.
We denote by X/∼:= {[x] | x ∈ X} the set of equivalence classes of X, where [x] is the
equivalence class of x. Let π : X → X/∼ be the canonical projection map. The quotient
topology on X/∼ is defined by calling a subset U of X/∼ open iff π−1(U) is open in X.

Assume that (X, δ) is a metric space with distance function δ. We define the induced
distance function on X/∼ by

δ([x], [y]) := inf{δ(x′, y′) | x ∼ x′, y ∼ y′}.

Clearly, this is a pseudo-metric on X/∼, which means that δ(x, x) = 0, δ(x, y) = δ(y, x) and
δ(x, z) ≤ δ(x, y) + δ(y, z) for all x, y, z ∈ X. Moreover, one can show that δ is compatible
with the quotient topology on X/∼, which means that the balls {[x] | δ([x], [y]) < r} form a
basis of the quotient topology on X/∼, see [45, Theorem 4]. A pseudo-metric is a metric iff
δ(x, y) = 0 implies x = y.

We note that the induced distance is not always a metric. Indeed, the quotient topology
on X/∼ does not need to be Hausdorff. (The so-called line with two origins is an example
for this.)

However, in the following two cases, the pseudo-metric δ([x], [y]) is indeed a metric.

▶ Proposition 2.11. Suppose (X, δ) is a metric space and K is a compact topological group
acting continuously on X. For x ∈ X, we denote by Cx the orbit of x. Then δ(Cx, Cy) defines
a metric on the space of orbits X/K := {Cx | x ∈ X}), which is compatible with the quotient
topology.

Proof. The orbit Cx is compact since it is the image of K under the continuous map k 7→
k · x. By the above observation, dist(Cx, Cy) defines a compatible pseudo-metric on X/K.
Different orbits Cx, Cy are disjoint. Since they are compact, they have a positive distance:
dist(Cx, Cy) > 0. This shows that the induced distance is a metric. ◀

For the second example, let V be a finite dimensional real vector space and L ⊆ V be
a lattice. This means that L is the set of Z-linear combinations of a collection of linearly
independent vectors in V . Alternatively, a lattice L can be defined as an additive subgroup
of V that is discrete, i.e., there exists a positive constant ε > 0 such that for any distinct
lattice points x, y ∈ L we have dist(x, y) ≥ ε. Thus, any convergent sequence of lattice points
must be eventually constant.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:17

▶ Proposition 2.12. Let V be a finite dimensional real vector space, L a lattice in V , and δ
a translation invariant metric on V that is compatible with the standard topology on V .
Then δ(x+ L, y+ L) defines a metric on the quotient space V/L which is compatible with the
quotient topology.

Proof. We argue as in the proof of Proposition 2.11. Suppose that δ(x+ L, y+ L) = 0. Then
there exist sequences ui and vi in L such that δ(x+ ui, y + vi) = δ(x− y, vi − ui) converges
to zero. Since the sequence vi − ui of lattice points converges, it must be eventually constant.
Hence x− y ∈ L, which completes the proof. ◀

Sometimes in the paper the lattice L will be given as an orthogonal projection of another
lattice. Note that the orthogonal projection of a lattice is not always a lattice. (For instance,
the orthogonal projection of Z2 onto R(1, y) with irrational y is not discrete.)

▶ Lemma 2.13. Suppose U ⊂ V is a rational subspace of V = Rn, spanned by linearly
independent rational vectors u1, . . . , uk ∈ Qn and L ⊂ V is a lattice, generated by integral
vectors. Then, the orthogonal projection of L to U is a lattice.

Proof. Using Gram-Schmidt orthogonalization, we may assume that the ui are pairwise
orthogonal. Then the orthogonal projection P : Rn → U is given by P (v) =

∑k
i=1

⟨ui,v⟩
⟨ui,ui⟩ ui.

This shows that P (Qn) ⊂ Qn. Therefore, if v1, v2, . . . , vl ∈ Zn generate L, there is a positive
integer N such that N P (vi) ∈ Zn for all i. Hence N P (L) ⊂ Zn, which implies that P (L) is
discrete. ◀

3 Logarithmic image of orbits

The goal of this section is to discuss the structure of the logarithmic image of orbits in
the quotient space Cn/2π iZ, to study the metric δlog defined in (1.3), and to prove that
δlog(Ov,Ow) is approximated by a linear form in Log v and Logw.

We assume the setting of Section 2.2: T = (C×)d acts on V = Cn via the weight
matrix M ∈ Zd×n. The columns of M are called the weights of the action and the weight
polytope P ⊂ Rd is defined as the convex hull of these weights. We consider orbits of
vectors v ∈ (C×)n, thus we assume that all components of v are nonzero. We note that Ov

is closed in (C×)n, see [16, Prop. 5.1]. However, Ov may not be closed. It is well known
that Ov is closed iff 0 lies in the interior of P ; see [16, Section 3]. This will only become
relevant later in Section 7.2.

3.1 Structure of logarithms of orbits
The key idea is to use the group isomorphism Log : (C×)n → Cn/2π iZn provided by the
componentwise complex logarithm, compare Equation (1.2). The inverse is given by the
(componentwise) exponential function Exp.

The action of the group T on (C×)n induces via Log an action of T on Cn/2π iZn, which
we shall denote by ∗. This action is simpler to understand, since it works by translations.
More specifically, for x ∈ Cn and v ∈ (C×)n, we have

Log(ex · v) = Log v +MTx, (3.1)

see Figure 3. Note that, by the periodicity of exp, the right-hand side in Cn/2π iZn indeed
only depends on x mod 2π iZn. (We could also consider the corresponding action of the Lie
algebra Lie(T) = Cd, which has the same orbits.) This leads us to the following definition.

CCC 2024

14:18 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

▶ Definition 3.1. We denote by ∗ the induced action of T on Cn/2π iZn via translations
defined by

ex ∗ η := η +MTx, for x ∈ Cd, η ∈ Cn/2π iZn.

By construction, the orbits Ov and Cv of v ∈ (C×)n are mapped to the corresponding
orbits of η = Log v. If we denote

T ∗ η := {t ∗ η | t ∈ T} and K ∗ η := {k ∗ η | k ∈ K},

then Log(Ov) = T ∗ Log(v) and Log(Cv) = K ∗ Log(v).

v
t · v

Log

η

η +MTx

Figure 3 The logarithm flattens the group action. The vector η = Log v is translated to η + MT x

via the group element t = ex ∈ T .

We observe that the ∗-orbits of T (and K) are the images of affine subspaces under
the canonical surjection Cn → Cn/2π iZn. More concretely, we denote by UC := imMT =
{MTx | x ∈ Cd} the row space of M . Then it immediately follows from the definition of the
∗-action that

T ∗ η =
(
η + UC + 2π iZn

) /
2π iZn. (3.2)

We equip now Cn/2π iZn with the quotient metric ∆ induced by the Euclidean metric on
Cn, denoted by dist (by Proposition 2.12 this is indeed a metric). Explicitly,

∆
(
η , ζ

)
:= dist

(
η − ζ , 2π iZn

)
=

√
∥ ρ− τ ∥2 + 4π2 dist2 (θ − ϕ , Zn) , (3.3)

where η = ρ+ 2π i θ and ζ = τ + 2π iϕ with ρ, θ, τ, ϕ ∈ Rn (note that the imaginary parts θ, ϕ
are only determined modulo Zn).

▶ Proposition 3.2. The metric ∆ on X := Cn/2π iZn induces a metric

∆(T ∗ η, T ∗ ζ) := inf
t∈T

∆(t ∗ η, ζ)

on the space X/T of T -orbits with respect to the ∗-action, which is compatible with the
quotient topology. An analogous result holds for K-orbits.

Proof. Denote by P : Cn → U⊥
C the orthogonal projection onto the orthogonal complement

of UC, thus kerP = UC. Lemma 2.13 shows that 2π iP (Zn) is a lattice and Proposition 2.12
implies that Y := U⊥

C /P (2π iZn) is a metric space with respect to the quotient metric of the
Euclidean metric.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:19

0

v

Figure 4 Suppose C× acts on C2 via t · (x, y) = (tx, t−1y) as in Figure 1. The logarithmic orbit
T ∗ 0 is mapped via Exp to the orbit Ov of v := (1, 1). The image shows the ε-neighbourhood of
T ∗ 0 and its image under Exp.

The projection P induces a surjective group morphism P ′ : X → Y . From Equation (3.2)
we see that P ′ is constant on T -orbits. More specifically, P ′ induces a continuous bijection
P ′′ : X/T → Y . By definition, P ′′ preserves the distance ∆:

∆(T ∗ η, T ∗ ζ) = ∆(η, ζ).

Since ∆ is a metric on Y , this implies that the pseudo-metric ∆ on X/T in fact is a metric.
Therefore, ∆(T ∗ η, T ∗ ζ) = 0 implies T ∗ η = T ∗ ζ. The claim about K-orbits follows
analogously. ◀

▶ Remark 3.3. The fact that ∆ is metric on X/T is our essential gain. Note that the orbit
space (C×)/T equipped with the induced Euclidean distance dist(Ov,Ow) between T -orbits
is not a metric: it can be zero even though Ov ≠ Ow, as illustrated in the case of the
hyperbolas in Figure 1.

Equation (3.3) implies the important equations

∆(T ∗ η, T ∗ ζ) = dist(η− ζ +UC, 2π iZn), ∆(K ∗ i θ,K ∗ iϕ) = dist(θ−ϕ+U,Zn), (3.4)

where UC and U are the complex and real row spaces of M , respectively.
The logarithmic distance of v, w ∈ (C×)n, introduced in Equation (1.3), can now be

expressed as

δlog(v, w) = ∆(Log v,Logw). (3.5)

Hence the distances of orbits in the metric δlog are given by

δlog(Ov,Ow) = ∆(T ∗ Log v, T ∗ Logw), δlog(Cv, Cw) = ∆(K ∗ Log v,K ∗ Logw). (3.6)

The action ∗ splits into a real and imaginary part: for x = y + i z with y, z ∈ Rd and
η = ρ+ 2π i θ with ρ ∈ Rn, θ ∈ Cn, we have by Definition 3.1,

ex ∗ η =
(
ρ+MT y

)
+ i

(
2πθ +MT z

)
= ey ∗ ρ+ ei z ∗ (2π i θ), (3.7)

hence

T ∗ η =
((
ρ+ U)

)
+ i

(
2πθ + U + 2πZn

))/
2π iZn.

Let ζ = τ + 2π iϕ. Together with Equations (3.3) and (3.4), we obtain the following formula
for the ∆-distance between ∗-orbits:

∆2(T ∗ η, T ∗ ζ) = dist2(ρ− τ, U) + 4π2∆2(K ∗ i θ,K ∗ iϕ)
= dist2(ρ− τ, U) + 4π2 dist2(θ − ϕ+ U,Zn)

(3.8)

CCC 2024

14:20 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

and similarly,

∆2(K ∗ η,K ∗ ζ) = ∥ρ− τ∥2 + 4π2∆2(K ∗ i θ,K ∗ iϕ)
= ∥ρ− τ∥2 + 4π2 dist2(θ − ϕ+ U,Zn).

(3.9)

The contributions of the real parts, dist2(ρ − τ, U) in the T -case and ∥ρ − τ∥2 in the
K-case, are easy to compute. On the other hand, the contribution of the imaginary parts
dist2(θ − ϕ + U,Zn), turn out to be difficult to compute. We will show in Section 6 that
approximating dist(θ − ϕ+ U,Zn) within a subpolynomial factor is NP-hard, by providing a
polynomial time reduction from the closest vector problem (CVP) to it. By contrast, deciding
whether this distance equals zero can be done in polynomial time, see Remark 3.4. (This is
analogous to the CVP problem, see Section 6.1.)
▶ Remark 3.4. Given a subspace U ⊂ Rn by generators v1, . . . , vm ∈ Zn and t ∈ Qn, we can
decide (t+ U) ∩ Zn ̸= ∅ in polynomial time. This can be seen by putting the matrix with
columns v1, . . . , vm into Smith normal form, which is possible in polynomial time [54].

3.2 Approximation of orbit distances by linear forms in logarithms:
T -orbits

We use now invariant theory to analyze the orbits. Let M ∈ Zk×n be a weight matrix and
denote by H ∈ Zk×n a matrix of rational invariants of H ∈ Zk×n, see Proposition 2.2.

For v, w ∈ (C×)n, Equation (2.3) characterizes the equality of orbits Ov = Ow by Hη =
Hζ, where η = Log v and ζ = Logw. Our goal is a robust version of this: to show that the
closeness of the corresponding logarithmic orbits T ∗ η and T ∗ ζ, measured in terms of the
metric ∆ on Cn/2πiZn, is quantitatively related to the closeness of Hη and Hζ, measured in
terms of the metric ∆ on the quotient space Ck/2πiZk. The correction factors are provided
by the minimum and maximum singular values of H.

▶ Proposition 3.5. If η, ζ ∈ Cn/2π iZn, we have for the distance of T -orbits:

σmin(H) ∆(T ∗ η, T ∗ ζ) ≤ ∆(Hη,Hζ) ≤ σmax(H) ∆(T ∗ η, T ∗ ζ).

For v, w ∈ (C×)n we have

σmin(H) δlog(Ov,Ow) ≤ ∆(H Log v, H Logw) ≤ σmax(H) δlog(Ov,Ow).

If η, ζ are purely imaginary, then the same bounds hold for the distances of K-orbits.

Proof. We have ∆(T ∗ η, T ∗ ζ) = dist(η − ζ + UC, 2π iZn) by Equation (3.4), where UC =
kerH = imMT . The first assertion follows from Lemma 2.5 with A = {η−ζ} and B = 2π iZn.
The second assertion is just a rewriting of the first, using Equation (3.6). The statement on
K-orbits follows analogously. ◀

3.3 Approximation of orbit distances by linear forms in logarithms:
K-orbits

Now the task is to provide an approximation for the distance dist(Cv, Cw) between K-
orbits, similarly to Proposition 3.5. The analogous formula in Corollary 3.8 below is more
complicated. It involves a priori upper and lower bounds on the norms of v and w. For
0 < r ≤ R we consider the closed region defined by

Dr,R := {v ∈ Cn | ∀i ∈ [n] r ≤ |vi| ≤ R}. (3.10)

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:21

▶ Lemma 3.6. Let v, w ∈ Dr,R and put η = Log v, ζ = Logw ∈ Cn/2π iZn. Then

2r
π

∆(η, ζ) ≤ ∥v − w∥ ≤ R∆(η, ζ).

Proof. It is enough to show the equality for n = 1. We write here η = ρ+ i θ, ζ = τ + iϕ
(dropping the factor 2π to simplify notation). The cosine theorem gives

|v − w|2 = |v|2 + |w|2 − 2|v||w| cos(θ − ϕ) = (|v| − |w|)2 + 2|v||w| (1 − cos(θ − ϕ)) .

The first contribution on the right-hand side can be upper and lower bounded by

r2(ρ− τ)2 ≤ (|v| − |w|)2 ≤ R2(ρ− τ)2

since the mean value theorem for exp implies (w.l.o.g. ρ < τ)

r ≤ |v| = eρ ≤
∣∣∣eτ − eρ

τ − ρ

∣∣∣ ≤ eτ = |w| ≤ R.

The second contribution on the right-hand side can be be upper and lower bounded by

4r2

π2 dist(θ − ϕ, 2πZ)2 ≤ 2|v||w| (1 − cos(θ − ϕ)) ≤ R2 dist(θ − ϕ, 2πZ)2,

using the inequality 4
π2ψ

2 ≤ 2 − 2 cosψ ≤ ψ2 for ψ ∈ [−π, π]. Bringing the inequalities
together and observing that 4/π2 ≤ 1, we obtain

4r2

π2

(
(ρ− τ)2 + dist(θ − ϕ, 2πZ)2)

≤ |v − w|2 ≤ R2 (
(ρ− τ)2 + dist(θ − ϕ, 2πZ)2)

,

which completes the proof. ◀

We can now relate dist(Cv, Cw) to δlog(Cv, Cw) = ∆(K ∗ Log v,K ∗ Logw).

▶ Proposition 3.7. For v, w ∈ Dr,R we have

2r
π

∆(K ∗ Log v,K ∗ Logw) ≤ dist(Cv, Cw) ≤ R∆(K ∗ Log v,K ∗ Logw).

Proof. Clearly, the K-action preserves Dr,R. Lemma 3.6 implies that

2r
π

∆(Log(k · v), w) ≤ ∥k · v − w∥ ≤ R∆(Log(k · v), w)

for all k ∈ K. The claim follows from by taking the infimum over k ∈ K. ◀

Combining Proposition 3.7 with Equation (3.8) and Proposition 3.5, we obtain the
following corollary.

▶ Corollary 3.8. Assume that 0 < r ≤ R and v, w ∈ Dr,R. Suppose we have Log v = ρ+2π i θ
and Logw = τ + 2π iϕ. Let H by a matrix of rational invariants as in Proposition 2.2. Then,

4r2

π2

(
∥ρ − τ∥2 + 4π2

σ2
max(H)∆2(Hθ, Hϕ)

)
≤ dist2(Cv, Cw) ≤ R2(

∥ρ − τ∥2 + 4π2

σ2
min(H)∆2(Hθ, Hϕ)

)
.

We finally relate the separation parameters sepK(d, n,B, b) and sepT (d, n,B, b) defined
in Equation (1.5).

▶ Corollary 3.9. We have sepT (d, n,B, b) ≤ n 2O(b) sepK(d, n,B, b).

CCC 2024

14:22 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Proof. Suppose that sepK(d, n,B, b) = dist(Cv, Cw). We let r be the minimum and R be
the maximum of |vi|, |wi|, i = 1, 2, . . . , n. Clearly, 2−b ≤ r. If moreover Ov ̸= Ow, then
Proposition 3.7 implies

dist(Cv, Cw) ≥ 2r
π

∆(K∗Log v,K∗Logw) ≥ 2r
π

∆(T ∗Log v, T ∗Logw) ≥ 2r
π

sepT (d, n,B, b),

hence sepT (d, n,B, b) ≤ π
2r dist(Cv, Cw) ≤ 2O(b) sepK(d, n,B, b). On the other hand, if Ov =

Ow, then Equation (2.4) implies that |vi| ̸= |wi| for some i. In this case, sepK(d, n,B, b) ≥∣∣∣|vi|−|wi|
∣∣∣ ≥ 2−b. We note that since |vi/wi| ≤ 22b, we have log(|vi|/|wi|) ≤ 2b. Furthermore,

dist(θ, 2πZn) ≤
√
nπ for any θ ∈ Rn. Hence, sepT (d, n,B, b) ≤ ∆(Log v,Logw) ≤

√
n(2b+

π
√
n). Altogether,

sepT (d, n,B, b) ≤ 2
√
n b+ πn ≤ (π + 2)n 2b ≤ (π + 2)n 22b sepK(d, n,B, b),

which proves the assertion. ◀

4 The separation hypotheses and the abc-conjecture

The goal of this section is to explain in detail the connection between the abc-conjecture and
Number-Theoretic Hypothesis 1.11 and to prove Theorem 1.12, i.e., to show that Separation
Hypothesis 1.7 and Number-Theoretic Hypothesis 1.11 are equivalent.

4.1 The abc-conjecture and the Number-Theoretic Hypothesis 1.11
Oesterlé and Masser’s abc conjecture [75, Conjecture 3] claims the following.

▶ Conjecture 4.1 (abc conjecture). For every ε > 0 there exists a constant κε > 0 such that
for all nonzero coprime integers a, b, c satisfying a+ b+ c = 0, we have

max(|a|, |b|, |c|) ≤ κε rad(abc)1+ε.

The radical rad(abc) is defined as the product of the distinct primes dividing abc, taken with
multiplicity one.

This simple looking conjecture is one of the most powerful statements in number theory.
In the words of Dorian Goldfeld [36]: “The abc conjecture is the most important unsolved
problem in Diophantine analysis” since “it provides a way of reformulating an infinite number
of Diophantine problems – and, if it is true, of solving them.”

Baker [8] proposed a more precise version of the conjecture: he conjectured that there
exist absolute constants κ, κ′ > 0 (not depending on ε) such that for all ε > 0

max(|a|, |b|, |c|) ≤ κε−κ′ω(ab) rad(abc)1+ε,

where ω(ab) denotes the number of distinct prime factors of ab. Moreover, Baker observed
that5 the minimum of the right-hand side over all ε > 0 occurs when ε = ω(ab)/ logN and
suggested the following ε-free version of the conjecture:

5 Baker attributes this observation to Andrew Granville.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:23

▶ Conjecture 4.2 (Baker’s refinement of the abc conjecture, [7, Conjecture 3]). There exist
constants κ, κ′ > 0 such that for all nonzero coprime integers a, b, c satisfying a+ b+ c = 0,
we have, setting N := rad(abc),

max(|a|, |b|, |c|) ≤ κN
(logN
ω(ab)

)κ′ω(ab)
. (4.1)

Baker’s refinement of the abc-conjecture is closely related to lower bounds for linear
forms in logarithms. The following was observed in [8]. We include a proof for the sake of
completeness.

▶ Theorem 4.3. Suppose Baker’s refinement of the abc conjecture (Conjecture 4.2) is true.
Then there exists a constant κ > 0 such that for any list of positive integers v1, v2, . . . , vn

and any list of integers e1, e2, . . . , en satisfying ve :=
∏n

i=1 v
ei
i ̸= 1, we have

log |ve − 1| ≥ −κ log(max
i

|ei|)
n∑

i=1
log vi.

Proof. W.l.o.g. ei ≠ 0 for all i, E := max |ei| ≥ 2, and u := v1v2 . . . vn ≥ 3. We write
ve = a′

b′ = a
b , where

a′ :=
∏

ei>0
vei

i , b′ :=
∏

ei<0
v−ei

i , d := gcd(a′, b′), a := a′/d, b := b′/d.

We have a′b′ =
∏
v

|ei|
i , hence rad(a′b′) = rad(u). On the other hand, a′b′ = d2ab, which

gives rad(a′b′) = d rad(ab). Hence rad(ab) is a divisor of rad(u), which implies ω(ab) ≤ ω(u).
Setting c := a− b, we have (−a) + b+ c = 0 and gcd(a, b, c) = 1. Since a, b are positive,

we have max(a, b, |c|) = max(a, b). We claim that |c| ≤ uE , where E := max |ei|. Indeed,
c ≤ a ≤ a′ ≤ uE , and similarly, −c ≤ b ≤ b′ ≤ uE .

With the above estimates, we obtain

N = rad(abc) = rad(c) rad(ab) ≤ |c| rad(u) ≤ |c|u ≤ uE+1, ω(ab) ≤ ω(u). (4.2)

Conjecture 4.2 implies

max(a, b) ≤ κN
(logN
ω(ab)

)κ′ω(ab)
≤ κN(logN)κ′ω(ab).

Using Equation (4.2), we can bound this as

max(a, b) ≤ κ |c|u
(
(E + 1) log u

)2κ′ω(u)
.

Since |ve − 1| = |c/b| we get

|ve − 1| ≥ |c|/max(a, b) ≥ κ−1u−1(
(E + 1) log u

)−2κ′ω(u)
.

Taking logarithms of both sides, we obtain

log |ve − 1| ≥ − log κ− log u− 2κ′ ω(u)
(

log(E + 1) + log log u
)
.

It is known that ω(u) log log u = O(log u), see [44, §22.10]. Using this, we conclude that
indeed log |ve − 1| ≥ −κ′′ logE log u for a suitable constant κ′′ > 0. ◀

CCC 2024

14:24 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Given v1, v2, . . . , vn ∈ Z>0 and e1, e2, . . . , en ∈ Z, we denote by Λ(v, e) the linear form in
logarithms

Λ(v, e) := log ve = e1 log v1 + e2 log v2 + · · · + en log vn. (4.3)

A bound similar to the one in the previous theorem can also be given in terms of the quantity
log |Λ(v, e)|, which relates the abc-conjecture to Number-Theoretic Hypothesis 1.11.

▶ Corollary 4.4. Assume Baker’s refinement of the abc-conjecture is true. Then there exists
a constant κ > 0 such that for all v1, v2, . . . , vn ∈ Z>0 and e1, e2, . . . , en ∈ Z with Λ(v, e) ̸= 0,
we have

log |Λ(v, e)| ≥ −κ log(max
i

|ei|)
n∑

i=1
log vi.

In particular, Number-Theoretic Hypothesis 1.11 is true if v1, . . . , vn ∈ Q>0.

Proof. First note that the function h(x) := log(x)/(x− 1) is monotonically decreasing and
satisfies 1

2 ≤ h(x) ≤ 3
2 on the interval [1

2 ,
3
2]. This implies for |x− 1| ≤ 1

2 ,

1
2 | log(x)| ≤ |x− 1| ≤ 2| log(x)|. (4.4)

For showing the stated bound with positive integers vi, we may assume without loss of
generality that |ve−1| ≤ 1

2 . Then Equation (4.4) implies 1
2 |Λ(v, e)| ≤ |ve−1| and Theorem 4.3

gives the desired bound.
The assertion for positive rationals vi = pi

qi
follows from the observation that Λ(v, e) =

Λ(ṽ, ẽ), where ṽ is defined by concatenating p and q, and ẽ by concatenating e and −e. ◀

▶ Remark 4.5. Conversely, lower bounds similar to the one in Corollary 4.4, together with
their p-adic versions imply the abc-conjecture. For a prime p, let |x|p denote the p-adic
absolute value of x ∈ Q, e.g., |pνy|p = p−ν for y ∈ Z not divisible by p and ν ∈ Z. Suppose
the vi are nonzero integers, ei ∈ Z and write ve1

1 v
e2
2 . . . ven

n = a/b for coprime integers a, b. If p
is a prime dividing c := a− b, then |b|p = 1 and |c/b|p = |c|p < 1. Hence the p-adic logarithm
log(a/b) = log(1 + c/b) exists and | log(1 + c/b)|p = |c|p. In analogy with Equation (4.3), we
define

|Λ(v, e)|p := | log(1 + c/b)|p = |c|p.

Baker considered the product of linear forms in logarithms

Ξ := min(1, |Λ(v, e)|)
∏

p prime
min(1, p|Λ(v, e)|p),

where the product is over all primes. He proved that a slightly stronger lower bound for Ξ than
the one of Corollary 4.4 is equivalent to his refinement of the abc-conjecture Equation (4.1);
see [8, Section 5]. Moreover, any lower bound for Ξ implies a version of the abc-conjecture:
Stewart and Yu [82], refining an earlier work by Stewart and Tijdemann [81], used this
approach to prove the inequality

log c < κε N
1
3 +ε,

using the Baker-Wüstholz bound for the linear forms in logarithms [89] and its p-adic versions
by van der Poorten [85]. We refer to [9, Chapter 3.7] (see also [38]) for a summary of these
results.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:25

In Theorem 4.3 and Corollary 4.4 we assumed that the vectors vi to be positive rationals.
More generally, for our purposes, we would like to allow the vi to be nonzero Gaussian
rationals. In the following, assume that log : C× → C denotes the principal branch of the
logarithm, so ℑ(log z) ∈ (−π, π], e.g., log(−1) = iπ. In analogy, we define the linear form in
logarithms

Λ(v, e) := e1 log v1 + e2 log v2 + · · · + en log vn. (4.5)

How small can |Λ(v, e)| be, provided it is nonzero?
In the introduction, we formulated Number-Theoretic Hypothesis 1.11 and noted that it

follows from famous conjectures in number theory, such as Waldschmidt’s conjectures [86,
Conjecture 14.25], [87, Conjecture 4.14] or the Lang-Waldschmidt conjecture for Gaussian
rationals [59, Introduction to Chapters X and XI].

We also note that there are analogues of the abc-conjecture in different number fields [11].
Recall that Z[i] is a unique factorization domain, so for an element x ∈ Z[i] there exist
distinct prime elements p1, p2, . . . , pk, exponents µ1, µ2, . . . , µk ∈ Z>0, and a unit u ∈ Z[i]×
such that x = u

∏k
i=1 p

µi

i . So we can define the radical of x as rad(x) :=
∏m

i=1 pi. We may
conjecture the Gaussian integer analogue of Baker’s abc-conjecture6: There exist constants
κ, κ′ > 0 such that for all nonzero a, b, c ∈ Z[i] with a+ b+ c = 0 and gcd(a, b, c) = 1, the
radical N := rad(abc) satisfies

max(|a|, |b|, |c|) ≤ κ|N |
(

log |N |
ω(ab)

)κ′ω(ab)
. (4.6)

With essentially the same arguments as in the proof of Theorem 4.3 and Corollary 4.4, one
shows that Equation (4.6) implies Number-Theoretic Hypothesis 1.11.

Number-Theoretic Hypothesis 1.11 lower bounds the Euclidean distance of Λ(v, e) to 0.
For our purposes, we need to lower bound the distance ∆(Λ(v, e), 0) := dist(Λ(v, e), 2π iZ)
in the ∆-metric, see Equation (3.3). This follows easily.

▶ Proposition 4.6. Assume Number-Theoretic Hypothesis 1.11. Suppose v1, . . . , vn ∈ Q(i)×

and e1, . . . , en ∈ Z. If ∆(Λ(v, e), 0) is nonzero, then ∆(Λ(v, e), 0) ≥ exp(− poly(n,B, b)),
where B (resp. b) is a bound for the bit-length of ei (resp. vi).

Proof. We have dist(Λ(v, e), 2π iZ) = |Λ(v, e)−d iπ| for some d ∈ Z satisfying |d| ≤ O(n 2B b).
Note that Λ(−1,−d) = −dLog(−1) = −d iπ. Therefore Λ(v, e) − d iπ = Λ(ṽ, ẽ), where ṽ is
obtained from v by appending −1 and ẽ is obtained from e by appending −d. Now we apply
Number-Theoretic Hypothesis 1.11. ◀

4.2 Equivalence of Separation Hypotheses with the Number-Theoretic
Hypothesis 1.11

We prove here Theorem 1.12 based on Proposition 3.5, which relates the logarithmic distance
between the orbits Ov and Ow to ∆(H Log v,H Logw). The essential observation is that
∆(H Log v,H Logw) is determined by linear forms in logarithms.

Proof of Theorem 1.12. We will only prove the first equivalence; the second is shown in
the same way, but using Corollary 3.8 instead of Proposition 3.5.

6 We have not seen this conjecture in the literature.

CCC 2024

14:26 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

(⇒) We first assume Number-Theoretic Hypothesis 1.11 and deduce Separation Hypothe-
sis 1.7. Suppose v, w ∈ (Q(i)×)n have bit-lengths bounded by b and that the bit-length of
the weight matrix M is bounded by B. By Proposition 2.2, there is a matrix H of rational
invariants of bit-length poly(d, n,B). We denote by αT

1 , . . . , α
T
k the rows of H ∈ Zk×n.

Assume that δlog(Ov,Ow) ̸= 0. By Proposition 3.5, ∆(H Log v,H Logw) = ∆(H(Log v−
Logw), 0) is nonzero. Hence at least one of the one-dimensional distances ∆(αT

j (Log v −
Logw), 0) must be nonzero. By Proposition 4.6 it is lower bounded by exp(− poly(d, n,B, b)).
Proposition 3.5 also implies

δlog(Ov,Ow) ≥ 1
σmax(H)∆(H Log v,H Logw) ≥ 1

σmax(H)∆(αT
j (Log v− Logw), 0). (4.7)

Moreover, by Lemma 2.7, σ−1
max(H) is lower bounded by exp(− poly(d, n,B)). This finishes

the proof of the first implication.
(⇐) Now we assume Separation Hypothesis 1.7 and deduce Number-Theoretic Hy-

pothesis 1.11. Suppose vi ∈ (Q(i)×)n have bit-length bounded by b, and ei ∈ Z have
bit-lengths bounded by B such that Λ(v, e) ̸= 0. We assume without loss of generality
that gcd(e1, e2, . . . , en) = 1. Put e := (e1, e2, . . . , en) ∈ Zn and consider the rational hy-
perplane e⊥ of Rn. Note Λ(v, e) ̸= 0 expresses that Log v ̸∈ e⊥. There is a lattice basis
α1, α2, . . . , αn−1 ∈ Zn of e⊥ having bit-length poly(n,B); see Theorem 2.1 (a). Let M ∈ Zd×n

denote the matrix with rows αi, where d := n− 1.
We let (C×)d act on Cn via the weight matrix M . The vector e generates the lattice

of invariant Laurent monomials (recall gcd(e1, e2, . . . , en) = 1). In this case the matrix
H ∈ Z1×n of rational invariants is just H = eT .

Consider v := (v1, v2, . . . , vn) and w := (1, . . . , 1) ∈ Cn, so Logw = 0. Since H has
only one row, we have σmax(H) = σmin(H) = ∥e∥, which implies that the inequality from
Proposition 3.5 is actually an equality:

∆(eT Log v, 0) = ∥e∥ δlog(Ov,Ow). (4.8)

If ∆(eT Log v, 0) ̸= 0, then by Separation Hypothesis 1.7, δlog(Ov,Ow) ≥ exp(− poly(n, b,B)).
Hence |Λ(v, e)| ≥ ∆(eT Log v, 0) ≥ exp(− poly(n, b,B)).

When ∆(eT Log v, 0) = 0, we have 0 ̸= Λ(v, e) = eT Log v ∈ 2πZ so |Λ(v, e)| ≥ 2π. ◀

▶ Remark 4.7. Matveev’s lower bound (1.8) combined with inequality Equation (4.7) shows
that unconditionally

sepT (d, n,B, b) ≥ exp(−BO(1) bO(n)).

The same lower bound holds for sepK(d, n,B, b).

5 Approximations of orbit distances

In this section, we provide polynomial time approximation algorithms for the orbit distance
approximation problems. We solve Problem 1.2 in polynomial time and prove Theorem 1.8.
The main theorem of this section is Theorem 5.2.

5.1 Approximate orbit distance problems
So far, we discussed four group actions: the actions of T = (C×)d or K = (S1)d on the spaces
V = Cn and Cn/2π iZn given by a weight matrix M ∈ Zd×n. We also defined a metric δ on
the resulting spaces of orbits. Let us list all these cases:

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:27

(T, δlog) δlog(Ov,Ow) := ∆(Log(Ov),Log(Ow))

(K, dist) dist(Cv, Cw) := inf
k∈K

∥k · v − w∥

(T,∆) ∆(T ∗ η, T ∗ ζ) := inf
t∈T

∆(t ∗ η, ζ)

(K,∆) ∆(K ∗ η,K ∗ ζ) := inf
k∈K

∆(k ∗ η, ζ),

see Definition 3.1 for the ∗-action and Equation (3.3) for the ∆-metric. We define an orbit
distance approximation problem in each setting.

▶ Definition 5.1. In each of above case, abbreviated (G, δ), the orbit distance approximation
problem ROP(G, δ)γ with approximation factor γ ≥ 1 is the following: on input a weight
matrix M ∈ Zd×n and v, w ∈ (Q(i)×)n, resp. η, ζ ∈ Qn +2π iQn, compute a number D ∈ Q≥0
such that

δ(G · v,G · w) ≤ D ≤ γ δ(G · v,G · w).

We think of γ as a function of the input bit-length, determined by the usual parameters
d, n,B, b.

We can now precisely state the main algorithmic result of this section. Recall from
Equation (3.10) the regions Dr,R defined for 0 < r ≤ R. Note that Theorem 1.8 follows from
the second and third part of the next result.

▶ Theorem 5.2. There are approximation factors γi = γi(d, n,B) bounded exp(poly(d, n,B))
such that:
(a) ROP(G, δ)γ1 admits a polynomial time algorithm in the cases (T,∆) and (K,∆).
(b) ROP(T, δlog)γ2 admits a polynomial time algorithm, if Separation Hypothesis 1.7 holds.
(c) ROP(K, dist)γ , when restricted to inputs in Dr,R, admits a polynomial time algorithm

with approximation factor γ = R
r γ3(d, n,B), if Separation Hypothesis 1.6 holds.

One may wonder why the first part of Theorem 5.2 holds unconditionally. This is
explained by the next result, which gives an unconditional separation of orbits with respect
to the ∆-metric.

▶ Proposition 5.3. If η, ζ ∈ Qn + 2π iQn with T ∗ η ̸= T ∗ ζ, then

∆(T ∗ η, T ∗ ζ) ≥ exp(− poly(d, n, b, B)).

The analogous statement holds for the action of K.

Proof. We write η = ρ+ 2π i θ, ζ = τ + 2π iϕ and recall from Equation (3.8) that

∆2(T ∗ η, T ∗ ζ) = dist2(ρ− τ, U) + 4π2∆2(K ∗ i θ,K ∗ iϕ).

The first contribution dist2(ρ− τ, U), if nonzero, is easily lower bounded using the Gram-
Schmidt orthogonalization. So we may assume K ∗ i θ ̸= K ∗ iϕ. In this case, Proposition 3.5
implies dist(H(θ − ϕ), Zk) ̸= 0 and

∆(K ∗ i θ,K ∗ iϕ) ≥ 1
σmax(H) dist(H(θ − ϕ), Zk),

CCC 2024

14:28 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

where H is a matrix of rational invariants whose bit-length is bounded by Proposition 2.2.
We can upper bound σmax(H) by Proposition 2.2 and Lemma 2.7, which provides the desired
lower bound for the T -action. The distance of H(θ − ϕ) to Zk is also at most exponentially
small since it is lower bounded by the reciprocal of the largest denominator of the entries of
the rational vector H(θ − ϕ). The proof for the K-action is analogous. ◀

We also show that our algorithms for approximating the distance between orbits can
be modified to produce a group element witnessing the γ-proximity of orbits. To avoid
repetition, we only state this for the case (T, δlog), even though this can also be achieved in
the other settings in a similar way.

▶ Theorem 5.4. Assume Separation Hypothesis 1.7. On input M,v,w, one can compute in
polynomial time a vector x ∈ Cd that satisfies

δlog(ex · v, w) ≤ γ δlog(Ov,Ow) (5.1)

if Ov ̸= Ow. If Ov = Ow, then the algorithm correctly identifies this case instead of
returning x. The approximation parameter is exponentially bounded in the bit-length of the
input.

In the next section, we introduce the distance computation problem SLDP and exhibit a
polynomial time algorithm for it. Theorems 5.2 and 5.4 are then proved in Section 5.3 by
reducing the orbit distance approximation problems to SLDP.

5.2 The subspace-to-cubic-lattice distance problem
The orbit distance approximation problems are closely related to the following problem.

▶ Definition 5.5. The subspace-to-cubic-lattice distance approximation problem SLDPγ

with approximation factor γ is the task of computing on input
a target vector t ∈ Qn,
a subspace U ⊂ Rn, spanned by given linearly independent input vectors u1, . . . , un−k ∈ Zn,

a number D ∈ Q≥0 such that

dist(t+ U,Zn) ≤ D ≤ γ dist(t+ U,Zn).

We think of γ a function of the input bit-length.

▶ Remark 5.6. The problem SLDPγ is easy if U = 0. Indeed, dist2(t,Zn) can be exactly and
efficiently computed by rounding the coordinates of t to integers. At the other extreme, the
problem is trivial if U = Rn. However, we will show in Section 6, that SLDPγ is NP-hard
for constant γ (or more generally, an almost polynomial γ), by providing a reduction from
the closest vector problem to it.

▶ Proposition 5.7. There is an approximation factor γ bounded exponentially in the input
bit-length such that SLDPγ admits a polynomial time algorithm. This algorithm can be
modified to compute on input (t, U) a witness of proximity (u, α) ∈ U × Zn such that

dist(t+ u, α) ≤ γ dist(t+ U,Zn).

Proof. For given M ∈ Z(n−k)×n we compute H ∈ Zk×n such that U := imMT = kerH in
polynomial time, see Proposition 2.2. When applying Lemma 2.5 to A = {t} and B = Zn,
we get

dist(t+ U,Zn) ≤ D1 := dist(Ht,Zk)
σmin(H) ≤ σmax(H)

σmin(H) dist(t+ U,Zn). (5.2)

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:29

Hence, D1 approximates dist(t+U,Zn) within a factor of σmax(H)/σmin(H). By Lemma 2.7
we can compute a rational approximation D of D1 within a factor of 2 in polynomial time.
Moreover σmax(H)/σmin(H) is exponentially upper bounded in the input bit-length.

We show now how to compute the witness. By rounding the entries of Ht to nearest
integers, we can compute an integral vector β ∈ Zk such that dist(Ht,Zk) = dist(Ht, β).
Recall that H(Zn) = Zk. We can further efficiently compute α ∈ Zn such that Hα = β. By
projecting t− α orthogonally onto U , we can compute in polynomial time u ∈ U such that
dist(t+ u, α) = dist(t+ U,α). ◀

▶ Remark 5.8. In Section 6.1, we analyse an alternative algorithm (based on the LLL-
algorithm), which solves SLDPγ for γ = 2O(n) in polynomial time (Corollary 6.4). In
comparison, the algorithm given in Proposition 5.7 provides an approximation factor of
γ = κ(H) := σmax(H)/σmin(H) which is bounded by 2n(B+log2 n) in the worst case.

5.3 Proof of Theorem 5.2
The first part of this theorem follows from the following reduction, jointly with Proposition 5.7.

▶ Lemma 5.9. Both ROP(T,∆)2γ and ROP(K,∆)2γ reduce to SLDPγ in polynomial time,
for any γ ≥ 1. Hereby the ambient dimension does not change.

Proof. We will only prove the reduction for G = K since the G = T case is analogous.
Suppose that M,η, ζ are given as input, write η = ρ+ 2π i θ, ζ = τ + 2π iϕ, set t := θ − ϕ,
and U := imMT . We can compute an integral basis of U in polynomial time. Equation (3.4)
and Equation (3.9) imply

∆2(K ∗ η,K ∗ ζ) = ∥ ρ− τ ∥2 + 4π2 dist2(t+ U, Zn).

If dist(t+ U,Zn) ≤ D ≤ γ dist(t+ U,Zn), then

∆2(K ∗ η,K ∗ ζ) ≤ ∥ρ− τ∥2 + 4π2D2 ≤ γ2∥ρ− τ∥2 + 4π2D2 ≤ γ2∆2(K ∗ η,K ∗ ζ),

hence D′ :=
√

∥ρ− τ∥2 + 4π2D2 is a γ-approximate solution of ROP(K,∆). We compute
a rational number D′′ such that D′ ≤ D′′ ≤ 2D′. Then ∆(K ∗ η,K ∗ ζ) ≤ D′′ ≤ 2γ∆(K ∗
η,K ∗ ζ), ◀

A reduction in the reverse direction will be needed later for the hardness proof, see
Lemma 5.12. The next lemma studies that happens with ROP, when the metric δlog,
resp. dist, are replaced by ∆. This lemma proves the second and third part of Theorem 5.2
by reducing it to its first part.

▶ Lemma 5.10. Let γ ≥ 1 be any function of the inputs, let 0 < r ≤ R and put γ1 := 2R
r γ.

(a) There is a polynomial time reduction from ROP(T, δlog)2γ to ROP(T,∆)γ, provided
Separation Hypothesis 1.7 holds.

(b) There is a polynomial time reduction from ROP(K, dist)γ1 , when restricted to inputs in
Dr,R, to ROP(K,∆)γ , provided Separation Hypothesis 1.6 holds.

Proof. We only give the proof for part two since the proof of part one is analogous. The
only difference between the two cases is that in the second we need to use Proposition 3.7
which gives an equivalence between the metrics dist and δlog within an O(R/r)-factor, and
in the first we do not need it.

CCC 2024

14:30 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Given v, w ∈ Dr,R, we test in polynomial time whether Cv = Cw (see Section 2.2).
If Cv = Cw we return D = 0.7 Otherwise, the reduction just consists of replacing the exact
values η := Log v and ζ := Logw by approximations

∥η̃ − η∥ < κ/2, ∥ζ̃ − ζ∥ < κ/2, (5.3)

where the accuracy is prescribed by the separation parameter. For κ := 1
9R sepK(d, n,B, b),

this can be achieved in polynomial time assuming Separation Hypothesis 1.6. For convenience,
we denote the orbit distances of the exact vectors and the approximations computed by

∆ := ∆(K ∗ η,K ∗ ζ), ∆̃ := ∆(K ∗ η̃, K ∗ ζ̃).

It suffices to prove that ∆̃ ≤ D ≤ γ∆̃ implies

dist(Cv, Cw) ≤ 9RD
8 ≤ γ1 dist(Cv, Cw),

where γ1 = 2Rγ/r. We now prove this implication.
By Proposition 3.7, we have

2r
π

∆ ≤ dist(Cv, Cw) ≤ R∆, (5.4)

which implies ∆ ≥ 9κ by our choice of κ. With Equation (5.3) and the triangle inequality,
we get

|∆̃ − ∆| < κ,
κ

∆ ≤ 1
9 .

By dividing through ∆, this implies 8
9 <

∆̃
∆ < 10

9 . From the assumption ∆̃ ≤ D ≤ γ∆̃, we
infer

∆ ≤ 9
8 D ≤ 10

8 γ∆.

Equation (5.4) implies

dist(Cv, Cw) ≤ 9RD
8 ≤ 10π Rγ

16 r dist(Cv, Cw) < 2Rγ
r

dist(Cv, Cw),

which completes the proof. ◀

We can prove Theorem 5.4 in a similar way.

Proof of Theorem 5.4. On input v, w ∈ (C×)n, we first test in polynomial time whether
Ov = Ow (see Section 2.2). If this is the case, we return D = 0. Otherwise, as in
Equation (5.3), we compute approximations η̃ and ζ̃ of the exact values η := Log v and
ζ := Logw with accuracy κ = sepT (d, n,B, b)/2: Separation Hypothesis 1.7 guarantees that
this can be done in polynomial time. We have for all x ∈ Cd

∆(ex ∗ η, ζ) ≥ ∆(T ∗ η, T ∗ ζ) = δlog(Ov,Ow) ≥ sepT (d, n,B, b) = 2κ.

Hence, using the triangle inequality, we get for all x ∈ Cd∣∣∣∆(ex ∗ η̃, ζ̃) − ∆(ex ∗ η, ζ)
∣∣∣ < κ ≤ 1

2∆(ex ∗ η, ζ),

7 To get a Karp reduction, we can simply return the ROP(K, ∆) instance (η, ζ) = (0, 0).

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:31

therefore

1
2 ∆(ex ∗ η, ζ) < ∆(ex ∗ η̃, ζ̃) <

3
2 ∆(ex ∗ η, ζ). (5.5)

Write η̃ = ρ̃+ 2π i θ̃ and ζ̃ = τ̃ + 2π i ϕ̃ and recall from Equation (3.8) that

∆2(T ∗ η̃, T ∗ ζ̃) = dist2(ρ̃− τ̃ , U) + 4π2 dist2(θ̃ − ϕ̃+ U,Zn).

For the first summand, we compute the orthogonal projection u1 of ρ̃− τ̃ onto U . For the
second summand, we use Proposition 5.7 to compute a witness (u2, α) such that

dist(θ̃ − ϕ̃+ u2, α) ≤ γ dist(θ̃ − ϕ̃+ U,Zn) (5.6)

for some γ satisfying γ = exp(poly(B,n)). We then compute y, z ∈ Rd such that MT y = u1
and MT z = u2 and compute the group element x := y+2π i z. Then we have by Equation (3.3)

∆2(ex ∗ η̃, ζ̃) = dist2(ρ̃− τ̃ ,MT y) + 4π2 dist2(θ̃ − ϕ̃+ u2, α)
≤ dist2(ρ̃− τ̃ , U) + 4π2 γ2 dist2(θ̃ − ϕ̃+ U,Zn)
≤ γ2∆2(T ∗ η̃, T ∗ ζ̃),

where we used Equation (5.6) for the second inequality. Combining with Equation (5.5), we
obtain

∆(ex ∗ η, ζ) ≤ 2∆(ex ∗ η̃, ζ̃) ≤ 2γ∆(T ∗ η, T ∗ ζ),

which finishes the proof. ◀

▶ Remark 5.11. The algorithm underlying the reduction in the proof of Lemma 5.10 runs
in time polynomial in the input bit-length and log sep−1

T (d, n,B, b). Thus it is a polynomial
time algorithm if and only if the separation hypothesis is true.

5.4 Reductions from SLDP to ROP
The following reductions are needed in the next section. While the proofs are straightforward
perturbation arguments, dealing with the relative errors requires some care, so that we write
down the detailed arguments at least in one case.

▶ Lemma 5.12. Let (G, δ) denote any of the four cases in Definition 5.1. Then there is a
polynomial-time reduction from SLDP2γ to ROP(G, δ)γ , for any γ ≥ 1. Hereby the ambient
dimension is preserved.

Proof. We only provide the argument for (G, δ) = (K, dist), the case (T, δlog) being similar
and the remaining two cases being trivial. Consider an instance U, t of SLDP, where U ⊂ Rn

is a subspace of dimension d := n− k given as the row span of M ∈ Z(n−k)×n, and t ∈ Qn.
The matrix M defines actions of T = (C×)d and K = (S1)d on Cn. The essential connection
is Equation (3.4), which implies that

dist(t+ U,Zn) = ∆(K ∗ i t,K ∗ 0) = ∆(T ∗ i t, T ∗ 0). (5.7)

By Proposition 5.3, there is a separation function 0 < ϵ ≤ 1 such that log ϵ−1 polynomially
bounded in the parameters d, n,B, b and ∆(K ∗ 2π i t,K ∗ 0) ≥ ϵ when the orbits are different.

CCC 2024

14:32 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

By Lemma 2.9 we compute v ∈ (Q(i)×)n such that ∥v − Exp(2π i t)∥ < κ := ϵ/18. Hence
v ∈ Dr,R for r = 17/18 and R = 19/18. Lemma 5.13 below expresses a Lipschitz property of
Log and gives

∥ Log v − 2π i t∥∞ <
κ

1 − κ
<

18
17 κ.

Thus the distances ∆1 := ∆(K ∗ Log v, 0) and ∆2 := ∆(K ∗ 2π i t, 0) of the corresponding
K-orbits to the zero orbit are close: |∆1 − ∆2| < 18

17 κ. Using ∆2 ≥ ϵ = 18κ, this bounds the
relative errors as |∆1−∆2|

∆2
≤ 1

17 , and hence

∆2 ≤ 17
16∆1 ≤ 18

17∆2.

Note that dist(t + U,Zn) = 1
2π ∆2 by Equation (5.7). Consider the vector w := (1, . . . , 1).

Proposition 3.7 implies, using v ∈ Dr,R with r = 17/18 and R = 19/18, that

2
π

17
18 ∆1 ≤ dist(Cv, Cw) ≤ 19

18 ∆1. (5.8)

Now assume that dist(Cv, Cw) ≤ D ≤ γ dist(Cv, Cw). Then,

∆2 ≤ 17
16∆1 ≤ 17

16
π

2
18
17 D ≤ 17

16
π

2
18
17 γ

19
18

18
17∆2 ≤ 2 ∆2

2π .

This means that

dist(t+ U,Zn) ≤ 9
32 D ≤ 2γ dist(t+ U,Zn),

which completes the proof of the reduction. ◀

▶ Lemma 5.13. For any t ∈ Rn and z ∈ Cn, ∥z − Exp(2π i t)∥ < κ < 1 implies that
∥ Log(z) − 2π i t∥ < κ/(1 − κ).

Proof. It is sufficent to verify the claim for n = 1, in which case the claim follows using
| Log′ z| = | 1

z | ≤ 1
1−κ . ◀

6 Hardness of robust orbit problems

The main goal of this section is to prove Theorem 1.4. Actually, we prove the following,
slightly more general result, that covers all four settings introduced in Section 5.1.

▶ Theorem 6.1. There is c > 0 such that the robust orbit distance approximation problem
ROP(G, δ)γ is NP-hard for the approximation factor γ(n) = nc/ log log n, for each of the four
combinations of group actions and metrics considered in Definition 5.1.

Of course, this implies the hardness of the decisional version of the considered orbit
distance approximation problems, namely:

▶ Corollary 6.2. There is no polynomial time algorithm that on input M, v,w and ε > 0
decides

dist(Cv, Cw) ≤ ε,

unless P = NP. The analogous result also holds for the logarithmic distance δlog(Ov,Ow) of
the orbits of the T -action.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:33

Proof. By binary search, making oracle calls to a hypothetical polynomial time algorithm
for the above decision problem, we can compute an approximation to dist(Cv, Cw) within any
constant factor, say two. This provides a polynomial time algorithm for the robust orbit
distance approximation problem with approximation factor γ = 2. By Theorem 6.1, this
implies P = NP. ◀

The proof of Theorem 6.1 relies on the NP-hardness of the closest vector problem CVPγ

of algorithmic lattice theory due to Dinur et al. [29]. We discuss the closest vector problem
in Section 6.1. The proof of Theorem 6.1 then proceeds by exhibiting a polynomial time
reduction from CVP2γ to ROP(G, δ)γ . This goes in two steps: from Lemma 5.12 we already
know that SLDP2γ can be reduced to ROP(G, δ)γ in polynomial time. The main ingredient
of the proof is a polynomial time reduction of CVPγ to SLDPγ , which is presented in
Section 6.2. This relies on Theorem 1.5 on lattice lifting, whose proof is given in Section 6.3.

6.1 The closest vector problem
This problem attracted a lot of research due to lattice based cryptography, such as GGH,
NTRU and homomorphic encryption [37, 47, 48, 35]. These cryptosystems are conjectured
to be secure agains quantum computers and rely on a (conjectured) hardness of CVP.

Throughout the section, m will always denote the dimension of a CVP instance and n

will always denote the dimension of a SLDP instance.

▶ Definition 6.3. The closest vector problem with approximation factor γ ≥ 1, denoted
CVPγ , is the task of computing on input

a target vector t ∈ Qm,
a lattice L spanned by the columns of generator matrix G ∈ Zm×m with detG ̸= 0,

a number D ∈ Q≥0 such that dist(t,L) ≤ D ≤ γ dist(t,L).

The first observation is that SLDPγ can be easily reduced to CVPγ . Indeed, if P :
Rn → U⊥ denotes the orthogonal projection along U , then dist(t+U,Zn) = dist(P (t),L) by
Corollary 2.6. Here, L := P (Zn) is a lattice by Lemma 2.13, and we can compute a lattice
basis of L in polynomial time. This reduces SLDPγ to CVPγ . We note that this reduction
preserves γ. Moreover, the ambient dimension n of the SLDP instance upper bounds the
lattice dimension m of the constructed CVP instance.

The key contribution in the proof of Theorem 6.1 is a polynomial time reduction in the
reverse direction, see Theorem 6.7.

CVPγ is known to be NP-hard for a nearly polynomial approximation ratio, γ =
mc/ log log m for some c > 0, see [29]. On the other hand, it is well known that CVPγ can
be solved in polynomial time with approximation factor γ(m) = 2O(m) by the well-known
LLL-basis reduction algorithm of [61]. This implies the following.

▶ Corollary 6.4. SLDPγ admits a polynomial time algorithm for the approximation factor
γ(n) = 2O(n).

If we do not insist on polynomial time algorithms, then the lattice element α ∈ L closest
to the target vector t can be computed exactly. Kannan [53] showed that there is an algorithm
for doing so, that runs in time 2O(m log m) times the input size. Combining this with the
above reduction, we obtain:

▶ Corollary 6.5. SLDP1 can be solved by a polynomial time algorithm when n is fixed, if we
allow exact computation of square roots.

CCC 2024

14:34 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

We use this to show polynomial time feasibility of Problem 1.2 and Problem 1.3 when n

is fixed.

Proof of Theorem 1.9 and Theorem 1.10. Matveev’s bound (1.8) implies Number-
Theoretic Hypothesis 1.11 if n is fixed. Then also Separation Hypothesis 1.7 holds if
n is fixed, as shown by the proof of Theorem 1.12. Note that the reductions in Lemma 5.10
preserve the ambient dimension. The assertion follows now with Corollary 6.5. ◀

▶ Remark 6.6. The interesting regime of CVPγ is when γ is polynomial in m. Lattice based
cryptosystems rely on the hardness of CVPγ in this regime, but as of now, proving this is a
major open problem in the area. In fact it is known that CVPγ is in NP ∩ coNP [2], for
γ = 100

√
m, which implies that CVPγ cannot be NP-hard in this regime, unless NP ⊂ coNP

and the polynomial hierarchy collapses.

6.2 The reduction from CVP to SLDP via lattice liftings
We now establish the key reduction from CVP to SLDP by relying on the lattice lifting
result Theorem 1.5.

▶ Theorem 6.7. There is a polynomial time (Turing) reduction from CVPγ to SLDPγ

(with the same γ). In more detail, given as input a CVP instance (t,L) with ambient
dimension m, the reduction either solves CVP exactly or it computes a scaling factor s ∈ Z>0
and an SLDP instance (t̃, U) of ambient dimension n where dist(t,L) = s dist(t̃ + U,Zn)
and m ≤ n ≤ O(m2 logm).

Proof of Theorem 6.7. An instance of CVPγ consists of a rank m lattice L in Rm, given
by a generator matrix, and a target vector t ∈ Qm. We apply Theorem 1.5. Thus, for a given
such instance, we can compute in polynomial time an orthonormal basis v1, v2, . . . , vn ∈ Qn,
where n ≥ m, and a scaling factor s ∈ Z>0, such that the lattice L′ generated by v1, v2, . . . , vn

satisfies L = sP (L′), where P : Rn → Rm denotes the orthogonal projection onto the first m
coordinates. We view Rm as the subspace of Rn whose last n−m coordinates are zero.

Consider the orthogonal matrix Q ∈ Qn×n with columns v1, v2, . . . , vn, thus Qei = vi if
the ei denote the standard basis vectors. This implies that Q(Zn) = L′. Let wi be the rows
of Q, thus wi = QT ei and Qwi = ei. We define the subspace U as the span of wm+1, . . . , wn,
thus Q(U) = ⟨em+1, . . . , en⟩ = kerP . Moreover, we define t′ := s−1QT t. Then Qt′ = s−1t.
Summarizing,

sP (L′) = L, Q(Zn) = L′, Q(U) = kerP, Qt′ = s−1t.

Let us verify that

dist(t,L) = s dist(t′ + U,Zn). (6.1)

Indeed, dist(t′ + U,Zn) = dist(Q(t′ + U), Q(Zn)) by the orthogonality of Q. Moreover,

dist(Q(t′)+Q(U), Q(Zn)) = dist
(
s−1t+kerP,L′) = dist

(
s−1P (t), P (L′)

)
= s−1 dist

(
t,L

)
where we used Corollary 2.6 in the second and P (t) = t in the last equality.

Clearly, this defines a polynomial time reduction of CVPγ to SLDPγ that does not
change the approximation factor γ.

Suppose the given instance of CVP has bit-length l. Theorem 1.5 implies that we
can assume n = O(m(logm + log l)). We can bound l in terms of m by making a case
distinction. If l is so large that l ≥ 2Ω(m log m), then we apply the algorithm in [53], which

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:35

solves CVP exactly, in time l2O(m log m) which is polynomially bounded in l in this case.
Otherwise, if l ≤ 2O(m log m), we perform the above described reduction to SLDP. Then we
have m(logm+ log l) ≤ O(m2 logm) and hence we can upper bound n = O(m2 logm). This
completes the proof. ◀

Proof of Theorem 6.1. We compose the polynomial time reduction CVP2γ to SLDP2γ of
Theorem 6.7 with the polynomial time reductions SLDP2γ to ROP(G, δ)γ in Lemma 5.12.
If m denotes the dimension of the given instance of CVP, then the dimension n of the
constructed instance of ROP satisfies m ≤ n ≤ O(m2 logm).

Using [29], we choose c such that CVP2γ is NP-hard with the approximation factor
2γ(m) = mc/ log log m. Since m ≤ n ≤ m3 for sufficiently large m, we have

γ(m) = 1
2m

c/ log log m ≥ 1
2n

c/3 log log n ≥ nc′/ log log n

for a suitably chosen c′. Thus we see that ROP(G, δ)γ is NP-hard for the approximation
factor nc′/ log log n, which completes the proof. ◀

6.3 Proof of Theorem 1.5
Recall that L ∈ Zm×n is called right-invertible over Z if there exists R ∈ Zn×m such that
LR = Im. This means that the lattice generated by the columns of L equals Zm, that is,
L(Zn) = Zm.

▶ Proposition 6.8. Suppose L ⊂ Rm is a lattice generated by the columns of G ∈ Zm×m

with detG ̸= 0. Then the following are equivalent for integers n ≥ m and s ∈ Z>0:
(1) There exists a lattice L′ ⊂ Rn generated by an orthonormal basis such that

L = s P (L′)

where P : Rn → Rm denotes the orthogonal projection onto the first m-coordinates.
(2) There exists a matrix L ∈ Zm×n that is right-invertible over Z, such that

(GL)(GL)T = s2Im.

We need the following observation, which easily follows with Gram-Schmidt orthogonal-
ization.

▶ Lemma 6.9. Suppose m ≤ n and X ∈ Rm×n. Then X can be completed to an orthogonal
matrix if and only if XXT = Im.

Proof of Proposition 6.8. (1) ⇒ (2): Suppose v1, v2, . . . , vn ∈ Rn is an orthonormal basis
generating L′ and put ui := P (vi). The matrix U ∈ Rm×n with columns u1, . . . , un has
orthogonal rows, that is, UUT = Im. By assumption, the vectors sui are in L and hence can
be written as integer linear combinations of the columns of G. This means that there exists an
integer matrix L ∈ Zm×n such that GL = sU . The rows of this matrix are orthogonal, hence
(GL)(GL)T = s2Im. It remains to show that L is right-invertible over Z. Also by assumption,
since the sui generate L, the columns of G can be written as integer linear combinations
of ui. Thus there exists an integer matrix R ∈ Zn×m such that (GL)R = sUR = G. Hence
LR = Im, since detG ̸= 0, so that L is indeed right-invertible.

(2) ⇒ (1): Suppose s2Im = (GL)(GL)T . Thus the matrix X := 1
sGL satisfies XXT = Im.

By Lemma 6.9 we can complete X to an orthogonal matrix: thus there exists an orthogonal
matrix Y ∈ On whose first m rows constitute the matrix 1

sGL. Therefore sPY = GL. Hence,
if L′ denotes the lattice generated by the columns of Y , we have sP (L′) ⊂ L. Equality holds
since L is right-invertible over Z. ◀

CCC 2024

14:36 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Proposition 6.8 indicates a strategy for proving Theorem 1.5. We need two ingredients:
A polynomial time algorithm for computing on input G an integer n ≥ m and a right
invertible matrix L ∈ Zm×n such that (GL)(GL)T = s2Im.
An efficient version of Lemma 6.9.

We prove now that both requirements can be satisfied. For the first step we will use the
following result.

▶ Theorem 6.10 (Efficient Waring decomposition for quadratic forms). Assume A ∈ Qm×m

is a positive definite, symmetric matrix of bit-length b. Then, in poly(m, b)-time, we can
compute N vectors l1, l2, . . . , lN ∈ Qm, where m ≤ N ≤ O(m(logm+ log b)), such that

A =
N∑

i=1
li l

T
i .

▶ Remark 6.11. In 1932, Mordell [69] considered what he called the Waring’s problem for
quadratic forms, the problem of writing a given positive definite quadratic form f(x) := xTAx

as sum of squares of linear forms over Q. Note that this equivalent to writing the matrix
A as in in Theorem 6.10. Mordell proved that a Waring decomposition with N = m + 3
is always possible, and described a method for computing the linear forms. Unfortunately,
his method relies on Lagrange’s four squares theorem that every positive integer D can be
written as the sum of four squares D = a2 + b2 + c2 + d2. Randomized polynomial time
algorithms to compute a, b, c, d are available [77], but to the best of our knowledge, it is
still an open problem whether a polynomial time deterministic algorithm exists. Instead,
we will use the lemma below, which uses more squares but can easily be shown to run in
deterministic polynomial time.

The proof of Theorem 6.10 requires some preparations.

▶ Lemma 6.12. Given a positive integer D , we can in polynomial time compute k =
O(log logD) integers a1, a2, . . . , ak such that

D = a2
1 + a2

2 + · · · + a2
k.

Proof. We first compute a1 := ⌊
√
D⌋. Replacing D with D′ := D − a2

1 and repeating the
process, we compute integers a1, a2, . . . , ak such that D = a2

1 + · · · + a2
k. Let us bound k:

since a2
1 ≤ D < (a1 +1)2, we have D′ = D−a2

1 ≤ (a1 +1)2 −1−a2
1 ≤ 2

√
D. This implies that

if Dj is computed in the j-th step, then Dj ≤ 2
√
Dj−1 ≤ · · · ≤ 21+ 1

2 +···+ 1
2j−1 D2−j ≤ 4D2−j .

We deduce that after k := log2 log2 D steps we have Dk ≤ 8. The algorithm terminates after
at most 4 more steps. ◀

The following result can be found in [62, Algorithm 12.1].

▶ Lemma 6.13 (Lagrange’s method for congruence diagonalization). Suppose X ∈ Zm×m is
a symmetric matrix. Then we can compute in polynomial time a matrix Q ∈ Zm×m with
detQ ̸= 0 such that

QXQT = diag(d1, d2, . . . , dm) ∈ Zm×m

is diagonal with integer entries.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:37

Proof of Theorem 6.10. By multiplying A with the square of the least common multiple of
the denominators of the entries of A, we may assume without loss of generality that A is
integral. We compute a matrix Q such that QAQT = diag(d1, d2, . . . , dm) by Lemma 6.13.
Since A is positive definite, all di are positive. Using Lemma 6.12, for each i = 1, 2, . . . ,m,
we compute eij such that di =

∑ki

j=1 e
2
ij . Denote by L the matrix

L :=

e11 . . . e1k1

e21 . . . e2k2

. . .

em1 . . . emkm

 ∈ Zm×
∑

ki .

Then LLT = diag(d1, d2, . . . , dm) = QAQT , so A = (Q−1L)(Q−1L)T . Defining li ∈ Qm

to be the i-th column of Q−1L, we have A =
∑N

i=1 lil
T
i where N :=

∑
ki and this proves

the claim. For the bound on N , we first note that since the algorithm in Lemma 6.13
runs in polynomial time, we have log di = (bm)O(1). Lemma 6.12 then implies that ki =
O(log log di) = O(log(bm)) and N = O(m log(bm)). ◀

The efficient Waring decomposition is the first ingredient in our proof of Theorem 1.5.
The second ingredient is an efficient version of Lemma 6.9.

▶ Lemma 6.14. Suppose m ≤ n and X ∈ Qm×n satisfies XXT = Im. Then, we can compute
in polynomial time an orthogonal matrix Y ∈ Qn×n such that the first m rows of Y are the
rows of X.

Proof. We construct Y as a product of reflections at rational hyperplanes.
First note that for any v, w ∈ Qn of norm one, there is an orthogonal matrix Y ∈ Qn×n

such that Y v = w. Indeed, w.l.o.g. v ̸= −w, and take for Y the reflection at the hyperplane
orthogonal to v + w, which is given by the linear map

Y x := 2 ⟨x, v + w⟩
∥v + w∥2 (v + w) − x.

Note that Y defines a rational orthogonal matrix and indeed Y v = w. Denote by ei the
standard basis vectors.

Given X as in the lemma, we compute an orthogonal matrix Y1 ∈ Qn×n which maps e1
to the first row of X. Since Y is orthogonal and Y 2 = In, the first row of Y equals the first
row of X. We construct Y by iterating this process. ◀

▶ Remark 6.15. M. Hall [41, 42] gave necessary conditions for an integer matrix to be
completable to a scalar multiple of an orthogonal matrix in the sense of Lemma 6.14.

Proof of Theorem 1.5. Given G ∈ Zm×m with detG ̸= 0, we compute s := m∥G∥max + 1.
By Lemma 2.7 we have σmax(G) < s. The minimum eigenvalue of G−1G−T satisfies

λmin(G−1G−T) = σ2
min(G−1) = 1

σ2
max(G) >

1
s2 .

Consequently, the matrix A := s2(G−1G−T) − Im is positive definite.
Using Theorem 6.10, we compute in polynomial time a number N and a matrix L ∈ Qm×N

such that A = LLT . Let f ∈ Z>0 denote the least common multiple of the denominators of
the entries of L, so that L′ := fL is integral. Then (sf)2G−1G−T − f2Im = L′(L′)T .

CCC 2024

14:38 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Using Lemma 6.12, we compute integers b1, . . . , bp such that f2−1 = b2
1+b2

2+· · ·+b2
p. Since

L is computed from A in polynomial time, the bit-length of f is poly(b,m) so Lemma 6.12 im-
plies p = O(log(bm)). Considering the integer matrix L′′ =

[
b1Im b2Im . . . bpIm L′]

of format m× (pm+N), we get

(sf)2G−1G−T − Im = (b2
1 + b2

2 + · · · + b2
p)Im + L′(L′)T = L′′(L′′)T . (6.2)

We now consider the matrix X :=
[
G GL′′]. By Equation (6.2), we have XXT = (sf)2Im.

Using Lemma 6.14 with input (sf)−1X, we compute a rational, orthogonal matrix Y ∈ Qn×n

such that the first m rows of Y are the rows of (sf)−1X where n := m+ (pm+N).
The columns v1, . . . , vn of Y form an orthonormal basis. Moreover, the orthogonal

projections P (vi) onto the first m coordinates equal the columns of (sf)−1X. Thus if we
denote by L′ the lattice generated by v1, . . . , vn, then sfP (L′) is the lattice spanned by the
columns of X =

[
G GL′′], which is equal to L = G(Zm), because L′′ is an integer matrix.

We conclude that sfP (L′) = L. ◀

7 Orbit Problems and the Kempf-Ness Approach

In Section 1.9 we outlined a general approach for the Orbit Equality Problem, based on the
Kempf-Ness theorem [55]. Here we analyze this approach for torus actions. We formulate a
conjecture on the complexity of computing approximate solutions to unconstrained geometric
programs. A positive answer to the conjecture leads to a numerical algorithm for the Orbit
Equality Problem that runs in polynomial time, provided Separation Hypothesis 1.7 is true.

7.1 The general Kempf-Ness theorem
This theorem holds for any reductive group T (not just a torus) with a rational action on a
finite dimensional vector space V . We denote by K a maximal compact subgroup of T and
assume that V is endowed with a Hermitian inner product such that K acts by isometries.
The inner product defines a norm and Euclidean metric on V . In the special case T = (C×)d

of a torus we have K = (S1)d.
It is well known [24, Thm. 2.3.6] that each orbit closure Ov contains a unique closed orbit.

Therefore, we have Ov ∩ Ow ̸= ∅ iff the orbit closures Ov and Ow share the same closed
orbit. We therefore focus on closed orbits: let us call a vector v ∈ V polystable if its orbit
Ov is closed. We denote by V ps the set of polystable vectors in V . As in Section 2.5, we
can endow the space V ps/T of closed orbits with the quotient topology, which is Hausdorff.
The Kempf-Ness Theorem [55] states that the space V ps/T is homeomorphic to a “smaller
object”, which is defined in analytic terms, namely the space Crit(V)/K of K-orbits of the
closed and K-invariant subset Crit(V) of critical points of V .

The critical points are defined in terms of the Kempf-Ness function:

Fv : T → R, Fv(g) := log ∥g · v∥ = 1
2 log ∥g · v∥2. (7.1)

Let us denote the induced action of Lie(T) on V by x · v := d
dt

∣∣
t=0 (etx · v), for x ∈ Lie(T)

and v ∈ V . Note that x · v = v +MTx for the action Equation (1.1) of a torus. One checks
that the derivative of Fv at I is given by DIFvx = ∥v∥−2 ⟨x · v, v⟩. Thus we define v ∈ V to
be critical iff ⟨x · v, v⟩ = 0 for all x ∈ Lie(T). By definition, the set Crit(V) of critical vectors
in V is a closed real algebraic set in V , cut out by real quadratic polynomials. Moreover,
Crit(V) is K-invariant, since we assume the Hermitian inner product to be K-invariant.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:39

It is easy to see that closed orbits contain a critical point. The celebrated Kempf-Ness
theorem [55] states the converse: the orbits of critical points are closed, thus Crit(V) ⊂ V ps.
Even more is known:

▶ Theorem 7.1 (The Kempf-Ness theorem). (a) The orbit Ov is closed if and only if
Ov ∩ Crit(V) ̸= ∅.

(b) The intersection Cv⋆ := Ov ∩ Crit(V) is a single K-orbit, that we call the Kempf-Ness
orbit of v.

(c) We have Ov ∩ Ow ̸= ∅ if and only if Cv⋆ = Cw⋆ .

The proof of Theorem 7.1 relies on convexity properties of the function Fv. One observes
that t 7→ Fv(γ(t)) is convex for all all curves of the form γ(t) := Exp(tx) · v. A more
conceptual view of the situation is as follows (see [17]). One can view Fv as a function on
T/K = {Kg | g ∈ T}, since Fv is constant on the cosets Kg. Moreover, T/K is a symmetric
space with respect to a K-invariant Riemannian metric, whose geodesics are exactly the
curves arising from the γ. For this reason, one calls Fv a geodesically convex function on T/K.
In the special case where T = (C×)d is the torus, we have the isometry

Rd ∼−→ T/K, x 7→ K Exp(x/2) (7.2)

given by the exponential map. In general, the convexity implies that v⋆ ∈ Ov is critical iff

∥v⋆∥ = inf
v′∈Ov

∥v′∥.

▶ Remark 7.2. The second property in Theorem 7.1 expresses that the continuous map
Crit(V)/K → V ps/T , induced by the inclusion, is a bijection. Equivalently, this map is a
homeomorphism.8

7.2 Efficient approximation of the Kempf-Ness orbit
We return to the situation of the action of a torus T on V = Cn. Let ω1, . . . , ωn ∈ Zd denote
the corresponding weights, i.e., the columns of the weight matrix M . We will always assume
that the affine span of these weights is Rd. We fix a vector v ∈ V and assume for simplicity
that qi := |vi|2 > 0 for all i. Using the parametrization (7.2) and multiplying by 2 to simplify
the presentation, the Kempf-Ness function (7.1) becomes

f : Rd → R, f(x) := 2 log ∥ex/2 · v∥ = log
(n∑

i=1
qie

ωT
i x

)
. (7.3)

The gradient ∇f(x) and the Hessian of f at x are given by

∇f(x) =
∑n

i=1 qie
ωT

i x ωi∑n
i=1 qie

ωT
i

x
, ∇2f(x) =

∑n
i=1 qie

ωT
i x ωiω

T
i∑n

i=1 qie
ωT

i
x

− ∇f(x)∇f(x)T . (7.4)

This shows that ∇f(x) lies in the interior of the weight polytope

P := conv
(
ω1, . . . , ωn

)
.

8 Pass to projective spaces to see this.

CCC 2024

14:40 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

Moreover, the Cauchy-Schwarz inequality implies for all nonzero y ∈ Rd,

yT ∇2f(x)y =
∑n

i=1 qie
ωT

i x (yTωi)2∑n
i=1 qie

ωT
i

x
− (yT ∇f(x))2 > 0, (7.5)

which directly proves that f is a strictly convex function.9
For the following equivalences, see [20, 16]. The function f has a finite infimum iff 0 ∈ P .

This is equivalent to 0 ̸∈ Ov. Moreover, the infimum f⋆ is attained iff 0 lies in the interior
of P , which is equivalent to the orbit Ov being closed. By the strict convexity, the minimum
is attained at a unique point x⋆ ∈ Rd. By Theorem 7.1, v⋆ := ex⋆ · v defines the K-orbit Cv⋆ .

There is a vast amount of literature on the problem of minimizing f(x) using the ellipsoid
or the interior point methods, see [20, 14, 74, 80, 83, 60] and the references therein. On
input ε > 0, these algorithms return a point x ∈ Rd with f(x) − f⋆ < ε in polynomial time.
However, surprisingly, we are not aware of any result on computing a certified approximation
to x⋆ in polynomial time, and currently this seems to be an open problem. We conjecture
that this can be achieved in polynomial time:

▶ Conjecture 7.3. There exists an algorithm that on input M ∈ Zd×n such that 0 ∈ int(P),
a vector v ∈ (Q(i)×)n, and ε ∈ Q>0, computes x ∈ Qd such that

∥x− x⋆∥ < ε,

in time poly(d, n,B, b, log 1
ε), where B is the bit-length of M and b is the bit-length of v.

We will now explain why computing an approximation to x⋆ seems to be more challenging
than approximately minimizing f(x). In Example 7.4 below, we provide a family of Kempf-
Ness functions f and points x such that f(x) − f⋆ becomes doubly-exponentially small in the
input bit-length, while the distance to the true minimizer x⋆ remains constant: ∥x− x⋆∥ = 1.
This implies that using known minimization algorithms in a black box will not be sufficient
to solve Conjecture 7.3 and more specific algorithms appear to be required.

▶ Example 7.4. We consider the action of T := (C×)2 on V := C4 with the following weights:
ω1 := (1, 0), ω2 := (−2, 0), ω3 := (−N, 1), ω4 := (−N,−1) where N > 2 is a positive integer.
See Figure 4 for illustration. The Kempf-Ness function (7.3) for v := (1, 1, 1, 1) reads

f(x1, x2) = log
(
ex1 + e−2x1 + e−Nx1+x2 + e−Nx1−x2

)
.

We note that f(x) ≥ 0 for every x ∈ Rd since at least one of the exponents x1,−2x1 is
non-negative.

We now focus on the unique minimizer x⋆ = (x⋆
1, x

⋆
2) of the convex program f⋆ :=

minx f(x), which is characterized by the property that the gradient vanishes: ∇f(x⋆) = 0.
By Equation (7.4) this is equivalent to

ex⋆
1 − 2e−2x⋆

1 −Ne−Nx⋆
1+x⋆

2 −Ne−Nx⋆
1−x⋆

2 = 0 and e−Nx⋆
1+x⋆

2 − e−Nx⋆
1−x⋆

2 = 0. (7.6)

The second equation implies x⋆
2 = 0. The first equation then reduces to

ex⋆
1 − 2e−2x⋆

1 − 2Ne−Nx⋆
1 = 0, (7.7)

9 To see this, we split
∑

i
qie

ωT
i xyT ωi as

∑
i
q

1
2
i e

1
2 ωT

i xyT ωi · q
1
2
i e

1
2 ωT

i x and apply the Cauchy-Schwarz
inequality. Since the vectors ωi affinely span Rd we have yT ωi ̸= yT ωj for some i ≠ j. This shows
that the vectors (q

1
2
i e

1
2 ωT

i xyT ωi | i ∈ [n]) and (q
1
2
i e

1
2 ωT

i x | i ∈ [n]) cannot be proportional and hence the
Cauchy-Schwarz inequality must be strict.

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:41

ω1

ω2

ω3

ω4

Figure 5 An example of a torus action with weights (1, 0), (−2, 0), (−N, 1), (−N, −1). The points
in the shaded region all have small f(x) − f⋆ but they can be far away from the optimal solution x⋆.

which implies that x⋆
1 is positive and decreases with N . In the limit N → ∞, the first

equation degenerates to ex⋆
1 − 2e−2x⋆

1 = 0. We deduce that ex⋆
1 > 3

√
2 for every N > 2. In

fact, we have:

3
√

2 < ex⋆
1 <

(
1 + N

2N/3

)
3
√

2. (7.8)

To see this, we write ex⋆
1 = (1 + ε) 3

√
2 where ε > 0. Then Equation (7.7) implies

(1 + ε) 3
√

2 −
3
√

2
(1 + ε)2 = 2N

(1 + ε)N 2N/3 .

Multiplying this equation by (1+ε)N/ 3
√

2, we get (1+ε)N−2 (ε2 +3ε+3) ε = 2N×2−(N+1)/3.
Since ε > 0, we have ε2 + 3ε+ 3 > 3 and 3ε < 2N × 2−(N+1)/3, which implies Equation (7.8).

We now consider the point x := (x⋆
1, 1), whose first coordinate agrees with the first

coordinate of x⋆ = (x⋆
1, 0) but has a constant distance away from x⋆ in the second coordinate.

We will show that f(x) − f⋆ is exponentially small in N :

ef(x)−f⋆ = 1 + e−Nx⋆
1 (e+ e−1 − 2)

ef⋆
≤ 1 + e−Nx⋆

1 (e+ e−1 − 2)

where the inequality holds since f⋆ ≥ 0. Taking logarithms we get

f(x) − f⋆ ≤ log(1 + e−Nx⋆
1 (e+ e−1 − 2)) ≤ e−Nx⋆

1 (e+ e−1 − 2) < 2−N/3(e+ e−1 − 2)

since ex⋆
1 > 3

√
2. This shows that f(x) − f⋆ is exponentially small in N and hence doubly-

exponentially small in the input bit-length, and yet ∥x− x⋆∥ = 1.

▶ Remark 7.5. In the setting of Example 7.4, consider the vectors v := (1, 1, 1, 1) and
w := (1, 1, 2, 2), and denote by x⋆, y⋆ the minimizers of the Kempf-Ness functions of v, w,
respectively, i.e., ex⋆ = v⋆ and ey⋆ = w⋆. By Example 7.4, we have x⋆ = (x⋆

1, 0), where x⋆
1

satisfies Equation (7.8). By a similar reasoning, we also have y⋆ = (y⋆
1 , 0), where y⋆

1 satisfies

3
√

2 < ey⋆
1 <

(
1 + 2N

2N/3

)
3
√

2.

CCC 2024

14:42 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

We will now show that the coordinates of v⋆, w⋆ are exponentially close in N . To this end,
denote εN := 2N × 2−N/3. We have |(v⋆)1 − (w⋆)1| = |ex⋆

1 − ey⋆
1 | < 21/3 εN . For the second

coordinate we have |(v⋆)2 − (w⋆)2| = |e−2x⋆
1 − e−2y⋆

1 | < 2−2/3(
(1 + εN)2 − 1

)
< 24/3εN ,

using the crude bound (1 + εN)2 − 1 < 4εN , which holds for εN < 2 and hence for N large
enough. For the third and fourth coordinate we have |(v⋆)3 − (w⋆)3| = |(v⋆)4 − (w⋆)4| =
|e−Nx⋆

1 − 2e−Ny⋆
1 | < |e−Nx⋆

1 | + 2|e−Ny⋆
1 | < 3 × 2−N/3 < εN . Hence ∥v⋆ − w⋆∥∞ < 24/3εN

and we conclude

dist(Cv⋆ , Cw⋆) ≤ ∥v⋆ − w⋆∥ ≤ 2∥v⋆ − w⋆∥∞ < 27/3 εN

where the second inequality follows from the inequality ∥ · ∥2 ≤
√
n∥ · ∥∞ which holds in the

n-dimensional Euclidean space. This shows that the Euclidean distance between Cv⋆ and Cw⋆

can be exponentially small in N and doubly exponentially small in the bit-length of N . On
the other hand, it is easy to lower bound the logarithmic distance: It is easy to verify that

H =
[

2 1 0 0
2N 0 1 1

]
is the matrix of rational invariants and H Log v = (0, 0) and H Logw = (0, 2 log 2). Proposi-
tion 3.5 then implies

δlog(Cv⋆ , Cw⋆) ≥ δlog(Ov,Ow) ≥ 1
σmax(H) ∆(H Log v,H Logw) ≥ log 2

2N

where in the last inequality we use Lemma 2.7 to upper bound σmax(H) ≤ 4N .
More generally, if Separation Hypothesis 1.7 holds then it is true for general torus actions

that δlog(Cv⋆ , Cw⋆) is at most singly exponentially small: If Cv⋆ ̸= Cw⋆ , then, in general,
Ov ≠ Ow, hence, δlog(Cv⋆ , Cw⋆) ≥ δlog(Ov,Ow) ≥ sepT (d, n,B, b). This is one of the main
reasons why we work with the logarithmic distance instead of the Euclidean distance.

7.3 Deciding the equality of the Kempf-Ness orbits
We now show that, assuming Separation Hypothesis 1.7 and Conjecture 7.3, that for given
v, w ∈ (C×)n, it is possible to decide in polynomial time whether the orbits Ov for Ow are
equal. By Theorem 7.1, this is equivalent to the equality of the Kempf-Ness orbits Cv⋆ and
Cw⋆ . We decide this by computing the approximate distance of the corresponding orbits Cv⋆

and Cw⋆ with sufficent accuracy. This has two ingredients: first we compute x′ and y′ that
are ε-close approximations of x⋆ and y⋆, respectively. This is possible by Conjecture 7.3. In
a second step, we compute an approximation D of the distance δ := δlog(Cv′ , Cw′) between
Cv′ and Cw′ such that δ ≤ D ≤ γδ. For this we use Theorem 5.2 (c), see Corollary 7.6 below.
When choosing ε = 2−ℓ sufficiently small, we show that Cv⋆ = Cw⋆ iff D < γε, which allows
to decide orbit equality. Separation Hypothesis 1.7 is needed to make sure that it is sufficient
to choose ℓ as a polynomial in the input bit-length in order to obtain a polynomial time
algorithm.

We now give the technical details. We recall that we restrict ourselves to torus actions
where 0 lies in the interior of the convex hull P of the set of weights Ω. This condition
guarantees that all orbits of vectors in (C×)n are closed in Cn; on the other hand, when
0 ̸∈ int(P), then no such orbit is closed, see [16].

We first state the following straightforward consequence of Theorem 5.2 (c).

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:43

▶ Corollary 7.6. We assume the Separation Hypothesis 1.7. There is an exponentially
bounded approximation factor γ = γ(d, n,B, b) such that, given a T -action by a weight matrix
M ∈ Zd×n, and given vectors v, w ∈ (Q(i)×)n and x, y ∈ Qd, we can compute in polynomial
time a number D ∈ Q≥0 such that

δlog(Cv′ , Cw′) ≤ D ≤ γ δlog(Cv′ , Cw′),

where v′ := ex · v and w′ := ey · w.

Using the approximation factor γ of Corollary 7.6, we define the parameter

ε := 1
2γ sepT (d, n,B, b).

Assuming Conjecture 7.3, we can compute in polynomial time approximations

∥x− x⋆∥ < 1
2 ∥M∥−1ε, ∥y − y⋆∥ < 1

2 ∥M∥−1ε.

Recall that v∗ = ex⋆ · v. We set v′ := ex · v. Then Log v∗ = Log v + MTx⋆ and Log v′ =
Log v +MTx, hence

δlog(v′, v⋆) = ∆(Log v +MTx,Log v +MTx⋆) = ∥MT (x− x⋆)∥ ≤ 1
2ε,

which implies δlog(Cv′ , Cv⋆) ≤ 1
2ε. Analogously, we get δlog(Cw′ , Cw⋆) ≤ 1

2ε for w′ := ey · w.
Using the triangle inequality, we obtain

δlog(Cv⋆ , Cw⋆) ≤ δlog(Cv⋆ , Cv′) + δlog(Cv′ , Cw′) + δlog(Cw′ , Cw⋆) ≤ δlog(Cv′ , Cw′) + ε.

By symmetry, this implies∣∣δlog(Cv⋆ , Cw⋆) − δlog(Cv′ , Cw′)
∣∣ < ε. (7.9)

We now observe the following two implications:

δlog(Cv⋆ , Cw⋆) = 0 =⇒ δlog(Cv′ , Cw′) < ε

δlog(Cv⋆ , Cw⋆) > 0 =⇒ δlog(Cv′ , Cw′) > γε. (7.10)

The first implication is an obvious consequence of Equation (7.9). For the second implication,
note that Cv⋆ ̸= Cw⋆ implies δlog(Cv⋆ , Cw⋆) ≥ δlog(Ov,Ow) ≥ sepT , since Cv⋆ ⊂ Ov and
Cw⋆ ⊂ Ow. Combined with Equation (7.9), this gives

δlog(Cv′ , Cw′) > sepT −ε = 2γε− ε ≥ γε,

which proves Equation (7.10).
We use Corollary 7.6 to compute in polynomial time the number D such that δ ≤ D ≤ γδ,

where δ := δlog(Cv′ , Cw′). Equation (7.10) implies now:

Cv⋆ = Cw⋆ =⇒ D < γε

Cv⋆ ̸= Cw⋆ =⇒ D > γε.

So the knowledge of D allows to decide whether Cv⋆ = Cw⋆ and hence whether Ov = Ow.

CCC 2024

14:44 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

References
1 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathematics,

160(2):781–793, 2004.
2 Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. J. ACM, 52(5):749–765,

September 2005. doi:10.1145/1089023.1089025.
3 Zeyuan Allen-Zhu, Ankit Garg, Yuanzhi Li, Rafael Oliveira, and Avi Wigderson. Operator

scaling via geodesically convex optimization, invariant theory and polynomial identity testing.
In STOC’18 – Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of
Computing, pages 172–181. ACM, New York, 2018. doi:10.1145/3188745.3188942.

4 Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Invariant theory
and scaling algorithms for maximum likelihood estimation. SIAM J. Appl. Algebra Geom.,
5(2):304–337, 2021. doi:10.1137/20M1328932.

5 Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, and Anna Seigal. Toric invariant theory
for maximum likelihood estimation in log-linear models. Algebraic Statistics, 12(2):187–211,
2021.

6 Michele Audin. Torus actions on symplectic manifolds, volume 93 of Progress in Mathematics.
Birkhäuser Basel, 2012.

7 Alan Baker. Experiments on the abc-conjecture. Publicationes Mathematicae, 65, November
2004.

8 Alan Baker. Logarithmic forms and the abc-conjecture. In Number Theory: Diophantine,
Computational and Algebraic Aspects. Proceedings of the International Conference held in
Eger, Hungary, July 29-August 2, 1996, pages 37–44. De Gruyter, 2011. doi:doi:10.1515/
9783110809794.37.

9 Alan Baker and Gisbert Wüstholz. Logarithmic Forms and Diophantine Geometry. New Math-
ematical Monographs. Cambridge University Press, 2008. doi:10.1017/CBO9780511542862.

10 Markus Bläser, Christian Ikenmeyer, Vladimir Lysikov, Anurag Pandey, and Frank-Olaf
Schreyer. Variety membership testing, algebraic natural proofs, and geometric complexity
theory. arXiv:1911.02534, 2020.

11 Enrico Bombieri and Walter Gubler. Heights in Diophantine Geometry. New Mathematical
Monographs. Cambridge University Press, 2006. doi:10.1017/CBO9780511542879.

12 Jonathan M. Borwein and Peter B. Borwein. Pi and the AGM : a study in analytic number
theory and computational complexity. Canadian Mathematical Society series of monographs
and advanced texts. Wiley, New York, 1987.

13 Jonathan M. Borwein and Peter B. Borwein. On the complexity of familiar functions and
numbers. SIAM Rev., 30(4):589–601, 1988. doi:10.1137/1030134.

14 Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial on
geometric programming. Optimization and Engineering, 8(1):67–127, March 2007. doi:
10.1007/s11081-007-9001-7.

15 Peter Bürgisser, Matthias Christandl, Ketan Mulmuley, and Michael Walter. Membership
in moment polytopes is in NP and coNP. SIAM J. Comput., 46(3):972–991, 2017. doi:
10.1137/15M1048859.

16 Peter Bürgisser, Levent Doğan, Visu Makam, Michael Walter, and Avi Wigderson. Polynomial
Time Algorithms in Invariant Theory for Torus Actions. In Valentine Kabanets, editor,
36th Computational Complexity Conference (CCC 2021), volume 200 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 32:1–32:30, Dagstuhl, Germany, 2021. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2021.32.

17 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Mendes de Oliveira, Michael Walter, and Avi
Wigderson. Towards a theory of non-commutative optimization: geodesic first and second order
methods for moment maps and polytopes. In 60th Annual IEEE Symposium on Foundations
of Computer Science – FOCS 2019, pages 845–861. IEEE Computer Soc., Los Alamitos, CA,
2019. arXiv:1910.12375.

https://doi.org/10.1145/1089023.1089025
https://doi.org/10.1145/3188745.3188942
https://doi.org/10.1137/20M1328932
https://doi.org/doi:10.1515/9783110809794.37
https://doi.org/doi:10.1515/9783110809794.37
https://doi.org/10.1017/CBO9780511542862
https://doi.org/10.1017/CBO9780511542879
https://doi.org/10.1137/1030134
https://doi.org/10.1007/s11081-007-9001-7
https://doi.org/10.1007/s11081-007-9001-7
https://doi.org/10.1137/15M1048859
https://doi.org/10.1137/15M1048859
https://doi.org/10.4230/LIPIcs.CCC.2021.32
https://arxiv.org/abs/1910.12375

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:45

18 Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson.
Efficient algorithms for tensor scaling, quantum marginals, and moment polytopes. In 59th
Annual IEEE Symposium on Foundations of Computer Science – FOCS 2018, pages 883–897.
IEEE Computer Soc., Los Alamitos, CA, 2018. doi:10.1109/FOCS.2018.00088.

19 Peter Bürgisser, Ankit Garg, Rafael Oliveira, Michael Walter, and Avi Wigderson. Alternating
minimization, scaling algorithms, and the null-cone problem from invariant theory. In 9th
Innovations in Theoretical Computer Science, volume 94 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. No. 24, 20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

20 Peter Bürgisser, Yinan Li, Harold Nieuwboer, and Michael Walter. Interior-point methods for
unconstrained geometric programming and scaling problems. arXiv:2008.12110, 2020.

21 Giuseppe C. Calafiore, Stephane Gaubert, and Corrado Possieri. Log-sum-exp neural networks
and posynomial models for convex and log-log-convex data. IEEE Transactions on Neural
Networks and Learning Systems, 31(3):827–838, 2020. doi:10.1109/TNNLS.2019.2910417.

22 Giuseppe C. Calafiore, Stephane Gaubert, and Corrado Possieri. A universal approximation
result for difference of log-sum-exp neural networks. IEEE Transactions on Neural Networks
and Learning Systems, 31(12):5603–5612, 2020. doi:10.1109/TNNLS.2020.2975051.

23 John H. Conway and Neil J. A. Sloane. Low-dimensional lattices v. integral coordinates for
integral lattices. Proceedings of the Royal Society of London. Series A, Mathematical and
Physical Sciences, 426(1871):211–232, 1989. URL: http://www.jstor.org/stable/2398341.

24 Harm Derksen and Gregor Kemper. Computational Invariant Theory. BV035421342 Ency-
clopaedia of Mathematical Sciences volume 130. Springer, Heidelberg ; New York ; Dordrecht ;
London, second enlarged edition with two appendices by vladimir l. popov, and an addendum
by norbert a. campo and vladimir l. popov edition, 2015.

25 Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants. Adv.
Math., 310:44–63, 2017. doi:10.1016/j.aim.2017.01.018.

26 Harm Derksen and Visu Makam. Algorithms for orbit closure separation for invariants
and semi-invariants of matrices. Algebra Number Theory, 14(10):2791–2813, 2020. doi:
10.2140/ant.2020.14.2791.

27 Harm Derksen and Visu Makam. Maximum likelihood estimation for matrix normal models
via quiver representations. SIAM Journal on Applied Algebra and Geometry, 5(2):338–365,
2021.

28 Harm Derksen, Visu Makam, and Michael Walter. Maximum likelihood estimation for tensor
normal models via castling transforms. In Forum of Mathematics, Sigma, volume 10, page
e50. Cambridge University Press, 2022.

29 Irit Dinur, Guy Kindler, Ran Raz, and Shmuel Safra. Approximating CVP to within-
almost polynomial factors is NP-hard. Combinatorica, 23(2):205–243, April 2003. doi:
10.1007/s00493-003-0019-y.

30 Kousha Etessami, Alistair Stewart, and Mihalis Yannakakis. A note on the complexity of
comparing succinctly represented integers, with an application to maximum probability parsing.
ACM Trans. Comput. Theory, 6(2), May 2014. doi:10.1145/2601327.

31 Michael A. Forbes and Amir Shpilka. Explicit Noether normalization for simultaneous conju-
gation via polynomial identity testing. In Approximation, randomization, and combinatorial
optimization, volume 8096 of Lecture Notes in Comput. Sci., pages 527–542. Springer, Heidel-
berg, 2013. doi:10.1007/978-3-642-40328-6_37.

32 Cole Franks, Rafael Oliveira, Akshay Ramachandran, and Michael Walter. Near optimal
sample complexity for matrix and tensor normal models via geodesic convexity. arXiv preprint,
2021. arXiv:2110.07583.

33 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. A deterministic polynomial
time algorithm for non-commutative rational identity testing. In 57th Annual IEEE Symposium
on Foundations of Computer Science – FOCS 2016, pages 109–117. IEEE Computer Soc., Los
Alamitos, CA, 2016. doi:10.1109/FOCS.2016.95.

CCC 2024

https://doi.org/10.1109/FOCS.2018.00088
https://doi.org/10.1109/TNNLS.2019.2910417
https://doi.org/10.1109/TNNLS.2020.2975051
http://www.jstor.org/stable/2398341
https://doi.org/10.1016/j.aim.2017.01.018
https://doi.org/10.2140/ant.2020.14.2791
https://doi.org/10.2140/ant.2020.14.2791
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1007/s00493-003-0019-y
https://doi.org/10.1145/2601327
https://doi.org/10.1007/978-3-642-40328-6_37
https://arxiv.org/abs/2110.07583
https://doi.org/10.1109/FOCS.2016.95

14:46 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

34 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson. Operator scaling:
theory and applications. Found. Comput. Math., 20(2):223–290, 2020. doi:10.1007/
s10208-019-09417-z.

35 Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09, pages 169–178, New
York, NY, USA, 2009. Association for Computing Machinery. doi:10.1145/1536414.1536440.

36 Dorian Goldfeld. Beyond the last theorem. Math Horizons, 4(1):26–34, 1996. doi:10.1080/
10724117.1996.11974985.

37 Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice
reduction problems. In Burton S. Kaliski, editor, Advances in Cryptology – CRYPTO ’97,
pages 112–131, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg.

38 Andrew Granville and Thomas Tucker. It’s as easy as abc. Notices of the American Mathe-
matical Society, 49, January 2002.

39 Victor Guillemin and Shlomo Sternberg. Symplectic techniques in physics. Cambridge Univ.
Press, Cambridge u.a., 1. publ., reprint. edition, 1986.

40 Leonid Gurvits. Classical complexity and quantum entanglement. J. Comput. Syst. Sci.,
69(3):448–484, 2004. doi:10.1016/j.jcss.2004.06.003.

41 Marshall Hall. Integral matrices a for which AAT = mI.Number Theory and Algebra, pages 119–
134, 1977. URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887022329&
partnerID=40&md5=5f91330ec7e4ddf22586cd2717a71b3a.

42 Marshall Hall. Combinatorial completions. In Advances in Graph Theory, volume 3 of Annals of
Discrete Mathematics, pages 111–123. Elsevier, 1978. doi:10.1016/S0167-5060(08)70501-6.

43 Masaki Hamada and Hiroshi Hirai. Computing the nc-rank via discrete convex optimization
on cat(0) spaces. SIAM Journal on Applied Algebra and Geometry, 5(3):455–478, 2021.
doi:10.1137/20M138836X.

44 Godfrey H. Hardy and Edward M. Wright. An introduction to the theory of numbers. Oxford
University Press, Oxford, sixth edition, 2008. Revised by D. R. Heath-Brown and J. H.
Silverman, With a foreword by Andrew Wiles.

45 Charles J. Himmelberg. Pseudo-metrizability of quotient spaces. Fund. Math., pages 1–6,
1968.

46 Warren Hoburg, Philippe Kirschen, and Pieter Abbeel. Data fitting with geometric-
programming-compatible softmax functions. Optimization and Engineering, 17(4):897–918,
December 2016. doi:10.1007/s11081-016-9332-3.

47 Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key
cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg.

48 Jeffrey Hoffstein and Joseph Silverman. Optimizations for ntru. In Kazimierz Alster, Jerzy Ur-
banowicz, and Hugh C. Williams, editors, Proceedings of the International Conference organized
by the Stefan Banach International Mathematical Center Warsaw, Poland, September 11-15,
2000, pages 77–88, Berlin, New York, 2001. De Gruyter. doi:doi:10.1515/9783110881035.77.

49 Gábor Ivanyos and Youming Qiao. On the orbit closure intersection problems for matrix tuples
under conjugation and left-right actions, pages 4115–4126. Society for Industrial and Applied
Mathematics, 2023. doi:10.1137/1.9781611977554.ch158.

50 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative Edmonds’
problem and matrix semi-invariants. Comput. Complexity, 26(3):717–763, 2017. doi:10.1007/
s00037-016-0143-x.

51 Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Constructive non-commutative
rank computation is in deterministic polynomial time. Comput. Complexity, 27(4):561–593,
2018. doi:10.1007/s00037-018-0165-7.

52 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004. doi:10.1007/
s00037-004-0182-6.

https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.1007/s10208-019-09417-z
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1080/10724117.1996.11974985
https://doi.org/10.1080/10724117.1996.11974985
https://doi.org/10.1016/j.jcss.2004.06.003
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887022329&partnerID=40&md5=5f91330ec7e4ddf22586cd2717a71b3a
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84887022329&partnerID=40&md5=5f91330ec7e4ddf22586cd2717a71b3a
https://doi.org/10.1016/S0167-5060(08)70501-6
https://doi.org/10.1137/20M138836X
https://doi.org/10.1007/s11081-016-9332-3
https://doi.org/doi:10.1515/9783110881035.77
https://doi.org/10.1137/1.9781611977554.ch158
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-016-0143-x
https://doi.org/10.1007/s00037-018-0165-7
https://doi.org/10.1007/s00037-004-0182-6
https://doi.org/10.1007/s00037-004-0182-6

P. Bürgisser, M. L. Doğan, V. Makam, M. Walter, and A. Wigderson 14:47

53 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12(3):415–440, 1987. URL: http://www.jstor.org/stable/3689974.

54 Ravindran Kannan and Achim Bachem. Polynomial algorithms for computing the Smith
and Hermite normal forms of an integer matrix. SIAM J. Comput., 8(4):499–507, 1979.
doi:10.1137/0208040.

55 George Kempf and Linda Ness. The length of vectors in representation spaces. In Knud
Lønsted, editor, Algebraic Geometry, pages 233–243, Berlin, Heidelberg, 1979. Springer Berlin
Heidelberg.

56 Pascal Koiran. Hilbert’s Nullstellensatz is in the Polynomial Hierarchy. Journal of Complexity,
12(4):273–286, 1996. doi:10.1006/jcom.1996.0019.

57 Joseph P. S. Kung and Gian-Carlo Rota. The invariant theory of binary forms. Bull. Amer.
Math. Soc. (N.S.), 10(1):27–85, 1984. doi:10.1090/S0273-0979-1984-15188-7.

58 Greg Kuperberg. Knottedness is in NP, modulo GRH. Advances in Mathematics, 256:493–506,
2014. doi:10.1016/j.aim.2014.01.007.

59 Serge Lang. Elliptic Curves: Diophantine Analysis, volume 231 of Grundlehren der mathema-
tischen Wissenschaften. Springer, 2013.

60 Jonathan Leake and Nisheeth K. Vishnoi. On the computability of continuous maximum
entropy distributions with applications. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2020, pages 930–943, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3357713.3384302.

61 Arjen K. Lenstra, Hendrik. W. Lenstra, and László Lovász. Factoring polynomials with
rational coefficients. Mathematische Annalen, 261(4):515–534, December 1982. doi:10.1007/
BF01457454.

62 Seymour Lipschutz. Schaum’s outline of theory and problems of linear algebra : [including
600 solved problems; completely solved in detail]. Schaum’s outline series. McGraw-Hill, New
York u.a., 6th ed. edition, 1974.

63 Visu Makam and Avi Wigderson. Singular tuples of matrices is not a null cone (and the
symmetries of algebraic varieties). J. Reine Angew. Math., 780:79–131, 2021. doi:10.1515/
crelle-2021-0044.

64 Petros Maragos, Vasileios Charisopoulos, and Emmanouil Theodosis. Tropical geometry and
machine learning. Proceedings of the IEEE, 109(5):728–755, 2021. doi:10.1109/JPROC.2021.
3065238.

65 Jerrold Marsden and Alan Weinstein. Reduction of symplectic manifolds with symmetry.
Reports on Mathematical Physics, 5(1):121–130, 1974. doi:10.1016/0034-4877(74)90021-4.

66 E. M. Matveev. An explicit lower bound for a homogeneous rational linear form in log-
arithms of algebraic numbers. Izvestiya: Mathematics, 62(4):723, August 1998. doi:
10.1070/IM1998v062n04ABEH000190.

67 Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems : a cryptographic
perspective. The Kluwer international series in engineering and computer science BV000632170
671. Kluwer Academic, Boston, 2002.

68 Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, 1976. doi:10.1016/S0022-0000(76)80043-8.

69 Louis J. Mordell. On the representation of a binary quadratic form as a sum of squares of
linear forms. Mathematische Zeitschrift, 35(1-15):1432–1823, 1932. doi:10.1007/BF01186544.

70 Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether normaliza-
tion. J. Amer. Math. Soc., 30(1):225–309, 2017. doi:10.1090/jams/864.

71 Ketan Mulmuley and Milind Sohoni. Geometric complexity theory I: An approach to the P vs.
NP and related problems. SIAM Journal on Computing, 31(2):496–526, 2001.

72 David Mumford. The red book of varieties and schemes, volume 1358 of Lecture Notes in
Mathematics. Springer-Verlag, Berlin, 1999. doi:10.1007/b62130.

CCC 2024

http://www.jstor.org/stable/3689974
https://doi.org/10.1137/0208040
https://doi.org/10.1006/jcom.1996.0019
https://doi.org/10.1090/S0273-0979-1984-15188-7
https://doi.org/10.1016/j.aim.2014.01.007
https://doi.org/10.1145/3357713.3384302
https://doi.org/10.1007/BF01457454
https://doi.org/10.1007/BF01457454
https://doi.org/10.1515/crelle-2021-0044
https://doi.org/10.1515/crelle-2021-0044
https://doi.org/10.1109/JPROC.2021.3065238
https://doi.org/10.1109/JPROC.2021.3065238
https://doi.org/10.1016/0034-4877(74)90021-4
https://doi.org/10.1070/IM1998v062n04ABEH000190
https://doi.org/10.1070/IM1998v062n04ABEH000190
https://doi.org/10.1016/S0022-0000(76)80043-8
https://doi.org/10.1007/BF01186544
https://doi.org/10.1090/jams/864
https://doi.org/10.1007/b62130

14:48 Complexity of Robust Orbit Problems for Torus Actions and the abc-Conjecture

73 David Mumford, John Fogarty, and Frances Kirwan. Geometric invariant theory, volume 34
of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related
Areas (2)]. Springer-Verlag, Berlin, third edition, 1994. doi:10.1007/978-3-642-57916-5.

74 Arkadi Nemirovski and Uriel Rothblum. On complexity of matrix scaling. Linear Algebra and
its Applications, 302-303:435–460, 1999. doi:10.1016/S0024-3795(99)00212-8.

75 Joseph Oesterlé. Nouvelles approches du théorème de Fermat. In Séminaire Bourbaki : volume
1987/88, exposés 686-699, number 161-162 in Astérisque. Société mathématique de France,
1988. talk:694. URL: http://www.numdam.org/item/SB_1987-1988__30__165_0/.

76 Victor Y. Pan and Zhao Q. Chen. The complexity of the matrix eigenproblem. In Annual
ACM Symposium on Theory of Computing (Atlanta, GA, 1999), pages 507–516. ACM, New
York, 1999. doi:10.1145/301250.301389.

77 Michael O. Rabin and Jeffery O. Shallit. Randomized algorithms in number theory. Com-
munications on Pure and Applied Mathematics, 39(S1):S239–S256, 1986. doi:10.1002/cpa.
3160390713.

78 J. Maurice Rojas. Counting Real Roots in Polynomial-Time via Diophantine Approx-
imation. Foundations of Computational Mathematics, 24(2):639–681, Apr 2024. doi:
10.1007/s10208-022-09599-z.

79 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in
discrete mathematics and optimization. Wiley, Chichester u.a., reprinted edition, 1999.

80 Mohit Singh and Nisheeth K. Vishnoi. Entropy, optimization and counting. In Proceedings of
the Forty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’14, pages 50–59, New
York, NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2591796.2591803.

81 Cameron L. Stewart and R. Tijdeman. On the Oesterlé-Masser conjecture. Monatshefte für
Mathematik, 102(3):251–257, September 1986. doi:10.1007/BF01294603.

82 Cameron L. Stewart and Kunrui Yu. On the abc conjecture. Mathematische Annalen,
291(2):225–230, 1991. URL: http://eudml.org/doc/164860.

83 Damian Straszak and Nisheeth K. Vishnoi. Maximum entropy distributions: Bit complexity
and stability. In Alina Beygelzimer and Daniel Hsu 0001, editors, Conference on Learning
Theory, COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, volume 99 of Proceedings of Machine
Learning Research, pages 2861–2891. PMLR, 2019. URL: http://proceedings.mlr.press/
v99/straszak19a.html.

84 Bernd Sturmfels. Algorithms in Invariant Theory. Texts & Monographs in Symbolic Compu-
tation. Springer, 2008. doi:10.1007/978-3-211-77417-5.

85 Alfred J. van der Poorten. On Baker’s inequality for linear forms in logarithms. Mathematical
Proceedings of the Cambdridge Philosophical Society, 80(2):233–248, 1976. doi:10.1017/
S0305004100052877.

86 Michel Waldschmidt. Diophantine approximation on linear algebraic groups: Transcendence
properties of the exponential function in several variables. Grundlehren der mathematischen
Wissenschaften BV000000395 326. Springer, Berlin u.a., 2000.

87 Michel Waldschmidt. Open diophantine problems. Mosc. Math. J., 4:245–305, 2004.
88 Michel Waldschmidt. Lecture on the abc conjecture and some of its consequences. In Pierre

Cartier, A.D.R. Choudary, and Michel Waldschmidt, editors, Mathematics in the 21st Century,
pages 211–230, Basel, 2015. Springer Basel.

89 Gisbert Wüstholz and Alan Baker. Logarithmic forms and group varieties. Journal für die
reine und angewandte Mathematik, 442:19–62, 1993. URL: http://eudml.org/doc/153550.

https://doi.org/10.1007/978-3-642-57916-5
https://doi.org/10.1016/S0024-3795(99)00212-8
http://www.numdam.org/item/SB_1987-1988__30__165_0/
https://doi.org/10.1145/301250.301389
https://doi.org/10.1002/cpa.3160390713
https://doi.org/10.1002/cpa.3160390713
https://doi.org/10.1007/s10208-022-09599-z
https://doi.org/10.1007/s10208-022-09599-z
https://doi.org/10.1145/2591796.2591803
https://doi.org/10.1007/BF01294603
http://eudml.org/doc/164860
http://proceedings.mlr.press/v99/straszak19a.html
http://proceedings.mlr.press/v99/straszak19a.html
https://doi.org/10.1007/978-3-211-77417-5
https://doi.org/10.1017/S0305004100052877
https://doi.org/10.1017/S0305004100052877
http://eudml.org/doc/153550

Quantum Automating TC0-Frege Is LWE-Hard
Noel Arteche #

Lund University, Sweden
University of Copenhagen, Denmark

Gaia Carenini #

École Normale Supérieure (ENS-PSL), Paris, France
University of Cambridge, UK

Matthew Gray #

University of Oxford, UK

Abstract
We prove the first hardness results against efficient proof search by quantum algorithms. We show
that under Learning with Errors (LWE), the standard lattice-based cryptographic assumption, no
quantum algorithm can weakly automate TC0-Frege. This extends the line of results of Krajíček
and Pudlák (Information and Computation, 1998), Bonet, Pitassi, and Raz (FOCS, 1997), and
Bonet, Domingo, Gavaldà, Maciel, and Pitassi (Computational Complexity, 2004), who showed
that Extended Frege, TC0-Frege and AC0-Frege, respectively, cannot be weakly automated by
classical algorithms if either the RSA cryptosystem or the Diffie-Hellman key exchange protocol are
secure. To the best of our knowledge, this is the first interaction between quantum computation and
propositional proof search.

2012 ACM Subject Classification Theory of computation → Proof complexity; Theory of computa-
tion → Quantum complexity theory

Keywords and phrases automatability, post-quantum cryptography, feasible interpolation

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.15

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/029/ [7]

Funding Noel Arteche: This work was supported by the Wallenberg AI, Autonomous Systems and
Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Acknowledgements The question of the quantum non-automatability of strong proof systems was
suggested to us by three different people. We thank Vijay Ganesh for bringing it up during the
Dagstuhl Seminar 22411 Theory and Practice of SAT and Combinatorial Solving. We thank Susanna
F. de Rezende for bringing our attention to the problem later and for insightful comments and
careful proofreading. We would also like to thank Ján Pich for pointing us to the problem and
discussing many details with us. We are particularly grateful for him directing us to the work of
Soltys and Cook on LA. We also thank Rahul Santhanam for his insights and conversations and
Yanyi Liu for pointing us to the existence of the certificates of injectivity. We also thank María Luisa
Bonet, Jonas Conneryd, Ronald de Wolf, Eli Goldin, Peter Hall, Russell Impagliazzo, Erfan Khaniki,
Alex Lombardi, Daniele Micciancio, Angelos Pelecanos and Michael Soltys for useful comments,
suggestions and pointers. A preliminary version of this work was presented at the poster session of
QIP 2024. We are thankful to the anonymous reviewers and their suggestions. We are also grateful
to the anonymous CCC reviewers for their comments and particularly for observing that some
crucial axioms were missing from the definition of LAQ in an earlier version of this work.
This work was done in part while the authors were visiting the Simons Institute for the Theory
of Computing at UC Berkeley during the spring of 2023 for the Meta-Complexity and Extended
Reunion: Satisfiability programs.

© Noel Arteche, Gaia Carenini, and Matthew Gray;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 15; pp. 15:1–15:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noel.arteche@cs.lth.se
https://orcid.org/0000-0001-8461-4592
mailto:gaia.carenini@ens.psl.eu
https://orcid.org/0000-0003-3427-183X
mailto:matthew.gray@cs.ox.ac.uk
https://orcid.org/0000-0003-4065-0158
https://doi.org/10.4230/LIPIcs.CCC.2024.15
https://eccc.weizmann.ac.il/report/2024/029/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Quantum Automating TC0-Frege Is LWE-Hard

1 Introduction

Originally, propositional proof complexity has been primarily concerned with proving lower
bounds for the length of proofs in propositional proof systems, with the ultimate goal of
settling whether NP = coNP [21]. In parallel, a growing line of research has focused on the
computational hardness of finding propositional proofs. Efficient proof search is formally
captured by the notion of automatability, introduced by Bonet, Pitassi, and Raz [17]: a
propositional proof system S is automatable if there exists an algorithm that given as input
a tautology φ, outputs an S-proof of φ in time polynomial in the size of the shortest proof.
By relating proofs and computation, automatability connects proof complexity to central
areas of theoretical computer science such as automated theorem proving, SAT solving and
combinatorial optimization [18], learning theory [44], and Kolmogorov complexity [36].

Except for very weak proof systems like Tree-like Resolution, automatable in quasipolyno-
mial time [12], most natural systems appear to be non-automatable under standard hardness
assumptions. Existing hardness results can be split into two broad categories. Work from
the late 90s and early 00s showed that stronger proof systems are non-automatable under
cryptographic assumptions, while more recent work has shown that weaker proof systems
are non-automatable under the optimal assumption that P ̸= NP.

The cryptography-based approach was initiated by the seminal work of Krajíček and
Pudlák [37], who showed that Extended Frege is not automatable unless factoring can be
solved efficiently, although the notion of automatability would only be defined slightly later
by Bonet, Pitassi, and Raz [17], who showed that TC0-Frege is hard to automate unless
Blum integers can be factored by polynomial-size circuits. Finally, Bonet, Domingo, Gavaldà,
Maciel, and Pitassi [16] extended the existing result from TC0-Frege to AC0-Frege under the
stronger assumption that Blum integers cannot be factored by subexponential-size circuits.

Building on a long line of work [19, 30, 46, 8, 4, 5, 38], the first NP-hardness result was
shown in 2019, when Atserias and Müller [10] proved that Resolution is not automatable
unless P = NP. This is optimal, as P = NP implies the automatability of any proof
system. Their proof uses a clever reduction from SAT that requires showing a specific lower
bound for this system. The technique has since been adapted to other weak proof systems
such as Regular and Ordered Resolution [14], k-DNF Resolution [24], Cutting Planes [25],
Nullstellensatz and Polynomial Calculus [23], the OBDD proof system [29] and, more recently,
even AC0-Frege [41].

Though the latter works prove non-automatability under the optimal hardness assumption,
their strength is incomparable to the cryptography-based results. The NP-hardness results
all rely on proving specific super-polynomial proof complexity lower bounds for each system,
meaning this strategy fails for AC0[2]-Frege and systems above, for which no lower bounds
are known. In contrast, the cryptographic hardness results work by ruling out feasible
interpolation for these systems, a property which allows one to extract computational content
from proofs. For a proof system S proving its own soundness (such as TC0-Frege), feasible
interpolation is equivalent to the notion of weak automatability introduced by Atserias and
Bonet [8], the latter meaning that no proof system simulating S is automatable. The question
of whether weak systems such as Resolution are weakly automatable remains one of the
major open problems in the field. In short, there exists a trade-off between the strength of
the hardness assumption involved (P ̸= NP versus cryptographic) and the generality of the
result (automatability versus weak automatability).

N. Arteche, G. Carenini, and M. Gray 15:3

Our work is the first new contribution to the non-automatability of strong proof systems1

in more than two decades. The early results [37, 17, 16] relied on the assumption that
factoring is hard, which does not hold for quantum models of computation due to Shor’s
breakthrough algorithm [49]. This raises the question of whether a quantum machine could
carry out proof search efficiently for some strong proof system. Grover’s search algorithm [27]
already provides a quadratic speed-up over brute-force proof search for any system. While
this is not enough to achieve automatability, the possibility of more powerful algorithms
motivates the interest in new conditional hardness results. The NP-hardness results outlined
above imply that NP ̸⊆ BQP suffices to rule out automatability for weak systems, but for
stronger systems no widely believed assumption had yet been proven sufficient.

In this work, we formally define the notion of quantum automatability and show the first
hardness results. We prove that TC0-Frege is not quantum automatable unless lattice-based
cryptography can be broken by polynomial-size quantum circuits. Our results follow from
the relationship between automatability and feasible interpolation suitably generalized to
the quantum setting. This means that we also rule out quantum feasible interpolation and
weak quantum automatability under the same cryptographic assumptions.

Contributions
Our main contribution is proving the hardness of quantum automatability under the assump-
tion that lattice-based cryptography is secure against quantum computers.

In 1996, Ajtai [2] gave the first worst-case to average-case reductions for lattice problems.
In 1997, in joint work with Dwork [3], the worst-case hardness of such lattice problems was
used to design public-key cryptosystems. Building on similar principles, the Learning with
Errors (LWE) assumption of Regev [48] has become the standard post-quantum cryptographic
assumption. The LWE assumption is simple to state, surprisingly versatile, and does not
seem susceptible to the period-finding technique crucial to Shor’s algorithm.

In this work we show that any quantum algorithm that automates TC0-Frege can be
used to break LWE.

▶ Theorem (Main theorem, informal). If there exists a polynomial-time quantum algorithm
that weakly automates TC0-Frege, then LWE can be broken in polynomial time by a quantum
machine.

We then exploit the simulation of TC0-Frege by AC0-Frege proofs of subexponential size
to extend the result to AC0-Frege under a slightly stronger assumption, in the style of [16].

▶ Corollary. If there exists a polynomial-time quantum algorithm that weakly automates
AC0-Frege, then LWE can be broken in subexponential time by a quantum machine.

In order to properly state and prove these results, we first formally define the notion of
quantum automatability for quantum Turing machines. Note that a quantum algorithm
might provide a wrong answer with small probability, so we need to be careful in choosing
the right definitions. We show that our definition is equivalent to a similar one over uniform
quantum circuits, and we verify that it is robust by reproving Impagliazzo’s observation
that weak automatability implies feasible interpolation, suitably translated to the quantum
setting.

1 We use the terms weak and strong informally throughout the paper. Traditionally, a strong proof system
is a system that proves its own soundness, though it is often also intended to be a system for which
lower bounds are lacking. For our purposes, strong refers to anything simulating TC0-Frege, for which
both of the previous conditions apply.

CCC 2024

15:4 Quantum Automating TC0-Frege Is LWE-Hard

Techniques
The overall structure of the proofs follows the strategy of the previous non-automatability
results of Krajíček and Pudlák [37] and Bonet, Pitassi, and Raz [17], but the technical details
are quite different due to certain complications arising from lattice-based cryptography. We
outline below the main hurdles and the techniques used to overcome them.

Quantum feasible interpolation

Our result follows from conditionally ruling out feasible interpolation by quantum circuits.
As observed by Impagliazzo, weak automatability implies feasible interpolation. We use this
observation contrapositively. Suppose that a proof system can prove the injectivity of a
candidate one-way function. In the presence of feasible interpolation, we are guaranteed the
existence of small circuits capable of inverting the one-way function one bit at a time. If one
believes in the security of the cryptographic object, one must conclude that the proof system
does not admit feasible interpolation, and in turn that it is not weakly automatable.

For this strategy to work the candidate one-way function should fulfill two important
conditions. First, its definition must be simple enough that the proof system can easily
reason about it. For example, RSA requires modular exponentiation to be defined, which is
conjectured not to be computable in TC0. This forced Bonet, Pitassi, and Raz to use instead
the Diffie-Hellman protocol. Second, the candidate one-way function must be injective. The
rather technical reason for injectivity is that feasible interpolation allows one to carry out
the inversion bit by bit, which does not guarantee retrieving a correct preimage if there are
multiple ones.

A few injective one-way functions based on lattice geometry have been proposed through-
out the literature, e.g., see [43, 26, 40]. However, we consider instead a simple scheme for
worst-case lattice-based functions that closely resembles the one described by Micciancio [39].
Such a scheme has the advantage that its injectivity can be easily verified, and that its worst
case one way-ness is guaranteed by the assumed hardness of Learning with Errors, which we
will now discuss.

Learning with Errors and certificates of injectivity

We base our construction directly on the Learning with Errors assumption. The assumption
is simple to define: roughly speaking, a vector x should be hard to recover after being
multiplied by some public matrix A, and summed with some Gaussian noise, Ax + ε. While
the most naive functions based on LWE are not necessarily injective, we can bound the
magnitude of the error vectors to construct a family of functions where almost all of the
functions are injective. For most matrices A, the corresponding function fA in this family is
worst-case one-way assuming the hardness of LWE [39].

However, the functions being injective and worst-case one-way is not sufficient, because
their injectivity needs to be provable inside TC0-Frege. Unlike with the Diffie-Hellman
construction, where a single proof showed the injectivity of the protocol for all generators,
here each injective fA may require a tailored proof of injectivity. Fortunately, most of these
fA can have their injectivity certified by a left-inverse of A together with a short basis for the
dual lattice of the q-ary lattice spanned by A. These short bases not only certify injectivity,
but can also be used as trapdoors to invert the function [42]. Though we do not exploit this
directly, one may think of the automating algorithm as extracting such trapdoors from proofs.
Instead, we use these certificates to prove the injectivity of most fA inside TC0-Frege.

With these properties, we can show that feasible interpolation can be used to invert
almost all fA, which is sufficient to break LWE and its associated worst-case lattice problems.

N. Arteche, G. Carenini, and M. Gray 15:5

Formal theories for linear algebra

The most technical component of the previous work on TC0-Frege and AC0-Frege was the
formalization of many basic properties of arithmetic directly inside the propositional proof
systems, which can be quite cumbersome. While we can borrow a large part of the existing
formalization of Bonet, Pitassi, and Raz [17], putting it together to carry out arguments
about lattice geometry would still be quite convoluted.

Instead, we follow the approach of Krajíček and Pudlák, who showed the injectivity of
RSA in Extended Frege by reasoning in Buss’s theory S1

2 of bounded arithmetic. Universal
theorems of this first-order theory translate into propositional tautologies with succinct proofs
in Extended Frege. For TC0-Frege and its sequent calculus formalism PTK, the corresponding
first-order theory of bounded arithmetic is the two-sorted theory VTC0 introduced by Cook
and Nguyen [20]. This theory is quite expressive and can reason even about analytic functions,
as shown by Jeřábek [32]. However, since we are mostly interested in statements of matrix
algebra, we use the more convenient formal theory LA for linear algebra introduced by Soltys
and Cook [50].

The theory LA is quantifier-free and operates directly with matrices. It is strong enough
to prove their ring properties, but weak enough to allow all theorems in LA to translate into
propositional tautologies with short TC0-Frege proofs. In order to handle all the concepts
required in our arguments, we work over a conservative extension of LA over the rationals
which we show still propositionally translates into TC0-Frege.

Open problems
To the best of our knowledge, this is the first interaction between quantum computation and
propositional proof search, and we believe further exploration of connections between the
two fields is worthwhile. We outline below three open lines of research, ranging from the
interaction between quantum computation and proof complexity to a classical problem in
the theory of automatability.

Positive results?

While hardness of proof search in most natural proof systems is now conditionally ruled out
under different assumptions, there exists a handful of systems for which no non-automatability
results are known. This is the case for the Res(⊕), Res(log), Sherali-Adams and Sum-of-
Squares proof systems. Could quantum algorithms automate any of these systems efficiently?

Even for proof systems where worst-case hardness is known, could quantum algorithms
provide a significant speed-up over brute-force search? Clearly, Grover’s algorithm already
achieves a quadratic speed-up, but could this be pushed further in some cases?

Quantum proof complexity

Hardness results in automatability involve three key elements: the proof system, the hardness
assumption and the model of computation for the automating algorithm. In this work we
shifted the latter two to the quantum setting, by choosing a post-quantum cryptographic
assumption and a quantum model of computation, but the proof systems considered remain
classical.

What would it mean to have an inherently quantum proof system? In the same way that
Extended Frege can be seen as P/poly-Frege, could we define a proof system where lines are
quantum circuits? This could open the door to a quantum analogue of the Cook-Reckhow

CCC 2024

15:6 Quantum Automating TC0-Frege Is LWE-Hard

program, where showing lower bounds on quantum proof systems would be related to the
question of whether QMA = coQMA. We note that an analogous approach exists in the
field of parameterized complexity, starting with the work of Dantchev, Martin, and Szeider
[22], who defined parameterized proof complexity as a program to gain evidence on the
W-hierarchy being different from FPT. As an intermediate step, it would make sense to
consider the case of randomized proof systems and the relationship between MA and coMA,
though this has proven to be challenging so far.

We remark that while Pudlák [45] already defined the notion of quantum derivation rules
for propositional proof systems and defined the quantum Frege proof system, his approach is
orthogonal to ours, in that those systems are still designed to derive propositional tautologies.
In fact, he showed that classical Frege systems simulate quantum Frege systems, though
classical Frege proofs cannot be extracted from quantum proofs by a classical algorithm
unless factoring is in FP.

Towards generic hardness assumptions

Like the original works on weak automatability, our proof requires concrete cryptographic
assumptions. That is, we assume that some specific candidate one-way function or crypto-
graphic protocol is secure. The reason is that in order to obtain the upper bounds on which
to apply feasible interpolation we need concrete formulas to manipulate inside the different
proof systems.

A major open problem in the theory of automatability is to disentangle these results from
concrete families of candidate one-way functions. That is, can we prove that TC0-Frege is
not (weakly) automatable under the assumption that, say, one-way functions exist? Even
better, can one obtain NP-hardness of automating strong proof systems without the need to
prove lower bounds first, in a way different from the strategy of Atserias and Müller [10]?
This seems to require conceptual breakthroughs.

Structure of the paper
The paper is structured as follows. Section 2 recalls the necessary concepts in proof com-
plexity and lattice-based cryptography needed in the rest of the paper. Section 3 defines
automatability for quantum Turing machines and uniform quantum circuits and proves the
equivalence between both models to then reprove Impagliazzo’s observation on the relation
between automatability and feasible interpolation, now in the quantum setting. Section 4
states and proves the main theorem of the paper. The section first presents a detailed
overview of the main argument, while the subsections contain all the necessary technical
work.

2 Preliminaries

We assume basic familiarity with computational complexity theory, propositional logic and
quantum circuits. We review the main concepts needed from proof complexity and refer the
reader to standard texts like [35] for further details. We also recall some relevant notions
from linear algebra and lattice geometry useful in our arguments.

2.1 Proof complexity
Following Cook and Reckhow [21], a propositional proof system S for the language Taut of
propositional tautologies is a polynomial-time surjective function S : {0, 1}∗ → Taut. We
think of S as a proof checker that takes some proof π ∈ {0, 1}∗ and outputs S(π) = φ, the

N. Arteche, G. Carenini, and M. Gray 15:7

theorem that π proves. Soundness follows from the fact that the range is exactly Taut,
and implicational completeness is guaranteed by the fact that S is surjective. One may
alternatively define proof systems for refuting propositional contradictions. We move from
one setup to the other depending on context.

We denote by sizeS(φ) the size of the smallest S-proof of φ plus the size of φ. We say
that a proof system S is polynomially bounded if for every φ ∈ Taut, sizeS(φ) ≤ |φ|O(1).
We say that a proof system S polynomially simulates a system Q if for every φ ∈ Taut,
sizeS(φ) ≤ sizeQ(φ)O(1). For a family {φn}n∈N of propositional tautologies, we write S ⊢ φn

whenever sizeS(φn) ≤ |φ|O(1). Finally, a proof system S is said to be closed under restrictions
if whenever S proves a formula φ in size s, for every partial restriction ρ to the variables in
φ, there exists a proof of the restricted formula φ↾ρ in size sO(1).

The focus of this work is on a specific class of proof systems known as Frege systems.
A Frege system is a finite set of axiom schemas and inference rules that are sound and
implicationally complete for the language of propositional tautologies built from the Boolean
connectives negation (¬), conjunction (∧), and disjunction (∨). A Frege proof is a sequence
of formulas where each formula is obtained by either substitution of an axiom schema or
by application of an inference rule on previously derived formulas. As long as the set of
inference rules is finite, sound and implicationally complete, the specific choice of rules does
not effect the size of the proofs up to polynomial factors, as all Frege systems polynomially
simulate each other [35, Theorem 4.4.13].

We can make gradations between Frege systems by restricting the complexity of their proof
lines. For a circuit class C, the system C-Frege is any Frege system where lines are restricted
to be C-circuits (see [31] for a formal definition). In this setup, a standard Frege system
amounts to NC1-Frege. We are mostly interested in the weaker systems AC0-Frege and
TC0-Frege, where the proof lines are, respectively, circuits of constant-depth and unbounded
fan-in, and threshold circuits of constant-depth and unbounded fan-in. A threshold circuit
is a Boolean circuit where gates can be the usual ¬, ∨, ∧ as well as the threshold ones
Thk(x1, . . . , xn), where Thk is true if at least k of its inputs are true.

It is often convenient to consider an alternative formalism of TC0-Frege in the style of
Gentzen’s sequent calculus. The Propositional Threshold Calculus PTK [20, Chapter X.4.1]
is a version of the propositional sequent calculus where the cuts are restricted to threshold
formulas of constant depth. We refer to [17, Section 2] for a complete rendering of the
derivational rules of PTK.

2.2 Lattice geometry
We recall some basic definitions from lattice geometry. For a linearly independent set of n

vectors B = {b1, . . . , bn} ⊆ Rm, which we often treat simply as an m × n matrix, the lattice
over B is defined to be the set of all integer linear combinations of vectors in B,

L(B) := {x ∈ Rm | there is a ∈ Zn such that x = Ba} .

When the vectors in B belong in Zm
q for some modulus q, we can further define a modular

lattice over B, denoted Lq(B), to be the set of all integer linear combinations of the basis
modulo q,

Lq(B) := {x ∈ Zm
q | there is a ∈ Zn

q such that Ba ≡ x mod q} ,

where the mod function is applied element-wise in the vector.

CCC 2024

15:8 Quantum Automating TC0-Frege Is LWE-Hard

We define the length of a vector x in Lq(B) to be the Euclidean norm of the shortest
vector in Zm that is congruent to x modulo q. Note that these shortest vectors will always
fall in the domain [−⌊q/2⌋, ⌊q/2⌋]m.

A q-ary lattice ∆q(B) can be thought of as an extension of a modular lattice back to Zm

and is the set of all vectors x ∈ Zm congruent to members of the modular lattice,

∆q(B) := {x ∈ Zm | there is a ∈ Zn such that Ba ≡ x mod q} .

Note that because for all x ∈ {0, q}m, x ∈ ∆q(B), we have that all q-ary lattices have
rank m.

From the definitions above it is clear that Lq(B) ⊆ ∆q(B). Consequently a proof that
no vector in ∆q(B) has length less than ℓ also proves that no vector in L(B) has length less
than ℓ.

Another important concept in lattice geometry is that of a dual lattice. Given a lattice
L(B), its dual lattice L∗(B) is defined to be the set of vectors within the subspace spanned
by B whose inner product with any element in L is an integer. Formally,

L∗(B) := {y ∈ Rm | there is z ∈ Rn such that y = Bz and for all x ∈ L(B), ⟨x, y⟩ ∈ Z} ,

where ⟨·, ·⟩ denotes the inner product. The dual lattice is also a lattice, whose basis admits a
closed form.

▶ Lemma 1. For a basis B ∈ Rm×n, L∗(B) = L(B(B⊺B)−1).

Note that, if B ∈ Zm×n, it is easy to show that B(B⊺B)−1 ∈ Qm×n, and, therefore, that any
x ∈ L∗(B) belongs to Qm. This lemma is standard and can be found, for example, in [39].

Modular lattices and q-ary lattices are fairly different mathematical objects, but we can
show that given a matrix B ∈ Zm×n

q such that rank(B) = n, there exists a closed form for a
matrix B′ such that L(B′) = ∆q(B).

▶ Lemma 2 (Full-rank modular lattices have q-ary lattice bases). Let B ∈ Zm×n
q and define

C ∈ {0, 1}m×m to be the permutation matrix that swaps the appropriate rows so that the first
n rows of CB are linearly independent. Let B1 ∈ Zn×n and B2 ∈ Zm−n×n be matrices such
that B = [CB1 | CB2]⊺. Then, for B ∈ Zm×n

q , if rank(B) = n, ∆q(B) = L(B′), where

B′ = C

[
In 0

(CB)2(CB)−1
1 qIm−n

]
C−1 ,

and where the inverses M−1 are defined over the modular lattice Zm
q .

Note that we can combine this corollary with Lemma 1 to get a closed form for B′ such
that ∆∗

q(B) = L(B′).
The i-th successive minimum of a lattice L is λi(L) := inf{r ∈ Z | dim(span(L∩B(0, r))) ≥

i}, where B(0, r) is the ball of radius r around the origin. Roughly speaking, this means that
λi(L) is the length of the i-th smallest linearly independent vector in the lattice.

There exists an intimate relationship between a lattice and its dual, as captured by
Banaszczyk’s Transference Theorem.

▶ Theorem 3 (Transference Theorem [11]). For any rank-n lattice L ⊆ Zm, it holds that

1 ≤ λ1(L) · λn(L∗) ≤ n.

N. Arteche, G. Carenini, and M. Gray 15:9

Modular lattices Lq(B) are subsets of Zm
q , not Zm, and therefore the Transference

Theorem does not directly apply. However we are able to leverage the fact that λ1(∆q(B)) =
min(q, λ1(Lq(B))) to indirectly apply it through the q-ary lattice.

We recall useful properties of random lattices.

▶ Lemma 4. For a randomly selected matrix A ∈ Zm×n
q , we have that

(i) PrA[rank(A) = n] ≥ n/qm−n+1;
(ii) PrA[λ1(Lq(A)) < r | rank(A) = n] ≤ (2r + 1)m/qm−2n−1.

These properties are folklore. For the sake of completeness, we provide proofs in Appendix
C of the full version of the paper [7].

2.3 Learning with Errors (LWE)
Learning with Errors (LWE) is a central problem of learning theory, introduced by Regev [48].

▶ Assumption 5 (The Learning with Errors (LWE) assumption [48, 42]). Let m = nO(1),
q ≤ 2nO(1) , let s ∼ Zn

q be a secret vector, A ∼ Zm×n
q , and ε ∈ Zm

q a sample from the discrete
Gaussian with standard deviation αq with α = o(1) and α ∈ [0, 1]. The Learning with Errors
assumption states that there is no quantum inverter M running in time nO(1) such that
M(A, As + ε) outputs s with noticeable probability over the choice of s, A, ε, and the internal
randomness of M .

The security of this assumption relies on the existence of worst-case to average-case
reductions to fundamental lattice problems conjectured to be hard. In particular, as shown
by Regev [48], breaking LWE implies solving the γ-GapSVP problem for an approximation
factor γ = n2. Here, γ-GapSVP refers to the γ-Approximate Shortest Vector Problem: given
a lattice basis B ∈ Qm×n and a distance threshold r > 0, decide whether λ1(L(B)) ≤ r, or
λ1(L(B)) > γr, when one of those cases is promised to hold.

The belief that γ-GapSVP is intractable is backed by the fact that the problem is
NP-hard under randomized reductions when the approximation factor is constant [2, 42, 15].
However, for the range of γ in which the reduction to LWE works, no NP-hardness is known.
Obtaining NP-hardness for polynomial approximation factors would imply the breakthrough
consequence of basing cryptography on worst-case hardness assumptions. In turn, this would
turn our non-automatability results into NP-hardness results. As appealing as this might
be, it is unlikely. For γ ≥

√
n, the problem γ-GapSVP is known to be in NP ∩ coNP [1]

and thus cannot be NP-hard unless PH collapses.

2.4 The formal theory LA
The theory LA is a quantifier-free theory introduced by Soltys and Cook [50] whose main
objects are matrices. This is not technically speaking a first-order theory of bounded
arithmetic like those used by Krajíček and Pudlák [37], but like them it admits a propositional
translation into Frege systems.

The system LA operates over three sorts: indices (intended to be natural numbers), field
elements (over some abstract field F), and matrices (with entries over F). Variables for
these three sorts are usually denoted i, j, k, . . . for indices, a, b, c, . . . for field elements, and
A, B, C, . . . , for matrices. We sometimes use lower-case letters v, w, . . . for vectors, which
are seen as a special case of matrices.

The language of LA consists of the following constant, predicate and function symbols,
over the three different sorts:

CCC 2024

15:10 Quantum Automating TC0-Frege Is LWE-Hard

Index sort: 0index, 1index, +index, ·index, −index, div, rem, condindex, ≤index, =index
Field sort: 0field, 1field, +field, ·index, −index,−1 , r, c, e, Σ, condfield, =field
Matrix sort: =matrix

The meaning of the symbols is the standard one, except for −index that denotes the
cutoff subtraction (i − j = 0 if i < j) and for a−1, denoting the inverse of a field element a,
with 0−1 = 0. For operations over matrices, r(A) and c(A) are, respectively, the number of
rows and columns in A, e(A, i, j) is the field element Ai,j (with e(A, i, j) = 0 if either i = 0,
j = 0, i > r(A) or j > c(A)) and ΣA is the sum of the elements in A. The function symbol
cond(α, t1, t2) is interpreted to mean that if α holds, then the returned value should be t1,
else t2, where α is a formula all of whose atomic subformulas have the form m ≤ n or m = n,
where m and n are of the index sort, and t1, t2 are terms either both of index sort or both of
field sort.

The language of LA can be enriched with the following defined terms: index maximum
(max), matrix sum (+, when sizes of the matrices are compatible), scalar product (·), matrix
transpose (A⊺), zero (0) and identity matrices (I), matrix trace (tr), dot product (⟨_, _⟩),
and matrix product (·). See [50, Section 2.1] for details on the definitions of these terms. In
general, whenever it is clear from context, we drop the subscripts indicating the sort and we
use standard linear algebra notation for the sake of readability.

The theory then consists of several groups of axioms fixing the meaning of these symbols.
These are rather lengthy to state, so we relegate them to Appendix B, where we also include
several theorems derived by Soltys and Cook inside LA.

Observe that the theory is field-independent, but whenever we fix the field to be either
finite or Q, LA has the robust property that every theorem translates into a family of
propositional formulas with short TC0-Frege proofs. This is the main property of LA that
we shall exploit.

3 Quantum automatability and feasible interpolation

Following Bonet, Pitassi, and Raz [17], we say that a propositional proof system S is
automatable in time t if there exists a deterministic Turing machine A that on input a
formula φ outputs an S-proof of φ, if one exists, in time t(sizeS(φ)). We now consider the
possibility of replacing A by a probabilistic or quantum Turing machine. The main issue in
the definition is now that the output of the machine may be erroneous, albeit with small
probability. Note, however, that if a machine were to output an incorrect proof, we would be
able to easily detect this, since we can verify the proofs in polynomial time. We may thus
assume that when yielding an incorrect proof, the machine will restart and find another one.
Hence, instead of asking for the error-probability of the machine to be bounded, we ask for
the expected running time to be bounded. The following definition captures this idea.

▶ Definition 6 (Quantum and randomized automatability). Let S be a propositional proof
system and let t : N → N be a time-constructible function. We say that S is quantum
(respectively, random) automatable in time t or simply quantumatable in time t if there
exists a quantum Turing machine (respectively, a randomized Turing machine) that on input
a formula φ outputs an S-proof of φ, if one exists, in expected time t(sizeS(φ)).

In what follows, we assume t to be a polynomial and talk simply about a system being
automatable or quantum automatable, without reference to t. Since quantum circuits are
often more convenient than quantum Turing machines, we also define automatability in the
circuit setting.

N. Arteche, G. Carenini, and M. Gray 15:11

▶ Definition 7 (Circuit automatability). Let S be a propositional proof system. We say that S

is circuit-automatable if there exists a constant c and a uniform multi-output circuit family
{Cn,s}n,s∈N of size (n + s)c such that Cn,s takes as input a formula φ of size n and outputs
an S-proof of size sc if a proof of size s exists, and is allowed to output any string otherwise.

The generalization to randomized and quantum circuits is now immediate.

▶ Definition 8. Let S be a propositional proof system. We say S is quantum circuit-
automatable if there exists a constant c and a uniform multi-output quantum circuit family
{Cn,s}n,s∈N of size (n + s)c such that Cn,s takes as input a formula φ of size n, and outputs
an S-proof of size sc with probability at least 2/3 if a proof of size s exists, and is allowed
to output any string otherwise. We say that S is random circuit-automatable if the circuit
is classical but also takes as input a sequence r of random bits and, for at least 2/3s of the
choices for r, Cn,s(φ, r) outputs an S-proof of size sc if a proof of size s exists, and is allowed
to output any string otherwise.

In fact, the machine-based and circuit-based definitions are equivalent.

▶ Proposition 9. Let S be a propositional proof system. The following equivalences hold:
(i) the system S is automatable if and only if it is circuit-automatable;
(ii) the system S is random automatable if and only if it is random circuit-automatable;
(iii) the system S is quantum automatable if and only if it is quantum circuit-automatable.

We defer the rather simple proof to Appendix B in the full version of the paper [7].
Even if a proof system is not automatable, one might still hope for an algorithm that finds

some proof efficiently, even if it is in a different proof system. We say that a proof system S

is weakly automatable if there exists another proof system Q and an algorithm A that given
a formula φ, outputs a Q-proof of φ in time sizeS(φ)O(1). The concept was introduced by
Atserias and Bonet [8], who further showed that this is equivalent to S being simulated by a
system Q that is itself automatable. Despite the fact that weak automatability has been
conditionally ruled out for Resolution under hardness assumptions for certain two-player
games [9, 28, 13], establishing whether weak proof systems – such as Resolution – are
weakly automatable under more standard hardness conjectures remains one of the main open
problems in the area. It is straightforward to extend the notion of weak automatability to
the quantum setting.

Weak automatability is closely related to feasible interpolation. We recall this connection
in its classical form and then move to the quantum setting.

▶ Definition 10 (Feasible interpolation [34, 46]). We say that a proof system S has the feasible
interpolation property if there exists a polynomial-time computable function I such that for
every tautological split formula φ(x, y, z) = α(x, z) ∨ β(z, y), whenever a proof π in S derives
φ in size s, I(π) produces an interpolant circuit Cφ of size sO(1) that takes as input an
assignment ρ to the z-variables and such that

Cφ(ρ) =
{

0 only if α(x, ρ) is a tautology
1 only if β(ρ, y) is a tautology

indicating which side of the conjunction is tautological.

Bonet, Pitassi, and Raz attribute the following crucial observation relating (weak) automat-
ability and feasible interpolation to Impagliazzo. We refer to it as Impagliazzo’s observation.

CCC 2024

15:12 Quantum Automating TC0-Frege Is LWE-Hard

▶ Proposition 11 (Impagliazzo’s observation [17, Thm. 1.1]). If a proof system is weakly
automatable and closed under restrictions, then it admits feasible interpolation.

Impagliazzo’s observation is useful contrapositively: to rule out (weak) automatability it
suffices to rule out feasible interpolation, as done in the previous works [37, 17]. We outline
this strategy further in Section 4, where we instantiate it together with our cryptographic
assumption.

To use feasible interpolation in our setting, we suitably adapt the definition to the
quantum world.

▶ Definition 12 (Quantum feasible interpolation). We say that a proof system S has the
quantum feasible interpolation property if there exists a polynomial-time computable function
I such that, for every tautological split formula φ(x, y, z) = α(x, z) ∨ β(z, y), whenever a
proof π derives φ in S in size s, I(π) prints the description of a quantum interpolant circuit
Cφ of size sO(1) as in Definition 10. If the circuit is instead randomized, we call this property
random feasible interpolation.

Interestingly, feasible interpolation is not affected by moving from classical automatability
to randomized automatability. This is essentially folklore, but we reprove it for the sake of
completeness.

▶ Proposition 13. If a proof system S is weakly random automatable and closed under
restrictions, then it has feasible interpolation by deterministic Boolean circuits.

Proof. The proof is essentially the same as the original proof in [17], except for having to
take randomness into account. Suppose R is a probabilistic automating algorithm for S. By
Proposition 9.(ii), we can instead think of a family of randomized circuits {Cn,s}n,s∈N that,
for some fixed constant c, outputs proofs of size sc when a proof of size s exists. Furthermore,
let d be the constant in the exponent that bounds the blow-up in size happening in the
closure under restrictions. Given a split formula φ = α ∨ β, we want to obtain an interpolant
circuit Cφ.

Use the automating algorithm to find some proof of φ. Let s0 be the size of such a
proof. We first show that it is possible to extract a polynomial-size randomized circuit that
computes the interpolant with one-sided error. Consider the circuit that takes as input the
restriction ρ together with some random bits and proceeds to compute C|α|,sd

0
(α↾ρ, r). If this

circuit finds a proof of α↾ρ and it is checked to be correct, we output 0; else, we output 1.
We claim that for at least 2/3 choices of r, this circuit is a correct interpolant (and, in fact,
whenever it outputs 0, it is always correct). First, note that if we output 0 it is because a
proof of α↾ρ was found, in which case it is correct to say that α↾ρ is a tautology. Otherwise,
we will always output 1. The only problematic case is when the circuit outputs 1 while ¬β↾ρ

is satisfiable. If such was the case, then let σ be a satisfying assignment to the z-variables
such that ¬β↾ρ,σ is satisfied. Since S can prove φ in size s0 and S is closed under restrictions,
we know that S can prove φ↾ρ,σ in size sd

0, and this proof must clearly be deriving α↾ρ,σ = α↾ρ.
Since scd

0 ≥ sd
0, for a “good” choice of r the circuit C|α|,sd

0
(α↾ρ, r) would have found such a

proof, so the only reason why we could have output 1 is that we chose a bad r. But this of
course only happens with probability at most 1/3. So this randomized circuit interpolates φ,
makes only one-sided error, and has size polynomial in the size of the shortest proof.

We now replicate the strategy used in Adleman’s theorem (BPP ⊆ P/poly) to show that
in fact randomness is not needed in the circuit. One can follow here the standard argument
as presented, for example, by Arora and Barak [6, Thm. 7.15]: given the interpolant circuit
Fφ, perform error reduction and then argue that there must be a string of random bits that
is “good” for all inputs of the same size. The circuit no longer makes mistakes and computes
fφ as desired. ◀

N. Arteche, G. Carenini, and M. Gray 15:13

▶ Remark 14 (Constructive feasible interpolation). Our definition of feasible interpolation
deviates from the one given in standard texts like that of Krajíček [35], and follows instead
the one given by Pudlák [46], who imposes the condition that the interpolant circuit must
be constructed from the given proof in polynomial time. Note that even if we adopted the
non-constructive definition, the kind of feasible interpolation obtained by the construction
above achieves this property anyway.

The constructivity requirement is useful to obtain a sort of converse of Impagliazzo’s
observation: if a propositional proof system has uniform polynomial-size proofs of its reflection
principle, then it is weakly automatable (see [46, Prop. 3.6]).

Since randomness does not buy us anything when it comes to proof search, all hardness
results immediately transfer to the randomized setting. In particular, for every proof system
S simulating TC0-Frege, S is not weakly random automatable unless Blum integers can be
factored by polynomial-size randomized circuits. For weak proof systems where automatability
is known to be NP-hard, the systems cannot be automatable unless NP ⊆ BPP.

When moving to the quantum setting, unfortunately, we do not know of any way to get
a deterministic circuit for the interpolant. Instead, we have the following natural version of
Impagliazzo’s observation.

▶ Proposition 15. If a proof system is quantum automatable and closed under restrictions,
then it admits feasible interpolation by quantum circuits.

Proof. The proof follows the argument in Proposition 13, except we can no longer apply the
final step to get rid of quantumness. The interpolant now is a quantum circuit, since it is
simulating the quantum circuit C|α|,sd

0
(α↾ρ). ◀

4 TC0-Frege is hard to quantum automate

The quantum version of Impagliazzo’s observation (Proposition 15) is the main tool needed
for our hardness results, which we are now ready to state formally.

▶ Theorem 16 (Main theorem). If there exists a polynomial-time quantum algorithm that
weakly automates TC0-Frege, then the LWE assumption (Assumption 5) is broken by a
uniform family of polynomial-size quantum circuits. Furthermore, if the weak automating
algorithm is classical, the LWE assumption is broken by a uniform family of polynomial-size
Boolean circuits.

We can then extend the result to AC0-Frege under a stronger assumption. This is done
by applying the fact that TC0-Frege proofs can be translated into AC0-Frege proofs of
subexponential size (see, for example, Theorems 2.5.6 and 18.7.3 in [35] or the original work
on the non-automatability of AC0-Frege [16]).

▶ Corollary 17. If there exists a polynomial-time (quantum) algorithm that weakly automates
AC0-Frege, then the LWE assumption is broken by a uniform family of (quantum) circuits
of size 2no(1) .

We devote the rest of the paper to formally proving Theorem 16.
Suppose h : {0, 1}n → {0, 1}n is an injective and secure one-way function. Let x, y and z

denote variables ranging over {0, 1}n and assume that TC0-Frege is able to state and refute
efficiently the following unsatisfiable formula,

(h(x) = z ∧ x1 = 0) ∧ (h(y) = z ∧ y1 = 1) ,

where x1, y1 are respectively the first bit of x and y. The unsatisfiability follows precisely
from the fact that h is injective, and hence every output has a unique preimage.

CCC 2024

15:14 Quantum Automating TC0-Frege Is LWE-Hard

If TC0-Frege admits feasible interpolation, we are guaranteed the existence of a small
circuit C(z) such that

C(z) =
{

0 if h(x) = z ∧ x1 = 0 is unsatisfiable
1 if h(y) = z ∧ y1 = 1 is unsatisfiable

meaning that C is able to invert one bit of z. Since every output has a unique preimage, we
can iterate the process to get the entire input string. This contradicts the assumption that h

is one-way.
In order to instantiate the proof strategy to rule out quantum feasible interpolation, we

now need a candidate one-way function that is injective and conjectured to be post-quantum
secure and for which injectivity can be proven inside the proof system. Unfortunately, to the
best of our knowledge, no such candidate function is currently known, or not with enough
security guarantees2. Alternatively, we may use other cryptographic objects that do achieve
some form of injectivity, such as bit commitments, but the formalization of the latter does
not seem simpler than the approach we follow instead. We now explain how we avoid this
issue.

The most reliable post-quantum cryptographic assumptions have their security based on
worst-case reductions to lattice problems conjectured to be hard. This is the case of the
Learning with Errors framework [48], on which we base the security of the following class of
candidate one-way functions. For these functions, as well as the basic properties of them
that we employ, we follow the treatment of Micciancio [39]. We include the details for the
proof complexity readers, who may not be familiar with these constructions.

▶ Definition 18 (The candidate functions fA). Let m = nO(1), q ≤ 2nO(1) , and c = αq/
√

n,
where α ∈ [0, 1]. For every matrix A ∈ Zm×n

q , we define the function fA : Zn
q × {ε ∈ Zm

q :
|ε| ≤ 10c

√
mn} → Zm

q as

fA(s, ε) := (As + ε) mod q .

At this point, we would like to show inside TC0-Frege that the conjunction

(fA(x) = z ∧ x1 = 0) ∧ (fA(y) = z ∧ y1 = 1) (1)

is a contradiction, where A is represented by free variables and x1 and y1 refer to the first
bits of x and y. Unfortunately, the problem concerning injectivity mentioned above remains.
The formula is not necessarily a contradiction, since for some choices of A, the function fA is
not injective. We can show, however, that with high probability over the choice of A, the
function fA will satisfy two conditions that imply injectivity. Namely, A will be full rank
and the shortest vector in the q-ary lattice spanned by A will be large enough.

The following proposition, which captures this idea, is standard. We reprove it here for
the sake of completeness, since we shall formalize part of it inside the proof systems later.

▶ Proposition 19. Let n ∈ N, m = n log n and q ≥ n5. With high probability over the choice
of A ∈ Zm×n

q , rank(A) = n and λ1(Lq(A)) > 20c
√

nm. Furthermore, when these hold, the
function fA is injective.

2 In a previous version of this work we formalized the injectivity of several group-based post-quantum
cryptographic assumptions, such as MOBS [47], as well as variants of supersingular isogeny-based
Diffie-Hellman protocols, which unfortunately all happen to be now broken more or less efficiently.

N. Arteche, G. Carenini, and M. Gray 15:15

Proof. From Lemma 4.i we get that PrA∼U(Zm×n
q)[rank(A) < n] ≤ n/qm−n+1 . By Lemma 4.ii

we can see that

Pr
A∼U(Zm×n

q)
[λ1(L(A)) ≤ 20c

√
mn | rank(A) = n] ≤ (40c

√
mn + 1)m

qm−2n−1 .

The probability that a random A does not satisfy the conditions in the statement is at most
the sum of the two probabilities above, which are both negligible for our choice of m and q.

For injectivity, suppose for contradiction that there exist x, x′, ε, ε′, with either x ̸= x′ or
ε ̸= ε′, causing a collision fA(x, ε) = Ax + ε = Ax′ + ε′ = fA(x′, ε′). We have two cases.
(a) If ε = ε′, then the collision happens if and only if rank(A) < n, which contradicts the

assumption.
(b) Suppose that ε ≠ ε′. We have that ε − ε′ = A(x′ − x). Since the norm of ε − ε′ is at

most 20c
√

nm, by transitivity we have that the length of A(x′ − x) is bounded by the
same quantity. However, the latter belongs to the lattice and therefore we obtain a
contradiction. ◀

Luckily for us, these two conditions are succinctly certifiable! Indeed, to certify that the
matrix A is full rank we may provide a left-inverse A−1

L such that A−1
L A = In. Unfortunately,

we cannot guarantee that all injective fA have simple certificates of the second property,
λ1(Lq(A)) > 20c

√
nm. Nevertheless, we show in Section 4.2 that almost all of them do. These

certificates take the form of sets W = {w1, . . . , wm} ⊆ ∆∗
q(A) of short linearly independent

vectors in the dual of the q-ary lattice. We prove – using the left inequality of Banaszczyk’s
Transference Theorem – that such a set suffices to certify the second property, and then show
– using the right side of Banaszczyk’s Transference Theorem – that the certificate W exists
with high probability.

▶ Definition 20 (Certificate of injectivity). A certificate of injectivity for the function fA,
with A ∈ Zm×n

q , is a pair (A−1
L , W) such that A−1

L is a left-inverse so that A−1
L A = In,

and W = {w1, . . . , wm} ⊆ ∆∗
q(A) is a set of m linearly independent vectors such that

maxi∈[m] ||wi|| < 1/20c
√

nm.

The relation between injectivity and these certificates is made formal as follows.

▶ Proposition 21. Let n ∈ N, m = n log n, q = n5, and A ∈ Zm×n
q . The following hold:

(i) if there is a certificate of injectivity (A−1
L , W) for fA, then fA is injective;

(ii) if rank(A) = n and λ1(Lq(A)) > 20mc
√

nm, then there exists a certificate of injectivity
for fA;

(iii) with high probability over the choice of A, rank(A) = n and λ1(Lq(A)) > 20mc
√

nm.

Observe that given a certificate (A−1
L , W), verifying its correctness is a rather simple

task: it is sufficient check that A−1
L A = In, to verify that W is a set of linearly independent

vectors in ∆∗
q(A), and finally to ensure that the vectors in W are small enough.

Let us return to the propositional system. We denote by Inj(fA) the propositional
formula encoding that fA is injective. From this formula, TC0-Frege can derive that (1) is a
contradiction. However, Inj(fA) is false if we leave A as free variables. We instead prove
Inj(fA0) for concrete injective fA0 , where A0 is hardwired. The concrete fA0 for which we
do it are the ones that admit a certificate of injectivity.

Essentially, we formalize inside TC0-Frege that a certificate of injectivity implies injectivity.
That is,

TC0-Frege ⊢ Cert(CA) → Inj(fA) , (2)

CCC 2024

15:16 Quantum Automating TC0-Frege Is LWE-Hard

where Cert(CA) encodes that CA is a correct certificate for fA. Here CA and A are free
variables. This implication is precisely Proposition 21.i above. The proof inside the system
is carried out in Section 4.3.

Now, given a concrete certificate CA0 for fA0 , the formula Cert(CA0) is derivable inside
TC0-Frege, which amounts to the system verifying the certificate’s correctness. From this,
TC0-Frege proves Inj(fA0).

The rest of this section completes the missing parts in the proof. Section 4.1 sketches the
known fact that fA is worst-case one-way based on the hardness of Learning with Errors,
while Section 4.2 proves Proposition 21 showing the existence of certificates. We remark
that the arguments and techniques are standard in cryptography and readers familiar with
the area might want to skip them. We include them for the sake of completeness and to
cater to the proof complexity reader that may have never come across these ideas before,
and we refer to standard texts like [39] for further details. Finally, Section 4.3 formalizes
the certificate-to-injectivity implication above inside the theory LAQ, which propositionally
translates into TC0-Frege. Section 4.4 reconstructs the final argument.

4.1 Security of fA

The functions in {fA}A∈Zm×n
q

very closely resemble the standard Learning with Errors
functions, the only difference being that we have set a maximum value on the magnitude of
the error vectors and allowed these to be chosen as a uniform part of the input (instead of
being sampled from a Gaussian distribution). We now observe that inverting these functions
allows us to invert LWE with high probability over the choice of the error vector.

▶ Lemma 22 ([39, Section 3.2]). Suppose there exists an algorithm B taking as input
A ∈ Zm×n

q and a string z and outputting a preimage in f−1
A (z) with probability p. Then,

LWE can be broken with probability 0.99p over the choice of the error vector ε and the internal
randomness of B.

Proof. It suffices to show that with high probability the error vectors in the standard
Learning with Errors functions are bounded as in our definition of fA, and thus the same
inverter for fA will also work for most of the original LWE instances. This follows from
a standard Gaussian tail bound. Thus, if we are able to invert fA on all outputs with
probability p, then we are able to invert its corresponding LWE function with probability,
say, 0.99p over the choice of ε. ◀

Note that it is in fact possible to invert with all but negligible probability, since finding a
vector whose norm is far above the expectation with high probability requires that several
independently sampled coordinates all return values much larger than the expected one. For
simplicity, we use this weaker result which suffices for our applications.

4.2 Existence of certificates of injectivity: Proof of Proposition 21
This section proves the three statements of Proposition 21.

▶ Proposition 21.i (Correctness of certificates). If there is a certificate of injectivity (A−1
L , W)

for fA, then rank(A) = n and λ1(Lq(A)) > 20c
√

nm, and thus the function fA is injective.

Proof. As discussed in the proof of Proposition 19, fA is injective if and only if both rank(A) =
n and λ1(Lq(A)) > 20c

√
mn. By elementary linear algebra, rank(A) = n if and only if there

exists a A−1
L . As previously observed we know that λ1(∆q(A)) = min(q, λ1(L(A))) and since

20c
√

mn ≤ q/m, therefore it suffices to show that the existence of W as described above
implies that λ1(∆q(A)) > 20c

√
mn.

N. Arteche, G. Carenini, and M. Gray 15:17

Because it is a q-ary lattice we known that rank(∆q(A)) = m. By rearranging the
left inequality of the Transference Theorem for rank-m lattices, we get that λ1(∆q(A)) ≥
1/λm(∆∗

q(A)). By the definition of W , we conclude that λm(L∗) < 1/20c
√

nm, which implies
that λ1(Lq(A)) = λ1(∆q(A)) > 20c

√
nm.

Injectivity of fA now immediately follows from the argument in Proposition 19. ◀

▶ Proposition 21.ii (Conditional existence of certificates). If rank(A) = n and λ1(Lq(A)) >

20mc
√

nm, then there exists a certificate of injectivity for fA.

Proof. Since we assumed that rank(A) = n, there exists a left inverse A−1
L for A. It therefore

suffices to show that if rank(A) = n and λ1(Lq(A)) > 20mc
√

nm, then there exists a set of
vectors W satisfying the conditions above.

By the right inequality of the Transference Theorem for rank-m lattices, we can obtain
that λm(∆∗

q(A)) ≤ m/λ1(∆q(A)). Since λ1(Lq(A)) > 20mc
√

nm ≤ q, and λ1(∆q(A)) =
min(q, λ1(Lq(A))) = λ1(Lq(A)) there must exist a set of m linearly independent vectors in
∆∗

q(A), such that maxi∈[m] ||wi|| < 1/20c
√

nm. ◀

▶ Proposition 21.iii (Existence of certificates with high probability). Let n ∈ N, m = n log n,
q ≥ n5, c ≤

√
nm/40 and A ∈ Zm×n

q be sampled uniformly at random. The probability that
rank(A) = n and λ1(Lq(A)) > 20cm

√
nm is at least

1 − n

qm−n+1 − m3m−(m−2n−1) logm q.

This probability is at least exponentially close to 1 for our choice of q and m.

Proof. For the following equations we define Eshort to be the event that λ1(Lq(A)) ≤
20cm

√
nm. We have that

Pr
A

[rank(A) ̸= n ∨ Eshort] = Pr
A

[rank(A) ̸= n] + Pr
A

[Eshort ∧ rank(A) = n]

≤ Pr
A

[rank(A) ̸= n] + Pr
A

[Eshort | rank(A) = n] .

By Lemma 4.i, we know that PrA[rank(A) ̸= n] ≤ n/qm−n+1, and by the second point of
Lemma 4.ii, we have that

Pr[Eshort | rank(A) = n] ≤ (40mc
√

mn)m

qm−2n−1 ≤ (m2n)m

qm−2n−1

≤ m3m

m(m−2n−1) logm q
= m3m−(m−2n−1) logm q . ◀

4.3 Formalization
At this point, the only thing left is the formalization of the implication Cert(CA) → Inj(fA)
inside the propositional system. Since this is rather cumbersome, we work instead in the
more convenient theory LA of linear algebra of Soltys and Cook [50]. The theory, however, is
field-independent, which means we cannot state or prove properties about the ordering of
the rationals, which is needed in our arguments. Furthermore, we sometimes use the fact
that certain matrices are over the integers, so we must be able to identify certain elements
as integers. To solve this, we introduce a conservative extension of the theory, called LAQ,
which assumes the underlying field to be Q.

CCC 2024

15:18 Quantum Automating TC0-Frege Is LWE-Hard

4.3.1 The conservative extension LAQ

On top of the existing symbols of the language of LA, we have two new predicate symbols int
and <Q. The int predicate, applied to a field element q, written int(q), is supposed to be
true whenever the rational q is an integer.

The symbol <Q, which we overload onto < in what follows, is intended to represent the
usual ordering relation over the rationals. For convenience, we also add the symbol x ≤ y

together with an axiom imposing that its meaning is x < y ∨ x = y. Recall that equality
of field elements was a symbol in the base theory LA, which already equipped it with its
corresponding axioms.

We now extend the axiom-set of LA with axioms for the new symbols. Recall that the
original axioms of LA are listed in Appendix B.

Axioms for int
(Int1) int(0)
(Int2) int(1)
(Int3) int(−1)
(Int4) int(x) ∧ int(y) → int(x + y)
(Int5) int(x) ∧ int(y) → int(x · y)
(Int6) int(x) ∧ 0 < x → 1 ≤ x

Axioms for <Q
(Ord1) x ≤ y ↔ (x < y ∨ x = y)
(Ord2) ¬(x < x)

(Ord3) x < y → ¬(x = y)
(Ord4) x < y ∧ y < z → x < z

(Ord5) ¬(x = y) → x < y ∨ y < x

(Ord6) x ≤ y ∧ z ≤ w → x + z ≤ y + w

(Ord7) 0 ≤ x ∧ 0 ≤ y → 0 ≤ x · y

(Ord8) 0 ≤ x · x

(Ord9) 0 ≤ x ∧ y < 0 → x · y ≤ 0
(Ord10) a, b, c, d ≥ 0 ∧ a < b ∧ c < d →

ac < bd

The axioms for the ordering symbols are essentially the axioms of a strict total order
(Ord2-Ord5), together with an axiom connecting ≤ and < (Ord1). We then ensure the
compatibility of the operations with the ordering relation, (Ord6-Ord10). Our axioms are
not necessarily minimal, since we are interested in convenience rather than succinctness.

The axioms for int are more ad hoc and it might seem that they are not enough to fix
the correct interpretation of the symbol. Indeed, the axioms for int only really force that
addition and multiplication are closed under this predicate and that every integer in the
standard model can be argued to be an integer in LAQ, but they do not identify Z as a
substructure of Q. The reason this is not an issue is that we are only interested in LAQ for
its propositional translation. For our purposes, these axioms are the only ones we need to
prove the required claims about lattices, and once we translate to the propositional setting,
the symbols will take the standard intended interpretation.

Crucially, theorems of LAQ admit succinct TC0-Frege proofs. This requires extending
the propositional translation of Soltys and Cook to the new symbols and axioms. We do
this in detail in Appendix A.2 of the full version [7]. In this version, Appendix A contains a
sketch the construction and the statement of the result.

4.3.2 Formalization of the proofs
We are ready to present the formal proofs needed inside our theory. In what follows, LA_._
stands for the corresponding axiom in Appendix B.

First, we observe that under our new axioms, LAQ can argue that the inner product of a
vector with itself is non-negative. Recall that the inner product operator ⟨u, v⟩ is a defined
term in LA, namely u · v⊺.

▶ Lemma 23. Provably in LAQ, for every v ∈ Qn, 0 ≤ ⟨v, v⟩.

N. Arteche, G. Carenini, and M. Gray 15:19

Proof. Unfolding the definition of the term ⟨v, v⟩ in LAQ, ⟨v, v⟩ =
∑n

i=1 vi · vi, so by axiom
(Ord8) each term in the sum satisfies vi · vi ≥ 0, and by repeatedly applying axiom (Ord6),
the entire sum can be proven to be non-negative. ◀

We now formalize inside LAQ the classical Cauchy-Schwartz inequality.

▶ Lemma 24 (Cauchy-Schwartz in LAQ). The theory LAQ proves that for every u, v ∈ Qn,
⟨u, v⟩2 ≤ ⟨u, u⟩ · ⟨v, v⟩.

Proof. We first show that LAQ can derive the following equality,

1
⟨v, v⟩

⟨(⟨v, v⟩u − ⟨u, v⟩v), (⟨v, v⟩u − ⟨u, v⟩v)⟩ = ⟨u, u⟩⟨v, v⟩ − ⟨u, v⟩2 , (3)

where 1
⟨v,v⟩ can be explicitly referred to in LAQ as ⟨v, v⟩−1.

We do this explicitly by deriving the following chain of equalities,

1
⟨v, v⟩

⟨(⟨v, v⟩u − ⟨u, v⟩v), (⟨v, v⟩u − ⟨u, v⟩v)⟩ = (LA7.b)

1
⟨v, v⟩

(⟨(⟨v, v⟩u − ⟨u, v⟩v), (⟨v, v⟩u)⟩ + ⟨(⟨v, v⟩u − ⟨u, v⟩v), (−⟨u, v⟩v)⟩) = (LA7.a-c)

1
⟨v, v⟩

(⟨v, v⟩2⟨u, u⟩ − ⟨v, v⟩⟨v, u⟩2) = (LA7.c)

(⟨v, v⟩⟨u, u⟩ − (⟨v, u⟩2).

Observe now that from Lemma 23 above, we know that ⟨(⟨v, v⟩u − ⟨u, v⟩v), (⟨v, v⟩u −
⟨u, v⟩v)⟩ is non-negative, and it is also clear that 0 ≤ 1

⟨v,v⟩ : we know again that ⟨v, v⟩ ≥ 0,
and ⟨v, v⟩⟨v, v⟩−1 is either 0 or 1, by LA3.d; if it is 0, we are done, and if it is 1, then by
axiom (Ord9) we can get a contradiction.

Thus, the left-hand side of Equation (3) is positive and LAQ can derive this fact. Then,
by the transitivity axiom (Ord4), the right-hand side of Equation (3) is non-negative as well.
Rearranging the inequality using (Ord6), the inequality follows. ◀

The other technical component needed in the final proof is a weakening of the lower
bound in Banaszczyk’s Transference Theorem (see Theorem 3). Informally, we need to prove
that for every A ∈ Qm×n, every non-zero vector v ∈ L(A) and any set of linearly independent
vectors W = {w1, . . . , wn} ⊆ L∗(A), ⟨v, v⟩ · ⟨wi, wi⟩ ≥ 1 for some i ∈ [n].

In order for LAQ to process the conditions of the theorem, we provide certificate-like
objects ensuring all the different hypotheses. For example, when we quantify over a vector v

belonging to a lattice L(A), we provide the vector of coefficients cv such that Acv = v. Note
as well that when we quantify over matrices with elements in Z, we are using the int predicate
under the hood to enforce the entries to be integers. As a final remark, recall that we do
not have existential quantifiers in LA, but whenever we do some existential quantification in
the following lemmas we are quantifying over small finite domains, meaning we can write
everything as a small disjunction.

▶ Lemma 25 (Banaszczyk’s left inequality in LAQ). The theory LAQ proves the following
implication. Let A ∈ Zm×n, B ∈ Qn×n, v ∈ Qn, cv ∈ Zm, W = [w1| . . . |wn] ∈ Qm×n,
cW = [cw1 | · · · | cwn

] ∈ Zm×n, W ′ ∈ Qm×n fulfilling the following conditions:
1. the vector v is non-zero, v ̸= 0n;
2. the vector v belongs to the lattice L(A), v = Acv;

CCC 2024

15:20 Quantum Automating TC0-Frege Is LWE-Hard

3. the vectors in W belong to the dual lattice3 L∗(A), wi = ABcwi
for all i ∈ [n];

4. (A⊺A)B = In;
5. the vectors in W are linearly independent, W ′W ⊺ = In.

Then, for some i ∈ [n], ⟨v, v⟩ · ⟨wi, wi⟩ ≥ 1.

Proof. The proof has two steps. First, we show that for all i ∈ [n], ⟨v, wi⟩ ∈ Z. To do this
we use the following chain of equalities, where w is some arbitrary column wi of W , and
where the comments on the side refer to either axioms of LAQ or the assumptions in the
statement of the lemma:

⟨v, w⟩ = ⟨Acv, ABcw⟩ (by ass. 2 and 3)
= c⊺vA⊺ABcw (by def. of dot product)
= c⊺v(A⊺A)Bcw (by associativity, LA5.i)
= c⊺vcw. (by ass. 4)

By assumption, the entries in both cv and cw have integer entries, so by the closure under
integer multiplication and addition (Int4 and Int5) we have that c⊺vcw is an integer, and thus
we deduce that for all i ∈ [n], ⟨v, wi⟩ ∈ Z.

In the second step of the proof, we show that there is i ∈ [n] such that ⟨v, wi⟩ ̸= 0.
We consider the vector s := W ⊺v. Note that by definition, the j-th entry of s is ⟨wj , v⟩.
We can multiply both sides by the same matrix W ′, leading to W ′s = W ′W ⊺v. Using
associativity (LA5.i), assumption (5) and properties of the identity matrix (LA5.f), we get
that W ′s = v. Suppose that for all i ∈ [n], ⟨v, wi⟩ = 0. Then, by definition, s = 0n. We
can easily derive (using LA3.a, LA3.c and LA3.i) that W ′s = 0 and therefore v = 0. This
contradicts assumption (1).

Finally, let i denote the particular index for which we have now derived that simultaneously
⟨v, wi⟩ ∈ Z and ⟨v, wi⟩ ̸= 0. By axiom (Ord8), ⟨v, wi⟩2 ≥ 0. Furthermore, it is easy to derive
already in LA that for any field elements a and b, if a ̸= 0 and b ̸= 0, then ab ̸= 0 (this
follows immediately from axioms LA3.a-d). Thus, by axiom (Ord1), ⟨v, wi⟩2 > 0. Recall now
that by axiom (Int6) of LAQ, every non-zero positive integer is greater or equal than 1, so
⟨v, wi⟩2 ≥ 1. Then, the Cauchy-Schwartz inequality from Lemma 24 gives us

1 ≤ ⟨v, wi⟩2 ≤ ⟨v, v⟩ · ⟨wi, wi⟩,

which together with transitivity (axiom Ord4 together with Ord1) yields the desired 1 ≤
⟨v, v⟩ · ⟨wi, wi⟩. ◀

We are now ready to prove in LAQ that a correct certificate of injectivity implies the
injectivity of fA. Informally, we aim to prove that given a certificate of injectivity as in
Definition 20, the function fA is injective. As before, we need to provide some additional
objects together with the certificate to make sure LAQ can reason about this conditional
implication and carry out the verification of the certificate.

▶ Lemma 26 (Certificate-implies-injectivity in LAQ). Let A ∈ Zm×n, B ∈ Qn×n, v1 ∈ Qn,
cv1 ∈ Zm, v2 ∈ Qn, cv2 ∈ Zm, ε1 ∈ Qn, ε2 ∈ Qn, W = [w1| . . . |wn] ∈ Qm×n, cW = [cw1 |
· · · | cwn

] ∈ Zm×n, W ′ ∈ Qm×n fulfilling the following conditions:
1. the vector v1 belongs to the lattice L(A), v1 = Acv1 ;
2. the vector v2 belongs to the lattice L(A), v2 = Acv2 ;

3 This dual lattice, in fact, admits a closed form for its base, as in Lemma 1. In particular, B can be seen
as (A⊺A)−1.

N. Arteche, G. Carenini, and M. Gray 15:21

3. the vectors v1 and v2 are distinct, v1 ̸= v2;
4. the vectors in W belong to the dual lattice L∗(A), wi = ABcwi

for all i ∈ [n];
5. (A⊺A)B = In;
6. the vectors in W are linearly independent, W ′W ⊺ = In;
7. ⟨wi, wi⟩ < 1/400c2nm for all i ∈ [n];
8. ⟨ε2 − ε1, ε2 − ε1⟩ < 400c2nm.

Then, Av1 + ε1 ̸= Av2 + ε2.

Proof. The proof proceeds by contradiction. Suppose that Av1 + ε1 = Av2 + ε2, meaning
that a collision exists in the range of fA. By simple algebraic manipulations in LAQ, we
derive that A(v1 − v2) = ε2 − ε1. Let v := A(v1 − v2) and ε := ε2 − ε1, so that we have v = ε.

Observe now that assumptions (7) and (8), together with axiom (Ord10) and (LA3.d)
give us ⟨wi, wi⟩⟨ε, ε⟩ < 1 for every i ∈ [n]. With the existing assumptions of the theorem
we can in fact apply Lemma 25 to v, getting that there exists i such that ⟨v, v⟩⟨wi, wi⟩ ≥ 1.
Since v = ε, we get ⟨ε, ε⟩⟨wi, wi⟩ ≥ 1, but this means

1 ≤ ⟨ε, ε⟩⟨wi, wi⟩ < 1.

We remark that while technically the transitivity axiom (Ord4) is stated for strict orders,
the existing set of axioms immediately implies the “mixed” version, namely that for field
elements a, b and c, if a ≤ b and b < c, then a < c. Thus we now have 1 < 1, but this
contradicts axiom (Ord2). ◀

4.4 Proof of Theorem 16
We are ready to put all the pieces together.

Proof of Theorem 16. Suppose that TC0-Frege is weakly quantum automatable, that is,
suppose that S is a quantum automatable proof system simulating TC0-Frege. Let Q be the
quantum algorithm automating S. We describe a quantum algorithm Q′ that takes as input
a matrix A defining a function fA as in Definition 18 and an output z of this function and
succeeds in finding a preimage of z with high probability.

For a specific input matrix A0, consider the formula Cert(CA) → Inj(fA), where C

and A are free variables. In Lemma 26 this implication was proven inside LAQ, and by the
propositional translation for LAQ in Theorem 28 we get an efficient proof inside TC0-Frege,
and thus also in S. Craft now the formula Inj(fA0) for the particular A0 received as input. By
Proposition 21, for most fA0 there exists a certificate of injectivity CA0 such that Cert(CA0)
is true and, in fact, has no free variables. Consider this certificate as a partial restriction and
apply it to the implication above. Since TC0-Frege is closed under restrictions, there must
be a polynomial-size proof of Inj(fA0), and so S also proves this efficiently. Recall that, as
noted in Remark 14, Impagliazzo’s observation guarantees that under the existence of an
automating algorithm we get constructive feasible interpolation, so from the proof of Inj(fA0)
we can get a circuit that breaks one bit of the given output. By iterating this process we can
recover the entire preimage. This procedure works as long as fA0 is injective and admits a
certificate of injectivity, but by Proposition 21 this is the case with overwhelming probability.
Then, by Lemma 22, we break LWE and get the desired conclusion. ◀

The proof above is phrased from the starting assumption of a weak automating algorithm
rather than feasible interpolation. The reason is that, intuitively, feasible interpolation alone
does not seem to immediately break the cryptographic assumption: for every fixed matrix

CCC 2024

15:22 Quantum Automating TC0-Frege Is LWE-Hard

A, feasible interpolation only seems to guarantee the existence (with high probability) of
a circuit breaking fA, but this circuit seems to essentially depend on A. By starting the
argument from an automating algorithm, we have a uniform way of finding the proofs of
injectivity for each particular fA to then construct the corresponding interpolating circuit.

While we find this more intuitive, we can still phrase the argument directly in terms of
interpolation (and hence rule out this too under the same assumption). It suffices to argue
that TC0-Frege can refute the contradictory formulas

(fA(x) = z ∧ xi = 0) ∧ ((fA(y) = z ∧ yi = 1) ∧ Cert(CA)),

where xi and yi refer to the i-th respective bits, and Cert(CA) is the certificate predicate,
as in Equation (2). Observe that this is still a split formula, since the variables encoding
the certificate CA appear only on the right-hand side. That the proof system can show this
is a contradiction follows immediately from the fact that it can prove the implication in
Equation (2). More importantly, the refutation of this formula is uniform and known, with A

as free variables, meaning we can extract the interpolants directly. It is not hard to see that
interpolating on this formula we can still break the same functions that we would break with
the aid of an automating algorithm. This remark is due to Impagliazzo. Thus, the following
corollary also follows from our formalization.

▶ Corollary 27. If TC0-Frege admits feasible interpolation by (quantum) circuits, then the
LWE assumption can be broken by a uniform family of polynomial-size (quantum) circuits.

References
1 Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. Journal of the ACM

(JACM), 52(5):749–765, 2005.
2 Miklós Ajtai. Generating hard instances of lattice problems. In Proceedings of the twenty-eighth

annual ACM symposium on Theory of computing, pages 99–108, 1996.
3 Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case equi-

valence. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing,
pages 284–293, 1997.

4 Michael Alekhnovich, Sam Buss, Shlomo Moran, and Toniann Pitassi. Minimum propositional
proof length is NP-hard to linearly approximate. In Mathematical Foundations of Computer
Science 1998: 23rd International Symposium, pages 176–184. Springer, 2006.

5 Michael Alekhnovich and Alexander A Razborov. Resolution is not automatizable unless
W[P] is tractable. SIAM Journal on Computing, 38(4):1347–1363, 2008.

6 Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, 2009.

7 Noel Arteche, Gaia Carenini, and Matthew Gray. Quantum automating TC0-Frege is
LWE-hard. Electronic Colloquium on Computational Complexity (ECCC), 2024. URL:
https://eccc.weizmann.ac.il/report/2024/029/.

8 Albert Atserias and María Luisa Bonet. On the automatizability of resolution and related
propositional proof systems. Information and Computation, 189(2):182–201, 2004.

9 Albert Atserias and Elitza Maneva. Mean-payoff games and propositional proofs. Information
and Computation, 209(4):664–691, 2011.

10 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the ACM
(JACM), 67(5):1–17, 2020.

11 Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers.
Mathematische Annalen, 296:625–635, 1993.

12 P. Beame and T. Pitassi. Simplified and improved resolution lower bounds. In Proceedings of
37th Conference on Foundations of Computer Science, pages 274–282, 1996.

https://eccc.weizmann.ac.il/report/2024/029/

N. Arteche, G. Carenini, and M. Gray 15:23

13 Arnold Beckmann, Pavel Pudlák, and Neil Thapen. Parity games and propositional proofs.
ACM Transactions on Computational Logic (TOCL), 15(2):1–30, 2014.

14 Zoë Bell. Automating regular or ordered resolution is NP-hard. Electronic Colloquium on
Computational Complexity (ECCC), 2020. URL: https://eccc.weizmann.ac.il/report/
2020/105/.

15 Huck Bennett and Chris Peikert. Hardness of the (Approximate) Shortest Vector Problem: A
Simple Proof via Reed-Solomon Codes. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2023), volume 275, pages
37:1–37:20, 2023.

16 María Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi.
Non-automatizability of bounded-depth Frege proofs. computational complexity, 13:47–68,
2004.

17 María Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
Frege systems. SIAM Journal on Computing, 29(6):1939–1967, 2000.

18 Sam Buss and Jakob Nordström. Proof complexity and SAT solving. Handbook of Satisfiability,
336:233–350, 2021.

19 Samuel R Buss. On Gödel’s theorems on lengths of proofs II: Lower bounds for recognizing k

symbol provability. In Feasible mathematics II, pages 57–90. Springer, 1995.
20 Stephen Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge

University Press, 2010.
21 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof

systems. Logic, Automata, and Computational Complexity, 1979.
22 Stefan Dantchev, Barnaby Martin, and Stefan Szeider. Parameterized proof complexity.

Computational Complexity, 20:51–85, 2011.
23 Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and

Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing, pages 209–222, 2021.

24 Michal Garlík. Failure of feasible disjunction property for k-DNF resolution and NP-hardness
of automating it, 2020. arXiv:2003.10230.

25 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is NP-
hard. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pages 68–77, 2020.

26 Rishab Goyal, Venkata Koppula, Satyanarayana Vusirikala, and Brent Waters. On perfect
correctness in (lockable) obfuscation. In Theory of Cryptography Conference, pages 229–259.
Springer, 2020.

27 Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.

28 Lei Huang and Toniann Pitassi. Automatizability and simple stochastic games. In International
Colloquium on Automata, Languages, and Programming, pages 605–617. Springer, 2011.

29 Dmitry Itsykson and Artur Riazanov. Automating OBDD proofs is NP-hard. In 47th
International Symposium on Mathematical Foundations of Computer Science (MFCS 2022),
2022.

30 Kazuo Iwama. Complexity of finding short resolution proofs. In Mathematical Foundations of
Computer Science 1997, pages 309–318. Springer Berlin Heidelberg, 1997.

31 Emil Jeřábek. Weak pigeonhole principle, and randomized computation. PhD thesis, Faculty
of Mathematics and Physics, Charles University, Prague, 2005.

32 Emil Jeřábek. Elementary analytic functions in VTC0. Annals of Pure and Applied Logic,
174(6):103269, 2023.

33 Jan Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1995.

34 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997.

CCC 2024

https://eccc.weizmann.ac.il/report/2020/105/
https://eccc.weizmann.ac.il/report/2020/105/
https://arxiv.org/abs/2003.10230

15:24 Quantum Automating TC0-Frege Is LWE-Hard

35 Jan Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2019.

36 Jan Krajíček. Information in propositional proofs and algorithmic proof search. The Journal
of Symbolic Logic, 87(2):852–869, 2022.

37 Jan Krajíček and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2 and

EF. Information and Computation, 140(1):82–94, 1998.
38 Ian Mertz, Toniann Pitassi, and Yuanhao Wei. Short proofs are hard to find. In 46th

International Colloquium on Automata, Languages, and Programming (ICALP 2019), 2019.
39 Daniele Micciancio. The Geometry of Lattice Cryptography, pages 185–210. Springer Berlin

Heidelberg, 2011.
40 Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In

Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 700–718. Springer, 2012.

41 Theodoros Papamakarios. Depth d Frege systems are not automatable unless P = NP.
Electronic Colloquium on Computational Complexity (ECCC), 2023. URL: https://eccc.
weizmann.ac.il/report/2023/121/.

42 Chris Peikert. A decade of lattice cryptography. Foundations and Trends in Theoretical
Computer Science, 10(4):283–424, 2016.

43 Chris Peikert and Brent Waters. Lossy trapdoor functions and their applications. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pages 187–196, 2008.

44 Ján Pich and Rahul Santhanam. Learning Algorithms Versus Automatability of Frege Systems.
In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022),
volume 229, pages 101:1–101:20, 2022.

45 Pavel Pudlák. Quantum deduction rules. Annals of Pure and Applied Logic, 157(1):16–29,
2009.

46 Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer
Science, 295(1):323–339, 2003. Mathematical Foundations of Computer Science.

47 Nael Rahman and Vladimir Shpilrain. MOBS (Matrices Over Bit strings) public key exchange,
2021. arXiv:2106.01116.

48 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal
of the ACM (JACM), 56(6):1–40, 2009.

49 P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science, pages 124–134,
1994.

50 Michael Soltys and Stephen Cook. The proof complexity of linear algebra. Annals of Pure
and Applied Logic, 130(1):277–323, 2004. Papers presented at the 2002 IEEE Symposium on
Logic in Computer Science (LICS).

A The propositional translation for LAQ

We sketch the construction for the propositional translation, and defer the details to the full
version. The translation is analogous to the usual propositional translations used elsewhere
in bounded arithmetic (see, for example, [20, 33]). Let φ be a formula of LAQ and let σ be
an object assignment that assigns a natural number to each free index variable occurring in
φ and to each term of the form r(A) and c(A) occurring in φ, and substitutes every function
and predicate symbol by the corresponding TC0 circuit of the appropriate size. We denote
by ||φ||σ the propositional formula obtained by carrying out this translation process.

▶ Theorem 28 (Propositional translation for LAQ). For every theorem φ of LAQ and every
object assignment σ, the propositional formula ||φ||σ admits polynomial-size TC0-Frege
proofs.

For the proof, see Theorem A.2 in the full version of the paper [7].

https://eccc.weizmann.ac.il/report/2023/121/
https://eccc.weizmann.ac.il/report/2023/121/
https://arxiv.org/abs/2106.01116

N. Arteche, G. Carenini, and M. Gray 15:25

B Axioms and basic theorems of LA

1. Equality axioms
a. x = x

b. x = y → y = x

c. (x = y ∧ y = z) → x = z

d.
∧n

i
(xi = yi) → f(x̄) = f(ȳ)

e. i1 = j1, i2 = j2, i1 ≤ i2 → j1 ≤ j2.
2. Axioms for indices

a. i + 0 = i

b. i + (j + 1) = (i + j) + 1
c. i · (j + 1) = (i · j) + i

d. i + 1 = j + 1 → i = j

e. i + 1 ̸= 0
f. i ≤ i + j

g. i ≤ j, j ≤ i

h. i ≤ j, i + k = j → (j − i = k)
i. i ≤ j, i + k = j → (i ≮ j → j − i = 0)
j. j ̸= 0 → rem(i, j) < j

k. j ̸= 0 → i = j · div(i, j) + rem(i, j)
l. α → cond(α, i, j) = i

m. ¬α → cond(α, i, j) = j

3. Axioms for field elements
a. 0 ̸= 1 ∧ a + 0 = a

b. a + (−a) = 0
c. 1 · a = a

d. a ̸= 0 → a · (a−1) = 1
e. a + b = b + a

f. a · b = b · a

g. a + (b + c) = (a + b) + c

h. a · (b · c) = (a · b) · c

i. a · (b + c) = a · b + a · c

j. α → cond(α, a, b) = a

k. ¬α → cond(α, a, b) = b

4. Axioms for matrices
a. (i = 0 ∨ r(A) < i ∨ j = 0 ∨ c(A) < j) →

e(A, i, j) = 0
b. r(A) = 1, c(A) = 1 → Σ(A) = e(A, 1, 1)
c. c(A) = 1 → σ(A) = σ(A⊺)
d. r(A) = 0 ∨ c(A) = 0 → Σ(A) = 0

5. Theorems for ring properties

a. max(i, j) = max(j, i)
b. max(i, max(j, k))=max(max(i, j), k)
c. max(i, max(j, k))=max(max(i, j), max(i, k))
d. A + 0 = A

e. A + (−1)A = 0
f. AI = A and IA = A

g. A + B = B + A

h. A + (B + C) = (A + B) + C

i. A(BC) = (AB)C
j. A(B + C) = AB + CA

k. (B + C)A = BA + CA

l. Σ0 = 0field

m. Σ(cA) = cΣ(A)
n. Σ(A + B) = Σ(A) + Σ(B)
o. Σ(A) = Σ(A⊺)

6. Theorems for module properties

a. (a + b)A = aA + bA

b. a(A + B) = aA + aB

c. (ab)A = a(bA)

7. Theorems for inner product

a. A · B = B · A

b. A · (B + C) = A · B + A · C

c. aA · B = a(A · B)

8. Miscellaneous theorems

a. a(AB) = (aA)B ∧ (aA)B = A(aB)
b. (AB)⊺ = B⊺A⊺

c. I⊺ = I

d. 0⊺ = 0
e. (A⊺)⊺ = A

CCC 2024

A Strong Direct Sum Theorem for Distributional
Query Complexity
Guy Blanc
Department of Computer Science, Stanford University, CA, USA

Caleb Koch
Department of Computer Science, Stanford University, CA, USA

Carmen Strassle
Department of Computer Science, Stanford University, CA, USA

Li-Yang Tan
Department of Computer Science, Stanford University, CA, USA

Abstract

Consider the expected query complexity of computing the k-fold direct product f⊗k of a function f

to error ε with respect to a distribution µk. One strategy is to sequentially compute each of the k

copies to error ε/k with respect to µ and apply the union bound. We prove a strong direct sum
theorem showing that this naive strategy is essentially optimal. In particular, computing a direct
product necessitates a blowup in both query complexity and error.

Strong direct sum theorems contrast with results that only show a blowup in query complexity
or error but not both. There has been a long line of such results for distributional query complexity,
dating back to (Impagliazzo, Raz, Wigderson 1994) and (Nisan, Rudich, Saks 1994), but a strong
direct sum theorem that holds for all functions in the standard query model had been elusive.

A key idea in our work is the first use of the Hardcore Theorem (Impagliazzo 1995) in the
context of query complexity. We prove a new resilience lemma that accompanies it, showing that
the hardcore of f⊗k is likely to remain dense under arbitrary partitions of the input space.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Query complexity, direct product theorem, hardcore theorem

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.16

Funding The authors are supported by NSF awards 1942123, 2211237, 2224246 and a Google
Research Scholar award. Guy is also supported by a Jane Street Graduate Research Fellowship,
Caleb by an NDSEG fellowship, and Carmen by a Stanford Computer Science Distinguished
Fellowship.

1 Introduction

The direct sum problem seeks to understand the ways in which the complexity of solving k

independent instances of a computational task scales with k. This problem and its variants
such as the XOR problem, where one only seeks to compute the XOR of the k output values,
have a long history in complexity theory. Research on them dates back to Strassen [33]
and they have since been studied in all major computational models including boolean
circuits [36, 26, 12, 14, 17, 29, 15, 11], communication protocols [16, 30, 22, 25, 35, 21, 31,
18, 20, 4, 8, 37], as well as classical [16, 27, 30, 22, 10, 5, 6, 9, 13] and quantum query
complexity [2, 22, 32, 31, 1, 24].

© Guy Blanc, Caleb Koch, Carmen Strassle, and Li-Yang Tan;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 16; pp. 16:1–16:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CCC.2024.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 A Strong Direct Sum Theorem for Distributional Query Complexity

1.1 This work
We focus on classical query complexity, and specifically distributional query complexity.
Distributional complexity, also known as average-case complexity, is a basic notion applicable
to all models of computation. Direct sum theorems and XOR lemmas for distributional
complexity, in addition to being statements of independent interest, have found applications
in areas ranging from derandomization [36, 28, 17] to streaming [3] and property testing [7].

Let f : {±1}n → {±1} be a boolean function, µ be a distribution over {±1}n, and consider
the task of computing the k-fold direct product f⊗k(X(1), . . . , X(k)) := (f(X(1)), . . . , f(X(k)))
of f to error ε with respect to µk. One strategy is to sequentially compute each f(X(i)) to
error ε/k with respect to µ and apply the union bound. Writing Depthµ(f, ε) to denote the
minimum expected depth of any decision tree that computes f to error ε w.r.t. µ, this shows
that:

Depthµk

(f⊗k, ε) ≤ k · Depthµ(f, ε
k).

Our main result is that this naive strategy is essentially optimal for all functions and
distributions:

▶ Theorem 1 (Strong direct sum theorem for distributional query complexity; special
case of Theorem 2). For every function f : {±1}n → {±1}, distribution µ over {±1}n,
integer k ∈ N, and ε < 1,

Depthµk

(f⊗k, ε) ≥ Ω̃(ε2k) · Depthµ(f, Θ(ε
k)).

Such direct sum theorems are termed strong, referring to the fact that they show that
computing a direct product necessitates a blowup in both the computational resources
of interest – in our case, query complexity – and error. Strong direct sum theorems
contrast with standard ones, which only show a blowup in computational resource, and
also with direct product theorems, which focus on the blowup in error. We give a detailed
overview of prior work in Section 3, mentioning for now that while standard direct sum
and direct product theorems for distributional query complexity have long been known, a
strong direct sum theorem had been elusive. Prior to our work, it was even open whether
Depthµk

(f⊗k, 1.01ε) ≥ 1.01 · Depthµ(f, ε) holds. Indeed, the problem is known to be quite
subtle, as a striking counterexample of Shaltiel [30] shows that a strong direct sum theorem
is badly false if one considers worst-case instead of expected query complexity.

A strong XOR lemma

We also obtain a strong XOR lemma (Theorem 3) as a corollary of a simple equivalence
between direct sum theorems and XOR lemmas for query complexity. One direction is
immediate, since the k-fold XOR f⊕k(X(1), . . . , X(k)) := f(X(1)) ⊕ · · · ⊕ f(X(k)) can only
be easier to compute than the k-fold direct product. For the query model the converse also
holds: a direct sum theorem implies an XOR lemma with analogous parameters.

2 Broader context: Comparison with the randomized setting

Direct sum theorems are also well-studied in the setting of randomized query complexity.
Recall that the ε-error randomized query complexity of f , denoted R(f, ε), is the minimum
expected depth of any randomized decision tree that computes f with error at most ε for all

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:3

inputs. By Yao’s minimax principle, direct sum theorems for distributional query complexity
imply analogous ones for randomized query complexity. However, as we now elaborate, such
theorems are substantially more difficult to prove in the distributional setting.

2.1 A simple and near-optimal strong direct sum theorem for R
For randomized query complexity, proving a strong direct sum theorem with near-optimal
parameters requires only two observations.

Observation #1

The first is that a standard direct sum theorem, one without error amplification, easily holds
in the distributional setting, and hence the randomized setting as well by Yao’s principle:

Depthµk

(f⊗k, ε) ≥ Ω(k) · Depthµ(f, ε) and therefore R(f⊗k, ε) ≥ Ω(k) · R(f, ε). (1)

The idea is that given a decision tree T of average depth q that computes f⊗k with error ε,
one can extract a decision tree of average depth q/k that computes f to error ε: place the
input in a random block i ∼ [k], fill the remaining blocks with independent random draws
from µ, and return the ith bit of T ’s output. It is straightforward to show that this reduces
the average depth of T by a factor of k while preserving its error.

Observation #2

The second observation is standard error reduction of randomized algorithms by repetition,
which in particular implies:

R(f, ε
k) ≤ O(log k) · R(f, ε). (2)

Combining Equations (1) and (2) yields a strong direct sum theorem

R(f⊗k, ε) ≥ Ω
(

k

log k

)
· R(f, ε

k)

that is within a O(log k) factor of optimal.

Blais–Brody

Using more sophisticated techniques, Blais and Brody [6] were recently able remove to this
O(log k) factor and obtain an optimal strong direct sum theorem for R. Building on their
work, Brody, Kim, Lerdputtipongporn, and Srinivasulu [9] then obtained an optimal strong
XOR lemma for R.

2.2 Error reduction fails in the distributional setting
While the crux of [6] and [9]’s works is the removal of a O(log k) factor, the situation is
very different in the distributional setting. As mentioned, prior to our work even a direct
sum theorem where both factor-of-Ω̃(k) blowups in Theorem 1 are replaced by 1.01 was not
known to hold.

With regards to the argument above, it is Observation #2 that breaks in the distributional
setting – not only does error reduction by repetition break, the distributional analogue
of Equation (2) is simply false. This points to a fundamental difference between distributional

CCC 2024

16:4 A Strong Direct Sum Theorem for Distributional Query Complexity

and randomized complexity: while generic error reduction of randomized algorithms is possible
in all reasonable models of computation, the analogous statement for distributional complexity
is badly false in all reasonable models of computation. For the query model specifically,
in Appendix C we give an easy proof of the following:

▶ Fact 1. For any n ∈ N and µ being the uniform distribution over {±1}n, there is a
function f : {±1}n → {±1} such that Depthµ(f, 1

4) = 0 and yet Depthµ(f, 1
8) ≥ Ω(n).

2.3 A brief summary of our approach
We revisit Observation #1 and show how the very same extraction strategy can in fact yield
a tree with error Θ(ε/k), instead of ε, at the expense of only a slight increase in depth. A key
technical ingredient in our analysis is Impagliazzo’s Hardcore Theorem [14]. For intuition
as to why this theorem may be relevant for us, we note that it is tightly connected to the
notion of boosting from learning theory – they are, in some sense, dual to each other [23].
And boosting is, of course, a form of error reduction, albeit one that is more intricate than
error reduction by repetition.

See Section 5 for a detailed overview of our approach, including a discussion of why
Impagliazzo’s Hardcore Theorem, as is, does not suffice, thereby necessitating our new
“resilience lemma” that accompanies it.

3 Prior Work

We now place Theorem 1 within the context of prior work on direct sum and product theorems
for distributional query complexity. This is a fairly large body of work that dates back to
the 1990s.

3.1 Standard direct sum and product theorems
Standard direct sum theorems

As we sketched in Section 2.1, a simple argument shows that

Depthµk

(f⊗k, ε) ≥ Ω(k) · Depthµ(f, ε). (3)

This along with an application of Markov’s inequality yields:

Depthµk

(f⊗k, ε − ε′) ≥ Ω(ε′k) · Depthµ(f, ε), (4)

where Depthµ(·, ·) is the analogue of Depthµ(·, ·) for worst-case instead of expected query
complexity. (The details of these arguments are spelt out in [19, 5].)

Note that the error budget is the same on both sides of Equation (3) and the error budget
on the RHS of Equation (4) is larger than that of the LHS. In a strong direct sum theorem
one seeks a lower bound even when the error budget on the RHS is much smaller than that
of the LHS, ideally by a multiplicative factor of k to match the naive upper bound.

A direct product theorem

Impagliazzo, Raz, and Wigderson [16] proved a direct product theorem which focuses on the
blowup in error. They showed that:

Depthµk

(f⊗k, ε) ≥ Depthµ(f, ε
k). (5)

While this result has the sought-for factor of k difference between the error budgets on the
LHS and RHS, it comes at the price of there no longer being any blowup in depth.

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:5

3.2 Progress and barriers towards a strong direct sum theorem
These results naturally point to the problem of proving a unifying strong direct sum theorem.
We now survey efforts at such a best-of-both-worlds result over the years.

Decision forests

Nisan, Rudich, and Saks [27] proved the following strengthening of [16]’s result. While [16]
gives an upper bound on the success probability of a single depth-d decision tree for f⊗k, [27]
showed that the same bound holds even for decision forests where one gets to construct a
different depth-d tree for each of the k copies of f .

Since one can always stack the k many depth-d trees in a decision forest to obtain a single
tree of depth kd, [27]’s result establishes a special case of a strong direct sum theorem under
a structural assumption on the tree for f⊗k. See Figure 3 in Appendix A for an illustration
of the stacked decision tree that one gets from a decision forest.

Fair decision trees

Building on the techniques of [27], Shaltiel [30] proved a strong direct sum theorem under a
different structural assumption on the tree for f⊗k. He considered decision trees of depth kd

that are “fair” in the sense that every path queries each of the k blocks of variables at most
d times. ([30] actually proved a strong XOR lemma for fair decision trees, which implies a
strong direct sum theorem for such trees.) See Figure 4 in Appendix A for an illustration of
a fair decision tree.

Shaltiel’s counterexample for worst-case query complexity

These results of [27] and [30] could be viewed as evidence in favor of a general strong direct
sum theorem, one that does not impose any structural assumptions on the tree for f⊗k.
However, in the same paper Shaltiel also presented an illuminating example: he constructed
a function, which we call Shal, and a distribution µ such that for all k ∈ N,

Depthµk

(Shal⊗k, ε) ≤ O
(
Depthµ(Shal, ε

k)
)
. (6)

This shows, surprisingly, that for worst-case query complexity, the factor-of-Ω(k) blowup in
query complexity that one seeks in a strong direct sum theorem is not always necessary, and
in fact sometimes even a constant factor suffices.

Shaltiel’s counterexample vs. Theorem 1

This counterexample for worst-case query complexity should be contrasted with our main
result, Theorem 1, which shows that a strong direct sum theorem holds for expected query
complexity. Indeed, the starting point of our work was the encouraging observation that
Shaltiel’s function does in fact satisfy a strong direct sum theorem if one instead considers
expected query complexity. That is, for any ε < 1 and sufficiently large k,

Depthµk

(Shal⊗k, ε) ≥ Ω(k) · Depthµ(Shal, ε
k).

This is a simple observation but appears to have been overlooked. As we now overview,
subsequent work considered other ways of sidestepping Shaltiel’s counterexample.

CCC 2024

16:6 A Strong Direct Sum Theorem for Distributional Query Complexity

3.3 Results in light of Shaltiel’s counterexample
A strong direct sum theorem for the OR function

Klauck, Špalek, and de Wolf [22] sidestepped Shaltiel’s counterexample by considering a
specific function (and distribution): motivated by applications to time-space tradeoffs, they
proved a strong direct sum theorem for the OR function and with µ being its canonical hard
distribution. Using this, they also showed, for all functions f a lower bound on f⊗k’s query
complexity in terms of f ’s block sensitivity. This stands in contrast to a strong direct sum
theorem where one seeks a lower bound on f⊗k’s query complexity in terms of f ’s query
complexity.

A phase transition in Shaltiel’s counterexample

The precise parameters of Shaltiel’s counterexample are:

Depthµk

(Shal⊗k, e−Θ(δk)) ≤ Cδk · Depthµ(Shal, δ)

for all sufficiently large constants C. Importantly, the multiplicative factor on the RHS is
only δk instead of k, and therefore becomes a constant if the initial hardness parameter is
δ = ε/k (thereby yielding Equation (6)).

Drucker [10] showed that there is a “phase transition” in Shaltiel’s counterexample in the
following sense: for all functions f and a sufficiently small constant c > 0,

Depthµk

(f⊗k, 1 − e−Θ(δk)) ≥ cδk · Depthµ(f, δ). (7)

Therefore, while [30] showed the existence of a function Shal such that its k-fold direct
product can be computed to surprisingly low error if the depth budget is Cδk · Depthµ(f, δ)
for a sufficiently large constant C, [10] showed that for all functions f , this stops being the
case if the depth budget is instead cδk · Depthµ(f, δ) for a sufficiently small constant c.

Query complexity with aborts

Blais and Brody [6] showed that Shaltiel’s counterexample can be sidestepped in a different
way. En route to proving their strong direct sum theorem for randomized query complexity
(discussed in Section 2), they considered decision trees T : {±1}n → {±1, ⊥} that are allowed
to output ⊥ (“abort”) on certain inputs, and where the error of T in computing a function
f : {±1}n → {±1} is measured with respect to T −1({±1}). In other words, T ’s output on x

is considered correct if T (x) = ⊥.
Writing Depthµ

Pr[⊥]≤ 1
3
(f, ε) to denote the minimum depth of any decision tree for f that

aborts with probability at most 1/3 and otherwise errs with probability at most ε (both
w.r.t. µ), [6] proved that

Depthµk

Pr[⊥]≤ 1
3
(f⊗k, ε) ≥ Ω(k) · Depthµ

Pr[⊥]≤ 1
3
(f, ε

k). (8)

Even though the error budget on non-aborts is only ε/k on the RHS, the fact that the
tree is allowed to abort with probability 1/3 means that it is deemed correct on a 1/3 fraction
of inputs “for free”. A decision tree that aborts with probability 1/3 and otherwise errs with
probability ε/k can therefore be much smaller than one that never aborts and errs with
probability ε/k, and indeed, it is easy to construct examples witnessing the maximally large
separation:

n = Depthµ(f, ε
k) ≫ Depthµ

Pr[⊥]≤ 1
3
(f, ε

k) = 1.

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:7

Building on [6], Brody, Kim, Lerdputtipongporn, and Srinivasulu [9] proved a strong
XOR lemma for this model of query complexity with aborts, achieving analogous parameters.

A strong XOR lemma assuming hardness against all depths

A standard strong XOR lemma states that if f is hard against decision trees of certain
fixed depth d, then f⊗k is much harder against decision trees of depth Ω(dk). Recent work
of Hoza [13] shows that Shaltiel’s counterexample can be sidestepped if one allows for the
stronger assumption that f ’s hardness “scales nicely” with d. (See the paper for the precise
statement of the resulting strong XOR lemma.)

3.4 Summary
Summarizing, prior work on direct sum and product theorems for distributional query
complexity either: focused on the blowup in error [16] or query complexity [19, 5] but not
both; considered restrictions (fair decision trees [30]) or variants (decision forests [27]; allowing
for aborts [6, 9]) of the query model; focused on specific functions (the OR function [22]); or
imposed additional hardness assumptions about the function [13]. Theorem 1, on the other
hand, gives a strong direct sum theorem that holds for all functions in the standard query
model. See Table 1.

Table 1 Direct sum and product theorems for distributional query complexity.

Reference Error
Amplification

Query
Amplification

Query model/
Assumption

[19, 5] × ✓ Standard query model

[16] ✓ × Standard query model

[27] ✓ ✓ Decision forests

[30] ✓ ✓ Fair decision trees

[22] ✓ ✓ f = OR

[6, 9] ✓ ✓ Decision trees with aborts

[13] ✓ ✓ Hardness against all depths

Theorem 1 ✓ ✓ Standard query model

4 Formal statements of our results and their tightness

Theorem 1 is a special case of the following result:

▶ Theorem 2 (Strong direct sum theorem). For every function f : {±1}n → {±1}, distribution
µ over {±1}n, k ∈ N, and γ, δ ∈ (0, 1), we have that

Depthµk

(f⊗k, 1 − e−Θ(δk) − γ) ≥ Ω
(

γ2k

log(1/δ)

)
· Depthµ(f, δ).

CCC 2024

16:8 A Strong Direct Sum Theorem for Distributional Query Complexity

We in fact prove a strong threshold direct sum theorem which further generalizes Theorem 2:
while a direct sum theorem shows that f⊗k is hard to compute, i.e. it is hard to get all k

copies of f correct, a threshold direct sum theorem shows that it is hard even to get most of
the k copies of f correct. See Theorem 22.

By the equivalence between strong direct sum theorems and strong XOR lemmas
(Claim 35), we also get:

▶ Theorem 3 (Strong XOR lemma). For every function f : {±1}n → {±1} and distribution
µ over {±1}n, k ∈ N, and γ, δ ∈ (0, 1), we have that

Depthµk (
f⊕k, 1

2 (1 − e−Θ(δk) − γ)
)

≥ Ω
(

γ2k

log(1/δ)

)
· Depthµ(f, δ).

4.1 Tightness
Theorem 2 amplifies an initial hardness parameter of δ = Θ(1/k) to 1 − γ for any small
constant γ with a near-optimal overhead of

Ω
(

γ2k

log(1/δ)

)
= Ω

(
k

log k

)
.

However, due to the polynomial dependence on γ, we cannot achieve a final hardness parameter
that is exponentially close to 1 as a function of k. We show that this is unavoidable since at
least a linear dependence on γ is necessary:

▷ Claim 4 (Linear dependence on γ is necessary). Let Par : {±1}n → {±1} be the parity
function and µ be the uniform distribution over {±1}n. Then for all γ,

Depthµk

(Par⊗k, 1 − γ) ≤ O(γk) · Depthµ(Par, 1
4).

The same example shows that a linear dependence on γ is likewise necessary in the setting
of XOR lemmas. Determining the optimal polynomial dependence on γ in both settings, as
well as the necessity of the log(1/δ) factor, are concrete avenues for future work.

5 Technical Overview for Theorem 2

5.1 Hardcore measures and the Hardcore Theorem
At the heart of our proof is the notion of a hardcore measure and Impagliazzo’s Hardcore
Theorem [14], both adapted to the setting of query complexity.

▶ Definition 5 (Hardcore measure for query complexity). We say that H : {±1}n → [0, 1] is a
(γ, d)-hardcore measure for f : {±1}n → {±1} w.r.t. µ of density δ if:
1. H’s density is δ: E

x∼µ
[H(x)] = δ.

2. d-query algorithms achieve correlation at most γ with f on H:

E
x∼µ

[f(x)T (x)H(x)] ≤ γ E
x∼µ

[H(x)] = γδ.

for all decision trees T whose expected depth w.r.t. µ is at most d.

▶ Theorem 6 (Hardcore Theorem for query complexity). For every function f : {±1}n → {±1},
distribution µ over {±1}n, and γ, δ > 0, there exists a (γ, d)-hardcore measure H for f of
density δ/2 w.r.t. µ where

d = Θ
(

γ2

log(1/δ)

)
Depthµ(f, δ).

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:9

The Hardcore Theorem was originally proved, and remains most commonly used, in the
setting of circuit complexity where it has long been recognized as a powerful result. (See
e.g. [34], where it is described as “one of the bits of magic of complexity theory”.) We
show in Appendix B that its proof extends readily to the setting of query complexity to
establish Theorem 6. Despite its importance in circuit complexity and its straightforward
extension to query complexity, our work appears to be the first to consider its applicability
in the latter setting.

▶ Remark 7. For intuition regarding Definition 5, note that if H : {±1}n → {0, 1} is the
indicator of a set, the two properties simplify to: Pr

x∼µ
[x ∈ H] = δ and E

x∼µ
[f(x)T (x) | x ∈

H] ≤ γ.

5.2 Two key quantities: hardcore density and hardcore advantage at a
leaf

Setup

For the remainder of this section, we fix a function f : {±1}n → {±1}, distribution µ

over {±1}n, and initial hardness parameter δ (which we think of as small, close to 0). Let
T : ({±1}n)k → {±1}k be a decision tree that seeks to compute f⊗k w.r.t. µk. Our goal is
to show that T ’s error must be large, close to 1, unless its depth is sufficient large.

Definitions of the hardcore density and hardcore advantage at a leaf

Let H : {±1}n → [0, 1] be a (γ, d)-hardcore measure for f of density δ w.r.t. µ given
by Theorem 6. Each leaf ℓ of T corresponds to a tuple of restrictions (π1, . . . , πk) to each of
the k blocks of inputs. We will be interested in understanding, for a random block i ∈ [k], the
extent to which the restricted function Hπi

retains the two defining properties of a hardcore
measure: high density and strong hardness. We therefore define:

▶ Definition 8 (Hardcore density at ℓ). For i ∈ [k], the hardcore density at ℓ in the ith block
is the quantity:

DensH(ℓ, i) := E
X∼µk

[
H(X(i)) | X reaches ℓ

]
.

The total hardcore density at ℓ is the quantity DensH(ℓ) :=
k∑

i=1
DensH(ℓ, i).

See Figure 1 for an illustration of Definition 8.

▶ Definition 9 (Hardcore advantage at ℓ). For i ∈ [k], the hardcore advantage at ℓ in the ith
block is the quantity:

AdvH(ℓ, i) :=
∣∣∣ E
X∼µk

[
f(X(i))T (X)iH(X(i)) | X reaches ℓ

]∣∣∣.
The total hardcore advantage at ℓ is the quantity AdvH(ℓ) :=

k∑
i=1

AdvH(ℓ, i).

Intuitively, leaves for which DensH(ℓ) is large and AdvH(ℓ) is small contribute significantly
to error of T . Lemma 10 below formalizes this:

CCC 2024

16:10 A Strong Direct Sum Theorem for Distributional Query Complexity

π

H H H, ,

, ,Leaf ℓ

Hardcore measure Hπ1 with DensH(ℓ, 1) = area()/area(□)

Queries along path π

Figure 1 Illustration of a hardcore density. The tree T : ({±1}n)3 → {±1}3 seeks to compute a
function f⊗3. The tuple of squares at the top of the figure illustrates the set of all inputs to the
function while the strings in the support of the hardcore measure are shaded gray. The tuple at
the bottom of the figure illustrates the set of inputs reaching the leaf ℓ. Each block is the subcube
consistent with the path π and the shaded region denotes the fragment of H which is contained in
the corresponding subcube.

Notation

Canonical distribution over leaves. We write µk(T) to denote the distribution over leaves
of T where:

Pr
ℓ∼µk(T)

[ℓ = ℓ] = Pr
X∼µk

[X reaches ℓ].

▶ Lemma 10 (Accuracy in terms of hardcore density and advantage at leaves).

Pr
X∼µk

[T (X) = f⊗k(X)] ≤ E
ℓ∼µk(T)

[
exp
(

−DensH(ℓ) − AdvH(ℓ)
4

)]
.

5.3 Expected total hardcore density and advantage

Lemma 10 motivates understanding the random variables DensH(ℓ) and AdvH(ℓ) for ℓ ∼
µk(T). We begin by bounding their expectations:

▷ Claim 11 (Expected total hardcore density). If H is a hardcore measure of density δ then

E
ℓ∼µk(T)

[DensH(ℓ)] = δk.

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:11

Claim 11 is a statement about density preservation. It says that H’s expected density at
a random leaf ℓ ∼ µk(T) and in a random block i ∼ [k] is equal to H’s initial density:

E
ℓ∼µk(T)

i∼[k]

[
E

X∼µk

[
H(X(i)) | X reaches ℓ

]
︸ ︷︷ ︸

DensH (ℓ,i)

]
= δ = E

x∼µ
[H(X)].

▷ Claim 12 (Expected total hardcore advantage). If H is a (γ, d)-hardcore measure for f of
density δ w.r.t. µ and the expected depth of T is at most dk, then

E
ℓ∼µk(T)

[AdvH(ℓ)] ≤ γ E
ℓ∼µk(T)

[DensH(ℓ)].

Claim 12 is a statement about depth amplification. By definition, H being a (γ, d)-
hardcore measure for f means that

E
x∼µ

[f(x)Tsmall(x)H(x)]︸ ︷︷ ︸
Hardcore advantage

≤ γ E
x∼µ

[H(x)]︸ ︷︷ ︸
Hardcore density

for every tree Tsmall : {±1}n → {±1} of expected depth d. Claim 12 says that

k∑
i=1

E
X∼µk

[
f(X(i))Tlarge(X)iH(X(i))

]
︸ ︷︷ ︸

Total hardcore advantage

≤ γ
k∑

i=1
E

X∼µk
[H(X(i))]︸ ︷︷ ︸

Total hardcore density

.

for every tree Tlarge : ({±1}n)k → {±1}k of expected depth dk. Crucially, the depth of
Tlarge is allowed to be a factor of k larger than that of Tsmall, and yet the ratio of hardcore
advantage to hardcore density remains the same (γ in both cases).

5.3.1 Done if Jensen went the other way

For intuition as to why Claim 11 and Claim 12 are relevant yet insufficient for us, note that
if it were the case that E[exp(−Z)] ≤ exp(−E[Z]), which unfortunately is the opposite of
what Jensen’s inequality gives, we would have the strong bound on the accuracy of T that
we seek:

Pr
X∼µk

[T (X) = f⊗k(X)] ≤ E
ℓ∼µk(T)

[
exp
(

−DensH(ℓ) − Advh(ℓ)
4

)]
(Lemma 10)

“ ≤ ” exp
(

− E
ℓ∼µk(T)

[
DensH(ℓ) − AdvH(ℓ)

4

])
(Wrong direction of Jensen)

≤ exp
(

− δk − γδk

4

)
(Claim 11 and Claim 12)

≤ exp(−Θ(δk)).

For an actual proof, we need to develop a more refined understanding of the distribution
of DensH(ℓ) beyond just its expectation. (As it turns out, this along with the bound on
E[AdvH(ℓ)] given by Claim 12 suffices.)

CCC 2024

16:12 A Strong Direct Sum Theorem for Distributional Query Complexity

5.4 A resilience lemma for hardcore measures
An illustrative bad case to rule out

Suppose T were such that it achieved E[DensH(ℓ)] = δk by having a δ-fraction of leaves with
DensH(ℓ) = k and the remaining 1 − δ fraction with DensH(ℓ) = 0. If this were the case then
“all the hardness” would be concentrated on a small δ fraction of leaves, and the best lower
bound that we would be able to guarantee on error of T with respect to f⊗k would only be
δ. This is our starting assumption on the hardness of f , and so no error amplification has
occurred.

The resilience lemma

We rule out cases like this by showing that T must achieve E[DensH(ℓ)] = δk by having the
vast majority of its leaves with DensH(ℓ) = Ω(δk), i.e. that DensH(ℓ) is tightly concentrated
around its expectation:

▶ Lemma 13 (Resilience lemma). For any hardcore measure H of density δ w.r.t. µ

and tree T : ({±1}n)k → {±1}k,

Pr
ℓ∼µk(T)

[DensH(ℓ) ≤ δk/2] ≤ e−δk/8.

Similarly, Pr
ℓ∼µk(T)

[DensH(ℓ) ≥ 2δk] ≤ e−δk/3.

Leaf ℓ with
DensH(ℓ) = 0

δ-fraction (1 − δ)-fraction

k k k k k 0 0 0 0 0 0 0

(a) An illustration of the bad case where DensH

is anti-concentrated away from its mean of δk.

Leaf ℓ with
DensH(ℓ) ≈ δk

≈ δk ≈ δk ≈ δk ≈ δk ≈ δk ≈ δk

(b) An illustration of the good case where DensH

is concentrated around its mean of δk.

Figure 2 An illustration of our resilience lemma (Lemma 13). This lemma shows that all trees
resemble the one on the right, with DensH(ℓ) tightly concentrated around its mean of δk. This
allows us to rule out bad trees such as those on the left where all of the hardness is concentrated on
a small fraction of the leaves.

Comparing Lemma 13 to Claim 12, we see that Claim 12 is a statement about density
preservation in expectation whereas Lemma 13 is a statement about density preservation
with high probability. It says that H’s density at a random leaf ℓ ∼ µk(T) and in a random

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:13

block i ∼ [k] remains, with high probability, roughly the same as that of H’s initial density –
this is why we call Lemma 13 a resilience lemma. (Our proof of Lemma 13 in fact shows
that the H’s density remains resilient under arbitrary partitions of ({±1}n)k, not just those
induced by a decision tree.)

With Lemma 13 in hand, the intuition sketched in Section 5.3.1 can be made formal.

6 Discussion and Future Work

Our main results are a strong direct sum theorem and a strong XOR lemma for distributional
query complexity, showing that if f is somewhat hard to approximate with depth-d decision
trees, then f⊗k and f⊕k are both much harder to approximate, even with decision trees of
much larger depth. These results hold for expected query complexity, and they circumvent a
counterexample of Shaltiel showing that such statements are badly false for worst-case query
complexity. We view our work as confirming a remark Shaltiel made in his paper, that his
counterexample “seems to exploit defects in the formulation of the problem rather than show
that our general intuition for direct product assertions is false.”

Shaltiel’s counterexample applies to many other models including boolean circuits and
communication protocols. A broad avenue for future work is to understand how this
counterexample can be similarly circumvented in these models by working with more fine-
grained notions of computation cost. Consider for example boolean circuit complexity and
Yao’s XOR lemma [36], which states that if f is mildly hard to approximate with size-s
circuits w.r.t. µ, then f⊕k is extremely hard to approximate with size-s′ circuits w.r.t. µk.
A well-known downside of this important result is that it only holds for s′ ≪ s. Indeed,
Shaltiel’s counterexample shows that it cannot hold for s′ ≫ s, at least not for the standard
notion of circuit size. Extrapolating from our work, can we prove a strong XOR lemma for
boolean circuits by considering a notion of the “expected size” of a circuit C : {±1}n → {±1}
with respect to a distribution µ over {±1}n? A natural approach is to consider the standard
notion of the expected runtime of a Turing machine with respect to a distribution over inputs
and have the Cook–Levin theorem guide us towards an appropriate analogue for circuit size.

On a more technical level, a crucial ingredient in our work is the first use of Impagliazzo’s
Hardcore Theorem within the context of query complexity (and indeed, to our knowledge, the
first use of it outside of circuit complexity). Could this powerful theorem be useful for other
problems in query complexity, possibly when used in conjunction with our new resilience
lemma?

7 Preliminaries

We use [n] to denote the set {1, 2, . . . , n} and bold font (e.g x ∼ D) to denote random
variables. For any distribution µ, we use µk to denote k-fold the product distribution
µ × · · · × µ.

For any function f : {±1}n → {±1}, we use f⊗k : ({±1}n)k → {±1}k to denote its k-fold
direct product,

f⊗k(X(1), . . . , X(k)) :=
(
f(X(1)), . . . , f(X(k))

)
.

Similarly, we use f⊕k : ({±1}n)k → {±1} to denote its k-fold direct sum,

f⊕k(X(1), . . . , X(k)) :=
∏

i∈[k]

f(X(i)).

CCC 2024

16:14 A Strong Direct Sum Theorem for Distributional Query Complexity

▶ Definition 14 (Bernoulli distribution). For any δ ∈ [0, 1], we write Ber(δ) to denote the
distribution of z where z = 1 with probability δ and 0 otherwise.

▶ Definition 15 (Binomial distribution). For any k ∈ N, δ ∈ [0, 1], we write Bin(k, δ) to
denote the sum of k independent random variables drawn from Ber(δ).

▶ Fact 2 (Chernoff bound). Let z1, . . . , zk be independent and each bounded within [0, 1] and
Z :=

∑
i∈[k] zi. For any threshold t ≤ µ := E[Z],

Pr[Z ≤ t] ≤ exp
(

− (µ−t)2

2µ

)
.

Similar bounds for the probability Z exceeds its mean hold. For example,

Pr[Z ≥ 2µ] ≤ exp
(
− µ

3
)
.

Furthermore, the above bounds also hold for any random variable Y satisfying E[eλY] ≤
E[eλZ] for all λ ∈ R.

7.1 Randomized vs. deterministic decision trees
We will prove all of our results with respect to the expected depth of a randomized decision
tree. In this subsection, we formally define deterministic and randomized decision trees and
prove that our results easily extend to the deterministic setting.

▶ Definition 16 (Deterministic decision tree). A deterministic decision tree, T : {±1}n →
{±1}, is a binary tree with two types of nodes: Internal nodes each query some xi for i ∈ [n]
and have two children whereas leaf nodes are labeled by a bit b ∈ {±1} and have no children.
On input x ∈ {±1}n, T (x) is computed as follows: We proceed through T starting at the root.
Whenever at an internal node that queries the ith coordinate, we proceed to the left child if
xi = −1 and right child if xi = +1. Once we reach a leaf, we output the label of that leaf.

▶ Definition 17 (Randomized decision tree). A randomized decision tree, T : {±1}n → {±1},
is distribution over deterministic decision trees. On input x ∈ {±1}n, it first draws T ∼ T
and then outputs T (x).

▶ Definition 18 (Expected depth). For any deterministic decision tree T : {±1}n → {±1}
and distribution µ on {±1}n, we use Depthµ(T) to denote the expected depth of T , which
is the expected number of coordinates T queries on a random input x ∼ µ. Similarly, for a
randomized decision tree T , Depthµ(T) := ET ∼T [Depthµ(T)].

We write Depthµ(·, ·) to denote the minimum expected depth of any decision tree,
including randomized decision trees. Thus, all of our main results, as written, hold for
randomized decision trees; however, equivalent statements are true if we restrict ourselves to
only deterministic decision trees, with only a small change in constants, as easily seen from
the following claim.

▷ Claim 19. For any f : {±1}n → {±1}, distribution µ, and constant ε,

Depthµ(f, 2ε) ≤ Depthµ

det(f, 2ε) ≤ 2 · Depthµ(f, ε).

Proof. The left-most inequality follows immediately from that fact that any deterministic
decision tree is also a randomized decision tree. For the second inequality, given any
randomized decision tree T with error ε and expected depth d, we’ll construct a deterministic

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:15

decision tree T with error at most 2ε and expected depth at most 2d. First, we decompose
the expected error of T :

ε = Pr
x∼µ

[T (x) ̸= f(x)] = E
T ∼T

[
Pr

x∼µ
[T (x) ̸= f(x)]

]
.

Applying Markov’s inequality, if we sample T ∼ T , with probability at least 1/2, it has error
at most ε. Similarly, since the expected depth of T is d, with probability at least 1/2, T will
have expected depth at most 2d. By union bound, there is a nonzero probability that we
choose a single (deterministic) tree with error at most 2ε and expected depth at most 2d.

◁

Claim 19 immediately allows direct sum theorems for randomized decision trees to also apply
to deterministic decision trees.

▶ Corollary 20 (Randomized direct sum theorems imply deterministic ones). Suppose that a
randomized direct sum theorem of the following form holds. For a function f : {±1}n → {±1},
distribution µ over {±1}n, k ∈ N, and constants ε, δ, M ,

Depthµ⊗k

(f⊗k, ε) ≥ M · Depthµ(f, δ).

Then,

Depthµ⊗k

det (f⊗k, ε) ≥ Depthµ⊗k

(f⊗k, ε) ≥ M · Depthµ(f, δ) ≥ M
2 · Depthµ

det(f, 2δ).

With Corollary 20 in mind, the remainder of this paper will only consider randomized decision
trees.

8 Proof of Theorem 2

The purpose of this section is to prove our direct sum theorem (Theorem 2) showing that
if f is hard to compute, than f⊗k is even harder to compute. We will in fact prove a
threshold direct sum theorem, showing that it is hard even to get most of the k copies correct.
To formalize this, we generalize the notation Depth(·, ·) to take in an additional threshold
parameter t specifying how many blocks we allow to be wrong.

▶ Definition 21. For any function f : {±1}n → {±1}, error ε, and threshold t ∈ N, we use
Depthµk

(f⊗, ε, t) to denote the minimum expected depth of a tree T : ({±1}n)k → {±1}k

satisfying

Pr
X∼µk

[
∥T (X) − f⊗k(X)∥0] > t

]
≤ ε.

▶ Theorem 22 (A strong threshold direct sum theorem for query complexity). For every
function f : {±1}n → {±1}, distribution µ over {±1}n, k ∈ N, and γ, δ ∈ (0, 1),

Depthµk

(f⊗k, 1 − e−Ω(δk) − γ, Ω(δk)) ≥ Ω
(

γ2k

log(1/δ)

)
· Depthµ(f, δ).

Note that the threshold of Ω(δk) is within a constant factor of optimal, as repeating an
algorithm that errs δ fraction of the time k times will lead to an average of δk mistakes. The-
orem 22 implies our standard strong direct sum theorem (Theorem 2) because

Depthµk

(f⊗k, ε, t) ≥ Depthµk

(f⊗k, ε, 0) = Depthµk

(f⊗k, ε)

for any t ≥ 0 and ε > 0.

CCC 2024

16:16 A Strong Direct Sum Theorem for Distributional Query Complexity

8.1 The structure of this section
By the Hardcore Theorem (Theorem 6), proving Theorem 22 reduces to proving:

▶ Theorem 23 (Hardness of f⊗k in terms of a hardcore measure for f). Suppose that
f : {±1}n → {±1} has an (γ, d)-hardcore measure w.r.t µ of density δ. Then, for any
T : ({±1}n)k → {±1}k with Depthµk

(T) ≤ kd,

Pr
X∼µk

[
∥T (X) − f⊗k(X)∥0 ≤ δk

10
]

≤ e− δk
10 + 10γ.

This section is therefore devoted to proving Theorem 23. As discussed in Section 5, our
proof tracks two key quantities: we will analyze how hardcore density (Definition 8) and
hardcore advantage (Definition 9) are distributed over the leaves of T . This proof will be
broken into three steps:
1. In Section 8.2, we prove Claim 12 and Lemma 13, which aim to understand the distribu-

tions of the hardcore density and hardcore advantage of a random leaf of T .
2. In Section 8.3, we derive an expression for the probability T makes surprisingly few

mistakes as a function of the hardcore density and hardcore advantage at each leaf. This
generalizes Lemma 10.

3. In Section 8.4, we combine the above to prove Theorem 23.

8.2 How hardcore density and advantage distribute over the leaves
We begin with proving our resilience lemma for hardcore density. Roughly speaking, this
will say that for any tree T : ({±1}n)k → {±1}k, the hardcore density of a random leaf
concentrates around δk. We recall the definition of hardcore density.

▶ Definition 24 (Hardcore density at ℓ, Definition 8 restated). For any tree T : ({±1}n)k →
{±1}k, hardcore measure H : {±1}n → [0, 1], distribution µ on {±1}n, i ∈ [k], and leaf ℓ of
T , the hardcore density at ℓ in the ith block is the quantity:

DensH(ℓ, i) := E
X∼µk

[
H(X(i)) | X reaches ℓ

]
.

The total hardcore density at ℓ is the quantity DensH(ℓ) :=
k∑

i=1
DensH(ℓ, i).

The distribution over leaves in the resilience lemma is the canonical distribution.

▶ Definition 25 (Canonical distribution). For any tree T and distribution µ over T ’s domain,
we write µ(T) to denote the distribution over leaves of T where:

Pr
ℓ∼µk(T)

[ℓ = ℓ] = Pr
X∼µ

[X reaches ℓ].

▶ Lemma 26 (Resilience lemma, generalization of Lemma 13). For any T : ({±1}n)k → {±1}k,
hardcore measure H, distribution µ, and convex Φ : R → R,

E
ℓ∼µk(T)

[Φ(DensH(ℓ))] ≤ E
z∼Bin(k,δ)

[Φ(z)]

where δ := Ex∼µ[H(x)] is the density of H w.r.t. µ.

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:17

Proof. Draw X ∼ µk. Then, for each i ∈ [k], independently draw zi ∼ Ber(H(X(i))). Note
that, for any leaf ℓ and i ∈ [k],

DensH(ℓ, i) := E
X∼µk

[H(X(i)) | X reaches ℓ] = E
X∼µk

[zi | X reaches ℓ].

By the above equality and definition DensH(ℓ) =
∑

i∈[k] DensH(ℓ, i),

E
ℓ∼µk(T)

[Φ(DensH(ℓ))] = E
ℓ∼µk(T)

[
Φ
(

E
X∼µk

[∑
i∈[k]

zi | X reaches ℓ

])]

≤ E
ℓ∼µk(T)

[
E

X∼µk

[
Φ
(∑

i∈[k]

zi | X reaches ℓ

)]]
(Jensen’s inequality)

= E
X∼µk

[
Φ
(∑

i∈[k]

zi

)]
. (Law of total expectation)

Note that the last line holds precisely for the distribution µk(T) defined in Definition 25,
which is why we use that distribution.

Since X is drawn from a product distribution, and zi depends on only the ith coordinate
of X, z1, . . . , zk are independent. Furthermore, each has mean Ex∼µ[H(x)] = δ. Therefore,∑

i∈[k] zi is distributed according to Bin(k, δ). ◀

A couple of remarks about the above Lemma: First, it implies that DensH(ℓ) concentrates
around δk. Since z 7→ eλz is convex for any λ ∈ R, Lemma 26 implies that the moment
generating function of DensH(ℓ) is dominated by that of Bin(k, δ). This means that Chernoff
bounds that hold for Bin(k, δ) also hold for DensH(ℓ). In particular, the statement of
Lemma 13 is a consequence of the Chernoff bound given in Fact 2.

Second, the proof of Lemma 26 does not make heavy use of the decision tree structure
of T . It only uses that the leaves of T partition ({±1}n)k, and so may find uses for other
models that partition the domain.

Depth amplification for hardcore advantage

While the resilience lemma gives a fairly fine-grained understanding of how hardcore density
distributes among the leaves, our guarantee for hardcore advantage are more coarse – that
its expectation over the leaves is bounded.

▶ Definition 27 (Hardcore advantage at ℓ, Definition 9 restated). For any tree T : ({±1}n)k →
{±1}k, hardcore measure H : {±1}n → [0, 1], distribution µ on {±1}n, i ∈ [k], and leaf ℓ of
T , the hardcore advantage at ℓ in the ith block is the quantity:

AdvH(ℓ, i) :=
∣∣∣ E
X∼µk

[
f(X(i))T (X)iH(X(i)) | X reaches ℓ

]∣∣∣. (9)

The total hardcore advantage at ℓ is the quantity AdvH(ℓ) :=
k∑

i=1
AdvH(ℓ, i).

▶ Lemma 28 (Expected total hardcore advantage, Claim 12 restated). If H is a (γ, d)-hardcore
measure for f of density δ w.r.t. µ and the expected depth of T is at most dk, then

E
ℓ∼µk(T)

[AdvH(ℓ)] ≤ γ E
ℓ∼µk(T)

[DensH(ℓ)] = γδk.

CCC 2024

16:18 A Strong Direct Sum Theorem for Distributional Query Complexity

Proof of Lemma 28. By contrapositive. Suppose there exists Tlarge : ({±1}n)k → {±1}k

making dk queries on average w.r.t. µk for which,

E
ℓ∼µk(T)

[AdvH(ℓ)] > γ E
ℓ∼µk(T)

[DensH(ℓ)] = γδk.

Then, we’ll show there exists Tsmall : {±1}n → {±1} making d queries on average w.r.t. µ

for which

E
x∼µ

[f(x)Tsmall(x)H(x)] > γ · E
x∼µ

[H(x)] = γδ.

Before constructing Tsmall, we observe that we can assume, without loss of generality, that
for every leaf ℓ of T , that we can remove the absolute value from Equation (9); i.e. that

AdvH(ℓ, i) = E
X∼µk

[
f(X(i))T (X)iH(X(i)) | X reaches ℓ

]
Otherwise, we could modify this leaf by flipping the label of T (X)i whenever X reaches a
leaf where the above quantity is negative. This does not change the hardcore advantage, so
this new T still satisfies our assumption.

Tsmall will be a randomized algorithm. Upon receiving the input x ∈ {±1}n, it samples
X ∼ µk and i ∼ Unif([k]), and then constructs X(x, i) by inserting x into the ith block
of X,

(X(x, i))(j) =
{

X(j) if j ̸= i

x if j = i.

Then, Tsmall(x) outputs Tlarge(X(x, i))i.
Our analysis of Tsmall relies on the following simple observation: If we sample x ∼ µ,

then even conditioning on any choice of i = i, the distribution of X(x, i) is µk. This also
means that X(x, i) and i are independent.

We claim that Tsmall has the two desired properties; low expected number of queries, and
high accuracy on H. To bound the expected number of queries Tsmall makes on an input
x ∼ µ, we use that X(x, i) is distributed according to µk. Therefore, Tlarge(X(x, i)) makes,
on average, dk queries. Expanded, we have that,∑

i∈[k],j∈[n]

Pr[Tlarge(X(x, i)) queries X(x)(i)
j] = dk.

Whereas, the number of queries Tsmall(x) makes only counts queries to the ith block, and is
therefore,∑

i∈[k],j∈[n]

Pr
[
Tlarge(X(x, i)) queries X(x, i)(i)

j · 1[i = i]
]

=
∑

i∈[k],j∈[n]

Pr
[
Tlarge(X(x, i))) queries X(x, i)(i)

j

]
· 1

k

= d.

In the above, the first equality uses that i is independent of X(x, i), and so is still uniform
on [k] even conditioned on which queries Tlarge makes.

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:19

Lastly, we verify that Tsmall has high accuracy on the hardcore measure.

E
x∼µ

[f(x)Tsmall(x, i))H(x)] = E
x∼µ

[f(x)Tlarge(X(x, i)))iH(x)] (Definition of Tsmall)

= E
i∼[k]

[
E

X∼µk

[
f(X(i))Tlarge(X)iH(X(i))

]]
(i, X(x) are independent)

= E
i∼[k]

[
E

ℓ∼µk(Tlarge)
[AdvH(ℓ, i)]

]
(Definition 27)

= 1
k

E
ℓ∼µk(Tlarge)

[AdvH(ℓ)] > γδ. ◀

8.3 Understanding the error in terms of hardcore density and advantage
To state the main result of this subsection, we’ll define the following distribution for the sum
of independent Bernoulli random variables.

▶ Definition 29. For any p ∈ [0, 1]k, we use BerSum(p) to denote the distribution of
z := z1 + · · · + zk where each zi is independently drawn from Ber(pi).

The following generalizes Lemma 10.

▶ Lemma 30 (Accuracy in terms of hardcore density and advantage of the leaves). Let H be a
(γ, d)-hardcore measure w.r.t. µ for f : {±1}n → {±1}, and T : ({±1}n)k → {±1} be any
tree. Then, for any t ≥ 0,

Pr
X∼µk

[∥∥T (X) − f⊗k(X)
∥∥

0 ≤ t
]

≤ E
ℓ∼µk(T)

[
Pr

z∼BerSum(p(ℓ))
[z ≤ t]

]
where p(ℓ) ∈ [0, 1]k is the vector where

p(ℓ)i := DensH(ℓ, i) − AdvH(ℓ, i)
2 for each i ∈ [k].

Lemma 30 implies a generalization of Lemma 10.

▶ Corollary 31. Let H be a (γ, d)-hardcore measure w.r.t. µ for f : {±1}n → {±1}, and
T : ({±1}n)k → {±1} be any tree. Then, for any t ≥ 0,

Pr
X∼µk

[∥∥T (X) − f⊗k(X)
∥∥

0 ≤ t
]

≤ E
ℓ∼µk(T)

[
min

(
1, exp

(
t − DensH(ℓ) − AdvH(ℓ)

4

))]
.

Proof. The Chernoff bound of Fact 2 says that, for any p ∈ [0, 1]k and µ :=
∑

i∈[k] pi,

Pr
z∼BerSum(p)

[z ≤ t] ≤

exp
(

− (µ−t)2

2µ

)
if µ ≥ t

1 otherwise.

We want to show that the above is bounded by min(1, et−µ/2). Clearly this holds for µ < t,
so we need only consider the case where µ ≥ t

exp
(

− (µ−t)2

2µ

)
= exp

(
− µ2−2tµ+t2

2µ

)
≤ exp

(
− µ2−2tµ

2µ

)
= et−µ/2.

Since exp
(

− (µ−t)2

2µ

)
≤ 1 as well, it is upper bounded by min(1, et−µ/2) as desired. The

desired result follows from Lemma 30 as well as
∑

i∈[k] p(ℓ)i = DensH (ℓ)−AdvH (ℓ)
2 for every

leaf ℓ of T . ◀

CCC 2024

16:20 A Strong Direct Sum Theorem for Distributional Query Complexity

The main observation underlying Lemma 30 is that, if we choose an input X ∼ µk

conditioned on reaching a leaf ℓ ∈ T , that X is distributed according to a k-wise product
distribution (i.e. from µ1(ℓ) × · · · × µk(ℓ) for appropriately defined distributions). The below
is essentially the same as Lemma 3.2 of [10], but we include a proof for completeness.

▷ Claim 32. For any (potentially randomized) tree T : ({±1}n)k → Y and leaf ℓ of T ,
if X ∼ µk, then the distribution of X conditioned on reaching the leaf ℓ is a product
distribution over the k blocks of X.

Proof. First, if T is a randomized tree, it is as a distribution over deterministic trees. If the
desired result holds for each of those deterministic trees, it also holds for T . Therefore, it
suffices to consider the case where T is deterministic.

We’ll prove that the distribution of X reaching any internal node or leaf of T is product
by induction on the depth of that node. If that depth is 0, then all inputs reach it and so
the desired result follows from µk being product.

For depth d ≥ 1, let α be the parent of ℓ. Then α has depth d − 1, so by the inductive
hypothesis, the distribution of inputs reaching α is product. Let i ∈ [k], j ∈ [n], b ∈ {±1} be
chosen so that an input X reaches ℓ iff it reaches α and X

(i)
j = b. Then,

Pr[X = X | X reaches ℓ]

= Pr[X = X | X reaches α] ·
1[X(i)

j = b]

Pr[X(i)
j = b | X reaches α]

=
1[X(i)

j = b]

Pr[X(i)
j = b | X reaches α]

·
∏

ℓ∈[k]

Pr[X(ℓ) = X(ℓ) | X reaches α] (Inductive hypothesis)

=

(∏
ℓ ̸=i

Pr[X(ℓ) = X(ℓ) | X reaches α]

)
·

Pr[X(i) = X(i) | X reaches α] · 1[X(i)
j = b]

Pr[X(i)
j = b | X reaches α]

=

(∏
ℓ ̸=i

Pr[X(ℓ) = X(ℓ) | X reaches α]

)
· Pr[X(i) = X(i) | X reaches α, X

(i)
j = b].

The above is decomposed as a product over the k components of X, so is a product distribution.
◁

We conclude this subsection with a proof of Lemma 30.

Proof of Lemma 30. Consider any leaf ℓ of T . We wish to compute the probability that
T (X) makes less than t mistakes on f⊗k(X) given that X reaches the leaf ℓ. On this leaf, T

outputs a single vector y ∈ {±1}k. Meanwhile, by Claim 32, the distribution of X is product
over the blocks, and so f(X(1)), . . . , f(X(k)) are independent. Define q(ℓ) ∈ [0, 1]k as,

q(ℓ)i := Pr
X∼µk

[yi ̸= f(X(i))].

Then,

Pr
X∼µk

[∥∥T (X), f⊗k(X)
∥∥

0 ≤ t | X reaches ℓ
]

= Pr
z∼BerSum(q(ℓ))

[z ≤ t].

For z ∼ BerSum(q), the probability z ≤ t is monotonically decreasing in each qi. Therefore,
it suffices to show that q(ℓ)i ≥ p(ℓ)i for each i ∈ [k]. We compute,

q(ℓ)i = Pr
X∼µk

[T (X)i ̸= f(X(i)) | X reaches ℓ]

=
1 − EX∼µk [T (X)if(X(i)) | X reaches ℓ]

2 (T (X)i, f(X(i) ∈ {±1})

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:21

Separating the above expectation into two pieces, for X drawn from µk conditioned in X

reaching ℓ,

E[T (X)if(X(i))] = E[T (X)if(X(i))H(X(i))] + E[T (X)if(X(i))(1 − H(X(i)))]

≤ AdvH(ℓ, i) + E[T (X)if(X(i))(1 − H(X(i)))] (Definition 9)

≤ AdvH(ℓ, i) + E[(1 − H(X(i)))] = 1 + AdvH(ℓ, i) − DensH(ℓ, i).

Therefore,

q(ℓ)i ≥ DensH(ℓ, i) − AdvH(ℓ, i)
2 = p(ℓ)i. ◀

8.4 Completing the proof of the threshold direct sum theorem
In this subsection, we complete the proof of Theorem 23. Throughout this section, we’ll use
the following function:

gt(z) := min(1, et−z/4).

By using Corollary 31, it suffices to show that

E
ℓ∼µk(T)

[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
≤ e−δk/10 + 1 − γ. (10)

Recall that we have much information about how DensH(ℓ) distributes over the leaves via
Lemma 26, but a coarser understanding of how AdvH(ℓ) distributes via Lemma 28. Because
of this, we will first bound the above equation where the AdvH(ℓ) is set to 0 and analyze
how much including that term affects the result.

▶ Lemma 33. For any tree T : ({±1}n)k → {±1}k and hardcore measure of density δ w.r.t.
distribution µ,

E
ℓ∼µk(T)

[
gδk/10(DensH(ℓ))

]
≤ e−.121δk.

Proof. We bound,

E
ℓ∼µk(T)

[
min

(
1, exp

(
δk/10 − DensH(ℓ)

4

))]
≤ eδk/10 · E

ℓ∼µk(T)

[
e−DensH (ℓ)/4

]
.

Since z 7→ e−z/4 is convex, we can use Lemma 26 to bound the above using the moment
generating function of the binomial distribution,

E
ℓ∼µk(T)

[
e−DensH (ℓ)/4

]
≤ E

z∼Bin(k,δ)
[e−z/4]

= (1 − δ(1 − e−1/4))k

≤ e−(1−e−1/4)δk.

Combining the above,

E
ℓ∼µk(T)

[
gδk/10(DensH(ℓ))

]
≤ e−δk(1−e−1/4−1/10) ≤ e−0.121δk. ◀

Next, we prove a Lipschitz-style bound for g. This will be useful in incorporating AdvH(ℓ)
to Equation (10).

CCC 2024

16:22 A Strong Direct Sum Theorem for Distributional Query Complexity

▶ Proposition 34. For any z, ∆, t ≥ 0,

gt(z − ∆) ≤ gt(z) + ∆/4. (11)

Furthermore, if z ≥ 5t, then

gt(z − ∆) ≤ gt(z) + ∆/t. (12)

Proof. Equation (11) follows from the (1/4)-Lipschitzness of gt(z).
For Equation (12), fix any choice of z ≥ 5t. We want to show that for any choice of ∆,

gt(z − ∆) − gt(z)
∆ ≤ 1/t.

We claim that the left hand side of the above inequality is maximized when ∆ = z −4t. When
∆ is increased beyond z − 4t, the numerator remains constant (because gt(z) is constant
for any z ≤ 4t, but the denominator increases, so the maximum cannot occur at at any
∆ > z − 4t. On the other hand, gt(z) is convex when restricted to the domain [4t, ∞), so the
maximum cannot occur at any ∆ < z − 4t. Therefore, it suffices to consider ∆ = z − 4t, in
which case,

gt(z − ∆) − gt(z)
∆ = 1 − gt(z)

∆ ≤ 1
∆ ≤ 1/t. ◀

We are now ready to prove the main result of this section.

Proof of Theorem 23. By applying Corollary 31,

Pr
X∼µk

[∥∥T (X) − f⊗k(X)
∥∥

0 ≤ δk/10
]

≤ E
ℓ∼µk(T)

[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
.

First, we consider the case where δk ≤ 40. Here, by applying Equation (11),

E
ℓ∼µk(T)

[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
≤ E

ℓ∼µk(T)

[
gδk/10(DensH(ℓ))

]
+ 1

4 · E
ℓ∼µk(T)

[AdvH(ℓ)]

≤ e−0.121δk + γδk/4 (Lemmas 28 and 33)

≤ e−δk/10 + 10γ (δk ≤ 40)

When δk > 40, we break down the desired result into two pieces, depending on whether
DensH(ℓ) is small or large. For the piece where DensH(ℓ) is small, we just use that g(·) is
bounded between 0 and 1 which means g(z) − g(z − ∆) ≤ 1,

E
[
gδk/10(DensH(ℓ) − AdvH(ℓ)) · 1[DensH(ℓ) ≤ δk/2]

]
≤ E

[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) ≤ δk/2]

]
+ Pr[DensH(ℓ) ≤ δk/2]

≤ E
[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) ≤ δk/2]

]
+ e−δk/8. (Lemma 13)

For the piece where DensH(ℓ) is large, we use Equation (12)

E
[
gδk/10(DensH(ℓ) − AdvH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
≤ E

[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
+ 10

δk
· E[AdvH(ℓ) · 1[DensH(ℓ) > δk/2]]

(Equation (12))

≤ E
[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
+ 10

δk
· E[AdvH(ℓ)] (DensH(ℓ) ≥ 0)

≤ E
[
gδk/10(DensH(ℓ)) · 1[DensH(ℓ) > δk/2]

]
+ 10

δk
· γδk (Lemma 28)

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:23

Combining the above two pieces,

E
[
gδk/10(DensH(ℓ) − AdvH(ℓ))

]
≤ E

[
gδk/10(DensH(ℓ))

]
+ e−δk/8 + 10γ

≤ e−δk/8 + e−0.121δk + 10γ (Lemma 33)

When δk > 40, e−δk/8 + e−0.121δk < e−δk/10, so we also recover the desired result in this
case. ◀

9 Equivalence between direct sum theorems and XOR lemmas and
the proof of Theorem 3

In this section, we prove the following claim which shows that a strong direct sum theorem
implies a strong XOR lemma. We then derive Theorem 3 as a consequence of this equivalence
and our strong direct sum theorem for query complexity (Theorem 1).

▷ Claim 35 (Equivalence between direct sum theorems and XOR lemmas). For every f :
{±1}n → {±1}, distribution µ over {±1}n, integer k ∈ N, multiplicative factor M ∈ R, and
ε ∈ (0, 1), if the following direct sum theorem holds:

Depthµk

(f⊗k, ε) ≥ M · Depthµ(f, δ).

then, the following XOR lemma holds:

Depthµk

(f⊕k, ε
2) ≥ M · Depthµ(f, δ).

In order to prove Claim 35 and Theorem 3, we establish a lemma which allows us to
convert any decision accurately computing f⊕k into a decision tree accurately computing
f⊗k. The following definition captures this conversion.

▶ Definition 36 (The product tree). Given a decision tree T : ({±1}n)k → {±1}, the k-wise
product tree T̃ : ({±1}n)k → {±1}k is defined as follows. For the internal nodes, T̃ has
exactly the same structure as T . For a leaf ℓ in T , the leaf vector (ℓ1, . . . , ℓk) ∈ {±1}k in T̃

is defined by

ℓi := sign
(

E
X∼µk

[f(X(i)) | X reaches ℓ]
)

for all i ∈ [k].

Intuitively, T̃ computes T ’s best guess for f(X(i)) for each i ∈ [k] on a given input
(X(1), . . . , X(k)). If T is really good at computing f⊕k then at every leaf it should have
queried enough variables to pin down f ’s value on each of the input blocks. The main lemma
formalizes this intuition.

▶ Lemma 37. For any f : {±1}n → {±1}, distribution µ over {±1}n, and tree T :
({±1}n)k → {±1}, the k-wise product tree T̃ : ({±1}n)k → {±1}k satisfies

Pr
X∼µk

[T̃ (X) = f⊗k(X)] ≥ E
X∼µk

[T (X)f⊕k(X)].

CCC 2024

16:24 A Strong Direct Sum Theorem for Distributional Query Complexity

9.1 Proofs of Claim 35 and Theorem 3 assuming Lemma 37
The following corollary of Lemma 37 implies Claim 35 and Theorem 3.

▶ Corollary 38 (Main corollary of Lemma 37). For all f : {±1}n → {±1}, k ≥ 1, distributions
µ over {±1}n, and ε > 0, Depthµk

(f⊕k, ε
2) ≥ Depthµk

(f⊗k, ε).

Proof. Let A be a randomized query algorithm for f⊕k with error ε/2 and expected cost
q = Depthµk

(f⊕k, ε/2). Let T denote the distribution over decision trees determined by A.
Consider the algorithm Ã which computes f⊗k(X) by sampling T ∼ T and returning T̃ (X)
where T̃ is the decision tree from Lemma 37. Then, the success of Ã is

E
T ∼T

[
Pr

X∼µk
[T̃ (X) = f⊗k(X)]

]
≥ E

T ∼T

[
E

X∼µk
[T (X)f⊕k(X)]

]
(Lemma 37)

≥ 1 − ε

where the last step uses the fact that advantage is 1 − 2 · error. Since the structure of each T̃

is the same as T , the expected cost of Ã is q which completes the proof. ◀

Proofs of Claim 35 and Theorem 3. By Corollary 38,

Depthµk

(f⊕k, ε
2) ≥ Depthµk

(f⊗k, ε) ≥ M · Depthµ(f, δ).

Theorem 3 follows immediately by applying Claim 35 to Theorem 2. ◀

▶ Remark 39 (On the necessity of the 1/2 loss in ε in Corollary 38). One may wonder whether
the 1/2 loss in ε parameter in Corollary 38 is necessary. For example, can one show
Depthµk

(f⊕k, 0.51ε) ≥ Depthµk

(f⊗k, ε)? The issue is that Depthµk

(f⊕k, 0.5) = 0 for all
functions f : {±1}n → {±1} because the bias of f⊕k is at least 0.5. So such a statement
cannot hold for all f in all parameter regimes. Concretely, one can show that if f is the
parity of n bits and µ is uniform over {±1}n, then Depthµk

(f⊗k, ε) ≥ Ω(kn) for all constant
ε < 1. Any path in a decision tree for f⊗k which queries at most λkn bits for some constant
λ < 1 has success probability 2−Ω(k). So to achieve any constant accuracy requires Ω(kn)
expected depth. On the other hand, Depthµk

(f⊕k, 0.5) = 1 ≪ Depthµk

(f⊗k, ε) which is
achieved by the decision tree that outputs a single constant value. Therefore, the ε/2 in
Corollary 38 is necessary for such a statement to hold in full generality.

9.2 Proof of Lemma 37
Each ℓi for i ∈ [k] satisfies

E
X∼µk

[ℓi · f(X(i)) | X reaches ℓ] =
∣∣∣∣ E
X∼µk

[f(X(i)) | X reaches ℓ]
∣∣∣∣

≥ E
X∼µk

[ℓ · f(X(i)) | X reaches ℓ].

In particular, for all leaves ℓ of T ,

E
X∼µk

[T̃ (X)i · f(X(i)) | X reaches ℓ] ≥ E
X∼µk

[T (X) · f(X(i)) | X reaches ℓ]. (13)

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:25

Therefore:

Pr
X∼µk

[T̃ (X) = f⊗k(X)]

= E
ℓ∼µk(T)

[
Pr

X∼µk
[T̃ (X) = f⊗k(X) | X reaches ℓ]

]
= E

ℓ∼µk(T)

[∏
i∈[k]

Pr
X∼µk

[T̃ (X)i = f(X(i)) | X reaches ℓ]
]

(Claim 32)

≥ E
ℓ∼µk(T)

[∏
i∈[k]

E
X∼µk

[T̃ (X)if(X(i)) | X reaches ℓ]
]

≥ E
ℓ∼µk(T)

[∏
i∈[k]

E
X∼µk

[T (X)f(X(i)) | X reaches ℓ]
]

(Equation (13))

= E
ℓ∼µk(T)

[
E

X∼µk

[
T (X)

∏
i∈[k]

f(X(i)) | X reaches ℓ

]]
(Claim 32)

= E
ℓ∼µk(T)

[
E

X∼µk
[T (X)f⊗k(X) | X reaches ℓ]

]
(
∏

i∈[k] f(X(i)) = f⊕k(X))

= E
X∼µk

[T (X)f⊕k(X)]

which completes the proof. ◀

10 Proof of Claim 4

▷ Claim 40 (The γ factor in Theorem 2 is necessary; Claim 4 restated). Let Par : {±1}n → {±1}
be the parity function and µ be the uniform distribution over {±1}n. Then for all γ,

Depthµk

(Par⊗k, 1 − γ) ≤ 2γk · Depthµ(Par, 1
4).

We will need the following simple proposition, which states that in any tree that seeks to
compute the n-variable parity function, leaves of depth strictly less than n contribute 1

2 to
the error:

▶ Proposition 41. For any (potentially randomized) tree T : {±1}n → {±1} and leaf ℓ of T

with depth strictly less than n,

Pr
x∼Unif({±1}n)

[T (x) ̸= Par(x) | x reaches ℓ] = 1
2 .

Proof. Since ℓ is at depth strictly less than n, there must be some index i ∈ [n] not queried
on the path to ℓ. Taking any input x that reaches ℓ, the input x′ with the ith bit flipped
must also reach ℓ and have the opposite parity. Both of these inputs are equally likely under
the uniform distribution and so the value of Par(x) conditioned on x reaching ℓ is equally
likely to be +1 and −1. Therefore, T errs half the time it reaches this leaf regardless of how
it labels it. ◀

Proof of Claim 40. The proof proceeds in two parts. First, we show that Depthµ(Par, 1
4) = n

2 .

Second, we prove that Depthµ⊗k

(Par⊗k, 1 − γ) ≤ γkn.

CCC 2024

16:26 A Strong Direct Sum Theorem for Distributional Query Complexity

(1) Depthµ(Par, 1
4) = n

2 . Let T be an arbitrary randomized decision tree let pn(T) be the
probability that T queries all n variables. Then, the expected depth of T is at least n · pn(T).
Meanwhile, by Proposition 41, the error of T in computing parity is at least 1

2 · pn(T) w.r.t.
the uniform distribution. Therefore, Depthµ(f, 1

4) ≥ n
2 .

While this direction is not needed for Claim 40 we show for completeness that
Depthµ(f, 1

4) ≤ n
2 by constructing a randomized1 decision tree T for f . With probabil-

ity 1
2 , T queries all n variables to compute f exactly. Otherwise, it simply outputs 0. T

has expected depth n
2 , and it errs only when it queries no variables and guesses incorrectly,

which happens with probability 1
2 · 1

2 = 1
4 . Thus, Depthµ(f, 1

4) ≤ n
2 .

(2) Depthµ⊗k

(f⊗k, 1 − γ) ≤ γkn. We construct a randomized2 decision tree T for f⊗k.
With probability γ, T queries all kn variables to compute f⊗k exactly, and with probability
1 − γ, it outputs 0. When it queries all variables, it has no error so its average error is at
most 1 − γ. Furthermore, its average depth is γkn. ◁

References
1 Andris Ambainis, Loïck Magnin, Martin Roetteler, and Jérémie Roland. Symmetry-assisted

adversaries for quantum state generation. In 2011 IEEE 26th Annual Conference on Compu-
tational Complexity (CCC), pages 167–177. IEEE, 2011.

2 Andris Ambainis, Robert Špalek, and Ronald de Wolf. A new quantum lower bound method,
with applications to direct product theorems and time-space tradeoffs. In Proceedings of the
38th Annual ACM Symposium on Theory of Computing (STOC), pages 618–633, 2006.

3 Sepehr Assadi and Vishvajeet N. Graph streaming lower bounds for parameter estimation
and property testing via a streaming XOR lemma. In Samir Khuller and Virginia Vassilevska
Williams, editors, Proceedings of the 53rd Annual ACM Symposium on Theory of Computing
(STOC), pages 612–625, 2021.

4 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. In Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 67–76, 2010.

5 Shalev Ben-David and Robin Kothari. Randomized query complexity of sabotaged and com-
posed functions. Theory of Computing, 14(5):1–27, 2018. doi:10.4086/toc.2018.v014a005.

6 Eric Blais and Joshua Brody. Optimal Separation and Strong Direct Sum for Randomized
Query Complexity. In 34th Computational Complexity Conference (CCC), volume 137, pages
29:1–29:17, 2019. doi:10.4230/LIPIcs.CCC.2019.29.

7 Guy Blanc, Caleb Koch, Carmen Strassle, and Li-Yang Tan. A strong composition theorem
for junta complexity and the boosting of property testers. In Proceedings of the 64th Annual
Symposium on Foundations of Computer Science (FOCS), pages 1757–1777, 2023.

8 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in
communication complexity. In Proceedings of the 54th Annual Symposium on Foundations of
Computer Science (FOCS), pages 746–755, 2013.

9 Joshua Brody, Jae Tak Kim, Peem Lerdputtipongporn, and Hariharan Srinivasulu. A strong
xor lemma for randomized query complexity. Theory of Computing, 19(11):1–14, 2023.
doi:10.4086/toc.2023.v019a011.

10 Andrew Drucker. Improved direct product theorems for randomized query complexity. compu-
tational complexity, 21(2):197–244, 2012.

1 At the cost of increasing expected depth by 1, the tree can be derandomized. To derandomize it, read a
single bit of the input and only query the rest if that bit is 1, which occurs with probability 1

2 .
2 Again, this can be derandomized at the cost of adding ≤ 2 to the expected depth, since any biased coin

can be simulated with a fair coin using 2 flips in expectation.

https://doi.org/10.4086/toc.2018.v014a005
https://doi.org/10.4230/LIPIcs.CCC.2019.29
https://doi.org/10.4086/toc.2023.v019a011

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:27

11 Andrew Drucker. Nondeterministic direct product reductions and the success probability
of sat solvers. In Proceedings of the 54th Annual Symposium on Foundations of Computer
Science (FOCS), pages 736–745, 2013.

12 Oded Goldreich, Noam Nisan, and Avi Wigderson. On yao’s xor-lemma. Studies in Complexity
and Cryptography, 6650:273–301, 2011.

13 William Hoza. A technique for hardness amplification against AC0. ECCC preprint TR23-176,
2023.

14 Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In Proceedings of
IEEE 36th Annual Foundations of Computer Science (FOCS), pages 538–545, 1995.

15 Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct
product theorems: simplified, optimized, and derandomized. In Proceedings of the 40th Annual
ACM Symposium on Theory of Computing (STOC), pages 579–588, 2008.

16 Russell Impagliazzo, Ran Raz, and Avi Wigderson. A direct product theorem. In Proceedings
of IEEE 9th Annual Conference on Structure in Complexity Theory, pages 88–96, 1994.

17 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Proceedings of the 27th Annual ACM Symposium on Theory of
Computing (STOC), pages 220–229, 1997.

18 Rahul Jain. New strong direct product results in communication complexity. Journal of the
ACM (JACM), 62(3):1–27, 2015.

19 Rahul Jain, Hartmut Klauck, and Miklos Santha. Optimal direct sum results for deterministic
and randomized decision tree complexity. Information Processing Letters, 110(20):893–897,
2010.

20 Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for the two-party
bounded-round public-coin communication complexity. In Proceedings of the 53rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 167–176, 2012.

21 Hartmut Klauck. A strong direct product theorem for disjointness. In Proceedings of the 42nd
ACM Symposium on Theory of Computing (STOC), pages 77–86, 2010.

22 Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and classical strong direct
product theorems and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–
1493, 2007. Preliminary version in FOCS 2004.

23 Adam R Klivans and Rocco A Servedio. Boosting and hard-core set construction. Machine
Learning, 51:217–238, 2003.

24 Troy Lee and Jérémie Roland. A strong direct product theorem for quantum query complexity.
computational complexity, 22:429–462, 2013.

25 Troy Lee, Adi Shraibman, and Robert Špalek. A direct product theorem for discrepancy. In
Proceedings of the 23rd Annual IEEE Conference on Computational Complexity (CCC), pages
71–80, 2008.

26 Leonid A Levin. One-way functions and pseudorandom generators. In Proceedings of the 17th
Annual ACM Symposium on Theory of Computing (STOC), pages 363–365, 1985.

27 Noam Nisan, Steven Rudich, and Michael Saks. Products and help bits in decision trees. In
Proceedings 35th Annual Symposium on Foundations of Computer Science (FOCS), pages
318–329, 1994.

28 Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of computer and System
Sciences, 49(2):149–167, 1994.

29 Ryan O’Donnell. Hardness amplification within np. In Proceedings of the 34th Annual ACM
Symposium on Theory of Computing (STOC), pages 751–760, 2002.

30 Ronen Shaltiel. Towards proving strong direct product theorems. Computational Complexity,
12(1/2):1–22, 2004.

31 Alexander A Sherstov. Strong direct product theorems for quantum communication and query
complexity. In Proceedings of the 43rd Annual ACM Symposium on Theory of Computing
(STOC), pages 41–50, 2011.

CCC 2024

16:28 A Strong Direct Sum Theorem for Distributional Query Complexity

32 Robert Špalek. The multiplicative quantum adversary. In 23rd Annual IEEE Conference on
Computational Complexity (CCC), pages 237–248, 2008.

33 Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte Mathematik,
264:184–202, 1973.

34 Luca Trevisan. The Impagliazzo Hard-Core-Set Theorem. https://lucatrevisan.wordpress.
com/2007/11/06/the-impagliazzo-hard-core-set-theorem/, 2007.

35 Emanuele Viola and Avi Wigderson. Norms, xor lemmas, and lower bounds for polynomials
and protocols. Theory of Computing, 4(1):137–168, 2008.

36 Andrew Yao. Theory and application of trapdoor functions. In Proceedings of the 23rd Annual
Symposium on Foundations of Computer Science (FOCS), pages 80–91, 1982.

37 Huacheng Yu. Strong xor lemma for communication with bounded rounds. In Proceedings of
the 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 1186–1192,
2022.

A Figures of stacked and fair trees

· · ·

· · ·

··
·

··
·

T1

T2 T2

TkTk Tk

depth d

Figure 3 Illustration of a stacked decision tree for a function f⊗k. The decision tree consists of k

depth-d decision trees, T1, . . . , Tk, stacked on top of each other. For an input X ∈ ({±1}n)k, the
output T (X) is computed sequentially, first by computing T1(X), then T2(X), and so on. The final
output is T (X) := (T1(X), . . . , Tk(X)).

B Proof of Theorem 6

Let H denote the set of measures of density δ/2 with respect to µ and let T denote the
set of decision trees T whose expected depth with respect to µ is at most d. Suppose for
contradiction that there does not exist an H ∈ H which is (γ, d)-hardcore. That is, for all
H ∈ H there is a tree T of expected depth at most d satisfying

E
x∼µ

[f(x)T (x)H(x)] > γ E
x∼µ

[H(x)] = γδ/2. (14)

https://lucatrevisan.wordpress.com/2007/11/06/the-impagliazzo-hard-core-set-theorem/
https://lucatrevisan.wordpress.com/2007/11/06/the-impagliazzo-hard-core-set-theorem/

G. Blanc, C. Koch, C. Strassle, and L.-Y. Tan 16:29

X
(i)
8

X
(i)
3

X
(i)
22

π

X(i) queried ≤ d

times on path π

Figure 4 Illustration of a fair decision tree. For every block i ∈ [k] and path π, the input block
X(i) is queried at most d times.

We use the minimax theorem to switch the quantifiers in the above statement. Consider the
payoff matrix M whose rows are indexed by distributions from H and whose columns are
indexed by algorithms from T and whose entries are given by MH,T := Ex∼µ[f(x)T (x)H(x)].
This is the payoff matrix for the zero-sum game where the row player first chooses a row H

and the column player then chooses a column T and the payoffs are determined by MH,T .
Note that once the first player’s strategy is fixed, we can assume without loss of generality
that the second player’s strategy is deterministic. Therefore, the minimax theorem for
zero-sum games yields

γδ/2 < min
ρ∈µ(H)

max
T ∈T

(ρ⊤M)T (Equation (14))

= max
τ∈µ(T)

min
H∈H

(Mτ)H (minimax theorem)

where µ(·) denotes the set of distributions over a given set. Therefore, there is a fixed
distribution τ over the set T such that for all H ∈ H

E
T ∼τ

[
E

x∼µ
[f(x)T (x)H(x)]

]
> γδ/2. (15)

This shows that

Pr
x∼µ

[
E

T ∼τ
[T (x)]f(x) ≥ γ

]
≥ 1 − δ/2.

In particular, if instead Prx∼µ[ET ∼τ [T (x)]f(x) < γ] ≥ δ/2 then we can contradict Equa-
tion (15) by constructing a δ/2-density H such that H(x) := Prx∼µ[x = x] for a δ/2-fraction
of x satisfying ET ∼τ [T (x)]f(x) < γ. Equation (15) shows that ET ∼τ [T (x)] has good
correlation with f for a large fraction of inputs. We obtain a single strategy from the
distribution τ by sampling T1, . . . , Tr ∼ τ for r sufficiently large (chosen later) and defining
T ⋆ as T ⋆(x) := MAJ(T1(x), . . . , Tr(x)). For every x for which ET ∼τ [T (x)]f(x) ≥ γ, we have

Pr
T1,...,Tr∼τ

[
MAJ(T1(x), . . . , Tr(x)) ̸= f(x)

]
≤ 2−Ω(γ2r)

CCC 2024

16:30 A Strong Direct Sum Theorem for Distributional Query Complexity

by a Chernoff bound. Choosing r = Θ(log(1/δ)/γ2) ensures that the failure probability is at
most δ/2. The decision tree T ⋆ satisfies Prx∼µ[T ⋆(x) ̸= f(x)] ≤ δ. The expected depth of
T ⋆ is less than

r · d = Θ(d log(1/δ)/γ2) < Depthµ(f, δ)

which is a contradiction.

C The lack of error reduction for distributional error

In Section 2, we showed how error reduction gave a simple proof of a strong direct sum
theorem for randomized query complexity. The specific statement needed in that proof is the
following standard error reduction by repetition theorem.

▶ Fact 3 (Error reduction for R). For any function f : {±1}n → {±1} and δ > 0,

R(f, δ) ≤ O(log(1
δ)) · R(f, 1/4).

Here, we give a short proof that no error reduction holds in the distributional setting, even
with substantially weaker parameters.

▷ Claim 42. For any n ∈ N, let µ be the uniform distribution over {±1}n. There is a
function f : {±1}n → {±1} satisfying,

Depthµ(f, 1/4) = 0 and Depthµ(f, 1/8) ≥ Ω(n).

Since any function on n bits can be computed exactly using n, the f in the above claim
requires essentially the maximum number of queries to be computed to error 1/8 despite
requiring no queries to be computed to error 1/4.

Proof. We first define f : If x1 = 0, then f(x) = 0. Otherwise, f(x) is the parity of the
remaining n − 1 bits of x.

Note that,

Prx∼µ[f(x) = 0] = 1
2 · (Pr[f(x) = 0 | x1 = 0] + Pr[f(x) = 0 | x1 = 1]) = 3

4 .

Therefore, the 0 query algorithm that simply outputs 0 has an error of only 1/4 on f .
It only remains to prove that Depthµ(f, 1/10) ≥ Ω(n). Consider any (potentially random-

ized) T : {±1}n → {±1} and leaf ℓ of T at depth strictly less than n − 1. By Proposition 41

Prx∼µ[T (x) ̸= f(x) | x reaches ℓ, x1 = 1] = 1/2.

Let p be the probability that T (x) queries a leaf of depth at least n − 1 given that x1 = 1.
The above allows us to conclude that

Prx∼µ[T (x) ̸= f(x)] ≥ 1
2 · Pr[T (x) ̸= f(x) | x1 = 1] ≥ 1

4 · p.

Therefore, if T has error at most 1/8, then p must be at least 1/2, which shows that
Depthµ(f, 1/8) ≥ n−1

4 . ◁

Local Enumeration and Majority Lower Bounds
Mohit Gurumukhani # Ñ

Cornell University, Ithaca, NY, USA

Ramamohan Paturi #

Department of Computer Science and Engineering, University of California,
San Diego, La Jolla, CA, USA

Pavel Pudlák #

Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Michael Saks #

Department of Mathematics, Rutgers University, Piscataway, NJ, USA

Navid Talebanfard #

University of Sheffield, UK
Institute of Mathematics of the Czech Academy of Sciences, Prague, Czech Republic

Abstract
Depth-3 circuit lower bounds and k-SAT algorithms are intimately related; the state-of-the-art
Σk

3 -circuit lower bound (Or-And-Or circuits with bottom fan-in at most k) and the k-SAT algorithm
of Paturi, Pudlák, Saks, and Zane (J. ACM’05) are based on the same combinatorial theorem
regarding k-CNFs. In this paper we define a problem which reveals new interactions between the
two, and suggests a concrete approach to significantly stronger circuit lower bounds and improved
k-SAT algorithms. For a natural number k and a parameter t, we consider the Enum(k, t) problem
defined as follows: given an n-variable k-CNF and an initial assignment α, output all satisfying
assignments at Hamming distance t(n) of α, assuming that there are no satisfying assignments of
Hamming distance less than t(n) of α. We observe that an upper bound b(n, k, t) on the complexity
of Enum(k, t) simultaneously implies depth-3 circuit lower bounds and k-SAT algorithms:

Depth-3 circuits: Any Σk
3 circuit computing the Majority function has size at least(

n
n
2

)
/b(n, k, n

2).

k-SAT: There exists an algorithm solving k-SAT in time O
(∑n/2

t=1 b(n, k, t)
)

.

A simple construction shows that b(n, k, n
2) ≥ 2(1−O(log(k)/k))n. Thus, matching upper bounds

for b(n, k, n
2) would imply a Σk

3-circuit lower bound of 2Ω(log(k)n/k) and a k-SAT upper bound of
2(1−Ω(log(k)/k))n. The former yields an unrestricted depth-3 lower bound of 2ω(

√
n) solving a long

standing open problem, and the latter breaks the Super Strong Exponential Time Hypothesis.
In this paper, we propose a randomized algorithm for Enum(k, t) and introduce new ideas to

analyze it. We demonstrate the power of our ideas by considering the first non-trivial instance of
the problem, i.e., Enum(3, n

2). We show that the expected running time of our algorithm is 1.598n,
substantially improving on the trivial bound of 3n/2 ≃ 1.732n. This already improves Σ3

3 lower
bounds for Majority function to 1.251n. The previous bound was 1.154n which follows from the
work of Håstad, Jukna, and Pudlák (Comput. Complex.’95).

By restricting ourselves to monotone CNFs, Enum(k, t) immediately becomes a hypergraph
Turán problem. Therefore our techniques might be of independent interest in extremal combinatorics.

2012 ACM Subject Classification Theory of computation → Circuit complexity

Keywords and phrases Depth 3 circuits, k-CNF satisfiability, Circuit lower bounds, Majority function

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.17

Related Version Full Version: https://arxiv.org/abs/2403.09134

Funding Mohit Gurumukhani: Supported by NSF CAREER Award 2045576 and a Sloan Research
Fellowship.

© Mohit Gurumukhani, Ramamohan Paturi, Pavel Pudlák, Michael Saks,
and Navid Talebanfard;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 17; pp. 17:1–17:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgurumuk@cs.cornell.edu
https://www.mohitgurumukhani.com/
https://orcid.org/0009-0007-8808-2846
mailto:rpaturi@ucsd.edu
mailto:pudlak@math.cas.cz
mailto:saks@math.rutgers.edu
mailto:n.talebanfard@sheffield.ac.uk
https://orcid.org/0000-0002-3524-9282
https://doi.org/10.4230/LIPIcs.CCC.2024.17
https://arxiv.org/abs/2403.09134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Local Enumeration and Majority Lower Bounds

Ramamohan Paturi: Partially supported by NSF grant 2212136.
Pavel Pudlák: Partially supported by grant EXPRO 19-27871X of the Czech Grant Agency and the
institute grant RVO: 67985840.
Navid Talebanfard: This project has received funding from the European Union’s Horizon Europe
research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101106684
– EXCICO. Views and opinions expressed are however those of author(s) only and do not necessarily
reflect those of the European Union or REA. Neither the European Union nor the granting authority
can be held responsible for them.

1 Introduction

Local search is a fundamental paradigm in solving the satisfiability problem: find an
assignment close in Hamming distance to the initial assignment that satisfies the formula, if
one exists. Papadimitriou [18] was the first to employ this idea in a randomized poly-time
2-SAT algorithm. Schöning [24] showed that a slight modification of this algorithm yields a
running time of (2 − 2/k)n for k-SAT. Dantsin et al. [4] considered a deterministic version of
local search and gave a deterministic (2 − 2/(k + 1))n time algorithm. Brueggemann and
Kern [2] and Kutzkov and Scheder [13] improved this deterministic local search procedure
and obtained faster deterministic 3-SAT algorithms. Moser and Scheder [17] eventually
considered a variant of the local search problem and used it to give a deterministic k-SAT
algorithm matching the running time of Schöning’s.

Despite the success of local search, the fastest known k-SAT algorithm PPSZ and its
improvements follow a different approach: pick a random variable x, if its value is not easily
seen to be forced1 then assign it randomly and continue (see [20, 19, 10, 8, 22]). The analysis
of this simple yet powerful algorithm consists of a combinatorial theorem relating the size
and the structure of the set of satisfying assignments of a k-CNF. The strength of this
combinatorial theorem is further manifested by the fact that the state-of-the-art depth-3
circuit lower bounds are built on it [20, 19].

This curious interaction between lower bounds and algorithms has become less of a
surprise over the years. Williams [27] initiated a whole new line of inquiry by showing that
improved satisfiability algorithms for a circuit class automatically imply lower bounds for the
same class. Conversely, almost all known circuit lower bound techniques have been adopted
in satisfiability algorithms (see e.g. [11, 3]). Within this context the role of local search is
unclear.

▶ Question 1. Can we derive lower bounds from local search algorithms?

This question is also motivated by a lack of progress in improving depth-3 circuit lower
bounds and related upper bounds on k-SAT algorithms.

Depth-3 circuit lower bounds. A Σk
3 circuit is an Or-And-Or circuit where the bottom

fan-in is bounded by k, i.e., a disjunction of k-CNFs. We use Σk
3(f) to denote the minimum

number of k-CNFs in a Σk
3 circuit computing a function f . The study of these circuits was

advocated by Valiant [25] who showed that a strong enough Σk
3 lower bound for every fixed

k implies a super-linear lower bound for series-parallel circuits. Moreover, [7] showed that
strong lower bounds even for small constant k such as k = 16 imply various circuit lower
bounds including better general circuit lower bounds. The technique of [20] gives a lower

1 For example if x appears in a unit clause, or if such a clause can be derived in small width resolution.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:3

bound of Ω(2n/k) for the parity function and it is known to be tight. In fact this results in a
Ω(n 1

4 2
√

n) lower bound for computing parity by unrestricted depth-3 circuits which is tight
up to a constant factor. A further improvement comes from [19] which gives a lower bound
of 2cn/k where c > 1 for the BCH code. At this point, this is the best known lower bound
for computing any explicit function by Σk

3 circuits.

Majority is a natural candidate for going beyond the 2Ω(
√

n) depth-3 circuit lower bound.
The natural Σk

3 circuit for computing Majority has size 2O(n log(k)/k) (which implies an
unrestricted depth-3 size upper bound of 2O(

√
n log n)). Håstad, Jukna and Pudlák [9]

introduced the intriguing notion of k-limits to capture the depth-3 complexity of various
functions and proved a lower bound of 2Ω(

√
n) where the constant factor in the exponent is

improved over the constant one could obtain from Switching Lemma. Regarding Σk
3 circuits

computing Majority, their result implies size lower bounds of 1.414n for k = 2, and 1.154n

for k = 3, and for k ≥ 4 it yields nothing. The Σ2
3 bound is known to be essentially tight [21].

More recently, [14] proved a tight lower bound of 2Ω(n log(k)/k) for computing Majority by Σk
3

circuits where each And gate depends on at most k variables. Further, [1] studied the effect
of negations for Σk

3 circuits computing majority. However, the question of proving tight lower
bounds for computing Majority by depth-3 circuits (even for fan-in 3 circuits) remains open.

k-SAT upper bounds. Lack of progress in improving the savings beyond Ω(1
k) for k-SAT

algorithms led researchers to consider SSETH (Super Strong Exponential Time Hypothesis).
SSETH is the hypothesis that k-SAT cannot be solved with savings asymptotically more
than 1/k, i.e., there is no 2(1−ϵk)n time k-SAT algorithm with ϵk = ω(1/k). However, SSETH
is known to be false on average [26, 15], that is, the satisfiability of almost all k-CNFs can be
decided with much larger savings. It is thus not unreasonable to attempt to get such savings
even in the worst-case. Yet we cannot hope to achieve such a savings for a large subclass of
PPSZ-style algorithms [23].

It appears that making progress towards larger k-SAT savings as well as depth-3 circuit
lower bounds requires new ideas. We argue that local search has the potential to achieve
this goal, and as an evidence for this claim, we apply local search ideas to give a new Σ3

3
lower bound for Majority function.

1.1 Local enumeration, k-SAT and Σk
3 lower bounds for Majority

function
The local search problem is formally defined as follows.

(k, t)-SAT. Given an n-variable k-CNF F , a parameter t, and an assignment α, decide if
there is a satisfying assignment β of F such that d(α, β) ≤ t(n), where d(·) is the Hamming
distance.

Dantsin et al. [4] gave a simple branching algorithm which solves (k, t)-SAT in time
poly(n) · kt. This already gives a non-trivial algorithm for 3-SAT: solve (k, n

2)-SAT starting
with the all-0 and all-1 assignments. To get a non-trivial algorithm for larger k, they used
covering codes, i.e., a small and asymptotically optimal number C(n, t) of Hamming balls of
a given radius t that cover the entire n-dimensional Boolean cube. Then an upper bound of
C(n, r) · kt follows immediately for k-SAT by solving (k, t)-SAT starting with the centers
of each of the balls in the covering code. Setting t = n

k+1 minimizes this quantity. Thus

CCC 2024

17:4 Local Enumeration and Majority Lower Bounds

improved upper bounds for (k, t)-SAT immediately imply improved k-SAT upper bounds,
and indeed this is what [2, 13] did by proving an upper bound of ct for some c < 3 for
(3, t)-SAT. However, this improvement in local search is not sufficient to yield better upper
bounds for k-SAT when we want to use the technique for large t. It is conceivable that
improved bounds for large t combined with covering codes would yield improved k-SAT
algorithms. This leads to the following question:

▶ Question 2. What is the complexity of (k, ϵn)-SAT where 0 < ϵ ≤ 1
2 ?

It is also natural to consider the enumeration problem for (k, t)-SAT: enumerate all
satisfying assignments within Hamming distance t of an initial assignment. We note that
even a weaker form of this problem already captures the circuit complexity of Majority
function. For this purpose, we introduce the following class of parameterized problems.

Enum(k, t). Given an n-variable k-CNF F and an initial assignment α, output all satisfying
assignments of F at a Hamming distance t from α assuming that there are no satisfying
assignments of F at a Hamming distance of less than t from α.

We observe that upper bounds on Enum(k, t) imply depth-3 circuit lower bounds and
k-SAT algorithms.

▶ Proposition 3. Assume that Enum(k, t) can be solved in randomized expected time
b(n, k, t). Then
1. any Σk

3 circuit requires at least
(

n
n/2
)
/b(n, k, n

2) size for computing Majority function.
2. k-SAT can be solved in time O(

∑n/2
t=1 b(n, k, t)).

Proof.
1) Consider a Σk

3 circuit C that computes Majority function. We will write C =
∨m

i=1 Fi,
where each Fi is a k-CNF. None of the Fis has a satisfying assignment with Hamming
weight less than n/2. By assumption we can enumerate all satisfying assignments of
Hamming weight exactly n/2 in expected time b(n, k, n

2). This in particular implies that
the total number of such satisfying assignments for each Fi is at most b(n, k, n

2). Since
Fis should together cover all assignments of Hamming weight exactly n/2 and since there
are

(
n

n/2
)

such assignments, the claim follows.
2) We can trivially check if there is a satisfying assignment of Hamming weight at most

n/2 in 1 +
∑n/2

t=1 b(n, k, t) steps. In the same number of steps we can check if there is a
satisfying assignment of Hamming weight at least n/2. ◀

Observe that b(n, k, n
2) cannot be too small: define the k-CNF Majn,k by partitioning

the n variables into sets of size 2(k − 1) and by including all positive clauses of size k from
each of the parts. It is easy to see that every satisfying assignment of this formula must
set at least k − 1 variables in each part to 1 and the total number satisfying assignments
with Hamming weight n/2 is 2(1−O(log(k)/k))n, thus b(n, k, n

2) ≥ 2(1−O(log(k)/k))n. It follows
that a matching upper bound for Enum(k, n

2) refutes SSETH and gives Σk
3 lower bound

of 2Ω(log k
k n) for Majority which in turn implies a 2ω(

√
n) unrestricted depth-3 circuit lower

bound, breaking a decades long barrier.

1.2 Our contributions
In this paper, we study Enum(3, ϵn) and obtain new algorithms and lower bounds. Note
that this is the first non-trivial instance of Enum(k, t), since Enum(2, t) can be solved in
2t steps using a simple extension of the local search algorithm, and it is easy to see that this
is tight for t ≤ n/2 by considering the 2-CNF consisting of t disjoint monotone clauses.

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:5

▶ Theorem 4 (Main result). Enum(3, t) can be solved in expected time
1. 3t, for t ≤ n

3 ,
2. 1.164n × 1.9023t, for n

3 < t ≤ 3n
7 ,

3. 1.1962n × 1.7851t, for 3n
7 < t ≤ n

2 .

In particular, Enum(3, n
2) can be solved in expected time 1.598n.

Consequently, we get

▶ Corollary 5. Σ3
3(Maj) ≥ 1.251n−o(n).

Our lower bound is the best known bound to compute Majority function by Σ3
3 circuits.

Note that Majn,3 has 6n/4 ≃ 1.565n satisfying assignments of Hamming weight n/2. Our
bound is not too far from the optimal bound and it is a substantial improvement over
3n/2 ≃ 1.732n.

In the following, we explain how our approach to enumeration differs from the well-known
approaches. The kt algorithm used by [4] which solves (k, t)-SAT is a simple branching
procedure. Without loss of generality assume that the initial assignment is all-0. If there is
no monotone clause in the formula, then the all-0 assignment satisfies the formula. Otherwise
select a monotone clause C = x1∨. . .∨xk. Then for each xi, recursively solve (k, (t−1))-SAT
for the formula restricted by xi = 1. An obvious weakness of this algorithm is that if the
depth of the recursion tree is more than n/k, then some assignments will be considered more
than once in the tree thus leading to redundant computation.

Our starting point is to search the recursion tree (which we call a transversal tree
following the hypergraph nomenclature) so each satisfying assignment (which we call a
transversal in the following) within the ball is visited exactly once. We observe that such a
non-redundant search can be conducted with any clause ordering and any fixed ordering of
variables within the clause. During the search of the transversal tree, it is easy to decide
whether a subtree contains any new satisfying assignments by considering the labels of the
child edges of the nodes along the path. If there are no new satisfying assignments in a
subtree, we will prune it. It turns out that this approach is isomorphic to the seminal method
of Monien-Speckenmeyer [16] where for each i we recursively solve the problem under the
restriction x1 = . . . = xi−1 = 0, xi = 1. However, it is not clear how to improve upon
the bound obtained by [16]. We show that by choosing the clause ordering carefully and
randomly ordering clause variables, a better bound can be obtained. In other words, we will
consider randomized Monien-Speckenmeyer trees with careful clause ordering. The crux of
our contribution is a new analysis of randomized transversal trees.

Connection to hypergraph Turán problems. Recall that a transversal in a hypergraph
is a set of vertices that intersects every hyperedge. The recent work [6] gives a connection
between depth-3 circuits and transversals2. Here we find another connection. Given n, t, and
k, let R+(n, t, k) be the maximum number of transversals of size t in an n-vertex k-graph
with no transversal of size t − 1. Since a k-graph can be viewed as a monotone k-CNF,
our algorithm enumerates minimum size transversals and thus gives new upper bounds for
R+(n, t, k). Mantel’s theorem, which is a special case of Turán’s seminal theorem, gives the
exact value R+(n, n − 2, 2) = n2/4, and the Turán problem for 3-graphs can be phrased as
showing R+(n, n − 3, 3) = (5/9 + o(1))n3 (see [12] for a thorough survey of this and related

2 [6] results are stated in terms of cliques which are dual to transversals.

CCC 2024

17:6 Local Enumeration and Majority Lower Bounds

problems). Our technique allows us to derive new bounds for R+(n, t, 3), where t = Θ(n).
Although we currently do not get any useful results for t = n − o(n), we hope that our
techniques can be extended to make progress for this regime of parameters.

Enumeration algorithms for CNFs with bounded negations. As an additional application
of our enumeration techniques, we get the following enumeration algorithm:

▶ Theorem 6. Let F be a CNF of arbitrary width where either each clause contains at most
3 negative literals or each clause contains at most 3 positive literals. Then, we can enumerate
all minimal satisfiable solutions of F in time O(1.8204n).

2 Preliminaries

In this section, we introduce concepts and notation that we use for the rest of the paper.
Let F = (X, C) be a k-CNF with variable set X and clause set C. We view the satisfying
assignments of F as subsets of variables which are set to 1.

▶ Definition 7 (Transversals). A set S ⊆ X is a transversal for F if the assignment that sets
the variables in S to 1 and the variables in X \ S to 0 is a satisfying assignment of F . The
size of a transversal S is defined as |S|.

We say S is a minimal transversal for F if no subset of S is a transversal. We call the
corresponding satisfying asssignment a minimal satisfying assignment.

Our use of transversals for discussing satisfying assignments is motivated by the notion
of transversals in hypergraphs. We view a monotone k-CNF (where all literals in every
clause are positive) as a k-graph where every hyperedge has size at most k. This leads
to a 1-1 correspondence between the transversals of a monotone k-CNF and those of the
corresponding hypergraph.

In this paper, we are primarily interested in minimum-size transversals.

▶ Definition 8 (Transversal number). For a satisfiable k-CNF F , we define transversal
number τ(F) to be the cardinality of the minimum-size transversal of F . We use Γ(F) to
denote the set of all minimum-size transversals of F and #Γ(F) to denote the cardinality of
Γ(F).

Let t ∈ [n] and α ∈ {0, 1}n be such that every satisfying assignment of F is at a distance
of at least t from α. We reduce the Enum(k, t) problem for F from the initial assignment α

to the Enumz(k) problem: enumerate all minimum-size transversals of a k-CNF3. Indeed,
let G be the k-CNF formula (over the variable set X) where its clause set is obtained from
that of F by the following replacement of literals: For each variable v ∈ X, if α sets v to 1,
then we swap occurrences of the positive and the negative literals corresponding to v in C.
Otherwise, if α sets v to 0, we leave the corresponding literals as they are. G is also a k-CNF
and for all y ∈ {0, 1}n, G(y) = F (y ⊕ α). Clearly, there exists a transversal within distance t

from 0n in G if and only if there exists a transversal within distance t from α in F .
We now prove the following useful proposition that allows us to assume all clauses of F

have width exactly k.

3 This problem has been previously considered by, e.g. [5] with a different name Min-Ones k-SAT and a
non-trivial algorithm is given independent of τ(F). Here we focus on running times with fine dependence
on τ(F).

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:7

▶ Proposition 9. For every k-CNF F = (X, C) with τ(F) ≤ n − k, there exists a k-CNF
G where every clause has width exactly k and τ(G) = τ(F) and the set of transversals of G

includes the set of transversals of F . Furthermore, if F is monotone, G is monotone.

Proof. Assume that F has a clause C of width 1 ≤ k′ < k. Let F ′ be the formula
obtained from F by removing the clause C and adding a clause C ′ = C ∪ C ′′ for each
S ⊆ X \ C, |S| = k − k′, where C ′′ is a monotone clause over variables in S. The proposition
follows since every transversal of F is a transversal of F ′ and any transversal of F ′ which is
not a transversal of F must have size at least n − k + 1. ◀

3 Transversal Trees and Tree Search

In this section, we present an algorithm called TreeSearch for solving Enumz(k), i.e., to
enumerate all minimum-size transversals of a satisfiable k-CNF F . Let t = τ(F) be the
transversal number of F . Our algorithm considers a tree, called transversal tree, of depth t

where each minimum-size transversal corresponds to at least one leaf node at depth t. Our
algorithm TreeSearch traverses the tree to enumerate the leaves at depth t corresponding
to minimum-size transversals. However, a leaf at depth t need not correspond to a minimum-
size transversal and furthermore two distinct leaves at depth t may correspond to the same
minimum-size transversal. For these reasons, enumerating all leaves can take significantly
more time than the total number #Γ(F) of minimum-size transversals. We deal with this issue
by pruning subtrees so that TreeSearch would only encounter minimum-size transversals
that are not encountered elsewhere. While our pruning approach is isomorphic to that of
Monien-Speckenmeyer [16], our analysis and bound crucially depend on our choice of clause
ordering and random ordering of the child nodes of the transversal tree. In the following, we
define the required concepts and present our constructions.

▶ Definition 10 ((k, X)-trees). For k ≥ 1 and a set X of variables, a (k, X)-tree is a directed
k-ary tree T with a node and edge labeling Q and a tree-edge ordering π which satisfies the
following properties.
1. Each edge is directed from parent to child. Each non-leaf node has at most k children.

Children of a node are ordered from left to right according to π.
2. Each (tree) edge e is labeled with a variable qe ∈ X. Each node v is labeled with a set

Qv ⊆ X ∪ {⊥}.
3. For each node, labels of child edges are distinct. If e = (u, v) is an edge, then Qv =

Qu ∪ {qe} or Qv = Qu ∪ {qe, ⊥}.
4. Labels of edges along any path are distinct.
5. All leaves v where ⊥ /∈ Qv are at the same level.
Let T be a (k, X)-tree with root r and labeling Q. For node v of T , let Tv denote the subtree
Tv of T rooted at v. If u and v are nodes of T such that u is an ancestor of v, Puv denotes
the unique path from u to v in T .

▶ Definition 11 (Shoot of a tree path). If u and v are nodes of T such that u is an ancestor
of v, the subgraph consisting of all the child edges of the nodes along the unique path from u

to v is called the shoot Suv = ST
uv from u to v. In particular Puv ⊆ Suv.

For a path Puv, the labels of the edges along the path are called path variables of Puv.
For a shoot Suv, labels of the shoot edges are called shoot variables.

CCC 2024

17:8 Local Enumeration and Majority Lower Bounds

▶ Definition 12 (Transversal tree). Let F = (X, C) be a k-CNF on the variable set X. A
(k, X)-tree T rooted at r with labeling Q and tree-edge ordering π is a transversal tree for F if
1. Qr = ∅ if F has no empty clause and otherwise Qr = {⊥}, and
2. for every node v, each minimum-size transversal of F which is an extension of Qv will

appear as the label of a leaf in the subtree rooted at v.

It is easy to see that a transversal tree T for a satisfiable k-CNF F has depth τ(F) and
every leaf v of T such that ⊥ /∈ Qv is at depth τ(F). We also note that any subtree of a
transversal tree is also a transversal tree.

▶ Definition 13 (Valid and invalid leaves). Let T be a transversal tree for a satisfiable k-CNF
F . We say that a leaf v of T is valid if Qv is a minimum-size transversal of F . Otherwise it
is invalid.

For a transversal tree T of a satisfiable k-CNF F , let Γ(T) denote the collection of
minimum-size transversals associated with the valid leaves of T . The definition of transversal
tree implies the following basic fact.

▶ Fact 14. Γ(F) = Γ(T).

3.1 Construction of Transversal Trees
In this section, we show how to construct transversal trees for a satisfiable k-CNF F = (X, C).
The construction produces a labeling Q on nodes and edges. We will not specify a tree-edge
ordering in the construction. However, we will later select a left-right ordering where child
nodes are ordered randomly and independently for each node. The construction depends on
the ordering of clauses. Let Π denote an ordering of the clauses in F .

We start with the tree T with just one node r (the root node) with the label Qr = ∅.
Assume that we are about to expand a non-leaf node v. By construction, v is at depth less
than τ(F) and ⊥ ̸∈ Qv. Since v is at depth less than τ(F), Qv is not a transversal. Select
the first monotone clause Cv = {a1, . . . , ak′} according to the clause order Π, where k′ ≤ k.
Such a monotone clause must exist since every clause is non-empty and since otherwise an
all-0 assignment will satisfy the formula contradicting the fact that Qv is not a transversal.
Also, it must be the case that Cv ∩ Qv = ∅ as none of the variables from Qv can appear in
Cv. For each a ∈ Cv,
1. Create a child node va for v and label the edge (v, va) by a.
2. Simplify the clauses by setting the variables along the path Prva

to 1. If there is an empty
clause, set Qva = Qv ∪ {a, ⊥} and va will not be expanded and thus will become a leaf
node. Otherwise, label va by Qva

= Qv ∪ {a}.
3. If the level of the node is τ(F), make it a leaf node.
4. Order the child nodes of v left-right according to a tree-edge ordering.

▶ Proposition 15. The tree T with the labeling as described above is a transversal tree for F .

Proof. Indeed each non-leaf node has at most k children. All leaves v with ⊥ /∈ Qv must be
at the same level τ(F) since any node v at a level smaller than τ(F) and does not contain ⊥
in Qv can be expanded and since the construction stops at level τ(F). It is easy to verify that
the labeling Q has the requisite properties. For every v with ⊥ /∈ Qv and every extension Y

of Qv to a minimum-size transversal, there exists a leaf with label Y in the subtree Tv since
there is a child edge (v, v′) of v with label a for some a ∈ Y ∩ Cv ̸= ∅ where Cv is the clause
used to expand v. Inductively we can construct a path from v′ to a leaf which ultimately
has Y as the label. ◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:9

3.2 TreeSearch: An Algorithm for Enumerating the Valid Leaves of T

Our goal is to search the transversal tree to enumerate all minimum-size transversals. However,
visiting all leaf nodes may take at least kτ(F) time. To improve the efficiency of the search, we
prune the tree during our search while guaranteeing the enumeration of each minimum-size
transversal exactly once.

Let F be satisfiable k-CNF. Let Π be a clause ordering for F . Let T be transversal tree
for F constructed using Π and some tree-edge ordering π. We note that for any tree-edge
ordering π, the edges of any shoot Suv (where u is any ancestor of v) are situated in one of
three ways with respect to the tree path from u to v: 1) to the left of the tree path, 2) to
the right of the tree path, or 3) along the tree path. Our key insight is that for any node
v we can determine whether the subtree Tv potentially contains any new minimum-size
transversals by considering the labels of the edges in the shoot Srv.

Our TreeSearch starts with the root node r of T . Assume that we are currently visiting
the node v. Let Tv be a subtree of T rooted at v. If v is not a leaf, let Cv be the monotone
clause used for expanding the node v (based on the clause order Π) and a1, . . . , ak′ be the
ordering of its variables according to π for some k′ ≤ k. For 1 ≤ i ≤ k′, let vai

be the i-th
child node of v. The edge ei = (v, vai) is labeled with ai. The search procedure TreeSearch
starting at node v works as follows:

If v is a leaf, output Qv if it is a transversal. In any case, return to the parent.
Otherwise, process the children of v in order. Let Ti = Tvai

be the transversal tree rooted
at the child vai

for ai ∈ Cv. Prune the subtree Ti if and only if the shoot Srv contains an
edge e′ = (u′, v′) where u′ is ancestor of v such that Qei = Qe′ , and the edge e′ appears
to the left of the path Prv. Search the tree Ti if it is not pruned.

▶ Fact 16. For any clause ordering Π and tree-edge ordering π, TreeSearch outputs all
minimum-size transversals of F exactly once.

3.3 Canonical Clause Ordering and Random Tree Edge Ordering

The time complexity of TreeSearch is bounded by the number of leaf nodes it visits. While
we know that TreeSearch outputs all minimum-size transversals without redundancy, it is
much less clear how to analyze its complexity. We need two ideas to analyze TreeSearch
to get a good bound. The first idea is a canonical clause ordering Π in which a sequence
of maximally disjoint monotone clauses will precede all other clauses. The second idea is
a random π, that is, a tree-edge ordering that orders the children of every node in the
transversal tree uniformly and independently at random.

4 Analysis of TreeSearch for Monotone k-CNFs

Let F = (X, C) be a monotone k-CNF where every clause has exactly k literals. Let t = τ(F)
be the transversal number of F . We assume that t ≤ 3n

5 . Let T be a transversal tree for F

where T is constructed using a canonical clause ordering Π. The child edges of each of its
nodes are randomly ordered from left-right independent of other nodes. Let π denote this
random tree-edge ordering. Let r be its root and Q its labeling.

In this section, we analyze TreeSearch and prove Theorem 4 for the monotone case.
We start with a few ideas required to keep track of the effect of the random ordering on
pruning. We then build upon them Section 5 to prove Theorem 4 for general k-CNFs.

CCC 2024

17:10 Local Enumeration and Majority Lower Bounds

4.1 Random Tree Edge Ordering and Pruning
▶ Definition 17 (Cut event). We say that an edge e = (u, v) is cut if u has an ancestor
u′ with a child edge e′ = (u′, v′) where Qe′ = Qe and e′ appears to the left of the path Pru

according to π.

We use ϕ(e) to denote the event that the edge e is not cut. We also use ϕ(Puv) to denote
the event no edge along Puv is cut. We use ϕ(u) = ϕ(Pru) to denote the event that none of
the edges along the path from the root to the node u are cut.

▶ Definition 18 (Survival probability of paths and nodes). The survival probability σ(Puv) of
a path Puv is P(ϕ(Puv)). The survival probability σ(u) of a node u is P(ϕ(u)).

▶ Definition 19 (Survival value of a transversal tree). For a subtree Tu rooted at u, we define
σ(Tu) =

∑
v is leaf of Tu

σ(v) as the survival value of Tu. We write σ(T) = σ(Tr) where r is
the root node.

Our main tool for upper bounding the expected running time of TreeSearch is the
following basic fact.

▶ Fact 20. The expected number of leaves visited by TreeSearch is exactly σ(T). In
particular #Γ(F) ≤ σ(T).

Proof. This follows by definition, since TreeSearch only visits surviving leaves of T under
a random tree-edge ordering. Furthermore, let Y be a minimum-size transversal of F . We
argue that

∑
v:Qv=Y P(π(Prv)) = 1 which implies #Γ(F) ≤ σ(T). ◀

Our goal is to upper bound σ(T) by bounding the survival probabilities of the leaves at
depth t. A path survives if and only none of its edges are cut. For an edge to be cut, it is
necessary that some ancestor of the edge has a child edge with the same label as that of the
edge. We will keep track of repeated edge labels via markings to bound the cut probabilities
from below and thereby bounding the survival probabilities from above.

▶ Definition 21 (Marking set of an edge). The marking set M(e) of an edge e = (u, v) in T

is the set of nodes w ̸= u in the path Pru which have a child edge e′ such that Qe = Qe′ . We
say that the nodes in M(e) mark the edge e. We also say that the nodes in M(e) mark the
label of e.

▶ Definition 22 (Marked edges). An edge e = (v, u) in T is marked if M(e) ̸= ∅.

Marked edges are precisely those that have a non-zero probability of being cut. In fact,
we can calculate the survival probability exactly.

▶ Fact 23. For an edge e in T , σ(e) = 2−|M(e)|.

▶ Definition 24. Let u be a node in T . For each node v along the path Pru, let Nu(v) =
{e ∈ Pru | v ∈ M(e)}. Nu(v) is the set of edges along the path Pru marked by v.

▶ Fact 25. For any node u in T , the survival probability σ(Pru) of the path Pru is given by

σ(Pru) = Πv: a node along Pru

1
|Nu(v)| + 1

Proof. Pru survives if and only if for every node v ∈ Pru and every edge e ∈ Pru that v

marks, the child edge of v with the same label as that of e appears to the right of the path.
This happens with probability 1

|Nu(v)|+1 and since these events are independent, the claim
follows. ◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:11

4.2 An Analysis of TreeSearch for Monotone 3-CNF
Although Fact 25 gives us a fairly complete picture of the survival probabilities of individual
paths in T in terms of the edge markings of the path, we need a few ideas to find nontrivial
upper bounds on σ(T). The first idea is the concept of a weight which captures the number
of marked edges in a path or a shoot.

▶ Definition 26 (Weight). Let Puv be a path in T . The weight of Puv is defined as
W (Puv) def= |{e ∈ P : M(e) ̸= ∅}|, i.e., the number of marked edges along Puv. The weight of
a shoot Suv denoted by W (Suv) is the number of marked edges in the shoot Suv.

The following fact provides a lower bound on the weight of each root to leaf shoot in T .

▶ Fact 27. Every root to leaf shoot Sru in T has a weight of at least 3t − n.

Proof. Since the depth of T is t, a root to leaf shoot has 3t edges and there are only n

distinct edge labels, at least 3t − n labels appear at least twice. ◀

▶ Definition 28 (Weight of a tree). We say that a tree has weight w if every root to leaf
shoot of the tree has weight at least w.

▶ Definition 29 (M(w, d)). For non-negative integers w and d, let M(w, d) be the maximum
survival value over all ternary depth-d transversal trees with weight w.

We can now upper bound σ(T) in terms of M(w, d) exploiting the canonical clause
ordering. Our canonical clause ordering Π starts with a maximal collection of disjoint clauses
C1, C2, · · · , Cm so that all clauses in the formula intersect with at least one of the clauses
from these disjoint clauses. We observe that m ≥ t

3 for monotone F since otherwise by
setting all the variables in the monotone clauses Ci, we satisfy F contradicting that the
transversal number of F is t.

▶ Lemma 30.

σ(T) ≤

{
3t t ≤ n

3

3 t
3 × M(3t − n, 2

3 t) otherwise

Proof. For t ≤ n
3 , we use the trivial upper bound of 1 on the survival probability of paths to

conclude that σ(T) ≤ 3t as desired.
For t ≥ n

3 , we use the fact that the canonical clause ordering starts with a maximal
collection of disjoint clauses C1, C2, · · · , Cm where m ≥ t

3 . We observe that for 1 ≤ i ≤ t
3 ≤ m

each node at level i of T is expanded by the same clause Ci. Moreover, none of the child
edges of nodes at level 1 ≤ i ≤≤ t

3 ≤ m are marked as the corresponding clauses are disjoint.
The result follows since for every node u at level t

3 + 1, the subtree Tu has depth 2t
3 and the

weight of every root to leaf shoot in Tu is at least 3t − n minus the number of marked edges
from root to u = 3t − n − 0 = 3t − n (Fact 27). ◀

4.2.1 Upper Bounds on M(w, d)
Upper bounding M(w, d) for T based on random tree-edge ordering π is challenging. Instead
we introduce a different random process π′ for T : Each edge e survives with probability
pe independently where pe = λ if e is marked and 1 otherwise, where we define λ

def= 1√
3 .

The concept of survival probability under π′ can be extended to paths and nodes of T . For
example, the σ′(P) =

∏
e∈P pe is the survival probability of the path P under π′. Similarly, we

CCC 2024

17:12 Local Enumeration and Majority Lower Bounds

define the survival value σ′(T) of the transversal tree T according to π′ as
∑

v is a leaf σ′(Prv).
We define M ′(w, d) as the maximum survival value σ′(T ′) of transversal trees T ′ of depth
d where every root to leaf shoot has weight at least w. The following lemma shows that
σ(T) ≤ σ′(T).

▶ Lemma 31. For a root to leaf path Pru, σ(P) ≤ λW (Pru) = σ′(P) which in turn implies
σ(T) ≤ σ′(T) and M(w, d) ≤ M ′(w, d).

Proof. Given an edge e ∈ Pru, define the contribution ye of e to the survival probability
(according to π) of Pru as

ye
def=

∏
v∈M(e)

(
1

|Nu(v)| + 1

)1/|Nu(v)|

where the empty product is considered as 1. By Fact 25, σ(Pru) =
∏

e:M(e)̸=∅ ye. It is
then sufficient to show that ye ≤ pe. Observe that Nu(v) can be at most 2 since F is a
3-CNF. For each v ∈ M(e) with Nu(v) = 1, the probability that v does not cut e is exactly
1
2 , independent of other nodes. If Nu(v) = 2 for v ∈ M(e), v marks another edge e′ along
the path in addition to e. The probability that v cuts neither e nor e′ is exactly 1

2 × 2
3 = 1

3 ,
independent of other nodes. If Nu(v) = 2, we regard the probability of each edge surviving
as the geometric average λ of the survival probabilities of individual edges. As a consequence,
ye can be written as (1

2)a(1√
3)b for some non-negative integers a and b where a is the number

of ancestors v of e such that v marks exactly one edge along the path and b is the number of
ancestors v of e such that v marks exactly two edges along the path. We now argue that ye

is at most pe. If e is not marked, then a + b = 0 and hence ye = pe. If e is marked, we have
a + b > 0 which implies ye ≤ λ = pe. ◀

The following lemma determines M ′(w, d).

▶ Lemma 32. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, we have

M ′(w, d) =

(2 + λ)w3d−w 0 ≤ w ≤ d

(1 + 2λ)w−d(2 + λ)2d−w d ≤ w ≤ 2d

(3λ)w−2d(1 + 2λ)3d−w 2d ≤ w ≤ 3d

Lemma 32 already gives an upper bound σ(T) ≤ M ′(3t−n, t). However, taking advantage
of Lemma 30, we can improve this bound to establish Theorem 4 for monotone formulas.

4.2.2 Proof of Theorem 4 for monotone formulas
Proof. By Fact 20 and Lemma 31 the expected time of TreeSearch is bounded by σ′(T)
(up to polynomial factors). We divide the proof into cases based on the value of t.
Case 1. t ≤ n

3 . Applying Lemma 30 for the case t ≤ n
3 , we get σ(T) ≤ 3t.

Case 2. n
3 < t ≤ 3n

7 . t ≤ 3n
7 implies 3t − n ≤ 2t

3 . We apply Lemma 30 together with
Lemma 32 for the case 0 ≤ w ≤ d to get

σ(T) ≤ 3 t
3 M ′

(
3t − n,

2t

3

)
=
(

3
2 + λ

)n((2 + λ)3

9

)t

≤ 1.164n × 1.9023t

Case 3. 3n
7 ≤ t ≤ n

2 . We note that t ≤ n
2 implies 3t − n ≤ t ≤ 4t

3 and t ≥ 3n
7 implies

3t − n ≥ 2t
3 . We apply Lemma 30 together with Lemma 32 for the case d ≤ w ≤ 2d to get

σ(T) ≤ 3 t
3 M ′

(
3t − n,

2t

3

)
=
(

2 + λ

1 + 2λ

)n
((

3(1 + 2λ)7

(2 + λ)5

)1/3)t

≤ 1.1962n ×1.7851t ◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:13

4.2.3 Proof of Lemma 32
Let T ′ be a tree of depth d and weight 0 ≤ w ≤ 3d. It is clear that the survival value
σ′(T ′) of T ′ is determined once the edges are marked consistent with the fact that every
root to leaf shoot has weight at least w. We say that a transversal tree T ′ of depth d and
weight w is normal if it has the following marking: Let w = id + j where 0 ≤ i ≤ 3 and
0 ≤ j < d. Mark i + 1 children of every non-leaf node in the first j levels and mark i

children for each of the remaining non-leaf nodes. The survival value of normal tree is exactly
((i + 1)λ + 2 − i)j(iλ + 3 − i)d−j . One can easily see that this is given exactly as M ′(w, d) as
in the statement of the lemma. We will show that normal trees have the largest survival
values by induction on d which completes the proof of Lemma 32.

Let T ′ be a tree of depth d and weight w with the maximum survival value σ′(T ′). Let r

be the root of T ′. Assume that l1 children of r are marked. Let T ′
1, T ′

2, and T ′
3 be the subtrees

of T ′ of depth d − 1 and weight w − l1 with r1, r2, and r3 as their root nodes respectively.
T ′

1, T ′
2, and T ′

3 are normal by induction hypothesis. Assume that l2 child edges of each of ri

are marked. The survival value of T ′ is g1g2M ′(w − (l1 + l2), d − 2) where g1 = (3 − l1 + l1λ)
and g2 = (3 − l2 + l2λ). It is easy to see that if l1 + l2 is held constant, g1g2 is maximized
when l1 and l2 are as equal as possible. If |l1 − l2| = 1, the survival value of T ′ does not
change if r has marked l2 children and each ri has l1 marked children, that is, if the number
of markings of the first two levels are exchanged.

If l1 = l2, then T ′ is normal. If |l1 − l2| ≥ 2, then T ′ does not have the largest survival
value which is a contradiction. We are left with the case that l1 and l2 differ by one. If
l1 < l2, we swap l1 and l2 without changing the survival value and normality follows from
induction. If l1 > l2, the tree is already normal. Otherwise, its survival value cannot be the
maximum.

5 Analysis of TreeSearch for arbitrary 3-CNFs

In this section, we analyze transversal trees for arbitrary 3-CNFs and prove Theorem 4. We
will introduce few more ideas in addition to those introduced in Section 4.

Throughout this section, we fix a 3-CNF F = (X, C) and let T be its canonical transversal
tree with root node r. Let the number of maximally disjoint width 3 clauses used to develop
F be m. Let XD ⊂ X denote set of variables that appeared in this set of m disjoint clauses.
We also note that unlike in Section 4, the clauses used to develop T may not have width
exactly 3.

5.1 Slight modification to canonical ordering and TreeSearch
We extend the conditions on the canonical ordering Π of clauses and how TreeSearch uses
Π. We order clauses in Π so that all maximally disjoint width 3 clauses appear first, followed
by all width 3 monotone clauses, followed by all other clauses. For a node u at level below m,
we impose that instead of choosing the first unsatisfied monotone clause from Π, u instead
chooses an unsatisfied width 3 monotone clause C from Π such that C does not contain any
variable x ∈ XD that has appeared twice in the shoot Sru. If such a clause does not exist,
then C can pick the first unsatisfied monotone clause from Π.

5.2 Fullness and Double marking
We reuse the notion of weight here and observe that all basic facts and basic lemmas from
monotone analysis apply here as well. We introduce one more definition related to this:

CCC 2024

17:14 Local Enumeration and Majority Lower Bounds

▶ Definition 33 (Uniform Weight). Let S = Suv be a shoot in T of length ℓ. Let a be the
number of edges in the shoot Suv. The uniform weight of S denoted by W +(S) = W (S)+3ℓ−a.

We can similarly find a lower bound to this quantity for every root to leaf path:

▶ Fact 34. Every root to leaf shoot in T has a uniform weight of at least 3t − n.

Proof. Let S be arbitrary root to leaf path with a edges. As there are only n distinct edge
labels, at least a − n labels appear at least twice. So, W (S) ≥ a − n. Since the depth of T is
t, we infer that W +(S) = W +(S) + 3t − a ≥ 3t − n as desired. ◀

We extend the idea of markings and introduce double markings:

▶ Definition 35 (Double marking). We say an edge e ∈ T is doubly marked if |M(e)| ≥ 2.
Let P = Puv be a path from u to v. We write W≥2(P) to denote number of edges e in P

such that |M(e)| ≥ 2.

Recall that when proving Lemma 30, we took advantage of the fact that any monotone
3-CNF G with τ(G) = t will contain t

3 disjoint monotone clauses. However, there is no such
guarantee for arbitrary 3-CNFs. Observe that if the number of maximally disjoint monotone
clauses is small, then many clauses of width 3 will intersect with it and this will cause many
edges to be doubly marked. We formalize this intution and introduce a new parameter called
fullness that will help keep track of this:

▶ Definition 36 (Fullness). Let u be arbitrary node at level ≥ m in T . Let um be the node at
level m along the path Pru. Then, fullness of the shoot Sru is defined as

Y (Sru) := |{x ∈ XD \ Qum : ∃e = (a, b) ∈ Sru, depth(a) ≥ m, Qe = x}|,

i.e., the number of variables in XD that are not along the path in the first m levels and
appear as labels of some edge in the shoot after level m. For arbitrary nodes u, v where u is
ancestor of v and u appears at level ≥ m, we define Y (Suv) = Y (Srv) − Y (Sru).

This parameter is useful because every node after level m will have at least one edge that
will either “add to” fullness or at least one edge that will have marking set of size at least 2.
The edges that are “doubly marked” will contribute very little to the recursion. Moreover,
we will see that fullness of any root to leaf shoot is at most 2m. As m is small, very few
nodes will be such that they will not contain any doubly marked edges. This is our key
insight and we fomrally prove this now.

▶ Fact 37. Let M denote the set of all monotone clauses of width 3 in F . Then, every
clause C ∈ M must contain at least one variable x such that x ∈ XD.

▶ Lemma 38. Let u ∈ T be a node at level greater than m. Then, at least one of the following
must be true:
1. u has at most 2 edges going out.
2. u has one edge e going out such that |M(e)| ≥ 2.
3. u has one edge e going out such that Qe ∈ XD and |M(e)| = 1.

Proof. Set variables that are part of Qu to 1 and let F ′ be the simplified 3-CNF. Say case 1
does not happen. Then, the monotone clause C used to develop edges out of u has width
3 and so, C is also present in F . By Fact 37, u contains an edge e such that Qe = x and
x ∈ XD. If M(e) ≥ 2, then case 2 is satisfied and if M(e) = 1, then case 3 is satisfied. ◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:15

5.3 An Analysis of TreeSearch for arbitrary 3-CNF
We extend Lemma 31 for arbitrary 3-CNFs taking into double markings into account.

▶ Lemma 39. Let T be a transversal tree and let P = Pru be a path starting from root r.
Then σ(P) ≤ (1√

3)W +(P)+W≥2(P).

Proof. For a marked edge e ∈ P , we define the contribution of e as

qe :=
∏

v∈M(e)

(
1

|Nu(v)| + 1

)1/|Nu(v)|

.

By Fact 25, σ(P) =
∏

e:M(e) ̸=∅ qe. It is then sufficient to show that qe ≤ λ for every marked
edge e. Note that qe can be written as (1

2)a(1√
3)b, for some non-negative integers a and b

such that a + b ≥ |M(e)|. This quantity is at most 1√
3 if |M(e)| = 1 and is at most 1

3 if
|M(e)| ≥ 2. Finally, we observe that e contributes 1 to W (P) if |M(e)| ≥ 1 and contributes
1 to W≥2(P) if M(e) ≥ 2. ◀

▶ Definition 40 (NM(w, d, y)). For non-negative integers w, d, y, define NM(w, d, y) to be
the maximum of sum of survival probabilities of leaves over depth-d transversal trees T for
3-CNFs. Moreover, for every root to leaf shoot S, W +(S) ≥ w and Y (S) ≤ y.

5.3.1 Proving Theorem 4
We will show the following as our main lemma:

▶ Lemma 41. Let F be a 3-CNF over n variables with τ(F) = t ≤ n
2 . Then for any canonical

transversal tree T for F , it holds that

σ(T) ≤

{
3t t ≤ n

3

3 t
3 × M ′ (3t − n, 2t

3
)

otherwise

where M ′(w, d) is the same bound we obtained in Section 4.

Using this, Theorem 4 follows from Lemma 41 by using the exact same argument as in
the Proof of monotone case of Theorem 1.

Our main lemma will make use of the following bounds on NM(w, d, y):

▶ Lemma 42. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, 0 ≤ y ≤ d, it holds that:

NM(w, d, y) ≤

(2 + λ)y(2 + λ2)d−y 0 ≤ w ≤ d

(2 + λ)y−(w−d)(1 + 2λ)w−d(2 + λ2)d−y d ≤ w ≤ d + y

(1 + 2λ)y(2 + λ2)2d−w(1 + λ + λ2)w−d−y d + y ≤ w ≤ 2d

(1 + 2λ)y−(w−2d)(3λ)w−2d(1 + λ + λ2)d−y 2d ≤ w ≤ 2d + y

(3λ)y(1 + λ + λ2)3d−w(2λ + λ2)w−2d−y 2d + y ≤ w ≤ 3d

Moreover, for y ≥ d:

NM(w, d, y) ≤ M ′(w, d)

where M ′(w, d) is from Section 4.

Using this, we now prove our main lemma, which yields Theorem 4 as desired.

CCC 2024

17:16 Local Enumeration and Majority Lower Bounds

Proof of Lemma 41 assuming Lemma 42. If t ≤ n
3 , then observe that T has at most 3t

leaves and we trivially bound σ(T) ≤ 3t.
For t ≥ n

3 , we proceed by considering the maximal set of disjoint monotone width 3 clauses
in F used to develop the first m levels of T . For every node u ∈ T at level m, let the subtree
rooted at u be Tu. We can bound σ(Tu) ≤ NM(w, d, y) where d = t − m, w = 3t − n, y = 2m.
Hence, σ(T) ≤ 3mNM(w, d, y).

If m ≥ t
3 , then y = 2m ≥ t − m = d. Applying Lemma 42, we infer that

σ(T) ≤ 3mM ′(3t − n, t − m)

= 3t/3
(

3m−t/3M ′
(

3t − n,
2t

3 −
(

m − t

3

)))
≤ 3t/3M ′

(
3t − n,

2t

3

)
and we infer the claim.

So, we assume that m ≤ t
3 and try to find the value of m which will maximize σ(T).

Notice that in this case, y ≤ d and so, we can’t directly reduce to the case of M ′(w, d). As
t ≤ n

2 , it must be that w = 3t − n ≤ t ≤ t + m ≤ d + y. This implies w ≤ d + y. We now
take two cases based on value of w and apply Lemma 42 for the case of y ≤ d.

Case 1. 0 ≤ w ≤ d. In this case, we see that:

σ(T) ≤ 3mNM (3t − n, t − m, 2m)
≤ 3m(2 + λ)2m(2 + λ2)t−3m

= (2 + λ2)t

(
(3)(2 + λ)2

(2 + λ2)3

)m

Here, the fraction has value > 1 and so is maximized when m is maximized, i.e., when
m = t

3 in which case:

σ(T) ≤ 3t/3(2 + λ)2t/3

= 3t/3M ′
(

3t − n,
2t

3

)
Here the last equality follows by considering the case of 0 ≤ w ≤ d for M ′(w, d).

Case 2. d ≤ w ≤ d + y. In this case, we see that:

σ(T) ≤ 3mNM (3t − n, t − m, 2m)
≤ 3m(2 + λ)n−2t+m(1 + 2λ)2t−n+m(2 + λ2)t−3m

=
(

2 + λ

1 + 2λ

)n−2t

(2 + λ2)t

(
(3)(2 + λ)(1 + 2λ)

(2 + λ2)3

)m

Here, the rightmost fraction is > 1 and so is maximized when m is maximized, i.e., when
m = t

3 in which case:

σ(T) ≤ 3t/3(2 + λ)n−5t/3(1 + 2λ)7t/3−n

= 3t/3M ′
(

3t − n,
2t

3

)
Here the last equality follows by considering the case of d ≤ w ≤ 2d for M ′(w, d) (we can
do this as y ≤ d and hence, w ≤ 2d).

Thus, in either case, we exactly recover the monotone bound as desired. ◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:17

5.3.2 Upper bounds on NM(w, d, y)

As done in monotone analysis, we let λ
def= 1√

3 . Our goal is to prove Lemma 42. We introduce
a recurrence relation L(w, d, y) that we argue will upper bound NM(w, d, y).

▶ Definition 43 (L(w, d, y)). We define L(w, d, y) : N3 → R recursively as follows:

L(w, 0, y) =
{

1 w ≤ 0
0 w > 0

For w ≤ 3d, 0 ≤ d ≤ n, and y ≥ 1, define L(w, d, y) as:

L(w, d, y) = max{(2 + λ)L(w − 1, d − 1, y − 1),
(1 + 2λ)L(w − 2, d − 1, y − 1),
3λL(w − 3, d − 1, y − 1)}

For w ≤ 3d, 0 ≤ d ≤ n, and y = 0, define L(w, d, 0) as:

L(w, d, 0) = max{(2 + λ2)L(w − 1, d − 1, 0),
(1 + λ + λ2)L(w − 2, d − 1, 0),
(2λ + λ2)L(w − 3, d − 1, 0)}

We claim that L(w, d, y) gives a good bound on M(w, d, y).

▶ Proposition 44. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, 0 ≤ y, it holds that: NM(w, d, y) ≤
L(w, d, y)

We will show the following bound on L(w, d, y).

▶ Lemma 45. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, 0 ≤ y ≤ d, it holds that:

L(w, d, y) ≤

(2 + λ)y(2 + λ2)d−y 0 ≤ w ≤ d

(2 + λ)y−(w−d)(1 + 2λ)w−d(2 + λ2)d−y d ≤ w ≤ d + y

(1 + 2λ)y(2 + λ2)2d−w(1 + λ + λ2)w−d−y d + y ≤ w ≤ 2d

(1 + 2λ)y−(w−2d)(3λ)w−2d(1 + λ + λ2)d−y 2d ≤ w ≤ 2d + y

(3λ)y(1 + λ + λ2)3d−w(2λ + λ2)w−2d−y 2d + y ≤ w ≤ 3d

Moreover, for y ≥ d:

L(w, d, y) ≤ M ′(w, d)

where M ′(w, d) is from Section 4.

Combining Proposition 44 and Lemma 45, Lemma 42 trivially follows.

5.3.3 Proving NM(w, d, y) ≤ L(w, d, y)
Using Lemma 38 and Lemma 39, we come up with a recurrence for NM(w, d, y) and show
it’s bounded by L(w, d, y), proving Proposition 44.

Proof of Proposition 44. Recall that in the canonical ordering, all width 3 monotone clauses
appear first and remaining clauses appear later. After exhausting the width 3 monotone
clauses, the remaining clauses that we develop in the transversal tree have width at most 2.

CCC 2024

17:18 Local Enumeration and Majority Lower Bounds

Towards this, for non-negative integers w, d: let M2(w, d) be the maximum sum of survival
probabilities over all transversal trees for 2-CNFs where every root to leaf path has uniform
weight at least w. Recall that uniform weight is defined with respect to 3-CNFs and we
continue using that definition. We get various recurrences by considering cases on number
of marked edges out of the root node (0 or 1 or 2) and by observing that some cases are
dominated by others (such as various cases of width 1 clauses). The remaining recurrences
that are not dominated by any other recurrence are the following:

M2(w, d) ≤ max{(2)M2(w − 1, d − 1),
(1 + λ)M2(w − 2, d − 1),
2λM2(w − 3, d − 1)}

By induction, we infer that M2(w, d) ≤ L(w, d, 0).
We now develop a recurrence for NM(w, d, 0). Recall that in canonical ordering, either

we exhaust all width 3 monotone clause and reach M2(w, d), or we develop width 3 monotone
clause. Observe that Lemma 38 guarantees that every node in such a tree must have an
edge e coming out of it such that |M(e)| ≥ 2. Taking cases on the number of marked edges
coming out of the root node and whether root node has 3 or at most 2 edges coming out,
we get many recurrences. However certain recurrences are dominated by others and the
remaining recurrences that are not dominated by any othe recurrence are as follows:

NM(w, d, 0) ≤ max{(2 + λ2)NM(w − 1, d − 1, 0),
(1 + λ + λ2)NM(w − 2, d − 1, 0),
(2λ + λ2)NM(w − 3, d − 1, 0),
M2(w, d)}

By induction, we again infer that NM(w, d, 0) ≤ L(w, d, 0).
We now develop a recurrence for NM(w, d, y). We again take advantange of the fact that

in canonical ordering, either we exhaust all width 3 monotone clause and reach M2(w, d), or
we develop width 3 monotone clause. Moreover, amongst width 3 clauses, canonical ordering
causes either y to decrease by at least 1 or we exhaust such clauses and all remaining clauses
have the property that a node developed using such a clause will have an outgoing edge e

such that |M(e)| ≥ 2.
We get many recurrences for NM(w, d, y) by considering cases on number of marked

edges (1 or 2 or 3) out of the root node, number of marked edges that cause Y to decrease (1
or 2 or 3), various combinations of number of double marked edges (1 or 2 or 3), whether
the root node has at most 2 edges coming out, and whether the root node has no edges that
cause Y to decrease by at least 1. Notice that if the root node has no edges that cause Y

to decrease by at least 1, then by clause ordering, no other width 3 clause can cause Y to
decrease and hence, we are in case NM(w, d, 0). Lastly, we observe that certain recurrences
are dominated by others. The remaining recurrences that are not dominated by any other
recurrences are the following:

NM(w, d, y) ≤ max{(2 + λ)NM(w − 1, d − 1, y − 1),
(1 + 2λ)NM(w − 2, d − 1, y − 1),
3λNM(w − 3, d − 1, y − 1),
NM(w, d, 0),
M2(w, d)}

By induction, utilizing the fact that L(w, d, y) ≥ L(w, d, 0), we again infer that NM(w, d, y) ≤
L(w, d, y) as desired. ◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:19

5.3.4 Upper bound on L(w, d, 0)
We first show Lemma 45 for the special case of y = 0:

▶ Lemma 46. For all 0 ≤ d ≤ n, 0 ≤ w ≤ 3d, it holds that:

L(w, d, 0) ≤

(2 + λ2)d 0 ≤ w ≤ d

(2 + λ2)2d−w(1 + λ + λ2)w−d d ≤ w ≤ 2d

(1 + λ + λ2)3d−w(2λ + λ2)w−2d 2d ≤ w ≤ 3d

Proof. Let G1, G2, G3, G : N2 → R be defined as:

G1(w, d) = (2 + λ2)d

G2(w, d) = (2 + λ2)2d−w(1 + λ + λ2)w−d

G3(w, d) = (1 + λ + λ2)3d−w(2λ + λ2)w−2d

G(w, d) = min{G1(w, d), G2(w, d), G3(w, d)}

For 1 ≤ i ≤ 3, define Pi to be the set of pairs (w, d) such that d ≥ 0 and w ∈ [(i − 1)d, id].
We will show the following two propositions:

▶ Proposition 47. For all 1 ≤ i ≤ 3, and all (w, d) ∈ Pi : G(w, d) = Gi(w, d).

▶ Proposition 48. For all 1 ≤ i ≤ 3 and all (w, d) ∈ Pi : L(w, d, 0) ≤ G(w, d).

We observe that Proposition 47 and Proposition 48 together imply our claim.

Proof of Proposition 47. The result follows immediately from the following claims:

▷ Claim 49. G1(w, d) ≤ G2(w, d) if and only if w ≤ d, with equality when w = d.

▷ Claim 50. G2(w, d) ≤ G3(w, d) if and only if w ≤ 2d, with equality when w = 2d.

Claim 49 holds because:
G1(w, d)
G2(w, d) =

(
2 + λ2

1 + λ + λ2

)w−d

which is greater than 1 if and only if w > d. Claim 50 holds because:

G2(w, d)
G3(w, d) =

(
(1 + λ + λ2)2

(2λ + λ2)(2 + λ2)

)w−2d

which is greater than 1 if and only if w > 2d. ◀

Proof of Proposition 48. We consider cases on value of w and in every case, induct on d

and apply Definition 43 to infer the claim.

Case 1. Assume (w, d) ∈ P1.
L(w, d, 0) ≤ max{(2 + λ2)G(w − 1, d − 1, 0),

(1 + λ + λ2)G(w − 2, d − 1, 0),
(2λ + λ2)G(w − 3, d − 1, 0)}

≤ max{(2 + λ2)G1(w − 1, d − 1), (1 + λ + λ2)G1(w − 2, d − 1),
(2λ + λ2)G1(w − 3, d − 1)}

= G1(w, d) max{1, (1 + λ + λ2)/(2 + λ2), (2λ + λ2)/(2 + λ2)}
= G1(w, d)
= G(w, d)

The last equality follows by applying Proposition 47 for the case (w, d) ∈ P1.

CCC 2024

17:20 Local Enumeration and Majority Lower Bounds

Case 2. Assume (w, d) ∈ P2.
L(w, d, 0) ≤ max{(2 + λ2)G(w − 1, d − 1, 0),

(1 + λ + λ2)G(w − 2, d − 1, 0),
(2λ + λ2)G(w − 3, d − 1, 0)}

≤ max{(2 + λ2)G2(w − 1, d − 1), (1 + λ + λ2)G2(w − 2, d − 1),
(2λ + λ2)G2(w − 3, d − 1)}

= G2(w, d) max{1, 1, (2λ + λ2)(2 + λ2)/(1 + λ + λ2)2}
= G2(w, d)
= G(w, d)

The last equality follows by applying Proposition 47 for the case (w, d) ∈ P2.
Case 3. Assume (w, d) ∈ P3.

L(w, d, 0) ≤ max{(2 + λ2)G(w − 1, d − 1, 0),
(1 + λ + λ2)G(w − 2, d − 1, 0),
(2λ + λ2)G(w − 3, d − 1, 0)}

≤ max{(2 + λ2)G3(w − 1, d − 1), (1 + λ + λ2)G3(w − 2, d − 1),
(2λ + λ2)G3(w − 3, d − 1)}

= G3(w, d) max{(2 + λ2)(2λ + λ2)/(1 + λ + λ2)2, 1, 1}
= G3(w, d)
= G(w, d)

The last equality follows by applying Proposition 47 for the case (w, d) ∈ P3. ◀
◀

5.3.5 Upper bound on L(w, d, y)
We are finally ready to give general bounds on L(w, d, y):

Proof of Lemma 45. Notice that if y ≥ d, then if we try and unravel the recurrence, no
path can lead to the case y = 0, d > 0. Hence, y plays no role in restricting the recurrence
and L(w, d, y) follows the same recurrence as M ′(w, d), yielding the claim.

For y ≤ d, we proceed by first defining H1, H2, H3, H4, H5, H : N3 → R as follows:

H1(w, d, y) = (2 + λ)y(2 + λ2)d−y

H2(w, d, y) = (2 + λ)y−(w−d)(1 + 2λ)w−d(2 + λ2)d−y

H3(w, d, y) = (1 + 2λ)y(2 + λ2)2d−w(1 + λ + λ2)w−d−y

H4(w, d, y) = (1 + 2λ)y−(w−2d)(3λ)w−2d(1 + λ + λ2)d−y

H5(w, d, y) = (3λ)y(1 + λ + λ2)3d−w(2λ + λ2)w−2d−y

H(w, d, y) = min{H2(w, d, y), H3(w, d, y), H4(w, d, y), H5(w, d, y)}

For 1 ≤ i ≤ 5, define Qi ⊂ N3 as follows:

Q1 = {(w, d, y) ∈ N3 : 0 ≤ w ≤ d + y}
Q2 = {(w, d, y) ∈ N3 : d ≤ w ≤ d + y}
Q3 = {(w, d, y) ∈ N3 : d + y ≤ w ≤ 2d}
Q4 = {(w, d, y) ∈ N3 : 2d ≤ w ≤ 2d + y}
Q5 = {(w, d, y) ∈ N3 : 2d + y ≤ w ≤ 3d}

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:21

We will show the following propositions that together imply our claim:

▶ Proposition 51. For all 1 ≤ i ≤ 5, and all (w, d, y) ∈ Qi : H(w, d, y) = Hi(w, d, y).

▶ Proposition 52. For all 1 ≤ i ≤ 5 and all (w, d, y) ∈ Qi : L(w, d, y) ≤ H(w, d, y).

We will in fact use Proposition 51 in the proof of Proposition 52. Hence, we prove the
former first:

Proof of Proposition 51. The result follows immediately from the following claims:

▷ Claim 53. H1(w, d, y) ≤ H2(w, d, y) if and only if w ≤ d, with equality when w = d.

▷ Claim 54. H2(w, d, y) ≤ H3(w, d, y) if and only if w ≤ d+y, with equality when w = d+y.

▷ Claim 55. H3(w, d, y) ≤ H4(w, d, y) if and only if w ≤ 2d, with equality when w = 2d.

▷ Claim 56. H4(w, d, y) ≤ H5(w, d, y) if and only if w ≤ 2d + y, with equality when
w = 2d + y.

Claim 53 holds because:

H1(w, d, y)
H2(w, d, y) =

(
2 + λ

1 + 2λ

)w−d

which is greater than 1 if and only if w > d. Claim 54 holds because:

H2(w, d, y)
H3(w, d, y) =

(
(1 + 2λ)(2 + λ2)

(2 + λ)(1 + λ + λ2)

)w−d−y

which is greater than 1 if and only if w > d + y. Claim 55 holds because:

H3(w, d, y)
H4(w, d, y) =

(
(1 + 2λ)(1 + λ + λ2)

(2 + λ2)(3λ)

)w−2d

which is greater than 1 if and only if w > 2d. Claim 56 holds because:

H4(w, d, y)
H5(w, d, y) =

(
(3λ)(1 + λ + λ2)
(1 + 2λ)(2λ + λ2)

)w−2d−y

which is greater than 1 if and only if w > 2d + y. ◀

We prove our final proposition:

Proof of Proposition 52. We observe that for y = 0, our claim follows from Lemma 46. We
use this fact in the inductive argument below and only consider cases where y ≥ 1. We
consider cases on value of w and in every case, induct on d + y and apply Definition 43 to
infer the claim.

Case 1. Assume (w, d, y) ∈ Q1 and y ≥ 1.
L(w, d, y) = max{(2 + λ)H(w − 1, d − 1, y − 1), (1 + 2λ)H(w − 2, d − 1, y − 1),

(3λ)H(w − 3, d − 1, y − 1)}
≤ max{(2 + λ)H1(w − 1, d − 1, y − 1), (1 + 2λ)H1(w − 2, d − 1, y − 1),

(3λ)H1(w − 3, d − 1, y − 1)}

= H1(w, d, y) max
{

1,
1 + 2λ

2 + λ
,

3λ

2 + λ

}
= H1(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 51 for the case (w, d, y) ∈ Q1.

CCC 2024

17:22 Local Enumeration and Majority Lower Bounds

Case 2. Assume (w, d, y) ∈ Q2 and y ≥ 1.
L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),

(3λ)L(w − 3, d − 1, y − 1)}
≤ max{(2 + λ)H2(w − 1, d − 1, y − 1), (1 + 2λ)H2(w − 2, d − 1, y − 1),

(3λ)H2(w − 3, d − 1, y − 1)}

= H2(w, d, y) max
{

1, 1,
(3λ)(2 + λ)
(1 + 2λ)2

}
= H2(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 51 for the case (w, d, y) ∈ Q2.
Case 3. Assume (w, d, y) ∈ Q3 and y ≥ 1.

L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),
(3λ)L(w − 3, d − 1, y − 1)}

≤ max{(2 + λ)H3(w − 1, d − 1, y − 1), (1 + 2λ)H3(w − 2, d − 1, y − 1),
(3λ)H3(w − 3, d − 1, y − 1)}

= H3(w, d, y) max
{

(2 + λ)(1 + λ + λ2)
(1 + 2λ)(2 + λ2) , 1,

(2 + λ2)(3λ)
(1 + 2λ)(1 + λ + λ2)

}
= H3(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 51 for the case (w, d, y) ∈ Q3.
Case 4. Assume (w, d, y) ∈ Q4 and y ≥ 1.

L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),
(3λ)L(w − 3, d − 1, y − 1)}

≤ max{(2 + λ)H4(w − 1, d − 1, y − 1), (1 + 2λ)H4(w − 2, d − 1, y − 1),
(3λ)H4(w − 3, d − 1, y − 1)}

= H4(w, d, y) max
{

(3λ)(2 + λ)
(1 + 2λ)2 , 1, 1

}
= H4(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 51 for the case (w, d, y) ∈ Q4.
Case 5. Assume (w, d, y) ∈ Q5 and y ≥ 1.

L(w, d, y) ≤ max{(2 + λ)L(w − 1, d − 1, y − 1), (1 + 2λ)L(w − 2, d − 1, y − 1),
(3λ)L(w − 3, d − 1, y − 1)}

≤ max{(2 + λ)H5(w − 1, d − 1, y − 1), (1 + 2λ)H5(w − 2, d − 1, y − 1),
(3λ)H5(w − 3, d − 1, y − 1)}

= H5(w, d, y) max
{

(2 + λ)(2λ + λ2)2

(3λ)(1 + λ + λ2)2 ,
(1 + 2λ)(2λ + λ2)
(3λ)(1 + λ + λ2) , 1

}
= H5(w, d, y)
= H(w, d, y)

The last equality follows by applying Proposition 51 for the case (w, d, y) ∈ Q5. ◀

◀

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:23

6 Satisfiability for CNFs with bounded negations

We now use TreeSearch to give an enumeration algorithm for class of CNFs with arbitrary
width and bounded negations in each clause.

We will use the following well known estimate of binomial coefficients:

▶ Proposition 57. Let H2 : (0, 1) → (0, 1) be the binary entropy function defined as
H2(x) = −x log2(x) + (1 − x) log2(1 − x). Then, for k ≤ n/2, it holds that:

∑k
i=0
(

n
k

)
≤

poly(n)2nH2(k/n).

Proof of Theorem 6. Without loss of generality we assume each clause F contains at most
3 postive literals. Indeed, if every clause in F contains at most 3 negative literals, then
we can negate every literal in every clause and consider the resultant CNF. This CNF is
satisfiable if and only if the original CNF was satisfiable. Moreover, the new CNF has the
property that each clause contains at most 3 positive literals.

Let c = 0.71347. Then, we use TreeSearch to to enumerate all minimal satisfiable
assignments of weight at most cn. We then exhaustively go over all assignments α with
weight at least cn and check whether α satisfies F and output such minimal α.

The runtime of the exhaustive procedure is

poly(n)
n∑

i=cn

(
n

k

)
≤ poly(n)2nH2(c) ≤ O(1.8204n)

Notice that when we develop the transversal tree, we only develop positive monotone
clauses. Any positive monotone clauses that we encounter during the TreeSearch procedure
for F must have width at most 3 as each clause contains at most 3 positive literals. Hence,
the resultant transversal tree T is still a ternary tree. So, every root to leaf shoot S must
have weight at least 3t − n where t = cn. We do not put any lower bound on Y for any such
shoot and so, we set y = ∞. Then, the runtime of TreeSearch upto polynomial factors is
bounded by NM(3(cn) − n, cn, ∞) ≤ M ′((3c − 1), cn). We observe that c ≤ 3c − 1 ≤ 2c and
so, we are in the regime where w ≤ d ≤ 2d. Thus,

M ′((3c − 1)n, cn) ≤

((
1 + 2√

3

)2c−1(
2 + 1√

3

)1−c
)n

≤ 1.8204n

Hence, the runtime of our algorithm is indeed O(1.8204n) as desired. ◀

7 Conclusion

We gave a new non-trivial algorithm for Enum(3, n
2): given an n-variable 3-CNF with

no satsifying assignment of Hamming weight less than n
2 , we can enumerate all satisfying

assignments of Hamming weight exactly n
2 in expected time 1.598n. Several fascinating

questions with major consequences remain open. Here we list the most pressing.

1. We already mentioned that Enum(3, n
2) cannot be solved in less than 1.565n steps. Close

this gap.
2. Can our approach produce significant improvements for k-CNFs with k > 3?

It seems that to make progress towards resolving these problems, deeper analysis of the
structure of k-CNFs will be required.

CCC 2024

17:24 Local Enumeration and Majority Lower Bounds

References
1 Kazuyuki Amano. Depth-three circuits for inner product and majority functions. In Satoru

Iwata and Naonori Kakimura, editors, 34th International Symposium on Algorithms and
Computation, ISAAC 2023, December 3-6, 2023, Kyoto, Japan, volume 283 of LIPIcs, pages
7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPICS.
ISAAC.2023.7.

2 Tobias Brüggemann and Walter Kern. An improved deterministic local search algorithm for
3-SAT. Theor. Comput. Sci., 329(1-3):303–313, 2004. doi:10.1016/j.tcs.2004.08.002.

3 Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David Zuckerman.
Mining circuit lower bound proofs for meta-algorithms. Comput. Complex., 24(2):333–392,
2015. doi:10.1007/s00037-015-0100-0.

4 Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan, Jon M. Kleinberg,
Christos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2 −
2/(k + 1))n algorithm for k-SAT based on local search. Theor. Comput. Sci., 289(1):69–83,
2002. doi:10.1016/S0304-3975(01)00174-8.

5 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

6 Peter Frankl, Svyatoslav Gryaznov, and Navid Talebanfard. A variant of the VC-dimension with
applications to depth-3 circuits. In Mark Braverman, editor, 13th Innovations in Theoretical
Computer Science Conference, ITCS 2022, January 31 – February 3, 2022, Berkeley, CA, USA,
volume 215 of LIPIcs, pages 72:1–72:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.72.

7 Alexander Golovnev, Alexander S. Kulikov, and R. Ryan Williams. Circuit depth reductions.
In James R. Lee, editor, 12th Innovations in Theoretical Computer Science Conference, ITCS
2021, January 6-8, 2021, Virtual Conference, volume 185 of LIPIcs, pages 24:1–24:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.ITCS.2021.24.

8 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-SAT algorithms
using biased-PPSZ. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 578–589. ACM, 2019. doi:10.1145/3313276.3316359.

9 Johan Håstad, Stasys Jukna, and Pavel Pudlák. Top-down lower bounds for depth-three
circuits. Comput. Complex., 5(2):99–112, 1995. doi:10.1007/BF01268140.

10 Timon Hertli. Breaking the PPSZ barrier for unique 3-SAT. In Javier Esparza, Pierre
Fraigniaud, Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and
Programming – 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, volume 8572 of Lecture Notes in Computer Science, pages
600–611. Springer, 2014. doi:10.1007/978-3-662-43948-7_50.

11 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
961–972. SIAM, 2012. doi:10.1137/1.9781611973099.77.

12 Peter Keevash. Hypergraph Turán problems. In Surveys in combinatorics 2011, volume 392 of
London Math. Soc. Lecture Note Ser., pages 83–139. Cambridge Univ. Press, Cambridge, 2011.

13 Konstantin Kutzkov and Dominik Scheder. Using CSP to improve deterministic 3-sat. CoRR,
abs/1007.1166, 2010. arXiv:1007.1166.

14 Victor Lecomte, Prasanna Ramakrishnan, and Li-Yang Tan. The composition complexity of
majority. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 19:1–19:26. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.19.

15 Andrea Lincoln and Adam Yedidia. Faster random k-CNF satisfiability. In Artur Czumaj,
Anuj Dawar, and Emanuela Merelli, editors, 47th International Colloquium on Automata,
Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Germany (Virtual
Conference), volume 168 of LIPIcs, pages 78:1–78:12. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.78.

https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.4230/LIPICS.ISAAC.2023.7
https://doi.org/10.1016/j.tcs.2004.08.002
https://doi.org/10.1007/s00037-015-0100-0
https://doi.org/10.1016/S0304-3975(01)00174-8
https://doi.org/10.1145/3284176
https://doi.org/10.4230/LIPIcs.ITCS.2022.72
https://doi.org/10.4230/LIPICS.ITCS.2021.24
https://doi.org/10.1145/3313276.3316359
https://doi.org/10.1007/BF01268140
https://doi.org/10.1007/978-3-662-43948-7_50
https://doi.org/10.1137/1.9781611973099.77
https://arxiv.org/abs/1007.1166
https://doi.org/10.4230/LIPIcs.CCC.2022.19
https://doi.org/10.4230/LIPIcs.ICALP.2020.78

M. Gurumukhani, R. Paturi, P. Pudlák, M. Saks, and N. Talebanfard 17:25

16 Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability in less than 2n steps. Discret.
Appl. Math., 10(3):287–295, 1985. doi:10.1016/0166-218X(85)90050-2.

17 Robin A. Moser and Dominik Scheder. A full derandomization of schöning’s k-SAT algorithm.
In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on
Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 245–252. ACM,
2011. doi:10.1145/1993636.1993670.

18 Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended abstract). In
32nd Annual Symposium on Foundations of Computer Science, San Juan, Puerto Rico, 1-4
October 1991, pages 163–169. IEEE Computer Society, 1991. doi:10.1109/SFCS.1991.185365.

19 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-SAT. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

20 Ramamohan Paturi, Pavel Pudlák, and Francis Zane. Satisfiability coding lemma. Chic. J.
Theor. Comput. Sci., 1999, 1999. URL: http://cjtcs.cs.uchicago.edu/articles/1999/11/
contents.html.

21 Ramamohan Paturi, Michael E. Saks, and Francis Zane. Exponential lower bounds for depth
three boolean circuits. Comput. Complex., 9(1):1–15, 2000. doi:10.1007/PL00001598.

22 Dominik Scheder. PPSZ is better than you think. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
205–216. IEEE, 2021. doi:10.1109/FOCS52979.2021.00028.

23 Dominik Scheder and Navid Talebanfard. Super strong ETH is true for PPSZ with small
resolution width. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 3:1–3:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.3.

24 Uwe Schöning. A probabilistic algorithm for k-SAT based on limited local search and restart.
Algorithmica, 32(4):615–623, 2002. doi:10.1007/s00453-001-0094-7.

25 Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In Mathematical
foundations of computer science (Proc. Sixth Sympos., Tatranská Lomnica, 1977), pages
162–176. Lecture Notes in Comput. Sci., Vol. 53, 1977.

26 Nikhil Vyas and R. Ryan Williams. On super strong ETH. In Mikolás Janota and Inês Lynce,
editors, Theory and Applications of Satisfiability Testing – SAT 2019 – 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, volume 11628 of Lecture
Notes in Computer Science, pages 406–423. Springer, 2019. doi:10.1007/978-3-030-24258-9_
28.

27 Ryan Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013. doi:10.1137/10080703X.

CCC 2024

https://doi.org/10.1016/0166-218X(85)90050-2
https://doi.org/10.1145/1993636.1993670
https://doi.org/10.1109/SFCS.1991.185365
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/11/contents.html
https://doi.org/10.1007/PL00001598
https://doi.org/10.1109/FOCS52979.2021.00028
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.4230/LIPIcs.CCC.2020.3
https://doi.org/10.1007/s00453-001-0094-7
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1007/978-3-030-24258-9_28
https://doi.org/10.1137/10080703X

Pseudorandomness, Symmetry, Smoothing: I
Harm Derksen #

Northeastern University, Boston, MA, USA

Peter Ivanov #

Northeastern University, Boston, MA, USA

Chin Ho Lee #

North Carolina State University, Raleigh, NC, USA

Emanuele Viola #

Northeastern University, Boston, MA, USA

Abstract
We prove several new results about bounded uniform and small-bias distributions. A main message
is that, small-bias, even perturbed with noise, does not fool several classes of tests better than
bounded uniformity. We prove this for threshold tests, small-space algorithms, and small-depth
circuits. In particular, we obtain small-bias distributions that

achieve an optimal lower bound on their statistical distance to any bounded-uniform distribution.
This closes a line of research initiated by Alon, Goldreich, and Mansour in 2003, and improves
on a result by O’Donnell and Zhao.
have heavier tail mass than the uniform distribution. This answers a question posed by several
researchers including Bun and Steinke.
rule out a popular paradigm for constructing pseudorandom generators, originating in a 1989
work by Ajtai and Wigderson. This again answers a question raised by several researchers. For
branching programs, our result matches a bound by Forbes and Kelley.

Our small-bias distributions above are symmetric. We show that the xor of any two symmetric
small-bias distributions fools any bounded function. Hence our examples cannot be extended to the
xor of two small-bias distributions, another popular paradigm whose power remains unknown. We
also generalize and simplify the proof of a result of Bazzi.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases pseudorandomness, k-wise uniform distributions, small-bias distributions,
noise, symmetric tests, thresholds, Krawtchouk polynomials

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.18

Funding Harm Derksen: Partially supported by NSF grant DMS 2147769.
Peter Ivanov: Supported by NSF grant CCF-2114116.
Emanuele Viola: Supported by NSF grant CCF-2114116.

Acknowledgements CHL thanks Salil Vadhan and Terence Tao for helpful discussions.

1 Introduction

A distribution D over {−1, 1}n is (ε, k)-biased if for every S ⊆ [n] of size 0 < |S| ≤ k we have
|E[DS]| ≤ ε, where DS :=

∏
i∈S Di. If ε = 0 then any k bits are uniform and D is called

k-wise uniform; if k = n then D is called ε-biased. The study of these distributions permeates
and precedes theoretical computer science. They were studied already in the 40’s [52], are
closely related to universal hash functions [17], error-correcting codes (see e.g. [35]), and in
their modern guise were introduced in the works [5, 23, 47].

(ε, k)-biased distributions behave like the uniform distribution in that several prominent
tests cannot distinguish the two distributions.

© Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 18; pp. 18:1–18:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ha.derksen@northeastern.edu
mailto:ivanov.p@northeastern.edu
mailto:chinho.lee@ncsu.edu
https://orcid.org/0000-0001-5072-8110
mailto:viola@ccs.neu.edu
https://doi.org/10.4230/LIPIcs.CCC.2024.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Pseudorandomness, Symmetry, Smoothing: I

▶ Definition 1. A test f : {−1, 1}n → [−1, 1] is δ-fooled by a distribution D we have
|E[f(U)] − E[f(D)]| ≤ δ, where U is the uniform distribution.

At the same time, (ε, k)-biased distributions can be sampled efficiently from a short seed.
The combination of these facts enables many applications in algorithm design, coding theory,
pseudorandomness, and more. For background we refer the reader to [60, 35, 64], where
bounds on seed lengths are also discussed.

To generate k-wise uniformity, seed length ck log n is sufficient, and necessary for k < nc;
while for ε-biased seed length c log(n/ε) is sufficient and necessary. In this paper, as in [64],
every occurrence of “c” denotes a possibly different positive real number. The notation “cx”
for parameter(s) x indicates that this number may depend on x and only on x. Replacing “c”
with O(1) everywhere is consistent with one common interpretation of the big-Oh notation.

It is known that any ε-biased distribution is close to a k-wise uniform distribution in
total variation (a.k.a. statistical, L1, etc.) distance [6, 4, 50].

▶ Lemma 2 (Theorem 1.1 [50]). Any (ε, k)-biased distribution is ((e3n
k)k/2ε)-close to a k-wise

uniform distribution in total variation distance.

Hence, any property enjoyed by k-wise uniform distributions is inherited by distributions
with bias n−ck. Unsurprisingly, that is precisely the bias for which the seed length of the
latter matches that of the former, as discussed above. The question arises as to which tests
can be fooled with a larger bias, which would result in shorter seed length.

▶ Question 3. Which tests can distinguish some ε-biased distribution from every k-wise
uniform distribution, for an ε suitably larger than the bound in Lemma 2?

For a concrete setting, one can think e.g. k = 10 log n and ε = n−100, or any ε = n−o(log n).
Question 3 is a computational version of the classic question of the statistical distance

between ε-biased and k-wise uniform distributions, studied in [6, 4, 50]. Lemma 2 shows that
for small ε, no test, efficient or not, can distinguish the distributions. Those works also give
lower bounds in various ranges of parameters, which means that in those ranges, there exists
some ε-biased distribution such that every k-wise uniform distribution can be distinguished
from it by some test. However, the arguments in these papers either do not apply to the
tests we consider below or for bias ε larger than n−k, which is the regime of interest here.
These works are discussed more below.

A trivial test which cannot distinguish between small-bias and k-wise uniform distributions
in the sense of Question 3 is parity. By definition, the bias of parity is at most ε, which is
ε-close to the bias of the uniform distribution, which is 0. And the uniform distribution is in
particular k-wise uniform.

However, the answer to Question 3 was not known for various other classes of tests of
interest. To our knowledge, it was not known for symmetric or even threshold tests (a.k.a. tail,
deviation, concentration bounds, etc.). In particular, Bun and Steinke posed the following
question in [16].

In this work, we focused on understanding the limits of k-wise independent distri-
butions. Gopalan et al. [31] gave a much more sophisticated generator with nearly
optimal seed length. But could simple, natural pseudorandom distributions, such as
small-bias spaces, give strong tail bounds themselves?

More concretely, the following question has been asked by several researchers. We use 1⊤x

to denote the sum
∑n

i=1 xi of x ∈ {−1, 1}n, and B to denote the binomial distribution 1⊤U .

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:3

▶ Question 4. Is it true that for every a, there exists b such that Pr[1⊤D ≥ t] ≤ Pr[B ≥
t] + 1/na for every n−b-biased distribution D and t =

√
n log n?

The answer to Question 4 was known to be negative for t = 0 (corresponding to the
majority function): One can take D to be uniform on strings of weight 0 modulo 3, see [8].
The answer was also known to be positive when t > n1/2+ε for a constant ε because all the
relevant quantities are small enough; formally combine Corollary 28 with Lemma 2. But for
other values of t closer to

√
n the answer was less clear.

Smoothed tests and distributions

A main focus of this paper is on smoothed tests and smoothed distributions, which are tests
and distributions perturbed by noise.

▶ Definition 5. Nρ is the noise distribution on {−1, 1}n, where each bit is independently set
to uniform with probability 1 − ρ and 1 otherwise. We write D · Nρ for the coordinate-wise
product of D and Nρ, which corresponds to bit-wise xor over {0, 1}. Note x · N1 = x and
x · N0 = U , for any x.

For a test f and a distribution D, a smoothed distribution is defined as D · Nρ and a
smoothed test is defined as Tρf(x) := E[f(x · Nρ)], for some retention rate ρ ∈ [0, 1]. Note
that E[f(D · Nρ)] = E[Tρf(D)] and we will use both viewpoints interchangeably throughout.

Note that smoothing does not increase the distance of any two distributions, with respect
to any class of tests which is closed under shifts. So distinguishing smoothed distributions
is at least as hard as distinguishing the corresponding (non-smooth) distributions. A main
motivation for considering smoothed tests and distributions comes from several paradigms
for constructing pseudorandom generators (PRGs) that combine (ε, k)-biased distributions
in different ways. These paradigms have been proposed in the last 15 years or so and are
discussed next; for additional background, we refer the readers to the recent monograph [35].

Small-bias plus (pseudorandom) noise

This paradigm goes back to Ajtai and Wigderson [3], but saw no further work until it was
revived by Gopalan, Meka, Reingold, Trevisan, and Vadhan [32]. It has been used in a number
of subsequent works including [30, 54, 56, 34, 42, 21, 29, 45, 40, 28, 22]. In particular, this
paradigm gave rise to PRGs with near-optimal seed lengths for several well-studied classes of
tests, including combinatorial rectangles [32, 40] and read-once AC0 formulas [27, 28].

The Ajtai–Wigderson paradigm comprises several steps. A main step in this paradigm re-
quires fooling (the average of) a random restriction of tests with a pseudorandom distribution.
(This can also be viewed as constructing a fractional pseudorandom generator [19, 20, 18].)
The works by Haramaty, Lee, and Viola [41, 34, 42, 40] have reinterpreted the notion of
“random restrictions” as perturbing or xor-ing a small-bias distribution with noise. The
perspective of noise has proved influential and is maintained in several following works,
including the present one.

This perspective of noise has been used to prove a variety of new results in areas ranging
from communication complexity [34], coding theory [34, 55], Turing machines [63], and
one-way small-space computation [29, 45].

In particular, building on the proof in [34], Forbes and Kelley [29] significantly improved
the parameters in [34] and obtained pseudorandom generators with seed length c log3 n that
fool one-way logspace computation. The main new feature of their result over the classic
generator by Nisan [48] is that the order in which the input is read by the computation is

CCC 2024

18:4 Pseudorandomness, Symmetry, Smoothing: I

arbitrary. A main step in the result in [29] is showing that c log n-wise uniformity xor-ed with
noise fools logspace. After their work, a natural question, asked independently by several
researchers, is whether one can improve the seed length to o(log3 n) by replacing c log n-wise
uniformity with polynomial bias.

▶ Question 6. Does 1/poly(n)-bias plus noise fool one-way logspace?

A positive answer would give improved generators for small-space algorithms from c log3 n

to c log2 n, bringing the parameters of the result in [29], which works in any order, in
alignment with the classic fixed-order result of Nisan [48].

In fact, the answer to Question 6 was not known even for the special case of one-way
logspace algorithms which compute symmetric tests; or for the even more restricted class of
threshold tests that have the form 1(1⊤x ≥ t), for any bias larger than n− log n.

Xor-ing small-bias distributions

Starting with [13], researchers have considered the bit-wise xor of several independent copies
of small-bias distributions. The work [41] draws a connection with the previous paradigm,
showing that for a special class of small-bias distributions, the paradigms are equivalent.

These distributions – the xor of several small-bias distributions – appear to be significantly
more powerful than a single small-bias distribution, while retaining a modest seed length.
We refer to [49, 62, 35, 64] for background.

Despite several attempts [12, 46, 41], no definitive counterexample to this paradigm has
been bound; its power remains unknown.

1.1 Our results
In this work we prove several new results on (ε, k)-biased distributions. A main message is
that, for several natural classes of tests, small-bias distributions are no better than bounded
uniformity, i.e., we provide new information about Question 3, and answer Question 4 and
Question 6.

To set the stage, we start with showing that k-wise uniformity plus noise does fool
symmetric functions with error 2−ck. Note that noise is necessary, for parity is not fooled even
by (n−1)-wise uniformity. And even for threshold tests, the error would be polynomial [26, 10]
rather than exponential in k.

▶ Theorem 7. Let D be a distribution on {−1, 1}n that is either
(i) (2k)-wise uniform, or
(ii) (ck/n)4k-biased.

Let f : {−1, 1}n → [−1, 1] be symmetric. Then |E[f(U)] − E[f(D · Nρ)]| ≤ c · (eρ)k/2.

Theorem 7.i follows from [29] when k ≥ c log n, but their proof does not apply to smaller
k. Our result applies to any k, and this will be critical.

Theorem 7.ii follows from Theorem 7.i via the following simple extension of Lemma 2,
which we establish by taking noise into account. (A direct application of Lemma 2 would
give a larger error of 2−ck.)

▶ Lemma 8. Let D be an (ε, k)-biased distribution on {−1, 1}n. Then D ·Nρ is ((e3ρn
k)k/2ε)-

close to a k-wise uniform distribution in total variation distance.

A natural question is whether larger bias suffices in Theorem 7.ii. A main result in this
work is that it does not, even for threshold tests. The best possible bound for small-bias
distributions is in fact obtained by combining Theorem 7.i with the generic Lemma 8.

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:5

▶ Theorem 9. There exists a (ck/n)k-biased distribution D such that Pr[1⊤(D · Nρ) ≥
2
√

kn] ≥ Pr[B ≥ 2
√

kn] + (cρ)2k for every ρ ∈ [0, 1].

In fact, the distribution D in Theorem 9 (and in Theorem 10 below) is simultaneously
(2k − 1)-wise uniform.

Theorem 9 gives a negative answer to Question 4. Specifically, setting ρ to be a constant
and k = log n we obtain bias 1/nω(1) but the error is ≥ 1/nc.

Note that our negative answer holds even with noise, while an answer to Question 4 was
not known even for plain small-bias distributions. This makes our results stronger. Moreover,
we do not know of a simpler proof if one does not care about noise. Indeed, we obtained
several different proofs of essentially Theorem 9, see [25]. In all these proofs (including the
one presented here) the small-bias distribution D itself can be written as D := D′ · Ncρ, that
is, by adding noise to another distribution. Further adding noise to D then comes at little
cost, as already pointed out in [41], see Claim 22. We also mention that some of these proofs
cover wider range of parameters, and provide new information even for bounded uniformity.
We refer to [25] for more on this.

Combining Theorem 9 with Theorem 7, one immediately obtains a smoothed threshold
test which distinguishes some n−k-bias distribution from any ck-wise uniform distribution,
answering Question 3 for such tests.

For general symmetric tests and the same distribution D, we prove a stronger result
improving on the classic line of works in [6, 4, 50] and finally matching Lemma 8.

▶ Theorem 10. There exists a (ck/n)k-biased distribution D such that for every ρ ∈ [0, 1]
the following holds. There exists a symmetric function f : {−1, 1}n → {0, 1} such that for
every (2k)-wise uniform distribution D2k,

E[f(1⊤(D · Nρ))] ≥ E[f(D2k)] +
(cρ√

log(1/2ρ)

)2k

.

Again, this result was not known even without noise. Note that Theorem 10 implies the
same separation without noise simply setting ρ := 1. But the other way around is not clear.

An interesting question is whether one could prove a single result that implies both
Theorem 10 and Theorem 9.

From Theorem 9, we derive several consequences on small-space computation and small-
depth circuits.

One-way small space. We give a negative answer to Question 6.

▶ Corollary 11. For any ρ ∈ (0, 1], there is a distribution D on {−1, 1}n that is n−c log1/ρ n-
biased and a threshold-of-thresholds T : {−1, 1}n → {0, 1} such that E[T (U)]−E[T (D ·Nρ)] ≥
1/3. In particular, there is a read-once branching program T of width nc for which the
inequality holds.

Corollary 11, in combination with Lemma 8, matches a result in [29], which shows that
the error is ρck for k-wise uniform when k ≥ c log1/ρ n.

Proof of Corollary 11 from Theorem 9. We divide the input into
√

n blocks, and in each
block sample an independent copy of the n−k/2-biased distribution from Theorem 9 on

√
n

bits. The resulting distribution has the required properties, since the bias of a test that
spans multiple blocks equals the product of the biases in each block.

CCC 2024

18:6 Pseudorandomness, Symmetry, Smoothing: I

In each block, a suitable threshold tells D ·Nρ from uniform with advantage (cρ)k ≥ n−0.1

for k = c log1/ρ n. A threshold of
√

n such blocks is sufficient to boost the advantage to
constant.

Finally, this threshold-of-thresholds computation can be implemented with c log n bits of
space, by simply maintaining two counters. ◀

What may have made this problem harder is that it was not clear what distinguishing
bound one should expect in Theorem 9. One may be tempted to aim for larger advantage,
perhaps independent from k. But as we showed in Theorem 7, this is false: k-wise uniformity
plus noise fools thresholds with error 2−ck. One can then ask if k-wise uniformity fools with
error 2−ck more general classes of tests, like threshold of thresholds. Corollary 11 shows this
is also false.

Constant-depth circuits. Next we discuss a negative result for fooling the circuit class AC0.
It is known that polylogarithmic independence or quasi-polynomial bias fools AC0 [7, 53,
15, 57], and these bounds are nearly tight. But despite attempts [41] it was not known if
logarithmic uniformity plus noise, or polynomial bias plus noise suffices. We show that bias
n−ω(1) is necessary.

▶ Corollary 12. For any ρ ∈ (0, 1] there is a distribution D on {−1, 1}n that is n−cρ log log n

biased and an AC0 circuit C of size nc and depth c such that E[C(U)] − E[C(D · Nρ)] ≥ 1/3.

The proof is similar to before, except we take blocks of polylogarithmic length, and
set k = cρ log log n. The threshold in each block can be computed in AC0 since it’s only
on polylogarithmic number of bits. By our setting of k, the advantage in each block is
polylogarithmic, and so computing approximate majority [2] (cf. [61]) suffices to have constant
advantage.

Sum of small-bias distributions. A next natural question is whether our counterexamples
can be extended to the xor of two small-bias distributions. We show that they cannot.
Specifically, our small-bias distributions are symmetric, and we show that the sum of two
such distributions fools any function (symmetric or not).

▶ Theorem 13. Let D1 and D2 be two independent n−20k-biased, symmetric distributions on
{−1, 1}n. Then |E[f(D1 · D2)] − E[f]| ≤ ck(n−0.3k) for any function f : {−1, 1}n → [−1, 1].

In fact, we prove stronger results. We show that to fool any symmetric function it suffices
for one of the two distributions to be symmetric (Corollary 33). In fact, this holds even
if one of the two distributions is any fixed string x with 1⊤x ≤ n0.99 (Theorem 34); and
we complement this with a result showing that the result is false if 1⊤x is large. This is in
Section 4.

Typical shifts. We generalize and simplify the proof of a result by Bazzi [9]. We first
discuss his result. Let C ⊆ {0, 1}n be a binary linear code with minimum distance k + 1 and
maximum distance n − k − 1. Let UC⊥ be the uniform distribution on the dual code of C,
and u ∼ {0, 1}n be a uniform string. Bazzi [9] showed that for most shifts u, the distribution
u + UC⊥ fools any symmetric function f : {0, 1}n → {0, 1}:

E
u

[∣∣E[f(u + UC⊥)] − E[f]
∣∣] ≤ (k/n)ck.

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:7

It follows from the distance properties of C that UC⊥ fools all parity tests of size at most k

and at least n − k (with no error). We show that in fact the conclusion above holds for every
distribution D that fools such parity tests, without requiring the distribution to be linear.

▶ Theorem 14. Let D be a distribution on {−1, 1}n such that E[DS] = 0 for every subset
S of size ℓ ∈ [1, k] ∪ [n − k, n], and u ∼ {0, 1}n be a uniform string. For every symmetric
function f : {−1, 1}n → [−1, 1],

E
u

[∣∣E[f(u · D)] − E[f]
∣∣] ≤ 6(k/n)

k−1
4 .

For context, we note that the condition on fooling large parity tests is necessary, as
otherwise, one can consider the uniform distribution D on strings with the parity 0 (say),
which is (n − 1)-wise uniform, and for every shift u, the parity of u + D (which is a symmetric
function) is simply the parity of u.

Also, note that no fixed shift u suffices, for else one can shift D by this u and give
a counterexample. This does not contradict the results discussed above about shifting
symmetric small-bias distributions because the shift of a symmetric distribution is not in
general symmetric.

1.2 Krawtchouk polynomials

All our results rely on bounds for the (shifted) Krawtchouk polynomials K, which can be
defined by

K(k, t) :=
∑

|S|=k

zS ,

where z ∈ {−1, 1}n is any string such that 1⊤z = t, and zS is the product of the bits of z

indexed by S. It can be shown that this is a degree-k polynomial in t.
This is a classic quantity (cf. [39]) and the bounds we need do not seem well known.
To illustrate the bounds we find it convenient to define the normalized version of K,

NK(k, t) := K(k, t)(
n
k

)
and its “with replacement” counterpart

NR(k, t) := E
f : [k]→[n]

[∏
i∈[k]

zf(i)

]
= (t/n)k,

where f is uniform.
Note that NK is the same as NR conditioned on f having no collisions – via the

correspondence S = {f(i) : i ∈ [k]} – which is the same as saying that the images of f are
picked from [n] without replacement.

The bounds on NK (and hence K) can now be understood as approximations to NR(k, t).
First we prove a lower bound, needed for Theorem 9. The proof is short and follows from

known results on Krawtchouk polynomials. However, we are unable to find the result we
need in the literature.

▷ Claim 15. NK(k, t) ≥ (t
2n)k = NR(k, t)/2k for t ≥ 2

√
k(n − k).

CCC 2024

18:8 Pseudorandomness, Symmetry, Smoothing: I

For Theorem 10 we need an upper bound. We could use a bound which to our knowledge
appeared first in [11]. Since the proof in the latter is somewhat technical, we also give a
new simple proof of a stronger bound, stated next, building on the recent work by Tao [59].
We could also use [11] for Theorem 7, but we would get a bound of the form (aρ)k for
an unspecified constant a. The stronger bound in Corollary 16 proved here gives a better
dependence on ρ and gets us closer to the natural bound of ρk, which is currently not clear.

▶ Corollary 16. For every 1 ≤ k ≤ n, we have
∣∣NK(k, t)

∣∣ ≤ (k
n + t2

n2)k/2.

Note this is similar to NR(k, t) except for the extra term k/n.
For other results we need additional bounds which hold in regimes where the above

bounds are loose, such as when k is close to n/2 and t is close to 0. To illustrate, let n be even
and 1⊤x = t := 0, corresponding to x ∈ {−1, 1}n being a balanced string. Note that K(k, 0)
is the k-th coefficient of the polynomial (1 − x2)n/2, which is (−1)k/2(n/2

k/2
)
1(k is even). In

this case, Corollary 16 gives an upper bound of
(

n
k

)
(k/n)k/2. In particular, when k = n/2,

the bound is roughly 23n/4. By contrast, the bound given next by Proposition 17 is 2 n
2 H(k/n),

which when k = n/2 becomes 2n/2.

▶ Proposition 17. Let k = βn and t = (1 − 2α)n. We have log2 |K(k, t)| ≤ n
2
(
1 + H(β) −

H(α)
)
, where H(α) = −α log2(α) − (1 − α) log2(1 − α) is the binary entropy function.

A similar bound also appears in [51, Lemma 2.1]. Using the estimate H(1/2+γ) ≥ 1−4γ2

for γ ∈ [0, 1/2], we have the following corollary.

▶ Corollary 18.
∣∣K(k, t)

∣∣ ≤ 2
n
2 (H(k

n)+ t2
n2).

In Section 6 we prove bounds more general than the above.

2 Small-bias plus noise is far from bounded uniformity

In this section we prove Theorems 9 and 10. We build on the work by O’Donnell and
Zhao [50]. In particular, we use the same distribution D. However, jumping ahead, our
analyses differ from [50] in three ways, each of which is critical for us:
1. while we analyze the same symmetric test in Theorem 10, we use a new and explicit

threshold test in Theorem 9;
2. the distinguishing advantages in Theorems 9 and 10 are explicit and stronger. This

relies on our use of (and bounds for) Krawtchouk polynomials, instead of the Hermite
approximation in [50];

3. we take noise into account.

We now define D and derive some properties of it. Then in the next subsections the
theorems are proved in turn.

▶ Definition 19. For a parameter α ∈ [0, 1
5e], define Dα : {−1, 1}n → R to be

Dα(x) := 2−n

(
1 + αk

(
n

2k

)− 1
2 ∑

|S|=2k

xS

)
for every x ∈ {−1, 1}n.

Note that the right hand side is the Fourier transform of Dα, and thus 2nD̂α(∅) =∑
x∈{−1,1}n Dα(x) = 1. We now show that for α ≤ 1/(5e), we have Dα(x) ≥ 0 for ev-

ery x ∈ {−1, 1}n and thus it is a distribution.

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:9

▷ Claim 20. For α ≤ 1/(5e), we have Dα(x) ≥ 0 for every x.

Proof. The key observation is that as a degree-(2k) polynomial in t, the zeros of K(2k, t)
all lies within |t| ≤ 2

√
(2k − 1)(n − 2k + 2) ≤ 2

√
2kn [43] (see also [39, Section 5]). As 2k

is even, we know that when x is the all-1 or all-(-1) string (i.e., 1⊤x ∈ {n, −n}), we have
K(2k, 1⊤x) :=

∑
|S|=2k xS > 0. So K(2k, 1⊤x) can only be negative when |1⊤x| ≤ 2

√
2nk.

In this interval, using Corollary 16 and α ≤ 1/(5e), we have

αk

(
n

2k

)− 1
2
∣∣∣∣ ∑
|S|=2k

xS

∣∣∣∣ ≤ αk

(
n

2k

)− 1
2
(

n

2k

)(
10k

n

)k

≤ (5eα)k ≤ 1. ◁

By the above, Dα is a well-defined distribution whenever α ≤ 1/(5e). The following claim
is immediate.

▷ Claim 21. For α ≤ 1/(5e), Dα is a distribution that is (2k − 1)-wise uniform, αk
(

n
2k

)−1/2-
biased, and (αe3/2)k-close to (2k)-wise uniform.

Proof. The first two properties follow directly from the definition of Dα, that is, for every
nonempty S, we have |E[DS

α]| = 2n|D̂α(S)| = αk
(

n
2k

)−1/2
1(|S| = 2k). The closeness to

(2k)-wise uniform follows directly from Lemma 2. ◁

Observe that the family {Dα : α ≥ 0} is closed under adding noise, as shown in the
following claim.

▷ Claim 22. Dα · Nρ = Dα·ρ2 for every ρ ∈ [0, 1].

Proof. Observe that Nρ dampens each size-(2k) (Fourier) coefficient of Dα by a factor of ρ2k.
To see this, note that Nρ(xi) = 1

2 (1 + ρxi), and thus

Nρ(x) = 2−n
(

1 +
∑

S

ρ|S|xS
)

.

By Plancherel’s theorem, each Fourier coefficient of the convolution Dα · Nρ is the product
of the coefficient of Dα and Nρ. So we have

(Dα · Nρ)(x) = 2−n

(
1 + ρ2kαk

(
n

2k

)− 1
2 ∑

|S|=2k

xS

)
= Dα·ρ2(x). ◁

2.1 Distinguishing Dα from uniform with a threshold
We now show that a specific threshold distinguishes Dα from the uniform distribution.
First, we establish the following claim showing that Dα always puts more mass than U on
unbalanced strings.

▷ Claim 23. Pr[1⊤Dα = t] ≥ Pr[B = t] · (1 + (αt2

4kn)k) for every t ≥ 2
√

kn and ρ ∈ [0, 1].

Proof. By our lower bound on Krawtchouk polynomials (Claim 15), we have

Pr[1⊤Dα = t] = Pr[B = t]
(

1 + αk

(
n

2k

)−1/2
K(2k, t)

)
≥ Pr[B = t]

(
1 + αk

(
n

2k

)1/2(t

2n

)2k)
≥ Pr[B = t]

(
1 +

(αt2

4kn

)k)
. ◁

CCC 2024

18:10 Pseudorandomness, Symmetry, Smoothing: I

Theorem 9 then easily follows from Claim 23 by summing over all the points at the tail,
and then setting α to be ρ2/(5e).

Proof of Theorem 9. From Claim 23, it follows that

Pr
[
1⊤Dα ≥ 2

√
kn
]

≥
∑

t≥2
√

kn

Pr
[
B = t

]
·
(

1 +
(αt2

4kn

)k)

≥ Pr
[
B ≥ 2

√
kn
]

·
(

1 +
(α(2

√
kn)2

4kn

)k)
≥ Pr

[
B ≥ 2

√
kn
]

+ 2−ck · αk,

where the last inequality is because by tail bounds for the binomial distribution (cf. [1]) we
have Pr[B ≥ 2

√
kn] ≥ 2−ck. The theorem then follows from setting α to ρ2/(5e), and noting

that D1/(5e) · Nρ = Dρ2/(5e) by Claim 22. ◀

2.2 Distinguishing Dα from bounded uniformity with a symmetric test

In this section, we prove Theorem 10. We start with a claim showing that it suffices to
consider bounded symmetric functions instead of Boolean symmetric test.

▷ Claim 24. Let D1, D2 be any distributions on {−1, 1}n. Suppose there is a symmetric
function f : {−1, 1}n → [−1, 1] such that E[f(D1)] ≥ E[f(D2)] + ε. Then there exists a
symmetric Boolean function f ′ : {−1, 1}n → {−1, 1} such that E[f ′(D1)] ≥ E[f ′(D2)] + ε.

Proof. Define g : {−n, . . . , n} → [−1, 1] so that g(1⊤x) := f(x). Considering the randomized
function g : {−n, . . . , n} → {−1, 1} defined by

g(w) :=
{

1 with probability 1+g(w)
2

−1 with probability 1−g(w)
2 .

As f is symmetric, we have

E
g

[
E
[
g(1⊤D1)

]]
= E[f(D1)] ≥ E[f(D2)] + ε = E

g

[
E
[
g(1⊤D2)

]]
+ ε,

and so by averaging, there must be a choice g′ of g such that E[g′(1⊤D1)] ≥ E[g′(1⊤D2)] + ε.
Defining f ′ : {−1, 1}n → {−1, 1} by f ′(x) := g′(1⊤x) proves the claim. ◁

We now define our symmetric test. For a sufficiently small constant α, let β := 100
log(1/α) .

Define the homogeneous degree-k polynomial pβ : {−1, 1}n → R by

pβ(x) := βk

(
n

2k

)− 1
2 ∑

|S|=2k

xS = 2nDβ(x) − 1.

Let fβ be its truncation so that it is bounded by 1, that is, we define fβ : {−1, 1}n → [−1, 1]
by fβ(x) := min{1, pβ(x)}. As α is sufficiently small, so is β. Thus, by Claim 20, we have
fβ(x) ≥ −1 and so fβ(x) ∈ [−1, 1] for every x ∈ [−1, 1].

▷ Claim 25. E[fβ(Dα)] − E[fβ(D)] ≥ (αβ)k/2 for any k-wise uniform distribution D.

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:11

Proof. As pβ has degree-(2k), for any (2k)-wise uniform distribution D, we have E[fβ(D)] ≤
E[pβ(D)] = E[pβ(U)] = 0. Note that we can write fβ(x) as pβ(x) − (pβ(x) − 1)1(pβ(x) > 1),
and so

E
[
fβ(Dα)

]
= E

[
pβ(Dα)

]
− E

[(
pβ(Dα) − 1

)
1
(
pβ(Dα) > 1

)]
. (1)

To bound E[fβ(Dα)] from below, we will compute E[pβ(Dα)] and then bound E[(pβ(Dα) −
1)1(pβ(Dα) > 1)] from above.

Observe that

E
[∑

|S|=2k

US
]

=
∑

|S|=2k

E
[
US
]

= 0

E
[(∑

|S|=2k

US
)2
]

=
∑

|S|=2k
|T |=2k

E
[
US△T

]
=
(

n

2k

)

E
[(∑

|S|=2k

US
)3
]

=
∑

|S|=2k
|T |=2k
|R|=2k

E
[
US△T △R

]
=
(

n

2k

)(
2k

k

)(
n − 2k

k

)
,

where the last equality is because the number of subsets S, T, R ⊆ [n] of size 2k that satisfy
S △ T = R is

(
n
2k

)(2k
k

)(
n−2k

k

)
.

We have

E
[
pβ(Dα)

]
=

∑
x∈{−1,1}n

Dα(x)E
[
pβ(x)

]
=

∑
x∈{−1,1}n

2−n

(
1 + αk

(
n

2k

)− 1
2 ∑

|S|=2k

xS

)(
βk

(
n

2k

)− 1
2 ∑

|S|=2k

xS

)

= (αβ)k

(
n

2k

)−1
E
[(∑

|S|=2k

US
)2
]

= (αβ)k

(
n

2k

)−1(
n

2k

)
= (αβ)k. (2)

We also have

E
[
pβ(Dα)2] = 2−n

∑
x∈{−1,1}n

(
1 + αk

(
n

2k

)− 1
2 ∑

|S|=2k

xS

)(
βk

(
n

2k

)− 1
2 ∑

|S|=2k

xS

)2

= β2k

(
n

2k

)−1
E
[(∑

|S|=2k

US
)2
]

+ (αβ2)k

(
n

2k

)− 3
2

E
[(∑

|S|=2k

US
)3
]

= β2k + (αβ2)k

(
n

2k

)− 1
2
(

2k

k

)(
n − 2k

k

)
≤ β2k + (αβ2)k

(
2k

k

) 3
2

≤ β2k + (8αβ2)k,

≤ 1, (3)

where the first inequality is because
(

n−2k
k

)
≤
(

n
k

) 1
2
(

n−k
k

) 1
2 =

(
n
2k

) 1
2
(2k

k

) 1
2 , using the identity(

n
m

)(
n−m
k−m

)
=
(

n
k

)(
k
m

)
. The last inequality is for small enough α.

CCC 2024

18:12 Pseudorandomness, Symmetry, Smoothing: I

Next we bound above E[(pβ(Dα) − 1)1(pβ(Dα) > 1)]. We in fact bound the greater
quantity E[pβ(Dα)1(pβ(Dα) > 1)]. Using Cauchy–Schwarz and (3), the latter is at most

E
[
pβ(Dα)2] 1

2 Pr
[
pβ(Dα) > 1

] 1
2 ≤ 1 · Pr

[
pβ(Dα) > 1

] 1
2 . (4)

We will show that

Pr
[
pβ(Dα) > 1

] 1
2 ≤ e−(1

eβ −1) k
4 . (5)

So, using β = 100
log(1/α) , (4) is less than (αβ)k/2. Plugging these bounds into (1), we conclude

that

E
[
fβ(Dα)

]
− E

[
fβ(D)

]
≥ (αβ)k/2

for any (2k)-wise uniform D, proving the claim assuming (5) holds.

It remains to prove (5). Suppose |pβ(x)| > 1. Then by its definition and Corollary 16, it
must be the case that

1 ≤ βk

(
n

2k

)− 1
2
∣∣∣∣ ∑
|S|=2k

xS

∣∣∣∣ ≤ βk

(
n

2k

) 1
2
(

2k

n
+ (1⊤x)2

n2

)k

≤ (eβ)k

(
1 + (1⊤x)2

2kn

)k

,

which implies x ∈ Eβ := {x ∈ {−1, 1}n : (1⊤x)2 ≥ (1
eβ − 1)2kn}. Jumping ahead, we will use

below that by Hoeffding’s inequality, we have Pr[U ∈ Eβ] ≤ e−k(1
eβ −1). In the meanwhile,

we use the implication just noted to write

Pr[pβ(Dα) > 1] ≤ Pr[Dα ∈ Eβ] = 2−n
∑

x∈Eβ

(
1 + αk

(
n

2k

)− 1
2 ∑

|S|=2k

xS
)

= Pr[U ∈ Eβ] + αk

(
n

2k

)− 1
2

2−n
∑

x∈Eβ

∑
|S|=2k

xS . (6)

We rewrite and bound the second term using Cauchy–Schwarz as follows:

αk

(
n

2k

)− 1
2

E
[∑

|S|=2k

US · 1(U ∈ Eβ)
]

≤ αk

(
n

2k

)− 1
2

E
[(∑

|S|=2k

US
)2
] 1

2 · Pr[U ∈ Eβ] 1
2

= αk · Pr[U ∈ Eβ] 1
2 .

Therefore

(6) ≤ Pr[U ∈ Eβ] 1
2

(
Pr[U ∈ Eβ] 1

2 + αk
)

≤ e−(1
eβ −1) k

2 · (1/2 + 1/2).

This proves (5). ◁

Proof of Theorem 10. For any ρ ∈ (0, 1], by Claim 22 we have Dc · Nρ = Dcρ2 . So we can
take α to be cρ2, and thus β = c/ log(1/2ρ). By Claim 25, the distinguishing advantage is at
least (cρ2/ log(1/2ρ))k. ◀

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:13

3 Bounded uniformity plus noise fools symmetric tests

Here we prove Theorem 7. The starting observation for the proof of this theorem (and
also of Theorems 13 and 14) is that the Fourier expansion of any symmetric function is
a linear combination of the Krawtchouk polynomials K(ℓ, 1⊤x) :=

∑
|S|=ℓ xS weighted by

the coefficients f̂([ℓ]). As k-wise uniformity fools all parities of size at most k, it suffices
to consider the ℓ > k terms. While K(ℓ, 1⊤x) can be as large as

(
n
ℓ

)
on the all-1 string, it

follows from Cauchy–Schwarz that its average Ex[|K(ℓ, 1⊤x)|] is at most
(

n
ℓ

)1/2. Moreover, a
simple argument (Fact 26) shows that |f̂([ℓ])| is bounded by

(
n
ℓ

)−1/2, the reciprocal of the
upper bound on Ex[|K(ℓ, 1⊤x)|], and so their product is at most 1, which is then dampened
to ρℓ ≤ ρk by noise.

To make this argument go through, we use Corollary 16 to show that |K(ℓ, 1⊤x)| is
close to

(
n
ℓ

)1/2 when x is nearly-balanced, which holds with high probability under k-wise
uniformity (Corollary 28).

We start by proving a few useful facts about symmetric functions and distributions.

▶ Fact 26. Let f : {−1, 1}n → [−1, 1] be any symmetric function. For every S ⊆ [n] of size
ℓ, we have (1) f̂(S) = f̂([ℓ]) and (2) |f̂([ℓ])| ≤

(
n
ℓ

)−1/2.

Proof. (1) is clear. To see (2), by Cauchy–Schwarz and Parseval’s identity, we have(
n

ℓ

)∣∣f̂([ℓ])
∣∣ =

∣∣∣∑
|S|=ℓ

f̂(S)
∣∣∣ ≤

(
n

ℓ

)1/2(∑
|S|=ℓ

f̂(S)2
)1/2

≤
(

n

ℓ

)1/2
E
[
f(U)2] ≤

(
n

ℓ

)1/2
. ◀

We also need the following well-known moment bounds for k-wise uniform distributions. For
a short proof see [14, Lemma 32].

▶ Lemma 27. Let D be a (2k)-wise uniform distribution on {−1, 1}n. Then E[(
∑n

i=1 Di)2k] ≤√
2 (2kn/e)k.

By Markov’s inequality, this implies the following tail bound.

▶ Corollary 28. Let D be a (2k)-wise uniform distribution on {−1, 1}n. For every integer
t > 0, we have

Pr
[
|1⊤D| ≥ t

]
≤

√
2
(

2kn

et2

)k

.

The following fact says that a distribution remains close to itself after conditioning on
any high probability event.

▶ Fact 29. Let D be any distribution on {−1, 1}n and E be any event. Then the conditional
distribution D | E is (1 − Pr[E])-close to D.

Proof. Let E be the complement of E. For every Boolean test g : {−1, 1}n → {0, 1} we have

E[g(D)] = E[g(D | E)](1 − Pr[E]) + E[g(D | E)] Pr[E]
= E[g(D | E)] +

(
E[g(D | E)] − E[g(D | E)]

)
Pr[E].

So |E[g(D)] − E[g(D | E)]| ≤ Pr[E], as |E[g(D | E)] − E[g(D | E)]| is bounded by 1. ◀

CCC 2024

18:14 Pseudorandomness, Symmetry, Smoothing: I

Proof of Theorem 7. Define G := {x ∈ {−1, 1}n : |
∑n

i=1 xi| ≤
√

nk/3ρ}. We write f :=
f≤k + f>k, where f≤k(x) =

∑
|S|≤k f̂(S)xS , and f>k(x) := f(x) − f≤k(x) =

∑
|S|>k f̂(S)xS .

For convenience let Z := D · Nρ. As Z is (2k)-wise uniform, we have

E[f] = E
[
f≤k(Z)

]
= E

[
f≤k(Z)1(D ∈ G)

]
+ E

[
f≤k(Z)1(D /∈ G)

]
.

So we can bound the error by∣∣E[f(Z)] − E[f]
∣∣ =

∣∣E[f(Z)1(D ∈ G)
]

+ E
[
f(Z)1(D /∈ G)

]
− E[f]

∣∣
≤
∣∣E[f≤k(Z)1(D ∈ G)

]
− E[f]

∣∣+
∣∣E[f>k(Z)1(D ∈ G)

]∣∣+ Pr[D /∈ G]
≤
∣∣E[f≤k(Z)1(D /∈ G)

]∣∣+
∣∣E[f>k(Z)1(D ∈ G)

]∣∣+ Pr[D /∈ G], (7)

We now bound each term individually. By Corollary 28, we have

Pr[D ̸∈ G] ≤
√

2 ·
(

2 · 3ρ

e

)k

≤
√

2 · (eρ)k. (8)

We now bound the first term, As f2
≤k has degree 2k, by Parseval’s identity and (2k)-wise

uniformity of Z, we have

E[f≤k(Z)2] = E[f≤k(U)2] = E[f(U)2] ≤ 1.

By Cauchy–Schwarz, the first term in (7) is at most∣∣E[f≤k(Z)1(D /∈ G)]
∣∣ ≤ E[f≤k(Z)2]1/2 Pr[D /∈ G]1/2 ≤ 21/4 · (eρ)k/2. (9)

It remains to bound the second term in (7). For every x ∈ G, we will show that∣∣E[f>k(x · Nρ)
]∣∣ ≤ 7 · (eρ)k/2. (10)

Plugging (8)–(10) into (7) gives an error bound of at most 10(eρ)k/2, as desired.
We now show (10). As E[NS

ρ] = ρ|S|, we have∣∣∣E[f>k(x · Nρ)]
∣∣∣ =

∣∣∣ ∑
|S|>k

ρ|S|f̂(S)xS
∣∣∣ =

∣∣∣ n∑
ℓ=k+1

ρℓ
∑

|S|=ℓ

f̂(S)xS
∣∣∣.

Applying Fact 26 and Corollary 16, and using the inequality
(

n
ℓ

)
≤ (en/ℓ)ℓ, we have∣∣∣ n∑

ℓ=k+1
ρℓ
∑

|S|=ℓ

f̂(S)xS
∣∣∣ ≤

∣∣∣ n∑
ℓ=k+1

ρℓ · f̂([ℓ])
∑

|S|=ℓ

xS
∣∣∣

≤
n∑

ℓ=k+1
ρℓ ·

∣∣f̂([ℓ])
∣∣ ·
∣∣∣∑
|S|=ℓ

xS
∣∣∣

≤
n∑

ℓ=k+1
ρℓ ·

(
n

ℓ

)1/2(
ℓ

n
+ k

3ρn

)ℓ/2

≤
n∑

ℓ=k+1
ρℓ · eℓ/2

(
1 + k

3ρℓ

)ℓ/2

≤
n∑

ℓ=k+1

(
ρ
(

ρe + e

3

))ℓ/2

≤ 7 · (eρ)k/2

where the last inequality is because we can assume ρ ≤ 1/e, as otherwise the conclusion is
trivial, and so we have ρe + e/3 ≤ 1 + e/3 ≤ 2. This shows (10). ◀

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:15

4 Shifted symmetric small-bias fools symmetric tests

In this section we prove Theorem 13. The proof follows a similar high-level idea to the proof
of Theorem 7, but we trade symmetry for noise, because xor-ing the uniform permutation of
a string has a similar effect to adding noise (see Claim 31).

As mentioned in the introduction, we actually prove stronger results about fooling
symmetric functions. One can then obtain Theorem 13 by combining Corollary 33 below
and the following claim.

▷ Claim 30. Let D be a symmetric distribution on {0, 1}n. If |D| is ε-close to the binomial
distribution Bin(n, 1/2), then D is ε-close to the uniform distribution.

Proof. We have
n∑

w=0

∑
|x|=w

∣∣∣∣∣2−n − D(w)(
n
w

) ∣∣∣∣∣ =
n∑

w=0

(
n

w

)∣∣∣∣2−n − D(w)(
n
w

) ∣∣∣∣ =
n∑

w=0

∣∣∣∣2−n

(
n

w

)
− D(w)

∣∣∣∣ ≤ ε. ◁

In turn, Corollary 33 follows from Theorem 32, showing that any symmetric small-bias
distribution xor-ed a nearly-balanced string fools symmetric functions. Then we prove
Theorem 34, which is a generalization of Theorem 32 that covers a more general settings of
parameters. We complement Theorem 34 with a lower bound (Claim 35).

First we show that the bias of the uniform permutation of a string on parity tests is equal
to the normalized Krawtchouk polynomials.

▷ Claim 31. Let Wt be the uniform distribution on {x ∈ {−1, 1}n :
∑n

i=1 xi = t}. For every
subset S ⊆ [n] of size ℓ, we have

∣∣E[W [n]\S
t

]∣∣ =
∣∣E[W S

t

]∣∣ =
∣∣K(ℓ, t)

∣∣(
n
ℓ

) .

Proof. The first equality follows from |
∑

|S|=n−ℓ zS | = |z[n]∑
|S|=ℓ zS | = |

∑
|S|=ℓ zS |. To

prove the second inequality, first fix a string z with
∑n

i=1 zi = t. Observe that by symmetry
we have

∑
x:
∑n

i=1
xi=t xS =

∑
x:
∑n

i=1
xi=t x[ℓ] for any S ⊆ [n] of size ℓ, and

∑
|S|=ℓ xS =∑

|S|=ℓ zS for any x ∈ {−1, 1}n with
∑n

i=1 xi = t. Hence,(
n

ℓ

) ∑
x:
∑

i
xi=t

x[ℓ] =
∑

|S|=ℓ

∑
x:
∑

i
xi=t

xS =
∑

x:
∑

i
xi=t

∑
|S|=ℓ

xS =
(

n

t

) ∑
|S|=ℓ

zS .

Rearranging gives

∣∣E[W S
t]
∣∣ = 1(

n
t

) ∣∣∣ ∑
x:
∑

i
xi=t

x[ℓ]
∣∣∣ = 1(

n
ℓ

) ∣∣∣∑
|S|=ℓ

zS
∣∣∣ =

∣∣K(ℓ, t)
∣∣(

n
ℓ

) . ◁

4.1 Proof of Corollary 33
Corollary 33 is a straightforward corollary of Theorem 32, which we now prove.

▶ Theorem 32. Let Dsym be a symmetric n−20k-biased distribution on {−1, 1}n and z ∈
{−1, 1}n be any string with |

∑n
i=1 zi| ≤ n0.6. Then |E[f(z · Dsym)] − E[f]| ≤ Ok(n−0.3k).

Note that it is crucial that Dsym is symmetric, as small-bias distributions are closed under
shifts; so every small-bias distribution D is also a shifted small-bias distribution.

CCC 2024

18:16 Pseudorandomness, Symmetry, Smoothing: I

▶ Corollary 33. Let Dsym and D be two independent n−20k-biased distributions on {−1, 1}n,
where Dsym is symmetric. Then |E[f(Dsym + D)] − E[f]| ≤ ck(n−0.3k) for every symmetric
function f : {−1, 1}n → [−1, 1].

Also note that D + Dsym itself is not necessarily a symmetric distribution.

Proof of Corollary 33. By Lemma 2, D is n−10k-close to (10k)-wise uniform. So by Corol-
lary 28,

Pr
[∣∣∣ n∑

i=1
Di

∣∣∣ ≥ n0.6
]

≤
(

10kn

n1.2

)5k

+ n−10k ≤ Ok(n−k).

It follows from Theorem 32 that the error is Ok(n−k) + Ok(n−0.3k) = Ok(n−0.3k). ◀

Proof of Theorem 32. Let ε := n−20k be the bias of Dsym and t := n0.6. Define G := {x ∈
{−1, 1}n : |

∑n
i=1 xi| ≤ t}. As Dsym is ε-biased, by Lemma 2, it is δ-close to (30k)-wise

uniform, where δ ≤ n−4k. Applying Corollary 28 with our choice of t = n0.6 in the definition
of G, we have

Pr[Dsym ̸∈ G] ≤
(

30kn

n1.2

)15k

+ δ ≤ Ok(n−3k). (11)

Let D′
sym be the distribution of Dsym conditioned on Dsym ∈ G. Note that D′

sym remains
a symmetric distribution and by Fact 29 is Pr[Dsym /∈ G]-close to Dsym, and thus is ε′-
biased, where ε′ := ε + Pr[Dsym /∈ G] ≤ Ok(n−3k). We now write f := fmid + fends, where
fmid(x) :=

∑
k<|S|<n−k f̂(S)xS , and fends(x) := f(x) − fmid(x) =

∑
|S|∈[0,k]∪[n−k,n] f̂(S)xS .

By the triangle inequality, we have∣∣E[f(z · Dsym)] − E[f]
∣∣ ≤

∣∣E[f(z · D′
sym)] − E[f]

∣∣+ Pr[Dsym /∈ G]
≤
∣∣E[fends(z · D′

sym)] − E[f]
∣∣+
∣∣E[fmid(z · D′

sym)]
∣∣+ Ok(n−3k).

(12)

We now bound each of the two terms on the right hand side. As z · D′
sym is ε′-biased, we have∣∣E[fends(z · D′

sym)] − E[f]
∣∣ ≤

∑
|S|∈[1,k]∪[n−k,n]

|f̂(S)|ε′ ≤ 2nkε′ ≤ Ok(n−2k). (13)

To bound |E[fmid(z · D′
sym)]|, let S be any subset of size ℓ. As f is symmetric, we have

f̂(S) = f̂([ℓ]). As D′
sym is also symmetric, we have E[D′S

sym] = εℓ for some εℓ which only
depends on the size of S. Hence,

∣∣∣E[fmid(z · D′
sym)

∣∣∣ ≤
∣∣∣∣n−k−1∑

ℓ=k+1

∑
|S|=ℓ

f̂(S)E[D′S
sym]zS

∣∣∣∣ =
∣∣∣∣n−k−1∑

ℓ=k+1
f̂([ℓ])εℓ

∑
|S|=ℓ

zS

∣∣∣∣.
As |

∑
|S|=ℓ zS | = |z[n]∑

|S|=n−ℓ zS | = |
∑

|S|=n−ℓ zS |, by Fact 26 and Claim 31 we have

∣∣∣∣n−k−1∑
ℓ=k+1

f̂([ℓ])εℓ

∑
|S|=ℓ

zS

∣∣∣∣ ≤
n−k+1∑
ℓ=k+1

(
|f̂([ℓ])| · |εℓ| ·

∣∣∣∣∑
|S|=ℓ

zS

∣∣∣∣) ≤ 2
⌊n/2⌋∑
ℓ=k+1

K(ℓ, n0.6)2(
n
ℓ

)3/2 .

We first bound the partial sum over ℓ from n/4 to n/2. Note that the binary entropy function
H(x) := x log2(1/x) + (1 − x) log2(1/(1 − x)) is increasing on [0, 1/2]. In particular, we have

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:17

H(1/4) ≥ 4/5 and so 3
2 H(1/4) ≥ 6/5. By Stirling’s approximation, we have

(
n
ℓ

)
≥ 1

n2 2nH(ℓ
n)

(see [24] for a proof). Applying Corollary 18 with these facts, we have

⌊n/2⌋∑
ℓ=max{n/4,k}+1

K(ℓ, n0.6)2(
n
ℓ

)3/2 ≤ n

4 · n2 · 2−n
(

3
2 H(1

4)−1−n−0.8
)

≤ 2−n/10. (14)

We now bound the remaining sum (i.e., the partial sum from ℓ = k + 1 to n/4). Using
Corollary 16 and the inequality

(
n
ℓ

)
≤ (en

ℓ)ℓ, we have

n/4∑
ℓ=k+1

K(ℓ, n0.6)2(
n
ℓ

)3/2 ≤
n/4∑

ℓ=k+1

(
n

ℓ

)1/2(
ℓ

n
+ n1.2

n2

)ℓ

≤
n/4∑

ℓ=k+1

(en

ℓ

)ℓ/2
(

ℓ

n
+ 1

n0.8

)ℓ

.

Observe that each term in the sum is at most 1/2 of its previous term, and so this sum is
bounded by twice the first term, which is at most Ok(n−0.3k). Therefore,∣∣E[fmid(z · D′

sym)
]∣∣ ≤ 2−n/10 + Ok(n−0.3k) ≤ Ok(n−0.3k). (15)

Plugging (13) and (15) in (12) completes the proof. ◀

4.2 General case
Theorem 32 is stated for a nearly-balanced shift. We now prove a general bound that holds
for any shifts.

▶ Theorem 34. There exists a constant C such that the following holds. Let Dsym be a
symmetric ε-biased distribution on {−1, 1}n and z ∈ {−1, 1}n be any string. Let s :=
|
∑n

i=1 zi|. For every positive integer k and every symmetric function f : {−1, 1}n → [−1, 1],
we have∣∣∣∣E[f(z · Dsym)] − E[f]

∣∣∣∣ ≤ C

(11 max{s,
√

kn}
n

)k/2

+
(

e3n

2k

)k/2

ε

 .

The following lower bound shows that the dependence on s in Theorem 34 is necessary.

▷ Claim 35. There exists a constant c > 0 such that the following holds. For every integer
m ≥ 3, there is a symmetric e−cn/m2-biased distribution D on {0, 1}n such that for every
string z ∈ {0, 1}n of Hamming weight at most ⌊m/2⌋ − 1, there exists a symmetric function
f : {0, 1}n → {0, 1} such that f(D) = 0 always and Pr[f(U) = 1] ≥ 1/m − e−cn/m2 .

Proof of Claim 35. Let D be the uniform distribution on {x ∈ {0, 1}n :
∑

i xi ≡ 0 mod m}.
It is known that D is 2−cn/m2 -biased (see Claim 18 and Lemma 19 in [11] for a proof). Let
z be any string of weight |z| ≤ ⌊m/2⌋ − 1. Consider the symmetric function f(x) := 1(|x| ≡
⌊(m + 1)/2⌋ mod m). By the triangle inequality, we have |D| − |z| ≤ |D + z| ≤ |D| + |z|, and
so |D + z| ̸≡ ⌊(m + 1)/2⌋ (mod m).

On the other hand, it is known that Pr[Bin(n, 1/2) ≡ ⌊(m + 1)/2⌋] ≥ 1/m − e−cn/m2 (see,
again, Claim 18 in [11] for a proof). ◁

Proof of Theorem 34. We may assume k ≤ n/16 and s ≤ n/120, as otherwise the bound
given in the theorem is at least 1. Define G := {x ∈ {−1, 1}n : |

∑n
i=1 xi| ≤ t}, where

t := t(n, k, s) is a parameter to be chosen. As Dsym is ε-biased, by Lemma 2, it is δ-close to
(2k)-wise uniform, where δ := (e3n

2k)kε. Applying Corollary 28, we have

Pr[Dsym ̸∈ G] ≤
√

2 ·
(

2nk

et2

)k

+ δ. (16)

CCC 2024

18:18 Pseudorandomness, Symmetry, Smoothing: I

We write f := fmid + fends, where fmid(x) :=
∑

k+1<|S|<n−k f̂(S)xS , and fends(x) := f(x) −
fmid(x) =

∑
|S|∈[0,k]∪[n−k,n] f̂(S)xS . For convenience, let Z := z · Dsym. As Z is ε-biased, we

have

∣∣E[fends(Z)] − E[f]
∣∣ ≤

∑
|S|∈[1,k]∪[n−k,n]

|f̂(S)|ε ≤ 2
(

e3n

k

)k/2
ε ≤ δ.

By the triangle inequality, we have∣∣E[fends(Z)1(Dsym ∈ G)
]

− E[f]
∣∣

≤
∣∣E[fends(Z)1(Dsym ∈ G)

]
− E

[
fends(Z)

]∣∣+
∣∣E[fends(Z)] − E[f]

∣∣
≤
∣∣E[fends(Z)1(Dsym ∈ G)

]
− E[fends(Z)]

∣∣+ δ

=
∣∣E[fends(Z)1(Dsym /∈ G)

]∣∣+ δ. (17)

As Z is ε-biased,

E
[
fends(Z)2] =

∑
|S|,|T |∈[0,k]∪[n−k,n]

f̂(S)f̂(T)E
[
ZS△T

]
≤

∑
|S|∈[0,k]∪[n−k,n]

f̂(S)2 +
∑

|S|̸=|T |∈[0,k]∪[n−k,n]

|f̂(S)||f̂(T)|ε

≤ 1 + 2
(

n

k

)
ε ≤ 1 + δ.

By Cauchy–Schwarz,∣∣E[fends(Z)1(Dsym /∈ G)
]∣∣ ≤ E[fends(Z)2]1/2 Pr[Dsym /∈ G]1/2 ≤ 2 Pr[Dsym /∈ G]1/2. (18)

We now use (17) and (18) to bound the error as follows:∣∣E[f(Z)] − E[f]
∣∣ =
∣∣E[f(Z)1(Dsym ∈ G)

]
+ E
[
f(Z)1(Dsym /∈ G)

]
− E[f]

∣∣
≤
∣∣E[fends(Z)1(Dsym ∈ G)

]
− E[f]

∣∣+
∣∣E[fmid(Z)1(Dsym ∈ G)

]∣∣+ Pr[Dsym /∈ G]

≤
∣∣E[fends(Z)1(Dsym /∈ G)

]∣∣+
∣∣E[fmid(Z)1(Dsym ∈ G)

]∣∣+ Pr[Dsym ̸∈ G] + δ

≤
∣∣E[fmid(Z)1(Dsym ∈ G)

]∣∣+ 3 Pr[Dsym ̸∈ G]1/2 + 2δ. (19)

We will bound the first term in (19) by

∣∣E[fmid(z · Dsym)]
∣∣ ≤

O(1)
(120k

n

)k/4 if s ≤
√

kn and t = (kn3)1/4

O(1)
(

120s2

n2

)k/4
if s ≥

√
kn and t =

(
k2n4

s2

)1/4
.

(20)

Plugging (16) and (20) into (19) gives us an error of

O(1)

(120 max{s,
√

kn}
n

)k/2

+ δ

as desired.

It remains to prove (20). Let S be any subset of size ℓ. As f is symmetric, we have
f̂(S) = f̂([ℓ]). Let D′

sym be the distribution of Dsym conditioned on Dsym ∈ G. Note that
D′

sym is also symmetric, and so we have E[D′S
sym] = εℓ for some εℓ which only depends on the

size of S. Hence,

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:19

∣∣∣E[fmid(z · Dsym)1(Dsym ∈ G)]
∣∣∣ ≤

∣∣∣∣n−k−1∑
ℓ=k+1

∑
|S|=ℓ

f̂(S)E[D′S
sym]zS

∣∣∣∣ =
∣∣∣∣n−k−1∑

ℓ=k+1
f̂([ℓ])εℓ

∑
|S|=ℓ

zS

∣∣∣∣.
As |

∑
|S|=ℓ zS | = |z[n]∑

|S|=n−ℓ zS | = |
∑

|S|=n−ℓ zS |, by Fact 26 and Claim 31 we have

∣∣∣n−k−1∑
ℓ=k+1

f̂([ℓ])εℓ

∑
|S|=ℓ

zS
∣∣∣ ≤

n−k+1∑
ℓ=k+1

(
|f̂([ℓ])| · |εℓ| ·

∣∣∣∣∑
|S|=ℓ

zS

∣∣∣∣) ≤ 2
⌊n/2⌋∑
ℓ=k+1

K(ℓ, t)K(ℓ, s)(
n
ℓ

)3/2 .

We first bound the sum over ℓ from n/4 to n/2. Note that the binary entropy function
H(x) := x log2(1/x) + (1 − x) log2(1/(1 − x)) is increasing on [0, 1/2]. In particular, we have
H(1/4) ≥ 4/5 and so 3

2 H(1/4) ≥ 6/5. By Stirling’s approximation, we have
(

n
ℓ

)
≥ 1

n2 2nH(ℓ
n)

(see [24] for a proof). Applying Corollary 18 with these facts along with s ≤ n/120 and
t ≤ (kn3)1/4 ≤ n/2, we have

⌊n/2⌋∑
ℓ=max{n/4,k}+1

K(ℓ, t)K(ℓ, s)(
n
ℓ

)3/2 ≤
⌊n/2⌋∑

ℓ=max{n/4,k}+1

1(
n
ℓ

)3/2 · 2
n
2 (2H(1

4)+ s2
n2 + t2

n2) (21)

≤ n

4 · n2 · 2−n
(

3
2 H(1

4)−1− s2+t2

2n2

)
≤ 2−n/15. (22)

We now bound the remaining sum (i.e. from ℓ = k + 1 to n/4). Using Corollary 16
and Claim 31, and the inequality

(
n
ℓ

)
≤ (en

ℓ)ℓ, we have

⌊n/2⌋∑
ℓ=k+1

K(ℓ, t)K(ℓ, s)(
n
ℓ

)3/2 ≤
n/4∑

ℓ=k+1

(
n

ℓ

)1/2
·
(

ℓ

n
+ t2

n2

)ℓ/2(
ℓ

n
+ s2

n2

)ℓ/2

=
n/4∑

ℓ=k+1

(
e

(
ℓ

n
+ t2

n2 + s2

n2 + t2s2

n3ℓ

))ℓ/2

. (23)

We now consider the two cases in (20).

Case 1: s ≤
√

nk and t = (n3k)1/4. In this case (23) is at most
n/4∑

ℓ=k+1

(
e

(
ℓ

n
+
√

k

n
+ k

n
+
√

k

n

))ℓ/2

≤
n/4∑

ℓ=k+1

(
e

(
ℓ

n
+ 3
√

k

n

))ℓ/2

≤ O(1)
(120k

n

)k/4
,

where the last inequality follows because each term in the sum is at most 9/10 of its previous
term, and so the sum is bounded by 10 times the first term. Combining this with (21) proves
the first case in (20).

Case 2: s ≥
√

nk and t = (k2n4/s2)1/4. In this case (23) is at most

n/4∑
ℓ=k+1

(
e

(
ℓ

n
+ k

s
+ s2

n2 + s

n

))ℓ/2

≤
n/4∑

ℓ=k+1

(
e

(
ℓ

n
+ 3s

n

))ℓ/2
≤ O(1)

(
120s2

n2

)k/4

,

where again the last inequality follows because each term in the sum is at most 9/10 of its
previous term, and so the sum is bounded by 10 times the first term. Combining this with
(21) proves the second case in (20). ◀

CCC 2024

18:20 Pseudorandomness, Symmetry, Smoothing: I

5 Proof of Theorem 14

In this section, we prove Theorem 14, which is based on the same idea that was used in the
previous sections. The difference is that here we use that a typical shift is nearly balanced,
and so K(ℓ, 1⊤x) is small.

Proof of Theorem 14. Applying Cauchy–Schwarz, Parseval’s identity (to the function
g(u) := f(u · D)), and the assumption that E[DS] = 0 for |S| ∈ [1, k] ∪ [n − k, n], we
have

E
u

[∣∣E[f(u · D)] − E[f]
∣∣]2

≤ E
u

[(
E[f(u · D)] − E[f]

)2
]

=
∑

S:|S|∈(k,n−k)

f̂(S)2 E[χS(D2)],

where D2 is the sum of two independent copies of D, which is also k-wise uniform. Let
G := {x ∈ {−1, 1}n : |

∑n
i=1 xi| ≤ (kn3

2e)1/4}, and DG be the conditional distribution of
D2 supported on G. By Fact 29, the distribution DG is Pr[D /∈ G]-close to D2. As∑

S⊆[n] f̂(S)2 ≤ 1, we have∣∣∣∣ ∑
S:|S|∈(k,n−k)

f̂(S)2 E[(D2)S]
∣∣∣∣ ≤

∣∣∣∣ ∑
S:|S|∈(k,n−k)

f̂(S)2 E[DS
G]
∣∣∣∣+ Pr[D ̸∈ G].

Applying Corollary 28 (to the even integer k − 1 or k), we have

Pr[D /∈ G] ≤
(

2k

en

) k−1
4

. (24)

We now bound the first term on the right hand side as follows. Fix a string z ∈ G. As
|
∑

|S|=ℓ zS | = |z[n]∑
|S|=n−ℓ zS | = |

∑
|S|=n−ℓ zS |, by Fact 26,

∣∣∣∣ ∑
S:|S|∈(k,n−k)

f̂(S)2zS

∣∣∣∣ =
n−k−1∑
ℓ=k+1

f̂([ℓ])2
∣∣∣∣∑
|S|=ℓ

zS

∣∣∣∣ ≤ 2
n/2∑

ℓ=k+1

1(
n
ℓ

) ∣∣∣∣∑
|S|=ℓ

zS

∣∣∣∣.
We separate the sum into two parts depending on ℓ ≤ n/5 and bound each of them individually.
First, using Corollary 16, we have

n/2∑
ℓ=k+1

1(
n
ℓ

) ∣∣∣∣∑
|S|=ℓ

zS

∣∣∣∣ ≤
n/5∑

ℓ=k+1

(
ℓ

n
+
√

k

2en

)ℓ/2

≤ 2
(

2
√

k

2en

)k/2

≤ 2
(

2k

en

)k/4
, (25)

because each term in the sum is at most half its previous term, and so the sum can be bounded
by twice the first term. For the remaining sum (from ℓ = max{k, n/5} + 1 to n/2), note that
the binary entropy function H(x) := x log2(1/x) + (1 − x) log2(1/(1 − x)) is increasing on
[0, 1/2]. In particular, we have H(1/5) − 1√

2e
≥ 1/4. By Stirling’s approximation, we have(

n
ℓ

)
≥ 1

n2 2nH(ℓ
n) (see [24] for a proof). Applying Corollary 18 with these facts, we have

n/2∑
ℓ=max{n/5,k}+1

1(
n
ℓ

) ∣∣∣∣∑
|S|=ℓ

zS

∣∣∣∣ ≤
n/2∑

ℓ=max{n/5,k}+1

n2 · 2− n
2 (H(ℓ

n)− 1√
2e

) ≤ 2−n/10.

Combining this with (24) and (25) gives an error of (2k
en) k−1

4 + 2(2(2k
en) k

4 + 2−n/10) ≤
6(2k

en) k−1
4 . ◀

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:21

6 Bounds on Krawtchouk polynomials

In this section, we prove our upper and lower bounds on Krawtchouk polynomials (Corol-
lary 16, Proposition 17, , and Claim 15). Corollary 16 follows directly from Lemma 36, which
is a general upper bound on the elementary symmetric polynomials

∑
|S|=ℓ yS that holds for

arbitrary real tuples y ∈ Rn, not only for y ∈ {−1, 1}n.

▶ Lemma 36. Let y = (y1, . . . , yn) ∈ Rn. For every 1 ≤ ℓ ≤ n, we have∣∣∣∣∣ ∑
S⊆[n]:|S|=ℓ

yS

∣∣∣∣∣ ≤
(

n

ℓ

)(
ℓ − 1
n − 1 ·

∑n
i=1 y2

i

n
+
(

1 − ℓ − 1
n − 1

)
·
(∑n

i=1 yi

)2

n2

) ℓ
2

.

with equality if and only if y1 = · · · = yn or ℓ = 1.

Specializing to y ∈ {−1, 1}n, the elementary symmetric polynomial
∑

|S|=ℓ yS is simply
the degree-ℓ (shifted) Krawtchouk polynomial K(ℓ, |y|). In this case, we always have∑n

i=1 y2
i = n, and hence we obtain Corollary 16.

Corollary 16 appeared in [11] with an extra factor of cℓ. Lemma 36 shows that the same
inequality holds even when y1, . . . , yn are arbitrary real numbers. A similar-looking but
incomparable inequality, first proved in [33], showed that∣∣∣∣∣ ∑

S⊆[n]:|S|=ℓ

yS

∣∣∣∣∣ ≤ O

(
k

ℓ

) ℓ
2

max
k′∈{k,k+1}

∣∣∣ ∑
S⊆[n]:|S|=k′

yS
∣∣∣
 ℓ

k′

, (26)

Using a different approach, Tao [59] recently sharpened this inequality to∣∣∣∣∣ ∑
S⊆[n]:|S|=ℓ

yS

∣∣∣∣∣ ≤ O

(
1
ℓ

) ℓ
2

max
k′∈{k,k+1}

∣∣∣ ∑
S⊆[n]:|S|=k′

yS
∣∣∣
 ℓ

k′

, (27)

confirming a conjecture made on MathOverflow, see https://mathoverflow.net/q/446254.
Note that specializing to the case k = 1, and using the inequality |

∑
1≤i<j≤n yiyj | ≤

1
2
∑n

i=1 y2
i , both (26) and (27) imply a weaker form of Lemma 36. In the other direc-

tion, Tao [58] observed that one cannot replace the quantity
∑n

i=1 y2
i in Lemma 36 with

|
∑

1≤i<j≤n yiyj |, as otherwise when n is the square of an even number, for y ∈ {−1, 1}n such
that

∑n
i=1 yi =

√
n, we have

∑
1≤i<j≤n yiyj = 0 and the inequality fails at ℓ = n.

We note that Lemma 36 can be obtained by a slight modification of both proofs in [33, 59].
Here we follow the approach taken in [59], as it gives a sharper constant and the argument is
cleaner.

6.1 Proof of Lemma 36
Our approach is based on [59], which relies on several basic properties of real-rooted polyno-
mials. We say an (n + 1)-tuple of real numbers (s0, . . . , sn) is attainable if the polynomial

n∑
k=0

(−1)k

(
n

k

)
skzn−k

is monic with all roots real. By its real-rootedness, we can factor the polynomial as
n∑

k=0
(−1)k

(
n

k

)
sk(y)zn−k =

n∏
i=1

(z − yi)

CCC 2024

https://mathoverflow.net/q/446254

18:22 Pseudorandomness, Symmetry, Smoothing: I

for some real numbers y1, . . . , yn, where

sk(y) = 1(
n
k

) ∑
|S|=k

yS = 1(
n
k

) ∑
1≤i1<···<ik≤n

yi1 · · · yik
.

Conversely, given an n-tuple of real numbers y = (y1, . . . , yn), we can define sk(y) as above
to obtain an attainable tuple. We will use the following truncation property of attainable
tuples.

▶ Fact 37 (Truncation). Let (s0, . . . , sn) be an attainable tuple. Then (s0, . . . , sℓ) is attainable
for every 1 ≤ ℓ ≤ n.

Proof. It suffices to show that (s0, . . . , sn−1) is attainable. Write sk := sk(y1, . . . , yn) for
some real numbers y1, . . . , yn. By Rolle’s theorem, between every two consecutive real roots
of a polynomial, there is a real root of its derivative. Thus the derivative of a real-rooted
polynomial is also real-rooted. Therefore, the polynomial

1
n

· d

dz

n∑
k=0

(−1)k

(
n

k

)
sk(y)zn−k =

n−1∑
k=0

(−1)k n − k

n

(
n

k

)
sk(y)zn−1−k

=
n−1∑
k=0

(−1)k

(
n − 1

k

)
sk(y)zn−1−k

is monic and real-rooted, showing that (s0, . . . , sn−1) is also attainable. ◀

▶ Remark 38. One should view sℓ as sℓ =
∏ℓ

i=1 y′
i for some y′

1, . . . , y′
ℓ ∈ R, instead of

sℓ =
(

n
ℓ

)−1∑
|S|=ℓ yS for some y1, . . . , yn ∈ R such that sn =

∏n
i=1 yi.

Lemma 36 relies on the following slight refinement in Tao’s argument.

▶ Lemma 39. Let (s0, . . . , sn) be an attainable tuple. Then for every 1 ≤ ℓ ≤ n,

|sℓ|
2
ℓ ≤ (ℓ − 1) · (s2

1 − s2) + s2
1.

Proof. By the truncation property (Fact 37), it suffices to consider the case ℓ = n. Write
sk := sk(y1, . . . , yn) for some y = (y1, . . . yn) ∈ Rn. By the AM-GM inequality, we have

|sn(y)| 2
n = (y2

1 · · · y2
n) 1

n ≤ 1
n

n∑
i=1

y2
i .

By the Newton identity we have

n∑
i=1

y2
i =

(n∑
i=1

yi

)2
− 2

∑
1≤i<j≤n

yiyj = n2s1(y1, . . . , yn)2 − 2
(

n

2

)
s2(y1, . . . , yn).

Therefore,

|sn(y)| 2
n ≤ ns1(y)2 − (n − 1)s2(y) = (n − 1)

(
s1(y)2 − s2(y)

)
+ s1(y)2. ◀

Lemma 36 immediately follows from Lemma 39 by un-normalizing sℓ, s1 and s2.

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:23

Proof of Lemma 36. Let Sk(y) :=
(

n
k

)
sk(y) =

∑
|S|=k yS . Applying Lemma 39, we have

|Sℓ|
2
ℓ ≤

(
n

ℓ

) 2
ℓ (

(ℓ − 1)(s2
1 − s2) + s2

1

)
=
(

n

ℓ

) 2
ℓ
(

(ℓ − 1)
(S2

1
n2 − 2S2

n(n − 1)

)
+ S2

1
n2

)
=
(

n

ℓ

) 2
ℓ
(

(ℓ − 1)
(S2

1 − 2S2

n(n − 1) − S2
1

n2(n − 1)

)
+ S2

1
n2

)
=
(

n

ℓ

) 2
ℓ
(

ℓ − 1
n − 1

(S2
1 − 2S2

n
− S2

1
n2

)
+ S2

1
n2

)
=
(

n

ℓ

) 2
ℓ
(

ℓ − 1
n − 1

(S2
1 − 2S2

n

)
+
(

1 − ℓ − 1
n − 1

)
S2

1
n2

)
.

Applying Newton’s identity, i.e., S2
1 − 2S2 =

∑n
i=1 y2

i , completes the proof. ◀

We now prove Proposition 17. We note that a similar argument also appears in [51,
Lemma 2.1]. For completeness we provide a self-contained proof here.

Proof of Proposition 17. First note

(1 + z)(n+t)/2(1 − z)(n−t)/2 =
n∑

ℓ=0
K(ℓ, t)zℓ.

Let r = |z|. The logarithmic function is known to be concave:

α log2(u) + (1 − α) log2(v) ≤ log2(αu + (1 − α)v).

for any positive u and v. Using concavity and the observation |1 + z|2 + |1 − z|2 = 2 + 2|z|2 =
1 + z + z + |z|2 + 1 − z − z + |z|2 = 2 + 2|z|2 = 2 + 2r2 gives

H(α) + log2
(
|1 + z|2α|1 − z|2(1−α)) = α log2

(|1 + z|2

α

)
+ (1 − α) log2

(|1 − z|2

1 − α

)
≤ log2(|1 + z|2 + |1 − z|2)
= log2(2 + 2r2).

For an integer ℓ with 0 ≤ ℓ ≤ n consider the Laurent polynomial

p(z) = (1 + z)(n+t)/2(1 − z)(n−t)/2

zℓ
.

If r2 = β/(1 − β), then we have

log |p(z)| = n

2

(
log2

(
|1 + z|2α|1 − z|2(1−α))− β log2

(
|z|2
))

≤ n

2

(
log2(2 + 2r2) − β log2(r2) − H(α)

)
= n

2

(
log2

2
1−β − β log2

β
1−β − H(α)

)
= n

2

(
1 + H(β) − H(α)

)
.

The coefficient of 1 = z0 in p(z) is K(ℓ, t), so it follows that K(ℓ, t) =
∫ 1

0 p(re2πiθ) dθ. We
conclude that

log2 |K(ℓ, t)| ≤ log2

(∫ 1

0
|p(re2πiθ)| dθ

)
≤ max

|z|=r
log2 |p(z)| ≤ n

2

(
1 − H(α) + H(β)

)
. ◀

CCC 2024

18:24 Pseudorandomness, Symmetry, Smoothing: I

6.2 Lower bound on Krawtchouk polynomials
In this section, we prove Claim 15. It follows from an inequality on Krawtchouk polynomials
which appears to be well known in the coding theory literature [44, 36, 38, 37], and essentially
follows from Newton’s inequality.

For convenience we will work with the standard (non-shifted) definition of Krawtchouk
polynomials K(ℓ, t) = K(ℓ, n − 2t). Note that in the claim below, we intentionally swap t

and ℓ.

▷ Claim 40. K(n/2 − t, ℓ) ≥
(

n
n/2−t

)
(t/n)ℓ for t ≥

√
ℓ(n − ℓ).

Claim 40 follows from the fact that K(t, 0) =
(

n
t

)
and then applying the following lemma

iteratively ℓ times.

▶ Lemma 41 (Theorem 8 in [38]). For ℓ, i such that (n − 2i)2 ≥ 4ℓ(n − ℓ) (so that s =√
(n − 2i)2 − 4ℓ(n − ℓ) is real and nonnegative),

K(i, ℓ + 1)
K(i, ℓ) >

n − 2i + s

2(n − ℓ) ≥ n − 2i

2n
.

We can now prove Claim 15 using the following fact and translating the statement in
terms of K(·, ·).

▶ Fact 42.
(

n
t

)
K(ℓ, t) =

(
n
ℓ

)
K(t, ℓ) .

Proof of Claim 15. We have

K(ℓ, t) = K
(

ℓ,
n

2 − t

2

)
=

(
n
ℓ

)(
n

n
2 + t

2

)K
(n

2 − t

2 , ℓ
)

≥
(

n

ℓ

)(t

2n

)ℓ

. ◁

References
1 Thomas D. Ahle. Asymptotic Tail Bound and Applications. Available at https://thomasahle.

com/papers/tails.pdf, 2017.
2 Miklós Ajtai. Σ1

1-formulae on finite structures. Annals of Pure and Applied Logic, 24(1):1–48,
1983.

3 Miklos Ajtai and Avi Wigderson. Deterministic simulation of probabilistic constant-depth
circuits. Advances in Computing Research - Randomness and Computation, 5:199–223, 1989.

4 Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning Xie.
Testing k-wise and almost k-wise independence. In ACM Symp. on the Theory of Computing
(STOC), pages 496–505, 2007. doi:10.1145/1250790.1250863.

5 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized algorithm for the
maximal independent set problem. Journal of Algorithms, 7:567–583, 1986.

6 Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus k-wise
independence. Inform. Process. Lett., 88(3):107–110, 2003. doi:10.1016/S0020-0190(03)
00359-4.

7 Louay Bazzi. Polylogarithmic independence can fool DNF formulas. In 48th IEEE Symp. on
Foundations of Computer Science (FOCS), pages 63–73, 2007.

8 Louay Bazzi. Entropy of weight distributions of small-bias spaces and pseudobinomiality. In
Computing and combinatorics, volume 9198 of Lecture Notes in Comput. Sci., pages 495–506.
Springer, Cham, 2015. doi:10.1007/978-3-319-21398-9_39.

9 Louay Bazzi. Weight distribution of cosets of small codes with good dual properties. IEEE
Trans. Inform. Theory, 61(12):6493–6504, 2015. doi:10.1109/TIT.2015.2487348.

https://thomasahle.com/papers/tails.pdf
https://thomasahle.com/papers/tails.pdf
https://doi.org/10.1145/1250790.1250863
https://doi.org/10.1016/S0020-0190(03)00359-4
https://doi.org/10.1016/S0020-0190(03)00359-4
https://doi.org/10.1007/978-3-319-21398-9_39
https://doi.org/10.1109/TIT.2015.2487348

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:25

10 Itai Benjamini, Ori Gurel-Gurevich, and Ron Peled. On k-wise independent distributions and
boolean functions, 2012. arXiv:1201.3261.

11 Jarosław Błasiok, Peter Ivanov, Yaonan Jin, Chin Ho Lee, Rocco A. Servedio, and Emanuele
Viola. Fourier growth of structured F2-polynomials and applications. In Approximation,
randomization, and combinatorial optimization. Algorithms and techniques, volume 207 of
LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 53, 20. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

12 Andrej Bogdanov, Zeev Dvir, Elad Verbin, and Amir Yehudayoff. Pseudorandomness for width-
2 branching programs. Theory Comput., 9:283–292, 2013. doi:10.4086/toc.2013.v009a007.

13 Andrej Bogdanov and Emanuele Viola. Pseudorandom bits for polynomials. SIAM J. on
Computing, 39(6):2464–2486, 2010.

14 Ravi Boppana, Johan Håstad, Chin Ho Lee, and Emanuele Viola. Bounded independence versus
symmetric tests. ACM Trans. Comput. Theory, 11(4):Art. 21, 27, 2019. doi:10.1145/3337783.

15 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. of the ACM, 57(5),
2010.

16 Mark Bun and Thomas Steinke. Weighted polynomial approximations: limits for learning
and pseudorandomness. In Approximation, randomization, and combinatorial optimization.
Algorithms and techniques, volume 40 of LIPIcs. Leibniz Int. Proc. Inform., pages 625–644.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2015.

17 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions. J. of Computer
and System Sciences, 18(2):143–154, 1979.

18 Eshan Chattopadhyay, Jason Gaitonde, Chin Ho Lee, Shachar Lovett, and Abhishek Shetty.
Fractional pseudorandom generators from any Fourier level. In 36th Computational Complexity
Conference, volume 200 of LIPIcs. Leibniz Int. Proc. Inform., pages Art. No. 10, 24. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

19 Eshan Chattopadhyay, Pooya Hatami, Kaave Hosseini, and Shachar Lovett. Pseudorandom
generators from polarizing random walks. Theory Comput., 15:Paper No. 10, 26, 2019.
doi:10.4086/toc.2019.v015a010.

20 Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
generators from the second Fourier level and applications to AC0 with parity gates. In 10th
Innovations in Theoretical Computer Science, volume 124 of LIPIcs. Leibniz Int. Proc. Inform.,
pages Art. No. 22, 15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

21 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudo-
randomness for unordered branching programs through local monotonicity. In STOC’18—
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, pages
363–375. ACM, New York, 2018. doi:10.1145/3188745.3188800.

22 Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu. New PRGs for unbounded-
width/adaptive-order read-once branching programs. In 50th International Colloquium
on Automata, Languages, and Programming, volume 261 of LIPIcs. Leibniz Int. Proc. In-
form., pages Art. No. 39, 20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/lipics.icalp.2023.39.

23 Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The bit extraction problem or t-resilient functions (preliminary version). In 26th
Symposium on Foundations of Computer Science, pages 396–407, Portland, Oregon, 21–23
October 1985. IEEE.

24 Thomas M. Cover and Joy A. Thomas. Elements of information theory. Wiley-Interscience
[John Wiley & Sons], Hoboken, NJ, second edition, 2006.

25 Harm Derksen, Peter Ivanov, Chin Ho Lee, and Emanuele Viola. Pseudorandomness, symmetry,
smoothing: II, 2024.

26 Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele Viola.
Bounded independence fools halfspaces. SIAM J. on Computing, 39(8):3441–3462, 2010.

CCC 2024

https://arxiv.org/abs/1201.3261
https://doi.org/10.4086/toc.2013.v009a007
https://doi.org/10.1145/3337783
https://doi.org/10.4086/toc.2019.v015a010
https://doi.org/10.1145/3188745.3188800
https://doi.org/10.4230/lipics.icalp.2023.39

18:26 Pseudorandomness, Symmetry, Smoothing: I

27 Dean Doron, Pooya Hatami, and William M. Hoza. Near-optimal pseudorandom generators for
constant-depth read-once formulas. In 34th Computational Complexity Conference, volume 137
of LIPIcs. Leibniz Int. Proc. Inform., pages 16:1–16:34. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.16.

28 Dean Doron, Pooya Hatami, and William M. Hoza. Log-seed pseudorandom generators via
iterated restrictions. In Shubhangi Saraf, editor, 35th Computational Complexity Conference,
CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of
LIPIcs, pages 6:1–6:36. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.CCC.2020.6.

29 Michael A. Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In IEEE Symp. on Foundations of Computer Science (FOCS), 2018.

30 Dmitry Gavinsky, Shachar Lovett, and Srikanth Srinivasan. Pseudorandom generators for
read-once accˆ0. In IEEE Conf. on Computational Complexity (CCC), pages 287–297, 2012.
doi:10.1109/CCC.2012.37.

31 Parikshit Gopalan, Daniel Kane, and Raghu Meka. Pseudorandomness via the discrete fourier
transform. In IEEE Symp. on Foundations of Computer Science (FOCS), pages 903–922, 2015.
doi:10.1109/FOCS.2015.60.

32 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Bet-
ter pseudorandom generators from milder pseudorandom restrictions. In IEEE Symp. on
Foundations of Computer Science (FOCS), 2012.

33 Parikshit Gopalan and Amir Yehudayoff. Concentration for limited independence via inequali-
ties for the elementary symmetric polynomials. Theory Comput., 16:Paper No. 17, 29, 2020.
doi:10.4086/toc.2020.v016a017.

34 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM J. on Computing, 47(2):295–615, 2018.

35 Pooya Hatami and William Hoza. Theory of unconditional pseudorandom generators. Electron.
Colloquium Comput. Complex., TR23-019, 2023.

36 Gil Kalai and Nathan Linial. On the distance distribution of codes. IEEE Trans. Inform.
Theory, 41(5):1467–1472, 1995. doi:10.1109/18.412711.

37 Naomi Kirshner and Alex Samorodnitsky. A moment ratio bound for polynomials and some
extremal properties of Krawchouk polynomials and Hamming spheres. IEEE Trans. Inform.
Theory, 67(6, part 1):3509–3541, 2021. doi:10.1109/TIT.2021.3071597.

38 Ilia Krasikov. Nonnegative quadratic forms and bounds on orthogonal polynomials. J. Approx.
Theory, 111(1):31–49, 2001. doi:10.1006/jath.2001.3570.

39 Ilia Krasikov and Simon Litsyn. Survey of binary Krawtchouk polynomials. In Codes and
association schemes (Piscataway, NJ, 1999), volume 56 of DIMACS Ser. Discrete Math.
Theoret. Comput. Sci., pages 199–211. Amer. Math. Soc., Providence, RI, 2001. doi:10.1090/
dimacs/056/16.

40 Chin Ho Lee. Fourier bounds and pseudorandom generators for product tests, 2019.
41 Chin Ho Lee and Emanuele Viola. Some limitations of the sum of small-bias distributions.

Theory of Computing, 13, 2017.
42 Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudorandom

generators for read-once polynomials. Theory of Computing, 16:1–50, 2020. URL: https:
//www.khoury.northeastern.edu/home/viola/papers/LV-rop.pdf.

43 Vladimir I. Levenshtein. Krawtchouk polynomials and universal bounds for codes and designs
in Hamming spaces. IEEE Trans. Inform. Theory, 41(5):1303–1321, 1995. doi:10.1109/18.
412678.

44 Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R. Welch. New
upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans.
Inform. Theory, IT-23(2):157–166, 1977. doi:10.1109/tit.1977.1055688.

https://doi.org/10.4230/LIPIcs.CCC.2019.16
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.4230/LIPIcs.CCC.2020.6
https://doi.org/10.1109/CCC.2012.37
https://doi.org/10.1109/FOCS.2015.60
https://doi.org/10.4086/toc.2020.v016a017
https://doi.org/10.1109/18.412711
https://doi.org/10.1109/TIT.2021.3071597
https://doi.org/10.1006/jath.2001.3570
https://doi.org/10.1090/dimacs/056/16
https://doi.org/10.1090/dimacs/056/16
https://www.khoury.northeastern.edu/home/viola/papers/LV-rop.pdf
https://www.khoury.northeastern.edu/home/viola/papers/LV-rop.pdf
https://doi.org/10.1109/18.412678
https://doi.org/10.1109/18.412678
https://doi.org/10.1109/tit.1977.1055688

H. Derksen, P. Ivanov, C. H. Lee, and E. Viola 18:27

45 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In STOC’19—Proceedings of the 51st Annual ACM SIGACT Symposium on Theory
of Computing, pages 626–637. ACM, New York, 2019. doi:10.1145/3313276.3316319.

46 Raghu Meka and David Zuckerman. Small-bias spaces for group products. In Approximation,
randomization, and combinatorial optimization, volume 5687 of Lecture Notes in Comput. Sci.,
pages 658–672. Springer, Berlin, 2009. doi:10.1007/978-3-642-03685-9_49.

47 J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications.
In 22nd ACM Symp. on the Theory of Computing (STOC), pages 213–223. ACM, 1990.

48 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

49 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
50 Ryan O’Donnell and Yu Zhao. On Closeness to k-Wise Uniformity. In Eric Blais, Klaus

Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2018), volume
116 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1–54:19, Dagstuhl,
Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
APPROX-RANDOM.2018.54.

51 Yury Polyanskiy. Hypercontractivity of spherical averages in Hamming space. SIAM J.
Discrete Math., 33(2):731–754, 2019. doi:10.1137/15M1046575.

52 C. Radhakrishna Rao. Factorial experiments derivable from combinatorial arrangements of
arrays. Suppl. J. Roy. Statist. Soc., 9:128–139, 1947.

53 Alexander A. Razborov. A simple proof of Bazzi’s theorem. ACM Transactions on Computation
Theory (TOCT), 1(1), 2009.

54 Omer Reingold, Thomas Steinke, and Salil P. Vadhan. Pseudorandomness for regular branching
programs via Fourier analysis. In Workshop on Randomization and Computation (RANDOM),
pages 655–670, 2013.

55 Jad Silbak, Swastik Kopparty, and Ronen Shaltiel. Quasilinear time list-decodable codes
for space bounded channels. In David Zuckerman, editor, 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,
2019, pages 302–333. IEEE Computer Society, 2019. doi:10.1109/FOCS.2019.00028.

56 Thomas Steinke, Salil Vadhan, and Andrew Wan. Pseudorandomness and Fourier-growth
bounds for width-3 branching programs. Theory Comput., 13:Paper No. 12, 50, 2017. doi:
10.4086/toc.2017.v013a012.

57 Avishay Tal. Tight bounds on the fourier spectrum of AC0. In Conf. on Computational
Complexity (CCC), pages 15:1–15:31, 2017. doi:10.4230/LIPIcs.CCC.2017.15.

58 Terence Tao. Personal communication, 2023.
59 Terence Tao. A Maclaurin type inequality, 2023. arXiv:2310.05328.
60 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,

7(1-3):1–336, 2012. doi:10.1561/0400000010.
61 Emanuele Viola. On approximate majority and probabilistic time. Computational Complexity,

18(3):337–375, 2009.
62 Emanuele Viola. Correlation bounds against polynomials, a survey, 2022.
63 Emanuele Viola. Pseudorandom bits and lower bounds for randomized turing machines. Theory

of Computing, 18(10):1–12, 2022.
64 Emanuele Viola. Mathematics of the impossible: The uncharted complexity of computation,

2023.

CCC 2024

https://doi.org/10.1145/3313276.3316319
https://doi.org/10.1007/978-3-642-03685-9_49
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.54
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.54
https://doi.org/10.1137/15M1046575
https://doi.org/10.1109/FOCS.2019.00028
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4086/toc.2017.v013a012
https://doi.org/10.4230/LIPIcs.CCC.2017.15
https://arxiv.org/abs/2310.05328
https://doi.org/10.1561/0400000010

Information Dissemination via Broadcasts in the
Presence of Adversarial Noise
Klim Efremenko #

Ben-Gurion University of the Negev, Beer-Sheva, Israel

Gillat Kol #

Princeton University, NJ, USA

Dmitry Paramonov #

Princeton University, NJ, USA

Ran Raz #

Princeton University, NJ, USA

Raghuvansh R. Saxena #

Tata Institute of Fundamental Research, Mumbai, India

Abstract
We initiate the study of error correcting codes over the multi-party adversarial broadcast channel.
Specifically, we consider the classic information dissemination problem where n parties, each holding
an input bit, wish to know each other’s input. For this, they communicate in rounds, where, in
each round, one designated party sends a bit to all other parties over a channel governed by an
adversary that may corrupt a constant fraction of the received communication. We mention that
the dissemination problem was studied in the stochastic noise model since the 80’s.

While stochastic noise in multi-party channels has received quite a bit of attention, the case of
adversarial noise has largely been avoided, as such channels cannot handle more than a 1

n
-fraction of

errors. Indeed, this many errors allow an adversary to completely corrupt the incoming or outgoing
communication for one of the parties and fail the protocol. Curiously, we show that by eliminating
these “trivial” attacks, one can get a simple protocol resilient to a constant fraction of errors. Thus,
a model that rules out such attacks is both necessary and sufficient to get a resilient protocol.

The main shortcoming of our dissemination protocol is its length: it requires Θ(n2) communication
rounds whereas n rounds suffice in the absence of noise. Our main result is a matching lower bound
of Ω(n2) on the length of any dissemination protocol in our model. Our proof first “gets rid” of
the channel noise by converting it to a form of “input noise”, showing that a noisy dissemination
protocol implies a (noiseless) protocol for a version of the direct sum gap-majority problem. We
conclude the proof with a tight lower bound for the latter problem, which may be of independent
interest.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Radio Networks, Interactive Coding, Error Correcting Codes

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.19

Funding Klim Efremenko: Supported by European Research Council Grant No. 949707.
Gillat Kol: Supported by the National Science Foundation CAREER award CCF-1750443.
Ran Raz : Supported by a Simons Investigator Award and by the National Science Foundation grant
No. CCF-2007462.

1 Introduction

We initiate the study of error correcting codes over the multi-party adversarial broadcast
channel, where n parties take turns broadcasting a bit to all other parties, but an adversary
may corrupt a constant fraction of the received bits. Multi-party broadcast channels were

© Klim Efremenko, Gillat Kol, Dmitry Paramonov, Ran Raz, and
Raghuvansh R. Saxena;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 19; pp. 19:1–19:33

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:klimefrem@gmail.com
https://orcid.org/0000-0003-3280-3927
mailto:gillat.kol@gmail.com
https://orcid.org/0009-0007-4725-6694
mailto:dp20@cs.princeton.edu
https://orcid.org/0009-0005-5592-060X
mailto:ranr@cs.princeton.edu
https://orcid.org/0009-0008-1656-2258
mailto:raghuvansh.saxena@gmail.com
https://doi.org/10.4230/LIPIcs.CCC.2024.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

studied under various noise models in many recent works. However, almost all prior work
assumed that the noise is stochastic, meaning that each sent message is corrupted with some
small constant probability.

The reason the adversarial noise model has received considerably less attention is due
to the fundamental limitation that any scheme, regardless of its rate, cannot withstand an
adversarial noise rate exceeding 1

n . To illustrate, with a budget of 1
n -fraction of corruptions,

the adversary can corrupt all messages broadcast by the participant who communicates the
least, thereby obstructing the other parties from successfully computing a function that
relies on this individual’s input. Likewise, within the same budget, the adversary can disrupt
all messages received by one of the participants, preventing them from producing a correct
output.

The starting point of this paper is the observation that by excluding the two simple
adversarial attacks mentioned earlier, we can circumvent the nonexistence of protocols capable
of withstanding adversarial corruptions beyond a fraction of 1

n . Specifically, we consider
the adversarial channel where the adversary can corrupt any number of messages, provided
that they do not corrupt more than a θ-fraction of the messages received by each party and
a θ-fraction of the messages sent by each party1, for some constant θ > 0. We call such
adversaries θ-limited.

Indeed, consider the following simple protocol for the information dissemination problem,
where the input to each party is a bit and all parties wish to know all inputs: in the first half
of the protocol, each party broadcasts their input bit the same number of times, and then
each party computes the majority of the bits they received from each of the other parties.
In the second half of the rounds, each party broadcasts an error correcting code of all the
majority bits they computed. It is not hard to show that this protocol is resilient to θ-limited
adversaries for some constant θ.2

Although our protocol exhibits good error resilience, a notable drawback is its rate, which
is at most 1

n . This is because, in the second half of the protocol, each of the n parties
broadcasts the encoding of all n of their majority bits with an error correcting code, resulting
in a length of at least n2 bits. This situation prompts the following question:

Is there an information dissemination protocol robust to θ-limited adversaries with
constant rate, or at least ω(1

n) rate?

1.1 Our Result
We answer this question in the negative, showing that the above simple protocol is essentially
optimal.

▶ Theorem 1 (Informal; see Theorem 6). Every protocol for information dissemination that
is resilient to a 0.01-limited adversary has length Ω(n2).

1 More formally, if a party broadcasts in t rounds, then the adversary may corrupt up to θtn out of the
tn messages received by the parties in those t rounds.

2 The argument is that for every i ∈ [n], in each half of the protocol at most 2θ-fraction of the messages
received by party i are corrupted. Thus, party i correctly decodes at least (1−O(θ))-fraction of the error
correcting codes sent in the second half. This means that if party i outputs a wrong guess for player j’s
input, then the bit for party j must be incorrect in at least (1

2 − O(θ))-fraction of the broadcast codes.
This means that at least θ′ = (1

4 − O(θ))-fraction of the transmissions of party j in the first half were
corrupted. By choosing θ such that θ′ > 2θ, we get that the output of all the parties is correct. See
Section 4.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:3

Technique

The proof of Theorem 1 consists of two steps. The first step converts the noise in the
channel to noise in the inputs. Roughly speaking, we show that any protocol for information
dissemination in our noisy model implies a protocol for solving a direct-sum gap-majority
problem in the absence of noise3. Here, one copy of the gap-majority problem, denoted
GapMajn, is the following: each party gets a bit with the promise that at least 0.9-fraction
of the parties received the same bit. The parties’ goal is to all output the majority bit. In
the direct sum gap-majority problem, denoted here GapMajmn , each party gets m bits, and
we are promised that, for all j, the j-th bits of all the parties are an instance for GapMajn.
Consider that one can view the majority bit for each copy j as the “true j-th bit” and view
the j-th input bit of each player as a noisy version of this bit. In this sense, this indeed
converts the noise in the channel to a noise in the inputs.

We then proceed to prove a lower bound on the communication cost of GapMajmn over
the noiseless channel. We show:

▶ Theorem 2 (Informal; see Theorem 10). Every protocol for GapMajmn with m = Θ(n), has
length Ω(n2).

We note that our above definition of the direct sum problem is different from other
definitions in the literature on one crucial point: if the promise is violated, even for a single
copy, any output is accepted. In other words, as is usually the case, if all m copies satisfy the
promise, the parties need to solve all copies. However, if the promise is violated for some of
the copies, we don’t require the protocol to solve the copies on which the promise does hold.
Since our definition is easier to be satisfied by an algorithm, the lower bound in Theorem 2
is stronger. Because the relevant, known direct sum theorems only rule out algorithms that
solve all the copies where the promise is satisfied, they are insufficient for our purpose (see
more about this in Sections 1.2 and 2.2).

To prove our lower bound, we first note that Theorem 2 is essentially tight, as with
O
(
n2) communication, the parties can exchange their entire input. Moreover, as at least

Ω(n) parties need to speak to solve the single-copy problem, Theorem 2 implies that the best
protocol essentially solves each copy separately. Put differently, one can say that Theorem 2
is equivalent to the statement that trying to correlate the copies of gap-majority does not
help the parties in solving the GapMajmn problem. Interestingly, our proof establishes this in
a pretty strong sense, showing that even trying to correlate three copies does not help the
protocol, as it shows the result only assuming that the copies are pairwise independent at
the end of the protocol.

In other words, we prove that the only way to make progress towards solving the GapMajmn
problem is to try to create a lot of correlations between pairs of copies. However, as this is
only a constant factor away from giving a lot of information about individual copies (which
is bounded by the overall communication), the number of these correlations can also be
bounded by a constant times the overall communication, hence the lower bound. For more
details, see Section 2.

3 We mention that this step is inspired by the beautiful work of [32] that gives a lower bound under
stochastic noise by lower bounding a different problem where the noise is in the inputs. However, our
implementation is largely different, see Section 2.1.

CCC 2024

19:4 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

1.2 Related Work
Dissemination over the stochastic broadcast channel

El Gamal [25] initiated the study of the noisy broadcast model as a simple abstraction for the
effect of noise on highly distributed wireless systems. The noise in his model was stochastic
– in each round the bit received by each party is flipped with some constant probability
ϵ > 0, independently. El Gamal asked whether there is a communication-efficient information
dissemination protocol over this channel. The answer came from Gallager [24], who gave an
elegant O(n log log n)-round protocol, which was later proved to be optimal by the beautiful
paper [32]. Variants of El Gamal’s stochastic noisy broadcast channel were studied in many
follow up works [24, 48, 42, 23, 45, 32, 10, 17, 14, 15]. We mention that our initial motivation
for the study in this paper was the question of whether communication-efficient protocols
like Gallager’s were also possible in the presence of adversarial noise.

Interactive coding

In this work we consider the information dissemination problem, which is, perhaps, the most
basic multi-party problem. It can be viewed as a generalization of the classical coding task
to the multi-sender, multi-receiver setting (in traditional coding there is a single sender and
a single receiver and the goal is to transfer a message from the sender to the receiver). It can
be shown that a dissemination protocol with a certain resilience implies a protocol for any
other problem, as the parties can first exchange their inputs and then compute the output
themselves. Of course, this protocol is not always practical, as the input size may be much
greater than the communication required to compute a solution to the problem.

The field of interactive coding aims to make this practical by converting (general) protocols
designed to work over a noiseless channel to noise resilient protocols with a small overhead
in the communication. The study of interactive codes was initiated by a seminal paper of
Schulman [47] that considered two-party protocols and was the topic of many works since.
Interactive codes for multi-party distributed channels were also studied, including codes for
peer-to-peer networks [46, 31, 36, 43, 35, 2, 5, 1, 28, 9, 29, 30] and codes for various types of
broadcast channels [24, 48, 42, 23, 45, 32, 10, 17, 11, 18, 20, 14, 44, 15, 16].

Peer-to-peer with adversarial noise

In this paper, we consider the broadcast channel under adversarial noise. The case of
adversarial noise was previously considered in different peer-to-peer settings, where the
parties are nodes in a graph and a node can send (potentially different) messages to its
neighbors.

The work of [35] gives an interactive coding result in the synchronous, “fully utilized”
model, where the communication is in rounds, and in each round each node sends a message
to all other nodes. They show a scheme for converting any noiseless protocol to a protocol
that is robust against Θ(1

n)-fraction of adversarial errors with multiplicative overhead of
O((|E| log n)/n) in the communication, where |E| is the number of edges in the graph and
n is the number of vertices. [36] consider the synchronous, non-fully-utilized model, and
show that if the network graph contains the star topology, then a noiseless protocol can
be converted to a protocol that is robust against Θ(1

n)-fraction of adversarial errors and
has length linear in the length of the original protocol. [43] improve the communication
balance of the [36] scheme. [9] consider the asynchronous setting and give an interactive
coding scheme with error resilience Θ(1

n) and multiplicative overhead of O(n log2 n) in the
communication.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:5

In all the above results, the noise tolerance of Θ(1
n) is optimal, up to constants. For

example, it is noted by [36] that, “by investing 1
n -fraction of error an adversary can completely

silence a party (the quietest party)”. Recall that we get around this attack by forcing the
adversary to not corrupt more than a constant fraction of the bits sent/received by any party.

A more challenging peer-to-peer channel where the adversarial noise can insert, delete, or
alter communicated messages is considered in [30]. However, the obtained noise tolerance
is Θ(1

|E| log |E|), which is even smaller than Θ(1
n). Another line of work considers oblivious

adversaries in peer-to-peer models [1, 29, 30]. Oblivious adversaries are not allowed to see
the content of the communication channel when making their decision of what messages to
corrupt. See more about that in Section 1.3.

Direct sum

The direct sum problem in communication complexity asks whether the communication
required to solve k independent copies of a communication task is k times the communication
required for solving a single copy. This problem has a rich history and was studied in several
different settings (e.g., in the deterministic, non-deterministic, randomized, and distributional
settings) and for different types of problems (relations, complete functions).

Currently, non-deterministic communication complexity is the best understood model
in this regard, and an “almost perfect” direct sum theorem is known. The work of [22]
and [40] showed that solving k copies of a relation R takes almost k times the amount
of non-deterministic communication. More formally, N(Rk) ≥ k(N(R) − log n − O(1)),
where n is the number of bits required to describe an input for R, N(R′) denotes the non-
deterministic communication complexity of R′, and Rk is the problem of solving k instances
of R simultaneously. Note that if R represents a partial (or promise) problem, then solving
Rk means giving the correct output on all the copies where the promise is satisfied.

For deterministic communication complexity, denoted D, and total functions f , [22] show
a weaker direct sum theorem D(fk) ≥ k(

√
D(f)/2− log n−O(1)).

The direct sum problem (and related problems like the direct product and XOR lemmas)
were extensively studied in the randomized settings and are known to be related to other
questions in complexity theory, like parallel repetition theorems and interactive compression
schemes, [12, 39, 3, 34, 41, 6, 4, 8, 7, 37, 38, 26, 27, 49, to cite a few]. We mention that
[26, 27] show that perfect direct sum does not hold for randomized communication complexity,
however, weak direct sum theorems are known to hold, see, e.g., [4].

1.3 Additional Discussion and Future Directions
In this work we study the power and limitations of θ-limited adversaries in the broadcast
model. We next discuss some of our modeling decisions and suggest other related questions.

Non-adaptive vs. adaptive protocols

In this work we follow the footsteps of El Gamal [25] and the followup works and assume
that the order of communication in the protocol is predetermined and is independent of the
players’ inputs and the channel noise (and therefore also independent of the parties’ received
transcripts). Such protocols are called non-adaptive. Non-adaptive protocols are widely
studied as they model certain common types of wireless networks, prevent signaling4, and
can trivially ensure that exactly one party is broadcasting in every round.

4 Signaling is the situation in which information is inferred from whether a certain party has broadcast or
not, rather than from the content of their communicated message.

CCC 2024

19:6 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

Inspired by the radio network models in distributed computing [13], many recent works
consider adaptive models, where a party decides whether to broadcast or not based on their
input and their received transcript, see, e.g., [33, 10, 17, 11, 18, 19, 20, 21, 16]. As hinted
above, such a model is prone to collision rounds (where more than one party broadcasts)
and silent rounds (where no party broadcasts).

Note, however, that all the above mentioned adaptive models assume stochastic noise,
and that it is unclear how to adapt the definition of θ-limited adversaries to adaptive settings.
The main issue is that, for every i, our limited adversaries are only allowed to corrupt a
θ-fraction of the total number of the messages received in rounds where party i broadcasts.
But for adaptive models this number may not be fixed. Extending the notion of θ-limited
adversaries to adaptive protocols is an intriguing question that may be motivated by the
fact that, in various settings, adaptive protocols were shown to be much “stronger” than
non-adaptive ones, see, e.g., [33, 17, 19, 21].

Interactive coding with limited adversaries

In this paper, we study the dissemination problem with θ-limited adversaries. As discussed in
Section 1.2, such dissemination protocols imply a protocol for solving any other communication
task with θ-limited adversaries, but the blow-up in communication may be substantial. In
other words, interactive codes (with bad rate) are possible with θ-limited adversaries. It can
likely be shown that, in some cases, such blow-up cannot be avoided5. An interesting goal is
to find the “minimum additional restrictions” to be posed on the adversary that would allow
for interactive coding with low overhead.

Randomness in adversarial models

Our simple dissemination protocol and our lower bound in Theorem 1, as well as most of
the study of error correcting codes over adversarial channels in the literature, assume the
deterministic setting. One can also consider randomized settings, where the parties share a
random string. Note, however, that if this string is known to the adversary at the beginning
of the protocol, then the protocol is essentially deterministic. On the other hand, if the
random string is unknown to the adversary for the entire duration of the protocol, then the
parties may use parts of it as one-time pads and ensure that the adversary is oblivious to the
contents of the messages. Such adversaries are known to be weak (at least in the peer-to-peer
setting) and every noiseless protocol can be simulated in the presence of such adversaries
with only a constant overhead in the communication, see, e.g., [1, 29, 29].

An interesting direction for future work is to consider “intermediate models” where, for
example, fresh randomness is sampled in every round, the adversary gets to see it immediately
after it is sampled, but the adversary does not get to see randomness in future rounds when
deciding on what corruptions to make. Can we design communication-efficient protocols in
such models?

5 Consider, for example, the pointer chasing protocol on a tree of depth n, where party i has an edge
coming out from each of the vertices in level i in the tree and the parties wish to find the unique
root-to-leaf path contained in the union of their edges. While the parties can exchange their huge inputs
and get constant resilience, an attempt to simulate the noiseless chasing protocol directly will result
in noise resilience o(1). Indeed, the adversary that erases the communication to the second party in
the first θ-fraction of the rounds, then erases the third party for the next θ-fraction of the rounds, etc.,
is θ-limited, but prevents the parties from computing the correct output. We mention that [36] show
similar limitations in the peer-to-peer setting.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:7

The adversarial erasure channel

In this work we have allowed the adversary to corrupt, or flip, some of the received bits. Can
better protocols be designed for the easier setting where the adversary is only allowed to
erase some of the received bits?

Noise tolerance

What is the maximum noise tolerance of dissemination protocols in our model? That is,
what is the largest fraction of errors that can be handled by dissemination protocols? What
is the rate vs. tolerance tradeoff?

2 Proof Overview

In this section, we give a detailed overview of our proof for Theorem 1. For the rest of this
section we set θ = 0.01. Let GapMajn be the following n-party problem: each of the n parties
gets an input bit with the promise that at least (1− 2θ)-fraction of the input bits agree. The
goal is for all parties to output the majority bit. Let GapMajmn be the problem where each of
the n parties gets m input bits with the promise that the j-th bit of all the parties is an
instance of GapMajn. In addition, it is promised that for every player i, there exists a set
consisting of (1− 2θ)-fraction of the copies j, such that the bit of party i for copy j is the
majority bit of copy j (that is, (1− 2θ)-fraction of the bits of each party are “correct”).

Our proof consists of two main parts. We first show that any protocol for information
dissemination in our noisy model implies a protocol for GapMajmn with the same communica-
tion cost. Here and for the rest of the section we set m = Θ(n). As explained in Section 1.1,
this means that we can convert the noise in the channel to a type of noise in the inputs. We
then prove an Ω(n2) lower bound on the communication cost of GapMajmn .

2.1 Reducing Noiseless GapMajmn to Noisy Dissemination
The reduction for simple protocols

We first explain why “simple” information dissemination protocols, structured like the simple
dissemination protocol we described in Section 1 (also see Section 4), imply a protocol for
GapMajnn with a similar number of rounds. Later in the section, we show how to extend
the reduction to general dissemination protocols. Consider a protocol Π where all parties
broadcast the same number of times. Additionally, assume that the protocol Π consists of
two phases: in the first phase, which is, say, the first half of the rounds, the parties take
turns broadcasting their input bits. Then, in the second phase, consisting of the second half
of the rounds, the messages broadcast by the parties are only functions of their received
transcript and are independent of their private input (i.e., players “forget” their inputs).

To best see the connection to GapMajnn, consider such a two-phase protocol Π in the
following weak noise model. In this model, the adversary is θ-limited, and, in addition, it is
only allowed to corrupt the messages received in the first phase, while the messages broadcast
in the second phase are always received correctly. Furthermore, the only type of corruptions
allowed in the first phase are as follows: for every two parties i and j, party i receives only
0s from party j or receives only 1s for party j. Since party j only broadcasts their input bit,
this means that either party i receives all their transmissions correctly (j’s input is b ∈ {0, 1}
and i received only b bits), or party i received all the transmissions flipped (party j’s input is
b and i received only b̄ bits). Clearly, lower bounds in this weaker noise model imply similar
lower bounds for our noise model.

CCC 2024

19:8 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

Next, observe that in the first phase of Π, for every party i, at least (1− 2θ)-fraction of
the parties received (many repetitions of) the correct input of i. This is because the adversary
can only corrupt θ-fraction of the total outgoing messages of party i, since party i broadcasts
in 1

n faction of the rounds, and since the first phase is half of the total communication.
Similarly, since the adversary can only corrupt a θ-fraction of the total incoming messages of
a party, every party i receives the correct input of at least (1− 2θ)-fraction of the parties.

Next, we claim that in the second, noiseless, phase, the parties are left with solving an
instance of GapMajnn in the absence of noise. In this instance, the input of party i for the
j-th copy of GapMajn is the input that player i received from player j in the first phase. The
promise in the definition of GapMajnn is indeed satisfied: for every j, at least (1− 2θ)-fraction
of the parties i have the majority bit as their input for copy j, and for every i, for at least
(1− 2θ)-fraction of the j’s, party i’s input for copy j is the true majority bit of the j-th copy.

Removing the assumption of same number of broadcasts

So far we have considered “simple” protocols. We next show how to handle general protocols.
First, we wish to remove the assumption that each party broadcasts in the same number
of rounds. Note that this assumption is needed for the above argument. For example, if
party i broadcasts in all the rounds of the second phase, then since the adversary is allowed
to corrupt a θ-fraction of the total received communication for rounds where this party
broadcasts, the adversary can corrupt all the messages received from this party in the first
phase.

To rectify this situation, we “reveal” the input of all parties that broadcast in at least
3
n -fraction of the rounds (this is 3 times the average communication). Note that since we
are working in the non-adaptive model, the number of times that each party broadcasts is
determined ahead of time. By Markov’s inequality, at least 2n

3 parties speak in less than
3
n -fraction of the rounds and are not fixed by being revealed. Therefore, we end up with a
dissemination protocol that only needs to disseminate the input bits of m ≥ 2n

3 parties to all
n parties. Note that since our reduction converts the dissemination of the input of one of
the parties to one copy of GapMajn, applying the reduction to disseminate the value of m

parties results in an instance of GapMajmn (instead of GapMajnn).

Removing the rest of the assumptions

The other assumptions we made when considering simple protocols, were that the protocol
had two phases of equal lengths. In the first phase, parties only broadcast their inputs, and
then, in the second phase, they “forget” their inputs, meaning that the messages broadcast
by a party are independent of their input.

To handle general protocols Π, we use the following clever observation used by [32] to
analyze protocols under stochastic noise: a message sent by player i in round t of Π given
that their received transcript for the t− 1 first rounds of Π is π, can be deduced from the
following three pieces of information:
1. the input bit of party i,
2. the message that party i would have sent had their input been a 0 (and their received

transcript was π), and
3. the message that party i would have sent had their input been a 1 (and their received

transcript was π).

This gives a way of converting any protocol Π to a two-phase protocol Π′ of our desired
structure: for rounds t = 1, 2, . . . , if player i broadcasts in round t of Π, add two rounds to
the first phase of Π′ where player i broadcasts their input. Additionally, add two rounds to

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:9

the second phase of Π′ where in the first, party i sends the message they would have sent
had their input been a 0, and in the second they send the message they would have sent had
their input been a 1.

2.2 Communication Lower Bound for GapMajmn
Our next goal is to prove a deterministic communication complexity lower bound for GapMajmn ,
as is promised by Theorem 2. One straightforward approach would be to prove a lower
bound for one copy of GapMajn and then use one of the known direct sum theorems6. While
it is not hard to prove a deterministic, or even a non-deterministic, communication lower
bound for GapMajn, and while a perfect direct sum theorem is known for non-deterministic
communication complexity [22, 40], this still does not give us the required bound. The
reason is that, as explained after Theorem 2, such direct sum theorems only rule out “strong”
communication protocols that solve all the copies that satisfy the promise, whereas we also
need to rule out protocols that only output correctly when the promise is satisfied for all
copies.

We also mention that the randomized communication complexity of GapMajmn is low, at
least when constant error probability is allowed. Consider the following protocol: each party
broadcasts t · m

n random bits from their input, for some t ≤ n. So, the expected number
of bits communicated per copy is t, implying a total communication of tm and, using the
Chernoff bound, the success probability of the protocol is at least 1− 2− t

10 . By taking t = n
10 ,

we get a protocol with mn
10 communication and success probability 1− 2− n

100 .
We prove a randomized lower bound, showing that the latter tradeoff is optimal up to

constant factors in the exponent. Specifically, we show that the success probability cannot
be as high as 1− 2−100n. Note that this is stronger than the deterministic lower bound we
need for the proof of Theorem 1 to go through.

Our hard distribution(s)

To show our randomized lower bound, we prove a distributional lower bound and use Yao’s
minimax theorem. Consider the following distribution D on inputs for GapMajmn : for every
i and j, party i gets the bit 0 for copy j with probability 1 − θ′, independently, where
θ′ = θ200.7 It may seem at first that our distribution is “easy”, as the right answer is the
all-zeros vector, except with exponentially small probability. However, while exponentially
small, the error probability of this protocol is still too large (the error probability is the
probability that the promise is satisfied, but the correct answer is not the all-zeros vector).

To show that, observe what happens when we fix the first copy (say) to be 1 for all the
players, which is an event whose probability is exponentially small. As the copies are mutually
independent, the distribution of the other copies is not affected by this conditioning. Thus,
for each one of the remaining copies, they satisfy the promise except with an exponentially
small probability. Using a union bound, we get that conditioned on this event, all the
copies satisfy the promise except with an exponentially small probability. This means that
conditioned on the event that the first copies is fixed to be all-ones, it is likely that the the
input is counted in the error probability, implying that the error probability of this protocol

6 Since most direct sum theorems are for the two-party setting, one would first need to adapt the theorem
to the multi-party setting.

7 With an exponentially small probability, an instance sampled from this distribution does not satisfy the
promise in the definition of GapMajmn . If this is the case, we’ll accept any output by the protocol.

CCC 2024

19:10 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

is at least exponentially small (greater than our allowed error probability of 2−100n). Also,
observe that, as we union bounded over all the copies, the exact same argument can be made
even if the copies are only pairwise independent instead of mutually independent.

In fact, the same arguments can be used to show that GapMajmn cannot be solved by
a 0-communication protocol over a large set of other distributions. This set contains the
following distributions:

1. Distributions where the probability that party i gets the bit 1 for copy j is between θ′

2
and 2θ′, and, as in D, all input bits are independent.

2. Distributions where for every i, the input bits of party i are pairwise-independent (while
the inputs of different parties continue to be independent).
GapMajmn cannot be solved over such distributions with 0-communication protocols,
because, as in the case of the distribution D, the all-zeros vector is the correct solution
except with exponentially small probability (the argument for this fact does not use
independence, and therefore still holds). Meanwhile, our above argument for showing
that the correct solution is not the all-zeros vector with probability greater than the
allowed error probability only relied on pairwise independence, so it still holds.

3. Distributions where the bits for the same player may not be pairwise-independent, but
the distribution of each pair of input bits of the same party are close in total variation
distance to a distribution that is independent.

Lower bound over D

The arguments above only showed that protocols with 0-communication will not solve
GapMajmn when the inputs are sampled from any distribution in the large set of distributions
above. However, the lower bound we desire is for protocols with o(n2) communication. For
this, our approach at a high level is to show that if the inputs of the parties are sampled
from the distribution D, then after o(n2) rounds of communication, the distribution of the
inputs of the parties conditioned on the observed transcript (with high probability over
the transcript), stays inside the set of distributions above. As distributions in the set are
hard for 0-communication protocols, it follows that the original distribution is hard for o(n2)
communication protocols.

Let D′ be the distribution D conditioned on the observed transcript (for a typical
transcript that we omit from the notation for the purposes of this sketch). Our goal is to
show that D′ is in the set of distributions defined by Items 1–3. This requires showing that,
for any player, the marginal distribution for any pair of copies (and also for any single copy)
is close to the corresponding marginal in D in total variation distance. As it turns out to be
easier to handle, we actually measure the distance between these marginals in terms of the
KL-divergence (a.k.a, relative entropy) and move to total variation distance using Pinsker’s
inequality later in the proof.

Our goal therefore, is to show that for every party and every bit or pair of bits held by
this party, the marginal distribution for this bit or pair of bits in D and in D′ are close in
terms of KL-divergence. Unfortunately, it is easily seen that this goal is impossible: consider
the protocol where player 1 sends the bit in the first copy (and nothing happens after that).
This simple protocol already violates Item 1 as now the marginal of the first party’s bit of
the first copy in D′ is a point mass. Getting around this impossibility is the next main part
of the proof and we do it in two steps.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:11

Revealing information and the use of pairwise independence

First, we show that the chain rule of KL-divergence and the fact that the protocol has
o(n2) communication implies that the number of bits for which Item 1 fails is o(n2). For
instance, the protocol mentioned above satisfies this, as sending any bit requires a bit of
communication. With this bound, whenever a bit violates Item 1 (or a pair of bits violates
Item 3), we “fix” the concerned bit(s) (i.e., reveal it to the players for free). The knowledge
of these bits changes the marginal distribution of the remaining bits, and in particular,
may cause more of them to violate Item 1, causing us to fix even more bits. Nonetheless,
as explained below, we are able to show using the chain rule for KL-divergence that this
iterative procedure of fixing bits will terminate after o(n2) bits are fixed.

Indeed, as the protocol has o(n2) communication, we get that the KL-divergence between D
and D′ before any of the bits are fixed is o(n2). Because we only fix bits or pairs of bits
whose marginal distributions have KL-divergence Ω(1), every time a bit or pair of bits is
fixed, the chain rule for KL-divergence implies that the KL-divergence of the distributions
D and D′, when restricted to the unfixed bits, goes down by at least Ω(1). As the initial
KL-divergence is o(n2), this implies that the total number of fixed bits is o(n2).

The second step is to ensure that even after o(n2) bits are fixed, we still have the property
that 0-communication protocols cannot compute GapMajmn . To this end, let us carefully
examine the argument above. The crux of the argument above was that the same transcript
(which is the empty transcript for 0-communication protocols) is generated by two sets of
inputs for which the output of gap majority is different. As the output is determined by the
transcript, this means that the output of the protocol must be incorrect for at least one of
the two sets, giving us the lower bound. Specifically, we observed that a typical input from
the distribution D satisfied the promise of GapMajmn and resulted in the output being the
all-zeros vector. Moreover, once we fix one of the copies to be one for all the parties, the
remaining copies can still be fixed to satisfy the promise and have the majority value in the
copies be zero.

We claim that, except with small probability, we can make this exact argument even
after o(n2) of the bits have been fixed. This is because if the total number of bits fixed is
o(n2), then most of the copies have only o(n) fixed bits. Thus, regardless of the values these
bits are fixed to, their number is small enough to not affect the output of GapMajn, which is
determined by the other bits (with high probability). It remains to consider the copies that
have Θ(n) fixed bits.

For these copies, it is possible that the values of the fixed bits prohibit the promise of gap
majority from being satisfied, e.g., when n

2 of the bits are fixed to 0 and n
2 of the bits are

fixed to 1. However, as our distribution D is heavily biased towards 0 and likely to remain
this way for a typical transcript, this is an unlikely event and can be ignored. What cannot
be ignored on the other hand is the case where almost all, say 0.999-fraction, of the fixed bits
are fixed to 0, and the remaining 0.001-fraction are fixed to 1. Because the number of fixed
bits is large, when this happens, we can no longer fix the remaining bits in the copy to satisfy
the promise and have the majority value be 1, affecting the second of the two properties we
desire.

To tackle this, we recall the fact that the number of copies for which this can happen is
small, as most of the copies will have o(n) fixed bits. In our proof, we track these copies with
a large number of fixed entries and fix all their remaining bits. This makes sure that any
copy with even one unfixed bit, can be fixed to satisfy the promise and have the majority
value be 1, while also making sure that the total number of fixed bits stays o(n2), as we only
increase the number of fixed bits by a constant factor. Note that, as before, fixing any of the
bits changes the marginal distribution of the remaining bits, and this fixing must therefore
be done iteratively until there are no more bits that need to be fixed.

CCC 2024

19:12 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

3 Model and Preliminaries

3.1 Concentration Inequalities
▶ Lemma 3 (Multiplicative Chernoff bound). Suppose X1, · · · , Xn are independent random
variables taking values in [0, 1]. Let X denote their sum and let µ = E[X] denote the sum’s
expected value. Then,

Pr (X ≥ (1 + δ)µ) ≤ e− δ2µ
2+δ , ∀0 ≤ δ,

Pr (X ≤ (1− δ)µ) ≤ e− δ2µ
2 , ∀0 ≤ δ ≤ 1.

In particular, we have that:

Pr (X ≥ (1 + δ)µ) ≤ e− δµ
3 ·min(δ,1), ∀0 ≤ δ,

Pr (|X − µ| ≥ δµ) ≤ 2 · e− δ2µ
3 , ∀0 ≤ δ ≤ 1.

3.2 Error Correcting Codes
We use the following standard result about the existence of error correcting codes.

▶ Lemma 4. Let δ > 0 and define K0 = ⌈10/δ2⌉. For all n > 0, there exists a function
ECCn,δ : {0, 1}n → {0, 1}K0n such that for all s ̸= t ∈ {0, 1}n, we have

∆(ECCn,δ(s), ECCn,δ(t)) >

(
1
2 − δ

)
·K0n.

3.3 The Adversarial Broadcast Channel
Protocols

Our communication model is the multi-party adversarial broadcast channel. Throughout
this paper, we use n to denote the number of parties. An n-party protocol in this model is
defined by a tuple:

Π =
({
X (i)

}
i∈[n]

,Y, T, σ, {Mj}j∈[T], out
)

,

where
1. for all i ∈ [n], X (i) is set of inputs of party i. We also define X = X (1) × · · · × X (n).
2. Y is set of outputs of a protocol.
3. T = ∥Π∥ ∈ N is the length (number of rounds) in the protocol.
4. σ ∈ [n]T is a vector indicating for all rounds j ∈ [T], which is the (unique) party scheduled

to speak in round j.
5. for all j ∈ [T], Mj : X σj × {0, 1}j−1 ×

(
{0, 1}∗)j → {0, 1} is the message function used

by party σj that uses his input, the bits he received in the first j − 1 rounds, and the
randomness sampled in the first j rounds to output the bit he will broadcast in round j.

6. out : {0, 1}T → Y is the function that the parties use to compute the output of the
protocol based on the bits they receive.

We will omit X (i) and Y when they are clear from context.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:13

Adversaries

Let Π be a protocol as above. An adversary for Π is defined by a tuple Adv = (Advi,j)i∈[n],j∈[T],
where Advi,j : X ×

(
{0, 1}∗)j → {0, 1}. Here, for all i ∈ [n] and j ∈ [T], the function Advi,j

takes as input the inputs of all the parties and the randomness sampled in the first j rounds
and outputs 1 if he wants to flip (corrupt) the bit party i receives in round j, and outputs 0
otherwise. Our formulation thus, captures adversaries that have knowledge of all the parties’
inputs and the randomness they sampled so far, but are unaware of the randomness they
will sample in the future.

Protocol execution

We next describe the execution of a protocol Π in the presence of adversary Adv: Each party
i ∈ [n] starts with an input x(i) ∈ X (i). Let x =

(
x(1), . . . , x(n)). The execution takes place

in T rounds, maintaining the invariant that for all parties i ∈ [n] and all rounds j ∈ [T],
party i has a transcript π

(i)
<j before the execution of round j. In each round j ∈ [T], the

parties first sample a shared random string rj ∈ {0, 1}∗. The player σj then computes
πj = Mj

(
x(σj), π

(σj)
<j , r≤j

)
and broadcasts it over the channel. All parties i ∈ [n] then receive

a (potentially corrupted) bit π
(i)
j = πj ⊕ Advi,j(x, r≤j) and append it to π

(i)
<j to get π

(i)
≤j . At

the end of the protocol, all parties i ∈ [n] output out
(

π
(i)
≤T

)
. We say that an execution is

noiseless if Advi,j always outputs 0, and we call this adversary the noiseless adversary.

Additional discussion of the model

We finish this section with a few remarks about the above definition: Note that when Π is
executed in the presence of Adv, the output of any party i ∈ [n] is determined by the parties’
inputs x =

(
x(1), . . . , x(n)) and the sampled randomness r≤T . Owing to this, we denote it

using the notation ΠAdv,i(x, r≤T). We will omit writing Adv, i when the adversary is noiseless
as in this case, all players compute the same transcripts, and therefore, also the same output.
We also omit r≤T from our notation when talking about deterministic protocols. Also, as
mentioned above, we define our adversaries to have complete knowledge of the inputs of
the parties and the randomness they sampled so far but they are not aware of any future
randomness the parties might have. Due to their knowledge of the randomness sampled so
far (and the inputs), the adversaries can also compute all the bits sent and received over the
channel so far, and we do not explicitly include this in our notation. Moreover, as our upper
bound is deterministic, we will only need this assumption in our lower bound, and it only
makes our result stronger.

Next, note that, as defined, the output function out is the same for all parties and depends
only on the transcript of the protocol and not on the inputs of the parties. This is without
loss of generality, as we can always extend the protocol so that one of the parties computes
and sends the output over the channel (using an error correcting code) and all the parties then
decode it from the transcript. Finally, note that our definition allows us to easily measure the
number of bits corrupted by the adversary. As we are interested only in adversaries that do
not corrupt too many bits sent or received by any given party, we define, for all i ∈ [n], the
set σ−1(i) = {j ∈ [T] : σ(j) = i} to contain rounds where party i broadcast and also define:

CCC 2024

19:14 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

▶ Definition 5. Let Π be a protocol and Adv be an adversary for Π. Let θ > 0. We say that
Adv is θ-limited, if for all x =

(
x(1), . . . , x(n)), all r≤T , and all i ∈ [n], we have:∑

j∈[T]

Advi,j(x, r≤j) ≤ θT,

∑
j∈σ−1(i)

∑
i′∈[n]

Advi′,j(x, r≤j) ≤ θn ·
∣∣σ−1(i)

∣∣.
Computation over the model

Let Π be a protocol as above and f : X → Y be a (possibly partial) function. Let θ, p > 0.
We say that the protocol Π computes f with probability p resilient to θ-adversarial noise if
for all inputs x =

(
x(1), . . . , x(n)) in the domain of f and all θ-limited adversaries, we have:

Pr(∀i ∈ [n] : ΠAdv,i(x, r≤T) = f(x)) ≥ p. (1)

We omit writing “resilient to” when θ = 0. As there is only one adversary that is 0-limited,
we will also omit Adv from the subscript in this case.

The ID and GapMaj problems

We consider the n-party Information Dissemination function, denoted IDn, that simply out-
puts its n-sized tuple of arguments. That is, IDn : {0, 1}n → {0, 1}n, where IDn(x1, . . . , xn) =
(x1, . . . , xn).

We also define the partial function GapMajδ,m
ϵ,n that is parametrized by numbers ϵ, δ > 0

and an integer m and is such that X (i) = Y = {0, 1}m for all i ∈ [n]. GapMajδ,m
ϵ,n is defined

only if there exists a x̂ ∈ {0, 1}m such that
1. for all i ∈ [n], the Hamming distance between x̂ and xi (the input vector for party i) is

at most δm,
2. for all j ∈ [m], we have x̂j ̸= x

(i)
j for at most ϵn values of i ∈ [n],

and outputs the (unique, for small ϵ) vector x̂. For notational convenience, we will interpret
GapMajδ,m

ϵ,n as outputting a set of possible values, where the set is the singleton set {x̂} if the
conditions above are satisfied, and is {0, 1}m otherwise.

3.4 Our Result
We are now ready to state the formal version of Theorem 1.

▶ Theorem 6. For all θ > 0, there exists κ > 0 such that for all integers n large enough,
any protocol Π that computes IDn with probability 1 resilient to θ-adversarial noise has length
∥Π∥ > κn2.

We will actually prove the following slightly stronger Theorem 7 that implies Theorem 6:

▶ Theorem 7. For all θ > 0, there exists κ > 0 such that for all integers n large enough,
any protocol Π that computes IDn with probability 1− κn resilient to θ-adversarial noise has
length ∥Π∥ > κn2.

The proof of Theorem 7 has two main parts. The first part is a reduction showing that
lower bounds for protocol computing Information Dissemination can be obtained from lower
bounds from protocols computing Gap Majority. This is described in Section 5. The next
part is a lower bound for protocols computing Gap Majority, which is written in Section 6.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:15

4 Our Information Dissemination Protocol

In order to demonstrate that our result in Theorem 6 is tight, we provide a simple algorithm
with length O(n2), which is resilient to θ-adversarial noise, for all θ < 1/40.

High level description

To summarize, the idea is to proceed in two phases. In the first phase, every player says their
input bit O(n) times. Each other player then takes the majority value of what they heard.
Thus, each player now has a guess for each player’s input. Then, in the second phase, every
player encodes the string of guesses they have using an error-correcting code, and broadcasts
the result. Each player then takes all the error-correcitng codes they’ve received, decodes
them, and sets their guess for each player’s input to be the majority value among the guesses
they’ve decoded.

The reason this works is that in order to corrupt a player’s output, the adversary needs
to either corrupt a lot of the error-correcting codes received by that player, or they need
to corrupt a lot of players’ guesses about some specific party’s input. In either case, the
adversary ends up corrupting too many rounds of communication, thus showing that a
θ-limited adversary cannot possibly corrupt even a single player’s output, exactly as desired.

The formal protocol

Our protocol is given in Algorithm 1. It uses an error correcting code ECCn,δ as promised by
Lemma 4, where δ = 1/10. We use K0 as given in that lemma.

Algorithm 1 The algorithm computing IDn.

Input: Each party k ∈ [n] has an input xk ∈ {0, 1}.
Output: Each party i ∈ [n] outputs a x̂i,1, . . . , x̂i,n, such that x̂i,k = xk for all k ∈ [n].

1: for k ∈ [n] do
2: Party k broadcasts xk K0n times.
3: Each party j ∈ [n] sets yj,k equal to the majority value they received in the previous

K0n broadcasts.
4: end for
5: for j ∈ [n] do
6: Party j computes and broadcasts ECCn,δ(yj,1, . . . , yj,n). This takes K0n broadcasts.
7: Each party i ∈ [n] sets ŷi,j,1, . . . , ŷi,j,n to the minimize the distance of

ECCn,δ(ŷi,j,1, . . . , ŷi,j,n) to the messages they received in the previous K0n broadcasts.
8: end for
9: Each party i ∈ [n] sets x̂i,k to be the majority value between ŷi,1,k, . . . , ŷi,n,k for all

k ∈ [n].
10: Each party i ∈ [n] outputs x̂i,1, . . . , x̂i,n.

▶ Theorem 8. For all θ < 1/40, the protocol in Algorithm 1 solves IDn resilient to θ-
adversarial noise.

CCC 2024

19:16 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

Proof. We begin by noting that this protocol is deterministic. As such, the behavior of the
protocol is completely determined by the inputs to the players and the adversary Adv, and
that, for simplicity, adversaries can be assumed to just be a function of the inputs x1, . . . , xn.

Fix some adversary Adv. We wish to demonstrate that if there exists some input x1, . . . , xn

such that executing the protocol in Algorithm 1 against Adv on inputs x1, . . . , xn results in
a player outputting an incorrect output, then the adversary Adv is not θ-limited.

To see this, suppose that a player outputs some incorrect value. In particular, suppose
that x̂i,k ̸= xk for some i ∈ [n] and k ∈ [n]. That means that the majority value among
ŷi,1,k, . . . , ŷi,n,k was not xk.

That implies that there must exist some set S ⊆ [n] such that |S| ≥ n/4, and that one of
the two following conditions must hold true:

1. For all j ∈ S, ŷi,j,k ̸= yj,k, or

2. for all j ∈ S, yj,k ̸= xk.

We claim that in order for either of these cases to occur, the adversary Adv must not be
θ-limited. First suppose that for all j ∈ S, ŷi,j,k ≠ yj,k. That implies that for each j ∈ S,
during iteration j of the loop at Line 5, at least 0.2K0n of the bits sent by player j are received
incorrectly by player i, by the properties promised about ECCn,δ in Lemma 4. That implies
that over all the iterations of the loop at Line 5, player i hears at least 0.2

4 K0n2 = 1
20 K0n2

messages incorrectly. That means that at least 1/40 of all 2K0n2 messages sent during the
protocol are misheard by player i. This, thus, shows that Adv is not θ-limited.

On the other hand, suppose that for all j ∈ S, yj,k ̸= xk. That implies that for all j ∈ S,
during iteration k of the loop at Line 1, at least 0.5K0n of the bits sent by player k are
received incorrectly by player j. That implies that there are at least 0.5

4 K0n2 = 1/8K0n2

corruptions in messages from player k to other players, of a total of 2K0n2 messages received
in rounds during which this player broadcasts. This, thus, shows that Adv is not θ-limited. ◀

5 Reducing Gap Majority to Information Dissemination

This section has the first part of our proof, which is a reduction from Gap Majority to
Information Dissemination. Specifically, our reduction shows that noise resilient protocols for
Information Dissemination imply noiseless protocols for Gap Majority, as formalized next:

▶ Theorem 9. Let parameters 0 < θ < 1
3 , 0 < p < 1 and n ∈ N be given. If there exists

a protocol Π computing IDn with probability p resilient to θ-adversarial noise, there exists
another protocol Π′ computing GapMajθ,θn

θ,n with probability p such that ∥Π′∥ ≤ 2 · ∥Π∥+ n.

Proof. Fix θ, p, n, and Π as in the theorem statement. Let Π =
(

T, σ, {Mj}j∈[T], out
)

.
Define the set I ′ =

{
i ∈ [n] |

∣∣σ−1(i)
∣∣ ≤ T

θn

}
to be the set of parties that do not broadcast

too often. By Markov’s inequality, note that |I ′| ≥ (1− θ)n > θn. We let m = θn, I be the
first m elements of I ′ and assume without loss of generality that I = [m]. We are now ready
to define the protocol Π′. We note that throughout the description of Π′ and its analysis,
we will treat vectors in {0, 1}m also as vectors in {0, 1}n by padding with an appropriate
number of zeros.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:17

Algorithm 2 The algorithm Π′ computing GapMajθ,m
θ,n .

Input: Party i ∈ [n] has an input x′(i) ∈ {0, 1}m.
1: Each party i ∈ [n] sets π′(i) ← ε, the empty string.
2: for j ∈ [T] do
3: The parties together sample a random string rj ∈ {0, 1}∗.
4: Party σj sets τj,b ←Mj

(
b, π′(σj), r≤j

)
for all b ∈ {0, 1}. ▷

∣∣π′(σj)
∣∣ = j − 1.

5: Party σj broadcasts τj,b for all b ∈ {0, 1} to all other players.
6: Each party i ∈ [n] extends π′(i) by appending τ

j,x
′(i)
σj

.
7: end for
8: Each party i ∈ [n] outputs the first m bits of out

(
π′(i)).

Observe that, as written, the output function of the protocol Π′ depends on the inputs of
the parties. However, as mentioned in Section 3, this can be easily corrected by adding an
extra n rounds where one of the parties broadcasts its output over the channel. Together with
these n rounds, the 2T rounds in Line 5 imply that ∥Π′∥ ≤ 2 · ∥Π∥+ n. It remains to show
that Π′ computes GapMajθ,θn

θ,n with probability p. For this, we have to show Equation (1).
We do this next.

Fix x′ =
(
x′(1), . . . , x′(n)) in the domain of GapMajθ,m

θ,n as in Equation (1) and define
x̂ = GapMajθ,m

θ,n (x′). As IDn(x̂) = x̂ by definition, Equation (1) follows if we show a θ-limited
adversary Adv for Π such that for all r≤T and all i ∈ [n], we have that:

ΠAdv,i(x̂, r≤T) = Π′
i(x′, r≤T),

where, as usual, we pad the output of Π′ with zeros to be of length n. Indeed, the above
implies ΠAdv,i(x̂, r≤T) = x̂ ⇐⇒ Π′

i(x′, r≤T) = x̂, and Equation (1) follows from the fact
that Π computes IDn with probability p resilient to θ-adversarial noise.

To start, we first note that it suffices to define a different Adv for every randomness r≤T

as the property we want is determined solely by the value of Adv on the randomness r≤T .
Fix an arbitrary r≤T and note that, as we already fixed x′, fixing r≤T fixes the value of
all variables in the execution of Algorithm 2. Henceforth, we abuse notation and use the
name of the variable to also denote its fixed value at the end of the protocol. We define the
adversary Adv as:

Advi,j(x̂, r≤j) = π
′(i)
j ⊕ τj,x̂σj

,

and we set it to 0 everywhere else. We now show why this adversary satisfies ΠAdv,i(x̂, r≤T) =
Π′

i(x′, r≤T) for all i ∈ [n]. Due to Line 8, this follows if we show that for all i, the transcript
π′(i) equals the transcript π(i) received by party i when Π is executed in the presence of
Adv. As both π′(i) and π(i) have length T , this follows if we show by induction that, for
all 0 ≤ j ≤ T , we have π

′(i)
≤j = π

(i)
≤j . The base case j = 0 is straightforward. To prove the

statement for j > 0, we assume it holds for j − 1 and prove that π
′(i)
j = π

(i)
j . We have:

π
(i)
j = Mj

(
x̂σj

, π
(σj)
<j , r≤j

)
⊕ Advi,j(x̂, r≤j)

= Mj

(
x̂σj

, π
(σj)
<j , r≤j

)
⊕ π

′(i)
j ⊕ τj,x̂σj

(Definition of Adv)

= Mj

(
x̂σj

, π
′(σj)
<j , r≤j

)
⊕ π

′(i)
j ⊕ τj,x̂σj

(Induction hypothesis)

= π
′(i)
j . (Line 4)

CCC 2024

19:18 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

It remains to show that Adv is θ-limited. For this we show the two inequalities in Definition 5.
As Adv is 0 everywhere else, it suffices to show it for the arguments (x̂, r≤T). For the first
inequality, we have for all i ∈ [n] that:∑

j∈[T]

Advi,j(x̂, r≤j) ≤
∑

j∈[T]

1
(

x′(i)
σj
̸= x̂σj

)
(Definition of Adv and Line 6)

=
n∑

i′=1
1
(

x
′(i)
i′ ̸= x̂i′

)
·
∣∣σ−1(i′)

∣∣
=

m∑
i′=1

1
(

x
′(i)
i′ ̸= x̂i′

)
·
∣∣σ−1(i′)

∣∣ (The other coordinates are paddings)

≤
m∑

i′=1
1
(

x
′(i)
i′ ̸= x̂i′

)
· T

θn
(Definition of I)

≤ θT. (Definition of m and GapMajθ,m
θ,n)

For the second inequality, we have for all i ∈ [n] that:∑
j∈σ−1(i)

∑
i′∈[n]

Advi′,j(x̂, r≤j) ≤
∑

j∈σ−1(i)

∑
i′∈[n]

1
(

x′(i′)
σj
̸= x̂σj

)
(Definition of Adv and Line 6)

≤
∑

j∈σ−1(i)

θn (Definition of GapMajθ,m
θ,n)

≤ θn ·
∣∣σ−1(i)

∣∣. ◀

6 Lower Bound for Direct Sum Gap-Majority

The goal of this section is to show Theorem 7. As we already proved Theorem 9, it suffices
to show the following result.

▶ Theorem 10. For all 0 < θ < 1
3 , there exists κ > 0 such that for all n > 0 large enough

and m = θn, any (possibly randomized) protocol Π computing GapMajθ,θn
θ,n with probability

1− κn satisfies ∥Π∥ ≥ κn2.

Indeed, Theorem 7 follows easily from Theorems 9 and 10. Moreover, as GapMajθ,θn
θ,n

is an easier problem than GapMaj1,θn
θ,n , Theorem 10 implies the following result about the

direct-sum of gap-majority, that may be of independent interest.

▶ Theorem 11. For all 0 < θ < 1
3 , there exists κ > 0 such that for all n > 0 large enough

and m = θn, any (possibly randomized) protocol Π computing GapMaj1,θn
θ,n with probability

1− κn satisfies ∥Π∥ ≥ κn2.

Henceforth, we focus on proving Theorem 10, whose proof spans this entire section. Fix θ

as in the theorem statement and define κ = θ1000. Let n > 0 be sufficiently large and define
a distribution D over inputs for GapMajθ,m

θ,n as follows: For all players i ∈ [n] and all j ∈ [m],
the bit xi,j is sampled independently of all other bits and is 1 with probability θ25 and 0
with probability 1− θ25. We will show that, any deterministic protocol Π with ∥Π∥ < κn2

satisfies:

Pr
X∼D

(
Π(X) ∈ GapMajθ,m

θ,n (X)
)
≤ 1− κn.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:19

Theorem 10 then follows from Yao’s minimax principle. For brevity sake, we henceforth keep
the distribution D implicit. To show this bound, we shall focus on a testing version of Gap
Majority, where the parties are only required to determine whether or not the output is the
all zeros vector 0m. Specifically, let flag : {0, 1}m → {0, 1} be the indicator function that
outputs 0 if and only if the Hamming weight of its input is at most θm

2 and 1 otherwise.
Next, define the set-valued function GapMaj′mθ,n as follows:

GM-Testm
θ,n(x) =

{0, 1}m

, if ∃i ∈ [n] : flag(xi) = 1
{0m}, else if GapMajθ,m

θ,n (x) = {0m}
{0, 1}m \ {0m}, else if

∣∣∣GapMajθ,m
θ,n (x)

∣∣∣ = 1

{0, 1}m
, otherwise

. (2)

This definition implies that GapMajθ,m
θ,n (x) ⊆ GM-Testm

θ,n(x) for all x and thus, it suffices to
show that any deterministic protocol Π with ∥Π∥ < κn2.

Pr
(
Π(X) ∈ GM-Testm

θ,n(X)
)
≤ 1− κn. (3)

Fix a protocol Π as above and let T = κn2 so that ∥Π∥ < T and T ′ = T/θ500. We first
augment Π to get another protocol Πaug that reveals some extra information about the
parties’ inputs. The protocol Πaug is defined below in Algorithm 3 where we use the symbol
⊥ to denote a special symbol saying “I skip”. Also, for a distribution D on the parties’ inputs
and a subset S ⊆ [n]× [m], we use D|S to denote the marginal distribution of D over the
coordinates in S. If we are writing a set, say S = {(i1, j1), (i2, j2)}, explicitly, we may omit
the {} and simply write D|(i1,j1),(i2,j2).

Algorithm 3 The protocol Πaug. All lines except Lines 8 and 11 executed by all the players. Any
message sent is automatically appended to πaug.

Input: Player i’s input is a vector xi ∈ {0, 1}m.
1: Run Π to get a transcript π ∈ {0, 1}T . Set πaug ← π.
2: All players i ∈ [n] speak. Player i sends flag(xi).
3: For all i ∈ [n], j ∈ [m], we set Ri,j ← 0.
4: for t ∈ [T ′] do
5: Compute the sets:

Scell =
{

(i, j) | Ri,j = 0 ∧ D
(
(D | πaug)|(i,j) || D|(i,j)

)
≥ θ200},

Spair =
{

(i, j, j′) | j ̸= j′ ∧ Ri,j = Ri,j′ = 0 ∧ D
(
(D | πaug)|(i,j),(i,j′) || D|(i,j),(i,j′)

)
≥ θ100},

Scol =
{

(i, j) | Ri,j = 0 ∧
∣∣{i′ ∈ [n] | Ri′,j = 1

}∣∣ ≥ θ100 · n
}

.

6: if Scell ∪ Scol ̸= ∅ then
7: Let (i1, j1) be the smallest element in Scell ∪ Scol. Set Ri1,j1 ← 1.
8: All players i ∈ [n] speak. If i ̸= i1, they send (⊥,⊥). Else, they send (xi1,j1 ,⊥).
9: else if Spair ̸= ∅ then

10: Let (i2, j2, j′
2) be the smallest element in Spair. Set Ri2,j2 , Ri2,j′

2
← 1.

11: All players i ∈ [n] speak. If i ̸= i2, they send (⊥,⊥). Else, they send
(
xi2,j2 , xi2,j′

2

)
.

12: else
13: All players send (⊥,⊥).
14: end if
15: end for

CCC 2024

19:20 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

Intuitively, the protocol Πaug “cleans” the protocol Π by revealing the functions flag(·) and
then, iteratively revealing all coordinates, pairs of coordinates, etc. for which the marginal
distribution changed significantly. We describe this formally in the following section, but
before that, a word on the notations we use.

Throughout this proof, we will use sans-serif letters, e.g., X to denote random variables
and the corresponding lower case letters, e.g., x to denote their values. When it is clear
from context, we may abbreviate the event X = x as just x. Note that the protocol Πaug is
deterministic and the only randomness we have is the randomness of the distribution D of
inputs. All our random variables and probabilities are defined over this randomness.

For a variable var in Algorithm 3 and t ∈ [T ′], we use vart to denote the random variable
(over the randomness of the inputs in D) whose value equals the value of the variable at
the end of iteration t of the loop in Line 4. When t = 0, we mean the corresponding value
at the beginning of the loop, i.e., after Line 3. We may omit writing the subscript when
t = T ′. We also define the additional set-valued variable R = {(i, j) | Ri,j = 1} and use the
same notation. Note that the set R can only grow.

6.1 Properties of Πaug

In this subsection, we establish some useful properties of Πaug.

▶ Lemma 12. For all 0 ≤ t ≤ T ′, the value of πt−1
aug determines8 the values of R0, R1, . . . , Rt.

Proof. Proof by induction on t. The base case t = 0 is because R0 = ∅ by definition. We
prove the lemma for t > 0 assuming it holds for t− 1. Consider iteration t for the loop in
Line 4 and let πt−1

aug be an arbitrary value of the variable πaug at the beginning of the iteration.
As πt−1

aug determines πt−2
aug , we have by the induction hypothesis that it also determines the

values of R0, R1, . . . , Rt−1. In particular, it determines Rt−1, the value of R at the beginning
of this execution. Therefore, it also determines the value of the sets computed in Line 5. Now,
using Lines 6, 8, 9, and 11, we get that it also determines the value of Rt, as desired. ◀

Observe from Algorithm 3 that that the variables St
cell, St

pair, St
col, (it

1, jt
1), (it

2, jt
2, j′t

2) are
all determined by πt−1

aug and Rt−1. Thus, we get:

▶ Corollary 13. For all 0 ≤ t ≤ T ′, the value of πt−1
aug determines the values of St

cell, St
pair,

St
col, (it

1, jt
1), (it

2, jt
2, j′t

2).

▶ Lemma 14. For all 0 ≤ t ≤ T ′, the value of πt
aug determines the values of xi,j for all

(i, j) ∈ Rt.

Proof. Proof by induction on t. The base case t = 0 is because R0 = ∅ by definition. We
prove the lemma for t > 0 assuming it holds for t− 1. Consider iteration t for the loop in
Line 4. As πt

aug determines πt−1
aug , we have by the induction hypothesis that πt

aug determines
the values of xi,j for all (i, j) ∈ Rt−1. Moreover, from Lines 8 and 11, we have that, for all
(i, j) ∈ Rt \ Rt−1, the value of xi,j is determined by πt

aug. ◀

▶ Lemma 15. For all 1 < t ≤ T ′, if St−1
cell = St−1

pair = St−1
col = ∅, then St

cell = St
pair = St

col = ∅
(with probability 1).

8 We define πt−1
aug to be some dummy value when t = 0.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:21

Proof. Recall from Corollary 13 that, for all 1 < t ≤ T ′, the value of πt−2
aug determines

the values of St−1
cell , St−1

pair , St−1
col . Fix an arbitrary 1 < t ≤ T ′ and an arbitrary πt−2

aug such
that St−1

cell = St−1
pair = St−1

col = ∅ and consider iteration t − 1 of the loop in Algorithm 3. As
Lines 8 and 11 are never executed in this iteration we get that Rt−2 = Rt−1 and that πt−2

aug
determines πt−1

aug . This means that both πt−2
aug and πt−1

aug determine each other implying that
D | πt−2

aug = D | πt−1
aug . Combine this with Rt−2 = Rt−1 and use Line 5 to finish the proof. ◀

▶ Lemma 16. For all 0 ≤ j ≤
∣∣∣πT ′

aug

∣∣∣, the random variables X1, . . . , Xn are mutually
independent conditioned on πT ′

aug,≤j.

Proof. Proof by induction on j. The base case j = 0 is trivial. We prove the lemma for
j > 0 assuming it holds for j − 1. By the induction hypothesis, we have that X1, . . . , Xn

are mutually independent conditioned on πT ′

aug,<j . This means that for all i ∈ [n], and
all functions f and all values z in the range of f , we have that X1, . . . , Xn are mutually
independent conditioned on πT ′

aug,<j , f(Xi) = z. As conditioned on πT ′

aug,<j , the value of πT ′

aug,j

is just a function of exactly one of X1, . . . , Xn, the lemma follows. ◀

▶ Lemma 17. We have:

E
[
D
((
D | π0

aug
)

|R0 || D|R0

)]
= I
(
X : Π0

aug
)
≤ T + n ≤ 2T.

Proof. The inequality follows from Fact 35 and Lemma 33. We now show the equality. As
R0 = ∅ and π0

aug is just π appended with the values (flag(xi))i∈[n], we have:

E
[
D
((
D | π0

aug
)

|R0 || D|R0

)]
= E

[
D
((
D | π0

aug
)
|| D

)]
=
∑
π0

aug

∑
x

Pr
(
π0

aug
)
· Pr
(
x | π0

aug
)
· log

Pr
(
x | π0

aug
)

Pr(x)

(Definition 37)
= I
(
X : Π0

aug
)
. (Lemma 36)

◀

Recall from Lemma 12 and Corollary 13 that fixing πt−1
aug fixes the values of many variables

in Algorithm 3. We now show:

▶ Lemma 18. For all t ∈ [T ′] and all πt−1
aug , we have:

D
((

D | πt−1
aug
)

|Rt−1 || D|Rt−1

)
=D
((

D | πt−1
aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
+E
[
D
((

D | πt
aug
)

|Rt
|| D|Rt

)
| πt−1

aug

]
.

Proof. This essentially is just from the chain rule for KL-divergence. We give the details
below. Note that:

D
((
D | πt−1

aug
)

|Rt−1 || D|Rt−1

)
=
∑

x
|Rt−1

Pr
(

x|Rt−1 | πt−1
aug

)
· log

Pr
(

x|Rt−1 | πt−1
aug

)
Pr
(

x|Rt−1

) (Definition 37)

=
∑

x
|Rt−1

Pr
(

x|Rt−1 | πt−1
aug

)
· log

Pr
(

x|Rt | x|Rt\Rt−1 , πt−1
aug

)
Pr
(
x|Rt\Rt−1 | πt−1

aug
)

Pr
(

x|Rt | x|Rt\Rt−1

)
Pr
(
x|Rt\Rt−1

)

CCC 2024

19:22 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

= D
((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
+
∑

x
|Rt−1

Pr
(

x|Rt−1 | πt−1
aug

)
· log

Pr
(

x|Rt | x|Rt\Rt−1 , πt−1
aug

)
Pr
(

x|Rt | x|Rt\Rt−1

) . (Definition 37)

To continue, recall that all the coordinates of all players are mutually independent in the
distribution D. Moreover, we have from Lines 6, 8, 9, and 11 that conditioned on πt−1

aug , the
event x|Rt\Rt−1 is the same as the corresponding event πt

aug. We get:

D
((

D | πt−1
aug
)

|Rt−1 || D|Rt−1

)
= D

((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
+
∑
x

|Rt

∑
πt

aug

Pr
(

x|Rt , πt
aug | πt−1

aug

)
· log

Pr
(

x|Rt | πt
aug

)
Pr
(

x|Rt

)
= D

((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
+
∑
πt

aug

Pr
(
πt

aug | πt−1
aug
)

· D
((

D | πt
aug
)

|Rt
|| D|Rt

)
(Definition 37)

= D
((

D | πt−1
aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
+ E
[
D
((

D | πt
aug
)

|Rt
|| D|Rt

)
| πt−1

aug

]
. ◀

▶ Lemma 19. Let 0 ≤ t ≤ T ′ and π0
aug be given. Let P t be any set of transcripts πt

aug that
all have π0

aug as a prefix. It holds that:∑
πt

aug∈P t

Pr
(
πt

aug | π0
aug
)
· ∇
(
πt

aug
)
≤ D

((
D | π0

aug
)

|R0 || D|R0

)
,

where:

∇
(
πt

aug
)

= D
((
D | πt

aug
)

|Rt || D|Rt

)
+

t∑
t′=1

D
((
D | πt′−1

aug

)
|Rt′ \Rt′−1

|| D|Rt′ \Rt′−1

)
.

Proof. We prove the lemma by induction on t. The base case t = 0 is straightforward. We
prove the lemma for t > 0 assuming it holds for t−1. Fix a set P t as in the lemma statement
and define, for all 0 ≤ t′ < t, the set P t′ to be the set of all πt′

aug that are prefixes of a
πt

aug ∈ P t. We have:∑
πt

aug∈P t

Pr
(
πt

aug | π0
aug
)
· D
((
D | πt

aug
)

|Rt || D|Rt

)
=

∑
πt−1

aug ∈P t−1

Pr
(
πt−1

aug | π0
aug
)
· E
[
D
((
D | πt

aug
)

|Rt || D|Rt

)
| πt−1

aug

]
=

∑
πt−1

aug ∈P t−1

Pr
(
πt−1

aug | π0
aug
)
·

(
D
((
D | πt−1

aug
)

|Rt−1 || D|Rt−1

)
− D

((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

))
.

(Lemma 18)

To continue, we use the induction hypothesis on the first term. We get:∑
πt

aug∈P t

Pr
(
πt

aug | π0
aug
)
· D
((
D | πt

aug
)

|Rt || D|Rt

)

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:23

≤ D
((
D | π0

aug
)

|R0 || D|R0

)
−

∑
πt−1

aug ∈P t−1

Pr
(
πt−1

aug | π0
aug
)
·

t∑
t′=1

D
((
D | πt′−1

aug

)
|Rt′ \Rt′−1

|| D|Rt′ \Rt′−1

)

≤ D
((
D | π0

aug
)

|R0 || D|R0

)
−

∑
πt

aug∈P t

Pr
(
πt

aug | π0
aug
)
·

t∑
t′=1

D
((
D | πt′−1

aug

)
|Rt′ \Rt′−1

|| D|Rt′ \Rt′−1

)
.

Rearranging gives the result. ◀

▶ Corollary 20. Let π0
aug be given and P T ′ be any set of transcripts πT ′

aug that all have π0
aug

as a prefix. It holds that:

∑
πT ′

aug∈P T ′

Pr
(

πT ′

aug | π0
aug

)
·

T ′∑
t=1

D
((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
≤ D

((
D | π0

aug
)

|R0 || D|R0

)
.

6.2 Many Clean Transcripts
Recall from Corollary 13 that fixing πaug fixes the values of the values computed in Line 5.
By definition, it also fixes the values computed in Line 2. Using this, we define the following
events that are just some subsets of all possible πT ′

aug:
1. Define the event Eclean,flag to be the set of all πT ′

aug such that for all i ∈ [n], we have:

flag(xi) = 0.

2. Define the event Eclean,x to be the set of all πT ′

aug such that for all j ∈ [m], we have:

Pr
(

n∑
i=1

xi,j ≥ θn | πT ′

aug

)
≤ 2−θ5n.

3. Define the event Eclean,S to be the set of all πT ′

aug such that:

ST ′

cell = ST ′

pair = ST ′

col = ∅.

The goal of this section is to show that a randomly sampled transcript πT ′

aug is likely to be
clean. Namely, if we define Eclean = Eclean,flag ∧ Eclean,x ∧ Eclean,S , we have:

▶ Lemma 21. It holds that:

Pr
(
Eclean

)
<

1
2 .

Lemma 21 follows from Lemmas 22–24 proven below.

▶ Lemma 22. It holds that:

Pr
(
Eclean,flag

)
≤ θ30.

Proof. We have:

Pr(∃i ∈ [n] : flag(xi) = 1) ≤ n · Pr(flag(x1) = 1) (As xi are identically distributed)

≤ n · 2−θ4m (Lemma 3)

≤ 2−θ5m. ◀

CCC 2024

19:24 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

▶ Lemma 23. It holds that:

Pr
(
Eclean,x

)
≤ θ30.

Proof. We have:

Pr
(
∃j ∈ [m] : Pr

(
n∑

i=1
xi,j ≥ θn | πT ′

aug

)
> 2−θ5n

)

≤
m∑

j=1
Pr
(

Pr
(

n∑
i=1

xi,j ≥ θn | πT ′

aug

)
> 2−θ5n

)
(Union bound)

≤ 2θ5n ·
m∑

j=1
E

[
Pr
(

n∑
i=1

xi,j ≥ θn | πT ′

aug

)]
(Markov’s Inequality)

≤ 2θ5n ·
m∑

j=1
Pr
(

n∑
i=1

xi,j ≥ θn

)
≤ 2θ5n ·m · 2−θ4n (Lemma 3)

≤ 2−θ5n. ◀

▶ Lemma 24. It holds that:

Pr
(
Eclean,S

)
≤ θ30.

Proof. To start, define the event E to be the set of all π0
aug such that

D
((
D | π0

aug
)

|R0 || D|R0

)
≤ T · θ−40. By Markov’s inequality and Lemma 17, we have

Pr
(
E
)
≤ θ35. Using the chain rule, this implies that:

Pr
(
Eclean,S

)
≤ Pr

(
E
)

+ Pr
(
Eclean,S | E

)
≤ θ35 + Pr

(
Eclean,S | E

)
.

Thus, it suffices to show that the last term is bounded by θ35. We will show this holds even
under a stronger conditioning. Specifically, we fix an arbitrary π0

aug such that E happens and
show that Pr

(
Eclean,S | π0

aug
)
≤ θ35. Fix any such π0

aug. We first claim that:

▷ Claim 25. For all πT ′

aug that extend π0
aug for which Eclean,S does not happen, we have:

T ′∑
t=1

D
((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
≥ T ′θ400.

The lemma now follows as, defining P T ′ to be the set of all πT ′

aug that extend π0
aug for which

Eclean,S does not happen, we get:

Pr
(
Eclean,S | π0

aug
)

=
∑

πT ′
aug∈P T ′

Pr
(

πT ′
aug | π0

aug

)

≤ 1
T ′θ400

∑
πT ′

aug∈P T ′

Pr
(

πT ′
aug | π0

aug

)
·

T ′∑
t=1

D
((

D | πt−1
aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
(Claim 25)

≤ 1
T ′θ400 D

((
D | π0

aug
)

|R0 || D|R0

)
(Corollary 20)

≤ T

T ′θ440 (Choice of π0
aug)

≤ θ50.

It remains to show Claim 25

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:25

Proof of Claim 25. Fix an arbitrary πT ′

aug as in the statement of the claim. As Eclean,S does
not happen, we have that at least one of ST ′

cell, ST ′

pair, ST ′

col is non-empty. Applying Lemma 15,
we get that for all t ∈ [T ′], at least one of St

cell, St
pair, St

col is non-empty. Due to Lines 6
and 9, this means that in all iterations t ∈ [T ′], the parties either execute Line 8 or they
execute Line 11. Let Zcol ⊆ [T ′] be the set of all iterations t where parties execute Line 8
and (it

1, jt
1) ∈ St

col \ St
cell. We claim that |Zcol| ≤ T ′ ·

(
1− θ120).

We prove this claim later, but assuming it for now, we have that either the parties execute
Line 11 or the execute Line 8 and (it

1, jt
1) ∈ St

cell. In either case, note from Line 5 that
D
((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
≥ θ200. This means that:

T ′θ120 ≤ T ′ − |Zcol| ≤ θ−200 ·
∑

t∈[T ′]\Zcol

D
((
D | πt−1

aug
)

|Rt\Rt−1 || D|Rt\Rt−1

)
.

As the KL-divergence is non-negative, we have the claim. It remains to show that |Zcol| ≤
T ′ ·

(
1− θ120). For this, consider the following relation M ⊆ Zcol × ([T ′] \ Zcol). For t ∈ Zcol

and t′ ∈ [T ′] \ Zcol, we have (t, t′) ∈ M if and only if there exists i′ ∈ [n] such that
(i′, jt

1) ∈ Rt′ \ Rt′−1. We will show that:
(a) For all t ∈ Zcol, there are at least θ100n values of t′ ∈ [T ′] \ Zcol such that (t, t′) ∈M .
(b) For all t′ ∈ [T ′] \ Zcol, there are at most 2n values of t ∈ Zcol such that (t, t′) ∈M .
Using Items a and b, we get:

|Zcol| · θ100n ≤ |M | ≤ (T ′ − |Zcol|) · 2n.

It follows that T ′ ·
(
1− θ120). It remains to show Items a and b. For Item a, fix an arbitrary

t ∈ Zcol and, for all 0 ≤ t′ ≤ T ′, define the value Y (t′) =
∣∣∣{i′ ∈ [n] | Rt′

i′,jt
1

= 1
}∣∣∣. Observe

that from Algorithm 3 that
1. Y (0) = 0.
2. For all t′ ∈ [T ′], we have Y (t′ − 1) ≤ Y (t′) ≤ Y (t′ − 1) + 1.
3. If t′ ∈ [T ′] is such that Y (t′) ≤ Y (t′ − 1) + 1, there exists i′ ∈ [n] such that (i′, jt

1) ∈
Rt′ \ Rt′−1.

To see why Item a follows, consider the smallest t∗ ∈ Zcol such that jt
1 = jt∗

1 . As t∗ ∈ Zcol,
we have

(
it∗

1 , jt
1
)
∈ St∗

col. By Line 5, this means that Y (t∗ − 1) ≥ θ100 · n. Together with
Items 1 and 2, this means that there are at least θ100n values of t′ ∈ [t∗ − 1] such that
Y (t′) = Y (t′ − 1) + 1. Moreover, none of these values are in Zcol as otherwise, Item 3 implies
that jt′

1 = jt
1, a contradiction to the choice of t∗. Using Item 3 again, it follows that all these

values satisfy (t, t′) ∈M , as desired.
For Item b, fix an arbitrary t′ ∈ [T ′] \ Zcol and suppose for contradiction that there are

at least 2n + 1 values of t ∈ Zcol such that (t, t′) ∈M . Each of these 2n + 1 values of t has a
corresponding value of (it

1, jt
1) which are all distinct (due to the fact that Line 5 only adds

(i, j) to Scol if Ri,j = 0). As all it
1 ∈ [n], the fact that there are 2n + 1 distinct values of

(it
1, jt

1) imply that these values must contain at least 3 distinct values of jt
1. This implies

that there are at least three distinct values of jt
1 such that there exists i′ ∈ [n] for which

(i′, jt
1) ∈ Rt′ \ Rt′−1. This is a contradiction as Algorithm 3 guarantees that

∣∣∣Rt′ \ Rt′−1
∣∣∣ ≤ 2.

◁

◀

CCC 2024

19:26 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

6.3 Properties of Clean Transcripts
Lemma 21 shows that the probability that a transcript is not clean is small. Thus, a randomly
sampled transcript is likely to be clean. We now establish some properties of clean transcripts.
Throughout this subsection, we fix a transcript πT ′

aug for which Eclean happens. This also
fixes the values of R0, . . . , RT ′ and other variables that are determined by πT ′

aug. As Eclean,S ,
Eclean,x and Eclean,flag happen, we have ST ′

cell = ST ′

pair = ST ′

col = ∅ and for all j ∈ [m], it holds that
Pr
(∑

i∈[n] xi,j ≥ θn | πT ′

aug

)
≤ 2−θ5n and that flag(xi) = 0 for all i ∈ [n]. Moreover, as the

size R increases by at most 2 in any iteration, we have that:∣∣∣RT ′
∣∣∣ ≤ 2T ′ ≤ θ250mn. (4)

We claim that:

▶ Lemma 26. For all j ∈ [m], we have:∣∣∣RT ′
∩ ([n]× {j})

∣∣∣ < n =⇒
∣∣∣RT ′

∩ ([n]× {j})
∣∣∣ < θ100 · n.

Proof. Fix such a j. As ST ′

cell = ST ′

pair = ST ′

col = ∅, we have by Lines 6 and 9 that RT ′ = RT ′−1.
Also, as ST ′

col = ∅, we have by Line 5 that:∣∣∣RT ′−1 ∩ ([n]× {j})
∣∣∣ < θ100 · n ∨ ∀i′ ∈ [n] : (i′, j) ∈ RT ′−1.

As RT ′ = RT ′−1, we are done. ◀

Due to Lemma 26, we can partition the values j ∈ [m] into two sets as follows:

Jfix =
{

j ∈ [m] |
∣∣∣RT ′

∩ ([n]× {j})
∣∣∣ = n

}
.

Junfix =
{

j ∈ [m] |
∣∣∣RT ′

∩ ([n]× {j})
∣∣∣ < θ100 · n

}
. (5)

Recall from Lemma 14 that πT ′

aug determines the values of xi,j for all (i, j) ∈ RT ′ . We have:

▶ Lemma 27. For all j ∈ Jfix, it holds that
∑n

i=1 xi,j < θn.

Proof. For all j ∈ Jfix, we have by Equation (5) that (i, j) ∈ RT ′ for all i ∈ [n]. By Lemma 14,
this means that πT ′

aug determines xi,j for all i ∈ [n]. The lemma then follows as we have
Pr
(∑

i∈[n] xi,j ≥ θn | πT ′

aug

)
≤ 2−θ5n. ◀

▶ Lemma 28. We have:
1. For all (i, j) /∈ RT ′ and all b ∈ {0, 1},

Pr
(

xi,j = b | πT ′

aug

)
≥ θ26.

2. For all i ∈ [n], j ̸= j′ ∈ [m] such that (i, j), (i, j′) /∈ RT ′ , and all b ∈ {0, 1}:

Pr
(

(xi,j , xi,j′) = (1, b) | πT ′

aug

)
≤ θ20 · Pr

(
xi,j′ = b | πT ′

aug

)
.

Proof. Recall that ST ′

cell = ST ′

pair = ST ′

col = ∅ and also recall from Corollary 13 that these
sets are determined by πT ′−1

aug . The fact that these sets are empty imply that πT ′−1
aug also

determines πT ′

aug, which means that they both determine one another. It follows that the
distributions D | πT ′−1

aug and D | πT ′

aug are identical. We now prove each part in turn.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:27

1. As RT ′−1 ⊆ RT ′ , we have (i, j) /∈ RT ′−1. Recall that ST ′

cell = ∅ implying from Line 5

that D
((
D | πT ′−1

aug

)
|(i,j)

|| D|(i,j)

)
< θ200. As the distributions D | πT ′−1

aug and D | πT ′

aug

are identical, we get D
((
D | πT ′

aug

)
|(i,j)

|| D|(i,j)

)
< θ200. By Fact 39, this means that∥∥∥∥(D | πT ′

aug

)
|(i,j)

−D|(i,j)

∥∥∥∥
TV

< θ100 which by Definition 38 and the definition of D implies

the result.
2. As RT ′−1 ⊆ RT ′ , we have (i, j), (i, j′) /∈ RT ′−1. Recall that ST ′

pair = ∅ implying from Line 5

that D
((
D | πT ′−1

aug

)
|(i,j),(i,j′)

|| D|(i,j),(i,j′)

)
< θ100. As the distributions D | πT ′−1

aug and

D | πT ′

aug are identical, we get D
((
D | πT ′

aug

)
|(i,j),(i,j′)

|| D|(i,j),(i,j′)

)
< θ100. By Fact 39,

this means that
∥∥∥∥(D | πT ′

aug

)
|(i,j),(i,j′)

−D|(i,j),(i,j′)

∥∥∥∥
TV

< θ50. It follows that:

Pr
(

(xi,j , xi,j′) = (1, b) | πT ′

aug

)
≤ Pr((xi,j , xi,j′) = (1, b)) + θ50 (Definition 38)

≤ θ25 · Pr(xi,j′ = b) + θ50

≤ θ24 · Pr(xi,j′ = b)

≤ θ24 ·
(

Pr
(

xi,j′ = b | πT ′

aug

)
+ θ50

)
(Definition 38)

≤ θ20 · Pr
(

xi,j′ = b | πT ′

aug

)
. (Item 1)

◀

Moreover, we have from Equation (4) that Junfix ̸= ∅. Fix an arbitrary j∗ ∈ Junfix. We
now use j∗ to define some important sets of the parties’ inputs. Let x′ be an input in the
support of D. We say that x′ is relevant if for all j ̸= j∗ ∈ [m], we have

∑n
i=1 xi,j ≤ θn. We

define Xrel to be the set of all relevant inputs. We say that x′ sets j∗ to zero (respectively,
one) if for all i ∈ [n], we have x′

i,j∗ = xi,j∗ if (i, j∗) ∈ RT ′ (recall from Lemma 14 that πT ′

aug
determines the values of xi,j for all (i, j) ∈ RT ′) and x′

i,j∗ = 0 (resp. x′
i,j∗ = 1) otherwise.

We let Xzero and Xone be the set of all inputs that set j∗ to zero and one respectively. We
claim that:

▶ Lemma 29. For all x′ ∈ Xrel∩Xone such that Pr
(

x′ | πT ′

aug

)
> 0, we have GM-Testm

θ,n(x′) =

{0, 1}m\{0m}. For all x′ ∈ Xrel∩Xzero such that Pr
(

x′ | πT ′

aug

)
> 0, we have GM-Testm

θ,n(x′) =
{0m}.

Proof. We only prove the former as the latter is analogous. For this, fix x′ ∈ Xrel ∩ Xone and
examine the cases in Equation (2). Recall that Pr

(
x′ | πT ′

aug

)
> 0 implies that flag(x′

i) = 0
for all i ∈ [n]. We finish the proof by showing that:

GapMajθ,m
θ,n (x′) = {(0, . . . , 0︸ ︷︷ ︸

j∗−1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
m−j∗ times

)}. (6)

Indeed, we have from x′ ∈ Xrel that
∑n

i=1 x′
i,j ≤ θn for all j ̸= j∗ ∈ [m]. We also have

from j∗ ∈ Junfix and x′ ∈ Xone that
∑n

i=1 x′
i,j ≥ n − θ100n. Moreover, we also have from

flag(x′
i) = 0 for all i ∈ [n] that the Hamming weight of x′

i is at most θm
2 for all i ∈ [n].

Combine these to get Equation (6). ◀

CCC 2024

19:28 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

▶ Lemma 30. For all X ∈ {Xone,Xzero}, it holds that:

Pr
(

X ∈ X ∩ Xrel | πT ′

aug

)
≥ θ30n.

Proof. We show the result for X = Xone as the proof for Xzero is analogous. For i ∈ [n],
define x∗

i,j∗ = xi,j∗ if (i, j∗) ∈ RT ′ (recall from Lemma 14 that πT ′

aug determines the values of
xi,j for all (i, j) ∈ RT ′) and x∗

i,j∗ = 0 otherwise. Thus, we have:

Pr
(

X ∈ Xone | πT ′

aug

)
= Pr

(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ | πT ′

aug

)
=

n∏
i=1

Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
,

(7)

where the last step uses Lemma 16. We also have

Pr
(

X ∈ Xone ∩ Xrel | πT ′
aug

)
= Pr

(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ ∧ ∃j ̸= j∗ ∈ [m] :

n∑
i=1

x′
i,j > θn | πT ′

aug

)

≤
∑

j ̸=j∗∈[m]

Pr

(
∀i ∈ [n] : x′

i,j∗ = x∗
i,j∗ ∧

n∑
i=1

x′
i,j > θn | πT ′

aug

)
(Union bound)

≤
∑

j ̸=j∗∈[m]

∑
Z⊆[n]

|Z|=θn

Pr
(

∀i ∈ [n] : x′
i,j∗ = x∗

i,j∗ ∧ ∀i ∈ Z : x′
i,j = 1 | πT ′

aug

)
(Union bound)

≤
∑

j ̸=j∗∈[m]

∑
Z⊆[n]

|Z|=θn

∏
i∈Z

Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′
aug

)∏
i∈Z

Pr
((

x′
i,j , x′

i,j∗
)

=
(
1, x∗

i,j∗
)

| πT ′
aug

)
(Lemma 16)

≤
∑

j ̸=j∗∈[m]

∑
Z⊆[n]

|Z|=θn

θ20·θn ·
n∏

i=1

Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′
aug

)
. (Lemma 28, Item 2)

Now, note that there are at most n ·
(3

θ

)θn ≤
(4

θ

)θn terms in the sum (as
(

n
k

)
≤
(en

k

)k). We
get using θ < 1/2 that:

Pr
(

X ∈ Xone ∩ Xrel | πT ′

aug

)
≤
(

4
θ

)θn

· θ20·θn ·
n∏

i=1
Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
≤ 1

2 ·
n∏

i=1
Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
.

Combining with Equation (7), we get:

Pr
(

X ∈ Xone ∩ Xrel | πT ′

aug

)
≥ 1

2 ·
n∏

i=1
Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
= 1

2 ·
∏

i:(i,j∗)/∈RT ′

Pr
(

x′
i,j∗ = x∗

i,j∗ | πT ′

aug

)
(As πT ′

aug determines xi,j for all (i, j) ∈ RT ′)
≥ θ30n. (Lemma 28, Item 1)

◀

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:29

6.4 Finishing the Proof
We are now ready to finish the proof of Theorem 10.

Proof of Theorem 10. Recall that it suffices to show Equation (3). We have:

Pr
(
Π(X) ∈ GM-Testm

θ,n(X)
)
≤ Pr

(
Eclean

)
+ Pr(Eclean) · Pr

(
Π(X) ∈ GM-Testm

θ,n(X) | Eclean
)

(Union bound)
= 1− Pr(Eclean) · Pr

(
Π(X) /∈ GM-Testm

θ,n(X) | Eclean
)

≤ 1− 1
2 · Pr

(
Π(X) /∈ GM-Testm

θ,n(X) | Eclean
)
. (Lemma 21)

Thus, it suffices to lower bound the last probability by θ30n. We will show this holds even
under a stronger conditioning. Specifically, we fix an arbitrary πT ′

aug such that Eclean happens
and show that Pr

(
Π(X) /∈ GM-Testm

θ,n(X) | πT ′

aug

)
≥ θ30n. Fix any such πT ′

aug and recall that
fixing πT ′

aug also fixes the output of the protocol. As the sets in the two cases of Lemma 29
are disjoint, we have:

Pr
(

Π(X) /∈ GM-Testm
θ,n(X) | πT ′

aug

)
≥ min

(
Pr
(

Π(X) ∈ Xrel ∩ Xone | πT ′

aug

)
, Pr
(

Π(X) ∈ Xrel ∩ Xzero | πT ′

aug

))
≥ θ30n. (Lemma 30)

◀

References
1 Abhinav Aggarwal, Varsha Dani, Thomas P Hayes, and Jared Saia. Distributed computing

with channel noise. arXiv preprint, 2016. arXiv:1612.05943.
2 Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Reli-

able communication over highly connected noisy networks. In Symposium on Principles of
Distributed Computing (DISC), pages 165–173. ACM, 2016.

3 Ziv Bar-Yossef, Thathachar S Jayram, Ravi Kumar, and D Sivakumar. An information
statistics approach to data stream and communication complexity. Journal of Computer and
System Sciences, 68(4):702–732, 2004.

4 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM Journal on Computing, 42(3):1327–1363, 2013.

5 Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate coding
for multiparty interactive communication is impossible. In Symposium on Theory of Computing
(STOC), pages 999–1010. ACM, 2016.

6 Mark Braverman and Anup Rao. Information equals amortized communication. In Rafail
Ostrovsky, editor, Symposium on Foundations of Computer Science (FOCS), pages 748–757.
IEEE Computer Society, 2011.

7 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct product via
round-preserving compression. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 232–243. Springer, 2013.

8 Mark Braverman, Anup Rao, Omri Weinstein, and Amir Yehudayoff. Direct products in
communication complexity. In Symposium on Foundations of Computer Science (FOCS),
pages 746–755. IEEE, 2013.

9 Keren Censor-Hillel, Ran Gelles, and Bernhard Haeupler. Making asynchronous distributed
computations robust to noise. Distributed Computing, 32:405–421, 2019.

CCC 2024

https://arxiv.org/abs/1612.05943

19:30 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

10 Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Broadcasting
in noisy radio networks. In Symposium on Principles of Distributed Computing (PODC), pages
33–42, 2017.

11 Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Erasure
correction for noisy radio networks. In International Symposium on Distributed Computing
(DISC), 2019.

12 Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew Yao. Informational complexity
and the direct sum problem for simultaneous message complexity. In Symposium on Foundations
of Computer Science (FOCS), pages 270–278. IEEE, 2001.

13 Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks-problem analysis and
protocol design. IEEE Trans. Communications, 33(12):1240–1246, 1985.

14 Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena. Computation
over the noisy broadcast channel with malicious parties. In Innovations in Theoretical Computer
Science Conference, (ITCS), volume 185, pages 82:1–82:19, 2021.

15 Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena. Tight bounds for
general computation in noisy broadcast networks. In Symposium on Foundations of Computer
Science (FOCS), pages 634–645, 2021.

16 Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena. Protecting single-
hop radio networks from message drops. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, International Colloquium on Automata, Languages, and Programming (ICALP),
volume 261 of LIPIcs, pages 53:1–53:20, 2023.

17 Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over the noisy
broadcast channel. In Symposium on Theory of Computing (STOC), pages 507–520. ACM,
2018.

18 Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Radio network coding requires logar-
ithmic overhead. In Foundations of Computer Science (FOCS), pages 348–369, 2019.

19 Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive error resilience beyond 2/7.
In Symposium on Theory of Computing (STOC). ACM, 2020.

20 Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Noisy beeps. In Yuval Emek and
Christian Cachin, editors, Symposium on Principles of Distributed Computing (PODC), pages
418–427, 2020.

21 Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Optimal error resilience of adaptive
message exchange. In Symposium on Theory of Computing (STOC), pages 1235–1247. ACM,
2021.

22 Tomás Feder, Eyal Kushilevitz, Moni Naor, and Noam Nisan. Amortized communication
complexity. SIAM Journal on computing, 24(4):736–750, 1995.

23 Uriel Feige and Joe Kilian. Finding OR in a noisy broadcast network. Information Processing
Letters, 73(1-2):69–75, 2000.

24 Robert G. Gallager. Finding parity in a simple broadcast network. IEEE Transactions on
Information Theory, 34(2):176–180, 1988.

25 Abbas El Gamal. Open problems presented at the 1984 workshop on specific problems in
communication and computation sponsored by bell communication research. “Open Problems
in Communication and Computation”, by Thomas M. Cover and B. Gopinath (editors).
Springer-Verlag, 1987.

26 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of information and communica-
tion for boolean functions. Journal of the ACM, 63(5):46:1–46:31, 2016.

27 Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation of communication and external
information. SIAM Journal on computing, 50(3), 2021.

28 Ran Gelles and Yael T Kalai. Constant-rate interactive coding is impossible, even in constant-
degree networks. IEEE Transactions on Information Theory, 65(6):3812–3829, 2019.

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:31

29 Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty interactive
coding—part i: Oblivious insertions, deletions and substitutions. IEEE Transactions on
Information Theory, 67(6):3411–3437, 2021.

30 Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty interactive
coding—part ii: Non-oblivious noise. IEEE Transactions on Information Theory, 68(7):4723–
4749, 2022.

31 Ran Gelles, Ankur Moitra, and Amit Sahai. Efficient and explicit coding for interactive
communication. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science,
pages 768–777. IEEE, 2011.

32 Navin Goyal, Guy Kindler, and Michael Saks. Lower bounds for the noisy broadcast problem.
SIAM Journal on Computing, 37(6):1806–1841, 2008.

33 Bernhard Haeupler. Interactive channel capacity revisited. In Foundations of Computer
Science (FOCS), pages 226–235. IEEE, 2014.

34 Prahladh Harsha, Rahul Jain, David McAllester, and Jaikumar Radhakrishnan. The commu-
nication complexity of correlation. In Conference on Computational Complexity (CCC), pages
10–23. IEEE, 2007.

35 William M. Hoza and Leonard J. Schulman. The adversarial noise threshold for distributed
protocols. In Symposium on Discrete Algorithms (SODA), pages 240–258, 2016.

36 Abhishek Jain, Yael Tauman Kalai, and Allison Bishop Lewko. Interactive coding for multiparty
protocols. In Symposium on Theory of computing (STOC), pages 1–10, 2015.

37 Rahul Jain. New strong direct product results in communication complexity. Journal of the
ACM, 62(3):1–27, 2015.

38 Rahul Jain, Attila Pereszlényi, and Penghui Yao. A direct product theorem for two-party
bounded-round public-coin communication complexity. Algorithmica, 76:720–748, 2016.

39 Rahul Jain, Jaikumar Radhakrishnan, and Pranab Sen. A direct sum theorem in commu-
nication complexity via message compression. In Colloquium on Automata, Languages, and
Programming (ICALP), pages 300–315. Springer, 2003.

40 Mauricio Karchmer, Eyal Kushilevitz, and Noam Nisan. Fractional covers and communication
complexity. SIAM Journal on Discrete Mathematics, 8(1):76–92, 1995.

41 Hartmut Klauck. A strong direct product theorem for disjointness. In Symposium on Theory
of Computing (STOC), pages 77–86, 2010.

42 Eyal Kushilevitz and Yishay Mansour. Computation in noisy radio networks. SIAM Journal
on Discrete Mathematics (SIDMA), 19(1):96–108, 2005.

43 Allison Lewko and Ellen Vitercik. Balancing communication for multi-party interactive coding.
arXiv preprint, 2015. arXiv:1503.06381.

44 Manuj Mukherjee and Ran Gelles. Multiparty interactive coding over networks of intersecting
broadcast links. IEEE Journal on Selected Areas in Information Theory, 2(4):1078–1092, 2021.

45 Ilan Newman. Computing in fault tolerance broadcast networks. In Computational Complexity
Conference (CCC), pages 113–122, 2004.

46 Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed computation.
In Symposium on the Theory of Computing (STOC), pages 790–799, 1994.

47 Leonard J Schulman. Communication on noisy channels: A coding theorem for computation.
In Foundations of Computer Science (FOCS), pages 724–733. IEEE, 1992.

48 Andrew Chi-Chih Yao. On the complexity of communication under noise. invited talk in the
5th ISTCS Conference, 1997.

49 Huacheng Yu. Strong xor lemma for communication with bounded rounds. In Symposium on
Foundations of Computer Science (FOCS), pages 1186–1192. IEEE, 2022.

CCC 2024

https://arxiv.org/abs/1503.06381

19:32 Information Dissemination via Broadcasts in the Presence of Adversarial Noise

A Information Theory Preliminaries

Recall that we use sans-serif letters to denote random variables. We reserve E to denote an
arbitrary event. All random variables will be assumed to be discrete and we shall adopt the
convention 0 log 1

0 = 0. When it is clear from context, we may abbreviate the event X = x as
just x. All logarithms are taken with base 2.

A.1 Entropy
▶ Definition 31 (Entropy). The (binary) entropy of X is defined as:

H(X) =
∑

x∈supp(X)

Pr(x) · log 1
Pr(x) .

The entropy of X conditioned on E is defined as:

H(X | E) =
∑

x∈supp(X)

Pr(x | E) · log 1
Pr(x | E) .

▶ Definition 32 (Conditional Entropy). We define the conditional entropy of X given Y and
E as:

H(X | Y, E) =
∑

y∈supp(Y)

Pr(y | E) ·H(X | y, E).

Henceforth, we shall omit writing the supp(·) when it is clear from context.

▶ Lemma 33. It holds for all X and E that:

0 ≤ H(X | E) ≤ log(|supp(X)|).

The second inequality is tight if and only if X conditioned on E is the uniform distribution
over supp(X).

A.2 Mutual Information
▶ Definition 34 (Mutual Information). The mutual information between X and Y is defined
as:

I(X : Y) = H(X)−H(X | Y) = H(Y)−H(Y | X).

The mutual information between X and Y conditioned on Z is defined as:

I(X : Y | Z) = H(X | Z)−H(X | YZ) = H(Y | Z)−H(Y | XZ).

▶ Fact 35. We have 0 ≤ I(X : Y | Z) ≤ H(X).

▶ Lemma 36. We have:

I(X : Y | Z) =
∑
x,y,z

Pr(x, y, z) · log Pr(x, y | z)
Pr(x | z) Pr(y | z) .

K. Efremenko, G. Kol, D. Paramonov, R. Raz, and R. R. Saxena 19:33

A.3 KL Divergence
▶ Definition 37 (KL Divergence). If µ, ν are two distributions over the same (finite) set Ω,
the Kullback-Leibler (KL) Divergence between µ and ν is defined as:

D(µ || ν) =
∑
ω∈Ω

µ(ω) · log µ(ω)
ν(ω) .

For a finite non-empty set S, we shall use U(S) to denote the uniform distribution over
S. We omit S from the notation when it is clear from the context. We use dist(X | E) to
denote the distribution of the random variable X conditioned on the event E.

A.4 Total Variation Distance
▶ Definition 38 (Total variation distance). Let µ, ν be two distributions over the same (finite)
set Ω. The total variation distance between µ and ν is defined as:

∥µ− ν∥TV = max
Ω′⊆Ω

∑
ω∈Ω′

µ(ω)− ν(ω).

▶ Fact 39 (Pinsker’s inequality). Let µ, ν be two distributions over the same set Ω. It holds
that:

∥µ− ν∥TV ≤
√

1
2 · D(µ || ν).

CCC 2024

Lower Bounds for Set-Multilinear Branching
Programs
Prerona Chatterjee # Ñ

School of Computer Sciences, NISER Bhubaneswar, India

Deepanshu Kush # Ñ

Department of Computer Science, University of Toronto, Canada

Shubhangi Saraf # Ñ

Department of Computer Science, University of Toronto, Canada
Department of Mathematics, University of Toronto, Canada

Amir Shpilka # Ñ

Blavatnik School of Computer Science, Tel-Aviv University, Israel

Abstract
In this paper, we prove super-polynomial lower bounds for the model of sum of ordered set-multilinear
algebraic branching programs, each with a possibly different ordering (

∑
smABP). Specifically, we

give an explicit nd-variate polynomial of degree d such that any
∑

smABP computing it must have
size nω(1) for d as low as ω(log n). Notably, this constitutes the first such lower bound in the low
degree regime. Moreover, for d = poly(n), we demonstrate an exponential lower bound. This result
generalizes the seminal work of Nisan (STOC, 1991), which proved an exponential lower bound for a
single ordered set-multilinear ABP.

The significance of our lower bounds is underscored by the recent work of Bhargav, Dwivedi, and
Saxena (TAMC, 2024), which showed that super-polynomial lower bounds against a sum of ordered
set-multilinear branching programs – for a polynomial of sufficiently low degree – would imply super-
polynomial lower bounds against general ABPs, thereby resolving Valiant’s longstanding conjecture
that the permanent polynomial can not be computed efficiently by ABPs. More precisely, their work
shows that if one could obtain such lower bounds when the degree is bounded by O(log n/ log log n),
then it would imply super-polynomial lower bounds against general ABPs.

Our results strengthen the works of Arvind & Raja (Chic. J. Theor. Comput. Sci., 2016) and
Bhargav, Dwivedi & Saxena (TAMC, 2024), as well as the works of Ramya & Rao (Theor. Comput.
Sci., 2020) and Ghoshal & Rao (International Computer Science Symposium in Russia, 2021), each
of which established lower bounds for related or restricted versions of this model. They also strongly
answer a question from the former two, which asked to prove super-polynomial lower bounds for
general

∑
smABP.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Lower Bounds, Algebraic Branching Programs, Set-multilinear polynomials

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.20

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/212/
Full Version: https://arxiv.org/abs/2312.15874

Funding Prerona Chatterjee: This work was done as a postdoctoral student at Tel Aviv University,
where the research was funded by the Azrieli International Postdoctoral Fellowship, the Israel Science
Foundation (grant number 514/20) and the Len Blavatnik and the Blavatnik Family foundation.
Shubhangi Saraf : Research partially supported by a Sloan research fellowship and an NSERC
Discovery Grant.
Amir Shpilka: Research leading to these results has received funding from the Israel Science
Foundation (grant number 514/20) and from the Len Blavatnik and the Blavatnik Family foundation.

© Prerona Chatterjee, Deepanshu Kush, Shubhangi Saraf, and Amir Shpilka;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 20; pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:prerona.ch@gmail.com
https://preronac.bitbucket.io/
https://orcid.org/0000-0003-2643-8142
mailto:deepkush@cs.toronto.edu
https://www.cs.toronto.edu/~deepkush/
https://orcid.org/0000-0001-5764-2942
mailto:shubhangi.saraf@utoronto.ca
https://www.math.toronto.edu/ssaraf/
https://orcid.org/0009-0005-0874-2978
mailto:shpilka@tauex.tau.ac.il
https://www.cs.tau.ac.il//~shpilka/
https://orcid.org/0000-0003-2384-425X
https://doi.org/10.4230/LIPIcs.CCC.2024.20
https://eccc.weizmann.ac.il/report/2023/212/
https://arxiv.org/abs/2312.15874
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Lower Bounds for Set-Multilinear Branching Programs

Acknowledgements Parts of this work were done while the first author was visiting TIFR Mumbai
and ICTS-TIFR Bengaluru, and she would like to thank Venkata Susmita Biswas, Ramprasad
Saptharishi, Prahladh Harsha and Jaikumar Radhakrishnan for the hospitality. The first author
would also like to thank Anamay Tengse for useful discussions.

1 Introduction

1.1 Background on Algberaic Complexity
In his seminal work ([40]) in 1979, Valiant proposed an algebraic framework to study the
computational complexity of computing polynomials. Algebraic Complexity Theory is this
study of the complexity of computational problems which can be described as computing a
multivariate polynomial P (x1, . . . , xN) over some elements x1, . . . , xN lying in a fixed field .
Several fundamental computational tasks such as computing the determinant, permanent,
matrix product, etc., can be represented using this framework. The natural computational
models that we investigate in this setting are models such as algebraic circuits, algebraic
branching programs, and algebraic formulas.

An algebraic circuit over a field for a multivariate polynomial P (x1, . . . , xN) is a directed
acyclic graph (DAG) whose internal vertices (called gates) are labeled as either + (sum) or ×
(product), and leaves (vertices of in-degree zero) are labeled by the variables xi or constants
from . A special output gate (the root of the DAG) represents the polynomial P . If the DAG
happens to be a tree, such a resulting circuit is called an algebraic formula. The size of a
circuit or formula is the number of nodes in the DAG. We also consider the product-depth of
the circuit, which is the maximum number of product gates on a root-to-leaf path. The class
VP (respectively, VF) is then defined to be the collection of all polynomials having at most
polynomially large degree which can be computed by polynomial-sized circuits (respectively,
formulas).

The class VP is synonymous to what we understand as efficiently computable polynomials.
The class VNP, whose definition is similar to the boolean class NP, is in some sense a notion
of what we deem as explicit. Much like the problem of proving circuit size lower bounds
for explicit boolean functions, the problem of proving them for explicit polynomials (i.e.,
showing VP ̸= VNP) has also remained elusive for many decades. However, because the latter
only deals with formal symbolic computation as opposed to modelling semantic truth-table
constraints, it is widely believed to be easier to resolve than its boolean counterpart. In
fact, it is even known to be a pre-requisite to the P ̸= NP conjecture in the non-uniform
setting ([8]).

An algebraic branching program (ABP) is a layered DAG with two special nodes in it: a
start-node and an end-node. All edges of the ABP go from layer ℓ − 1 to layer ℓ for some ℓ

(say start-node is the unique node in layer 0 and end-node is the unique node in the last
layer) and are labeled by a linear polynomial. Every directed path γ from start-node to
end-node computes the monomial Pγ , which is the product of all labels on the path γ. The
ABP computes the polynomial P =

∑
γ Pγ , where the sum is over all paths γ from start-node

to end-node. Its size is simply the number of nodes in the DAG, its depth is the length of
the longest path from the start-node to the end-node, and width is the maximum number
of nodes in any layer. The class VBP is then defined to be the collection of all polynomials
(with polynomially-bounded degree) which can be computed by polynomial-sized branching
programs. ABPs are known to be of intermediate complexity between formulas and circuits;
in other words, we know the inclusions VF ⊆ VBP ⊆ VP ⊆ VNP.

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:3

It is conjectured that all of these inclusions are strict, and resolving any of these conjectures
would represent a dramatic advancement in algebraic complexity theory, and even more
broadly, in circuit complexity overall. Valiant’s original hypothesis in [40] pertains to showing
a super-polynomial separation between the complexity of computing the determinant and the
permanent polynomials. This is known to be equivalent to the VBP ̸= VNP conjecture, i.e.,
showing super-polynomial size lower bounds against ABPs computing explicit polynomials.
At present, the best known lower bound against ABPs is only quadratic ([9]), and it appears
as though we are quite distant from addressing this conjecture. On the other hand, as we
now elaborate, while not directly improving upon this quadratic bound, this paper makes
significant progress towards a different line of attack aimed at resolving Valiant’s conjecture.

1.2 Set-Multilinearity: A Key Syntactic Restriction
One key advantage that algebraic models offer over their boolean counterparts is that of
syntactic restrictions. A recurring theme in algebraic complexity theory is to first efficiently
convert general models of computation (such as circuits or formulas) to special kinds of
syntactically-restricted models, show strong lower bounds against these restricted models,
and then recover non-trivial lower bounds against the original general models owing to
the efficiency of this conversion. This phenomenon is termed hardness escalation. In this
subsection, we describe one crucial example of a syntactic restriction in detail, that of
set-multilinearity.

A polynomial is said to be homogeneous if each monomial has the same total degree
and multilinear if every variable occurs at most once in any monomial. Now, suppose that
the underlying variable set is partitioned into d sets X1, . . . , Xd. Then the polynomial is
said to be set-multilinear with respect to this variable partition if each monomial in P has
exactly one variable from each set. Note that a set-multilinear polynomial is both multilinear
and homogeneous, and has degree precisely d if it is set-multilinear over d sets. Next,
we define different models of computation corresponding to these variants of polynomials
classes. An algebraic formula/branching program/circuit is set-multilinear with respect to a
variable partition (X1, . . . , Xd) if each internal node in the formula/branching program/circuit
computes a set-multilinear polynomial.1 Multilinear and homogeneous formulas/branching
programs/circuits are defined analogously.

We now describe several important hardness escalation results, each reducing general
models to corresponding set-multilinear models.

Constant depth circuits

The recent celebrated breakthrough work of Limaye, Srinivasan, and Tavenas ([27]) establishes
super-polynomial lower bounds for general algebraic circuits for all constant-depths, a problem
that was open for many decades. In order to show this, it is first shown that general low-depth
algebraic formulas can be converted to set-multilinear algebraic formulas of low depth as
well, and without much of a blow-up in size (as long as the degree is small). Subsequently,
strong lower bounds are established for low-depth set-multilinear circuits (of small enough
degree), which when combined with the first step yields the desired lower bound for general
constant-depth circuits.

1 Of course, a non-root node need not be set-multilinear with respect to the entire variable partition.
Nevertheless, here we demand that it must be set-multilinear with respect to some subset of the collection
{X1, . . . , Xd}.

CCC 2024

20:4 Lower Bounds for Set-Multilinear Branching Programs

Formulas

Raz [33] showed that if an N -variate set-multilinear polynomial of degree d has an algebraic
formula of size s, then it also has a set-multilinear formula of size poly(s) · (log s)d. In
particular, for a set-multilinear polynomial P of degree d = O(log N/ log log N), it follows
that P has a formula of size poly(N) if and only if P has a set-multilinear formula of size
poly(N). Thus, having Nωd(1) set-multilinear formula size lower bounds for such a low degree
would imply super-polynomial lower bounds for general formulas. A recent line of work by
Kush and Saraf ([25, 26]) can be viewed as an attempt to prove general formula lower bounds
via this route.

Algebraic Branching Programs

In fact, in the context of ABPs as well, the very recent work of Bhargav, Dwivedi, and
Saxena ([5]) reduces the problem of showing lower bounds against general ABPs to proving
lower bounds against sums of ordered set-multlinear ABPs (again, as long as the degree is
small enough). Ordered set-multilinear ABPs are, in fact, historically well-studied models
and extremely well-understood. However, despite their apparent simplicity, the work [5]
implies that understanding their sums – a model that is far less studied – is at the forefront
of understanding Valiant’s conjecture. We state their result formally as Theorem 1.5 in
Section 1.3.

First however, as this is also the main model considered in this paper, we begin by
formally defining ordered set-multilinear ABPs and outlining their importance.

▶ Definition 1.1 (Ordered smABP). Given a variable partition (X1, . . . , Xd), we say that a
set-multilinear branching program of depth d is said to be ordered with respect to an ordering
(or permutation) σ ∈ Sd if for each ℓ ∈ [d], all edges of the ABP from layer ℓ − 1 to layer ℓ

are labeled using a linear form over the variables in Xσ(ℓ). It is simply said to be ordered if
there exists an ordering σ such that it is ordered with respect to σ.

At this point, it is essential to take note of the terminology in this context: in this
paper, a general (or “unordered”) set-multilinear branching program refers to an ABP for
which each internal node computes a polynomial that is set-multilinear with respect to some
subset of the global partition, whereas an ordered set-multilinear branching program is more
specialized and has the property that any two nodes in the same layer compute polynomials
that are set-multilinear with respect to the same partition.
▶ Remark 1.2. This notion of ordered set-multilinear branching programs turns out to be
equivalent to the more commonly used notions of (i) “read-once oblivious algebraic branching
programs (ROABPs)”, as well as (ii) “non-commutative algebraic branching programs” (see,
for example, [12]). This relationship, especially with the former model, is described in more
detail later in Section 1.4.

▶ Definition 1.3 (
∑

smABP). Given a polynomial P (X) that is set-multilinear with respect
to the variable partition X = (X1, . . . , Xd), we say that

∑t
i=1 Ai is a

∑
smABP computing P

if indeed
∑t

i=1 Ai(X) = P (X), and each Ai is an ordered set-multilinear branching program
i.e., each Ai is ordered with respect to some σi ∈ Sd. We call t (i.e., the number of summands
in a

∑
smABP) its support size and define its max-width and total-width to be the maximum

over the width of each Ai and the sum of the width of each Ai, respectively.

We have known exponential width lower bounds against a single ordered set-multilinear
ABP since the foundational work of Nisan. In [29], he showed that there are explicit
polynomials (in fact, in VP) which require any ordered set-multilinear ABP computing

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:5

them to be of exponentially large width. Viewed differently, this work even shows that in
the non-commutative setting, VBP ̸= VP2. More crucially however, this work introduced
a powerful technique – a notion known as the partial derivative method – that has been
instrumental in the bulk of the major advancements in algebraic complexity theory over the
past three decades (such as [30, 32, 36, 19, 23, 20, 24, 27, 39], see also [38, 37]).

Despite the considerable development of the partial derivative technique over the course
of these works (and many more) for proving strong lower bounds against various algebraic
models, relatively little is known about a general sum of ordered set-multilinear ABPs – a
simple and direct generalization of the original model considered by Nisan. There is some
progress in the literature towards this goal but which still requires additional structural
restrictions on either the max-width or the support size or the size of each part in the variable
partition. The work [3] of Arvind and Raja shows that any

∑
smABP of support size t

computing the n × n permanent polynomial requires max-width (and therefore, total-width)
at least 2Ω(n/t). Note that for this bound to be super-polynomial, the support size needs
to be heavily restricted i.e., t must be sub-linear. On the other hand, the work [5] also
shows a super-polynomial lower bound in this context: it implies that no

∑
smABP of

polynomially-bounded total-width can compute the iterated matrix multiplication (IMM)
polynomial. However, their work requires the additional assumption that the max-width of
such an

∑
smABP is no(1), that is sub-polynomial in the number of variables.

Apart from these, Ramya and Rao ([31]) use the partial derivative method to show an
exponential lower bound against the related model of sum of ROABPs in the multilinear
setting, as well as some other structured multilinear ABPs. Their lower bounds are for
a multilinear polynomial that is computable by a small multilinear circuit. Ghoshal and
Rao ([13]) partially extend their work by proving an exponential lower bound, for a polynomial
that is computable even by a small multilinear ABP, against sums of ROABPs that have
polynomially bounded width. Notably, these results can be viewed as lower bounds against
the

∑
smABP model where each variable set in the variable partition has size 2 (that is, the

total number of variables is 2d). This is because a multilinear polynomial and any multilinear
model computing it (such as circuit, formula, or branching program) can be converted, in
a generic manner, to a set-multilinear polynomial and the corresponding set-multilinear
model respectively, with each variable set having size 2 (also see Section 1.5 for a discussion).
However, from the perspective of hardness escalation of [5] that is described above – and
which is indeed the focus of our work – the setting of d that is far more interesting is when it
is allowed to be considerably smaller than n. More precisely, the framework of [5] requires
d = O(log n/ log log n) (stated formally as Theorem 1.5 below). A detailed discussion about
the results in [31], [13] and how they compare with our work can be found in Section 1.5.

1.3 Our Results
Our main result is in this paper is a super-polynomial lower bound against an unrestricted
sum of ordered set-multilinear branching programs, for a hard polynomial with “small” degree.
We first state this result formally below, and then subsequently explain the connection with
the hardness escalation result of [5] that is alluded to in the previous subsections.

▶ Theorem 1.4 (“Low”-Degree
∑

smABP Lower Bounds). Let d ≤ n be growing parameters
satisfying d = ω(log n). There is a Θ(dn)-variate degree d set-multilinear polynomial Fn,d in
VP such that Fn,d cannot be computed by a

∑
smABP of total-width poly(n).

2 We briefly explain the connection between ordered set-multilinear ABPs and non-commutative compu-
tation in Section 1.4.

CCC 2024

20:6 Lower Bounds for Set-Multilinear Branching Programs

Next, we formally state the aforementioned hardness escalation result of [5]. In words, in
order to show VBP ≠ VP, it suffices to show lower bounds for any

∑
smABP computing a

polynomial P whose degree is at most about logarithmic in the number of variables. Towards
this goal, our main result above (Theorem 1.4) shows a super-polynomial lower bound for
any

∑
smABP computing an explicit set-multilinear polynomial, whose degree is barely

super-logarithmic in the number of variables. In this sense, it approaches the resolution of
Valiant’s conjecture.

▶ Theorem 1.5 (Hardness Escalation of [5]). Let n, d be growing parameters with d =
O(log n/ log log n). Let Pn,d be a Θ(dn)-variate degree d set-multilinear polynomial in VP
(respectively, VNP). If Pn,d cannot be computed by a

∑
smABP of total-width poly(n), then

VBP ̸= VP (respectively, VBP ̸= VNP).

Next, we also give an explicit set-multilinear polynomial (with polynomially-large degree)
such that any

∑
smABP computing it must require exponential total-width. This strongly

answers a question left open in both [3] and [5].

▶ Theorem 1.6 (Exponential Lower Bounds for
∑

smABP). There is a set-multilinear
polynomial Fn,n in VP, in Θ(n2) variables and of degree Θ(n), such that any

∑
smABP

computing Fn,n requires total-width exp(Ω(n1/3)).

Theorem 1.6 and Theorem 1.4 are also true when Fn,d (as defined in Section 3.3) is
replaced by the appropriate Nisan-Wigderson polynomial NWn,d (as defined in Section 3.2),
which is known to be in VNP. In fact, we first indeed established them for the Nisan-
Wigderson polynomial, and then used some of the ideas presented in a recent work by Kush
and Saraf ([26]) to make the hard polynomial lie in VP.3

With additional effort, and building upon the machinery4 of [26] (which, in turn, uses the
techniques developed in [10]), we can almost recover the same lower bounds as in Theorem 1.6
and Theorem 1.4 for a set-multilinear polynomial even in VBP. We preferred to first state
Theorem 1.6 and Theorem 1.4 in the manner above because (i) the proof is less intricate
and in fact, even serves as a prelude to the proof of the latter, and (ii) to draw a direct
comparison and contrast with the hardness escalation statement (Theorem 1.5). We now
state these results for when the hard polynomial is the VBP polynomial and then describe
two intriguing consequences.

▶ Theorem 1.6’. There is a fixed constant δ ≥ 1/100 and a set-multilinear polynomial Gn,n

in VBP, in Θ(n2) variables and of degree Θ(n), such that any
∑

smABP computing Gn,n

requires total-width exp(Ω(nδ)).

▶ Theorem 1.4’. Let d ≤ n be growing parameters satisfying d = ω(log n). There is a
Θ(dn)-variate, degree Θ(d) set-multilinear polynomial Gn,d in VBP such that Gn,d cannot be
computed by a

∑
smABP of total-width poly(n).

The first intriguing consequence of proving the statements above is that we are able
to show that the ABP set-multilinearization process given in [5] is nearly tight, as Gn,d is
known to have a small set-multilinear branching program and yet, any

∑
smABP computing

it must have large total-width. To make this point effectively, we first state the following key
ingredient in the proof of Theorem 1.5, and subsequently state our tightness result.

3 We also acknowledge that an exponential lower bound – with weaker quantitative parameters – for the
related model of multilinear ROABPs was obtained in [31]. For a comparison of this model with the∑

smABP model, see Sections 1.4 and 1.5.
4 This is explained in more detail in Section 1.6.

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:7

▶ Lemma 1.7 (ABP Set-Multilinearization in [5]). Let Pn,d be a polynomial of degree d that is
set-multilinear with respect to the partition X = (X1, . . . , Xd) where |Xi| ≤ n for all i ∈ [d].
If Pn,d can be computed by an ABP of size s, then it can also be computed by a

∑
smABP

of max-width s and total-width 2O(d log d)s.

▶ Theorem 1.8 (Near-Tightness of ABP Set-Multilinearization). For large enough integers
ω(log n) = d ≤ n, there is a polynomial Gn,d(X) which is set-multilinear over the variable
partition X = (X1, . . . , Xd) with each |Xi| ≤ n, and such that:

it has a branching program of size poly(n),
but any

∑
smABP of max-width poly(n) computing Gn,d requires total-width 2Ω(d).

The second intriguing consequence is the fact that Theorem 1.8 can also be viewed
as an exponential separation between the model of (general) small-width set-multilinear
branching programs and the model of sums of small-width ordered set-multilinear branching
programs. Moreover, we can improve this bound much further in the case of a single ordered
set-multilinear branching program. More precisely, in Theorem 1.9 below, we answer a
question posed in [26] about the relative strength of an unordered and (a single) ordered
set-multilinear branching program, by obtaining a near-optimal separation. A priori, as is
shown in [26] and as mentioned earlier in the introduction, if these two models coincided
(i.e., if a general set-multilinear ABP could be simulated by a small and ordered one), then
it would have led to super-polynomial lower bounds for general algebraic formulas.

▶ Theorem 1.9 (Near-Optimal Separation between Ordered and Unordered smABPs). There is
a polynomial Gn,d(X) which is set-multilinear over the variable partition X = (X1, . . . , Xd)
with each |Xi| ≤ n, and such that:

it has a set-multilinear branching program of size poly(n, d),
but any ordered set-multilinear branching program computing Gn,d requires width nΩ(d).

Note that Gn,d has at most nd monomials and so, it trivially has an ordered set-multilinear
ABP of width nd. Therefore, the lower bound above is essentially optimal.

1.4 The ROABP Perspective
One can also view all of our results described in Section 1.3 through the lens of another
well-studied model in algebraic complexity theory, namely read-once oblivious algebraic
branching programs (ROABPs).

▶ Definition 1.10 (ROABP). For integers n, d and a permutation σ ∈ Sn, an ABP over the
variables x1, . . . , xn is said be a read-once oblivious algebraic branching program (ROABP)
in the order σ of individual degree d if for each ℓ ∈ [n], all edges from layer ℓ − 1 to ℓ are
labelled by univariate polynomials in xσ(i) of degree at most d.

ROABPs were first introduced in this form by Forbes and Shpilka in [12], where it is also
noted that proving lower bounds against ordered set-multilinear ABPs (as in Definition 1.1)
is equivalent to proving lower bounds against ROABPs as well as non-commutative ABPs.

Suppose f ∈ [X1, . . . , Xd] is a set-multilinear polynomial with respect to X1 ⊔ · · · ⊔ Xd

with Xi = {xi,1, . . . , xi,n}. Then we can define an associated polynomial gf ∈ [x1, . . . , xd] as
follows.

gf (x1, . . . xd) =
∑

e∈[n]d

n∏
i=1

xei
i · coefficient of xi,ei

.

CCC 2024

20:8 Lower Bounds for Set-Multilinear Branching Programs

Now let us assume that gf can be computed by an ROABP of size s that is ordered with
respect to σ ∈ Sn. Then a set-multilinear ABP ordered with respect to σ can be constructed
using it, by simply replacing xei

i by xi,ei
and erasing any degree zero components on each

edge. It is easy to check that this computes f and we can use the lower bound against ordered
set-multilinear ABPs for f to prove a lower bound against ROABPs for gf . Conversely,
given g ∈ [x1, . . . , xn], we can define fg ∈ [X1, . . . , Xn] with Xi = {xi,0, xi,1, . . . , xi,d} by by
replacing xei

i with xi,ei
. We could then use an ordered set-multilinear ABP computing fg to

construct an ROABP (in the same order) computing g by using the inverse transformation,
thereby proving that lower bounds against ROABPs imply lower bounds against ordered
set-multilinear ABPs. Furthermore, the computation that an ROABP (or an ordered set-
multilinear ABP) performs can be seen to be non-commutative. This is because the variables
(or linear forms) along a path get multiplied in the same order σ as that of the ROABP (or
ordered set-multilinear ABP).

As a consequence, exponential lower bounds follow for a single ROABP from the work of
Nisan ([29]), and also from later works ([18, 21]). Using the transformation described above,
our lower bounds (Theorem 1.6 and Theorem 1.6’) can also be viewed as exponential lower
bounds for the model of sum of ROABPs. The work of Ramya & Rao [31] also prove (weaker)
exponential lower bounds against this model for a multilinear polynomial computable by
multilinear circuits. In a follow-up work, Ghoshal & Rao [13] prove an exponential lower
bound against sums of ROABPs with the additional restriction that the summand ROABPs
have pollynomially-bounded width for a mulilinear polynomial computable by multlinear
ABPs. On the other hand, the works of Arvind & Raja ([3]) and Bhargav, Dwivedi & Saxena
([5] provide lower bounds in certain restricted versions of this model. Along with these, the
work of Anderson, Forbes, Saptharishi, Shpilka, and Volk ([2]) also implies an exponential
lower bound for a restricted version (for the sum of k ROABPs when k = o(log n)).

Finally, we note that ROABPs have been studied extensively in the context of another
central problem in algebraic complexity theory: that of polynomial identity testing (PIT).
The PIT question for a general algebraic model M is the following: Given access to an
n-variate polynomial f of degree at most d that can be computed in the model M of (an
appropriate measure of) complexity at most s, determine whether f ≡ 0 in poly(n, d, s) time.
When one is given access to the model computing f explicitly, this flavour of PIT is called
white-box PIT, and when one is merely provided query access to f , it is called black-box
PIT.

The solution to the PIT problem for ROABPs in the white-box setting follows from
a result by Raz and Shpilka ([34] – where it is stated in the equivalent language of non-
commutative computation). However, the corresponding problem in the black-box setting
remains open to this date, with the best-known time bound in the black-box setting still
being only sO(log s) due to the work by Forbes and Shpilka ([12]), who additionally assumed
that the ordering of the ROABP is known. This was matched later by Agrawal Gurjar,
Korwar, and Saxena ([1]) in the unknown order setting, improving upon the work of Forbes,
Saptharishi and Shpilka ([11]). Guo and Gurjar improved the result further by improving
the dependence on the width [14]. Additionally, there have been various improvements to
this result in restricted settings ([15, 17, 6]) and some other works that study PIT for a
small sum of ROABPs ([16, 7, 14]). When the number of summands is super-constant, the
question of even white-box PIT remains wide open.

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:9

1.5 Related Work
In this subsection, we discuss two closely related papers, namely those of Ramya & Rao [31]
and Ghoshal & Rao [13]5, which study the model of sum of ROABPs in the multilinear setting.
In [31, Theorem 1], the authors show that there exists an explicit multilinear polynomial
(computable by a small multilinear circuit) such that any sum of ROABPs computing it has
exponential size. In [13, Theorem 2], the authors show a similar lower bound for an explicit
multilinear polynomial (computable by a small multilinear ABP) – albeit, in the restricted
setting where the summand ROABPs have polynomially-bounded width.

Using the transformation described in Section 1.4, one can then view these lower bounds
as ones against the

∑
smABP model in the special case that each bucket in the variable

partition has size 2. (To see how a multilinear polynomial say over the variable set x1, . . . , xd

can be set-multilinearized trivially, here is a sketch: for each variable xi, have a variable
set Xi comprising of two fresh variables xi,0 and xi,1 in the new set-multilinear polynomial;
here, the latter is to signify the “presence” of xi in any monomial of the original multilinear
polynomial, whereas the former is to signify its “absence”.) Additionally, it is not hard
to see that the set-multilinearized version of the hard polynomials (in the manner just
described) used in [31, Theorem 1] and [13, Theorem 2] are efficiently computable by small
set-multilinear circuits and set-multilinear ABPs respectively. We note, however, that even
so, our result in the high-degree setting where the hard polynomial is in VP (Theorem 1.6)
is quantitatively better than [31, Theorem 1]. Additionally, our result in the high-degree
setting where the hard polynomial is in VBP (Theorem 1.6’) is both quantitatively as well as
qualitatively better than [13, Theorem 2] – the latter since we do not assume any bound
on the width of the individual summand ordered set-multilinear ABPs. More crucially, our
techniques enable us to prove super-polynomial bounds even when the degree is vastly smaller
than the number of variables – in particular, when d is as low as ω(log n) (Theorem 1.4 and
Theorem 1.4’) – which is the more interesting regime of parameters due to the work of [5].

Ramya and Rao [31] also study another model, which they call sum of α-set-multilinear
ABPs. They define α-set-multilinear ABPs to be ABPs with Nα layers, where N is the
number of variables in the polynomial being computed. Any edge between layer ℓ − 1 and
ℓ in an α-set-multilinear ABP is labelled by an arbitrary multilinear polynomial over Xℓ,
where X = X1 ⊔ · · · ⊔ XNα is a partition of the variable set. Then, for α ≥ 1/10, they
establish exponential lower bounds against sum of α-set-multilinear ABPs for a polynomial
that is multilinear, but which is not set-multilinear under the variable partition that the
model respects. Hence, even though this model is more general than ordered set-multilinear
ABPs, this result [31, Theorem 3] is also not comparable with ours as our hard polynomial
is set-multilinear. Again, more crucially, the result [31, Theorem 3] does not handle the
“low-degree” regime – a setting in which our techniques allow us to prove lower bounds.

1.6 Proof Overview
The organization of this subsection is as follows: we first describe the basics of the partial
derivative method and summarize its typical application in proving lower bounds against
a generic set-multilinear model of computation. Next, we briefly describe Nisan’s original
partial derivative method from [29] to prove lower bounds specifically against a single ordered
set-multilinear branching program. We then describe an alternative approach that yields a

5 We thank Ben Lee Volk and Utsab Ghosal for pointing out these papers to us after the release of an
initial pre-print of this article, which erroneously claimed that it was the first to show super-polynomial
lower bounds in the sum of ROABPs model.

CCC 2024

20:10 Lower Bounds for Set-Multilinear Branching Programs

slightly weaker bound for the same model, but nevertheless is versatile enough that we can
generalize it considerably more in order to prove Theorem 1.6 and Theorem 1.4. Finally, we
describe the additional ideas needed in order to situate the hard polynomial in these theorems
in VBP and in the process, establish the tightness result for ABP set-multilinearization
(Theorem 1.8).

Partial Derivative Measure Basics

The high-level idea is to work with a measure that we show to be “small” for all polynomials
computed by a specified model of computation – the model against which we wish to
prove lower bounds. If we can also show that there is a “hard” polynomial for which the
measure is in fact “large”, then it follows that this polynomial cannot be computed by the
specified model. These partial derivative measures, after the initial work ([29]) by Nisan,
were further developed by Nisan and Wigderson in [30], who used them to prove some
constant-depth set-multilinear formula lower bounds. Since then, variations of these measures
have also been used to prove various other stronger set-multilinear formula lower bounds
(e.g., [27, 39, 28, 4, 25, 26]).

Given a variable partition (X1, . . . , Xd), the idea is to label each set of variables Xi

as “+1” or “−1” according to some rule (called a “word”) w ∈ {−1, 1}d. Let Pw and Nw

denote the set of positive and negative indices (or coordinates) respectively, and let MP
w

and MN
w denote the sets of all set-multilinear monomials over Pw and Nw respectively. For

a polynomial f that is set-multilinear over the given variable partition (X1, . . . , Xd), the
measure then is simply the rank of the “partial derivative matrix” Mw(f), whose rows are
indexed by the elements of MP

w and columns indexed by MN
w , and the entry of this matrix

corresponding to a row m1 and a column m2 is the coefficient of the monomial m1 · m2 in f .
For a subset S ⊆ [d], let wS denote the sum of those coordinates of w that lie in

S. In other words, |wS | measures the amount of “bias” that the rule w exhibits when
restricted to the S coordinates. Note that the rank of Mw(f) can never exceed n(d−|w[d]|)/2.
Furthermore, we have that the rank measure is multiplicative: if f and g are polynomials
that are set-multilinear over disjoint subsets of the global partition (X1, . . . , Xd), then the
rank of Mw(f · g) is the product of the ranks of Mw(f) and Mw(g). These two observations,
combined with the sub-additivity of rank, provide a recipe for showing lower bounds against
any given set-multilinear model of computation: the overall idea is to carefully split up the
original model into smaller, multiplicatively disjoint parts and then argue the existence of a
rule for which enough of these parts exhibit high bias. This process allows us to prove that the
measure is small for the model of computation. Therefore, one can conclude that any explicit
polynomial for which the measure is provably high – which needs to established separately
– can not be computed by this model. It is known ([25, 26]) that there is a set-multilinear
polynomial NWn,d in VNP (see Section 3.2) as well as a set-multilinear polynomial Fn,d in VP
(see Section 3.3) for which the matrices Mw(NWn,d), Mw(Fn,d), have full-rank, whenever
|Pw| = |Nw|.

Nisan’s original lower bound

Let us first summarize how Nisan’s original partial derivative method from [29], as alluded
to in Section 1.2, can be applied in this context to obtain lower bounds against the size
of a single ordered set-multilinear ABP (ordered smABP) computing the aforementioned
“full-rank” polynomials. Given any set-multilinear branching program A ordered with respect

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:11

to some permutation σ ∈ Sd computing Fn,d, the idea is to pick a word w such that the
+1 labels in w precisely correspond to the “left half” of the ordering σ, and the −1 labels
correspond to the “right half”. One can then observe that the rank of Mw(Fn,d) = Mw(A)
serves as a lower bound on the number of nodes s in the middle layer of the ABP, yielding a
near-optimal nΩ(d) lower bound: this is because the matrix Mw(A) is easily seen to be the
product of an nd/2 × s and an s × nd/2 matrix.

We now sketch an alternate proof: rather than constructing a word dependent on the
ordering of variable sets Xi in the ordered smABP A as above, choose a uniformly random6

word w from {−1, 1}d. We demonstrate that, with positive probability, the rank of Mw(A)
is bounded by s · nd/2−Ω(

√
d), where s is the width of the middle layer in A: Standard

anti-concentration bounds imply that, with at least constant probability, the bias in the left
and right halves of A is Ω(

√
d). Since A can be expressed as a sum of s polynomials fi · gi

for i ∈ [s], where each fi and gi are ordered smABPs with respect to disjoint subsets of
the global partition, we encounter a loss of a factor of nΩ(

√
d) in the rank of the product

polynomial Mw(fi · gi) due to the bias of w. This, combined with the sub-additivity of rank,
shows the desired bound of s · nd/2−Ω(

√
d) on the rank of Mw(A). Finally, we exploit the

full-rank property of Fn,d with respect to such words to establish a lower bound of nΩ(
√

d)

on the width s of a single ordered smABP computing Fn,d. Notably, this bound is indeed
slightly worse than what one can obtain by manually defining a rule w deterministically,
which ensures a maximal bias of d/2 in each half of A as described in the paragraph above.

Generalization of the alternative argument

The alternative argument described above yields an exponential lower bound even for a sum
of ordered smABPs, assuming the number of summands is small. Consider a

∑
smABP of the

form
∑t

i=1 Ai, of max-width s, computing Fn,d. For each summand Ai, the analysis above
provides an upper bound of s · nd/2−Ω(

√
d) on the rank of Mw(Ai) with constant probability.

If the number of summands t is a small enough constant, the union bound ensures the
existence of a word w such that the rank of Mw(

∑
Ai) is at most t · s · nd/2−Ω(

√
d). Thus7,

we obtain an exponential lower bound on t · s since this
∑

smABP computes a full-rank
polynomial. However, because of the use of the union bound in this manner, this method
faces an inherent limitation – it is unable to handle more than a very small number of
summands, even if we lower the bias demand from each half (e.g., from Ω(

√
d) to Ω(4

√
d)

or a smaller polynomial in d). In fact, one can construct a sum of d ordered smABPs (by
starting with a single smABP ordered arbitrarily and considering the d cyclic shifts of this
ordering) such that any unbiased word w (i.e., w[d] = 0) has the property that for at least
one of the summands, the left and right halves will have no bias! Evidently then, in order to
prove lower bounds against an unrestricted number of summands, we need another method
to analyze the rank of the summands. Nonetheless, a conceptual takeaway from the exercise
above is that selecting a rule w that is oblivious to the orderings of individual summands
(and in particular, a random rule) still lets us derive strong lower bounds for the sum of
multiple ordered smABPs.

Suppose instead of slicing an ordered smABP A down the middle, we slice it into three
roughly equal pieces. Then, it is possible to write the polynomial computed by A as a sum
over s2 terms, each of the form fi · gi · hi where for each i, each of fi, gi, hi depends on d/3

6 We also need to suitably condition on the event that the word w is symmetric (i.e., |Pw| = |Nw|) in
order to use the full-rank property of the hard polynomial – the probability of this event is Θ(1√

d
). For

ease of exposition, we omit the technical details in this sketch.
7 See footnote 6.

CCC 2024

20:12 Lower Bounds for Set-Multilinear Branching Programs

disjoint variable sets of the global partition. We can then perform a similar analysis as above
to show enough bias across these 3 pieces, thereby obtaining a rank deficit. More precisely,
we can conclude that for a single ordered smABP A, again with a constant probability, the
rank of Mw(A) is at most s2 · nd/2−Ω(

√
d). When we slice the ABP into 3 pieces in this

way, it is not immediately clear where the gain is. In fact, for a single ordered smABP, this
method actually gives a worse lower bound on s due to the presence of the factor of s2.
Where we gain is in the magnitude of the probability with which we can guarantee that a
single ordered smABP has a rank deficit – we will now describe how this observation allows
us to take a union bound over many more summands.

In order to illustrate this trade-off more clearly, we will partition the ordered smABP
A into many more pieces. Suppose we slice it into q ≈

√
d pieces, each of size roughly

r = d/q ≈
√

d (this is just one setting of parameters; q and r are suitably optimized in the
final proof). Thus, the polynomial that A computes can be written as a sum of at most
sq−1 terms, where each term is a product of q polynomials – each set-multilinear over a
disjoint subset of the global partition, where each piece has size r. When a word w is chosen
randomly, each such piece again exhibits a bias of about Ω(

√
r) with constant probability.

The crucial observation then is that by known concentration bounds, it can be shown that
with probability exponentially close to 1, the sum of the biases across all the q pieces is
Ω(q

√
r) = poly(d). For a single ordered smABP A, this shows that the rank of Mw(A) is

at most sq · n−Ω(q
√

r), which is still enough to show an exponential lower bound on s, even
though it is worse than what we obtained by slicing into fewer pieces.

The key advantage in implementing this analysis is that it provides a way to argue that
for a random word w, Mw(A) has low rank for a single ordered smABP A – with probability
exponentially close to 1. In particular, this allows us to union bound over exponentially many
ordered smABPs and show that even if we have an

∑
smABP computing Fn,d of exponential

support size, with high probability, each summand will have a rank deficit. Then, again
using the sub-additivity of rank, we can conclude that the sum has a rank deficit as well.

This method of analyzing the rank of an ordered smABP by partitioning it into numerous
pieces and tactfully using concentration bounds is novel, and conceptually the most essential
aspect of the proof. As we demonstrated above, this method of analysis indeed gives a worse
bound for a single smABP. However, while mildly sacrificing what we can prove about the
rank of a single ordered smABP, we are able to leverage it to still prove something meaningful
about the rank of a sum with a much larger number of summands.

Our partial derivative measure draws inspiration from previously known lower bounds in
the context of multilinear and set-multilinear formulas ([32, 25]). One noteworthy distinction
lies in the analysis of the measure: whereas the partitioning is present intrinsically in those
formula settings, in our setting of ABPs, we deliberately introduce the partitioning at the
expense of a notable increase in the number of summands or the total-width (and therefore,
in the number of events we union bound over). The substantial advantage gained in utilizing
this partitioning for rank analysis justifies the tolerable increase in the total-width.

Tightness of ABP set-multilinearization

In order to make the hard polynomial in Theorems 1.6 and 1.4 lie in VBP, one might wonder
if we can get away with using the same rank measure (i.e., rank of the matrix Mw(·) for
a uniformly random word w ∈ {−1, 1}d) that was used in the analysis above for the VP
polynomial Fn,d. However, as far as we know, full-rank polynomials (in the sense described
above) may also require super-polynomial sized set-multilinear ABPs. Thus, in order to prove
a separation between (general) set-multilinear ABPs and (sums of) ordered set-multilinear
ABPs, we seek a property that is weaker than being full-rank and yet is still useful enough for

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:13

proving lower bounds against our model. For this, we rely upon the arc-partition framework
that is developed in [26] in order to prove near-optimal set-multilinear formula lower bounds
(building upon the initial ingenious construction given in [10] for the multilinear context),
tailor the framework to our

∑
smABP model, and use a more delicate concentration bound

analysis in order to prove our results.
An arc-partition is a special kind of symmetric word w from {−1, 1}d: we will now describe

a distribution over {−1, 1}d; the words that will have positive probability of being obtained
in this distribution will be called arc-partitions. The distribution is defined according to the
following (iterative) sampling algorithm. Position the d variable sets on a cycle with d nodes
so that there is an edge between i and i + 1 modulo d. Start with the arc [L1, R1] = {1, 2}
(an arc is a connected path on the cycle). At step t > 1 of the process, maintain a partition
of the arc [Lt, Rt]. “Grow” this partition by first picking a pair uniformly at random out of
the three possible pairs {Lt − 2, Lt − 1}, {Lt − 1, Rt + 1}, {Rt + 1, Rt + 2}, and then choosing
a labelling (or partition) Π on this pair i.e., assigning one of them “+1” and the other “−1”
uniformly at random. After d/2 steps, we have chosen a partition (i.e., a word w from
{−1, 1}d) of the d variable sets into two disjoint, equal-size sets of variables P and N . It is
known from [26] that there exist set-multilinear polynomials Gn,d (as defined in Section 3.4)
that are arc-full-rank i.e., Mw(Gn,d) is full-rank for every arc-partition w. Analogous to the
proofs of Theorems 1.6 and 1.4, we establish our

∑
smABP lower bounds by showing that

with high probability, every
∑

smABP has an appropriately large rank deficit with respect
to the arc-partition distribution. However, as we now briefly explain, this analysis turns out
to be significantly more intricate.

Similar to the analysis as in the VP case, we partition an ordered smABP A into q pieces
of size r each, and write the polynomial that it computes as a sum of at most sq terms. Again,
the task is to show that an arc-partition w exhibits a large total bias across the q pieces:
more precisely, we show that if the pieces are labelled as S1, . . . , Sq, then with probability
exponentially close to 1, the sum

∑q
i=1 |wSi

| (i.e., the total bias of w across these pieces) is
Ω(qrε), which is polynomially large in d for an appropriate setting of q, r. This then yields
the desired rank deficit similar to the VP analysis (albeit with mildly worse parameters).

The bias lower bound is established in the following sequence of steps:

View the partition (S1, . . . , Sq) of [d] as a fixed “coloring” of the latter. We say that a pair
– as sampled in the construction of an arc-partition described above – “violates” a color S

if exactly one of the elements of the pair is colored by the set S. Then, we show that
with probability exponentially close to 1, “many” colors must have “many” violations:
more precisely, that at least a constant fraction of the colors (i.e., Ω(q) many) have at
least r2ε many violations each (for some small constant ε > 0). Such a “many violations”
lemma is also established in [26] in the context of proving set-multilinear formula lower
bounds. We show that this lemma, in fact, holds for a much wider range of parameters
than was previously known; this extension is indeed necessary for our use. The proof of
this strengthened many violations lemma is deferred to the appendix.

We then use the strengthened many violations lemma to argue that even though w is not
chosen uniformly at random and as such, its coordinates are not truly independent, it
possesses “enough” inherent independence that a similar concentration bound as in the
VP analysis is applicable. More precisely, we show that with high probability, there is an
ordering of a set of Ω(q) colors such that each such color has at least r2ε violations and
a more nuanced application of standard concentration bounds shows that w exhibits a
total bias of at least Ω(qrε).

CCC 2024

20:14 Lower Bounds for Set-Multilinear Branching Programs

2 Relative Rank and its Properties

We first describe the notation that we need to define the measures that we use to prove our
results described in Section 1.3. Instead of directly working with the rank of the partial
derivative matrix, we work with the following normalized form.

▶ Definition 2.1. Let w = (w1, w2, . . . , wd) be a tuple (or word) of non-zero real numbers.
For a subset S ⊆ [t], we shall refer to the sum

∑
i∈S wi by wS, and by w|S, we will refer

to the tuple obtained by considering only the elements of w that are indexed by S. Given a
word w = (w1, . . . , wd), we denote by X(w) a tuple of d sets of variables (X(w1), . . . , X(wd))
where |X(wi)| = 2|wi|.8 We denote by Fsm[T] the set of set-multilinear polynomials over the
tuple of sets of variables T .

▶ Definition 2.2 (Relative Rank Measure of [27]). Let X = (X1, . . . , Xd) be a tuple of sets of
variables such that |Xi| = ni and let f ∈ Fsm[X]. Let w = (w1, w2, . . . , wd) be a tuple (or
word) of non-zero real numbers such that 2|wi| = ni for all i ∈ [d]. Corresponding to a word
w, define Pw := {i | wi > 0} and Nw := {i | wi < 0}. Let MP

w be the set of all set-multilinear
monomials over the subset of the variable sets X1, X2, . . . , Xd precisely indexed by Pw, and
similarly let MN

w be the set of all set-multilinear monomials over these variable sets indexed
by Nw.

Define the ‘partial derivative matrix’ matrix Mw(f) whose rows are indexed by the
elements of MP

w and columns indexed by the elements of MN
w as follows: the entry of this

matrix corresponding to a row m1 and a column m2 is the coefficient of the monomial m1 ·m2
in f . We define

relrkw(f) := rank(Mw(f))√
|MP

w | · |MN
w |

= rank(Mw(f))

2
1
2

∑
i∈[d]

|wi|
.

The following is a simple result that establishes various useful properties of the relative
rank measure.

▷ Claim 2.3 ([27]).
1. (Imbalance) Say f ∈ Fsm[X(w)]. Then, relrkw(f) ≤ 2−|w[d]|/2.
2. (Sub-additivity) If f, g ∈ Fsm[X(w)], then relrkw(f + g) ≤ relrkw(f) + relrkw(g).
3. (Multiplicativity) Say f = f1f2 · · · ft and assume that for each i ∈ [t], fi ∈ Fsm[X(w|Si

)],
where (S1, . . . , St) is a partition of [d]. Then

relrkw(f) =
∏
i∈[t]

relrkw|Si
(fi).

3 The Hard Polynomial

We now describe the different hard polynomials we use for our results.

3.1 Inner Product Gadget
The following observation is used crucially to construct the hard polynomials in VP as well
as VBP.

8 In particular, 2|wi| ∈ N.

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:15

▶ Observation 3.1 ([26]). Let n = 2k and X1 = {x1,1, . . . , x1,n} and X2 = {x2,1, . . . , x2,n}
be two disjoint sets of variables. Then, for any symmetric word w ∈ {k, −k}2 (i.e., where
w1 + w2 = 0) and for the inner product “gadget” f = X1 · X2 =

∑n
i=1 x1,ix2,i, relrkw(f) = 1

i.e., Mw(f) is full-rank.

3.2 A Hard Set-multilinear Polynomial in VNP
As is done in previous lower bounds using the NW polynomials (for example, see [22]), we
will identify the set of the first n integers as elements of n via an arbitrary correspondence
ϕ : [n] →n. If f(z) ∈n [z] is a univariate polynomial, then we abuse notation to let f(i)
denote the evaluation of f at the i-th field element via the above correspondence i.e.,
f(i) := ϕ−1(f(ϕ(i))). To simplify the exposition, in the following definition, we will omit the
correspondence ϕ and identify a variable xi,j by the point (ϕ(i), ϕ(j)) ∈n ×n.

▶ Definition 3.2 (Nisan-Wigderson Polynomials). For a prime power n, let n be a field of size
n. For an integer d ≤ n and the set X of nd variables {xi,j : i ∈ [n], j ∈ [d]}, we define the
degree d homogeneous polynomial NWn,d over any field as

NWn,d(X) =
∑

f(z)∈n[z]
deg(f)<d/2

∏
j∈[d]

xf(j),j .

▷ Claim 3.3 ([25]). For an integer n = 2k and d ≤ n, let w ∈ {k, −k}d with w[d] = 0. Then
relrkw(NWn,d) = 1 i.e., Mw(NWn,d) has full rank.

Proof. Fix n = 2k and d, so that we can also write NW for NWn,d, and let n′ = d/2. The
condition on w implies that |Pw| = |Nw| = n′. Observe that Mw(NW) is a square matrix
of dimension |MP

w | = |MN
w | = nn′ . Consider a row of Mw(NW) indexed by a monomial

m1 = xi1,j1 · · · xin′ ,jn′ ∈ MP
w . m1 can be thought of as a map from S = {j1, . . . , jn′} to n

which sends jℓ to iℓ for each ℓ ∈ [n′]. Next, by interpolating the pairs (j1, i1), . . . , (jn′ , in′), we
know that there exists a unique polynomial f(z) ∈n (z) of degree < n′ for which f(jℓ) = iℓ for
each ℓ ∈ [n′]. As a consequence, there is a unique “extension” of the monomial xi1,j1 · · · xin′ ,jn′

that appears as a term in NW , which is precisely m1 ·
∏

j∈Nw
xf(j),j . Therefore, all but one

of the entries in the row corresponding to m1 must be zero, and the remaining entry must
be 1. Applying the same argument to the columns of Mw(NW), we deduce that Mw(NW)
is a permutation matrix, and so has full rank. ◁

3.3 A Hard Set-multilinear Polynomial in VP
Let d be an even integer and let X = (X1, . . . , Xd) be a collection of sets of variables where
each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables
where each |Yi| = n. We shall refer to the Y -variables as the auxiliary variables. For i and
j ∈ {1, . . . , d}, let Xi · Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here, we

shall assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
For two integers i ∈ N and j ∈ N, we denote [i, j] = {k ∈ N : i ≤ k and k ≤ j}

and call such a set an interval. For every interval [i, j] ⊆ [d], we define a polynomial
fi,j(X, Y) ∈ Fsm[Xi, . . . , Xj , Yi, . . . , Yj] as follows:

fi,j =

yi,jyj,i(Xi · Xj) if j = i + 1
0 if j − i is even
yi,jyj,i(Xi · Xj) · fi+1,j−1 +

∑j−1
r=i+1 fi,rfr+1,j otherwise

CCC 2024

20:16 Lower Bounds for Set-Multilinear Branching Programs

These fi,j in present form were defined in [26], but were in turn inspired from an earlier
work of Raz and Yehudayoff ([35]) in the multilinear context. [26] shows that they have the
following full-rank property that will be instrumental for us.

▶ Lemma 3.4 ([26]). Let n = 2k and d ≤ n be an even integer. Over any field of
characteristic zero, the polynomial Fn,d = f1,d ∈ Fsm[X, Y] as defined above satisfies the
following: For any w ∈ {−k, k}d with w[d] = 0, Mw(Fn,d) is full-rank when viewed as a
matrix over the field (Y), the field of rational functions over the Y variables.

3.4 A Hard Set-Multilinear Polynomial in VBP
3.4.1 Arc-partition Measure Description
This subsection is adapted from Section 2 of [10]. Let n = 2k, d ≤ n be an even integer, and
let X = (X1, X2, . . . , Xd) be a collection of disjoint sets of n variables each. An arc-partition
will be a special kind of symmetric word w ∈ {−k, k}d (i.e., a one-to-one map Π from X to
{−k, k}d). For the purpose of this subsection, the reader can even choose to think of the
alphabet of w as {−1, 1} (i.e., one “positive” and one “negative” value) – we use k, −k only
to remain consistent with Definition 2.2.

Identify X with the set {1, 2, . . . , d} in the natural way. Consider the d-cycle graph,
i.e., the graph with nodes {1, 2, . . . , d} and edges between i and i + 1 modulo d. For two
nodes i ̸= j in the d-cycle, denote by [i, j] the arc between i, j, that is, the set of nodes
on the path {i, i + 1, . . . , j − 1, j} from i to j in d-cycle. First, define a distribution DP

on a family of pairings (a list of disjoint pairs of nodes in the cycle) as follows. A random
pairing is constructed in d/2 steps. At the end of step t ∈ [d/2], we shall have a pairing
(P1, . . . , Pt) of the arc [Lt, Rt]. The size of [Lt, Rt] is always 2t. The first pairing contains
only P1 = {L1, R1} with L1 = 1 and R1 = 2. Given (P1, . . . , Pt) and [Lt, Rt], define the
random pair Pt + 1 (independently of previous choices) by

Pt+1 =

{Lt − 2, Lt − 1} with probability 1/3
{Lt − 1, Rt + 1} with probability 1/3
{Rt + 1, Rt + 2} with probability 1/3

Define

[Lt+1, Rt+1] = [Lt, Rt] ∪ Pt+1.

So, Lt+1 is either Lt − 2, Lt − 1 or Lt, each value is obtained with probability 1/3, and
similarly (but not independently) for Rt+1.

The final pairing is P = (P1, P2, . . . , Pd/2). Denote by P ∼ DP a pairing distributed
according to DP .

Once a pairing P has been obtained, a word w ∈ {−k, k}d is obtained by simply randomly
assigning +k and −k to the indices of any pair Pi. More formally, for every t ∈ [d/2], if
Pt = {it, jt}, let with probability 1/2, independently of all other choices,

wit = +k and wjt = −k,

and with probability 1/2,

wit
= −k and wjt

= +k.

Denote by w ∼ D a word in {−1, 1}n that is sampled using this procedure. We call such a
word an arc-partition. For a pair Pt = {it, jt}, we refer to it and jt as partners.

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:17

▶ Definition 3.5 (Arc-full-rank). We say that a polynomial f that is set-multilinear over
X = (X1, . . . , Xd) is arc-full-rank if for every arc-partition w ∈ {−k, k}d, relrkw(f) = 1.

3.4.2 Construction of an Arc-full-rank Polynomial
Below, we describe a simple construction of a polynomial sized ABP that computes an
arc-full-rank set-multilinear polynomial. The high-level idea is to construct an ABP in
which every path between start-node and end-node corresponds to a specific execution of
the random process which samples arc-partitions. Each node in the ABP corresponds to an
arc [L, R], which sends an edge to each of the nodes [L − 2, R], [L − 1, R + 1] and [L, R + 2].
The edges have specially chosen labels that help guarantee full rank with respect to every
arc-partition. For simplicity of presentation, we allow the edges of the program to be labeled
by degree four set-multilinear polynomial polynomials over the corresponding subset of the
variable partition. This assumption can be easily removed by replacing each edge with a
polynomial-sized ABP computing the corresponding degree four polynomial.

Formally, the nodes of the program are even-size arcs in the d-cycle, d an even integer.
The start-node of the program is the empty arc ∅ and the end-node is the whole cycle [d]
(both are “special” arcs). Let X = (X1, . . . , Xd) be a collection of sets of variables where
each |Xi| = n, and similarly, let Y = (Y1, . . . , Yd) be a distinct collection of sets of variables
where each |Yi| = n (we shall refer to the Y -variables as auxiliary variables). For i and j in
{1, . . . , d}, let Xi · Xj denote the inner-product quadratic form

∑n
k=1 xikxjk. Here, we shall

assume that Xi = {xi,1, . . . , xi,n} and Yi = {yi,1, . . . , yi,n}.
Construct the branching program by connecting a node/arc of size 2t to three nodes/arcs

of size 2t + 2. For t = 1, there is just one node [1, 2], and the edge from start-node to it is
labeled y1,2y2,1(X0 · X1). For t > 1, the node [L, R] ⊃ [1, 2] of size 2t < d is connected to
the three nodes: [L − 2, R], [L − 1, R + 1], and [L, R + 2]. (It may be the case that the three
nodes are the end-node.) The edge labeling is:

The edge between [L, R] and [L − 2, R] is labeled yL−2,L−1yL−1,L−2(XL−2 · XL−1).
The edge between [L, R] and [L − 1, R + 1] is labeled yL−1,R+1yR+1,L−1(XL−1 · XR+1).
The edge between [L, R] and [L, R + 2] is labeled yR+1,R+2yR+2,R+1(XR+1 · XR+2).

Consider the ABP thus described, and the polynomial Gn,d it computes. For every path
γ from start-node to end-node in the ABP, the list of edges along γ yields a pairing P ; every
edge e in γ corresponds to a pair Pe = {ie, je} of nodes in d-cycle. Thus,

Gn,d =
∑

γ

∏
e={ie,je}∈γ

yie,jeyje,ie · (Xie · Xje). (1)

where the sum is over all paths γ from start-node to end-node.

▶ Remark 3.6. There is in fact a one-to-one correspondence between pairings P and such
paths γ (this follows by induction on t). Note that this is true only because pairings are
tuples i.e., they are ordered by definition. Otherwise, it is of course still possible to obtain
the same set of pairs in a given pairing using multiple different orderings. The sum defining
Gn,d can be thought of, therefore, as over pairings P .

The following statement summarizes the main useful property of Gn,d.

▶ Lemma 3.7 ([26]). Over any field of characteristic zero, the polynomial Gn,d defined
above is arc-full-rank as a set-multilinear polynomial in the variables X over the field (Y) of
rational functions in Y .

CCC 2024

20:18 Lower Bounds for Set-Multilinear Branching Programs

Proof. Let w ∼ D be an arc-partition. We want to show that Mw(Gn,d) has full rank.
The arc-partition w is defined from a pairing P = (P1, . . . , Pd/2) (though as discussed in
Remark 3.6, there could be multiple such P). The pairing P corresponds to a path γ

from start-node to end-node. Consider the polynomial f that is obtained by setting every
yi,j = yj,i = 0 in F such that {i, j} is not a pair in P , and setting every yi,j = yj,i = 1 for
every pair {i, j} in P . Then, it is easy to see that the only terms that survive in Equation 1
correspond to paths (and in turn, pairings) which have the same underlying set of pairs
as P . As a consequence, f is simply some non-zero constant times a polynomial which is
full-rank (recall Observation 3.1). Mw(f) being full rank then implies that Mw(Gn,d) is also
full-rank. ◀

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP

and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015. doi:10.1137/
140975103.

2 Matthew Anderson, Michael A. Forbes, Ramprasad Saptharishi, Amir Shpilka, and Ben Lee
Volk. Identity testing and lower bounds for read-k oblivious algebraic branching programs.
ACM Trans. Comput. Theory, 10(1):3:1–3:30, 2018. doi:10.1145/3170709.

3 Vikraman Arvind and S. Raja. Some lower bound results for set-multilinear arithmetic
computations. Chic. J. Theor. Comput. Sci., 2016, 2016. URL: http://cjtcs.cs.uchicago.
edu/articles/2016/6/contents.html.

4 C. S. Bhargav, Sagnik Dutta, and Nitin Saxena. Improved lower bound, and proof barrier,
for constant depth algebraic circuits. In Stefan Szeider, Robert Ganian, and Alexandra Silva,
editors, 47th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2022, August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 18:1–18:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.MFCS.2022.
18.

5 C.S. Bhargav, Prateek Dwivedi, and Nitin Saxena. Lower bounds for the sum of small-size
algebraic branching programs. To appear in the proceedings of the Annual Conference on
Theory and Applications of Models of Computation, 2024. URL: https://www.cse.iitk.ac.
in/users/nitin/papers/sumRO.pdf.

6 Vishwas Bhargava and Sumanta Ghosh. Improved hitting set for orbit of roabps. Comput.
Complex., 31(2):15, 2022. doi:10.1007/S00037-022-00230-9.

7 Pranav Bisht and Nitin Saxena. Blackbox identity testing for sum of special roabps and its
border class. Comput. Complex., 30(1):8, 2021. doi:10.1007/S00037-021-00209-Y.

8 Peter Bürgisser. Cook’s versus valiant’s hypothesis. Theor. Comput. Sci., 235(1):71–88, 2000.
doi:10.1016/S0304-3975(99)00183-8.

9 Prerona Chatterjee, Mrinal Kumar, Adrian She, and Ben Lee Volk. Quadratic lower bounds
for algebraic branching programs and formulas. Comput. Complex., 31(2):8, 2022. doi:
10.1007/S00037-022-00223-8.

10 Zeev Dvir, Guillaume Malod, Sylvain Perifel, and Amir Yehudayoff. Separating multilinear
branching programs and formulas. In Howard J. Karloff and Toniann Pitassi, editors, Proceed-
ings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY,
USA, May 19 - 22, 2012, pages 615–624. ACM, 2012. doi:10.1145/2213977.2214034.

11 Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Hitting sets for multilinear
read-once algebraic branching programs, in any order. In David B. Shmoys, editor, Symposium
on Theory of Computing, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages
867–875. ACM, 2014. doi:10.1145/2591796.2591816.

12 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 243–252. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.34.

https://doi.org/10.1137/140975103
https://doi.org/10.1137/140975103
https://doi.org/10.1145/3170709
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
http://cjtcs.cs.uchicago.edu/articles/2016/6/contents.html
https://doi.org/10.4230/LIPICS.MFCS.2022.18
https://doi.org/10.4230/LIPICS.MFCS.2022.18
https://www.cse.iitk.ac.in/users/nitin/papers/sumRO.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/sumRO.pdf
https://doi.org/10.1007/S00037-022-00230-9
https://doi.org/10.1007/S00037-021-00209-Y
https://doi.org/10.1016/S0304-3975(99)00183-8
https://doi.org/10.1007/S00037-022-00223-8
https://doi.org/10.1007/S00037-022-00223-8
https://doi.org/10.1145/2213977.2214034
https://doi.org/10.1145/2591796.2591816
https://doi.org/10.1109/FOCS.2013.34

P. Chatterjee, D. Kush, S. Saraf, and A. Shpilka 20:19

13 Purnata Ghosal and B. V. Raghavendra Rao. Limitations of sums of bounded read formulas
and abps. In Rahul Santhanam and Daniil Musatov, editors, Computer Science - Theory and
Applications - 16th International Computer Science Symposium in Russia, CSR 2021, Sochi,
Russia, June 28 - July 2, 2021, Proceedings, volume 12730 of Lecture Notes in Computer
Science, pages 147–169. Springer, 2021. doi:10.1007/978-3-030-79416-3_9.

14 Zeyu Guo and Rohit Gurjar. Improved explicit hitting-sets for roabps. In Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2020). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

15 Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Identity testing for constant-width, and
any-order, read-once oblivious arithmetic branching programs. Theory Comput., 13(1):1–21,
2017. doi:10.4086/TOC.2017.V013A002.

16 Rohit Gurjar, Arpita Korwar, Nitin Saxena, and Thomas Thierauf. Deterministic identity
testing for sum of read-once oblivious arithmetic branching programs. Comput. Complex.,
26(4):835–880, 2017. doi:10.1007/S00037-016-0141-Z.

17 Rohit Gurjar and Ben Lee Volk. Pseudorandom bits for oblivious branching programs. ACM
Trans. Comput. Theory, 12(2):8:1–8:12, 2020. doi:10.1145/3378663.

18 Maurice J. Jansen. Lower bounds for syntactically multilinear algebraic branching programs.
In Edward Ochmanski and Jerzy Tyszkiewicz, editors, Mathematical Foundations of Computer
Science 2008, 33rd International Symposium, MFCS 2008, Torun, Poland, August 25-29, 2008,
Proceedings, volume 5162 of Lecture Notes in Computer Science, pages 407–418. Springer,
2008. doi:10.1007/978-3-540-85238-4_33.

19 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials.
Electron. Colloquium Comput. Complex., TR12-081, 2012. arXiv:TR12-081.

20 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An exponential lower
bound for homogeneous depth four arithmetic formulas. SIAM J. Comput., 46(1):307–335,
2017. doi:10.1137/151002423.

21 Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation between read-once oblivious
algebraic branching programs (roabps) and multilinear depth-three circuits. ACM Trans.
Comput. Theory, 12(1):2:1–2:27, 2020. doi:10.1145/3369928.

22 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound for
regular arithmetic formulas. In David B. Shmoys, editor, Symposium on Theory of Computing,
STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 146–153. ACM, 2014.
doi:10.1145/2591796.2591847.

23 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An almost cubic lower bound for
depth three arithmetic circuits. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages
33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.
ICALP.2016.33.

24 Mrinal Kumar and Shubhangi Saraf. On the power of homogeneous depth 4 arithmetic circuits.
SIAM J. Comput., 46(1):336–387, 2017. doi:10.1137/140999335.

25 Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit lower
bounds. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 38:1–38:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.38.

26 Deepanshu Kush and Shubhangi Saraf. Near-optimal set-multilinear formula lower bounds.
In Amnon Ta-Shma, editor, 38th Computational Complexity Conference, CCC 2023, July
17-20, 2023, Warwick, UK, volume 264 of LIPIcs, pages 15:1–15:33. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CCC.2023.15.

27 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE,
2021. doi:10.1109/FOCS52979.2021.00083.

CCC 2024

https://doi.org/10.1007/978-3-030-79416-3_9
https://doi.org/10.4086/TOC.2017.V013A002
https://doi.org/10.1007/S00037-016-0141-Z
https://doi.org/10.1145/3378663
https://doi.org/10.1007/978-3-540-85238-4_33
https://arxiv.org/abs/TR12-081
https://doi.org/10.1137/151002423
https://doi.org/10.1145/3369928
https://doi.org/10.1145/2591796.2591847
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.4230/LIPIcs.ICALP.2016.33
https://doi.org/10.1137/140999335
https://doi.org/10.4230/LIPIcs.CCC.2022.38
https://doi.org/10.4230/LIPIcs.CCC.2023.15
https://doi.org/10.1109/FOCS52979.2021.00083

20:20 Lower Bounds for Set-Multilinear Branching Programs

28 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. On the partial derivative method
applied to lopsided set-multilinear polynomials. In Shachar Lovett, editor, 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234
of LIPIcs, pages 32:1–32:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPICS.CCC.2022.32.

29 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
410–418. ACM, 1991. doi:10.1145/103418.103462.

30 Noam Nisan and Avi Wigderson. Lower bounds on arithmetic circuits via partial derivatives.
Comput. Complex., 6(3):217–234, 1997. doi:10.1007/BF01294256.

31 C. Ramya and B. V. Raghavendra Rao. Lower bounds for special cases of syntactic multilinear
abps. Theor. Comput. Sci., 809:1–20, 2020. doi:10.1016/J.TCS.2019.10.047.

32 Ran Raz. Separation of multilinear circuit and formula size. Theory Comput., 2(6):121–135,
2006. doi:10.4086/toc.2006.v002a006.

33 Ran Raz. Tensor-rank and lower bounds for arithmetic formulas. J. ACM, 60(6):40:1–40:15,
2013. doi:10.1145/2535928.

34 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Comput. Complex., 14(1):1–19, 2005. doi:10.1007/S00037-005-0188-8.

35 Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic circuits. Comput.
Complex., 17(4):515–535, 2008. doi:10.1007/S00037-008-0254-0.

36 Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Comput. Complex., 18(2):171–207, 2009. doi:10.1007/s00037-009-0270-8.

37 Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity. Github
Survey, 2015. URL: https://github.com/dasarpmar/lowerbounds-survey.

38 Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and
open questions. Found. Trends Theor. Comput. Sci., 5(3-4):207–388, 2010. doi:10.1561/
0400000039.

39 Sébastien Tavenas, Nutan Limaye, and Srikanth Srinivasan. Set-multilinear and non-
commutative formula lower bounds for iterated matrix multiplication. In Stefano Le-
onardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT Symposium
on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 416–425. ACM, 2022.
doi:10.1145/3519935.3520044.

40 L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh Annual ACM
Symposium on Theory of Computing, STOC ’79, pages 249–261, New York, NY, USA, 1979.
Association for Computing Machinery. doi:10.1145/800135.804419.

https://doi.org/10.4230/LIPICS.CCC.2022.32
https://doi.org/10.4230/LIPICS.CCC.2022.32
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/BF01294256
https://doi.org/10.1016/J.TCS.2019.10.047
https://doi.org/10.4086/toc.2006.v002a006
https://doi.org/10.1145/2535928
https://doi.org/10.1007/S00037-005-0188-8
https://doi.org/10.1007/S00037-008-0254-0
https://doi.org/10.1007/s00037-009-0270-8
https://github.com/dasarpmar/lowerbounds-survey
https://doi.org/10.1561/0400000039
https://doi.org/10.1561/0400000039
https://doi.org/10.1145/3519935.3520044
https://doi.org/10.1145/800135.804419

Public-Key Pseudoentanglement and the
Hardness of Learning Ground State Entanglement
Structure
Adam Bouland #

Department of Computer Science, Stanford University, CA, USA

Bill Fefferman #

Department of Computer Science, University of Chicago, IL, USA

Soumik Ghosh #

Department of Computer Science, University of Chicago, IL, USA

Tony Metger #

ETH Zürich, Switzerland

Umesh Vazirani #

Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA, USA

Chenyi Zhang #

Department of Computer Science, Stanford University, CA, USA

Zixin Zhou #

Department of Computer Science, Stanford University, CA, USA

Abstract
Given a local Hamiltonian, how difficult is it to determine the entanglement structure of its ground
state? We show that this problem is computationally intractable even if one is only trying to decide
if the ground state is volume-law vs near area-law entangled. We prove this by constructing strong
forms of pseudoentanglement in a public-key setting, where the circuits used to prepare the states
are public knowledge. In particular, we construct two families of quantum circuits which produce
volume-law vs near area-law entangled states, but nonetheless the classical descriptions of the circuits
are indistinguishable under the Learning with Errors (LWE) assumption. Indistinguishability of the
circuits then allows us to translate our construction to Hamiltonians. Our work opens new directions
in Hamiltonian complexity, for example whether it is difficult to learn certain phases of matter.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Pseudorandomness and derandomization

Keywords and phrases Quantum computing, Quantum complexity theory, entanglement

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.21

Related Version Full Version: https://arxiv.org/abs/2311.12017

Funding B.F. and S.G. acknowledge support from AFOSR (FA9550-21-1-0008). This material is
based upon work partially supported by the National Science Foundation under Grant CCF-2044923
(CAREER) and by the U.S. Department of Energy, Office of Science, National Quantum Information
Science Research Centers (Q-NEXT). This research was also supported in part by the National
Science Foundation under Grant No. NSF PHY-1748958. A.B., B.F., C.Z., and Z.Z. were supported
in part by the DOE QuantISED grant DE-SC0020360. A.B. and C.Z. were supported in part
by the U.S. DOE Office of Science under Award Number DE-SC0020266. A.B. was supported in
part by the AFOSR under grant FA9550-21-1-0392. C.Z. was supported in part by the Shoucheng
Zhang graduate fellowship. T.M. acknowledges support from SNSF Grant No. 200021_188541,
the ETH Zurich Quantum Center, and an ETH Doc.Mobility Fellowship. U.V. was supported in
part by DOE NQISRC QSA grant FP00010905, NSF QLCI Grant No. 2016245, and MURI Grant
FA9550-18-1-0161.

© Adam Bouland, Bill Fefferman, Soumik Ghosh, Tony Metger,
Umesh Vazirani, Chenyi Zhang, and Zixin Zhou;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 21; pp. 21:1–21:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abouland@stanford.edu
mailto:wjf@uchicago.edu
mailto:soumikghosh@uchicago.edu
mailto:tmetger@ethz.ch
mailto:vazirani@eecs.berkeley.edu
mailto:chenyiz@stanford.edu
mailto:jackzhou@stanford.edu
https://doi.org/10.4230/LIPIcs.CCC.2024.21
https://arxiv.org/abs/2311.12017
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Public-Key Pseudoentanglement and the Hardness of LGSES

Acknowledgements We thank Rotem Arnon-Friedman, Jordan Docter, Tudor Giurgica-Tiron, Andru
Gheorghiu, Hsin-Yuan Huang, Vinod Vaikuntanathan, and Thomas Vidick for helpful discussions.
We thank the Simons Institute for the Theory of Computing, where some of this work was conducted.

1 Introduction

The central problem in Hamiltonian complexity is to understand the structure of ground states
of local Hamiltonians and the difficulty of learning properties of them, e.g. [20, 29, 24, 6, 5].
In this work we study the following question: given a local Hamiltonian H , how difficult is it
to learn about the entanglement structure of its ground state? For example, given H, can
you tell if its ground state is area-law or volume-law entangled? We call such questions about
the qualitative features of the entanglement structure a Learning Ground State Entanglement
Structure (LGSES) problem. This problem is related to both condensed matter physics –
where ground state entanglement structure is a central object of study – and may also shed
light on questions in quantum gravity regarding how entanglement could possibly be dual to
other physical quantities [12, 18].

Whereas most effort in many-body physics has been directed towards the positive side
of this question, i.e. finding conditions under which properties of the ground state can be
efficiently learnt or computed (see e.g. [15, 24, 21]), here our goal is to prove hardness results
for the LGSES problem from cryptographic assumptions. This explores the limitations that
any algorithm for such problems must run up against. In other words, hardness results for
the LGSES problem point to qualitative features of Hamiltonian ground states that are
inherently computationally intractable to compute.

To prove computational hardness results for the LGSES problem, we will relate it to a no-
tion called pseudoentanglement, a term recently introduced in [1]. Informally, pseudoentangled
state ensembles consist of low-entanglement states that masquerade as high-entanglement
states to computationally bounded observers; in other words, a pseudoentangled state only
looks like a high-entanglement state to bounded observers, whereas its actual (information-
theoretic) entanglement is low. The main result of [1] is that it is possible to create
pseudoentangled states which hide vast differences in entanglement. More concretely, they
construct two ensembles of quantum states, Ψhigh and Ψlow, such that any state |𝜓⟩ ∈ Ψhigh

has high entanglement entropy across any bipartition of the qubits and states in Ψlow have
low entanglement, but any computationally bounded quantum algorithm that receives a
state from Ψhigh ∪Ψlow cannot tell which kind of state it received.

This notion of pseudoentanglement is interesting in its own right and has been used for
various applications in [1], but its relevance to Hamiltonian complexity is unclear. This
is because the settings are inherently different: the notion of pseudoentanglement in [1]
involves a quantum input, namely copies of the relevant quantum states, being given to the
distinguisher. If we tried to translate this into a setting involving Hamiltonian ground states,
we would end up in a model where we study the properties of Hamiltonian ground states
given quantum copies of these ground states, but without knowing the actual Hamiltonian
itself. In contrast, in Hamiltonian complexity we assume that we know a classical description
of the Hamiltonian under consideration and would like to determine properties of its ground
state.

Therefore, if we want to use some notion of pseudoentanglement to prove hardness results
for the LGSES problem, we need to consider a model where the distinguisher is not just
given quantum copies of the high- or low-entanglement states, but rather an efficient classical
description of these states. This leads to a different kind of pseudoentanglement, which we

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:3

call public-key pseudoentanglement since the description of the states (the “key”) can be
made public. This notion is already implicit in earlier work by Gheorghiu and Hoban [18],
who gave a construction of public-key pseudoentanglement that we discuss in more detail
below.

▶ Definition 1 (Public-key pseudoentanglement (implicit in [18])). Two ensembles of n-qubit
poly(n)-gate quantum circuits {Ck}, {C ′k} are public-key pseudoentangled with entanglement
gap f(n) vs g(n) if they are computationally indistinguishable to poly-time quantum algorithms,
and yet with high probability over the ensembles, Ck|0n⟩ has entanglement ≥ f(n) and C ′k|0n⟩
has entanglement ≤ g(n) across one or more cuts of the system.

The key difference between this definition and the one in [1] is that here a classical
description of the circuit used to prepare the states is given as input to the distinguisher,
whereas in [1] the distinguisher only receives copies of the output state of the circuit. A
distinguisher can therefore not only prepare copies of the output state, but also analyse the
classical description of the circuits directly to gain additional information, making it harder
to “hide” the entanglement of pseudoentangled states. Hence, public-key pseudoentanglement
is a much stronger notion than that in [1], which we will call private-key pseudoentanglement
as the circuits are hidden.

There are generally two features we care about in a pseudoentanglement construction:
the entanglement gap, which we want to be as large as possible in order to hide as much
entanglement as possible, and the set of cuts across which this entanglement gap holds.
Informally, a more general set of cuts (i.e. bipartitions of the qubits) across which the
entanglement gap holds corresponds to hiding more qualitative information about the
entanglement structure of the state; this is what we are most interested in for the LGSES
problem.

The pioneering work of Gheorghiu and Hoban gave the first pseudoentanglement con-
struction with entanglement gap n vs n− Ω(1) across a single cut based on the Learning
With Errors (LWE) assumption [18]. Using this they showed that it is difficult to learn
fine-grained properties of the ground state entanglement – namely if the ground state has
entanglement n vs n−Ω(1) across a fixed cut. The basic idea is that if one passes the circuit
to prepare pseudoentangled states through a modified Kitaev clock construction [23, 26],
the ground state of the resulting Hamiltonian has the same entanglement properties as the
output state of the circuit. We emphasize that the Kitaev clock Hamiltonian encodes the
circuit used to prepare the state in plaintext. Consequently, this application necessarily
requires a public-key construction if we aim to construct the hard instance via the Kitaev
clock.

However, Gheorghiu and Hoban’s construction only suffices to prove hardness of detecting
very small differences in the entanglement of the ground state across a single cut. In contrast,
the LGSES problem asks about qualitative or coarse-grained features of the entanglement
structure, as very fine-grained properties are usually not physically relevant. This raises the
following question: is it possible to get a public-key pseudoentanglement construction that
hides qualitatively different entanglement structures? This would lead to natural hardness
statements for the LGSES problem.

1.1 Near area-law public-key pseudoentanglement

Our first result is to construct strong forms of public-key pseudoentanglement from LWE. In
particular we show it is possible to hide 1D near area-law vs volume-law entanglement.

CCC 2024

21:4 Public-Key Pseudoentanglement and the Hardness of LGSES

▶ Theorem 2 (Volume vs area-law public-key pseudoentanglement (informal)). Assuming
subexponential-time hardness of LWE, there exist public-key pseudoentangled ensembles with
volume-law vs near area-law entanglement when the qubits are arranged on a 1D line.

That is, in one case the states have entanglement Ω(min(k, n− k)) across any division
of the qubits into k vs n− k qubits (volume-law), and in the other case the entanglement
of any cut is ≤ |A|polylog(n) where |A| is the area of the cut when the qubits are arranged
on a 1D line (i.e. the number of times the cut crosses the 1D line). We call this near
area-law entangled. This is optimal because if the polylog factor were changed to a log,
then these states would be efficiently distinguishable from one another by standard Matrix
Product State learning algorithms [15, 24]. Hiding such qualitatively different entanglement
structures requires a completely different construction from [18]. We note that while in
Theorem 2 we assume subexponential-time hardness of LWE, we also show that the standard
LWE assumption implies a similar result.1 We will discuss the application of our result to
Hamiltonian complexity shortly, after we present its proof sketch.

Proof sketch for single-cut pseudoentanglement. Let us first consider a single cut par-
titioning the qubits into sets A and B. In this case, the most natural states to consider
are of the form

∑
x∈{0,1}n |x⟩A|h(x)⟩B for some function h. If one chooses h to be injective,

then this state has entanglement entropy n across this cut; if one chooses h to be 2k-to-1,
then the entanglement is n − k. [18] used exactly these states with trapdoor claw-free
functions from [13], which are functions that are either injective or 2-to-1, but the two cases
are computationally hard to distinguish (given a description of the function) assuming the
hardness of LWE. There are some additional subtleties arising from the fact that the trapdoor
claw-free functions from [13] do not output numbers, but probability distributions, and are
only approximately 2-to-1. We refer to [18] for a detailed analysis of this construction.

To increase the entanglement gap, we need to make the many-to-1 functions more
compressing. The functions in [18, 13] additionally have a trapdoor; however, we observe
that for pseudoentanglement, we can dispense with the trapdoor and only need so-called
lossy functions: these are functions that are either injective or 2k-to-1, but again the two
kinds of functions are hard to distinguish. Starting from this observation, it turns out to
be possible to combine the construction from [18] with ideas from a recent randomness
generation protocol [25] to achieve an entanglement gap of n vs n𝛿 for any 𝛿 > 0.2

The challenge with this approach based on [18] is that it appears fundamentally restricted
to a single cut. However, our goal is to obtain pseudoentangled states with near area-law vs
volume-law entanglement structure, which requires low entanglement across exponentially
many cuts simultaneously. This would require controlling the entanglement not just between
regions A and B, but also within these regions. With the approach of [18] it seems difficult
to appropriately modify the state in register A without jeopardising the entanglement across
the cut between A and B.

For this reason, we need a different kind of state that allows us to control the entanglement
across all cuts simultaneously. It turns out that a useful class to consider are binary phase
states as in [22, 14, 1], i.e., states of the form

∑
x∈{0,1}n(−1)f(x)|x⟩. Our approach will be

1 In particular, the polylog correction factor to the area-law scaling is replaced by an n𝜖 correction, where
𝜖 can be any constant > 0.

2 We note that independently from and simultaneously to our work, Gheorghiu and Hoban updated their
results to include a construction of this form, which achieves the aforementioned gap of n𝛿 vs n across
a fixed cut with n qubits in one set and poly(n) in the other.

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:5

as follows: we start from a phase state with high-entanglement across every cut. We will
then modify this state (in a computationally undetectable way) to have low entanglement
across some particular cut. This achieves essentially the same as the [18]-based construction
above.3 However, crucially our “modification procedure” is iterable: this means that we can
perform essentially the same entanglement reduction operation across many cuts in sequence
and end up with a state with low entanglement across every cut.

We first describe the construction and proof for a single cut. For simplicity, let us first
consider the cut between the first and second n/2 qubits. One can easily compute that
the reduced density matrix of the first half of the state

∑
x∈{0,1}n(−1)f(x)|x⟩ is 𝜌 ∝ TT⊤,

where Tij = (−1)f(i∥j). Here, ∥ denotes the concatenation of two strings, and i, j ∈ {0, 1}n/2

correspond to the first and second halves of the string x, i.e., T is the truth table of the
function f written out in a matrix form. By a direct calculation, one can show an upper
bound on the entanglement entropy of our phase state (i.e. the von Neumann entropy of 𝜌)
in terms of the rank of T , and a lower bound on the entanglement entropy in terms of the
Frobenius norm of TT⊤. Our strategy will therefore be to start from a “T -matrix” for a
high-entanglement state, and then perform one of two modifications in a computationally
indistinguishable way: either modify T to reduce its rank to get low-entanglement states,
or modify T in a way that does not reduce

∥∥TT⊤
∥∥

2 too much so that the entanglement of
the states remains high, where ∥ · ∥2 denotes the Frobenius norm, as defined in Section 2.1.
These modified T -matrices then correspond to modified phase states, and our goal is to hide
which of the two procedures we performed, even when handing out a classical description for
preparing the corresponding states.

In [1] the idea is to apply a private key cryptographic hash function to replace rows of the
matrix T with copies of other rows to reduce its rank. That is, we pick a phase function f(x)
which yields high entanglement [14], and then “whittle down” its entanglement by replacing
f(x) with f(h(i) ∥ j) where i, j ∈ {0, 1}n/2 and h : {0, 1}n/2 → {0, 1}n/2 is a 2k-to-1 function.
This reduces the number of distinct rows in T (each of which is now repeated many times) and
correspondingly decreases the rank of T . As a result, this procedure lowers the entanglement
of 𝜌 by k. On the other hand, if we pick h to be a 1-to-1 function, we simply permute the
rows of T and do not change

∥∥TT⊤
∥∥

2. To make this public-key, we need a way of applying a
2k-to-1 or a 1-to-1 hash function to these phase states in such a way that it is hard to tell
which one was applied, even when the state preparation circuit (and therefore the source
code for h) is public.

At first sight, it may seem that we can use the same idea as above: take the lossy functions
from [25] and use them to reduce the rank of T . However, the phase state construction is
much less flexible than states of the form

∑
x |x⟩|h(x)⟩: for the latter, the codomain of h

does not matter and we can use the functions h from [25], whose codomain are probability
distributions over Zm

q for m ≫ n. In contrast, for phase states we need lossy functions
h : {0, 1}n/2 → {0, 1}n/2, i.e. the codomain has to be the same as the domain. This is a
somewhat unusual requirement from a cryptographic perspective and forces us to use a
custom construction of “imperfect” lossy functions based on LWE. Concretely, we first show
how to create lossy functions mapping {0, 1}n/2 → {0, 1}poly(n) which are exactly injective
vs 2k-to-1 (for sufficiently large k) with high probability. This is not yet what we need,
as the codomain is exponentially larger than the domain. To fix this, we compose these

3 One advantage of this construction even for a single cut is that it allows an entanglement gap of n vs
poly log n for an O(n)-qubit state, whereas in the [18]-based construction the B-register had to have
poly(n) qubits for a comparable entanglement gap.

CCC 2024

21:6 Public-Key Pseudoentanglement and the Hardness of LGSES

functions with pairwise independent hash functions which shrink the codomain size back to
2n/2. This can only make the 2k-to-1 functions more compressing, which is to our benefit.
However, this also introduces unwanted collisions for the injective functions which might
break the high-entanglement case. To deal with this, we show that the repetition pattern
this produces in the matrix T is sufficiently well-behaved that the corresponding states still
have high entanglement. Intuitively, this holds because even though the “injective” functions
or no longer actually injective, they are still pairwise independent, which ensures enough
independence in the row repetition pattern of T to give a strong lower bound on the Frobenius
norm

∥∥TT⊤
∥∥

2.

From single-cut to multi-cut pseudoentanglement. As we mentioned, the advantage of
the above construction is that it can be extended to pseudoentanglement across all cuts
simultaneously. We now explain how this extension works at a high level. A first observation
is that to achieve pseudoentangled states with 1D near area law scaling, reducing the
entanglement across all n− 1 contiguous cuts of the line to O(polylog(n)) suffices by strong
subadditivity. Therefore, a natural approach is to perform a 1D sweep of the line, reducing
the entanglement of the contiguous cuts one at a time. For reasons that will become apparent
below, we perform this sweep right-to-left. The final phase function is then a complicated
composition of n independent lossy functions and hash functions.

To show that this construction indeed achieves pseudoentanglement across all cuts
simultaneously, we need to worry about two issues: firstly, for the low entanglement states
we need to ensure that performing the entanglement reduction operation for a cut towards
the left of the line does not inadvertently increase the entanglement across earlier cuts to the
right, so that the low entanglement across those earlier cuts is preserved. Secondly, for the
high entanglement states we need to make sure that the fact that we are using “imperfect”
injective functions does not decrease the entanglement too much even after applying these
functions across every cut.

The first concern is relatively easy to deal with due to the relationships between the
“T -matrices” for different cuts. To see this, consider a phase state |𝜓⟩ =

∑
(−1)f(x)|x⟩ on

n + m qubits on a line and let T n|m ∈ {±1}2n×2m be the T -matrix for the cut between the
first n and last m qubits, i.e. T

n|m
ij = (−1)f(i∥j) for i ∈ {0, 1}n, j ∈ {0, 1}m. After performing

the entanglement reduction operation, this matrix will only have some smaller number R

of distinct rows, each repeated many times. In the next step of the sweep (recalling that
we move right to left), we consider the cut between the first n − 1 and last m + 1 qubits.
We denote the corresponding T -matrix by T n−1|m+1 ∈ {±1}2n−1×2m+1 . From the definition
of the T -matrix, one can see that the first row of T n−1|m+1 simply consists of the first two
rows of T n|m stacked side by side. More generally, the i-th row of T n−1|m+1 is simply the
horizontal concatenation of rows 2i− 1 and 2i from T n|m. Suppose we now reduce the rank
of T n−1|m+1 by removing some rows and duplicating others. We then need to check that if
we go back to the cut n|m, the resulting T -matrix (denoted T̃ n|m) still has rank at most R.
This is the case since the rows of T̃ n|m consist of the first and second parts of the rows of
T n−1|m+1; since the rank reduction only repeats, but does not modify, rows in T n−1|m+1,
every row in T̃ n|m must have already appeared in T n|m. As a result, the subsequent rank
reduction for cut n− 1|m + 1 can only decrease, not increase, the rank of the T -matrix across
n|m. It is not too hard to see that this argument generalises to any future rank reduction
operation, not just the immediately subsequent one.

The second concern is more difficult to deal with. When applying this sweep with
approximately injective functions, the entanglement is reduced slightly each time. The
rightmost (first) cut in particular has its entanglement reduced n times, so even a tiny loss

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:7

could kill the entire construction. Perhaps surprisingly, we show that this is not the case,
and the entanglement losses do not compound too badly. We show that different rows have
different probabilities of being hashed together due to the structure of the sweep, and a
careful accounting of this process reveals that not much entanglement is lost, even in the
first cut. The analysis is somewhat technical and we refer to Section 3.3 for details. Finally,
we note that while the construction we described here does not produce pseudorandom
states ensembles (i.e. the families of pseudoentangled states, without the public key, are not
necessarily pseudorandom states [22]), we can make a simple modification to our construction
to ensure that this is the case.

1.2 Hardness of learning ground state entanglement structure

Our second result is to show that this public-key, area vs volume-law pseudoentanglement
construction enables new applications in quantum Hamiltonian complexity. Because our
public-key pseudoentanglement construction can hide qualitative features of the entangle-
ment structure, we can show natural results for the hardness of the Learning Ground State
Entanglement Structure (LGSES) problem for broad differences in entanglement structure.
As we mentioned above, the main idea for turning pseudoentanglement constructions into
hard instances of LGSES is to use a circuit-to-Hamiltonian construction on the state prepar-
ation circuit for the pseudoentangled state. There are a variety of circuit-to-Hamiltonian
constructions and using these on our pseudoentangled states yields a variety of hardness
statements for LGSES. In this paper, we consider three different constructions: a Kitaev
clock construction with a binary clock, a Kitaev clock construction with a unary clock, and a
customised version of a geometrically local 2D construction [3]. As we discuss in Section 1.4,
an interesting open problem is whether a custom circuit-to-Hamiltonian construction that
is focused purely on preserving entanglement structure (rather than QMA-hardness) can
produce hard instances of the LGSES problem for more physically natural Hamiltonians.

Using a Kitaev clock construction with a binary clock [23], we get the following result
(see Theorem 26 for the formal statement).

▶ Theorem 3 (informal). Assuming subexponential-time hardness of LWE, LGSES is in-
tractable when the input Hamiltonian is O(log n)-local on n qubits, and the goal is to decide
whether the ground state is volume-law or near area-law entangled for the qubits arranged on
a 1D line.

This result follows relatively straightforwardly from the standard Kitaev clock construction.
There are only two issues that need to be addressed: firstly, the ground state of the
Hamiltonian in the Kitaev clock construction is the history state of the circuit, not the
output state. However, our pseudoentanglement construction only provides guarantees on the
entanglement structure of the output state. This problem can be addressed using a “padding
trick” [26]: we can simply pad the pseudoentanglement circuit with a large (polynomial)
number of identity gates at the end. This will ensure that the history state has most weight
on the output state. Using continuity properties of the von Neumann entropy, this implies
that the history state has the desired entanglement structure, too. The second issue is
that we have no control over the entanglement within the clock register of the Hamiltonian.
However, this does not matter for the coarse-grained entanglement structure of the state:
since the clock register only has logarithmically many qubits, discarding it only changes the
entanglement by O(log n), which is irrelevant for our O(poly log n) vs Ω(n) entanglement
gap.

CCC 2024

21:8 Public-Key Pseudoentanglement and the Hardness of LGSES

The Hamiltonian in Theorem 3 does not achieve constant locality because the Hamiltonian
terms acting on the binary clock register require locality log n. By using a unary clock instead
of a binary clock, we can make the Hamiltonians in Theorem 3 have constant locality [23].
This is also what was used in [18] to study a Hamiltonian version of their entropy difference
problem. However, the clock register now has Θ(n) qubits, and because it has so many
qubits, the analysis from Theorem 3 no longer yields the desired entanglement gap. However,
if we trace out the clock register and measure entanglement of the remaining mixed state by
any operational mixed-state entanglement measure, we show that we still recover a maximal
entanglement gap across any cut. Intuitively, this is because due to the padding trick, after
tracing out the clock register the remaining mixed state is close in trace distance to the
(pure) output state of the pseudoentanglement circuit. We refer to Theorem 28 for the formal
statement.

The main downside of the Kitaev clock construction is that the resulting Hamiltonian
is not geometrically local, i.e. even though we imagine the qubits as arranged on a 1D line
in order to talk about area and volume law entanglement, the Hamiltonian itself has no
inherent 1D geometrical structure. In contrast, most physical Hamiltonians are geometrically
local. To obtain hard instances of the LGSES problem for geometrically local Hamiltonians
we can use a more sophisticated 2D clock construction, where we account for time across
one of the spatial dimensions instead of needing to add extra clock qubits to the circuit. We
first state the resulting hardness statement for LGSES informally and then briefly sketch the
proof. We refer to Theorem 31 for the formal statement and Section 4.3 for details of the
construction.

▶ Theorem 4. Assuming subexponential-time hardness of LWE, LGSES is intractable when
the input Hamiltonian is geometrically local on a 2D grid of n× poly(n) qudits with constant
local dimension d = O(1), and the goal is to decide whether the ground state has entanglement
scaling polylog(n) or n across horizontal cuts.

At a high level, the construction of the 2D geometrically local case is similar to before:
we take padded versions of our pseudoentanglement circuits and convert them to local
Hamiltonians using a 2D circuit-to-Hamiltonian construction [3]. This circuit-to-Hamiltonian
construction produces a geometrically local Hamiltonian by dispensing with an explicit clock
register. As a result, the ground state also does not have a clock register and is instead of
the form

∑
t Vt|𝜓t⟩ (with normalization), where |𝜓t⟩ is the state of the circuit after time step

t and Vt are isometries such that V †t Vt′ = 0 for any t ̸= t′. In other words, similarly to the
Kitaev clock construction, the ground state of the Hamiltonian has the form of a history
state, with different time steps encoded in mutually orthogonal states. Since we padded the
circuit with identities, we can approximate this ground state by

∑
Vt|𝜓out⟩ with |𝜓out⟩ the

output state of our pseudoentanglement circuit.
The challenge in bounding the entropy of the reduced states of this “history state” is that

the different time steps are encoded in different bases, specified by the isometries Vt. This is
in contrast to the Kitaev construction, where the intermediate states are all encoded in the
same basis. As a result, when we trace out part of the state

∑
Vt|𝜓out⟩, we get a state that

looks very different from just the reduced state of |𝜓out⟩. With the construction of [3], we do
not know how to bound the entanglement of these reduced states.

We therefore need to modify the construction from [3] to gain better control over the
entropy of these reduced states. We do this by increasing the local dimension of the qudits
in order to better keep track of different steps of the circuit execution. With this modified
construction, we can ensure that reduced states of different Vt|𝜓out⟩ corresponding to different
phases of the circuit execution are, in a certain sense, “cutwise” orthogonal The overall reduced

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:9

state is now a sum of different “orthogonal” reduced states, each corresponding to a different
phase of the circuit execution. We can compute the entropy of each of these individual
reduced states relatively easily from the entanglement properties of our pseudoentangled
states. Using cutwise orthogonality allows us relate the entropy of the overall state to the
entropies of the individual reduced states that we sum over. As a result, we can compute the
entropy of the overall reduced state even though all the different time steps are encoded in
different bases.

1.3 Related work
We have already given a detailed discussion of the work of Gheorghiu and Hoban [18], which
introduced the idea of public key-pseudoentanglement and gave the first construction, and
the work of Aaronson et al. [1], which coined the term pseudoentanglement and gave a
private-key construction with maximal entanglement gap across any cut.

The main motivation in [18] was to provide a hardness result for the so-called (quantum)
entropy difference problem: given two (quantum) circuits, decide whose output has more
entropy when acting on a uniformly random input. If the circuit depth is polynomial, these
problems are known to be complete for the complexity classes QSZK and SZK, respectively [19,
10]. Gheorghiu and Hoban showed that for constant-depth circuits with unbounded fan-out
or logarithmic-depth circuits with constant fan-out, both the QED and ED problems are still
at least as hard as breaking LWE. In their proof, the entropy difference between the high-
and low-entropy circuits was a single bit. Our improved pseudoentanglement construction
implies that both ED and QED remain LWE-hard with large entropy gaps.4 This is similar
in spirit to the classical result that SZK gaps can be amplified [28].

Recently, independent and complementary work of Arnon-Friedman, Brakerski, and
Vidick [7] gave a new definition of pseudoentanglement. Their definition is private-key and is
natural in the context of operational tasks in quantum Shannon theory. Consequently, they
focus on operational mixed-state entanglement measures across a single cut and require their
states to be efficiently preparable under LOCC. In contrast in our work we focus on creating
public-key pseudoentanglement with different large-scale geometrical structures, which is
driven by our applications in Hamiltonian complexity.

Finally, we discuss the relationship between the LGSES problem and existing algorithms
for properties of ground states. While the physics literature on computing properties of ground
states is too vast to survey here, we highlight two results closer to computer science. First,
in [24] the authors provide a polynomial-time algorithm that, given a classical description
of a one-dimensional geometrically local Hamiltonian with constant spectral gap, outputs
an MPS description of the ground state. Therefore 1D constant gapped geometrically local
Hamiltonians cannot “hide” anything about their ground state entanglement structure. We
note that this algorithm cannot be used on the Hamiltonians we construct in this paper
as they are neither 1D geometrically local nor have constant spectral gap. Therefore our
results limit potential further improvements to their algorithm. Second, the recent result [21]
considers the problem of distinguishing phases of matter given labelled examples of states

4 This result only requires our single-cut pseudoentanglement construction, for which the depth can be
made logarithmic as in [18]. In fact, as mentioned earlier, an independently updated version of [18]
also achieves single-cut pseudoentanglement with a large gap, implying the same hardness result for
the (Q)ED problem that we obtain from our construction, although their circuits have poly(n) output
qubits for an entropy gap of n𝛿 vs n, whereas ours only have O(n) output qubits, i.e. achieve a larger
relative gap. We refer to [18] for a more detailed analysis.

CCC 2024

21:10 Public-Key Pseudoentanglement and the Hardness of LGSES

in different phases. The authors show that if there is a constant spectral gap and the
separation between the phases is sufficiently well-conditioned5, then a classical algorithm
can efficiently learn to distinguish between the phases using information from only few-body
measurements. In condensed matter physics, different qualitative entanglement structures
are often associated with different quantum phases of matter; therefore our result also limits
potential further improvements to such algorithms, i.e. it is not possible to relax some of their
assumptions e.g. to gapless phases. An interesting direction for future work is to make our
pseudoentanglement Hamiltonians “more physical” to be closer to the assumptions of theses
algorithmic settings. This would help to better delineate the boundary between tractability
vs intractability of learning properties of ground states of local Hamiltonians.

1.4 Discussion and open questions
In this work, we have introduced and studied the Learning Ground State Entanglement
Structure (LGSES) problem: given a classical description of a local Hamiltonian, determine
qualitative properties of the entanglement of its ground state, e.g. whether it is area-law
or volume-law entangled. To prove hardness results for this problem, we have related it
to a notion that we call public-key pseudoentanglement: low-entanglement states that are
computationally indistinguishable from high-entanglement states even when given the state
preparation circuit. Our main technical contribution is to construct public-key pseudoentan-
glement with (near) area-law vs volume-law scaling assuming the hardness of LWE.

Psedoentanglement is a relatively new idea with many avenues for future work. We
suggest three main directions: (i) improving pseudoentanglement constructions themselves,
(ii) strengthening the link between pseudoentanglement and condensed matter physics, and
(iii) applications of pseudoentanglement beyond Hamiltonian complexity. We briefly discuss
each in turn.

(i) Our public-key pseudoentanglement construction achieves essentially optimal para-
meters, but its construction uses a fairly involved iterated entanglement reduction
procedure. In contrast, the private-key construction from [1] is very simple and based
on subset states. It would be desirable to have a similarly straightforward construction
of public-key pseudoentanglement, too. Furthermore, as we suggested in our discussion
of [7], one can extend our definition of public-key pseudoentanglement to include a
trapdoor that allows for efficient distillation of the “hidden” entanglement. It is not
obvious how to extend our construction to include this feature.

(ii) Our hardness results for the LGSES problem use Hamiltonians that differ from the
Hamiltonians typically studied in condensed matter physics. For example, while we do
prove a hardness result for the LGSES problem for 2D geometrically local Hamiltonians,
this only holds for a certain set of cuts across the system. We expect that these results
can be improved to be closer to the settings studied in condensed matter physics,
such as to geometrically local Hamiltonians with more natural entanglement structures
and larger spectral gaps,6 which would have implications for the hardness of studying

5 In particular, there must be a well-behaved function of few-body observables that separates the phases.
6 Of course, we cannot hope to construct hard instances of the LGSES problem where both the area

and volume law Hamiltonians are geometrically local and have constant spectral gap. This is simply
because the area law (proven in 1D [20] and in 2D under extra conditions [4], but widely believed to
hold generally) requires any such Hamiltonian to have area law entanglement. However, this does not
rule out computationally indistinguishable families of Hamiltonians where the area law Hamiltonian
has constant gap and the volume law Hamiltonian has inverse polynomial gap, since determining the
spectral gap itself is computationally infeasible [16, 9].

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:11

quantum phases of matter. This may require developing new sorts of clock constructions
where the only goal is to preserve entanglement structure of BQP computations rather
than to encode more general QMA-complete problems.

(iii) While we have focused on applications in Hamiltonian complexity in this work, pseudo-
entanglement might be a useful tool for proving hardness results in other domains, too.
For example, recent work [11, 7] has analysed the computational resources required
to execute certain tasks from quantum Shannon theory, e.g. entanglement distillation.
As observed in [7], proving hardness results for such problems is closely related to
pseudoentanglement, and we hope that our construction of public-key pseudoentangle-
ment will lead to additional and stronger hardness results in this direction.
Furthermore, public-key pseudoentanglement might also be interesting from a quantum
cryptographic point of view, in particular its trapdoor-variant we suggested above.
For example, recent work has focused on finding minimal assumptions for quantum
cryptography (see e.g. [32] and references therein for an overview), and it would be
interesting to explore how pseudoentanglement is related to these assumptions.
Finally, it is natural to ask if public-key pseudoentanglement might have applications in
quantum gravity. The AdS/CFT correspondence postulates that gravitational theories
are dual to quantum mechanical systems, and that the entanglement structure of the
quantum system is related to the geometry of the gravitational system [27]. Our results
show that it is difficult to estimate the entanglement of quantum states. In contrast,
geometry seems to be easy to determine, which might provide an argument that this
duality is exponentially hard to compute, as first suggested in [12]. Indeed this was
part of the motivation for prior works of pseudoentanglement [18, 1, 7]. Our public-key
extension might allow one to argue about hardness of different versions of the duality,
e.g. the duality remains hard to compute even if given a parent Hamiltonian for the
quantum state.

2 Preliminaries

2.1 Notation

We write [n] for the set {1, . . . , n}. For a bitstring x ∈ {0, 1}n, we denote the m most and
least significant bits by MSBm(x) and LSBm(x), respectively. We denote the concatenation
of strings by x ∥ y. For a set of indices I ⊂ [n] and bitstrings x ∈ {0, 1}|I|, y ∈ {0, 1}n−|I| we
denote by z = x ∥I y the string z that equals x in indices in I and y on indices in [n] \ I. We
will occasionally think of a bitstring as a Z2-vector, in which case we denote it as x⃗.

For a matrix A ∈ Cm×n, we denote by ∥A∥p = Tr
[
(A†A)p/2]1/p its Schatten p-norm. The

1-norm is also called the trace norm, the 2-norm is the Frobenius norm (or Hilbert-Schmidt
norm), and the ∞-norm the operator norm.

Quantum systems are denoted by capital letters A, B, etc. For a pure state |𝜓⟩AB or a
mixed state 𝜌AB on systems A and B, we denote the reduced states on system A by 𝜓A and
𝜌A, respectively. We write quantum circuits as C = UT ·UT−1 · · ·U1, where Ui are elementary
gates. This should be thought of as a list of gates, not simply a large unitary; in particular,
inserting identity gates into the circuit does change the circuit (although of course it does
not change the unitary implemented by the circuit).

CCC 2024

21:12 Public-Key Pseudoentanglement and the Hardness of LGSES

2.2 Independent hash functions
▶ Definition 5 (r-wise independent function family). A function family H = {hk : [N] →
[M]}k∈K indexed by some set of keys K is r-wise independent if for all distinct x1, . . . , xr ∈
[N], the random variables hk(x1), . . . , hk(xr) (for k ∈ K chosen uniformly) are uniform i.i.d.

The following is a standard result (see e.g. [30, Corollary 3.34]):

▶ Lemma 6. For any n, m, r ∈ N, there exists an r-wise independent function family
Hn = {hk : Zn

q → Zm
q }k∈K such that each k ∈ K has length poly(n, m, r, log q) and given

k ∈ K, the function hk can be evaluated in time poly(n, m, r, log q).

2.3 Entropies
We recall the basic definitions of quantum entropies. Throughout, we use the convention
that 0 log 0 = 0.

▶ Definition 7 (von Neumann entropy). The von Neumann entropy of a quantum state 𝜌 is
defined as

S(𝜌) = −Tr[𝜌 log 𝜌] .

▶ Definition 8 (Conditional von Neumann entropy). The conditional von Neumann entropy
of a quantum state 𝜌AB is defined as

S(𝜌A|B) = S(𝜌AB)− S(𝜌B).

▶ Definition 9 (Binary entropy function). The binary entropy function is defined as

h(x) = −x log x− (1− x) log(1− x),

for x ∈ [0, 1].

2.3.1 Continuity properties
▶ Lemma 10 (Continuity of the von Neumann entropy [17, 8]). Let 𝜌AB and 𝜎AB be the
density matrix of two n-qubit quantum states respectively, each partitioned into subsystems A

and B, and let
1
2 ||𝜌AB − 𝜎AB ||1 ≤ 𝜖 .

Then,

|S(𝜌AB)− S(𝜎AB)| ≤ 𝜖 · n + h(𝜖),

where h(·) is the binary entropy function.

▶ Lemma 11 (Continuity of the conditional von Neumann entropy [31]). Let 𝜌AB and 𝜎AB be
the density matrix of two n-qubit quantum states respectively, each partitioned into subsystems
A and B, and let

1
2 ||𝜌AB − 𝜎AB ||1 ≤ 𝜖 .

Then,

|S(𝜌A|B)− S(𝜎A|B)| ≤ 2𝜖 · log |A|+ (1 + 𝜖) · h
(

𝜖

1 + 𝜖

)
,

where |A| is the dimension of the Hilbert space for subsystem A and h(·) is the binary entropy
function.

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:13

2.4 Entanglement measures
2.4.1 Pure state entanglement measure
For pure states on systems AB, the entanglement between A and B is quantified using the
so-called entanglement entropy, which is simply the von Neumann entropy of the reduced
state on either subsystem.

▶ Definition 12 (Entanglement entropy). For a pure state |𝜓⟩AB, the entanglement entropy
between systems A and B is defined as S(𝜓A). Note that this is invariant under swapping A

and B since for a pure state |𝜓⟩AB, S(𝜓A) = S(𝜓B).

2.4.2 Entanglement entropy for phase states
▶ Definition 13 (T -matrix associated with phase states). Let s : {0, 1}n → {0, 1}. For an
n-qubit phase state

|𝜓⟩ =
∑

x

(−1)s(x)|x⟩

and a subset X ⊆ [n], we define the “T -matrix” with respect to the cut X as a {±1}2|I|×2n−|I|-
matrix with entries

Tij = (−1)s(i∥X j) ,

where ∥X is the “index string concatenation” defined in Section 2.1.

▶ Lemma 14. Let s : {0, 1}n → {0, 1} and |𝜓⟩ =
∑

x(−1)s(x)|x⟩. Then for any cut X ⊆ [n],
the entanglement entropy of that cut is bounded by

− log
(∥∥∥∥ 1

2n
TT⊤

∥∥∥∥
2

)
≤ S(𝜓X) ≤ log rank(T) ,

where T is the T -matrix of |𝜓⟩ across cut X.

3 Public-key pseudoentanglement: definition and construction

In this section, we define and construct public-key pseudoentanglement. Our construction
uses a similar idea as in [1, Appendix A], which is to consider phase states whose phases have
been manipulated in a particular way to create high or low entanglement. The “manipulation”
of these phases is by means of applying a one-to-one or many-to-one function (see Section 3.2
for details). We therefore need to construct such lossy functions with the appropriate
parameters, which we do in Section 3.1 based on the LWE assumption.

In Section 3.2, we then use these lossy functions to construct indistinguishable families of
quantum states where states in one family have high entanglement and states in the other
family have low entanglement across a single fixed bipartition of the qubits. In Section 3.3,
we extend this construction to states that have high or low entanglement for (almost)
every cut on a 1Dimensional line, i.e. we imagine the qubits of the state being arranged
on a line and consider all bipartitions into left and right qubits. We show that under the
subexponential-time LWE assumption, it is possible to construct pseudoentangled states of
this form where either all cuts a have a linear or a polylogarithmic amount of entanglement,
which is the largest possible separation, as discussed in Remark 19. In this sense our public-
key pseudoentanglement construction is optimal. We will use this multi-cut construction
in Section 4 to show that learning the ground state entanglement structure of (classically
described) local Hamiltonians is computationally hard (under the LWE assumption).

CCC 2024

21:14 Public-Key Pseudoentanglement and the Hardness of LGSES

3.1 Construction of lossy functions
We define the following rounding function for Zq elements.

▶ Definition 15. For q = cp with c ∈ N, divide Zq into p consecutive bins. We define
⌊x⌋p ∈ Zp as the index of the bin in which x lies. For a vector x ∈ Zm

q , ⌊x⃗⌋p ∈ Zm
p is defined

as the element-wise application of ⌊·⌋p.

▶ Definition 16 (Lossy function construction). Choose parameters ℓ(m), r(m) ≤ poly(m).
Let p = 24, q = 2m, and 𝜎 = q/m3. Let Hm = {hk : Zm

p → Zm
2 }k∈Khash

m
be the r(m)-

wise independent function family from Lemma 6. We define two families of functions
f : {0, 1}m → {0, 1}m indexed by key sets Kinj

m ,Klossy
m ⊂ Zm×m

q ×Khash
m as follows:

To sample a key from Kinj
m , denoted k ← Kinj

m , sample A ← Um×m
q and khash ∈ Khash

m

uniformly. Set k = (A, khash).
To sample a key from Klossy

m , denoted k ← Klossy
m , sample A← Lm×m

q,ℓ,𝜎 and khash ∈ Khash
m

uniformly. Set k = (A, khash).
For a key k = (A, khash) ∈ Kinj

m ∪Klossy
m , the function fk : {0, 1}m → {0, 1}m is defined as

fk(x⃗) = hkhash (⌊A · x⃗⌋p) .

3.2 Public-key pseudoentanglement across a single cut
We will now use our lossy function construction from Section 3.1 to construct public-key
pseudoentangled states for the middle cut that separates the left and right half of qubits.
In Section 3.3 we will use the ideas from this section in an iterated way to construct
pseudoentangled states for qubits arranged on a line that are pseudoentangled across every
cut on the line. Strictly speaking, all the results in this section follow from the more general
analysis in Section 3.3. We spell them out nonetheless because it may be easier for readers
to first understand the single-cut construction in detail before moving on to Section 3.3.

We begin by defining single-cut public-key pseudoentanglement formally.

▶ Definition 17 (Public-key pseudoentanglement across a single cut). A public-key pseudoen-
tangled state ensemble with entanglement gap (f(n), g(n)) across cuts Xn ⊂ [n] consists of
two sequences of families of quantum states Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψhigh
n = {|𝜓k⟩}k∈Khigh

n

indexed by key sets Klow
n and Khigh

n respectively with the following properties:
(i) Every |𝜓k⟩ ∈ Ψlow

n ∪Ψhigh
n is an n-qubit state.

(ii) Every key k ∈ Klow
n ∪Khigh

n has length poly(n), and there exists an efficient sampling
procedure that, given as input n and a label “high” or “low”, outputs a key k ∈ Klow

n or
k ∈ Khigh

n , respectively. We write k ← Klow
n and k ← Khigh

n for keys sampled according
to this procedure.

(iii) Given k ∈ Klow
n ∪Khigh

n , the corresponding state |𝜓k⟩ is efficiently preparable (without
knowing whether k ∈ Klow or k ∈ Khigh). Formally, there exists a uniform polynomial-
time circuit family {Cn} such that Cn takes as input a key k ∈ Klow

n ∪Khigh
n and outputs

a state negligibly close to |𝜓k⟩.
(iv) The keys from Klow

n and Khigh
n are computationally indistinguishable. Formally, for all

poly(n)-time quantum adversaries A that take as input a key Klow
n ∪Khigh

n and output
a single bit:∣∣∣Prk←Klow

n
[A(k) = 0]− Prk←Khigh

n
[A(k) = 0]

∣∣∣ = negl(n) .

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:15

(v) With overwhelming probability, across the cut Xn states in Ψlow
n have entanglement

entropy Θ(f(n)) and states in Ψhigh
n have entanglement entropy Θ(g(n)). Formally,

there exist constants 0 < C1 < C2 such that for all sufficiently large n,

Prk←Klow
n

[S((𝜓k)Xn
) ∈ [C1f(n), C2f(n)]] ≥ 1− negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn
) ∈ [C1g(n), C2g(n)]] ≥ 1− negl(n) .

Here, S((𝜓k)Xn) is the von Neumann entropy of the reduced state of |𝜓k⟩ on the qubits
in the set Xn ⊂ [n].

▶ Remark 18. We will frequently abuse notation and use entanglement gaps of the form
(O(f(n)), Ω(g(n))). By this, we mean that (across a specified cut Xn) Ψlow

n has entanglement
at most O(f(n)) and Ψhigh

n has entanglement at least Ω(g(n)). Formally, this means that for
this case Item v of Definition 17 has to be modified as follows:

Prk←Klow
n

[S((𝜓k)Xn
) ≤ O(f(n))] ≥ 1− negl(n) ,

Prk←Khigh
n

[S((𝜓k)Xn
) ≥ Ω(g(n))] ≥ 1− negl(n) .

▶ Remark 19. A natural question is what the optimal entanglement gap for pseudoentangled
states is. Clearly, the high-entanglement states can have entanglement at most g(n) = O(n)
across any cut, since the entanglement entropy is upper bounded by the number of qubits.
For the low-entanglement states, one can show that the entanglement entropy needs to scale
faster than log n, i.e. f(n) = 𝜔(log n). Otherwise, one could distinguish the low-entanglement
states from the high-entanglement states using a variant of the SWAP test. This was proven
in [22] and [1, Appendix F] for private-key pseudoentangled states and the same proof applies
to the public-key setting, too.

We now give a construction of single-cut pseudoentangled states based on our lossy
function construction from Section 3.1. As we will show in Theorem 21, these states do
indeed form pseudoentangled ensembles in the sense of Definition 17. Under the standard
LWE assumption, we can achieve an entanglement gap of (O(n𝛿), Ω(n)) for any 𝛿 > 0,
where n is the number of qubits and the cut divides the qubits into two equal halves; under
the stronger subexponential-time LWE assumption we can achieve an entanglement gap of
(O(poly log n), Ω(n)), which is essentially optimal as noted in Remark 19.

For simplicity, for the rest of this subsection we always assume that n is even and write
m = n/2. We will consider the cut that divides the qubits into two sets of size n; we could
also consider more general cuts and treat them with the same technique, which we do in
Section 3.3.

▶ Definition 20. Fix a function f(n). (This will be treated as a parameter of the construction.)
Let Hn = {hk : {0, 1}n → {0, 1}}k∈K4

n
be a 4-wise independent family as given in Lemma 6.

Instantiate the lossy functions from Section 3.1 with parameters ℓ(m) =
√

f(2m) and
r(m) = 2. (Recall that m := n/2.)

We first describe the sampling procedure for the keys Klow
n and Khigh

n .
(i) To sample k ∈ Klow

n , sample krep ← Klossy
m and kfin ∈ K4

n uniformly. Set k = (krep, kfin).
(ii) To sample k ∈ Khigh

n , sample krep ← Kinj
m and kfin ∈ K4

n uniformly. Set k = (krep, kfin).
For k = (krep, kfin), define the labelling function rk : {0, 1}n → {0, 1}n by

rk(x) = (fkrep(i) ∥ j) with i = MSBm(x), j = LSBm(x) .

We next define the function sk : {0, 1}n → {0, 1} as

sk(x) = hkfin(rk(x)) .

CCC 2024

21:16 Public-Key Pseudoentanglement and the Hardness of LGSES

The states |𝜓k⟩ are then given by

|𝜓k⟩ =
∑

x∈{0,1}n

(−1)sk(x)|x⟩ .

▶ Theorem 21.
(i) Under the standard LWE assumption, for any function f(n) = n𝛿 for 𝛿 > 0, the state

families Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψhigh

n = {|𝜓k⟩}k∈Khigh
n

from Definition 20 form a
pseudoentangled state ensemble with entanglement gap (O(f(n)), Ω(n)) across the cuts
Xn = [n/2].

(ii) Under the subexpoential-time LWE assumption, there exists a function f(n) = poly log n

such that the state families Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψhigh

n = {|𝜓k⟩}k∈Khigh
n

from Defin-
ition 20 form a pseudoentangled state ensemble with entanglement gap (O(f(n)), Ω(n))
across the cuts Xn = [n/2].

3.3 Area-law public-key pseudoentangled states on a 1D line
In this section we will give a (nearly) area-law public-key pseudoentangled states construction
on a line based on the row repetition technique we introduced in Section 3.2. This means
that we will construct public-key pseudoentangled states such that if we imagine the qubits
arranged on a line, the entanglement gap is poly log n vs n across all cuts that separate the
qubits into left and right qubits on the line.

We begin by formally defining this multi-cut version of pseudoentanglement. The definition
is almost identical to Definition 17, except that we now need to require an entanglement
gap across all cuts on a line simultaneously. One slight subtlety is that if we consider cuts
close to the end of the line, the entanglement will be low simply by virtue of the fact that
there are only very few qubits on one side of the cut. Therefore, in the high-entanglement
case, we need to require the entanglement to be at least g(distance from end of line) rather
than simply g(n). Furthermore, very close to the boundary (namely, O(log n) close), certain
properties of our construction break down. Therefore, we only consider cuts that are at least
𝜔(log n) far from the boundary. Since we are primarily interested in large entanglement gaps
of the form (O(poly log n), Ω(n)), this small boundary region is of no particular interest to
us. Nonetheless, it is possible to modify our construction to work for such small boundary
regions too.

As in the single-cut case, we use entanglement gaps of the form (O(f(n)), Ω(g(n))) for
pseudoentangled states where we only have an upper bound on the entanglement in the
low-entanglement case and a lower bound in the high-entanglement case (see Remark 18 for
details). To simplify the definition slightly, below we state the definition directly for this
case; it is straightforward to adapt it to the case where one wants the exact scaling rather
than one-sided bounds, but we will not need this for our results.

▶ Definition 22 (Public-key pseudoentanglement across geometrically local cuts in 1D). A
public-key pseudoentangled state ensemble with entanglement gap (O(f(n)), Ω(g(n))) across
geometrically local cuts on a 1D line consists of two sequences of families of quantum
states Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψhigh
n = {|𝜓k⟩}k∈Khigh

n
indexed by key sets Klow

n and Khigh
n

respectively that satisfy Items i–iv from Definition 17 and the following modified version of
Item v from Definition 17:
(v’) For any function b(n) = 𝜔(log n), with overwhelming probability, states in Ψlow

n

have entanglement entropy O(f(n)) and states in Ψhigh
n have entanglement entropy

Ω(g(distance from end of line)) for all geometrically local cuts that are at least b(n) far
from the end of the line. Formally,

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:17

Prk←Klow
n

[
∀c ∈ {b(n), . . . , n − b(n)} : S((𝜓k)[c]) ≤ O(f(n))

]
≥ 1 − negl(n) ,

Pr
k←Khigh

n

[
∀c ∈ {b(n), . . . , n − b(n)} : S((𝜓k)[c]) ≥ Ω

(
min(g(c), g(n − c))

)]
≥ 1 − negl(n) .

Here, (𝜓k)[c] is the reduced states of |𝜓k⟩ on qubits (1, . . . , c).

▶ Definition 23. Fix a function f(n) (this will be treated as a parameter of the construction).
Let Hn = {hk : {0, 1}n → {0, 1}}k∈K4

n
be a 4-wise independent family as given in Lemma 6.

For m ∈ {f(n), f(n) + 1, . . . , n}, instantiate the m-bit lossy function from Section 3.1 with
parameters ℓ(m) =

√
f(n) and r(m) = 2.

We first describe the sampling procedure for the keys Klow
n and Khigh

n .
(i) To sample k ∈ Klow

n , for m ∈ {f(n), f(n)+1, . . . , n}, independently sample krep
m ← Klossy

m

(see Definition 16) and kfin ∈ K4
n uniformly. Set k = (krep

f(n), krep
f(n)+1, . . . , krep

n , kfin).
(ii) To sample k ∈ Khigh

n , for m ∈ {f(n), f(n)+1, . . . , n}, independently sample krep
m ← Kinj

m

and kfin ∈ K4
n uniformly. Set k = (krep

f(n), krep
f(n)+1, . . . , krep

n , kfin).
For k = (krep

f(n), krep
f(n)+1, . . . , krep

n , kfin), define the labelling functions r
f(n)
k , . . . , rn

k : {0, 1}n →
{0, 1}n recursively by

rm
k (x) =

{
x m = n + 1,

rm+1
k (fkrep

m
(i) ∥ j) f(n) ≤ m ≤ n, MSBm(x) = i, LSBn−m(x) = j,

where MSBm(x) is the first m bits of x, LSBm(x) is the last m bits of x, and i ∥ j is the
concatenation of bit strings i and j. For simplicity, we define rk(x) = r

f(n)
k (x).

With this notation, for k = (krep
f(n), krep

f(n)+1, . . . , krep
n , kfin), we next define the function

sk : {0, 1}n → {0, 1} as

sk(x) = hkfin (rk(x)) ,

The states |𝜓k⟩ are then given by

|𝜓k⟩ =
∑

x∈{0,1}n

(−1)sk(x)|x⟩ .

Our main result is that this construction satisfies the requirements from Definition 22 as
summarised by the following theorem. In particular, we show that under the subexponential-
time LWE assumption, our construction achieves an entanglement gap of poly log n vs
n, which is essentially optimal by Remark 19. On a 1D line, this entanglement scaling
corresponds to area-law (up to poly log factors) vs volume law entanglement, which is why
we call this result area-law pseudoentangled states.

▶ Theorem 24.
(i) Under the standard LWE assumption, for any function f(n) = n𝛿 for 𝛿 > 0, the state

families Ψlow
n = {|𝜓k⟩}k∈Klow

n
and Ψhigh

n = {|𝜓k⟩}k∈Khigh
n

from form a pseudoentangled
state ensemble with entanglement gap (O(f(n)), Ω(n)) across geometrically local cuts
in 1D.

(ii) Under the subexponential-time LWE assumption, there exists a function f(n) =
poly log n such that the state families Ψlow

n = {|𝜓k⟩}k∈Klow
n

and Ψhigh
n = {|𝜓k⟩}k∈Khigh

n

from Definition 23 form a pseudoentangled state ensemble with entanglement gap
(O(f(n)), Ω(n)) across geometrically local cuts in 1D.

CCC 2024

21:18 Public-Key Pseudoentanglement and the Hardness of LGSES

3.4 Area-law public-key pseudoentangled states on a 2D grid
We can easily generalise the 1D construction from Section 3.3 to a system of qubits arranged
on a 2D grid. This is the same construction as in [1, Appendix D.5], so we only provide a
short sketch. Let |𝜓k⟩ be an n-qubit state from a pseudoentangled state ensemble. We can
arrange the qubits of this state on an

√
n×
√

n grid as shown in Figure 1. Now consider a

Figure 1 Arranging an n-qubit state on a
√

n ×
√

n grid.

contiguous 2D subregion R of this
√

n×
√

n grid. Let |R| be the size of R (i.e. the number
of qubits in R) and |∂R| the size of the boundary of R. Unfolding the “snake”, this region R

corresponds to a (not necessarily geometrically local) cut in 1D.
For the pseudoentangled state ensembles we constructed in Theorem 24, a high-entangle-

ment state |𝜓k⟩ has entanglement entropy Ω(|R|) for any (sufficiently large) cut R, even
if the cut is not 1D geometrically local. This means that arranged on a 2D grid, the
high-entanglement states from Theorem 24 exhibit volume law entanglement scaling.

Conversely, consider a low-entanglement state |𝜓k⟩ from the construction in Theorem 24.
From the geometry of Figure 1 it is easy to see that a region R corresponds to a 1D cut that
divides the qubits into at most O(|∂R|) contiguous regions; this is because the boundary of
the region R can cut the “snake” at most O(|∂R|) times. For each of these O(|∂R|) cuts in 1D,
we know from Theorem 24 that |𝜓k⟩ has entanglement entropy at most O(poly log n) across
that cut. Using subadditivity of entanglement entropy, it then follows that the entanglement
entropy of the region R is at most O(|∂R| · poly log n), which corresponds to area-law scaling
in two dimensions (up to polylogarithmic factors).

4 Computational hardness of learning ground state entanglement
structure

Our public-key pseudoentanglement constructions can be leveraged to construct Hamiltonians
such that it is hard to learn the entanglement structure of their ground state. This is what
we will discuss in the next sections. Specifically, we will study variants of the following
problem, which we define somewhat informally.

▶ Definition 25 (Learning Ground State Entanglement Structure (LGSES) problem). Given a
classical description of a k-local Hamiltonian H on n qubits with spectral gap at least 1

poly(n) ,
decide whether the ground state of H has entanglement structure A or B? Here, A and B
should be two qualitatively different, pre-specified entanglement structures, e.g. near are-law
and volume law entanglement.

We will see three different variants of this problem for three different types of local
Hamiltonians and correspondingly three slightly different entanglement structures. We will
progressively make our constructions more local – in some sense, more local corresponds to
more physical Hamiltonians – but we will pay a slight price in terms of how straightforwardly
the entanglement structures can be described.

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:19

(i) In Section 4.1, we will study the hardness of LGSES for O(log n)-local Hamiltonians on
n qubits arranged in a 1D line. The two entanglement structures to distinguish between
will be poly log n vs Ω(n) entanglement across geometrically local cuts in 1D. In other
words, we are asked to distinguish 1D near area-law vs volume-law entanglement.

(ii) In Section 4.2, we will improve upon the locality of the Hamiltonian and study the
hardness of LGSES for O(1)-local Hamiltonians on n qubits arranged in a 1D line.
However, the entanglement structure will be slightly more complicated: we will consider
the reduced states of ground states on a specific subsystem and ask whether this has
1D near area-law or volume-law entanglement structure for a mixed state measure of
entanglement.

(iii) In Section 4.3, we will study the hardness of LGSES for 2-local Hamiltonians on a 2D
grid of size n×poly(n) and with constant local dimension, where all Hamiltonian terms
are geometrically local (i.e. only nearest neighbors on the grid can interact). The two
entanglement structures to distinguish will be entanglement entropy O(poly log n) vs
Ω(n) across horizontal cuts through the grid.

4.1 1D Hamiltonians with log n-locality and pure states
In this section, we will show how to obtain two families of log n-local Hamiltonians, one
whose ground state has poly log n entanglement scaling and the other whose ground state
has Ω(n) entanglement scaling across geometrically local cuts in 1D, such that given the
description of one of these Hamiltonians it is computationally hard to decide which family it
belongs to.

We will start with the public-key pseudoentangled state constructions in Section 3.3, use
the padded circuit-to-Hamiltonain construction, and then use the trace distance closeness
property to show that the entanglement structures of the ground states of these Hamiltonians
resemble the entanglement structure of the public-key pseudoentangled states.

▶ Theorem 26. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of O(log n)-local
Hamiltonians on (n + O(log n)) qubits arranged on a 1D line with spectral gap Ω(1/ poly(n))
and efficient procedures that sample (classical descriptions of) Hamiltonians from either
family (denoted H ← Hlow

n and H ← Hhigh
n) with the following properties:

(i) Hamiltonians sampled according to H ← Hlow
n and H ← Hhigh

n are computationally
indistinguishable under the assumption that LWE is subexponentially hard.

(ii) With overwhelming probability, the ground states of Hamiltonians H ← Hlow
n have

1D near area-law entanglement and Hamiltonians H ← Hlow
n have 1D volume-law

entanglement. Formally, this means that for geometrically local cuts in 1D of size r =
𝜔(log n), the ground states of the Hamiltonians have entanglement entropy O(poly log n)
or Ω(min(r, n− r)), respectively.

▶ Remark 27. Under the standard LWE assumption instead of the subexponentially hardness
assumption, Theorem 26 still holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n)
for any 𝛿 > 0. This mirrors directly the statement in Theorem 24.

4.2 1D Hamiltonians with constant locality and mixed states
In this section, we will modify the construction in Section 4.1 with a unary clock to get
constant locality. However, because the clock register will now have poly(n) qubits, we can no
longer simply remove the clock qubits as we did in Theorem 26. Therefore, we will consider
the entanglement structure of the reduced density matrices of the ground state with the
clock register traced out. Using mixed state entanglement measures, we will show that one
such density matrix will have high entanglement, and the other will have low entanglement.

CCC 2024

21:20 Public-Key Pseudoentanglement and the Hardness of LGSES

As discussed in Section 2.4, there are many mixed state measures of entanglement. We
will show that for any “natural” mixed state entanglement measure, the ground state of the
our Hamiltonian (with the clock register traced out) has either high or low entanglement.
We achieve this by giving an upper bound on the entanglement of formation of our low
entanglement construction and a lower bound on the distillable entanglement of our high
entanglement construction. This gives an entanglement gap for any natural entanglement
measure. In fact, Hamiltonians constructed from our ensembles of pseudoentangled states
achieve a maximally large gap.

▶ Theorem 28. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of O(1)-local
Hamiltonians on (n + poly(n)) qubits arranged on a 1D line with spectral gap Ω(1/ poly(n))
and efficient procedures that sample (classical descriptions of) Hamiltonians from either
family (denoted H ← Hlow

n and H ← Hhigh
n) with the following properties:

(i) Hamiltonians sampled according to H ← Hlow
n and H ← Hhigh

n are computationally
indistinguishable under the assumption that LWE is subexponentially hard.

(ii) If we trace out poly(n) many qubits from the ground state of each Hamiltonian, the
entanglement gap between the resultant quantum states in the high and low families
is Ω(min(r, n − r)) versus O(poly log n), for a cut of size (r, n − r), for any natural
entanglement measure. With overwhelming probability, the reduced states on the first
n qubits of the ground states of Hamiltonians H ← Hlow

n have 1D near area-law
entanglement and Hamiltonians H ← Hlow

n have 1D volume-law entanglement with
respect to any natural mixed state entanglement measure.

▶ Remark 29. Just as in Remark 27, under the standard LWE assumption Theorem 28 still
holds, but with the smaller entanglement gap O(n𝛿) vs Ω(n) for any 𝛿 > 0.

4.3 2D Hamiltonians with geometric locality and pure states
In this section, we will show how to obtain two families of 2D Hamiltonians on a 2D grid
of poly(n) qudits, one whose ground state has entanglement entropy of order n and the
other whose ground state has entanglement entropy of order poly log n, with respect to most
horizontal cuts across the 2D grid. Thus, arguably, this gives us a relatively more complicated
entanglement structure than the constructions in Theorem 26 and Theorem 28. However, we
gain in geometric locality: the Hamiltonian only has nearest neighbor interactions on a 2D
grid. Formally, 2D Hamiltonians are defined as follows.

▶ Definition 30 (2D (local) Hamiltonian, [2]). Let H be a Hermitian operator (interpreted as
a Hamiltonian, giving the energy of some system). We say that H is an r-state Hamiltonian
if it acts on r-state qudits (i.e. d = r). When r = 2, namely, when the qudits are qubits. We
say that H is k-local if it can be written as

H =
∑

i

Hi,

where each Hi acts non-trivially on at most k qudits. Note that this term does not assume
anything about the physical location of the qudits. We say that H is a 2D Hamiltonian if the
qudits are arranged on a 2D grid and the terms Hi interact only pairs of nearest neighbor
qudits. In particular, a 2D Hamiltonian is 2-local.

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:21

▶ Theorem 31. For every n ∈ N, there exist two families Hlow
n and Hhigh

n of geometrically
2D-local Hamiltonians on (n× poly n) qudits arranged in an n× poly(n) grid with spectral
gap Ω(1/ poly(n)), and there are efficient procedures that sample (classical descriptions of)
Hamiltonians from either family (denoted H ← Hlow

n and H ← Hhigh
n) with the following

properties:
(i) Hamiltonians sampled according to H ← Hlow

n and H ← Hhigh
n are computationally

indistinguishable under the assumption that LWE is subexponentially hard.
(ii) With overwhelming probability, the ground states of Hamiltonians H ← Hlow

n have
poly log n entanglement across horizontal cuts through the grid that are at least 𝜔(log n)
far from the boundary, and Hamiltonians H ← Hhigh

n have Ω(n) entanglement across
the same cuts.

Overview. The main steps of our construction are as follows:
First, we start with two n-qubit public key pseudoentangled states across multiple cuts,
according to the construction in Section 3.3, and consider the circuits for preparing them.
Suppose these circuits have K = poly(n) gates. Without loss of generality, we assume
the circuit can be decomposed into R = poly(n) “rounds”, each made up of exactly n

nearest-neighbor interactions on qubits 1, (1,2), (2,3), etc. Any circuit can be transformed
into this form by inserting a polynomial number of identity and swap gates. Hence, the
circuit contains nR gates in total. As in Section 4.1, we pad the circuits with nM identity
gates at the end for a sufficiently large M = poly(n).
Then, we use a modified version of the 2D clock construction [3] to construct two families
of 2D Hamiltonians such that the padded circuit is embedded into its ground state. That
is, if C = UnT · UnT−1 · · ·U1 is the circuit with padding, where T = M + R is the total
number of rounds after padding, we construct a Hamiltonian H such that the ground
state |𝜓ground⟩, on an n × T grid of qudits, encodes the time evolution of the padded
circuit.
We show how, because of the padding, the entanglement structure of the 2D ground state
across any horizontal cut resembles the entanglement structure of the state

|𝜓output⟩ = UnR · UnR−1 · · ·U1|0n⟩, (4.1)

across the same cut.
By virtue of our pseudoentanglement construction, the state in Equation (4.1) either has
high or low entanglement, whenever the cut has distance 𝜔(log n) to the boundary of
the grid. Then, by a continuity argument, we show that the ground state |𝜓ground⟩ also
inherits the high or low entanglement property.

References
1 Scott Aaronson, Adam Bouland, Bill Fefferman, Soumik Ghosh, Umesh Vazirani, Chenyi Zhang,

and Zixin Zhou. Quantum pseudoentanglement. arXiv preprint v2, 2023. arXiv:2211.00747v2.
2 Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Julia Kempe. The power of quantum

systems on a line. Communications in mathematical physics, 287(1):41–65, 2009.
3 Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev.

Adiabatic quantum computation is equivalent to standard quantum computation. SIAM
review, 50(4):755–787, 2008.

4 Anurag Anshu, Itai Arad, and David Gosset. An area law for 2d frustration-free spin systems.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
12–18, 2022.

CCC 2024

https://arxiv.org/abs/2211.00747v2

21:22 Public-Key Pseudoentanglement and the Hardness of LGSES

5 Anurag Anshu and Srinivasan Arunachalam. A survey on the complexity of learning quantum
states. arXiv preprint, 2023. arXiv:2305.20069.

6 Itai Arad, Zeph Landau, Umesh Vazirani, and Thomas Vidick. Rigorous RG algorithms
and area laws for low energy eigenstates in 1D. Communications in Mathematical Physics,
356:65–105, 2017.

7 Rotem Arnon-Friedman, Zvika Brakerski, and Thomas Vidick. Computational entanglement
theory, 2023. arXiv:2310.02783.

8 Koenraad M R Audenaert. A sharp continuity estimate for the von Neumann entropy.
Journal of Physics A: Mathematical and Theoretical, 40(28):8127–8136, June 2007. doi:
10.1088/1751-8113/40/28/s18.

9 Johannes Bausch, Toby S Cubitt, Angelo Lucia, and David Perez-Garcia. Undecidability of
the spectral gap in one dimension. Physical Review X, 10(3):031038, 2020.

10 Avraham Ben-Aroya, Oded Schwartz, and Amnon Ta-Shma. Quantum expanders: Motivation
and constructions. In 2008 23rd Annual IEEE Conference on Computational Complexity,
pages 292–303. IEEE, 2008.

11 John Bostanci, Yuval Efron, Tony Metger, Alexander Poremba, Luowen Qian, and Henry
Yuen. Unitary complexity and the uhlmann transformation problem. arXiv preprint, 2023.
arXiv:2306.13073.

12 Adam Bouland, Bill Fefferman, and Umesh Vazirani. Computational pseudorandomness,
the wormhole growth paradox, and constraints on the ads/cft duality. arXiv preprint, 2019.
arXiv:1910.14646.

13 Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick. A cryptographic
test of quantumness and certifiable randomness from a single quantum device. IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 320–331, 2018.
doi:10.1109/FOCS.2018.00038.

14 Zvika Brakerski and Omri Shmueli. (Pseudo) random quantum states with binary phase. In
Theory of Cryptography Conference, pages 229–250. Springer, 2019.

15 Marcus Cramer, Martin B Plenio, Steven T Flammia, Rolando Somma, David Gross, Stephen D
Bartlett, Olivier Landon-Cardinal, David Poulin, and Yi-Kai Liu. Efficient quantum state
tomography. Nature communications, 1(1):149, 2010.

16 Toby S Cubitt, David Perez-Garcia, and Michael M Wolf. Undecidability of the spectral gap.
Nature, 528(7581):207–211, 2015.

17 M. Fannes. A continuity property of the entropy density for spin lattice systems. Communica-
tions in Mathematical Physics, 31(4):291–294, December 1973. doi:10.1007/bf01646490.

18 Alexandru Gheorghiu and Matty J Hoban. Estimating the entropy of shallow circuit outputs
is hard. arXiv preprint, 2020. arXiv:2002.12814.

19 Oded Goldreich and Salil Vadhan. Comparing entropies in statistical zero knowledge with
applications to the structure of szk. In Proceedings. Fourteenth Annual IEEE Conference on
Computational Complexity (Formerly: Structure in Complexity Theory Conference)(Cat. No.
99CB36317), pages 54–73. IEEE, 1999.

20 Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of statistical
mechanics: theory and experiment, 2007(08):P08024, 2007.

21 Hsin-Yuan Huang, Richard Kueng, Giacomo Torlai, Victor V Albert, and John Preskill. Prov-
ably efficient machine learning for quantum many-body problems. Science, 377(6613):eabk3333,
2022.

22 Zhengfeng Ji, Yi-Kai Liu, and Fang Song. Pseudorandom quantum states. In Advances in
Cryptology–CRYPTO 2018: 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19–23, 2018, Proceedings, Part III 38, pages 126–152. Springer, 2018.

23 A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American
Mathematical Society, USA, 2002.

https://arxiv.org/abs/2305.20069
https://arxiv.org/abs/2310.02783
https://doi.org/10.1088/1751-8113/40/28/s18
https://doi.org/10.1088/1751-8113/40/28/s18
https://arxiv.org/abs/2306.13073
https://arxiv.org/abs/1910.14646
https://doi.org/10.1109/FOCS.2018.00038
https://doi.org/10.1007/bf01646490
https://arxiv.org/abs/2002.12814

A. Bouland, B. Fefferman, S. Ghosh, T. Metger, U. Vazirani, C. Zhang, and Z. Zhou 21:23

24 Zeph Landau, Umesh Vazirani, and Thomas Vidick. A polynomial time algorithm for the
ground state of one-dimensional gapped local Hamiltonians. Nature Physics, 11(7):566–569,
2015.

25 Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. Efficient certifiable randomness from
a single quantum device, 2022. arXiv:2204.11353.

26 Chinmay Nirkhe, Umesh Vazirani, and Henry Yuen. Approximate low-weight check codes and
circuit lower bounds for noisy ground states. arXiv preprint, 2018. arXiv:1802.07419.

27 Shinsei Ryu and Tadashi Takayanagi. Holographic derivation of entanglement entropy
from the anti–de sitter space/conformal field theory correspondence. Physical review let-
ters, 96(18):181602, 2006.

28 Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. Journal of
the ACM (JACM), 50(2):196–249, 2003.

29 Norbert Schuch, Ignacio Cirac, and Frank Verstraete. Computational difficulty of finding
matrix product ground states. Physical review letters, 100(25):250501, 2008.

30 Salil Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer Science,
7(1–3):1–336, 2012.

31 Andreas Winter. Tight uniform continuity bounds for quantum entropies: Conditional entropy,
relative entropy distance and energy constraints. Communications in Mathematical Physics,
347(1):291–313, March 2016. doi:10.1007/s00220-016-2609-8.

32 Mark Zhandry. Quantum minimalism, 2023. Talk at Simons Institute, https://www.youtube.
com/live/7cqnrASfjco?si=1XlLZpqfaEsBEVp8.

CCC 2024

https://arxiv.org/abs/2204.11353
https://arxiv.org/abs/1802.07419
https://doi.org/10.1007/s00220-016-2609-8
https://www.youtube.com/live/7cqnrASfjco?si=1XlLZpqfaEsBEVp8
https://www.youtube.com/live/7cqnrASfjco?si=1XlLZpqfaEsBEVp8

Depth-d Frege Systems Are Not Automatable
Unless P = NP
Theodoros Papamakarios #

Department of Computer Science, University of Chicago, IL, USA

Abstract
We show that for any integer d > 0, depth-d Frege systems are NP-hard to automate. Namely, given
a set S of depth-d formulas, it is NP-hard to find a depth-d Frege refutation of S in time polynomial
in the size of the shortest such refutation. This extends the result of Atserias and Müller [JACM,
2020] for the non-automatability of resolution – a depth-1 Frege system – to Frege systems of any
depth d > 0.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof complexity, Automatability, Bounded-depth Frege

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.22

Acknowledgements I would like to thank Alexander Razborov for numerous remarks and suggestions
that greatly improved the presentation of the paper.

1 Introduction

Since its inception as child discipline of mathematical logic, computability, and by extension
complexity theory, has had the following two questions at its core: First, broadly asked,
how hard is it to prove a theorem, and secondly, knowing that a proof exists, how hard is it
to find one. Significantly refining earlier results, most notably [1], Atserias and Müller [2]
showed that a version of the latter question, even for a system as weak as resolution, is the
same as asking whether P = NP.

Namely, a proof system σ is called automatable if there is an algorithm that, given a
provable formula ϕ, constructs a proof of ϕ in σ, in time polynomial in the size of the smallest
proof of ϕ in σ. What Aterias and Müller show is that resolution is not automatable unless
P = NP.

Now, resolution lies at the bottom of a hierarchy of proof systems, the so called Frege
systems of bounded depth, the d-th level of that hierarchy – depth-d Frege – being a system
operating with formulas of depth d. It seems plausible that the more complicated the proof
systems is, the harder it is to automate it. Following this intuition, as depth-(d − 1) Frege is
a subsystem of depth-d Frege, the latter should be harder to automate. We show that for
any d, depth-d Frege is as hard to automate as possible. More specifically, we extend the
Atserias-Müller result, to show:

▶ Theorem 1.1. If P ̸= NP, then for any d > 0, depth-d Frege systems are not automatable.

The Atserias-Müller result has been extended to cutting planes [11], Res(k) [10], and
various algebraic proof systems [7]. Whether it can be extended to bounded-depth Frege
systems had remained open. It should be noted that the non-automatability of bounded-depth
Frege systems was known under a stronger assumption, namely that the Diffie-Hellman key
exchange protocol cannot be broken with circuits of subexponential size [4]. The present paper
improves on [4] on three fronts. First, the assumption P ̸= NP is much weaker, in particular,
it is as weak as possible. Secondly, the result of [4] only works for sufficiently large d, while
ours works for all d. Finally, our result requires proving new lower bounds for bounded-depth

© Theodoros Papamakarios;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 22; pp. 22:1–22:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:papamakarios@uchicago.edu
https://orcid.org/0009-0009-2814-5256
https://doi.org/10.4230/LIPIcs.CCC.2024.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Depth-d Frege Systems Are Not Automatable Unless P = NP

Frege, unlike the approach of [4]. However, still, this result and ours are incomparable: [4]
rules out even the weak automatability of bounded-depth Frege systems, which is to say that
no system polynomially simulating a depth-d Frege system is automatable.

Proof outline
The proof is a reduction from SAT. We want for any positive integer d, given a CNF formula
F , to construct a formula G such that if F is satisfiable, then G has small depth-d refutations,
whereas if F is unsatisfiable, then G requires large depth-d refutations.

For d = 1, [2] considers the formula G := Ref(F, z) expressing that z encodes a resolution
refutation of F . Then a “relativization” construction is applied to Ref(F, z) to get the
formula RRef(F, z), stating that z is either itself, or contains a resolution refutation of F .
It is shown by Pudlák [16] that if F is satisfiable, then the formula Ref(F, z) has short
resolution refutations, and this readily extends to RRef(F, z) [2]. To show a lower bound
for RRef(F, z) in the case F is unsatisfiable, first it is argued in [2] that there cannot be
resolution refutation of RRef(F, z) having small index-width, where the index-width of a
resolution refutation π of RRef(F, z) is defined as the maximum number of clauses of z

contained in a clause of π. Then it is shown, following [6], that if RRef(F, z) had a small
resolution refutation, then Ref(F, z′), where the size of z′ is polynomially related to the size
of z, would have a resolution refutation of small index-width. Notice that arguing in terms
of a variant of width, index-width in this case, is necessary. The same argument could not
have worked for width, since resolution is automatable with respect to width, in the sense
that a resolution refutation of F having width w can be found in time nO(w), where n is the
number of variables of F .

To extend the above for the case d > 1, an idea is to employ the construction of [14] (see
also [3]), replacing every variable of RRef(F, z) with Sipser functions, i.e. formulas of the
form∧

i1

∨
i2

· · ·
∧

ik=1
xi1,...,ik

or ∨
i1

∧
i2

· · ·
∨

ik=1
xi1,...,ik

,

for some suitable k. Following [14, 3], one gets a lower bound by repeated applications of
Håstad’s switching lemma [12], which reduce a size lower bound to essentially a width lower
bound. In our case, we need a reduction in the base case of the argument to a lower bound
for index-width, and trying to apply Håstad’s switching lemma for index-width instead of
width, one encounters several difficulties, a main one being that the variables encoding the
clauses of z induce an exponential factor in the switching probability, making the lemma
trivial. We are able to overcome these difficulties by applying the weaker Furst-Saxe-Sipser
switching lemma [8], which can use restrictions that fix much less variables on average than
Håstad’s switching lemma. This will give a weaker lower bound, only polynomial in our case,
which nonetheless is sufficient for the purposes of showing non-automatability.

Let us note that the reduction described above is to a formula that has large depth.
In particular, this does not rule out the possibility of bounded-depth Frege systems being
automatable when restricted on refuting CNF formulas. To show non-automatability for
refuting CNF formulas, one would need to describe a reduction to a CNF formula. This
however we expect to be hard to do; see the discussion in the concluding section.

T. Papamakarios 22:3

2 Bounded-depth Frege systems and automatability

2.1 Basic definitions
We assume that formulas are built from constants 0 and 1, propositional variables and their
negations, unbounded conjunctions and unbounded disjunctions. So negations can only
appear next to variables. The depth of a formula is the maximum nesting of conjunctions
and disjunctions in it. Formally,

d(0) = d(1) = d(x) = d(¬x) = 0,

d(◦{F1, . . . , Fk}) = 1 + max
i

d(Fi),

where x is a variable and ◦ is either a conjunction
∧

or a disjunction
∨

.
Depth-0 formulas that are not constants are called literals. We often write literals in the

form xε, where x1 := x and x0 := ¬x. Depth-1 formulas are called clauses/terms, clauses
being disjunctions and terms conjunctions of literals. Depth-2 formulas that are disjunctions
of terms are called DNF formulas and depth-2 formulas that are conjunctions of clauses are
called CNF formulas. DNF formulas each conjunction of which consists of at most k literals
are called k-DNF formulas; k-CNF formulas are defined similarly. We define Σs,k

d to be the
class of all formulas F for which there is a depth-d formula G that is semantically equivalent
to F , the outermost connective of G is

∨
, and

1. G contains at most s subformulas of depth at least 2;
2. all depth-2 subformulas of G are either k-DNFs or k-CNFs.
Similarly, Πs,k

d is defined as the class of all formulas F for which there is a depth-d formula
G semantically equivalent to F , the outermost connective of which is

∧
, satisfying the above

two conditions.
A restriction is an assignment ρ : V → {0, 1} of truth values to a set V of variables. For

a restriction ρ and a formula F , we denote by F |ρ the formula resulting by replacing every
variable x of F which is in the domain of ρ by ρ(x), and then eliminating constants from
F |ρ using the identities

A ∨ 0 = A, A ∨ 1 = 1, A ∧ 0 = 0, A ∧ 1 = A.

We call a restriction that gives a value to all variables a total assignment, or simply assignment.
For a set S of formulas, we write S |= F if for any total assignment α, G|α = 1 for every
G ∈ S implies F |α = 1. For formulas F and G, we write F ≡ G if F and G are semantically
equivalent, i.e. it holds that F |= G and G |= F .

2.2 LK proofs
Bounded-depth Frege systems are commonly presented as subsystems of sequent calculus
(LK for short) for propositional logic. We give a Tait-style formulation of LK, where we
write cedents as disjunctions. The inference rules of the system are shown in Table 1. There,
x stands for a propositional variable, A and B stand for arbitrary formulas whose top-most
connective is

∨
, ϕ stands for an arbitrary propositional formula and Φ stands for a set of

propositional formulas. ϕ is the formula that results from ϕ by exchanging every occurrence
of
∨

with
∧

and vice versa, and replacing each literal xε with x1−ε.
An LK proof from a set of premises S is a sequence of formulas, called the lines of the

proof, such that each line either belongs to S or results from earlier lines by one of rules
of Table 1. If the last line in a proof is the empty disjunction, then the proof is called a
refutation. A depth-d LK proof is an LK proof each line of which is a formula of depth at
most d. The size of a proof is the total number of symbols occurring in it.

CCC 2024

22:4 Depth-d Frege Systems Are Not Automatable Unless P = NP

Table 1 The rules of LK.

Axioms:
x ∨ ¬x

Weakening:
A

A ∨ B

∨
-introduction:

A ∨ ϕ

A ∨
∨

Φ
, where ϕ ∈ Φ

∧
-introduction:

A ∨ ϕ1 . . . A ∨ ϕk

A ∨
∧

{ϕ1, . . . , ϕk}

Cut:
A ∨ ϕ B ∨ ϕ

A ∨ B

Of particular importance among depth-d LK proofs is the case of depth-1 proofs, called
resolution proofs. In resolution proofs, lines are clauses, and the only applicable LK rules are
the weakening and cut rule, which take the form

C

C ∨ D
,

C ∨ x D ∨ ¬x

C ∨ D

for clauses C and D. In the rightmost rule, also called the resolution rule, we say that C ∨ D

is the result of resolving C ∨ x on D ∨ ¬x on x.
We may view a proof as a DAG, by drawing for every line A, edges from the lines A is

derived to A. In case a proof DAG is a tree, we refer to the proof as being tree-like. The
next propositions, due to [14], state that depth-d LK proofs and tree-like depth-(d + 1) LK
proofs can be turned into one another with only a polynomial increase in size.

▶ Proposition 2.1 [14]. A depth-d LK proof of a formula F from S of size s can be turned
into a depth-(d + 1) tree-like LK proof of F from S of size polynomial in s.

▶ Proposition 2.2 [14, 3]. Let S be a set of formulas of depth at most d and F a formula of
depth at most d. A depth-(d + 1) tree-like LK proof of a formula F from S of size s can be
turned into a depth-d LK proof of F from S of size O(s2).

2.3 Semantic proofs, variable width and decision trees
A semantic depth-d (Frege) proof from a set of formulas S is a sequence of depth-d formulas
F1, . . . , Ft such that for every i, either Fi ∈ S or there are j, k < i such that Fj , Fk |= Fi.
Notice that if S consists of depth-(d − 1) formulas, then there is a trivial depth-d proof of any
valid consequence of S, as

∧
S can be derived in |S| − 1 steps. Thus, under this formulation,

depth-d proofs from S are interesting only if S contains depth-d formulas not in Πs,k
d for any

s and k, and indeed, our results pertain to such proofs.

T. Papamakarios 22:5

The definitions of lines, size of a proof, refutation, tree-like proofs, apply to semantic
proofs as well. The variable width of a proof is the maximum number of variables among the
lines of the proof.

Unlike size, variable width is an inherently semantic notion. In particular, it is independent
of depth: any depth-d proof of variable width w can be transformed into a depth-1 proof of
(variable) width O(w). In fact, something stronger can be said. A decision tree is a binary
tree the internal nodes of which are labelled by variables, and the edges by values 0 or 1.
Nodes query variables and the edges going from a node to its children are labelled, one by
the value 0 and the other by 1, giving an answer to that query. No variable is repeated in
a branch so that branches correspond to restrictions, and each branch has a value, 0 or 1,
associated with it, so that the decision tree represents a Boolean function. We denote the set
of branches of T having the value v by Brv(T). Specifically, we say that a decision tree T
represents a formula F if for every branch π of T with value v, F |π ≡ v. The height of a
decision tree is the length of its longest branch. Notice that if a formula F is represented by
a decision tree of height h, then F ∈ Σ1,h

2 ∩ Π1,h
2 . We write h(F) for the minimum height of

a decision tree representing F . The following lemma is shown in [18] for a specific type of
depth-2 proofs, but holds for proofs of arbitrary depth, or for that matter, arbitrary sound
proofs.

▶ Lemma 2.3. Let S be a set of clauses each containing at most h literals. If there is a
semantic refutation of S each line of which is represented by a decision tree of height at most
h, then there is a resolution refutation of S of width at most 3h.

Proof. Let F1, . . . , Ft be a semantic refutation of S and let Ti be a decision tree of height
at most h representing Fi. We assume that Tt has a single node having the value 0. For
a restriction π, let Cπ be the minimal clause falsified by π. We will show that for every
i, for every branch π ∈ Br0(Ti), we can derive Cπ via a resolution proof of width at most
3h. Notice that Cπ for π ∈ Br0(Tt) is the empty clause, so this construction will give a
refutation.

If Fi is a clause C in S, then every π ∈ Br0(Ti) must make every literal in C false, hence
Cπ is a weakening of C. Assume now that Fi is derived from Fj and Fk and we have derived
all clauses Cπ for π ∈ Br0(Tj) ∪ Br0(Tk). Let σ ∈ Br0(Ti), and let T be the tree resulting
by appending a copy of Tk at the end of every branch π ∈ Br1(Tj) of Tj . We will use T
to extract a resolution proof of Cσ. More specifically, for every node u of T such that the
path πu from the root of T to u corresponds to a restriction that is consistent with σ, we
will derive Cσ ∨ Cπv

. When we reach the root of T we will have derived Cσ. If u is a leaf
of T, then we claim that Cπu

is a weakening of some clause Cπ for π ∈ Br0(Tj) ∪ Br0(Tk).
To see this, let πu = πj ∪ πk, where πj is the part of πu that belongs to Tj and πk the part
that belongs to Tk. Since Fj , Fk |= Fi and πu is consistent with σ, it cannot be the case
that both πj ∈ Br1(Tj) and πk ∈ Br1(Tk), otherwise a total assignment extending both πu

and σ would make Fj and Fk true, but Fi false. Suppose now that u is not a leaf of T and
suppose that v and w are its children. Then either πv and πw are both consistent with σ, in
which case Cσ ∨ Cπu can be derived by resolving Cσ ∨ Cπv and Cσ ∨ Cπw on the variable
labelling u, or one of the children, say v, will be consistent with σ and thus Cσ ∨ Cπu

will be
identical to Cσ ∨ Cπv

. ◀

2.4 Automatability and the main result
A proof system σ is called automatable [5] if there is an algorithm that given a set of formulas
S and a formula ϕ provable from S, outputs a σ-proof of ϕ from S in time polynomial r + s,
where r is the total size of S and s the size of the shortest σ-proof of ϕ from S.

CCC 2024

22:6 Depth-d Frege Systems Are Not Automatable Unless P = NP

The main theorem of this paper is the fact that approximating the minimum size of a
depth-d Frege refutation within a polynomial factor is NP hard:

▶ Theorem 2.4. For every integer d > 0, there is a polynomial-time computable function,
which takes as input a CNF formula F with n variables and m clauses and integers s, N > 0
represented in unary, and returns a formula Gd(F ; s, N) of depth d such that

1. if F is satisfiable, then there is a depth-d LK refutation of Gd(F ; s, N) of size

O
((

Nd+3s2n(m + s2n3)
)2) ;

2. if F is not satisfiable, N is an increasing function of n and s is a polynomial in n, every
semantic depth-d refutation of Gd(F ; s, N) must have size at least

N
1
3 (log s

log n −2)
1

d−1

for large enough n.
The NP hardness of automating depth-d Frege systems follows from Theorem 2.4 by setting
s := n(3h)d−1+2 and N := s for a large enough constant h (see Theorem 6.1).

We describe the reduction, constructing the formula Gd(F ; s, N) from F in Section 3. In
Section 4, we show the upper bound of Theorem 2.4, and in Section 5 we show the lower
bound. It is important to note that both bounds hold for semantic depth-d refutations. The
reason we formulate the upper bound in terms of LK refutations is twofold. First, we are able
to apply Proposition 2.2; we contend it is much cleaner to first give a depth-(d + 1) tree-like
LK refutation of our formulas and then convert it to a depth-d refutation, rather than directly
giving a depth-d refutation. Secondly, the notion of automatability is neither monotone nor
anti-monotone. Hence it is clear from Theorem 2.4 that the non automatability result applies
to any version intermediate between depth-d LK and depth-d semantic systems.

3 The formulas Ref

Let F be a CNF formula with n variables and m clauses. The key ingredient in the non-
automatability result of [2] is expressing by a set of clauses Ref(F, s) the statement that
there is a resolution refutation D1, . . . , Ds of length s from the clauses of F .

The variables of Ref(F, s) are D[u, i, b], V [u, i], I[u, j], L[u, v] and R[u, v], where u, v ∈ [s],
i ∈ [n], j ∈ [m] and b ∈ {0, 1}. The meaning of D[u, i, b] is that xb

i appears in Du. The
meaning of V [u, i] is that Du is derived as a weakening of the resolvent of two previous
clauses on xi, and the meaning of I[u, j] is that Du is a weakening of the j-th clause of
F . The meaning of L[u, v] is that the left clause (i.e. that which contains ¬xi) from which
Du was derived is Dv, and the meaning of R[u, w] is that the right clause (i.e. that which
contains xi) from which Du was derived is Dw. We will also use the variables V [u, 0] and
I[u, 0] to indicate whether Du is derived from previous clauses or from an initial clause of F :
in the former case, I[u, 0] will be true and V [u, 0] false, and in the latter V [u, 0] will be true
and I[u, 0] false. The clauses of Ref(F, s) encode the following conditions: For each u, v ∈ [s],
i, i′ ∈ [n], j ∈ [m] and b ∈ {0, 1},

T. Papamakarios 22:7

∃!k V [u, k] & ∃!k I[u, k] & ∃!k L[u, k] & ∃!k R[u, k]; (3.1)
V [u, 0] ⇐⇒ ¬I[u, 0]; (3.2)
¬L[u, v] for v ≥ u & ¬R[u, v] for v ≥ u; (3.3)
V [u, i] & L[u, v] =⇒ D[v, i, 0]; (3.4)
V [u, i] & R[u, v] =⇒ D[v, i, 1]; (3.5)
V [u, i] & L[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]; (3.6)
V [u, i] & R[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]; (3.7)
I[u, j] & xb

i appears in Cj =⇒ D[u, i, b]; (3.8)
¬D[u, i, 0] ∨ ¬D[u, i, 1]; (3.9)
¬D[s, i, b]. (3.10)

It was shown, subsequent to [2], that Ref(F, s) is hard for resolution whenever F is
unsatisfiable [9]. In [2], a variation, RRef(F, s), is used. RRef(F, s) expresses the fact that
there is a resolution refutation D1, . . . , Ds or one contained in D1, . . . , Ds, from the clauses of
F . RRef(F, s) has the same variables as Ref(F, s) plus a new variable P [u] indicating which
of the indices 1, . . . , s are active, i.e. are part of the refutation. The clauses of RRef(F, s)
express the following conditions, which are those of Ref(F, s) conditioned on the fact that
P [u] is true, in addition to three new ones requiring P [s] to be true, and P [v] to be true
whenever P [u] and L[u, v] or R[u, v] are true:

P [u] =⇒ ∃!k V [u, k] & ∃!k I[u, k] & ∃!k L[u, k] & ∃!k R[u, k]; (3.11)
P [u] =⇒ (V [u, 0] ⇐⇒ ¬I[u, 0]) ; (3.12)
P [u] =⇒ ¬L[u, v] for v ≥ u & ¬R[u, v] for v ≥ u; (3.13)
P [u] =⇒ (V [u, i] & L[u, v] =⇒ D[v, i, 0]) ; (3.14)
P [u] =⇒ (V [u, i] & R[u, v] =⇒ D[v, i, 1]) ; (3.15)
P [u] =⇒ (V [u, i] & L[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]) ; (3.16)
P [u] =⇒ (V [u, i] & R[u, v] & D[v, i′, b] & i ̸= i′ =⇒ D[u, i′, b]) ; (3.17)
P [u] =⇒

(
I[u, j] & xb

i appears in Cj =⇒ D[u, i, b]
)

; (3.18)
P [u] =⇒ (¬D[u, i, 0] ∨ ¬D[u, i, 1]) ; (3.19)
P [s] & ¬D[s, i, b]; (3.20)
(P [u] & L[u, v] =⇒ P [v]) & (P [u] & R[u, v] =⇒ P [v]) . (3.21)

Notice that giving truth values to the P [u] variables (where P [s] = 1) reduces RRef(F, s)
to Ref(F, s′) where s′ is the number of indices u for which P [u] = 1.

For an integer k ≥ 1, we define RkRef(F, s) as the formula resulting from substituting each
variable P [u] in RRef(F, s) with the conjunction

∧k
i=1 Pi[u] for new variables P1[u], . . . , Pk[u].

Note that RRef(F, s) = R1Ref(F, s).
Now, let d, N ≥ 1 be integers, and let x be a propositional variable. We associate with x

Nd−1⌈
√

N/2⌉ new variables xi1,...,id
, where i1, . . . , id−1 ∈ [N] and id ∈ [⌈

√
N/2⌉]. The fact

that we make id range over [⌈
√

N/2⌉] instead of [N] will be important later (specifically in
Lemma 5.2). The depth-d Sipser functions for x are defined by

CCC 2024

22:8 Depth-d Frege Systems Are Not Automatable Unless P = NP

S∧
d,N (x) def=

N∧
i1=1

N∨
i2=1

· · ·
⌈
√

N/2⌉∧
id=1

xi1,...,id
,

S∨
d,N (x) def=

N∨
i1=1

N∧
i2=1

· · ·
⌈
√

N/2⌉∨
id=1

xi1,...,id

if d is odd, and

S∧
d,N (x) def=

N∧
i1=1

N∨
i2=1

· · ·
⌈
√

N/2⌉∨
id=1

xi1,...,id
,

S∨
d,N (x) def=

N∨
i1=1

N∧
i2=1

· · ·
⌈
√

N/2⌉∧
id=1

xi1,...,id

if d is even.
We define RRefd,N (F, s) to be the result of substituting every variable of the form

P [u] in RRef(F, s) with S∧
d,N (P [u]) and every other variable x with S∨

d,N (x). Notice that
RRefd,N (F, s) is a set of depth-(d + 1) formulas. But, as we want to prove statements about
whether RRefd,N (F, s) has or does not have small depth-d refutations, we must write it
as a set of depth-d formulas. We may do that with only a polynomial increase in size, as
the only clauses of non constant size of RRef(F, s) are those of the form ¬P [u] ∨

∨
i X[u, i]

corresponding to conditions (3.11), and these clauses will have depth-d after the substitution
taking us from RRef(F, s) to RRefd,N (F, s). Note that the conversion from RRefd,N (F, s)
written as a set of depth-d formulas to its equivalent set of depth-(d + 1) formulas can be
carried in tree-like depth-(d + 1) LK in linear time. In particular, a tree-like depth-(d + 1)
LK refutation of the latter set can be turned into a tree-like depth-(d + 1) LK refutation of
the former set, increasing the size by at most a factor of N3.

4 Upper bounds

We show in this section that if F is satisfiable, then RRefd,N (F, s) has small depth-d
refutations:

▶ Proposition 4.1. If F is a satisfiable CNF formula with n variables and m clauses, then
there is a depth-d LK refutation of RRefd,N (F, s) of size

S = O
((

Nd+3s2n(m + s2n3)
)2)

.

In particular, if m = O(s2n3), then S = O(N2(d+3)(sn)8).

Proof. We start with a small depth-2 LK tree-like refutation of RRef(F, s). This refutation
will be such that after the substitution with Sipser functions, we get a depth-(d + 1) tree-like
refutation of RRefd,N (F, s), which in turn we can convert to a depth-d DAG-like refutation
of RRefd,N (F, s) by Proposition 2.2.

We write, for better readability, A1, . . . , Ak → B1, . . . , Bℓ instead of A1 ∨ · · · ∨ Ak ∨ B1 ∨
· · · ∨ Bℓ.

Let α be an assignment that satisfies every clause of F . We set

T (u) := P [u] →
n∨

i=1
D[u, i, α(xi)].

T. Papamakarios 22:9

What T (u) says is that if P [u] is true, then α satisfies the u-th clause in the refutation
Ref(F, s) describes.

Our refutation of RRef(F, s) consists of s − 1 stages, starting with stage 0. In the u-th
stage, T (1), . . . , T (s − u) → 0 will have been derived. Then we can use this formula, along
with a derivation of T (1), . . . , T (s − u − 1) → T (s − u), to derive T (1), . . . , T (s − u − 1) → 0.
In the s − 1-th stage, T (1) → 0 will have been derived, at which point we can reach a
contradiction by deriving T (1).

A derivation of T (1), . . . , T (v − 1) → T (v) is sketched in Figure 1. The formulas I[v, j] →

T (1), . . . , T (v − 1) → T (v)

V [v, 0] → T (v) T (1), . . . , T (v − 1) → V [v, 0], T (v)

I[v, j] → T (v) T (1), . . . , T (v − 1), V [v, i] → T (v)

· · · · · ·

T (vℓ), L[v, vℓ], T (vr), R[v, vr],
V [v, i] → T (v)

· · ·

D[vℓ, j, α(xj)], L[v, vℓ], D[vr, k, α(xk)],
R[v, vr], V [v, i] → T (v)

· · ·

Figure 1 A sketch of a derivation of T (1), . . . , T (v − 1) → T (v).

T (v) for j ∈ [m] can be immediately derived from the clauses P [u] ∧ I[v, j] → D[v, i, α(xi)],
which are clauses corresponding to condition (3.18), as the fact that α satisfies the clause Cj

means that x
α(xi)
i must belong to Cj for some i. These formulas can be in turn used along

with the clauses (3.11) for I[v, k] and (3.12) to derive V [v, 0] → T (v). Now deriving

T (1), . . . , T (v − 1) → V [v, 0], T (v) (4.1)

will allow us to derive T (1), . . . , T (v − 1) → T (v) by cutting on V [v, 0]. We can derive (4.1)
from the formulas

T (1), . . . , T (v − 1), V [v, i] → T (v) (4.2)

for i ∈ [n] using the clauses (3.11) for V [v, i]. The formulas (4.2) can be in turn derived from
the formulas

T (vℓ), L[v, vℓ], T (vr), R[u, vr], V [v, i] → T (v) (4.3)

for vℓ, vr ∈ [s] using the clauses (3.11) for L[v, k] and R[v, k], (3.12) and (3.13). Finally, (4.3)
can be derived from the formulas

D[vℓ, j, α(xj), L[v, vℓ], D[vr, xk, α(xk)], R[u, vr], V [v, i] → T (v), (4.4)

for j, k ∈ [n], which can be derived directly from the clauses (3.21) and either (3.14), (3.15)
and (3.19) or (3.16) and (3.17) depending on whether i = j = k or not.

CCC 2024

22:10 Depth-d Frege Systems Are Not Automatable Unless P = NP

We can see that the derivations of T (1), T (s) and T (1), . . . , T (v − 1) → T (v) take at
most O(m + s2n3) steps, hence the overall refutation has size O

(
s2n(m + s2n3)

)
.

Now, notice that after substituting every variable P [u] in it with S∧
d,N (P [u]) and every

other variable x with S∨
d,N (x), T (v) becomes a depth-d formula. Hence we see that after the

substitution, the refutation described above becomes a depth-(d + 1) tree-like LK refutation
of RRefd,N (F, s). We can then get a depth-d refutation of RRefd,N (F, s) of the required size
by applying Proposition 2.2. ◀

5 Lower bounds

Lower bounds for depth-d Frege systems for d > 1, typically follow the following strategy:
1. We first show that the formulas we are trying to refute are robust; namely, after applying

a restriction selected at random to them, then with high probability they cannot be
refuted with proofs whose lines are, in a certain sense, simple.

2. Then we show, through the use of a switching lemma, that applying such a restriction to
a short proof will result with high probability in a proof with simple lines.

Here we start with RRefd,N (F, s), which after applying the restrictions will collapse to
Ref(F, s′), where s′ is polynomially related to s. For the part of the overall strategy showing
that there cannot be refutations with simple lines, we take, as in [2], simple to mean of small
index-width. We say that a variable of the form D[u, i, b], V [u, i], I[u, j], L[u, v] or R[u, v]
mentions the index u. The index-width of a clause in the variables of Ref(F, s) is defined
as the number of indices mentioned by its variables, and the index-width of a resolution
refutation of Ref(F, s) is the maximum index-width over its clauses. We have:

▶ Theorem 5.1 [2]. For all integers n, s > 0 with s ≤ 2n, and every unsatisfiable CNF F

with n variables, every resolution refutation of Ref(F, s) has index-width at least s/6n.

5.1 The robustness of RRefd,N

We create a distribution on restrictions to the variables of RRefd,N (F, s) as follows. Suppose
d is odd (if d were even, we would exchange the roles of 0 and 1 in the following construction).
For each S∧

d,N (x) formula in RRefd,N (F, s), look at its bottom-most Nd−1 ∧ connectives.
For each such connective, we decide to “preserve” it with probability 1/

√
N , and not to

preserve it with probability 1 − 1/
√

N . For each of the preserved connectives, we leave its
first variable unset and set the rest to 1. For each variable in the unpreserved connectives,
we set it to 0 or 1 with probability 1/2 for each choice. The variables of S∨

d,N (x) are set
in the same way, except that the set variables of the preserved

∨
connectives are set to 0

instead of 1.
Under such restrictions, Sipser functions do not simplify much. For formulas F and G, in

which each variable appears only once, we say that F contains G if we can get G from F by
deleting some of its literals and/or renaming some of its variables.

▶ Lemma 5.2. For any d ≥ 2, the probability that Sν
d,N (x)|ρ, where ν ∈ {∧, ∨}, does not

contain Sν
d−1,N (x) is at most 2−Ω(

√
N).

Proof. We show the lemma for S∧
d,N (x) and d odd. If S∧

d,N (x)|ρ does not contain S∧
d−1,N ,

then either one of its bottom-most
∧

connectives takes the value 1, or in one of its depth-2
subformulas, less than

√
N/2

∧
connectives are preserved. The probability that a bottom-

most
∧

connective takes the value 1 is at most 2−
√

N/2 and the probability that this happens
for at least one of the Nd−1 bottom-most

∧
connectives is at most

T. Papamakarios 22:11

Nd−12−
√

N/2 ≤ 2−Ω(
√

N).

Now fix a depth-2 subformula A of S∧
d,N (x). The expected number of preserved

∧
connectives

in A|ρ is N/
√

N =
√

N , and by the Chernoff bound, the probability that there are less than√
N/2 preserved

∧
connectives is at most 2−Ω(

√
N). The probability that at least one of the

Nd−2 depth-2 subformulas of S∧
d,N (x) has less than

√
N/2 preserved connectives is thus at

most

Nd−22−Ω(
√

N) ≤ 2−Ω(
√

N).

We conclude that the probability that S∧
d,N |ρ does not contain S∧

d−1,N is at most 2−Ω(
√

N). ◀

5.2 The Furst-Saxe-Sipser switching lemma
Switching lemmas provide conditions under which a k-DNF formula “switches” to a ℓ-CNF
formula after applying a restriction created at random. We will use the switching lemma of
[8] and a variation tailored for RkRef(F, s) due to [10].

Let G be a k-DNF formula over the set of variables X. Let X1, . . . , Xr be a partition of
X into r blocks, and let ν ∈ {0, 1}. Consider the following distribution over restrictions on
X: For each block Xi, we decide to “preserve” Xi with probability p, and not to preserve it
with probability 1 − p. For each preserved block, we leave one of its variables, say the first
in the block, unset, and set all others to ν. For each unpreserved block, we set each of its
variables to 0 or 1 with probability 1/2 for each value.

We can extract the following lemma from [8, 19]. The lemma is implicit in [8, 19] with
parameters obscured under a big O notation. We present it here in a more general, improved
form, with explicit parameters, using decision trees along the lines of [18]. In what follows,
ln denotes the natural logarithm; we preserve the notation log for the base 2 logarithm.

▶ Lemma 5.3 (see [8, 19]). If phk2k ln N = o(N−ε) for some ε ∈ (0, 1), then

P [h(G|ρ) > kh] ≤ o(N−εh)2kh − 1
2h − 1 .

Proof. The proof is by induction on k. If k = 0, G is a constant and can be represented by
a decision tree of height 0. Suppose k > 0. We distinguish between two cases, G being wide
and G being narrow. We call G wide if there are at least h2k ln N terms in it such that no
two of them contain variables from the same block. G is narrow if and only if it is not wide.
If G is wide, then

P [h(G|ρ) > kh] ≤ P [G|ρ ̸= 1] ≤

(
1 −

(
1 − p

2

)k
)h2k ln N

≤ e−(1−p)kh ln N = N−(1−p)kh = o(N−εh).

If G is narrow, then take a maximal set of terms such that no two of them contain variables
from the same block, and let H be the set of blocks that contain a variable occurring in
some term of this set. H contains at most hk2k ln N blocks and every term of G contains
some variable (or its negation) from some block in H. The probability of the event A that ρ

preserves more than h blocks in H is

P [A] ≤
(

hk2k ln N

h

)
ph ≤ (hk2k ln N)hph = o(N−εh).

CCC 2024

22:12 Depth-d Frege Systems Are Not Automatable Unless P = NP

Now, let π be a restriction that sets the variables of all blocks in H , and let Aπ be the event
that π is consistent with ρ and h((G|ρ)|π) > (k − 1)h. Notice that G|π is a (k − 1)-DNF, so
by the induction hypothesis,

P [Aπ] ≤ P [h((G|π)|ρ) > (k − 1)h] ≤ o(N−εh)2(k−1)h − 1
2h − 1 .

Notice that a restriction ρ that preserves at most h blocks is consistent with at most 2h

restrictions π, so we get

P

[
A ∪

⋃
π

Aπ

]
≤ o(N−εh) + o(N−εh)2h 2(k−1)h − 1

2h − 1

= o(N−εh)2kh − 1
2h − 1 .

In the event(
A ∪

⋃
π

Aπ

)c

,

i.e. the event that ρ preserves at most h blocks in H and for all restrictions π consistent with
ρ, h((G|ρ)|π) ≤ (k − 1)h, we can construct a decision tree of height at most kh representing
G|ρ as follows: We query all variables belonging to some block in H left unset by ρ (since ρ

preserves at most h blocks in H, there are at most h of them), and at each branch π of the
resulting tree, we append a decision tree of minimum height representing (G|ρ)|π. ◀

We create a distribution on restrictions on the variables of RℓRef(F, s) as follows: For
every index u and every i ∈ [ℓ], we set Pi[u] to 0 or 1, with probability 1/2 for each value. Let
U be the set of indices such that Pi[u] = 1 for all i ∈ [ℓ]. For each variable x of RℓRef(F, s)
not of the form Pi[u] mentioning an index in U , we set x to 0 or 1, with probability 1/2 for
each value.

For a decision tree T querying variables of Ref(F, s), we define the index-height of T as
the maximum number of indices mentioned by variables over all branches that do not falsify
axioms of Ref(F, s). For a formula G, We denote by ℏ(G) the minimum index-height of a
decision tree representing G.

The following lemma is from [10]. We give a proof because in [10] the lemma is stated
not for RℓRef(F, s) but a variation, plus we view the following proof to be simpler.

▶ Lemma 5.4 [10]. Let F be a CNF formula in n variables, k and ℓ integers with 0 < k ≤ ℓ,
and G a k-DNF formula over the variables of RℓRef(F, s), where s ≤ 2δn for some δ < 1.
Then for large enough n,

P [ℏ(G|ρ) > h] ≤ 2− h

nk−1 γ(k),

where γ(0) = 1, γ(i) = (log e)(i4i+1)−1γ(i − 1).

Proof. Let hi := hγ(i − 1)/(4ni−1). We will show, by induction on k, that for every k and ℓ

with k ≤ ℓ, for every k-DNF formula G over the variables of RℓRef(F, s),

P

[
ℏ(G|ρ) >

k∑
i=1

hi

]
≤ 2− h

nk−1 γ(k)

for large enough n.

T. Papamakarios 22:13

If k = 0, F is a constant and can be represented by a decision tree of height 0. Suppose
k > 0. We call G wide if there are at least hk/k terms in G over disjoint sets of indices,
and call G narrow otherwise. Suppose G is wide. A literal in a term t of G is satisfied
with probability at least 1/4: Literals on a variable Pi[u] are satisfied with probability 1/2.
For any other literal xϵ of t mentioning the index u, since k ≤ ℓ, there must be a variable
Pi[u] not in t, which is made 0 with probability 1/2, in which case xϵ will be satisfied with
probability 1/2. Hence

P [ℏ(G|ρ) > h] ≤ P [G|ρ ̸= 1] ≤ (1 − 4−k)
hγ(k−1)
4knk−1

≤ 2− h

nk−1 (log e)(k4k+1)−1γ(k−1)

= 2− h

nk−1 γ(k).

Suppose now that G is narrow. Take a maximal set of terms over disjoint sets of indices,
and let H be the set of indices that are mentioned by the terms of this set. Notice that
|H| ≤ hk and that every term of G contains some variable (or its negation) that mentions an
index in H. Let π be a restriction that
1. sets all variables mentioning an index in H and leaves all other variables unset, and
2. does not falsify any axioms of RℓRef(F, s).
The second condition means in particular that if U is the set of indices u for which π sets
Pi[u] to 1 for all i, then for all u ∈ U , there will be exactly one v such that L[u, v] is true,
exactly one v such that R[u, v] is true, exactly one i such that V [u, i] is true, and exactly
one j such that I[u, j] is true, making the total number of such π’s to be at most

S|U |2(|H|−|U |)n0

where S := s2(n + 1)(m + 1)22n and n0 is the number of variables of RℓRef(F, s) mentioning
a fixed index u.

Let Aπ be the event that π is consistent with ρ and ℏ((G|ρ)|π) >
∑k−1

i=i hi. We have that

P [Aπ] = P

[
ℏ((G|ρ)|π) >

k−1∑
i=i

hi | ρ con. with π

]
P [ρ con. with π]

= P

[
ℏ((G|π)|ρ) >

k−1∑
i=i

hi

]
P [ρ con. with π]

≤ 2− h

nk−2 γ(k−1)2−ℓ|U |2−(|H|−|U |)n0 .

Hence, we get

P

[⋃
π

Aπ

]
≤
∑

π

P [Aπ]

≤
∑

U⊆H

S|U |2(|H|−|U |)n02− h

nk−2 γ(k−1)2−ℓ|U |2−(|H|−|U |)n0

=
|H|∑
r=0

(
|H|
r

)
Sr2− h

nk−2 γ(k−1)2−ℓr

= (S/2ℓ + 1)|H|2− h

nk−2 γ(k−1)

≤ S|H|2− h

nk−2 γ(k−1).

CCC 2024

22:14 Depth-d Frege Systems Are Not Automatable Unless P = NP

Since s ≤ 2δn for some δ < 1, the quantity

S|H| =
(
s2(n + 1)(m + 1)22n

) h

4nk−1 γ(k−1)

will be at most 2
εh

nk−2 γ(k−1) for some ε < 1 for large enough n, therefore

P

[⋃
π

Aπ

]
≤ 2− h

nk−1 γ(k)

for large enough n.
In the event (

⋃
π Aπ)c

, that is the event that for every π consistent with ρ, ℏ((G|ρ)|π) ≤∑k−1
i=1 hi, we can construct a decision tree for G|ρ of index-height at most

∑k
i=1 hi as follows:

We first query all variables mentioning an index in H left unset by ρ. Then, at each branch
π of the resulting tree, we append a decision tree of minimum index-height representing
(G|ρ)|π. ◀

5.3 The lower bound for RRefd,N

▶ Theorem 5.5. For every integer d > 0, if F is an unsatisfiable CNF in n variables, N is
an increasing function of n and s is a polynomial in n, every semantic depth-d refutation of
RRefd,N (F, s) has size at least

N
1
3 (log s

log n −2)
1

d−1

for large enough n.

Proof. Let h := (1/3)(log s/ log n − 2)1/(d−1) and let G1, . . . , Gt be a semantic depth-d
refutation of RRefd,N (F, s) of size at most Nh. We assume that each Gi is either a literal or
a disjunction of its immediate subformulas. Let A be a depth-1 subformula of some Gi. A

is a 1-DNF or a 1-CNF formula, so applying Lemma 5.3 to it (or its negation respectively)
with k = 1 and p = N−1/2 and using as blocks X1, . . . , Xr the variables in the depth-1
subformulas of RRefd,N (F, s), we get, since N−1/23h ln N = o

(
N−1/3),

P [h(A|ρ) > 3h] = o(N−h).

Now, there are at most Nh depth-1 subformulas A in the refutation, hence, by Lemma 5.2
and the union bound, the probability that either there is a depth-1 subformula A with
h(A|ρ) > 3h or RRefd,N (F, s)|ρ does not contain RRefd−1,N (F, s) is o(1). Therefore, for large
n, there must be a restriction ρ′

1 such that RRefd,N (F, s)|ρ′
1

contains RRefd−1,N (F, s) and
all depth-1 subformulas of all Gi|ρ′

1
are disjunctions or conjunctions of at most 3h literals.

Let ρ1 be a restriction extending ρ′
1 such that RRefd,N (F, s)|ρ1 is exactly RRefd−1,N (F, s).

We continue by applying Lemma 5.3 with k = 3h and p = N−1/2 to a 3h-CNF or 3h-DNF
depth-2 subformula B of Gi|ρ1 to get

P
[
h(B|ρ) > (3h)2] = o(N−h).

Since Gi|ρ1 has at most Nh depth-2 subformulas, there is a restriction ρ2 such that
RRefd,N (F, s)|ρ1ρ2 becomes RRefd−2,N (F, s) and all depth-2 subformulas of all Gi|ρ1 can be
represented by decision trees of height at most (3h)2. A formula representable by a decision
tree of height at most (3h)2 can be written as both a (3h)2-CNF and a (3h)2-DNF, so for all
i ∈ [t], Gi|ρ1ρ2 ∈ ΣNh,(3h)2

d−1 .

T. Papamakarios 22:15

Repeating the same argument d − 1 times, applying Lemma 5.3 at the j-th time to
depth-2 subformulas of ΣNh,(3h)j

d−j+1 -formulas equivalent to Gi|ρ1...ρd−1 , we get restrictions
ρ1, . . . , ρd−1 such that RRefd,N (F, s)|ρ1...ρd−1 becomes RRef1,N (F, s) and for all i ∈ [t],
Gi|ρ1...ρd−1 ∈ ΣNh,(3h)d−1

2 .
We are now ready to apply Lemma 5.4. First notice that RRef1,N (F, s) contains

RℓRef(F, s) for large n, where ℓ := (3h)d−1. For ρ selected randomly as specified in Lemma 5.4
for this ℓ, we get that the expected number of active indices is s/2ℓ, hence RRef1,N (F, s)|ρ
contains Ref(F, s′), where s′ := s/2ℓ+1, with high probability. Furthermore, Lemma 5.4 gives

P
[
ℏ(C|ρ) > n(3h)d−1

]
≤ 2−Ω(n),

where C is a (3h)d−1-DNF formula equivalent to some Gi|ρ1...ρd−1 . Therefore there must
be a restriction ρd such that RRefd,N |ρ1...ρd

becomes Ref(F, s′) and for every i ∈ [t],
ℏ(Gi|ρ1...ρd−1) ≤ n(3h)d−1 . Applying now the construction of Lemma 2.31 to G1|ρ1...ρd−1 , . . . ,

Gt|ρ1...ρd−1 gives a resolution refutation of Ref(F, s′) of index-width at most 3n(3h)d−1 = 3s/n2,
contradicting Theorem 5.1 for large n. ◀

6 Non-automatability of bounded-depth Frege systems

▶ Theorem 6.1. If P ̸= NP, then depth-d Frege systems are not automatable.

Proof. Suppose there is an algorithm A which, given an unsatisfiable CNF formula G,
returns a depth-d refutation of G in time polynomial in S(G) + S, where S(G) is the size
of G and S the size of the smallest depth-d refutation of G. Let c, n0 ≥ 1 be integers such
that for every G with |G| ≥ n0, A runs in time at most (S(G) + S)c. We will use A to
decide in polynomial time whether 3-SAT is satisfiable. Given a 3-CNF formula F with
n variables (and thus of size O(n3)), we construct the formula G := RRefd,N (F, s), where
s := n(3h)d−1+2, N := s and h is an integer such that(

(3h)d−1 + 2
)

h > c
((

(3h)d−1 + 2
)

(2(d + 3)) + 8
(
(3h)d−1 + 3

)
+ 1
)

.

Notice that the left hand side of the above inequality is a polynomial of degree d in h and the
right hand side a polynomial of degree d − 1, hence such an h must exist. Since N and s are
polynomials in n, the size of G is polynomial in n, hence its construction takes polynomial
time. Let S be the size of the smallest depth-d refutation of G and let n1 ≥ n0 be an integer
such that for all n ≥ n1,

F satisfiable =⇒ S + S(G) ≤ n((3h)d−1+2)(2(d+3))+8((3h)d−1+3)+1;

F not satisfiable =⇒ S ≥ n((3h)d−1+2)h.

Here we use the bounds given by Proposition 4.1 and Theorem 5.5. To decide whether F is
satisfiable, if n < n1, then we check all possible assignments to its variables to see if there is
a satisfying one. Otherwise, we run A on G for

nc(((3h)d−1+2)(2(d+3))+8((3h)d−1+3)+1)

steps. If A stops, then we can assert that F is satisfiable; otherwise we can assert that F is
unsatisfiable. ◀

1 Lemma 2.3 is stated for height and width, but it is not hard to see that the same construction yields
the lemma with index-height and index-width instead of height and width respectively.

CCC 2024

22:16 Depth-d Frege Systems Are Not Automatable Unless P = NP

7 Conclusion

This paper shows the non-automatability of bounded-depth Frege system assuming P ̸= NP.
We do this, following [2], by constructing, given a CNF formula F , a formula RRefd,N (F, s),
and exhibiting a gap between the size of the shortest depth-d Frege refutations of RRefd,N (F, s)
when F is satisfiable and the size of the shortest depth-d Frege refutations of RRefd,N (F, s)
when F is not satisfiable.

To show the lower bound for depth-d Frege refutations of RRefd,N (F, s) in the case F is
not satisfiable, we employ the Furst-Saxe-Sipser switching lemma [8]. While sufficient for the
purpose of showing non-automatability assuming P ̸= NP, this can only give lower bounds
of the form nh, where h is a barely superconstant function of n. It would be nice to have
an exponential lower bound. In particular, as in [2], an exponential lower bound would rule
out the automatability of bounded-depth Frege systems in quasipolynomial time unless NP
problems can be solved in quasipolynomial time, and their automatability in subexponential
time unless NP problems can be solved in subexponential time.

RRefd,N (F, s) consists of formulas of depth d. In particular, this does not preclude the
possibility of bounded-depth Frege systems being automatable on refuting, say CNF formulas.
A natural question is whether we could use CNFs, or at least formulas of constant depth,
not depending on d, instead. Let us mention here that whether there is a constant depth
formula exponentially separating depth-d from depth-(d + 1) Frege is open as well; currently,
only a super-polynomial separation is known [13] (see also [15, Section 14.5]). Moreover, the
formulas RRefd,N (F, s) are ad hoc and rather artificial. It would be nice if one could establish
a lower bound for formulas Refd(F, s) for an unsatisfiable formula F , encoding the fact that
there are depth-d refutations of F of size s (see Problem 2 in [17]), showing that proving
lower bounds for a depth-d Frege system is hard within the system. The latter problem
for a proof system is considered by Pudlák [17] to be a more important question than the
question of whether the system is automatable. Note that a CNF encoding of Refd(F, s) is
a candidate formula for the question of whether bounded-depth Frege systems for refuting
CNFs are automatable, and a CNF encoding of the reflection principle Sat(F, v) ∧ Refd(F, s),
where Sat(F, v) encodes that v is an assignment satisfying F , is a candidate formula for the
depth-d vs depth-(d + 1) Frege problem (see [17]).

Finally, the non-automatability result of [2] has been shown for cutting planes [11], Res(k)
[10], and various algebraic proof systems [7]. As far as we know, two remaining open cases
are the sum of squares and Sherali-Adams proof systems.

References
1 Michael Alekhnovich and Alexander Razborov. Resolution is not automatizable unless W[P]

is tractable. SIAM Journal of Computing, 38:1347–1363, 2008.
2 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. Journal of the ACM,

67:31:1–31:17, 2020.
3 Arnold Beckmann and Samuel Buss. Separation results for the size of constant-depth proposi-

tional proofs. Annals of Pure and Applied Logic, 136:30–55, 2005.
4 Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, and Toniann Pitassi.

Non-automatizability of bounded-depth frege proofs. Computational Complexity, 13:47–68,
2004.

5 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
frege systems. SIAM Journal of Computing, 29:1939–1967, 2000.

6 Stefan Dantchev and Søren Riis. On relativisation and complexity gap. In Proceedings of the
12th Annual Conference of the EACSL, pages 142–154, 2003.

T. Papamakarios 22:17

7 Susanna de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and
Dmitry Sokolov. Automating algebraic proof systems is NP-hard. In Proccedings of the 53rd
Annual ACM Symposium on Theory of Computing, pages 209–222, 2021.

8 Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17:13–27, 1984.

9 Michal Garlík. Resolution lower bounds for refutation statements. In Proccedings of the 44th
International Symposium on Mathematical Foundations of Computer Science, volume 138,
pages 37:1–37:13, 2019.

10 Michal Garlík. Failure of feasible disjunction property for k-DNF resolution and NP-hardness
of automating it. Electronic Colloqium on Computational Complexity, 2020.

11 Mika Göös, Sajin Koroth, Ian Mertz, and Toniann Pitassi. Automating cutting planes is
NP-hard. In Proccedings of the 52nd Annual ACM Symposium on Theory of Computing, pages
68–77, 2020.

12 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

13 Russell Impagliazzo and Jan Krajícek. A note on conservativity relations among bounded
arithmetic theories. Mathematical Logic Quarterly, 48:375–377, 2002.

14 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. Journal of
Symbolic Logic, 59:73–86, 1994.

15 Jan Krajíček. Proof Complexity. Cambridge University Press, 2019.
16 Pavel Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer

Science, 295:323–339, 2003.
17 Pavel Pudlák. Reflection principles, propositional proof systems, and theories, 2020.

arXiv:2007.14835. arXiv:2007.14835.
18 Nathan Segerlind, Samuel Buss, and Russell Impagliazzo. A switching lemma for small

restrictions and lower bounds for k-DNF resolution. SIAM Journal of Computing, 33:1171–
1200, 2004.

19 Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Annual ACM
Symposium on Theory of Computing, pages 61–69, 1983.

CCC 2024

https://arxiv.org/abs/2007.14835

Exponential Separation Between Powers of Regular
and General Resolution over Parities
Sreejata Kishor Bhattacharya #

Tata Institute of Fundamental Research, Mumbai, India

Arkadev Chattopadhyay #

Tata Institute of Fundamental Research, Mumbai, India

Pavel Dvořák #

Tata Institute of Fundamental Research, Mumbai, India
Charles University, Prague, Czech Republic

Abstract
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas
using resolution over parities is an outstanding problem that has received a lot of attention after its
introduction by Itsykson and Sokolov [11]. Very recently, Efremenko, Garlík and Itsykson [7] proved
the first exponential lower bounds on the size of ResLin proofs that were additionally restricted
to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of
unsatisfiability continue to have exponential size even though there exist short proofs of their
unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation
between the power of general ResLin and that of regular ResLin for any natural notion of regularity.

Our argument, while building upon the work of Efremenko et al. [7], uses additional ideas from
the literature on lifting theorems.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases Proof Complexity, Regular Reslin, Branching Programs, Lifting

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.23

Related Version Full Version: https://arxiv.org/abs/2402.04364

Funding Arkadev Chattopadhyay: Partially funded by the Department of Atomic Energy and a
Google India Research Award.
Pavel Dvořák: Work done entirely at TIFR. Supported by Czech Science Foundation GAČR grant
#22-14872O.

1 Introduction

One of the most basic and well studied proof systems in propositional proof complexity is
resolution. Its weakness by now is reasonably well understood after years of research. Yet,
this understanding is quite fragile as natural and simple strengthenings of resolution quickly
pose challenges that remain outstanding. One such system is resolution over linear equations,
introduced by Raz and Tzameret [16], which has been abbreviated as ResLin. In this paper,
we study ResLin over F2 that was introduced by Itsykson and Sokolov [11] (for the brevity
we use only ResLin for ResLin over F2 as we do not consider any other field). More precisely,
a linear clause is a disjunction of affine equations, generalizing the notion of ordinary clauses.
If A and B are two such linear disjunctions and ℓ is a linear form, then the inference rule of
ResLin derives the linear clause A∨B from clauses A∨ (ℓ = 1) and B∨ (ℓ = 0). To appreciate
the power of this system, let us recall that a linear clause, unlike an ordinary clause, can
be expressed using many different bases. Indeed, no super-polynomial lower bounds on the
size of general proofs in this system is currently known for any explicit unsatisfiable Boolean
formula.

© Sreejata Kishor Bhattacharya, Arkadev Chattopadhyay, and
Pavel Dvořák;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 23; pp. 23:1–23:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sreejata.bhattacharya@tifr.res.in
mailto:arkadev.c@tifr.res.in
mailto:koblich@iuuk.mff.cuni.cz
https://doi.org/10.4230/LIPIcs.CCC.2024.23
https://arxiv.org/abs/2402.04364
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Separation Regular and General Resolution over Parities

Progress was first made in the work of Itsykson and Sokolov [11] when they proved
exponential lower bounds on the size of tree-like ResLin proofs for central tautologies
including the Pigeonhole Principle and Tseitin formulas over expanding graphs lifted with
the AND gadget. Further, Itsykson and Sokolov [12] showed that tree-like ResLin proofs are
exponentially weaker than general ResLin proofs. Proving such lower bounds and separations
was systematized, only recently, in the independent works of Chattopadhyay, Mande, Sanyal
and Sherif [4] and that of Beame and Koroth [2].

In the world of ordinary resolution, it is known that there is an intermediate proof system,
known as regular resolution, whose power strictly lies in between tree-like and general proofs.
In the graph of a regular resolution proof, no derivation path from an axiom clause to the final
empty clause resolves a variable of the formula more than once. In the dual view of searching
for a falsified clause, this corresponds precisely to read-once branching programs, where no
source (corresponding to the empty clause) to sink (corresponding to a falsified clause of the
formula) path queries a variable more than once. Taking cue from this, Gryaznov, Pudlák
and Talebanfard [10] introduced models of read-once linear branching programs (ROLBP),
to capture notions of regularity in ResLin. They identified two such notions that extend the
notion of regularity in ordinary resolution, or the read-once property of branching programs.
Consider a node v of an ROLBP. Let Pre(v) denote the vector space spanned by all the linear
queries that appear in some path from the source node to v. Similarly, let Post(v) denote
the space spanned by all linear queries that lie in some path from v to a sink node. In the
most restrictive notion, called strongly regular proofs or strongly read-once linear branching
programs, Pre(v) and Post(v) have no non-trivial intersection for every v. In a more relaxed
notion, called weak regularity or weakly ROLBP, the linear query made at node v is not
contained in Pre(v). Gryaznov et al. [10] were able to prove an exponential lower bound
on the size of strongly ROLBP for computing a function, using the notion of directional
affine dispersers. However, their argument is not known to work for search problems for even
strongly ROLBP.

There is another natural notion of weakly read-once linear branching programs (dually,
weakly regular ResLin) that complements the notion defined in [10]. In this notion, we forbid
the linear query made at a node v of the branching program to lie in an affine space Post(u),
for each u that is a child of v. We will call this notion bottom-read-once (bottom-regular
proofs) and the former notion of Gryaznov et al. as top-read-once (top-regular proofs). Both
are generalizations of strongly read-once linear branching programs (strongly regular ResLin
proofs). Very recently, Efremenko, Garlik and Itsykson [7] proved the first exponential lower
bounds on the size of bottom-regular ResLin proofs. The tautology they used was the Binary
Pigeonhole Principle (BPHP). It is plausible that the BPHP remains hard for general ResLin
proofs. One way to prove such a bound would be to show that every general ResLin proof
could be converted to a bottom-regular ResLin proof with a (quasi-)polynomial blow up.

Our main result is a strong refutation of that possibility. We show that bottom-regular
ResLin proofs require exponential size blow-up to simulate non-regular proofs even in the
ordinary resolution system, that uses only ordinary clauses and only variables (instead of
arbitrary linear forms) are resolved. The formulas we use are twists of certain formulas
used by Alekhnovich, Johannsen, Pitassi and Urquhart [1] for providing separation between
regular and general resolution. Alekhnovich et al. provided two formulas for proving such a
separation. In the second one, the starting point is a pebbling formula on pyramid graphs. It
turns out that they are easy for regular resolution. To get around that, they consider stone
formula for pyramid graphs, that they prove is hard for regular resolution while remaining
easy for general resolution. We further obfuscate such stone formulas using another idea of
Alekhnovich et al. that appears in the construction of their first formula. Finally, we lift
these formulas by logarithmic size Inner-product (IP) gadgets.

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:3

This lifted formula presents fresh difficulties to be overcome to carry out the implicit
technique of Efremenko et al. [7]. We overcome them by exploiting two properties of the
Inner-product. First, we exploit the property that IP has low discrepancy, invoking a result
of Chattopadhyay, Filmus, Koroth, Meir and Pitassi [3]. Second, we use the fact that IP
has the stifling property, inspired by the recent work of Chattopadhyay, Mande, Sanyal and
Sherif [4].

Our unsatisfiable formula that yields a separation of resolution and bottom-regular ResLin
is a stone formula for a pyramid graph Gn of n levels lifted by an inner-product gadget
IP : {0, 1}b → {0, 1}. We denote this formula as SPn ◦ IP and it is defined over M := 2N2 · b
variables, where b = Θ(log n) and N = n(n+ 1)/2 is the number of vertices of the pyramid
graph Gn. For exact definition of SPn ◦ IP, see Section 2.

▶ Theorem 1. The formula SPn ◦ IP admits a resolution refutation of length that is poly-
nomial in M but any bottom-regular ResLin refutation of it must have length at least
2Ω(M1/12/ log1+ε M) for ε = 1/12.

Comparision with Efremenko et al. [7]

Our work builds upon the very recent work of Efremenko, Garlík and Itsykson, who proved
an exponential lower bound for the regular linear resolution complexity of the formula
Binary-PHPn+1

n . A crucial property of this formula that they use is that if we sample an
assignment to the variables from the uniform distribution, with high probability one needs
to make at least nΩ(1) bit-queries to locate a falsified clause. Later, they use the following
simple property of the uniform distribution: let A be an affine subspace of co-dimension r.
Then, the probability mass of A under uniform distribution is very small (inverse-exponential
in r). Call this property (*).

Our goal is to show an exponential lower bound on the regular linear resolution complexity
of a formula that has a small resolution refutation. A candidate formula would be a CNF
which exhibits exponential separation between resolution and regular resolution. Some such
formulas are MGTn,ρ and stone formulas with auxiliary variables to keep width of clauses
short (both defined in Alekhnovich et al. [1]). However, all such formulas have constant width
– and therefore, a uniformly random assignment falsifies a constant fraction of clauses. It
follows that for both these formulas there is a query algorithm making only constantly many
queries which finds a falsified clause with high probability under the uniform distribution.
Thus, directly adapting the argument of Efremenko et al. would not work for these formulas.

Our main observation is that property (*) continues to hold for a much larger class of
distributions than the uniform distribution when the base formula is lifted with an appropriate
gadget. More precisely, if we take any distribution µ on the assignments of the base formula
and let µ′ be its uniform lift, property (*) holds for µ′. We are now free to choose any
distribution on the assignments of the base formula for which locating a falsifying axiom
requires many queries on average (this is just a sketch; we actually need something slightly
stronger). This gives us enough freedom to construct appropriate distributions. Some more
ingredients are required to make this idea work; we explain them in the subsequent sections.

Some Other Related Work

Following up on the work by Alekhnovich et al. [1], Urquhart [20] proved a stronger
separation between the length of regular and general resolution proofs. Much more recently,
Vinyals, Elffer, Johannsen and Nordström [21], designed a different formula for showing
an even stronger separation between regular and general resolutions. The constructions

CCC 2024

23:4 Separation Regular and General Resolution over Parities

of Urquhart [20] as well as that of Vinyals et al. [21] are somewhat related to the hard
formulas that we construct in this paper. We talk about them more at the end of Section 2
after describing our construction in detail. In another direction, the model of read-once
linear branching programs, introduced by Gryaznov, Pudlák and Talebanfard [10], spawned
research in directional affine extractors and pseudo-randomness first by Chattopadhyay and
Liao [6], and then further by Li and Zhong [14], and by Li [13]. These work on extractors,
while independently interesting, are not known to have consequences for ResLin.

Organization of the Paper

We present our hard formula in the next section and briefly compare it with constructions
done in earlier work. In Section 3, we define ResLin refutation system and its regular and
tree-like restrictions. Further, we present the connection between resolution proof systems
and branching programs. In Section 4, we present some results from linear algebra which
we use in our proofs. In Section 5, we sketch the outline and main ideas of the proof of our
main result, Theorem 1. Then in Section 6, we prove the upper bound part of Theorem 1,
i.e., our hard formula has short resolution refutation. We finish our proof in Section 7 where
we prove the lower bound part of Theorem 1, i.e., any bottom-regular ResLin refutation of
our hard formula must have exponential length. Finally, in Section 8, we conclude with some
of the many open problems that our work raises.

2 A Formula Hard For Just Regular ResLin

Let us first recall the stone formula that was used by Alekhnovich et al. [1] for separating
the powers of regular and general resolution. The formula that we shall use is a lift of this
formula by an appropriate gadget. Let G = (V,E) be a directed acyclic graph such that it
has exactly one root (vertex with indegree 0), r, and every vertex of G has outdegree either 0
or 2. Call the vertices with outdegree 0 the sinks of G. Let |V | = N . We describe the stone
formula on G twisted with ρ, Stone(G, ρ) below. In words, the contradiction we are about to
describe states the following:

There are |V | stones. Each stone has a color: red or blue.
At least one stone must be placed on each vertex.
All stones placed on sinks must be red.
All stones placed on the root must be blue.
Let v be a node with out-neighbors u,w. If a red stone j is placed on u and a red stone
k is placed on w, then all stones placed on v must be red.

We shall twist this formula with an obfuscation map ρ to make it hard for regular resolution.
We formally define the formula below. We introduce the following set of variables.
Vertex variables: For all v ∈ V, 1 ≤ j ≤ N : Pv,j .

Semantic interpretation: Pv,j is set to 1 iff stone j is placed on vertex v.
Stone variables: For all 1 ≤ j ≤ N : Rj .

Semantic interpretation: Rj is set to 1 if stone j is colored red, otherwise it is set to 0.
Auxiliary variables: For all v ∈ V, 1 ≤ j ≤ N − 1 : Zv,j .

Semantic interpretation: These are auxiliary variables used to encode the fact that at
least one stone is placed on vertex v, with a bunch of constant-width clauses.

Let V denote the set of all variables mentioned above and ρ : [N]3 → V be an arbitrary
mapping that we call an obfuscation map. Let S be the set of sinks of G. We define
Stone(G, ρ) to be the formula comprising the following set of clauses:

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:5

Root clauses: For all 1 ≤ j ≤ N : ¬Pr,j ∨ ¬Rj

Semantic interpretation: All stones placed on the root r of G must be coloured blue.
Sink clauses: For all 1 ≤ j ≤ N, s ∈ S: ¬Ps,j ∨Rj

Semantic interpretation: Each stone placed on a sink of G must be coloured red.
Induction clauses: For all v ∈ V (G) with out-neighbors u,w and for each i, j, k ∈ [N]:

¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k)

¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k)

Semantic interpretation: after resolving out the variable ρ(i, j, k), the clause says that if
the stones placed on u and w are colored red, the stone placed at v must also be colored
red, i.e., the implication

(Pu,i ∧Ri ∧ Pw,j ∧Rj ∧ Pv,k) =⇒ Rk.

Stone-placement clauses: For all v ∈ V (G):

Pv,1 ∨ ¬Zv,1

Zv,1 ∨ Pv,2 ∨ ¬Zv,2

. . .

Zv,N−2 ∨ Pv,N−1 ∨ ¬Zv,N−1

Zv,N−1 ∨ Pv,N

Semantic interpretation: Together, the clauses are equivalent to

Pv,1 ∨ Pv,2 ∨ · · · ∨ Pv,N

i.e., at least one stone is placed on the vertex v.

Let Gn be the pyramid graph on n levels. The vertex set is V = {(i, j)|1 ≤ i ≤ n, 1 ≤
j ≤ i}. The level of a vertex (i, j) is defined to be its first coordinate i. The edge set is
E = {(i, j) → (i+ 1, j)|1 ≤ i < n, 1 ≤ j ≤ i} ∪ {(i, j) → (i+ 1, j + 1)|1 ≤ i < n, 1 ≤ j ≤ i}.
See Figure 1, for an example of the pyramid graph. The sinks of Gn are the vertices at layer
n, i.e., (n, i) for 1 ≤ i ≤ n. The root is (1, 1). We have |V | = N = 1

2n(n+ 1).

Figure 1 An example of the pyramid graph with n = 5 levels.

We instantiate the stone formula with G = Gn. Let SPn,ρ = Stone(Gn, ρ). We denote
the number of variables of SPn,ρ by m, i.e. |V| = m = N2 + N + N(N − 1) = 2N2. In
order to prove our lower bound against regular ResLin, it turns out to be convenient working

CCC 2024

23:6 Separation Regular and General Resolution over Parities

with a formula that is obtained by lifting SPn,ρ. Let g : {0, 1}b → {0, 1} be a Boolean
function, called gadget. For a ∈ {0, 1}, we denote the set of all pre-images of a by g−1(a),
i.e., g−1(a) :=

{
x ∈ {0, 1}b | g(x) = a

}
.

Let c1, c2, · · · , ck ∈ {0, 1}. Let C = [X1 = c1] ∨ · · · ∨ [Xk = ck] be a clause over variables
X1, . . . , Xk. Here [Xi = ci] denotes a literal, i.e. Xi if ci = 1, and ¬Xi otherwise. To lift
Clause C we introduce b variables Y i

1 , . . . , Y
i

b for each variable Xi of C. The lift of C, C ◦ g,
is a set of clauses which, in conjunction, are semantically equivalent to [g(Y 1

1 , · · · , Y 1
b) =

c1] ∨ · · · ∨ [g(Y k
1 , · · · , Y k

b) = ck], i.e., the following:

C ◦ g :=

 ∨
1≤i≤k,1≤j≤b

[Y i
j = 1 − di

j]
∣∣∣ d1 ∈ g−1(1 − c1), . . . , dk ∈ g−1(1 − ck)

 ,

where each di is a b-bit string and di
j is its j-th bit.

▶ Observation 2. An assignment (Y i
j)1≤i≤k,1≤j≤b satisfies every clause in C ◦ g if and only

if the lifted assignment (x1, x2, · · · , xk) given by

x1 = g(Y 1
1 , · · · , Y 1

b), · · · , xk = g(Y k
1 , · · · , Y k

b)

satisfies the clause C.

For a technical reason, we shall also need the following simple observation:

▶ Observation 3. Let ψ be any clause of C ◦ g. Suppose, one of the variables Y i
j appears in

ψ. Then, for all k ∈ [b], the variable Y i
k also appears in ψ.

For a set of clauses Φ (a CNF formula), we define its lift as Φ ◦ g := ∪C∈Φ(C ◦ g). We
have the following corollary of Observation 2.

▶ Corollary 4. The set of clauses Φ is unsatisfiable if and only if the set of clauses Φ ◦ g is
unsatisfiable.

We remark that if the base set Φ contains only clauses of width at most k, then Φ ◦ g
contains clauses of width at most kb and |Φ ◦ g| ≤ 2bk · |Φ|. In particular, a constant-width,
poly-size unsatisfiable formula, when lifted by an O(log n) size gadget, yields an O(log n)-
width, poly-size unsatisfiable formula. Our hard formula will be the stone formula lifted by
an inner product gadget SPn,ρ ◦ IP, where IP : {0, 1}b → {0, 1} is the inner-product function,
i.e. for each x, y ∈ {0, 1}b/2, set IP(x, y) = x1y1 + · · · + xb/2yb/2 (mod 2) where b = O(log n)
is an even integer.

Comparison with related formulas from previous work

We briefly mention some formulas that were used in the past, that are related to Stone(Gn, ρ).
First, the formula sans obfuscation Stone(Gn) was one of the formulas used by Alekhnovich
et al. [1] to yield the first exponential separation between regular and general resolution.
This separation was further strengthened by Urquhart [20] in a follow-up work, using the
following more involved formula. Fix a bijective placement of stones to the vertices of Gn.
This reduces Stone(Gn) to a plain pebbling formula on pyramid graph, denoted by Peb(Gn).
This reduces the number of clauses to linear in N . Urquhart considers the 2-bit XOR lift of
such a formula, i.e. Peb(Gn)◦⊕. This formula blows up the number of clauses, but still keeps
the number of variables to O(N). Finally, he shows that for a suitable ρ, the obfuscation
of Peb(Gn) ◦ ⊕ by ρ, just as we obfuscate Stone(Gn) by Stone(Gn, ρ), yields a separation
between regular and general resolution that is stronger than the one by Alekhnovich et al. [1].

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:7

More recently, Vinyals et al. [21] worked with a different sparsification of Stone(Gn). This
comes about naturally by considering Stone(Gn) as a densification of Peb(Gn) by using a
complete bi-partite graph with N vertices on each side. Roughly speaking, Vinyals et al.
used a constant degree bi-partite expander gadget with Peb(Gn), inspired by the earlier work
of Razborov [18]. This results in more modular and optimal arguments. However, the lift by
a stifled gadget of a base stone formula, like we do as in Stone(Gn, ρ) ◦ IP, seems not to have
been considered earlier.

3 Resolution Proof Systems and Branching Programs

A proof in a propositional proof system starts from a set of clauses Φ, called axioms, that
is purportedly unsatisfiable. It generates a proof by deriving the empty clause from the
axioms, using inference rules. The main inference rule in the standard resolution, called the
resolution rule, derives a clause A ∨B from clauses A ∨ x and B ∨ ¬x (i.e., we resolve the
variable x). If we can derive the empty clause from the original set Φ then it proves the set Φ
is unsatisfiable. We will need the following basic and well known fact that states resolution
is complete without being too inefficient.

▶ Lemma 5. Let C be any clause, and Φ be any CNF formula over n Boolean variables
and of polynomial size, that semantically implies C. Then, C can be derived from Φ by a
resolution proof of size at most 2O(n).

Linear resolution, aka ResLin and introduced by Raz and Tzameret [16], is a generalization
of standard resolution, using linear clauses (disjunction of linear equations over F2) to express
lines of a proof. It consists of two rules:
Resolution Rule: From linear clauses A ∨ (ℓ = 0) and B ∨ (ℓ = 1) derive a linear clause

A ∨B.
Weakening Rule: From a linear clause A derive a linear clause B that is semantically implied

by A (i.e., any assignment satisfying A also satisfies B).
The length of a resolution (or ResLin) refutation of a formula Φ is the number of applications
of the rules above in order to refute the formula Φ. The width of a resolution (or ResLin)
refutation is the maximum width of any (linear) clause that is used in the resolution proof.

It is known that a resolution proof and a linear resolution proof, for an unsatisfiable set of
clauses Φ, correspond to a branching program and a linear branching program, respectively,
for a search problem Search(Φ) (see for example Garg et al [8], who credit it to earlier work of
Razborov [17] that was simplified by Pudlák [15] and Sokolov[19]) that is defined as follows.
For a given assignment α of the n variables of Φ, one needs to find a clause in Φ that is
unsatisfied by α (at least one exists as the set Φ is unsatisfiable). A linear branching program
computing a search problem P ⊆ Fn

2 ×O is defined as follows.
There is a directed acyclic graph P of one source and some sinks. Each non-sink node
has out-degree at most two. For an inner node v the two out-neighbors u and w (i.e.,
there are edges (v, u) and (v, w) in P) are called children of v.
Each node v of P is labeled by an affine space Av ⊆ Fn

2 .
The source is labeled by Fn

2 .
Let v be a node of out-degree 2 and u and w be children of v. Then, Au = A0

v and
Aw = A1

v, where Ac
v = {x ∈ Av | ⟨fv, x⟩ = c} for a linear query fv = Fn

2 and c ∈ {0, 1}.
We call such v a query node.
Let v be a node of out-degree 1 and u be the child of v. Then, Av ⊆ Au. We call such v

a forget node.
Each sink v of P has an assigned output ov ∈ O such that Av is ov-monochromatic
according to P, i.e., α ∈ Av =⇒ (α, ov) ∈ P.

CCC 2024

23:8 Separation Regular and General Resolution over Parities

A standard/ordinary branching program is defined analogously but its nodes are labeled
by cubes instead of affine spaces. Consequently, variables instead of arbitrary linear functions
are queried at its query nodes.

The correspondence between a branching program computing Search(Φ) and a (linear)
resolution proof refuting Φ is roughly the following. We can represent the resolution proof as
a directed acyclic graph where nodes are labeled by (linear) clauses. The sources are labeled
by clauses of Φ and there is exactly one sink that is labeled by an empty clause. Each node
that is not a source has at most two parents and it corresponds to an application of the
(linear) resolution rule (if the node has 2 parents), or the weakening rule (if the nodes has 1
parent). To get a (linear) branching program for Search(Φ) we just flip the direction of the
edges in the resolution graph and negate the clauses that are used for node labeling. Thus,
each node is labeled by a cube or an affine space, the query nodes correspond to applications
of the resolution rule, and the forget nodes correspond to applications of the weakening rule.
It is clear the size of a branching program P (number of nodes of P) is exactly the same as
length of the corresponding resolution refutation.

Regular resolution is a subsystem of the resolution system, such that in any path of the
resolution proof graph each variable can be resolved at most once. A read-once branching
program corresponds to a regular resolution proof, i.e., on each directed path from the source
to a sink each variable is queried at most once. There is interest in two generalizations
of regular resolution to linear regular resolution – top-regular linear resolution [10] and
bottom-regular linear resolution [7] (in both papers called as regular linear resolution). We
will define both of them by their corresponding linear branching programs.

▶ Definition 6 ([10]). Let v be a node of a linear branching program P. Let Pre(v) be the
space spanned by all linear functions queried on any path from the source of P to v. Let
Post(v) be the space spanned by all linear functions queried on any path from v to any sink
of P.

A linear branching program is top-read-once1 [10] if for each query node v, we have
fv ̸∈ Pre(v). A linear branching program is bottom-read-once [7] if for each edge (v, u) such
that v is a query node holds that fv ̸∈ Post(u). A linear resolution proof is top-regular, or
bottom-regular if the corresponding branching program is top-read-once, or bottom-read-once,
respectively. We use both notion of branching program and resolution to state and prove
our result, whichever is more suitable for the presentation at hand. Our separation is only
for bottom-regular ResLin, i.e., for bottom-read-once linear branching program, which we
abbreviate to BROLBP.

▶ Lemma 7 (Lemma 2.6 [7] stated for branching programs). Let P be a BROLBP computing
a search problem P ⊆ {0, 1}n ×O. Let v be a node of P such that there is a path of length t
from the source of P to v. Then, dim(Post(v)) ≤ n− t.

▶ Lemma 8 (Lemma 2.3 [7] stated for branching programs). Let P be a linear branching program
computing a search problem P ⊆ {0, 1}n ×O. Let u and v be nodes of P such that there is a
directed path p from u to v. Let (M |c) be the system of linear equations given by queries along
the path p and A be the affine space of solution of (M |c), i.e., A = {α ∈ {0, 1}n | Mα = c}.
Then, for Au and Av the affine spaces associated with u, and v, respectively, holds that
Au ∩A ⊆ Av.

1 Gryaznov et al. [10] used just the name weakly read once for such programs.

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:9

Even more restrictive subsystems are tree-like resolution, and tree-like ResLin. These
subsystems correspond to decision trees and parity decision trees. A parity decision tree
(PDT) is a linear branching program such that its underlying graph is a tree, and a decision
tree (DT) is a restriction where we query only bits of the input, instead of linear functions.
It is clear that tree-like resolution is a subsystem of regular resolution. Analogously, tree-like
ResLin is a subsystem of both bottom-regular and top-regular ResLin.

It is easy to see that strongly read-once linear branching programs are both top-read-
once and bottom-read-once. Gryaznov et al. [10] observed that strongly read-once linear
branching programs can simulate parity decision trees (see the appendix of Chattopadhyay
and Liao [5] for the argument). A super-polynomial separation between tree-like ResLin and
bottom-regular ResLin follows from the work of Itsykson and Sokolov [12]. We have the
following containments:

Tree-Like Resolution

Tree-Like Linear Resolution

Strongly Regular Linear Resolution

Bottom-Regular Linear Resolution Top-Regular Linear Resolution

General Linear Resolution

Figure 2 Relationships between various notions of linear resolution. Solid arrow indicates the
separation is strict, dashed arrow indicates it’s not known whether the separation is strict.

In this paper we show the existence of a CNF formula with a polynomial sized resolution
refutation for which any bottom-regular linear resolution refutation requires exponential size.
Thus, we show that the containment bottom-regular linear resolution ⊆ general ResLin is
strict.

3.1 ROLBP Computing Boolean Function
In the context of computing Boolean functions, branching programs are defined, usually,
in a more relaxed fashion in a certain sense. For instance, ordinary branching programs
are defined without placing the restriction that the set of inputs reaching a node can be
contained in a non-trivial sub-cube. This is something we insist when we define BPs here as
our focus is on capturing the limitations of those BPs that are derived from a resolution proof
DAG by reversing the direction of its edges. It, possibly, would have been more meaningful
to call these latter objects affine DAGs, but we chose to call it linear branching programs
for the sake of continuity wrt the earlier works by Efremenko et al. [7] and Gryaznov et
al. [10]. In this section, we take the liberty of indeed calling them DAGs to compare them
with BPs. Affine DAGs severely restrict the power of computing Boolean functions. This
is because the set of sink nodes of such a DAG of small size computing a Boolean function
f simply provides an efficient affine cover of f−1(0) as well as f−1(1). Thus, immediately,
one concludes that any affine DAG, without any restriction on the number of reads of a

CCC 2024

23:10 Separation Regular and General Resolution over Parities

variable, computing the Inner-product on n bits requires 2Ω(n) size2 as IP has large affine
cover number. On the other hand, IP can be easily seen to be computed by a linear-size
read-once and bit-querying branching program.

On the other hand, the situation for problems of searching a falsified clause, is quite
different. As Lemma 2.4 in the work of Efremenko et al. [7] proves, for any unsatisfiable CNF
Ψ, any top-read-once linear branching program solving Search

(
Ψ

)
gives rise to a top-read-

once affine DAG for Search
(
Ψ

)
with hardly any blow-up in its size. The proof can be easily

verified to additionally yield that a strongly read-once linear BP for Search
(
Ψ

)
, completely

analogously, yields a strongly read-once affine DAG for Search
(
Ψ

)
with no essential blow-up

to its size. Thus, our main result, Theorem 1 holds equally for strongly read-once linear
branching programs that are not restricted by definition to be affine DAGs.

4 Linear Algebraic Facts

In this section, we will describe the notions of linear algebra that we will need in our
arguments. Let us introduce some notation first. Let M ∈ Ft×m

2 be a matrix. We denote the
row space of M by R(M). For a vector c ∈ {0, 1}t, S(M, c) is the affine space of solutions to
the linear system (M |c), i.e., S(M, c) = {α ∈ {0, 1}m | M · α = c}.

The entries of vectors of Fmb
2 are naturally divided into m blocks, each having b co-

ordinates/bits, i.e., for j ∈ [m], the j-th block contains the coordinates (j − 1)b+ 1, . . . , jb.
For j ∈ [m], BLOCK(j) = {(j − 1)b + 1, · · · , jb}. Also for T ⊆ [m] define BLOCK(T) =
∪t∈T BLOCK(t). For a vector u ∈ Fmb

2 and a block j ∈ [m], uj ∈ Fb
2 is the vector correspond-

ing to the block j of u, i.e., uj = (u(j−1)b+1, . . . , ujb). We say a vector u ∈ Fmb
2 touches a

block j ∈ [m] if the vector uj is non-zero. A set of vectors R ⊆ Fmb
2 touches a block j if at

least one of the vectors in R touches j. Let U be a subspace of Fmb
2 and T ⊆ [m] be a set of

blocks. The subspace UT of U is the linear space of all vectors u that do not touch any block
outside T , i.e., UT = {u ∈ U | ∀j ̸∈ T : uj = (0, . . . , 0)}. For S = BLOCK(T), the subspace
U↓T of FS

2 is the projection of U onto T , i.e., U↓T = {x ∈ FS
2 | ∃y ∈ F[mb]\S

2 : (x, y) ∈ U}. We
call a tuple of vectors R = (u1, . . . , ut), ui ∈ Fmb

2 to be safe if the following condition holds:
The vectors (u1, . . . , ut) form a matrix M ∈ Ft×mb in echelon form, i.e., there are t

distinct coordinates a1, . . . , at ∈ [mb] such that for all i, j ∈ [t]:

(ui)aj =
{

1 if i = j

0 otherwise

In other words, the matrix M restricted to the columns a1, . . . , at is the identity matrix
It ∈ Ft×t

2 .
Moreover, each pivot ai lies in a distinct block.

The ai’s are called the pivot variables of R. There might be multiple possible choices
for the tuple of pivot variables (a1, . . . , at). In that case we pick any valid choice, say the
lexicographically smallest valid choice, and call it the set of pivots.

A subspace U of Fmb
2 is spread if any set of k linearly independent vectors of U touches

at least k blocks, for each 1 ≤ k ≤ m. We say a set of blocks T ⊆ [m] is an obstruction of
a space U if U↓T̄ is spread, where T̄ is complement of T , i.e., T̄ = [m] \ T . An obstruction
T ⊆ [m] of a space U is minimal if any proper subset T ′ ⊂ T is not an obstruction of U , i.e.,
U↓T̄ ′ is not spread. Efremenko et al. [7] showed the following result.

2 In fact, the case for cube DAGs is known to be more dramatic. If a Boolean function f can be computed
by a cube DAG of size s, then it can be also computed by a decision tree of size sO(log(s)·log n).

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:11

▶ Theorem 9 (Theorem 3.1, Efremenko et al. [7]). Let U be a spread subspace of Fmb
2 with

dim(U) ≤ m. Then, U has a safe basis.

The following is a basic fact.

▶ Observation 10. Let U be any subspace of Fmb
2 and T ⊆ [m] be a set of blocks. Then,

dim(U) = dim(UT) + dim
(
U↓T̄

)
.

Proof. Let U ′ be a suitable subspace of U such that U = UT ⊕ U ′. It is simple to see
that U↓T̄ = (U ′)↓T̄ . This is because every vector u ∈ U can be written as x + u′, with
x ∈ UT and u′ ∈ U ′. But, as x↓T̄ = 0, we have u↓T̄ = u′↓T̄ . Hence, we conclude that
dim

(
U↓T̄

)
= dim

(
(U ′)↓T̄

)
≤ dim

(
U ′

)
. To establish our result, we will simply show that

dim(U ′) ≤ dim
(
(U ′)↓T̄

)
. This follows if we show that whenever u′1, . . . , u′r ∈ U ′ are linearly

independent vectors, so are
(
u′1

)
↓T̄ , . . . ,

(
u′r

)
↓T̄ . If that is not the case then there exists

a vector x ∈ UT such that x, u′1, . . . , u′r are not linearly independent, contradicting our
assumption. ◀

Efremenko et al. [7] showed the following properties of minimal obstructions.

▶ Lemma 11. Let U be a subspace of Fmb
2 . Then, a minimal obstruction T ⊆ [m] of U is

unique and |T | ≤ dim(U).

▶ Definition 12. For an affine space A = S(M, c) ⊆ Fmb
2 we define its closure Cl(A) ⊆ [m]

to be the unique minimal obstruction of R(M). Also, define VarCl(A) ⊆ [mb] to be the set
of variables that appear in the blocks of Cl(A), i.e.,

VarCl(A) = BLOCK(Cl(A)).

Efremenko et al. [7] proved the following relationship between the closures of two affine
spaces when one contains the other.

▶ Lemma 13. Let A ⊆ A′ be two affine spaces of Fmb
2 . Then, Cl(A′) ⊆ Cl(A).

A partial assignment α′ of m variables is a string in {0, 1, ∗}m. A variable X ∈ [m] is
assigned if αX ∈ {0, 1}. For a total assignment α ∈ {0, 1}m and T ⊆ [m] we define the
restriction α|T of α to T to be the partial assignment arising from α by unassigning the
variables that are not in T , i.e., for each i ∈ [m]

(
α|T)i =

{
αi if i ∈ T ,

∗ otherwise.

We describe the notion of stifling introduced by Chattopadhay et al. [4].

▶ Definition 14. A Boolean function g : {0, 1}b → {0, 1} is stifled3 if the following holds

∀i ∈ [b] and a ∈ {0, 1} ∃δ ∈ {0, 1}b

such that for all γ ∈ {0, 1}b with γ|[b]\{i} = δ|[b]\{i} holds that g(γ) = a.

3 1-stifled called by Chattopadhyay et al. [4]

CCC 2024

23:12 Separation Regular and General Resolution over Parities

We call δ from the previous definition a stifling assignment for i and a. The utility of stifling
is the following. An adversary can pick any variable i ∈ [b] of g. For any a ∈ {0, 1}, we can
pick a partial assignment δa ∈ {0, 1, ∗}m that assigns a value to all variables except the i-th
variable. Now, no matter how the adversary chooses the value for the i-th variable to get a
total assignment γa ∈ {0, 1}b from δa, the value g(γa) will be always a.

▶ Definition 15. A partial assignment β ∈ {0, 1, ∗}mb is called block-respecting if for each
block j ∈ [m], either all variables or no variables are assigned, i.e.,

(βj)i ∈ {0, 1} for all i ∈ [b] or (βj)i = ∗ for all i ∈ [b].

A block-respecting assignment β ∈ {0, 1, ∗}mb naturally gives a partial assignment
−→g (β) ∈ {0, 1, ∗}m by applying the gadget g to the assigned blocks. Formally, for each j ∈ [m]
we have

−→g (β)j =
{
g(βj

1, . . . , β
j
b) if for all i ∈ [b] : βj

i are assigned,
∗ otherwise.

▶ Definition 16. Let A ⊆ Fmb be an affine space and β ∈ A. The closure-assignment of β,
β|VarCl(A) is the partial assignment which fixes all coordinates in blocks of Cl(A) according
to β and keeps other coordinates free. In other words,

(β|VarCl(A))j =
{
βj if j ∈ Cl(A),
(∗, . . . , ∗) otherwise.

▶ Lemma 17. Let A = S(M, c) ⊆ Fmb be an affine space and let g : {0, 1}b → {0, 1} be
a stifled gadget. Let β ∈ A be a vector and β′ ∈ {0, 1, ∗}mb be its closure assignment. Let
α′ := −→g (β′) ∈ {0, 1, ∗}m. Then, for any extension of α′ to a total assignment α ∈ {0, 1}m,
there exists γ ∈ A such that −→g (γ) = α.

Proof. WLOG assume the rows of M are linearly independent. Let U = R(M) be the
row-space of M and let T ⊆ [m] be the closure of A. First, we construct a matrix M ′ which
has the same row-space as M .

Construction of M ′

1. Let (u1, . . . , ud) be an arbitrary basis of UT and let M1 ∈ Fd×mb be the matrix whose
rows are the vectors u1, . . . , ud:

M1 =

u1
u2
...
ud

2. Let (w1, . . . , wd′) be a safe basis of U↓T̄ . Such a basis exists by the definition of closure

and Theorem 9. Let a1, . . . , ad′ be pivots of w1, . . . , wd′ . Each of these pivots lie in a
distinct block. Moreover, none of these pivots are in the blocks of T .
Let L : U → U↓T̄ be the projection of U to U↓T̄ . Let w′i be an arbitrary pre-image of wi

according to L, i.e., L(w′i) = wi. Since (w1, . . . , wd′) are linearly independent, the vectors
(w′1, . . . , w′d′) are linearly independent as well. Let M2 ∈ Fd′×mb be the matrix with the
vectors w′1, . . . , w′d′ as its rows.

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:13

M2 =

w′1
w′2
...
w′d′

3. Take M ′ ∈ F(d+d′)×mb to be the matrix obtained by stacking M1 on top of M2:

M ′ =
[
M1
M2

]
▷ Claim 18. The matrices M and M ′ have the same row-space.

Proof. By Observation 10, dim(U) = dim(UT) + dim(U↓T̄) = d+ d′. No row of M2 can be
generated by rows of M1 as the pivots a1, . . . , ad′ of the matrix M2 lie in columns where the
matrix M1 has only 0 entries. Thus, rank(M ′) = rank(M1) + rank(M2) = d+d′ = dim(U) =
rank(M). Moreover, any row of M ′ lies in U = R(M). It follows that R(M) = R(M ′). ◁

Thus, there is a vector c′ ∈ Fmb such that A = S(M ′, c′). Now, we prove the lemma. We
are given a vector β ∈ S(M ′, c′) and a target assignment α ∈ {0, 1}m such that g(βj) = αj

for all j ∈ Cl(A). Our goal is to show the existence of a γ ∈ Fmb such that −→g (γ) = α and
M ′γ = c′. Recall that the tuple of rows of M2, (w′1, . . . , w′d′) is a safe tuple with set of pivots
a1, . . . , ad′ . Suppose aj ∈ BLOCK(bj). The blocks b1, . . . , bd′ are distinct and all of them lie
in [m] \ T . Let PIVOTS = {b1, b2, · · · , bd′} and FREE = [m] \ (T ∪ PIVOTS). We construct
γ in two steps. In the first step we construct a β̃ ∈ Fmb such that −→g (β̃) = α, but it is
not necessarily the case that M ′β̃ = c′. In the second step we modify β̃ in the coordinates
a1, . . . , ad′ to get an assignment γ ∈ S(M ′, c′).

Constructing β̃

For each i ∈ T = Cl(A), β̃ agrees with β on BLOCK(i), i.e., (β̃)i = βi.

For each i ∈ FREE, choose an arbitrary preimage ui ∈ g−1(αi) and set (β̃)i = ui.

For each i = bj ∈ PIVOT: Suppose the pivot aj is the ℓ-th coordinate of BLOCK(j).
Pick ui ∈ g−1(αi) to be a stifling assignment for the ℓ-th coordinate, i.e., g(ui) =
g(u(l)

i) = αi (where s(l) denotes s with l-th coordinate flipped). Set (β̃)i = ui.

Constructing γ: We modify β̃ in the coordinates a1, . . . , ad′ to get an assignment γ in
S(M ′, c′) as follows. For 1 ≤ j ≤ d, let fj = ⟨w′j , β̃⟩ + (c′)j . Let γ ∈ Fmb be the following
assignment:

γi =
{

(β̃)i if i ̸∈ {a1, . . . , ad′},
(β̃)i + fj if i = aj .

▷ Claim 19. −→g (γ) = α and γ ∈ S(M ′, c′).

Proof. We show both points separately.
Showing −→g (γ) = α: We argue that g(γi) = αi for all i ∈ [m].

Case 1, i ∈ T : We have set (β̃)i = βi. Note that γ differs from β̃ only in coordinates
a1, a2, · · · , ad′ . All these coordinates lie outside BLOCK(T). Thus, g(γi) = g(βi) = αi.

Case 2, i ∈ FREE: We have set (β̃)i = ui where ui ∈ g−1(αi). Again, note that γ differs
from β̃ only in the coordinates a1, a2, · · · , ad′ , all of which lie outside BLOCK(i). It
follows that g(γi) = αi.

CCC 2024

23:14 Separation Regular and General Resolution over Parities

Case 3, i ∈ PIVOTS: Let i = bj and let aj ∈ BLOCK(bj) be the corresponding pivot
variable. Recall that each pivot variable lies in a distinct block. Let aj be the ℓ-th
coordinate of BLOCK(bj). We have set (β̃i) = ui where ui ∈ g−1(αi) is a stifling
assignment for ℓ and αi. This means that g((ui)(ℓ)) = g(ui) = αi (s(ℓ) denotes s with
ℓ-th coordinate flipped). Notice that γ and β̃ agree everywhere on BLOCK(bj) except
possibly aj . This implies g(γi) = αi.

Showing γ ∈ S(M ′, c′): Note that all equations corresponding to rows in M1 are satisfied
by γ since they are satisfied by β and hence by β̃ too. That the equations corresponding
to M2 are satisfied by γ follows from the row echelon structure of M2, i.e., the fact that
after an appropriate permutation of the columns, M ′ looks as follows:

M ′ = B1 0 0 = M1
B2 Id′ B3 = M2

Closure T Pivots of M2

◁

Since S(M ′, c′) = S(M, c) = A, Lemma 17 follows immediately from Claim 19. ◀

5 Proof Outline

In this section, we provide an outline of the proof of our main result, Theorem 1. The proof
consists of two parts. The first part shows that the formula Stone(G, ρ) ◦ g has a polynomial
length resolution proof for any directed acyclic graph G on N vertices and out-degree 2, any
obfuscation map ρ : [N]3 → V , and any gadget g : {0, 1}b → {0, 1}, where b is logarithmic in
N (recall that the number of variables m of the formula Stone(G, ρ) is 2N2). This part of
the proof is an adaptation of an analogous proof for the stone formula given by Alekhnovich
et al. [1].

The second part establishes that there is a graph G and an obfuscation map ρ : [N]3 → V
such that any bottom-regular ResLin proof of Stone(G, ρ) ◦ IP has exponential length in
m, where IP is the inner product function on b = Θ(logm) bits. The proof of this part is
involved and non-trivial. We outline the main steps in the figure below, immediately followed
by a high-level description of each step depicted.

Outline of the Lower Bound Proof

Our argument is an adaptation of the method presented in Efremenko et al [7] with addition
of some new ingredients. See Figure 3, for depicting the method. Let P(β, t) be the node
that P arrives at after making t linear queries on β.

Some Details

Let P be a bottom-read-once branching program computing Search(Stone(G, ρ) ◦ IP) corres-
ponding to a bottom-regular ResLin proof of Stone(G, ρ) ◦ IP where G is a pyramid graph of
n levels and ρ is a carefully chosen obfuscation map. The proof consists of several steps.
1. We design a distribution µ over the assignment of variables of the base formula F over

m variables, typically supported over critical assignments, i.e. those which result in the
falsification of exactly one clause. This module requires one to show that Search(F) is
average-case hard for deterministic decision trees of small height wrt µ. In particular,
our Lemma 31 proves that the problem Search(Stone(G, ρ)) is average-case hard for
deterministic decision trees of height at most O(n1/3). As the µ exhibited is formula
specific, the box corresponding to this module is dashed.

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:15

Construct µ such that D7/10,µ(Search(F)) ≥ t

Step 1

D⊕8/10,−→g −1(µ)(Search(F ◦ g)) ≥ Ω(tb)

Step 2

Prβ∼−→g −1(µ)[P(β, t) is foolable] ≥ 2/3

Step 3

v is a node of P such that Av is foolable =⇒ co-dim(Av) ≥ r Prβ∼−→g −1(µ)[co-dim((P(β, t)) ≥ r] ≥ 2/3

Step 4

co-dim(A) ≥ r =⇒
for any lifted distribution D,

Prβ←D [β ∈ A] ≤ exp(−Ω(r/b)) [Lemma 44]

Step 5

|P| ≥ s = 2
3 exp(Ω(r/b))

Theorem 32
Lemma 34

Figure 3 Outline of the proof. The solid boxes refer to parts that are quite general and not
specific to a formula, while the dashed boxes contain modules that are more specific to SPn ◦ IP and
similar formulas.

2. In this step, we prove that the search problem associated with the lifted formula F ◦ g
remains average case hard for parity decision trees wrt a lifted distribution as long as the
gadget g has small rectangular discrepancy. More precisely, let −→g −1(µ) denote the lifted
distribution generated by the following sampling: sample an input z ∈ {0, 1}m according
to µ. Then, sample at random an input β ∈ {0, 1}mb, conditioned on −→g (β) = z. Using
Theorem 32, implicit in the proof of the main result of Chattopadhyay, Filmus, Koroth,
Meir and Pitassi [3], we conclude that Search(F ◦ g) is average-case hard for deterministic
parity decision trees of small height, under the lifted distribution −→g −1(µ). This step is
generic and works for any gadget of size c · log(m), that has sufficiently small rectangular
discrepancy under the uniform distribution over {0, 1}b. The gadget we use here is IP.

3. We then want to define a notion of progress the branching program P has made on
arriving at a node v. To do so, consider the affine space Av that labels the node. Av may
have nearly fixed/exposed the values of some of the blocks of input. These dangerous
blocks are precisely Cl(Av) as defined in Section 4. They form the minimum obstruction
set. Intuitively, the danger is P may have nearly found out a falsified clause of F ◦ g
on reaching v if that clause was made up entirely of variables from blocks in Cl(Av).
However, in this step we observe that the average-case hardness of the Search problem
for PDTs proved in the previous step precludes this from happening with appreciable
probability, when the input is sampled according to the lifted distribution −→g −1(µ). To
formalize this idea, we need to concretely say when Av is (not) dangerous. So far, we
have not been able to lay out a general notion of danger, but notions specific to individual
formulas have been defined. For Stone(G, ρ), this notion is captured by Definition 36
of foolable spaces, provided in Section 7.3. Theorem 37 shows that w.h.p., P reaches a
foolable space on walking for n1/3 steps, querying an input sampled according to −→g −1(µ).

4. In this step, we show that when the affine space Av is not dangerous, i.e. it is foolable
or consistent, the appropriate notion depending on the formula at hand, Av has large
co-dimension. All steps until now held for general branching programs (or equivalently
proof DAGs). This step is the only one where the bottom-read-once property is exploited.
For Stone(G, ρ), this is achieved in Section 7.4, at the end, by Lemma 40.

CCC 2024

23:16 Separation Regular and General Resolution over Parities

5. In this step, we prove a general result about lifted distributions. For any affine space A
of co-dim(A) = r and any distribution µ on {0, 1}m, we prove that β sampled by −→g −1(µ)
is in A only with probability 2−Ω(r/b), as long as the gadget g is balanced and stifling. In
other words, lifted distributions, even though their support is quite sparse in the ambient
space, are pseudo-random for the rank measure. This property, though simple to prove,
turns out to be extremely useful, especially for formulas like the stone formulas that are
barely hard.

At this stage we are ready to put together the above steps in the following way. Let R be
a set of nodes w of P such that there is a path from the root of P to w of length t, and
co-dim(Aw) ≥ t. Setting t := n1/3 we have the following.

7
10 ≤ Pr

β∼
−→
IP−1(µ)

[
co-dim(Av) ≥ t for v = P(β, t)

]
(by Step 3 and 4)

≤
∑
w∈R

Pr
β∼
−→
IP−1(µ)

[
P(β, t) = w

]
(by union bound)

≤ |R| · 2Ω(−t/b) (by Step 5)

By rearranging, we get the lower bound |R| ≥ 2Ω(n1/3/ log n). Recall that the number of
variables of Stone(G, ρ) ◦ IP is M = Θ(n4 log(n)). In terms of M , the lower bound is
2Ω(M1/12/ log13/12 M) = 2MΩ(1) .

6 Upper Bound

In this section, we show the upper bound part of Theorem 1.

▶ Theorem 20. Let G = (V,E) be an directed acyclic graph with N vertices such that there
is exactly one root r (vertex with indegree 0), and each non-sink vertex has outdegree exactly
2. Let ρ : [N]3 → V be any obfuscation map, and g : {0, 1}b → {0, 1} be a Boolean function
for b ≤ O(logN). Then, the formula Stone(G, ρ) ◦ g admits a resolution refutation of length
polynomial in N .

The proof of Theorem 20 is an adaptation of the proof given by Alekhnevich et al. [1] for
lifted formulas. We remark that Alekhnevich et al. [1] presented a resolution refutation for
the stone formulas of constant width. This allow us to adapt the refutation for the lifted
formula. For the rest of the section, we fix a graph G, an obfuscation map ρ, and a gadget g
satisfying the assumptions of Theorem 20. First, we prove several auxiliary lemmas about
the formula Stone(G, ρ) ◦ g.

▶ Lemma 21. Let C be a clause with width w. Suppose we have derived the clauses C∨¬Pv,j

for a fixed v ∈ V and all 1 ≤ j ≤ N . Then, we can derive C in N steps in width ≤ w + 2.

Proof. We derive the clause C in N steps. We will subsequently derive C ∨ ¬Zv,j+1 from
C ∨ ¬Zv,j

Base step: Deriving C ∨ ¬Zv,1.

C ∨ ¬Zv,1

{C ∨ ¬Pv,1} {Pv,1 ∨ ¬Zv,1}

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:17

Step j: For j ∈ [N − 2], deriving C ∨ ¬Zv,j+1 from C ∨ ¬Zv,j .

C ∨ ¬Zv,j+1

{C ∨ ¬Pv,j+1} {C ∨ Pv,j+1 ∨ ¬Zv,j+1}

{C ∨ ¬Zv,j} {Zv,j ∨ Pv,j+1 ∨ ¬Zv,j+1}

Final step: Deriving C.

C

{C ∨ ¬Pv,N } {C ∨ Pv,N }

{C ∨ ¬Zv,N−1} {Pv,N ∨ Zv,N−1}

◀
For a vertex v, we define the set of clauses S(v) = {¬Pv,j ∨Rj |1 ≤ j ≤ N}.

▶ Lemma 22. Let v be a vertex in G with children v0, v1. We can derive S(v) from S(v0),
and S(v1) in constant width and length O(N3).

Proof. We derive S(v) in several steps.

1. For every j, j0, j1 ∈ [N], we perform the following sequence of operations:

¬Pv,j ∨ ¬Pv0,j0 ∨ ¬Pv1,j1 ∨Rj

{¬Pv1,j1 ∨Rj1} {¬Pv,j ∨ ¬Pv0,j0 ∨ ¬Pv1,j1 ∨ ¬Rj1 ∨Rj}

{¬Pv0,j0 ∨Rj0} {¬Pv,j ∨ ¬Pv0,j0 ∨ ¬Rj0 ∨ ¬Pv1,j1 ∨ ¬Rj1 ∨Rj}

2. For each fixed j0, j, we apply Lemma 21 to the clause C := ¬Pv,j ∨ ¬Pv0,j0 ∨Rj and we
derive ¬Pv,j ∨ ¬Pv0,j0 ∨Rj .

3. For each fixed j, we apply Lemma 21 to the clause C := ¬Pv,j ∨ Rj and we derive
¬Pv,j ∨Rj . ◀

▶ Lemma 23. The formula Stone(G, ρ) has a resolution refutation of width O(1) and size
polynomial in N .

CCC 2024

23:18 Separation Regular and General Resolution over Parities

Proof. The refutation proceeds in the following steps.
Elimination of the ρ’s: For every induction clause C, we resolve the appended ρ-variable.

C

{C ∨ ρ} {C ∨ ¬ρ}

Derivation of S(r): For each sink s of G, the clauses S(s) are present in the axioms of
Stone(G, ρ). By Lemma 22, we subsequently derive the set S(r) for the root r of G.

Empty clause derivation: For each 1 ≤ j ≤ N, we derive ¬Pr,j .

¬Pr,j

{¬Pr,j ∨ ¬Rj} {¬Pr,j ∨Rj}

Now by applying Lemma 21 for C being an empty clause ⊥, we derive ⊥, that concludes
the proof. ◀

Now, from constant-width polynomial-length refutation of Stone(G, ρ) we derive a
polynomial-length refutation of the lifted formula Stone(G, ρ) ◦ g.

▶ Lemma 24. Let g : {0, 1}b → {0, 1} be a Boolean function and Φ be a CNF unsatisfiable
formula over n variables containing only constant width clauses. Suppose Φ has a resolution
refutation of length ℓ and constant width. Then, Φ ◦ g contains clauses of width O(b) and
admits a resolution refutation of size ℓ · 2O(b).

Proof. By construction, if C is a clause of width k, then |C ◦ g| ≤ 2bk. If k is constant, this
is 2O(b). We show that, for every derivation step (A ∨ x), (B ∨ ¬x) → (A ∨B) in a proof for
Φ, we can derive all clauses of (A∨B) ◦ g from the clauses of (A∨ x) ◦ g and (B ∨ ¬x) ◦ g in
polynomial size, assuming each of A,B has constant width. This follows from the fact that
(A∨x) ◦ g and (B∨ ¬x) ◦ g semantically imply (A∨B) ◦ g: an assignment (xi,1, . . . , xi,b)i∈[M]
satisfies formula C ◦ g if and only if the assignment (g(xi,1, . . . , xi,b))i∈[n] satisfies clause
C. And since clauses A ∨ x,B ∨ ¬x semantically imply A ∨B, it follows that the formulas
(A ∨ x) ◦ g and (B ∨ ¬x) ◦ g semantically imply the formula (A ∨B) ◦ g.

As both A and B are constant-width clauses, each of the formulae (A ∨ x) ◦ g and
(B ∨ ¬x) ◦ g are defined on at most O(b) variables. By Lemma 5, we can derive each clause
in (A ∨B) ◦ g from (A ∨ x) ◦ g and (B ∨ ¬x) ◦ g in at most 2O(b) resolution steps.

Using this fact, we can mimic the resolution refutation of Φ. For each intermediate clause
C derived in the resolution refutation for Φ, we can derive all clauses in C ◦ g. In the end, we
derive ⊥ ◦g = {⊥}, i.e., the empty clause. Assuming the width of the resolution refutation
for Φ is bounded by some constant, the total length of our simulation is at most ℓ · 2O(b). ◀

Now, Theorem 20 is a corollary of Lemma 23, and 24.

7 Lower Bound

In this subsection, we prove the lower bound part of Theorem 1 following the outline given
in Section 5.

▶ Theorem 25. There is an obfuscation map ρ : [N]3 → V such that any bottom-regular
ResLin refutation of SPn,ρ ◦ IP must have length at least 2Ω(n1/3/ log n).

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:19

Recall that number of variables of SPn,ρ ◦ IP is Θ(n4 log n). Thus, the lower bound given
by Theorem 25 yields the lower bound claimed in Theorem 1. For the rest of this section, we
fix G = (V,E) to be the pyramid graph of n levels, and N = n(n+ 1)/2 vertices.

7.1 The Stone Formula is Average-Case Hard for Decision Trees
We shall construct a distribution µ on {0, 1}m such that for any obfuscation map ρ : [N]3 → V ,
the search problem Search(SPn,ρ) is hard on average w.r.t. µ for deterministic decision trees
of sufficiently small height (around n1/3).

First, we fix an arbitrary bijection f : [N] → V between stones and vertices of the
pyramid. All assignments in Supp(µ) will place the stone i on vertex f(i). The distribution
µ samples the assignments as follows.
1. Assign stone i to vertex f(i). Formally for each v ∈ V , i ∈ [N], and j ∈ [N − 1], we set:

Pv,i =
{

1 if f(i) = v

0 otherwise

Zv,j =
{

0 if j < f−1(v)
1 otherwise

2. Sample n− 2 independent uniform bits B2, . . . , Bn−1 ∈ {0, 1}
3. Let X1 = 1, and for 2 ≤ j ≤ n− 1, let Xj = Xj−1 +Bj . Color the vertices (j,Xj) blue

for 1 ≤ j ≤ n− 1 and other vertices red, i.e., for each stone i ∈ [N], we set:

Ri =
{

0 if j ≤ n− 1 and (j,Xj) = f(i)
1 otherwise

Let α ∈ Supp(µ). The assignment α corresponds to the following stone placement. It
places a different stone on each vertex. There is a path P from the root r = (1, 1) to a vertex
v in the level n− 1 given by the random variables X1, . . . , Xn−1, i.e. the vertices of the path
are {(1, X1), . . . , (n− 1, Xn−1)}. The stones on the vertices of P are colored blue, all other
stones are colored red. An example of such a coloring is shown in Figure 4.

Figure 4 An example of a pyramid graph with coloring giving by an assignment sampled by the
hard distribution µ.

CCC 2024

23:20 Separation Regular and General Resolution over Parities

We call the path P as the blue path induced by α and the vertex v as the end of P . Note
that the only clause falsified by the assignment α is one of the induction clauses for the
vertex v and its children u and w. Formally, for the stones i = f−1(u), j = f−1(w), and
k = f−1(v), the assignment α falsifies exactly one of the following two induction clauses
(depending how α sets the value of ρ(i, j, k)):

D1(v) := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k)

D0(v) := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k)

Consider a random walk Y1, . . . , Yk on a number line starting at q ∈ N distributed as
follows: Y1 = q, and for i > 1

Yi =
{
Yi−1 + 1 with probability 1

2

Yi−1 with probability 1
2

Note that the random variables X1, . . . , Xn−1 used in the construction of µ are distributed
as Y1, . . . , Yn−1 for Y1 = 1.

▶ Lemma 26. There exists a constant c1 ≥ 0 such that for any p ∈ {q, . . . , q + k − 1} and
t ∈ {2, . . . , k}, we have Pr[Yt = p] ≤ c1/

√
t.

Proof. Note that Yt = q +
∑t

i=2 Bi, where each Bi is an independent uniform random bit.
Now, Yt = p = p′ + q for p′ ∈ {0, . . . , k − 1} if and only if

∑t
i=2 Bi = p′.

Pr[Yt = p] = Pr
[

t∑
i=2

Bi = p′

]
=

(
t− 1
p′

)
· 2−t+1 ≤

(
t− 1
⌊ t−1

2 ⌋

)
· 2−t+1 ≤ c1√

t

For an appropriate constant c1 > 0, the last inequality is implied by Stirling’s formula. ◀

For a set S ⊆ [k] × N, we say the random walk W avoids S if for all (i, j) ∈ S it holds
that Yi ̸= j.

▶ Lemma 27. Let c2 ≥ 1 be a constant and S ⊆ [k] × N be a set of forbidden points with
|S| ≤ t. Suppose there exists an interval I = [L,R] ⊆ [k] with |I| ≥ c · t2 for sufficiently large
constant c depending on c2, such that no point of S has the first coordinate in I, i.e., for
all (i, j) ∈ S : i < L or i > R. If the random walk W = Y1, . . . , Yk avoids S with non-zero
probability, then for any z ∈ {q, . . . , q + k − 1} it holds that

Pr
[
Yk = z | W avoids S

]
≤ 1
c2t

.

Proof. We partition S into two subsets S1 and S2 of points before and after the interval I,
S1 = {(i, j) ∈ S | i < L}, and S2 = {(i, j) ∈ S | i > R}. Note that by the assumption, we
have S = S1∪̇S2.

We show that for all p such that Pr
[
YL = p | W avoids S

]
> 0, we have Pr

[
Yk = z | YL =

p,W avoids S
]

≤ 1/c2t. We set c := 4c2
1c

2
2 where c1 is the constant given by Lemma 26. We

have by Lemma 26 that

Pr
[
Yk = z | YL = p,W avoids S1

]
= Pr

[
Yk = z | YL = p

]
≤ 1

2c2t
, (1)

since z − L ≥ |I| ≥ c · t2. Again, for all (i, j) ∈ S2 (i.e., i > R) we have by Lemma 26 that

Pr
[
Yi = j | YL = p,W avoids S1

]
≤ 1

2c2t
≤ 1

2t .

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:21

By union bound,

Pr
[
∃(i, j) ∈ S2 such that Yi = j | YL = p,W avoids S1

]
≤ 1

2 . (2)

Therefore,

Pr[Yk = z | YL = p,W avoids S] =
Pr

[
Yk = z,W avoids S2 | YL = p,W avoids S1

]
Pr

[
W avoids S2 | YL = p,W avoids S1

]
≤ 2 · Pr

[
Yk = z | YL = p,W avoids S1

]
(by (2))

≤ 1
c2t

(by (1))

Now, we are ready to finish the proof.

Pr
[
Yk =z|W avoids S

]
=

∑
p

Pr
[
YL = p | W avoids S] · Pr

[
Yk =z | YL =p,W avoids S

]
≤

∑
p

Pr
[
YL = p | W avoids S] · 1

c2t
= 1
c2t

◀

Now we show that when inputs are sampled according to µ, any deterministic decision
tree for Search(SPn,ρ) with small height makes an error with high probability. Note that for
each v ∈ V, i ∈ [N], j ∈ [N −1], the assignment to the variables Pv,i and Zv,j are fixed by any
assignment in Supp(µ) (in other words, for each vertex the stone placed on it is fixed). Thus,
we can assume WLOG the decision tree only queries the variables Rj . We say a decision
tree queries the color of a vertex v of G if it queries the variable Rf−1(v). (Recall that the
stone f−1(v) is placed on the vertex v by assignments in Supp(µ).)

Note that there is a simple, even non-adaptive, decision tree of height O(
√
n) that makes

few errors. It simply queries the colours of O(
√
n) nodes of the pyramid graph, centered

around the (n− 1)/2-th node at level n− 1. With very high probability, there is a blue node
among the queried ones which uniquely identifies the falsified induction clause. Nevertheless,
we will show that all decision trees of height at most n1/3, will make errors with large
probability to identify a falsified clause.

Consider a decision tree T for Search(SPn,ρ). We transform T into a decision tree T ′ in
a canonical form:

Initially, T ′ always queries the color of the root r of G.
Suppose T outputs an induction clause D0(v) or D1(v) for a vertex v of G. Then, T ′
queries the color of the vertex v first. If the color of v is red (i.e., Rf−1(v) = 1), then T ′
outputs an error symbol. Otherwise it outputs the same induction clause that T outputs.
If T outputs any other clause, then T ′ outputs an error symbol.

We remark this modification increases the height of the tree by at most two. Given any
assignment in Supp(µ), a decision tree T ′ in a canonical form can output either an induction
clause from {D0(v), D1(v) | v ∈ V (G)} or an error symbol. The probability of T making an
error is precisely the probability of reaching a leaf node of T ′ labeled with an error symbol.

Note that for each cube C ⊆ {0, 1}m there is a corresponding partial assignment αC ∈
{0, 1, ∗}m such that the cube C is exactly the set of total extensions of αC , i.e., C = {α ∈
{0, 1}m | α extends αC}. We say a cube C ⊆ {0, 1}m fixes a vertex v ∈ V (G) to red (or blue)
if the corresponding partial assignment αC assigns a value 1 (or 0) to the variable Rf−1(v).

Now, fix a decision tree T for Search(SPn,ρ) in a canonical form and let h := γ · n1/3 be
the height of T , where γ > 0 is sufficiently small constant.

CCC 2024

23:22 Separation Regular and General Resolution over Parities

▶ Definition 28. We say a cube C ⊆ {0, 1}m is useful if there exist 1 ≤ L1 ≤ L2 ≤ L3 ≤
L4 ≤ N such that:
1. The cube C fixes the some vertex in level L1 to blue and some vertex in level L4 to blue.
2. For all L2 ≤ ℓ ≤ L3, the cube C does not fix the color of any vertex in level ℓ.
3. L3 − L2 ≥ n

2h
A node p of T is called useful if the cube Cp associated with it is useful.

Clearly, the root of T is not useful.

▶ Lemma 29. Let α ∈ Supp(µ) be an assignment on which T reaches the leaf p. If p does
not output an error symbol, then p is useful.

Proof. Let v be the endpoint of the blue path induced by α. Then, p outputs one of the
induction clauses D0(v) or D1(v) for v ∈ V (G). Since T is in the canonical form, the cube
Cp fixes the vertex v and the root r of G to blue. Recall that the vertex v is in level n− 1.
Let 1 = ℓ1 < · · · < ℓd = n − 1 be the levels where Cp fixes some vertices. Since d ≤ h,
there must exist an i such that ℓi+1 − ℓi ≥ n− 1

h+ 1 >
n

2h.. There is no fixed vertex on levels
ℓi + 1, . . . , ℓi+1 − 1.

We take largest the ℓ1 such that ℓ1 ≤ ℓi and Cp fixes a vertex on ℓ1 to blue. Similarly,
we take the smallest ℓ2 such that ℓ2 ≥ ℓi+1 and Cp fixes a vertex on ℓ2 to blue. The cube Cp

satisfies the conditions of being a useful node in Definition 28 by taking (L1, L2, L3, L4) =
(ℓ1, ℓi + 1, ℓi+1 − 1, ℓ2). ◀

▶ Lemma 30. For any ε > 0 there exists γ > 0 such that

Pr
α∼µ

[The computation path of T on α reaches a useful node] ≤ ε.

Proof. Let T (α, k) denote the node of T reached by α after k queries. For each 1 ≤ k ≤ h,

we upper bound the probability that the computation path of α reaches a useful node for
the first time at step k. Then, we shall use union bound on k. Formally, we bound the
probability as follows.

Pr
α∼µ

[computation path of α reaches a useful node]

= Pr
α∼µ

[
∃k ∈ [h] : T (α, k) is useful and T (α, k − 1) is not useful

]
≤

h∑
k=1

Pr
α∼µ

[
T (α, k) is useful and T (α, k − 1) is not useful

]
≤ h · max

k∈[h]
Pr

α∼µ

[
T (α, k) is useful | T (α, k − 1) is not useful

]
We bound the last probability for any k ∈ [h]. Let p = T (α, k − 1). We assume the node

p is not useful. Let (i, j) ∈ V (G) be the lowest vertex that is fixed by Cp to blue. Suppose
that in the the next step T queries a color of the vertex (i′, j′). If the next node has to be
useful, the response to the query has to be blue. Moreover, there have to be n/2h consecutive
layers i < ℓ′, . . . , ℓ′ + n

2h − 1 < i′ such that Cp does not fix any vertex on those layers. The
probability that the response to the query is blue is

Pr
α∼µ|Cp

[The blue path induced by α visits (i′, j′)] .

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:23

Consider the random walk X1, . . . , Xn−1 that determines the blue path P induced by
α ∼ µ. Recall that the vertices of P are {(1, X1), . . . , (n − 1, Xn−1)}. The cube Cp fixes
colors of some vertices of G. Let B and R be the set of vertices whose colors are fixed by Cp

to blue and red respectively.
Conditioning on the cube Cp restricts the random walk X1, . . . , Xn−1 that it must visit

the points in B and must not visit the points in R. Formally, for any (q, y) ∈ B it holds that
Xq = y and for any (q′, y′) ∈ R it holds that Xq′ ̸= y′. We know there is at least one walk
that avoids R and visits B (the walk corresponding to P). Moreover, we have |R| ≤ h and
there is a large “gap” in R, i.e., for each (i1, j1) ∈ R it holds that i1 < ℓ′ or i1 > ℓ′ + n

2h − 1.
Recall that we set h = γn1/3. Set γ to a sufficiently small constant so that n

2h ≥ ch2, where c
is a sufficiently large constant for which we can apply Lemma 27 with c2 = ε−1. By applying
an appropriate time shift, we have by Lemma 27 that

Pr
α∼µ|Cp

[
The blue path induced by α visits (i′, j′)

]
= Pr

µ|Cp

[Xi′ = j′] ≤ 1
c2h

≤ ε

h
.

Thus, we conclude that for all k ∈ [h],

Prµ∼α

[
T (α, k) is useful | T (α, k − 1) is not useful

]
≤ ε

h
.

Therefore, the probability that the computation path ever reaches a useful node is at
most ε. ◀

We end this subsection with by showing that the formula SPn,ρ is average-case hard for
decision trees.

▶ Lemma 31. For any ε > 0, there exists γ > 0 such that every deterministic decision tree
of height at most γ · n1/3 for Search(SPn,ρ) makes error with probability ≥ 1 − ε w.r.t. the
distribution µ.

Proof. If the decision tree answers correctly, by Lemma 29 it must reach a useful node at
some point. By Lemma 30, the probability of this ever happening is at most ε if γ is small
enough. ◀

7.2 Lifting the Average-Case Hardness to Parity Decision Trees
We lift the distribution µ to a distribution µ′ of variables of SPn,ρ ◦ IP as follows:
1. Sample an assignment α according to µ.
2. Sample a uniformly random assignment from

−→
IP−1(α).

We remark that an assignment β sampled by µ′ falsifies exactly one clause of SPn,ρ ◦ IP, in
particular one clause that arises by a lifting clause C of SPn,ρ where C is the unique clause
falsified by the assignment

−→
IP(β).

In this section, we prove Search(SPn,ρ ◦ IP) is average-case hard for parity decision trees
of small height under the lifted distribution. To do so, we shall use a result of Chattopadhyay
et al. [3], that built upon the earlier work of Göös, Pitassi and Watson [9].

We will need to consider randomized decision trees that output Boolean strings in {0, 1}t,
rather than 0/1. For a given deterministic 2-party communication protocol Π, let Π(x, y)
denote the transcript generated by Π on input (x, y).

CCC 2024

23:24 Separation Regular and General Resolution over Parities

▶ Theorem 32 (Implicit in [3]). Assume b ≥ 50 log(m). Let Π be any deterministic 2-party
communication protocol of cost c, where Alice and Bob each get inputs from {0, 1}mb. For
any z ∈ {0, 1}m, let (Xz, Yz) denote the distribution on pairs obtained by sampling from
−→
IP−1(z) uniformly at random. Then, there exists a randomized decision tree T of cost O(c/b)
such that the following holds for every z ∈ {0, 1}m:

dTV
(
T (z),Π(Xz, Yz)

)
≤ 1/10.

The above theorem says that a randomized decision tree is able to simulate by probing
only a few bits of its input z, the transcript of a deterministic communication protocol when
it is given a random input pair Xz, Yz. Its relevance for us is due to the following simple
observation.

▶ Observation 33. Every deterministic parity decision tree of height h can be simulated
exactly by a deterministic 2-party communication protocol of cost at most 2h.

Now we can lift our avarage-case hardness to parity decision trees.

▶ Lemma 34. There exists a constant c > 0 such that for every obfuscation map ρ and every
parity decision tree T of height at most c · n1/3 log n purporting to solve Search

(
SPn,ρ ◦ IP

)
,

the following is true:

Pr
β∼µ′

[
T (β)is falsified on β

]
≤ 2

5 .

Proof. Assume T makes an error with probability < 3/5. Then our main idea is that we
would be able to construct an ordinary decision tree for Search(SPn,ρ) of depth O(n1/3)
which makes error with probability < 7/10 under distribution µ. This contradicts Lemma 31.

Using Observation 33, we get a deterministic 2-party protocol of cost at most 2 · depth(T)
that makes error less than 3/5 for solving Search

(
SPn,ρ ◦ IP

)
. Theorem 32 then yields a

randomized decision tree T ′ with the following properties. On input α ∼ µ,
T ′ makes at most O (cost(Π)/ log n) queries to α, i.e., at most O(n1/3).
If D1 denotes the actual distribution of the transcript of Π when it is run on input sampled
uniformly at random from −→IP−1(α) and D2 denotes the distribution of the transcript of
Π simulated by T ′,

||D1 − D2|| ≤ 1
10

We now modify T ′ to output a clause as follows. A transcript of Π leads it to output a clause
of SPn,ρ◦IP. The modified T ′ outputs the unique corresponding un-lifted clause of SPn,ρ. The
probability of error is at most Pr[Π errs] + 1/10 < 7/10. This gives a randomized decision
tree; by fixing the coins we can replace it by a deterministic decision tree, contradicting
Lemma 31. ◀

7.3 Foolable Nodes Are Frequent
Let P be a bottom-read-once linear branching program for Search

(
SPn,ρ◦IP

)
that corresponds

to a bottom-regular ResLin proof of the unsatisfiability of SPn,ρ ◦ IP. Our goal is to show
size of P is large. To do so, we establish that the affine spaces associated with many nodes
of P have a certain property that allows to fool them. In particular, let β be an assignment
sampled by µ′. We will prove that with high probability after making t = O(n1/3) linear
queries, according to β, we will end in a node p of P such that the associated affine space Ap

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:25

does not have much information about β. We will show that this implies the affine space Ap

contains many useful assignments that allows us to prove the co-dimension of Ap is large.
Now, we define the sought property formally.

▶ Definition 35. Let α ∈ Supp(µ) and P be the blue path induced by α that ends at
v. Let u and w be the two children of v. We say a subset T ⊆ [m] is α-foolable if
T does not contain any variable mentioning v, u or w, i.e. the variables Px,i, Zx,j for
x ∈ {u, v, w}, i ∈ [N], j ∈ [N − 1].

▶ Definition 36. An affine space A ⊆ Fmb
2 is α-foolable if Cl(A) is α-foolable with α ∈ Supp(µ)

and there exists β ∈ A such that α =
−→
IP(β).

We call a node p of P α-foolable if the associated affine space Ap is α-foolable. Recall
that P(β, t) is the node that P arrives at after making t linear queries on β. It turns out the
node P(β, t) is α-foolable with high probability if t is sufficiently small. We prove this in the
following theorem.

▶ Theorem 37. Let P be any bottom-read-once linear branching program corresponding
to a bottom-regular ResLin proof of SPn,ρ ◦ IP. There exists a constant c > 0 such that if
t < c · n1/3, then

Pr
α∼µ,β∼

−→
IP−1(α)

[
P(β, t) is α-foolable

]
>

3
5 .

Proof. Let p denote the random node P(β, t). Let the blue path induced by α end at v and
let the children of v be u and w. Notice that the second condition of being α-foolable (that
Ap contains an element of

−→
IP−1(α)) is always satisfied by P(β, t) since one such element is

β. We just need to lower bound the probability of the first condition of α-foolability being
satisfied, i.e., the probability that Cl(Ap) does not contain any variable mentioning u,w or v.

We construct a PDT T for Search(SPn ◦ IP) from P in the following manner: on input β,
it will simulate the path traced out in P for t steps by making precisely those linear queries
that would have been issued in P. At the end of it, T does the following: Let A be the
affine space corresponding to the queries issued and responses received so far. For every
vertex k = (i, j) in the pyramid graph Gn such that one of its variables (Pk,ℓ or Zk,ℓ for some
ℓ ∈ [N]) is in Cl(A), query the b coordinates from the blocks of the following set of variables:

S =
{

Rf−1(x)|x ∈ {(i − 1, j − 1), (i − 1, j), (i, j − 1), (i, j), (i, j + 1), (i + 1, j), (i + 1, j + 1)} ∩ V (G)
}

If one of the induction clauses mentioning only stones in S is falsified (recall that the
placement of stones to vertices is the same for all assignments in µ), output the corresponding
clause. Otherwise, output an error symbol.

Clearly, the depth of T is O(n1/3 log n). Thus, by Lemma 34, the probability that it
outputs a falsified clause is at most 2/5. Let Ap denote the affine space at P(β, t). Note that
A ⊆ Ap =⇒ Cl(Ap) ⊆ Cl(A), by Lemma 13. It is straight-forward to verify that if Ap is
not α-foolable, then T successfully outputs a clause falsified by β: if one of the variables
belonging to u,w or v is in Cl(A), in the final step the PDT queries the stones placed on
u,w, v and detects that an induction clause at v is falsified. The result now follows from
Lemma 34. ◀

7.4 Foolability Implies Large Rank
In this subsection, we prove there is an obfuscation map ρ : [N]3 → V such that for a foolable
node v of a bottom-read-once linear branching program P computing Search(SPn,ρ ◦ IP), the
associated affine space Av must have large co-dimension.

CCC 2024

23:26 Separation Regular and General Resolution over Parities

First, we prove an auxiliary lemma. Let T ⊆ [m] be a subset of the variables of SPn,ρ.
We say a stone j is marked by T if T contains a variable that mentions the stone j, i.e.
Rj , Pv,j for any vertex v ∈ V , Pf(j),k for any stone k ∈ [N], or Zf(j),ℓ for any ℓ ∈ [N − 1].
Let Q(T) ⊆ [N] be the set of stones marked by T .
▶ Lemma 38. Let ρ be any obfuscation map and α ∈ Supp(µ). Let v be the vertex at which
the blue path induced by α ends. Let T ⊆ [m] be an α-foolable subset with |Q(T)| < N/2. For
any i, j, k ∈ [N] \Q(T), there exists an assignment γ ∈ {0, 1}m extending the restriction α|T
which satisfies all clauses of SPn,ρ except one of the following two:

C1 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k), or
C2 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k),

where u and w are the out-neighbors of v.
Proof. Let S ⊆ V (G) be the set of vertices in the blue path induced by α. We assign
stone k to vertex v and stones i, j to u,w respectively. To all other vertices we assign
arbitrary stones as long as they are consistent with α|T . Formally: pick two stones ℓ1, ℓ2 in
[N] \ (Q(T) ∪ f−1(S) ∪ {i, j, k}). Consider the following map STONE : V → [N].

STONE(p) =

f−1(p) if f−1(p) ∈ Q(T)
i if p = v

j if p = u

k if p = w

ℓ1 if f−1(p) ̸∈ Q(T) ∪ {i, j, k}, f−1(p) ∈ S

ℓ2 if f−1(p) ̸∈ Q(T) ∪ {i, j, k} ∪ S

Define a coloring map COLOR : [N] → {RED,BLUE} as follows:

COLOR(s) =

RED if s ∈ Q(T), f(s) ̸∈ S

BLUE if s ∈ Q(T), f(s) ∈ S

BLUE if s = i

RED if s = j

RED if s = k

BLUE if s = ℓ1

RED if s = ℓ2

BLUE otherwise

We remark the color used in the last case does not matter as these stones are not used in the
stone placement given by the map STONE. Let γ ∈ {0, 1}m be the assignment which sets
the variables according to this placement and coloring map, i.e.,

Pv,j =
{

1 if j = STONE(v)
0 otherwise

Zv,j =
{

0 if j < STONE(v)
1 otherwise

Rj =
{

1 if COLOR(j) = RED
0 if COLOR(j) = BLUE

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:27

Notice that this assignment is consistent with α on T and it falsifies a single induction clause
at v: stone i is placed at v, stones j, k are placed at u,w respectively; stones j, k are red
while stone i is blue. We remark that there is no set of clause in SPn,ρ which forces the
placement of stones to vertices to be bijective. Thus, the only clause of SPn,ρ falsified by γ
is one of the following:

C1 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ρ(i, j, k),
C2 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬ρ(i, j, k), ◀

For our hard formula, we use an appropriate obfuscation map ρ given by the following
lemma. An analogous lemma was proved by Alekhnovich et al. [1] with different constants
as their formula is over a slightly smaller set of constants, but still quadratic in N .

▶ Lemma 39. For N sufficiently large, there exists a mapping ρ : [N]3 → V such that for
every Q ⊆ [N] with |Q| ≤ N/400 and every X ∈ V, there exist i < j < k ∈ [N] \Q such that
ρ(i, j, k) = X.

We remark that the proof of the following lemma is the only place where we are using an
obfuscation map with a certain property (given by Lemma 39) and also that the branching
program computing Search(SPn,ρ ◦ IP) is bottom-read-once.

▶ Lemma 40. There exists an obfuscation map ρ : [N]3 → V such that the following holds.
Let β ∈ Fmb

2 , t > 0, and p = P(β, t) be a node in a bottom-read-once branching program P
computing Search(SPn,ρ◦IP). If p is α-foolable for α =

−→
IP(β), then co-dim(Ap) ≥ min{ N

800 , t}.

Proof. Fix ρ : [N]3 → V to be a map with the property guaranteed by Lemma 39. Let
Ap = S(M, c). Suppose rank(M) ≤ N

800 . Let S be the set of sinks of P reachable from p.

▷ Claim 41. For each variable Y of SPn,ρ ◦ IP there is a sink in S outputting a clause D
such that Y or ¬Y is in D.

Proof of Claim 41. We shall show that there exists an assignment γ ∈ Ap such that γ falsifies
only one clause of SPn,ρ ◦ IP and that clause contains Y or ¬Y . Let Y ∈ BLOCK(Z). Let v
be the endpoint of the blue path induced by α, and let its children be u and w.

Let T = Cl(Ap). Note that |T | < N/800, thus Q(T) < N/400. By Lemma 39, there exist
i < j < k in [N] \Q(T) such that ρ(i, j, k) = Z. By assumption, T is α-foolable. By Lemma
38, we can extend the restriction α|T to a full assignment γ ∈ Fm

2 such that γ does not falsify
any clause of SPn,ρ other than one of the following two clauses:

C1 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ Z

C2 := ¬Pu,i ∨ ¬Ri ∨ ¬Pw,j ∨ ¬Rj ∨ ¬Pv,k ∨Rk ∨ ¬Z.

By Lemma 17, there is an assignment β′ ∈ Ap such that
−→
IP(β′) = γ. Note that β′ falsifies

only one clause of SPn,ρ ◦ IP, and that clause belongs to either C1 ◦ IP or C2 ◦ IP. By
Observation 3, every clause in C1 ◦ IP and C2 ◦ IP contains every variable in the block of
ρ(i, j, k) = Z (possibly with negations). Thus, the only clause falsified by β′ contains either
Y or ¬Y . Since β′ ∈ Ap and β′ falsifies only one clause C̃ of SPn,ρ ◦ IP, one of the sinks in S
must be labelled C̃. ◁

CCC 2024

23:28 Separation Regular and General Resolution over Parities

We continue the proof of Lemma 40. Let U be the space spanned by rows of matrices defining
the spaces of sinks in S. Formally, let s ∈ S be labelled by the affine space As = S(Ms, cs)
(this corresponds to a clause of SPn,ρ ◦ IP). Then, U = Span

(
{R(Ms) | s ∈ S}

)
. By Claim 41

each variable of SPn,ρ ◦ IP is mentioned at some sink in S, so the space U has full dimension,
i.e., dim(U) = mb. Let W = Span

(
R(M) ∪ Post(p)

)
. By Lemma 7, we have

dim(W) ≤ rank(M) + dim(Post(p)) ≤ rank(M) +mb− t.

On the other hand by Lemma 8, U ⊆ W and thus, dim(W) ≥ dim(U) = mb. Putting both
inequalities together, we get rank(M) ≥ t. ◀

7.5 Lifted Distributions Fool Rank
In the earlier two subsections, we have established the following two facts: (i) in any BROLBP
P corresponding to a bottom-regular ResLin proof of SPn,ρ ◦ IP, when inputs β are sampled
according to the IP lift of µ, the node P(β, t) is a foolable node with high probability; (ii) in
such a BROLBP, the constraint matrix for the affine space associated with a foolable node
has large rank.

To prove that P has large size, it is sufficient to argue that each large rank constraint
system is satisfied with small probability under the IP lift of µ. Of course, such a statement
is well known to be true if we sample inputs from the uniform distribution in Fbm

2 . However,
our distribution is not so at all. In particular, it has quite sparse support. Still, it turns out
that any lifted distribution is pseudo-random with respect to the rank measure if the gadget
satisfies a generalization of the stifling property. Consider a gadget g : {0, 1}b → {0, 1}. For
any i ∈ [b], and o ∈ {0, 1} an assignment α to the bits different from i is called o-stifling
for i if g gets fixed to o by α, i.e., the induced subfunction g|([b]\{i})←α gets fixed to the
constant function that always evaluates to o, no matter how the i-th bit is set. We say g is
ε-balanced, stifled if for any i ∈ [b], and for any o ∈ {0, 1}, the following is true: when we
sample x ∈ {0, 1}b uniformly at random from g−1(o), the projection of x on co-ordinates
different from i is o-stifling for i with probability at least ε.

▷ Claim 42. Inner-product defined on 2b ≥ 8 bits is a 7/18-balanced and stifled gadget.

Proof. By simple manipulation,

Pr
(x,y)∼{0,1}2b

[
IP(x, y) = 0 ∧ x1 = 0

]
= E

[(
1 + (−1)

∑b

i=1
xiyi

2

)(
1 + (−1)x1

2

)]
.

The RHS becomes,

1
4 + 1

4E
[
(−1)x1

]
+ 1

2E
[
(−1)

∑b

i=1
xiyi

]
The second sum is 0, and the third is at most 1

2b+1 . Overall, this gives that

Pr
(x,y)∼{0,1}2b

[
IP(x, y) = 0 ∧ x1 = 0

]
≥ 1

4 − 1
2b+1 .

Further, by a similar method,

Pr
(x,y)∼{0,1}2b

[
IP(x, y) = 0

]
≤ 1

2 + 1
2b
.

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:29

Thus,

Pr
(x,y)∼{0,1}2b

[
x1 = 0 | IP(x, y) = 0

]
≥ 1/4 − 1/2b+1

1/2 + 1/2b
.

Note that any assignment that sets x1 = 0 stifles y1. Hence, y1 is stifled with probability
at least 7/18, if b ≥ 4, by the projection of a random 0 (and similarly 1) assignment to IP.
Completely analogously, any bit is stifled with the same probability. ◁

▶ Remark 43. It is worth noting that several gadgets, including Inner-Product, Indexing,
Majority, even on sufficiently large but constant number of bits, are stifled and balanced.

Now we state the utility of balanced, stifling gadgets.

▶ Lemma 44. Let g be any ε-balanced, stifled gadget and z ∈ Fm
2 be any fixed vector. Then,

for every matrix M ∈ Fr×bm
2 of full rank r, and sny vector γ ∈ Fr

2 the following holds:

Pr
β∼−→g −1(z)

[
Mβ = γ

]
= 2−Ωε(r/b).

Proof. After Gaussian elimination, turning M into row-echelon form, there are at least r/b
different blocks in which pivots of rows appear. Let us call each such block a pivot block.
The distribution −→g −1(z) samples independently at random from g−1(zi) for each of the i-th
block. It will be convenient to think that we sample, one after the other, independently from
blocks in this way, starting from the rightmost. Consider the situation when we arrive at a
pivot block having sampled all blocks to its right. Let the bit of z corresponding to this pivot
block be o ∈ {0, 1}. Consider any one row that has a pivot in that block. Let the equation
corresponding to this row be denoted by ℓ. By the property of g, with probability at least ε
the random assignment from g−1(o) will be stifling for the pivot of ℓ. Conditioned on that
event, the stifled bit will be set to each of 0, 1 with probability exactly 1/2 as each possible
setting gives rise to a distinct assignment in g−1(o). Hence, the probability that ℓ is satisfied
by the sampled assignment to this block is at most (1 − ε/2). Thus, continuing this way, the
probability that all the equations are satisfied is at most

(
1 − ε/2

)r/b, yielding the desired
result. ◀

7.6 Putting Everything Together
Now, we are ready to finish the proof of our lower bound, i.e., Theorem 25.

Proof of Theorem 25. Let P be the BROLBP derived from a bottom-regular ResLin proof
of SPn,ρ ◦ IP. Let t = ⌊c · n1/3⌋ for an appropriately chosen small constant c > 0. Combining
Theorem 37 and Lemma 40, we get

Pr
β∼µ′

[
co-dim

(
AP(β,t)

)
≥ t

]
≥ Pr

α∼µ,β∼
−→
IP−1(α)

[
P(β, t) is α-foolable

]
≥ 3

5 . (3)

On the other hand, for any node v of P which has co-dim(Av) ≥ t, Lemma 44 yields,

Pr
β∼µ′

[
P(β, t) = v

]
≤ 2−Ω

(
t

log n

)
. (4)

If s is the total number of nodes of P, combining (3) and (4), we get immediately
3
5 ≤ Pr

β∼µ′

[
co-dim

(
AP(β,t)

)
≥ t

]
=

∑
v node of P:co-dim(Av)≥t

Pr
β∼µ′

[
P(β, t) = v

]
≤ s · 2−Ω

(
t/ log(n)

)
Substituting the value of t in the above inequality, we immediately get s ≥ 2Ω

(
n1/3/ log(n)

)
◀

CCC 2024

23:30 Separation Regular and General Resolution over Parities

8 Future Directions

We provided the first super-polynomial separation between the power of bottom-regular and
power of general ResLin proofs. We believe the general proof strategy that we implemented,
modifying and generalizing the recent technique of Efremenko, Garlík and Itsykson [7],
should yield exponential lower bounds on the length of bottom-regular ResLin proofs for
other formulas as well. For instance, formula MGTn which is the constant-width version of
GTn, that encodes the contradiction that a finite total order has no minimal element, when
obfuscated appropriately and then lifted with inner-product can be proved to be hard for
bottom-regular ResLin. Indeed, the first part of our proof strategy is quite general and applies
to all ResLin proofs without any assumption on regularity. Here, we need just the fact that
the search for a falsified clause in the base formula is hard on average for small height decision
trees w.r.t some distribution µ. That is sufficient, thanks to lifting theorems, to yield the fact
that after the first few (typically nΩ(1)) linear queries, the branching program corresponding
to the ResLin proof is still far from discovering a falsified clause in the lifted formula with
high probability, when the input is sampled from the lifted distribution −→g −1(µ). This is
step 2 of our proof outline. In most formulas, one could then define some natural notion
of foolability and then say the affine space associated with nodes of the branching program
are frequently foolable. How do we know this is useful? Unfortunately, the usefulness of
these notions seem formula-specific. For the binary pigeonhole principle, Efremenko et al.
observed that local consistency was enough to yield high rank of the dual of the affine space.
For our formula, we achieved the same exploiting the obfuscation map and stifling nature of
our lifting gadget. But this seems not immediately generalizable. An interesting direction
here is the following:

▶ Problem 1. Prove strong lower bounds on the size of bottom-regular proofs for the lift of
Tseitin formulas over expander graphs.

Another direction is to consider the formulas where even implementing the first step of
our strategy seems impossible.

▶ Problem 2. Prove strong lower bounds on size of bottom-regular ResLin proofs for appro-
priate lifts of random constant-width CNF formulas.

The above seems challenging as for random formulas of constant-width, for every dis-
tribution, there exists a decision tree that finds in O(1) queries a falsified clause with high
probability. This, very likely, requires changing our technique substantially. Finally, one of
the challenges posed by Gryaznov et al. [10] remains still open.

▶ Problem 3. Prove super-polynomial lower bounds on the size of top-regular ResLin proofs.

References
1 Michael Alekhnovich, Jan Johannsen, Toniann Pitassi, and Alasdair Urquhart. An exponential

separation between regular and general resolution. Theory of Computing, 3(5):81–102, 2007.
Preliminary version in STOC, 2002. doi:10.4086/toc.2007.v003a005.

2 Paul Beame and Sajin Koroth. On disperser/lifting properties of the index and inner-product
functions. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical Computer Science
Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA, volume
251 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.
doi:10.4230/LIPICS.ITCS.2023.14.

https://doi.org/10.4086/toc.2007.v003a005
https://doi.org/10.4230/LIPICS.ITCS.2023.14

S. K. Bhattacharya, A. Chattopadhyay, and P. Dvořák 23:31

3 Arkadev Chattopadhyay, Yuval Filmus, Sajin Koroth, Or Meir, and Toniann Pitassi. Query-
to-communication lifting using low-discrepancy gadgets. SIAM J. Comput., 50(1):171–210,
2021. Preliminary version in ICALP, 2019. doi:10.1137/19M1310153.

4 Arkadev Chattopadhyay, Nikhil S. Mande, Swagato Sanyal, and Suhail Sherif. Lifting to
parity decision trees via stifling. In Yael Tauman Kalai, editor, 14th Innovations in Theoretical
Computer Science Conference, ITCS 2023, January 10-13, 2023, MIT, Cambridge, Massachu-
setts, USA, volume 251 of LIPIcs, pages 33:1–33:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2023. doi:10.4230/LIPICS.ITCS.2023.33.

5 Eshan Chattopadhyay and Jyun-Jie Liao. Hardness against linear branching programs and
more. Electron. Colloquium Comput. Complex., TR22-153, 2022. arXiv:TR22-153.

6 Eshan Chattopadhyay and Jyun-Jie Liao. Hardness against linear branching programs and
more. In Amnon Ta-Shma, editor, 38th Computational Complexity Conference, CCC 2023,
July 17-20, 2023, Warwick, UK, volume 264 of LIPIcs, pages 9:1–9:27. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.CCC.2023.9.

7 Klim Efremenko, Michal Garlík, and Dmitry Itsykson. Lower bounds for regular resolution
over parities. Electron. Colloquium Comput. Complex., TR23-187, 2023. arXiv:TR23-187.

8 Ankit Garg, Mika Göös, Pritish Kamath, and Dmitry Sokolov. Monotone circuit lower
bounds from resolution. Theory Comput., 16:1–30, 2020. Preliminary version in STOC 2018.
doi:10.4086/TOC.2020.V016A013.

9 Mika Göös, Toniann Pitassi, and Thomas Watson. Query-to-communication lifting for BPP.
SIAM J. Comput., 49(4), 2020. Preliminary version in FOCS 2017. doi:10.1137/17M115339X.

10 Svyatoslav Gryaznov, Pavel Pudlák, and Navid Talebanfard. Linear branching programs
and directional affine extractors. In Shachar Lovett, editor, 37th Computational Complexity
Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
4:1–4:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPICS.CCC.
2022.4.

11 Dmitry Itsykson and Dmitry Sokolov. Lower bounds for splittings by linear combinations.
In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger, and Zoltán Ésik, editors, Mathematical
Foundations of Computer Science 2014 – 39th International Symposium, MFCS 2014, Budapest,
Hungary, August 25-29, 2014. Proceedings, Part II, volume 8635 of Lecture Notes in Computer
Science, pages 372–383. Springer, 2014. doi:10.1007/978-3-662-44465-8_32.

12 Dmitry Itsykson and Dmitry Sokolov. Resolution over linear equations modulo two. Annals
of Pure and Applied Logic, 171(1):102722, 2020. doi:10.1016/j.apal.2019.102722.

13 Xin Li. Two source extractors for asymptotically optimal entropy, and (many) more. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1271–1281,
2023. doi:10.1109/FOCS57990.2023.00075.

14 Xin Li and Yan Zhong. Explicit directional affine extractors and improved hardness for linear
branching programs. CoRR, abs/2304.11495, 2023. doi:10.48550/arXiv.2304.11495.

15 Pavel Pudlák. On extracting computations from propositional proofs (a survey). In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 30–41. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2010. doi:10.4230/LIPIcs.FSTTCS.2010.30.

16 Ran Raz and Iddo Tzameret. Resolution over linear equations and multilinear proofs. Ann.
Pure Appl. Log., 155(3):194–224, 2008. doi:10.1016/J.APAL.2008.04.001.

17 Alexander A. Razborov. Unprovability of lower bounds on circuit size in certain fragments of
bounded-arithmetic. Izvestiya. Math., 59(1):205–227, 1995.

18 Alexander A. Razborov. A new kind of tradeoffs in propositional proof complexity. J. ACM,
63(2):16:1–16:14, 2016. doi:10.1145/2858790.

19 Dmitry Sokolov. Dag-like communication and its applications. In Pascal Weil, editor, Computer
Science – Theory and Applications – 12th International Computer Science Symposium in
Russia, CSR 2017, Kazan, Russia, June 8-12, 2017, Proceedings, volume 10304 of Lecture Notes
in Computer Science, pages 294–307. Springer, 2017. doi:10.1007/978-3-319-58747-9_26.

CCC 2024

https://doi.org/10.1137/19M1310153
https://doi.org/10.4230/LIPICS.ITCS.2023.33
https://arxiv.org/abs/TR22-153
https://doi.org/10.4230/LIPIcs.CCC.2023.9
https://arxiv.org/abs/TR23-187
https://doi.org/10.4086/TOC.2020.V016A013
https://doi.org/10.1137/17M115339X
https://doi.org/10.4230/LIPICS.CCC.2022.4
https://doi.org/10.4230/LIPICS.CCC.2022.4
https://doi.org/10.1007/978-3-662-44465-8_32
https://doi.org/10.1016/j.apal.2019.102722
https://doi.org/10.1109/FOCS57990.2023.00075
https://doi.org/10.48550/arXiv.2304.11495
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.30
https://doi.org/10.1016/J.APAL.2008.04.001
https://doi.org/10.1145/2858790
https://doi.org/10.1007/978-3-319-58747-9_26

23:32 Separation Regular and General Resolution over Parities

20 Alasdair Urquhart. A near-optimal separation of regular and general resolution. SIAM J.
Comput., 40(1):107–121, 2011. doi:10.1137/090772897.

21 Marc Vinyals, Jan Elffers, Jan Johannsen, and Jakob Nordström. Simplified and improved
separations between regular and general resolution by lifting. In Luca Pulina and Martina Seidl,
editors, Theory and Applications of Satisfiability Testing – SAT 2020 – 23rd International
Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in
Computer Science, pages 182–200. Springer, 2020. doi:10.1007/978-3-030-51825-7_14.

https://doi.org/10.1137/090772897
https://doi.org/10.1007/978-3-030-51825-7_14

Distribution-Free Proofs of Proximity
Hugo Aaronson # Ñ

Department of Computer Science and Technology, University of Cambridge, UK

Tom Gur # Ñ

Department of Computer Science and Technology, University of Cambridge, UK

Ninad Rajgopal #

Department of Computer Science and Technology, University of Cambridge, UK

Ron D. Rothblum #

Faculty of Computer Science, Technion, Haifa, Israel

Abstract
Motivated by the fact that input distributions are often unknown in advance, distribution-free
property testing considers a setting in which the algorithmic task is to accept functions f : [n] → {0, 1}
having a certain property Π and reject functions that are ε-far from Π, where the distance is measured
according to an arbitrary and unknown input distribution D ∼ [n]. As usual in property testing,
the tester is required to do so while making only a sublinear number of input queries, but as the
distribution is unknown, we also allow a sublinear number of samples from the distribution D.

In this work we initiate the study of distribution-free interactive proofs of proximity (df-IPPs)
in which the distribution-free testing algorithm is assisted by an all powerful but untrusted prover.
Our main result is that for any problem Π ∈ NC, any proximity parameter ε > 0, and any (trade-
off) parameter τ ≤

√
n, we construct a df-IPP for Π with respect to ε, that has query and sample

complexities τ +O(1/ε), and communication complexity Õ(n/τ +1/ε). For τ as above and sufficiently
large ε (namely, when ε > τ/n), this result matches the parameters of the best-known general
purpose IPPs in the standard uniform setting. Moreover, for such τ , its parameters are optimal up
to poly-logarithmic factors under reasonable cryptographic assumptions for the same regime of ε as
the uniform setting, i.e., when ε ≥ 1/τ .

For smaller values of ε (i.e., when ε < τ/n), our protocol has communication complexity Ω(1/ε),
which is worse than the Õ(n/τ) communication complexity of the uniform IPPs (with the same query
complexity). With the aim of improving on this gap, we further show that for IPPs over specialised,
but large distribution families, such as sufficiently smooth distributions and product distributions,
the communication complexity can be reduced to Õ(n/τ1−o(1)). In addition, we show that for
certain natural families of languages, such as symmetric and (relaxed) self-correctable languages, it
is possible to further improve the efficiency of distribution-free IPPs.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Property Testing, Interactive Proofs, Distribution-Free Property Testing

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.24

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/118 [1]

Funding Tom Gur and Ninad Rajgopal are supported by the Tom Gur’s UKRI Future Leaders
Fellowship MR/S031545/1. Tom Gur is also supported in part by EPSRC New Horizons Grant
EP/X018180/1 and EPSRC RoaRQ Grant EP/W032635/1. Ron Rothblum is funded by the
European Union (ERC, FASTPROOF, 101041208). Part of this work was completed when the first
three authors were affiliated with the University of Warwick. Views and opinions expressed are
however those of the author(s) only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor the granting authority can be
held responsible for them.

Acknowledgements We are grateful to Oded Goldreich for his insightful comments, some of which led
to rephrasing Theorem 1 to indicate the trade-off between the query and communication complexities
with better clarity. We are also thankful to Marcel Dall’Agnol for many helpful discussions.

© Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron D. Rothblum;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 24; pp. 24:1–24:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ha406@cam.ac.uk
https://www.cst.cam.ac.uk/people/ha406
https://orcid.org/0009-0006-6182-2982
mailto:tom.gur@cl.cam.ac.uk
https://www.cst.cam.ac.uk/people/tg508
https://orcid.org/0000-0001-7864-7013
mailto:nr549@cam.ac.uk
https://orcid.org/0000-0001-6945-2345
mailto:rothblum@cs.technion.ac.il
https://orcid.org/0000-0001-5481-7276
https://doi.org/10.4230/LIPIcs.CCC.2024.24
https://eccc.weizmann.ac.il/report/2023/118
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Distribution-Free Proofs of Proximity

1 Introduction

Property Testing, initiated in [45, 25], is a rich and well-studied research field lying at the
heart of many advancements in sublinear algorithms and complexity theory; see [21, 7] for a
detailed introduction. Loosely speaking, a testing algorithm for a property Π is given oracle
access to an input function f : [n] → {0, 1} and should decide whether f ∈ Π using a small
sublinear number of queries. As we cannot expect to do so exactly, the tester is required to
distinguish between inputs that are in Π from those that are ε-far from every function in
Π. Here, distance is typically measured using the relative Hamming distance – namely, the
fraction of outputs of f that need to be changed to reach a member of Π.

While modeling distance using the relative Hamming distance is natural and convenient,
in many settings it may not capture the underlying question (for example, when functions
always satisfy a particular format or when some parts in the domain are more important than
others). Following the Probably-Approximately-Correct (PAC) learning model, introduced
by Valiant in his celebrated work in computational learning theory [49], distribution-free
algorithms have widely been accepted as a closer abstraction of real-world computational
tasks that are required to make decisions based on limited access to the input data. In
this spirit, [25] introduced distribution-free property testing, where the distance between two
functions is with respect to a distribution D (over inputs to the function), which is arbitrary
and unknown to the testing algorithm. Since D is unknown, in addition to the query oracle
to the input f : [n] → {0, 1}, the tester can draw independent identically distributed random
labelled samples (i, f(i)) from a sample oracle, where each index i is generated independently
from the distribution D. The tester is required to reject any function that is ε-far1 from Π
along the unknown distribution D, and the only access that the tester has to D is via the
sample oracle.

The distribution-free model of testing naturally complements the PAC-learning model,
and profound bidirectional connections are known between them.2 Moreover, distribution-free
testing is motivated by the fact that it captures the realistic setting where the tester is
required to maintain its guarantees despite dealing with data from an unknown environment
(i.e., via data samples from some unknown and arbitrary distribution D). It also deals with
situations where not all underlying data points are equally important, e.g., in graphs where
certain edges or vertices are more important than others, and one would like to consider
distributions that weigh them appropriately.

Following [25], several distribution-free testing algorithms have been designed for function
classes including monotone Boolean functions and low-degree polynomials over finite fields [33],
k-juntas [37, 11, 3], conjunctions (monotone or non-monotone) and linear threshold functions
[19, 13], polynomial threshold functions and decision trees [8], halfspaces [8, 12], and low-
degree polynomials on Rn [18, 2]. Distribution-free testing has also been studied for graph
properties including connectivity [34], bipartiteness [22], k-path and degree regularity [23],
as well as for word problems like subsequence-freeness [41].

Despite such strides of progress, our understanding of distribution-free testing is much
more limited than that of testing with respect to the uniform distribution. This is due to
the multitude of challenges that arise in designing algorithms that need to deal with data
samples that can come from any arbitrary distribution, which in turn, makes the model
significantly more involved.

1 We say f : [n] → {0, 1} is ε-far from a (non-empty) property Π along D, if for every f ′ : [n] → {0, 1}
such that f ′ ∈ Π, it holds that Pi∼D[f(i) ̸= f ′(i)] > ε.

2 In particular, in [25], it is shown that if a class of functions C has a proper PAC-learner using membership
queries (where the learner outputs an approximate hypothesis that also belongs to C), then C has a
distribution-free tester that uses roughly the same number of queries and samples as the learner.

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:3

This paper aims to bridge the gap between testing over the uniform distribution and
distribution-free testing by capitalising on the power of interactive proofs, and delegating
the task of handling the challenges imposed by the distribution-free setting to a powerful,
but untrusted, prover.

1.1 Distribution-free Interactive Proofs of Proximity
In this work, we initiate the study of distribution-free interactive proofs of proximity
(distribution-free IPPs), which are distribution-free testers that are augmented with the
help of a prover. In the rest of this paper, for convenience, rather than thinking of the input
as a function, we view it as a string x ∈ {0, 1}n (which can be similarly be viewed as a truth
table of a function fx : [n] → {0, 1}). Correspondingly, we view a property Π of functions as
a language L over strings (which may be viewed as truth tables of the functions in Π).

Thus, distribution-free IPPs are protocols where a sublinear time, randomised algorithm,
called the verifier, interacts with an untrusted prover to decide whether the given input
x ∈ {0, 1}n belongs to the language L or is far from such, where distance is measured with
respect to a fixed, but unknown distribution D over [n]. The verifier is given access to the
input x through a query oracle, as well as a sample oracle with respect to D, while the prover
can look at the input entirely. We assume that the prover does not know the queries that
the verifier makes to either of its oracles.

We require that for any x ∈ L, there exists an honest prover that interacts with the
verifier and convinces it to accept with high probability, while when x is ε-far from L with
respect to the distribution D, no cheating prover, even computationally unbounded, will
make the verifier accept, except with low probability. Further, we require the distribution-free
IPP to meet these requirements, with respect to the underlying (and unknown) distribution
D from which the oracle draws samples.

In this setting, the verifier’s query complexity and sample complexity, the number of bits
exchanged in the protocol, i.e., the communication complexity, and the verifier’s running
time should all be sublinear in input length. Other complexity parameters of interest are the
number of rounds of interaction, and the (honest) prover’s running time.

Distribution-free IPPs capture the distribution-free property testing analogue of interactive
proofs (for more information, see Section 1.4). As such, similar to uniform IPPs, distribution-
free IPPs can be alternatively viewed as proof systems where the bounded verifier need only
be convinced of the fact that the input is close to the language, by interacting with a more
powerful prover. One of the main goals of distribution-free IPPs is to overcome the inherent
limitations of distribution-free testing algorithms by showing that for certain properties,
verifying proximity over arbitrary distributions is considerably faster with a prover than
actually testing it. In particular, we want to design distribution-free IPPs (with sublinear
query complexity) for rich families of properties that have no known distribution-free testers.

Of close relevance are the well-studied notion of IPPs over the uniform distribution, which
we refer to in this work as Uniform IPPs, that were introduced in [16, 44] (and are trivially
generalised by distribution-free IPPs). Showcasing the power of interaction, [44] constructed
highly non-trivial uniform IPPs for every language that can be decided in bounded depth (e.g.,
NC), which was recently made near-optimal by [43] (see [36] for the conditional matching
lower bound), and strengthened to encompass also bounded space languages [40].

Motivated intrinsically and by natural applications to delegation of computation, the study
of uniform IPPs has drawn much recent attention on its own right [44, 32, 36, 40, 26, 20].
Moreover, their study has led to interesting models and applications of sublinear time
verification, including non-interactive proofs of proximity (or MAPs) [32] (a related model

CCC 2024

24:4 Distribution-Free Proofs of Proximity

was studied concurrently and independently by [17]), arguments of proximity [36], testing
properties of distributions [14, 35], interactive oracle proofs of proximity [40, 4, 42, 10],
verifying machine learning tasks [29], batch verification for UP [39, 43], as well as variants
involving zero-knowledge [6] and quantum computation [15].

1.2 Our Results
Our main contribution is constructing distribution-free IPPs for any language in NC, which
for any query vs communication trade-off parameter τ ≤

√
n, matches the complexity of the

best known IPPs for most settings of the proximity parameter ε – specifically, when ε ≥ τ/n.
We further improve the efficiency of distribution-free IPPs for general ε (i.e., when ε < τ/n),
under specific distribution families such as “smooth” and “learnable” distributions, which
are defined below.

In addition, for certain families of languages, such as symmetric and relaxed self-
correctable languages, we construct distribution-free IPPs that improve on our general-
purpose distribution-free IPPs, then use them to provide separation results that provide
further insight into the distribution-free IPP model.

We elaborate on these results next.

1.2.1 Distribution-free IPPs for NC
Our first main result is a sublinear distribution-free IPP for any language computable by low-
depth circuits. In more detail, let (logspace-uniform) NC be the set of languages computable
by (logspace-uniform) Boolean circuits of polynomial size and poly-logarithmic depth. We
show that every language in NC has a distribution-free IPP with sublinear complexity
measures, for almost all values of the proximity parameter ε. We emphasize that this is in
stark contrast to distribution-free testers, which are only known for a handful of languages
based on their combinatorial or algebraic structure. Indeed, the following theorem shows
that distribution-free IPPs capture a much richer class of languages that need not have such
special structural properties.

▶ Theorem 1 (Distribution-Free IPP for NC). For every language L in logspace-uniform
NC and every trade-off parameter τ = τ(n) ≤

√
n, there exists a distribution-free IPP for L

with proximity parameter ε ≥ Ω
(

log3(n)
n

)
, query complexity τ + O

(1
ε

)
, sample complexity

τ + O
(1

ε

)
and communication complexity Õ

(
n
τ + 1

ε

)
.

Moreover, the verifier runs in time Õ
(

n
τ + 1

ε

)
, the prover runs in time poly(n) and the

round complexity is polylog(n).

Here, τ denotes the parameter that trades-off between the query and communication
complexities of the distribution-free IPP. Note that, for the above values of τ , our distribution-
free IPP has sublinear query and communication complexity even for very small values of the
proximity parameter ε of the form 1/n1−δ, where δ > 0. An interesting instantiation of our
result is obtained by setting τ to

√
n, and thus, for every ε ≥ 1/

√
n, the query complexity and

sample complexities are O(
√

n), while the communication complexity and verifier running
times are both Õ(

√
n).

It is worth noting that, for every ε ≥ 1
τ (and τ ≤

√
n), this result is conditionally optimal

up to poly-logarithmic factors, since [36] show a lower bound of Ω(n) on the product of
the query and communication complexities of a uniform IPP for a language in NC1, under
a strong, but reasonable, cryptographic assumption. Furthermore, for any ε, the query
complexity of Ω(1/ε) is necessary for any IPP over non-degenerate languages, even over the
uniform distribution (see [44, Remark 1.2]).

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:5

▶ Remark 2. While Theorem 1 refers to distribution-free IPPs over NC languages, the
theorem can be made more general. In particular, it also yields distribution-free IPPs with
sublinear query and communication complexities for languages computable by circuits of
sub-exponential size and bounded polynomial depth.

Likewise, in a similar fashion to the known literature on uniform IPPs, we can combine our
techniques directly with [40] to get a constant-round distribution-free IPP for any language
that is computable in poly(n) time and bounded polynomial space.

Comparison to Uniform IPPs for NC [44, 43]

For any language in NC, Rothblum, Vadhan and Wigderson [44] construct a uniform IPP
for any τ = τ(n) and proximity parameter ε > 0, with query complexity τ + O(1/ε)1+o(1)

and communication complexity n
τ1−o(1) . Rothblum and Rothblum [43] improve on this, by

reducing the communication complexity to n
τ · polylog(n). In particular, the latter obtains

an optimal trade-off, up to poly-logarithmic factors, between the query and communication
complexities of a uniform IPP (conditionally, from [36]), for every value of τ and ε ≥ 1/τ .
While these results are stated in [44, 43] by implicitly setting τ = O(1/ε), for any given ε,
this IPP formulation parameterised by τ is obtained by inspection (see also [26, Theorem
6.3]). For comparison, in this setting, our distribution-free IPP has the same query (and
sample) complexity, while the communication complexity and verifier running times are both
Õ(ε · n + 1/ε).3

Theorem 1 gives a construction of a distribution-free IPP for any NC language that
matches the query and communication complexities of the uniform IPP by [43], when
ε ≥ τ/n. Moreover, this obtains the (conditionally) optimal trade-offs between query and
communication complexities in the same regime of ε, but when τ ≤

√
n. Indeed, when

ε ≥ 1/τ , the product of the query and communication complexities of the distribution-free
IPP from Theorem 1 is Õ(n + τ2). Our protocol builds on [44], introducing new ideas that
allow us to construct IPPs in the more involved distribution-free setting.

Finally, when the proximity parameter ε is very small, Theorem 1 suffers a blow-up in
the communication complexity compared to the uniform IPPs of [44, 43]. In more detail,
when ε ≪ τ/n, the communication complexity in our distribution-free IPP is Ω̃

(1
ε

)
, whereas

the communication complexity achieved by the uniform IPPs is Õ
(

n
τ

)
(the query complexity

roughly remains the same across all three cases). Thus, our distribution-free IPP has
communication complexity at least Ω(n/τ) for every value of ε, whereas the communication
complexity of the uniform IPPs is much lower when ε ≪ τ/n.

1.2.2 IPPs for NC: The case of small ε

Following the discussion in the last section, we aim to construct distribution-free IPPs that
achieve query and communication complexities that match the state-of-the-art uniform IPP
for every value of ε. While we unable to do so in the most general case, we construct such
IPPs over specific families of distributions, which match the complexities of [44] and, in
turn, differ from the complexities of [43] only by a factor of no(1). For these IPPs, while the
underlying distribution is still unknown, it is guaranteed to come from the specific family of
distributions under consideration.

3 In fact, we prove that for every value of the parameter τ and ε, the distribution-free IPP from Theorem 1
has communication complexity Õ(τ + n/τ + 1/ε); thus, setting τ = O(1/ε) suffices. An additional point
to note is that when τ >

√
n, the IPP always has worse communication complexity than its uniform

counterpart irrespective of the value of ε, and further, never meets the optimal [36] lower bound. As
such, we only consider τ ≤

√
n as a more interesting regime of study.

CCC 2024

24:6 Distribution-Free Proofs of Proximity

To describe our results, it will be convenient throughout this section to identify [n] with
the elements of an m-dimensional tensor of size k ∈ N in each dimension, such that km = n.
In such a case, we refer to [n] as [k]m (by fixing some canonical bijection between them).

ρ-Dispersed Distributions

Intuitively speaking, ρ-dispersed distributions capture the sense that for a smooth distribution
over [k]m, along any dimension, its probability mass on any element in [k]m is not much
larger than the average of the probability masses of its neighbours. ρ-dispersed distributions
relax this requirement by having the probability mass on any element bounded by ρ times
the expected mass on any of its neighbours.4

We show that for distributions that are reasonably smooth in this sense, i.e. for ρ-
dispersed distributions for ρ ≤ ko(1), we obtain IPPs for NC over such distributions for every
τ = τ(n) < n and ε > 0, with query complexity O(τ + 1/ε)1+o(1), and communication
complexity of Õ

(
n
τ · τo(1)), thus matching the bounds obtained by [44]. It is worth noting

that ko(1)-dispersed distributions are still quite general, e.g. any distribution where the
probability mass on any element in [k]m is in the range

[1
an , a

n

]
, for some a ≤ ko(1) is

ko(1)-dispersed.

▶ Theorem 3 (IPP for NC over ρ-dispersed distributions). For every language in logspace-
uniform NC, every m, n, k ∈ N such that m = logk(n) (i.e., km = n) and ρ ∈ R such
that ρ ≤ ko(1), for every proximity parameter ε > 0 and trade-off parameter τ > 0, there
exists an IPP over ρ-Dispersed distributions over [k]m with query and sample complexities
O(τ + 1/ε)1+o(1) and communication complexity Õ

(
n

τ1−o(1)

)
.

Moreover, the verifier runs in time no(1) ·
(
τ + n

τ + 1
ε

)
, the prover runs in time poly(n)

and the round complexity is polylog(n).

Theorem 3 also holds generally over ρ-dispersed distributions, for any ρ. The query
complexity increases with ρ, while the communication complexity is independent of ρ.
Theorem 3 builds on the ideas used for the distribution-free IPP from Theorem 1 while
incorporating new technical insights into the analysis by [44] to generalise over ρ-dispersed
distributions. We leave the task of obtaining IPPs over ρ-dispersed distributions that
match [43] as future work.

1.2.2.1 Product Distributions in the White-Box model

Note that in the IPPs of Theorems 1 and 3, the verifier does not learn the underlying
distribution D. Hence, we ask the following question: if we could gain more information
about D, or further, learn a reasonably good approximation for D, can we improve the query
complexity of the IPPs, over general values of ε? We answer this question in the affirmative
for product distributions.

We consider the white-box model for distribution-free IPPs, where the verifier receives a
succinct description of the unknown distribution D over [k]m via a polynomial-sized sampling
circuit C, in addition to query access to the input string. It is worth noting that, for white-box
IPPs, the sample complexity is irrelevant since the verifier has a succinct description of the
entire distribution. Thus, the main complexity parameters here are the query complexity,
communication complexity, and the verifier running time.

4 For example, the uniform distribution is the only 1-dispersed distribution, i.e., a maximally smooth
distribution in this sense. On the other hand, every distribution over [k]m is trivially a k-dispersed
distribution.

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:7

While white-box models have been widely studied in the setting of zero-knowledge proofs
[46, 48, 47] and in distribution testing (see survey by [27]), we use this model to construct
IPPs for languages in NC over a generalised family of product distributions over [k]m, to get
improved complexities for general values of ε, compared to the distribution-free IPP from
Theorem 1. We call this family as m-product distributions, and denote any such distribution
D as D = D1 × . . . Dm, where each Dj is supported on [k] and is independent of any other
coordinate distributions. In particular, D(i1, . . . , im) is defined as

∏m
j=1 Dj(ij).

▶ Theorem 4 (IPPs for NC over m-product distributions). For every language in logspace-
uniform NC, every τ = τ(n), ε > 0, and m, n, k ∈ N such that m ≤ log(n) and km = n,
there exists a white-box IPP for L over m-product distributions over [k]m. The IPP has query
complexity O(τ + 1/ε)1+o(1) and communication complexity

(
n

τ1−o(1) · k + k2)
· polylog(n).

Moreover, the verifier runs in time no(1) (
n
τ · k + τ + k2 + 1

ε

)
and the round complexity is

polylog(n).

When m is large enough (like m = log(n)), the query and communication complexity
trade-off, as well as the verifier running time of the IPP from Theorem 4 match that of the
uniform IPP from [44], while working in this setting.5 Theorem 4 builds on the framework of
Theorem 1, and uses several new ideas in the construction of the IPP, as well as its analysis,
to improve the complexity. Crucially, it uses that any product distribution has a succinct
description to be able to learn it in the white-box-setting.

It is worth stressing that the IPPs from Theorems 3 and 4 are incomparable. Indeed,
there exist m-product distributions D = D1 × · · · × Dm that are poorly dispersed, for eg., D
is no longer smooth when some Dj has a large probability mass over just one element (one
row or more generally, a few rows). For such distributions, the IPP from Theorem 4 provides
a much better query and communication trade-off than the IPP from Theorem 3, which is a
more general result for smooth distributions.

1.2.3 On the power of distribution-free IPPs
Recall that Theorems 3 and 4 improve the query and communication complexity trade-off of
our general distribution-free IPP in Theorem 1, by considering special families of distributions
to design the IPPs over. A natural direction that complements this approach is to ask whether
we can use additional information about the language L instead, to construct super-efficient
distribution-free IPPs.

In turn, we study distribution-free IPPs for specific problems of interest. On one hand,
for certain problems we can hope to improve the various associated complexity parameters
over our general distribution-free IPP by capitalising on the structure of the language. On
the other hand, this allows us to obtain complexity-theoretic separations between the power
of standard, non-interactive, and interactive distribution-free testers.

1.2.3.1 Symmetric languages

We study the power of distribution-free testers and IPPs for symmetric languages, which
are languages that are invariant under permutations. We show that there exist symmetric
languages that are hard for distribution-free testers, yet, given interaction with a prover, the
symmetrical structure can be leveraged to obtain exponentially faster distribution-free IPPs.

5 A subtle point here is that while Theorem 4 is over product distributions over [k]m, when m = 2 (or a
small constant), we get sublinear complexities only by considering distributions over biased matrices
[k1] × [k2].

CCC 2024

24:8 Distribution-Free Proofs of Proximity

▶ Theorem 5 (Distribution-free IPPs for symmetric languages). The following statements
hold.
1. Let L be a symmetric language. Then, there exist a distribution-free IPP for L with

sample complexity O(1/ε), communication complexity O(log2(n)/ε) and O(log(n)/ε)
round complexity.

2. There exists a symmetric language L′ for every ε > 0 such that any distribution-free
property tester for L′ requires Ω(n1/3−0.0005) queries and labeled samples from the input.

1.2.3.2 (Relaxed) self-correctable languages

Next, we show that for languages that admit self-correctability, we can transform any IPP
into a distribution-free IPP at a negligible cost. In fact, we can deal with a far more general
class of languages; namely, languages that are relaxed locally correctable [5, 31]. Loosely
speaking, these are languages that admit a correcting algorithm that is required to correct
the symbol at every location of the codeword, by reading a small number of locations in it,
but is allowed to abort if noticing that the given word is corrupted. This family of languages
is of central importance in the interactive proofs and probabilistically checkable proofs
literature, and in particular, it captures languages of low-degree polynomials, holographic
IPPs, and various relaxed locally correctable and decodable languages that were used to
prove complexity-theoretic separations (cf. [30]).

▶ Proposition 6 (Generic Transformations for IPPs for RLCCs). For any subset L of
a binary RLCC, C ⊆ {0, 1}n, if L has an IPP over the uniform distribution with query
complexity q and communication complexity c for proximity ε > 0, then there exists a
distribution-free IPP for L with the same round complexity, communication complexity and
query complexity q + O(t

ε), where t is the query complexity of the corrector of C.

As a corollary of Proposition 6, we are able to lift complexity-theoretic results concerning
uniform IPPs to the setting of distribution-free IPPs. In particular, we obtain strong
separations between the power of distribution-free testers, distribution-free non-interactive
proofs of proximity (MAPs), and distribution-free IPPs.

▶ Corollary 7 (Complexity separations). There exists a language L such the following hold
true.
1. Property Testing: The query complexity of distribution-free testing L (without a proof) is

Θ(n0.999±o(1)).
2. MAP: L has a distribution-free MAP with query and communication complexities

Θ(n0.499±o(1)). Moreover, for every p ≥ 1, the distribution-free MAP query complex-
ity of L with respect to proofs of length p is Θ

(
n0.999±o(1)

p

)
.

3. IPP: L has a distribution-free IPP with query and communication complexities polylog(n).
Complementing this Corollary, we prove the existence of languages that can be tested under
the uniform distribution with low query complexity (and thus, have a uniform IPP with
low query complexity and no communication), but for which distribution-free IPPs require
large query complexity or large communication complexity. This illustrates the difficulty of
constructing distribution-free IPPs vs. standard uniform IPPs.

▶ Proposition 8 (Distribution-free IPPs vs. uniform testing). The following hold true:
1. There exists ε > 0 and a language L such that L has a property tester over the uniform

distribution with query complexity O(1/ε) for proximity parameter ε. However, for any
distribution-free MAP for L with proximity parameter ε, query complexity q, and proof
length p, max(q, p) = Ω(ε · n).

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:9

2. Assuming the existence of exponentially hard pseudo-random generators, there exists
ε > 0 such that for all q = q(n) ≤ n, there exists a language L, such that for any
distribution-free IPP for L with proximity parameter ε, communication complexity c, and
query complexity q, max(c, q) = Ω(

√
ε · n). However, L has a uniform property tester

with query complexity O(1/ε) for proximity parameter ε.

Table 1 provides a comparison of some of these results with related testing models.
It is an interesting open direction to exhibit distribution-free IPPs that improve on the
query complexity lower bounds known for distribution-testing functional properties like
monotonicity [33], monotone conjunctions [13], or k-juntas [38].

Table 1 This is a table of our main results (TensorSum as defined in [32]). The complexities
shown here are those that minimise the sum of the query and communication complexity. Note that
while the uniform property tester for symmetric properties is more efficient than the corresponding
uniform IPP, this only holds for restricted (constant) values of ε.

Property Testing IPP DF-Property
Testing DF-IPP

Languages
in NC

Ω(n) (e.g., low-
degree univariate
polynomial)

Õ(
√

n)
[44, 43] Ω(n) similarly

Õ(
√

n) (arbitrary distributions, for ε ≥
1/

√
n); see Theorem 1

n1/2+o(1) (smooth distributions); see
Theorem 3
n1/2+o(1) (product distributions); see
Theorem 4

TensorSum Ω(n0.99+o(1))
[32]

polylog(n)
[32]

Ω(n0.99+o(1))
Trivially, from
[32]

polylog(n); see Corollary 7

Symmetric
Properties

Θ(1) (ε = O(1))
Folklore polylog(n)

[44]
Ω(n 1

3)
Theorem 5 polylog(n); see Theorem 5

1.3 Technical Overview
In this technical overview, we highlight the proofs of Theorems 1, 3, and 4. The general
strategy for proving these theorems builds on the Uniform IPPs for NC from [44, 43]. However,
the setting of distribution-free testing is more involved, and below, we highlight the key
challenges encountered in this setting, and our ideas to overcome them. Our distribution-free
IPPs are constructed through an interplay of various techniques and tools from interactive
proofs, property testing, and distribution testing.

Note that, for convenience, we show the construction of the distribution-free IPP from
Theorem 1 in the setting of τ = O(1/ε), for any proximity parameter ε, obtaining query
complexity O(1/ε) and communication complexity Õ(ε · n + 1/ε). This can be shown to be
equivalent to the statement of Theorem 1 that is parameterised by τ . Similarly, the IPPs
for our other results are parameterised in terms of the proximity parameter ε. For detailed
proofs, we refer the reader to the full version [1].

1.3.1 Proof outline of Theorem 1
The [44] protocol (as well as the follow-up work [43]) is centered around a parameterised
problem called PVAL. Loosely speaking, the PVAL language contains all strings, whose
encoding under a specific code, called the low degree extension, is equal to given values when
projected on to the given coordinates. More precisely, the PVAL problem is parameterised by

CCC 2024

24:10 Distribution-Free Proofs of Proximity

a (sufficiently large) finite field F , integers k, m, n such that k, m < |F| and km = n, a set
of vectors J = (j1, . . . , jt) ⊂ Fm of size t and a t-length vector v⃗ ∈ F t. An input X ∈ Fkm

is in PVAL(J, v⃗) if it holds that PX(ji) = vi, for every i ∈ [t], where PX : Fm → F is the
m-variate low-degree extension (LDE) of X.6

The interactive reduction from NC to PVAL

Let L be any language in NC and let ε > 0 be the input proximity parameter. Let X ∈ {0, 1}n

be the input to L and D be the unknown underlying distribution over which the verifier can
access X through a sample oracle. The first step in [44] is to show an interactive reduction
ΠNC from L to (a parameterisation of) PVAL, where the verifier does not access the input
X ∈ {0, 1}n.7

In more detail, let BD(X) (respectively BU (X)) be the set of binary strings that are at a
distance at most ε along the distribution D (respectively the uniform distribution U) from
X. In [44], the verifier in ΠNC generates parameters (F , k, m, J, v⃗) for PVAL, where J is a
set of t points in Fm, such that the following hold when t is sufficiently large.

If X ∈ L, then X ∈ PVAL(J, v⃗).
If X is ε-far from L along U then, with high probability over the verifier’s randomness,
BU (X) and PVAL(J, v⃗) are disjoint. In other words, with high probability, X is ε-far
from PVAL(J, v⃗) along U .

Furthermore, the points J output by the reduction ΠNC are distributed uniformly at random
in (Fm)t. Crucially, [44] show that the guarantees over the outputs of this reduction only
hold when t = O(log(|BU (X)|) many points are picked in J .8

Since the size of the set BU (X) is
(

n
εn

)
≤ O(2εn log(n)), following from the earlier discussion,

by setting t = O(log(|BU (X)|) = Õ(εn), we ensure that the guarantees of ΠNC hold. An
immediate attempt would be try to extend this analysis verbatim to distribution-free testing,
by setting t to O(log(|BD(X)|)) instead, and thus having ΠNC guarantee that X is ε-far
from PVAL(J, v⃗) along the distribution D, for soundness. However, for an arbitrary unknown
distribution D, the size of BD(X) can be prohibitively large. For example, when D is
supported over the first log(n) indices, for any value of ε, the size of BD(X) blows up to at
least 2n−log(n)! Thus, for our choice of t, we already lose the sublinear time verification and
communication complexity, and it is unclear if this reduction can achieve such soundness
guarantees for PVAL.

Uniform IPP for PVAL is also “complete” for distribution-free IPPs for NC

Our key idea for constructing the distribution-free IPP for L, is in fact, an interactive
reduction Π′ to constructing a uniform IPP for PVAL (with a different parameterisation for
PVAL than that obtained by ΠNC). Theorem 1 follows by using the ready-made uniform IPP
for PVAL by [43].

6 Recall that the m-variate LDE PX is the unique polynomial with individual degree k − 1 such that PX

agrees with X on [k]m, where we identify [k] with a subset of field elements in some canonical way.
7 Technically, an interactive proof is specified by a verifier and an honest prover. However, for the sake of

exposition we refer to them both together as ΠNC in this section.
8 ΠNC runs t parallel copies of the interactive reduction from L to PVAL over a single point by [28], with

the guarantee that if the input X /∈ L, the probability that X is also in PVAL over t points, is at most
2−t. Now, if X were instead ε-far from L, then a union bound over all the points in BU (X) ensures a
small probability for the event that there exists a point in BU (X) that is also in PVAL over t points.

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:11

Figure 1 The shaded region (BU (X) ∩
BD(X)) consists of the set of points in {0, 1}n

that are ε-close to X with respect to both D
and U . The soundness promise of the inter-
active reduction Π′ ensures that any string
in PVAL(J, v⃗) is present in at most one of
BU (X) or BD(X), but not in both (shaded
region) (with high probability).

Figure 2 In the uniform IPP for PVAL,
the prover sends the (m − 1)-variate LDE
of each row of X evaluated on J2 (column
indices of J), in the form of the purported
matrix Y ′ ∈ Fk×t. However, to ensure con-
sistency of Y ′ with respect to PVAL(J, v⃗), for
any j = (a, b) ∈ J , the univariate LDE of the
bth-column of Y ′ evaluated on a is required
to be equal to v⃗[j].

Consider a NO input X ∈ {0, 1}n to L, that is, an input that satisfies the soundness
requirement dD(X, L) > ε, over the unknown distribution D. To start with, Π′ runs the
interactive reduction ΠNC from L to PVAL(J, v⃗) with the same value of t = |J | = Õ(εn).

Setting t to be O(log(|BD(X) ∩ BU (X)|)) ≤ O(log(|BU (X)|)) = Õ(εn), we can generalise
the guarantees of ΠNC to show that the intersection of BU (X) and BD(X) is disjoint from
PVAL(J, v⃗), with high probability. Indeed, this builds on the earlier argument (and Footnote
8), but over BU (X) ∩ BD(X), alongside the fact that the size of this set is upper bounded by
the size of BU (X). Thus, X cannot be ε-close to PVAL(J, v⃗) along both U and D, or in other
words, X is ε-far from every element of PVAL along at least one of the two distributions (see
Figure 1 for details).

Following this, assume that dD(X, PVAL(J, v⃗)) > ε. We construct the next stage of Π′,
based on a case analysis whether X is additionally ε-far from PVAL(J, v⃗) under the uniform
distribution or not. Indeed, suppose that X is ε-far from PVAL(J, v⃗) under the uniform
distribution. This is the easy case; we can catch this with the uniform IPP for PVAL(J, v⃗) as
usual.

On the other hand, suppose that instead, X is close to PVAL(J, v⃗) under the uniform
distribution, i.e., dU (X, PVAL(J, v⃗)) ≤ ε. At this point, we observe (following [43]) that
when J is distributed uniformly at random, with high probability PVAL(J, v⃗) is a good error
correcting code (i.e., with large minimal distance).9 Since the output J of ΠNC is distributed
uniformly at random, when X is ε-close to PVAL(J, v⃗) over the uniform distribution, ΠNC
guarantees that X is in fact close to a unique element X ′ in PVAL(J, v⃗).

To summarize, so far we have that X is ε-close to X ′ ∈ PVAL(J, v⃗) along U , but by our
soundness condition, X is ε-far from PVAL(J, v⃗), and in particular from X ′, along D. Now,
the verifier uses the sample oracle to D to generate O(1/ε) samples, which we denote by
I ⊆ [n], and the corresponding values in X given by X|I . From the soundness assumption,
with high probability there exists an index i in I such that Xi ≠ X ′

i. Combining this with
the fact that every element in PVAL(J, v⃗) other than X ′ is ε-far from X along the uniform
distribution, X ′ is not in PVAL((J, I), (v⃗, X|I)), where PVAL is parameterised over a larger
set. In other words, we see that X is ε-far from PVAL((J, I), (v⃗, X|I)) along the uniform
distribution and a uniform IPP for PVAL((J, I), (v⃗, X|I)) suffices.

9 It is worth emphasising that this does not hold for every choice of J , for eg., PVAL(J, v⃗) is a bad error
correcting code when J consists of t copies of the same point.

CCC 2024

24:12 Distribution-Free Proofs of Proximity

The argument for completeness trivially holds from the guarantees of ΠNC and definition
of an LDE of X, since in this case X ∈ PVAL((J, I), (v⃗, X|I)). We end with a quick note on
the complexity of the distribution-free IPP. The query complexity of O(1/ε) is the same
as that of the uniform IPP by [43], and the communication complexity is the sum of the
number of bits used to send the O(1/ε) samples in I in addition to the communication by
the uniform IPP, which is Õ(εn). Overall the communication complexity is Õ

(1
ε + ε · n

)
which matches that in [43] (up to poly-logarithmic factors) whenever ε ≥ 1/

√
n.

1.3.2 Proof outlines of Theorems 3 and 4
Next, we describe the proof techniques of Theorems 3 and 4 that construct IPPs for NC over
smooth distributions and product distributions, matching the complexities of [44] for every
value of ε. This improves over the communication complexity of the distribution-free IPP in
Theorem 1 when ε ≪ 1/

√
n (with roughly the same query complexity). We follow the general

strategy by [44] and the main technical challenges arise during the analysis with respect to
the new promise on the soundness of an IPP for PVAL. We assume some familiarity with the
uniform IPP construction by [44] for this section.

Uniform IPP for PVAL(J, v⃗)

We start with a summary of the Uniform IPP from [44]. Let the input X ∈ [k]m, for k = log n

and n = km. Further, let |J | = t.
[44] use a divide and conquer approach, by decomposing the t claims about X into new

claims for each individual row instance Xi ∈ Fkm−1 , for every i ∈ [k]. In more detail, let
J = (J1, J2), where the first component J1 ⊂ F and J2 ⊂ Fm−1. The prover sends the matrix
Y ′ ∈ Fk×t, where each row Y ′

i is the purported set of evaluations of the (m − 1)-variate LDE
(of individual degree k − 1) of Xi on J2. By the definition of an m-variate LDE on X, the
prover cannot lie about the consistency of Y ′ with v⃗, since for each (a, b) ∈ J (where b ∈ J2),
the verifier can easily check if the univariate LDE of Y ′[·, b] (the bth column of Y) evaluated
on the coordinate a equals v⃗[(a, b)] (see Figure 2).

Thus, the initial PVAL instance is now reduced to k instances Xi ∈ Fkm−1 for
{PVAL(J2, Y ′

i)}. A natural idea now is for the verifier to send a random vector z ∈ Fk

to the prover, and ask it back for a “folded” version X ′ ∈ Fkm−1 , that is purported to be
z · X.10 Now, the IPP could recurse on a single input X ′ ∈ Fkm−1 that has shrunk in size by
a factor of k, to the problem PVAL(J2, z · Y ′). Completeness easily holds, since if X belonged
to PVAL(J, v⃗), then the honest prover will just send the “true” Y ′ ∈ Fk×t and the verifier
checks always pass.

Uniform Distance Preservation Lemma

However showing soundness is not straightforward. Suppose that X is ε-far from PVAL(J, v⃗)
under the uniform distribution. It turns out that the malicious prover has cheated in at least
one row of the purported matrix Y ′ (if not, since X is not in PVAL, there would be at least
one column in Y ′ which would be inconsistent with the corresponding value in v⃗ and the
verifier would catch the prover in the checks made above).

10 The dot product z · X ∈ Fkm−1
between z ∈ Fk and a matrix X ∈ Fk×km−1

is given by
∑k

i=1 ziXi.

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:13

For any row Xi ∈ Fkm−1 that is a lower-dimensional input instance, let εi be the distance
between Xi and PVAL(J2, Y ′

i). To ensure that the verifier catches the cheating prover, the
folded instance X ′ also needs to be reasonably far from PVAL on a lower dimension at the
end of a recursive step. In order to capture this, [44] (implicitly) use a uniform distance
preservation lemma, which states that if X is ε-far from PVAL(J, v⃗), then

∑k
i=1 εi > kε.

Using the uniform distance preservation lemma, [44] observe that if the prover ended
up cheating (roughly) uniformly across all rows in Y ′, then any row Xi would be roughly
ε-far from PV AL(J2, z · Y ′

i), and the IPP would recurse by picking a single row at random.
However, the prover could have cheated across multiple rows of Y ′

i and the verifier does not
know these rows. To accommodate this, the verifier considers log(k) many random foldings of
X, where the Hamming weight of the vectors z used to fold X, range across 1 to k (in powers
of 2). In particular, this results in O(log(log(n))) recursive instances in Fkm−1 . Crucially,
they use the uniform distance preservation lemma to generalise the intuition above and show
that for at least one of these folded instances, the distance is roughly preserved. Moreover,
for such a folded instance, the product of the new distance and the effective query complexity
(the number of queries on X to compute the value at any index in z · X) is O(1/ε), along
with small but super-constant multiplicative factors.

The IPP continues to recursively fold the instance dimension-wise by the above pro-
cess, until the size of each final folded instance becomes Õ(εn), which happens after
Ω(log(n)/ log(log(n))) steps. In such a case, the prover directly sends each final instance.
Since there exists an instance X̃j at each level of recursion for which distance is preserved,
there exists a final folded instance X̃, such that the verifier catches a cheating prover by
uniformly sampling a few coordinates of X̃. Moreover, since the product of the distance and
effective query complexities for each X̃j are roughly maintained to be small at each step
of the recursion, making O(1/ε1+o(1)) many queries to X̃ is sufficient to catch the cheating
prover (since the total number of recursive instances after the stated number of steps is
roughly no(1) = 1/εo(1)). The communication complexity is simply the number of bits used
to send all the final folded instances, in addition to sending the matrices Y ′ of size k × t, and
thus is Õ(ε1−o(1)n).

IPPs for NC under specific distribution families

We now highlight some key ideas which help us construct IPPs over large distribution
families like smooth distributions and product distributions. To begin with, on any input
X ∈ {0, 1}km , we first reduce L to PVAL using ΠNC. Recall that in the distribution-free
setting, ΠNC outputs (J, v⃗), such that for the soundness promise, with high probability X

cannot be ε-close to PVAL(J, v⃗) along both U and the unknown distribution from the given
family, D. In other words, X is ε-far from PVAL(J, v⃗) along at least one of U or D. Building
on this observation, we design IPPs for PVAL(J, v⃗) over these distribution families, using an
intricate case analysis of the soundness condition.

In more detail, if X is ε-far from PVAL(J, v⃗) under the uniform distribution, then we
can directly use the uniform distance preservation lemma to catch a malicious prover as
seen previously in the uniform IPP. If not, suppose that dD(X, PVAL(J, v⃗)) > ε. Next,
we briefly describe the soundness analysis, using specific distance preservation lemmas for
smooth distributions and product distributions. Given this, we build on the strategy of the
uniform IPP above to construct an IPP for PVAL(J, v⃗) over these distribution families, with
the main technical work being that of simultaneously incorporating both the uniform and
the respective distance preservation lemmas into the soundness analysis, across the recursive
levels.

CCC 2024

24:14 Distribution-Free Proofs of Proximity

ρ-dispersed distributions

Recall that ρ-dispersed distributions over [k]m capture the smoothness of a distribution,
by requiring that the probability mass on any element is bounded by ρ times the average
mass on any of its neighbours. Adopting similar notation as above, let D̂ be the marginal
distribution of D over [k]m−1.

For any row Xi ∈ Fkm−1 that is a lower-dimensional input instance, let εi be the
distance between Xi and PVAL(J2, Y ′

i) over D̂. Here, we show a distance preservation
lemma for ρ-dispersed distributions, such that for any distribution D that is ρ-dispersed,∑k

i=1 εi > (kε)/ρ.11 The idea behind proving this is not obvious immediately; while εi

measures the distance along marginal distributions, ε is the distance from each element of
PVAL(J, v⃗) over D (which could be a joint distribution). However, we crucially use properties
about ρ-dispersed distributions to prove this distance preservation lemma.

Using the strategy described earlier, we get an IPP for NC over ρ-dispersed distributions,
having query and sample complexities ρlog(1/ε)/ log log(n)

ε1+o(1) , while keeping communication com-
plexity the same. In particular, for ρ = ko(1), the query complexity is 1/ε1+o(1) and matches
that of the uniform IPP for all ε > 0.

Product distributions

Let D be an m-product distribution defined as D = D1 × . . . Dm over [k]m, where k = log(n),
and each Dj is an independent distribution supported on [k]. In particular, D(i1, . . . , im) is
defined as

∏m
j=1 Dj(ij).

Our main approach here to construct IPPs over such distributions, is to first learn the
underlying distribution and then use this as an aid to obtain near-optimal complexity
parameters. For more context, consider the following k-dispersed distribution D over [k]m,
that is supported on the first row of the first dimension, i.e, exactly on the set of elements of
the form (1, i2, . . . , im) for every (i2, . . . , im) ∈ [k]m−1.12 We see that the IPP over k-dispersed
distributions has query complexity O(1/ε2). However, if the verifier “learns” beforehand that
D is only supported on the first row, then it can focus its attention on a smaller instance in
Fkm−1 and potentially obtain much better query complexity, if D conditioned on the first
row is ρ-dispersed, for a small ρ.

Our main technical idea here is to show a learning-augmented distance preservation
lemma for product distributions. Let εi be the distance between Xi and PVAL(J2, Y ′

i) over
D̂ = D2 × · · · × Dm. Based on an alternative analysis to that of ρ-dispersed distributions, we
prove that for any product distribution D,

∑k
i=1 εi > Cε, for C > 1 that only depends on

D1. Using this key insight, if the verifier “transformed” D1 into the uniform distribution over
[a0 · k], where a0 ≥ 1 is a small constant, then we get a similar expression as the uniform
distance preservation lemma, i.e., C = O(k), despite still measuring distance according to D̂
for the lower dimensional instances.13

We briefly highlight the sequence of tools used to implement the latter idea. The
verifier learns the probability vector of D1, into an approximation P1, using the parallel set
lower bound protocol [9] which requires white-box access to D1. Following this, it runs a

11 Note that the uniform distribution is a 1-dispersed distribution and we thus generalise the uniform
distance preservation lemma.

12 Intuitively, for any i2, . . . , im ∈ [k]m−1, D(1, i2, . . . , im) is the only element in the set {ℓ, i2, . . . , im}ℓ∈[k]
with a non-zero probability mass and thus is k-times the average of the probability mass on its
neighbourhood.

13 For consistency, a0 = 1, when D1 is just Uk.

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:15

“granularising” algorithm taking P1 as input, that outputs the probability vector of a new
8k-granular distribution E1 over [k + 1] (i.e., for every i, E1(i) is bi/8k), such that in the
soundness case, the distance of the input over E1 is still ε (up to constant factors). Finally,
this granularity set is used to “extend” X into a new input instance X ′ ∈ {0, 1}8k×km−1 ,
by making copies of each row according to it’s granularity, and we can thus, equivalently
consider the underlying row distribution as the uniform distribution over [8k]. The last two
steps build on ideas from [24] for testing unknown distributions, while our focus is on the
setting of testing with an implicit input.

1.4 Related Work
Proofs of Proximity for Distributions

In a related model, [14, 35] study proofs of proximity for testing distributions. In their
setting, for a fixed property Π of distributions, the verifier receives samples from an unknown
distribution D, and interacts with the prover to decide whether D ∈ Π or D is ε-far from any
distribution in Π along the total variation distance. While there are superficial similarities to
our model regarding the use of sample oracle, we focus on testing properties (or languages)
of strings, where the distribution oracle only provides a means of accessing the input string.
In addition, the verifier also has oracle access to the input instance and the distance for the
NO instance is measured with respect to the underlying distribution.

Sample-based IPPs

Another related model is that of Sample-based IPPs [20], where the verifier can only access
the input through an oracle that provides labeled samples over the uniform distribution.
They show that any language in logspace-uniform NC has an SIPP with Õ(

√
n) sample and

communication complexities, by in fact constructing a reduction protocol from an SIPP to
the query-based IPP by [44]. Our model is more general conceptually, since any protocol in
our model needs to be able to test for a language given access to labeled samples over any
unknown distribution. On the other hand, to aid with this generality, we also provide the
verifier with the more powerful oracle access to the input, which SIPPs do not.

That being said, we can use the uniform SIPP by [20] within the proof of Theorem 1
(instead of the query-based IPP by [43]) to obtain a distribution-free SIPP for NC where the
verifier only accesses the input through labeled samples over U and the unknown distribution
D, for any ε ≥ τ/n.14 It is unclear whether we can construct distribution-free SIPPs for
general values of ε (even over smooth or product distributions) that match the complexities
of the uniform IPPs and we leave it as future work.

Interactive Proofs for Agnostic Learning

[29] study the setting of verifying PAC-learners. There, the verifier has sampling access to an
unknown distribution D over labeled examples of the form (i, xi), where i ∼ D and x is the
underlying input. It’s goal is to verify whether a hypothesis h : {0, 1}log(n) → {0, 1} given by
the prover from a fixed hypothesis class, is the best approximation of D. From the property
testing perspective, the prover wants to convince the verifier that D′ has the property that
every hypothesis in the class has error larger than ε over D, for some ε > 0 (i.e., the best
possible approximation of D by the hypothesis class is at least ε).

14 The uniform SIPP by [20] has communication complexity Õ
(

n
τ + 1

ε

)
(for tradeoff τ ≤

√
n), and using

this still gives us the same communication complexity as the query-based distribution-free IPP from
Theorem 1.

CCC 2024

24:16 Distribution-Free Proofs of Proximity

Similar to the setting of SIPPs, their scenario focuses on the case where the verifier only
has access to x via a labeled sample oracle, over an unknown distribution. Furthermore,
they focus on testing specific properties pertaining to machine learning, such as closeness to
an underlying hypothesis class, with the hope of getting very low sample complexity (with
respect to the VC dimension of the hypothesis class). In contrast, we deal with verification
of general classes of properties, and in some cases the sample and query complexities are
both Õ(

√
n).

References

1 Hugo Aaronson, Tom Gur, Ninad Rajgopal, and Ron Rothblum. Distribution-free proofs of
proximity. Electron. Colloquium Comput. Complex., TR23-118, 2023. arXiv:TR23-118.

2 Vipul Arora, Arnab Bhattacharyya, Noah Fleming, Esty Kelman, and Yuichi Yoshida. Low
degree testing over the reals. In Proceedings of the 2023 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 738–792. SIAM, 2023.

3 Aleksandrs Belovs. Quantum algorithm for distribution-free junta testing. In René van
Bevern and Gregory Kucherov, editors, Computer Science – Theory and Applications – 14th
International Computer Science Symposium in Russia, CSR 2019, Novosibirsk, Russia, July
1-5, 2019, Proceedings, volume 11532 of Lecture Notes in Computer Science, pages 50–59.
Springer, 2019. doi:10.1007/978-3-030-19955-5_5.

4 Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon
interactive oracle proofs of proximity. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.14.

5 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. In Proceedings of the thirty-sixth
annual ACM symposium on Theory of computing, pages 1–10, 2004.

6 Itay Berman, Ron D. Rothblum, and Vinod Vaikuntanathan. Zero-knowledge proofs of
proximity. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pages 19:1–19:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ITCS.2018.19.

7 Arnab Bhattacharyya and Yuichi Yoshida. Property Testing – Problems and Techniques.
Springer, 2022. doi:10.1007/978-981-16-8622-1.

8 Eric Blais, Renato Pinto Jr Ferreira, and Nathaniel Harms. VC dimension and distribution-free
sample-based testing. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 504–517, 2021.

9 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006. doi:10.1561/0400000004.

10 Sarah Bordage, Mathieu Lhotel, Jade Nardi, and Hugues Randriam. Interactive oracle proofs
of proximity to algebraic geometry codes. In Shachar Lovett, editor, 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234
of LIPIcs, pages 30:1–30:45. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.CCC.2022.30.

11 Nader H. Bshouty. Almost optimal distribution-free junta testing. In Amir Shpilka, editor,
34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,
NJ, USA, volume 137 of LIPIcs, pages 2:1–2:13. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.CCC.2019.2.

https://arxiv.org/abs/TR23-118
https://doi.org/10.1007/978-3-030-19955-5_5
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.4230/LIPIcs.ITCS.2018.19
https://doi.org/10.1007/978-981-16-8622-1
https://doi.org/10.1561/0400000004
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2022.30
https://doi.org/10.4230/LIPIcs.CCC.2019.2

H. Aaronson, T. Gur, N. Rajgopal, and R. D. Rothblum 24:17

12 Xi Chen and Shyamal Patel. Distribution-free testing for halfspaces (almost) requires pac
learning. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1715–1743. SIAM, 2022.

13 Xi Chen and Jinyu Xie. Tight bounds for the distribution-free testing of monotone conjunctions.
In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 54–71. SIAM, 2016. doi:10.1137/1.9781611974331.ch5.

14 Alessandro Chiesa and Tom Gur. Proofs of proximity for distribution testing. In Anna R.
Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018,
January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 53:1–53:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ITCS.2018.53.

15 Marcel Dall’Agnol, Tom Gur, Subhayan Roy Moulik, and Justin Thaler. Quantum proofs of
proximity. Quantum, 6:834, 2022.

16 Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld. Fast approximate probabilistically checkable
proofs. Inf. Comput., 189(2):135–159, 2004. doi:10.1016/j.ic.2003.09.005.

17 Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish. Partial tests, universal tests and
decomposability. In Proceedings of the 5th conference on Innovations in theoretical computer
science, pages 483–500, 2014.

18 Noah Fleming and Yuichi Yoshida. Distribution-free testing of linear functions on Rn. In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS
2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 22:1–22:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ITCS.2020.
22.

19 Dana Glasner and Rocco A. Servedio. Distribution-free testing lower bounds for basic boolean
functions. In Moses Charikar, Klaus Jansen, Omer Reingold, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
10th International Workshop, APPROX 2007, and 11th International Workshop, RANDOM
2007, Princeton, NJ, USA, August 20-22, 2007, Proceedings, volume 4627 of Lecture Notes in
Computer Science, pages 494–508. Springer, 2007. doi:10.1007/978-3-540-74208-1_36.

20 Guy Goldberg and Guy N Rothblum. Sample-based proofs of proximity. In 13th Innovations
in Theoretical Computer Science Conference (ITCS 2022). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

21 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
22 Oded Goldreich. Testing bipartitness in an augmented VDF bounded-degree graph model.

CoRR, abs/1905.03070, 2019. arXiv:1905.03070.
23 Oded Goldreich. Testing graphs in vertex-distribution-free models. In Proceedings of the 51st

Annual ACM SIGACT Symposium on Theory of Computing, pages 527–534, 2019.
24 Oded Goldreich. The uniform distribution is complete with respect to testing identity to a

fixed distribution. In Oded Goldreich, editor, Computational Complexity and Property Testing
– On the Interplay Between Randomness and Computation, volume 12050 of Lecture Notes in
Computer Science, pages 152–172. Springer, 2020. doi:10.1007/978-3-030-43662-9_10.

25 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

26 Oded Goldreich and Tom Gur. Universal locally verifiable codes and 3-round interactive proofs
of proximity for CSP. Theoretical computer science, 878:83–101, 2021.

27 Oded Goldreich and Salil P Vadhan. On the complexity of computational problems regarding
distributions. Studies in Complexity and Cryptography, 6650:390–405, 2011.

28 Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation:
interactive proofs for muggles. Journal of the ACM (JACM), 62(4):1–64, 2015.

29 Shafi Goldwasser, Guy N Rothblum, Jonathan Shafer, and Amir Yehudayoff. Interactive
proofs for verifying machine learning. In 12th Innovations in Theoretical Computer Science
Conference (ITCS 2021). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

CCC 2024

https://doi.org/10.1137/1.9781611974331.ch5
https://doi.org/10.4230/LIPIcs.ITCS.2018.53
https://doi.org/10.1016/j.ic.2003.09.005
https://doi.org/10.4230/LIPIcs.ITCS.2020.22
https://doi.org/10.4230/LIPIcs.ITCS.2020.22
https://doi.org/10.1007/978-3-540-74208-1_36
https://arxiv.org/abs/1905.03070
https://doi.org/10.1007/978-3-030-43662-9_10
https://doi.org/10.1145/285055.285060

24:18 Distribution-Free Proofs of Proximity

30 Tom Gur. On locally verifiable proofs of proximity. PhD thesis, The Weizmann Institute of
Science (Israel), 2017.

31 Tom Gur, Govind Ramnarayan, and Ron Rothblum. Relaxed locally correctable codes. Theory
of Computing, 16(1):1–68, 2020.

32 Tom Gur and Ron D. Rothblum. Non-interactive proofs of proximity. Comput. Complex.,
27(1):99–207, 2018. doi:10.1007/s00037-016-0136-9.

33 Shirley Halevy and Eyal Kushilevitz. Distribution-free property-testing. SIAM J. Comput.,
37(4):1107–1138, 2007. doi:10.1137/050645804.

34 Shirley Halevy and Eyal Kushilevitz. Distribution-free connectivity testing for sparse graphs.
Algorithmica, 51:24–48, 2008.

35 Tal Herman and Guy N Rothblum. Verifying the unseen: interactive proofs for label-invariant
distribution properties. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 1208–1219, 2022.

36 Yael Tauman Kalai and Ron D Rothblum. Arguments of proximity. In Advances in Cryptology–
CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part II, pages 422–442. Springer, 2015.

37 Zhengyang Liu, Xi Chen, Rocco A Servedio, Ying Sheng, and Jinyu Xie. Distribution-free
junta testing. ACM Transactions on Algorithms (TALG), 15(1):1–23, 2018.

38 Zhengyang Liu, Xi Chen, Rocco A. Servedio, Ying Sheng, and Jinyu Xie. Distribution-free
junta testing. ACM Trans. Algorithms, 15(1):1:1–1:23, 2019. doi:10.1145/3264434.

39 Omer Reingold, Guy N Rothblum, and Ron D Rothblum. Efficient batch verification for UP. In
33rd Computational Complexity Conference (CCC 2018). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018.

40 Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs
for delegating computation. SIAM J. Comput., 50(3), 2021. doi:10.1137/16M1096773.

41 Dana Ron and Asaf Rosin. Optimal distribution-free sample-based testing of subsequence-
freeness with one-sided error. ACM Transactions on Computation Theory (TOCT), 14(1):1–31,
2022.

42 Noga Ron-Zewi and Ron D Rothblum. Local proofs approaching the witness length. In 2020
IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages 846–857.
IEEE, 2020.

43 Guy N Rothblum and Ron D Rothblum. Batch verification and proofs of proximity with
polylog overhead. In Theory of Cryptography: 18th International Conference, TCC 2020,
Durham, NC, USA, November 16–19, 2020, Proceedings, Part II, pages 108–138. Springer,
2020.

44 Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson. Interactive proofs of proximity:
delegating computation in sublinear time. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 793–802. ACM, 2013. doi:10.1145/2488608.2488709.

45 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252–271, 1996. doi:10.1137/S0097539793255151.

46 Amit Sahai and Salil P. Vadhan. Manipulating statistical difference. In Panos M. Pardalos,
Sanguthevar Rajasekaran, and José Rolim, editors, Randomization Methods in Algorithm
Design, Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, December 12-14,
1997, volume 43 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 251–270. DIMACS/AMS, 1997. doi:10.1090/dimacs/043/14.

47 Salil P Vadhan. An unconditional study of computational zero knowledge. SIAM Journal on
Computing, 36(4):1160–1214, 2006.

48 Salil Pravin Vadhan. A study of statistical zero-knowledge proofs. PhD thesis, Massachusetts
Institute of Technology, 1999.

49 Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.
doi:10.1145/1968.1972.

https://doi.org/10.1007/s00037-016-0136-9
https://doi.org/10.1137/050645804
https://doi.org/10.1145/3264434
https://doi.org/10.1137/16M1096773
https://doi.org/10.1145/2488608.2488709
https://doi.org/10.1137/S0097539793255151
https://doi.org/10.1090/dimacs/043/14
https://doi.org/10.1145/1968.1972

On the Degree of Polynomials Computing Square
Roots Mod p

Kiran S. Kedlaya # Ñ

Department of Mathematics, University of California San Diego, La Jolla, CA, USA
School of Mathematics of the Institute for Advanced Study (2023–24 academic year),
Princeton, NJ, USA

Swastik Kopparty #

Department of Mathematics and Department of Computer Science, University of Toronto, Canada

Abstract
For an odd prime p, we say f(X) ∈ Fp[X] computes square roots in Fp if, for all nonzero perfect
squares a ∈ Fp, we have f(a)2 = a.

When p ≡ 3 mod 4, it is well known that f(X) = X(p+1)/4 computes square roots. This degree
is surprisingly low (and in fact lowest possible), since we have specified (p − 1)/2 evaluations (up
to sign) of the polynomial f(X). On the other hand, for p ≡ 1 mod 4 there was previously no
nontrivial bound known on the lowest degree of a polynomial computing square roots in Fp.

We show that for all p ≡ 1 mod 4, the degree of a polynomial computing square roots has
degree at least p/3. Our main new ingredient is a general lemma which may be of independent
interest: powers of a low degree polynomial cannot have too many consecutive zero coefficients. The
proof method also yields a robust version: any polynomial that computes square roots for 99% of
the squares also has degree almost p/3.

In the other direction, Agou, Deliglése, and Nicolas [1] showed that for infinitely many p ≡ 1
mod 4, the degree of a polynomial computing square roots can be as small as 3p/8.

2012 ACM Subject Classification Computing methodologies → Representation of mathematical
functions; Computing methodologies → Number theory algorithms; Mathematics of computing →
Coding theory

Keywords and phrases Algebraic Computation, Polynomials, Computing Square roots, Reed-
Solomon Codes

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.25

Funding Kiran S. Kedlaya: Research supported by NSF grant DMS-2053473, the UC San Diego
Warschawski Professorship, the Simons Fellows in Mathematics program of the Simons Foundation
(2023–24 academic year).
Swastik Kopparty: Research supported by an NSERC Discovery Grant.

Acknowledgements Both authors acknowledge support from IAS in 2018–19, where initial discussions
towards this paper took place. We thank N. Carella and Igor Shparlinski for valuable comments and
pointers to the literature.

1 Introduction

Let p be an odd prime, and let Fp be the finite field with p elements.
We say f(X) ∈ Fp[X] computes square roots in Fp, if for all nonzero perfect squares

a ∈ Fp, we have:

f(a)2 = a.

In other words, for each nonzero perfect square a ∈ Fp, f(a) is one of its two square roots.

© Kiran S. Kedlaya and Swastik Kopparty;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kedlaya@ucsd.edu
https://kskedlaya.org
https://orcid.org/0000-0001-8700-8758
mailto:swastik.kopparty@utoronto.ca
https://orcid.org/0000-0003-2704-8808
https://doi.org/10.4230/LIPIcs.CCC.2024.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 On the Degree of Polynomials Computing Square Roots Mod p

When p ≡ 3 mod 4, then it is well known that f(X) = X(p+1)/4 computes square roots.
This degree is surprisingly low, since we are essentially interpolating a polynomial from
(p− 1)/2 evaluations (where the evaluations are specified up to sign). We are interested in
whether there is a similar phenomenon for p ≡ 1 mod 4.

Concretely, we study the question: what is the smallest degree of a polynomial that
computes square roots? Despite being a basic and natural question, there were no nontrivial
bounds known for this question for the case of p ≡ 1 mod 4.

There is a very simple argument1 that shows that the degree of such a polynomial f(X)
must be at least p−1

4 ; indeed, the nonzero polynomial f(X)2 − X vanishes at all the p−1
2

nonzero perfect squares in Fp.
Our main result is that, unlike the case of p ≡ 3 mod 4, the degree of any polynomial

computing square roots in the case of p ≡ 1 mod 4 must be significantly higher, about 1
3 · p.

▶ Theorem 1. Let p ≡ 1 mod 4. Then any polynomial that computes square roots in Fp
has degree at least p−1

3 .

Our proof is based on expressing the property of computing square roots as a polynomial rela-
tion (involving some unknown polynomials), and then eliminating the unknown polynomials
through a combination of taking derivatives and truncations. Abstracting out the main steps,
we get a general lemma (that can also be derived from the Mason-Stothers abc-theorem)
which may be of independent interest: the powers of a low-degree polynomial cannot have
too many consecutive zero coefficients (Lemma 5).

How does p mod 4 play a role in the proof? Our proof ends up showing that for
all p, any polynomial f(X) of degree less than p

3 that computes square roots must have
f(X)2 = X(p+1)/2 (as a polynomial identity), and this is not possible if p ≡ 1 mod 4.

A robust version
The degree of a polynomial computing a certain function is quite a brittle notion. Changing
just a single value of the function can change the degree drastically. By using the key idea of
the Berlekamp-Welch algorithm for decoding Reed-Solomon codes, we can strengthen the
above result to get a robust version, given below.

▶ Theorem 2. Let p ≡ 1 mod 4. Then any polynomial that computes square roots in Fp on
all but e ≤ p−7

12 nonzero perfect squares in Fp must have degree at least p−1
3 − e.

The connection to decoding algorithms for Reed-Solomon codes is not such a surprise.
The problem of whether a low-degree polynomial can compute square roots is in fact a
list-recovery problem for Reed-Solomon codes [9]; our result effectively shows that a certain
algebraic list recovery instance where each input list has size 2 has no solutions. The difficulty
is that this lies beyond the regime where we have a good understanding of list-recoverability
and list-decodability of Reed-Solomon codes.

More concretely, let C be the the Reed-Solomon code of degree d polynomials over Fp with
evaluation set D. Suppose for each x ∈ D we are given a set Sx ⊆ Fp with |Sx| ≤ 2. How can
we certify that there are no codewords c of C such that for each coordinate x ∈ D, we have
cx ∈ Sx? It is not known how to give an efficiently verifiable certificate of this in general
when d =

(1
2 + Ω(1)

)
|D|. In our setting D is the set of perfect squares (so |D| = (p− 1)/2),

and d is p/3, which is outside the range of known certification methods [9].

1 This argument works for all p, and thus we get that X(p+1)/4 is the lowest degree polynomial computing
square roots for p ≡ 3 mod 4.

K. S. Kedlaya and S. Kopparty 25:3

Better upper bounds for special p

It turns out that for some p which are 1 mod 4, there are polynomials computing square
roots with degree about 3

8 · p.

▶ Theorem 3. Let p ≡ 5 mod 8. Then there is a polynomial that computes square roots in
Fp with degree at most 3p+1

8 .

This was shown by Agou, Deliglése and Nicolas [1] (see also [5]), based on the Tonelli-
Shanks algorithm for computing square roots. Since it is quite simple and short, we include
it in this paper for completeness.

The method of Tonelli-Shanks also yields similar phenomena with degree (1
2 − Ω(1))p for

p in special residue classes mod 2j with j constant. Theorem 5 of [1] gives another example
of such a phenomenon for p ≡ 7 mod 12, giving polynomials (different from X(p+1)/4)
computing square roots of degree about 5

12 · p.

Upper bounds for general p

Finally, we discuss upper bounds for the case of general p. First, a heuristic. There are
2(p−1)/2 different square root functions (the choice of sign for each perfect square). If the
unique interpolating polynomials of degree < (p−1)/2 for these functions had their coefficients
behaving randomly, then we would expect a polynomial of degree at most 1

2p − Ω
(

p
log p

)
that computes square roots.

Formalizing this intuition, we show that there is a polynomial computing square roots
with degree 1

2p− Ω̃(√p). This is done by looking at the explicit formulas for the coefficients
of the interpolants and arguing their pseudorandomness via the Weil bounds and some
elementary Fourier analysis.

We also note that all our results have analogues for computing t-th roots.

Related Work
The work of Agou, Deliglése and Nicolas [1] gave examples, for infinitely many p, of polyno-
mials in Fp of abnormally low degree that compute square roots. The focus there was on
finding polynomials with few monomials, and they gave interesting upper and lower bounds
for this. Chang, Kim and Lee [6] gave analogues of these results for computing t-th roots.

Another related line of research has studied lower bounds on the degree of polynomials
computing interesting arithmetic functions. Coppersmith and Shparlinski [7] (following an
error-free computation result of Mullen and White [12]), gave strong lower bounds on the
degree of polynomials computing the discrete logarithm in prime fields Fp with as many as
(1 − o(1))p errors. Winterhof [20] later gave a generalization of this to all finite fields. These
results are related to list-decoding of Reed-Solomon codes, since for each input there is only
one “correct” value which we are hoping the polynomial will compute. As mentioned earlier,
the problems we consider are related to list-recovery of Reed-Solomon codes, where there are
multiple “correct” values for any given input, and we hope the polynomial computes one of
them.

Conclusions and Questions
Computing square roots and understanding quadratic residuosity are central topics in
algebraic computation and pseudorandomness.

CCC 2024

25:4 On the Degree of Polynomials Computing Square Roots Mod p

Perhaps the most interesting and fundamental open question in this area is that of
deterministically computing square roots mod p in poly(log p) time. As we already saw,
when p ≡ 3 mod 4, the simple deterministic poly(log p) algorithm of raising x ∈ Fp to the
power p+1

4 computes the square root of x. Our results show that the p ≡ 1 mod 4 case
is qualitatively different in some respects. See [3, 18, 15] for what is known about this
computational problem and related number theoretic issues.

Other important questions include the problem of determining the size of the least
quadratic residue mod p (this is also connected to deterministic computation of square roots),
and understanding the pseudorandomness of the Paley graph (for example, are Paley graphs
Ramsey graphs?).

Finally, as mentioned above, our results can be viewed as showing that a certain list-
recovery instance for Reed-Solomon codes has no solutions. We close with a conjecture about
the list-recoverability of Reed-Solomon codes. The conjecture talks about prime fields; the
results of Guruswami and Rudra [8] imply that this assumption cannot be dropped.

▶ Conjecture 4. Let Fp be a prime field. Let ℓ ∈ N, ϵ > 0 be constants. Suppose we are
given, for each x ∈ Fp, a set Sx with |Sx| ≤ ℓ. Then:

|{P (X) ∈ Fp[X] | deg(P) ≤ (1 − ϵ)p, and for all x ∈ Fp, P (x) ∈ Sx}| ≤ pOϵ,ℓ(1).

We hope that our methods can give some insight into understanding the list-recovery
capacity of Reed-Solomon codes, and in particular the above conjecture.

2 Lower bound for polynomials computing square roots

We now prove our first theorem about polynomials computing square roots mod p.

▶ Theorem 1. Let p ≡ 1 mod 4. Then the degree of any polynomial that computes square
roots in Fp is at least p−1

3 .

Proof. Suppose f(X) is of degree d < p−1
3 and computes square roots in Fp. Then, since

X(p−1)/2 − 1 is the vanishing polynomial of the set of nonzero perfect squares in Fp, we have:

f(X)2 −X ≡ 0 mod (X(p−1)/2 − 1).

Let A(X) be the polynomial of degree 2d− (p− 1)/2 such that

f(X)2 −X = A(X) · (X(p−1)/2 − 1).

Let B(X) = X −A(X). Then we get:

f(X)2 = A(X) ·X(p−1)/2 +B(X), (1)

where:
deg(f(X)) = d.
deg(A(X)), deg(B(X)) ≤ 2d− (p− 1)/2.
A(X) ̸= 0. If A(X) = 0 then f(X)2 = X, which is impossible for a polynomial f(X).
B(X) ̸= 0. Otherwise A(X) = X, and f(X)2 = X(p+1)/2, which is possible only if p ≡ 3
mod 4.

K. S. Kedlaya and S. Kopparty 25:5

These conditions together will give us our lower bound on d.
Taking derivatives2 of both sides of (1), we get:

2f(X)f ′(X) = A′(X) ·X(p−1)/2 − 1
2A(X)X(p−3)/2 +B′(X). (2)

Computing 2f(X)2f ′(X) in two ways using (1) and (2), we get:

2f ′(X)A(X)X(p−1)/2+2f ′(X)B(X) = f(X)
(
X ·A′(X) − 1

2A(X)
)
X(p−3)/2+f(X)B′(X).

Now, using our assumption on d, the degrees of 2f ′(X)B(X) and f(X)B′(X) are both at
most 3d− (p− 1)/2 − 1 < (p− 3)/2, and thus taking the above equation mod X(p−3)/2,

2f ′(X)B(X) = f(X)B′(X).

Since B(X) ̸= 0, we get 2f ′(X)
f(X) = B′(X)

B(X) . Since 2 deg(f), deg(B) < p, by a basic property
of logarithmic derivatives, this implies f(X)2 = λB(X) for some nonzero λ, contradicting
the fact that A(X) ̸= 0. (See Remark 1 in Section 2.2 for a precise statement and a proof.)

Thus our assumption that d < p−1
3 is wrong, and the theorem follows. ◀

2.1 Consecutive zero coefficients in powers of polynomials
We isolate the key step above as the following lemma:

▶ Lemma 5. Let F be a field of characteristic p. Let f(X), A(X), B(X) be in F[X]. Suppose

f(X)t = A(X) ·Xℓ +B(X) (3)

where:
deg(f(X)) ≤ d < p

t ,
deg(B(X)) ≤ b < p,
A(X) ̸= 0,
B(X) ̸= 0,

Then d+ b ≥ ℓ.

In words, this says that if dt < p, the t-th power of a polynomial of degree d cannot have d
consecutive 0 coefficients unless it is a single monomial (since the RHS of the above equation
has at least ℓ− b− 1 consecutive 0 coefficients).

Proof. Suppose d+ b < ℓ. Observe that this implies that f(X) ̸= 0.
Taking derivatives of both sides of (3), we get:

tf(X)t−1f ′(X) = C(X)Xℓ−1 +B′(X), (4)

for some C(X) ∈ F[X].
Computing tf(X)tf ′(X) in two different ways using (3), (4), we get:

tA(X)f ′(X)Xℓ + tf ′(X)B(X) = f(X)C(X)Xℓ−1 + f(X)B′(X).

2 Throughout this paper, we work with formal derivatives of polynomials.

CCC 2024

25:6 On the Degree of Polynomials Computing Square Roots Mod p

Since deg(tf ′(X)B(X)), deg(f(X)B′(X)) < d+ b ≤ ℓ− 1, by taking this equation mod Xℓ−1

we get:

tf ′(X)B(X) = f(X)B′(X),

and since f(X), B(X) are nonzero, we get that:

t
f ′(X)
f(X) = B′(X)

B(X) .

By the logarithmic derivative, we get f(X)t = λB(X) for some nonzero λ, contradicting
our assumption that A(X) ̸= 0.

Thus d+ b ≥ ℓ as claimed. ◀

2.2 Remarks
1. The key fact about logarithmic derivatives that we are using is that if f(X), B(X) ∈ Fp[X],

t · deg(f), deg(B) < p, and:

t
f ′(X)
f(X) = B′(X)

B(X) ,

then f(X)t = λ ·B(X) for some constant λ ∈ Fp.
We recap a quick proof. The hypothesis implies that

(
f(X)t

B(X)

)′
= 0, and thus f(X)t

B(X) must

be a rational function in Xp. To see the last deduction, note that
(
f(X)t ·B(X)p−1)′ =(

f(X)t

B(X) ·B(X)p
)′

=
(
f(X)t

B(X)

)′
· B(X)p + f(X)t

B(X) · p · B(X)p−1 · B′(X) = 0 + 0 = 0. Thus

the polynomial f(X)t · B(X)p−1 is a polynomial in Xp, which implies that f(X)t

B(X) =
f(X)t·B(X)p−1

B(X)p = f(X)t·B(X)p−1

B(Xp) is a rational function in Xp. Once we know that f(X)t

B(X) is
a rational function in Xp, our assumption about the degrees implies the result.

2. The exact same proof also classifies when low-degree polynomials can compute square
roots of very-low-degree polynomials on a multiplicative group.
▶ Theorem 6. Let G ⊆ F∗

p be a multiplicative subgroup of size m, with m ≤ p−1
2 . Let

C(X) ∈ Fp[X] have degree at most m
3 . Suppose f(X) ∈ Fp[X] is such that f(a)2 = C(a)

for all a ∈ G. Then one of the following alternatives must hold:
f(X)2 = C(X),
f(X)2 = C(X) ·Xm,
deg(f) ≥ 2m

3 .
The above statement for m = p− 1 and C(X) being a constant follows from a result of
Biro [4], who classified low-degree polynomials that take two values on F∗

p. The proof
from [4] is a delicate investigation of certain power sums. Our proof for m < p − 1 is
quite different, and has the flexibility of allowing for the robust version proved in the
next section (which gives, for example, a classification of low-degree polynomials that
take only 2 values on 99% of G).
In this generality, the bound of 2m

3 is tight. If m is divisible by 3, then the polynomial
f(X) =

(
X2m/3 +Xm/3 − 1

2
)

is such that f(x)2 = 9
4 for all x ∈ G (since xm/3 is a cube

root of 1).
3. The proof of Lemma 5 also applies as is to rational powers of f(X), where we now talk

about consecutive 0 coefficients in the power series. We only state it for characteristic 0;
it says that the power series expansion of f(X)r/s, for f(X) of degree d, does not have d
consecutive 0 coefficients. Precisely, we have:

K. S. Kedlaya and S. Kopparty 25:7

▶ Lemma 7. Let F be a field of characteristic 0. Let t be a rational number. Let
f(X) ∈ F[X] be a polynomial of degree at most d with nonzero constant term.
Then any (formal) power series expansion of f(X)t in F[[X]] does not have d consecutive
zero coefficients.
This is stronger than the usual bound for this situation (which shows up in polynomial
factoring algorithms via the Hilbert irreducibility theorem [10] and the Arora-Sudan
low degree test [2]), which goes as follows: Suppose f(X)1/s = A(X)Xℓ +B(X), where
deg(f) = d, deg(B) = b and A(X) ∈ F[[X]] is nonzero, then f(X) −B(X)s is a nonzero
polynomial of degree at least ℓ, and so ℓ ≤ max(sb, d). Thus if b is large, this bound only
guarantees that there is a nonzero coefficient Xi for i ∈ [b+ 1, sb] (instead of [b+ 1, b+ d]
as guaranteed by Lemma 7).

4. Applying the same method, we can apply this method to the power series expansion of
ef(X) too.
▶ Lemma 8. Let F be a field of characteristic 0. Let f(X) ∈ F[X] be a polynomial of
degree at most d with constant term 0.
Then the (formal) power series expansion of ef(X) in F[[X]] does not have d consecutive
zero coefficients.

5. The bounds of Lemma 5, Lemma 7 and Lemma 8 on the number of consecutive 0
coefficients are tight, for example when f(X) is of the form αXd + β.

6. We can give another proof of Lemma 5 (but not Lemma 7 or Lemma 8 as far as we know)
using the Mason-Stothers abc-theorem for polynomials [16, 11].
Indeed, note that f(X)t, A(X) ·Xℓ and B(X) all have degree at most dt. Furthermore,
the radical of their product divides f(X) ·A(X) ·X ·B(X), and thus has degree at most
d+ (dt− ℓ) + 1 + b. By the abc-theorem, we get that:

dt ≤ (d+ dt− ℓ+ 1 + b) − 1 = dt+ d− ℓ+ b,

and thus d+ b ≥ ℓ.

3 A robust version

Let p be a prime that is 1 mod 4. Let S be the set of nonzero perfect squares in Fp.
We say a polynomial f(X) ∈ Fp[X] computes square roots with error e if:∣∣{a ∈ S | f(a)2 ̸= a}

∣∣ ≤ e.

We show that any polynomial computing square roots even allowing Ω(p) error cannot
have degree much smaller than p/3.

▶ Theorem 2. Let p ≡ 1 mod 4. Suppose f(X) ∈ Fp[X] is a polynomial of degree d that
computes square roots with error e.

Then

d ≥

{
p−1

3 − e e ≤ p−7
12

p−1
2 − 3e− 1 e > p−7

12 .

Proof. We use the idea of the Berlekamp-Welch Reed-Solomon decoding algorithm [19].
Let U ⊆ S be the set of a ∈ S where f(a)2 ̸= a.
Let E(X) ∈ Fp[X] be the vanishing polynomial of U , given by:

E(X) =
∏
u∈U

(X − u).

CCC 2024

25:8 On the Degree of Polynomials Computing Square Roots Mod p

Note that E is a nonzero polynomial of degree at most e.
Then we have:

E(X)2 · f(X)2 ≡ E(X)2 ·X mod (X(p−1)/2 − 1).

Let A(X) be the polynomial of degree at most 2(e+ d) − (p− 1)/2 such that:

E(X)2 · f(X)2 − E(X)2 ·X = A(X) · (X(p−1)/2 − 1).

Let g(X) = E(X) · f(X), and B(X) = E(X)2 ·X −A(X).
Then

g(X)2 = A(X) ·X(p−1)/2 +B(X).

We have:
deg(g) ≤ d+ e,
deg(B) ≤ max(2e+ 1, 2(e+ d) − (p− 1)/2).
A(X) ̸= 0. Otherwise E(X)2 · f(X)2 = E(X)2 ·X =⇒ f(X)2 = X, which is impossible.
B(X) ̸= 0. Otherwise E(X)2 ·X = A(X), and so E(X)2f(X)2 = E(X)2X(p+1)/2, which
implies that f(X)2 = X(p+1)/2. This is only possible if p ≡ 3 mod 4.

Plugging this into Lemma 5, we get:

(d+ e) +
(

2(d+ e) − p− 1
2

)
≥ p− 1

2 ,

if 2d− (p− 1)/2 ≥ 1,

(d+ e) + (2e+ 1) ≥ p− 1
2 ,

if 2d− (p− 1)/2 ≤ 0.

This tells us that either:

d ≥ p− 1
3 − e,

or:

d ≥ p− 1
2 − 3e− 1,

and thus:

d ≥ min
(
p− 1

3 − e,
p− 1

2 − 3e− 1
)
,

which gives us the desired claim. ◀

Note that there is another simple lower bound (which applies for all p) of d+ e
2 ≥ p−1

4
(the simple lower bound is better for e > p−1

10). This is proved by considering the number of
roots of the degree 2d polynomial f(X)2 −X.

K. S. Kedlaya and S. Kopparty 25:9

4 Upper bound for special p

In this section, we give an upper bound on the degree of polynomials computing square roots
mod p, for infinitely many p ≡ 1 mod 4. The upper bound is best when p ≡ 5 mod 8, and
we only present this case. The result and proof of this section is due to Agou, Deliglése and
Nicolas [1]. It remains in this paper only for completeness.

▶ Theorem 3. Let p ≡ 5 mod 8. Then there is a polynomial that computes square roots in
Fp with degree at most 3p+1

8 .

Proof. Since p ≡ 1 mod 4, we get that −1 is a perfect square mod p. Let i ∈ Fp be one
of the square roots of −1. Our main ingredient is the Tonelli-Shanks algorithm [14, 17]
computing square roots mod p. For p = 4ℓ+ 1, the algorithm essentially gives a formula for
the square root depending on two cases. Specifically, let u : S → Fp given by:

u(a) =
{
a(p+3)/8 a(p−1)/4 = 1,
i · a(p+3)/8 a(p−1)/4 = −1.

Then for all a ∈ Fp, u(a) is a square root of a.
This is already quite special; the set S is partitioned into two equal sized parts S0 and

S1, and on each Si we have a polynomial fi(X) computing the square root of degree about
1
2 |Si|. (This is the lowest possible degree, since fi(X)2 − X is a nonzero polynomial that
vanishes on all of Si.)

Usually if we have this kind of setup, even though the fi have unusually low degree, the
unique polynomial f (obtained from the Chinese remainder theorem) which restricts to fi
on Si has no reason to have unusually low degree. But in this case it does!

Using the usual Chinese remainder formula, we consider the polynomial f(X) ∈ Fp[X]
given by:

f(X) = 1
2

(
X(p+3)/8(X(p−1)/4 + 1) − i ·X(p+3)/8(X(p−1)/4 − 1)

)
= 1 − i

2 X(3p+1)/8 + 1 + i

2 X(p+3)/8.

By design, we have f(a) = u(a) for all a ∈ S. Finally, notice that deg(f) ≤ 3p+1
8 .

As a sanity check, we directly verify that f(X)2 ≡ X mod (X(p−1)/2 − 1). Indeed,

f(X)2 =
(

1 − i

2

)2
X(3p+1)/4 + 2 · (1 − i)(1 + i)

4 X(4p+4)/8 +
(

1 + i

2

)2
X(p+3)/4

= − i

2X
(3p+1)/4 +X(p+1)/2 + i

2X
(p+3)/4

=
(

− i

2X
(p+3)/4 +X

)
· (X(p−1)/2 − 1) +X,

as desired. ◀

5 Upper bounds for general p

In this section, we give a slightly nontrivial upper bound on the degree of polynomials
computing square roots for all p. We will show that there is a polynomial with degree
somewhat less than p

2 which computes square roots.

CCC 2024

25:10 On the Degree of Polynomials Computing Square Roots Mod p

▶ Theorem 9. For all odd primes p, for t = o
(√

p

log2 p

)
, there is a polynomial of degree p

2 − t

which computes square roots.

Proof. Let m = (p− 1)/2. Let S ⊆ Fp be the set of nonzero perfect squares, and note that
|S| = m. For each α ∈ S, let δα(X) ∈ Fp[X] be the unique polynomial of degree ≤ (m− 1)
such that for all β ∈ S:

δα(β) =
{

1 β = α,

0 β ̸= α.

Explicitly, we have:

δα(X) = 1
m

((
X

α

)m−1
+
(
X

α

)m−2
+ . . .+ X

α
+ 1
)
.

Then given a function u : S → Fp, the unique polynomial f(X) ∈ Fp[X] of degree at
most m− 1 such that f(α) = u(α) for all α ∈ S is given by:

f(X) =
∑
α∈S

u(α)δα(X).

Our goal is to pick u where each u(α) is one of the two square roots of α so that many of
the leading coefficients of f(X) equal 0.

We now use the structure of S. Let g be a generator of F∗
p. Then S = {g2j | 0 ≤ j <

(p− 1)/2}. Furthermore, for α = g2j ∈ S, one of the two square roots of α is gj .
Thus, our problem can be reformulated as choosing a function v : S → {±1} such that:

f(X) =
(p−1)/2∑
j=0

v
(
g2j) · gj · δg2j (X)

has many leading coefficients equal to 0.
Observe that the coefficient of Xm−i in f(X) equals:

1
m

(p−1)/2∑
j=0

v(g2j)gj
(

1
g2j

)m−i

= 1
m

(p−1)/2∑
i=0

v(g2j)g(2i+1)j .

Thus, to get a polynomial f(X) of degree < m− t, we want to find a vector v ∈ {±1}m
that lies in the kernel of the Vandermonde-type matrix M ∈ Ft×mp , where:

Mi,j = g(2i+1)j .

(The row index i runs from 1 to t, the column index j runs from 0 to m− 1.)
For later use, for a vector y ∈ Ftp, we define Py(Z) ∈ Fp[Z] to be the polynomial:

Py(Z) =
t∑
i=1

yiZ
2i+1.

Thus for j ∈ {0, 1, . . . ,m− 1}, the jth entry of MT y equals Py(gj).
To show that there exists the desired ±1 vector, we count the number of such vectors

using Fourier analysis. Let ω be a pth root of unity in C. The number of such ±1 vectors
equals:

K. S. Kedlaya and S. Kopparty 25:11

N =
∑

v∈{±1}m

1Mv=0

=
∑

v∈{±1}m

Ey∈Ft
p

[
ω⟨y,Mv⟩

]

= Ey

[∑
v

ω⟨MT y,v⟩

]

= Ey

[∑
v

ω

∑m−1
j=0

(MT y)j ·vj

]

= Ey

∑
v

m−1∏
j=0

ω(MT y)j ·vj

= Ey

∑
v

m−1∏
j=0

ωPy(gj)·vj

 .
For y = 0, the expression inside the expectation equals 2m. We will show that for the

remaining pt − 1 values of y, the expression inside the expectation is very small.
Fix any y ̸= 0. The expression inside the expectation equals:

∑
v∈{±1}m

m−1∏
j=0

ωPy(gj)·vj =
m∏
j=1

(
ωPy(gj) + ω−Py(gj)

)
. (5)

The next lemma (which uses the Weil bounds on mixed character sums) shows that for any
nonzero y, the evaluations of the polynomial Py at {1, g, g2, . . . , gm−1} are well distributed
in Fp.

▶ Lemma 10. Let 0 ≤ α < β ≤ 1. Let y ∈ Ftp \ {0}. Then:

Pr
j∈{0,1,...,m−1}

[
Py(gj) ∈ [αp, βp]

]
= (β − α) +O

(
t log2 p

√
p

)
.

Assuming the lemma, we get that for t = o
(√

p

log2 p

)
, the product in Equation (5) is at

most 2m · exp(−m). Thus:

N ≥ 2m

pt
− max

y ̸=0

∣∣∣∣∣∣
m∏
j=1

(
ωPy(gj) + ω−Py(gj)

)∣∣∣∣∣∣
≥ 2m

pt
−O(2m exp(−m))

≥ 2m
(

1
pt

− exp(−m)
)

> 0,

where the penultimate inequality holds since

t = o

(√
p

log2 p

)
≪ p

log p = Θ
(

m

log p

)
.

This completes the proof. ◀

CCC 2024

25:12 On the Degree of Polynomials Computing Square Roots Mod p

5.1 Distribution of values of Py(gj)
We now prove Lemma 10.

Proof. Let I be the interval [αp, βp]. Let J be the set {1, g, g2, . . . , gm−1}. Then the
probability in the statement of the lemma equals:

1
m

∑
z∈Fp

1I(Py(z))1J(z). (6)

I is an interval in the additive group of Fp By standard results, if we expand 1I in its
additive Fourier expansion:

1I =
∑
ψ

1̂I(ψ)ψ

(where the ψ are the additive characters), then:∑
ψ

|1̂I(ψ)| ≤ O(log p). (7)

Similarly, J is an interval in the multiplicative group of Fp. If we expand 1J in its additive
Fourier expansion:

1J =
∑
ψ

1̃J(χ)χ

(where the χ are the multiplicative characters), then:∑
χ

|1̃I(χ)| ≤ O(log p). (8)

Then the probability in Equation (6) equals:

1
m

∑
z

∑
ψ

1̂I(ψ)ψ(Py(z))

(∑
χ

1̃J(χ)χ(z)
)

= 1
m

∑
ψ,χ

1̂I(ψ)1̃J(χ)
(∑

z

ψ(Py(z))χ(z)
)

= 1
m

 |I|
p

· |J |
p

· p+O

 ∑
(ψ,χ) ̸=(1,1)

|1̂I(ψ)| · |1̃J(χ)| ·

∣∣∣∣∣∑
z

ψ(Py(z))χ(z)

∣∣∣∣∣

= (β − α) + 1
m

·O

 ∑
(ψ,χ)̸=(1,1)

|1̂I(ψ)| · |1̃J(χ)| ·

∣∣∣∣∣∑
z

ψ(Py(z))χ(z)

∣∣∣∣∣

The Weil bound for mixed character sums (see [13]) shows that whenever (ψ, χ) are not both
trivial characters, the inner expression is bounded:∣∣∣∣∣∑

z

ψ(Py(z))χ(z)

∣∣∣∣∣ ≤ O(t√p).

Combined with the bounds in Equations (7), (8), we get the desired bound on the
probability. ◀

K. S. Kedlaya and S. Kopparty 25:13

6 t-th roots

Now we discuss t-th roots in place of square roots. We think of t as a constant, and the
prime p growing. Let p ≡ 1 mod t, so that the set of nonzero t-th powers in Fp has size p−1

t .
Just like in the case t = 2, for special p there is a simple formula for computing the t-th

root; when p ≡ 1 − t mod t2, then a
p+t−1

t2 is a t-th root of a whenever a is a perfect t-th
power in Fp. Thus there is a polynomial of degree 1

t2 · p+O(1) computing t-th roots. This
matches the trivial lower bound of p−1

t2 on the degree of polynomials computing t-th root
(proved by counting zeroes of the nonzero polynomial f(X)t −X).

An immediate generalization of Theorem 2 shows that for all other p (namely, p ̸≡ 1 − t

mod t2, but we still preserve the condition that p ≡ 1 mod t), any polynomial of degree d
computing t-th roots in Fp with error e ≤ t−1

t2(t+1) · (p− 1) − 1 must satisfy

d ≥ 2
t(t+ 1) · (p− 1) − e.

This is 2t
t+1 times (which is about double for large t) the trivial lower bound, but quite far

from the obvious upper bound (from Lagrange interpolation) of 1
t · (p− 1).

The best upper bound we know for p not of the special form p ≡ 1 − t mod t2 is for p
such that 2p ≡ 2 − t mod t2 (there are infinitely many such p for any odd t), and in this
case the polynomial f(X) = X

2p+t−2
t2 computes t-th roots. This is of the form 2

t2 · p+O(1),
and thus somewhat close to our lower bound for large t.

Closing these gaps seems like a very basic and interesting open question.

References
1 Simon Joseph Agou, Marc Deléglise, and Jean-Louis Nicolas. Short polynomial representations

for square roots modulo p. Designs, Codes and Cryptography, 28(1):33–44, 2003.
2 Sanjeev Arora and Madhu Sudan. Improved low-degree testing and its applications. In

Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages
485–495, 1997.

3 Eric Bach and Jeffrey Outlaw Shallit. Algorithmic number theory: Efficient algorithms,
volume 1. MIT press, 1996.

4 András Biró. On polynomials over prime fields taking only two values on the multiplicative
group. Finite Fields and Their Applications, 6(4):302–308, 2000.

5 NA Carella. Formulas for the square root modulo p. arXiv preprint, 2011. arXiv:1101.4605.
6 Seunghwan Chang, Bihtnara Kim, and Hyang-Sook Lee. Polynomial representations for n-th

roots in finite fields. Journal of the Korean Mathematical Society, 52(1):209–224, 2015.
7 Don Coppersmith and Igor Shparlinski. On polynomial approximation of the discrete logarithm

and the Diffie–Hellman mapping. Journal of Cryptology, 13:339–360, 2000.
8 Venkatesan Guruswami and Atri Rudra. Limits to list decoding reed-solomon codes. In

Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages
602–609, 2005.

9 Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In Proceedings 39th Annual Symposium on Foundations of Computer Science
(Cat. No. 98CB36280), pages 28–37. IEEE, 1998.

10 Erich Kaltofen. Effective noether irreducibility forms and applications. In Proceedings of the
twenty-third annual ACM symposium on Theory of Computing, pages 54–63, 1991.

11 Richard Clive Mason. Diophantine equations over function fields, volume 96. Cambridge
University Press, 1984.

12 Gary Mullen and David White. A polynomial representation for logarithms in gf (q). Acta
arithmetica, 3(47):255–261, 1986.

CCC 2024

https://arxiv.org/abs/1101.4605

25:14 On the Degree of Polynomials Computing Square Roots Mod p

13 Wolfgang M Schmidt. Equations over finite fields: an elementary approach, volume 536.
Springer, 2006.

14 Daniel Shanks. Five number-theoretic algorithms. In Proceedings of the Second Manitoba
Conference on Numerical Mathematics (Winnipeg), 1973, 1973.

15 Victor Shoup. A computational introduction to number theory and algebra. Cambridge
university press, 2009.

16 W Wilson Stothers. Polynomial identities and hauptmoduln. The Quarterly Journal of
Mathematics, 32(3):349–370, 1981.

17 Alberto Tonelli. Bemerkung über die Auflösung quadratischer Congruenzen. Nachrichten von
der Königl. Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen,
1891:344–346, 1891.

18 Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge university
press, 2013.

19 Lloyd R Welch and Elwyn R Berlekamp. Error correction for algebraic block codes. US patent,
4,633,470, 1983.

20 Arne Winterhof. Polynomial interpolation of the discrete logarithm. Designs, Codes and
Cryptography, 25(1):63–72, 2002.

Dimension Independent Disentanglers from
Unentanglement and Applications
Fernando Granha Jeronimo #

Institute for Advanced Studies, Princeton, NJ, USA
Simons Institute, Berkeley, CA, USA

Pei Wu #

Weizmann Institute of Science, Rehovot, Israel

Abstract
Quantum entanglement, a distinctive form of quantum correlation, has become a key enabling
ingredient in diverse applications in quantum computation, complexity, cryptography, etc. However,
the presence of unwanted adversarial entanglement also poses challenges and even prevents the
correct behaviour of many protocols and applications.

In this paper, we explore methods to “break” the quantum correlations. Specifically, we construct
a dimension-independent k-partite disentangler (like) channel from bipartite unentangled input. In
particular, we show: For every d, ℓ ≥ k ∈ N+, there is an efficient channel Λ: Cdℓ ⊗ Cdℓ → Cdk

such that for every bipartite separable density operator ρ1 ⊗ ρ2, the output Λ(ρ1 ⊗ ρ2) is close to a
k-partite separable state. Concretely, for some distribution µ on states from Cd,∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
|ψ⟩⟨ψ|⊗kdµ(ψ)

∥∥∥∥
1

≤ Õ

((
k3

ℓ

)1/4
)
.

Moreover, Λ(|ψ⟩⟨ψ|⊗ℓ ⊗ |ψ⟩⟨ψ|⊗ℓ) = |ψ⟩⟨ψ|⊗k. Without the bipartite unentanglement assumption,
the above bound is conjectured to be impossible and would imply QMA(2) = QMA.

Leveraging multipartite unentanglement ensured by our disentanglers, we achieve the following:
(i) a new proof that QMA(2) admits arbitrary gap amplification; (ii) a variant of the swap test and
product test with improved soundness, addressing a major limitation of their original versions. More
importantly, we demonstrate that unentangled quantum proofs of almost general real amplitudes
capture NEXP, thereby greatly relaxing the non-negative amplitudes assumption in the recent work
of QMA+(2) = NEXP [Jeronimo and Wu, STOC 2023]. Specifically, our findings show that to
capture NEXP, it suffices to have unentangled proofs of the form |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩ where

|ψ+⟩ has non-negative amplitudes, |ψ−⟩ only has negative amplitudes and |a− (1 − a)| ≥ 1/poly(n)
with a ∈ [0, 1]. Additionally, we present a protocol achieving an almost largest possible completeness-
soundness gap before obtaining QMAR(k) = NEXP, namely, a 1/poly(n) additive improvement to
the gap results in this equality.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Quantum information theory

Keywords and phrases QMA(2), disentangler, quantum proofs

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.26

Related Version Full Version: https://arxiv.org/abs/2402.15282

Funding This material is based on work supported by the National Science Foundation under Grant
No. CCF-1900460. Part of the work is done when P.W. was at IAS and the Simons Institute.

1 Introduction

Quantum entanglement is a fundamental form of quantum correlation that can be stronger
than any classical correlation [13, 5, 11, 21]. It plays a crucial role in a myriad of areas such
as quantum computing, quantum information, quantum complexity, quantum cryptography,

© Fernando Granha Jeronimo and Pei Wu;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 26; pp. 26:1–26:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:granha@ias.edu
https://orcid.org/0000-0002-8586-1533
mailto:pei.wu@weizmann.ac.il
https://orcid.org/0000-0003-4418-5900
https://doi.org/10.4230/LIPIcs.CCC.2024.26
https://arxiv.org/abs/2402.15282
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Dimension Independent Disentanglers from Unentanglement and Applications

condensed matter physics, etc [19, 25, 32]. Hence, comprehending both the capabilities
and constraints of quantum entanglement stands as a crucial research endeavor. However,
entanglement can also pose challenges in numerous applications, such as quantum key
distribution and quantum proof systems [28, 23, 26, 15]. This raises the natural question of
designing quantum channels that convert quantum states into unentangled states. For the
purpose of applications, such channel, also called disentangler, Φ : H → K ⊗ K can be defined
to satisfy two conditions: (i) for any |ψ⟩ ∈ K, there is preimage |ϕ⟩, such that Φ(ϕ) = ψ ⊗ ψ;
and (ii) for any density operator ϕ ∈ H, Φ(ϕ) is close to separable.

The quantum de Finetti type theorems [10, 24, 28] provide examples of disentanglers. A
quantum de Finetti theorem quantifies the closeness of a permutation-invariant ℓ-partite
quantum state, to k-partite separable states when all but k subsystems are traced out. A
standard quantum de Finetti theorem reads

▶ Theorem 1 (Quantum de Finetti [24]). For every d, ℓ ≥ k ∈ N+, the channel Λ: (Cd)⊗ℓ →
(Cd)⊗k defined as Λ(ρ) = Trℓ−k(1/ℓ!

∑
π∈Symℓ

πρπ†) satisfies∥∥∥∥Λ(ρ) −
∫

|ψ⟩⟨ψ|⊗kdµ
∥∥∥∥

1
≤ 2kd2

ℓ
.

Note that the error bound scales at least1 as d/ℓ, and in this version of the quantum de
Finetti theorem, the parameters are known to be essentially tight. Consequently, if each
subsystem is composed of n qubits, then obtaining a non-trivial error bound requires at
least ℓ ≥ d = 2n subsystems, making this channel impractical for many applications. This is
conjectured to be essentially the best you can achieve. In particular, it is conjectured that
for any disentangler, the input dimension will be exponential in the output dimension [1] to
achieve that the output is always ε close in trace distance to some separable states for any
constant ε < 1.

Dimension Independent Disentangler from Unentanglement

While the original disentangler conjecture remains widely open, in this work, we show that
there is an explicit, efficient (BQP), and dimension independent quantum disentangler for
k-partite (output) system starting from a bipartite unentangled system. More precisely, we
prove

▶ Theorem 2 (Disentangler from unentanglement). Let d, ℓ ≥ k ∈ N+. There is an efficient
channel Λ: (Cd)⊗ℓ ⊗ (Cd)⊗ℓ → (Cd)⊗k such that for any density operators ρ1, ρ2 ∈ Cdℓ there
is a distribution µ on pure states |ψ⟩ ∈ Cd satisfying∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

≤ Õ

((
k3

ℓ

)1/4)
.

Furthermore, product states of the form ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ are mapped to |ψ⟩⟨ψ|⊗k.

In contrast to the de Finetti disentangler, our disentangler from unentanglement features
error parameters that are independent of the input dimension entirely! Subsequently, we
discuss applications of Theorem 2 in testing product states and the gap amplification in

1 If instead of making the state permutation invariant, we project it onto the symmetric subspace, which is
a perfectly valid and efficient operation in the quantum setting, then the dependence on d in Theorem 1
improves from d2 to d.

F. G. Jeronimo and P. Wu 26:3

quantum proof systems, culminating in a near-optimal gap amplification for the QMA+(k)
class: Any improvement on this gap amplification would imply QMAR(k) = NEXP.2 We
also anticipate that our tool will find further applications beyond those discussed in this
paper.

1.1 Super Product Test
The product test was designed to test if a state |ϕ⟩ is close to k-partite product state, i.e.,
|ϕ⟩ ≈ |ϕ1⟩⊗ · · ·⊗ |ϕk⟩, given two copies of |ϕ⟩. This test involves applying a sequence of swap
tests to each of the k subsystems of the two copies |ϕ⟩. Clearly, if |ϕ⟩ is indeed a k-partite
product state, all the swap tests accept with certainty. On the other hand, if |ϕ⟩ is entangled
across the k subsystems, some swap test will reject with a probability that depends on the
amount of entanglement. It can be argued that the product test is optimal for ensuring
perfect completeness, i.e., accepting product states with certainty [17].

Despite its utility and elegance, the product test has two limitations. Firstly, it only
provides a guarantee concerning its input |ϕ⟩⊗ |ϕ⟩ which are destroyed after the test, yielding
a single classical bit as output. Very often in applications, one also needs some extra certified
input states |ϕ⟩ to manipulate in subsequent computations after the test. Secondly, and
probably more irritatingly, the product test always accepts with some constant probability
(say ≥ 1/2) no matter how far |ϕ⟩ is from being k-partite product, i.e., it has poor soundness.
These limitations can be resolved if you have more than 2 copies of |ϕ⟩ [22, 29]. For instance,
given ℓ copies of |ϕ⟩, then one can adapt the product test to sequentially apply projections
on to symmetric subspace on the first, second, and subsequent subsystems of all the copies
of ϕ. Intuitively, this should give us a stronger test whose analysis was left as an open
problem in [17]. Recently, She and Yuen [29] analyzed this higher order version of product
test achieving improved soundness. We restate this higher order product test as relying on
some ℓ unentangled equal copies of |ψ⟩ to deduce a k-partite product structure of the input
state. One can require something even stronger on the input to achieve what we call super
product test.

▶ Lemma 3. The super product test on input |ψ⟩ ⊗ (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ accepts with probability

ℓ

(ℓ+ 1) · |⟨ψ |ϕ1⟩ . . . |ϕk⟩|2 + 1
(ℓ+ 1) .

This super product test focuses on determining whether a target state |ψ⟩ is a product
state or not. In addition to the target state, there are ℓ copies of an already k-partite product
state that come to help. This test is very natural and simple, except it seems to ask too
much of its inputs: To compare, the high-order product test requires some copies of a state
whereas Lemma 3 requires some copies of an already k-partite product state of the form
|ϕ1⟩⊗· · ·⊗|ϕk⟩. We claim the super product test is not really asking for too much because our
disentangler channel effectively “amplifies” the number of unentangled systems. In particular,
we can rely on just two unentangled proofs to enforce a state close to (|ϕ1⟩ ⊗ · · · ⊗ |ϕk⟩)⊗ℓ

by Theorem 2. For simplicity, consider k unentangled pairs of untangled proofs where the
ith pair applied Theorem 2 yields |ϕi⟩⊗ℓ. Then run the super product test on a target state

2 We don’t want to distract the readers by the issue about quantum states over real or complex numbers.
In many cases, quantum computation over reals captures that over complex numbers. However, to the
best of the authors’ knowledge, this is unclear in the context of QMA(2). We have to use QMAR(k) to
denote the proof systems where the proofs are guaranteed to have real amplitudes.

CCC 2024

26:4 Dimension Independent Disentanglers from Unentanglement and Applications

|ψ⟩ and the ℓ copies of already product states from our disentangler. Furthermore, note
that it is very cheap to instead enforce a state close to (|ϕ1⟩ ⊗ · · · ⊗ |ϕk⟩)⊗2ℓ, allowing us
to reserve the extra ℓ copies of |ϕ1⟩ ⊗ · · · ⊗ |ϕk⟩ as once the super product test passes, they
can be used in any other computations as a very good proxy of |ψ⟩. With this combination,
we achieve arbitrarily good soundness without requiring more than 2k unentangled states3

while obtaining a guarantee about the output, rather than having just a single classical bit
of output.

1.2 A Gap Amplification for QMA+(2) up to Criticality

Next, we turn to the unentangled quantum proofs, the so-called QMA(2) class [23] and its
variants. First, we provide some background on this subject.

The complexity of QMA(2) was shown to be closely related to a variety of quantum and
classical computational problems, e.g., determining if a mixed state is entangled given its
classical description, as well as, various forms of classical polynomial/tensor optimization
(see [17] for a more comprehensive list). Despite considerable interest and effort (e.g., [12,
1, 6, 4, 7, 14, 30, 27, 9, 8, 18]), we still only know the trivial complexity bounds QMA ⊆
QMA(2) ⊆ NEXP.

Even the fact that QMA(2) admits strong gap amplification is non-trivial and remained
open for about 10 years before the seminar work of Harrow and Montanaro [17]. With
Theorem 2, it is easy to give a new proof of this fact.

A variant of QMA(2), denoted QMA+(2), with proofs of nonnegative amplitudes was
introduced by Jeronimo and Wu in [20]. The goal of this variant was to capture many
properties of QMA(2) while having more structure in order to obtain a greater understanding.
Indeed, they showed that QMA+(2) = NEXP by designing a QMA+(2) protocol for a NEXP-
complete problem with a constant gap. On the other end of their result is the observation
that QMA+(2) ⊆ QMA(2) provided that the completeness-soundness gap of QMA+(2) is a
sufficiently large constant. This makes QMA+(2) an intriguing class to study since either (i)
showing that QMA+(2) = QMA(2), via possibly a gap amplification approach for QMA+(2),
would characterize the complexity of QMA(2), or (ii) showing QMA+(2) ̸= QMA(2) would
give a better upper bound QMA(2) ⊊ NEXP.

By virtue of the unentanglement assumption of QMA+(2) and the product test [17],
QMA+(2) admits some non-trivial gap amplification. For example, a gap of 1/poly(n) can
be amplified to a constant gap in which the completeness becomes 1 − exp(−poly(n)) and
the soundness becomes some constant strictly less than 1. Recently, Bassirian, Fefferman and
Marwaha [3], building on [20], curiously showed that QMA+(1) = NEXP also with a constant
gap.4 Since in the large constant gap regime of QMA+(1), we have QMA+(1) = QMA ⊆
PP, their result rules out the strong gap amplification for QMA+(1) unless NEXP ⊆ PP.
Moreover, it also suggests that strategies aimed at amplifying the gap for QMA+(2) must
rely on the unentanglement assumption. This is precisely where the tools like the product
test or our disentangler become essential.

With our disentangler, we make progresses towards understanding of QMA+(2) versus
QMA(2). In particular, our progresses can be summarized as two aspects with two motivating
questions.

3 Naturally, the 2k unentangled states need to get larger in dimension to achieve better soundness.
4 It is not clear that their gap can be made as large as the one for QMA+(2) = NEXP.

F. G. Jeronimo and P. Wu 26:5

Motivating question 1. How crucial is the nonnegative amplitudes assumption to obtain
QMA+(2) = NEXP?

Regarding our first motivating question, we show that the nonnegative amplitudes assumption
can be almost completely removed by considering unentangled quantum proofs of almost
general real amplitudes. More precisely, we show that to capture NEXP it suffices to have
unentangled proofs of the form |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩ where |ψ+⟩ has nonnegative

amplitudes, |ψ−⟩ only has negative amplitudes and |a− (1 − a)| ≥ 1/poly(n) with a ∈ [0, 1].
In words, we require the proofs to have slightly more ℓ2-probability mass (1/poly(n) extra
mass) either on nonnegative or negative amplitudes. We refer to the quantity |a− (1 − a)|
as the ℓ2-sign bias of |ψ⟩. We call the associated complexity class almost-QMAR(k). Our
main complexity result can be stated as follows.

▶ Theorem 4. NEXP = almost-QMAR(k) with unentangled proofs of ℓ2-sign bias of5

b(n) ≥ poly(1/n) and k = poly(1/b(n)).

We obtain the above result by investigating the other motivating question: Since the
power of QMA+(k) ranges from NEXP to QMA(k) depending on the gap,

Motivating question 2. How much can we amplify the gap of QMA+(k)?

We make significant progress addressing this question. Specifically, we show that a even
more relaxed version of QMA+(3), featuring a single proof with nonnegative amplitudes and
the other two with general amplitudes, equals NEXP, with completeness 1 − exp(−poly(n))
and soundness 1/2 + 1/poly(n). At the first glance, this looks like a “just so so” gap
amplification. It is noteworthy that achieving a slightly improved soundness of 1/2−1/poly(n)
would imply QMAR(3) = NEXP. In particular, if QMAR(3) ̸= NEXP, then there is a sharp
phase transition in the complexity around the gap of a half.

▶ Theorem 5. NEXP = QMA+(3) with completeness c = 1 − exp(−poly(n)) and soundness
s = 1/2 + 1/poly(n). Furthermore, we can assume a particular case of QMA+(3) in which
two unentangled proofs have arbitrary amplitudes whereas only one unentangled proof has
nonnegative amplitudes.

0 1
1
2

1
poly(n)

NEXP QMAR(3)

Figure 1 Gap and the complexity regime of the particular version of QMA+(3) from Theorem 5.
A gap below 1/2−1/poly(n) corresponds to NEXP, whereas a gap above 1/2+1/poly(n) corresponds
to QMAR(3), illustrating a sharp phase transition.

1.3 Organization
We introduce notations and review basic concepts and facts in Section 2. In Section 3, we
present an efficient multipartite disentangler (like) channel from bipartite unentanglement.
This construction relies on new de Finetti type properties concerning the interplay between

5 The letter n represents the input size and b(n) is any polynomial time computable function bounded
from below by a polynomial, i.e., by 1/nc for some constant c > 0.

CCC 2024

26:6 Dimension Independent Disentanglers from Unentanglement and Applications

entanglement and symmetry which we explore in Section 4. In Section 5, we delve into
the utility of our disentangler where we elaborate a generic framework in the context of
property testing. As one example, we present a new proof that QMA(2) admits strong
gap amplification. The final two sections are devoted to design new tests and derive the
main complexity results in this paper. In Section 6, we present the super swap and super
product test which leverage unentanglement to achieve much improved soundness than the
well-known swap and product tests. Finally, we provide protocols for NEXP in Section 7
leading to the main complexity results of this paper, Theorem 4 and Theorem 5.

2 Preliminaries

General

As usual, N,R,C stand for the natural, real, and complex numbers, respectively. We adopt
the Dirac notation for vectors representing quantum states, e.g., |ψ⟩, |ϕ⟩, etc. In this paper,
all the vectors of the form |ψ⟩ are unit vectors. Given any pure state |ψ⟩, we adopt the
convention that its density operator is denoted by the Greek letter without the “ket”, e.g.
ψ = |ψ⟩⟨ψ|. The set of density operators in an arbitrary Hilbert space H is denoted D(H).
A symmetric state |ψ⟩ ∈ (Cd)⊗n is that invariant under any permutation π ∈ Symn where
Symn is the symmetric group. The action of π on (Cd)⊗n is

π : |ψ1, ψ2, . . . , ψn⟩ 7→ |ψπ(1), ψπ(2), . . . , ψπ(n)⟩.

The symmetric subspace is the subspace of (Cd)⊗n that is invariant under Symn, denoted by
∨n(Cd). Given any set H ⊆ H for some Hilbert space H, conv (H) is the convex hull of H.

One other particularly interesting set of states is the separable states. We adopt the
following notation for the set of density operators regarding separable states,

SEP(d, r) := conv
(
ψ1 ⊗ · · · ⊗ ψr | |ψ1⟩, . . . , |ψr⟩ ∈ Cd

)
.

A related notion is that of separable measurement, whose formal definition is given below.

▶ Definition 6 (Separable measurement). A measurement M = (M0,M1) is separable if in the
yes case, the corresponding positive semi-definite matrix M1 can be represented as a conical
combination of two operators acting on the first and second parts, i.e., for some distribution
µ over the tensor product of positive semi-definite matrices α and β on the corresponding
space,

M1 =
∫
α⊗ β dµ.

We record the following well-known fact. An interested reader is referred to [16] for a formal
proof.

▶ Fact 7 (Folklore). The swap test is separable.

Matrix Analysis

Given any matrix M ∈ Cn×n, M† is its conjugate transpose. Let σ1 ≥ σ2 ≥ . . . ≥ σn denote
its singular values. Then the trace norm ∥ · ∥1, Frobenius norm ∥ · ∥F are defined as below

∥M∥1 =
∑
i

σi, ∥M∥F =
√∑

i

σ2
i .

The Frobenius norm also equals the square root of sum of squared modulus of each entry,
i.e., ∥M∥F =

√∑
i,j |M(i, j)|2.

F. G. Jeronimo and P. Wu 26:7

For a positive semi-definite (PSD) matrix M , ∥M∥F =
√

TrM2. For two PSD matrices,
there is one (of many) analogous matrix Cauchy-Schwarz inequality.

Tr(σρ) ≤ ∥σ∥F · ∥ρ∥F . (2.1)

We adopt the notation ⪰ to denote the partial order that σ ⪰ ρ if σ−ρ is positive semi-definite.

Distances between Quantum States

A standard notion of distance for quantum states is that of the trace distance. The trace
distance between ψ and ϕ, denoted D(ψ, ϕ), is

1
2∥ψ − ϕ∥1 = 1

2 Tr
√

(ψ − ϕ)†(ψ − ϕ). (2.2)

We also use the notation D(|ψ⟩, |ϕ⟩) if we want to emphasize that ψ and ϕ are pure states.
The following fact provides an alternative definition for trace distance between pure states.

▶ Fact 8. The trace distance between |ϕ⟩ and |ψ⟩ is given by D(|ϕ⟩, |ψ⟩) =
√

1 − |⟨ϕ |ψ⟩|2.

Two states with small trace distance are indistinguishable to quantum protocols.

▶ Fact 9. If a quantum protocol accepts a state ϕ with probability at most p, then it accepts
ψ with probability at most p+ D(ϕ, ψ).

Trace distance enjoys the triangle inequality. For pure states, we can actually strengthen
it.

▷ Claim 10. Given unit vectors |α⟩, |ϕ⟩, |β⟩ ∈ H for some Hilbert space H. Suppose

|⟨α | ϕ⟩|2 = 1 − ε, |⟨β | ϕ⟩|2 = 1 − δ.

Then for any ε+ δ ≤ 1,6

|⟨α | β⟩|2 ≥ (
√

(1 − ε)(1 − δ) −
√
εδ)2. (2.3)

In general, we always have

|⟨α | β⟩|2 ≥ 1 − ε− δ − 2
√
εδ. (2.4)

Proof. Without loss of generality assume that

|α⟩ =
√

1 − ε|ϕ⟩ +
√
ε|µ⟩,

|β⟩ =
√

1 − δ|ϕ⟩ + σ
√
η|µ⟩ +

√
δ − η|ρ⟩,

where |µ⟩, |ρ⟩, |ϕ⟩ are orthogonal, 0 ≤ η ≤ δ and σ ∈ C is a relative phase. Using the basis
{|ϕ⟩, |µ⟩, |ρ⟩}, we can write down explicitly the density matrix of α and β:

α =

 1 − ε
√
ε(1 − ε) 0√

ε(1 − ε) ε 0
0 0 0

 ,

β =

 1 − δ σ
√

(1 − δ)η
√

(1 − δ)(δ − η)
σ∗
√

(1 − δ)η η σ
√
η(δ − η)√

(1 − δ)(δ − η) σ∗
√
η(δ − η) δ − η

 .

6 When ε+ δ > 1, then |α⟩ and |β⟩ in general can be orthogonal.

CCC 2024

26:8 Dimension Independent Disentanglers from Unentanglement and Applications

Now by definition,

D(|α⟩, |β⟩)2 =
(

1
2 Tr

√
(α− β)†(α− β)

)2

= 1
2∥α− β∥2

F

= 1
2((ε− δ)2 + (ε− η)2 + (δ − η)2) + η(δ − η)

+ |
√
ε(1 − ε) − σ

√
(1 − δ)η|2 + (1 − δ)(δ − η)

≤ 1
2((ε− δ)2 + (ε− η)2 + (δ − η)2) + η(δ − η)

+ (
√
ε(1 − ε) +

√
(1 − δ)η)2 + (1 − δ)(δ − η), (2.5)

where the second step holds because α−β is Hermitian with trace 0 and rank 0 or 2. We claim
that the RHS of (2.5), denote by f , is non-decreasing for η ∈ [0, δ]. By routine calculation,

df

dη
= −ε+

√
ε

η
(1 − ε)(1 − δ) ≥ 0 ⇐⇒ (1 − ε)(1 − δ) ≥ ηε

⇐= (1 − ε)(1 − δ) ≥ δε ⇐⇒ 1 ≥ ε+ δ.

As we assumed that 1 ≥ ε + δ, df/dη is always non-negative. Since the RHS of (2.5) is
non-decreasing for η ∈ [0, δ], plug η = δ into the RHS of (2.5), we obtain

D(|α⟩, |β⟩)2 ≤ (ε− δ)2 + (
√
ε(1 − ε) +

√
(1 − δ)δ)2,

In view of Fact 8, (2.3) is proved. The “in general” part is trivially true when ε+ δ > 1 and
otherwise follows from (2.3). ◁

Another widely used distance measure between quantum states is that of fidelity. For
any density operators ρ, σ from the same Hilbert space,

F (ρ, σ) =
(

Tr
√√

ρσ
√
ρ)
)2

.

For our purposes, we only need the fact that when one of the two density operators corresponds
to a pure state, then

F (ρ, σ) = Tr(ρσ).

The well-known data processing inequality for fidelity states that applying quantum operation
never decreases the fidelity.

▶ Fact 11. For any quantum channel (CPTP map) Φ,

F (Φ(ρ),Φ(σ)) ≥ F (ρ, σ).

Schmidt Decomposition and Partial Trace

For |ψ⟩ describing quantum states over two subsystems A,B, e.g., |ψ⟩ ∈ Cm ⊗ Cn, there are
two sets of orthonormal states {|α1⟩, |α2⟩, . . . , |αk⟩} ⊆ Cm, {|β1⟩, |β2⟩, . . . , |βk⟩} ⊆ Cn , and
positive numbers λ1 ≥ λ2 ≥ · · · ≥ λk for some k ≤ min{n,m} such that

|ψ⟩ =
k∑
i=1

√
λi|αi⟩|βi⟩, and

k∑
i=1

λi = 1. (2.6)

F. G. Jeronimo and P. Wu 26:9

The formula (2.6) is called the Schmidt decomposition of |ψ⟩. The set of
√
λi is unique, and is

called the Schmidt coefficient of |ψ⟩. We call
√
λ1 the top Schmidt coefficient and |α1⟩|β1⟩ the

top Schmidt component. Note that the top Schmidt component may not be unique ignoring
the global phases, in that case we break tie arbitrarily. Since Schmidt decomposition follows
from singular value decomposition, the (top) Schmidt coefficients can also be formulated as
some optimization problem.

▷ Claim 12. Given any state |ψ⟩ ∈ H1 ⊗ H2. Then

λ1 = max
|σ⟩∈H1,|ρ⟩∈H2

|⟨ψ | σ, ρ⟩|2

Often we want to study the density operator of a quantum state |ψ⟩ over the subsystem
A, mathematically described by tracing out B, denoted TrB(ψ). We also abbreviate ψA =
TrB(ψ). Note that fidelity never increases under partial trace due to Fact 11, and similarly,
the trace distance never increases under partial trace:

▶ Fact 13. For any quantum states ψ and ϕ over systems A and B,

D(ψ, ϕ) ≥ D(ψA, ϕA).

We use subscript to emphasize the systems that an operator is describing, e.g., ψAB simply
means that ψ is a state over systems A and B.

Quantum Merlin-Arthur Systems

We now formally define the class almost-QMAR(k), but first we will need the ℓ2-sign bias
definition, which, roughly speaking, quantifies the imbalance in ℓ2 mass between the positive
and negative amplitudes parts of a state.

▶ Definition 14 (ℓ2-sign bias). Given |ψ⟩ ∈ Rn, we can uniquely write it as |ψ⟩ =
√
a|ψ+⟩ +√

1 − a|ψ−⟩, where a ∈ [0, 1], |ψ+⟩ and |ψ−⟩ are unit vectors with only positive and negative
amplitudes, respectively. The ℓ2-sign bias of |ψ⟩ is defined as |a− (1 − a)|.

Note that a non-negative amplitude state has ℓ2-sign bias of 1 whereas a general state
has bias at least 0. Almost-QMAR(k) will be defined based on ℓ2-sign as a natural relaxation
of QMA+(k) towards the general QMA(k).

▶ Definition 15 (almost-QMAR(k)). Let k : N → N be a polynomial time computable function.
A promise problem Lyes,Lno ⊆ {0, 1}∗ is in almost-QMAR(k) if there exists a BQP verifier
V such that for every n ∈ N and every x ∈ {0, 1}n,

Completeness: If x ∈ Lyes, then there exist unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each
of ℓ2-sign bias 1/poly(n) and on at most poly(n) qubits, s.t. Pr[V (x, |ψ1⟩ ⊗ · · · ⊗
|ψk(n)⟩) accepts] ≥ 9/10.
Soundness: If x ∈ Lno, then for every unentangled states |ψ1⟩, . . . , |ψk(n)⟩, each of each
of ℓ2-sign bias 1/poly(n) and on at most poly(n) qubits, we have Pr[V (x, |ψ1⟩ ⊗ · · · ⊗
|ψk(n)⟩) accepts] ≤ 1/10.

3 The Disentangler from Unentanglement

In this section, we show how to obtain the dimension independent k-partite disentangler
(like) channel from bi-partite unentanglement establishing Theorem 2. We will actually work
mainly with a more refined procedure which we call quantum probably approximately product
output (PAPO) procedure, from which the claimed disentangler can be easily constructed.
We define PAPO as follows.

CCC 2024

26:10 Dimension Independent Disentanglers from Unentanglement and Applications

▶ Definition 16 (PAPO). Let d, ℓ, k ∈ N and ε, δ ∈ [0, 1]. A (d, ℓ, k, ε, δ)-PAPO is a quantum
procedure Λ satisfying:

Completeness: ∀|ψ⟩ ∈ Cd, Λ(ρ1 ⊗ ρ2) = |ψ⟩⟨ψ|⊗k where ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ,
Soundness: ∀ρ ∈ SEP(dℓ, 2), with probability at least 1 − δ, Λ(ρ) either rejects or outputs
a state ε-close in trace distance to a separable state.

The main result in this section is an efficient PAPO procedure with parameter ℓ that is
independent of the dimension d.

▶ Theorem 17. For every d, k ∈ N and ε, δ ∈ [0, 1], there is an efficient (d, ℓ, k, ε, δ)-PAPO
with ℓ = O(k3ε−2δ−2 log δ−1).

In Algorithm 1, we give a detailed description of our PAPO procedure. The procedure takes
input two unentangled states, each over ℓ subsystems. We name the ℓ systems A1, A2, . . . , Aℓ
for the first state, and B1, B2, . . . , Bℓ for the second state. The PAPO procedure is very simple,
which we consider an advantage for such a fundamental task. It should be compared with
the product test [17]: the PAPO procedure further takes advantage of symmetric subspace
and that projection onto the symmetric subspace is efficient for quantum algorithms.

Algorithm 1 PAPO.

Input: ρA1,A2,··· ,Aℓ ⊗ ρB1,B2,··· ,Bℓ ∈ SEP(dℓ, 2).
Sample ℓ′ ∈ [ℓ− k] uniformly at random.
For i = 1, . . . , ℓ′:

1. Project ρAi,··· ,Aℓ onto the symmetric space.
2. Project ρBi,··· ,Bℓ onto the symmetric space.
3. If any of the projections fails: Reject.
4. If i ̸= ℓ′, SwapTest(ρAi , ρBi).
5. If the SwapTest fails: Reject.
Output ρAℓ′ ,··· ,Aℓ′+k−1 .

3.1 Analysis of PAPO
The efficiency of the protocol is trivial. Indeed projection onto the symmetric subspace can
be implemented efficiently, see for example [2], and swap test is a special case of projection
onto the symmetric subspace. So in the remainder of the section, we argue that our procedure
satisfies the completeness and soundness criterion in Definition 16. We start with the following
definition of termination index.

▶ Definition 18 (Termination Index). We set i∗ to be the least element in [ℓ− k] such that
either ρAi∗ ,...,Aℓ or ρBi∗ ,...,Bℓ is orthogonal to the symmetric subspace; we set i∗ = ∞ if no
such element exists.

Here the “termination” means absolute termination (rejection) by projection into the sym-
metric subspace and has nothing to do with a particular execution of Algorithm 1. Most
likely, projecting a general state into the symmetric subspace can success or fail. When a
state can be successfully projected into the symmetric subspace with nonzero probability,
then PAPO continues to run with nonzero probability. Such case is not counted as absolute
termination. 7

7 Note that the swap test has no danger of absolute termination since it is always applied to separable
states in Algorithm 1 and the swap test has soundness 1/2. Thus in the definition of termination index,
we don’t worry about the swap test.

F. G. Jeronimo and P. Wu 26:11

▷ Claim 19. The state ρAi,...,Aℓ,Bi...,Bℓ at the ith iteration of the for loop in Algorithm 1 is
separable across ρAi,...,Aℓ and ρBi,...,Bℓ .

Proof. Because the SwapTest is separable across A and B part given it accepts by Fact 7
and projection into the symmetric subspace for A and B part individually is also separable.
Therefore ρAi...AℓBi...Bℓ is separable across A and B part. ◁

▶ Definition 20 (Bad Index). We say that an index i ∈ [ℓ] is η-bad
1. If i ≥ i∗, (see Definition 18)
2. or if SwapTest(ρAi , ρBi) accepts with probability at most 1 − η.

▷ Claim 21. SwapTest(ρ, σ) accepts with probability 1+Tr(ρσ)
2 ≤ 3

4 + Tr(σ2)
4 .

Proof. Apply (2.1) for the density operators,

Tr(ρσ) ≤
√

Tr(σ2) · Tr(ρ2) ≤ Trσ2 + Tr ρ2

2 ,

where the second step uses the AM-GM inequality. Note that Tr ρ2 ≤ 1, we are done. ◁

One more technical tool that we are going to need is the following, whose proof we defer
to the next section.

▶ Theorem 22. Given state σA1...Ak ∈ conv
(
∨k(Cd)

)
. Then there is some distribution µ on

pure states |ϕ⟩ ∈ Cd, such that∥∥∥∥σ −
∫
ϕ⊗kdµ

∥∥∥∥
1

≤ O
(√

k3(1 − Tr (σA1)2)
)
.

Proof of Theorem 17.
Completeness: For a desired output of |ψ⟩⟨ψ|⊗k, we give two unentangled copies of |ψ⟩⊗ℓ

to Λ as input. In this case, Algorithm 1 indeed outputs |ψ⟩⟨ψ|⊗k w.p. 1.

Soundness: Let ρ ∈ SEP(dℓ, 2) be the input of Λ. Set

η = ε2/k3.

Due to Claim 19, ρAℓ′ ...Aℓ,Bℓ′ ...Bℓ is separable just before the ℓ′th iteration (assuming suc-
cessfully reaching this iteration). For ℓ′ that is not a bad index, after projection onto
the symmetric subspace, ρAℓ′ ...Aℓ′+k−1 ∈ conv

(
∨k(Cd)

)
. It follows from Claim 21 that

TrAℓ′ (ρAℓ′ ...Aℓ)2 ≥ 1 − 4η. Thus we conclude that if ℓ′ is not a bad index, then the output (if
no rejection) is ε-close in trace distance to a convex combination of product states by The-
orem 22 and our choice of parameter η. Therefore to prove the theorem, it suffices to bound
the probability that Algorithm 1 outputs (not rejects) when ℓ′ is a bad index.

Next we consider two cases. The first case: If the number of the η-bad indices among the
first ℓ− k subsystems are less than δ(ℓ− k), then with probability at least 1 − δ, the random
index ℓ′ is not η-bad. Therefore, Definition 16 is satisfied.

The second case: This fraction is larger than δ. Now conditioning on the event that ℓ′ is
a bad index, then ℓ′ is a uniformly random bad index. Therefore, the chance that the set
of indices {1, 2, . . . , ℓ′} contains less than δ/2 fraction of bad indices is at most δ/2. Thus
with probability at least 1 − δ/2, we have seen at least δ/2 · δ(ℓ− k) − 1 bad indices in the
execution of Algorithm 1 in the first ℓ′ iterations. Since for each bad index the probability of
not rejecting by the swap test is at most 1 − η, the total probability of not rejecting is at
most

CCC 2024

26:12 Dimension Independent Disentanglers from Unentanglement and Applications

(1 − η)δ
2(ℓ−k)−1 = exp(−Ω(ηδ2ℓ)) = exp

(
−Ω

(
ℓ

ε−2δ−2k3

))
. (3.1)

For ℓ = Ω
(
k3ε−2δ−2 log δ−1), we have e−ηδ2ℓ ≤ δ/2. In this case, Definition 16 is also

satisfied. ◀

3.2 The Disentangler from Unentanglement
We now construct our disentangler using the PAPO procedure, thereby proving Theorem 2
(restated below).

▶ Theorem 2 (Disentangler from unentanglement). Let d, ℓ ≥ k ∈ N+. There is an efficient
channel Λ: (Cd)⊗ℓ ⊗ (Cd)⊗ℓ → (Cd)⊗k such that for any density operators ρ1, ρ2 ∈ Cdℓ there
is a distribution µ on pure states |ψ⟩ ∈ Cd satisfying∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

≤ Õ

((
k3

ℓ

)1/4)
.

Furthermore, product states of the form ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ are mapped to |ψ⟩⟨ψ|⊗k.

Proof. We set ε = δ, whose exact values will be determined later. Let Λ0 be the (d, ℓ, k, ε, δ)-
PAPO procedure guaranteed by Theorem 17. Suppose that we have an input state ρ ∈
SEP(dℓ, 2). The channel Λ will be defined as follows. Run the PAPO procedure Λ0 on input
ρ, then
1. If Λ0(ρ) succeeds, Λ outputs Λ0(ρ).
2. Otherwise, Λ outputs a fixed product state say |0⟩⟨0|⊗k.
If ρ = ρ1 ⊗ρ2 with ρ1 = ρ2 = |ψ⟩⟨ψ|⊗ℓ, then Λ outputs |ψ⟩⟨ψ|⊗k as desired. If the Λ0 rejects,
Λ outputs a product state. Therefore by the soundness of Λ0, firstly, with probability at
least 1 − δ, Λ outputs a state σ which is ε-close to a mixture of product states, i.e., for some
distribution µ on D(Cd),∥∥∥∥∥σ −

∫
|ψ⟩

|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥∥
1

≤ ε;

and secondly, with probability ≤ δ, we output a state ρerror. Overall, we have

Λ(ρ) = (1 − δ′)σ + δ′ρerror.

Therefore,∥∥∥∥Λ(ρ)−
∫

|ψ⟩⟨ψ|⊗kdµ
∥∥∥∥

1

=
∥∥∥∥(1 − δ′)σ + δ′ρerror −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

≤
∥∥∥∥σ −

∫
|ψ⟩⟨ψ|⊗kdµ

∥∥∥∥
1

+ ∥−δ′σ + δ′ρerror∥1

≤ ε+ 2δ.

In view of Theorem 17, for ε = δ,∥∥∥∥Λ(ρ) −
∫

|ψ⟩⟨ψ|⊗kdµ
∥∥∥∥

1
≤ Õ

((
k3

ℓ

)1/4)
,

concluding the proof. ◀

F. G. Jeronimo and P. Wu 26:13

4 Quantum Slicing de Finetti Theorem

In this section, we prove Theorem 22. In spirit, it is a de Finetti type theorem with the
contraint that there is little entanglement across some cut. We refer to such type of theorem
as the slicing de Finetti theorem.

4.1 One-versus-Many Slicing de Finetti
To start, we study the following most basic scenario that a given permutation-invariant pure
quantum state from ∨k(Cd) has a large top Schmidt coefficient over cut between the first
and the remaining subsystems. We obtain a dimension independent quantum de Finetti
theorem under slicing constraints from first principles.

▶ Theorem 23 (One-versus-many Slicing de Finetti). Let |σ⟩A1...Ak ∈ ∨k(Cd). If the largest
Schmidt coefficient across the cut A1 : A2 · · ·Ak is at least

√
1 − ε, then

max
|ϕ⟩∈Cd

∣∣⟨σ|A1...Ak |ϕ⟩⊗k∣∣2 ≥ 1 − 8k3 · ε.

To prove this theorem, we first establish the following duplicate lemma. It says that when
a symmetric state |σ⟩ is close to some product state |ϕ⟩|ρ⟩, then you can find a new state
close to |σ⟩ that with two |ϕ⟩ and harms the closeness only mildly.

▶ Lemma 24 (Duplicate Lemma). Let |σ⟩ ∈ ∨k(Cd). Consider some arbitrary decomposition
of {A1, A2, . . . , Ak} = A ∪ B ∪ C, such that |A| = |B|. Suppose |⟨σ|ABC |ϕ⟩A|ρ⟩BC |2 ≥ 1 − ε.

Then, there is a state |ζ⟩ABC such that |ζ⟩ = |ϕ⟩A|ϕ⟩B |γ⟩C for some |γ⟩C , and

|⟨σ | ζ⟩|2 ≥ 1 − 8ε.

Furthermore, if ρC is a pure state, then γ = ρC.

Proof. We assume that ε < 1/8, otherwise the statement is trivially true. Apply Schmidt
decomposition to |ρ⟩BC for the B : C cut,

|ρ⟩BC =
∑
i

√
λi|βi⟩B|γi⟩C .

Let

|ρ′⟩AC =
∑
i

√
λi|βi⟩A|γi⟩C .

Since |σ⟩ ∈ ∨k(Cd), we have

|⟨σ|ABC |ϕ⟩A|ρ⟩BC |2 = |⟨σ|ABC |ϕ⟩B|ρ′⟩AC |2 = 1 − ε.

By Claim 10,

(1 − 2ε)2 ≤ |⟨ϕ|A⟨ρ|BC |ϕ⟩B|ρ′⟩AC |2 =
(∑

i

λi|⟨ϕ | βi⟩|2
)2

. (4.1)

Abbreviate ηi = |⟨ϕ | βi⟩|2. Note that∑
ηi ≤ 1,

∑
λi = 1.

CCC 2024

26:14 Dimension Independent Disentanglers from Unentanglement and Applications

Therefore, immediately from (4.1),

λ1,max ηi ≥ 1 − 2ε, (4.2)

which is at least 3/4 since ε < 1/8. If η1 ̸= max ηi, then

1 − 2ε ≤
∑
i

λiηi ≤ λ1(1 − max ηi) + max ηi · (1 − λ1) ≤ 4ε,

which is impossible as ε < 1/8. Therefore, η1 ≥ 1 − 2ε.
We push it further,

1 − 2ε ≤
∑
i

λiηi ≤ λ1η1 + (1 − λ1)(1 − η1) = 2λ1η1 − λ1 − η1 + 1

≤ 2λ1η1 − 2
√
λ1η1 + 1

= 2
(√

λ1η1 − 1
2

)2
+ 1

2 ,

where the second step is due to AM-GM inequality. Since λ1, η1 > 3/4, and ε < 1/8,

λ1η1 ≥

(
1
2 +

√
1
4 − ε

)2

≥ 1 − 3ε,

where the last inequality holds for ε ∈ [0, 1/8]. Note that

|⟨ϕ|A⟨ρ|BC |ϕ⟩A|ϕ⟩B|γ1⟩C |2 ≥ λ1η1 ≥ 1 − 3ε.

By Claim 10 and that 1 − 3ε > 1/2, it can be verified that

|⟨σ|ABC |ϕ⟩A|ϕ⟩B|γ1⟩C |2 ≥ (
√

(1 − ε)(1 − 3ε) −
√

3ε)2

= 1 − 4ε+ 6ε2 − 2
√

3ε
√

(1 − ε)(1 − 3ε)
≥ 1 − 8ε. ◀

Now Theorem 23 is a simple consequence of Lemma 24: Duplicate the the first subsystem
taken from the top Schmidt component of |σ⟩.

Proof of Theorem 23. Let |σ0⟩ = |ϕ⟩|γ⟩ be the top Schmidt component of |σ⟩ for the
A1 : A2 . . . Ak cut. By assumption of the theorem statement,

|⟨σ | σ0⟩|2 ≥ 1 − ε.

Let m = ⌊log k⌋,m∗ = ⌈log k⌉. For i = 1, 2, . . . ,m, apply the Duplicate Lemma on |σi−1⟩ with
A = {A1, A2, . . . , A2i−1},B = {A2i−1+1, A2i−1+2, . . . , A2i}. Let |σi⟩ be the |ζ⟩ guaranteed by
the Duplicate Lemma.

If 2m < k, apply the Duplicate Lemma one more time on |σm⟩ with A =
{A1, A2, . . . , Ak−2m},B = {A2m+1, A2m+2, . . . , Ak}, and let |σm∗⟩ be the state guaranteed
by the Duplicate Lemma. Then, a straightforward induction shows
1. |⟨σ | σm∗⟩|2 ≥ 1 − 8m∗

ε ≥ 1 − 8k3ε,
2. |σm∗⟩ = |ϕ⟩⊗k.
That finishes the proof. ◀

F. G. Jeronimo and P. Wu 26:15

We make a remark about Theorem 23. Note that some polynomial dependence on k is
unavoidable in this analysis for our procedure. Consider the following state:

1√
k + 1

|⃗0⟩ + 1√
k + 1

k∑
i=1

|e⃗i⟩.

To obtain a tight version of the above theorem with linear dependency on k is an interesting
problem.

4.2 Many-versus-Many Slicing de Finetti
In Theorem 23, we considered top Schmidt coefficient being large on a 1 vs k − 1 cut for
pure state. By looking at the example we mentioned in the end of the previous subsection, it
is natural to think that if the top Schmidt coefficient is large among a balanced cut, then
we can obtain better trace distance. That is indeed the case. In fact, that top Schmidt
coefficient is large for a balanced cut always implies the top Schmidt coefficient is large for
a less balanced cut for a symmetric state. In this subsection, our goal is to formalize this
intuition.

▶ Theorem 25 (Many-versus-many Slicing de Finetti). Let |σ⟩A1...Ak ∈ ∨k(Cd). Suppose for
some 1 ≤ ℓ ≤ k/2, the top Schmidt coefficient of |σ⟩ over the A1 . . . Aℓ : Aℓ+1 . . . Ak cut is√

1 − ε. Then there is |ϕ⟩ ∈ Cd, such that

|⟨σ, ϕ⊗k⟩|2 ≥ 1 −O((k/ℓ)3ε).

We start by collecting a couple of useful facts. The first one says that if a symmetric
state from (Cd)⊗k is close to a product state, then it is also close to a symmetric product
state, i.e., |ϕ⊗k⟩ for some |ϕ⟩ ∈ Cd.

▶ Lemma 26. Given a symmetric state |σ⟩ ∈ ∨k(Cd) and a k-partite product state |ψ⟩ ∈
(Cd)⊗k. Suppose |⟨ψ | σ⟩|2 ≥ 1 − ε. Then there is |ϕ⟩ ∈ Cd that satisfies

|⟨σ | ϕ⊗k⟩|2 ≥ 1 − 9ε.

Proof. We take advantage of |σ⟩ being symmetric in a way similar to that of Lemma 24. As
|σ⟩ ∈ ∨k(Cd), we have for any permutation π ∈ Symk, |⟨σ | πψ⟩|2 ≥ 1 − ε. By Claim 10,

|⟨ψ | πψ⟩|2 ≥ 1 − 4ε.

Say |ψ⟩ = |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψk⟩, then,

(1 − 4ε)k! ≤
∏

π∈Symk

|⟨ψ | πψ⟩|2 =

∏
i∈[k]

∏
j∈[k]

|⟨ψi | ψj⟩|2
(k−1)!

≤

 E
i∈[k]

∏
j∈[k]

|⟨ψi | ψj⟩|2
k!

, (4.3)

where the last step uses the AM-GM inequality. It follows from (4.3), there must exist i ∈ [k]
such that

1 − 4ε ≤
∏
j∈[k]

|⟨ψi | ψj⟩|2 ⇐⇒ 1 − 4ε ≤ |⟨ψ⊗k
i | ψ⟩|2.

Apply Claim 10 one more time, we obtain our lemma. ◀

CCC 2024

26:16 Dimension Independent Disentanglers from Unentanglement and Applications

The second fact due to Harrow and Montanaro [17, Appendix B Lemma 2] and Soleimanifar
and Wright [31] establishes some criteria when a pure state is close to a product state.

▶ Lemma 27. Given any quantum state |ψ⟩ ∈ H1 ⊗ H2 ⊗ · · · ⊗ Hk for some arbitrary Hilbert
space H1, . . . ,Hk. Suppose

E
S⊆[k]

[Trψ2
S] ≥ 1 − ε.

Then for some product state |ϕ⟩ = |ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · ⊗ |ϕk⟩,

|⟨ψ | ϕ⟩|2 ≥ 1 − 3ε.

Combining the above two lemmas, we obtain

▶ Corollary 28. Given any state |σ⟩ ∈ ∨k(Cd). Suppose

E
S⊆[k]

[Trσ2
S] ≥ 1 − ε.

Then for some state |ϕ⟩ ∈ Cd,

|⟨σ | ϕ⊗k⟩|2 ≥ 1 − 27ε.

From the above discussion, to prove Theorem 25, it suffices to bound Trψ2
S for any subset

S. The following “cut lemma” establishes such bounds.

▶ Lemma 29 (Cut Lemma). Let |σ⟩ ∈ ∨k(Cd). Suppose for some 1 ≤ ℓ ≤ k/2, the top
Schmidt coefficient of |σ⟩ over the A1 . . . Aℓ : Aℓ+1 . . . Ak cut is

√
1 − ε. Let S ⊆ [k] be some

arbitrary subset. Then,

Trσ2
S ≥

1, |S| = 0;
1 − 6ε, min{|S|, k − |S|} ∈ {1, 2, . . . , ℓ− 1};
1 −O((|S|/ℓ)3ε), min{|S|, k − |S|} ∈ {ℓ, . . . , k/2}.

Proof. For S = ∅, the statement is trivial as σ is pure. Since |σ⟩ ∈ ∨k(Cd), without
loss of generality, assume that S = {1, 2, . . . ,m} for some 1 ≤ m ≤ k/2. This is because
Trσ2

S = Trσ2
S when σ is a pure state. Let |ϕ⟩A1...Aℓ |ζ⟩Aℓ+1...Ak be the top Schmidt component

associated with the coefficient
√

1 − ε.

Case 1. m < ℓ. Let A = {1, 2, . . . ,m},B = {m+ 1, . . . , ℓ}, C = {ℓ+ 1, . . . , k − ℓ+m},D =
{k − ℓ+m+ 1, . . . , k}. Write down the Schmidt decomposition of |ϕ⟩ over the A and B cut,
|ζ⟩ over the C and D cut,

|ϕ⟩ =
∑
i

√
λi|αi⟩|βi⟩, |ζ⟩ =

∑
i

√
ηi|γi⟩|δi⟩.

Since B and D has the same size, and that |σ⟩ ∈ ∨k(Cd), we have for the state |ϕ⟩|ζ⟩, if
we switch the subsystem of B and D, then the overlap with |σ⟩ is still 1 − ε. Therefore, by
Claim 10, we have

F. G. Jeronimo and P. Wu 26:17

(1 − 2ε)2 ≤

∣∣∣∣∣∣
〈∑

i,j

√
λiηj⟨αi|A⟨βi|B⟨γj |C⟨δj |D,

∑
i,j

√
λiηj |αi⟩A|βi⟩D|γj⟩C |δj⟩B

〉∣∣∣∣∣∣
2

=

∑
i,j

λiηj |⟨βi | δj⟩|2
2

≤ λ2
1

∑
i,j

ηj |⟨βi | δj⟩|2
2

≤ λ2
1

∑
j

ηj
∑
i

|⟨βi | δj⟩|2
2

≤ λ2
1.

Immediately,

Trσ2
A ≥ (1 − ε)2 Tr[(TrBCD(ϕ⊗ ζ))2]

= (1 − ε)2 Tr

(TrBCD

(∑
i

λiαi ⊗ βi ⊗ ζ

))2

≥ (1 − ε)2λ2
1 ≥ (1 − ε)2(1 − 2ε)2

≥ 1 − 6ε. (4.4)

The first step is true because σ ⪰ (1 − ε)ϕ⊗ ζ, therefore TrBCD σ ⪰ (1 − ε) TrBCD(ϕ⊗ ζ) as
partial trace is completely positive. It then follows that Trσ2

A ⪰ (1 − ε)2 Tr(TrBCD(ϕ⊗ ζ))2.

Case 2. ℓ < m ≤ k/2. We are much like the situation of Theorem 23. Let t = ⌈log(m/ℓ)⌉.
For i = 1 to t, we apply the Duplicate Lemma and obtain a state |σi⟩, such that for
i = 1, 2, . . . , t

Tr{ℓ·2i+1,...,k} σi = ϕ⊗2i

,

Tr{ℓ·2i+1,...,k} σ
2
i = 1, (4.5)

|⟨σ | σi⟩|2 ≥ 1 − 8iε. (4.6)

By our choice of parameter, 2t−1ℓ < m ≤ 2tℓ. If m = 2tℓ, then (σt)S = Trℓ·2t+1,...,k σt is
pure by (4.5). Then√

Trσ2
S =

√
Trσ2

S · Tr(σt)2
S ≥ Tr(σS · (σt)S) = F (σS , (σt)S)

≥ F (σ, σt) = |⟨σ | σt⟩|2 ≥ (1 − 8log(m/ℓ))ε,

where the first step and third step are true because (σt)S is pure; the second step uses (2.1);
the fourth step is by Fact 11, the data processing inequality for fidelity; then fifth step is
again by purity of the states; and the final step uses (4.6). It follows that

Trσ2
S ≥ 1 −O((m/ℓ)3ε).

If m < 2tℓ, then we can apply Case 1. Let A = {1, 2, . . . , 2tℓ},B = {2tℓ+ 1, . . . , k}. Then in
view of (4.6), the top Schmidt coefficient of |σ⟩ among the A : B cut is at least

√
1 − 8tε by

Claim 12. Thus by (4.4),

Trσ2
S ≥ 1 − 6 · 8tε ≥ 1 −O((m/ℓ)3ε). ◀

Now Theorem 25 follows from Corollary 28 and Lemma 29.

CCC 2024

26:18 Dimension Independent Disentanglers from Unentanglement and Applications

4.3 Proof of Theorem 22
Now we record a version of the slicing de Finetti theorem for the mixture of symmetric states.
A natural generalization of the top Schmidt coefficient among some A : B cut for a state σ
being large is that Trσ2

A being large. In particular,

▶ Lemma 30. Let σ ∈ Cn ⊗ Cm be some density operator, and A,B are the systems with
respect to the space Cn and Cm, respectively. Suppose

Trσ2
A ≥ 1 − ε.

Let µ be some distribution on pure states induced by σ, then

E
ρ∼µ

λ1(ρ) ≥ 1 − ε.

Proof. Let m = | suppµ| be a finite number, this is without loss of generality. Let
ρ1, ρ2, . . . , ρm be the pure states in suppµ. Further, write the Schmidt decomposition
for each ρi

|ρi⟩ =
∑
j

√
λij |ϕij⟩A|σij⟩B , λi1 ≥ λi2 ≥ · · · .

Then

σA =
∑
i

µ(ρi)
∑
j

λij |ϕij⟩⟨ϕij |.

Thus,

Trσ2
A =

∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i̸=i′

µ(ρi)µ(ρi′)
∑
j,j′

λijλi′j′ |⟨ϕij | ϕi′j′⟩|2

≤
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i̸=i′

µ(ρi)µ(ρi′)λi1
∑
j,j′

λi′j′ |⟨ϕij | ϕi′j′⟩|2

≤
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i̸=i′

µ(ρi)µ(ρi′)λi1
∑
j′

λi′j′

≤
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i̸=i′

µ(ρi)µ(ρi′)λi1

=
∑
i

µ(ρi)2
∑
j

λ2
ij +

∑
i

µ(ρi)(1 − µ(ρi))λi1

≤
∑
i

µ(ρi)2λi1 +
∑
i

µ(ρi)(1 − µ(ρi))λi1

=
∑
i

µ(ρi)λi1,

where the third step holds because for fixed i, i′, j′,
∑
j |⟨ϕij | ϕi′j′⟩|2 ≤ 1. ◀

▶ Theorem 31. Given density operator σA1...Ak that describes states from conv
(
∨k(Cd)

)
.

For any 1 ≤ ℓ ≤ k/2 and A = {A1, A2, · · · , Aℓ}, there is some distribution µ on |ϕ⟩ ∈ Cd,∥∥∥∥σ −
∫

|ϕ⟩⟨ϕ|⊗kdµ
∥∥∥∥

1
≤ O

(√
(k/ℓ)3(1 − Trσ2

A)
)
. (4.7)

Proof. Let µ be the distribution on pure symmetric states induced by σ. Let Trσ2
A = 1 − ε.

The theorem follows immediately by combining Fact 8, Lemma 30, Theorem 25, and triangle
inequality. ◀

F. G. Jeronimo and P. Wu 26:19

5 A Framework: Multiplexing Unentangled States for Property Testing

In this section, we present a general template illustrating the utility of our disentangler The-
orem 2. We will then use this template multiple of times. Initially, we provide two examples
as warm-ups for what is to come. Subsequently, in later sections, we apply this template
with carefully designed testers to obtain new complexity results.

Our disentangler leverages a bipartite unentanglement assumption between two states
of the form ρ1 ⊗ ρ2 into an (approximate) multipartite unentanglement assumption of the
form

∫
|ψ⟩⟨ψ|⊗kdµ. Having sufficiently many unentangled copies of a state ψ is particularly

important in the context of quantum property testing as some properties require this
assumption for testability. Indeed, many of other information processing tasks like quantum
state tomography often assumes the input is of this form |ψ⟩⟨ψ|⊗k. Moreover, multiple copies
allow the tester to be executed multiple times amplifying its probability of distinguishing the
closeness to the desired property. Finally, a property tester may end up destroying the copies
ψ⊗k when it measures this state, so it is desirable to have additional copies that can be used
in further information processing tasks once the closeness to the desired property is certified.
In Figure 2, we provide an illustration of a property tester being used in conjunction with
our disentangler in order to obtain the aforementioned benefits.

ρ1

ρ2

Disentangler ψ · · · ψ ψ · · · ψ

Property Tester

Figure 2 Schematic picture of our disentangler being used to (approximately) ensure multiple
unentangled copies of a state as output. Part of these copies are used to test a given desired property.
If the test passes, the remaining “certified” copies can be used in further information processing
tasks.

Product Tester and Preparing Multipartite Separable States

To make this illustration more concrete, first we consider a scenario where the tester is the
product test [17]. More precisely, the product test requires two unentangled copies of |ψ⟩ ∈ Cd
and checks whether |ψ⟩ is close to a product state of the form |ϕ1⟩⊗· · ·⊗|ϕs⟩ ∈ Cd1 ⊗· · ·⊗Cds ,
where d = d1 · · · ds. For context, recall that (an abridged version of) their main result provides
the following guarantees for this tester.

▶ Theorem 32 (Product Test [17]). Given |ψ⟩ ∈ Cd1 ⊗ · · · ⊗ Cds , let

1 − ε = max
{

|⟨ψ |ϕ1, . . . , ϕs⟩|2 : |ϕi⟩ ∈ Cdi , 1 ≤ i ≤ s
}
.

Let Ptest(|ψ⟩⟨ψ|) be the probability that the product test passes when applied to |ψ⟩. Then, we
have Ptest(|ψ⟩⟨ψ|) = 1 − Θ(ε).

Combining our disentangler from Theorem 2 and the product test from Theorem 32,
we obtain the following corollary giving all the desired qualities alluded above in a more
quantitative way.

CCC 2024

26:20 Dimension Independent Disentanglers from Unentanglement and Applications

▶ Corollary 33. Let H = Cd1 ⊗ · · · ⊗ Cds . For every k, k′, ℓ ∈ N such that ℓ ≥ k + 2k′, there
is a channel Γ: D(H⊗ℓ ⊗ H⊗ℓ) → D(H⊗k ⊗ C2) such that for every ρ1, ρ2 ∈ D(H⊗ℓ), there
exists σ ∈ D(H⊗k ⊗ C2) defined as

σ =
∫

|ψ⟩⟨ψ|⊗k ⊗
(
Ptest(|ψ⟩⟨ψ|)k

′
|1⟩⟨1| + (1 − Ptest(|ψ⟩⟨ψ|)k

′
)|0⟩⟨0|

)
dµ ,

such that

∥Γ(ρ1 ⊗ ρ2) − σ∥1 ≤ Õ

((
(k + 2k′)3

ℓ

)1/4)
.

Furthermore, Γ(ρ1 ⊗ ρ2) = (|ψ⟩⟨ψ|)⊗k ⊗ |1⟩⟨1| provided ρ1 = ρ2 = (|ψ⟩⟨ψ|)⊗ℓ, where |ψ⟩ =
|ϕ1⟩ ⊗ . . .⊗ |ϕs⟩ for some |ϕi⟩ ∈ Cdi for 1 ≤ i ≤ s.

Proof. Define another channel Γ′ : D(H⊗(k+2k′)) → D(H⊗k ⊗ C2) that takes as input the
output of the disentangler Λ which is comprised of k + 2k′ registers of the space H. We
define the channel Γ′ to act as identity on the first k registers. On the last 2k′ registers it
performs the product test on each pair of registers, outputting a single qubit |1⟩⟨1| if all tests
pass, otherwise outputting |0⟩⟨0|. Next we show Γ = Γ′ ◦ Λ, the composed channel, satisfies
the statement.

Given general input ρ1 ⊗ ρ2, by the guarantee of our disentangler, Λ(ρ1 ⊗ ρ2) satisfies∥∥∥∥Λ(ρ1 ⊗ ρ2) −
∫

|ψ⟩⟨ψ|⊗k+2k′
dµ

∥∥∥∥
1

≤ Õ

((
(k + 2k′)3

ℓ

)1/4)
.

Note that Γ′ applied to
∫

|ψ⟩⟨ψ|⊗k+2k′
dµ results in∫

|ψ⟩⟨ψ|⊗k ⊗
(
Ptest(|ψ⟩⟨ψ|)k

′
|1⟩⟨1| + (1 − Ptest(|ψ⟩⟨ψ|)k

′
)|0⟩⟨0|

)
dµ . (5.1)

Thus, the composed channel output Γ(ρ1 ⊗ρ2)) is Õ(((k+2k′)3/ℓ)1/4) close, in trace distance,
to the state of (5.1).

The furthermore part is straightforward. Suppose that |ψ⟩ = |ϕ1⟩ ⊗ . . . ⊗ |ϕs⟩, where
|ϕi⟩ ∈ Cdi for 1 ≤ i ≤ s, and ρ1 = ρ2 = (|ψ⟩⟨ψ|)⊗ℓ. In this case, Λ(ρ1 ⊗ ρ2) = (|ψ⟩⟨ψ|)⊗k+2k′

and Γ′(Λ(ρ1 ⊗ρ2)) = (|ψ⟩⟨ψ|)⊗k ⊗ |1⟩⟨1| since |ψ⟩ is a product state and product test accepts
with probability 1. ◀

QMA(2) Tester – Gap Amplification for QMA(2)

The gap amplification of QMA(2) was first proved in the seminar work of Harrow and
Montanaro [17]. Using our template, we provide a conceptually more straightforward proof:
Take the old QMA(2) protocol as the property tester in Figure 2.

▶ Theorem 34. Given a language L = (Lyes,Lno). Suppose that L ∈ QMA(2) with com-
pleteness c and soundness s, where c− s > 1/poly(n). Then, L ∈ QMA(2) with completeness
c′ = 1 − exp(−poly(n)) and soundness s′ = 1/poly(n).

Proof. Let P be the protocol for L with the promised completeness c and soundness s.
Therefore, for any fixed input x there is a measurement M acting on a space H⊗2 where
H = Cd, such that,

∃σ ⊗ ρ ∈ D(H⊗2), Tr(M(σ ⊗ ρ)) ≥ c, if x ∈ Lyes

∀σ ⊗ ρ ∈ D(H⊗2), Tr(M(σ ⊗ ρ)) ≤ s, if x ∈ Lno.

F. G. Jeronimo and P. Wu 26:21

In the new protocol, choose k = poly(n)/(c − s)2 and ℓ = poly(k) for some large enough
polynomial. We ask for two proofs |ρ1⟩, |ρ2⟩ ∈ D(H′⊗ℓ), where H′ = C2 ⊗ H. In words, H′ is
H with one extra qubit. Apply the disentangler Λ from Theorem 2 on ρ1 ⊗ ρ2, obtaining a
separable state ϕ =

∫
dµ|ψ⟩⟨ψ|⊗k, such that∥∥∥∥Λ(ρ1 ⊗ ρ2) −

∫
dµ|ψ⟩⟨ψ|⊗k

∥∥∥∥
1

= 1
poly(n) . (5.2)

Consider the new measurement M ′ = |01⟩⟨01|⊗M . We apply M ′⊗(k/2) to Λ(ρ1 ⊗ρ2). Accept
if more than (c+ s)/2 fraction of the applications of M ′ accepts; reject otherwise. Next, we
calculate the completeness and soundness of the new protocol.

Completeness. Suppose that x ∈ Lyes, then the faithful prover will provide

|ρ1⟩ = |ρ2⟩ =
(

|0, σ⟩ + |1, ρ⟩√
2

)⊗ℓ

, and Λ(ρ1 ⊗ ρ2) =
(

|0, σ⟩ + |1, ρ⟩√
2

)⊗k

.

Calculating the probability that M ′ accepts (|0, σ⟩ + |1, ρ⟩)⊗2/2,

Tr
(
M ′
(

|0, σ⟩ + |1, ρ⟩√
2

)⊗2
)

= 1
4 Tr(M(σ ⊗ ρ)) ≥ c/4.

By Chernoff bound, with probability at least 1 − exp(−Ω((c− s)2k)) = 1 − exp(−poly(n)),
the new protocol accepts.

Soundness. Suppose that x ∈ Lno. Calculating the probability that M ′ accepts (α|0, σ⟩ +
β|1, ρ⟩)⊗2 for arbitrary α, β ∈ C and arbitrary σ, ρ ∈ H such that |α|2 + |β|2 = 1,

Tr(M ′(α|0, σ⟩ + β|1, ρ⟩)⊗2 = |αβ|2 Tr(M(σ ⊗ ρ)) ≤ s/4.

Therefore the probability to accept ϕ, an arbitrary convex combination of |ψ⟩⊗k is at most
exp(−Ω((c − s)2k)) by Chernoff bound. Finally, by (5.2), the probability of accepting
Λ(ρ1 ⊗ ρ2) is at most 1/poly(n). ◀

6 The Super Swap and Super Product Tests

In this section, we take another look at the product test as well as the swap test, considering
one of the strongest possible generalization of the two.

We start with the more elementary swap test, which is a widely used to test if two
quantum states, say |ψ⟩ and |ϕ⟩, are equal. One fundamental limitation of the swap test is
that it always accepts with probability at least 1/2 even if the states are orthogonal. More
precisely, its acceptance probability is (1 + |⟨ψ |ϕ⟩|2)/2. Ideally, it would be much more
useful to have a test with acceptance probability of |⟨ψ |ϕ⟩|2, which is impossible with only
one copy for each state. In the presence of many unentangled copies of |ϕ⟩ but just a single
copy of |ψ⟩, we show that it is possible to approach this goal with an arbitrarily small error
overcoming the inherent limitation of the swap test. Therefore, we call this test the super
swap test and we provide a description of it in Algorithm 2. In particular, this super swap
test can be useful when it is difficult to produce a state |ψ⟩, but much easier to produce
copies of |ϕ⟩ and we want the tester’s acceptance probability to more accurately capture how
close |ψ⟩ is to |ϕ⟩. In Section 7, the special state |ψ⟩ will be a nonnegative amplitudes state
which has a greater cost in the context of complexity protocols there, whereas |ϕ⟩ will have
general amplitudes being a cheaper resource in that context.

The acceptance probability of the super swap test is established next.

CCC 2024

26:22 Dimension Independent Disentanglers from Unentanglement and Applications

Algorithm 2 SuperSwap(|ψ⟩, |ϕ⟩⊗ℓ).

Input: |ψ⟩, |ϕ⟩⊗ℓ.
1. Project |ψ⟩|ϕ⟩⊗ℓ onto the symmetric space ∨ℓ+1(Cd).
2. If the projection succeeds accept; else reject.

▶ Lemma 35. The super swap test accepts with probability

ℓ · |⟨ψ |ϕ⟩|2

ℓ+ 1 + 1
ℓ+ 1 .

Proof. Let Π = (1/(ℓ+ 1)!)
∑
π∈Symℓ+1

π be the projector onto ∨ℓ+1(Cd). Indeed, we have

⟨ψ|⟨ϕ|⊗ℓΠ|ψ⟩|ϕ⟩⊗ℓ = 1
ℓ+ 1 ⟨ψ |ψ⟩ ⟨ϕ |ϕ⟩ℓ + ℓ

ℓ+ 1 |⟨ψ |ϕ⟩|2 ⟨ϕ |ϕ⟩ℓ−2
,

concluding the proof. ◀

At first glance, it may seem inconvenient to assume multiple (ℓ-many) unentangled copies
of |ϕ⟩. However, due to our disentangler channel, we can enforce a distribution over product
states |ϕ⟩⊗ℓ by assuming only bipartite unentanglement.

Next we turn to the product test which checks whether a state is close to a k-partite
product state [17]. It has a similar drawback to the usual swap test, namely, it always accepts
with probability at least 1/2 even if the state |ψ⟩ is very far from product. As before, we
will arbitrarily improve the soundness of the product test by having multiple unentangled
copies. We call this new test the super product test and we describe it in Algorithm 3.

Algorithm 3 SuperProduct(|ψ⟩, (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ).

Input: |ψ⟩, (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ

1. Project |ψ⟩(|ϕ1⟩ . . . |ϕk⟩)⊗ℓ onto the symmetric space ∨ℓ+1((Cd)⊗k).
2. If the projection succeeds accept; else reject.

▶ Lemma 36. The super product test accepts with probability

ℓ

(ℓ+ 1) · |⟨ψ |ϕ1⟩ . . . |ϕk⟩|2 + 1
(ℓ+ 1) .

Proof. We view each copy of the state |ϕ1⟩ . . . |ϕk⟩ as a single state |ϕ⟩ and apply the super
swap test to |ψ⟩ and |ϕ⟩⊗ℓ. The acceptance probability of the super product test now follows
from Lemma 35. ◀

Analogously, it may seem inconvenient to assume multiple (ℓ-many) unentangled copies
of |ϕ1⟩ . . . |ϕk⟩. However, that is not an issue by Corollary 33: We can enforce a distribution
over product states (|ϕ1⟩ . . . |ϕk⟩)⊗ℓ by assuming only 2 unentangled states.

F. G. Jeronimo and P. Wu 26:23

7 Gap Amplification for QMA+(k) up to Criticality and
Almost-QMA(k) = NEXP

In the previous section, we described a very strong version of swap test and product test,
noting that our disentangler channel has a good synergy with the new tests to overcome
the drawbacks in their original versions. In this section, we put the tools in the context of
quantum Merlin-Arthur games with unentangled provers, establishing our main complexity
results Theorems 4 and 5.

7.1 Gap Amplification for QMA+(k) up to Criticality
The gap amplification for QMA+(k) is much less straightforward than QMA(2). Indeed, a
full gap amplification would imply QMA(2) = NEXP. To give our half gap amplification
promised in Theorem 5, we start by showing how to simulate a QMA+(k) protocol P given
the following kinds of proofs:
1. one nonnegative-amplitudes proof |ψ⟩;
2. abundant equal copies of an arbitrary proofs over reals |ϕ⟩.
Note we are relaxing k nonnegative-amplitudes proofs in a QMA+(k) protocol with only one
nonnegative-amplitudes proof and general-amplitudes states. The motivation is, roughly, to
remove as many nonnegative-amplitudes proofs in a QMA+(k) protocol as possible, so we
get closer to a general QMA(k) protocol.

We will check whether |ϕ⟩⊗k is close to |ψ⟩. Either they are close and then we can use
the many copies of |ϕ⟩⊗k to simulate P , or else they are far apart and an application of the
super product test can detect this condition. A description of this simulation procedure is
given in Algorithm 4, which we denote as the symmetric simulator (since it assumes many
equal copies of |ϕ⟩).

Algorithm 4 SymSimulator.

Input: QMA+(k) protocol P, |ψ⟩ =
∑
i βi|i⟩ : βi ≥ 0, |ϕ⟩⊗2kℓ.

If SuperProduct(|ψ⟩, (|ϕ⟩⊗k)⊗ℓ) fails, then reject.
For i = 1, . . . , ℓ

Run the QMA+(k) protocol P on a new copy of |ϕ⟩⊗k.
If protocol rejects, then reject.

Accept.

We now analyze the completeness and soundness of this simulation.

▶ Lemma 37. Suppose P is a QMA+(k) protocol with completeness c and soundness s.
Let p(n) be a non-decreasing function such that p(n) ≥ C0 for a sufficiently large constant
C0 > 0. If ℓ ≥ 8p(n)2 ln(2) and s ≤ 1/8p(n)2, then SymSimulator has completeness cℓ and
soundness at most 1/2 + 1/p(n).

Proof. In the completeness case, we can assume that the proofs |ϕ⟩ have nonnegative
amplitudes and |ψ⟩ = |ϕ⟩⊗k. Thus, SymSimulator accepts with probability at least cℓ.

Now, suppose that we are in the soundness case. Set ε =
∣∣〈ψ ∣∣ϕ⊗k〉∣∣2. By Lemma 3, the

super product test accepts with probability(
εℓ

ℓ+ 1 + 1
ℓ+ 1

)
.

CCC 2024

26:24 Dimension Independent Disentanglers from Unentanglement and Applications

Since ℓ ≥ 2p(n), if ε < 1/2 + 1/2p(n), then the acceptance probability due to the super
product test alone is at most 1/2 + 1/p(n) and we are done. Therefore, from now on, we
assume that ε ≥ 1/2 + 1/2p(n).

Suppose |ϕ⟩ =
∑
i αi|i⟩, and let |ϕ+⟩ =

∑
i |αi| |i⟩. Thus, |ϕ+⟩ is a valid nonnegative-

amplitudes state. Since |ψ⟩ has nonnegative amplitudes by assumption, we should have

|⟨ψ | ϕ⊗k
+ ⟩|2 ≥ |⟨ψ | ϕ⊗k⟩|2 = ε. (7.1)

This is because the latter inner product incurs some cancellations due to negative values,
which are avoided in the former inner product. (7.1) together with Claim 10 implies that

|⟨ϕ⊗k, ϕ⊗k
+ ⟩|2 ≥ 2ε− 1.

Since we are assuming ε > 1/2, the trace distance between |ϕ⟩⊗k and |ϕ+⟩⊗k can be bounded
as below

D(ϕ⊗k, ϕ⊗k
+) ≤ 2

√
ε(1 − ε) (7.2)

Note that P accepts |ϕ⊗k
+ ⟩ with probability at most s by the soundness of P. Therefore,

each execution of the protocol P on |ϕ⟩⊗k accepts with probability, by Fact 9, at most

min{1, 2
√
ε(1 − ε) + s}.

The overall soundness of SymSimulator becomes(
ε

ℓ

ℓ+ 1 + 1
ℓ+ 1

)(
min{1, 2

√
ε(1 − ε) + s}

)ℓ
.

Now take ε ≥ 1/2 + 1/2p(n), and compute, we have

2
√
ε(1 − ε) ≤ 2

√
1
4 − 1

4p(n)2 ≤ 1 − 1
2p(n)2 +O

(
1

p(n)4

)
≤ 1 − 1

4p(n)2 ,

where the last inequality relies on p(n) ≥ C0 for a large enough constant C0 > 0. Using that
s ≤ 1/8p(n)2 and ℓ ≥ 8p(n)2 ln(2), the final acceptance probability is

(
2
√
ε(1 − ε) + s

)ℓ
≤
(

1 − 1
8p(n)2

)ℓ
≤ 1

2 ,

concluding the proof. ◀

To remove 2 the symmetric assumption of having multiple identical copies of |ϕ⟩ in
SymSimulator, we use the PAPO channel Λ and the PAPO channel takes just two unentangled
proofs |ϕ′⟩ and |ϕ′′⟩ (of arbitrary amplitudes) as its input. In other words, we now simulate
a QMA+(k) protocol P with:

(i) one nonnegative-amplitudes proof |ψ⟩;
(ii’) two general states |ϕ′⟩, |ϕ′′⟩.

A formal description of the new simulation is given in Algorithm 5.
The analysis of Algorithm 5 is similar to that of Lemma 37. Therefore, instead of

presenting an analysis of Algorithm 5 in isolation, we now apply this simulation for a
QMA+(k) protocol P that solves a NEXP-complete problem. In particular, we will need the
following characterization of QMA+(2) from [20] as shown in the following theorem.

F. G. Jeronimo and P. Wu 26:25

Algorithm 5 Simulator.

Input: QMA+(k) protocol P, |ψ⟩ =
∑
i βi|i⟩ : βi ≥ 0, |ϕ′⟩, |ϕ′′⟩

Let ρ be the output of our disentangler Λ(ϕ′ ⊗ ϕ′′) (i.e. Theorem 2).
If SymSimulator(P, |ψ⟩, ρ) accepts, then accept; else reject.

▶ Theorem 38 ([20]). QMA+(2) = NEXP.

Algorithm 5 gives rise to a protocol for NEXP that improves the above theorem in two
aspects. First, the new protocol uses three unentangled proofs among which only one is
required to have nonnegative amplitudes. Second, the completeness and soundness gap of
this protocol is about 1/2. This seemingly mediocre gap is in fact a critical point, which we
discuss in the next section.

▶ Theorem 5. NEXP = QMA+(3) with completeness c = 1 − exp(−poly(n)) and soundness
s = 1/2 + 1/poly(n). Furthermore, we can assume a particular case of QMA+(3) in which
two unentangled proofs have arbitrary amplitudes whereas only one unentangled proof has
nonnegative amplitudes.

Proof. From Theorem 38, we apply the standard gap amplification by asking for more
unentangled proofs to obtain a QMA+(k) protocol P with completeness c = 1−exp(−poly(n))
and soundness s = exp(−poly(n)), where k = poly(n). Simulate P using Algorithm 5. By
Theorem 2, ρ = Λ(ϕ′ ⊗ ϕ′′) is 1/poly(n)-close to a convex combination of product states∫

|ϕ⟩⟨ϕ|⊗2kℓdµ with ℓ = poly(n). Invoking the symmetric simulator, by Lemma 37, the
completeness becomes cℓ ≥ 1 − exp(−poly(n)) and the soundness 1/2 + 1/poly(n) for a
suitable choice of polynomial ℓ = poly(n). ◀

7.2 Almost-QMAR(k) = NEXP
Next, we show how to go from the nonnegative amplitudes assumptions to almost general
amplitudes. Recall that the ℓ2-sign bias of a state |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩, where |ψ+⟩

and |ψ−⟩ are the normalized nonnegative and negative amplitudes parts of |ψ⟩, is defined as
|a− (1 − a)| (see Definition 14).

▶ Theorem 4. NEXP = almost-QMAR(k) with unentangled proofs of ℓ2-sign bias of8

b(n) ≥ poly(1/n) and k = poly(1/b(n)).

Proof. We start with the QMA+(3) protocol from Theorem 5 with two general proofs
|ϕ′⟩, |ϕ′′⟩ and only one nonnegative proof |ψ⟩. Let M be the verifier measurement. In the
completeness case, we can assume that |ψ⟩ has nonnegative amplitudes so we proceed to
analyze the soundness case.

In the almost-QMAR(3) protocol, |ψ⟩ will no-longer be assumed to have nonnegative
amplitudes. Instead, we write |ψ⟩ =

√
a|ψ+⟩ +

√
1 − a|ψ−⟩, where |ψ+⟩ and |ψ−⟩ are its

nonnegative- and negative-amplitudes normalized states. Without loss of generality, suppose
that a ≥ 1/2. Furthermore, under the ℓ2-sign bias assumption, we may assume that

a ≥ 1/2 +
√

100/p(n). (7.3)

8 The letter n represents the input size and b(n) is any polynomial time computable function bounded
from below by a polynomial, i.e., by 1/nc for some constant c > 0.

CCC 2024

26:26 Dimension Independent Disentanglers from Unentanglement and Applications

Let |ϕ′⟩ and |ϕ′′⟩ be some quantum states (ignoring the ℓ2-bias requirement) as to be used
in the simulation Algorithm 5. The combined proofs of the almost-QMAR(3) protocol can
be expressed as |ξ⟩ =

√
a|ξ0⟩ +

√
1 − a|ξ1⟩, where |ξ0⟩ = |ϕ′⟩ ⊗ |ϕ′′⟩ ⊗ |ψ+⟩ and |ξ1⟩ =

|ϕ′⟩ ⊗ |ϕ′′⟩ ⊗ |ψ−⟩. Denote s the soundness of QMA+(3) protocol from Theorem 5. Then we
can assume

s ≤ 1/2 + 6/p(n). (7.4)

Calculating the accepting probability of M on ξ,

⟨ξ|M |ξ⟩ = a⟨ξ0|M |ξ0⟩ + (1 − a)⟨ξ1|M |ξ1⟩

+
√
a(1 − a)⟨ξ0|M |ξ1⟩ +

√
a(1 − a)⟨ξ1|M |ξ0⟩

≤ s+
√
a(1 − a) (⟨ξ0|M |ξ0⟩ + ⟨ξ1|M |ξ1⟩)

≤ (1 + 2
√
a(1 − a))s. (7.5)

where the first inequality follows from M being PSD, i.e., since (⟨ξ0| − ⟨ξ1|)M(|ξ0⟩ − |ξ1⟩) ≥ 0
implies ⟨ξ0|M |ξ0⟩ + ⟨ξ1|M |ξ1⟩ ≥ ⟨ξ0|M |ξ1⟩ + ⟨ξ1|M |ξ0⟩. By (7.3) and (7.4), we have

(1 + 2
√
a(1 − a))s ≤

(
2 − 8

p(n)

)
s ≤

(
2 − 8

p(n)

)(
1
2 + 1

p(n)

)
≤ 1 − 2

p(n) .

Note that by a suitable choice of polynomial p(n) and the initial completeness c =
1 − exp(−poly(n)) of the QMA+(3) protocol of Theorem 5, we obtain a gap of Ω(1/p(n)).
To conclude the proof, we apply standard gap amplification using k = poly(p(n)) proofs in
almost-QMAR(k). ◀

We emphasize an important observation following from the above analysis: The “half” gap
amplification in Theorem 5 is almost optimal. A larger gap in Theorem 5 by an additive term
1/poly(n) (e.g., if the soundness was at most 1/2 − 1/poly(n)) would allow us to completely
discard the ℓ2-sign bias assumption in Theorem 4, showing NEXP = QMAR(k). This can
be easily seen in (7.5), when s < 1/2 − 1/poly(n), the RHS will be at most 1 − 1/poly(n).
It means that s = 1/2 ± 1/poly(n) in Theorem 5 is a critical point. In the case that
QMA(k)R ̸= NEXP, there is a sharp phase transition.

References
1 Scott Aaronson, Salman Beigi, Andrew Drucker, Bill Fefferman, and Peter Shor. The power of

unentanglement. In Proceedings of the 23rd IEEE Conference on Computational Complexity
(CCC), pages 223–236, 2008. doi:10.1109/CCC.2008.5.

2 Adriano Barenco, André Berthiaume, David Deutsch, Artur Ekert, Richard Jozsa, and Chiara
Macchiavello. Stabilization of quantum computations by symmetrization. SIAM Journal on
Computing, 26(5), 1997.

3 Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and Proofs
Without Relative Phase. In Proceedings of the 15th Innovations in Theoretical Computer Science
Conference (ITCS), volume 287, pages 9:1–9:19, 2024. doi:10.4230/LIPIcs.ITCS.2024.9.

4 Salman Beigi. NP vs QMAlog(2). Quantum Info. Comput., 2010. doi:10.5555/2011438.
2011448.

5 J. S. Bell. On the einstein podolsky rosen paradox. Physics Physique Fizika, 1, November
1964. doi:10.1103/PhysicsPhysiqueFizika.1.195.

6 Hugue Blier and Alain Tapp. All languages in NP have very short quantum proofs. In 2009
Third International Conference on Quantum, Nano and Micro Technologies, pages 34–37, 2009.
doi:10.1109/icqnm.2009.21.

https://doi.org/10.1109/CCC.2008.5
https://doi.org/10.4230/LIPIcs.ITCS.2024.9
https://doi.org/10.5555/2011438.2011448
https://doi.org/10.5555/2011438.2011448
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1109/icqnm.2009.21

F. G. Jeronimo and P. Wu 26:27

7 Fernando G. S. L. Brandão, Matthias Christandl, and Jon Yard. Faithful squashed entangle-
ment. Communications in Mathematical Physics, 2011. doi:10.1007/s00220-011-1302-1.

8 Fernando G. S. L. Brandao and Aram W. Harrow. Estimating operator norms using covering
nets, 2015. arXiv:1509.05065.

9 Fernando G.S.L. Brandão and Aram W. Harrow. Quantum de finetti theorems under local
measurements with applications. In Proceedings of the 45th ACM Symposium on Theory of
Computing (STOC), 2013. doi:10.1145/2488608.2488718.

10 Matthias Christandl, Robert König, Graeme Mitchison, and Renato Renner. One-and-a-half
quantum de finetti theorems. Communications in mathematical physics, 273(2):473–498, 2007.

11 John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed experiment
to test local hidden-variable theories. Phys. Rev. Lett., 23, October 1969. doi:10.1103/
physrevlett.24.549.

12 Andrew C. Doherty, Pablo A. Parrilo, and Federico M. Spedalieri. Complete family of
separability criteria. Physical Review A, 69, 2004. doi:10.1103/physreva.69.022308.

13 A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality
be considered complete? Phys. Rev., 47, May 1935. doi:10.1007/978-3-322-91080-6_6.

14 François Le Gall, Shota Nakagawa, and Harumichi Nishimura. On QMA protocols with two
short quantum proofs. Quantum Info. Comput., 2012. doi:10.26421/qic12.7-8-4.

15 Jeongwan Haah, Aram W. Harrow, Zhengfeng Ji, Xiaodi Wu, and Nengkun Yu. Sample-optimal
tomography of quantum states. IEEE Transactions on Information Theory, 2017.

16 Aram W Harrow. The church of the symmetric subspace. arXiv preprint, 2013. arXiv:
1308.6595.

17 Aram W. Harrow and Ashley Montanaro. Testing product states, quantum merlin-arthur games
and tensor optimization. J. ACM, 60(1), February 2013. doi:10.1145/2432622.2432625.

18 Aram W. Harrow, Anand Natarajan, and Xiaodi Wu. An improved semidefinite programming
hierarchy for testing entanglement. Communications in Mathematical Physics, 2017. doi:
10.1007/s00220-017-2859-0.

19 Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum
entanglement. Rev. Mod. Phys., 81:865–942, June 2009. doi:10.1103/RevModPhys.81.865.

20 Fernando Granha Jeronimo and Pei Wu. The Power of Unentangled Quantum Proofs with
Non-negative Amplitudes. In Proceedings of the 55th ACM Symposium on Theory of Computing
(STOC), 2023.

21 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP*=RE,
2020. doi:10.1145/3485628.

22 Masaru Kada, Harumichi Nishimura, and Tomoyuki Yamakami. The efficiency of quantum
identity testing of multiple states. Journal of Physics A: Mathematical and Theoretical,
41(39):395309, September 2008. doi:10.1088/1751-8113/41/39/395309.

23 Hirotada Kobayashi, Keiji Matsumoto, and Tomoyuki Yamakami. Quantum merlin-arthur
proof systems: Are multiple merlins more helpful to arthur? In Algorithms and Computation,
2003. doi:10.1007/978-3-540-24587-2_21.

24 Robert König and Renato Renner. A de Finetti representation for finite symmetric quantum
states. Journal of Mathematical Physics, 46(12), 2005.

25 Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information:
10th Anniversary Edition. Cambridge University Press, 2010. doi:10.5555/1972505.

26 Ryan O’Donnell and John Wright. Efficient quantum tomography. In Proceedings of the 48th
ACM Symposium on Theory of Computing (STOC), 2016.

27 Attila Pereszlényi. Multi-prover quantum merlin-arthur proof systems with small gap, 2012.
arXiv:1205.2761.

28 Renato Renner. Security of quantum key distribution. International Journal of Quantum
Information, 2008.

29 Adrian She and Henry Yuen. Unitary property testing lower bounds by polynomials. In
Proceedings of the 14th Innovations in Theoretical Computer Science Conference (ITCS), 2023.

CCC 2024

https://doi.org/10.1007/s00220-011-1302-1
https://arxiv.org/abs/1509.05065
https://doi.org/10.1145/2488608.2488718
https://doi.org/10.1103/physrevlett.24.549
https://doi.org/10.1103/physrevlett.24.549
https://doi.org/10.1103/physreva.69.022308
https://doi.org/10.1007/978-3-322-91080-6_6
https://doi.org/10.26421/qic12.7-8-4
https://arxiv.org/abs/1308.6595
https://arxiv.org/abs/1308.6595
https://doi.org/10.1145/2432622.2432625
https://doi.org/10.1007/s00220-017-2859-0
https://doi.org/10.1007/s00220-017-2859-0
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1145/3485628
https://doi.org/10.1088/1751-8113/41/39/395309
https://doi.org/10.1007/978-3-540-24587-2_21
https://doi.org/10.5555/1972505
https://arxiv.org/abs/1205.2761

26:28 Dimension Independent Disentanglers from Unentanglement and Applications

30 Yaoyun Shi and Xiaodi Wu. Epsilon-net method for optimizations over separable states. In
Proceedings of the 39th International Colloquium on Automata, Languages and Programming
(ICALP), 2012. doi:10.1016/j.tcs.2015.03.031.

31 Mehdi Soleimanifar and John Wright. Testing matrix product states. In Proceedings of
the 33rd ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1679–1701, 2022.
doi:10.1137/1.9781611977073.68.

32 John Watrous. The Theory of Quantum Information. Cambridge University Press, 2018.
doi:10.1017/9781316848142.

https://doi.org/10.1016/j.tcs.2015.03.031
https://doi.org/10.1137/1.9781611977073.68
https://doi.org/10.1017/9781316848142

Baby PIH: Parameterized Inapproximability of Min
CSP
Venkatesan Guruswami #

Simons Institute for the Theory of Computing, Berkeley, CA, USA
Departments of EECS and Mathematics, University of California, Berkeley, CA, USA

Xuandi Ren #

Department of EECS, University of California, Berkeley, CA, USA

Sai Sandeep #

Department of EECS, University of California, Berkeley, CA, USA

Abstract
The Parameterized Inapproximability Hypothesis (PIH) is the analog of the PCP theorem in the
world of parameterized complexity. It asserts that no FPT algorithm can distinguish a satisfiable
2CSP instance from one which is only (1 − ε)-satisfiable (where the parameter is the number of
variables) for some constant 0 < ε < 1.

We consider a minimization version of CSPs (Min-CSP), where one may assign r values to each
variable, and the goal is to ensure that every constraint is satisfied by some choice among the r × r

pairs of values assigned to its variables (call such a CSP instance r-list-satisfiable). We prove the
following strong parameterized inapproximability for Min CSP: For every r ≥ 1, it is W[1]-hard
to tell if a 2CSP instance is satisfiable or is not even r-list-satisfiable. We refer to this statement
as “Baby PIH”, following the recently proved Baby PCP Theorem (Barto and Kozik, 2021). Our
proof adapts the combinatorial arguments underlying the Baby PCP theorem, overcoming some
basic obstacles that arise in the parameterized setting. Furthermore, our reduction runs in time
polynomially bounded in both the number of variables and the alphabet size, and thus implies the
Baby PCP theorem as well.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Parameterized Inapproximability Hypothesis, Constraint Satisfaction Prob-
lems

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.27

Funding Venkatesan Guruswami: Research supported in part by NSF grants CCF-2228287 and
CCF-2211972 and a Simons Investigator award.
Xuandi Ren: Supported in part by NSF CCF-2228287.
Sai Sandeep: Supported in part by NSF CCF-2228287.

1 Introduction

Approximation algorithms and fixed parameter-tractabililty (FPT) are two ways to cope
with NP-hard problems. Recently, there have been many works that unite the two by
obtaining approximation algorithms for NP-Hard problems that run in FPT time. Examples
include Vertex Coloring[13, 40], k-Path Deletion[27], Vertex Cycle Packing[35],
Flow Time Scheduling[43], Max k-Vertex Cover in d-uniform hypergraphs [42, 38],
k-Means and k-Median [28, 5, 23, 1, 7, 12]. On the other hand, there are also various
developments in FPT hardness of approximation, for example, for k-Biclique [29], k-Clique
[6, 31, 32, 24, 34, 8], k-SetCover [6, 10, 25, 30, 26, 33] and so on. We refer to the survey
by Feldmann, Karthik, Lee, and Manurangsi [19] for a more comprehensive list of both FPT
approximation algorithms and FPT hardness of approximation results.

© Venkatesan Guruswami, Xuandi Ren, and Sai Sandeep;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 27; pp. 27:1–27:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:venkatg@berkeley.edu
https://orcid.org/0000-0001-7926-3396
mailto:xuandi_ren@berkeley.edu
https://orcid.org/0009-0007-5450-3446
mailto:saisandeep@berkeley.edu
https://orcid.org/0009-0003-9681-4729
https://doi.org/10.4230/LIPIcs.CCC.2024.27
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Baby PIH: Parameterized Inapproximability of Min CSP

However, it is worth pointing out that the techniques used in proving FPT hardness
of approximation results have been rather problem-specific, and there remain other basic
problems for which even constant inapproximability is unknown. This situation is due to
the lack of a PCP-like theorem in the FPT world. In classical polynomial time hardness of
approximation, the PCP theorem is a fundamental result that leads to a plethora of other
results via reductions. The analog of the PCP theorem in the FPT regime was explicitly
proposed by Lokshtanov et al [36] and named Parameterized Inapproximability Hypothesis
(PIH). The PIH states that there is an absolute constant ε > 0 such that for a 2CSP on k

variables with alphabet size n, there is no algorithm running in time f(k) · nO(1) that can
distinguish a satisfiable instance from one where at most (1 − ε) fraction of constraints can
be simultaneously satisfied.

Analogous to the PCP theorem, PIH not only implies many FPT time inapproximability
results including k-Clique, k-SetCover, k-ExactCover, and k-SetPacking, but also
unifies the inapproximability landscape by serving as a versatile problem-agnostic starting
point. Previously, PIH was known to be implied by Gap-ETH [16, 11], a strong assumption
with an inherent gap in it. Establishing PIH under a gap-free hypothesis has been a significant
open problem in parameterized complexity. Very recently, following the posting of this work,
PIH was established under ETH [22] using the technique of parallelization. The authors first
reduce 3SAT to a vectorized problem called Vector-Valued CSP, and then design parallel
probabilistically checkable proofs to verify its satisfiability. However, the proof in [22] fails to
get any inapproximability of 2CSP under W[1] ̸= FPT, since it is not known how to reduce a
W[1]-complete problem, say k-Clique, to their Vector-Valued CSP. In fact, it was pointed
out in [22] that Vector-Valued CSP is likely to be M[1]-complete and thus not likely to be
W[1]-hard, where M[1] is an intermediate complexity class between FPT and W[1] [20, 9].
Proving PIH under W[1] ̸= FPT, therefore, still remains an important open problem.

In this work, we prove a list version of the PIH, which we call Baby PIH, under the
minimal hypothesis W[1] ≠ FPT. In Baby PIH, we study r-list assignments to the underlying
2CSP instance. An r-list assignment has a list L(u) of at most r values to each variable u,
and a constraint between variables u, v is said to be satisfied by the r-list assignments if
there is at least one pair of values x ∈ L(u), y ∈ L(v) such that (x, y) satisfies the constraint
between the variables u, v.

▶ Definition 1 (Baby PIH). For all constants r, C ≥ 1 and every computable function f ,
there is no algorithm running in time f(k) · nC that can distinguish between the following
cases, on input a 2CSP instance on k variables with alphabet size n.

(Completeness) There is an assignment satisfying all the constraints.
(Soundness) No r-list assignment satisfies all the constraints.

The Baby PIH can be compared with the “Baby PCP theorem,” which was established
via a purely combinatorial gap theorem in a remarkable recent work of Barto and Kozik [4]
(who also coined the term Baby PCP). The Baby PCP theorem asserts the NP-completeness
of distinguishing satisfiable instances of a 2CSP from those which lack a satisfying r-list
assignment, for all constants r > 1. Baby PCP differs from Baby PIH in the sense that it
concerns 2CSP on n variables with constant alphabet size. The concept of Baby PCP is itself
not new and was studied in the early PCP days under the guise of a certain minimization
version of Label Cover [2] (see also [17]).1

1 Label Cover is stronger than Baby PCP as stated above, as it imposes that the 2CSP relations are
functions (usually referred to as projection property in PCP parlance). However, Barto and Kozik’s
version also has this projection property.

V. Guruswami, X. Ren, and S. Sandeep 27:3

The term “Baby” stems from the fact that after reducing the soundness parameter to
an arbitrarily small positive constant via parallel repetition, one can deduce the Baby PCP
theorem from the PCP theorem. This strategy also works in the PIH setting. Namely, we
can use the canonical “clause-variable” construction to build a 2CSP instance with projection
property, then apply parallel repetition [41] to amplify the soundness to below 1

r2 . Suppose a
2CSP instance is r-list satisfiable, then by randomly picking a value from each variable’s list,
we can conclude there is a single assignment that satisfies at least 1

r2 fraction of constraints.
Therefore, being unable to approximate 2CSP within a 1

r2 factor implies that it is hard to
distinguish whether a instance is satisfiable or not r-list satisfiable. In other words, PIH
implies Baby PIH. Thus establishing the Baby PIH is a necessary step towards proving the
PIH itself, and we also believe that it is a valuable intermediate step.

In this work, we prove Baby PIH under the minimal complexity assumption W[1] ̸= FPT.

▶ Theorem 2. Assuming W[1] ̸= FPT, Baby PIH is true.

Our proof of Theorem 2 is combinatorial and follows the framework of Barto and Kozik’s
proof of the Baby PCP theorem. Specifically, given a 2CSP instance with variable set X and
a list size r, we choose large enough integers a, b depending on r, and construct a bipartite
direct product 2CSP instance, whose variable set is

(
X
a

)
∪

(
X
b

)
. Given that the product

instance is r-list satisfiable, we can repeatedly choose smaller integers a′ ≤ a, b′ ≤ b and
extract assignments for the instance with variable set

(
X
a′

)
∪

(
X
b′

)
. The new assignments still

list satisfy the smaller instance, but the size of each list on one side is decreased by 1, which
helps us to do induction.

We highlight that although this proof strategy looks simple, there are basic obstacles
to employ it in the Baby PIH setting (compared to the Baby PCP setting). In the PCP
world, the alphabet size |Σ| is at most some constant. Thus, to extract assignments for the
smaller instance, it is affordable to pick a, b large enough depending on |Σ|. The running
time of there reduction is therefore |X|Or,|Σ|(1). However in the PIH case, |Σ| can be as large
as the input size, and the running time of the reduction can only be f(|X|) · |Σ|Or(1) for
some computable function f . To overcome this barrier, we non-trivially use the underlying
structure of r-list satisfying assignments. We further note that our reduction runs in time
|X|Or(1), which is polynomial also in |X|. Therefore, our methods give a unified proof of both
the Baby PCP theorem and Baby PIH. 2

As we mentioned earlier, PIH implies Baby PIH, and thus our result can be viewed as a
first step towards proving the former. An intermediate problem between them is the following
average version of Baby PIH: let an r-average list assignment be a labeling L(u) for each
variable u such that the average cardinality of L(u) over all the variables u is at most r.

▶ Conjecture 3 (Average Baby PIH). For any constants r > 1, C and any computable function
f , no algorithm can given as input a 2CSP instance on k variables with size n, distinguish
between the following two cases in f(k) · nC time:

(Completeness) There is an assignment satisfying all the constraints.
(Soundness) No r-average list assignment satisfies all the constraints.

2 Barto and Kozik [4] derive Baby PCP with the stronger projection property. Using our techniques, we
can get Baby PCP or Baby PIH with rectangular constraints, which is a slightly weaker property but
still enough for many downstream reductions.

CCC 2024

27:4 Baby PIH: Parameterized Inapproximability of Min CSP

Note that the difference between the Baby and Average Baby versions is to use the ℓ∞
vs. ℓ1 norms of the number of values given to the variables. Once again, Average Baby PIH
has a counterpart in the PCP world, namely the minimization version of Label Cover with
ℓ1 total cost, which fueled early inapproximability results for SetCover and basic problems
that concern linear codes and lattices [2], as surveyed in [3].

Average Baby PIH is an intriguing open problem and could help in making further progress
towards PIH. Furthermore, the Average Baby PIH is strong enough to imply some non-trivial
inapproximability results. Notably, with an additional property called rectangular constraints
(which we will define later), it implies constant inapproximability of k-ExactCover, which
we previously only knew under PIH [39].

Towards a better understanding of Average Baby PIH, we give a counterexample showing
that the direct product construction we use to prove Baby PIH as is cannot establish the
average version. This suggests in order to get Average Baby PIH or full PIH, one may need
other techniques or constructions. As a candidate, we pose a question that whether the
W[1]-hardness of approximating k-Clique can help us bypass this counterexample. Please
refer to Section 5 for details.

Organization. In Section 2, we introduce some preliminaries, including the problems
considered in this paper and related complexity hypotheses. In Section 3, we prove Baby
PIH via the direct product construction. We then discuss Average Baby PIH in Section 4,
and conclude with some open problems in Section 5.

2 Preliminaries

We first start by formally defining 2-CSP.

▶ Definition 4 (2CSP). An instance of arity-2 constraint satisfaction problem (2CSP) is a
tuple Π = (X,Σ,Φ), where:

X = {x1, . . . , xk} is the set of variables;
Σ = {Σx1 , . . . ,Σxk

} is the set of their respective domains of values. We use |Σ| to denote
the maximum size of any domain, and call it the alphabet size of Π.
Φ = {ϕ1, . . . , ϕm} is the set of constraints. Each constraint ϕi is ordered tuple ⟨wi, Ri⟩,
where wi = (wi,1, wi,2) ∈ X2 is a pair of variables, and Ri is a 2-ary relation on Σwi,1

and Σwi,2 .

An assignment of the 2CSP instance is a function from all variables in X to their respective
domains. A constraint ϕi is said to be satisfied by an assignment σ if (σ(wi,1), σ(wi,2)) ∈ Ri.
We say an assignment σ satisfies the 2CSP instance if all constraints are satisfied by σ.

For each constraint ϕi, we can without loss of generality assume wi,1 ̸= wi,2, since unary
constraints can be removed by restricting the domain of that variable.

We define r-list satisfiability, which generalizes the above satisfiability.

▶ Definition 5 (r-List Satisfiability). Given a 2CSP instance Π = (X,Σ,Φ), a multi-
assignment is a function mapping each variable to a subset of its domain. We define
the size of a multi-assignment σ as maxx∈X |σ(x)|.

We say a multi-assignment σ r-list satisfies Π if σ is of size at most r, and for every
constraint ϕi, there exists a pair of values u ∈ σ(wi,1) and v ∈ σ(wi,2), such that (u, v) ∈ Ri.

Normal satisfiability can be viewed as 1-list satisfiability. Note that as r increases, it
becomes easier to r-list satisfy a 2CSP instance.

V. Guruswami, X. Ren, and S. Sandeep 27:5

The relations in the 2CSPs that we construct using the direct product (see Definition 7)
satisfy a useful structural property, namely, rectangular relations.

▶ Definition 6 (Rectangular Relation). A relation R ⊆ A × B is said to be rectangular if
there is a set C and functions π : A → C and σ : B → C such that (a, b) ∈ R if and only
if π(a) = σ(b). Equivalently, R is rectangular if for all a, a′ ∈ A and b, b′ ∈ B such that
(a, b) ∈ R, (a, b′) ∈ R, and (a′, b) ∈ R, we have (a′, b′) ∈ R.

Rectangular relations can be informally viewed as consistency checks, and they are often
satisfied by 2CSPs in product constructions. Projection relation, a stronger version of
rectangular relation, is ubiquitous in PCP-based hardness reductions.

We now formally define the direct product construction that we use in our proof.

▶ Definition 7 (Direct Product Construction). Given a 2CSP instance Π = (X,Σ,Φ), its
t-wise direct product, denoted as Π⊙t, is the following 2CSP instance (X ′,Σ′,Φ′):

X ′ =
(

X
t

)
, where each variable is a t-sized subset of variables in Π.

The domain of each variable S ∈ X ′ is the set of all partial satisfying assignments for S in
Π, i.e., all function σ that maps each x ∈ S to its domain in Π, such that all constraints
in Π induced by S are satisfied.
Φ′ has of a consistency constraint for each pair of distinct variables in X ′. For S, T ∈ X ′,
the assignments σS , σT satisfy the constraint if and only if they are consistent on the
values for variables in S ∩ T .

Our results are based on the hypothesis W[1] ̸= FPT, which is closely related to k-Clique,
a fundamental problem in parameterized complexity theory.

▶ Definition 8 (k-Clique). An instance of (multicolored) k-Clique problem is an undirected
graph G = (V = V1∪̇ . . . ∪̇Vk, E), where each Vi is an independent set. The goal is to decide
whether we can find v1 ∈ V1, . . . , vk ∈ Vk which form a clique. For r > 1, the r-gap version
of k-Clique asks to distinguish between the following two cases:

(Yes) There exists v1 ∈ V1, . . . , vk ∈ Vk which form a clique.
(No) The maximum clique in G has size at most k/r.

The W[1] ≠ FPT hypothesis states that for any computable function f , no algorithm
can solve a k-Clique instance with size n in f(k) · nO(1) time. For a k-Clique instance
G = (V = V1∪̇ . . . ∪̇Vk, E), we can build k variables x1, . . . , xk, letting Vi be the domain of
variable xi and making the edge set between Vi and Vj the constraint relation for xi and xj .
Thus, G corresponds to a 2CSP instance with k variables and alphabet size at most n. It is
easy to see that there is a clique of size k in G if and only if the 2CSP instance is satisfiable.
Thus, we can restate the W[1] ̸= FPT hypothesis as follows.

▶ Hypothesis 9 (W[1] ̸= FPT). For any computable function f , no algorithm can decide
whether a given 2CSP instance Π = (X,Σ,Φ) is satisfiable in f(|X|) · |Σ|O(1) time.

The approximation version (with respect to the fraction of constraints that can be
satisfiable) of W[1] ̸= FPT is called Parameterized Inapproximability Hypothesis (PIH).

▶ Hypothesis 10 (Parameterized Inapproximability Hypothesis (PIH)[36]). 3 For any computable
function f and some constant ε > 0, no algorithm can given as input a 2CSP instance
Π = (X,Σ,Φ), distinguish between the following two cases in f(|X|) · |Σ|O(1) time:

(Completeness) Π is satisfiable.
(Soundness) Any assignment of Π violates at least ε fraction of constraints.

3 Note that the original PIH in [36] states that constant approximating 2CSP parameterized by |X| is
W[1]-hard. Here we use a relaxed form.

CCC 2024

27:6 Baby PIH: Parameterized Inapproximability of Min CSP

We formally define k-SetCover, the parameterized version of the classical SetCover
problem, and the exact version of it.

▶ Definition 11 (k-SetCover, k-ExactCover). An instance of k-SetCover problem is
a tuple Π = (S, U), where S is a collection of subsets {S1, . . . , Sn} over the universe U , and
the goal is to decide whether there are k sets in S, whose union is U . For r > 1, the r-gap
version of k-SetCover asks to distinguish between the following two cases:

(Yes) There are k sets whose union is U .
(No) The union of any r · k sets is not U .

Furthermore, if in the yes case, the k sets are non-intersecting, i.e., they form a partition of
U , then we also denote this gap problem as k-ExactCover.

Finally, we define the (T,m)-set gadget, an important gadget used in reductions to
k-SetCover and k-ExactCover.

▶ Definition 12 ((T,m)-Set Gadget). A (T,m)-set gadget consists of a universe M and
some of its subsets C1, . . . , Cm with the following property: Every collection of at most T
sets out of C1, C1, C2, C2, . . . , Cm, Cm that is a set cover for M must include both Ci and
Ci for some i.

It was proved in [37] that a (T,m)-set gadget can be constructed efficiently:

▶ Lemma 13. There is an algorithm that given any T,m, runs in time poly(m, 2T) and
outputs a (T,m)-set gadget with universe size poly(m, 2T).

3 Baby PIH

In this section, we analyze the direct product construction to prove Baby PIH under
W[1] ̸= FPT.

▶ Theorem 14 (Main). For any integer r > 1, there is an integer t > 0 such that for any
2CSP instance Π = (X,Σ,Φ) and its t-wise direct product instance Π⊙t = (X ′,Σ′,Φ′):

(Completeness) If Π is satisfiable, then Π⊙t is satisfiable as well.
(Soundness) If Π is not satisfiable, then Π⊙t is not r-list satisfiable.

Since t is a constant depending solely on r, the number of variables in the new instance
|X ′| =

(|X|
t

)
depends only on |X| rather than |Σ|, and the alphabet size of the new instance

|Σ′| ≤ |Σ|t is polynomial in |Σ|. Thus for any constant C and any computable function f ,
f(|X ′|) · |Σ′|C time is upper bounded by g(|X|) · |Σ|C·t time for some computable function g.
Therefore, we have the following corollary from Theorem 14:

▶ Corollary 15. Assuming W[1] ̸= FPT, Baby PIH is true.

Note that the completeness in Theorem 14 follows trivially by assigning the restriction of
the satisfying assignment on X to each subset of variables. The main challenge is to show
that when Π⊙t has a r-list satisfying assignment, Π is satisfiable. To prove this, we will first
work on a bipartite version of the direct product of 2CSP.

▶ Definition 16 (Bipartite Direct Product Construction). Given a 2CSP instance Π =
(X,Σ,Φ) and positive integers a, b, the (a, b)-bipartite direct product 2CSP instance Π⊙(a,b) =
(X ′,Σ′,Φ′) is constructed as follows.

The variable set X ′ consists of all a-sized subsets of X on the left side, and all b-sized
subsets of X on the right side. With a little abuse of notation, we have X ′ =

(
X
a

)
∪

(
X
b

)
.

V. Guruswami, X. Ren, and S. Sandeep 27:7

The domain of each variable S ∈ X ′ is the set of all partial satisfying assignments for S
in Π.
For every S ∈

(
X
a

)
and T ∈

(
X
b

)
, we have a constraint in Φ′ that checks whether σS and

σT are consistent on the values for variables in S ∩ T .

If for a 2CSP instance Π, Π⊙t is r-list satisfiable for t = max(a, b), by taking restrictions
of its assignments on the smaller sets, it is easy to see Π⊙(a,b) is r-list satisfiable as well.
Thus, our goal is to show that if the bipartite instance Π⊙(a,b) is r-list satisfiable, then the
original instance Π is satisfiable.

Our proof idea is borrowed from the Baby PCP theorem recently proved by Barto and
Kozik [4]. However, their theorem crucially relies on the fact that the alphabet |Σ| is as small
as a constant, which helps them to extract satisfying assignments for the smaller instance.
The running time of their reduction is, therefore, |X|O|Σ|(1), which is not affordable here
since |Σ| is as large as the input size. We resolve this issue by making use of the structural
properties of the assignments in the direct product construction arising from the fact that
they satisfy r-list consistency. If we fix some set S on one side and consider its r assignments,
each set on the other side that intersects S must have one of the r, which is a constant,
assignments for their intersection part. We use this simple yet very useful observation when
extracting the assignments in the inductive proof.

In the following, we first prove Lemma 17, which is crucial to extract list satisfying
assignments for the smaller subsets. Then in Lemma 18, we analyze a special case of the
bipartite direct product construction when each variable on the right (bigger) side has only
one assignment, and the consistency requirement is a slightly weaker one. In Lemma 19, we
finish the analysis of the bipartite direct product construction, from which we get Theorem 14
as a corollary.

▶ Lemma 17. Let k, r, q, a, b, b′ be integers satisfying r, q > 0, a ≥ k, b ≥ r · b′ + a. Consider
the (a, b)-bipartite direct product 2CSP instance based on Π = (X,Σ,Φ). Let u be an r-sized
multi-assignment for

(
X
a

)
and v be a q-sized multi-assignment for

(
X
b

)
. Suppose for every

S ∈
(

X
a

)
, T ∈

(
X
b

)
with T ⊇ S, v(T)|S ∩ u(S) ̸= ∅. Then for every A ∈

(
X
k

)
, there is

an assignment fA for A such that for every T ′ ∈
(

X
b′

)
, there is some T ∈

(
X
b

)
satisfying

T ⊇ T ′ ∪A and v(T)|A ∋ fA.

Proof. Suppose for the sake of contradiction that there is no such fA for some set A ∈
(

X
k

)
.

In other words, for any assignment f on A, there exists a set T ′
f ∈

(
X
b′

)
, such that for every

T ∈
(

X
b

)
satisfying T ⊇ T ′

f ∪A, v(T)|A ̸∋ f .
Pick an arbitrary S ∈

(
X
a

)
with S ⊇ A. This can be done since a ≥ k. Consider any

set T ∈
(

X
b

)
which contains ∪f∈u(S)|A

(T ′
f ∪ S). Such a T exists since b ≥ r · b′ + a. By the

assumption about A, v(T)|A does not contain any value in u(S)|A. This contradicts the
consistency guarantee in the hypothesis of the lemma, namely that for any T ∈

(
X
b

)
with

T ⊇ S, v(T)|S must contain some value in u(S). ◀

See Figure 1 for an illustration of Lemma 17.

▶ Lemma 18. For any integer r > 0, let a = r and b = (2r)r. Consider the (a, b)-bipartite
direct product 2CSP instance based on Π = (X,Σ,Φ). Let u be an r-sized multi-assignment
for

(
X
a

)
and v be a 1-sized assignment for

(
X
b

)
. Suppose for every S ∈

(
X
a

)
and T ∈

(
X
b

)
with S ⊆ T , v(T)|S ∈ u(S). Then there is a global satisfying assignment σ to the 2CSP
instance Π.

CCC 2024

27:8 Baby PIH: Parameterized Inapproximability of Min CSP

Figure 1 An illustration of Lemma 17.

Proof. We apply induction on r. When r = 1, we have a = 1, b = 2, and both u, v are 1-sized
assignments. We claim that u is the desired global satisfying assignment of Π. For each
constraint on (x, y) ∈ X2, v({x, y}) = (x 7→ u(x), y 7→ u(y)) by our consistency guarantee.
By the construction of bipartite direct product 2CSP instance, the domain for each T ∈

(
X
b

)
consists only of partial satisfying assignments. Thus the fact that (x 7→ u(x), y 7→ u(y)) lies
in the domain of T = {x, y} implies u satisfies the constraint on (x, y).

When r > 1, the idea is to extract consistent assignments for the (a′, b′)-bipartite direct
product 2CSP instance and to decrease r, for some a′ ≤ a, b′ ≤ b. At a high level, if for some
x ∈ X, every set in

(
X
a

)
has at least two different values for it under u, we can keep only

one of them and peel the other off to decrease r by 1; otherwise we can prove the unique
assignments are already satisfying.

In the following, define k = 1, and a′ = a− 1, b′ = (2(r− 1))r−1, i.e., a′, b′ are parameters
with respect to r − 1. It’s easy to see k ≤ a and r · b′ + a ≤ r · (2r)r−1 + r ≤ (2r)r = b.
According to Lemma 17, for every A = {xi} ∈

(
X
k

)
, there is an assignment fA for A such

that for every T ′ ∈
(

X
b′

)
, there is some T ∈

(
X
b

)
satisfying T ⊇ T ′ ∪A and v(T)|A ∋ fA. Now

v(T) is of size-1, so we can simply write v(T)|A = fA.
Consider the following two cases:

Case 1. For some A = {xi}, Lemma 17 holds for different assignments p, q. In other words,
for every T ′ ∈

(
X
b′

)
, there are T1, T2 ∈

(
X
b

)
satisfying T1, T2 ⊇ T ′ ∪ {xi} and v(T1)|{xi} =

p, v(T2)|{xi} = q.
Since for r ≥ 2 we have a = r ≤ (2(r − 1))r−1 = b′, for each S ∈

(
X
a

)
containing xi,

we can pick an arbitrary T ′ ⊇ S and consider the corresponding sets T1, T2 above. By the
consistency assumption between (S, T1) and between (S, T2) in Lemma 18, we can infer
u(S)|{xi} ∋ p, q.

V. Guruswami, X. Ren, and S. Sandeep 27:9

We construct new assignments u′, v′ for the (a′, b′)-bipartite direct product 2CSP instance
of Π, such that they still meet the consistency requirements in Lemma 18, and the size of u′

is at most r − 1. For each S′ ∈
(

X
a′

)
, u′(S′) will be inherited from u(S) for some S ∈

(
X
a

)
satisfying S ⊇ S′ ∪ {xi}. Similarly for each T ′ ∈

(
X
b′

)
, v′(T ′) will be inherited from v(T) for

some T ∈
(

X
b

)
satisfying T ⊇ T ′ ∪ {xi}.

Suppose there is a arbitrary fixed order of all variables in X. We construct S from S′ as
follows, and output u′(S′) = {σ ∈ u(S)|σ(xi) = p}|S′ :

If xi ̸∈ S′, let S = S′ ∪ {xi}.
If xi ∈ S′, S is obtained by adding the lexicographical smallest element not in S′ to S′.

Note that we only keep the assignments in u(S) whose restriction on {xi} is p, and discard
those whose restriction on {xi} is q. Thus u′ is of size at most r − 1 as desired.

For each T ′ ∈
(

X
b′

)
, we first construct T ′′ ∈

(
X
b′

)
as follows:

If xi /∈ T ′, simply let T ′′ = T ′.
If xi ∈ T ′, T ′′ is obtained by adding the lexicographical smallest element not in T ′ to T ′,
and delete xi.

After that, we find a T ∈
(

X
b

)
satisfying T ⊇ T ′′ ∪ {xi} and v(T)|{xi} = p, and output

v′(T ′) = v(T)|T ′ .
By our construction, S′ ⊆ T ′ implies S ⊆ T , so the new instance still meets the required

consistency requirements, and the induction proceeds.

Case 2. Suppose for A being each {xi}, Lemma 17 holds for a unique assignment zi.
We claim that (xi 7→ zi)xi∈X is a global satisfying assignment. Indeed, consider an

arbitrary constraint ψ between variables (xi, xj) ∈ X2. Applying Lemma 17 to the choice
A = {xi, xj}, we know there is an assignment fA such that for every T ′ ∈

(
X
b′

)
, there is some

T ∈
(

X
b

)
satisfying T ⊇ T ′ ∪A and v(T)|A = fA. Since v(T) satisfies all constraints within

T , this means that fA must satisfy the constraint ψ. By the uniqueness assumption of this
case, we must have fA(xi) = zi and fA(xj) = zj , which means that the assignment (zi, zj)
satisfies the constraint ψ between (xi, xj). ◀

We will now finish the analysis of the bipartite direct product construction.

▶ Lemma 19. For integers r, q > 0, let a = (2r)r+2q, b = (2r)r+2q+2. Consider the
(a, b)-bipartite direct product 2CSP instance based on Π = (X,Σ,Φ). Let u be an r-sized
multi-assignment for

(
X
a

)
and v be a q-sized multi-assignment for

(
X
b

)
. If u, v list-satisfy all

bipartite constraints, then there is a global satisfying assignment σ to the 2CSP instance Π.

Proof. We apply induction on q, the size of the right multi-assignment. When q = 1, we have
a = (2r)r+2 ≥ r and b = (2r)r+4 ≥ (2r)r. We can extract consistent satisfying assignments
for the (r, (2r)r)-bipartite direct product 2CSP instance, and invoke Lemma 18 to prove
there is a global satisfying assignment.

When q > 1, we categorize discussions based on whether the left multi-assignment u
satisfies a certain property. Either we can still extract consistent assignments for the smaller
(a′, b′)-bipartite direct product 2CSP instance while decreasing q and leaving r unchanged,
or we can build multi-assignments that satisfy requirements in Lemma 18, and therefore
directly invoke that lemma and stop the induction.

Define k = (2r)r. The parameters a′, b′ with respect to q − 1 would be a′ = (2r)r+2q−2

and b′ = (2r)r+2q. In our case-analysis we will use the following inequalities, which we first
prove here.

CCC 2024

27:10 Baby PIH: Parameterized Inapproximability of Min CSP

b ≥ r · b′ + a. Indeed

r · b′ + a = r · (2r)r+2q + (2r)r+2q

≤ 2 · (2r)r+2q+1

≤ (2r)r+2q+2 = b.

a ≥ (r + 1) · (a′ + k). Indeed

(r + 1) · (a′ + k) = (r + 1) · ((2r)r+2q−2 + (2r)r)
≤ (2r) · (2 · (2r)r+2q−2)
≤ (2r)r+2q = a.

Now we consider the following two cases based on u. The criterion is whether u satisfies
a property which is reminiscent of the result of Lemma 17, except in Lemma 17 the property
is for v while here we check it for u.

1. Suppose there exists A ∈
(

X
k

)
such that for every assignment fA on A and every S′ ∈

(
X
a′

)
,

there exists S ∈
(

X
a

)
satisfying S ⊇ S′ ∪A and u(S)|A ̸∋ fA.

Given a ≥ k and b ≥ r ·b′ +a, we can apply Lemma 17 to know that there is an assignment
fA on A, such that for every T ′ ∈

(
X
b′

)
, there is T ∈

(
X
b

)
satisfying T ⊇ T ′ ∪ A and

v(T)|A ∋ fA.
We therefore build multi-assignments u′, v′ for the smaller (a′, b′)-bipartite 2CSP instance
as follows.
For every S′ ∈

(
X
a′

)
, we pick the set S guaranteed by the assumption of this case, and

define u′(S′) = u(S)|S′ . Note that u′ still has size at most r.
For every T ′ ∈

(
X
b′

)
, we pick the set T guaranteed by Lemma 17, and define v′(T ′) =

{σ ∈ v(T)|σ|A ̸= fA}|T ′ . By the assumption, there exists S ∈
(

X
a

)
satisfying S ⊇ A and

u(S)|A ̸∋ fA. Thus to be consistent with u(S)|A, we can conclude for every T ∈
(

X
b

)
containing A, v(T)|A should also contain some value other than fA. Therefore, our
constructed v′ is non-empty and has size at most q − 1.
It’s also easy to see u′, v′ still satisfy list consistency, since in v′ we only discard the
assignments whose restriction on A equals to fA, which are not consistent with any u′.

2. Suppose for every A ∈
(

X
k

)
, there is an assignment fA for A and a set S′ ∈

(
X
a′

)
, such

that for every S ∈
(

X
a

)
satisfying S ⊇ S′ ∪A, we have u(S)|A ∋ fA.

In this case we can construct r-sized multi-assignment u′ and 1-sized assignment v′ for
left and right part of the (r, k = (2r)r)-bipartite direct product 2CSP of Π respectively,
that meets the requirements of Lemma 18. Furthermore, u′, v′ are built purely based
on u.
For every B ∈

(
X
r

)
, we define

u′(B) =
⋃

A∈(X
k),A⊇B

(fA)|B

For every A ∈
(

X
k

)
, we define v′(A) = fA.

We first claim the size of u′ is at most r. Suppose it is not, there are r + 1 sets
A1, . . . , Ar+1 ∈

(
X
k

)
with fAi

all different. Let S′
1, . . . , S

′
r+1 ∈

(
X
a′

)
be the corresponding

sets guaranteed in the assumption of this case. Consider a S ∈
(

X
a

)
which contains

∪r+1
i=1 (S′

i ∪Ai). Such S exists since a ≥ (r + 1) · (a′ + k). Thus, u(S)|A contains (r + 1)
different values, contradicting the fact that u is of size r.
It’s easy to see u′, v′ meets the requirement of Lemma 18 by the definition of u′. Thus
using Lemma 18, there is a satisfying assignment to the original instance Π. ◀

V. Guruswami, X. Ren, and S. Sandeep 27:11

Our main result, Theorem 14, now follows immediately from Lemma 19.

Proof of Theorem 14. Given an integer r, we pick t = (2r)r+2r+2, and prove that if a 2CSP
instance Π = (X,Σ,Φ) is satisfiable, then so is Π⊙t; if Π is not satisfiable, then Π⊙t is not
r-list satisfiable.

The completeness case is easy: let σ be a satisfying assignment for Π, then we can assign
each set S ∈

(
X
t

)
the function that maps any x ∈ S to σ(x).

For soundness case, suppose Π⊙t is r-list satisfiable by an assignment σ, we take a =
(2r)r+2q, b = (2r)r+2q+2 and build multi-assignments u, v for the left and right part of the
(a, b)-bipartite direct product 2CSP instance Π⊙(a,b). For each set S′ ∈

(
X
a

)
, we pick an

arbitrary S ∈
(

X
t

)
with S ⊇ S′, and define u(S′) = σ(S)|S′ . Similarly for each T ′ ∈

(
X
b

)
, we

pick an arbitrary T ∈
(

X
t

)
with T ⊇ T ′, and define v(T ′) = σ(T)|T ′ . It’s easy to see u and v

are r-list consistent. Thus by Lemma 19, Π is satisfiable. ◀

4 Average Baby PIH

Let us recall the average Baby PIH conjecture.

▶ Hypothesis 20 (Average Baby PIH). Given a 2CSP instance Π = (X,Σ,Φ), we say a
multi-assignment σ r-average-list satisfies Π if

∑
x∈X |σ(x)| ≤ r · |X|, and for every constraint

ϕi, there exists u ∈ σ(wi,1) and v ∈ σ(wi,2), such that (u, v) ∈ Ri.
Average Baby PIH states that for any constant r > 1 and any computable function f ,

no algorithm can given as input a 2CSP instance Π = (X,Σ,Φ), distinguish between the
following two cases in f(|X|) · |Σ|O(1) time:

(Completeness) Π is satisfiable.
(Soundness) Π is not r-average-list satisfiable.

4.1 A Counter Example for Direct Product Construction
We use the following counter example to show that the Direct Product construction does
not give us Average Baby PIH. Specifically, for any t > 0 and ε > 0, there exists an 2CSP
instance which is not satisfiable but its t-wise direct product is (1 + ε)-average-list satisfiable.

▶ Example 21. The 2CSP instance Π = (X,Σ,Φ) is defined as follows.
X = {x1, . . . , xn}.
Σx1 = {2, . . . , n}, and for every i ∈ {2, . . . , n}, Σxi

= {1}.
For every i ∈ {2, . . . , n}, there is a constraint ϕi = ⟨wi, Ri⟩ ∈ Φ, where
wi = (x1, xi).
Ri = {(j, 1)|j ̸= i}.

Π is not satisfiable since no value for x1 can satisfy all constraints. Specifically, for i ∈
{2, . . . , n}, x1 = i would violate constraint ϕi.

However, for every integer t > 0, Π⊙t can be list satisfied by the following multi-assignment
σ. For every S ∈

(
X
t

)
,

if x1 /∈ S, define σ(S) to be the single assignment that maps every xi ∈ S to 1;
if x1 ∈ S, then for every 2 ≤ j ≤ 2t with xj /∈ S, let σ(S) contain an assignment that
maps x1 to j, and maps everything else to 1.

It’s easy to see σ satisfies all constraints induced by S. It remains to show that σ is
consistent on every different S, T ∈

(
X
t

)
.

CCC 2024

27:12 Baby PIH: Parameterized Inapproximability of Min CSP

If x1 /∈ S or x1 /∈ T , σ(S) and σ(T) are trivially consistent since every variable in S ∩ T

is always assigned 1. Now suppose x1 ∈ S ∩ T , we have |S ∪ T | ≤ 2t − 1. By Pigeonhole
Principle, there is a variable xj with j ≤ 2t, which is neither in S nor in T . Thus the
assignment that maps x1 to j and everything else to 1 appears in both σ(S) and σ(T),
proving that σ list-satisfies Π⊙t. The total size of the lists is

1(|X|
t

) ∑
x∈X

|σ(x)| ≤
(|X|−1

t

)(|X|
t

) · 1 +
(|X|−1

t−1
)(|X|

t

) · 2t

=
(

1 − t

|X|

)
· 1 + t

|X|
· 2t

≤ 1 + 2t2

|X|
,

which is smaller than 1 + ε when |X| goes to infinity.

4.2 Towards the Inapproximability of k-ExactCover
In this subsection, we show that a slightly strengthened version of Average Baby PIH,
namely, Average Baby PIH with rectangular relations, implies constant inapproximability of
k-ExactCover problem. The latter, to our best knowledge, is currently not known under
W[1] ̸= FPT. Formally, we have the following theorem:

▶ Theorem 22. Suppose Average Baby PIH holds even when the 2CSP instance has rectangu-
lar relations (see Definition 6), then for any constant r ≥ 1 and any function f , no algorithm
can approximate k-ExactCover problem within factor r in f(k) · nO(1) time. Specifically,
no algorithm can given a k-SetCover instance Π = (S, U) with size n, distinguish between
the following two cases in f(k) · nO(1) time:

There exists k sets in S which form a partition of U .
The union of any r · k sets in S is not U .

Proof. We reduce a 2CSP instance Π = (X,Σ,Φ) with rectangular relations to a k-SetCover
instance Π′ = (S, U) with k = |X| in the following way. For every (x, v) ∈ X × Σ, we build
a set Sx,v. For each constraint ϕi = ⟨(wi,1, wi,2), Ri⟩ in Φ, let Γi be the underlying set in
the rectangular relation Ri and let πi, σi : Σ → Γi be the underlying mappings. We build a
(r · k, |Γi|)-set gadget (M(i), C

(i)
1 , . . . , C

(i)
m). For every (a, b) ∈ Ri, we add the set C(i)

πi(a) to

Swi,1,a, and add the set C(i)
σi(b) to Swi,2,b. Let the final universe U be the union of every M(i).

In the completeness case, let σ : X → Σ be a satisfying assignment of Π. It is easy to see
the k sets {Sx,σ(x)}x∈X cover each element of the universe exactly once.

In the soundness case, let S ′ ⊆ S be a collection of sets that covers U . Assuming
|S ′| ≤ r · k, we claim the multi-assignment σ, which maps x ∈ X to {v ∈ Σ | Sx,v ∈ S ′}, is
a list satisfying assignment of Π. For every constraint ϕi = ⟨(wi,1, wi,2), Ri⟩ with Γi being
the image of the rectangular mapping, by the property of (r · k, |Γi|)-set gadget and the fact
that |S ′| ≤ r · k, S ′ must include C(i)

j and C
(i)
j for some 1 ≤ j ≤ |Γi|, which implies that S ′

includes Swi,1,a and Swi,2,b for some (a, b) ∈ Ri, and thus ϕi is list satisfied.
From Lemma 13, a (r · k, |Γi|)-set gadget can be constructed in time poly(|Γi|, 2r·k). The

whole reduction runs in FPT time while preserving k = |X|. Thus, an f(k) · nO(1) time
algorithm for r-approximating k-ExactCover would give an f(k) · |Σ|O(1) algorithm for the
r-average-list satisfiability of 2CSP with rectangular relations, contradicting the strengthened
version of Average Baby PIH. ◀

V. Guruswami, X. Ren, and S. Sandeep 27:13

We remark that the direct product construction does have rectangular relations, although
it does not directly give us Average Baby PIH, in view of Example 21.

5 Discussion and Open Problems

In this concluding section, we speculate on some possible avenues to attack Average Baby
PIH or even PIH itself.

5.1 Average Baby PIH from Clique Hardness?
In [31], the author proved that even constant approximating k-Clique is W[1]-hard. In [24, 8],
the inapproximability ratio was improved to ko(1). Using CSP words, their results can be
described as the following theorem:

▶ Theorem 23 ([24, 8]). Assuming W[1] ̸= FPT, no algorithm can, given a 2CSP instance
Π = (X,Σ,Φ), distinguish between the following two cases in f(|X|) · |Σ|O(1) time, for any
computable function f :

Π is satisfiable.
The constraints induced by any |X|1−o(1) variables are not simultaneously satisfiable.

Thus, it is natural to ask whether we can get Average Baby PIH by applying direct product
construction to a 2CSP instance with the above “clique-like” soundness? More formally, we
have the following open question:

▶ Open Question 1. Is it true that for any integer r > 1, there is an integer t > 0, such
that for any 2CSP instance Π = (X,Σ,Φ), if Π⊙t is r-average-list satisfiable, then there are
|X|1−o(1) variables in Π such all constraints amongst them are simultaneously satisfiable?

Note that the counterexample for proving average baby PIH using the direct product
construction (Example 21) does not apply here, since there are |X| − 1 variables in Π that
are simultaneously satisfiable.

5.2 PIH via Direct Product Testing Theorems?
Our constructed instance in proving Baby PIH is reminiscent of the direct product testing,
which has been studied in a recent line of work [18, 15, 14]. These results have shown that if
the t-sized subsets of variables have good local consistency, then there is a global function
which agrees with most of the subsets. Formally, we have the following theorem from [14].

▶ Theorem 24. There is an absolute constant C > 1, such that for any α, β ∈ (0, 1) with
α + β ≤ 1, there exists a constant Q(α, β), such that given any k, t,m with k ≥ C · t and
αt ≤ m ≤ (1 − β)t and any finite alphabet Σ , we have the following.

Let F = {fS : S → Σ | S ∈
([k]

t

)
} be an ensemble of functions, one for every size-t subset

of [k]. Let D(m) be the distribution as follows:
Choose I ∈

([k]
m

)
uniformly at random.

Choose A,B from the set {X | X ∈
([k]

t

)
, X ⊇ I} uniformly at random.

Suppose the following holds:

Pr
A,B∼D(m)

[fA|A∩B = fB |A∩B] ≥ 1 − ε,

then there exists a global function g : [k] → Σ such that

Pr
A∼([k]

t)
[fA = g|A] ≥ 1 −Q(α, β) · ε.

CCC 2024

27:14 Baby PIH: Parameterized Inapproximability of Min CSP

By setting the alphabet of each fS to be the set of all partial satisfying assignments for S
and adding the consistency checks according to the above theorem, one may wonder whether
we can “extract” a large clique from the 1 −Q(α, β) · ε fraction of subsets that are globally
consistent. Formally, let S = {A|A ∈

([k]
t

)
, fA = g|A} as in Theorem 24, can we prove there

exists a subset T ⊆ [k] of size ≥ k1−o(1), such that the following holds?
For every (i, j) ∈

(
T
2
)
, there exists A ∈ S with (i, j) ⊆ A.

However, this might not be true if we only use the size bound on S and not the additional
structures. Consider the following counter-example:

▶ Example 25. Mark each pair (i, j) ∈
([k]

2
)

as 1 independently with probability 1 − γ with
γ to be determined. Take S ′ to be the collection of t-sized subsets of [k], with all pairs in it
marked as 1: S ′ := {A | A ∈

([k]
t

)
, ∀(i, j) ⊆ A, (i, j) is marked as 1}.

The probability that a t-sized subset belongs to S ′ is (1 − γ)(
t
2), which can be made

arbitrarily close to 1 when we set γ = γ(t) to be some small enough constant depending on
the constant t.

However, it was known that (see e.g. [21]) the maximum clique size in this Erdős-Rényi
graph is only 2 log k/ log(1/(1 − γ)), far smaller than k1−o(1).

This example suggests that, in order to potentially prove PIH from direct product testing
theorems, one may need to analyze the structure of the collection S. We leave this as an
interesting future direction:

▶ Open Question 2. Can we prove PIH under W[1] ̸= FPT using some appropriate form of
direct product testing theorems?

References
1 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. SIAM J. Comput., 49(4), 2020.
doi:10.1137/18M1171321.

2 Sanjeev Arora, László Babai, Jacques Stern, and Z. Sweedyk. The hardness of approximate
optima in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci., 54(2):317–331,
1997. doi:10.1006/jcss.1997.1472.

3 Sanjeev Arora and Carsten Lund. Hardness of Approximations, pages 399–446. In Dorit S.
Hochbaum, editor, Approximation algorithms for NP-hard problems. PWS Publishing, 1996.

4 Libor Barto and Marcin Kozik. Combinatorial gap theorem and reductions between promise
csps. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM
Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,
January 9 - 12, 2022, pages 1204–1220. SIAM, 2022. doi:10.1137/1.9781611977073.50.

5 Jaroslaw Byrka, Thomas W. Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh.
An improved approximation for k-median and positive correlation in budgeted optimization.
ACM Trans. Algorithms, 13(2):23:1–23:31, 2017. doi:10.1145/2981561.

6 Parinya Chalermsook, Marek Cygan, Guy Kortsarz, Bundit Laekhanukit, Pasin Manurangsi,
Danupon Nanongkai, and Luca Trevisan. From gap-eth to fpt-inapproximability: Clique,
dominating set, and more. In Chris Umans, editor, 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 743–754. IEEE Computer Society, 2017. doi:10.1109/FOCS.2017.74.

7 Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys. A constant-factor
approximation algorithm for the k-median problem. J. Comput. Syst. Sci., 65(1):129–149,
2002. doi:10.1006/jcss.2002.1882.

https://doi.org/10.1137/18M1171321
https://doi.org/10.1006/jcss.1997.1472
https://doi.org/10.1137/1.9781611977073.50
https://doi.org/10.1145/2981561
https://doi.org/10.1109/FOCS.2017.74
https://doi.org/10.1006/jcss.2002.1882

V. Guruswami, X. Ren, and S. Sandeep 27:15

8 Yijia Chen, Yi Feng, Bundit Laekhanukit, and Yanlin Liu. Simple combinatorial construction
of the ko(1)-lower bound for approximating the parameterized k-clique. CoRR, abs/2304.07516,
2023. doi:10.48550/arXiv.2304.07516.

9 Yijia Chen and Martin Grohe. An isomorphism between subexponential and parameterized
complexity theory. SIAM Journal on Computing, 37(4):1228–1258, 2007.

10 Yijia Chen and Bingkai Lin. The constant inapproximability of the parameterized dominating
set problem. SIAM J. Comput., 48(2):513–533, 2019. doi:10.1137/17M1127211.

11 Rajesh Chitnis, Andreas Emil Feldmann, and Pasin Manurangsi. Parameterized approximation
algorithms for directed steiner network problems. CoRR, abs/1707.06499, 2017. arXiv:
1707.06499.

12 Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li. Tight
FPT approximations for k-median and k-means. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 42:1–42:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.42.

13 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken-ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2005), 23-25 October 2005, Pittsburgh,
PA, USA, Proceedings, pages 637–646. IEEE Computer Society, 2005. doi:10.1109/SFCS.
2005.14.

14 Irit Dinur, Yuval Filmus, and Prahladh Harsha. Analyzing boolean functions on the biased
hypercube via higher-dimensional agreement tests: [extended abstract]. In Timothy M. Chan,
editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2124–2133. SIAM, 2019.
doi:10.1137/1.9781611975482.128.

15 Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders. In
Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 974–985. IEEE Computer Society,
2017. doi:10.1109/FOCS.2017.94.

16 Irit Dinur and Pasin Manurangsi. ETH-hardness of approximating 2-csps and directed
steiner network. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science
Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs,
pages 36:1–36:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/
LIPIcs.ITCS.2018.36.

17 Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Inf. Process.
Lett., 89(5):247–254, 2004. doi:10.1016/j.ipl.2003.11.007.

18 Irit Dinur and David Steurer. Direct product testing. In IEEE 29th Conference on Compu-
tational Complexity, CCC 2014, Vancouver, BC, Canada, June 11-13, 2014, pages 188–196.
IEEE Computer Society, 2014. doi:10.1109/CCC.2014.27.

19 Andreas Emil Feldmann, Karthik C. S., Euiwoong Lee, and Pasin Manurangsi. A survey on
approximation in parameterized complexity: Hardness and algorithms. Algorithms, 13(6):146,
2020. doi:10.3390/a13060146.

20 Michael R Fellows. Blow-ups, win/win’s, and crown rules: Some new directions in fpt. In
Graph-Theoretic Concepts in Computer Science: 29th International Workshop, WG 2003.
Elspeet, The Netherlands, June 19-21, 2003. Revised Papers 29, pages 1–12. Springer, 2003.

21 G. R. Grimmett and C. J. H. McDiarmid. On colouring random graphs. Mathematical
Proceedings of the Cambridge Philosophical Society, 77(2):313–324, 1975. doi:10.1017/
S0305004100051124.

22 Venkatesan Guruswami, Bingkai Lin, Xuandi Ren, Yican Sun, and Kewen Wu. Parameterized
inapproximability hypothesis under eth, 2023. arXiv:2311.16587.

CCC 2024

https://doi.org/10.48550/arXiv.2304.07516
https://doi.org/10.1137/17M1127211
https://arxiv.org/abs/1707.06499
https://arxiv.org/abs/1707.06499
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.4230/LIPIcs.ICALP.2019.42
https://doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1109/SFCS.2005.14
https://doi.org/10.1137/1.9781611975482.128
https://doi.org/10.1109/FOCS.2017.94
https://doi.org/10.4230/LIPIcs.ITCS.2018.36
https://doi.org/10.4230/LIPIcs.ITCS.2018.36
https://doi.org/10.1016/j.ipl.2003.11.007
https://doi.org/10.1109/CCC.2014.27
https://doi.org/10.3390/a13060146
https://doi.org/10.1017/S0305004100051124
https://doi.org/10.1017/S0305004100051124
https://arxiv.org/abs/2311.16587

27:16 Baby PIH: Parameterized Inapproximability of Min CSP

23 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine D. Piatko, Ruth Silverman,
and Angela Y. Wu. A local search approximation algorithm for k-means clustering. Comput.
Geom., 28(2-3):89–112, 2004. doi:10.1016/j.comgeo.2004.03.003.

24 Karthik C. S. and Subhash Khot. Almost polynomial factor inapproximability for parameterized
k-clique. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 6:1–6:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.6.

25 Karthik C. S., Bundit Laekhanukit, and Pasin Manurangsi. On the parameterized complexity
of approximating dominating set. J. ACM, 66(5):33:1–33:38, 2019. doi:10.1145/3325116.

26 Karthik C. S. and Inbal Livni Navon. On hardness of approximation of parameterized set cover
and label cover: Threshold graphs from error correcting codes. In Hung Viet Le and Valerie
King, editors, 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual Conference,
January 11-12, 2021, pages 210–223. SIAM, 2021. doi:10.1137/1.9781611976496.24.

27 Euiwoong Lee. Partitioning a graph into small pieces with applications to path transversal.
Math. Program., 177(1-2):1–19, 2019. doi:10.1007/s10107-018-1255-7.

28 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. SIAM J.
Comput., 45(2):530–547, 2016. doi:10.1137/130938645.

29 Bingkai Lin. The parameterized complexity of the k-biclique problem. J. ACM, 65(5):34:1–
34:23, 2018. doi:10.1145/3212622.

30 Bingkai Lin. A simple gap-producing reduction for the parameterized set cover problem.
In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors,
46th International Colloquium on Automata, Languages, and Programming, ICALP 2019,
July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 81:1–81:15. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ICALP.2019.81.

31 Bingkai Lin. Constant approximating k-clique is w[1]-hard. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 1749–1756. ACM, 2021.
doi:10.1145/3406325.3451016.

32 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. On lower bounds of approximating
parameterized k-clique. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 90:1–90:18. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.90.

33 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Constant approximating parameter-
ized k-setcover is w[2]-hard. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings
of the 2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy,
January 22-25, 2023, pages 3305–3316. SIAM, 2023. doi:10.1137/1.9781611977554.ch126.

34 Bingkai Lin, Xuandi Ren, Yican Sun, and Xiuhan Wang. Improved hardness of approximating
k-clique under ETH. CoRR, abs/2304.02943, 2023. doi:10.48550/arXiv.2304.02943.

35 Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh. Lossy kernelization.
In Hamed Hatami, Pierre McKenzie, and Valerie King, editors, Proceedings of the 49th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017, pages 224–237. ACM, 2017. doi:10.1145/3055399.3055456.

36 Daniel Lokshtanov, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi. Parameterized
complexity and approximability of directed odd cycle transversal. In Shuchi Chawla, editor,
Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 2181–2200. SIAM, 2020. doi:10.1137/1.
9781611975994.134.

37 Carsten Lund and Mihalis Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994. doi:10.1145/185675.306789.

https://doi.org/10.1016/j.comgeo.2004.03.003
https://doi.org/10.4230/LIPIcs.CCC.2022.6
https://doi.org/10.1145/3325116
https://doi.org/10.1137/1.9781611976496.24
https://doi.org/10.1007/s10107-018-1255-7
https://doi.org/10.1137/130938645
https://doi.org/10.1145/3212622
https://doi.org/10.4230/LIPIcs.ICALP.2019.81
https://doi.org/10.1145/3406325.3451016
https://doi.org/10.4230/LIPIcs.ICALP.2022.90
https://doi.org/10.1137/1.9781611977554.ch126
https://doi.org/10.48550/arXiv.2304.02943
https://doi.org/10.1145/3055399.3055456
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1137/1.9781611975994.134
https://doi.org/10.1145/185675.306789

V. Guruswami, X. Ren, and S. Sandeep 27:17

38 Pasin Manurangsi. A note on max k-vertex cover: Faster fpt-as, smaller approximate kernel
and improved approximation. In Jeremy T. Fineman and Michael Mitzenmacher, editors, 2nd
Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019, San Diego, CA, USA,
volume 69 of OASIcs, pages 15:1–15:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/OASIcs.SOSA.2019.15.

39 Pasin Manurangsi. Tight running time lower bounds for strong inapproximability of maximum
k-coverage, unique set cover and related problems (via t-wise agreement testing theorem). In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 62–81. SIAM, 2020. doi:
10.1137/1.9781611975994.5.

40 Dániel Marx. Parameterized complexity and approximation algorithms. Comput. J., 51(1):60–
78, 2008. doi:10.1093/comjnl/bxm048.

41 Anup Rao. Parallel repetition in projection games and a concentration bound. SIAM J.
Comput., 40(6):1871–1891, 2011. doi:10.1137/080734042.

42 Piotr Skowron and Piotr Faliszewski. Chamberlin-courant rule with approval ballots: Approx-
imating the maxcover problem with bounded frequencies in FPT time. J. Artif. Intell. Res.,
60:687–716, 2017. doi:10.1613/jair.5628.

43 Andreas Wiese. Fixed-parameter approximation schemes for weighted flowtime. In Eric Blais,
Klaus Jansen, José D. P. Rolim, and David Steurer, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2018,
August 20-22, 2018 - Princeton, NJ, USA, volume 116 of LIPIcs, pages 28:1–28:19. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.
28.

CCC 2024

https://doi.org/10.4230/OASIcs.SOSA.2019.15
https://doi.org/10.1137/1.9781611975994.5
https://doi.org/10.1137/1.9781611975994.5
https://doi.org/10.1093/comjnl/bxm048
https://doi.org/10.1137/080734042
https://doi.org/10.1613/jair.5628
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.28
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.28

Finding Missing Items Requires Strong Forms of
Randomness
Amit Chakrabarti Ñ

Department of Computer Science, Dartmouth College, Hanover, NH, USA

Manuel Stoeckl Ñ

Department of Computer Science, Dartmouth College, Hanover, NH, USA

Abstract
Adversarially robust streaming algorithms are required to process a stream of elements and produce
correct outputs, even when each stream element can be chosen as a function of earlier algorithm
outputs. As with classic streaming algorithms, which must only be correct for the worst-case fixed
stream, adversarially robust algorithms with access to randomness can use significantly less space
than deterministic algorithms. We prove that for the Missing Item Finding problem in streaming,
the space complexity also significantly depends on how adversarially robust algorithms are permitted
to use randomness. (In contrast, the space complexity of classic streaming algorithms does not
depend as strongly on the way randomness is used.)

For Missing Item Finding on streams of length ℓ with elements in {1, . . . , n}, and ≤ 1/poly(ℓ)
error, we show that when ℓ = O(2

√
log n), “random seed” adversarially robust algorithms, which

only use randomness at initialization, require ℓΩ(1) bits of space, while “random tape” adversarially
robust algorithms, which may make random decisions at any time, may use O(polylog(ℓ)) random
bits. When ℓ is between nΩ(1) and O(

√
n), “random tape” adversarially robust algorithms need ℓΩ(1)

space, while “random oracle” adversarially robust algorithms, which can read from a long random
string for free, may use O(polylog(ℓ)) space. The space lower bound for the “random seed” case
follows, by a reduction given in prior work, from a lower bound for pseudo-deterministic streaming
algorithms given in this paper.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Theory of com-
putation → Lower bounds and information complexity; Theory of computation → Pseudorandomness
and derandomization

Keywords and phrases Data streaming, lower bounds, space complexity, adversarial robustness,
derandomization, sketching, sampling

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.28

Related Version Full Version: https://arxiv.org/abs/2310.03634 [9]
Extended in Chapter 3 of : https://digitalcommons.dartmouth.edu/dissertations/229/ [25]

Funding Supported in part by the National Science Foundation under Award 2006589.

1 Introduction

Randomized streaming algorithms can achieve exponentially better space bounds than
corresponding deterministic ones: this is a basic, well-known, easily proved fact that applies
to a host of problems of practical interest. A prominent class of randomized streaming
algorithms uses randomness in a very specific way, namely to sketch the input stream by
applying a random linear transformation – given by a sketch matrix S – to the input frequency
vector. The primary goal of a streaming algorithm is to achieve sublinear space, so it is
infeasible to store S explicitly. In some well-known cases, the most natural presentation of
the algorithm is to explicitly describe the distribution of S, a classic case in point being
frequency moment estimation [16]. This leads to an algorithm that is very space-efficient
provided one doesn’t charge the algorithm any space cost for storing S. Algorithms that

© Amit Chakrabarti and Manuel Stoeckl;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 28; pp. 28:1–28:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.cs.dartmouth.edu/~ac
https://orcid.org/0000-0003-3633-9180
https://mstoeckl.com/
https://orcid.org/0000-0001-8189-0516
https://doi.org/10.4230/LIPIcs.CCC.2024.28
https://arxiv.org/abs/2310.03634
https://digitalcommons.dartmouth.edu/dissertations/229/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Finding Missing Items Requires Strong Forms of Randomness

work this way can be thought of as accessing a “random oracle”: despite their impracticality,
they have theoretical value, because the standard ways of proving space lower bounds for
randomized streaming algorithms in fact work in this model. For the specific frequency-
moment algorithms mentioned earlier, [16] goes on to design variants of his algorithms that
use only a small (sublinear) number of random bits and apply a pseudorandom generator to
suitably mimic the behavior of his random-oracle algorithms. Thus, at least in this case, a
random oracle isn’t necessary to achieve sublinear complexity. This raises a natural question:
from a space complexity viewpoint, does it ever help to use a random oracle, as opposed to
“ordinary” random bits that must be stored (and thus paid for) if they are to be reused?

For most classic streaming problems, the answer is “No,” but for unsatisfactory reasons:
Newman’s Theorem [21] allows one to replace a long oracle-provided random string by a
much shorter one (that is cheap to store), though the resulting algorithm is non-constructive.
This brings us to the recent and ongoing line of work on adversarially robust streaming
algorithms where we shall find that the answer to our question is a very interesting “Yes.”
For the basic and natural MissingItemFinding problem, defined below, we shall show that
three different approaches to randomization result in distinct space-complexity behaviors.
To explain this better, let us review adversarial robustness briefly.

Some recent works have studied streaming algorithms in a setting where the input to the
algorithm can be adaptively (and adversarially) chosen based on its past outputs. Existing
(“classic”) randomized streaming algorithms may fail in this adversarial setting when the
input-generating adversary learns enough about the past random choices of the algorithm to
identify future inputs on which the algorithm will likely fail. There are, heuristically, two
ways for algorithm designers to protect against this: (a) prevent the adversary from learning
the past random choices of the algorithm (in the extreme, by making a pseudo-deterministic
algorithm), or (b) prevent the adversary from exploiting knowledge of past random decisions,
by having the algorithm’s future behavior depend on randomness that it has not yet revealed.
Concretely, algorithms in this setting use techniques such as independent re-sampling [6],
sketch switching using independent sub-instances of an underlying classic algorithm [5],
rounding outputs to limit the number of computation paths [5], and differential privacy
to safely aggregate classic algorithm sub-instances [15]. Mostly, these algorithms use at
most as many random bits as their space bounds allow. However, some recently published
adversarially robust streaming algorithms for vertex-coloring a graph (given by an edge
stream) [8, 2], and one for the MissingItemFinding problem [24], assume access to a large
amount of oracle randomness: they prevent the adversary from exploiting the random bits it
learns by making each output depend on an unrevealed part of the oracle random string.
It is still open whether these last two problems have efficient solutions that do not use this
oracle randomness hammer. This suggests the following question:

Are there problems for which space-efficient adversarially robust
streaming algorithms provably require access to oracle randomness?

In this paper, we prove that for certain parameter regimes, MissingItemFinding
(henceforth, mif) is such a problem. In the problem mif(n, ℓ), the input is a stream ⟨e1, . . . , eℓ⟩
of ℓ integers, not necessarily distinct, with each ei ∈ {1, . . . , n}, where 1 ≤ ℓ ≤ n. The goal is
as follows: having received the ith integer, output a number v in {1, . . . , n}\{e1, . . . , ei}. We
will be mostly interested in the setting ℓ = o(n), so the “trivial” upper bound on the space
complexity of mif(n, ℓ) is O(ℓ log n), achieved by the deterministic algorithm that simply
stores the input stream as is.

A. Chakrabarti and M. Stoeckl 28:3

1.1 Groundwork for Our Results
To state our results about mif, we need to introduce some key terminology. Notice that
mif is a tracking problem: an output is required after reading each input.Thus, we view
streaming algorithms as generalizations of finite state (Moore-type) machines. An algorithm
A has a finite set of states Σ (leading to a space cost of log2 |Σ|), a finite input set I, and a
finite output set O. It has a transition function T : Σ× I ×R → Σ indicating the state to
switch to after receiving an input, plus an output function γ : Σ ×R → O indicating the
output produced upon reaching a state. How the final parameter (in R) of T and γ is used
depends on the type of randomness. We consider four cases, leading to four different models
of streaming computation.

Deterministic. The initial state of the algorithm is a fixed element of Σ, and T and γ

are deterministic (they do not depend on the parameter in R).
Random seed. The initial state is drawn from a distribution D over Σ, and T and γ are
deterministic. This models the situation that all random bits used count towards the
algorithm’s space cost.
Random tape. The initial state is drawn from a distribution D over Σ. The space R
is a sample space; when the algorithm receives an input e ∈ I and is at state σ ∈ Σ, it
chooses a random ρ ∈ R independent of all previous choices and moves to state T (e, σ, ρ).
However, γ is deterministic.This models the situation that the algorithm can make random
decisions at any time, but it cannot remember past random decisions without recording
them (which would add to its space cost).
Random oracle. The initial state is fixed; R is a sample space. A specific R ∈ R is drawn
at the start of the algorithm and stays the same over its lifetime. When the algorithm
is at state σ and receives input e, its next state is T (e, σ, R). The output given at state
σ is γ(σ, R). This models the situation that random bits are essentially “free” to the
algorithm; it can read from a long random string which doesn’t count toward its space
cost and which remains consistent over its lifetime. A random oracle algorithm can be
interpreted as choosing a random deterministic algorithm, indexed by R, from some
family.

These models form a rough hierarchy; they have been presented in (almost) increasing
order of power. Every z-bit (2z-state) deterministic algorithm can be implemented in any
of the random models using z bits of space; the same holds for any z-bit random seed
algorithm. Every z-bit random tape algorithm has a corresponding (z + log ℓ)-bit random
oracle algorithm – the added space cost is because for a random oracle algorithm to emulate
a random tape algorithm, it must have a way to get “fresh” randomness on each turn.1

Streaming algorithms are also classified by the kind of correctness guarantee they provide.
Recall that we focus on “tracking” algorithms [5]; they present an output after reading each
input item and this entire sequence of outputs must be correct. Here are three possible
meanings of the statement “algorithm A is δ-error” (we assume that A handles streams of
length ℓ with elements in I and has outputs in O):

Static setting. For all inputs τ ∈ Iℓ, running A on τ produces incorrect output with
probability ≤ δ.

1 An alternative, which lets one express z-bit random tape algorithms using a z-bit random oracle variant,
is to assume the random oracle algorithm has access to a clock or knows the position in the stream for
free; both are reasonable assumptions in practice.

CCC 2024

28:4 Finding Missing Items Requires Strong Forms of Randomness

Adversarial setting. For all (computationally unbounded) adaptive adversaries α (i.e.,
for all functions α : O⋆ → I),2 running A against α will produce incorrect output with
probability ≤ δ.
Pseudo-deterministic setting. There exists a canonical output function f : I⋆ → O
producing all correct outputs so that, for each τ ∈ Iℓ, A(τ) fails to output f(τ) with
probability ≤ δ.

Algorithms for the static setting are called “classic” streaming algorithms; ones for
the adversarial setting are called “adversarially robust” streaming algorithms. All pseudo-
deterministic algorithms are adversarially robust, and all adversarially robust algorithms are
also classic.

As a consequence of Newman’s theorem [21], any random oracle or random tape algorithm
in the static setting with error δ can be emulated using a random seed algorithm with only ε

increase in error and an additional O(log ℓ + log log |I|+ log 1
εδ) bits of space. However, the

resulting algorithm is non-constructive.

1.2 Our Results
As context for our results, we remind the reader that it’s trivial to solve mif(n, ℓ) in O(ℓ log n)
space deterministically (somewhat better deterministic bounds were obtained in [24]). Moving
to randomized algorithms, [24] gave a space bound of O(log2 n) for ℓ ≤ n/2 in the static
setting, and a bound of Õ(ℓ2/n + 1) 3 in the adversarial setting, using a random oracle. The
immediate takeaway is that, given access to a deep pool of randomness (i.e., an oracle),
mif becomes easy in the static setting for essentially the full range of stream lengths ℓ and
remains easy even against an adversary for lengths ℓ ≤

√
n.

The main results of this paper consist of three new lower bounds and one new upper
bound on the space complexity of mif(n, ℓ). Stating the bounds in their strongest forms
leads to complicated expressions; therefore, we first present some easier-to-read takeaways
from these bounds that carry important conceptual messages. In the lower bounds below,
the error level should be thought of as δ = 1/n2.

▶ Result 1. At ℓ =
√

n, adversarially robust random tape algorithms for mif(n, ℓ) require
Ω(ℓ1/4) bits of space. More generally, for every constant α ∈ (0, 1), there is a constant
β ∈ (0, 1) such that at ℓ = Ω(nα), the space requirement is Ω(ℓβ), in the adversarially robust
random tape setting.

This shows that mif remains hard, even for modest values of ℓ, if we must be robust
while using only a random tape, i.e., if there is a cost to storing random bits we want to reuse
– a very reasonable requirement for a practical algorithm. The above result is an exponential
separation between the random tape and random oracle models.

The random seed model places an even greater restriction on an algorithm: besides
counting towards storage cost, random bits are available only at initialization and not on the
fly. Many actual randomized algorithms, including streaming ones, are structured this way,
making it a natural model to study. We obtain the following result.

▶ Result 2. Adversarially robust random seed algorithms for mif(n, ℓ) require Ω̃(
√

ℓ) bits of
space.

2 By the minimax theorem, it suffices to consider deterministic adversaries.
3 The notations Õ(·) and Ω̃(·) hide factors polylogarithmic in n and ℓ.

A. Chakrabarti and M. Stoeckl 28:5

Table 1 Bounds for the space complexity of mif(n, ℓ), from this and prior work. To keep
expressions simple, these bounds are evaluated at error level δ = 1/n2, when applicable. (†)
indicates that the precise results are stronger.

Setting Type Bound Reference

Static Random seed O((log n)2) if ℓ ≤ n/2 [24]
Adversarial Random oracle O((ℓ2

n + log n) log n) [24]
Ω(ℓ2

n) [24]
Adversarial Random tape O(ℓlogn ℓ(log ℓ)2 + log ℓ · log n) † Theorem 1

Ω(log ℓ
log n ℓ

15
32 logn ℓ) † Theorem 8

Adversarial Random seed O((ℓ2

n +
√

ℓ + log n) log n) [24]a)

Ω(ℓ2

n +
√

ℓ
(log n)3 + ℓ1/5) Theorem 10

Pseudo-
deterministic

Random oracle Ω(ℓ
(log(2n/ℓ))2 + (ℓ log n)1/4) Theorem 16

Static Deterministic Ω(ℓ
log(2n/ℓ) +

√
ℓ) [24]

O(ℓ log ℓ
log n +

√
ℓ log ℓ) [24]

a) The random seed algorithm for the adversarial setting is given in the arXiv version of [24].

Consider the two results above as ℓ decreases from
√

n to Θ(1). The bound in Result 2
stays interesting even when ℓ = no(1), so long as ℓ ≥ (log n)C for a suitable constant C (in
fact, the full version of the result is good for even smaller ℓ). In contrast, the bound in
Result 1 peters out at much larger values of ℓ. There is a very good reason: mif starts to
become “easy,” even under a random-tape restriction, once ℓ decreases to sub-polynomial in
n. Specifically, we obtain the following upper bound.

▶ Result 3. There is an adversarially robust random tape algorithm for mif(n, ℓ) that, in
the regime ℓ = O(2

√
log n), uses O(log ℓ · log n) bits of space.

Notice that at ℓ = Θ(2(log n)1/C), where C ≥ 2 is a constant, the bound in Result 3
is polylogarithmic in ℓ. Combined with the lower bound in Result 2, we have another
exponential separation, between the random seed and random tape models.

The proof of Result 2 uses a reduction, given in prior work [24], that converts a space
lower bound in the pseudo-deterministic setting to a related bound in the random-seed setting.
A pseudo-deterministic algorithm is allowed to use randomness (which, due to Newman’s
theorem, might as well be of the oracle kind) but must, with high probability, map each input
to a fixed output, just as a deterministic algorithm would. This strong property makes the
algorithm adversarially robust, because the adversary has nothing to learn from observing
its outputs. Thanks to the [24] reduction, the main action in the proof of Result 2 is the
following new lower bound we give.

▶ Result 4. Pseudo-deterministic random oracle algorithms for mif(n, ℓ) require Ω̃(ℓ) bits
of space.

These separations rule out the possibility of a way to convert an adversarially robust
random oracle algorithm to use only a random seed or even a random tape, with only minor
(e.g., a polylog(ℓ, n) factor) overhead. In contrast, as we noted earlier, such a conversion is
routine in the static setting, due to Newman’s theorem [21]. The separation between random

CCC 2024

28:6 Finding Missing Items Requires Strong Forms of Randomness

oracle and random tape settings shows that MissingItemFinding is a problem for which
much lower space usage is possible if one’s adversaries are computationally bounded (in
which case a pseudo-random generator can emulate a random oracle.)

Table 1 shows more detailed versions of the above results as well as salient results from
earlier work, summarizing the state of the art for the space complexity of mif(n, ℓ). The
fully detailed versions of our results, showing the dependence of the bounds on the error
probability, appear in later sections of the paper, as indicated in the table.

1.3 Related Work
We briefly survey related work. An influential early work [14] considered adaptive adversaries
for linear sketches. The adversarial setting was formally introduced by [5], who provided
general methods (like sketch-switching) for designing adversarially robust algorithms given
classic streaming algorithms, especially in cases where the problem is to approximate a
real-valued quantity. For some tasks, like F0-estimation, they obtained slightly better upper
bounds by using a random oracle, although later work [26] removed this need. [6] observed
that in sampling-based streaming algorithms, increasing the sample size is often all that is
needed to make an algorithm adversarially robust. [15] described how to use differential
privacy techniques as a more efficient alternative to sketch-switching, and [4] used this as
part of a more efficient adversarially robust algorithm for turnstile F2-estimation.

Most of these papers focus on providing algorithms and general techniques, but there
has been some work on proving adversarially robust lower bounds. [18] described a problem
(of approximating a certain real-valued function) that requires exponentially more space in
the adversarial setting than in the static setting. [8], in a brief comment, observed a similar
separation for a simple problem along the lines of mif. They also proved lower bounds for
adversarially robust coloring algorithms for graph edge-insertion streams. [24] considered the
mif problem as defined here and, among upper and lower bounds in a number of models,
described an adversarially robust algorithm for mif that requires a random oracle; they asked
whether a random oracle is necessary for space-efficient algorithms.

The white-box adversarial setting [1] is similar to the adversarial setting we study, with the
adversary having the additional power of seeing the internal state of the algorithm, including
(if used) the random oracle. [24] proved an Ω(ℓ/polylog(n)) lower bound for mif(n, ℓ) for
random tape algorithms in this setting, suggesting that any more efficient algorithm for mif
must conceal some part of its internal state. Pseudo-deterministic streaming algorithms were
introduced by [12], who gave lower bounds for a few problems. [7, 13] gave lower bounds for
pseudo-deterministic algorithms that approximately count the number of stream elements.
The latter shows they require Ω(log m) space, where m is the stream length; in contrast, in
the static setting, Morris’s counter algorithm4 uses only O(log log m) space.

While it is not posed as a streaming task, the mirror game introduced by [11] is another
problem with conjectured separation between the space needed for different types of ran-
domness. In the mirror game, two players (Alice and Bob) alternately state numbers in the
set {1, . . . , n}, where n is even, without repeating any number, until one player mistakenly
states a number said before (loss) or the set is completed (tie). [11] showed that if Alice has
o(n) bits of memory and plays a deterministic strategy, Bob can always win. Later, [10, 20]
showed that if Alice has access to a random oracle, she can tie-or-win w.h.p. using only

4 Morris’s is a “random tape” algorithm; “random seed” algorithms for counting aren’t better than
deterministic ones.

A. Chakrabarti and M. Stoeckl 28:7

O(polylog(n)) space. A major open question here is how much space Alice needs when
she does not have a random oracle. [19] did not resolve this, but showed that if Alice is
“open-book” (equivalently, that Bob is a white-box adversary and can see her state), then
Alice needs Ω(n) bits of state to tie-or-win.

Assuming access to a random oracle is a reasonable temporary measure when designing
streaming algorithms in the static setting. As noted at the beginning of Section 1, [16]
designed Lp-estimation algorithms using random linear sketch matrices, without regard to the
amount of randomness used, and then described a way to apply Nisan’s PRG [22] to partially
derandomize these algorithms and obtain efficient (random seed) streaming algorithms. In
general, the use of PRGs for linear sketches has some space overhead, which later work
(see [17] as a recent example) has been working to eliminate.

It is important to distinguish the “random oracle” type of streaming algorithm from the
“random oracle model” in cryptography [3], in which one assumes that all agents have access
to the random oracle. [1], when defining white-box adversaries, also assumed that they can
see the same random oracle as the algorithm; and, for one task, obtained a more efficient
algorithm against a computationally bounded white-box adversary, when both have access
to a random oracle, than when neither do. Tight lower bounds are known in neither case.

The power of different types of access to randomness has been studied in computational
complexity. [23] showed that logspace Turing machines with a multiple-access random tape
can (with zero error) decide languages that logspace Turing machines with a read-once
random tape decide only with bounded two-sided error. This type of separation does not
hold for time complexity classes.

For a more detailed history and survey of problems related to MissingItemFinding, we
direct the reader to [24].

2 Organization of This Extended Abstract

What follows is an extended abstract of our paper, which omits formal proofs of our results.
Instead, we give a technical overview of each result, followed by selected details of its proof.
The full paper contains all remaining details and formal proofs.

2.1 Notation
Throughout this paper, log x = log2 x, while ln x = loge x. The set N consists of all
positive integers; [k] := {1, 2, . . . , k}; and [a, b) is a half open interval of real numbers.
For a condition or event E, the symbol 1E takes the value 1 if E occurs and 0 otherwise.
The sequence (stream) obtained by concatenating sequences a and b, in that order, is
denoted a ◦ b. For a set S of elements in a totally ordered universe, sort(S) denotes the
sequence of elements of S in increasing order;

(
S
k

)
is the set of k-element subsets of S; and

seqs(S, k) = {sort(Y) : Y ∈
(

S
k

)
}. We sometimes extend set-theoretic notation to vectors

and sequences; e.g., for y ∈ [n]t, write y ⊆ S to mean that ∀i ∈ [t] : yi ∈ S. For a set X,
△[X] denotes the set of probability distributions over X, while A ∼ X indicates that A is
chosen uniformly at random from X.

2.2 Preliminary Remarks
The proofs of Results 1, 3, and 4 are all significant generalizations of existing proofs from [24]
which handled different (and more tractable) models. The proof of Result 2 consists of
applying a reduction from [24] to the lower bound given by Result 4. As we explain our
techniques, we will summarize the relevant “basic” proofs from [24], which will clarify the
enhancements needed to obtain our results.

CCC 2024

28:8 Finding Missing Items Requires Strong Forms of Randomness

Space complexity lower bounds in streaming models are often proved via communication
complexity. This meta-technique is unavailable to us, because the setup of communication
complexity blurs the distinctions between random seed, random tape, and random oracle
models and our results are all about these distinctions. Instead, to prove Result 1, we
design a suitable strategy for the stream-generating adversary that exploits the algorithm’s
random-tape limitation by learning enough about its internal state. Our adversary uses a
nontrivially recursive construction. To properly appreciate it, it is important to understand
what streaming-algorithmic techniques the adversary must contend with. Therefore, we shall
discuss our upper bound result first.

3 Random Tape Upper Bound (Result 3)

The adversarially robust random tape algorithm for mif(n, ℓ) can be seen as a generalization
of the random oracle and random seed algorithms.

The random oracle algorithm and its adversaries. The random oracle algorithm for
mif(n, ℓ) from [24] has the following structure. It interprets its oracle random string as a
uniformly random sequence L containing ℓ + 1 distinct elements in [n]. As it reads its input,
it keeps track of which elements in L were in the input stream so far (were “covered”). It
reports as its output the first uncovered element of L. Because L comes from the oracle, the
space cost of the algorithm is just the cost of keeping track of the set J of covered positions in
L. We will explain why that can be done using only O((ℓ2/n + 1) log ℓ) space, in expectation.

An adversary for the algorithm only has two reasonable strategies for choosing the next
input. It can “echo” back the current algorithm output to be the next input to the algorithm.
It can also choose the next input to be a value from the set U of values that are neither an
earlier input nor the current output – but because L is chosen uniformly at random, one can
show that the adversary can do no better than picking the next input uniformly at random
from U . (The third strategy, of choosing an old input, has no effect on the algorithm.)
When the algorithm is run against an adversary that chooses inputs using a mixture of
the echo and random strategies, the set J will be structured as the union of a contiguous
interval starting at 1 (corresponding to the positions in L covered by the echo strategy) and
a sparse random set of expected size O(ℓ2/n) (corresponding to positions in L covered by
the random strategy). Together, these parts of J can be encoded using O((ℓ2/n + 1) log ℓ)
bits, in expectation.

Delaying the echo strategy. If we implemented the above random oracle algorithm as a
random seed algorithm, we would need Ω(ℓ) bits of space, just to store the random list L.
But why does L need to have length ℓ + 1? This length is needed for the algorithm to be
resilient to the echo strategy, which covers one new element of L on every step; if L were
shorter, the echo strategy could entirely cover it, making the algorithm run out of possible
values to output. The random seed algorithm for mif(n, ℓ) works by making the echo strategy
less effective, ensuring that multiple inputs are needed for it to cover another element of L.
It does this by partitioning [n] into Θ(ℓ) disjoint subsets (“blocks”) of size Θ(n/ℓ), and then
taking L to be a random list of blocks (rather than a random list of elements of [n]). We
will now say that a block is “covered” if any element of that block was an input. Instead of
outputting the first uncovered element in L, the algorithm will run a deterministic algorithm
for mif inside the block corresponding to the first uncovered block of L, and report outputs
from that; and will only move on to the next uncovered block when the nested algorithm

A. Chakrabarti and M. Stoeckl 28:9

stops. See Algorithm 1 for the details of this design. Because the analogue of the echo
strategy now requires many more inputs to cover a block, we can make the list L shorter.
This change will not make the random strategy much more effective.5 The minimum length
of L is constrained by the O(n/ℓ) block sizes, which limit the number of outputs that the
nested algorithm can make; as a result, one must have L = Ω(ℓ2/n). In the end, after
balancing the length of the list with the cost of the nested algorithm, the optimal list length
for the random seed algorithm will be O(ℓ2/n +

√
ℓ).

Algorithm 1 Example: recursive construction for a random tape mif(n, ℓ) algorithm.

Parameter: t ∈ [Ω(ℓ2/n), ℓ] is the number of parts into which the input stream is split
Initialization:

1: Let k = O(t), s = O(ℓ), and B1, . . . , Bs be a partition of [n] into s equal “blocks”
2: L← uniformly randomly chosen sequence of k distinct elements of [s]
3: J ← ∅, is a subset of [k] ▷ a set marking which blocks of L have been covered
4: c← 1 ▷ the current active block
5: A← instance of algorithm A solving mif(n/s, ⌈ℓ/t⌉)

Update(a ∈ [n]):
6: Let h be the block containing a, and x the rank of a in Bh

7: if h ∈ L then
8: Add j to J , where Lj = h ▷ Mark list element containing h as used
9: if h = Lc then

10: A.Update(x)
11: if A is out of space then ▷ This requires that A.Update() be called ≥ ⌈ℓ/t⌉ times
12: c← least integer which is > c and not in J ▷ This line may abort if J = [k]
13: A← new instance of algorithm A ▷ Using new random bits, if A is randomized

Output → [n]:
14: Let x ∈ [n/s] be the output of A

15: return xth entry of block Bc

Active
block

Inputs: black squares

Variables:
L=[1,2,3,4,5,6]
J={1,2,3,5}
c=3

(using alg
for MIF(5,3))

Parameters:
n=50, l=20
t=4,k=6,s=10

blocks not in L

previous active block

Current output: circle

Figure 1 A diagram illustrating the state of an instance of Algorithm 1 on an example input.
Positions on the horizontal axis correspond to integers in [n]; the set of values in the input stream
({1, 2, 4, 9, 12, 13, . . .}) is marked with black squares; the current output value (15) with a circle.
Outside this example, L need not be contiguous or in sorted order.

The recursive random tape algorithm. The random seed algorithm for mif(n, ℓ) used the
construction of Algorithm 1 to build on top of an “inner” deterministic algorithm.6 To get
an efficient random tape algorithm, we can recursively apply the construction of Algorithm 1

5 The fact that [n] is split into Ω(ℓ) blocks is enough to mitigate the random strategy; with ℓ guesses, the
adversary is unlikely to guess more than a constant fraction of the elements in L.

6 The construction uses randomness in two places: when initializing the random sequence L, and (possibly)
each time the inner algorithm is initialized. For the random seed model, every “inner” initialization

CCC 2024

28:10 Finding Missing Items Requires Strong Forms of Randomness

d − 1 times, for d = O(min(log ℓ, log n/ log ℓ)); at the end of this recursion, we can use a
simple deterministic algorithm for mif. The optimal lengths of the random lists used at each
level of the recursion are determined by balancing the costs of the different recursion levels.
We end up choosing list lengths that all bounded by a quantity which lies between O(ℓ1/d)
and O(ℓ1/(d−1)).

In the extreme case where d = Θ(log ℓ) and the required error level δ is constant, our
recursive algorithm may have a stack of random lists, each of length 2, and every time a
level of the algorithm completes (i.e., all blocks of a list have been used), it will make a new
instance of that level. That is, some large uncovered block will be split into many smaller
blocks, and the algorithm will randomly pick two of them for the new instance’s list. Because
the lists are all short, the algorithm will not need to remember many random bits at a given
time; in exchange, for this regime it needs a very large (n = ℓΩ(d)) number of possible outputs
and will frequently need to sample new random lists.

The final version of our algorithm is given in the full version of the paper. It looks somewhat
different from the recursive construction in Algorithm 1, because we have unraveled the
recursive framing to allow for a simpler error analysis that must only bound the probability
of a single “bad event.” The resulting space bound is:

▶ Theorem 1. There is a family of adversarially robust random tape algorithms, where for
mif(n, ℓ) the corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
2

d(d−1)

⌉
(log ℓ)2 + min(ℓ, log 1

δ) log ℓ

)

bits of space, where d = max
(

2, min
(
⌈log ℓ⌉,

⌊
2 log(n/4)

log(16ℓ)

⌋))
. At δ = 1/poly(n) this space

bound is O(ℓlogn ℓ(log ℓ)2 + log ℓ log n).

4 Random Tape Lower Bound (Result 1)

The AVOID problem. At the core of many of the mif lower bounds is the SubsetAvoidance
communication problem, introduced in [8]. Here we have two players, Alice and Bob, and
a known universe [m]: Alice has a set A ⊆ [m] of size a, and should send a message (as
short as possible) to Bob, who should use the message to output a set B ⊆ [m] of size b

which is disjoint from A. Henceforth, we’ll call this problem avoid(m, a, b). [8] showed that
both deterministic and constant-error randomized one-way protocols for this problem require
Ω(ab/m) bits of communication. An adversarially robust z-space algorithm for mif(m, a + b)
can be used as a subroutine to implement a z-bit one-way protocol for avoid(m, a, b), thereby
proving z = Ω(ab/m). This immediately gives us an Ω(ℓ2/n) space lower bound for mif(n, ℓ),
which, as we have seen, is near-optimal in the robust, random oracle setting.

▶ Lemma 2 (Adversarially robust random oracle lower bound, from [24]). Any random oracle
(or random seed) algorithm which solves mif(n, ℓ) in the adversarial setting with total error
≤ δ requires Ω(ℓ2/n + log(1− δ)) bits of space.

The random tape lower bound. To prove stronger lower bounds that exploit the random
tape limitation of the algorithm, we need a more sophisticated use of avoid. Fix an
adversarially robust, random tape, z-space algorithm A for mif(n, ℓ). Roughly speaking,

would require a corresponding set of random bits, which are counted toward the space cost of the
algorithm. Using a deterministic inner algorithm avoids this cost.

A. Chakrabarti and M. Stoeckl 28:11

while the random oracle argument used A to produce an avoid protocol at the particular
scale a = b = ℓ, for the fixed universe [n], our random tape argument will “probe” A in
a recursive fashion – reminiscent of the recursion in our random tape upper bound – to
identify a suitable scale and sub-universe at which an avoid protocol can be produced. This
probing will itself invoke the avoid lower bound to say that if an avoid(m, a, b) protocol is
built out of a z-space streaming algorithm where z ≪ a, then B must be small, with size
b = O((z/a)m).

We will focus on the regime where δ = O(1/n). This error level requires a measure of
structure from the algorithm: it cannot just pick a random output each step, because that
would risk colliding with an earlier input with ≥ 1/n probability. Our recursive argument
works by writing z, the space usage of A, as a function of a space lower bound for mif(w, t),
where w = Θ(zn/ℓ) and t = Θ(n/z). For small enough z, t2/w ≫ ℓ2/n, so by repeating
this reduction step a few times we can increase the ratio of the stream length to the input
domain size until we can apply the simple Ω(ℓ̂2/n̂) lower bound for mif(n̂, ℓ̂). With the right
number of reduction steps, one obtains the lower bound formula of Theorem 8, of which
Result 1 is a special case.

The reduction. The reduction step argues that the mif(n, ℓ) algorithm A “contains” a
z-space algorithm for mif(w, t), which, on being given any t = O(ℓ/z) items in a certain
sub-universe W ⊆ [n] of size w = O(zn/ℓ), will repeatedly produce missing items from that
sub-universe. That such a set W exists can be seen as a consequence of the lower bound for
avoid: if A receives a random sorted subset S of ℓ/2 elements in [n], then because there
are

(
n

ℓ/2
)

possible subsets, most of the 2z states of A will need to be “good” for Ω(2−z
(

n
ℓ/2
)
)

different subsets. In particular, upon reaching a given state σ, for A to solve mif with error
probability O(1/n), its outputs henceforth – for the next ℓ/2 items in the stream – must
avoid most of the sets of inputs that could have led it to σ. We will prove by a counting
argument that after the random sequence S is sent, each state σ has an associated set Hσ

of possible “safe” outputs which are unlikely to collide with the inputs from S, and that
|Hσ| is typically O(zn/ℓ). Thus, for a typical state σ, starting A from σ causes its next
ℓ/2 outputs to be inside Hσ, w.h.p.; in other words, A contains a “sub-algorithm” solving
mif(O(zn/ℓ), ℓ/2) on the set W = Hσ.

However, even though there exists a set W on which A will concentrate its outputs, it
may not be possible for an adversary to find it. In particular, had A been a random oracle
algorithm, each setting of the random string might lead to a different value for W , making
W practically unguessable. But A is in fact a random tape algorithm, so we can execute the
following strategy.

In our core lemma, Lemma 5, we design an adversary (Adversary 2) that can with Ω(1)
probability identify a set W of size Θ(zn/ℓ) for which the next Θ(ℓ/z) outputs of A will
be contained in W , with Ω(1) probability, no matter what inputs the adversary sends next.
In other words, our adversary will identify a part of the stream and a sub-universe of [n]
where the algorithm solves mif(Θ(zn/ℓ), Θ(ℓ/z)). The general strategy is to use an iterative
search based on a win-win argument. First, the adversary will send a stream comprising a
random subset S of size ℓ/2 to A, to ensure that henceforth its outputs are contained in
some (unknown) set Hρ, where ρ is the (unknown) state reached by A just after processing
S. Because A has ≤ 2z states, from the adversary’s perspective there are ≤ 2z possible
candidates for Hρ. Then, the adversary conceptually divides the rest of the stream to be fed
to A into O(z) phases, each consisting of t = O(ℓ/z) stream items. In each phase, one of the
following things happens.

CCC 2024

28:12 Finding Missing Items Requires Strong Forms of Randomness

1. There exists a “sub-adversary” (function to choose the t items constituting the phase, one
by one) which will probably make A output an item that rules out a constant fraction of
the candidate values for Hρ (output i rules out set J if i /∈ J). The adversary then runs
this sub-adversary.

2. No matter how the adversary picks the t inputs for this phase, there will be a set
W (roughly, an “average” of the remaining candidate sets) that probably contains the
corresponding t outputs of A.

As the set of candidate sets can only shrink by a constant fraction O(z) times, the first
case can only happen O(z) times, with high probability. Thus, eventually, the adversary
will identify the set W that it seeks. Once it has done so, it will run the optimal adversary
for mif(Θ(zn/ℓ), Θ(ℓ/z)). This essentially reduces the lower bound for mif(ℓ, n) to that for
mif(Θ(zn/ℓ), Θ(ℓ/z)).

4.1 Technical Details
Types of error. One subtlety is that we will need to carefully account for the probability
that A, over the next Θ(ℓ/z) stream items, produces outputs outside W . This will require us
to distinguish between two types of “errors” for the algorithm over those next Θ(ℓ/z) items:
an O(1) chance of producing an output outside W , and a smaller chance of making a mistake
per the definition of mif, i.e., outputting an item that was not missing (cf. Definition 3).

▶ Definition 3. An algorithm A for mif(n, ℓ) can fail in either of two ways. It may make an
incorrect output, or mistake, if outputs an element that was already in the input stream. It
may also abort, by outputting a special value ⊥ (or some other value which is not a possible
input for mif).

This distinction is useful because, if we take an algorithm for mif(n, ℓ), conditioned on
producing some initial transcript of outputs in response to an input sequence, we may obtain
an algorithm for mif(|W |, t) for some t ≤ ℓ and W ⊆ [n]; the probability that the algorithm
“aborts” (produces an output outside of W) can be much larger than the probability that
the algorithm makes an incorrect output (output in W that collides with an earlier input).
In the following proofs the algorithm aborting will be bad for the adversary, and making a
mistake will be good.

For integers n, ℓ, z with 1 ≤ ℓ < n, and γ ∈ [0, 1], let Algs(n, ℓ, z, γ) be the set of all
z-bit random tape algorithms for mif(n, ℓ) which on any adversary abort with probability
≤ γ. Define ∆(n, ℓ, γ, z) := min{δ(A, n, ℓ) : A ∈ Algs(n, ℓ, z, γ)}, where δ(A, n, ℓ) is the
maximum probability, over all possible adversaries, that A makes an incorrect output. As a
consequence of the definition, ∆(n, ℓ, γ, z) is non-increasing in γ and z.

Using this new notation, the Ω(ℓ2/n) lower bound for adversarially robust streaming
algorithms from [24] (cf. Lemma 2) tells us:

▶ Lemma 4. Random tape algorithms for mif(n, ℓ) that do not abort often have high error
if they use too little space: concretely,

∆(n, ℓ, γ, z) ≥ 1
41z≤ℓ2/(16n ln 2)1γ≤1/2 . (1)

Induction lemma. Our proof of Result 1 is inductive, with the above lemma being the base
case. The induction step consists of a reduction, using an adaptive adversary described in
Adversary 2 to prove a lower bound on the mistake probability. The next lemma formalizes
the induction step.

A. Chakrabarti and M. Stoeckl 28:13

▶ Lemma 5. Let 1 ≤ ℓ < n and z be integers, and γ ∈ [0, 1
2]. Let k be an integer parameter

for which z ≥ 2 log(32k). Define, matching definitions in Adversary 2,

w = 2
⌊
32zn

ℓ

⌋
and t =

⌊
ℓ

64zk

⌋
.

If t < w, then there is a distribution µ ∈ △[0, 1] for which EG∼µG ≤ γ + 1
4k and

∆(n, ℓ, γ, z) ≥ min
(

ℓ

27nk
,
(1

2 −
1
4k

)
EG∼µ∆(w, t, G, z)

)
. (2)

The adversary. The adversary (Adversary 2) used for Lemma 5 is rather complicated, and
requires some additional definitions.

▶ Definition 6. Say A is a random tape algorithm whose states are given by the set Σ, and
Q is a subset of Σ, where each state in Q has an associated set Hσ. A sequence y in [n]t is
said to be divisive for Q if |{σ ∈ Q : y ⊆ Hσ}| ≤ 1

2 |Q|.
Say Υ is a t-length deterministic adversary. (That is, a function which maps sequences

in [n]⋆ of length between 0 and t− 1, inclusive, to values in [n].) For any state σ ∈ Σ of A,
let G(σ, Υ) be the random variable in [n]t which gives the output if we run A, starting at
state σ, against the adversary Υ. (If after processing a few inputs, the algorithm has output
sequence v ∈ [n]⋆, its next input will be Υ(v).) We define an adversary to be α-splitting for
Q against a distribution D ∈ △[Σ] if, when we choose a random state S from D,

Pr[G(S, Υ) is divisive for Q] ≥ α .

When we run Adversary 2 against an algorithm A, let ρ be the state of A after v is sent.
The proof of Lemma 5 is long and requires that we consider the probabilities of the following
events:

Brepeat occurs if A produces an output in [n] \Hρ

Bbig occurs if the state ρ has |Hρ| > 1
2 w

Bincomplete occurs if the adversary aborts without executing Line 18
Babort occurs if A aborts before the adversary reaches Line 18
Rabort occurs if A “aborts” (either for real, or by making an output outside W ′) while
the adversary is executing Line 18
Rerror occurs if A produces an incorrect output while the adversary is executing Line 18

Calculations. By repeatedly applying Lemma 5, we obtain the following:

▶ Lemma 7. Let 1 ≤ ℓ < n. For any integer k ≥ 1, say that z is an integer satisfying
z ≤ 1

64k ℓ1/k. Then:

∆(n, ℓ, 0, z) > min
(ℓ

210nk
,

1
2k+51z≤L

)
where L = 1

64k

(
ℓk+1

n

) 2
k2+3k−2

. (3)

Consequently, algorithms for MIF with ≤ min(ℓ
210nk , 2−(k+5)) error require > L bits of space.

Lemma 7 implies a lower bound on z for z-bit algorithms with < ℓ
210nk error probability.

Choosing the value of k which maximizes the lower bound on z, and doing some additional
calculations, gives the following theorem:

6 For any sequence v ∈ seqs([n], ⌈ℓ/2⌉), P (v)(σ) = Pr[the state of A just after receiving v is σ]

CCC 2024

28:14 Finding Missing Items Requires Strong Forms of Randomness

Adversary 2 An adversary for a random tape mif(n, ℓ) algorithm, with parameter k.

Let: w = 2
⌊
32 zn

ℓ

⌋
, hmax = 32zk, and t =

⌊
ℓ

2hmax

⌋
Adversary

1: v ← a uniformly random sequence in seqs([n], ⌈ℓ/2⌉).
2: send v to the algorithm
3: Let G be a distribution over functions of type seqs([n], ⌈ℓ/2⌉)→ Σ, so that when F ∼ G,

the distribution of F (v) equals the distribution of current algorithm states
4: Compute, for all σ ∈ Σ,

Hσ :=
{

i ∈ [n] : Pr
X∼seqs([n],⌈ℓ/2⌉),F ∼G

[i ∈ X | F (X) = σ] ≤ ⌈ℓ/2⌉
4n

}
5: Let Q0 = {σ ∈ Σ : |Hσ| ≤ 1

2 w} ▷ Have a ≥ 1− 1/16k chance current alg. state is in Q0
6: for h in 1, . . . , hmax do
7: Let D be the distribution over alg. states conditioned on the transcript so far
8: if ∃ a 1/(8k)-splitting t-length deterministic. adversary Υ for Qh−1 given D then
9: run Υ against the algorithm, and let y ∈ [n]t be the output

10: Qh ← {σ ∈ Qh−1 : y ⊆ Hσ} ▷ Have a ≥ 1/(8k) chance that |Qh| ≤ 1
2 |Qh−1|

11: if Qh = ∅ then abort
12: else
13: W ← {i ∈ [n] : |{σ ∈ Qh−1 : i ∈ Hσ}| ≥ 1

2 |Qh−1|}.
14: Let W ′ ←W plus w − |W | padding elements
15: Define sub-algorithm B to behave like the given algorithm, conditioned on the

exact transcript of inputs and outputs made so far
16: Let Ξ be an adversary maximizing the probability that B makes an incorrect

output. (This can be computed using brute-force search.)
17: ▷ If B produces an output outside of W ′, we interpret this as B having aborted,

not as having made a mistake
18: run adversary Ξ, sending t inputs in W ′

19: return
20: abort

▶ Theorem 8. Random tape δ-error adversarially robust algorithms for mif(n, ℓ) require

Ω
(

max
k∈N

1
k

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
log ℓ

log n
ℓ

15
32 logn ℓ)

)

bits of space, for δ ≤ 1
210n .

▶ Remark. The adversary of Adversary 2 runs in doubly exponential time, and requires
knowledge of the algorithm. The former condition cannot be improved by too much: if
one-way functions exist, one could implement the random oracle algorithm for mif(n, ℓ)
from [24] using a pseudo-random generator that fools all polynomial-time adversaries. One
can also prove by minimax theorem that universal adversaries for (random tape or otherwise)
mif(n, ℓ) algorithms can not be used to prove any stronger lower bounds than the one for
random oracle algorithms.

A. Chakrabarti and M. Stoeckl 28:15

5 Random Seed Lower Bound (Result 2)

The adversary constructed above for our random tape lower bound can be seen as a significant
generalization of the adversary used by [24] to prove a random seed lower bound conditioned
on a (then conjectured) pseudo-deterministic lower bound. Indeed, [24]’s adversary against
a z-space algorithm A also proceeds in a number of phases, each of length t = Θ(ℓ/z). In
each step, either (1) it can learn some new information about the initial state of A (the
“random seed”), by sending A a specific stream of inputs in [n]t, looking at the resulting
output, and ruling out the seed values that could not have produced the output; or (2) it
cannot learn much information, because for any possible input stream in [n]t, A has an
output that it produces with constant probability. Each time the adversary follows the
case (1), a constant fraction of the ≤ 2z seed values are ruled out. Therefore, either within
O(z) steps the adversary will exactly learn the seed, at which point it can perfectly predict
A’s behavior, which lands us in case (2); or A will not reveal much information about
the seed in a given phase, which also puts us in case (2). Because case (2) means that A
behaves pseudo-deterministically, A must use enough space to pseudo-deterministically solve
mif(n, t).

▶ Theorem 9 (from [24]). Let SPD
1/3(n, ℓ) give a space lower bound for a pseudo-deterministic

algorithm for mif(n, ℓ) with error ≤ 1/3. Then an adversarially robust random seed algorithm
with error δ ≤ 1

6 , if it uses z bits of space, must have z ≥ SPD
1/3(n,

⌊
ℓ

2z+2

⌋
).

Thus, Result 2 follows as a corollary of Result 4, which we discuss next. More specifically,
Theorem 10 follows by combining Theorem 9 with the pseudo-deterministic lower bound,
and also applying Lemma 2, which is stronger in the regime ℓ ≥ n2/3.

▶ Theorem 10. Adversarially robust random seed algorithms for mif(n, ℓ) with error ≤ 1
6

require space:

Ω
(

ℓ2

n
+
√

ℓ/(log n)3 + ℓ1/5
)

.

6 Pseudo-Deterministic Lower Bound (Result 4)

This proof generalizes [24]’s space lower bound for deterministic mif(n, ℓ) algorithms, which
we briefly explain. Fix a deterministic mif(n, ℓ) algorithm A that uses z bits of space. For
each stream τ with length |τ | ≤ ℓ, define Fτ to be the set of all possible outputs of A
corresponding to length-ℓ streams that have τ as a prefix. Let ρ be a stream such that
|τ |+ |ρ| ≤ ℓ. Then, by definition, Fτ◦ρ ⊆ Fτ ; whereas, by the correctness of A, Fτ◦ρ ∩ ρ = ∅.
Now consider the avoid problem over the universe Fτ , for a fixed τ : if Alice gets ρ ⊆ Fτ as
an input, she could send Bob the state σ of A upon processing τ ◦ ρ, whereupon Bob could
determine Fτ◦ρ (by repeatedly running A’s state machine starting at σ), which would be a
valid output.

Let us restrict this scenario to suffixes ρ of some fixed length t; we’ll soon determine a
useful value for t. By the above observations, were it the case that

∃τ ∈ [n]≤ℓ−t ∀ρ ∈ [n]t : |Fτ◦ρ| ≥ 1
2 |Fτ | , (4)

we would have a z-bit protocol for avoid(|Fτ |, t, 1
2 |Fτ |). By [8]’s lower bound for avoid,

we would have z ≥ Ct for a universal constant C. On the other hand, if the opposite were
true, i.e.,

CCC 2024

28:16 Finding Missing Items Requires Strong Forms of Randomness

∀τ ∈ [n]≤ℓ−t ∃ρ ∈ [n]t : |Fτ◦ρ| < 1
2 |Fτ | , (5)

then, starting from the empty stream ϵ, we could add a sequence of length-ℓ suffixes ρ1, . . . , ρd

(where d ≤ ⌊ℓ/t⌋) such that |Fρ1◦···◦ρs
| < 2−d|Fϵ| ≤ 2−dn. Since A must produce some output

at time ℓ, this would be a contradiction for d ≥ log n. Thus, for a setting of t = Θ(ℓ/ log n),
situation (4) must occur, implying a lower bound of z = Ω(ℓ/ log n).

Relaxing “all outputs” to “common outputs”. Examining the above argument closely
shows where it fails for pseudo-deterministic algorithms. In constructing an avoid protocol
above, we needed the key property that Fτ can be determined from just the state of A upon
processing τ . For pseudo-deterministic algorithms, if we simply define F ′

τ to be “the set of all
canonical outputs at time ℓ for continuations of τ ,” we cannot carry out the above proof plan
because this F ′

τ cannot be computed reliably from a single state: given a random state σ

associated to τ , on average a δ fraction of the outputs might be incorrect and have arbitrary
values; even a single bad output could corrupt the union calculation!

To work around this issue, we replace Fτ with a more elaborate recursive procedure
FindCommonOutputs, (or fco for short) that computes the “most common outputs” at
time ℓ for a certain distribution over continuations of τ . To explain this, let us imagine
positions 1 through ℓ in the input stream as being divided into d contiguous “time intervals.”
In the deterministic proof, these intervals were of length t each. Given a stream τ that
occupies the first d− k of these intervals, Fτ can be thought of as the output of a procedure
FindAllOutputs (or fao for short) where fao(A, τ, k) operates as follows: for each setting
ρ of the (d− k + 1)th time interval, call fao(A, τ ◦ ρ, k − 1) and return the union of the sets
so obtained. In the base case, fao(A, τ, 0) takes a stream τ ∈ [n]ℓ and returns the singleton
set {A(τ)}. The deterministic argument amounts to showing that, with interval lengths
t = Θ(z), the set fao(A, τ, k) has cardinality ≥ 2k; since fao(A, ϵ, d) has cardinality ≤ n,
this bounds d ≤ log n, which lower-bounds z.

For our pseudo-deterministic setting, we use time intervals as above and we design
an analogous procedure fco(B, C, τ, k) that operates on a function B : [n]ℓ → [n] (roughly
corresponding to a mif algorithm), a matrix C of random thresholds,7 and a stream τ of length
≤ ℓ that occupies the first d− k time intervals. The recursive structure of fco(B, C, τ, k) is
similar to fao, but crucially, the sets computed by the recursive calls fco(B, C, τ ◦ ρ, k − 1)
are used differently. Instead of simply returning their union, we use these sets to collect
statistics about the outputs in [n] and return only those that are sufficiently common. The
thresholds in C control the meaning of “sufficiently common.”

The function B provided to fco can be either the canonical output function Π of the
given pseudo-deterministic algorithm B or a deterministic algorithm A ∼ B obtained by
fixing the random coins of B. We will show that:

With high probability over C and the randomness of B, fco will produce the same
outputs on Π and B. In other words, fco is robust to noise (i.e., to algorithm errors).
When applied to the canonical algorithm, the cardinalities of the sets returned by fco will
grow exponentially with k. Equivalently, similar to |Fτ | from the deterministic proof, the
cardinality of fco(B, C, τ, k) will shrink exponentially as the length |τ | grows. Ultimately,
this is proven by implementing avoid using fco on the actual algorithm as a subroutine.
Critically, this implementation uses the fact that the recursive calls to fco w.h.p. produce
the same output on Π and B.

7 The use of random thresholds is a standard trick for robustly computing quantities in the presence of
noise.

A. Chakrabarti and M. Stoeckl 28:17

The argument can be carried out with all but one of the d time intervals being of length
≈ Θ(z). If z were too small, d would be large enough that for the empty stream prefix
we would have |fco(B, C, ϵ, d)| > n, which contradicts fco(. . .) ⊆ [n]; this lets us derive
a lower bound on z.

Error amplification and the case n ≫ ℓ. One technical issue that arises is that the
correctness of fco requires B’s error probability to be as small as 1/nΩ(log n). Fortunately,
even if the original error probability was 1/3, we can reduce it to the required level since
pseudo-deterministic algorithms allow efficient error reduction by independent repetition. A
second technical point is that a z-space pseudo-deterministic algorithm can be shown to have
only O(2z) possible outputs; so if n≫ ℓ, we can sometimes obtain a stronger lower bound
by pretending that n is actually O(2z). This is formalized by a simple encoding argument.

6.1 Technical Details
Pseudocode. Pseudocode for fco is given in Procedure 3. The procedure is parameterized
by the interval lengths td, . . . , t1, the set S of all possible canonical outputs, and a series of
output sizes wd, . . . , w1, where wi = 2i−1(t1 + 1).

Procedure 3 The procedure to compute a set for Lemma 11.

Let t1, . . . , td, w1, . . . , wd be integer parameters, and S the set of valid outputs

FindCommonOutputs(B, C, x, k) ▷ abbreviated as fco(B, C, x, k)
1: ▷ Inputs: function B : [n]ℓ → [n], matrix C ∈ [1, 2)d×N, stream prefix x ∈ [n]tk+···+t1

2: ▷ Output: a subset of S of size wk

3: if k = 1 then
4: e0 ← B(x ◦ ⟨1, 1, . . . , 1⟩)
5: for i in 1, . . . , t1 do
6: ei ← B(x ◦ ⟨e0, . . . , ei−1, 1, . . . , 1⟩)
7: if e0, . . . , et1 are all distinct then
8: return {e0, e1, . . . , et1} ▷ identify w1 distinct possible outputs
9: return arbitrary subset of S of size w1 (failure)

10: else
11: for each y ∈ seqs([n], tk) do
12: Ty ← FindCommonOutputs(B, C, x ◦ y, k − 1) ▷ note |Ty| = wk−1

13: Q0 ← T⟨1,2,...,tk⟩
14: for h in 1, 2, 3, 4 do
15: ▷ gather statistics and find common elements among the sets Ty

16: for each j ∈ S do
17: f

(h)
j ← |{y ∈ seqs(Qh−1, tk) : j ∈ Ty}| ▷ count frequencies

18: θ ← Ck,hwk−1/(16|S|) ▷ set random threshold
19: Ph ←

{
j ∈ S : f

(h)
j ≥ θ

(|Qh−1|
tk

)}
▷ identify “sufficiently common” elements

20: Qh ← Qh−1 ∪ Ph

21: if |Qh| ≥ wk then
22: return the wk smallest elements in Qh

23: return arbitrary subset of S of size wk (failure)

CCC 2024

28:18 Finding Missing Items Requires Strong Forms of Randomness

Central lemma. For a series of error probabilities with 1 > εd ≫ εd−1 . . .≫ ε1 ≈ 1/nΩ(d),
we prove, by induction, the following lemma. It asserts that the set of common outputs is
likely the same for the canonical function Π as it is for a random draw A ∼ B. It also asserts
two other key properties of fco. The lemma can be thought of as a “proof of correctness” of
fco.

▶ Lemma 11. Let k ∈ [d] and x ∈ [n]td+···+tk+1 . Then fco satisfies the following properties.
1. PrA∼B,C∼[1,2)d×N [fco(A, C, x, k) = fco(Π, C, x, k)] ≥ 1− εk.
2. For all C ∈ [1, 2)d, the set fco(Π, C, x, k) is disjoint from x and a subset of S.
3. For all A : [n]ℓ → [n] and C ∈ [1, 2)d, fco(A, C, x, k) outputs a set of size wk.

Its proof is split over a number of helper lemmas:

▶ Lemma 12. Lemma 11 holds for k = 1.

▶ Lemma 13. Let x ∈ [n]td+···+tk+1 . When computing fco(Π, C, x, k), in the hth loop
iteration, if |Qh−1| < wk, then |Ph \ Qh−1| ≥

⌈ 1
4 wk−1

⌉
. Consequently, the procedure will

return using Line 22, not Line 23.

▶ Lemma 14. For k > 1, x ∈ [n]td+···+tk+1 , fco(Π, C, x, k) is disjoint from x and a subset
of S; and for all B, C, x, k, fco(B, C, x, k) outputs a set of size wk.

▶ Lemma 15. For k > 1, and all x ∈ [n]td+···+tk+1 ,

Pr
A∼B,C

[fco(A, C, x, k) ̸= fco(Π, C, x, k)] ≤ εk .

Using the central lemma. A consequence of Lemma 11 is that fco(Π, C, d) will output a
set of size wd; this gives a lower bound on n. Solving for a lower bound on z gives:

▶ Theorem 16. Pseudo-deterministic δ-error random oracle algorithms for mif(n, ℓ) require

Ω
(

min
(

ℓ

log 2n
ℓ

+
√

ℓ,
ℓ log 1

2δ

(log 2n
ℓ)2 log n

+
(

ℓ log 1
2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/poly(n) and ℓ = Ω(log n), this is:

Ω
(

ℓ

(log 2n
ℓ)2 + (ℓ log n)1/4

)
.

▶ Remark. For δ ≤ 2−ℓ, Theorem 16 reproduces the deterministic algorithm space lower
bound for mif(n, ℓ) from [24] within a constant factor.

References
1 Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P. Woodruff,

and Samson Zhou. The white-box adversarial data stream model. In Proc. 41st ACM
Symposium on Principles of Database Systems, pages 15–27, 2022. doi:10.1145/3517804.
3526228.

2 Sepehr Assadi, Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Coloring in graph
streams via deterministic and adversarially robust algorithms. In Proc. 42nd ACM Symposium
on Principles of Database Systems, pages 141–153, 2023. doi:10.1145/3584372.3588681.

3 Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing
efficient protocols. In Proc. 1st ACM Conference on Computer and Communications Security,
pages 62–73, 1993. doi:10.1145/168588.168596.

https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3584372.3588681
https://doi.org/10.1145/168588.168596

A. Chakrabarti and M. Stoeckl 28:19

4 Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming via
dense-sparse trade-offs. In Symposium on Simplicity in Algorithms (SOSA), pages 214–227,
2022. doi:10.1137/1.9781611977066.15.

5 Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. In Proc. 39th ACM Symposium on Principles of
Database Systems, pages 63–80, 2020. doi:10.1145/3375395.3387658.

6 Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proc.
39th ACM Symposium on Principles of Database Systems, pages 49–62. ACM, 2020. doi:
10.1145/3375395.3387643.

7 Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir. Lower bounds
for pseudo-deterministic counting in a stream. arXiv preprint arXiv:2303.16287, 2023. doi:
10.48550/arXiv.2303.16287.

8 Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for
graph streams. In Proc. 13th Conference on Innovations in Theoretical Computer Science,
pages 37:1–37:23, 2022. doi:10.4230/LIPIcs.ITCS.2022.37.

9 Amit Chakrabarti and Manuel Stoeckl. Finding missing items requires strong forms of
randomness. arXiv preprint, 2024. arXiv:2310.03634.

10 Uriel Feige. A randomized strategy in the mirror game. arXiv preprint, 2019. doi:10.48550/
arXiv.1901.07809.

11 Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc.
10th Conference on Innovations in Theoretical Computer Science, pages 36:1–36:14, 2018.
doi:10.4230/LIPIcs.ITCS.2019.36.

12 Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
Deterministic Streaming. In Proc. 20th Conference on Innovations in Theoretical Computer
Science, volume 151, pages 79:1–79:25, 2020. doi:10.4230/LIPIcs.ITCS.2020.79.

13 Ofer Grossman, Meghal Gupta, and Mark Sellke. Tight space lower bound for pseudo-
deterministic approximate counting. arXiv preprint, 2023. doi:10.48550/arXiv.2304.01438.

14 Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs?
In Proc. 45th Annual ACM Symposium on the Theory of Computing, pages 121–130, 2013.
doi:10.1145/2488608.2488624.

15 Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer. Adversar-
ially robust streaming algorithms via differential privacy. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL: https://proceedings.neurips.cc/
paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html.

16 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. J. ACM, 53(3):307–323, 2006. doi:10.1145/1147954.1147955.

17 Rajesh Jayaram and David P Woodruff. Towards optimal moment estimation in streaming
and distributed models. ACM Trans. Alg., 19(3):1–35, 2023. doi:10.1145/3596494.

18 Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming
from oblivious streaming using the bounded storage model. In Advances in Cryptology -
CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual
Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture Notes in Computer
Science, pages 94–121. Springer, 2021. doi:10.1007/978-3-030-84252-9_4.

19 Roey Magen and Moni Naor. Mirror games against an open book player. In 11th International
Conference on Fun with Algorithms (FUN 2022), volume 226, pages 20:1–20:12, 2022. doi:
10.4230/LIPIcs.FUN.2022.20.

20 Boaz Menuhin and Moni Naor. Keep that card in mind: Card guessing with limited memory.
In Proc. 13th Conference on Innovations in Theoretical Computer Science, pages 107:1–107:28,
2022. doi:10.4230/LIPIcs.ITCS.2022.107.

21 Ilan Newman. Private vs. common random bits in communication complexity. Inform. Process.
Lett., 39(2):67–71, 1991. doi:10.1016/0020-0190(91)90157-D.

CCC 2024

https://doi.org/10.1137/1.9781611977066.15
https://doi.org/10.1145/3375395.3387658
https://doi.org/10.1145/3375395.3387643
https://doi.org/10.1145/3375395.3387643
https://doi.org/10.48550/arXiv.2303.16287
https://doi.org/10.48550/arXiv.2303.16287
https://doi.org/10.4230/LIPIcs.ITCS.2022.37
https://arxiv.org/abs/2310.03634
https://doi.org/10.48550/arXiv.1901.07809
https://doi.org/10.48550/arXiv.1901.07809
https://doi.org/10.4230/LIPIcs.ITCS.2019.36
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.48550/arXiv.2304.01438
https://doi.org/10.1145/2488608.2488624
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0172d289da48c48de8c5ebf3de9f7ee1-Abstract.html
https://doi.org/10.1145/1147954.1147955
https://doi.org/10.1145/3596494
https://doi.org/10.1007/978-3-030-84252-9_4
https://doi.org/10.4230/LIPIcs.FUN.2022.20
https://doi.org/10.4230/LIPIcs.FUN.2022.20
https://doi.org/10.4230/LIPIcs.ITCS.2022.107
https://doi.org/10.1016/0020-0190(91)90157-D

28:20 Finding Missing Items Requires Strong Forms of Randomness

22 Noam Nisan. Pseudorandom generators for space-bounded computation. In Proc. 22nd Annual
ACM Symposium on the Theory of Computing, pages 204–212, 1990. doi:10.1145/100216.
100242.

23 Noam Nisan. On read once vs. multiple access to randomness in logspace. Theoretical Computer
Science, 107(1):135–144, 1993. doi:10.1016/0304-3975(93)90258-U.

24 Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In Proc. 34th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 793–818, 2023. Full version at
arXiv:2211.05170v1. doi:10.1137/1.9781611977554.ch32.

25 Manuel Stoeckl. On adaptivity and randomness for streaming algorithms. PhD thesis, Dart-
mouth College, 2024. URL: https://digitalcommons.dartmouth.edu/dissertations/229/.

26 David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams and sliding
windows via difference estimators. In Proc. 62nd Annual IEEE Symposium on Foundations of
Computer Science, pages 1183–1196, 2022. doi:10.1109/FOCS52979.2021.00116.

https://doi.org/10.1145/100216.100242
https://doi.org/10.1145/100216.100242
https://doi.org/10.1016/0304-3975(93)90258-U
https://arxiv.org/abs/2211.05170v1
https://doi.org/10.1137/1.9781611977554.ch32
https://digitalcommons.dartmouth.edu/dissertations/229/
https://doi.org/10.1109/FOCS52979.2021.00116

Exact Search-To-Decision Reductions for
Time-Bounded Kolmogorov Complexity
Shuichi Hirahara #

National Institute of Informatics, Tokyo, Japan

Valentine Kabanets #

Simon Fraser University, Burnaby, Canada

Zhenjian Lu #

University of Warwick, UK

Igor C. Oliveira #

University of Warwick, UK

Abstract
A search-to-decision reduction is a procedure that allows one to find a solution to a problem from
the mere ability to decide when a solution exists. The existence of a search-to-decision reduction for
time-bounded Kolmogorov complexity, i.e., the problem of checking if a string x can be generated
by a t-time bounded program of description length s, is a long-standing open problem that dates
back to the 1960s.

In this work, we obtain new average-case and worst-case search-to-decision reductions for the
complexity measure Kt and its randomized analogue rKt:
1. (Conditional Errorless and Error-Prone Reductions for Kt) Under the assumption that E requires

exponential size circuits, we design polynomial-time average-case search-to-decision reductions
for Kt in both errorless and error-prone settings.
In fact, under the easiness of deciding Kt under the uniform distribution, we obtain a search
algorithm for any given polynomial-time samplable distribution. In the error-prone reduction,
the search algorithm works in the more general setting of conditional Kt complexity, i.e., it finds
a minimum length t-time bound program for generating x given a string y.

2. (Unconditional Errorless Reduction for rKt) We obtain an unconditional polynomial-time average-
case search-to-decision reduction for rKt in the errorless setting. Similarly to the results described
above, we obtain a search algorithm for each polynomial-time samplable distribution, assuming
the existence of a decision algorithm under the uniform distribution.
To our knowledge, this is the first unconditional sub-exponential time search-to-decision reduction
among the measures Kt and rKt that works with respect to any given polynomial-time samplable
distribution.

3. (Worst-Case to Average-Case Reductions) Under the errorless average-case easiness of deciding
rKt, we design a worst-case search algorithm running in time 2O(n/ log n) that produces a minimum
length randomized t-time program for every input string x ∈ {0, 1}n, with the caveat that it
only succeeds on some explicitly computed sub-exponential time bound t ≤ 2nε

that depends on
x. A similar result holds for Kt, under the assumption that E requires exponential size circuits.

In these results, the corresponding search problem is solved exactly, i.e., a successful run of the
search algorithm outputs a t-time bounded program for x of minimum length, as opposed to an
approximately optimal program of slightly larger description length or running time.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases average-case complexity, Kolmogorov complexity, search-to-decision reduc-
tions

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.29

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/059

© Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 29; pp. 29:1–29:56

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s_hirahara@nii.ac.jp
https://orcid.org/0000-0002-3101-446X
mailto:kabanets@cs.sfu.ca
mailto:zhenjian.lu@warwick.ac.uk
https://orcid.org/0009-0007-3990-4751
mailto:igor.oliveira@warwick.ac.uk
https://orcid.org/0000-0003-4048-2385
https://doi.org/10.4230/LIPIcs.CCC.2024.29
https://eccc.weizmann.ac.il/report/2024/059
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Funding This work received support from the Royal Society University Research Fellowship
URF\R1\191059; the UKRI Frontier Research Guarantee Grant EP/Y007999/1; and the Centre for
Discrete Mathematics and its Applications (DIMAP) at the University of Warwick.

1 Introduction

The time-bounded Kolmogorov complexity Kt(x) of an input binary string x is defined as
the length of a shortest program that prints out x within t time steps. The corresponding
search version of the problem would be to find such a shortest program that prints x within
time t. Both problems have been studied since the 1960s, and are conjectured to require
brute-force (trivial) algorithms to solve them [32]. The existence of an efficient search-to-
decision reduction for Kt, i.e., an algorithm to solve the search version of Kt(x) assuming an
algorithm for the decision version of computing Kt(x), is also an old open problem going
back to the 1960s.1 In fact, it is consistent with current knowledge that there might exist an
algorithm that computes Kt(x) in time linear in n = |x|, while any search algorithm for the
problem requires time 2Ω(n).

In this work, we obtain new average-case and worst-case search-to-decision reductions for
the measure Kt and its randomized analogue rKt, which considers the length of the shortest
randomized program that prints x with high probability within time t. Our search algorithms
have two important features:

they solve the search problem exactly: they find an optimally minimal-size program to
print x within t steps (rather than an approximately optimal program of slightly larger
size or running in slightly bigger than t time); and
they succeed with high probability on any given polynomial-time samplable distribution
(rather than being restricted to the uniform distribution).

It should be noted that such search-to-decision reductions are necessary for excluding
Pessiland from Impagliazzo’s five worlds [18], that is, for basing the security of a one-way
function on the average-case hardness of NP. By the result of Liu and Pass [22], the existence
of a one-way function is characterized by the average-case hardness of computing time-
bounded Kolmogorov complexity over the uniform distribution. If Pessiland is eliminated, it
follows that the average-case easiness of time-bounded Kolmogorov complexity implies that
every NP search problem is easy on any polynomial-time samplable distribution [19, 3], and
in particular, the search problems of finding short programs are also easy. Thus, designing
such reductions can be seen as a progress towards excluding Pessiland from Impagliazzo’s
five worlds.

We describe our results in the next section. We compare them with the existing literature
on exact and approximate search-to-decision reductions in Section 1.2.

1.1 Results
Informally, our main results give polynomial-time algorithms for solving the search versions
of time-bounded Kolmogorov complexity measures Kt and rKt, on average with respect to any
given polynomial-time samplable distribution, under the assumption that the corresponding
decision versions are easy on average with respect to the uniform distribution. For rKt, such a

1 One reason why such search-to-decision reductions may be possible to Kt is that the decision version
of Kt is conjectured to be NP-complete, and efficient search-to-decision reductions for NP-complete
problems are easy to get.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:3

search-to-decision average-case reduction is unconditional, whereas for Kt we make a standard
derandomization assumption. Our reduction for rKt works in the errorless average-case
setting. Our (conditional) reductions for Kt work in both errorless and error-prone settings.

We provide a more detailed description of our results in the following subsections.

1.1.1 Average-Case Search-to-Decision for Kt

Below we employ standard definitions of Kt(x) and rKt(x), reviewed in Section 2.1. We let
U denote the fixed universal Turing machine used in these definitions.

Let MINKT be the following decision problem: Given (x, 1s, 1t), where x ∈ {0, 1}∗ and
s, t ∈ N, decide whether Kt(x) ≤ s. Let Search-MINKT be the corresponding search problem:
Given (x, 1t), where x ∈ {0, 1}∗ and t ∈ N, find a Kt-witness of x, i.e., a program M ∈ {0, 1}∗

such that |M | = Kt(x) and U(M) outputs x within t steps.
In our average-case search-to-decision reductions for Kt we consider both errorless and

error-prone settings, which correspond to the average-case complexity classes AvgBPP and
HeurBPP, respectively (cf. [4]).

The Errorless Setting. We shall use “MINKT ∈ AvgBPP”, as an abbreviation for the
statement that MINKT can be solved in polynomial time on average without errors over
polynomial-time samplable distributions. Similarly, we shall use “Search-MINKT ∈ AvgBPP”
to state that Search-MINKT can be solved in polynomial time on average without errors over
polynomial-time samplable distributions. More formally, we have the following definitions.2

“MINKT ∈ AvgBPP”: For every polynomial-time samplable distribution family {Dn}n∈N,
where each Dn is over {0, 1}n, there exist a polynomial ρ and a polynomial-time algorithm
A such that the following holds for all n, s, k ∈ N, and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n, A(x, 1s, 1t, 1k) outputs either MINKT(x, 1s, 1t) or ⊥, and
2. Prx∼Dn

[
A(x, 1s, 1t, 1k) = MINKT(x, 1s, 1t)

]
≥ 1 − 1

k .

“Search-MINKT ∈ AvgBPP”: For every polynomial-time samplable distribution family
{Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and a polynomial-
time algorithm A such that the following holds for all n, k ∈ N, and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n, A(x, 1t, 1k) outputs either a Kt-witness of x or ⊥, and
2. Prx∼Dn

[
A(x, 1t, 1k) outputs a Kt-witness of x

]
≥ 1 − 1

k .

Before stating our first result, we recall the following widely believed complexity-theoretic
assumption. We use E ̸⊆ i.o.SIZE[2o(n)] to denote that there is a language L ∈ E and ε > 0
such that L requires Boolean circuits of size at least 2ε·n on every large enough input length
n.

▶ Theorem 1 (Errorless Average-Case Search-to-Decision for Kt). Assume E ̸⊆ i.o.SIZE[2o(n)].
Then

“MINKT ∈ AvgBPP” =⇒ “Search-MINKT ∈ AvgBPP”.

2 In [4], AvgBPP denotes the class of all the pairs (L, D) of problems L and distributions D that
admit randomized average-polynomial-time algorithms (or, equivalently, randomized errorless heuristic
schemes). Our statement “MINKT ∈ AvgBPP” deviates from this standard notation in that (1) we
abbreviate the input distribution D = {Dn}n∈N, and (2) the lower bound ρ(n) of the time parameter t
depends on the distribution D.

CCC 2024

29:4 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

The Error-Prone Setting. Theorem 1 shows an average-case search-to-decision reduction for
MINKT in the errorless setting, under the assumption that E ̸⊆ i.o.SIZE[2o(n)]. Can we also
get a similar reduction in the error-prone setting? It turns out that such a search-to-decision
reduction is implicit in a recent work by Liu and Pass [23]. However, it requires a stronger
assumption saying that E ̸⊆ i.o.NSIZE[2o(n)], i.e., that there is a language in E that requires
non-deterministic circuits of exponential size. We discuss this in more detail next.

We define “MINKT ∈ HeurBPP” and “Search-MINKT ∈ HeurBPP” to be the analogs of
“MINKT ∈ AvgBPP” and “Search-MINKT ∈ AvgBPP”, respectively, but in the regime where
errors are allowed.3

“MINKT ∈ HeurBPP”: For every polynomial-time samplable distribution family {Dn}n∈N,
with each Dn over {0, 1}n, there is a polynomial ρ and a polynomial-time algorithm A such
that for all n, s, k ∈ N, and all t ≥ ρ(n, k), Prx∼Dn

[
A(x, 1s, 1t, 1k) = MINKT(x, 1s, 1t)

]
≥

1 − 1
k .

“Search-MINKT ∈ HeurBPP”: For every polynomial-time samplable distribution fam-
ily {Dn}n∈N, with each Dn over {0, 1}n, there is a polynomial ρ and a
polytime algorithm A such that for all n, k ∈ N, and all t ≥ ρ(n, k),
Prx∼Dn

[
A(x, 1t, 1k) outputs a Kt-witness of x

]
≥ 1 − 1

k .

As noted above, [23] proved “MINKT ∈ HeurBPP” =⇒ “Search-MINKT ∈ HeurBPP”,
assuming E ̸⊆ i.o.NSIZE[2o(n)]. We strengthen their result by weakening their assumption to
E ̸⊆ i.o.SIZE[2o(n)]. Combined with Theorem 1, this yields average-case search-to-decision
reductions for MINKT in both errorless and error-prone settings, under the assumption that
E ̸⊆ i.o.SIZE[2o(n)].

In fact, we show an even stronger result where we solve the conditional variant of the
search problem, Search-MINcKT, on average over polynomial-time samplable distributions,
while using the same assumption on the decision problem. We describe this in more detail
below.

For x, y ∈ {0, 1}∗, we say that a program Π is a Kt(· | y)-witness of x if |Π| = Kt(x | y)
and U(Π, y) outputs x within t steps.

▶ Theorem 2 (Error-Prone Average-Case Search-to-Decision for Conditional Kt). Assume
E ̸⊆ i.o.SIZE[2o(n)]. If “MINKT ∈ HeurBPP” holds, then for every polynomial-time samplable
distribution family {D⟨n,m⟩}n,m∈N supported over {0, 1}n × {0, 1}m, there exist a polynomial
ρ and a polynomial-time algorithm A such that for all n, m, k ∈ N, and all t ≥ ρ(n, m, k),

Pr
(x,y)∼D⟨n,m⟩

[
A(x, y, 1t, 1k) outputs a Kt(· | y)-witness of x

]
≥ 1 − 1

k
.

Note that Theorem 2 implies a search-to-decision reduction for Kt (without the condi-
tional string) by considering the set of polynomial-time samplable distribution families
{D⟨n,m⟩}n,m∈N restricted to m = 0.

While the search-to-decision reductions from Theorems 1 and 2 rely on the assumption
E ̸⊆ i.o.SIZE[2o(n)], we remark that it is possible to obtain weaker unconditional variants
of these results using a simple win-win argument. Indeed, if the assumption does not hold
then we can solve the corresponding search problem on infinitely many input lengths using

3 For technical reasons, in the error-prone setting we let the function ρ depend on k in addition to n.
(See Remark 31). Obtaining a reduction without this dependence (as in the errorless setting) is an
interesting problem.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:5

circuits of size 2o(n) (see Appendix C for an implementation of this idea). Consequently, it
follows that there are errorless and error-prone search-to-decision reductions for Kt computed
by sub-exponential size Boolean circuits, on infinitely many input lengths.

1.1.2 Average-Case Search-to-Decision for rKt

We use rKt
λ(x) to denote the minimum length of a randomized program that outputs x with

probability at least λ within t steps (see Section 2.1). We often omit λ in informal discussions,
tacitly assuming that λ = 2/3.

Analogously to MINKT, one can also consider the problem of deciding whether rKt(x) ≤ s

given (x, 1s, 1t). However, this problem is not very “natural” in the sense that it can only
be placed in the class ∃ · PP. This is because the precise computation of the acceptance
probability of a given machine is a computationally hard counting problem.

Here, we consider a more robust variant, which we call MINrKT, that can be shown to be
in (promise) MA. We will then focus on the search version of MINrKT.

Let MINrKT be the following promise problem (YES, NO):

YES :=
{

(x, λ, 1s, 1t, 1ℓ) | rKt
λ(x) ≤ s

}
,

NO :=
{

(x, λ, 1s, 1t, 1ℓ) | rKt
λ−1/ℓ(x) > s

}
.

Next, we describe the search version of MINrKT. We first need some notation. For
x ∈ {0, 1}n, t ∈ N and 0 < ε, λ ≤ 1, we say that a program M is an ε-rKt

λ-witness of x if
|M | ≤ rKt

λ(x), and
U(M, r) outputs x within t steps with probability at least λ − ε over r ∼ {0, 1}t.

Let Search-MINrKT be the following search problem: Given (x, λ, 1t, 1ℓ), where x ∈ {0, 1}∗,
t, ℓ ∈ N and λ ∈ [0, 1], find an (1/ℓ)-rKt

λ-witness of x.
We introduce the statement “MINrKT ∈ AvgBPP”, which states that MINrKT can be

solved in probabilistic polynomial time on average (without errors) over polynomial-time
samplable distributions. We first need to specify what it means by solving a promise problem
in the average-case setting. For an algorithm A, x ∈ {0, 1}∗, λ ∈ [0, 1], and ℓ, t, s ∈ N, we
say that A decides MINrKT on (x, λ, 1s, 1t, 1ℓ) if the following holds:

A(x, λ, 1s, 1t, 1ℓ) =

1 if rKt

λ(x) ≤ s

0 if rKt
λ−1/ℓ(x) > s

either 0 or 1 otherwise.

For λ ∈ R, we denote by |λ| the bit complexity of λ.

“MINrKT ∈ AvgBPP”: For every polynomial-time samplable distribution family {Dn}n∈N,
where each Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic polynomial-
time algorithm A such that the following hold for all λ ∈ (0, 1), all n, s, ℓ, k ∈ N, and all
t ≥ ρ(n) · log(1/(1 − λ)).
1. For all x ∈ {0, 1}n,

Pr
A

[
A decides MINrKT on (x, λ, 1s, 1t, 1ℓ) OR A(x, λ, 1s, 1t, 1ℓ, 1k) = ⊥

]
≥ 2

3 .

2. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A decides MINrKT on (x, λ, 1s, 1t, 1ℓ)

]
≥ 2

3 .

CCC 2024

29:6 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

We also introduce the statement “SearchMINrKT ∈ AvgBPP”, which states that Search-
MINrKT can be solved in probabilistic polynomial time on average (without errors) over
polynomial-time samplable distributions (cf. the definition of AvgBPP from [4]).

“SearchMINrKT ∈ AvgBPP”: For every polynomial-time samplable distribution family
{Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and a probabilistic
polynomial-time algorithm A such that the following hold for all all λ ∈ (0, 1), all
n, s, ℓ, k ∈ N, and all t ≥ ρ(n) · log(1/(1 − λ)).
1. For all x ∈ {0, 1}n,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs either an (1/ℓ)-rKt

λ-witness of x or ⊥
]

≥ 1 − 1
2k

.

2. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs an (1/ℓ)-rKt

λ-witness of x
]

≥ 1 − 1
2k

.

▶ Theorem 3 (Errorless Average-Case Search-to-Decision for rKt). We have

“MINrKT ∈ AvgBPP” =⇒ “SearchMINrKT ∈ AvgBPP”.4

In contrast to our main results for Kt (Theorems 1 and 2), the search-to-decision reduction
for rKt is unconditional in that it does not rely on a circuit lower bound assumption. To our
knowledge, this is the first unconditional reduction for the measures Kt and rKt that runs in
less than exponential time and that works with respect to all polynomial-time samplable
distributions.

1.1.3 Worst-Case to Average-Case Search-to-Decision
In our next results, we aim to obtain a worst-case search algorithm from the same average-case
easiness assumptions considered before. Note that this is significantly more challenging than
a typical (worst-case to worst-case) search-to-decision reduction.

▶ Theorem 4 (Conditional Worst-Case to Average-Case Search-to-Decision for Kt). Assume
E ̸⊆ i.o.SIZE[2o(n)]. If “MINKT ∈ AvgBPP” holds, then for every ε > 0 and every polynomial
β, there is an algorithm A such that for all n ∈ N and x ∈ {0, 1}n, A(x) runs in time
2O(n/ log n) and outputs a program M and an integer t that satisfy the following:

β(n) ≤ t ≤ 2nε , and
M is a Kt-witness of x.

▶ Theorem 5 (Worst-Case to Average-Case Search-to-Decision for rKt). If “MINrKT ∈ AvgBPP”
holds, every polynomial β, there is a probabilistic algorithm A such that for all n ∈ N,
x ∈ {0, 1}n, all ℓ ∈ N, and all λ ∈ (0, 1) such that λ ≤ 1 − 1/2poly(n), A(x, λ, 1ℓ) runs in time
2O(n/ log n) · poly(|λ|, ℓ) and, with probability at least 1 − 2−ℓ, outputs a program M and an
integer t that satisfy the following:

β(n) ≤ t ≤ 2nε , and
M is an (1/ℓ)-rKt

λ-witness of x.

In both results, we obtain a sub-exponential time search algorithm that works on every
input string x. A caveat is that we have no control over the value of t on which the search
algorithm succeeds, while ideally we would like it to succeed on every choice of t presented
as an extra input parameter. On the positive side, in both results we make only an average-
case easiness assumption on the decision problem, i.e., we obtain an interesting worst-case
conclusion from a significantly weaker computational assumption.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:7

1.1.4 Weaker Assumptions on the Decision Problems
In fact, for the results stated above, a much weaker assumption on the decision problem
suffices to get the same consequence on the search problem. This is a consequence of the
nature of our techniques, which we discuss in Section 1.3 below. Consider the following
statements.

(MINKT, U) ∈ HeurBPP: There exist a polynomial ρ and a polynomial-
time algorithm A such that for all n, s, k ∈ N, and all t ≥ ρ(n, k),
Prx∼{0,1}n

[
A(x, 1s, 1t, 1k) = MINKT(x, 1s, 1t)

]
≥ 1 − 1

k .

(coMINKT, U) ∈ Avg1BPP: There exist a constant c > 0, a polynomial ρ and a probabil-
istic polynomial-time algorithm A such that the following hold for all sufficiently large n,
all t ≥ ρ(n), and all s ≤ n − c · log log t.
1. For every x ∈ {0, 1}n with Kt(x) ≤ s, we have PrA[A(x, 1s, 1t) = 1] ≥ 2/3.
2. With probability at least 1/n over x ∼ {0, 1}n, we have PrA[A(x, 1s, 1t) = 0] ≥ 2/3.

It turns out that, as shown in the body of the paper, these weaker assumptions (see
Proposition 11) suffice in the following search-to-decision reductions:

Theorems 1 and 4 still hold if replacing “MINKT ∈ AvgBPP” with (coMINKT, U) ∈
Avg1BPP.
Theorems 3 and 5 still hold if replacing “MINrKT ∈ AvgBPP” with (coMINKT, U) ∈
Avg1BPP.
Theorem 2 still holds if replacing “MINKT ∈ HeurBPP” with (MINKT, U) ∈ HeurBPP.

Consequently, in our search-to-decision reductions the existence of a decision algorithm for
the uniform distribution provides a search algorithm for any polynomial-time samplable
distribution.

1.2 Related Work
We now compare our results with prior work on search-to-decision reductions for time-bounded
Kolmogorov complexity.

Approximate Reductions. Many previous results on search-to-decision for time-bounded
Kolmogorov complexity have focused on approximate reductions (also known as gap re-
ductions), where there is a weaker guarantee on the output of the search algorithm. More
precisely, for a string x ∈ {0, 1}n such that Kt(x) = s, the search algorithm is allowed to
output a program with the running time t′ ≈ t and the program size s′ ≈ s.

In a recent development, [30] obtained a worst-case approximate reduction that produces
a program with t′ = poly(|x|, t, s), s′ ≤ s + log poly(|x|, t, s), and that runs in randomized
time 2ε·s · poly(|x|, t, s), for an arbitrarily small ε > 0. An advantage of the approximate
reduction of [30] with respect to our exact reductions is that it invokes the decision algorithm
in a black-box way, while our techniques require access to the code of the decision algorithm.

While approximate reductions are not the focus of this work, we note that some of our
techniques can be used to obtain a polynomial-time reduction with similar parameters t′

and s′, under the assumption that E requires exponential size circuits. Although predicated
on a hardness assumption, our search-to-decision reduction has essentially the best possible
runtime. We refer to Appendix C for the details.

CCC 2024

29:8 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

A statement related to the average-case to worst-case search-to-decision reduction for Kt

(Theorem 4) appears in [13, Theorem 8.7]. Both results are conditional. However, in contrast
to Theorem 4, where the search algorithm produces an exact solution, in [13, Theorem 8.7]
the search algorithm outputs an approximate solution where s′ = s = Kt(x) but t′ can be as
large as 2n/ log n for t ≤ 2n0.99 .

For the time-bounded Kolmogorov complexity measures Kt and rKt, [25, 27] designed
efficient reductions with s′ = O(s) such that, on a given input string x, the search algorithm
only queries the decision algorithm on x.

In these approximate reductions, it is often possible to relax the requirement on the
decision algorithm, i.e., the reduction still works when the latter only approximates Kt(x).
Interestingly, this is also the case in our results as a consequence of the discussion in
Section 1.1.4, though we obtain an exact solution to the search problem even under a
relaxation of the decision algorithm.

Exact Average-Case Reductions. [22] (see also the alternate proof in [30]) established
the first error-prone polynomial-time search-to-decision reduction for Kt over the uniform
distribution. Another related result appears in [24], which showed that if polynomial-time
symmetry of information holds for Kt (i.e., if Kt(x, y) ≈ KtO(1)(x)+KtO(1)(y | x)), then Search-
MINKT admits an error-prone polynomial-time algorithm over the uniform distribution. In
contrast, here we obtain both error-prone and errorless reductions for Kt for every given
polynomial-time samplable distribution, under the assumption that E requires exponential
size circuits.

While reductions restricted to the uniform distribution are not the focus of this work,
complementing the results of [22, 30], which provide error-prone search-to-decision reductions
for Kt under the uniform distribution, we describe in Appendix D an errorless search-to-
decision reduction for Kt under the uniform distribution.

As discussed in Section 1.1.1, [23] implicitly established an error-prone search-to-decision
reduction for Kt under any polynomial-time samplable distribution, under the assumption
E ̸⊆ i.o.NSIZE[2o(n)]. Our error-prone search-to-decision reduction for Kt weakens this
circuit complexity assumption, and provides a search algorithm for the more general case of
conditional Kt complexity. We note that [23] also establishes a search-to-decision reduction
for the probabilistic Kolmogorov complexity measure pKt, which we do not consider in this
work.

Additional Related Work. In two recent works, [29] and [15] obtain non-uniform algorithms
solving the exact search problem for Kt. In more detail, in these results the size of the
non-uniform circuit is of order 24n/5 and the circuit neither needs access to, nor assumes
the existence of an algorithm for the decision problem. It is not known how to extend these
results to uniform algorithms.

In another recent paper, [28] describes a non-uniform polynomial-size search-to-decision
reduction when the decision procedure solves MINKT with respect to any underlying universal
Turing machine U , given black-box access to it (see their paper for details about this setting).

Search-to-decision reductions have also been investigated in the related setting of circuit
complexity theory, where the goal is to compute the complexity of a given input function.
[16] investigated this problem for Boolean formulas (corresponding to MFSP, the Minimum
Formula Size Problem), and designed a worst-case search-to-decision reduction that runs
in time O(20.67n) on an input function of description length n. Additionally, [16] obtained
an improved running time of 2O(n/ log log n) when the search algorithm is only required to
succeed with high probability over the uniform distribution.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:9

Finally, we note that efficient randomized search-to-decision reductions are known for
the complexity class DistNP. Every DistNP search problem can be reduced to some DistNP
decision problem [3]. However, such reductions typically do not preserve the problem they
reduce from (except for certain DistNP-complete problems like the Bounded Halting Problem),
and so do not seem to apply to the case of search-to-decision reductions for MINKT and
MINrKT studied in our work.

1.3 Techniques
From a technical perspective, our most interesting results are an unconditional errorless
average-case search-to-decision reduction for rKt (Theorem 3) and a conditional error-prone
average-case search-to-decision reduction for Kt (Theorem 2). However, for illustration, we
start with a more complete overview of the proof of the conditional errorless average-case
search-to-decision reduction for Kt (Theorem 1), which is simpler yet captures some key
ideas behind most of our proofs.

Average-Case Search-to-Decision for Kt. Our starting point is the aforementioned result
from [24], which showed that if polynomial-time symmetry of information holds for Kt, then
Search-MINKT can be solved over the uniform distribution. By inspecting the proof more
carefully, we observe that if polynomial-time symmetry of information holds for Kt, then
given t and x, one can find a shortest t-time program for x in time exponential in the
(t, p(t))-computational depth of x, i.e., cdt,p(t)(x) := Kt(x) − Kp(t)(x), for some polynomial p.

To show this, consider x ∈ {0, 1}n and any sufficiently large t ∈ N. Let yt be a shortest
t-time program for generating x. By the assumed polynomial-time symmetry of information,
we get that there is a polynomial p′ such that the following holds:

Kp′(2t)(yt | x) ≲ K2t(x, yt) − Kp′(2t)(x) (by polytime symmetry of information)

≲ |yt| − Kp′(2t)(x) (since x is determined by yt)

= Kt(x) − Kp′(2t)(x) (since |yt| = Kt(x))

≤ Kt(x) − Kp(t)(x) (by monotonicity of Kt with respect to t)

= cdt,p(t)(x), (by definition of computational depth)

where p > p′ is a polynomial. The above essentially says that there is a program Πyt
of size

at most cdt,p(t)(x) such that U(Πyt
, x) outputs yt within p(t) steps.

Consider the following algorithm:

For an integer s, enumerate all programs Π ∈ {0, 1}≤s, and run U(Π, x) for p(t)
steps to obtain a list of candidate Kt-witnesses y, which is guaranteed to include yt if
cdt,p(t)(x) ≤ s. For each such candidate y, check if y is indeed a t-time program for x,
and output a valid one of the smallest length.

This algorithm runs in time 2s ·poly(t), and finds a Kt-witness for every x with cdt,p(t)(x) ≤ s.
Using ideas from prior work on meta-complexity [7, 9, 5, 13], one can show that (assuming

E ̸⊆ i.o.SIZE[2o(n)]), if MINKT is easy on average (in the errorless setting), then polynomial-
time symmetry of information for Kt holds (see Lemma 22 below).

Since the (t, p(t))-computational depth of x is small, i.e., O(log |x|), for a uniformly random
x with high probability, the above yields a polynomial-time Search-MINKT algorithm over
the uniform distribution. We want to extend to all polynomial-time samplable distributions.

CCC 2024

29:10 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

To this end, we want to say that, for a polynomial-time samplable distribution D, cdt,p(t)(x)
is small for almost all x sampled from D. It turns out that this is true if the coding theorem
holds for Kt, i.e., if for every x ∈ {0, 1}n in the support of D, Kt(x) ≤ − log D(x) + O(log n),
for any sufficiently large t ≥ poly(n). Combining the above with the well-known property of
Kolmogorov complexity that for almost all x sampled from D, K(x) ≥ − log D(x) − O(log n),
we would get that cdt,p(t)(x) = Kt(x) − Kp(t)(x) ≤ Kt(x) − K(x) ≤ O(log n) for almost all x

sampled from D.
Again, using ideas from meta-complexity in prior work, assuming E ̸⊆ i.o.SIZE[2o(n)] and

average-case easiness of MINKT (in the errorless setting), we can obtain the requisite coding
theorem for Kt (see Lemma 23).

Thus, by the coding theorem for Kt, we can already show that if MINKT is easy on average
(and assuming E ̸⊆ i.o.SIZE[2o(n)]), one can efficiently solve Search-MINKT over polynomial-
time samplable distributions. However, such an average-case algorithm can make errors for
strings x whose (t, p(t))-computational depth is not small. We would like to recognize such
strings x, and output ⊥ on them. To this end, we will design a deterministic polynomial-time
computational depth certifying algorithm A with the following two properties:
1. If A(x) accepts, then indeed cdt,p(t)(x) ≤ O(log n), and
2. For almost all x sampled from D, A(x) accepts.
Given A, our final errorless average-case algorithm for solving Search-MINKT is as follows:

Given x and t, if the algorithm A accepts, which implies that cdt,p(t)(x) is small, then
we are guaranteed that the previously-mentioned procedure can output a Kt witness
of x. Otherwise if algorithm A rejects, which happens with only small probability
over x ∼ D, we output ⊥.

It remains to explain how to get the requisite algorithm A. By known results in meta-
complexity, if MINKT is easy on average and if E ̸⊆ i.o.SIZE[2o(n)], then there is some
polynomial q such that given x and t′, one can compute in deterministic polynomial time an
integer s′ such that Kq(t′)(x) ≲ s′ ≤ Kt′(x). By running this algorithm on both (x, 1q−1(t))
and (x, 1p(t)), we obtain an integer s such that

Kt(x) − Kp(t)(x) ≤ s ≲ Kq−1(t)(x) − Kq(p(t))(x)

(see Lemma 24). Let A be the algorithm that computes a number s as above, accepting
if s ≤ O(log n), and rejecting otherwise. By definition, A satisfies property (1) above.
Also, A satisfies property (2) above, since as discussed earlier, by the coding theorem,
Kq−1(t)(x) − Kq(p(t))(x) ≤ O(log n) for almost all x sampled from D, provided that t (hence
q−1(t)) is sufficiently large.

Worst-Case Search-to-Decision for Kt. As described above, assuming average-case tract-
ability of MINKT, one can find a Kt-witness of x in time exponential to cdt,p(t)(x), where p is
a polynomial. The observation is that for every x, there exists some good t ≤ 2nε such that
cdt,p(t)(x) is at most O(n/ log n). We show that using the above-described computational
depth certifying algorithm, one can also find such a good t for a given x. Then for such a t,
we can find a Kt-witness in time 2O(n/ log n) · poly(t).

Average-Case Search-to-Decision for rKt. One can use ideas from prior work on meta-
complexity, and a known generator with rKt-style reconstruction, to obtain symmetry of
information, coding theorem, and a worst-to-average reduction for rKt, albeit with an

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:11

O(log3 n) overhead (as opposed to O(log n) in the case for Kt), just assuming the average-
case easiness of MINrKT (and no derandomization assumptions). By using these tools
and following a similar approach as described above for the average-case search-to-decision
reduction for Kt, we get an average-case search-to-decision reduction for rKt with time roughly
2O(log3 n) · poly(t), which is quasi-polynomial; see Section B in the appendix for details.

A polynomial-time reduction, as stated in Theorem 3, is considerably more challenging to
get, since we don’t know the desired symmetry of information theorem and coding theorem for
rKt with an optimal O(log n) overhead. Our approach is to use the symmetry of information
theorem (under an average-case easiness assumption for MINKT) and the coding theorem for
pKt with optimal O(log n) overheads. However, implementing this plan requires a delicate
analysis. We consider two variants of computational depth defined as rKt(x) − pKpoly(t)(x)
and pKt(x) − K(x), and argue that
1. rKt-witnesses can be found in time exponential in the computational depth rKt(x) −

pKpoly(t)(x) (Lemma 19),
2. the computational depth rKt(x) − pKpoly(t)(x) is upper-bounded by O(pKt1/c

(x) − K(x) +
log n), for some constant c > 0 (Theorem 18).

Finally, using the optimal coding theorems for K and pKt, we conclude that the running
time exponential in O(pKt1/c

(x) − K(x) + log n) is actually average polynomial time for every
given t1/c-time samplable distribution.

The proof of Theorem 18 requires a novel application of techniques from meta-complexity.
The key idea is to combine the hitting-set generator Hm : {0, 1}n × {0, 1}d → {0, 1}m of [8]
and the disperser Gm : {0, 1}n ×{0, 1}d → {0, 1}m of [31]. The generator Hm has an efficient
albeit sub-optimal reconstruction: if there is a randomized polynomial-time algorithm D that
avoids Hm(x, -) (i.e., D outputs 0 on input Hm(x, z) for every z ∈ {0, 1}d, yet D outputs
1 on most inputs), then rKpoly(n)(x) ≤ O(m + log n). The disperser Gm may be viewed
as a hitting-set generator with an inefficient but nearly optimal reconstruction: if there
is an algorithm D that avoids Gm(x, -), then K(x) ≤ m + O(log n). For x ∈ {0, 1}n, we
set m ≈ K(x) and m′ ≈ pKt1/c

(x) − K(x). We then argue that the concatenated generator
Gm(x, z)◦Hm′(x, z′) (for seeds z and z′) has an efficient distinguisher, based on an algorithm
that approximates the pK-complexity of its input. On the other hand, Gm(x, z) ◦ Um′ is
“indistinguishable” from the uniform distribution Um+m′ (by our choice of m). This implies
that there is an efficient algorithm that takes m bits of advice and avoids Hm′(x, -), which
allows us to apply the reconstruction property of Hm′ to conclude the proof.

We should also point out another important difference between Kt and rKt witness search.
In the search-to-decision reduction for Kt, after generating a list of candidate Kt witnesses in
the search algorithm, one can check whether each of them is a valid t-time program that
outputs x. However, given a candidate randomized program y and λ, we cannot efficiently
check whether y outputs x with probability at least λ or if this probability is less than λ,
unless PP = BPP. However, we can distinguish the set of randomized programs that output
x with probability at least λ and those that output x with probability less than λ − (1/ℓ), in
time poly(ℓ). This allows us to find an (1/ℓ)-rKt

λ-witness.

Error-Prone Average-Case Search-to-Decision for Conditional Kt. We first describe the
proof ideas behind the (conditional) error-prone average-case search-to-decision reductions
for Kt in [23] mentioned in Section 1.1.1.

First of all, it was shown in [22] that if MINKT is average-case easy (in the error-prone
setting), then infinitely-often one-way functions do not exist. Also, implicit in [22, 23], if
infinitely-often one-way functions do not exist, then there is an error-prone average-case

CCC 2024

29:12 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

algorithm for solving Search-MINKT over the “universal t-time-bounded distribution” where
each x is assigned the probability mass 2−Kt(x). Thus, to get an average-case Search-MINKT
algorithm over a polynomial-time samplable distribution D, it suffices to argue that D is
dominated5 by the universal t-time-bounded distribution (for some polynomial t). The latter
would follow from a coding theorem for Kpoly.

While the coding theorem is not known to hold for Kpoly, it does hold for pKpoly [27].
Moreover, it is also known that Kpoly and pKpoly are essentially equivalent under the derandom-
ization assumption that E ̸⊆ i.o.NSIZE[2o(n)] [6]. As a result, assuming E ̸⊆ i.o.NSIZE[2o(n)],
one gets a coding theorem for Kpoly. Using these observations, [23] showed that assuming
E ̸⊆ i.o.NSIZE[2o(n)], the average-case algorithms for solving Search-MINKT over the class
of universal poly-time-bounded distributions also work for the class of polynomial-time
samplable distributions.

Our key observation is that assuming only E ̸⊆ i.o.SIZE[2o(n)], plus the non-existence
of infinitely-often one-way functions, one can get an average-case coding theorem for Kpoly;
this result is implicit in [17]. We then show that such an average-case coding theorem
for Kpoly implies that polynomial-time samplable distributions are dominated by universal
poly-time-bounded distributions on average. In turn, this implies that the average-case
Search-MINKT algorithms over universal poly-time-bounded distributions also work over
polynomial-time samplable distributions.

Next, we explain how to generalize these ideas to get an average-case Search-MINcKT
algorithm. For simplicity, consider a polynomial-time samplable distribution family {Dn}
supported over {0, 1}n × {0, 1}n. Also, let {Cn} be the the family of marginal distributions
of {Dn} on the second part. That is, to sample from Cn, we sample (x, y) from Dn and then
output y. We observe the following equivalent way of sampling Dn: First sample y from Cn

and then sample x from Dn(· | y), where Dn(· | y) is the conditional distribution of Dn on
the first part given that the second part is y.

First of all, by borrowing ideas from [22, 23], we show that non-existence of infinitely-often
one-way functions implies that there is an (error-prone) average-case algorithm A such that,
with high probability over y ∼ Cn, A outputs a Kt(· | y)-witness of x with high probability
over the distribution Et

y assigning each x the probability mass 2−Kt(x|y).
In [14], it was shown that if infinitely-often one-way functions do not exist, then one can

get an average-case conditional coding theorem for pKpoly. By “derandomizing” the proof, we
can show that assuming E ̸⊆ i.o.SIZE[2o(n)], plus the non-existence of infinitely-often one-way
functions, one gets an average-case conditional coding theorem for Kpoly which says that with
high probability over (x, y) ∼ Dn,

Kpoly(n)(x | y) ≲ 1
Dn(x | y) . (1)

Note that by an averaging argument, we get that with high probability over y ∼ Cn,
Equation (1) holds with high probability over x ∼ Dn(· | y).

Now using this conditional coding theorem, we get that with high probability over
y ∼ Cn, the distribution Et

y dominates Dn(· | y), again, on average, for any sufficiently large
t ≥ poly(n). By the same observation as discussed earlier, such “average-case domination”
suffices for us to argue that the algorithm A, which works on average over Et

y, also works
on average over the distribution Dn(· | y). As a result, we get that with high probability
over y ∼ Cn, A output a Kt(· | y)-witness of x with high probability over x ∼ Dn(· | y). This
implies that A solves Search-MINcKT on average over (x, y) ∼ Dn.

5 Recall that a distribution D dominates another distribution D′ if D(x) ≥ D′(x)/poly(n) for every x.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:13

1.4 Concluding Remarks, Directions, and Open Problems

We have designed exact search-to-decision reductions for Kt and rKt complexities in the
average-case setting. The results for Kt hold under a widely believed hardness assumption,
while the results for rKt are unconditional. We have also made progress on worst-case to
average-case search-to-decision reductions, where a worst-case search algorithm is obtained
from an average-case easiness assumption on the decision problem. (As stated in Section 1.1.4,
the assumptions on the decision problems in most results can be made considerably weaker,
while maintaining the same conclusion.) A key contribution of our results is showing that
search-to-decision reductions exist for any fixed polynomial-time samplable distribution. (We
also describe new approximate reductions in Appendix C, and a new errorless reduction over
the uniform distribution in Appendix D.) A summary of the existing average-case polynomial-
time search-to-decision reductions for the measures Kt and rKt appears in Table 1.

We would like to highlight the following problems and directions:

1. In the worst-case setting, it is currently possible that computing Kt(x) admits a linear
time algorithm, while finding a minimum t-time bounded program for x requires time
2Ω(|x|). Are there sub-exponential time (exact) worst-case to worst-case search-to-decision
reductions for Kt and rKt?

2. Can we improve Theorems 4 and 5 so that the search algorithm works for every choice
of the parameter t? Note that this would provide a positive solution to the previous
problem.

3. Design an unconditional polynomial-time error-prone search-to-decision reduction for rKt

for polynomial-time samplable distributions.

4. Our search-to-decision reductions are non-black-box, i.e., the search algorithm relies on
the code of the decision algorithm. Is it possible to obtain black-box search-to-decision
reductions for the settings considered in our work?

5. Is it possible to combine our techniques for exact search-to-decision with the techniques
from [30] and Appendix C for approximate search-to-decision to obtain stronger results?

Table 1 Summary of average-case polytime search-to-decision reductions for Kt and rKt.

Assumption Measure Distribution Errorless or
Error-prone

Reference

None Kt Uniform Error-prone [22]
E ̸⊆ i.o.NSIZE[2o(n)] Kt P-Samplable Error-prone [23]
None Kt Uniform Errorless Appendix D
E ̸⊆ i.o.SIZE[2o(n)] Kt P-Samplable Errorless Theorem 1
E ̸⊆ i.o.SIZE[2o(n)] Kt P-Samplable Error-prone Theorem 2

None rKt Uniform Error-prone [30]6

None rKt P-Samplable Errorless Theorem 3

6 The proof of [30, Theorem 1.3] via list recoverable codes extends to rKt with simple modifications.

CCC 2024

29:14 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

2 Preliminaries

2.1 Definitions and Notation
For a string w ∈ {0, 1}∗, we use |w| ∈ N to denote its length. The empty string is denoted
by ϵ.

Time-Bounded Kolmogorov Complexity. Let U be a Turing machine. Given a positive
integer t and a string x ∈ {0, 1}∗, we let

Kt
U (x) = min

p∈{0,1}∗

{
|p| | U(p, ϵ) outputs x in at most t steps

}
.

We say that Kt
U (x) is the t-time-bounded Kolmogorov complexity of x (with respect to U). As

usual, we fix U to be a time-optimal machine [21], i.e., a universal machine that is almost as
fast and length efficient as any other universal machine, and drop the index U when referring
to time-bounded Kolmogorov complexity measures.

We also consider a randomized variant of Kt where instead of having a deterministic
machine that prints x, we consider a randomized machine that generates x with high
probability. Given a probability parameter λ ∈ [0, 1] and a positive integer t, we let

rKt
λ(x) = min

p∈{0,1}∗

{
|p| | Pr

r∼{0,1}t
[U(p, r) outputs x in at most t steps] ≥ λ

}
.

denote the t-time-bounded randomized Kolmogorov complexity of x. Note that we do not
require that U(p, r) stops in time at most t on every r.7 We assume that the random string
r is given on a separate input tape.

Also, for λ ∈ [0, 1] and a positive integer t, we let

pKt
λ(x) = min

{
k | Pr

r∼{0,1}t
[∃ p ∈ {0, 1}k, U(p, r) outputs x in at most t steps] ≥ λ

}
.

denote the t-time-bounded probabilistic Kolmogorov complexity of x. For simplicity, in both
definitions above, we omit λ when λ = 2/3.

For more information about different notions of randomized time-bounded Kolmogorov
complexity and their applications, we refer to [26].

We use K(x) to denote the (time-unbounded) Kolmogorov complexity of x.
These definitions are extended to conditional Kolmogorov complexity measures in the

usual way. For instance, in rKt(x | y) the machine U is also given access to the string y as
part of its input. We assume that the string y is given on a separate input tape.

Probability Distributions. We will consider distributions supported over pairs of strings.
Let D = {D⟨n,m⟩}n,m∈N be a family of polynomial-time samplable distributions8, where each
D⟨n,m⟩ is supported over {0, 1}n × {0, 1}m. For y ∈ {0, 1}m, we denote by D⟨n,m⟩(· | y) the
conditional distribution of D⟨n,m⟩ on the first part given that the second part is y.

7 This condition would be computationally difficult to check for a given randomized program. However,
in a setting where it might be relevant, it can be achieved with a clocked program by storing the value t
using log t bits, or an approximation of t (e.g., the exponent of the smallest power of 2 not smaller than
t) using just log log t bits.

8 Recall that D can be sampled in polynomial time if there is a polynomial-time algorithm Samp such
that Samp(1⟨n,m⟩, r) is distributed according to D⟨n,m⟩ when r is a uniformly random string of length
poly(n, m).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:15

We use D⟨n,m⟩(x, y) to denote the probability that the pair (x, y) is sampled from D⟨n,m⟩.
Similarly, D⟨n,m⟩(x | y) denotes the probability that x is sampled from the conditional
distribution D⟨n,m⟩(· | y).

2.2 Basic Results in Kolmogorov Complexity
We will need the following results.

▶ Fact 6. For every x ∈ {0, 1}∗, time bound t ∈ N, and λ > 1/2,

K(x) ≤ rKt
λ(x).

Since we have not explicitly considered prefix-free encodings in our definitions, below we
simply observe the following result, which is useful later.

▶ Lemma 7 (“Kraft’s Inequality for K”). For all n > 0,∑
x∈{0,1}n

2−K(x) ≤ nO(1).

Proof. For every x ∈ {0, 1}n, its Kolmogorov description of length K(x) can be encoded
using a prefix-free code (where no codeword is a prefix of another codeword) at the expense
of extra O(log n) bits (roughly, by adding the encoding of the integer value K(x) ≤ n + O(1),
using a simple prefix-free binary code where each bit of the message is repeated twice, and
10 is added at the end). Let C(x) denote the length of this prefix-free encoding of x. Then
we have∑

x∈{0,1}n

2−K(x) ≤
∑

x∈{0,1}n

2−C(x)+O(log n)

≤ nO(1) ·
∑

x∈{0,1}n

2−C(x)

≤ nO(1),

where the last step uses Kraft’s inequality (saying that for every prefix-free binary code with
lengths C(x), we have

∑
x 2−C(x) ≤ 1). ◀

▶ Theorem 8 (Coding Theorem for pKt [27]). There is a constant c > 0, such that the following
holds. For any distribution family {Dn}n∈N, where each Dn is over {0, 1}n, samplable in
time p(n), we have pKp(n)c

(x) ≤ − log Dn(x) + O(log p(n)).

▶ Lemma 9 (See [14, Lemma 9]). There exists a universal constant b > 0 such that for any
distribution family {Dn}n∈N, where each Dn is over {0, 1}n, and γ ∈ N,

Pr
x∼Dn

[
K(x) < log 1

Dn(x) − γ

]
<

nb

2γ
.

▶ Lemma 10 (Success Amplification for rKt). For any string x ∈ {0, 1}∗, time bound t ∈ N,
and q ∈ N, we have

rKt′

1−1/q(x) ≤ rKt(x) + O(log log q),

where t′ := t · O(log q).

CCC 2024

29:16 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Proposition 11. The following hold.
1. “MINKT ∈ HeurBPP” =⇒ (MINKT, U) ∈ HeurBPP.
2. “MINKT ∈ AvgBPP” =⇒ (coMINKT, U) ∈ Avg1BPP.
3. “MINrKT ∈ AvgBPP” =⇒ (coMINKT, U) ∈ Avg1BPP.

Proof. The implication from “MINKT ∈ HeurBPP” to (MINKT, U) ∈ HeurBPP (Item 1) is
immediate. Next, we show that “MINrKT ∈ AvgBPP” implies (coMINKT, U) ∈ Avg1BPP
(Item 2).

Suppose “MINrKT ∈ AvgBPP” holds. Then it follows that there exist a polynomial ρ and
a probabilistic polynomial-time algorithm A′ such that the following hold for all n, s ∈ N,
and all t ≥ ρ(n).

For all x ∈ {0, 1}n,

Pr
A′

[
A′ decides MINrKT on (x, 2/3, 1s, 1t, 1n) OR A′(x, 2/3, 1s, 1t, 1n) = ⊥

]
≥ 2

3 . (2)

With probability at least 1 − 1/(2 log t) over x ∼ {0, 1}n,

Pr
A′

[
A′ decides MINrKT on (x, 2/3, 1s, 1t, 1n)

]
≥ 2

3 . (3)

Let A be the algorithm: On input (x, 1s, 1t), A accepts if A′(x, 2/3, 1s, 1t, 1n) outputs 1 or
⊥; otherwise it rejects. We claim that the algorithm A satisfies the conditions stated for
(coMINKT, U) ∈ Avg1BPP.

Let t ≥ ρ(n) and s ≤ n − 2 log log t.
On the one hand, consider x ∈ {0, 1}n such that Kt(x) ≤ s. Then we also have rKt(x) ≤ s.

This means that (x, 2/3, 1s, 1t, 1n) is a YES instance of MINrKT. Then by Equation (2),
A′(x, 2/3, 1s, 1t, 1n) outputs 1 or ⊥ with probability at least 2/3, which implies that A(x, 1s, 1t)
accepts with probability at least 2/3.

On the other hand, by a counting argument, we have that with probability at least
1 − 1/(2 log t) over x ∼ {0, 1}n, K(x) ≥ n − log(2 log t) > s. By Fact 6, we also get that

rKt
2/3−1/n(x) > s.

In this case, (x, 2/3, 1s, 1t, 1n) is a NO instance of MINrKT. Combining this fact with
Equation (3) and using a union bound, we get that with probability at least 1 − 1/(2 log t) ≥
1/n over x ∼ {0, 1}n, A′(x, 2/3, 1s, 1t, 1n) rejects with probability at least 2/3. Note that
the above allows us to conclude that (coMINKT, U) ∈ Avg1BPP holds.

Item 3 can be shown in a similar way. We omit the details. ◀

We will also need the following lemma.

▶ Lemma 12 (Computational Depth Upper Bound [11]). For every ε > 0, every non-decreasing
polynomials qdpt and pdpt , and every large enough x ∈ {0, 1}n, there exists a time bound t∗

such that qdpt(n) ≤ t∗ ≤ 2nε and

Kt∗
(x) − Kpdpt (t∗)(x) ≤ O

(
n

log n

)
.

Moreover, the same holds if we replace in the above Kt∗(x) − Kpdpt (t∗)(x) with rKt∗
(x) −

rKpdpt (t∗)(x).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:17

Proof. We show the proof for randomized time-bound Kolmogorov complexity. The proof
can be easily adapted to the deterministic case.

Given x ∈ {0, 1}n and polynomials qdpt and pdpt , define the polynomial τ := pdpt ◦ qdpt . For
an integer I ≥ 1, consider the following telescoping sum:

rKτ(n)(x)−rKτ (I+1)(n)(x) =
(

rKτ(n)(x) − rKτ (2)(n)(x)
)

+
(

rKτ (2)(n)(x) − rKτ (3)(n)(x)
)

+ · · · +
(

rKτ (I)(n)(x) − rKτ (I+1)(n)(x)
)

,

where τ (i) denotes the composition of τ with itself i times. For any choice of x, qdpt , and
pdpt as in the statement of the lemma, rKτ(n)(x) ≤ n + d, for some universal constant d ≥ 0;
hence, the above sum is at most n + d. By averaging, there is some index i0 ∈ [I] such that

rKτ (i0)(n)(x) − rKτ (i0+1)(n)(x) ≤ n + d

I
. (4)

For this i0, define t∗ := τ (i0)(n). Note that t∗ ≥ τ(n) ≥ (n), since i0 ≥ 1 and pdpt(ℓ) ≥ ℓ for
every input ℓ. Letting c ∈ N be such that τ(n) ≤ nc for sufficiently large n, define

I := logc

(
nε

log n

)
.

Then t∗ ≤ ncI = 2nε . Moreover,

rKt∗
(x) − rKpdpt (t∗)(x) ≤ rKt∗

(x) − rKτ(t∗)(x)

≤ O

(
n

log n

)
, (by Equation (4))

where the constant behind the O(−) can depend on ε and c (and hence qdpt and pdpt). ◀

3 Errorless Average-Case Search-to-Decision Reduction for rKt

Here we prove Theorem 3, re-stated in its stronger form below (cf. Proposition 11).

▶ Theorem 13.

(coMINKT, U) ∈ Avg1BPP =⇒ “SearchMINrKT ∈ AvgBPP”.

3.1 Technical Tools
A randomized oracle D : {0, 1}m → {0, 1} is a family {Dq}q∈{0,1}m of random variables Dq

over {0, 1}. When a query q ∈ {0, 1}m is made to a randomized oracle D, a sample a ∼ Dq

is returned independently.
We say that an algorithm D : {0, 1}m → {0, 1} ε-avoids a generator G : {0, 1}d → {0, 1}m

if D is 1 on at least ε fraction of its inputs, and yet D(G(z)) = 0 for all z ∈ {0, 1}d. Similarly,
a randomized oracle D ε-avoids a generator G if PrD[D(w) = 1] ≥ 2

3 for at least ε2m inputs
w ∈ {0, 1}m, and yet PrD[D(G(z)) = 0] ≥ 2

3 for all z ∈ {0, 1}d.
We will use the following two hitting-set generators with reconstruction properties.

CCC 2024

29:18 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Lemma 14 (Implicit in [8]). There exists a polynomial-time-computable family

H =
{

Hn,m : {0, 1}n × {0, 1}d(n,m) → {0, 1}m
}

n,m∈N

of functions such that d(n, m) = O(log3 m+log n) and for any x ∈ {0, 1}n and any randomized
oracle D : {0, 1}m → {0, 1} that ε-avoids Hn,m(x, -), it holds that

Kt,D(x) ≤ 2m + O(log3 m + log n)

for t := poly(n, m).

Proof Sketch. For a deterministic oracle D, this is [8, Corollary 4.4]. By inspecting the
proof, one can observe that the proof can be generalized to a randomized oracle D. ◀

We need the nearly optimal construction of a disperser obtained by [31]. We regard it as
a hitting-set generator with an inefficient reconstruction property.

▶ Lemma 15. There exists a polynomial-time-computable family

G =
{

Gn,m : {0, 1}n × {0, 1}O(log n) → {0, 1}m
}

n,m∈N

of functions such that for any x ∈ {0, 1}n and any oracle D : {0, 1}m → {0, 1} that ε-avoids
Gn,m(x, -), it holds that

KD(x) ≤ m + O(log n).

Proof. We may assume without loss of generality that m ≤ 2n because otherwise the
conclusion is obvious. It is shown in [31, Theorem 1.4] that for every n, k and constant ε > 0,
there exists a strongly explicit bipartite graph (V, W, E) with left degree 2d = nO(1) such
that V = [2n], |W | = Θ(2k+d−3 log n), and every subset A ⊆ V of size at least 2k has at least
(1 − ε/2)|W | distinct neighbours in W . We let |W | = 2m, where m = k + d − 3 log n ± Θ(1),
and view the vertices in W as m-bit strings. We define Gn,m(x, z) to be the z-th neighbour
of x ∈ {0, 1}n ≡ V for every z ∈ [2d] ≡ {0, 1}d.

Let A be the set of n-bit strings x ∈ {0, 1}n such that D(Gn,m(x, z)) = 0 for every
z ∈ {0, 1}d. We claim that the size of A is at most 2k. Assume, towards a contradiction,
that |A| ≥ 2k. Let Γ denote the set of the neighbours of A. By the property of the disperser,
|Γ| ≥ (1 − ε/2)|W |. By the definition of A, for every w ∈ Γ, we have D(w) = 0. This
contradicts the assumption that D(w) = 1 for at least an ε fraction of w ∈ {0, 1}m.

Observe that the elements of A can be enumerated given n, m ∈ N and oracle access to
D. Thus, we obtain KD(x) ≤ log |A| + O(log nm) ≤ k + O(log n) ≤ m + O(log n) for every
x ∈ A. ◀

▶ Lemma 16 ([13, 5, 6]). If (coMINKT, U) ∈ Avg1BPP, then there exists a randomized
polynomial-time algorithm M such that for every x ∈ {0, 1}∗ and every t ≥ |x|,

pKtO(1)
(x) − O(log n) ≤ M(x, 1t) ≤ pKt(x)

with high probability over the internal randomness of M .

▶ Lemma 17 (Symmetry of Information for pKt; implicit in [13, 6]). If (coMINKT, U) ∈
Avg1BPP holds, then there exist polynomials pSoI and p0 such that for all sufficiently large
x, y ∈ {0, 1}∗ and every t ≥ p0(|x| + |y|),

pKpSoI(t)(y | x) ≤ pKt(x, y) − pKpSoI(t)(x) + log pSoI(|x| + |y|) + log pSoI(log t).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:19

The Symmetry of Information statement for pKt as in Lemma 17 above was proved in
[6] under the stronger assumption that distributional NP is easy on average for randomized
polynomial-time algorithms in the errorless setting. It turns out that the weaker assumption
on the average-case errorless easiness of MINKT (rather than all problems in NP) suffices to
get the same result, with the proof similar to that in [6]. For completeness, we give the proof
of Lemma 17 in Appendix A.

3.2 On Computational Depth

The following is the key result enabling us to argue that an algorithm that runs in time
2O(rKpoly(t)(x)−K(x)+log n) also runs in time 2O(pKpoly(t)(x)−K(x)+log n). The latter runtime can be
shown to be average-polynomial-time over any t-time samplable distribution.

▶ Theorem 18. If (coMINKT, U) ∈ Avg1BPP, then for some polynomial p, for all n ∈ N, all
t ≥ n, and all x ∈ {0, 1}n, it holds that

rKp(t)(x) − K(x) ≤ O(pKt(x) − K(x) + log n).

Moreover, for every polynomial q, there exists a randomized algorithm M such that, on input
(x, t), with probability at least 1 − o(1) over the internal randomness of M , outputs v ∈ N
such that

rKp(t)(x) − pKq(t)(x) − O(log n) ≤ v ≤ O(pKt(x) − K(x) + log n).

in time 2O(pKt(x)−K(x)+log n).

Proof. Let G be the function of Lemma 15. Let H be the black-box hitting set generator
construction of Lemma 14. The idea is to avoid Gn,m(x, z) ◦ Hn,m′(x, z′) by measuring its
Kolmogorov complexity for some m and m′. Let M be the algorithm of Lemma 16.

Define m := K(x) − c log n and m′ = pKt(x) − K(x) + log3 m′ + c′ log n for sufficiently
large constants c, c′. Observe that there exists a polynomial q such that

pKq(t)(Gn,m(x, z) ◦ Hn,m′(x, z′)) ≤ pKt(x) + |z′| + O(log n)
≤ m + m′ − (c′ − c − O(1)) log n.

Let D0 be an algorithm that takes a string w ∈ {0, 1}m+m′ and outputs 0 if and only if

M(w, 1q(t)) ≤ m + m′ − (c′ − c − O(1)) log n.

Then, D0(Gn,m(x, z) ◦ Hn,m′(x, z′)) = 0 because

M(Gn,m(x, z) ◦ Hn,m′(x, z′), 1q(t)) ≤ pKq(t)(Gn,m(x, z) ◦ Hn,m′(x, z′))
≤ m + m′ − (c′ − c − O(1)) log n.

On the other hand, for a uniformly random w ∈ {0, 1}m+m′ , we have D0(w) = 1 with
probability at least 1 − ε for a small ε > 0.

Let D′ be an (inefficient) algorithm that takes w ∈ {0, 1}m and checks whether

Pr
w′∼{0,1}m′ ,D0

[D0(w ◦ w′) = 0] ≤ 2ε.

CCC 2024

29:20 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

By Markov’s inequality, with probability at least 1
2 over w ∼ {0, 1}m, it holds that D′(w) = 1.

If D′ 1
2 -avoids Gn,m(x, -), by Lemma 15, we would obtain

K(x) ≤ KD′
(x) + O(1)

≤ m + O(log n)
= K(x) − (c − O(1)) log n,

which is a contradiction for a sufficiently large constant c. Thus, D′ does not avoid Gn,m(x, -)
and so there exists z ∈ {0, 1}O(log n) such that D′(Gn,m(x, z)) = 1. That is,

Pr
w′∼{0,1}m′ ,D0

[D0(Gn,m(x, z) ◦ w′) = 0] ≤ 2ε.

Next define a randomized oracle D as follows. On input w′ ∈ {0, 1}m′ , D(w′) = 1 if
and only if D0(Gn,m(x, z) ◦ w′) = 1. Note that D (1 − 2ε)-avoids Hn,m′(x, -), and so, by
Lemma 14, we obtain

rKp(t),D(x) ≤ 2m′ + O(log3 m′ + log n)
≤ O(m′ + log n).

Finally, observe that

rKtO(1)
(x) ≤ rKp(t),D(x) + m + O(log m)

≤ m + O(m′ + log n),

because D can be computed by hard-wiring the fixed string Gn,m(x, z) ∈ {0, 1}m. By the
definitions of m and m′, we obtain that

rKtO(1)
(x) − K(x) ≤ O(pKt(x) − K(x) + log n).

This completes the proof of the first part.
To see the “moreover” part, we compute m̃ such that

K(x) − c log n ≤ m̃ ≤ pKq(t)(x) + O(log n).

This can be done in randomized polynomial time by using the algorithm M . For every
m ≤ m̃, we define D0 to be the algorithm that takes a string w of length m + m′ and outputs
1 if and only if M(w, 1tO(1)) ≤ m + m′ − (c′/2) log n. We compute the maximum integer m

such that there exists z such that Prw′ [D0(Gn,m(x, z) ◦ w′) = 0] ≤ 2ε. Note that m can be
approximately computed in polynomial time by using random sampling. By the proof above,
we have

K(x) − c log n ≤ m ≤ m̃ ≤ pKq(t)(x) + O(log n).

Next, we compute the maximum integer m′ such that D0(Gn,m(x, z) ◦ Hn,m′(x, z′)) = 1 for
all z′ ∈ {0, 1}O(log3 m′+log n). This can be computed in quasi-polynomial time in m′. By the
proof above, we have m′ ≤ pKt(x) − m + O(log3 m′ + log n). Finally, we define the output v

to be m′. As in the proof above, we obtain

rKtO(1)
(x) ≤ m + O(m′ + log n),

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:21

from which it follows that

rKtO(1)
(x) − pKq(t)(x) − O(log n) ≤ rKtO(1)

(x) − m

≤ O(v + log n)
≤ O(pKt(x) − m + log n)
≤ O(pKt(x) − K(x) + log n),

as required. ◀

3.3 Finding rKt-Witnesses for Strings of Small Computational Depth
We call a 0-rKt

λ(x)-witness a rKt
λ(x)-witness.

▶ Lemma 19. If (coMINKT, U) ∈ Avg1BPP, then for some polynomial p′, there exists a
randomized polynomial-time algorithm A that, on input (x, λ, 1t, 1k), outputs a list of strings
that contains an rKt

λ-witness of x with probability at least 1−o(1) over the internal randomness
of A if

rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x) + O(log |x| + log log t + log log(1/(1 − λ))) ≤ log k.

Proof. We assume without loss of generality that λ ≥ 2/3. The proof can be easily adapted
to the case where λ ≤ 2/3.

The algorithm A operates as follows.

On input (x, λ, 1t, 1k), repeat the following kO(1) times: Choose a uniformly random
string r (of length t), run U(z, r, x) for poly(t) steps, for each string z ∈ {0, 1}≤log k,
and add its output to the list.

To prove the correctness, let y be the lexicographically first rKt
λ-witness of x. Note that

|y| = rKt
λ(x). By Lemma 17, we have

pKpSoI(2t)(y | x) ≤ pK2t(x, y) − pKpSoI(2t)(x) + log pSoI(|x| + |y|) + log pSoI(log t).

Observe that (x, y) can be described by y. Thus, we obtain

pK2t(x, y) ≤ |y| + O(1)
= rKt

λ(x) + O(1) (by the definition of y)

≤ rKt/O(log(1/(1−λ)))(x) + O(log log(1/(1 − λ))). (by Lemma 10)

Combining these inequalities, we obtain

pKpSoI(2t)(y | x) ≤ rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x)
+ O(log |x| + log log t + log log(1/(1 − λ)))

≤ log k,

which implies that A adds the witness y to its list with high probability. ◀

▶ Lemma 20. Suppose (coMINKT, U) ∈ Avg1BPP. Then for every polynomial-time samplable
distribution family {Dn}n supported over {0, 1}n, there exist a polynomial ρ, a randomized
algorithm A, and a time function T such that, for all n ∈ N, λ ∈ R, and

t ≥ ρ(n) · log(1/(1 − λ))),

the following conditions hold:

CCC 2024

29:22 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

For every x ∈ {0, 1}n, with probability at least 2/3 over its randomness, A(x, λ, 1t) stops
within T (x, λ, t) steps and outputs a list of strings that contains an rKt

λ-witness of x.
For some constant ε > 0,

E
x∼Dn

[T (x, λ, t)ε] ≤ poly(n, |λ|, t).

Proof. Throughout the proof, we will assume t ≥ ρ(n) · log(1/(1 − λ))), for some sufficiently
large polynomial ρ to be specified later.

Let p the polynomial of Theorem 18. Also, let M be the algorithm from Theorem 18,
instantiated with a sufficiently large polynomial q to be specified later. Let A and p′ be the
algorithm and polynomial of Lemma 19, respectively.

We define a new algorithm A′ as follows.

On input (x, λ, 1t), let t0 be the maximum integer t0 such that

t ≥ p(t0) · O(log(1/(1 − λ))).

Run M on input (x, 1t0) to obtain v := M(x, 1t0), and then simulate A on input
(x, λ, 1t, 1k) for

k := 2O(v+log |x|+log log t+log log(1/(1−λ)))

and output what A outputs.

By Theorem 18, we get that with probability at least 1 − o(1), the value v obtained in
the algorithm satisfies

rKp(t0)(x) − pKq(t0)(x) − O(log n) ≤ v ≤ O(pKt0(x) − K(x) + log n). (5)

Therefore, our algorithm will run in time

T (x, λ, t) := 2O(pKt0 (x)−K(x)+log n+log t+log |λ|)).

Also, by letting q be a sufficiently large polynomial, we have

rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x) ≤ rKp(t0)(x) − pKq(t0)(x) ≤ O(v + log n).

Thus, we have

rKt/O(log(1/(1−λ)))(x) − pKp′(t)(x) + O(log |x| + log log t + log(1/(1 − λ)))
≤ O(v + log n) + O(log |x| + log log t + log log(1/(1 − λ)))
≤ log k,

which means that the condition of Lemma 19 is satisfied.
As a result, we get that with probability at least 2/3, the algorithm A′ runs in time

T (x, λ, t) and outputs a list of strings that contains an rKt
λ-witness of x.

We claim that for every polynomial-time samplable distribution family {Dn}, there exists
a polynomial ρ such that for all large n ∈ N, A′ is an average-polynomial-time algorithm on
input (x, λ, 1t) over x ∼ Dn if t ≥ ρ(n) · log(1/(1 − λ)). Fix the parameters n, λ and t such
that t ≥ ρ(n) · log(1/(1 − λ))). We have

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:23

E
x∼Dn

[T (x, λ, t)ε]

≤
∑

x

Dn(x) · 2ε·O(pKt0 (x)−K(x)+log n+log t+log |λ|))

≤n · |λ| · t ·
∑

x

Dn(x) · 2pKt0 (x)−K(x) (for sufficiently small ε > 0)

≤n · |λ| · t ·
∑

x

2−K(x) (by Coding Theorem for pKt (Theorem 8))

≤nO(1) · |λ| · t. (by “Kraft’s Inequality for K” (Lemma 7))

Note that the penultimate inequality holds for ρ that is a sufficiently large polynomial. ◀

3.4 Proof of Theorem 3
By using Lemma 20, we obtain an errorless average-case polynomial-time algorithm for
finding (1/ℓ)-rKt-witnesses.

Proof of Theorem 13. Let {Dn} be a polynomial-time samplable distribution familiy.
Consider the algorithm A in Lemma 20. We first amplify the success probability of A, as

follows. Given (x, λ, 1t, 1k), we maintain poly(k) executions of A(x, λ, 1t) in parallel (each
with its own randomness). After half of the executions have stopped, we take the union of
the outputs of these executions. By standard concentration bounds, we get an algorithm A′

such that

E
x∼Dn

[T ′(x, λ, t, k)ε] ≤ poly(n, |λ|, t, k),

where ε > 0 is a constant, and T ′ satisfies that for all x, with probability at least 1 − 2−k/2
over its randomness, A′(x, λ, 1t, 1k) stops within T ′(x, λ, t, k) steps and outputs a list of
strings that contains an rKt

λ-witness of x.
By Markov’s inequality, we get that for every k, with probability at least 1 − 1/k over

x ∼ Dn, A′(x, λ, 1t, 1k) runs in time Tk := poly(n, |λ|, t, k) and outputs a list of strings
that contains an rKt

λ-witness of x, with probability at least 1 − 2−k/2 (over the internal
randomness of A′).

Consider the algorithm A′′ that, on input (x, λ, 1t, 1ℓ, 1k), simulates A′(x, λ, 1t, 1k+1). If
it does not stop within Tk steps, we output ⊥; otherwise, we obtain a list of programs.

Note that for every x, we will either get ⊥ or obtain a list of programs that contains an
rKt

λ-witness of x, with probability at least 1 − 1/2−k/2 (over the internal randomness of A′′).
Also, with probability at least 1 − 1/k over x ∼ Dn, we will obtain a list of programs

that contains an rKt
λ-witness of x, with probability at least 1 − 2−k/2 (over the internal

randomness of A′′). We aim to find an (1/ℓ)-rKt
λ-witness of x in this case.

We need one more tool. Given x ∈ {0, 1}n, a randomized program y and a time bound
t ∈ N, we will need to check whether y is a valid randomized program that outputs x with
probability at least λ − 1/ℓ.

▷ Claim 21. There is a polynomial-time algorithm Valid that takes as input (x, y, λ, 1t, 1ℓ, 1k′),
where x, y ∈ {0, 1}∗, λ ∈ (0, 1), and t, ℓ, k′ ∈ N, and with probability at least 1 − 2−k′ ,

accepts if y is a randomized program that outputs x within t steps with probability at
least λ, and
rejects if y is a randomized program that outputs x within t steps with probability less
than λ − 1/ℓ.

CCC 2024

29:24 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Proof Sketch of Claim 21. The algorithm repeatedly simulates the randomized program y

for t steps, for poly(ℓ, k′) simulations and counts the fraction of times that x is obtained.
If this number is greater than λ − 1/(2ℓ), the algorithm accepts; otherwise it rejects. The
correctness can be easily shown using Chernoff bounds. ◁

Using the algorithm Valid in Claim 21, we can easily obtain, from a good list output by the
algorithm A′′, an (1/ℓ)-rKt

λ-witness of x, with probability at least 1 − 2−k/2, by outputting
the first y in the list so that Valid(x, y, λ, 1ℓ, 1k′) accepts, where k′ is set appropriately.

It is easy to verify our final algorithm has polynomial running time. The correctness
follows from a union bound. ◀

4 Errorless Average-Case Search-to-Decision Reduction for Kt

In this section we prove Theorem 1.

4.1 Technical Tools
The lemmas stated in this subsection are implicit in prior work, e.g., [7, 9, 5, 13]. The proof
ideas are similar to those in Appendix B.1, but instead of using a generator with rKt-style
reconstruction, we use a generator with Kt reconstruction (assuming E ̸⊆ i.o.SIZE[2o(n)]).
(See also Lemma 53.) We omit the details of the proofs since no new ideas are needed.

▶ Lemma 22. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then there
exist polynomials pSoI and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and every
t ≥ p0(|x| + |y|),

Kt(x, y) > KpSoI (t)(x) + KpSoI (t)(y | x) − log pSoI(t).

▶ Lemma 23. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then for
every polynomial-time samplable distribution family {Dn}n, there exists a polynomial pcode

such that for every n ∈ N and x ∈ Support(Dn),

Kpcode (n)(x) ≤ log 1
Dn(x) + log pcode(n).

▶ Lemma 24. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then there
exist a constant c > 0, a polynomial τ and an algorithm Approx-depth that, on input
(x, 1t1 , 1t2), where x ∈ {0, 1}n, t1, t2 ∈ N with t1, t2 ≥ cn, runs in time poly(n, t1, t2) and
outputs an integer s such that

Kτ(t1)(x) − Kt2(x) ≤ s ≤ Kt1(x) − Kτ(t2)(x) + log τ(t1) + log τ(t2).

4.2 Proof of Theorem 1
The following implies Theorem 1 via Proposition 11.

▶ Theorem 25. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then for
every polynomial-time samplable distribution family {Dn}n∈N, where each Dn is over {0, 1}n,
there exist a polynomial ρ and a polynomial-time algorithm A such that the following holds
for all n, k ∈ N, and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n, A(x, 1t, 1k) outputs either a Kt-witness of x or ⊥,
2. and

Pr
x∼Dn

[
A(x, 1t, 1k) = ⊥

]
≤ 1

k
.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:25

Proof. Throughout the proof, we will assume that t ≥ ρ(n) for some polynomial ρ, which
will be specified later.

Let t ∈ N be such that t ≥ p0(3n), where p0 is the polynomial from Lemma 22. Consider
any x ∈ {0, 1}n, and let yt be a Kt-witness of x. That is, yt is the shortest t-time program
that outputs x.

First of all, by symmetry of information (Lemma 22), there exists a polynomial pSoI ,

KpSoI (2t)(yt | x) ≤ K2t(x, yt) − KpSoI (2t)(x) + log pSoI(2t)

≤ |yt| − KpSoI (2t)(x) + log pSoI(2t) + O(1)

= Kt(x) − KpSoI (2t)(x) + log pSoI(2t) + O(1) (6)

where the second inequality follows from the fact that given yt, one can also output x within
t steps.

Let d > 0 be some constant specified later, we say that x ∈ {0, 1}n is (t, k)-good if

Kt(x) − KpSoI (2t)(x) ≤ d · log t + log k. (7)

Consider any x, t, k such that x is (t, k)-good. Equation (6) implies that

Ktd

(yt | x) ≤ KpSoI (2t)(yt | x)

≤ Kt(x) − KpSoI (2t)(x) + log pSoI(2t) + O(1)
≤ 2d log t + log k, (8)

provided that d is a sufficiently large constant (which depends on pSoI).
Given Equation (8), we get that for some sufficiently large constant c > d, there is a

program Πyt
of length at most

s := c · log t + log k (9)

that, given x, outputs yt within T := tc · kc steps. We aim to find such a yt. Let A′ be the
following algorithm that, given (x, 1t) such that x is (t, k)-good, aims to output a Kt-witness
of x.

Algorithm 1 Search for Kt-Witnesses for Good x’s.

1: procedure A′(x, 1t)
2: n := |x|
3: M := 02n

4: s := c · log t + log k, where c is the constant from Equation (9).
5: T := tc · kc

6:
7: for Π ∈ {0, 1}≤s do
8: y := the output of U(Π, x) after running T steps.
9: if |y| < |M | and U(y) outputs x within t steps then

10: M := y

11: Output M

It is easy to verify that A′(x, 1t) runs in time poly(n, t, k). Next, we argue that if x is
(t, k)-good, then the above algorithm outputs a Kt-witness of x.

Note that the algorithm A′ always outputs some program M that can output x within t

steps. Also, if x is (t, k)-good, then as described in previous paragraphs there is a program
Πyt

of length at most s := c · log t + log k such that U(Πyt
, x) outputs yt within T := tc · kc

steps. For such an x, we will have that |M | ≤ |yt| = Kt(x) when Π = Πyt
in the for loop.

CCC 2024

29:26 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

We now describe our final algorithm A in the theorem. Let τ be the polynomial in
Lemma 24, and let Approx-depth be the algorithm from Lemma 24. Our final algorithm A

works as follows.

On input (x, 1t, 1k), we first check if

Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

≤ d · log t + log k,

where d is the constant in Equation (7). If yes, we output A′(x, 1t, 1k). Otherwise, we
output ⊥.

We argue that the algorithm A above satisfies the two conditions stated in the theorem.
For the first condition, we consider two cases. Suppose x is not (t, k)-good, meaning that

Kt(x) − KpSoI (2t)(x) > d · log t + log k.

Note that by Lemma 24, in this case Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

outputs some s that
satisfies

s ≥ Kτ(⌊τ−1(t)⌋)(x) − KpSoI (2t)(x)

≥ Kt(x) − KpSoI (2t)(x)
> d · log t + log k.

Therefore, our algorithm will output ⊥ in this case. Now suppose x is (t, k)-good. As
discussed above, for such x, A′(x, 1t, 1k) will output a Kt-witness of x. Therefore, our
algorithm will always output ⊥ or a Kt-witness of x.

For the second condition, we will show that in the above algorithm the criteria using
Approx-depth will fail (hence output ⊥) with probability at most 1/k over x ∼ Dn. To show
this, we claim the following.

▷ Claim 26. For every t, k ∈ N such that t ≥ ρ(n), with probability at least 1 − 1/k over
x ∼ Dn, we have

Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

≤ d · log t + log k.

Proof of Claim 26. Recall the coding theorem for Kt (Lemma 23). By letting ρ be a sufficiently
large polynomial so that for all t ≥ ρ(n), it is satisfied that ⌊τ−1(t)⌋ ≥ pcode(n), where pcode is
the quasi-polynomial from Lemma 23, we get that for every x ∈ Support(Dn),

K⌊τ−1(t)⌋(x) ≤ Kpcode (n)(x) ≤ log 1
Dn(x) + log pcode(n). (10)

On the other hand, by Lemma 9, with probability at least 1 − 1/k over x ∼ Dn, we have

K(x) ≥ log 1
Dn(x) − b log n − log k,

where b > 0 is a constant. In particular, this implies

Kτ(pSoI (2t))(x) ≥ K(x) ≥ log 1
Dn(x) − b log n − log k. (11)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:27

Finally, we get that with probability at least 1 − 1/k over x ∼ Dn,

Approx-depth
(

x, 1⌊τ−1(t)⌋, 1pSoI (2t)
)

≤ K⌊τ−1(t)⌋(x) − Kτ(pSoI (2t))(x) + log τ(⌊τ−1(t)⌋) + log τ(pSoI(2t)) (by Lemma 24)

≤
(

log 1
Dn(x) + log pcode(n)

)
−

(
log 1

Dn(x) − b log n − log k

)
+ log t + log τ(pSoI(2t))

(by Equation (10) and Equation (11))
= log pcodet(n) + b log n + log k + log t + log τ(pSoI(2t))
≤ d · log t + log k,

where the last inequality holds by letting d be a sufficiently large constant. ◁

Claim 26 implies that for at least 1 − 1/k fraction of the x sampled from Dn, our algorithm
will output something other than ⊥, as desired. ◀

5 Error-Prone Average-Case Search-to-Decision Reduction for
Conditional Kt

In this section, we prove Theorem 2. We start with some technical tools.

5.1 Technical Tools
▶ Lemma 27. Assume

E ̸⊆ i.o.SIZE[2o(n)], and
infinitely-often one-way functions do not exist.

Then for every polynomial-time samplable distribution family {C⟨n,m⟩}, where each C⟨n,m⟩ is
over {0, 1}m, there exists a polynomial-time algorithm A such that for all n, m, t, k ∈ N with
t ≥ n1.01, with probability at least 1 − 1/k over y ∼ C⟨n,m⟩,∑

x∈{0,1}n

2−Kt(x|y) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINKT(x, y, 1t)] ≤ poly(n)
k

. (12)

Proof. Let c > 0 be a constant so that Kt(x) ≤ n + c for every x ∈ {0, 1}n and t ≥ n1.01.
Let S be the sampler for {C⟨n,m⟩} that takes u := poly(n, m) random bits.

Let f be a polynomial-time computable function defined as follows.

On input (ℓ, Π, r, r1, r2), where ℓ ∈ {0, 1}log(n+c), Π ∈ {0, 1}n+c, r ∈ {0, 1}u, r1 ∈
{0, 1}t and r2 ∈ {0, 1}k, we first obtain y := S(r). We then run U(Π[ℓ], y) for t steps
and obtain a string x. If x is of length n, we output (ℓ, x, y, 1t, 1k); otherwise output
(ℓ, 0n, y, 1t, 1k).

Since we assume that E ̸⊆ i.o.SIZE[2o(n)] and that infinitely-often one-way functions do
not exist (which implies infinitely-often weak one-way functions do not exist), there is a
deterministic polynomial-time algorithm A′ such that for all n, m, t, k ∈ N, it holds that

Pr
[
A′(ℓ, x, y, 1t, 1k) succeeds

]
≥ 1 − 1

k2 ,

where (ℓ, x, y, 1t, 1k) is sampled according to f and “A′(ℓ, x, y, 1t, 1k) succeeds” means
A′(ℓ, x, y, 1t, 1k) outputs a pre-image of (ℓ, x, y, 1t, 1k). By an averaging argument, we

CCC 2024

29:28 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

get that with probability at least 1 − 1/k over y ∼ C⟨n,m⟩ (i.e., over r ∼ {0, 1}u), it holds
that

Pr
[
A′(ℓ, x, y, 1t, 1k) succeeds

]
≥ 1 − 1

k
, (13)

where the above probability is only over ℓ and x. In what follows, fix a good y such that
Equation (13) holds.

By a union bound, Equation (13) yields that for all ℓ ∈ {0, 1}log(n+c),

Pr
[
A′(ℓ, x, y, 1t, 1k) succeeds

]
≥ 1 − n + c

k
, (14)

where now the probability is only over x.
Next, for any fixed ℓ, consider the following distribution D(y,ℓ):

1. Pick Π ∼ {0, 1}n+c.
2. Run U(Π[ℓ], y) for t steps and obtain a string x. If x is of length n, output x; otherwise

output 0n.
Then Equation (14) implies that for all ℓ ∈ {0, 1}log(n+c),

Pr
(x)∼D(y,ℓ)

[
A′(ℓ, x, y, 1t, 1k) fails

]
<

n + c

k
. (15)

Now consider the following algorithm A:

On input (x, y, 1t, 1k), we try ℓ = 1, 2, . . . , n + c, and finds the smallest ℓ such that
A′(ℓ, x, y, 1t, 1k) returns some (ℓ, Π, r, r1, r2) for which y = S(r) and U(Π[ℓ], y) outputs
x within t steps. Then we output Π[ℓ].

We claim that the algorithm A satisfies the condition stated in Equation (12) for all good
y. For the sake of contradiction, suppose there exists some good y such that

∑
x∈{0,1}n

2−Kt(x|y) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINcKT(x, y, 1t)] >
nb

k
, (16)

where b > 0 is a constant specified later.
Note that for every fixed y and ℓ, the support of D(y,ℓ) consists of only strings whose

Kt(· | y)-complexity is at most ℓ. Also, for every x ∈ {0, 1}n with Kt(x | y) = ℓ, D(y,ℓ)

outputs x with probability at least 2−Kt(x|y). In other words, for every such x, we have

2−Kt(x|y) ≤ D(y,ℓ)(x). (17)

Also, for every x ∈ {0, 1}n with Kt(x | y) = ℓ, if A′(ℓ, x, y, 1t, 1k) succeeds, then
A(x, y, 1t, 1k) ∈ Search-MINcKT(x, y, 1t).

Then we have

nb

k
≤

∑
ℓ

∑
x:Kt(x|y)=ℓ

2−Kt(x|y) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINcKT(x, y, 1t)] (by Equation (16))

≤
∑

ℓ

∑
x:Kt(x|y)=ℓ

D(y,ℓ)(x) · 1[A(x, y, 1t, 1k) ̸∈ Search-MINcKT(x, y, 1t)] (by Equation (17))

≤
∑

ℓ

∑
x:Kt(x|y)=ℓ

D(y,ℓ)(x) · 1[A′(ℓ,x,y,1t,1k) fails].

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:29

By averaging, the above implies that there exists some ℓ such that∑
x:Kt(x|y)=ℓ

D(y,ℓ)(x) · 1[A′(ℓ,x,y,1t,1k) fails] ≥ nb

(n + c) · k
,

which contradicts Equation (15) by letting b be a sufficiently large constant. ◀

▶ Lemma 28 (Implicit in [22]). If (MINKT, U) ∈ HeurBPP holds, then infinitely-often one-way
functions do not exist.

▶ Lemma 29 (Following [14]; see the proof of [14, Lemma 14]). Assume
E ̸⊆ i.o.SIZE[2o(n)], and
infinitely-often one-way functions do not exist.

Then for every polynomial-time samplable distribution family {D⟨n,m⟩} supported over
{0, 1}n × {0, 1}m, there exists a polynomial p such that for all n, m, k ∈ N,

Pr
(x,y)∼D⟨n,m⟩

[
Kp(n,m,k)(x | y) ≤ log 1

D⟨n,m⟩(x | y) + log p(n, m, k)
]

≥ 1 − 1
k

.

Proof Sketch. First of all, [14, Lemma 14] gives that if infinitely-often one-way functions do
not exist, then one can get average-case coding theorem for pKpoly. (See also [14, Section
1.3] for an exposition). The proof here is done by “derandomizing” that of [14, Lemma 14].
More specifically, it is not hard to adapt the proof of [14, Lemma 14] to show the following.
If infinitely-often one-way functions do not exist, then for every polynomial-time samplable
distribution family {D⟨n,m⟩} supported over {0, 1}n × {0, 1}m, there exists a deterministic
polynomial-time algorithm Rec, such that for all n, m, k ∈ N, with probability at least 1−1/k

over (x, y) ∼ D⟨n,m⟩,

Pr
w∼{0,1}poly(n)

rRec ∼{0,1}poly(n,m,k)

[
Rec(Hw(x), y, w, 1k; rRec) = x

]
≥ 2

3 , (18)

Where Hw is a function from a pairwise independent hash family, mapping n bits to

s := log 1
D⟨n,m⟩(x | y) + O(log n)

bits, and is indexed by the string w. Moreover, given w and x, Hw(x) can be computed in
time poly(n).

Fix any (x, y) such that Equation (18) holds, we show that given y and an advice of
length

log 1
D⟨n,m⟩(x | y) + O(log nk),

we can output x in time poly(n, m, k). This will conclude the proof of the lemma.
The idea is to derandomize Equation (18). Consider the circuit D that takes as input

w ∈ {0, 1}poly(n) and rRec ∈ {0, 1}poly(n,m,k), and such that

D(w, rRec) = 1 ⇐⇒ Rec(Hw(x), y, w, 1k) = x.

Note that D can be implemented as a circuit of size poly(n, m, k). Also, by Equation (18),
we have

Pr
w,rRec

[D(w, rRec) = x] ≥ 2
3 . (19)

CCC 2024

29:30 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Assuming E ̸⊆ i.o.SIZE[2o(n)], there is a pseudorandom generator G of seed length O(log s)
that can derandomize circuits of size at most s [20]. In particular,

Pr
z∼{0,1}O(log(nmk))

[D(G(z)) = 1] − Pr
w,rRec

[D(w, rRec) = 1] ≥ 1
10 .

Together with Equation (19), the above yields that there exists some z ∈ {0, 1}O(log(nmk))

such that for (w, rRec) := G(z), we have

Rec(Hw(x), y, w, 1k; rRec) = x.

Note that |Hw(x)| = s. As a result, given y, z and Hw(x), we can recover x in time
poly(n, m, k), as desired. ◀

5.2 Proof of Theorem 2
We prove the following which implies Theorem 2.

▶ Theorem 30. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (MINKT, U) ∈ HeurBPP holds, then for every
polynomial-time samplable distribution family {D⟨n,m⟩}n,m∈N supported over {0, 1}n×{0, 1}m,
there exist a polynomial ρ and a polynomial-time algorithm A such that for all n, m, k ∈ N,
and all t ≥ ρ(n, m, k),

Pr
(x,y)∼D⟨n,m⟩

[
A(x, y, 1t, 1k) outputs a Kt(· | y)-witness of x

]
≥ 1 − 1

k
.

Proof. Let {D⟨n,m⟩} be a polynomial-time samplable distribution family. Let {C⟨n,m⟩} be
the family of marginal distributions of {D⟨n,m⟩} on the second part. That is, to sample from
C⟨n,m⟩, we sample (x, y) from D⟨n,m⟩ and then output y. Note that {C⟨n,m⟩} is polynomial-
time samplable and is supported over {0, 1}m. Also, let n, m, k ∈ N, and all t ≥ ρ(n, m, k),
where ρ is a polynomial specified later.

We show how to solve Search-MINcKT with probability at least 1 − 1/k over D⟨n,m⟩.
First of all, since we assume that (MINKT, U) ∈ HeurBPP holds, by Lemma 28, we get

that infinitely-often one-way functions do not exist. Let A′ be the polynomial-time algorithm
in Lemma 27. We have that with probability at least 1 − 1/(4k) over y ∼ C⟨n,m⟩,∑

x∈{0,1}n

2−Kt(x|y) · 1
[A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)]
≤ 1

kb · (nm)b
. (20)

where b > 0 is a constant specified later.
Also, by Lemma 29 and an averaging argument, there exists a polynomial p such that,

with probability at least 1 − 1/(4k) over y ∼ C⟨n,m⟩,

Pr
x∼D⟨n,m⟩(·|y)

[
Kp(n,m,16k2)(x | y) ≤ log 1

D⟨n,m⟩(x | y) + log p(n, m, 16k2)
]

≥ 1 − 1
4k

. (21)

Fix any good y such that both Equation (20) and Equation (21) hold. Note that y is
good with probability at least 1 − 1/(2k) when sampled from C⟨n,m⟩. We claim that

Pr
x∼D⟨n,m⟩(·|y)

[
A′(x, y, 1t, 1(nm)b·kb

) outputs a Kt(· | y)-witness of x
]

≥ 1 − 1
2k

. (22)

Note that this suffices to show the theorem, since sampling (x, y) ∼ D⟨n,m⟩ is equivalent to
first sampling y ∼ C⟨n,m⟩ and then sampling x ∼ D⟨n,m⟩(· | y).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:31

Suppose, for the sake of contradiction, Equation (22) is not true. Then

Pr
x∼D⟨n,m⟩(·|y)

[
A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)
]

>
1
2k

. (23)

Let E(x) be the event that both the following hold.
A′(x, y, 1t, 1(nm)b·kb) ̸∈ Search-MINcKT(x, y, 1t)
Kp(n,m,16k2)(x | y) ≤ log 1

D⟨n,m⟩(x|y) + log p(n, m, 16k2).
By Equation (23) and Equation (21), we get that∑

x∈{0,1}n

D⟨n,m⟩(x | y) · 1E(x) ≥ 1
4k

. (24)

Note that whenever E(x) holds, we have

D⟨n,m⟩(x | y) ≤ p(n, m, 16k2)
2Kp(n,m,16k2)(x|y)

. (25)

Now we have
1
4k

≤
∑

x∈{0,1}n

D⟨n,m⟩(x | y) · 1E(x) (by Equation (24))

≤
∑

x∈{0,1}n

p(n, m, 16k2)
2Kp(n,m,k)(x|y) · 1E(x) (by Equation (25))

≤ p(n, m, 16k2) ·
∑

x∈{0,1}n

2−Kp(n,m,16k2)(x|y) · 1E(x)

≤ p(n, m, 16k2) ·
∑

x∈{0,1}n

2−Kp(n,m,16k2)(x|y) · 1
[A′(x, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, 1t)]

≤ p(n, m, 16k2) ·
∑

x∈{0,1}n

2−Kt(x|y) · 1
[A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)]
,

where the last inequality holds if t ≥ p(n, m, 16k2). By rearranging, we get∑
x∈{0,1}n

2−Kt(x|y) · 1
[A′(x, y, 1t, 1(nm)b·kb

) ̸∈ Search-MINcKT(x, y, 1t)]
≥ 1

2k2 · p(n, m, 16k2) .

However, this contradicts Equation (20) by letting b be a sufficiently large constant. ◀

▶ Remark 31. In Theorem 30, our search algorithm only works for t ≥ ρ(n, m, k) instead
of t ≥ ρ(n, m), where ρ is some polynomial (depending on the distribution family) and k

is the parameter controlling the success probability of the algorithm. The reason for the
dependency of k is that in the proof of Theorem 30, we need to apply the average-case
conditional coding theorem (Lemma 29) with success probability at least 1 − 1/(4k) (see
Equation (21)), and as a result, the time bound in the coding theorem is at least poly(n, m, k).
As shown at the end of the proof, we need t to be greater than this time bound.

6 Worst-Case to Average-Case Search-to-Decision Reductions

6.1 Worst-Case to Average-Case Search-to-Decision for rKt

In this subsection, we show the following which implies Theorem 5 via Proposition 11.

CCC 2024

29:32 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Theorem 32. If (coMINKT, U) ∈ Avg1BPP holds, then for every ε > 0 and every polynomial
β, there is a probabilistic algorithm A such that for all n ∈ N, x ∈ {0, 1}n, all ℓ ∈ N, and
all λ ∈ (0, 1) such that λ ≤ 1 − 1/2poly(n), A(x, λ, 1ℓ) runs in time 2O(n/ log n) · poly(|λ|, ℓ)
and, with probability at least 1 − 2−ℓ, outputs a program M and an integer t that satisfy the
following:

β(n) ≤ t ≤ 2nε , and
M is an (1/ℓ)-rKt

λ-witness of x.

Proof. Without loss of generality, we assume λ ≥ 2/3. The proof can be easily adapted to
the case where λ ≤ 2/3.

Let 0 < ε < 1 and let β be a polynomial. Let t ∈ N be such that t ≥ p0(3n)·log2(1/(1−λ)),
where p0 is the polynomial from Lemma 43. Consider any x ∈ {0, 1}n, and let yt be a rKt

λ-
witness of x. That is, yt is a program such that U(yt, r) outputs x within t steps with
probability at least λ over r ∼ {0, 1}t and |yt| = rKt

λ(x). Also, let q := ⌈1/(1 − λ)⌉. Note
that log(q) ≤ O(|λ|).

By symmetry of information (Lemma 43), we have, for some polynomial pSoI ,

rKpSoI (2t)(yt | x)

≤ rK2t(x, yt) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n)

≤ |yt| − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n) + O(1)

= rKt
λ(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n) + O(1) (by the definition of yt)

≤ rKt
1−1/q(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(n) + O(1)

≤ rKt/O(log q)(x) − rKpSoI (2t)(x) + log pSoI(2t) + O(log log q) (by Lemma 10)

≤ rK
√

t(x) − rKpSoI (t2)(x) + log pSoI(2t) + log3 pSoI(n) + O(log log q),

where the second inequality follows from the fact that given yt, one can also output x within t

steps with probability at least 2/3, and the last inequality uses that t ≥ p0(3n) ·O(log2(1/(1−
λ))). Then by the above, we have

rKpSoI (2t)(yt | x) ≤ rK
√

t(x) − rKpSoI (t2)(x) + log pSoI(2t) + log3 pSoI(n) + O(log |λ|). (26)

We note that the above holds for all t ≥ p0(3n) · log2(1/(1 − λ)).
We claim the following.

▷ Claim 33. There is an algorithm B that, on input x ∈ {0, 1}n and ℓ ∈ N, runs in time
O

(
2nε)

· poly(ℓ) and with probability at least 1 − 2−ℓ, outputs an integer tgood such that
max{p0(3n) · log2(1/(1 − λ)), β(n)} ≤ tgood ≤ 2nε , and
rK

√
tgood(x) − rKpSoI(t2

good)(x) ≤ dn/ log n, where d ≥ 1 is a constant.

Proof of Claim 33. Let Approx-depth be the algorithm from Lemma 47, and let ℓ′ := ℓ+⌈nε/2⌉.
Also, let d ≥ 1 be a constant specified later.

The algorithm B works as follows.

On input x ∈ {0, 1}n, we enumerate all

t0 ∈
[
max

{
p0(3n) · log2(1/(1 − λ), β(n)

}
, 2nε/2

]
and consider the first t0 such that Approx-depth(x, 1t0 , 1τ(pSoI(t4

0)), 1ℓ′) ≤ dn/ log n. If
such t0 is found, we output tgood := τ(t2

0), where τ is the polynomial from Lemma 47.
Otherwise, we output ⊥.

It is easy to see that the running time of this algorithm is O
(
2nε)

· poly(ℓ).

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:33

We now argue its correctness. First of all, by a union bound, we get that with probability
except 2−ℓ′ · 2nε/2 ≤ 2−ℓ, Approx-depth(x, 1t0 , 1pSoI(t2

0), 1k′) will succeed (meaning that it
outputs an answer that satisfies the condition stated in Lemma 47) on all t0 ≤ 2nε/2 . In
what follows, we assume that this is the case.

Now consider Lemma 12 instantiated with the parameter ε/2, polynomials qdpt such that
qdpt(n) ≥ max

{
p0(3n) · log2(1/(1 − λ)), β(n)

}
, and pdpt such that pdpt(z) ≥ τ (2)(pSoI(z4)). We

have that there exists some t∗ such that qdpt(n) ≤ t∗ ≤ 2nε/2 and that

rKt∗
(x) − rKpdpt (t∗)(x) ≤ d0 · n

log n
, (27)

by choosing d0 to be a large enough constant. For such t∗, Approx-
depth(x, 1t∗

, 1τ(pSoI ((t∗)4)), 1k′) outputs some s that satisfies

s ≤ rKt∗
(x) − rKτ (2)(pSoI((t∗)4))(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)4))

+ log3 τ(n)

≤ rKt∗
(x) − rKpdpt (t∗)(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)4))

+ log3 τ(n)

≤ 2d0n

log n
. (by Equation (27))

In other words, if we let d ≥ 2d0, there is at least one t0 (in particular, t∗) that can pass the
test using Approx-depth. Also, by the property of Approx-depth, for any t0 that passes the
test, we have

rKτ(t0)(x) − rKτ(pSoI((t0)4))(x) ≤ dn/ log n.

Recall that we will output tgood := τ(t2
0). Then by the above, we have

rK
√

tgood(x) − rKpSoI(t2
good)(x) ≤ dn/ log n,

as desired. ◁

Suppose we run the above algorithm B on x and obtain an integer tgood that satisfies the
condition stated in Claim 33. Now by Equation (26), where we let t := tgood, we get

rKpSoI (2tgood)(ytgood | x)

≤ rK
√

tgood(x) − rKpSoI(t2
good)(x) + log pSoI(2tgood) + log3 pSoI(n) + O(1)

≤ 2dn

log n
, (28)

provided that d is a sufficiently large constant.
Given Equation (28) and using amplification techniques (Lemma 10), we get that for

some large constant c ≥ 1, there is a randomized program Πyt
of length at most

s := cn/ log n + c · log log ℓ (29)

that, given x, outputs yt within T := 2cnε · ℓc steps with probability at least 1 − 2−ℓ/4, where
t := tgood and yt is a rKt-witness of x. We aim to find such a yt.

Let Valid be the algorithm from Claim 21. Consider the following algorithm A that, on
input (x, λ, ℓ), aims to output a program M and an integer t such that M is a (1/ℓ)-rKt

1−λ-
witness of x.

CCC 2024

29:34 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Algorithm 2 Search for rKt-Witnesses.

1: procedure A(x, λ, 1ℓ)
2: n := |x|
3: M := 02n

4: s := cn/ log n + c log log ℓ, where c is the constant from Equation (29).
5: T := 2cnε · ℓc

6:
7: t := B

(
x, 1ℓ+2)

, where B is the algorithm in Claim 33.
8:
9: for Π ∈ {0, 1}≤s do

10: r := a uniformly random string in {0, 1}T .
11: y := the output of U(Π, x, r) after running T steps.
12: if |y| < |M | and Valid

(
x, y, λ, 1t, 1ℓ, 1ℓ+s+3)

then
13: M := y

14: Output M and t

First of all, it is easy to verify that the above algorithm runs in time 2O(n/ log n) · poly(ℓ).
Next, we show its correctness.

Note that if the algorithm B succeeds (meaning that it returns an integer t such that
there is a randomized program Πyt ∈ {0, 1}≤s that outputs yt within T steps with probability
at least 1 − 2−ℓ/4, where yt is a rKt-witness of x), which happens with probability at least
1 − 2−ℓ/4, then our algorithm will succeed if both of the following are true.
1. The algorithm Valid succeeds in all of the m :=

∑s
i=1 2i ≤ 2s+1 executions, which happens

with probability at most least 1 − 2m · 2−ℓ−s−3 = 1 − 2−ℓ/4.
2. For Π = Πyt

, U(Π, x, r) outputs yt within T steps, which happens with probability at
least 1 − 2−ℓ/4 over r ∼ {0, 1}T .

To see this, if the first item is true, then the randoized program M output by the algorithm
is a “valid” one that outputs x within t steps with probability at least λ − 1/ℓ. If the second
item is true, then |M | ≤ |yt| = rKt

λ(x), since Valid(x, yt, λ, 1t, 1ℓ, 1ℓ+s+3) = 1 (for a successful
execution of Valid).

The correctness of the algorithm then follows by a union bound. ◀

6.2 Worst-Case to Average-Case Search-to-Decision for Kt

The following implies Theorem 4 via Proposition 11.

▶ Theorem 34. Assume E ̸⊆ i.o.SIZE[2o(n)]. If (coMINKT, U) ∈ Avg1BPP holds, then for
every ε > 0 and every polynomial β, there is an algorithm A such that for all n ∈ N,
x ∈ {0, 1}n, A(x) runs in time 2O(n/ log n) and outputs a program M and an integer t that
satisfy the following:

β(n) ≤ t ≤ 2nε , and
M is a Kt-witness of x.

Proof. The proof follows closely to that of Theorem 32.
Let 0 < ε < 1 and let β be a polynomial.
Fix any t ∈ N such that t ≥ p0(3n), where p0 is the polynomial from Lemma 22. Consider

any x ∈ {0, 1}n, and let yt be a Kt-witness of x. That is, yt is a shortest program such that
U(yt) outputs x within t steps.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:35

By symmetry of information (Lemma 22), we have, for some polynomial pSoI ,

KpSoI (2t)(yt | x) ≤ K2t(x, yt) − rKpSoI (2t)(x) + log pSoI(2t)

≤ |yt| − KpSoI (2t)(x) + log pSoI(2t) + O(1)

= Kt(x) − KpSoI (2t)(x) + log pSoI(2t) + O(1) (by the definition of yt)

where the second inequality follows from the fact that given yt, one can also output x within
t steps. Then by the above, we have

KpSoI (2t)(yt | x) ≤ Kt(x) − KpSoI (t2)(x) + log pSoI(2t) + O(1). (30)

We show the following claim.

▷ Claim 35. There is an algorithm B that, on input x ∈ {0, 1}n, runs in time O
(
2nε)

and
outputs an integer tgood such that

max{p0(3n), β(n)} ≤ tgood ≤ 2nε , and
Ktgood(x) − KpSoI(t2

good)(x) ≤ dn/ log n, where d ≥ 1 is a constant.

Proof of Claim 35. Let Approx-depth be the algorithm from Lemma 24. Also, let d ≥ 1 be a
constant specified later.

The algorithm B works as follows.

On input x ∈ {0, 1}n, we enumerate all

t0 ∈
[
max{p0(3n), β(n)}, 2nε/2

]
and consider the first t0 such that Approx-depth(x, 1t0 , 1τ(pSoI(t2

0))) ≤ dn/ log n. If such
t0 is found, we output tgood := τ(t0), where τ is the polynomial from Lemma 47.
Otherwise, we output ⊥.

It is easy to verify that the running time of this algorithm is O
(
2nε)

. Next, we argue its
correctness.

First of all, consider Lemma 12 instantiated with the parameter ε/2, polynomials qdpt

such that qdpt(n) ≥ max{p0(3n), β(n)}, and pdpt such that pdpt(z) ≥ τ (2)(pSoI(z2)). We have
that there exists some t∗ such that qdpt(n) ≤ t∗ ≤ 2nε/2 and that

Kt∗
(x) − Kpdpt (t∗)(x) ≤ d0 · n

log n
, (31)

by choosing d0 to be a large enough constant. For such t∗, Approx-depth(x, 1t∗
, 1τ(pSoI ((t∗)2)))

outputs some s that satisfies the following.

s ≤ Kt∗
(x) − Kτ (2)(pSoI((t∗)2))(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)2))

≤ Kt∗
(x) − Kpdpt (t∗)(x) + log τ(t∗) + log τ

(
pSoI

(
(t∗)2))

≤ 2d0n

log n
. (by Equation (31))

In other words, if we let d ≥ 2d0, there is at least one t0 (in particular, t∗) that can pass the
test using Approx-depth. Also, by the property of Approx-depth, for any t0 that passes the
test, we have

Kτ(t0)(x) − Kτ(pSoI((t0)2))(x) ≤ dn/ log n.

CCC 2024

29:36 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Recall that we will output tgood := τ(t0). Then by the above, we have

Ktgood(x) − KpSoI(t2
good)(x) ≤ dn/ log n,

as desired. ◁

Suppose we run the above algorithm B on x and obtain an integer tgood that satisfies the
condition stated in Claim 35. Now by Equation (30), where we let t := tgood, we get

KpSoI (2tgood)(ytgood | x) ≤ Ktgood(x) − KpSoI(t2
good)(x) + log pSoI(2tgood) + O(1)

≤ 2dn

log n
, (32)

provided that d is a sufficiently large constant.
Given Equation (32), we get that for some large constant c ≥ 1, there is a program Πyt

of length at most

s := cn/ log n (33)

that, given x, outputs yt within T := 2cnε steps, where t := tgood and yt is a Kt-witness of x.
We aim to find such a yt.

Consider the following algorithm A that, on input x, aims to output a program M and
an integer t such that M is a Kt-witness of x.

Algorithm 3 Search for Kt-Witnesses.

1: procedure A(x)
2: n := |x|
3: M := 02n

4: s := cn/ log n, where c is the constant from Equation (33).
5: T := 2cnε

6:
7: t := B(x), where B is the algorithm in Claim 35.
8:
9: for Π ∈ {0, 1}≤s do

10: y := the output of U(Π, x) after running T steps.
11: if |y| < |M | and U(y) outputs x within t steps then
12: M := y

13: Output M and t

First of all, it is easy to verify that the above algorithm runs in time 2O(n/ log n). Next,
we show its correctness.

Note that the algorithm B, on input x, will return a integer t that is “good” for x so that
Equation (32) holds. For such t, there is some program Πyt

of length at most s := cn/ log n

that outputs yt, which is Kt-witness of x, within T := 2cnε steps. Since we enumerate
all programs of size s, we will encounter Πyt

and hence obtain yt. This ensures that our
algorithm can always find a t-time program for x, and the final program output by the
algorithm has size at most |yt| = Kt(x). ◀

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:37

References
1 Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew

Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput.,
47(4):1339–1372, 2018. doi:10.1137/17M1157970.

2 Luis Filipe Coelho Antunes and Lance Fortnow. Worst-case running times for average-
case algorithms. In Conference on Computational Complexity (CCC), pages 298–303, 2009.
doi:10.1109/CCC.2009.12.

3 Shai Ben-David, Benny Chor, Oded Goldreich, and Michael Luby. On the theory of average case
complexity. J. Comput. Syst. Sci., 44(2):193–219, 1992. doi:10.1016/0022-0000(92)90019-F.

4 Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006. doi:10.1561/0400000004.

5 Halley Goldberg and Valentine Kabanets. A simpler proof of the worst-case to average-case
reduction for polynomial hierarchy via symmetry of information. Electron. Colloquium Comput.
Complex., TR22-007:1–14, 2022. URL: https://eccc.weizmann.ac.il/report/2022/007,
arXiv:TR22-007.

6 Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic
Kolmogorov complexity with applications to average-case complexity. In Computational
Complexity Conference (CCC), pages 16:1–16:60, 2022. doi:10.4230/LIPIcs.CCC.2022.16.

7 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018. doi:
10.1109/FOCS.2018.00032.

8 Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-complexity.
In Symposium on Foundations of Computer Science (FOCS), pages 50–60, 2020. doi:10.
1109/FOCS46700.2020.00014.

9 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In Conference on Computational Complexity (CCC), pages
20:1–20:47, 2020. doi:10.4230/LIPIcs.CCC.2020.20.

10 Shuichi Hirahara. Unexpected hardness results for Kolmogorov complexity under uniform
reductions. In Symposium on Theory of Computing (STOC), pages 1038–1051, 2020. doi:
10.1145/3357713.3384251.

11 Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness
assumptions. In Symposium on Theory of Computing (STOC), pages 292–302, 2021.
doi:10.1145/3406325.3451065.

12 Shuichi Hirahara. Meta-computational average-case complexity: A new paradigm toward
excluding heuristica. Bull. EATCS, 136, 2022. URL: http://bulletin.eatcs.org/index.
php/beatcs/article/view/688.

13 Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational Com-
plexity Conference (CCC), pages 26:1–26:41, 2022. doi:10.4230/LIPIcs.CCC.2022.26.

14 Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor C. Oliveira. A
duality between one-way functions and average-case symmetry of information. In Symposium
on Theory of Computing (STOC), pages 1039–1050, 2023. doi:10.1145/3564246.3585138.

15 Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. Electron. Colloquium Comput. Complex., 171:1–30, 2023. URL: https://eccc.
weizmann.ac.il/report/2023/171/, arXiv:TR23-171.

16 Rahul Ilango. Connecting Perebor conjectures: Towards a search to decision reduction for
minimizing formulas. In Computational Complexity Conference (CCC), pages 31:1–31:35, 2020.
doi:10.4230/LIPIcs.CCC.2020.31.

17 Rahul Ilango, Hanlin Ren, and Rahul Santhanam. Hardness on any samplable distribution
suffices: New characterizations of one-way functions by meta-complexity. Electron. Colloquium
Comput. Complex., page 82, 2021. URL: https://eccc.weizmann.ac.il/report/2021/082,
arXiv:TR21-082.

CCC 2024

https://doi.org/10.1137/17M1157970
https://doi.org/10.1109/CCC.2009.12
https://doi.org/10.1016/0022-0000(92)90019-F
https://doi.org/10.1561/0400000004
https://eccc.weizmann.ac.il/report/2022/007
https://arxiv.org/abs/TR22-007
https://doi.org/10.4230/LIPIcs.CCC.2022.16
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.1109/FOCS46700.2020.00014
https://doi.org/10.4230/LIPIcs.CCC.2020.20
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3357713.3384251
https://doi.org/10.1145/3406325.3451065
http://bulletin.eatcs.org/index.php/beatcs/article/view/688
http://bulletin.eatcs.org/index.php/beatcs/article/view/688
https://doi.org/10.4230/LIPIcs.CCC.2022.26
https://doi.org/10.1145/3564246.3585138
https://eccc.weizmann.ac.il/report/2023/171/
https://eccc.weizmann.ac.il/report/2023/171/
https://arxiv.org/abs/TR23-171
https://doi.org/10.4230/LIPIcs.CCC.2020.31
https://eccc.weizmann.ac.il/report/2021/082
https://arxiv.org/abs/TR21-082

29:38 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

18 Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, pages 134–147, 1995. doi:10.1109/SCT.
1995.514853.

19 Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than
picking uniformly at random. In Symposium on Theory of Computing (STOC), pages 812–821,
1990. doi:10.1109/FSCS.1990.89604.

20 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Symposium on Theory of Computing (STOC), pages 220–229.
ACM, 1997. doi:10.1145/258533.258590.

21 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications, 4th Edition. Texts in Computer Science. Springer, 2019. doi:10.1007/
978-3-030-11298-1.

22 Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Symposium on
Foundations of Computer Science (FOCS), pages 1243–1254, 2020. doi:10.1109/FOCS46700.
2020.00118.

23 Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-bounded
Kolmogorov complexity w.r.t. samplable distributions. In Annual Cryptology Conference
(CRYPTO), pages 645–673, 2023. doi:10.1007/978-3-031-38545-2_21.

24 Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time
invertibility. Inf. Comput., 121(1):14–22, 1995. doi:10.1006/inco.1995.1120.

25 Zhenjian Lu and Igor C. Oliveira. An efficient coding theorem via probabilistic representations
and its applications. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 94:1–94:20, 2021. doi:10.4230/LIPIcs.ICALP.2021.94.

26 Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilistic Kolmogorov
complexity. Bull. EATCS, 137, 2022. URL: http://bulletin.eatcs.org/index.php/beatcs/
article/view/700.

27 Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-
bounded Kolmogorov complexity. In International Colloquium on Automata, Languages, and
Programming (ICALP), pages 92:1–92:14, 2022. doi:10.4230/LIPIcs.ICALP.2022.92.

28 Noam Mazor and Rafael Pass. A note on the universality of black-box MKtP solvers. Electron.
Colloquium Comput. Complex., 192:1–11, 2023. URL: https://eccc.weizmann.ac.il/report/
2023/192/, arXiv:TR23-192.

29 Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
Kolmogorov complexity is false. In Innovations in Theoretical Computer Science (ITCS),
pages 80:1–80:20, 2024. doi:10.4230/LIPIcs.ITCS.2024.80.

30 Noam Mazor and Rafael Pass. Search-to-decision reductions for Kolmogorov complexity.
Electron. Colloquium Comput. Complex., 3:TR24–003, 2024. URL: https://eccc.weizmann.
ac.il/report/2024/003.

31 Amnon Ta-Shma, Christopher Umans, and David Zuckerman. Lossless condensers, un-
balanced expanders, and extractors. Combinatorica, 27(2):213–240, 2007. doi:10.1007/
s00493-007-0053-2.

32 Boris A. Trakhtenbrot. A survey of Russian approaches to perebor (brute-force searches)
algorithms. IEEE Ann. Hist. Comput., 6(4):384–400, 1984. doi:10.1109/MAHC.1984.10036.

A Symmetry of Information for pKt

▶ Lemma 36 (Symmetry of Information for pKt). If (coMINKT, U) ∈ Avg1BPP holds, then
there exist polynomials pSoI and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and every
t ≥ p0(|x| + |y|),

pKpSoI (t)(y | x) ≤ pKt(x, y) − pKpSoI (t)(x) + log pSoI(|x| + |y|) + log pSoI(log t).

https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/SCT.1995.514853
https://doi.org/10.1109/FSCS.1990.89604
https://doi.org/10.1145/258533.258590
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1007/978-3-030-11298-1
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1109/FOCS46700.2020.00118
https://doi.org/10.1007/978-3-031-38545-2_21
https://doi.org/10.1006/inco.1995.1120
https://doi.org/10.4230/LIPIcs.ICALP.2021.94
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
http://bulletin.eatcs.org/index.php/beatcs/article/view/700
https://doi.org/10.4230/LIPIcs.ICALP.2022.92
https://eccc.weizmann.ac.il/report/2023/192/
https://eccc.weizmann.ac.il/report/2023/192/
https://arxiv.org/abs/TR23-192
https://doi.org/10.4230/LIPIcs.ITCS.2024.80
https://eccc.weizmann.ac.il/report/2024/003
https://eccc.weizmann.ac.il/report/2024/003
https://doi.org/10.1007/s00493-007-0053-2
https://doi.org/10.1007/s00493-007-0053-2
https://doi.org/10.1109/MAHC.1984.10036

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:39

▶ Definition 37 (Direct Product Generator [11, Definiton 3.10]). For k, n ∈ N, we define the
k-wise direct product generator to be the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k

such that

DPk(x; z1, . . . , zk) := (z1, . . . , zk, x · z1, . . . , x · zk).

▶ Lemma 38 (pKt Reconstruction Lemma [6, Lemma 22]). For ε > 0, x ∈ {0, 1}n, s ∈ N,
and k ∈ N satisfying k ≤ 2n, let D be a randomized algorithm that takes an advice string β

and runs in time tD such that D ε-distinguishes DPk(x; Unk) from Unk+k. Then there is a
polynomial pDP such that

pKÕ(tD)·pDP (n/ε)(x | β) ≤ k + log pDP(n/ε) + log pDP(log tD).

▶ Remark 39. One difference between Lemma 38 and [6, Lemma 22] is that the pKt bound in
Lemma 38 has an additive term O(log log tD) instead of O(log tD) in [6, Lemma 22], where
tD is the running time of the distinguisher. The reason why we have an additive O(log tD)
term in [6, Lemma 22] is because in the reconstruction procedure we need to encode the
number tD, which takes O(log tD) bits. However, we can assume without loss of generality
that tD is a power of two. Hence we can encode it using only O(log log tD) bits.

Proof of Lemma 36. Let τ be the smallest power of two that is at least t. Note that τ can
be encoded using O(log log τ) bits.

Let x ∈ {0, 1}n, y ∈ {0, 1}ℓ, and k, k′ ∈ N to be defined later. Let DP(−) be the generator
from Definition 37. Also, let c ≥ 1 be a sufficiently large constant specified later.

To begin, observe that there exist a polynomial p0 and a constant d ≥ 1 such that for
any t ≥ p0(n, ℓ), any choice of z ∈ {0, 1}nk and z′ ∈ {0, 1}ℓk′ ,

pK2τ (DPk(x; z) ◦ DPk′(y; z′)) ≤ pKt(x, y) + |z| + |z′| + d log(nℓ). (34)

In particular, p0(n, ℓ) reflects the time required to deterministically compute DPk(x; z) ◦

DPk′(y; z′) given xy, z, z′, and d log(nℓ) bits of information to delineate x from y. In what
follows, we will give a lower bound on pK2τ (DPk(x; z) ◦ DPk′(y; z′)) and thereby a lower
bound on pKt(x, y).

Since we assume that (coMINKT, U) ∈ Avg1BPP holds, there exist a constant c′ > 0, a
polynomial ρ and a probabilistic polynomial-time algorithm B such that the following hold
for all sufficiently large n′, all t′ ≥ ρ(n′), and s′ ≤ n′ − c′ · log log t′, and .
1. If r ∈ {0, 1}n′ and Kt′(r) ≤ s′, then PrB [B(r, 1s′

, 1t′) = 1] ≥ 1 − 1
10n′ .

2. With probability at least 1/n′ over r ∼ {0, 1}n′
, PrB [B(r, 1s′

, 1t′) = 0] ≥ 1 − 1
10n′ .

Let c > 0 be a sufficiently large constant to be specified later, and consider the following
parameters.

k := pKq(τ)(x) − log q(log τ) − log p
G

(nℓ) − 1 and k′ := pKq(τ)(y | x) − log q(log τ) −
log q(nℓ) − 1, where q is a sufficiently large polynomial specified later.
n′ := nk + k + ℓk′ + k′ + τ c.
s′ := nk + k + ℓk′ + k′ + τ c − c · log log τ − c · log(nℓ).
t′ := τ2c.

We show the following which will imply a lower bound on rK2t(DPk(x; z) ◦ DPk′(y; z′)).

CCC 2024

29:40 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▷ Claim 40. There exist z ∈ {0, 1}nk and z′ ∈ {0, 1}ℓk′
such that

Pr
w∼{0,1}tc

[
Kt′

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s′
]

< 1 − 1
10n′ .

Proof of Claim 40. We first claim the following:

Pr
z,v,w,B

[
B(DPk(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
≤ 1 − 4

10n′ . (35)

Toward a contradiction, suppose

Pr
z,v,w,B

[
B(DPk′(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
> 1 − 4

10n′ . (36)

By the property of the algorithm B (Item 2), we have

Pr
u,v,w,B

[
B(uvw, 1s′

, 1t′
) = 0

]
≥ 1

2n′ .

In this case, comparing with Equation (36), we get a randomized distinguisher for DPk(x; Unk)
with advantage 1/10n′, defined by sampling v ∼ Uℓk′+k′ , w ∼ Utc , and outputting B(− ◦

vw, 1s′
, 1t′). By Lemma 38, there exists some polynomial q such that

pKq(τ)(x) ≤ k + log q(log τ) + log p
G

(nℓ). (37)

Recall that k = pKq(t)(x) − log q(log τ) − log q(nℓ) − 1, so Equation (37) gives a contradiction.
This shows Equation (35).

Now, toward a contradiction, suppose that for all z, z′,

Pr
w

[
Kt′

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ .

By the property of B (Item 1), this implies that

Pr
z,z′,w,B

[
B(DPk(x; z) ◦ DPk′(y; z′)) ◦ w, 1s′

, 1t′
) = 1

]
≥ 1 − 2

10n′ .

In this case, comparing with Equation (35), we get a randomized distinguisher for DPk′(y; Uℓk′)
with advantage (2/10n′), defined by sampling z ∼ Uk′ , w ∼ Uτc , and outputting B(DPk(x; z) ◦

− ◦ w, 1s′
, 1t′). Again, by Lemma 38, we have

pKq(τ)(y | x) ≤ k′ + log q(log τ) + log q(nℓ). (38)

Recall that k′ = pKq(τ)(y | x) − log q(τ) − log q(nℓ) − 1, so that Equation (38) gives a
contradiction. This completes the proof of Claim 40. ◁

Next, we show that Claim 40 implies there exist z, z′ such that

pKτc

1−1/10n′(DPk(x; z) ◦ DPk′(y; z′)) > s =: |z| + k + |z′| + k′ − 2c · log log τ.

Suppose this is not the case. Then there exists a deterministic program M of length at most
s such that U(M, w) outputs DPk(x; z) ◦ DPk′(y; z′) within τ c steps for at least 1 − 1/(10n′)
of the w ∈ {0, 1}τc

, which implies

Pr
w∼{0,1}τc

[
Kτ2c

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s + τ c + O(log(c · log τ))
]

≥ 1 − 1
10n′ . (39)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:41

On the other hand, we have

s + τ c + O(log(c log τ)) = (nk + k + ℓk′ + k′ − 2c · log log τ) + τ c + O(log(c · log τ))
≤ s′, (40)

where the last inequality holds if we choose c to be a sufficiently large constant. Equation (39)
and Equation (40) together imply that

Pr
w∼{0,1}τc

[
Kt′

(DPk(x; z) ◦ DPk′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ ,

which contradicts Claim 40.
Therefore, there exist z, z′ such that

pKτc

1−1/10n′(DPk(x; z) ◦ DPk′(y; z′)) > |z| + k + |z′| + k′ − 2c · log log τ.

By amplification techniques (Lemma 10), the above implies

pK2τ (DPk(x; z) ◦ DPk′(y; z′)) > |z| + k + |z′| + k′ − 2c · log log τ − O(log log n′). (41)

Finally, we get

pKt(x, y) ≥ pK2τ (DPk(x; z) ◦ DPk′(y; z′)) − |z| − |z′| − d log(nℓ) (by Equation (34))
> k + k′ − 2c · log log τ − O(log log n′) − d log(nℓ) (by Equation (41))

=
(

pKq(τ)(x) − log q(log τ) − log p
G

(nℓ) − 1
)

+
(

pKq(τ)(y | x) − log q(log τ) − log q(nℓ) − 1
)

− 2c · log log τ − O(log log n′) − d log(nℓ)

≥ pKpSoI (t)(x) + pKpSoI (t)(y | x) − log pSoI(|x| + |y|) − log pSoI(log t),

where the last inequality holds by letting pSoI be a large enough polynomial. ◀

B Quasi-Polynomial-Time Average-Case Search-to-Decision Reduction
for rKt

We introduce the following statement.

“MINrKT ∈ AvgBPTIME[2O(log3 n)]”: For every polynomial-time samplable distribution
family {Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and a probab-
ilistic algorithm A such that the following hold for all all λ ∈ (0, 1), all n, s, ℓ, k ∈ N, and
all t ≥ ρ(n) · log(1/(1 − λ))).
1. For all x ∈ {0, 1}n, A(x, λ, 1t, 1ℓ, 1k) runs in time 2O(log3 n) · poly(|λ|, t, ℓ, k).
2. For all x ∈ {0, 1}n,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs either an (1/ℓ)-rKt

λ-witness of x or ⊥
]

≥ 1 − 1
2k

.

3. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs an (1/ℓ)-rKt

λ-witness of x
]

≥ 1 − 1
2k

.

In this section we prove the following quasipolynomial-time version of Theorem 3.

▶ Theorem 41. We have

“MINrKT ∈ AvgBPP” =⇒ “MINrKT ∈ AvgBPTIME[2O(log3 n)]”.

CCC 2024

29:42 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

B.1 Technical Tools
We begin with some technical tools.

B.1.1 A Generator with rKt Reconstruction
We will use the following pseudorandom generator construction.

▶ Lemma 42 (see e.g., [13] and [14, Lemma 26]). There exists a polynomial p such that, for
all sufficiently large n, m, t ∈ N such that m ≤ 2n and t ≥ n, there exists a “pseudorandom
generator construction”

Gm : {0, 1}n × {0, 1}d → {0, 1}m

such that for every x ∈ {0, 1}n and any function D : {0, 1}m × {0, 1}t → {0, 1}, if∣∣∣∣∣∣∣ Pr
z∼{0,1}d

w′∼{0,1}t

[D(Gm(x; z); w′) = 1] − Pr
w∼{0,1}m

w′∼{0,1}t

[D(w; w′) = 1]

∣∣∣∣∣∣∣ ≥ 1
m

,

then

rKp(t),D(x) ≤ m + O(log3 n).

Here, d = O(log3 n) and Gm can be computed in time poly(n).

B.1.2 Symmetry of Information for rKt

▶ Lemma 43 (Symmetry of Information for rKt). If (coMINKT, U) ∈ Avg1BPP holds, then
there exist polynomials pSoI and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and every
t ≥ p0(|x| + |y|),

rKt(x, y) > rKpSoI (t)(x) + rKpSoI (t)(y | x) − log pSoI(t) − log3 pSoI(|x| · |y|).

Proof. The proof follows closely to that of Lemma 36.
Let x ∈ {0, 1}n, y ∈ {0, 1}ℓ, and m, m′ ∈ N to be defined later. Let G(−) be the generator

from Lemma 42. Also, let c ≥ 1 be a sufficiently large constant specified later.
To begin, observe that there exist a polynomial p0 and a constant d ≥ 1 such that for

any t ≥ p0(n, ℓ), any choice of z ∈ {0, 1}O(log3 n) and z′ ∈ {0, 1}O(log3 ℓ),

rK2t(Gm(x; z) ◦ Gm′(y; z′)) ≤ rKt(x, y) + |z| + |z′| + d log t. (42)

In particular, p0(n, ℓ) reflects the time required to deterministically compute Gm(x; z) ◦

Gm′(y; z′) given xy, z, z′, and d log t bits of information to delineate x from y. In what
follows, we will give a lower bound on rK2t(Gm(x; z) ◦ Gm′(y; z′)) and thereby a lower bound
on rKt(x, y).

Since we assume that (coMINKT, U) ∈ Avg1BPP holds, there exist a constant c′ > 0, a
polynomial ρ and a probabilistic polynomial-time algorithm B such that the following hold
for all sufficiently large n′, all all t′ ≥ ρ(n′), and all s′ ≤ n′ − c′ · log log t′.
1. If r ∈ {0, 1}n′ and Kt′(r) ≤ s′, then PrB [B(r, 1s′

, 1t′) = 1] ≥ 1 − 1
10n′ .

2. With probability at least 1/n′ over r ∼ {0, 1}n′
, PrB [B(r, 1s′

, 1t′) = 0] ≥ 1 − 1
10n′ .

Let c > 0 be a sufficiently large constant to be specified later, and consider the following
parameters.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:43

m := rKp
G

(t)(x) − log p
G

(t) − log3 p
G

(nℓ) − 1 and m′ := rKp
G

(t)(y | x) − log p
G

(t) −
log3 p

G
(nℓ) − 1, where p

G
is a sufficiently large polynomial specified later.

n′ := m + m′ + tc.
s′ := m + m′ + tc − c2 · log(t) − c · log3(nℓ).
t′ := t2c.

We show the following which will imply a lower bound on rK2t(Gm(x; z) ◦ Gm′(y; z′)).

▷ Claim 44. There exist z ∈ O(log3 n) and z′ ∈ O(log3 ℓ) such that

Pr
w∼{0,1}tc

[
Kt′

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s′
]

< 1 − 1
10n′ .

Proof of Claim 44. We first claim the following:

Pr
z,v,w,B

[
B(Gm(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
≤ 1 − 4

10n′ . (43)

Toward a contradiction, suppose

Pr
z,v,w,B

[
B(Gm(x; z) ◦ vw, 1s′

, 1t′
) = 1

]
> 1 − 4

10n′ . (44)

By the property of the algorithm B (Item 2), we have

Pr
u,v,w,B

[
B(uvw, 1s′

, 1t′
) = 0

]
≥ 1

2n′ .

In this case, comparing with Equation (44), we get a randomized distinguisher for
Gm(x; UO(log3 n)) with advantage 1/10n′, defined by sampling v ∼ Um′ , w ∼ Utc , and
outputting B(− ◦ vw, 1s′

, 1t′). By Lemma 42, there exists some polynomial p
G

such that

rKp
G

(t)(x) ≤ m + log p
G

(t) + log3 p
G

(nℓ). (45)

Recall that m = rKp
G

(t)(x)−log p
G

(t)−log3 p
G

(nℓ)−1, so Equation (45) gives a contradiction.
This shows Equation (43).

Now, toward a contradiction, suppose that for all z, z′,

Pr
w

[
Kt′

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ .

By the property of B (Item 1), this implies that

Pr
z,z′,w,B

[
B(Gm(x; z) ◦ Gm′(y; z′)) ◦ w, 1s′

, 1t′
) = 1

]
≥ 1 − 2

10n′ .

In this case, comparing with Equation (43), we get a randomized distinguisher for
Gm′(y; UO(log3 ℓ)) with advantage (2/10n′), defined by sampling z ∼ UO(log3 ℓ), w ∼ Utc ,
and outputting B(Gm(x; z) ◦ − ◦ w, 1s′

, 1t′). Again, by Lemma 42, we have

rKp
G

(t)(y | x) ≤ m′ + log p
G

(t) + log3 p
G

(nℓ). (46)

Recall that m′ = rKp
G

(t)(y | x) − log p
G

(t) − log3 p
G

(nℓ) − 1, so that Equation (46) gives a
contradiction. This completes the proof of Claim 44. ◁

CCC 2024

29:44 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Next, we show that Claim 44 implies there exist z, z′ such that

rKtc

1−1/10n′(Gm(x; z) ◦ Gm′(y; z′)) > s =: |z| + m + |z′| + m′ − c3 log(t).

Suppose this is not the case. Then there exists a deterministic program M of length at most
s such that U(M, w) outputs Gm(x; z) ◦ Gm′(y; z′) within tc steps for at least 1 − 1/(10n′)
of the w ∈ {0, 1}tc

, which implies

Pr
w∼{0,1}tc

[
Kt2c

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s + tc + O(c log t)
]

≥ 1 − 1
10n′ . (47)

On the other hand, we have

s + tc + O(c log t) =
(
m + m′ + O(log3 n) + O(log3 ℓ) − c3 log(t)

)
+ tc + O(c log t)

≤ s′, (48)

where the last inequality holds if we choose c to be a sufficiently large constant. Equation (47)
and Equation (48) together imply that

Pr
w∼{0,1}tc

[
Kt′

(Gm(x; z) ◦ Gm′(y; z′) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ ,

which contradicts Claim 44.
Therefore, there exist z, z′ such that

rKtc

1−1/10n′(Gm(x; z) ◦ Gm′(y; z′)) > |z| + m + |z′| + m′ − c2 log(t).

By amplification techniques (Lemma 10), the above implies

rK2t(Gm(x; z) ◦ Gm′(y; z′)) > |z| + m + |z′| + m′ − c2 log(t) − O(log log n′). (49)

Finally, we get

rKt(x, y)≥ rK2t
(
Gm(x; z) ◦ Gm′ (y; z′)

)
− |z| − |z′| − d log t (by Equation (42))

> m + m′ − c log3(nℓ) − c3 log(t) − O(log log n′) − d log t (by Equation (49))

=
(
rKp

G
(t)(x)−log pG (t)−log3 pG (nℓ)−1

)
+

(
rKp

G
(t)(y | x)−log pG (t)−log3 pG (nℓ)−1

)
− c log3(nℓ) − c3 log(t) − O(log log n′) − d log t

≥ rKpSoI (t)(x) + rKpSoI (t)(y | x) − log pSoI (t) − log3 pSoI (nℓ),

where the last inequality holds by letting pSoI be a large enough polynomial. ◀

B.1.3 Coding Theorem for rKt

▶ Lemma 45 (An Efficient Coding Theorem for rKt). If (coMINKT, U) ∈ Avg1BPP holds, then
for every polynomial-time samplable distribution family {Dn}n, there exists a polynomial
pcode such that for every n ∈ N and x ∈ Support(Dn),

rKpcode (n)(x) ≤ log 1
Dn(x) + log3 pcode(n).

We need the following technical lemma.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:45

▶ Lemma 46 ([2, 1]; See also [11, Lemma 9.7]). Let {Dn}n be any polynomial-time samplable
family of distributions. Then, there exist polynomials p and q such that, for every n ∈ N and
every x ∈ Support(Dn),

Pr
r∼{0,1}q(n)

[
Kp(n)(x, r) ≤ 1

Dn(x) + |r| + log p(n)
]

≥ 1
4 .

We now show Lemma 45.

Proof of Lemma 45. The proof is essentially the same as that of [11, Corollary 9.8].
Note that for any x ∈ {0, 1}∗ and t ∈ N, we have rKt(x) ≤ Kt(x). On the one hand, by

Lemma 46, we have for some polynomials p and q and for every x ∈ Support(Dn),

Pr
r∼{0,1}q(n)

[
rKp(n)(x, r) ≤ 1

Dn(x) + |r| + log p(n)
]

≥ 1
4 . (50)

On the other hand, by symmetry of information (Lemma 43), for every x ∈ {0, 1}n and
r ∈ {0, 1}q(n), we have

rKp(n)(x, r) ≥ rKpSoI (p(n))(x) + rKpSoI (p(n))(r | x) − log pSoI(p(n)) − log3 pSoI(n · q(n)). (51)

Also, by a simple counting argument, we have for any fixed x ∈ {0, 1}∗,

Pr
r∼{0,1}q(n)

[
rKpSoI (p(n))(r | x) ≥ |r| − log n

]
>

3
4 . (52)

Combining Equations (51) and (52), we get that with probability greater than 3/4,

rKp(n)(x, r) ≥ rKpSoI (p(n))(x) + |r| − log pSoI(p(n)) − log3 pSoI(n · q(n)) − log n,

which, together with Equation (50), implies that there exists some r such that

rKpSoI (p(n))(x) ≤ log 1
Dn(x) + log p(n) + log pSoI(p(n)) + log3 pSoI(n · q(n)) + log n.

The desired conclusion follows by choosing pcode to be a sufficiently large polynomial. ◀

B.1.4 Approximate Computational Depth for rKt

In this subsection, we show an algorithm that can approximate the (randomized) computa-
tional depth of a given string.

▶ Lemma 47. If (coMINKT, U) ∈ Avg1BPP holds, then there exist a constant c > 0, a
polynomial τ and an algorithm Approx-depth that, on input (x, 1t1 , 1t2 , 1k), where x ∈ {0, 1}n,
t1, t2, k ∈ N with t1, t2 ≥ cn, runs in time poly(n, t1, t2, k) and with probability 1−2−k outputs
an integer s such that

rKτ(t1)(x) − rKt2(x) ≤ s ≤ rKt1(x) − rKτ(t2)(x) + log τ(t1) + log τ(t2) + log3 τ(n).

To show Lemma 47, we need the following “worst-case-to-average-case reduction” result.

▶ Lemma 48. If (coMINKT, U) ∈ Avg1BPP holds, then there exists a polynomial τ such that
the following promise problem is in prBPP:

YES :=
{(

x, 1s, 1t
)

| rKt(x) ≤ s
}

,

NO :=
{(

x, 1s, 1t
)

| rKτ(t)(x) > s + log τ(t) + log3 τ(n)
}

.

CCC 2024

29:46 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Proof. Fix an instance (x, 1s, 1t), where x ∈ {0, 1}n. Without loss generality, we assume
that t ≥ |x|. Let G(−) be the generator from Lemma 42.

Since we assume that (coMINKT, U) ∈ Avg1BPP holds, There exist a constant c′ > 0, a
polynomial ρ and a probabilistic polynomial-time algorithm B such that the following hold
for all sufficiently large n′, allt′ ≥ ρ(n′) and all s′ ≤ n′ − c′ · log log t′, and .
1. If y ∈ {0, 1}n′ and Kt′(y) ≤ s′, then PrB [B(y, 1s′

, 1t′) = 1] ≥ 1 − 1
10n′ .

2. With probability at least 1/n′ over y ∈ {0, 1}n′
, PrB [B(y, 1s′

, 1t′) = 0] ≥ 1 − 1
10n′ .

Let c > 0 be a sufficiently large constant and consider the following parameters.
m := s + c3 · log t + c log3 n.
n′ := m + tc.
s′ := s + tc + c2 · log t + c log3 n.
t′ := t2c.

Now, define an algorithm B′ as follows:

On input (x, 1s, 1t) with x ∈ {0, 1}n, sample z ∼ {0, 1}O(log3 n) and w ∼ {0, 1}tc

, and
then output B

(
Gm(x; z) ◦ w, 1s′

, 1t′
)

.

Below, we show that B′ solves (YES, NO) correctly with high probability in the worst case.
First, consider the case that (x, 1s, 1t) ∈ YES, i.e., rKt(x) ≤ s. By amplification techniques

(Lemma 10), we get that

rKtc

1−1/10n′(x) ≤ s + O(log log n′).

In other words, there exists a deterministic program M of length at most s + O(log log n′)
such that U(M, w) outputs x within tc steps for at least 1 − 1/10n′ of the w ∈ {0, 1}tc

. This
implies that for any choice of z ∈ {0, 1}O(log3 n),

Pr
w∼{0,1}tc

[
Kt2c

(Gm(x; z) ◦ w) ≤ s + O(log log n′) + tc + O(log3 n) + O(c log t)
]

≥ 1− 1
10n′ .

(53)

Also, note that by letting c be a sufficiently large constant, we have

s + O(log log n′) + tc + O(log3 n) + O(c log t) ≤ s′ (54)

Equation (53) and Equation (54) together imply that

Pr
w∼{0,1}tc

[
Kt′

(Gm(x; z) ◦ w) ≤ s′
]

≥ 1 − 1
10n′ .

Then by the property of B (Item 1) and a union bound, we have

Pr
w,z,B

[
B(Gm(x; z) ◦ w, 1s′

, 1t′
) = 1

]
≥ 1 − 1

5n′ ,

and so

Pr
B′

[
B′(x, 1s, 1t) = 1

]
≥ 1 − 1

5n′ . (55)

Now Let τ be a sufficiently large polynomial specified later, and consider any (x, 1s, 1t) ∈
NO, i.e., rKτ(t)(x) > s + log τ(t). We will show that

Pr
B′

[
B′(x, 1s, 1t) = 1

]
≤ 1 − 2

5n′ . (56)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:47

Note that by combining Equation (55) and Equation (56), B′ yields an polynomial-time
algorithm for (YES, NO) via standard success amplification techniques.

Suppose, for the sake of contradiction, Equation (56) is not true. Then by the definition
of B′, we have

Pr
w,z,B

[
B(Gm(x; z) ◦ w, 1s′

, 1t′
) = 1

]
> 1 − 2

5n′ . (57)

On the other hand, by the property of B (Item 2), we get

Pr
u,w,B

[
B(u ◦ w, 1s′

, 1t′
) = 1

]
< 1 − 1

2n′ . (58)

Comparing Equation (57) and Equation (58), it is clear that B(− ◦ Utc , 1s′
, 1t′) distinguishes

Gm(x; UO(log3 n)) from Um with advantage 1/10n′. By Lemma 42 and by letting τ be a
sufficiently large polynomial, we get

rKτ(t)(x) ≤ m + O(log3 n) + O(log t′)
≤ s + c3 · log t + c log3 n + O(log3 n) + O(c log t)
≤ s + log τ(t) + log3 τ(n).

This means (x, 1s, 1t) is not in NO, which gives the desired contradiction. ◀

▶ Corollary 49. If (coMINKT, U) ∈ Avg1BPP holds, then there exist a constant c > 0,
a polynomial τ , and a probabilistic polynomial-time algorithm Approx-rK that, on input
(x, 1t, 1k) where x ∈ {0, 1}n, t ≥ cn and k ∈ N, with probability at least 1 − 2−k outputs an
integer s such that

rKτ(t)(x) − log τ(t) − log3 τ(n) ≤ s ≤ rKt(x).

Proof. Consider a randomized polynomial-time algorithm A that solves the promise problem
from Lemma 48. By standard error reduction techniques, assume without loss of generality
that on the inputs satisfying the promise its error is at most 2−k/n2, where n = |x|. Note
that the running time of A becomes poly(n, k). Our algorithm Approx-rK runs A on (x, 1s, 1t)
for s = 1, 2, . . . , n + log n, and outputs the first s such that A(x, 1s, 1t) = 1.

The correctness of Approx-rK follows by a union bound. Indeed, if s < rKτ(t)(x) −
log τ(t) − log3 τ(n), i.e., rKτ(t)(x) > s + log τ(t) + log3 τ(n), using the promise we get that
PrA[A(x, 1s, 1t) = 1] ≤ 2−k/n2. On the other hand, if s = rKt(x), which implies that
rKt(x) ≤ s and the promise is satisfied, we have PrA[A(x, 1s, 1t) = 1)] ≥ 1 − 2−k/n2.
Since rKt(x) ≤ n + log n, if t ≥ cn, where c ≥ 1 is a sufficiently large constant, then with
high probability over the internal randomness of Approx-rK, it outputs a value s such that
rKτ(t)(x) − log τ(t) − log3 τ(n) ≤ s ≤ rKt(x). ◀

We are now ready to prove Lemma 47.

Proof of Lemma 47. Let τ ′ be the polynomial from Corollary 49, and let Approx-rK be the
algorithm from Corollary 49. By running Approx-rK(x, 1t1 , 1k+1), with probability at least
1 − 2−k/2, we get some integer s0 such that

rKτ ′(t1)(x) − log τ ′(t1) − log3 τ ′(n) ≤ s1 ≤ rKt1(x).

Similarly, by running Approx-rK
(
x, 1t2 , 1k+1)

, with probability at least 1 − 2−k/2, we get
some integer s2 such that

rKτ ′(t2)(x) − log τ ′(t2) − log3 τ ′(n) ≤ s2 ≤ rKt2(x).

CCC 2024

29:48 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Then with probability at least 1 − 2−k, we have

s1 − s2 ≤ rKt1(x) −
(

rKτ ′(t2)(x) − log τ ′(t2) − log3 τ ′(n)
)

(59)

and

s1 − s2 ≥
(

rKτ ′(t1)(x) − log τ ′(t1) − log3 τ ′(n)
)

− rKt2(x). (60)

We can then output

s := s1 − s2 + log τ ′(t1) + log3 τ ′(n).

Note that using Equations (59) and (60), we have

s ≤ rKt1(x) − rKτ ′(t2)(x) + log τ ′(t1) + log τ ′(t2) + 2 · log3 τ ′(n)

≤ rKt1(x) − rKτ(t2)(x) + log τ(t1) + log τ(t2) + log3 τ(n),

and s ≥ rKτ ′(t1)(x) − rKt2(x) ≥ rKτ(t1)(x) − rKt2(x), where in the above we let τ > τ ′ be a
large polynomial. ◀

B.2 Proof of Theorem 41
In this subsection, we prove the following, which implies Theorem 41 via Proposition 11.

▶ Theorem 50. If (coMINKT, U) ∈ Avg1BPP holds, then for every polynomial-time samplable
distribution family {Dn}n∈N, where each Dn is over {0, 1}n, there exist a polynomial ρ and
a probabilistic algorithm A such that the following hold for all λ ∈ (0, 1), all n, s, ℓ, k ∈ N,
and all t ≥ ρ(n) · log(1/(1 − λ)).
1. For all x ∈ {0, 1}n, A(x, λ, 1t, 1ℓ, 1k) runs in time 2O(log3 n) · poly(|λ|, t, ℓ, k) and outputs

either a program or ⊥.
2. For all x ∈ {0, 1}n,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) outputs neither an (1/ℓ)-rKt

λ-witness of x nor ⊥
]

≤ 2−k.

3. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, λ, 1t, 1ℓ, 1k) = ⊥

]
≤ 2−k.

Proof. Throughout the proof, we will assume that t ≥ ρ(n)·log(1/(1−λ)) for some polynomial
ρ, which will be specified later. Here we assume without loss of generality that λ ≥ 2/3. The
proof can be easily adapted to the case where λ ≤ 2/3.

Let t ∈ N be such that t ≥ p0(3n), where p0 is the polynomial from Lemma 43. Consider
any x ∈ {0, 1}n and let yt be a rKt

λ-witness of x. That is, yt is a program such that U(yt, r)
outputs x within t steps with probability at least λ over r ∼ {0, 1}t and |yt| = rKt

λ(x). Also,
let q := ⌈1/(1 − λ)⌉. Note that log(q) ≤ O(|λ|).

By symmetry of information (Lemma 43), we have, for some polynomial pSoI ,

rKpSoI (2t)(yt | x)

≤ rK2t(x, yt) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n)

≤ |yt| − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(1)

= rKt
λ(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(1) (by the definition of yt)

≤ rKt/O(log q)(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(log log q),
(by Lemma 10)

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:49

where the second inequality follows from the fact that given yt, one can also output x within
t steps with probability at least 2/3.

Let t′ := t/O(log(1/(1 − λ)). Then we have

rKpSoI (2t)(yt | x) ≤ rKt′
(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(log |λ|). (61)

Let d > 0 be some constant specified later, we say that x ∈ {0, 1}n is (t, k)-good if

rKt′
(x) − rKpSoI (2t)(x) ≤ d · (log t + log3 n) + log k. (62)

Consider any x, t, k such that x is (t, k)-good. Equation (61) implies that

rKtd

(yt | x) ≤ rKpSoI (2t)(yt | x)

≤ rKt′
(x) − rKpSoI (2t)(x) + log pSoI(2t) + log3 pSoI(3n) + O(log log q)

≤ 2d · (log t + log3 n) + log k + d · log |λ|, (63)

provided that d is a sufficiently large constant (which depends on pSoI).
Given Equation (63) and using standard success amplification techniques (Lemma 10),

we get that for some sufficiently large constant c > d, there is a randomized program Πyt
of

length at most

s := c ·
(
log3 n + log t + log k + log |λ|

)
(64)

that, given x, outputs yt within T := tc · kc steps with probability at least 1 − 2−k/2. We
aim to find such a yt.

Let Valid be the algorithm from Claim 21, and let A′ be the following algorithm that,
given (x, λ, 1t, 1ℓ, 1k) such that x is (t, k)-good, aims to output an (1/ℓ)-rKt

λ-witness of x.

Algorithm 4 Search for rKt-Witnesses for Good x’s.

1: procedure A′(x, λ, 1t, 1ℓ, 1k)
2: n := |x|
3: M := 02n

4: s := c ·
(
log3 n + log t + log k + log |λ|

)
, where c is the constant from Equation (64).

5: T := tc · kc

6:
7: for Π ∈ {0, 1}≤s do
8: r := a uniformly random string in {0, 1}T .
9: y := the output of U(Π, x, r) after running T steps.

10: if |y| < |M | and Valid
(
x, y, λ, 1t, 1ℓ, 1k+s+2)

then
11: M := y

12: Output M

It is easy to verify that A′(x, λ, 1t, 1k, 1ℓ) runs in time 2O(log3 n) · poly(|λ|, t, k, ℓ). Next,
we argue that if x is (t, k)-good, then the above algorithm outputs an (1/ℓ)-rKt

λ-witness of x

with probability 1 − 2−k.
Note that if x is (t, k)-good, then as described in previous paragraphs there is a randomized

program Πyt of length at most s := c ·
(
log3 n + log t + log k + log |λ|

)
such that U(Πyt , x, r)

outputs yt within T := tc · kc steps with probability at least 1 − 2−k/2 over r ∼ {0, 1}T . For
such an x, our algorithm A′ will successfully output an (1/ℓ)-rKt

λ-witness of x if both of the
following are true.

CCC 2024

29:50 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

1. The algorithm Valid succeeds (meaning that the condition stated in Claim 21 is satisfied)
in all of the m :=

∑s
i=1 2i ≤ 2s+1 executions, which happens with probability at least

1 − 2m · 2−k−s−2 ≥ 1 − 2−k/2.
2. For Π = Πyt

, U(Π, x, r) outputs yt within T steps, which happens with probability at
least 1 − 2−k/2 over r ∼ {0, 1}T .

To see this, if the first item is true, then the randomized program M output by the
algorithm is always a “valid” one that outputs x within t steps with probability at least
λ − 1/ℓ. If the second item is true, we are guaranteed that that |M | ≤ |yt| = rKt

λ(x), since
Valid(x, yt, λ, 1t, 1ℓ, 1k+s+1) = 1 (for a successful execution of Valid). The correctness of the
algorithm then follows by a union bound.

We now describe our final algorithm A in the theorem. Let τ be the quasi-polynomial in
Lemma 47, and let Approx-depth be the algorithm from Lemma 47. Our final algorithm A

works as follows.

On input (x, λ, 1t, 1ℓ, 1k), we first check if

Approx-depth
(

x, 1⌊τ−1(t′)⌋, 1pSoI (2t), 1k
)

≤ d · (log t + log3 n) + log k,

where d is the constant in Equation (62). If yes, we output A′(x, λ, 1t, 1ℓ, 1k). Other-
wise, we output ⊥.

We argue that the algorithm A above satisfies the three conditions stated in the theorem.
The first condition is easy to verify.

For the second condition, we consider two cases. Suppose x is not (t, k)-good, meaning
that

rKt′
(x) − rKpSoI (2t)(x) > d · (log t + log3 n) + log k.

Note that by Lemma 47, in this case Approx-depth
(

x, 1⌊τ−1(t′)⌋, 1pSoI (2t), 1k
)

outputs, with
probability at least 1 − 2−k, some s that satisfies

s ≥ rKτ(⌊τ−1(t′)⌋)(x) − rKpSoI (2t)(x)

≥ rKt′
(x) − rKpSoI (2t)(x)

> d · (log t + log3 n) + log k.

Therefore, our algorithm will output ⊥ with probability at least 1 − 2−k.
Now suppose x is (t, k)-good. Then A′(x, λ, 1t, 1ℓ, 1k) will output an (1/ℓ)-rKt-witness

of x with probability at least 1 − 2−ℓ, which suffices to imply that the probability that our
algorithm outputs neither an (1/ℓ)-optimal rKt-witness of x nor ⊥ is at most 2−k in this
case, which also yields the second condition in this case.

Finally, for the third condition, we will show that in the above algorithm the criteria
using Approx-depth will fail (hence output ⊥) with probability at most 1/k over x ∼ Dn. To
show this, we claim the following.

▷ Claim 51. For every t, k ∈ N such that t ≥ ρ(n), with probability at least 1 − 1/k over
x ∼ Dn, we have

ζ : = rK⌊τ−1(t′)⌋(x) − rKτ(pSoI (2t))(x) + log τ(⌊τ−1(t′)⌋) + log τ(pSoI(2t)) + log3 τ(n)
≤ d · (log t + log3 n) + log k.

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:51

Proof of Claim 51. Recall the coding theorem for rK (Lemma 45). By letting ρ be a sufficiently
large polynomial so that for all t ≥ ρ(n)·log(1/(1−λ))), it is satisfied that ⌊τ−1(t′)⌋ ≥ pcode(n),
where pcode is the polynomial from Lemma 45, we get that for every x ∈ Support(Dn),

rK⌊τ−1(t′)⌋(x) ≤ rKpcode (n)(x) ≤ log 1
Dn(x) + log pcode(n). (65)

On the other hand, by Lemma 9, with probability at least 1 − 1/k over x ∼ Dn, we have

K(x) ≥ log 1
Dn(x) − b log n − log k,

where b > 0 is a constant. In particular, by Fact 6, this implies

rKτ(pSoI (2t))(x) ≥ log 1
Dn(x) − b log n − log k. (66)

Combining Equations (65) and (66), we get that with probability at least 1 − 1/k over
x ∼ Dn,

ζ : = rK⌊τ−1(t′)⌋(x) − rKτ(pSoI (2t))(x) + log τ(⌊τ−1(t′)⌋) + log τ(pSoI(2t)) + log3 τ(n)

≤
(

log 1
Dn(x) + log pcode(n)

)
−

(
log 1

Dn(x) − b log n − log k

)
+ log t′ + log τ(pSoI(2t)) + log3 τ(n)

= log pcode(n) + b log n + log k + log t′ + log τ(pSoI(2t)) + log3 τ(n)
≤ d · (log t + log3 n) + log k,

where the last inequality holds by letting d be a sufficiently large constant. ◁

To see that the third condition follows from Claim 51, note that by Lemma 47, we have
Approx-depth

(
x, 1⌊τ−1(t′)⌋, 1pSoI (2t), 1k

)
outputs, with probability at least 1 − 2−k, some s

such that s ≤ ζ. Then by Claim 51, we obtain that for at least 1 − 1/k fraction of the x

sampled from Dn, our algorithm will output something other than ⊥ with probability at
least 1 − 2−k, as desired. ◀

C Search-to-Decision Reductions for the GapMINKT Problem

Mazor and Pass [30, Theorem 1.1] have recently described a sub-exponential time search-to-
decision reduction for a gap version of time-bounded Kolmogorov complexity. In this section,
we describe some related results obtained via techniques from meta-complexity.

Let MINKT denote the set of strings (x, 1s, 1t) such that Kt(x) ≤ s. We consider a gap
version of the corresponding computational problem, defined as follows. For a polynomial p,
we let GappMINKT denote the following promise problem:

YES instances consist of strings (x, 1s, 1t) such that Kt(x) ≤ s;
NO instances consist of strings (x, 1s, 1t) such that Kp(t,|x|) > s + log p(t, |x|).

We say that an algorithm A solves Search-GappMINKT if given any GappMINKT YES instance
(x, 1s, 1t), A outputs a program Π of length at most s + log p(t, |x|) such that Up(t,|x|)(Π) = x.
In other words, the algorithm certifies that (x, 1s, 1t) is not a NO instance of GappMINKT.
We can think of A as providing an approximate or near-optimal solution to the search
problem for Kt, since there is a bounded overhead in the running time and in the description
length of the provided solution.

CCC 2024

29:52 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Theorem 52. Assume that E ̸⊆ i.o.SIZE[2o(n)]. If there is a polynomial p such that
GappMINKT admits a polynomial-time algorithm, then there is a polynomial q and a
polynomial-time algorithm that solves Search-GapqMINKT.

Proof. We rely on the efficiency and bounded advice complexity (under E ̸⊆ i.o.SIZE[2o(n)]) of
the reconstruction procedure of the k-wise direct product generator DPk : {0, 1}n ×{0, 1}nk →
{0, 1}nk+k, defined as follows:

DPk(x; z) := (z1, . . . , zk, ⟨z1, x⟩, . . . , ⟨zk, x⟩) ,

where ⟨z, x⟩ denotes the inner product of z ∈ {0, 1}n and x ∈ {0, 1}n over GF(2). We will
need the following result.

▶ Lemma 53 (Reconstruction Lemma for Kt [11]). Assume that E ̸⊆ i.o.SIZE[2o(n)]. There
is a polynomial q1 such that, for every n ∈ N, x ∈ {0, 1}n, parameter k ∈ N, and for every
deterministic circuit C of size ℓ such that∣∣∣ Pr

z
[C(DPk(x; z)) = 1] − Pr

w
[C(w) = 1]

∣∣∣ ≥ 1/n,

where z ∼ {0, 1}nk and w ∈ {0, 1}nk+k, it holds that

Kq1(n·ℓ)(x | C) ≤ k + log q1(n · ℓ).

Moreover, there is a deterministic algorithm B that, given x ∈ {0, 1}n, k ∈ N, and C,
runs in polynomial time and outputs a string y of length at most k + log q1(n, ℓ) such that
Uq1(n,ℓ)(y, C) = x.

Sketch of the Proof of Lemma 53. The assumption that E ̸⊆ i.o.SIZE[2o(n)] yields a pseu-
dorandom generator G of seed length O(log m) that allows us to derandomize non-uniform
algorithms of complexity at most m [20]. In the construction described below, we can use
G to derandomize any internal procedure of the program that outputs x given C. We note
that by fixing a good seed of G in such a derandomization, we will incur an overhead in
the description length of the program for x of at most log poly(n, ℓ) bits, while the overhead
in the running time of the program is poly(n, ℓ). These overheads do not create an issue
because we can take the polynomial q1 to be of large enough degree. (Moreover, it would be
enough to design a randomized algorithm B, since this algorithm can be derandomized in
a standard way by trying all seeds of the generator and outputting the first valid program
with the desired parameters.)

Using the circuit C as a distinguisher and Yao’s equivalence between breaking a candid-
ate generator and next-bit (un)predictability, it follows that there is an index i ∈ [k]
such that ⟨zi, x⟩ can be predicted with probability at least 1/2 + Ω(1/(n · k)), given
z1, . . . , zk, ⟨z1, x⟩, . . . ⟨zi−1, x⟩ as input. Since ⟨zi, x⟩ is the zi-th bit of the Hadamard code
of x, we can use the next-bit predictor and the list-decoding algorithm of the Hadamard
code to recover with noticeable probability a list of strings of polynomial size that contains x.
More precisely, this yields a randomized algorithm M (with access to C) that runs in time
polynomial in n and ℓ such that, given a random choice of z1, . . . , zk and the corresponding
bits ⟨z1, x⟩, . . . ⟨zi−1, x⟩, outputs with probability at least 1/poly(n, ℓ) a list S of size poly(n, ℓ)
that contains x.

As explained above, using the generator G, a good choice of the random strings z1, . . . , zk

as well as of the internal randomness of M can be obtained from some seed σ ∈ {0, 1}s,
where s = O(log poly(n, ℓ)). Additionally, the i − 1 ≤ k “advice bits” ⟨z1, x⟩, . . . ⟨zi−1, x⟩

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:53

can be efficiently computed from x and z1, . . . zi−1. These advice bits are stored in the
corresponding program y witnessing that Kq1(n·ℓ)(x | C) ≤ k + log q1(n · ℓ). Finally, the
position of x in the list S can be encoded with O(log poly(n, ℓ)) bits of advice and is also
stored in y.

The search algorithm B from the “moreover” part of the result tries all seeds σ of
the generator until a good seed is found, a condition that can be tested by running the
corresponding program yσ. The overall running time of B is poly(n, ℓ), as desired. ◀

We now describe the search-do-decision reduction. Assume that E ̸⊆ i.o.SIZE[2o(n)]. Let F

be a polynomial-time algorithm that decides GappMINKT. Note that we can assume without
loss of generality that F is deterministic, since E ̸⊆ i.o.SIZE[2o(n)] yields strong pseudorandom
generators [20]. For a large enough polynomial q specified later in the proof, we describe a
deterministic polynomial-time algorithm A that solves Search-GapqMINKT, i.e., given any
GapqMINKT YES instance (x, 1s, 1t), A outputs a q(t, |x|)-time-bounded description of x of
length at most s + log q(t, |x|).

Let α ≥ 1 be a large enough constant. We assume that s ≤ n−10α · log n, since otherwise
a trivial description of x is a correct output for GapqMINKT (taking q to be of large enough
degree). We can also assume that t ≥ n, as the polynomial q can depend on n = |x|. The
search algorithm A sets k = s + α · log n in the execution of the algorithm B from Lemma 53,
and let C(v) be the (deterministic) circuit of size ℓ = poly(t) obtained from F on inputs of
the form (v, 1s′

, 1t′), where |v| = nk + k, s′ = nk + k − (α/4) · log n, and t′ = q2(t), for a
polynomial q2 of large enough degree.

For a given GapqMINKT YES instance (x, 1s, 1t), it is not hard to see that for every string
z ∈ {0, 1}nk,

Kq2(n)(DPk(x; z)) ≤ |z| + Kt(x) + O(log n) ≤ nk + s + O(log n) ≤ nk + k − (α/2) · log n,

where we used that α is large enough. On the other hand, for a random string w ∼ {0, 1}nk+k,
a simple counting argument gives that

K(w) ≥ nk + k − log n

with probability at least 1/n. Recall that C(v) accepts every instance v such that Kt′(v) ≤ s′

and rejects every instance v such that Kp(t′,|v|)(v) > s′ + log p(t′, |v|). Consequently, due to
our choices of s′ and t′ and using a large enough α, it is not hard to see that C(v) satisfies
the condition in the statement of Lemma 53.

Therefore, the algorithm B on inputs x, k = s + α · log n, and C (as defined above), runs
in time poly(x, k, |C|) = poly(n, s, t) and outputs a string y of length at most

k + log q1(n, ℓ) = s + α · log n + log q1(n, poly(t))

such that U q1(n,ℓ)(y, C) = x. Since C can be efficiently computed from the code of F (which
has description length O(1)) and parameters s and t (which can be described with log n+log t

bits), if we take q to be a large enough polynomial, A can produce from y a string Π of
length at most s + log q(t, |x|) such that Uq(t,|x|))(Π) = x. This completes the proof of
Theorem 52. ◀

▶ Remark 54 (Comparison with [30, Theorem 1.1]). On the one hand, the (black-box) search-
to-decision reduction in [30, Theorem 1.1] is unconditional, while Theorem 52 relies on a
standard derandomization assumption and is non-black-box. On the other hand, Theorem 52
provides a polynomial-time search to decision reduction for GapMINKT, as opposed to the
sub-exponential running time of [30, Theorem 1.1].

CCC 2024

29:54 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

▶ Remark 55 (Exact versus Gap Search-to-Decision Reductions for Kt). We note that the
assumption in Theorem 52 on the existence of a polynomial p such that GappMINKT admits
a polynomial-time algorithm is implied by “MINKT ∈ AvgBPP” and E ̸⊆ i.o.SIZE[2o(n)]
(see [10, 9] or [12]). In other words, the assumption on the easiness of GappMINKT can be
replaced by “MINKT ∈ AvgBPP” in Theorem 52. In particular, under the assumptions of
Theorem 1 we can efficiently solve the exact search problem for Kt on average and the gap
search problem for Kt in the worst case.

We observe that it is possible to derive a weaker unconditional consequence from The-
orem 52 via a win-win argument. We will need the following simple result.

▶ Proposition 56. Suppose that E ⊆ i.o.SIZE[2o(n)]. Then, for every ε > 0, there exists
infinitely many values of n and a circuit Cn of size at most 2ε·n such that, given a string
x ∈ {0, 1}n and 1 ≤ t ≤ 2n (represented as an n-bit string), Cn(x, t) outputs a minimum
length program Π such that U t(Π) = x.

Proof. Under the assumption, for every L ∈ E and for every ε > 0, there is an infinite set
S ⊆ N such that, for every n ∈ S, there is a circuit Cn of size at most 2ε·n that computes
Ln, i.e., L restricted to inputs of length exactly n.

We consider a paddable language L (with a padding input parameter k) that contains all
tuples ⟨x, w, i, s, t, 1k⟩ such that:

(i) |x| = n for some n, |w| = n, |i| = log n, |s| = log n, |t| = n, and k is arbitrary. We view
i as an integer such that 1 ≤ i ≤ n, and t as an integer such that 1 ≤ t ≤ 2n.

(ii) Let w≤i be the i-th bit prefix w. There is a program Π that extends wi and is of length
at most s such that U t(Π) = x.

We assume that the tuples in L employ an encoding such that the bit-length of ⟨x, w, i, s, t, 1k⟩
as a string is precisely 4n + k, whenever n is sufficiently large. This is easy to get, since
|x| + |w| + |i| + |s| + |t| = 3n + 2 log n for positive instances. The particular choice of encoding
is not important as long as the tuple can be efficiently encoded and decoded.

Observe that L ∈ E. Under the assumption of Proposition 56, for every δ > 0 there are
infinitely many input lengths m such that L on input length m admits a circuit Dm of size
at most 2δ·m. Using the padding parameter k, it is not hard to see that we can use Dm to
decide tuples ⟨x, w, i, s, t, 1k⟩ with |x| = m/5. Finally, let n = |x|. Given Dm, by a standard
binary search over prefixes of w, we can optimally solve the search problem for Kt on x in
size 2δ·m · poly(m) ≤ 26·δ·n. Since δ > 0 can be taken arbitrarily small, the result follows. ◀

By combining Theorem 52 and Proposition 56, we get the following unconditional search-
to-decision reduction. (Since we consider Boolean circuits in the next statement, which
are devices that operate over fixed input lengths, we assume an upper bound on the input
parameters as a function of n.)

▶ Theorem 57. If there is a polynomial p such that GappMINKT admits a polynomial-time
algorithm, then there is a polynomial q such that, for every ε > 0, there are infinitely many
input lengths n such that Search-GapqMINKT can be solved by a circuit of size at most 2ε·n

on inputs (x, 1s, 1t), where we assume that x ∈ {0, 1}n, 1 ≤ s ≤ n + log n, and 1 ≤ t ≤ 2o(n).

Proof. If E ̸⊆ i.o.SIZE[2o(n)], the result immediately follows from Theorem 52. Otherwise,
we get that E ⊆ i.o.SIZE[2o(n)]. Let Cn be one of the circuits from Proposition 56. Then we
can use Cn to solve the search problem of any GapqMINKT YES instance (x, 1s, 1t). This
completes the proof. ◀

S. Hirahara, V. Kabanets, Z. Lu, and I. C. Oliveira 29:55

Note that, in contrast to the search-to-decision reduction from [30, Theorem 1.1], which
provides a uniform algorithm for Search-GapqMINKT with the sub-exponential-time 2ε·s ·
poly(n, t, s) (for every ε > 0), Theorem 57 only provides a non-uniform infinitely often
sub-exponential-time 2ε·n algorithm (for every ε > 0), and so has similar sub-exponential in
s efficiency only for s ∈ Ω(n).9

D Errorless Average-Case Search-to-Decision Reduction for Kt over
the Uniform Distribution

In this section, we describe polynomial-time errorless average-case search-to-decision reduction
over the uniform distribution for Kt. We get the following polynomial-time average-case
search-to-decision reduction for Kt in the errorless setting over the uniform distribution. This
complements a similar result in [22], which holds in the error-prone setting.

▶ Theorem 58. If (coMINKT, U) ∈ Avg1BPP holds, then there exist a polynomial ρ and a
probabilistic polynomial-time algorithm A such that the following holds for all n, s, k ∈ N,
and all t ≥ ρ(n).
1. For all x ∈ {0, 1}n,

Pr
A

[
A(x, 1t, 1k) outputs either an Kt-witness of x or ⊥

]
≥ 1 − 1

2k
.

2. With probability at least 1 − 1/k over x ∼ Dn,

Pr
A

[
A(x, 1t, 1k) outputs ⊥

]
≤ 1

2k
.

Proof. The proof follows a similar approach to that of Theorem 50.
Let n ∈ N and let t ≥ ρ(n) for some polynomial ρ specified later.
Consider any x ∈ {0, 1}n and let yt be a Kt-witness of x.
By the assumption that (coMINKT, U) ∈ Avg1BPP holds, it follows from Lemma 17 that

there exist polynomials pSoI such that

pKpSoI (2t)(yt | x) ≤ pK2t(x, yt) − pKpSoI (2t)(x) + log pSoI(2t)

≤ K2t(x, yt) − pKpSoI (2t)(x) + log pSoI(2t)

≤ |yt| − pKpSoI (2t)(x) + log pSoI(2t)

= Kt(x) − pKpSoI (2t)(x) + log pSoI(2t).

Using standard amplification techniques for probabilistic time-bounded Kolmogorov com-
plexity (see, e.g., [6, Lemma 21]), we get

pKpSoI (2t)·poly(k)
1−2−k (yt | x) ≤ Kt(x) − pKpSoI (2t)(x) + log pSoI(2t) + O(log k). (67)

Let d > 0 be a constant determined later. We say that x is (t, k)-good if

pKpSoI (2t)(x) > n − d · log t − log k.

9 In Theorem 57 there is a dependence on n in the exponent of the circuit size, as opposed to a dependence
on s in the running time as in [30, Theorem 1.1]. This is inherent in the non-uniform model when the
parameter s is part of the input, since the circuit is fixed and must work for all values of s including
s = Θ(n). In other words, in a uniform algorithm the running time can depend on a given input instance,
but in a circuit its size is fixed for all inputs of a given input length.

CCC 2024

29:56 Exact Search-To-Decision Reductions for Time-Bounded Kolmogorov Complexity

Note that if x is (t, k)-good, then the quantity in Equation (67) becomes

pK(t·k)d

1−2−k (yt | x)| ≤ Kt(x) − pKpSoI (2t)(x) + log pSoI(2t) + O(log k)

< (n + O(1)) − (n − d · log t − log k) + log pSoI(2t) + O(log k)
≤ 2d · (log t + log k),

if we let d be a sufficiently large constant. This implies that for at least 1−2−k fraction of the
w ∈ {0, 1}T , where T := (tk)d, there is a program Πyt

of size at most s := 2d · (log t + log k)
such that U(Π, w) outputs yt within T steps. Therefore, the following procedure A′ will be
able to find a Kt-witness of x with probability at least 1 − 2−k.

On input (x, 1t, 1k), we pick w ∼ {0, 1}T , enumerate all Π ∈ {0, 1}≤s, run U(Π, w) for
T steps and obtain a list of candidate programs {y} (which is guaranteed to contain
yt). We then return the shortest y that outputs x within t steps.

Let M be the randomized algorithm that approximates pKt as in Lemma 16. By standard
amplification techniques, we can amplify its success probability to be 1 − 2−k, by blowing up
the running time by at most poly(k). Consider the following algorithm Certify:

On input (x, 1t, 1k), let t′ := pSoI(2t) and let θ := n − d · log t − log k. We accept if and
only if M(x, 1t′) ≥ θ.

Our final algorithm A works as follows:

On input (x, 1t, 1k), we runs Certify(x, 1t, 1k), if it rejects, we output ⊥; otherwise, we
run A′(x, 1t, 1k) and output whatever it outputs.

We show the first condition of Theorem 58. Note that on the one hand, if x is not
(t, k)-good, then by the correctness of M , Certify(x, 1t, 1k) will reject with probability at least
1 − 2−k over its internal randomness.

On the other hand, if x is indeed (t, k)-good, then our algorithm A′ will return a Kt-witness
of x with probability with probability at least 1 − 2−k over its internal randomness.

To see the second condition, note that by a simple counting argument, with probability
at least 1 − 1/k over x ∼ {0, 1}n, it holds that

pKτ(pSoI (2t))(x) ≥ K(x) − O(log τ(pSoI(2t)))
≥ n − O(log τ(pSoI(2t))) − log k

> n − d · log t − log k,

where the last inequality holds if we choose d to be a sufficiently large constant. Again, by
the correctness of M , this implies that Certify(x, 1t, 1k) will accept at least (1 − 1/k)-fraction
of x ∈ {0, 1}n (with probability at least 1 − 2−k over its internal randomness). ◀

The Computational Advantage of MIP∗ Vanishes
in the Presence of Noise
Yangjing Dong #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Honghao Fu #

Massachusetts Institute of Technology, Cambridge, MA, USA

Anand Natarajan #

Massachusetts Institute of Technology, Cambridge, MA, USA

Minglong Qin #

State Key Laboratory for Novel Software Technology, Nanjing University, China

Haochen Xu #

State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
Beijing, China

Penghui Yao #

State Key Laboratory for Novel Software Technology, Nanjing University, China
Hefei National Laboratory, China

Abstract
The class MIP∗ of quantum multiprover interactive proof systems with entanglement is much more
powerful than its classical counterpart MIP [7, 29, 28]: while MIP = NEXP, the quantum class
MIP∗ is equal to RE, a class including the halting problem. This is because the provers in MIP∗

can share unbounded quantum entanglement. However, recent works [46, 47] have shown that this
advantage is significantly reduced if the provers’ shared state contains noise. This paper attempts
to exactly characterize the effect of noise on the computational power of quantum multiprover
interactive proof systems. We investigate the quantum two-prover one-round interactive system
MIP∗ [poly, O(1)], where the verifier sends polynomially many bits to the provers and the provers
send back constantly many bits. We show noise completely destroys the computational advantage
given by shared entanglement in this model. Specifically, we show that if the provers are allowed to
share arbitrarily many EPR states, where each EPR state is affected by an arbitrarily small constant
amount of noise, the resulting complexity class is equivalent to NEXP = MIP. This improves
significantly on the previous best-known bound of NEEEXP (nondeterministic triply exponential
time) [46]. We also show that this collapse in power is due to the noise, rather than the O(1)
answer size, by showing that allowing for noiseless EPR states gives the class the full power of
RE = MIP∗ [poly, poly]. Along the way, we develop two technical tools of independent interest.
First, we give a new, deterministic tester for the positivity of an exponentially large matrix, provided
it has a low-degree Fourier decomposition in terms of Pauli matrices. Secondly, we develop a new
invariance principle for smooth matrix functions having bounded third-order Fréchet derivatives or
which are Lipschitz continuous.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Interactive proofs, Quantum complexity theory, Quantum entanglement,
Fourier analysis, Matrix analysis, Invariance principle, Derandomization, PCP, Locally testable code,
Positivity testing

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.30

Related Version Full Version: https://arxiv.org/abs/2312.04360 [17]

Funding Yangjing Dong: supported by National Natural Science Foundation of China (Grant No.
62332009, 12347104, 61972191) and Innovation Program for Quantum Science and Technology
(Grant No. 2021ZD0302901).

© Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin,
Haochen Xu, and Penghui Yao;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 30; pp. 30:1–30:71

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongmassimo@gmail.com
https://orcid.org/0000-0002-3256-5669
mailto:honghaof@mit.edu
https://orcid.org/0000-0002-1934-3391
mailto:anandn@mit.edu
https://orcid.org/0000-0003-3648-3844
mailto:mlqin@smail.nju.edu.cn
https://orcid.org/0009-0004-8760-5498
mailto:xuhc@ios.ac.cn
https://orcid.org/0009-0001-7899-7627
mailto:phyao1985@gmail.com
https://orcid.org/0000-0002-4104-2069
https://doi.org/10.4230/LIPIcs.CCC.2024.30
https://arxiv.org/abs/2312.04360
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Honghao Fu: supported by the US National Science Foundation QLCI program (grant OMA-
2016245).
Minglong Qin: supported by National Natural Science Foundation of China (Grant No. 62332009,
12347104, 61972191) and Innovation Program for Quantum Science and Technology (Grant No.
2021ZD0302901).
Haochen Xu: supported by the Key Research Program of the Chinese Academy of Sciences, Grant
NO. ZDRW-XX-2022-1
Penghui Yao: supported by National Natural Science Foundation of China (Grant No. 62332009,
12347104, 61972191) and Innovation Program for Quantum Science and Technology (Grant No.
2021ZD0302901).

Acknowledgements P.Y. would like to thank the discussion with Zhengfeng Ji. Part of the work
was done when H.F. and H.X. visited Nanjing University.

1 Introduction

The power of entanglement in computation has been a central topic in the theory of
quantum computing. In particular, the effect of entanglement in multiprover interactive
proof systems has been studied for decades [33, 32, 25, 27, 54, 53] leading to the seminal
result MIP∗ = RE [29, 28] due to Ji, Natarajan, Vidick, Wright, and Yuen, which states that
all recursively enumerable languages can be decided by multiprover interactive proof systems
empowered by quantum entanglement. More precisely, the system only has two provers, one
round of interaction between the provers and the verifier, and the provers share arbitrarily
many copies of the EPR state.

Given the appearance of intractable complexity classes like RE in the previous result, a
natural question is to what extent the body of results on MIP∗ are relevant to the physical
world. Of course, in reality, devices do not have access to unbounded numbers of perfect
EPR pairs; in a sense, what MIP∗ = RE means is that the power of two entangled grows
unboundedly as the number of shared EPR pairs increases, even when the message size is
constrained to be polynomial. In fact, using a finite number of iterations of the “compression”
procedure from MIP∗ = RE, one can show that the class NTIME[T (n)] for T (n) any finite
tower of exponentials has an MIP∗ protocol, where the provers need only share a finite
number of perfect EPR pairs scaling roughly with log T (n). However, the requirement that
the EPR pairs be perfect seems essential to these protocols. The question naturally arises
whether similar complexity results can be obtained even when the provers have access to
imperfect entanglement only.

To isolate the role played by noise, in this work we ask the following question: what is the
power of MIP∗ when the provers are given access to an unbounded number of imperfect EPR
pairs, where each EPR pair is independently perturbed by a constant amount of depolarizing
noise? (We choose this noise model because it is mathematically elegant and also physically
relevant, as recent experiments suggest that the dominating noise is the localized depolarizing
noise in the neutral atom platform [11].) On the one hand, known MIP∗ protocols all break
down with states of this form. On the other hand, according to standard measures of
entanglement such as distillable entanglement and entanglement of formation, such states
have entanglement that grows unboundedly as the number of copies goes to infinity. Thus,
it seems a priori reasonable that the corresponding MIP∗ class may also have unbounded
power.

It is worth noting that this question is orthogonal to fault tolerance in quantum devices.
As usual in MIP∗, we assume that the provers are computationally unbounded, and may
perform any quantum operation of their choice with no error. Nevertheless, this does not

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:3

mean they can use techniques from fault tolerance to simulate provers with noiseless entangled
states. This is because the provers cannot jointly correct their shared entangled state, since
they are not allowed to communicate in this model.

This question is closely related to the quantum information primitive of self-testing.
Self-tests are essentially MIP∗ protocols that certify physical properties of quantum states,
rather than computational statements. The protocols in MIP∗ = RE all rely on highly
efficient self-tests for EPR pairs, but these tests are not at all tolerant of noise. Designing
self-tests that are tolerant to noise, and certify some useful measure of entanglement, is a
current research question [5, 3], and studying the power of MIP∗ in the presence of noise gives
us insight on this question from a different angle. In particular, for an entangled state ρ, one
can think of the power of the complexity class MIP∗[ρ] where the provers are restricted to
sharing copies of ρ, as a particular operational measure of the amount of useful entanglement
in ρ. In passing, we remark that recent work of Vidick, Arnon-Friedman and Brakerski
has studied “computationally efficient” measures of entanglement from somewhat different
perspective [4].

The first partial answer to this question was given by Qin and Yao [46]. They investigated
two-player nonlocal games1 when the states shared between the players are arbitrarily many
copies of a maximally entangled state (MES) with an arbitrarily small but constant amount
of noise on each copy, which is termed as noisy MES in their paper. They showed that
the supremum winning probability over all strategies using these states can be computably
approximated to any finite precision. In fact, they showed that for any ε, there is a number
of copies of the noisy MES, which is a computable function of only ε and the size of the
nonlocal game, that is sufficient to achieve winning probability within ε of this supremum.
This implies that any language in MIP∗ restricted to such states is decidable, meaning that
this class is strictly smaller than RE.

This result was later generalized to nonlocal games that allow quantum questions and
quantum answers [47]. To put these results in the language of complexity classes, let
MIP∗ [q, a, ψ] be the set of languages that are decidable in the model of two-prover, one-
round quantum multiprover interactive proof systems, where the provers share arbitrarily
many copies of ψ, the messages from the verifier are classical and q-bits long, and the
messages from the provers are also classical and a-bits long. If the messages are quantum,
the complexity class is denoted by QMIP [q, a, ψ]. Thus, the prior work implies that both the
class QMIP [poly, poly, |EPR⟩] and the class MIP∗ [poly, poly, |EPR⟩] are equal to RE [49,
29, 28], while both the complexity classes MIP∗ [poly, poly, ψ] and QMIP [poly, poly, ψ] are
computable if ψ is a noisy MES state [46, 47]. Moreover, [46, 47] showed explicit, though
very large, time bounds for computing approximations to the game value for noisy states.

Although these results show that the full power of MIP∗ is not robust against noise
in the shared entanglement, it is still possible that multiprover interactive proof systems
gain a finite but very large computational advantage by sharing noisy maximally entangled
states, since the time bounds from the previous work are much larger than for the classes
with no entanglement. Thus, it was consistent with prior work that MIP∗ [poly, poly, ψ] is
contained in nondeterministic quadruply exponential time complexity class for noisy ψ [46],
which is much more powerful than MIP [poly, poly] = NEXP. This paper attempts to answer
this question by investigating the complexity classes MIP∗ [poly, O(1), ψ] (i.e. protocols
with constant-size answers) when ψ is a noisy MES, whose local dimension is a constant.
Classically, it is known that MIP [poly, poly] = MIP [poly, O(1)] = NEXP [7]. Our main
result, stated in the language of nonlocal games, is the following.

1 An MIP∗ protocol is essentially a uniform family of two-player nonlocal games, with efficent algorithms
for sampling pairs of questions and for evaluating the game decision predicate.

CCC 2024

30:4 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

▶ Theorem 1 (Informal). Given a nonlocal game in which the players share arbitrarily many
copies of a noisy MES ψ, and the size of the answer sets is constant, then approximating the
value of the game up to any sufficiently small constant precision is NP-complete.

The runtime in Theorem 1 is measured in terms of the size of a description of the nonlocal
game as a table containing the distribution over question pairs and the verifier’s predicate
for every tuple of questions and answers. Translating this result to the MIP∗ world requires
parametrizing the runtime in terms of the number of bits in the questions and answers.
Thus, Theorem 1 shows that MIP∗ with O(log(n))-bit questions and O(1)-bit answers is
NP-complete. Scaling our result up to MIP∗ protocols with O(poly(n))-bit questions and
O(1)-bit answers, we get the following.

▶ Corollary 2. MIP∗[poly, O(1), ψ] = NEXP, where ψ is a noisy MES.

Intuitively, Theorem 1 says that for any nonlocal game, if the shared MES has constant noise,
the players’ optimal strategy has a concise classical description which is also easy to verify. It
is interesting to compare such nonlocal games with their classical counterparts. Håstad in his
seminal work [23] proved that it is NP-hard to approximate the value of a classical nonlocal
game to a constant precision even if the size of the answer set is a constant. It is also worth
noting that sharing entanglement does not always strengthen the hardness of nonlocal games.
It may weaken the hardness of certain games as well. For example, the quantum XOR games
and quantum unique games are easy [15, 33], while the classical XOR games are NP-hard,
and the classical unique games are conjectured to be NP-hard as well [34]. Thus introducing
noisy quantum states doesn’t introduce any quantum effect to the hardness at all.

One may wonder whether this surprising collapse in complexity is caused by the restriction
to noisy states or the restriction to O(1)-size answers. We give strong evidence that it is
the former, by showing that MIP∗ with noiseless states and O(1)-sized answers is still equal
to RE.

▶ Theorem 3 (Theorem 36). RE is equal to MIP∗[poly, O(1), |EPR⟩] with completeness 1
and constant soundness.

To put this in context, the original work [29, 28] proves that nonlocal games with noiseless
EPR states are RE-complete to approximate if both the question set and answer set are of
polynomial size. Very recently, Natarajan and Zhang [40] proved, by repeatedly applying the
“question reduction” technique from [28], that it is still RE-complete if the question length is
O(1) and the answer length is polylog(n), respectively. Here, we achieve constant answer
length by one application of an “answer reduction” transformation: the error-correcting
code-based scheme of [39], instantiated with the Hadamard code.

Theorems 1 and 3 give us strong evidence that the computational power of MIP∗ will
vanish in the presence of noise. So for any complexity class slightly larger than NEXP, we
cannot hope for an MIP∗ protocol robust against noise. They also suggest that the key
resource behind the computational power of MIP∗ is specifically copies of the MES state, not
just entanglement. This is because as we remarked above, as n tends to infinity, n copies of a
noisy MES contain an amount of entanglement going to infinity under standard entanglement
measures. Alternately, using the power of MIP∗[ψ] as a measure of entanglement for ψ,
we show that an MES and an ε-noisy MES are sharply separated by this measure for any
constant ε.

Since efficient self-tests for large entangled states are the key technique behind the proof of
MIP∗ = RE, our result puts some limitations on the design of self-tests robust against noise.
More specifically, our results suggests that to noise-robustly self-test larger entangled states,
the numbers of questions and answers must grow with the dimension of the tested state. For
comparison, if we don’t need a self-test to be noise-robust, this is not necessary [19].

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:5

1.1 Proof Overview
1.1.1 Approximating the Values of Noisy Games is NP-Complete
The harder part is to show that there is an NP-algorithm for this problem, so we give an
overview of this algorithm first.

Given a nonlocal game sharing arbitrary copies of a noisy MES ψ, Qin and Yao [46]
showed that it suffices for the players to share D copies of ψ to achieve the value of the game
to an arbitrarily small precision, where D only depends on the size of the game and the
precision.

We first improve the upper bound D to make it only depend exponentially on the length
of the questions instead of doubly exponentially as in [46]. To prove this upper bound, we
use ideas from Fourier analysis. For illustration, let’s assume ψ = ρ |EPR⟩⟨EPR| + (1 −
ρ)12/2⊗ 12/2 is a depolarized noisy EPR state for simplicity. Given a strategy S, let P be
a POVM element from the strategy, which acts on n qubits. We are going to show the upper
bound is independent of n, so in the rest of the section by “constant” we mean independent
of n. Let the Pauli expansion of P be

P =
∑

σ∈{0,1,2,3}n

P̂ (σ)Pσ,

where Pσ = ⊗n
i=1Pσi

and P0 = I,P1 = X,P2 = Y,P3 = Z are the single-qubit Pauli
operators. The degree of a term P̂ (σ)Pσ is the number of nontrivial Pauli’s in it, denoted
by |σ|. First, we adapt the smoothing technique in [46], which applies a depolarizing channel
with small noise to P and removes the high-degree part of P , i.e. terms with |σ| > d where
d is a constant. After smoothing, S only contains degree-d operators

P (Smooth) =
∑

σ:|σ|≤d

̂P (Smooth) (σ)Pσ,

so we denote the new strategy by S(Smooth). Using the argument in [46], the probability of
winning the game with this new strategy changes at most slightly, i.e.

val∗(G,S(Smooth)) ≈ val∗(G,S).

Let τ be a small constant independent of n. Since the degree of P (Smooth) is d, using a
standard argument in the analysis of Boolean functions, the number of registers having
influence that exceeds a given small τ is at most d/τ . Notice that d is independent of n, so is
d/τ . Assume without loss of generality that H = {1, . . . , |H|} is the set of all registers whose
influence exceeds τ . We apply the invariance principle from [46] to replace all the non-identity
Pauli bases in the registers with low influence by Gaussian variables while maintaining the
strategy value. Let

P(Apprx) =
∑

σ:|σ|≤d

̂P (Smooth) (σ)Pσ1⊗Pσ2⊗. . .Pσ|H|⊗z(|H|+1)
σ|H|+1

12⊗z(|H|+2)
σ|H|+2

12⊗. . .⊗z(n)
σn

12,

where 12 is a 2×2 identity matrix;
{

z(i)
j

}
|H|+1≤i≤n,1≤j≤3

are independent Gaussian variables

and z(|H|+1)
0 = . . . z(n)

0 = 1. Denote the new strategy by S(Apprx), then

val∗(G,S(Apprx)) ≈ val∗(G,S(Smooth)).

CCC 2024

30:6 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Notice that this process significantly reduces the dimension of P(Apprx) to a constant. To
round such a randomized strategy back to a valid POVM strategy, we first need to reduce
the number of Gaussian variables from O(n) to a constant, which is the most difficult step.
In this paper, we avoid the use of a crude union bound as in [46], by taking the distribution
of the questions into account. Furthermore, we manage to ensure that the expectation of
the distance from a random operator in the intermediate step to positive matrices after
the dimension reduction step is independent of the question size. Then the inverse of the
invariance principle allows us to round the randomized strategy back to a valid POVM
strategy only acting on constantly many qubits. The improvements in the Gaussian dimension
reduction step give us the improved bound.

This upper bound has already yielded an NEXP algorithm, where the certificate is an
exponential-sized description of the strategy. To design a more efficient nondeterministic
algorithm, we need to further compress the certificate to polynomial length. To compress
the certificate, we first smoothen again the strategy by introducing additional noise as in the
proof of the upper bound of D to remove all the high-degree terms. Such a transformation
exponentially reduces the length of the certificate. The smoothed strategy only contains a
polynomial number of coefficients since the maximal degree is a constant. Nonetheless, the
smoothed strategy is only a pseudo-strategy, probably not a valid strategy because these
smoothed operators may not form valid POVMs. The prover sends the description of a
pseudo-strategy to the verifier, which is of polynomial length. The verifier performs a test
on the given certificate to see if it is close to a valid strategy that gives a high winning
probability with the following steps:
1. Check that the pseudo-POVM elements contained in the pseudo-strategy still sum up to

the identity.
2. Compute and check the winning probability of the pseudo-strategy.
3. Check that all the operators in the pseudo-strategy are close to being positive semidefinite.
Item 1 is straightforward. For item 2, notice that Tr (Pi ⊗ Pj)ψ = δi,jci, where c0 = 1 and
c1 = c2 = c3 = ρ. Thus for any degree-d operators A,B, we have

Tr (A⊗B)ψ⊗D =
∑

σ:|σ|≤d

Â (σ) B̂ (σ) cσ, (1)

where cσ = cσ1 · · · cσn
. This computation can be done in polynomial time. The winning

probability is simply a linear combination of a polynomial number of the terms in the
form of Eq.(1), which, therefore, can also be computed in polynomial time. Item 3 is the
most challenging. Notice that the dimension of each operator in the pseudo-strategy is
still exponential. Thus, the verifier cannot directly compute its eigenvalues and check its
positivity. Instead, we need an efficient positivity tester for large matrices.

The key component of our efficient positivity tester is a derandomized invariance principle,
which enables us to further reduce the dimension of the operators to a constant and maintain
the distance between the operator and the set of positive operators. To be more specific, let
us define the real function ζ to be

ζ (x) =
{
x2 if x ≤ 0
0 otherwise

. (2)

Then Tr ζ(P) is the distance from P to its positive part. As before, when the degree of
an operator is bounded by a constant d, the number of quantum registers having influence
that exceeds a given small constant τ is at most d/τ , which is also a constant. To further
reduce the dimension of the operators, we prove a more general invariance principle for all

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:7

smooth functions compared with the one in [46]. It states that if all non-identity Pauli bases
in the registers with low influence are substituted by Rademacher variables or Gaussian
variables, the expectation of the distance to the set of positive semidefinite matrices is almost
unchanged. We replace all such registers with Rademacher variables, which significantly
reduces the dimension of a constant-degree operator to a constant, making it possible to
compute its expected ζ function value efficiently. However, the invariance principle introduces
poly (s)-many random variables, where s is the size of the question sets. This only leads to a
randomized positivity tester. To reduce the randomness, we further apply the well-known
Meka-Zuckerman pseudorandom generator [36] to obtain a derandomized invariance principle,
which only uses a logarithmic number of independent bits to simulate these variables2. This
gives a deterministic algorithm to approximately compute the expected ζ function values of
all the measurement operators .

To prove the approximation problem is NP-hard, we can compile any MIP[log, O(1)]
protocol for 3-SAT into a family of noisy nonlocal games one for each 3-SAT instance such
that if a 3-SAT instance is satisfiable, the corresponding game has value 1 and if not, the
value of the corresponding game is below some constant. In the compiled nonlocal game,
the verifier checks with equal probability, if the provers can give consistent answers for the
same question or if the provers can give valid answers for queries of their assignment of
the instance. Using Fourier analysis, we show that when the provers share noisy MESs,
winning the consistency checks with high probability implies that their strategy is essentially
deterministic. Then we can relate the classical completeness and soundness of the MIP
protocol to the values of the noisy nonlocal games.

1.1.2 Hardness of Noiseless MIP∗[poly, O(1)]
To show hardness of MIP∗[poly, O(1)], we start from the known result MIP∗[poly, poly] =
RE [28], and apply an answer reduction transformation to the protocol to get answer length
O(1). Answer reduction is essentially PCP composition adapted to the MIP∗ setting, and
was already an essential component in [39] and [28]. Intuitively, the idea of answer reduction
is to ask the two provers in an MIP∗ protocol to compute a PCP proof that their answers
satisfy the verifier’s predicate. The verifier will check this proof rather than checking the
answers directly. In order to instantiate this, one requires a PCP of proximity that remains
sound when implemented as a two-player quantum game. Showing this soundness condition
is technically challenging and usually involves showing that the local tester for a locally
testable code, when converted to a two-prover game, is sound against entangled provers.
In [28], the code that was used was the Reed-Muller code, which has superconstant alphabet
size, ultimately yielding poly-sized answers.

In order to obtain O(1)-sized answers, we use the Hadamard code, which is a locally
testable code over the binary alphabet. Fortunately for us, it is known that the local tester
for this code is “quantum sound” [26, 38]. Moreover, the answer-reduction protocol in [39] is
modular : it was shown in that work that any code with sufficiently good parameters and a
quantum-sound tester can be combined with an off-the-shelf PCP of proximity to achieve
answer reduction. Our main challenge is to show that the Hadamard code (or a slight variant
of it) has a tester meeting the conditions of this theorem. Our new tester for the Hadamard
code allows us to reduce the answer length from poly to O(1) directly.

2 An alternate approach is using Gaussian variables and derandomizing the Gaussian variables as in [30],
which discretizes the Gaussian variables via the Box-Muller transformation and further derandomizes
the discrete random variables.

CCC 2024

30:8 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

1.2 Technical Contributions
1.2.1 Invariance Principle and Derandomized Invariance Principle for

Matrix Functions
The invariance principle [37] is a generalization of the Berry-Esseen Theorem, which is a
quantitative version of the Central Limit Theorem, to multilinear low-degree polynomials.
Before illustrating the invariance principle, we need to introduce the notion of influence, a
fundamental notion in the analysis of Boolean functions. Given a real function f : Rn → R
and i.i.d. random variables x1, . . . ,xn, the influence of i-th coordinate is

Infi (f) = E
[∣∣∣f (x)− f

(
x(i)
)∣∣∣2] ,

where x(i) is obtained from x by resampling the i-th variable. Hence, it captures the effect of
the i-th variable on the function in average. Given a multilinear low-degree polynomial f in
which all variables have low influence, the invariance principle states that the distributions
of f (X1, . . . , Xn) and f(Y1, . . . , Yn) are similar as long as the first and second moments of
the random vectors (X1, . . . , Xn) and (Y1, . . . , Yn) match, and the variables Xi, Yi behave
nicely3. The invariance principle is a versatile tool that allows us to connect the distribution
of a function on complicated random variables to the distribution obtained by replacing
these random variables with simpler ones, such as Gaussian variables or Rademacher random
variables. The proof of the classical invariance principle in [37] is via Lindeberg’s hybrid
argument, which is also a classic method to prove the Central Limit Theorem.

In [46], Qin and Yao started investigating the invariance principle on matrix spaces.
Suppose that P is a mn ×mn matrix, viewed as an operator acting on n registers, each
of dimension m. Let ξ : R → R be a smooth real function. Suppose all registers have low
influence in P , where the influence is a generalization of the influence for functions. When
substituting all registers with independent standard Gaussians or Rademacher variables
multiplied by an identity matrix, we expect that the change of Tr ξ(P) is small in expectation.
The most challenging part of extending Lindeberg’s argument to matrix functions is computing
the high-order Fréchet derivatives, which are complicated and difficult to analyze in general
[50]. Qin and Yao [46] established an invariance principle for a specific spectral function by
directly computing the Fréchet derivatives and applying many complicated matrix-analytic
techniques. Hence, the first obstacle we face is to prove an invariance principle for more
general functions.

To overcome it, we adapt the theory of multilinear operator integrals [52], which provides
a unified way to compute and bound the Fréchet derivatives. With such a tool, we establish
an invariance principle applicable to a broader class of functions, including those that are
smooth with a bounded third derivative and those that are Lipschitz continuous.

The invariance principle reduces the dimension from poly to constant but introduces a
poly number of independent random variables. Thus, the second obstacle is that the size of
the overall probability space is exponential. To improve the computational efficiency of our
invariance principle, we use the ideas of [36, 22, 44] to use a Pseudorandom generator (PRG) to
reduce the number of independent random variables. We apply this derandomized invariance
principle to our positivity tester introduced below. Derandomized invariance principles build

3 To be more specific, xi,yi need to be hypercontractive. Informally speaking, the p-norms ∥xi∥p =
E [|xi|p]1/p ∥yi∥p = E [|yi|p]1/p do not increase drastically with respect to p. Many basic random
variables, such as uniformly random variables, and Gaussian variables, are hypercontractive.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:9

upon the crucial observation that the highest moment of variables involved in the proof is
at most 2d, where d is the degree of the operator, which is a constant. Thus, it suffices to
use 4d-wise uniform random variables instead of polynomially many independent random
variables when we replace the Pauli basis elements in the low-influence registers, which saves
the randomness exponentially. To this end, we employ the well-known Meka-Zuckerman
pseudorandom generator [36] to construct 4d-wise uniform random variables.

As the invariance principle has found numerous applications, we anticipate that the
invariance principle for spectral functions is interesting in its own right. The positivity
testing for low-degree matrices introduced below is an example of its applications.

1.2.2 Positivity Tester for Low-degree Matrices
A Hermitian matrix A is said to be positive semidefinite (PSD) if all the eigenvalues of A
are non-negative. This testing problem has received increasing attention in the past couple
of years [35, 21, 8, 41]. In this work, we present an efficient PSD tester for low-degree
matrices, where the input matrix is given in terms of its Fourier coefficients. Given an
mn ×mn matrix, viewed as an operator acting on n-qudits, each of which has dimension
m, if the degree of the operator is d, then the number of Fourier coefficients is bounded
by
∑

i≤d

(
n
i

)
(m2 − 1)i = O(dndm2d). Hence, this allows for a compact description of a low-

degree, exponential-dimension operator. If m, d are constants, the input is of size poly(n),
and we work in this setting when we explain how the tester works below.

Given the Fourier coefficients of a matrix P , our tester estimates the distance between
P and the set of positive semidefinite matrices measured by Trζ (P), where ζ (·) is defined
in Eq. (2). Estimating Trζ (P) involves applying the derandomized invariance principle
introduced above. More specifically, our tester enumerates all the possible seeds of the
Meka-Zuckerman PRG to estimate this distance. For each seed, the computation time is
O(1) because the derandomized invariance principle has effectively reduced the dimension
of P to a constant. Hence, our tester runs in time poly(n), because there are only poly(n)
seeds. Its guarantees are summarized below.

▶ Theorem (informal). Given as input the Fourier coefficients of a degree-d operator P
acting on n qudits, each of dimension m, and error parameters β ≥ δ ≥ 0, there exists an
algorithm that runs in time exp(md/δ) · poly(n) such that

the algorithm accepts if there exists a PSD operator Q such that ∥P −Q∥2
F < (β − δ)mn;

the algorithm rejects if ∥P −Q∥2
F > (β + δ)mn for any PSD operator Q.

This approach completely differs from all previous works on positivity testing [41, 21, 8],
where they only consider polynomial-sized matrices and the testers are randomized. In
contrast, our tester is deterministic, and the dimension of the testing matrix can be exponential
in input size if the degree is constant.

1.2.3 Answer Reduction with the Hadamard Code
As mentioned above, we obtain O(1)-sized answers in the noiseless setting by applying the
code-based answer reduction of [39], with the code chosen to be the Hadamard code. To
implement this required two new technical components. First, we showed a quantum-sound
subset tester for the Hadamard code: essentially, an interactive protocol that forces the
provers to respond with the values of a subset F of the coordinates of a Hadamard codeword,
where F is sampled from some (not necessarily uniform) distribution. Our proof of this
result is essentially a generalization of the Fourier-analytic proof of the quantum soundness

CCC 2024

30:10 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

of the BLR test [10, 38]. Secondly, the answer reduction procedure in [39] only works if
the code has a relative distance close to 1 (i.e., distinct codewords differ on almost all
locations), whereas the Hadamard code has a distance 1/2. To overcome this, we slightly
modified the answer-reduced verifier’s protocol of [39] by querying a large constant number
of “dummy coordinates” from the provers. It is worth mentioning that the answer reduction
procedure from [39] is different from the procedure used in [28]; the former works for any
error-correcting code satisfying certain properties but does not yield protocols that can
be recursively compressed, whereas the latter is specialized to the low-degree code but is
compatible with recursive compression. In the end, we are in effect using both versions of
answer reduction: the [28] version inside the recursive compression to obtain a protocol for
RE, and then one layer of the [39] version to bring the answer size successively down from
polynomial to constant, using the Hadamard code.

We remark that it might be possible to achieve constant answer size by repeatedly
applying the answer reduction technique of [28], but we decide to proceed with the current
approach for a one-shot solution, which is easier to analyze and gives better soundness.

1.3 Discussions and Open Problems
Our result characterizes the effect of noise on the computational complexity class MIP∗.
To our knowledge, this is the first example of a quantum computational complexity class
whose quantum advantage over its classical counterpart completely vanishes in the presence
of noise. For comparison, noise causes no collapse in the BQP model, or in general, for
BQTIME because the algorithms in these classes can be implemented fault-tolerantly. Even
for algorithms with bounded space, it seems that the same reasoning still applies because
all the intermediate measurements to achieve fault tolerance can be eliminated without a
large space overhead [18]. Hence, our work raises the natural question of which quantum
complexity classes are truly fault tolerant. In contrast, for complexiy classes like MIP∗, the
fault-tolerance theorem [1] cannot be applied as the model of computation disallows the
operations needed to perform error correction. For the specific case of MIP∗, our result
further shows that no form of fault tolerance is possible.

More broadly, we know other examples where constant noise destroys the quantum
advantage. Random circuit sampling has been proposed to demonstrate the quantum
advantage offered by near-term quantum devices [12]. However, when the random circuits
are subject to constant noise, this sampling task becomes classically easy [2]. We have more
of such examples in quantum query algorithms. For example, if the oracle is noisy or faulty,
no quantum algorithm can achieve any speed-up in the unstructured search problem [48].
In a setting closer to the near-term devices, where each gate in the circuit is subject to
independent noise but the oracle is perfect, the authors of [14] showed that no quantum
algorithm could achieve any speed-up in the unstructured search problem either. For a
more detailed survey about the effect of noise on quantum query algorithms, we refer to [14,
Section 3].

Our result also raises some natural but intriguing questions. We list some of them below.
1. For MIP∗ protocols with more rounds of interactions and larger answer sets, it is unclear

how big the effect of noise is. Hence, we ask: Does the vanishing phenomenon for
computational advantages occur for general MIP∗ protocols?

2. What is the computational power of MIP∗ with unbounded copies of a pure (noiseless)
non-EPR state? Will MIP∗ = RE still hold for any noiseless non-EPR state? The MIP∗

protocol for RE of [28] requires EPR states for the provers to succeed, and in general,
it is known that any protocol which is symmetric and synchronous requires the provers

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:11

to use an MES [56, 45]. Moreover, the question reduction technique of [39, 28] first
certifies that the provers share many copies of the EPR state, on which they sample their
own questions. Hence, to accommodate any non-EPR state, we need to redesign MIP∗

protocols.
3. What non-computational capabilities of the MIP∗ model remain in the noisy setting?

Specifically, it is known that nonlocal games and correlations can be used to self-test
entangled states. In the noisy setting, can we certify any properties of the provers’ shared
entanglement? Previous work on this question has studied entanglement of formation [5]
and one-shot distillable entanglement [3], but the general picture remains unclear.

4. Invariance principle has found applications in designing various pseudorandom generators
and counting algorithms [22, 44, 43, 6, 31]. Will our invariance principle lead to new
pseudorandom generators?

5. Testing whether a matrix is positive has played an important role in the study of algorithm
designs for linear algebra problems, community structure detection, differential equations,
etc (see [8] and references therein). Multiple studies have been devoted to designing
efficient algorithms for positivity testing [41, 21, 8]. Will our algorithm of positivity
testing find new applications?

2 Nonlocal Games and MIP∗ Protocols

In this paper we use the standard notations for matrix spaces, random variables etc. For a
detailed description see Appendix A. Two-player one-round MIP∗ protocols are also nonlocal
games. We follow the notations of [28] for nonlocal games.

▶ Definition 4 (Two-player one-round games). A two-player one-round game G is specified
by a tuple (X ,Y,A,B, µ, V) where
X and Y are finite sets, called the question sets,
A and B are finite sets, called the answer sets,
µ is a probability distribution over X × Y, called the question distribution, and
V : X × Y ×A× B → {0, 1} is a function, called the decision predicate.

▶ Definition 5 (Tensor-product strategies). A tensor-product strategy S of a nonlocal game
G = (X ,Y,A,B, µ, V) is a tuple (ψ,A,B) where

a bipartite quantum state ψ ∈ HA ⊗HB for finite dimensional complex Hilbert spaces HA

and HB,
A is a set {Ax} such that for every x ∈ X , Ax = {Ax

a | a ∈ A} is a POVM over HA, and
B is a set {By} such that for every y ∈ Y, By = {By

b | b ∈ B} is a POVM over HB.

▶ Definition 6 (Tensor product value). The tensor product value of a tensor product strategy
S = (ψ,A,B) for a nonlocal game G = (X ,Y,A,B, µ, V) is defined as

val∗(G,S) =
∑

x,y,a,b

µ(x, y)V (x, y, a, b)Tr (Ax
a ⊗B

y
b)ψ.

For v ∈ [0, 1] we say that the strategy passes or wins G with probability v if val∗(G,S) ≥ v.
The quantum value or tensor product value of G is defined as

val∗(G) = sup
S

val∗(G,S)

where the supremum is taken over all tensor product strategies S for G.

CCC 2024

30:12 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

When we prove the quantum soundness of an MIP∗ protocol, we focus on projective strategies,
where the measurements Ax and By are all projective, following Naimark’s Dilation theorem
[29, Theorem 5.1].

▶ Definition 7. A game G = (X ,Y,A,B, µ, V) is symmetric if X = Y and A = B, the
distribution µ is symmetric (i.e. µ(x, y) = µ(y, x) for all x and y), and the predicate V treats
both players symmetrically (i.e. V (x, y, a, b) = V (y, x, b, a) for all x, y, a, b).

We call a strategy S = (|ψ⟩ , A,B) symmetric if |ψ⟩ is a pure state in H⊗H, for some
Hilbert space H, that is invariant under permutation of the two factors, and the measurement
operators of both players are identical.

A symmetric game is denoted by (X ,A, µ, V), and a symmetric strategy is denoted by
(|ψ⟩ ,M) where M denotes the set of measurement operators for both players.

▶ Lemma 8 (Lemma 5.7 in [28]). Let G = (X ,A, µ, V) be a symmetric game with value 1− ε
for some ε ≥ 0. Then there exists a symmetric and projective strategy S = (|ψ⟩ ,M) such
that the val∗(G,S) ≥ 1− ε.

Hence, for symmetric nonlocal games, it suffices to only consider symmetric strategies.

3 Invariance Principle for Matrix Spaces

This section will present an invariance principle for general functions on matrix spaces.
Hypercontractivity is crucial in the proofs of all previous invariance principles [37]. We also
need to establish a new hypercontractive inequality before proving the invariance principle.
The proofs of the results in this section can be found in Appendix B.1.

3.1 Hypercontractivity

In this subsection, we adopt the concept of orthonormal ensembles as introduced in [37].

▶ Definition 9. Given m,n ∈ Z>0, a collection of n real random variables {z1, . . . , zn} are
orthonormal if E [zizj] = δi,j. We call a collection of m orthonormal real random variables,
the first of which is constant 1, an m-orthonormal ensemble. We call x an (m,n) ensemble if
x = (x1, . . . ,xn), where for all i ∈ [n], xi = {xi,0 = 1,xi,1, . . . ,xi,m−1} is an m-orthonormal
ensemble.

▶ Definition 10. Given m,n ∈ Z>0, τ ∈ [m]n≥0 and an (m,n) ensemble x, denote xτ =∏n
i=1 xi,τi . Define a multilinear polynomial over x to be Q(x) =

∑
τ∈[m]n

≥0
Q̂ (τ) xτ , where

the Q̂ (τ)’s are real constants.
For γ ∈ [0, 1], we define the operator Tγ acting on multilinear polynomial Q(x) by

TγQ(x) =
∑

τ∈[m]n
≥0

γ|τ |Q̂ (τ) xτ .

▶ Definition 11. For 1 ≤ r < ∞, let y be a random variable with E [|y|r] < ∞. Define
∥y∥r = (E [|y|r])1/r. Given 1 ≤ p ≤ q <∞, 0 < η < 1, m,n ∈ Z>0 and an (m,n) ensemble
x, we say that x is (p, q, η) -hypercontractive if for any multilinear polynomial Q, it holds
that ∥(TηQ) (x)∥q ≤ ∥Q(x)∥p.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:13

Consider an (m,n) ensemble x. If for all i ∈ [n], j ∈ [m− 1], xi,j are either independent
standard Gaussians or independent Rademacher variables, then x is (2, q, (q − 1)−1/2)-
hypercontractive. These two types are represented as significant examples of hypercontractive
ensembles. Readers can refer to [37] for an extensive treatment on hypercontractive ensembles.

We then introduce the noise operator Γγ for random matrices, which is a hybrid of Tγ in
Definition 10 and ∆γ in Definition 47.

▶ Definition 12. Given 0 ≤ γ ≤ 1, h, n,m ∈ Z>0, m ≥ 2, an (m2, n) ensemble x, and
a random matrix P (x) =

∑
σ∈[m2]h

≥0
pσ (x)Bσ, where {Bi}m2−1

i=0 is a standard orthonormal

basis and pσ is a real multilinear polynomial for all σ ∈
[
m2]h

≥0, the noise operator Γγ is
defined to be

Γγ (P (x)) =
∑

σ∈[m2]h
≥0

(Tγpσ) (x) ∆γ (Bσ) .

The main result in this subsection is stated below.

▶ Theorem 13 (Hypercontractivity for random matrices). Given h, n,m ∈ Z>0, m ≥ 2,
0 < η < 1, 0 ≤ γ ≤ min

{
η, (9m)−1/4

}
, a (2, 4, η)-hypercontractive (m2, n) ensemble x and

a random matrix P (x) =
∑

σ∈[m2]h
≥0
pσ (x)Bσ, where {Bi}m2−1

i=0 is a standard orthonormal
basis, and pσ is a real multilinear polynomial for all σ ∈ [m2]h≥0, it holds that

E
x

[
|||Γγ (P (x))|||44

]
≤
(
E
x

[
|||P (x)|||22

])2
,

where Γγ is defined in Definition 12.

The following is an application of Theorem 13.

▶ Theorem 14. Given h, n,m, d ∈ Z>0, m ≥ 2, 0 < η < 1, a (2, 4, η)-hypercontractive
(m2, n) ensemble x, and a random matrix P (x) =

∑
σ∈[m2]h

≥0
pσ (x)Bσ, where {Bi}m2−1

i=0 is

a standard orthonormal basis and for all σ ∈
[
m2]h

≥0 and pσ is a real multilinear polynomial
satisfying deg (pσ) + |σ| ≤ d, it holds that

E
[
|||P (x)|||44

]
≤ max

{
9m, 1/η4}d

(
E
[
|||P (x)|||22

])2
.

3.2 Invariance Principle
We are now prepared to introduce an invariance principle on matrix space applicable to
general functions. Initially, we establish the proof for functions in C4.

▶ Theorem 15. Given 0 < τ, η < 1, d, h,m, n ∈ Z>0, H ⊆ [n] of size |H| = h, ξ ∈ C3 satis-
fying ∥ξ(3)∥∞ ≤ B where B is a constant, and a (2, 4, η)-hypercontractive (m2, n) ensemble
x, let P ∈ H⊗n

m be a degree-d operator satisfying Infi (P) ≤ τ for all i /∈ H. Suppose that P
has a Fourier expansion P =

∑
σ∈[m2]n

≥0
P̂ (σ)Bσ. Let PH(x) =

∑
σ∈[m2]n

≥0
P̂ (σ) xσ

H
BσH

. If∑
σ ̸=0 P̂ (σ)2 ≤ 1, we have∣∣∣m−nTr ξ (P)−m−h E

[
Tr ξ

(
PH(x)

)]∣∣∣ ≤ CBmax
{

9m, 1/η4}d√
τd

for some absolute constant C.

CCC 2024

30:14 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

For those functions that are not sufficiently smooth, if they have a mollifier, which is a
smooth approximator with a bounded third derivative, then the invariance principle still
holds. The following lemma proves an invariance principle for ζ (·) defined in Appendix A.2.4,
which has a mollifier ζλ (·) guaranteed by Fact 57.

▶ Lemma 16. Given 0 < τ, η < 1, d, h,m, n ∈ Z>0, H ⊆ [n] of size |H| = h, a (2, 4, η)-
hypercontractive (m2, n) ensemble x and a degree-d P ∈ H⊗n

m satisfying Infi (P) ≤ τ for
all i /∈ H. suppose that P has a Fourier expansion P =

∑
σ∈[m2]n

≥0
P̂ (σ)Bσ. Let PH(x) =∑

σ∈[m2]n
≥0
P̂ (σ) xσ

H
BσH

. If
∑

σ ̸=0 P̂ (σ)2 ≤ 1, we have

∣∣∣m−nTr ζ (P)−m−h E
[
Tr ζ

(
PH(x)

)]∣∣∣ ≤ 3
(
CB3 max

{
9m, 1/η4}d√

τd
)2/3

for some universal constants C and B3.

▶ Remark 17. It is possible to prove an invariance principle for a broader class of functions.
For example, we can prove it for Lipschitz continuous functions using the argument in [24,
Lemma 3.5]. However, it is out of the focus of this paper. We will leave it for further research.

3.3 Derandomized Invariance Principle
From Theorem 15, it is not hard to see that the non-identity basis elements can be substituted
by independent Rademacher variables. In this section, we will replace those Rademacher
variables with pseudorandom variables to save the randomness. It is worth noting that
there is a large body of research on derandomization through invariance principles (readers
may refer to[44] and the references therein). We adopt the pseudorandom generator (PRG)
introduced in [36]. The PRG is constructed by pairwise uniform hash functions as follows.

For F = {f : [n]→ [p]}, define G : F × ({−1, 1}n)p → {−1, 1}n by

G
(
f, z1, . . . , zp

)
= x, where xi = z

f(i)
i for i ∈ [n]. (3)

We define the influence of a random variable in a random matrix using the notation VarInf (·)
to distinguish from the notation for the influence of a register in Definition 38.

▶ Definition 18. Given n, p ∈ Z>0, let P (b) =
∑

S⊆[n] bSPS be a random matrix with b
being drawn uniformly from {±1}n and bS =

∏
i∈S bi. Then the influence of i’th coordinate

of b is defined to be

VarInfi (P (b)) =
∑
S∋i

|||PS |||22.

We also define the influence of a block of coordinates. Let j ∈ [p] and f : [n] → [p] be a
function, define the influence on the block f−1(j) ⊆ [n] to be

VarInff,j (P (b)) =
∑

S:S∩f−1(j)̸=∅

|||PS |||22.

The following is the main theorem in this section.

▶ Theorem 19 (Derandomized invariance principle for ζ). Given d, h,m, n ∈ Z>0, m > 1,
and a random matrix P (b) =

∑
S⊆[n] bSPS, where b ∼u {−1, 1}n, Eb

[
|||P (b)|||22

]
≤ 1,

bS =
∏

i∈S bi and PS ∈ H⊗h
m , they satisfy |S|+ deg (PS) ≤ d and VarInfi (P (b)) ≤ τ for all

i ∈ [n].

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:15

Let p be the smallest power of 2 satisfying p ≥ d/τ ; F = {f : [n]→ [p]} be a family of
pairwise uniform hash functions. For any i ∈ [p], define zi to be a 4d-wise uniform random
vector drawn from {±1}n, and zi are independent across i ∈ [p]. Given f ∈ F , denote
xf = G

(
f, z1, . . . , zp

)
as in Equation (3). Then it holds that∣∣∣∣ 1

mh
E
b

[Tr ζ (P (b))]− 1
mh

E
f ,xf

[Tr ζ (P(xf))]
∣∣∣∣ ≤ C√(9m)ddτ,

where f is drawn uniformly from F and C is a universal constant.

We first prove a derandomized invariance principle for the functions with bounded fourth
derivative.

▶ Theorem 20 (Derandomized invariance principle). Given d, h,m, n ∈ Z>0, m > 1, and
a random matrix P (b) =

∑
S⊆[n] bSPS, where b ∼u {−1, 1}n, Eb

[
|||P (b)|||22

]
≤ 1, bS =∏

i∈S bi and PS ∈ H⊗h
m , they satisfy that |S|+ deg (PS) ≤ d and VarInfi (P (b)) ≤ τ for all

i ∈ [n].
Let p be the smallest power of 2 satisfying p ≥ d/τ ; F = {f : [n]→ [p]} be a family of

pairwise uniform hash functions. For any i ∈ [p], define zi to be a 4d-wise uniform random
vector drawn from {±1}n, and zi are independent across i ∈ [p]. Given f ∈ F , denote
xf = G

(
f, z1, . . . , zp

)
as in Equation (3). Then for any ξ ∈ C4 with ∥ξ(4)∥∞ ≤ C0 where C0

is a constant, it holds that∣∣∣∣ 1
mh

E
b

[Tr ξ (P (b))]− 1
mh

E
f ,xf

[Tr ξ (P(xf))]
∣∣∣∣ ≤ 4C1C0(9m)ddτ,

where f is drawn uniformly from F and C1 is a universal constant.

▶ Remark 21. It is also possible to generalize Theorem 19 to Lipschitz continuous functions
using the argument in [24, Lemma 3.5].
Assuming Theorem 20, Theorem 19 is straightforward.

4 Positivity Tester for Low Degree Operators

In this section, we will present an algorithm deciding whether a low-degree operator is
(β − δ)-close to a positive semidefinite matrix or (β + δ)-far from all positive semidefinite
matrices, for error parameters β > δ > 0. The input operator is given in the form of a Fourier
expansion. The algorithm and the proofs can be found in Appendix B.2.

▶ Definition 22 (Positivity testing problem). Given d,D,m ∈ Z>0, m > 1, and real numbers
β > δ > 0, the input is a degree-d operator in H⊗D

m given in the form of Fourier expansion

P =
∑

σ∈[m2]D
≥0

σ:|σ|≤d

P̂ (σ)Bσ.

Distinguish the following two cases.
Yes: if m−D Tr ζ(P) < β − δ.
No: if m−D Tr ζ(P) > β + δ.

Notice that the number of Fourier coefficients is
∑d

i=0
(

D
i

) (
m2 − 1

)i. If we are concerned
with constant-degree operators, then the dimension of the operator is exponential in the
input size.

CCC 2024

30:16 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

▶ Theorem 23. Given d,D,m ∈ Z>0, m > 1, and real numbers β > δ > 0, there exists a
deterministic algorithm for the positivity testing problem that runs in time

exp
(
poly

(
md, 1/δ

))
·DO(d).

In particular, if m, d, δ are constants, then the algorithm runs in time poly(D).

The algorithm applies the invariance principle Lemma 16 to reduce the dimension of the
matrices and then Theorem 19 to derandomize, while the distance to positive operators is
approximately preserved.

5 Noisy Nonlocal Games are NP-complete

▶ Definition 24 (Noisy Nonlocal Game Value Problem). The input consists of the description
of a nonlocal game, which is a tuple G = (X ,Y,A,B, µ, V), and real values ρ, β and ε. X
and Y are question sets and assume |X | = |Y| = s. A and B are answer sets and assume
|A| = |B| = t. Let µ be a distribution on X × Y and V : X × Y × A × B → {0, 1} be the
predicate.

Let v = val∗(G, ψAB) be the value of the nonlocal game, where Alice and Bob share
arbitrarily many copies of a noisy MES ψAB with the maximal correlation ρ. Let 1 > β >

ε > 0. The task is to distinguish the following two cases.
Yes: v > β + ε.
No: v < β − ε.

In this section, we show:

▶ Theorem 25. The noisy nonlocal game value problem is NP-complete.

It follows from the two propositions below, whose proofs can be found in Appendix B.3.

▶ Proposition 26. There exists a nondeterministic algorithm that runs in time

poly
(
s, eexp

(
t, log

(
1
ρ

)
,

1
ε

))
that solves the noisy nonlocal game value problem. Here eexp(·) means doubly exponential.
In particular, if t, ρ, ε are constants, then the problem is in NP.

▶ Proposition 27. For each 3-SAT instance ϕ, there is a nonlocal game G(ϕ) such that its
noisy game value is 1 if ϕ is satisfiable, and below some constant c if ϕ is not satisfiable.

5.1 The Nondeterministic Algorithm
We first present an upper bound on the number of noisy MES sufficient to approximate
the value of a nonlocal game to an arbitrary precision. The upper bound from [46] is
D = exp(poly(s), exp (poly(t))). The follow-up work [47] studied fully quantum games in
which both questions and answers are quantum and proved a better upper bound D =
exp (poly(s), poly(t)) using a refined Gaussian dimension reduction. We observe that this
upper bound can be further improved to D = poly (s, exp (poly(t))) for nonlocal games.

▶ Theorem 28. Given parameters 0 < ϵ, ρ < 1, n,m ∈ Z>0, m ≥ 2, a noisy MES state
ψAB, i.e., ψA = ψB = 1m

m with the maximal correlation ρ = ρ (ψAB) < 1 as defined in
Definition 41, let G be a nonlocal game with the question sets X ,Y and the answer sets
A,B. Suppose the players share arbitrarily many copies of ψAB. Let ωn(G, ψAB) be the

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:17

highest winning probability that the players can achieve when sharing n copies of ψAB. Then
there exists an explicitly computable bound D = D (|X |, |Y|, |A|, |B|,m, ϵ, ρ), such that for
any n > D, ωn(G, ψAB)− ωD(G, ψAB) ≤ ϵ. In particular, one may choose

D = poly
(
|X |, |Y|, exp

(
poly

(
|A|, |B|, 1

ϵ
,

1
1− ρ

)
, logm

))
.

The proof largely follows the framework in [46] with several refinements.4
Next we present the algorithm, which is deterministic provided with a certificate. By

Theorem 28 we know that sharing D copies of ψAB is sufficient to approximate the game
value. However, outlining a strategy that shares D copies of ψAB requires exp (D) bits,
rendering it excessively costly. Despite this, we’ve devised a more affordable certificate.
Interpreted as a degree-d pseudo-strategy, this certificate is presented through its Fourier
coefficients. By pseudo-strategy we mean two sets of operators {P x

a } and {Q y
b } that may

not be a valid quantum strategy. However, we can still define the winning probability on a
pseudo-strategy, mathematically. The algorithm is given in Appendix B.3.

5.2 NP-Hardness
In this subsection, we first show that if L ∈ MIP then L ∈ noisy MIP∗. Then Proposition 27
directly follows from the fact that 3-SAT ∈ MIP[log, 1] [7].

▶ Proposition 29. Let V = (AlgQ,AlgV) be an MIP protocol for a language L with perfect
completeness. Then there exists a verifier V ∗ that is a noisy MIP∗ verifier for L with the
following conditions:
Completeness. If input ∈ L, there is a value-1 strategy for V ∗.
Soundsness. Given input, if there is a strategy for V ∗ with value 1−ϵ, then there is a strategy

for V with value 1− 2ε− 16ϵ
1−ρ .

6 MIP∗ Protocol for RE with O(1)-size Answers

In this section, we prove that there is an MIP∗ protocol for any language in RE with poly-size
questions and constant-size answers. The key step is to develop a new answer reduction
technique that can reduce the answer size of an MIP∗ protocol from O(log n) to O(1) while
maintaining other parameters of the protocol. We achieve it by modifying the answer
reduction technique from [39]. Natarajan and Wright’s answer reduction follows a modular
design with two major components: Probabilistically checkable proofs of proximity (PCPP)
and a tester of the low-degree code. Hence, to achieve constant answer size, it suffices to
change the code to the Hadamard code, and derive a new tester for the Hadamard code
that allows a verifier to test multiple bits of a codeword at the same time. Then in our
final construction of the MIP∗ protocol for RE, we apply our new answer reduction with the
Hadamard code to the MIP∗ protocol for RE from [28]. The proofs of the results of this
section can be found in Appendix B.4.

4 One may wonder why the upper bound in [47] is still exponential in the size of the question set with
the refined Gaussian dimension reduction. This is because of the different treatment of the questions.
When the questions are classical, we take into account the distribution of the questions. However, if the
questions are quantum as considered in [47], the question registers are expressed as a linear combination
of matrix basis elements, where an extra factor on the size of the question sets is introduced.

CCC 2024

30:18 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Note that [28] doesn’t use the answer reduction technique of [39]. The authors of [28]
use a specific PCPP tailored to the low individual-degree code in their answer reduction
technique so that it fits the recursive compression framework. However, the answer reduction
technique of [28] is more difficult to modify due to its less modular design.

6.1 Subset Tester for the Hadamard Code
To use the [39] answer reduction procedure with a particular error-correcting code, one must
show that this code satisfies certain efficient testability properties. Here we show this for the
Hadamard code. Specifically, we show that the Hadamard code has a subset tester in the
sense of [39, Section 16], which ensures that the provers have a global Hadamard encoding of
some bitstring.

First, we recall the definition and key properties of the Hadamard code.

▶ Definition 30. The Hadamard code encodes x ∈ Fk
2 as Enck(x) = (x · y)y∈Fk

2
. Moreover,

For x ̸= y ∈ Fk
2 , Enck(x) and Enck(y) have normalized Hamming agreement at most

ηH = 1
2 .

There exists an embedding µk : [k] → [2k] such that for each i ∈ [k], µk(i) = 2i−1 and
xi = (Enc(x))µk(i).
There exists a decoding algorithm Deck such that Deck(Enck(x)) = x and, for every w not
in the range of Enck, Deck(w) =⊥.

The decoding algorithm Deck on input w, first computes x = (wµk(k), . . . , wµk(1)) outputs
x if w = Enck(x) and ⊥ otherwise. Note that both Enck and Deck run in time exponential
in k.

▶ Proposition 31. For the subset F = {x1, . . . , xk} ⊆ Fn
2 sampled according to a distribution

D and a uniformly random y ∈ Fn
2 , if a quantum strategy with |ψ⟩ ∈ HA ⊗ HB and

measurements{
MF,y

a,c,a′ | a, a′ ∈ Fk
2 , c ∈ F2

}
,
{
NF

b | b ∈ Fk
2
}
, {Ny

d | d ∈ F2}

can pass the subset tester with probability 1− ε, then there is a Hilbert space H′
A ⊗H′

B, a
state |aux⟩ = |auxA⟩ ⊗ |auxB⟩ ∈ H′

A ⊗H′
B and a projective measurement

{
Ĝu | u ∈ Fn

2

}
on

HB ⊗H′
B such that if we write |ψ′⟩ = |ψ⟩ ⊗ |aux⟩

E
F ∼D

∑
a∈Fk

2

∥NF
a ⊗ 1H′ ⊗ 1B |ψ′⟩ − 1A ⊗

∑
u:u·xi=ai

∀i∈[k]

Ĝu |ψ′⟩∥2 ≤ (2k − 1)2(45 + 12
√
k)
√
ε.

6.2 Answer Reduction Protocol
The subset tester of the Hadamard code implies that we can replace the low-degree code of
the answer reduction technique in [39, Section 17.4] by the Hadamard code. The other key
ingredient of Natarajan and Wright’s answer reduction is probabilistically checkable proofs
of proximity, so we recall its definition and key properties that we will use later.

▶ Definition 32 (Probabilistically checkable proofs of proximity (PCPP)). For functions r, q :
Z+ → Z+, t : Z+×Z+ → Z+, and constants s, γ ∈ [0, 1], a pair language L ⊆ {0, 1}∗×{0, 1}∗

is in PCPPs,γ [r, q, t] if there exists an (r, q, t)-restricted PCPP verifier V with the following
properties:

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:19

Completeness: If (x, y) ∈ L, there exists a proof π such that PrR[V y,π(x, |y|;R) = 1] = 1
where V y,π(x, |y|;R) denotes the decision V on input (x, |y|), oracle access to (y, π) with
q(|x|) queries, and randomness R from r(|x|) coin tosses.

Soundness: Let Lx = {y | (x, y) ∈ L}. If (x, y) is such that y is γ-far from Lx ∩ {0, 1}|y|,
then for every π, PrR[V y,π(x, |y|;R) = 1] ≤ s.

We work with the PCPP such that when L is an NTIME(T) pair language,
Randomness complexity: r(m) = log2 T (m) +O(log2 log2 T (m)),
Query complexity: q(m) = O(1), and
Verification time: t(m,K) = poly(m, log2 K, log2 T (m+K)).

We are going to apply the PCPP defined above to the following language.

▶ Definition 33. Let V = (AlgQ,AlgV) be an MIP∗ verifier, where AlgQ is his algorithm to
sample the questions and AlgA is his algorithm to check the answers. Suppose on inputs of
length n it has question length ℓQ(n) and answer length ℓA(n). We define

LEnc =
{

(input, x0, x1,EncℓA(|input|)(y0),EncℓA(|input|)(y0)) | AlgA(input, x0, x1, y0, y1)=1
}
,

which are all the accepted tuples with the answers encoded by EncℓA(|input|).

Note that when |input| = n, the running time of the decider of LEnc is the maximal of
the running time of AlgA and DecℓA(n) as pointed out in [39, Proposition 17.7]. Suppose
γ ≤ ηH/2 = 1/4. Then by [39, Proposition 17.8], if (input, x0, x1, z0, z1) does not correspond
to the encoding of any assignment accepted by AlgA, for every proof π

Pr
R

[V z0,z1,π
PCPP (input, x0, x1, |z0|+ |z1|;R) = 1] ≤ s

where s is the soundness of VPCPP.

▶ Definition 34. We instantiate the answer-reduced MIP∗ protocol with the following com-
ponents and notations.
1) Let V = (AlgQ,AlgA) be an MIP∗ verifier for a Language L. Suppose on inputs of size n,

the verifier V has question length ℓV,Q(n), answer length ℓV,A(n).
2) Let Gk(TTT) be the subset tester from Section 6.1 for the Hadamard code of Fk

2 with the
embedding µk, and for the subset TTT sampled according to some distribution D.

3) Let LEnc be the language defined in Definition 33, and let VPCPP be its PCPP verifier with
γ ≤ 1/4 and constant soundness s. Suppose on inputs of size n it has proof length ℓπ(n).

4) We write ℓ1 := ℓV,A(n) and ℓ2 := ℓπ(n).
Next, we give the protocol of the answer reduced verifier V AR, which requires the provers
to encode their proof π by the Hadamard code of Fℓ2

2 . The protocol is very similar to the
protocol presented in [39, Figure 15], and can be found in Appendix B.4.

▶ Theorem 35. Let V = (AlgQ,AlgA) be an MIP∗ protocol for a language L. Suppose the
PCPP verifier is chosen so that γ ≤ 1/4. Suppose further that V has the following property:
for any input ∈ L, the prover has a real commuting symmetric EPR strategy with a value 1.
Then V AR obtained by applying the the answer reduction procedure to V is also an MIP∗

verifier for L with the following two conditions:
Completeness. If input ∈ L, there is a value-1 strategy for V AR.
Soundness. Given input, suppose there is a strategy for V AR with value 1− ε. Then there

exists constants K1 and K2 such that there is a strategy for V on input with value
1−K1 −K2ε

1/96.

CCC 2024

30:20 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

▶ Theorem 36. RE is contained in MIP∗[poly, O(1)] with completeness 1 and a constant
soundness.

Alternatively, we can first apply the answer reduction technique from [39] to the oracu-
larized protocol to reduce its answer size to O(log(n)) and then apply our answer reduction
to further reduce it to O(1). Compared with the approach above, this approach gives us an
MIP∗ protocol for RE with shorter questions but worse soundness.

References
1 Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with constant

error rate. SIAM Journal on Computing, 38(4):1207, 2008.
2 Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani. A polynomial-

time classical algorithm for noisy random circuit sampling. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023, pages 945–957, 2023.

3 Rotem Arnon-Friedman and Jean-Daniel Bancal. Device-independent certification of one-shot
distillable entanglement. New Journal of Physics, 21(3):033010, 2019.

4 Rotem Arnon-Friedman, Zvika Brakerski, and Thomas Vidick. Computational entanglement
theory. arXiv preprint, 2023. arXiv:2310.02783.

5 Rotem Arnon-Friedman and Henry Yuen. Noise-Tolerant Testing of High Entanglement of
Formation. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx, and Donald
Sannella, editors, 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), volume 107 of Leibniz International Proceedings in Informatics (LIPIcs), pages
11:1–11:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ICALP.2018.11.

6 Srinivasan Arunachalam and Penghui Yao. Positive spectrahedra: invariance principles and
pseudorandom generators. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2022, pages 208–221, New York, NY, USA, 2022. Association for
Computing Machinery. doi:10.1145/3519935.3519965.

7 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, March 1991. doi:
10.1007/BF01200056.

8 Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. Testing positive semi-definiteness via
random submatrices. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science, FOCS 2020, pages 1191–1202. IEEE, 2020.

9 Salman Beigi. A new quantum data processing inequality. Journal of Mathematical Physics,
54(8):082202, 2013. doi:10.1063/1.4818985.

10 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applications
to numerical problems. Journal of Computer and System Sciences, 47(3):549–595, 1993.

11 Dolev Bluvstein, Simon J Evered, Alexandra A Geim, Sophie H Li, Hengyun Zhou, Tom
Manovitz, Sepehr Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter, et al. Logical
quantum processor based on reconfigurable atom arrays. Nature, pages 1–3, 2023.

12 Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang,
Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy
in near-term devices. Nature Physics, 14(6):595–600, 2018.

13 J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended
abstract). In Proceedings of the Ninth Annual ACM Symposium on Theory of Computing,
STOC 1977, pages 106–112, New York, NY, USA, 1977. Association for Computing Machinery.
doi:10.1145/800105.803400.

14 Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li. The complexity of NISQ. Nature
Communications, 14(1):6001, September 2023. doi:10.1038/s41467-023-41217-6.

https://arxiv.org/abs/2310.02783
https://doi.org/10.4230/LIPIcs.ICALP.2018.11
https://doi.org/10.1145/3519935.3519965
https://doi.org/10.1007/BF01200056
https://doi.org/10.1007/BF01200056
https://doi.org/10.1063/1.4818985
https://doi.org/10.1145/800105.803400
https://doi.org/10.1038/s41467-023-41217-6

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:21

15 R. Cleve, P. Hoyer, B. Toner, and J. Watrous. Consequences and limits of nonlocal strategies.
In Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004., pages
236–249, 2004. doi:10.1109/CCC.2004.1313847.

16 Rodney Coleman. Calculus on Normed Vector Spaces. Springer-Verlag, New York, New York,
NY, 1997.

17 Yangjing Dong, Honghao Fu, Anand Natarajan, Minglong Qin, Haochen Xu, and Penghui
Yao. The computational advantage of MIP* vanishes in the presence of noise. arXiv preprint,
2023. arXiv:2312.04360.

18 Bill Fefferman and Zachary Remscrim. Eliminating intermediate measurements in space-
bounded quantum computation. In Proceedings of the 53rd Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2021, pages 1343–1356, 2021.

19 Honghao Fu. Constant-sized correlations are sufficient to self-test maximally entangled
states with unbounded dimension. Quantum, 6:614, January 2022. doi:10.22331/
q-2022-01-03-614.

20 Badih Ghazi, Pritish Kamath, and Prasad Raghavendra. Dimension reduction for polynomials
over gaussian space and applications. In Proceedings of the 33rd Computational Complexity
Conference, CCC ’18, pages 28:1–28:37, Germany, 2018. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.CCC.2018.28.

21 Insu Han, Dmitry Malioutov, Haim Avron, and Jinwoo Shin. Approximating spectral sums of
large-scale matrices using stochastic Chebyshev approximations. SIAM Journal on Scientific
Computing, 39(4):A1558–A1585, 2017.

22 Prahladh Harsha, Adam Klivans, and Raghu Meka. An invariance principle for polytopes. J.
ACM, 59(6), January 2013. doi:10.1145/2395116.2395118.

23 Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
doi:10.1145/502090.502098.

24 Marcus Isaksson and Elchanan Mossel. Maximally stable Gaussian partitions with discrete
applications. Israel Journal of Mathematics, 189(1):347–396, 2012.

25 Tsuyoshi Ito, Hirotada Kobayashi, and Keiji Matsumoto. Oracularization and two-prover
one-round interactive proofs against nonlocal strategies. In Proceedings of the 2009 24th Annual
IEEE Conference on Computational Complexity, CCC 2009, pages 217–228, Washington, DC,
USA, 2009. IEEE Computer Society. doi:10.1109/CCC.2009.22.

26 Tsuyoshi Ito and Thomas Vidick. A multi-prover interactive proof for NEXP sound against
entangled provers. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, FOCS 2012, pages 243–252. IEEE, 2012.

27 Zhengfeng Ji. Compression of quantum multi-prover interactive proofs. In Proceedings of the
49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 289–302,
New York, NY, USA, 2017. ACM. doi:10.1145/3055399.3055441.

28 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗ = RE.
arXiv preprint, 2020. arXiv:2001.04383.

29 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Quantum
soundness of the classical low individual degree test. arXiv preprint, 2020. arXiv:2009.12982.

30 Daniel M. Kane. A Polylogarithmic PRG for Degree 2 Threshold Functions in the Gaussian
Setting. In David Zuckerman, editor, 30th Conference on Computational Complexity (CCC
2015), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages 567–
581, Dagstuhl, Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.CCC.2015.567.

31 Zander Kelley and Raghu Meka. Random restrictions and prgs for ptfs in gaussian space. In
Proceedings of the 37th Computational Complexity Conference, CCC ’22, Dagstuhl, DEU, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CCC.2022.21.

32 Julia Kempe, Hirotada Kobayashi, Keiji Matsumoto, Ben Toner, and Thomas Vidick. Entangled
games are hard to approximate. SIAM Journal on Computing, 40(3):848–877, 2011. doi:
10.1137/090751293.

CCC 2024

https://doi.org/10.1109/CCC.2004.1313847
https://arxiv.org/abs/2312.04360
https://doi.org/10.22331/q-2022-01-03-614
https://doi.org/10.22331/q-2022-01-03-614
https://doi.org/10.4230/LIPIcs.CCC.2018.28
https://doi.org/10.1145/2395116.2395118
https://doi.org/10.1145/502090.502098
https://doi.org/10.1109/CCC.2009.22
https://doi.org/10.1145/3055399.3055441
https://arxiv.org/abs/2001.04383
https://arxiv.org/abs/2009.12982
https://doi.org/10.4230/LIPIcs.CCC.2015.567
https://doi.org/10.4230/LIPIcs.CCC.2015.567
https://doi.org/10.4230/LIPIcs.CCC.2022.21
https://doi.org/10.1137/090751293
https://doi.org/10.1137/090751293

30:22 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

33 Julia Kempe, Oded Regev, and Ben Toner. Unique games with entangled provers are easy.
SIAM Journal on Computing, 39(7):3207–3229, 2010. doi:10.1137/090772885.

34 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the Thiry-
Fourth Annual ACM Symposium on Theory of Computing, STOC ’02, pages 767–775, New
York, NY, USA, 2002. Association for Computing Machinery. doi:10.1145/509907.510017.

35 Robert Krauthgamer and Ori Sasson. Property testing of data dimensionality. In Proceedings
of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pages
18–27, USA, 2003. Society for Industrial and Applied Mathematics.

36 Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold
functions. In Proceedings of the Forty-Second ACM Symposium on Theory of Computing,
STOC 2010, pages 427–436, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1806689.1806749.

37 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions with
low influences: invariance and optimality. In 46th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2005, pages 21–30. IEEE, 2005.

38 Anand Natarajan and Thomas Vidick. A quantum linearity test for robustly verifying
entanglement. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 1003–1015, 2017.

39 Anand Natarajan and John Wright. NEEXP is Contained in MIP∗. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science, FOCS 2019, pages 510–518. IEEE, 2019.
doi:10.1109/FOCS.2019.00039.

40 Anand Natarajan and Tina Zhang. Quantum free games. In Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023, pages 1603–1616, New York, NY,
USA, 2023. Association for Computing Machinery. doi:10.1145/3564246.3585208.

41 Deanna Needell, William Swartworth, and David P. Woodruff. Testing positive semidefiniteness
using linear measurements. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer
Science, FOCS 2022, pages 87–97, 2022. doi:10.1109/FOCS54457.2022.00016.

42 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, Cambridge, UK,
2013.

43 Ryan O’Donnell, Rocco A. Servedio, and Li-Yang Tan. Fooling gaussian ptfs via local
hyperconcentration. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, pages 1170–1183, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384281.

44 Ryan O’Donnell, Rocco A. Servedio, and Li-Yang Tan. Fooling polytopes. J. ACM, 69(2),
January 2022. doi:10.1145/3460532.

45 Connor Paddock. Rounding near-optimal quantum strategies for nonlocal games to strategies
using maximally entangled states. arXiv preprint, 2022. arXiv:2203.02525.

46 Minglong Qin and Penghui Yao. Nonlocal games with noisy maximally entangled states are
decidable. SIAM Journal on Computing, 50(6):1800–1891, 2021.

47 Minglong Qin and Penghui Yao. Decidability of Fully Quantum Nonlocal Games with
Noisy Maximally Entangled States. In Kousha Etessami, Uriel Feige, and Gabriele Puppis,
editors, 50th International Colloquium on Automata, Languages, and Programming (ICALP
2023), volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 97:1–
97:20, Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ICALP.2023.97.

48 Oded Regev and Liron Schiff. Impossibility of a quantum speed-up with a faulty oracle. In
International Colloquium on Automata, Languages, and Programming, pages 773–781. Springer,
2008.

49 Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems.
Nature, 496(7446):456–460, April 2013. doi:10.1038/nature12035.

https://doi.org/10.1137/090772885
https://doi.org/10.1145/509907.510017
https://doi.org/10.1145/1806689.1806749
https://doi.org/10.1109/FOCS.2019.00039
https://doi.org/10.1145/3564246.3585208
https://doi.org/10.1109/FOCS54457.2022.00016
https://doi.org/10.1145/3357713.3384281
https://doi.org/10.1145/3460532
https://arxiv.org/abs/2203.02525
https://doi.org/10.4230/LIPIcs.ICALP.2023.97
https://doi.org/10.4230/LIPIcs.ICALP.2023.97
https://doi.org/10.1038/nature12035

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:23

50 Hristo S. Sendov. The higher-order derivatives of spectral functions. Linear Algebra and its
Applications, 424(1):240–281, 2007. Special Issue in honor of Roger Horn. doi:10.1016/j.
laa.2006.12.013.

51 Victor Shoup. New algorithms for finding irreducible polynomials over finite fields. Mathematics
of computation, 54(189):435–447, 1990.

52 Anna Skripka and Anna Tomskova. Multilinear operator integrals. Springer, 2019.

53 William Slofstra. The set of quantum correlations is not closed. Forum of Mathematics, Pi,
7:e1, 2019. doi:10.1017/fmp.2018.3.

54 William Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from
non-local games. Journal of the American Mathematical Society, 33:1–56, 2020. doi:/10.
1090/jams/929.

55 Salil P. Vadhan. Pseudorandomness. Foundations and Trends® in Theoretical Computer
Science, 7(1–3):1–336, 2012. doi:10.1561/0400000010.

56 Thomas Vidick. Almost synchronous quantum correlations. Journal of mathematical physics,
63(2), 2022.

A Preliminary

For n ∈ Z>0, let [n] and [n]≥0 represent the sets {1, . . . , n} and {0, . . . , n− 1}, respectively.
Given a finite set X and a natural number k, let X k be the set X × · · · × X , the Cartesian
product of X , k times. For any σ ∈ Zk

≥0, we define |σ| = |{i : σi ̸= 0}|.
In this paper, the lowercase letters in bold x,y, · · · are reserved for random variables.

The capital letters in bold, A,B, . . . are reserved for random operators.

A.1 Quantum Mechanics

A quantum system is associated with a complex finite-dimensional Hilbert space, denoted
by A. A quantum state in A can be completely described by a density operator, a positive
semidefinite operator with trace one. If the dimension of A is m, we denote the set of
Hermitian matrices in A by Hm. The identity matrix is denoted by 1m or 1A. The state of
a composite quantum system is the Kronecker product of the state spaces of the component
systems. An important operation on a composite system A⊗B is the partial trace TrB (·)
which effectively derives the marginal state of the subsystem A (denoted by ψA) from the
quantum state ψAB . The partial trace is given by

ψA = TrBψAB =
∑

i

(1A ⊗ ⟨i|)ψAB (1A ⊗ |i⟩) ,

where {|i⟩} is an orthonormal basis in B. A linear map from a system A to a system B is
unital if it maps 1A to 1B. A quantum measurement is represented by a positive operator-
valued measure (POVM), which is a set of positive semidefinite operators {M1, . . . ,Mn}
satisfying

∑n
i=1 Mi = 1, where n is the number of possible measurement outcomes. Suppose

that the state of the quantum system is ψ, then the probability that it produces i is Tr Miψ.
We use

−→
M= (M1, . . . ,Mn) to represent an ordered set of operators.

CCC 2024

https://doi.org/10.1016/j.laa.2006.12.013
https://doi.org/10.1016/j.laa.2006.12.013
https://doi.org/10.1017/fmp.2018.3
https://doi.org//10.1090/jams/929
https://doi.org//10.1090/jams/929
https://doi.org/10.1561/0400000010

30:24 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

A.2 Matrix Analysis
A.2.1 Matrix Spaces
Given m ∈ Z>0 and M ∈ Hm, we use Mi,j to represent the (i, j)-th entry of M . For
1 ≤ p ≤ ∞, the p-norm of M is defined to be

∥M∥p =
(

m∑
i=1

si (M)p

)1/p

,

where (s1 (M) , s2 (M) , . . . , sm (M)) are the singular values of M sorted in nonincreasing
order. ∥M∥ = ∥M∥∞ = s1 (M). The normalized p-norm of M is defined as

|||M |||p =
(

1
m

m∑
i=1

si (M)p

)1/p

(4)

and |||M ||| = |||M |||∞ = s1 (M).
Given P,Q ∈Mm, we define

⟨P,Q⟩ = 1
m

Tr P †Q. (5)

It is easy to verify that ⟨·, ·⟩ is an inner product. (⟨·, ·⟩ ,Hm) forms a Hilbert space. For any
M ∈ Hm, |||M |||22 = ⟨M,M⟩.

We say that {B0, . . . ,Bm2−1} is a standard orthonormal basis inMm if it is an orthonormal
basis with all elements being Hermitian and B0 = 1m.

▶ Fact 37 ([46, Lemma 2.10]). For any integer m ≥ 2, a standard orthonormal basis exists
in Mm.

Given a standard orthonormal basis B = {Bi}m2−1
i=0 in Hm, every matrix M ∈ H⊗n

m has a
Fourier expansion with respect to the basis B given by

M =
∑

σ∈[m2]n
≥0

M̂ (σ)Bσ,

where Bσ =
⊗n

i=1 Bσi
.

▶ Definition 38. Let B = {Bi}m2−1
i=0 be a standard orthonormal basis in Hm, P ∈ H⊗n

m .
1. The degree of P is defined to be

degP = max
{
|σ| : P̂ (σ) ̸= 0

}
.

Recall that |σ| represents the number of nonzero entries of σ.
2. For any i ∈ [n], the influence of i-th coordinate is defined to be:

Infi(P) = |||P − 1m ⊗ TriP |||22,

where 1m is in the i’th quantum system, and the partial trace Tri derives the marginal
state of the remaining n− 1 quantum systems except for the i’th one.

3. The total influence is defined by

Inf (P) =
∑

i

Infi (P) .

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:25

▶ Fact 39 ([46, Lemma 2.16]). Given P ∈ H⊗n
m , a standard orthonormal basis B = {Bi}m2−1

i=0
in Hm and a subset S ⊆ [n], it holds that
1. Infi (P) =

∑
σ:σi ̸=0|P̂ (σ)|2;

2. Inf (P) =
∑

σ|σ||P̂ (σ)|2 ≤ degP · |||P |||22.
The inequality in item 2 follows from Parseval’s identity, which is immediate by the Fourier
expansion of P (Fact 37).

▶ Fact 40 (Parseval’s identity). For any P ∈ H⊗n
m ,

|||P |||22 =
∑

σ

|P̂ (σ)|2.

Quantum maximal correlations introduced by Beigi [9] are crucial to our analysis.

▶ Definition 41 (Maximal correlation [9]). Given quantum systems A,B of dimension m and
a bipartite state ψAB with ψA = ψB = 1m

m , the maximal correlation of ψAB is defined to be

ρ (ψAB) = sup
{
|Tr
((
P † ⊗Q

)
ψAB

)
| : P,Q ∈ Cm×m,

Tr P = Tr Q = 0, |||P |||2 = |||Q|||2 = 1.

}
▶ Fact 42 ([9]). Given quantum systems A,B and a bipartite quantum state ψAB with
ψA = 1mA

/mA and ψB = 1mB
/mB, it holds that ρ (ψAB) ≤ 1.

▶ Definition 43. Given quantum systems A and B with dim (A) = dim (B) = m, a bipartite
state ψAB ∈ D (A⊗B) is an m-dimensional noisy maximally entangled state (MES) if
ψA = ψB = 1m/m and its maximal correlation ρ = ρ (ψAB) < 1.

An interesting class of noisy MESs is the isotropic states, which are the states obtained
by depolarizing MESs with arbitrarily small noise.

▶ Fact 44 ([46, Lemma 3.9]). For any 0 ≤ ϵ < 1 integer m > 1, it holds that

ρ

(
(1− ϵ) |Ψ⟩⟨Ψ|+ ϵ

1m

m
⊗ 1m

m

)
= 1− ϵ,

where |Ψ⟩ = 1√
m

∑m−1
i=0 |m,m⟩ is an m-dimensional MES.

▶ Remark 45. Fact 44 indicates the maximal correlation of an isotropic state is strictly less
than 1. The class of noisy MES also contains other states. It is not hard to prove that any
mixture of at least three out of the four orthogonal EPR states is a 2-dimensional noisy MES.

▶ Fact 46 ([46, Lemma 7.4]). Given m ∈ Z>0, m ≥ 2, and a noisy m-dimensional MES
ψAB. Then there exist standard orthonormal bases A = {Ai}m2−1

i=0 and B = {Bi}m2−1
i=0 in

Hm such that

Tr ((Ai ⊗ Bj)ψAB) =
{
ci if i = j

0 otherwise,
(6)

where c0 = 1 ≥ c1 = ρ (ψAB) ≥ c2 ≥ . . . cm2−1 ≥ 0 and ρ (ψAB) is defined in Definition 41.

▶ Definition 47. Given m ∈ Z>0, ρ ∈ [0, 1], a noise operator ∆ρ : Hm → Hm is defined as
follows. For any P ∈ Hm,

∆ρ (P) = ρP + 1− ρ
m

(Tr P) · 1m.

With a slight abuse of notations, the noise operator ∆⊗n
ρ on the space H⊗n

m is also denoted
by ∆ρ.

CCC 2024

30:26 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

▶ Fact 48 ([46, Lemma 3.5]). Given integers d, n,m > 0, ρ ∈ [0, 1], a standard or-
thonormal basis of Hm: B = {Bi}m2−1

i=0 , then for any P ∈ H⊗n
m with a Fourier expansion

P =
∑

σ∈[m2]n
≥0
P̂ (σ)Bσ, it holds that

∆ρ (P) =
∑

σ∈[m2]n
≥0

ρ|σ|P̂ (σ)Bσ.

A.2.2 Random Matrices
For integer n ≥ 1, γn represents the distribution of an n-dimensional standard normal
distribution. For any 0 ≤ ρ ≤ 1, Gρ represents a ρ-correlated Gaussian distribution, which is
a 2-dimensional Gaussian distribution

(X,Y) ∼ N
((

0
0

)
,

(
1 ρ

ρ 1

))
.

Namely, the marginal distributions X and Y are distributed according to γ1 and E[XY] = ρ.

▶ Definition 49. Given h, n,m ∈ Z>0, we say P (g) is a random matrix if it can be expressed
as

P (g) =
∑

σ∈[m2]h
≥0

pσ (g)Bσ, (7)

where {Bi}m2−1
i=0 is a standard orthonormal basis in Hm, pσ : Rn → R for all σ ∈ [m2]h≥0 and

g ∼ γn. Moreover, we say P (g) ∈ L2 (H⊗h
m , γn

)
if
∫
Rn p

2
σ(x)γn (dx) <∞ for all σ ∈ [m2]h≥0.

We define the degree of random operators:

▶ Definition 50. Given integers n, h > 0,m > 1 and random operator P ∈ Lp
(
H⊗h

m , γn

)
,

the degree of P, denoted by deg (P), is

max
σ∈[m2]h

≥0

deg (pσ) .

We say P is multilinear if pσ (·) is multilinear for all σ ∈ [m2]h≥0.

A.2.3 Fréchet Derivatives and Spectral Functions
The Fréchet derivatives are derivatives on Banach spaces. In this paper, we only concern
ourselves with Fréchet derivatives on matrix spaces. Readers may refer to [16] for a detailed
treatment.

▶ Definition 51. Given a map f : Hm → Hm and P,Q ∈ Hm, the Fréchet derivative of f at
P with direction Q is defined to be

Df (P) [Q] = d

dt
f (P + tQ) |t=0.

The k-th order Fréchet derivative of f at P with direction (Q1, . . . , Qk) is defined to be

Dkf (P) [Q1, . . . , Qk] = d

dt

(
Dk−1f (P + tQk) [Q1, . . . , Qk−1]

)
|t=0.

To keep notations short, we use Dkf (P) [Q] to represent Dkf (P) [Q, . . . , Q].

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:27

In this paper, we are concerned with spectral functions, a special class of matrix functions.
We say that the function F : Hm → Hm is a spectral function if there exists a function
f : R → R such that f (P) =

∑
i f (λi) |vi⟩⟨vi| , where P =

∑
i λi |vi⟩⟨vi| is a spectral

decomposition of P . With slight abuse of notation, we use the same notation f to represent
the function on R and the corresponding spectral function, whenever it is clear from the
context.

Given n ∈ Z>0, we denote Cn to be the space of functions continuously differentiable n
times.

▶ Definition 52. Let λ0, . . . , λn ∈ R and let f ∈ Cn. The divided difference f [n] is defined
recursively by

f [n](λ0, λ1, λ̃) =
{

f [n−1](λ0,λ̃)−f [n−1](λ1,λ̃)
λ0−λ1

if λ0 ̸= λ1,
d

dλ0
f [n−1](λ0, λ̃) if λ0 = λ1,

where λ̃ = (λ2, . . . , λn).

It is well known that f [n] is a symmetric function.

▶ Fact 53 ([52, Theorem 5.3.2], [50, Theorem 6.1]). Given m,n ∈ Z>0, P,Q ∈ Hm. Suppose
that P has a spectral decomposition

P =
m∑

i=1
λiΠi, (8)

where λ1 ≥ · · · ≥ λm, {Πi}i∈[m] are rank-one projectors satisfying that
∑m

i=1 Πi = 1 and
ΠiΠj = 0 for all i ̸= j. Let f ∈ Cn. Then

Dnf(P) [Q] =
∑

i0,...,in∈[m]

f [n] (λi0 , . . . , λin
) Πi0QΠi1Q . . .QΠin

.

▶ Fact 54 ([52, Theorem 5.3.12]). Given m,n ∈ Z>0, P,Q ∈ Hm. Let f ∈ Cn. Denote

∆n,f (P,Q) = f(P +Q)−
n−1∑
k=0

1
k!D

kf(P) [Q] ,

then there exists a constant cn depending only on n such that

|Tr [∆n,f (P,Q)]| ≤ cn∥f (n)∥∞∥Q∥n
n,

where ∥f (n)∥∞ denotes the supremum of f (n).

A.2.4 The Distance from PSD Matrices
Define the function ζ : R→ R as follows.

ζ (x) =
{
x2 if x ≤ 0
0 otherwise

. (9)

The function ζ measures the distance between a given matrix and its closest positive
semi-definite matrix:

CCC 2024

30:28 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

▶ Fact 55 ([46, Lemma 9.1]). Given an integer m > 0, M ∈ Hm, ∆ = {X ∈ Hm : X ≥ 0},
let

R (M) = arg min {∥M −X∥2 : X ∈ ∆}

be a rounding map of ∆ with respect to the distance ∥·∥2. It holds that

Tr ζ (M) = ∥M −R (M)∥2
2.

▶ Fact 56 ([46, Lemma 10.4]). For any Hermitian matrices P and Q, it holds that

|Tr (ζ (P +Q)− ζ (P))| ≤ 2
(
∥P∥2∥Q∥2 + ∥Q∥2

2
)
.

We will need to let ζ to be mollified5 to get a smooth function:

▶ Fact 57 ([37, Lemma 3.21]). Given λ > 0, there exists a C∞ function ζλ satisfying
1. ∥ζλ − ζ∥∞ ≤ 2λ2,
2. For any integer n ≥ 2, there exists a constant Bn independent of λ such that

∥(ζλ)(n)∥∞ ≤ Bnλ
2−n.

A.3 k-wise Uniform Hash Functions and Random Variables
▶ Definition 58. A family F = {f : [n]→ [p]} of hash functions is k-wise uniform if for any
y1, . . . , yk ∈ [p] and distinct x1, . . . , xk ∈ [n]:

Pr
f∈uF

[f(xi) = yi ∧ · · · ∧ f(xk) = yk] = 1
pk
.

▶ Definition 59. A random vector z ∈ [p]n is k-wise uniform if for any y1, . . . , yk ∈ [p] and
distinct x1, . . . , xk ∈ [n]:

Pr
z

[zxi
= yi ∧ · · · ∧ zxk

= yk] = 1
pk
.

▶ Lemma 60. Let p be a power of 2. There exists an efficient construction of k-wise uniform
hash functions F = {f : [n]→ [p]} of size |F| = O(max(n, p)k).

Proof. For k = 2, efficient constructions of size |F| = O(np) are well known (see, e.g., [13]).
For general k, let t be the minimal integer satisfying 2t > max(n, p) and consider the finite
field F2t . We can construct an irreducible polynomial in F2 of degree t in polynomial time,
using, for example, the algorithms of Shoup [51]. Thus, the basic operations in F2t can be
carried out efficiently. Then the k-wise uniform hash functions F̃ :

{
f̃ : F2t → F2t

}
can be

efficiently constructed, for example, using the construction in Section 3.5.5 in [55], which
has size |F2t |k = O(max(n, p))k. Then k-wise uniform hash functions from [n] to F2t can be
constructed by restricting the input domain to [n]. k-wise uniform hash functions from [n]
to [p] can be further constructed by cutting the output to log p bits. ◀

▶ Corollary 61. There exists an efficient construction of k-wise uniform random variables
z ∼ {−1, 1}n, which can be enumerated in O(nk) time.

Proof. Construct k-wise uniform hash functions F = {f : [n]→ {−1, 1}}, and then define
z = (f(1), . . . , f(n)). By the definition of k-wise uniform hash functions, z is k-wise uniform
random variables. Moreover, the construction of F is efficient. Finally, the enumeration of z
takes time O(nk) since we only need to enumerate the set F . ◀

5 A mollified function ζλ is a smooth function that is close to the original function ζ.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:29

A.4 Lemmas for Noisy MIP∗

Smoothing

The following lemma reduces the degrees of the POVMs of an MIP∗ strategy.

▶ Lemma 62. [46, Lemma 6.1]6 Given parameters 0 ≤ ρ < 1, 0 < δ < 1, n,m ∈ Z>0,
m ≥ 2, and an m-dimensional noisy MES ψAB with the maximal correlation ρ = ρ (ψAB),
there exists d = d (ρ, δ) and a map f : H⊗n

m → H⊗n
m , such that for any positive semi-definite

matrices P,Q ∈ H⊗n
m satisfying |||P |||2 ≤ 1 and |||Q|||2 ≤ 1. The matrices P (1) = f (P) and

Q(1) = f (Q) satisfy that
1. P (1) and Q(1) are of degree at most d.
2.
∣∣∣∣∣∣P (1)

∣∣∣∣∣∣
2 ≤ 1 and

∣∣∣∣∣∣Q(1)
∣∣∣∣∣∣

2 ≤ 1.
3.
∣∣Tr
((
P (1) ⊗Q(1))ψ⊗n

AB

)
− Tr

(
(P ⊗Q)ψ⊗n

AB

)∣∣ ≤ δ.
4. 1

mn Tr ζ(P (1)) ≤ δ and 1
mn Tr ζ(Q(1)) ≤ δ.

5. the map f is linear and unital.
In particular, we can take d = C log2 1

δ

δ(1−ρ) for some absolute constant C.

▶ Remark 63. It is easily verified that for the above lemma, for each σ ∈ [m2]n≥0, we have

|P̂ (1)(σ)| ≤ |P̂ (σ)| and |Q̂(1)(σ)| ≤ |Q̂(σ)|.

This is because in fact f applies depolarizing noise on P and then eliminates the high degree
parts. So the Fourier coefficients are non-increasing in absolute value.

Regularization

The following lemma allows us to identify high-influence registers, and the number of such
registers can be upper-bounded.

▶ Lemma 64. [46, Lemma 7.4] Given 0 < τ < 1, d, n,m ∈ Z>0, m ≥ 2, and a degree-d
matrix P ∈ H⊗n

m satisfying |||P |||2 ≤ 1, there exists a subset H ⊆ [n] of size h = |H| ≤ d
τ such

that for any i /∈ H,

Infi

(
P≤d

)
≤ τ.

Rounding

The following lemma shows that we can round a given set of matrices that sum up to 1 to a
close-by POVM.

▶ Lemma 65. Given
−→
X ∈ (H⊗n

m)t satisfying that
∑t

i=1 Xi = 1, define

R
(−→
X
)

= arg min
{∣∣∣∣∣∣∣∣∣−→

X −
−→
P
∣∣∣∣∣∣∣∣∣2

2
:
−→
P is a POVM

}
It holds that

∣∣∣∣∣∣∣∣∣R(−→
X
)
−

−→
X
∣∣∣∣∣∣∣∣∣2

2
≤ 3(t+ 1)

mn

t∑
i=1

Tr ζ(Xi) + 6
(

t

mn

t∑
i=1

Tr ζ(Xi)
)1/2

.

6 The statement is slightly different from that in [46, Lemma 6.1]. The difference arises due to our
relocation of the truncating step, which was in [46, Lemma 10.5].

CCC 2024

30:30 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Miscellaneous Lemmas

The following lemmas are used throughout Appendix B.3.

▶ Fact 66 ([46, Fact 2.1]). Given registers A,B, operators P ∈ H (A) , Q ∈ H (B) and a
bipartite state ψAB, it holds that

|Tr ((P ⊗Q)ψAB)| ≤
(
TrP 2ψA

)1/2 ·
(
TrQ2ψB

)1/2
.

▶ Lemma 67. Let {P x
a }

x∈X
a∈A , {Q y

b }
y∈Y
b∈B ,

{
P̃ x

a

}x∈X
a∈A ,

{
Q̃ y

b

}y∈Y
b∈B ⊆ H

⊗n
m be four sets of matrices.

If for all (x, y, a, b) ∈ X × Y ×A× B,

|Tr
(
(P x

a ⊗Q
y
b)ψ⊗n

AB

)
− Tr

((
P̃ x

a ⊗ Q̃
y
b

)
ψ⊗n

AB

)
| ≤ δ|||P x

a |||2|||Q
y
b |||2

for some δ > 0. Then

∣∣valn ({P x
a } , {Q y

b }) − valn
({
P̃ x

a

}
,
{
Q̃ y

b

})∣∣ ≤ δt

(∑
x,a

µA(x)|||P x
a |||22

)1/2(∑
y,b

µB(y)|||Q y
b |||22

)1/2

.

Proof.∣∣valn ({P x
a } , {Q

y
b })− valn

({
P̃ x

a

}
,
{
Q̃ y

b

})∣∣
≤

∑
x,y,a,b

µ(x, y)|Tr
(
(P x

a ⊗Q
y
b)ψ⊗n

AB

)
− Tr

((
P̃ x

a ⊗ Q̃
y
b

)
ψ⊗n

AB

)
|

≤ δ
∑

x,y,a,b

µ(x, y)|||P x
a |||2|||Q

y
b |||2

≤ δ

 ∑
x,y,a,b

µ(x, y)|||P x
a |||

2
2

1/2 ∑
x,y,a,b

µ(x, y)|||Q y
b |||

2
2

1/2

(Cauchy Schwarz)

= δt

(∑
x,a

µA(x)|||P x
a |||

2
2

)1/2
∑

y,b

µB(y)|||Q y
b |||

2
2

1/2

. ◀

▶ Lemma 68 (Truncation). Let {P x
a } , {Q

y
b } be two sets of operators satisfying

1. For all x, y,
∑

a P
x

a =
∑

b Q
y
b = 1.

2. For all x, a, y, b, σ,
∣∣∣P̂ x

a (σ)
∣∣∣ ≤ 1 and

∣∣∣Q̂ y
b (σ)

∣∣∣ ≤ 1.

Let sw = D logm+ log
(2

δ

)
. Then there exist operators

{
P

x,(2)
a

}
,
{
Q

y,(2)
b

}
satisfying

1. For each x, y, a, b, σ, the Fourier coefficients of P x,(2)
a and Q y,(2)

b consists of at most sw

bits.
2. For all x, y,

∑
a P

x,(2)
a =

∑
b Q

y,(2)
b = 1.

3. For all x, y, a, b,
∣∣∣∣∣∣∣∣∣P x,(2)

a

∣∣∣∣∣∣∣∣∣
2
≤ 1 and

∣∣∣∣∣∣∣∣∣Q y,(2)
b

∣∣∣∣∣∣∣∣∣
2
≤ 1.

4. For all x, y, a, b,
∣∣∣Tr
((
P

x,(2)
a ⊗Q y,(2)

b

)
ψ⊗n

AB

)
− Tr

(
(P x

a ⊗Q
y
b)ψ⊗n

AB

)∣∣∣ ≤ δ.
5. For all x, y, a, b,∣∣∣∣ 1

mD
Tr ζ

(
P x,(2)

a

)
− 1
mD

Tr ζ (P x
a)
∣∣∣∣ ≤ δ and

∣∣∣∣ 1
mD

Tr ζ
(
Q

y,(2)
b

)
− 1
mD

Tr ζ (Q y
b)
∣∣∣∣ ≤ δ.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:31

Proof. Let α = 2−sw = δ/(2mD). For each x, y, σ, define P̂ x,(1)
a (σ) = ⌊P̂ x

a (σ)/α⌋α. For
each x, σ ̸= 0D, define integer kx,σ as

−
∑

a

P̂ x,(1)
a (σ) = kx,σ · α

and for σ = 0D, define

1−
∑

a

P̂ x,(1)
a (σ) = kx,0D · α.

Let tx,σ =
∣∣∣{a ∈ A : P̂ x,(1)

a (σ) ̸= P̂ x
a (σ)

}∣∣∣, we can see that 0 ≤ kx,σ < tx,σ always holds

because
∑

a P
x

a = 1 and by the fact that P̂ x,(1)
a (σ) > P̂ x

a (σ)− α. Let Sx,σ be an arbitrary
subset of

{
a ∈ A : P̂ x,(1)

a (σ) ̸= P̂ x
a (σ)

}
of size kx,σ. Define P x,(2)

a as

P̂ x,(2)
a (σ) =

{
P̂

x,(1)
a (σ) if a ̸∈ Sx,σ

P̂
x,(1)

a (σ) + α if a ∈ Sx,σ

Then item 1 and item 2 hold for P x,(2)
a . Also, since for a ∈ Sx,σ we have P̂

x,(1)
a (σ) <

P̂ x
a (σ) ≤ 1, we have P̂ x,(1)

a (σ) ≤ 1 − α. So, it can be verified that
∣∣∣P̂ x,(2)

a (σ)
∣∣∣ ≤ 1 always

holds, which implies that item 3 also holds. To prove the remaining items, we need∣∣∣∣∣∣∣∣∣P x
a − P x,(2)

a

∣∣∣∣∣∣∣∣∣
2

=
√∑

σ

(
P̂ x

a (σ)− P̂ x,(2)
a (σ)

)2
<

√∑
σ

α2 ≤ mDα.

We can apply the same operations to {Q y
b } and get

{
Q

y,(2)
b

}
. Then for all x, y, a, b,∣∣∣Tr

((
P x,(2)

a ⊗Q y,(2)
b

)
ψ⊗n

AB

)
− Tr

(
(P x

a ⊗Q
y
b)ψ⊗n

AB

)∣∣∣
≤
∣∣∣Tr
((
P x,(2)

a ⊗Q y,(2)
b

)
ψ⊗n

AB

)
− Tr

((
P x,(2)

a ⊗Q y
b

)
ψ⊗n

AB

)∣∣∣
+
∣∣∣Tr
((
P x,(2)

a ⊗Q y
b

)
ψ⊗n

AB

)
− Tr

(
(P x

a ⊗Q
y
b)ψ⊗n

AB

)∣∣∣
=
∣∣∣Tr
((
P x,(2)

a ⊗
(
Q

y,(2)
b −Q y

b

))
ψ⊗n

AB

)∣∣∣+
∣∣∣Tr
(((

P x,(2)
a − P x

a

)
⊗Q y

b

)
ψ⊗n

AB

)∣∣∣
≤
∣∣∣∣∣∣∣∣∣P x,(2)

a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Q y,(2)
b −Q y

b

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣P x,(2)

a − P x
a

∣∣∣∣∣∣∣∣∣
2
|||Q y

b |||2 ≤ 2mDα = δ,

and item 4 follows. Then item 5 follows from Fact 56. ◀

A.5 Lemmas for the Answer Reduction of MIP∗

This section introduces several lemmas to prove the hardness of MIP∗(poly, O(1)). We use
the following notations for approximation in this section and Section 6.

For complex numbers a and b, we write a ≈δ b if |a− b| ≤ δ.
With respect to a distribution D on X and state |ψ⟩, we write

Ax
a ≈δ B

x
a if E

x∼D

∑
a∈A
∥(Ax

a −Bx
a) |ψ⟩∥2 ≤ δ.

With respect to a distribution D on X and state |ψ⟩, we write

Ax
a ≃δ B

x
a if E

x∼D

∑
a∈A
⟨ψ|Ax

a ⊗Bx
a |ψ⟩ ≥ 1− δ.

CCC 2024

30:32 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

In the rest of the section, the distribution on X is implicit.

▶ Lemma 69 (Fact 4.13 of [39]). Let {Ax
a} and {Bx

a} be POVM measurements. If Ax
a⊗1 ≃δ

1⊗Bx
a , then Ax

a ⊗ 1 ≈2δ 1⊗Bx
a .

▶ Lemma 70. Suppose {Ax
a} and {Bx

a} are two measurements such that one of them is
projective, and that

Ax
a ⊗ 1 ≈δ 1⊗Bx

a

with respect to some distribution D of x and the quantum state |ψ⟩. Then∣∣∣∣∣Ex ∑
a

⟨ψ|Ax
a ⊗ 1− 1⊗Bx

a |ψ⟩

∣∣∣∣∣ ≤ 2
√
δ.

Proof of Lemma 70. We assume {Ax
a} is projective. Then

E
x

∑
a

⟨ψ|1⊗Bx
a |ψ⟩ ≥ E

x

∑
a

⟨ψ|1⊗ (Bx
a)2 |ψ⟩ ≥ 0,

which implies that

|E
x

∑
a

⟨ψ|Ax
a ⊗ 1 |ψ⟩ − ⟨ψ|1⊗Bx

a |ψ⟩| ≤ |E
x

∑
a

⟨ψ|Ax
a ⊗ 1 |ψ⟩ − ⟨ψ|1⊗ (Bx

a)2 |ψ⟩|.

We can bound the second quantity in two steps.

|E
x

∑
a

⟨ψ|Ax
a ⊗ 1 |ψ⟩ − ⟨ψ|Ax

a ⊗Bx
a |ψ⟩|

≤
√

E
x

∑
a

∥Ax
a |ψ⟩∥2

√
E
x

∑
a

∥(Ax
a ⊗ 1− 1⊗Bx

a) |ψ⟩∥2 ≤
√
δ,

and similarly

|E
x

∑
a

⟨ψ|Ax
a ⊗Bx

a |ψ⟩ − ⟨ψ|1⊗ (Bx
a)2 |ψ⟩| ≤

√
δ.

By the triangle inequality, the second quantity is at most 2
√
δ. So is the first one. ◀

▶ Lemma 71 (Fact 4.14 of [39]). Suppose {Ax
a} and {Bx

a} are two measurements such that
Ax

a ⊗ 1 ≈δ 1⊗Bx
a . Suppose that either A or B is a projective measurement and the other is

a POVM measurement. Then Ax
a ⊗ 1 ≃√

δ 1⊗Bx
a .

▶ Lemma 72 (Proposition 4.26 of [29]). Let
{
Cx

a,b

}
⊆ L(H) be a set of matrices such that∑

b(Cx
a,b)†Cx

a,b ≤ 1 for all x and a. Then

Ax
a ≈δ B

x
a implies that Cx

a,bA
x
a ≈δ C

x
a,bB

x
a .

▶ Lemma 73 (Proposition 4.28 of [29]). Suppose Ai = {(Ai)x
a} be a set of matrices such that

(Ai)x
a ≈δi

(Ai+1)x
a for i ∈ [k + 1]. Then

(A1)x
a ≈k(δ1+...+δk) (Ak+1)x

a.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:33

▶ Lemma 74 (Fact 4.33 of [39]). Let k ≥ 0 be a constant. Let
{
Ax

a1,...,ak

}
be a projective

measurement. For 1 ≤ j ≤ k, let
{

(Bj)x
aj

}
be a projective measurement, and suppose that

Ax
aj
⊗ 1 ≈δ 1⊗ (Bj)x

aj
.

Define the POVM measurement
{
Jx

a1,...,ak

}
as

Jx
a1,...,ak

= (Bk)x
ak
. . . (B2)x

a2
(B1)x

a1
(B2)x

a2
. . . (Bk)x

ak
.

Then

Ax
a1,...,ak

⊗ 1 ≈(2k−1)2δ 1⊗ Jx
a1,...,ak

.

Proof of Lemma 74. We start with

Ax
a1,...,ak

= Ax
ak
· · ·Ax

a2
Ax

a1
Ax

a2
· · ·Ax

ak
.

Because Ax
ak
⊗ 1 ≈δ 1 ⊗ (Bk)x

ak
, To apply Lemma 72, we can set Cx

a,b =
Ax

ak
· · ·Ax

a2
Ax

a1
Ax

a2
· · ·Ax

ak−1
⊗ 1 with a = ak and b = (a1, . . . , ak−1). Then

∑
b(Cx

a,b)†Cx
a,b ≤

1. Hence by Lemma 72

Ax
a1,...,ak

⊗ 1 ≈δ A
x
ak
· · ·Ax

a2
Ax

a1
Ax

a2
· · ·Ax

ak−1
⊗ (Bk)x

ak

We can apply Lemma 72 again with Cx
a,b = Ax

ak
· · ·Ax

a2
Ax

a1
Ax

a2
· · ·Ax

ak−2
⊗B(ak)

k with a = ak−1

and b = (a1, . . . , ak−2, ak). Because Ax
ak−1

⊗ 1 ≈δ 1⊗ (Bk−1)(ak−1), we can get that

Ax
ak

· · ·Ax
a2A

x
a1A

x
a2 · · ·Ax

ak−1 ⊗ (Bk)x
ak

≈δ A
x
ak

· · ·Ax
a2A

x
a1A

x
a2 · · ·Ax

ak−2 ⊗ (Bk)x
ak

(Bk−1)x
ak−1 .

Continuing similarly, we can get that

Ax
ak
· · ·Ax

a2
Ax

a1
⊗ (Bk)x

ak
· · · (B2)x

a2
≈δ A

x
ak
· · ·Ax

a2
⊗ (Bk)x

ak
· · · (B1)x

a1
.

With another (k − 2) steps we can get that
Ax

ak
⊗ (Bk)x

ak
· · · (B2)x

a2 (B1)x
a1 (B2)x

a2 · (Bk−1)x
ak−1 ≈δ 1 ⊗ (Bk)x

ak
· · · (B2)x

a2 (B1)x
a1 (B2)x

a2 · (Bk)x
ak
.

Combining all the steps above with Lemma 73

Ax
a1,...,ak

⊗ 1 ≈(2k−1)2δ 1⊗ (Bk)x
ak
· · · (B2)x

a2
(B1)x

a1
(B2)x

a2
· (Bk)x

ak
,

which completes the proof. ◀

▶ Lemma 75 (Fact 4.35 of [39]). Let k ≥ 0 be a constant. Let D be a distribution on
questions (x, y1, . . . , yk), where each yi ∈ Yi. For each 1 ≤ i ≤ k, let Gi be a set of functions
gi : Yi → Ri, and let

{
(Gi)x

g | g ∈ Gi

}
be a projective measurement. Suppose that the set Gi

has the following distance property: fix a question z = (x, y1, . . . , yi−1, yi+1, . . . , yk), and let
Dz be the distribution on yi conditioned on z. Then for any two nonequal gi, g

′
i ∈ Gi, the

probability that gi(yyyi) = g′
i(yyyi), over a random yyyi ∼ Dz, is at most ε.

Let
{
Ax,y1,...,yk

a1,...,ak

}
be a projective measurement with outcomes ai ∈ Ri. For each 1 ≤ i ≤ k,

suppose that

Ax,y1,...,yk
ai

⊗ 1 ≃δ 1⊗ (Gi)x
[gi(yi)=ai] (10)

(Gi)x
[gi(yi)=ai] ⊗ 1 ≃δ 1⊗Ax,y1,...,yk

ai
. (11)

CCC 2024

30:34 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Also suppose that

Ax,y1,...,yk
ai

⊗ 1 ≃δ 1⊗Ax,y1,...,yk
ai

. (12)

Define the POVM
{
Jx

g1,...,gk

}
as

Jx
g1,...,gk

:= (Gk)x
gk
· · · (G2)x

g2
· (G1)x

g1
· (G2)x

g2
· · · (Gk)x

gk
.

Then

Ax,y1,...,yk
a1,...,ak

⊗ 1 ≈poly(exp(k),δ1/4k,ε1/2k) 1⊗ Jx
[g1(y1),...,gk(yk)=a1,...,ak].

This proof is the same as the original one, but we rewrite it to keep better track of the
approximation errors.

The original proof. We first show the k = 2 case. Notice that

Jx,y1,y2
[g1(y1),g2(y2)=a1,a2] =

∑
g2:g2(y2)=a2

(G2)x
g2

 ∑
g1:g1(y1)=a1

(G1)x
g1

 (G2)x
g2
.

Our goal is to bound

E
x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2

⊗ Jx,y1,y2
[g1(y1),g2(y2)=a1,a2] |ψ⟩

= E
x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2

⊗
∑

g2:g2(y2)=a2

(G2)x
g2

(G1)x
[g1(y1)=a1](G2)x

g2
|ψ⟩

= E
x,y1,y2

∑
a1,g2

⟨ψ|Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
(G1)x

[g1(y1)=a1](G2)x
g2
|ψ⟩ .

First notice that

E
x,y1,y2

∑
a1,g2

⟨ψ|Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2 (G1)x
[g1(y1)=a1] |ψ⟩ ≈2

√
2δ E

x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2 ⊗ 1 |ψ⟩ = 1.

This is because

| E
x,y1,y2

∑
a1,g2

⟨ψ|Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
|ψ⟩ − ⟨ψ|Ax,y1,y2

a1,g2(y2) ⊗ (G2)x
g2

(G1)x
[g1(y1)=a1] |ψ⟩|

= | E
x,y1,y2

∑
a1,g2

⟨ψ|Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
(Ax,y1,y2

a1
⊗ 1− 1⊗ (G1)x

[g1(y1)=a1]) |ψ⟩|

≤
√

E
x,y1,y2

∑
a1,g2

∥Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
|ψ⟩∥2·

√
E

x,y1,y2

∑
a1,g2

⟨ψ| (Ax,y1,y2
a1 ⊗ 1− 1⊗ (G1)x

[g1(y1)=a1])A
x,y1,y2
a1,g2(y2)(A

x,y1,y2
a1 ⊗ 1− 1⊗ (G1)x

[g1(y1)=a1]) |ψ⟩

≤
√

E
x,y1,y2

∑
a1,g2

∥Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
|ψ⟩∥2·

√
E

x,y1,y2

∑
a1

⟨ψ| (Ax,y1,y2
a1 ⊗ 1− 1⊗ (G1)x

[g1(y1)=a1])
∑
g2

Ax,y1,y2
a1,g2(y2)(A

x,y1,y2
a1 ⊗ 1− 1⊗ (G1)x

[g1(y1)=a1]) |ψ⟩

≤ 1 ·
√

E
x,y1,y2

∑
a1

∥(Ax,y1,y2
a1 ⊗ 1− 1⊗ (G1)x

[g1(y1)=a1]) |ψ⟩∥2

≤
√

2δ

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:35

and

| E
x,y1,y2

∑
a1,g2

⟨ψ|Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
|ψ⟩ − ⟨ψ|Ax,y1,y2

a1,g2(y2) ⊗ 1 |ψ⟩|

= | E
x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2

· (1⊗ (G2)x
[g2(y2)=a2] −A

x,y1,y2
a2

⊗ 1) |ψ⟩|

≤
√

E
x,y1,y2

∑
a1,a2

∥Ax,y1,y2
a1,a2 |ψ⟩∥2·

√
E

x,y1,y2

∑
a1,a2

⟨ψ| (1⊗ (G2)x
[g2(y2)=a2] −A

x,y1,y2
a2 ⊗ 1)Ax,y1,y2

a1,a2 (1⊗ (G2)x
[g2(y2)=a2] −A

x,y1,y2
a2 ⊗ 1) |ψ⟩

≤
√

E
x,y1,y2

∑
a1,a2

∥Ax,y1,y2
a1,a2 |ψ⟩∥2·

√
E

x,y1,y2

∑
a2

⟨ψ| (1⊗ (G2)x
[g2(y2)=a2] −A

x,y1,y2
a2 ⊗ 1)

∑
a1

Ax,y1,y2
a1,a2 (1⊗ (G2)x

[g2(y2)=a2] −A
x,y1,y2
a2 ⊗ 1) |ψ⟩

≤ 1 ·
√

E
x,y1,y2

∑
a2

∥(1⊗ (G2)x
[g2(y2)=a2] −A

x,y1,y2
a2 ⊗ 1) |ψ⟩∥2

≤
√

2δ,

Hence, we focus on proving

E
x,y1,y2

∑
a1,g2

∥1⊗
(

(G1)x
[g1(y1)=a1](G2)x

g2
− (G2)x

g2
(G1)x

[g1(y1)=a1]

)
|ψ⟩∥2 ≤ C1

√
δ + C2ε

(13)

for some constants C1 and C2, which will imply that

| E
x,y1,y2

∑
a1,g2

⟨ψ|Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2

(
(G1)x

[g1(y1)=a1](G2)x
g2
− (G2)x

g2
(G1)x

[g1(y1)=a1]

)
|ψ⟩|

≤
√

E
x,y1,y2

∑
a1,g2

∥Ax,y1,y2
a1,g2(y2) ⊗ (G2)x

g2
|ψ⟩∥2·

√
E

x,y1,y2

∑
a1,g2

∥⟨ψ|1⊗
(

(G1)x
[g1(y1)=a1](G2)x

g2
− (G2)x

g2
(G1)x

[g1(y1)=a1]

)
|ψ⟩∥2

≤
√
C1
√
δ + C2ε

and

| E
x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2

⊗ Jx,y1,y2
[g1(y1),g2(y2)=a1,a2] |ψ⟩ − 1| ≤ 2

√
2δ +

√
C1
√
δ + C2ε.

To prove Equation (13), we start with Equation (10)

E
x,y1,y2

∑
ai

∥(Ax,y1,y2
ai

⊗ 1− 1⊗ (Gi)x
[gi(yi)=ai]) |ψ⟩∥2 ≤ 2δ

CCC 2024

30:36 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

for i = 1, 2. Then by Lemma 72

1⊗ (G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2] |ψ⟩

≈2δ A
x,y1,y2
a2

⊗ (G1)x
[g1(y1)=a1] |ψ⟩

≈2δ A
x,y1,y2
a2

Ax,y1,y2
a1

⊗ 1 |ψ⟩
= Ax,y1,y2

a1
Ax,y1,y2

a1
⊗ 1 |ψ⟩

≈2δ A
x,y1,y2
a2

⊗ (G2)x
[g2(y2)=a2] |ψ⟩

≈2δ 1⊗ (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1] |ψ⟩ .

Chaining the inequalities together using Lemma 73 gives

E
x,y1,y2

∑
a1,a2

∥1 ⊗
(
(G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2] − (G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2]

)
|ψ⟩∥2 ≤ 32δ.

Let

S1 = E
x,y1,y2

∑
a1,g

∥1 ⊗
(
(G1)x

[g1(y1)=a1](G2)x
g2 − (G2)x

g2 (G1)x
[g1(y1)=a1]

)
|ψ⟩∥2

S2 = E
x,y1,y2

∑
a1,a2

∥1 ⊗
(
(G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2] − (G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2]

)
|ψ⟩∥2.

We are going to show that S1 is close to S2. Expanding S1 − S2, we get |S1 − S2| ≤
∆1 + ∆2 + ∆3 + ∆4, where

∆1 = | E
x,y1,y2

∑
a1,g2

⟨ψ|1⊗ (G2)x
g2

(G1)x
[g1(y1)=a1](G1)x

[g1(y1)=a1](G2)x
g2
|ψ⟩

−
∑

a1,a2

⟨ψ|1⊗ (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1](G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2] |ψ⟩|

∆2 = | E
x,y1,y2

∑
a1,g2

⟨ψ|1⊗ (G1)x
[g1(y1)=a1](G2)x

g2
(G2)x

g2
(G1)x

[g1(y1)=a1] |ψ⟩

−
∑

a1,a2

⟨ψ|1⊗ (G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2](G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1] |ψ⟩|

∆3 = | E
x,y1,y2

∑
a1,g2

⟨ψ|1⊗ (G2)x
g2

(G1)x
[g1(y1)=a1](G2)x

g2
(G1)x

[g1(y1)=a1] |ψ⟩

−
∑

a1,a2

⟨ψ|1⊗ (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1] |ψ⟩|

∆4 = | E
x,y1,y2

∑
a1,g2

⟨ψ|1⊗ (G1)x
[g1(y1)=a1](G2)x

g2
(G1)x

[g1(y1)=a1](G2)x
g2
|ψ⟩

−
∑

a1,a2

⟨ψ|1⊗ (G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2](G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2] |ψ⟩|.

First of all

∆1 = |1− E
x,y1,y2

∑
a1,a2

⟨ψ|1⊗ (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2] |ψ⟩|.

By Equation (11),

1⊗ (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2] |ψ⟩ ≈18δ A

x,y1,y2
a1,a2

⊗ 1 |ψ⟩ ,

then Lemma 70 implies that

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:37

| E
x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2 ⊗ 1 |ψ⟩ − ⟨ψ|1 ⊗ (G2)x

[g2(y2)=a2](G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2] |ψ⟩| ≤ 6
√

2δ.

Since Ex,y1,y2

∑
a1,a2

⟨ψ|1 ⊗ Ax,y1,y2
a1,a2

|ψ⟩ = 1, ∆1 ≤ 6
√

2δ. Next, observe that ∆2 = 0 as
(G2)x

g2
and (G2)x

[g2(y2)=a2] are projective measurements. Lastly, observe that ∆3 = ∆4, so we
focus on bounding ∆3. First notice that

E
x,y1,y2

∑
a1,g2

⟨ψ|1⊗ (G2)x
g2

(G1)x
[g1(y1)=a1](G2)x

g2
(G1)x

[g1(y1)=a1] |ψ⟩

≈3
√

2δ E
x,y1,y2

∑
a1,g2

⟨ψ| (G1)x
[g1(y1)=a1] ⊗ (G2)x

g2
(G1)x

[g1(y1)=a1](G2)x
g2
|ψ⟩

E
x,y1,y2

∑
a1,a2

⟨ψ|1⊗ (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1] |ψ⟩

≈3
√

2δ E
x,y1,y2

∑
a1,a2

⟨ψ| (G1)x
[g1(y1)=a1] ⊗ (G2)x

[g2(y2)=a2](G1)x
[g1(y1)=a1](G2)x

[g2(y2)=a2] |ψ⟩

The reason why 1 ⊗ (G1)x
[g1(y1)=a1] ≈18δ (G1)x

[g1(y1)=a1] ⊗ 1 is the following. Applying
Lemma 69 to Equations (10) and (11) we get

E
x,y1,...,yk

∑
ai

∥(Ax,y1,...,yk
ai

⊗ 1− 1⊗ (Gi)x
[gi(yi)=ai]) |ψ⟩∥2 ≤ 2δ

E
x,y1,...,yk

∑
ai

∥((Gi)x
[gi(yi)=ai] ⊗ 1− 1⊗Ax,y1,...,yk

ai
) |ψ⟩∥2 ≤ 2δ.

Notice that for any i ∈ [k],

E
x,y1,...,yk

∑
ai

⟨ψ|Ax,y1,...,yk
ai

⊗Ax,y1,...,yk
ai

|ψ⟩

≥ E
x,y1,...,yk

∑
a1,...,ak

⟨ψ|Ax,y1,...,yk
a1,...,ak

⊗Ax,y1,...,yk
a1,...,ak

|ψ⟩ ≥ 1− δ

because Ax,y1,...,yk
a1,...,ak

⊗Ax,y1,...,yk

b1,...,bk
≥ 0 for any a1, . . . , ak, b1, . . . , bk. Then Lemma 69 also implies

that

E
x,y1,...,yk

∑
a1

∥(Ax,y1,...,yk
ai

⊗ 1− 1⊗Ax,y1,...,yk
ai

) |ψ⟩∥2 ≤ 2δ.

Hence, Lemma 73 implies that for all i ∈ [k].

E
x,y1,...,yk

∑
ai

∥((Gi)x
[gi(yi)=ai] ⊗ 1− 1⊗ (Gi)x

[gi(yi)=ai]) |ψ⟩∥2 ≤ 18δ.

Also, notice that

| E
x,y1,y2

∑
a1,a2

⟨ψ| (G2)x
[g2(y2)=a2](G1)x

[g1(y1)=a1](G2)x
[g2(y2)=a2] ⊗ (G1)x

[g1(y1)=a1] |ψ⟩

− E
x,y1,y2

∑
a1,g2

⟨ψ| (G2)x
g2 (G1)x

[g1(y1)=a1](G2)x
g2 ⊗ (G1)x

[g1(y1)=a1] |ψ⟩|

= | E
x,y1,y2

∑
a1

∑
g2,g′

2

⟨ψ| (G2)x
g2 (G1)x

[g1(y1)=a1](G2)x
g′

2
⊗ (G1)x

[g1(y1)=a1] |ψ⟩1[g2(y2) = g′
2(y2)]|

≤ ε| E
x,y1

∑
a1

⟨ψ| (G1)x
[g1(y1)=a1] ⊗ (G1)x

[g1(y1)=a1] |ψ⟩|

≤ ε.

CCC 2024

30:38 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Therefore, ∆3 = ∆4 ≤ 6
√

2δ + ε, and

|S1 − S2| ≤
4∑

j=1
∆j ≤ 18

√
2δ + 2ε,

and

S1 ≤ 32δ + 18
√

2δ + 2ε.

In conclusion,

| E
x,y1,y2

∑
a1,a2

⟨ψ|Ax,y1,y2
a1,a2

⊗ Jx,y1,y2
[g1(y1),g2(y2)=a1,a2] |ψ⟩ − 1|

≤ 2
√

2δ +
√

32δ + 18
√

2δ + 2ε ≤ 11δ1/4 + 2
√
ε,

and equivalently

Ax,y1,y2
a1,a2

⊗ 1 ≈22δ1/4+4
√

ϵ 1⊗ J
x,y1,y2
[g1(y1),g2(y2)=a1,a2].

Switching the roles of Alice and Bob, the same proof gives us that

Jx,y1,y2
[g1(y1),g2(y2)=a1,a2] ⊗ 1 ≈22δ1/4+4

√
ϵ 1⊗Ax,y1,y2

a1,a2
.

For the general case, assume

Ax,y1,...,yi
a1,...,ai

⊗ 1 ≈f(i,δ,ε) 1⊗ Jx
[g1(y1),...,gi(yi)=a1,...,ai] and

1⊗Ax,y1,...,yi
a1,...,ai

≈f(i,δ,ε) J
x
[g1(y1),...,gi(yi)=a1,...,ai] ⊗ 1,

which imply that

1⊗ Jx
[g1(y1),...,gi(yi) ≈3(2δ+2f(i,δ,ε)) J

x
[g1(y1),...,gi(yi) ⊗ 1.

Since δ and ε are fixed, we write f(i, δ, ε) as f(i) in the rest of the proof and proceed to the
i+ 1 case. As in the base case, our goal is to bound

E
x,y1,...,yi+1

∑
a1,...,ai+1

⟨ψ|Ax,y1,...,yi+1
a1,...,ai+1 ⊗ J

x,y1,...,yi+1
[g1(y1),...,gi+1(yi+1)=a1,...,ai+1] |ψ⟩

= E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

⟨ψ|Ax,y1,...,yi+1
a1,...,ai,gi+1(yi+1) ⊗ (Gi+1)x

gi+1J
x,y1,...,yi
[g1(y1),...,gi(yi)=a1,...,ai](Gi+1)x

gi+1 |ψ⟩ .

by relating it to

E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

⟨ψ|Ax,y1,...,yi+1
a1,...,ai,gi+1(yi+1) ⊗ (Gi+1)x

gi+1
Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai] |ψ⟩

≈√
2δ+
√

f(i) E
x,y1,...,yi+1

∑
a1,...,ai+1

⟨ψ|Ax,y1,...,yi+1
a1,...,ai+1

⊗ 1 |ψ⟩ = 1.

So the central step is bounding

E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

∥1⊗
(
Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai](Gi+1)x
gi+1

− (Gi+1)x
gi+1

Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai]

)
|ψ⟩∥2.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:39

As in the base case, we can use similar arguments to show

E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

∥1⊗
(
Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai](Gi+1)x
[gi+1(yi+1)=ai+1]

− (Gi+1)x
[gi+1(yi+1)=ai+1]J

x,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai]

)
|ψ⟩∥2

≤ 4(2f(i) + 4δ),

and

| E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

∥1⊗
(
Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai](Gi+1)x
gi+1

− (Gi+1)x
gi+1

Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai]

)
|ψ⟩∥2−

E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

∥1⊗
(
Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai](Gi+1)x
[gi+1(yi+1)=ai+1]

− (Gi+1)x
[gi+1(yi+1)=ai+1]J

x,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai]

)
|ψ⟩∥2|

≤ 2
√

2f(i) + 4δ+2
√

6f(i) + 4δ + 2ε.

Therefore,

E
x,y1,...,yi+1

∑
a1,...,ai,gi+1

∥1⊗
(
Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai](Gi+1)x
gi+1

− (Gi+1)x
gi+1

Jx,y1,...,yi

[g1(y1),...,gi(yi)=a1,...,ai]

)
|ψ⟩∥2

≤ 4(2f(i) + 4δ) + 2
√

2f(i) + 4δ + 2
√

6f(i) + 4δ + 2ε,

and

| E
x,y1,...,yi+1

∑
a1,...,ai+1

⟨ψ|Ax,y1,...,yi+1
a1,...,ai+1

⊗ Jx,y1,...,yi+1
[g1(y1),...,gi+1(yi+1)=a1,...,ai+1] |ψ⟩ − 1|

≤
√

2δ +
√
f(i) +

√
16
√
f(i) + 24

√
δ + 2ε

That is f(i+ 1) = 5f(i)1/4 + 7δ1/4 +
√

2ε. Then the lemma follows. ◀

B Proofs of Theorems

B.1 Invariance Principle for Matrix Spaces
▶ Fact 76 ([37, Remark 3.10]). If x is (p, q, η)-hypercontractive, then it is (p, q, η′)-hyper-
contractive for any 0 < η′ ≤ η.

▶ Lemma 77. Given m,n ∈ Z>0, 0 < η < 1, a (2, 4, η)-hypercontractive (m,n) ensemble x,
it holds that

E

(k∑
i=1

(Tηpi) (x)2

)2 ≤ (E[k∑
i=1

pi (x)2

])2

,

for any multilinear polynomials p1, . . . pk.

CCC 2024

30:40 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Proof of Lemma 77. Let qi = Tηpi. Then

E

(k∑
i=1

(Tηpi) (x)2

)2 =
∑
i,j

E
[
qi (x)2

qj (x)2
]

≤
∑
i,j

∥qi∥2
4∥qj∥2

4 (Cauchy-Schwarz inequality)

≤
∑
i,j

∥pi∥2
2∥pj∥2

2 (x is (2, 4, η)-hypercontractive)

=
(∑

i

∥pi∥2
2

)2

=
(
E

[
k∑

i=1
pi (x)2

])2

. ◀

The lemma below follows directly from Definition 10 and Fact 48.

▶ Lemma 78. Given 0 ≤ γ ≤ 1, h, n,m ∈ Z>0, m ≥ 2, an (m2, n) ensemble x, and a
random matrix

P (x) =
∑

σ∈[m2]h
≥0

pσ (x)Bσ,

where {Bi}m2−1
i=0 is a standard orthonormal basis and pσ is a real multilinear polynomial for

all σ ∈
[
m2]h

≥0, suppose that for all σ ∈
[
m2]h

≥0, pσ has an expansion

pσ(x) =
∑

τ∈[m2]n
≥0

p̂σ(τ)xτ .

It holds that

Γγ (P (x)) =
∑

σ∈[m2]h
≥0

∑
τ∈[m2]n

≥0

γ|σ|+|τ |p̂σ(τ)xτBσ. (14)

We need the hypercontractivity inequality for Hermitian matrices.

▶ Fact 79 ([46, Lemma 8.3]). Given h, n,m ∈ Z>0, m ≥ 2, 0 ≤ γ ≤ (9m)−1/4 and P ∈ H⊗n
m ,

it holds that∣∣∣∣∣∣∆⊗n
γ (P)

∣∣∣∣∣∣
4 ≤ |||P |||2,

where ∆γ (·) is defined in Definition 47.

Proof of Theorem 13. Set Q(x) =
∑

σ∈[m2]h
≥0

(Tγpσ) (x)Bσ. Then by the definition of Γγ ,

Γγ (P (x)) = ∆γ (Q(x)) .

Using Fact 79,

E
[
|||∆γ (Q(x))|||44

]
≤ E

[
|||Q(x)|||42

]
. (15)

Denote qσ = Tγpσ. Notice that

E
[
|||Q(x)|||42

]
= m−2h E

 ∑

σ∈[m2]h
≥0

qσ (x)2

2 ≤ m−2h

E

 ∑
σ∈[m2]h

≥0

pσ (x)2

2

=
(
E
[
|||P (x)|||22

])2
,

where the inequality follows from Fact 76 and Lemma 77. We conclude the result by
combining it with Equation (15). ◀

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:41

Proof of Theorem 14. Suppose that for all σ ∈ [m2]h≥0, pσ has an expansion

pσ(x) =
∑

τ∈[m2]n
≥0

p̂σ(τ)xτ .

Set

P=i(x) =
∑

σ∈[m2]h
≥0

,τ∈[m2]n
≥0:

|σ|+|τ|=i

p̂σ (τ) xτBσ.

Set γ = min
{
η, (9m)−1/4

}
. Applying Lemma 78 and Theorem 13,

E
[
|||P (x)|||44

]
= E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣Γγ

(
d∑

i=1
γ−iP=i(x)

)∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
4

4

 ≤
E

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

d∑
i=1

γ−iP=i(x)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

2

2

By the orthogonality of x and B, if i ̸= j, we have

E
[
Tr P=i(x)P=j(x)

]
= 0.

Therefore,

E
[
|||P (x)|||44

]
≤

(
d∑

i=1
γ−2i E

[∣∣∣∣∣∣P=i(x)
∣∣∣∣∣∣2

2

])2

≤ γ−4d

(
d∑

i=1
E
[∣∣∣∣∣∣P=i(x)

∣∣∣∣∣∣2
2

])2

= γ−4d
(
E
[
|||P (x)|||22

])2
. ◀

Proof of Theorem 15. Without loss of generality, we assume H = [n− h]. We prove this by
a hybrid argument. For any 0 ≤ i ≤ n− h, define the hybrid basis elements and the hybrid
random operators as follows.

X (i)
σ = xσ≤i

· Bσ>i for σ ∈ [m2]n≥0; (16)

P (i) (x) =
∑

σ∈[m2]n
≥0

P̂ (σ)X (i)
σ , (17)

where xσ≤i
= xσ1 · · ·xσi

and Bσ>i
= Bσi+1 ⊗ . . . ⊗ Bσn

. Then P = P (0) (x) and PH (x) =
P (n−h) (x). Note that

P (i) (x) =
∑

σ:σi+1=0
P̂ (σ)X (i)

σ +
∑

σ:σi+1 ̸=0
P̂ (σ)X (i)

σ ,

P (i+1) (x) =
∑

σ:σi+1=0
P̂ (σ)X (i+1)

σ +
∑

σ:σi+1 ̸=0
P̂ (σ)X (i+1)

σ ,

Set

A =
∑

σ:σi+1=0
P̂ (σ)X (i)

σ ; B =
∑

σ:σi+1 ̸=0
P̂ (σ)X (i)

σ ;

C =
∑

σ:σi+1=0
P̂ (σ)X (i+1)

σ ; D =
∑

σ:σi+1 ̸=0
P̂ (σ)X (i+1)

σ .

CCC 2024

30:42 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Then we have

P (i) (x) = A + B; P (i+1) (x) = C + D.

Notice that A = 1m ⊗C, where 1m is placed in the (i+ 1)-th register. Thus,

Tr ξ (A) = m · Tr ξ (C) . (18)

From Fact 54 and then Equation (18),∣∣∣mi+1−n E
[
Tr ξ

(
P (i+1) (x)

)]
−mi−n E

[
Tr ξ

(
P (i) (x)

)]∣∣∣
=

∣∣∣∣∣E
[
mi+1−n

(
Tr ξ (C) + Tr Dξ (C) [D] + 1

2 Tr D2ξ (C) [D] + ∆3,ξ(C,D)
)
−

mi−n
(
Tr ξ (A) + Tr Dξ (A) [B] + 1

2 Tr D2ξ (A) [B] + ∆3,ξ(A,B)
)]∣∣∣∣∣

=

∣∣∣∣∣E
[
mi+1−n

(
Tr Dξ (C) [D] + 1

2 Tr D2ξ (C) [D] + ∆3,ξ(C,D)
)
−

mi−n
(
Tr Dξ (A) [B] + 1

2 Tr D2ξ (A) [B] + ∆3,ξ(A,B)
)]∣∣∣∣∣

Both the first-order and second-order derivatives cancel out because of the following claim.

▷ Claim 80. It holds that

E[Tr Dξ (A) [B]] = mE[Tr Dξ (C) [D]] ;

E
[
Tr D2ξ (A) [B]

]
= mE

[
Tr D2ξ (C) [D]

]
.

By Fact 54, there exists a universal constant c3 > 0 such that∣∣∣E[mi+1−nTr ξ
(
P (i+1) (x)

)
−mi−nTr ξ

(
P (i) (x)

)]∣∣∣
≤ c3B

(
E
[
|||B|||33

]
+ E

[
|||D|||33

])
≤ c3B

(
E
[
|||B|||2|||B|||

2
4

]
+ E

[
|||D|||2|||D|||

2
4

])
(Hölder’s)

≤ c3B

((
E
[
|||B|||22

]
E
[
|||B|||44

])1/2
+
(
E
[
|||D|||22

]
E
[
|||D|||44

])1/2
)

(Cauchy-Schwartz)

≤ c3Bθ
d

((
E
[
|||B|||22

])3/2
+
(
E
[
|||D|||22

])3/2
)

(Theorem 14),

where θ = max
{

9m, 1/η4}. Notice that

E
[
|||B|||22

]
= E

[
|||D|||22

]
=

∑
σ:σi+1 ̸=0

∣∣∣P̂ (σ)2
∣∣∣ = Infi+1 (P) .

Therefore,∣∣∣E[mi+1−nTr ξ
(
P (i+1) (x)

)
−mi−nTr ξ

(
P (i) (x)

)]∣∣∣ ≤ 2c3Bθ
dInfi+1 (P)3/2

.

Summing over i ∈ [n− h]≥0, we have∣∣∣m−nTr ξ (P)−m−h E
[
Tr ξ

(
PH(x)

)]∣∣∣
≤ 2c3Bθ

d
∑
i/∈H

Infi (P)3/2

≤ 2c3Bθ
d
√
τ
∑
i/∈H

Infi (P)

≤ 2c3Bθ
d
√
τd
∑
σ ̸=0

P̂ (σ)2

≤ 2c3Bθ
d
√
τd. ◀

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:43

Proof of Claim 80. Note that A,B,C and D can be expressed as

A = 1m ⊗C; B =
∑

σ∈[m2]≥0:σ ̸=0

Bσ ⊗Xσ; D =
∑

σ∈[m2]≥0:σ ̸=0

xi+1,σXσ

for some random matrices Xσ’s which are independent of xi+1,σ’s, where 1m and Bσ’s are
in the (i+ 1)-th register.

Suppose that C has a spectral decomposition

C =
m′∑

j=1
aiΠi,

where m′ is the dimension of C, a1 ≥ · · · ≥ am′ , {Πi}i∈[m′] are rank-one projectors satisfying
that

∑m′

i=1 Πi = 1 and ΠiΠj = 0 for all i ̸= j.
By Fact 53, we have

E[Tr Dξ (A) [B]]

=
∑

j,k∈[m′]

E
[
ξ[1] (aj ,ak) Tr ((1⊗Πj) B (1⊗Πk))

]
=

∑
j,k∈[m′]

E
[
ξ[1] (aj ,ak) Tr ((1⊗ΠjΠk) B)

]
=

∑
j∈[m′]

E[ξ′ (aj) Tr ((1⊗Πj) B)]

= E[Tr ξ′ (A) B]

=
∑

σ∈[m2]≥0:σ ̸=0

E[Tr (1m ⊗ ξ′ (C)) (Bσ ⊗Xσ)]

=
∑

σ∈[m2]≥0:σ ̸=0

E[Tr Bσ · Tr ξ′ (C) Xσ] = 0,

where the last equality follows from the orthogonality of {Bi}m2−1
i=0 .

E[Tr Dξ (C) [D]] = E[Tr ξ′ (C) D]

=
∑

σ∈[m2]≥0:σ ̸=0

E[xi+1,σ · Tr ξ′ (C) Xσ]

=
∑

σ∈[m2]≥0:σ ̸=0

E[xi+1,σ] · E[Tr ξ′ (C) Xσ] = 0,

where the last equality follows from the orthogonality of x.
By Fact 53, we have

E
[
Tr D2ξ (A) [B]

]
=

∑
j,k,ℓ∈[m′]

E
[
ξ[2] (aj ,ak,aℓ) Tr ((1⊗Πj) B (1⊗Πk) B (1⊗Πℓ))

]
=

∑
σ,τ ̸=0

∑
j,k,ℓ∈[m′]

E
[
ξ[2] (aj ,ak,aℓ) Tr (BσBτ) · Tr (ΠjXσΠkXτ Πℓ)

]
=
∑
σ ̸=0

∑
j,k,ℓ∈[m′]

E
[
ξ[2] (aj ,ak,aℓ) Tr (ΠjXσΠkXσΠℓ)

]
,

CCC 2024

30:44 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

where the last equality follows from the orthogonality of {Bi}m2−1
i=0 .

E
[
Tr D2ξ (C) [D]

]
=

∑
j,k,ℓ∈[m′]

E
[
ξ[2] (aj ,ak,aℓ) Tr (ΠjDΠkDΠℓ)

]
=

∑
σ,τ ̸=0

∑
j,k,ℓ∈[m′]

E
[
ξ[2] (aj ,ak,aℓ) xi+1,σxi+1,τ · Tr (ΠjXσΠkXτ Πℓ)

]
=

∑
σ,τ ̸=0

∑
j,k,ℓ∈[m′]

E[xi+1,σxi+1,τ]E
[
ξ[2] (aj ,ak,aℓ) · Tr (ΠjXσΠkXτ Πℓ)

]
=
∑
σ ̸=0

∑
j,k,ℓ∈[m′]

E
[
ξ[2] (aj ,ak,aℓ) Tr (ΠjXσΠkXσΠℓ)

]
,

where the last equality follows from the orthogonality of x. ◁

Proof of Lemma 16. Let λ > 0 be determined later, and ζλ be defined as in Fact 57. By
Theorem 15 and Fact 57,∣∣∣m−nTr ζλ (P)−m−h E

[
Tr ζλ

(
PH(x)

)]∣∣∣ ≤ CB3 max
{

9m, 1/η4}d√
τd/λ,

where C,B3 are universal constants. By Fact 57 we also have∣∣m−nTr ζ (P)−m−nTr ζλ (P)
∣∣ ≤ 2λ2

and∣∣∣m−h E
[
Tr ζ

(
PH(x)

)]
−m−h E

[
Tr ζλ

(
PH(x)

)]∣∣∣ ≤ 2λ2.

By the triangle inequality, we have∣∣∣m−nTr ζ (P)−m−h E
[
Tr ζ

(
PH(x)

)]∣∣∣ ≤ 4λ2 + CB3 max
{

9m, 1/η4}d√
τd/λ.

Choosing λ =
(
CB3 max

{
9m, 1/η4}d√

τd/8
)1/3

, we have

∣∣∣m−nTr ζ (P)−m−h E
[
Tr ζ

(
PH(x)

)]∣∣∣ ≤ 3
(
CB3 max

{
9m, 1/η4}d√

τd
)2/3

. ◀

Proof of Theorem 19. Let λ > 0 be determined later and let ζλ be defined as in Fact 57.
By Theorem 20 and Fact 57,∣∣∣∣ 1

mh
E
b

[Tr ζλ (P (b))]− 1
mh

E
f ,xf

[Tr ζλ (P(xf))]
∣∣∣∣ ≤ 4C1B4λ

−2(9m)ddτ,

where C1, B4 are universal constants. By Fact 57 we also have∣∣∣∣ 1
mh

E
b

[Tr ζ (P (b))]− 1
mh

E
b

[Tr ζλ (P (b))]
∣∣∣∣ ≤ 2λ2

and∣∣∣∣ 1
mh

E
f ,xf

[Tr ζλ (P(xf))]− 1
mh

E
f ,xf

[Tr ζ (P(xf))]
∣∣∣∣ ≤ 2λ2.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:45

By the triangle inequality, we have∣∣∣∣ 1
mh

E
b

[Tr ζ (P (b))]− 1
mh

E
f ,xf

[Tr ζ (P(xf))]
∣∣∣∣ ≤ 4λ2 + 4C1B4λ

−2(9m)ddτ.

Choosing λ =
(
C1B4(9m)ddτ

)1/4, we have∣∣∣∣ 1
mh

E
b

[Tr ζ (P (b))]− 1
mh

E
f ,xf

[Tr ζ (P(xf))]
∣∣∣∣ ≤ 8

(
C1B4(9m)ddτ

)1/2
.

Let C = 8
√
C1B4, we conclude the result. ◀

▶ Lemma 81. Given d, n ∈ Z>0, and a random matrix

P (b) =
∑

S⊆[n]:|S|≤d

bSPS ,

where b is a 2d-wise uniform random vector from {±1}n and Eb

[
|||P (b)|||22

]
≤ 1, it holds

that
n∑

i=1
VarInfi (P (b)) ≤ d.

Proof.
n∑

i=1
VarInfi (P (b)) =

n∑
i=1

∑
S∋i

|||PS |||22

=
∑

S⊆[n]:|S|≤d

|S| |||PS |||22

≤ d
∑

S⊆[n]:|S|≤d

|||PS |||22

= dE
b

[
|||P (b)|||22

]
≤ d. ◀

The following lemma is crucial to our proof. The proof follows closely to the proof of [36,
Lemma 5.4].

▶ Lemma 82. Given d, n, p ∈ Z>0, and a random matrix

P (b) =
∑

S⊆[n]:|S|≤d

bSPS ,

satisfying Eb

[
|||P (b)|||22

]
≤ 1, where b is a 2d-wise uniform random vector drawn from {±1}n,

let F = {f : [n]→ [p]} be a family of pairwise uniform hash functions. Then for f ∼u F ,

E
f

 p∑
j=1

VarInff ,j (P (b))2

 ≤ n∑
i=1

VarInfi (P (b))2 + d2

p
.

Proof. Fix j ∈ [p] and for 1 ≤ i ≤ n, let Xi be the indicator variable that is 1 if f(i) = j

and 0 otherwise. For brevity, let τi = VarInfi (P (b)) for i ∈ [n]. Now,

VarInff ,j (P (b)) =
∑

S:S∩f−1(j) ̸=∅

|||PS |||22 ≤
∑

S

|||PS |||22

(∑
i∈S

Xi

)

=
∑
i∈[n]

Xi

∑
S∋i

|||PS |||22 =
∑
i∈[n]

Xiτi

CCC 2024

30:46 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Thus

VarInff ,j (P (b))2 ≤

∑
i∈[n]

Xiτi

2

=
∑
i∈[n]

X2
i τ

2
i +

∑
i̸=k

XiXkτiτk.

Note that E [Xi] = 1/p and for i ̸= k, E [XiXk] = 1/p2. Thus

E
[
VarInff ,j (P (b))2

]
≤ 1
p

∑
i

τ2
i +

∑
i̸=k

τiτk
1
p2 ≤

1
p

∑
i

τ2
i + 1

p2

(∑
i

τi

)2

.

The lemma follows by using Lemma 81 and summing all j ∈ [p]. ◀

We are ready to prove Theorem 20.

Proof of Theorem 20. We prove this by a hybrid argument.
Denote b(0) = b = G (f,b, . . . ,b). For j ∈ [p], define b(j) = G

(
f, z1, . . . , zj ,b, . . . ,b

)
, i.e.,

substituting b(j−1)|f−1(j) with zj
f−1(j). Then b(p) = xf , and

P(b(j−1)) =
∑

S:S∩f−1(j)=∅

b(j−1)
S PS +

∑
S:S∩f−1(j)̸=∅

b(j−1)
S PS

P(b(j)) =
∑

S:S∩f−1(j)=∅

b(j)
S PS +

∑
S:S∩f−1(j) ̸=∅

b(j)
S PS .

Note that for S ∩ f−1 (j) = ∅, b(j−1)
S = b(j)

S . Denote

A =
∑

S:S∩f−1(j)=∅

b(j)
S PS , B =

∑
S:S∩f−1(j) ̸=∅

b(j−1)
S PS , C =

∑
S:S∩f−1(j)̸=∅

b(j)
S PS .

We have∣∣∣∣ 1
mh

E
f ,b(j−1)

[
Tr ξ

(
P(b(j−1))

)]
− 1
mh

E
f ,b(j)

[
Tr ξ

(
P(b(j))

)]∣∣∣∣
=
∣∣∣∣ 1
mh

E
f ,b(j−1)

[Tr ξ (A + B)]− 1
mh

E
f ,b(j)

[Tr ξ (A + C)]
∣∣∣∣

=

∣∣∣∣∣ 1
mh

E
f ,b(j−1)

[3∑
k=0

1
k!Tr Dkξ(A)[B] + Tr ∆4,ξ(A,B)

]

− 1
mh

E
f ,b(j)

[3∑
k=0

1
k!Tr Dkξ(A)[C] + Tr ∆4,ξ(A,C)

] ∣∣∣∣∣
By Fact 53 and the fact that zj is 4d-wise uniform, we have for k = 0, 1, 2, 3,

E
b(j−1)

[
Tr Dkξ(A) [B]

]
= E

b(j)

[
Tr Dkξ(A) [C]

]
.

Thus, ∣∣∣∣ 1
mh

E
f ,b(j−1)

[
Tr ξ

(
P(b(j−1))

)]
− 1
mh

E
f ,b(j)

[
Tr ξ

(
P(b(j))

)]∣∣∣∣
≤ 1
mh

E
f ,b(j−1)

[|Tr ∆4,ξ(A,B)|] + 1
mh

E
f ,b(j)

[|Tr ∆4,ξ(A,C)|]

≤ C1C0

(
E

f ,b(j−1)

[
|||B|||44

]
+ E

f ,b(j)

[
|||C|||44

])
,

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:47

where the last inequality is from Fact 54, and C1 is a universal constant. Because zj is
4d-wise uniform, we have Eb(j−1)

[
|||B|||44

]
= Eb(j)

[
|||C|||44

]
. Using Theorem 14 with η ← 1/

√
3,

E
b(j−1)

[
|||B|||44

]
≤ (9m)d

(
E

b(j)

[
|||B|||22

])2
.

So we have∣∣∣∣ 1
mh

E
f ,b(j−1)

[
Tr ξ

(
P(b(j−1))

)]
− 1
mh

E
f ,b(j)

[
Tr ξ

(
P(b(j))

)]∣∣∣∣
≤ 2C1C0(9m)d E

f

[(
E

b(j−1)

[
|||B|||22

])2
]

= 2C1C0(9m)d E
f

[
VarInff ,j (P (b))2

]
.

Summing over j ∈ [p] and by Lemma 82, we have∣∣∣∣ 1
mh

E
b

[Tr ζ (P (b))]− 1
mh

E
f ,xf

[Tr ζ (P(xf))]
∣∣∣∣

≤ 2C1C0(9m)d

(
n∑

i=1
VarInfi (P (b))2 + d2

p

)

≤ 2C1C0(9m)d

(
τ

n∑
i=1

VarInfi (P (b)) + d2

p

)
≤ 4C1C0(9m)ddτ,

where the last inequality is by Lemma 81 and p ≥ d/τ . ◀

B.2 Positivity Tester for Low Degree Operators
Proof of Theorem 23. Consider the algorithm below

Input: Parameters given in Definition 22.
Algorithm:

1. Regularization: Compute τ = δ3/
(
8 · 32dmdd2). For each i, compute the

influence

Infi (P) =
∑

σ:σi ̸=0
P̂ (σ)2.

Let H = {i : Infi (P) > τ}.
2. Derandomized invariance principle: Let p be the smallest power of 2 satisfying

p ≥ d/τ . Let n = (m2 − 1) (D − |H|) and F = {f : [n]→ [p]} be a family of
pairwise uniform hash functions. For any i ∈ [p], let zi be 4d-wise uniform random
variables of length n and

(
zi
)
’s be independent across i ∈ [p]. For any f ∈ F , set

xf = G
(
f, z1, . . . , zp

)
as defined in Theorem 19. Define the random operator

P ′(f, z) =
∑

σ∈[m2]D
≥0:|σ|≤d

P̂ (σ)xf,σH̄
BσH

, (19)

where xf,σH̄
=
∏

i/∈H (xf)(m2−1)(i−1)+σi
and BσH

=
⊗

i∈H Bσi
.

CCC 2024

30:48 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

3. Compute the distance to PSD: For each f, z, compute

δf,z = m−|H| Tr ζ(P ′(f, z)).

4. Accept if

E
f,z

[δf,z] < β.

Time complexity

1. Given that each computation of Infi (P) entails calculating a sum of products of Fourier
coefficients, the time required can be expressed as

∑d
i=0
(

D
i

) (
m2 − 1

)i ≤ dm2dDd. In
addition, the time needed to determine the set H is at most D.

2. When fixing f and z, computing δf,z takes time

exp (|H|) = exp (|d/τ |) = exp
(
poly

(
md, 1/δ

))
.

3. By Lemma 60 and Corollary 61, the enumeration over F and z takes time polynomial in
D, thus computing the expectation of δf,z also takes time polynomial in D.

Correctness

By the choice of τ , it holds that(
3dmd/2√τd

)2/3
≤ δ/2, (20)

C
√

(9m)ddτ ≤ δ/2. (21)

Let b ∈ {−1, 1}n be uniformly distributed. Consider the operator P (1) obtained by
replacing the basis outside of H by random bits. That is,

P (1)(b) =
∑

σ∈[m2]D
≥0:|σ|≤d

P̂ (σ)bσH̄
BσH

,

where bσH̄
=
∏

i/∈H b(m2−1)(i−1)+σi
and BσH

=
⊗

i∈H Bσi
.

By Eq. (20) and Lemma 16, we have∣∣∣∣ 1
m|H| Eb

[
Tr ζ(P (1)(b))

]
− 1
mD

Tr ζ(P)
∣∣∣∣ ≤ δ/2.

Then we define P (2) to be the operator obtained by replacing b with xf,z, which is the
operator in Equation (19). By Eq. (21) and Theorem 19,∣∣∣∣ 1

m|H| Eb

[
Tr ζ(P (2)(xf,z))

]
− 1
m|H| E

f,z

[
Tr ζ(P (1)(b))

]∣∣∣∣ ≤ δ/2.
Thus by triangle inequality, we have∣∣∣∣ 1

m|H| E
f,z

[
Tr ζ(P (2)(xf,z))

]
− 1
mD

Tr ζ(P)
∣∣∣∣ ≤ δ. (22)

The algorithm computes m−|H| Ef,z
[
Tr ζ(P (2)(xf,z))

]
. By Eq.(22), the value is smaller than

β if m−D Tr ζ(P) < β − δ; or greater than β if m−D Tr ζ(P) > β + δ. Therefore, the
algorithm distinguishes the two cases correctly. ◀

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:49

B.3 Noisy Nonlocal Games are NP-complete
B.3.1 The nondeterministic algorithm
First, we prove an upper bound on the Number of Noisy MES’s for Nonlocal Games. The
proof follows closely to that of [46]. The major difference is that in the proof of [46], each
pair of questions (x, y) is treated independently. Then, a union bound is applied to all
possible questions. To improve the upper bound, we take into account the distribution of
the questions, combined with a better Gaussian dimension reduction in [47]. Then our new
upper bound below only depends polynomially on the size of the question set whereas the
previous one has an exponential dependence.

Gaussian Dimension Reduction

The following lemma is a simplified version of [47, Lemma 5.13], with the questions and
answers being classical. In the proof of Theorem 28, we will use this lemma, after we replace
the low-influence registers by Gaussian random variables, to further reduce the dimension of
the Gaussian space. The only difference is in Item 3 of Lemma 83, where we preserve the
expectation of the ζ function value over the random variable M. In the previous version
(Item 2 of [47, Lemma 5.13]), we used Markov’s inequality on the expectation value. As the
notations are considerably different, we include a new proof for completeness.

▶ Lemma 83 ([47, Lemma 5.13]). Given parameters ρ ∈ [0, 1], δ > 0, d, n, h ∈ Z>0, m ≥ 2,
an m-dimensional noisy MES ψAB with the maximal correlation ρ = ρ(ψAB), and degree-d
multilinear joint random matrices

(P (g), Q(h)) =

∑
S⊆[n]

gSPS ,
∑

S⊆[n]

hSQS

(g,h)∼G⊗n

ρ

,

where gS =
∏

i∈S gi,hS =
∏

i∈S hi and PS , QS ∈ H⊗h
m for all S ⊆ [n], satisfying

E
g

[
|||P (g)|||22

]
≤ 1 and E

h

[
|||Q(h)|||22

]
≤ 1.

Let L2 (H⊗h
m , γn

)
be the space of random operators whose Fourier coefficients are square-

integrable with respect to the measure γn. Then there exists an explicitly computable n0 =
n0(d, δ) and maps fM , gM : L2 (H⊗h

m , γn

)
→ L2 (H⊗h

m , γn

)
for M ∈ Rn×n0 and joint random

operators (P (M x̃), Q(M ỹ)) = (fM (P (g)), gM (Q(h))):

(P (M x̃), Q(M ỹ)) =

∑
S⊆[n]

uSPS ,
∑

S⊆[n]

vSQS

(x,y)∼G⊗n0

ρ

,

where x̃ = x/∥x∥2, ỹ = y/∥y∥2, uS =
∏

i∈S ⟨mi, x̃⟩, vS =
∏

i∈S ⟨mi, ỹ⟩, ⟨·, ·⟩ denotes the
standard inner product over Rn0 and mi denotes the i’th row of M , such that if we sample
M ∼ γn×n0 , then the following hold:
1. With probability at least 1− 2δ, we have

E
x

[
|||P (Mx̃)|||22

]
≤ 1 + δ and E

y

[
|||Q(Mỹ)|||22

]
≤ 1 + δ.

2. With probability at least 1− δ, we have∣∣∣∣ Ex,y

[
Tr
(
(P (Mx̃)⊗Q(Mỹ))ψ⊗h

AB

)]
− E

g,h

[
Tr
(
(P (g)⊗Q(h))ψ⊗h

AB

)]∣∣∣∣ ≤ δ.

CCC 2024

30:50 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

3. E
g

[Tr ζ (P (g))] = E
M,x

[Tr ζ (P (Mx̃))] and E
h

[Tr ζ (Q(h))] = E
M,y

[Tr ζ (Q(Mỹ))].

4. the maps fM , gM are linear and unital for any nonzero M ∈ Rn×n0 .

In particular, one may take n0 = dO(d)

δ6 .

For M ∈ Rn×n0 , denote F (M) = Ex,y
[
Tr
(
(P (M x̃)⊗Q(M ỹ))ψ⊗h

AB

)]
. To prove Lemma 83

item 2, we need the following lemma.

▶ Lemma 84. In the setting of Lemma 83, given d ∈ Z>0, δ > 0, there exists n0 = dO(d)

δ2

such that the following holds: For M ∼ γn×n0 ,∣∣∣∣E[F (M)]− E
g,h

[
Tr
(
(P (g)⊗Q(h))ψ⊗h

AB

)]∣∣∣∣ ≤ δ,

Var [F (M)] ≤ δ.

We use the following lemma to prove Lemma 84.

▶ Lemma 85 ([20, Lemma A.8,A.9]). Given parameters d and δ, there exists an explicitly
computable n0(d, δ) such that the followings hold:

For any subsets S, T ⊆ [n] satisfying |S| , |T | ≤ d, it holds that

if S ̸= T : E
M,x,y

[uSvT] = 0,

if S = T :
∣∣∣∣ E
M,x,y

[uSvT]− ρ|S|
∣∣∣∣ ≤ δ.

Let (x′,y′) ∼ G⊗n0
ρ be independent of (x,y), and let u′

S =
∏

i∈S

〈
mi,

x′

∥x′∥2

〉
, v′

S =∏
i∈S

〈
mi,

y′

∥y′∥2

〉
. For any subsets S, T, S′, T ′ ⊆ [n] satisfying |S| , |T | , |S′| , |T ′| ≤ d, it

holds that

if S △ T △ S′ △ T ′ ̸= ∅ :∣∣∣∣ E
M,x,y,x′,y′

[uSvT u′
S′v′

T ′]−
(

E
M,x,y

[uSvT]
)(

E
M,x′,y′

[u′
S′v′

T ′]
)∣∣∣∣ = 0,

if S △ T △ S′ △ T ′ = ∅ :∣∣∣∣ E
M,x,y,x′,y′

[uSvT u′
S′v′

T ′]−
(

E
M,x,y

[uSvT]
)(

E
M,x′,y′

[u′
S′v′

T ′]
)∣∣∣∣ ≤ δ.

Here, S △ T △ S′ △ T ′ is the symmetric difference of the sets S, T, S′, T ′, equivalently,
the set of all i ∈ [n] which appear an odd number of times in the multiset S ⊔ T ⊔ S′ ⊔ T ′.

In particular, one may take n0 = dO(d)

δ2 .

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:51

Proof of Lemma 84. Use Lemma 85 with parameters d and δ, we have∣∣∣∣EM[F (M)]− E
g,h

[
Tr
(
(P (g)⊗Q(h))ψ⊗h

AB

)]∣∣∣∣
=

∣∣∣∣∣∣
∑

S,T ⊆[n]

(
E

M,x,y
[uSvT]− E

g,h
[gShT]

)
Tr
(
(PS ⊗QT)ψ⊗h

AB

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

S⊆[n]

(
E

M,x,y
[uSvS]− ρ|S|

)
Tr
(
(PS ⊗QS)ψ⊗h

AB

)∣∣∣∣∣∣
≤ δ

∑
S⊆[n]

∣∣Tr
(
(PS ⊗QS)ψ⊗h

AB

)∣∣ (Lemma 85)

≤ δ
∑

S⊆[n]

|||PS |||2|||QS |||2 (Fact 66)

≤ δ

√∑
S⊆[n]

|||PS |||22 ·
∑

S⊆[n]

|||QS |||22

= δ

(
E
g

[
|||P (g)|||22

]
E
g

[
|||Q(h)|||22

])1/2
≤ δ.

Use Lemma 85 with parameters d and δ ← δ/9d, we have

Var [F (M)]

= E
M

[
F (M)2]− (E

M
[F (M)]

)2

≤
∑

S,T,S′,T ′⊆[n]

∣∣∣∣ E
M,x,y,x′,y′

[uSvT u′
S′v′

T ′]−
(

E
M,x,y

[uSvT]
)(

E
M,x′,y′

[u′
S′v′

T ′]
)∣∣∣∣∣∣Tr

(
(PS ⊗QS)ψ⊗h

AB

)
Tr
(
(PS′ ⊗QS′)ψ⊗h

AB

)∣∣
≤ δ

9d

∑
S,T,S′,T ′⊆[n]

S△T △S′△T ′=∅

|||PS |||2|||QT |||2|||PS′ |||2|||QT ′ |||2

To finish the proof, we will show that,∑
S,T,S′,T ′⊆[n]

S△T △S′△T ′=∅

|||PS |||2|||QT |||2|||PS′ |||2|||QT ′ |||2 ≤ 9d E
g

[
|||P (g)|||22

]
E
g

[
|||Q(h)|||22

]

Define functions f, g : {1,−1}n → R over the boolean hypercube as,

f(x) =
∑

S⊆[n]
|S|≤d

|||PS |||2χS(x) and g(x) =
∑

T ⊆[n]
|T |≤d

|||QT |||2χT (x)

By the hypercontractivity inequality over the boolean hypercube [42, Page 240]

E
x

[
f(x)4] ≤ 9d

(
E
x

[
f(x)2])2

and E
x

[
g(x)4] ≤ 9d

(
E
x

[
g(x)2])2

,

CCC 2024

30:52 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

we have∑
S,T,S′,T ′⊆[n]

S△T △S′△T ′=∅

|||PS |||2|||QT |||2|||PS′ |||2|||QT ′ |||2

= E
x

[
f(x)2g(x)2]

≤
√

E
x

[f(x)4]E
x

[g(x)4]

≤ 9d E
x

[
f(x)2]E

x

[
g(x)2]

= 9d
∑

S⊆[n]

|||PS |||22
∑

S⊆[n]

|||QS |||22

= 9d E
g

[
|||P (g)|||22

]
E
g

[
|||Q(h)|||22

]
≤ 9d.

Thus Var [F (M)] ≤ δ. ◀

To prove Lemma 83 Item 1, we need the following lemma whose proof is similar to that
of Lemma 84. We omit the proof here.

▶ Lemma 86. In the setting of Lemma 83, given d ∈ Z>0, δ > 0, there exists n0 = dO(d)

δ2

such that the following holds: For M ∼ γn×n0 ,∣∣∣∣ EM,x

[
|||P (Mx̃)|||22

]
− E

g

[
|||P (g)|||22

]∣∣∣∣ ≤ δ,

Var
[
E
x

[
|||P (Mx̃)|||22

]]
≤ δ,∣∣∣∣ EM,y

[
|||Q(Mỹ)|||22

]
− E

h

[
|||Q(h)|||22

]∣∣∣∣ ≤ δ,

Var
[
E
y

[
|||Q(Mỹ)|||22

]]
≤ δ.

Proof of Lemma 83. For item 2, we invoke Lemma 84 with parameters d and δ ← δ3/2.
Using Chebyshev’s inequality, we have that for any η > 0,

Pr
M

[∣∣∣∣F (M)− E
M

[F (M)]
∣∣∣∣ > η

]
≤ δ3

2η2 .

Using the triangle inequality, we get

Pr
M

[∣∣∣∣F (M)− E
g,h

[
Tr
(
(P (g)⊗Q(h))ψ⊗h

AB

)]∣∣∣∣ > δ

]
≤ Pr

M

[∣∣∣∣F (M)− E
M

[F (M)]
∣∣∣∣+
∣∣∣∣EM[F (M)]− E

g,h

[
Tr
(
(P (g)⊗Q(h))ψ⊗h

AB

)]∣∣∣∣ > δ

]
≤ Pr

M

[∣∣∣∣F (M)− E
M

[F (M)]
∣∣∣∣ > δ − δ3/2

]
≤ δ.

By Lemma 86, we can similarly argue for item 1. For item 3, note that for any fixed
x ∈ Rn0 , the distribution of Mx/∥x∥2 is identical to γn. It is easy to verify Item 4. ◀

We are now ready to prove Theorem 28.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:53

Proof of Theorem 28. The proof follows that in [46] step by step, except that the Gaussian
dimension reduction step in the original proof is replaced by Lemma 83. Here, we include
the proof for completeness.

Suppose the players use the strategy
({

P
x,(0)

a

}x∈X

a∈A
,
{
Q

y,(0)
b

}y∈Y

b∈B

)
to achieve the highest

winning probability when sharing n copies of ψAB, where P x,(0)
a is the POVM element of

Alice corresponding to the answer a upon receiving the question x, and Q y,(0)
b is the POVM

element of Bob corresponding to the answer b upon receiving the question y. Then for all
(x, y, a, b) ∈ X × Y × A × B, P x,(0)

a ≥ 0, Q y,(0)
b ≥ 0,

∑
a P

x,(0)
a = 1,

∑
b Q

y,(0)
b = 1, and

ωn(G, ψAB) = valn
({
P

x,(0)
a

}
,
{
Q

y,(0)
b

})
.

Let δ, τ be parameters which are chosen later. The proof is composed of several steps.

Smoothing. This step allows us to restrict ourselves to strategies with low-degree
POVMs.
More specifically, for any (x, y, a, b) ∈ X × Y ×A× B, we apply the map f (1) implied by
Lemma 62 to P x,(0)

a and Q
y,(0)
b to get P x,(1)

a and Q
y,(1)
b , respectively. Note that for all

x, y, a, b,
∣∣∣∣∣∣∣∣∣P x,(0)

a

∣∣∣∣∣∣∣∣∣2
2
≤ 1 and

∣∣∣∣∣∣∣∣∣Q y,(0)
b

∣∣∣∣∣∣∣∣∣2
2
≤ 1. Let d = C log2 1

δ

δ(1−ρ) , by Lemma 62 Item 3 and
Item 4,∣∣∣Tr

((
P x,(1)

a ⊗Q y,(1)
b

)
ψ⊗n

AB

)
− Tr

((
P x,(0)

a ⊗Q y,(0)
b

)
ψ⊗n

AB

)∣∣∣ ≤ δ
and

1
mn

Tr ζ(P x,(1)
a) ≤ δ, 1

mn
Tr ζ(Q y,(1)

b) ≤ δ.

By Lemma 67 and Lemma 62 items 1, 2 and 5, the following hold.

1. For any x, y, a, b, P x,(1)
a and Q

y,(1)
b are of degree at most d.

2. For any x, y, a, b,
∣∣∣∣∣∣∣∣∣P x,(1)

a

∣∣∣∣∣∣∣∣∣
2
≤ 1 and

∣∣∣∣∣∣∣∣∣Q y,(1)
b

∣∣∣∣∣∣∣∣∣
2
≤ 1.

3.
∣∣∣valn

({
P

x,(1)
a

}
,
{
Q

y,(1)
b

})
− valn

({
P

x,(0)
a

}
,
{
Q

y,(0)
b

})∣∣∣ ≤ δt2,
4. 1

mn

∑
x,a

µA(x)Tr ζ
(
P x,(1)

a

)
≤ δt and 1

mn

∑
y,b

µB(y)Tr ζ
(
Q

y,(1)
b

)
≤ δt.

5. For any x, y,
∑
a∈A

P x,(1)
a =

∑
b∈B

Q
y,(1)
b = 1.

Regularization. In this step, we identify the set H of high-influence registers for all
POVM elements.
For any (x, y, a, b) ∈ X ×Y ×A×B, we apply Lemma 64 to P x,(1)

a and Q y,(1)
b to get sets

Hx,a and Hy,b of size at most d/τ , respectively, such that

(∀i /∈ Hx,a) Infi

(
P x,(1)

a

)
≤ τ and (∀i /∈ Hy,b) Infi

(
Q

y,(1)
b

)
≤ τ.

Set H =
(⋃

x,a Hx,a

)
∪
(⋃

y,b Hy,b

)
, then h = |H| ≤ 2std

τ , and

(∀i /∈ H) Infi

(
P x,(1)

a

)
≤ τ and Infi

(
Q

y,(1)
b

)
≤ τ.

CCC 2024

30:54 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

Invariance from H⊗n
m to L2 (H⊗h

m , γ(m2−1)(n−h)
)
. In this step, we only keep the

quantum registers in H and replace the rest of the quantum registers by Gaussian random
variables. Hence, the number of quantum registers is reduced from n to h = |H| = d/τ .
For any (x, y, a, b) ∈ X ×Y ×A×B, applying [46, Lemma 10.5] to P x,(1)

a , Q y,(1)
b and H ,

we obtain joint random matrices(
P x,(2)

a (g), Q y,(2)
b (h)

)
∈ L2 (H⊗h

m , γ(m2−1)(n−h)
)
× L2 (H⊗h

m , γ(m2−1)(n−h)
)
,

where (g,h) ∼ G⊗2(m2−1)(n−h)
ρ , such that the following hold.

1. For any x, y, a, b, E
g

[∣∣∣∣∣∣∣∣∣P x,(2)
a (g)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 1 and E

h

[∣∣∣∣∣∣∣∣∣Q y,(2)
b (h)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 1.

2. Eg,h

[
valh

({
P

x,(2)
a (g)

}
,
{
Q

y,(2)
b (g)

})]
= valn

({
P

x,(1)
a

}
,
{
Q

y,(1)
b

})
.

3.
∑
x,a

µA(x)
∣∣∣ 1
mh

E
[
Tr ζ

(
P x,(2)

a (g)
)]

− 1
mn

Tr ζ
(
P x,(1)

a

)∣∣∣ ≤ O
(
t
(
3dmd/2√

τd
)2/3

)
and∑

y,b

µB(y)
∣∣∣ 1
mh

E
[
Tr ζ

(
Q

y,(2)
b (h)

)]
− 1
mn

Tr ζ
(
Q

y,(1)
b

)∣∣∣ ≤ O
(
t
(
3dmd/2√

τd
)2/3

)
.

4. For any x, y,
∑

a∈A P
x,(2)

a (g) =
∑

b∈B Q
y,(2)
b (h) = 1.

Gaussian dimension reduction. In this step, we apply Lemma 83 to further reduce
the number of Gaussian random variables. This is the only part different from the proof
in [46].
Let n0 be determined later. For any (x, y, a, b) ∈ X ×Y×A×B and M ∈ Rn×n0 , applying
Lemma 83 to P x,(2)

a (g) and Q y,(2)
b (h) with δ ← δ/

(
2s2t2

)
, d← d, n← 2(m2− 1)(n−h),

we get joint random matrices P x,(3)
a (M x̃) and Q y,(3)

b (M ỹ). If we sample M ∼ γn×n0 , by
Lemma 83 item 3 we have∑

x,a

µA(x) E
M,x

[
Tr ζ

(
P x,(3)

a (Mx̃)
)]

=
∑
x,a

µA(x)E
g

[
Tr ζ

(
P x,(2)

a (g)
)]

and∑
y,b

µB(y) E
M,y

[
Tr ζ

(
Q

y,(3)
b (Mỹ)

)]
=
∑
y,b

µB(y)E
h

[
Tr ζ

(
Q

y,(2)
b (h)

)]
.

Then by Markov’s inequality, with probability each at most 1/6,∑
x,a

µA(x)E
x

[
Tr ζ

(
P x,(3)

a (Mx̃)
)]

> 6
∑
x,a

µA(x)E
g

[
Tr ζ

(
P x,(2)

a (g)
)]

and∑
y,b

µB(y)E
y

[
Tr ζ

(
Q

y,(3)
b (Mỹ)

)]
> 6

∑
y,b

µB(y)E
h

[
Tr ζ

(
Q

y,(2)
b (h)

)]
.

By Lemma 83 item 1, 2, and using a union bound, with probability at least 2/3− δ the
following hold:

1. For any x, y, a, b, E
x

[∣∣∣∣∣∣∣∣∣P x,(3)
a (M x̃)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 2 and E

y

[∣∣∣∣∣∣∣∣∣Q y,(3)
b (M ỹ)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 2.

2.
∣∣∣∣ Ex,y

[
valh

({
P

x,(3)
a (M x̃)

}
,

{
Q

y,(3)
b (M ỹ)

})]
− E

g,h

[
valh

({
P

x,(2)
a (g)

}
,

{
Q

y,(2)
b (g)

})]∣∣∣∣ ≤ δt2.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:55

3.
∑
x,a

µA(x)E
x

[
Tr ζ

(
P x,(3)

a (M x̃)
)]
≤ 6

∑
x,a

µA(x)E
g

[
Tr ζ

(
P x,(2)

a (g)
)]

and∑
y,b

µB(y)E
y

[
Tr ζ

(
Q

y,(3)
b (M ỹ)

)]
≤ 6

∑
y,b

µB(y)E
h

[
Tr ζ

(
Q

y,(2)
b (h)

)]
.

4. For any x, y,
∑
a∈A

P x,(3)
a (M x̃) =

∑
b∈B

Q
y,(3)
b (M ỹ) = 1.

Here n0 = dO(d)s12t12

δ6 .
Smoothing random matrices. In this step, we reduce deg(P x,(3)

a) and deg(Q y,(3)
b) for

any (x, y, a, b) ∈ X×Y×A×B. We apply [46, Lemma 12.1] to P x,(3)
a (M x̃) and Q y,(3)

b (M ỹ)
with δ ← δ, h ← h, n ← n0 and obtain joint random matrices P x,(4)

a (x), Q y,(4)
b (y) ∈

L2 (H⊗h
m , γn0

)
such that the following holds.

1. For any x, y, a, b, the entries of P x,(4)
a (x) and Q

y,(4)
b (y) are polynomials of degree at

most d.
2. For any (x, y, a, b) ∈ X ×Y×A×B, E

x

[∣∣∣∣∣∣∣∣∣P x,(4)
a (x)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 2 and E

y

[∣∣∣∣∣∣∣∣∣Q y,(4)
b (y)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 2.

3.
∣∣∣ E

x,y

[
valh

({
P

x,(4)
a (x)

}
,

{
Q

y,(4)
b (x)

})]
− E

x,y

[
valh

({
P

x,(3)
a (M x̃)

}
,

{
Q

y,(3)
b (M ỹ)

})]∣∣∣ ≤ δt2.

4.

∣∣∣∣∣∑
x,a

µA(x)E
x

[
Tr ζ

(
P x,(4)

a (x)
)]
−
∑
x,a

µA(x)E
x

[
Tr ζ

(
P x,(3)

a (M x̃)
)]∣∣∣∣∣ ≤ δt and∣∣∣∣∣∣

∑
y,b

µB(y)E
y

[
Tr ζ

(
Q

y,(4)
b (y)

)]
−
∑
y,b

µB(y)E
y

[
Tr ζ

(
Q

y,(3)
b (M ỹ)

)]∣∣∣∣∣∣ ≤ δt.
5. For any x, y,

∑
a∈A P

x,(4)
a (x) =

∑
b∈B Q

y,(4)
b (y) = 1.

Multilinearization. For any (x, y, a, b) ∈ X × Y ×A× B, we apply [46, Lemma 13.1]
to P x,(4)

a (x) and Q
y,(4)
b (y) with d← d, δ ← τ , h← h, n← n0 and obtain joint random

matrices P x,(5)
a (x), Q y,(5)

b (y) ∈ L2 (H⊗h
m , γn0n1

)
such that the following holds.

1. For any x, y, a, b, the entries of P x,(5)
a (x) and Q y,(5)

b (y) are multilinear polynomials of
degree at most d, and every variable in P

x,(5)
a (x) and Q

y,(5)
b (x) has influence at most

τ .
2. For any x, y, a, b, E

x

[∣∣∣∣∣∣∣∣∣P x,(5)
a (x)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 2 and E

y

[∣∣∣∣∣∣∣∣∣Q y,(5)
b (y)

∣∣∣∣∣∣∣∣∣2
2

]
≤ 2.

3.
∣∣∣ E

x,y

[
valh

({
P

x,(5)
a (x)

}
,

{
Q

y,(5)
b (x)

})]
− E

x,y

[
valh

({
P

x,(4)
a (x)

}
,

{
Q

y,(4)
b (y)

})]∣∣∣ ≤ τt2.

4.

∣∣∣∣∣∑
x,a

µA(x)E
x

[
Tr ζ

(
P x,(5)

a (x)
)]
−
∑
x,a

µA(x)E
x

[
Tr ζ

(
P x,(4)

a (x)
)]∣∣∣∣∣ ≤ τt and∣∣∣∣∣∣

∑
y,b

µB(y)E
y

[
Tr ζ

(
Q

y,(5)
b (y)

)]
−
∑
y,b

µB(y)E
y

[
Tr ζ

(
Q

y,(4)
b (y)

)]∣∣∣∣∣∣ ≤ τt.
5. For any x, y,

∑
a∈A P

x,(5)
a (x) =

∑
b∈B Q

y,(5)
b (y) = 1.

Here n1 = O
(

d2

τ2

)
.

Invariance from L2 (H⊗h
m , γn0n1

)
to H⊗h+n0n1

m . In this step, we transform all the
random matrices from the previous step to matrices without any classical randomness.
In particular, we replace all the Gaussian random variables with n0n1 quantum registers,
so after this step, the number of quantum registers is h+ n0n1.
For any (x, y, a, b) ∈ X × Y ×A× B, applying [46, Lemma 10.11] to P x,(5)

a (x), Q y,(5)
b (y)

with n ← n0n1, h ← h, d ← 2d, τ ← τ to get P x,(6)
a , Q

y,(6)
b ∈ H⊗h+n0n1

m satisfying the
following.

CCC 2024

30:56 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

1. For any x, y, a, b,
∣∣∣∣∣∣∣∣∣P x,(6)

a

∣∣∣∣∣∣∣∣∣2
2
≤ 2 and

∣∣∣∣∣∣∣∣∣Q y,(6)
b

∣∣∣∣∣∣∣∣∣2
2
≤ 2.

2. valh+n0n1

({
P

x,(6)
a

}
,
{
Q

y,(6)
b

})
= Ex,y

[
valh

({
P

x,(5)
a (x)

}
,
{
Q

y,(5)
b (y)

})]
.

3.
∑
x,a

µA(x)
∣∣∣ 1
mh+n0n1

Tr ζ
(
P x,(6)

a

)
− 1
mh

E
[
Tr ζ

(
P x,(5)

a (x)
)]∣∣∣ ≤ O

(
t
(
9dmd√

τd
)2/3

)
and∑

y,b

µB(y)
∣∣∣ 1
mh+n0n1

Tr ζ
(
Q

y,(6)
b

)
− 1
mh

E
[
Tr ζ

(
Q

y,(5)
b (y)

)]∣∣∣ ≤ O
(
t
(
9dmd√

τd
)2/3

)
.

4. For any x, y,
∑

a∈A P
x,(6)

a =
∑

b∈B Q
y,(6)
b = 1.

Rounding. Note that the matrices from the previous step may not form valid POVMs,
so in this step we round them to close POVMs. In this step, the number of quantum
registers remains the same as h+ n0n1.
By Lemma 65 there exist operators

{
P

x,(7)
a

}
and

{
Q

y,(7)
b

}
satisfying for all x

∑
a

∣∣∣∣∣∣∣∣∣P x,(7)
a − P

x,(6)
a

∣∣∣∣∣∣∣∣∣2
2

≤ 3(t+ 1)
mD

∑
a

Tr ζ
(
P

x,(6)
a

)
+ 6

√
t

(
1
mD

∑
a

Tr ζ
(
P

x,(6)
a

))1/2

≤ 10t

(
1
mD

∑
a

Tr ζ
(
P

x,(6)
a

))1/2

. (23)

Similarly, for all y, we have

∑
a

∣∣∣∣∣∣∣∣∣Q y,(7)
b −Q y,(6)

b

∣∣∣∣∣∣∣∣∣2
2
≤ 10t

(
1
mD

∑
b

Tr ζ
(
Q

y,(6)
b

))1/2

. (24)

Then ∣∣∣valD
({
P x,(7)

a

}
,
{
Q

y,(7)
b

})
− valD

({
P x,(6)

a

}
,
{
Q

y,(6)
b

})∣∣∣
≤
∣∣∣valD

({
P x,(7)

a − P x,(6)
a

}
,
{
Q

y,(7)
b

})∣∣∣+
∣∣∣valD

({
P x,(6)

a

}
,
{
Q

y,(7)
b −Q

y,(6)
b

})∣∣∣
≤
∑

x,y,a,b

µ(x, y)
(∣∣∣∣∣∣P x,(7)

a − P x,(6)
a

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Q y,(7)
b

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣P x,(6)

a

∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Q y,(7)
b −Q

y,(6)
b

∣∣∣∣∣∣∣∣∣
2

)

≤

(∑
b

∑
x,a

µA(x)
∣∣∣∣∣∣P x,(7)

a − P x,(6)
a

∣∣∣∣∣∣2
2

)1/2(∑
a

∑
y,b

µB(y)
∣∣∣∣∣∣∣∣∣Q y,(7)

b

∣∣∣∣∣∣∣∣∣2
2

)1/2

+

(∑
b

∑
x,a

µA(x)
∣∣∣∣∣∣P x,(6)

a

∣∣∣∣∣∣2
2

)1/2(∑
a

∑
y,b

µB(y)
∣∣∣∣∣∣∣∣∣Q y,(7)

b −Q
y,(6)
b

∣∣∣∣∣∣∣∣∣2
2

)1/2

(Cauchy Schwarz)

≤
√

10t2

∑
x

µA(x)

(
1
mD

∑
a

Tr ζ
(
P x,(6)

a

))1/2
1/2

+ 2
√

5t2

∑
y

µB(y)

(
1
mD

∑
b

Tr ζ
(
Q

y,(6)
b

))1/2
1/2

≤
√

10t2
(

1
mD

∑
x,a

µA(x)Tr ζ
(
P x,(6)

a

))1/4

+ 2
√

5t2
(

1
mD

∑
y,b

µB(y)Tr ζ
(
Q

y,(6)
b

))1/4

,

where in the second last inequality, we use
∣∣∣∣∣∣∣∣∣P x,(6)

a

∣∣∣∣∣∣∣∣∣ ≤ 2,
∣∣∣∣∣∣∣∣∣Q y,(7)

b

∣∣∣∣∣∣∣∣∣ ≤ 1, and Equations (23)
and (24). The last inequality follows from concavity of the function x 7→

√
x.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:57

Keeping track of the parameters in the construction, we can upper bound
1

mD

∑
x,a µA(x)Tr ζ

(
P

x,(6)
a

)
and 1

mD

∑
y,b µB(y)Tr ζ

(
Q

y,(6)
b

)
. We choose

δ = ϵ4

300t9 , τ = ϵ12

t27 exp
(
−300t9 logm

ϵ4(1− ρ) log2
(
t

ϵ

))
(25)

such that the difference in the game value at the final step matches that of the previous steps,
remaining on the order of O(δt2). We conclude that the number of quantum registers is

D = h+ n0n1 = d

τ
+ dO(d)s12t12

δ6 ·O
(
d2

τ2

)
= O

(
s12t120

ϵ48 exp
(

600t9 logm
ϵ4(1− ρ) log2

(
t

ϵ(1− ρ)

)))
,

which completes the proof. ◀

Next, we give the non-deterministic algorithm with the following parameters.

Cpt = 300
εrd = ε2/(4t3)

δ = ε2
rd

Cptt(t+ 1)

d =
Csm log2 1

δ

δ log(1/ρ) as in Lemma 62.

sw = D logm+ log
(

2
δ

)
as in Lemma 68.

D = is the polynomial specified in Theorem 28 withε← ε/2.

Proof of Proposition 26. Consider the algorithm below, with the parameters above.

Input: Parameters in Definition 24.
Certificate: Let {(Ai,Bi)}m2−1

i=0 be a pair of standard orthonormal basis satisfying
Fact 46. A tuple of real numbers of width sw, which are non-zero Fourier coefficients
of a degree-d pseudo-strategy on D copies of ψAB. For each x ∈ X , a ∈ A and
σ ∈ [m2]D≥0 satisfying |σ| ≤ d, the certificate should contain the coefficient P̂ x

a (σ).
Similarly, for y ∈ Y, b ∈ B and σ, the certificate should contain the coefficient Q̂ y

b (σ).
Then the degree-d pseudo-strategy can be written as P x

a and Q y
b satisfying

P x
a =

∑
|σ|≤d

P̂ x
a (σ)Aσ and Q y

b =
∑

|σ|≤d

Q̂ y
b (σ)Bσ.

Algorithm:

1. Compute the winning probability on the pseudo-strategy, which is

valD ({P x
a } , {Q

y
b }) =

∑
x,y,a,b

µ(x, y) · V (x, y, a, b)
∑

σ∈[m2]D
≥0

cσP̂
x

a (σ) · Q̂ y
b (σ),

where cσ = cσ1 · · · cσD
, and {ci}m2−1

i=0 is given in Fact 46. Reject if

valD ({P x
a } , {Q

y
b }) < β.

CCC 2024

30:58 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

2. Check if the operators sum up to the identity by checking
For all x, y and σ ̸= 0D, it should hold that∑

a

P̂ x
a (σ) =

∑
b

Q̂ y
b (σ) = 0.

For all x, y, and σ = 0D, it should hold that∑
a

P̂ x
a (σ) =

∑
b

Q̂ y
b (σ) = 1.

Reject if any of the above equalities fails.
3. For each x, y, a, b, run the positivity testing algorithm described in Section 4 on

P x
a and Q y

b with parameters β ← 4δ and δ ← 2δ. Reject if any of the positivity
testings fails.

4. Accept.

Time complexity

We upper bound the time complexity of each step.
1. Certificate length: The certificate contains the non-zero Fourier coefficients of degree-d

operators acting on D qudits. Each degree-d operator consists of

d∑
d=0

(
D

d

)
· (m2 − 1)d ≤ d(m2 − 1)dDd

coefficients, each sw bits. Hence, the length of the certificate is O(stdm2dDdsw).
2. To compute the game value, we need to enumerate over all x, y, a, b, σ and compute a

sum of products. This takes time

s2t2(m2 − 1)dDd.

3. Checking if the operators sum up to the identity takes linear time in certificate length as
it involves only summation over Fourier coefficients.

4. Each positivity testing takes time as specified in Theorem 23, which is

exp
(
poly

(
md, 1/δ

))
·DO(d).

By the choices of parameters, the overall running time is upper bounded by

poly
(
s, eexp

(
t, log

(
1
ρ

)
,

1
ε

))
.

Completeness

Suppose ω∗(G,ψAB) ≥ β + ε. Then by Theorem 28, there exists a strategy (P x
a , Q

y
b) that

uses D copies of ψAB with game value valD ({P x
a } , {Q

y
b }) ≥ β+ε/2. Let f be the smoothing

map in Lemma 62, and let P x,(1)
a = f(P x

a) and Q
y,(1)
b = f(Q y

b). Then
{
P

x,(1)
a

}
,
{
Q

y,(1)
b

}
are of degree at most d and satisfy

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:59

1. For all x, y, we have
∑

a = P
x,(1)

a =
∑

b Q
y,(1)
b = 1 (since f is linear and unital)

2. For all x, y, a, b,
∣∣∣∣∣∣∣∣∣P x,(1)

a

∣∣∣∣∣∣∣∣∣
2
≤ 1 and

∣∣∣∣∣∣∣∣∣Q y,(1)
b

∣∣∣∣∣∣∣∣∣
2
≤ 1.

3. For all x, y, a, b,
∣∣∣Tr
((
P

x,(1)
a ⊗Q y,(1)

b

)
ψ⊗n

AB

)
− Tr

(
(P x

a ⊗Q
y
b)ψ⊗n

AB

)∣∣∣ ≤ δ.
4. For all x, y, a, b, m−D Tr ζ

(
P

x,(1)
a

)
≤ δ and m−D Tr ζ

(
Q

y,(1)
b

)
≤ δ.

We observe that Lemma 62 also guarantees the Fourier coefficients of P x,(1)
a and Q y,(1)

b have
absolute values bounded by 1. This allows us to truncate the strategy. For each Fourier
coefficient we preserve sw digits and by Lemma 68 get

{
P

x,(2)
a

}
,
{
Q

y,(2)
b

}
satisfying

1. For all x, y,
∑

a P
x,(2)

a =
∑

b Q
y,(2)
b = 1.

2. For all x, y, a, b,
∣∣∣∣∣∣∣∣∣P x,(2)

a

∣∣∣∣∣∣∣∣∣
2
≤ 1 and

∣∣∣∣∣∣∣∣∣Q y,(2)
b

∣∣∣∣∣∣∣∣∣
2
≤ 1;

3. For all x, y, a, b,
∣∣∣Tr
((
P

x,(2)
a ⊗Q y,(2)

b

)
ψ⊗n

AB

)
− Tr

((
P

x,(1)
a ⊗Q y,(1)

b

)
ψ⊗n

AB

)∣∣∣ ≤ δ,
4. For all x, y, a, b, m−D Tr ζ

(
P

x,(2)
a

)
≤ 2δ and m−D Tr ζ

(
Q

y,(2)
b

)
≤ 2δ.

This pseudo-strategy is the certificate. Specifically, by Lemma 67 the game value is

valD
({
P x,(2)

a

}
,
{
Q

y,(2)
b

})
≥ β + ε/2− 2δt2 = β + ε/2− ε2

2tCpt
≥ β,

and the first check is passed. Also, by item 4, the positivity testings can also be passed.

Soundness

Suppose that there exists a certificate that passes all the testings, then there exists a degree-d
pseudo-strategy

{
P

x,(1)
a

}
,
{
Q

y,(1)
b

}
satisfying

By the game value testing,

valD
({
P x,(1)

a

}
,
{
Q

y,(1)
b

})
≥ β.

By “summing up to the identity” testings, for all x, y∑
a

P x,(1)
a = 1, and

∑
b

Q
y,(1)
b = 1.

By the positivity testings, for all x, y, a, b

1
mD

Tr ζ
(
P x,(1)

a

)
≤ 6δ, and 1

mD
Tr ζ

(
Q

y,(1)
b

)
≤ 6δ.

We then apply Lemma 65 to get a strategy
{
P

x,(2)
a

}
and

{
Q

y,(2)
b

}
. It holds that for each

x ∈ X

∑
a∈A

∣∣∣∣∣∣P x,(2)
a − P x,(1)

a

∣∣∣∣∣∣2
2

≤ 3(t+1)

(∑
a∈A

1
mD

Tr ζ
(
P x,(1)

a

))
+6

√
t

(∑
a∈A

1
mD

Tr ζ
(
P x,(1)

a

))1/2

≤ 18t(t + 1)δ + 6
√

6t
√
δ ≤ 18ε2

rd

Cpt
+ 6

√
6εrd√
Cpt

≤
18 + 6

√
6Cpt

Cpt
εrd ≤ εrd.

Similarly, for each y ∈ Y we have∑
b∈B

∣∣∣∣∣∣∣∣∣Q y,(2)
b −Q y,(1)

b

∣∣∣∣∣∣∣∣∣2
2
≤ εrd.

CCC 2024

30:60 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

We get a strategy
{
P

x,(2)
a

}
and

{
Q

y,(2)
b

}
with game value∣∣∣valD

({
P x,(2)

a

}
,
{
Q

y,(2)
b

})
− valD

({
P x,(1)

a

}
,
{
Q

y,(1)
b

})∣∣∣
≤
∣∣∣valD

({
P x,(2)

a − P x,(1)
a

}
,
{
Q

y,(2)
b

})∣∣∣+
∣∣∣valD

({
P x,(1)

a

}
,
{
Q

y,(2)
b −Q y,(1)

b

})∣∣∣
≤

∑
x,y,a,b

µ(x, y)
(∣∣∣∣∣∣∣∣∣P x,(2)

a − P x,(1)
a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Q y,(2)
b

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣P x,(1)

a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Q y,(2)
b −Q y,(1)

b

∣∣∣∣∣∣∣∣∣
2

)

≤

(∑
b

∑
x,a

µA(x)
∣∣∣∣∣∣∣∣∣P x,(2)

a − P x,(1)
a

∣∣∣∣∣∣∣∣∣2
2

)1/2
∑

a

∑
y,b

µB(y)
∣∣∣∣∣∣∣∣∣Q y,(2)

b

∣∣∣∣∣∣∣∣∣2
2

1/2

+
(∑

b

∑
x,a

µA(x)
∣∣∣∣∣∣∣∣∣P x,(1)

a

∣∣∣∣∣∣∣∣∣2
2

)1/2
∑

a

∑
y,b

µB(y)
∣∣∣∣∣∣∣∣∣Q y,(2)

b −Q y,(1)
b

∣∣∣∣∣∣∣∣∣2
2

1/2

(Cauchy-Schwarz)
≤ 2t
√
tεrd.

Thus there exists a strategy with game value

valD
({
P x,(2)

a

}
,
{
Q

y,(2)
b

})
> β − 2t

√
tεrd = β − ε. ◀

B.3.2 NP-hardness

Proof of Proposition 29. The noisy MIP∗ verifier V ∗ from an MIP verifier
V = (AlgQ,AlgV)

Setup: Flip two unbiased coins bbb, ccc ∼ {0, 1}. Sample questions (xxx,yyy) ∼ AlgQ(input).
With probability 1/2 each, perform one of the following ten tests.

Verify: Distribute the questions as follows
Player bbb: give xxx; receive aaa.
Player bbb: give yyy; receive bbb

Accept if V (input,xxx,yyy) accepts on aaa,bbb.
Consistency: Distribute the questions as follows: if ccc = 0

Player bbb: give xxx; receive aaa,
Player bbb: give xxx; receive bbb,

otherwise
Player bbb: give yyy; receive aaa,
Player bbb: give yyy; receive bbb,

Accept if aaa = bbb.

Completeness. If input is satisfiable, the value-1 strategy for V is also a value-1 strategy
for V ∗.
Soundness. In the consistency test, with probability 1/2 both provers get a question x.
Hence the probability for the provers to pass the consistency test of x is at least 1− 4ϵ. If
Alice and Bob sharing n copies of a noisy m-dimensional MES ψAB , it means that

E
x

∑
a∈A

Tr
(
(P x

a ⊗ P x
a)ψ⊗n

AB

)
≥ 1− 4ϵ.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:61

Using the Fourier expansion of P x
a =

∑
σ P̂

x
a (σ)Pσ. the condition above is equivalent to

E
x

∑
a

∑
σ

ρ|σ|P̂ x
a (σ)2 ≥ 1− 4ϵ.

Notice that |||P x
a |||

2
2 =

∑
σ P̂

x
a (σ)2, and for all x,

∑
a |||P x

a |||
2
2 ≤ 1. Hence

E
x

∑
a

∑
σ

ρ|σ|P̂ x
a (σ)2 ≤ E

x

∑
a

P̂ x
a (∅)2 + ρ

∑
σ ̸=∅

P̂ x
a (σ)2

≤ E

x

∑
a

[
P̂ x

a (∅)2 + ρ(|||P x
a |||

2
2 − P̂ x

a (∅)2)
]

≤ ρ+ (1− ρ)E
x

∑
a

P̂ x
a (∅)2

.

Therefore,

E
x

∑
a

P̂ x
a (∅)2 ≥ 1− 4ϵ

1− ρ . (26)

On the other hand, for all x,
∑

a P̂
x
a (∅) = 1. For each x, let ax be the answer that maximizes

P̂ x
a (∅). Then

∑
a P̂

x
a (∅)2 ≤ P̂ x

ax
(∅)
∑

a P̂
x
a (∅) = P̂ x

ax
(∅), and

E
x
P̂ x

ax
(∅) ≥ 1− 4ϵ

1− ρ .

Similarly, for each y, let by be the answer that maximizes Q̂y
b (∅), and then

E
x,y
Q̂y

by
(∅) ≥ 1− 4ϵ

1− ρ .

In the deterministic strategy, Alice answers ax for question x and Bob answers by for
question y. The difference in the probability of satisfying V between the original strategy
and the deterministic strategy is

| E
x,y

∑
a,b

Tr
[
(P x

a ⊗Q
y
b)ψ⊗n

AB

]
V (x, y, a, b)− E

x,y
V (x, y, ax, by)|

= E
x,y

(
1− Tr

[(
P x

ax
⊗Qy

by

)
ψ⊗n

AB

])
V (x, y, ax, by)

+ E
x,y

∑
a ̸=ax or

b̸=by

Tr
[
(P x

a ⊗Q
y
b)ψ⊗n

AB

]
V (x, y, a, b)

≤ E
x,y

(
1− Tr

[(
P x

ax
⊗Qy

by

)
ψ⊗n

AB

])
+ E

x,y

∑
a ̸=ax or

b̸=by

Tr
[
(P x

a ⊗Q
y
b)ψ⊗n

AB

]
where we use the fact that V (x, y, a, b) ≤ 1 for all x, y, a, b.
Writing 1 =

∑
a,b Tr

[
(P x

a ⊗Q
y
b)ψ⊗n

AB

]
, we get that the expression above equals

2 E
x,y

∑
a ̸=ax or

b̸=by

Tr
[
(P x

a ⊗Q
y
b)ψ⊗n

AB

]
= 2 E

x,y

∑
a ̸=ax,b

Tr
[
(P x

a ⊗Q
y
b)ψ⊗n

AB

]
+ 2 E

x,y

∑
b̸=by

Tr
[(
P x

ax
⊗Qy

b

)
ψ⊗n

AB

]

≤ 2 E
x,y

∑
a ̸=ax

P̂ x
a (∅) +

∑
b̸=by

Q̂y
b (∅)

≤ 16ϵ

1− ρ .

CCC 2024

30:62 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

The probability for the original strategy to satisfy V is at least 1− 2ε, so the probability for
the deterministic strategy to satisfy V is at least 1− 2ε− 16ε/(1− ρ). ◀

B.4 MIP∗ Protocol for RE with O(1)-size Answers

Subset tester for the Hadamard code

Let k ≤ n and D be a distribution on the subsets of Fn
2 with size k. Flip an unbiased

coin bbb ∼ {0, 1}. Sample FFF = {x1, . . . , xk} ∼ D and a uniformly random yyy ∈ Fn
2 , Perform

one of the following three subtests with equal probability.
Subtest 1: Perform one of the following checks with equal probability.

Check 1: Distribute the question as follows:
Player bbb: give FFF and yyy; receive (aaa1, . . . , aaak, ccc,aaa

′
1, . . . , aaa

′
k) ∈ F2k+1

2 .
Player bbb: give FFF , receive (ddd1, . . . , dddk) ∈ Fk

2 .
Accept if aaai + ccc = aaa′

i and aaai = dddi for all i.
Check 2: Distribute the question as follows:

Player bbb: give FFF and yyy; receive (aaa1, . . . , aaak, ccc,aaa
′
1, . . . , aaa

′
k) ∈ F2k+1

2 .
Player bbb: give yyy, receive eee ∈ F2.

Accept if aaai + ccc = aaa′
i for all i, and eee = ccc.

Check 3: Distribute the question as follows:
Player bbb: give FFF and yyy; receive (aaa1, . . . , aaak, ccc,aaa

′
1, . . . , aaa

′
k) ∈ F2k+1

2 .
Player bbb: give FFF + yyy = {xxx1 + yyy, . . . ,xxxk + yyy}, receive (ddd1, . . . , dddk) ∈ Fk

2 .
Accept if aaai + ccc = aaa′

i and aaa′
i = dddi for all i.

Subtest 2: Distribute the question as follows:
Player bbb: give FFF + yyy = {xxx1 + yyy, . . . ,xxxk + yyy}; receive (aaa1, . . . , aaak).
Player bbb: give xxxi + yyy for a random i, receive ddd.

Accept if aaai = ddd.
Subtest 3: Perform one of the following checks with equal probability

Check 1: Distribute the question as follows:
Player bbb: give FFF ; receive (aaa1, . . . , aaak).
Player bbb: give FFF ; receive (ddd1, . . . , dddk).

Accept if aaai = dddi for all i.
Check 2: Distribute the question as follows:

Player bbb: give xxxi + yyy for a random i; receive aaa.
Player bbb: give xxxi + yyy for a random i; receive ddd.

Accept if aaa = ddd.

Proof of Proposition 31. Let F + y = (x1 + y, . . . , xk + y). Let

Ω = {(a, c, a′) | ai + c = a′
i for all i ∈ [k]} .

The set Ω is the set of valid answer tuples for Alice in Subtest 1; we also use Ω to denote
the event that Alice’s answers are valid. Winning the subset tester with probability 1− ε
implies that winning each subtest with a probability of at least 1− 3ε. Furthermore, winning
Subtest 1 with a probability of at least 1− 3ε implies that when Alice gets question (F, y)
and Bob gets Player 1’s questions:

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:63

E
F ∼D

E
y∼DUnif

Pr[a1 = b1 ∧ . . . ∧ ak = bk ∧ Ω | qA = (F, y), qB = F] ≥ 1− 18ε

E
F ∼D

E
y∼DUnif

Pr[c = d ∧ Ω | qA = (F, y), qB = y] ≥ 1− 18ε

E
F ∼D

E
y∼DUnif

Pr[a′
1 = b1 ∧ . . . ∧ a′

k = bk ∧ Ω | qA = (F, y), qB = F + y] ≥ 1− 18ε

E
F ∼D

E
y∼DUnif

Pr[Ω | qA = (F, y)] ≥ 1− 6ε,

for all i ∈ [k]; winning Subtest 2 with a probability of at least 1 − 3ε implies that when
Alice gets Player 0’s question and Bob gets Player 1’s question

E
F ∼D

E
y∼DUnif

Pr[ai = d | qA = F + y, qB = xi + y] ≥ 1− 6kε;

and winning Subtest 3 with a probability of at least 1− 3ε implies that when Alice gets
Player 0’s question and Bob gets Player 1’s question

E
F ∼D

Pr[a1 = b1 ∧ . . . ∧ ak = bk | qA = qB = F] ≥ 1− 12ε

E
F ∼D

E
y∼DUnif

Pr[a = b | qA = qB = xi + y] ≥ 1− 12kε for all i.

In terms of the measurements and the state |ψ⟩, these conditions are equivalent to

E
F ∼D

E
y∈DUnif

∑
a,c,a′:

ai+c=a′
i∀i

⟨ψ|MF,y
a,c,a′ ⊗NF

a |ψ⟩ ≥ 1− 18ε

E
F ∼D

E
y∈DUnif

∑
a,c,a′:

ai+c=a′
i∀i

⟨ψ|MF,y
a,c,a′ ⊗Ny

c |ψ⟩ ≥ 1− 18ε

E
F ∼D

E
y∈DUnif

∑
a,c,a′:

ai+c=a′
i∀i

⟨ψ|MF,y
a,c,a′ ⊗NF +y

a′ |ψ⟩ ≥ 1− 18ε

E
F ∼D

E
y∈DUnif

∑
a,c,a′:

ai+c=a′
i∀i

⟨ψ|MF,y
a,c,a′ ⊗ 1B |ψ⟩ ≥ 1− 6ε

E
F ∼D

E
y∈DUnif

∑
a∈Fk

2

⟨ψ|NF +y
a ⊗Nxi+y

ai
|ψ⟩ ≥ 1− 6kε for all i

E
F ∼D

∑
a∈Fk

2

⟨ψ|NF
a ⊗NF

a |ψ⟩ ≥ 1− 12ε

E
F ∼D

E
y∈DUnif

∑
a∈F2

⟨ψ|Nxi+y
a ⊗Nxi+y

a |ψ⟩ ≥ 1− 12kε for all i.

We define binary observables

Mxi|F,y =
∑

a,c,a′

(−1)aiMF,y
a,c,a′ My|F,y =

∑
a,c,a′

(−1)cMF,y
a,c,a′ Mxi+y|F,y =

∑
a,c,a′

(−1)a′
iMF,y

a,c,a′

Nxi|F =
∑

b

(−1)biNF
b Ny = Ny

0 −Ny
1 Nxi+y|F +y =

∑
b

(−1)biNF +y
b .

CCC 2024

30:64 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

We can prove

E
F ∼D

E
y∈DUnif

⟨ψ|Mxi|F,y ⊗Nxi|F |ψ⟩

= E
x∼D

E
y∈DUnif

[
Pr[ai = bi ∧ Ω | qA = (F, y), qB = F]

− (Pr[ai ̸= bi | qA = (F, y), qB = F]− Pr[ai = bi ∧ Ω | qA = (F, y), qB = F])
]

≥ E
F ∼D

E
y∈DUnif

[
Pr[ai = bi ∧ Ω | qA = (F, y), qB = F]

− (1− Pr[ai = bi ∧ Ω | qA = (F, y), qB = F])
]

= E
F ∼D

E
y∈DUnif

[
2 Pr[ai = bi ∧ Ω | qA = (F, y), qB = F]− 1

]
≥ E

F ∼D
E

y∈DUnif

[
2 Pr[a1 = b1 ∧ . . . ∧ ak = bk ∧ Ω | qA = (F, y), qB = F]− 1

]
≥ 1− 36ε,

which implies that EF ∼D Ey∈DUnif∥Mxi|F,y ⊗ 1B |ψ⟩ − 1A ⊗Nxi|F |ψ⟩∥2 ≤ 72ε by expanding
the vector norm. Similarly, from the two other checks of Subtest 1,

E
F ∼D

E
y∈DUnif

∥My|F,y ⊗ 1B |ψ⟩ − 1A ⊗Ny |ψ⟩∥2 ≤ 72ε

E
F ∼D

E
y∈DUnif

∥Mxi+y|F,y ⊗ 1B |ψ⟩ − 1A ⊗Nxi+y|F +y |ψ⟩∥2 ≤ 72ε.

Applying a similar argument to the probability of the event Ω, we can also show

E
F ∼D

E
y∈DUnif

⟨ψ|Mxi|F,yMy|F,yMxi+y|F,y ⊗ 1B |ψ⟩

= E
F ∼D

E
y∈DUnif

∑
a,c,a′

(−1)ai+c+a′
i ⟨ψ|MF,y

a,c,a′ ⊗ 1B |ψ⟩

= E
F ∼D

E
y∈DUnif

2 Pr[ai + c = a′
i | qA = (F, y)]− 1

≥ E
F ∼D

E
y∈DUnif

2 Pr[Ω | qA = (F, y)]− 1 ≥ 1− 12ε.

Next, we would like to replace Mxi|F,y by Nxi|F , My|F,y by Ny and Mxi+y|F,y by
Nxi+y|F +y and show

| E
F ∼D

E
y∈DUnif

⟨ψ|1A ⊗Nxi+y|F +yNyNxi|F |ψ⟩ − 1| ≤ 38
√
ε. (27)

In the first step

| E
F ∼D

E
y∈DUnif

⟨ψ|Mxi|F,yMy|F,y(Mxi+y|F,y ⊗ 1B − 1A ⊗Nxi+y|F +y) |ψ⟩|

≤ E
F ∼D

E
y∈DUnif

∥My|F,yMxi|F,y ⊗ 1B |ψ⟩∥ · ∥(Mxi+y|F,y ⊗ 1B − 1A ⊗Nxi+y|F +y) |ψ⟩∥

(Cauchy-Schwarz)

= E
F ∼D

E
y∈DUnif

∥(Mxi+y|F,y ⊗ 1B − 1A ⊗Nxi+y|F +y) |ψ⟩∥

≤
√

E
F ∼D

E
y∈DUnif

∥(Mxi+y|F,y ⊗ 1B − 1A ⊗Nxi+y|F +y) |ψ⟩∥2 (Jensen)

≤ 6
√

2ε.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:65

Similarly,

| E
F ∼D

E
y∈DUnif

⟨ψ|Mxi|F,y ⊗Nxi+y|F,y · (My|F,y ⊗ 1B − 1A ⊗Ny) |ψ⟩| ≤ 6
√

2ε

| E
F ∼D

E
y∈DUnif

⟨ψ|1A ⊗Nxi+y|F +yNy · (Mxi|F,y ⊗ 1B − 1A ⊗Nxi|F) |ψ⟩| ≤ 6
√

2ε.

Hence

| E
F ∼D

E
y∈DUnif

⟨ψ|1A ⊗Nxi+y|F +yNyNxi|F |ψ⟩ − 1| ≤ 18
√

2ε+ 12ε ≤ 38
√
ε.

On the other hand, from Subtest 2, we have that for all i ∈ [k]

E
F ∼D

E
y∈DUnif

⟨ψ|Nxi+y|F +y ⊗Nxi+y |ψ⟩

= 2 E
F ∼D

E
y∈DUnif

Pr[ai = b | qA = F + y, qB = xi + y]− 1 ≥ 1− 12kε,

which implies that

E
F ∼D

E
y∈DUnif

∥(Nxi+y|F +y ⊗ 1B − 1A ⊗Nxi+y) |ψ⟩∥2 ≤ 24kε.

From Subtest 3, with similar reasoning we know

E
F ∼D
∥(Nxi|F ⊗ 1B − 1A ⊗Nxi|F) |ψ⟩∥2 ≤ 48ε

E
F ∼D

E
y∈DUnif

∥(Nxi+y ⊗ 1B − 1A ⊗Nxi+y) |ψ⟩∥2 ≤ 48kε for all i.

Then

E
F ∼D

E
y∈DUnif

⟨ψ|1A ⊗Nxi+y|F +yNyNxi|F |ψ⟩

≈√
24kε E

F ∼D
E

y∈DUnif
⟨ψ|Nxi+y ⊗NyNxi|F |ψ⟩

≈√
48ε E

F ∼D
E

y∈DUnif
⟨ψ|Nxi+yNxi|F ⊗Ny |ψ⟩

≈√
48kε E

F ∼D
E

y∈DUnif
⟨ψ|Nxi|F ⊗Nxi+yNy |ψ⟩

Hence Equation (27) implies that

| E
F ∼D

E
y∈DUnif

⟨ψ|Nxi|F ⊗Nxi+yNy |ψ⟩ − 1| ≤ (45 + 12
√
k)
√
ε. (28)

Let C1 := 45 + 12
√
k. Let Ñu = 1

2n

∑
y∈Fn

2
(−1)u·yNy and Gu = (Ñu)2. Since

each Ny is a binary observable, {Gu} is a POVM. It can be checked that Ny =∑
u∈Fn

2
(−1)u·yÑu. Averaging over F ∼ D, the consistency between

{
N

xi|F
0 , N

xi|F
1

}
and{∑

u:u·xi=0 Gu,
∑

u:u·xi=1 Gu

}
is

E
F ∼D

1
2(1 + ⟨ψ|

∑
u

(−1)u·xiNxi|F ⊗Gu |ψ⟩)

= 1
2 + 1

2 ⟨ψ| E
F ∼D

E
y,z∈DUnif

∑
u

(−1)u·(xi+y+z)Nxi|F ⊗NyNz |ψ⟩

= 1
2 + 1

2 ⟨ψ| E
F ∼D

E
z∈DUnif

Nxi|F ⊗Nxi+zNz |ψ⟩ ≈C1
2

√
ε

1,

CCC 2024

30:66 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

which follows Equation (28). We consider the Naimark’s dialation of {Gu} on H ⊗ H′

denoted by
{
Ĝu

}
, which is a projective measurement. There exists |aux⟩ ∈ H′ such

that averaging over F ∼ D, the consistency between
{
N

xi|F
0 ⊗ 1H′ , N

xi|F
1 ⊗ 1H′

}
and{∑

u:u·xi=0 Ĝu,
∑

u:u·xi=1 Ĝu

}
with respect to |ψ′⟩ = |ψ⟩ ⊗ |aux⟩ ⊗ |aux⟩ is

E
F ∼D

∑
a=0,1

⟨ψ′| (Nxi|F
a ⊗ 1H′)⊗ (

∑
u:u·xi=a

Ĝu) |ψ′⟩

= E
F ∼D

∑
a=0,1

⟨ψ|Nxi|F
a ⊗

(∑
u:u·xi=a

(1⊗ ⟨aux|)Ĝu(1⊗ |aux⟩)
)
|ψ⟩

= E
F ∼D

∑
a=0,1

⟨ψ|Nxi|F
a ⊗

(∑
u:u·xi=a

Gu

)
|ψ⟩

≈C1/2
√

ε 1.

Since both
{
N

xi|F
a ⊗ 1H′

}
and

{∑
u:u·xi=a Ĝu

}
are projective measurements, their consist-

ency implies that

E
F ∼D

∑
d=0,1

∥Nxi|F
d ⊗ 1H′ |ψ′⟩ −

∑
u:u·xi=d

Ĝu |ψ′⟩∥2 ≤ C1
√
ε.

Next, notice that

NF
a = Nxk|F

ak
. . . Nx1|F

a1 and
∑

u:u·xi=ai
∀i∈[k]

Ĝu =

(∑
u:u·xk=ak

Ĝu

)
. . .

(∑
u:u·x1=a1

Ĝu

)
. . .

(∑
u:u·xk=ak

Ĝu

)

Then by Lemma 74

E
F ∼D

∑
a∈Fk

2

∥NF
a ⊗ 1H′ ⊗ 1B

∣∣ψ̃〉− 1A ⊗
∑

u:u·xi=ai

∀i∈[k]

Ĝu

∣∣ψ̃〉∥2 ≤ (2k − 1)2C1
√
ε,

which completes the proof. ◀

The answer reduced verifier V AR

Setup Flip two unbiased coins bbb, ccc ∼ {0, 1}. Sample questions (xxx0,xxx1) ∼ AlgQ(input).
Sample a view III0, III1,JJJ ∼ VPCPP(input,xxx0,xxx1). Set JJJ ′ = µℓ2(JJJ). Randomly select
III ′

0, III
′
1 ⊆ [2ℓ1] and JJJ ′′ ⊆ [2ℓ2] such that |III ′

0| = |III ′
1| = |JJJ ′′| = κ, which is a sufficiently

large constant. Details about how to choose κ can be found in the proof below. Set
TTT 0 = III0 ∪ III ′

0, TTT 1 = III1 ∪ III ′
1 and UUU = JJJ ′ ∪ JJJ ′′.

With probability 1/10 each, perform one of the following ten tests.
Verify : Distribute the questions as follows:

Player bbb: give (xxx0,xxx1),TTT 0,TTT 1,UUU ; receive aaa0, aaa1, aaa2.
Accept if VPCPP(input,xxx0,xxx1) accepts on aaa0|III0 , aaa1|III1 and aaa2|JJJ′ .

Cross check:
Consistency test: Distribute the questions as follows:

Player bbb: give (xxx0,xxx1),TTT 0,TTT 1,UUU ; receive aaa0, aaa1, aaa2.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:67

Player bbb: give (xxx0,xxx1),TTT 0,TTT 1,UUU ; receive aaa′
0, aaa

′
1, aaa

′
2

Accept if aaa0 = aaa′
0, aaa1 = aaa′

1 and aaa2 = aaa′
2.

Answer cross-check: Distributed the questions as follows:
Player bbb: give (xxx0,xxx1),TTT 0,TTT 1,UUU ; receive aaa0, aaa1, aaa2.
Player bbb: give xxxccc,TTTccc; receive aaa′

ccc

Accept if aaaccc = aaaccc′ .
Answer consistency check: Distributed the questions as follows:

Player bbb: give xxxccc,TTTccc; receive aaaccc.
Player bbb: give xxxccc,TTTccc; receive aaa′

ccc

Accept if aaaccc = aaaccc′ .
Proof cross-check: Distribute the questions as follows:

Player bbb: give (xxx0,xxx1),TTT 0,TTT 1,UUU ; receive aaa0, aaa1, aaa2.
Player bbb: give (xxx0,xxx1),UUU ; receive aaa′

2
Accept if aaa2 = aaa′

2.
Code checks :

Answer code check: Sample questions (www0,www1) ∼ Gℓ1(TTTccc). Distributed the ques-
tions as follows:

Player bbb: give xxxccc,www0; receive aaa0.
Player bbb: give xxxccc,www1; receive aaa1.

Accept if Gℓ1(TTTccc) accepts on aaa0 and aaa1.
Proof code check: Sample questions (www0,www1) ∼ Gℓ2(UUU). Distribute the questions

as follows:
Player bbb: give (xxx0,xxx1),www0; receive aaa0.
Player bbb: give (xxx0,xxx1),www1; receive aaa1.

Accept if Gℓ2(UUU) accepts on aaa0 and aaa1.

Proof of Theorem 35.
Completeness. This follows the same proof of the completeness part of [39, Theorem 17.10].
Soundness. The constant K1 depends on the parameter κ = |III ′

0|, so we should set κ to
be a sufficiently large constant so that 1−K1 −K2ε

1/8 is greater than the soundness of V .
Operationally, the views are augmented by κ uniformly randomly chosen coordinates. The
purpose of this is to drive the distance of the Hadamard code up from 1/2 to 1− 1/2κ, which
will be needed for Lemma 75.

Suppose input is not in L. Let (|ψ⟩ ,M) be a strategy that passes with probability
1− ε. This strategy can pass each Answer code check with probability 1− 10ε. Given
values c and xc, write 1 − εc,xc

for the probability the code check passes conditioned on
these values. Then with probability at least 1− 10ε1/2, εc,xc

≤ ε1/2. When this occurs, we
can apply Proposition 31 to Gℓ1(TTT c) where the distribution of TTT c is determined by c and
xc. Proposition 31 implies that there exists Hilbert spaces Hxc , |auxxc⟩ ∈ Hxc ⊗Hxc and
projective measurement {Gxc

u } on Hxc such that

E
Tc∼Dxc

∑
a∈Fk

2

∥(Mxc,Tc
a ⊗ 1HA,xc

⊗ 1B − 1A ⊗Gxc

[w|Tc =a]) |ψ⟩ ⊗ |auxxc⟩∥2 ≤ O(√εc,xc)

where we use the fact that k is a constant and 1A = 1HA⊗HA,xc
and similar for 1B . When

this does not occur, we can still assume such Hilbert spaces and projective measurements so
that

CCC 2024

30:68 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

E
Tc∼Dxc

∑
a∈Fk

2

∥(Mxc,Tc
a ⊗ 1HA,xc

⊗ 1B − 1A ⊗Gxc

[w|Tc =a]) |ψ⟩ ⊗ |auxxc⟩∥2 ≤ O(1).

When averaging over c and xc,

E
c,xc

E
Tc∼Dxc

∑
a∈Fk

2

∥(Mxc,Tc
a ⊗ 1A,xc ⊗ 1B − 1A ⊗Gxc

[w|Tc =a]) |ψ⟩ ⊗ |auxxc⟩∥2 ≤ O(ε1/4).

Passing the Proof code check implies that there exists Hilbert spaces Hx0,x1 , states
|auxx0,x1⟩ ∈ Hx0,x1 ⊗Hx0,x1 and projective measurements {Hx0,x1

w } on H⊗Hx0,x1 such that

E
x0,x1

E
U∼D(x0,x1)

∑
a∈Fk

2

∥(Mx0,x1,U
a ⊗ 1HA,x0,x1

⊗ 1B − 1A ⊗Hx0,x1
[w|U =a]) |ψ⟩ ⊗ |auxx0,x1 ⟩∥2 ≤ O(ε1/4).

The next step is ensuring the G and H measurements act on the same Hilbert space. Let∣∣ψ̃〉 = |ψ⟩ ⊗ (⊗x |auxx⟩)⊗ (⊗x0,x1 |auxx0,x1⟩)

and

G̃xc
u = Gxc

u ⊗ (⊗x ̸=xc1Hx)⊗ (⊗x0,x11Hx0,x1
)

H̃x0,x1
u = Hx0,x1 ⊗ (⊗x1Hx

)⊗ (⊗(z0,z1)̸=(x0,x1)1Hz0,z1
),

and, let

Nxc,Tc
ac

= Mxc,Tc
ac

⊗ (⊗x1Hx
)⊗ (⊗x0,x11Hx0,x1

)
Nx0,x1,U = Mx0,x1,U

a2
⊗ (⊗x1Hx

)⊗ (⊗x0,x11Hx0,x1
)

Nx0,x1,T0,T1,U
a0,a1,a2

= Mx0,x1,T0,T1,U
a0,a1,a2

⊗ (⊗x1Hx
)⊗ (⊗x0,x11Hx0,x1

).

Note that we omit the permutation of the Hilbert spaces in the definitions above. Then for
all xc

E
Tc∼Dxc

∑
a∈Fk

2

∥(Nxc,Tc
a ⊗ 1B − 1A ⊗ G̃xc

[w|Tc =a])
∣∣ψ̃〉∥2

= E
Tc∼Dxc

∑
a∈Fk

2

∥(Mxc,Tc
a ⊗ 1HA,xc

⊗ 1B − 1A ⊗Gxc

[w|Tc =a]) |ψ⟩ ⊗ |auxxc
⟩∥2.

Thus

E
c,xc

E
Tc∼Dxc

∑
a∈Fk

2

∥(Nxc,Tc
a ⊗ 1B − 1A ⊗ G̃xc

[w|Tc =a])
∣∣ψ̃〉∥2 ≤ O(ε1/4), (29)

and

E
x0,x1

E
U∼D(x0,x1)

∑
a∈Fk

2

∥(Nx0,x1,U
a ⊗ 1B − 1A ⊗ H̃x0,x1

[w|U =a])
∣∣ψ̃〉∥2 ≤ O(ε1/4). (30)

Note these relations also hold with the two systems flipped.

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:69

Passing the Cross Checks implies that

Nx0,x1,T0,T1,U
a0

⊗ 1B ≈O(ε) 1A ⊗Nx0,T0
a0

(31)
Nx0,x1,T0,T1,U

a1
⊗ 1B ≈O(ε) 1A ⊗Nx1,T1

a1
(32)

Nx0,T0
a0

⊗ 1 ≈O(ε) 1A ⊗Nx0,T0
a0

(33)
Nx1,T1

a1
⊗ 1 ≈O(ε) 1A ⊗Nx1,T1

a1
(34)

Nx0,x1,T0,T1,U
a2

⊗ 1B ≈O(ε) 1A ⊗Nx0,x1,U
a2

(35)
Nx0,x1,T0,T1,U

a0,a1,a2
⊗ 1B ≈O(ε) 1A ⊗Nx0,x1,T0,T1,U

a0,a1,a2
, (36)

with respect to
∣∣ψ̃〉. These equations combined with Equations (29) and (30) imply the

measurements
{
Nx0,x1,T0,T1,U

a0,a1,a2

}
,
{
G̃x

u

}
and

{
H̃x0,x1

w

}
satisfy conditions of Lemma 75 with

respect to
∣∣ψ̃〉. Let{

Λx0,x1
u0,u1,w := G̃x0

u0
· G̃x1

u1
· H̃x0,x1

w · G̃x1
u1
· G̃x0

u0

}
be a POVM constructed following Lemma 75. Recall that Tc and U has κ independent
coordinates, so two different codewords agree on Tc or U with a probability at most ηκ

H = 1/2κ.
Hence we can applying Lemma 75 to this POVM with k = 3, δ := ε1/4 and ε := 1/2κ, and
get that

Nx0,x1,T0,T1,U
a0,a1,a2

⊗ 1B ≈O(ε1/48+1/2κ/6) 1A ⊗ Λx0,x1
[u0|T0 ,u1|T1 ,w|U =a0,a1,a2] (37)

with respect to
∣∣ψ̃〉, where [u0|T0 , u1|T1 , w|U = a0, a1, a2] means that Encℓ1(u0)|T0 = a0

and etc.. Passing Verify with a probability at least 1 − 10ε along with Equation (37)
and Lemma 70 implies that

{
Λx0,x1

u0,u1,w

}
can be used to pass the verify test with probability

1− 10ε−O(ε1/96 + (1/2)κ/6). The player would measure 1A⊗Λ on
∣∣ψ̃〉 and return the local

views of the measurement outcomes according to the questions.
Consider the measurements

{
Λx0,x1

u0,u1
:=
∑

w Λx0,x1
u0,u1,w

}
Let

p := E
x0,x1

∑
u0,u1:V (input,x0,x1,u0,u1)=1

〈
ψ̃
∣∣1A ⊗ Λx0,x1

u0,u1

∣∣ψ̃〉 ,
which is the probability that measuring with Λx0,x1

u0,u1
gives answers u0 and u1 accepted by the

verifier V when the questions are x0 and x1. Then

p= E
x0,x1

∑
u0,u1:

V (input,x0,x1,u0,u1)=1

∑
w

〈
ψ̃
∣∣1A ⊗ Λx0,x1

u0,u1,w

∣∣ψ̃〉
≥ E

x0,x1

∑
u0,u1:

V (input,x0,x1,u0,u1)=1

∑
w

〈
ψ̃
∣∣1A ⊗ Λx0,x1

u0,u1,w

∣∣ψ̃〉 · Pr
R

[V u0,u1,w
PCPP (input, x0, x1, 2 · 2ℓ1 ;R)=1]

= Pr[(
∣∣ψ̃〉 ,Λ) pass verify check]

−
∑

u0,u1:
V (input,x0,x1,u0,u1)=0

∑
w

〈
ψ̃
∣∣1A ⊗ Λx0,x1

u0,u1,w

∣∣ψ̃〉 · Pr
R

[V u0,u1,w
PCPP (input, x0, x1, 2 · 2ℓ1 ;R) = 1]

≥ 1 − 10ε−O(ε1/96 + (1/2)κ/6)

−
∑

u0,u1:
V (input,x0,x1,u0,u1)=0

∑
w

〈
ψ̃
∣∣1A ⊗ Λx0,x1

u0,u1,w

∣∣ψ̃〉 · Pr
R

[V u0,u1,w
PCPP (input, x0, x1, 2 · 2ℓ1 ;R) = 1]

≥ 1 − 10ε−O(ε1/8 + 1/2κ) − (1 − p)s,

CCC 2024

30:70 The Computational Advantage of MIP∗ Vanishes in the Presence of Noise

where s is the soundness of VPCPP. In the derivation above, PrR[V u0,u1,w
PCPP (input, x0, x1, 2 ·

2ℓ1 ;R) = 1] is the probability that VPCPP accepts input. For any x0, x1, u0, u1 not accepted
by V , this probability is below s by [39, Proposition 17.8]. Hence

p ≥ 1− 10ε−O(ε1/96 + (1/2)κ/6)− s
1− s = 1− 10ε+O(ε1/96 + (1/2)κ/6)

1− s .

In the end, we use (
{
G̃x

u

}
,
∣∣ψ̃〉) as a strategy for V . Applying Lemma 73 to Equations (29),

(33), and (34), we get that

G̃x0
u|T0 =a ⊗ 1 ≈O(ε1/4) 1⊗ G̃x0

u|T0 =a

with respect to the distribution of x0 and the distribution of T0 determined by x0 on the
state

∣∣ψ̃〉. Since
{
G̃x0

u

}
is a projective measurement, we know

E
x0

E
T0∼Dx0

∑
a

〈
ψ̃
∣∣ G̃x0

u|T0 =a ⊗ G̃
x0
u|T0 =a

∣∣ψ̃〉 ≥ 1−O(ε1/4).

On the other hand

E
x0

E
T0∼Dx0

∑
a

〈
ψ̃
∣∣ G̃x0

u|T0 =a ⊗ G̃
x0
u|T0 =a

∣∣ψ̃〉
= E

x0

∑
u

〈
ψ̃
∣∣ G̃x0

u ⊗ G̃x0
u

∣∣ψ̃〉+ E
x0

E
T0∼Dx0

∑
u ̸=u′:u|T0 =u′|T0

〈
ψ̃
∣∣ G̃x0

u ⊗ G̃
x0
u′

∣∣ψ̃〉
= E

x0

∑
u

〈
ψ̃
∣∣ G̃x0

u ⊗ G̃x0
u

∣∣ψ̃〉+ E
x0

E
T0∼Dx0

∑
u ̸=u′

1[u|T0 = u′|T0]
〈
ψ̃
∣∣ G̃x0

u ⊗ G̃
x0
u′

∣∣ψ̃〉 .
Since for all x0 and u ̸= u′, ET0∼Dx0

1[u|T0 = u′|T0] ≤ 1/2κ, we know

E
x0

∑
u

〈
ψ̃
∣∣ G̃x0

u ⊗ G̃x0
u

∣∣ψ̃〉 ≥ 1− 1/2κ −O(ε1/4).

Again, because
{
G̃x0

u

}
is a projective measurement

E
x0

∑
u

∥(G̃x0
u ⊗ 1− 1⊗ G̃x0

u)
∣∣ψ̃〉∥2 ≤ 1

2κ−1 +O(ε1/4).

Let S(x0, x1) = {(a0, a1) | V (x0, x1, a0, a1) = 1}. We can calculate

| E
x0,x1

∑
(a0,a1)∈S

〈
ψ̃
∣∣ G̃x0

a0
⊗ G̃x1

a1

∣∣ψ̃〉− 〈ψ̃∣∣ G̃x0
a0
⊗ G̃x1

a1
G̃x0

a0

∣∣ψ̃〉|
≤
√

E
x0,x1

∑
(a0,a1)∈S

∥G̃x0
a0 ⊗ G̃x1

a1

∣∣ψ̃〉∥2

·
√

E
x0,x1

∑
(a0,a1)∈S

〈
ψ̃
∣∣ (G̃x0

a0 ⊗ 1− 1⊗ G̃x0
a0)(1⊗ G̃x1

a1)(G̃x0
a0 ⊗ 1− 1⊗ G̃x0

a0)
∣∣ψ̃〉

≤ 1 ·
√

E
x0

∑
a0

∥(G̃x0
a0 ⊗ 1− 1⊗ G̃x0

a0)
∣∣ψ̃〉∥2

≤ O(1
2κ/2 + ε1/8),

Y. Dong, H. Fu, A. Natarajan, M. Qin, H. Xu, and P. Yao 30:71

and

| E
x0,x1

∑
(a0,a1)∈S

〈
ψ̃
∣∣1⊗ G̃x0

a0
G̃x1

a1
G̃x0

a0

∣∣ψ̃〉− 〈ψ̃∣∣ G̃x0
a0
⊗ G̃x1

a1
G̃x0

a0

∣∣ψ̃〉|
≤
√

E
x0,x1

∑
(a0,a1)∈S

∥1⊗ G̃x1
a1 G̃

x0
a0

∣∣ψ̃〉∥2

·
√

E
x0,x1

∑
(a0,a1)∈S

〈
ψ̃
∣∣ (G̃x0

a0 ⊗ 1− 1⊗ G̃x0
a0)(1⊗ G̃x1

a1)(G̃x0
a0 ⊗ 1− 1⊗ G̃x0

a0)
∣∣ψ̃〉

≤ 1 ·
√

E
x0

∑
a0

∥(G̃x0
a0 ⊗ 1− 1⊗ G̃x0

a0)
∣∣ψ̃〉∥2

≤ O(1
2κ/2 + ε1/8).

Note that G̃x0
a0
G̃x1

a1
G̃x0

a0
= Λx0,x1

a0,a1
. Therefore,

| E
x0,x1

∑
(a0,a1)∈S

〈
ψ̃
∣∣ (G̃x0

a0
⊗ G̃x1

a1
− 1⊗ Λx0,x1

a0,a1
)
∣∣ψ̃〉| ≤ O(1

2κ/2 + ε1/8).

On the other hand, we have shown

E
x0,x1

∑
(a0,a1)∈S

〈
ψ̃
∣∣1⊗ Λx0,x1

a0,a1
)
∣∣ψ̃〉 = p ≥ 1−O(ε1/96 + (1/2)κ/6).

Hence, the winning probability of the strategy (
{
G̃x

u

}
,
∣∣ψ̃〉) is at least 1− C1

2κ/6 − C2ε
1/96 for

some constants C1 and C2. Hence, K1 = C1
2κ/6 and K2 = C2 in the soundness statement. ◀

Proof of Theorem 36. We first oracularize the MIP∗ protocol for the Halting problem
from [28]. Denote the oracularized verifier by V . For inputs of size n, the verifier’s running
time for sampling questions and checking answers is O(poly(n)). The sizes of the questions
and answers are also O(poly(n)). The oracularized protocol maintains completeness 1 and a
constant soundness.

Define the language LEnc as in Definition 33 for V . Then LEnc ∈ DTIME(2poly(n)) because
the most costly step of the decider of LEnc is running Decpoly(n) which takes O(2poly(n)) time.
By Definition 32, the PCPP verifier VPCPP for LEnc has randomness complexity O(poly(n)),
query complexity O(1), and verification time O(poly(n)).

Next, we apply the answer reduction technique of this section to V to get verifier V AR.
The sampling time of V AR is the sum of the sampling time of V , the sampling time of
VPCPP, and the sampling time of the additional constantly many independent coordinates,
so it is O(poly(n)). Since the question sizes of V and VPCPP are both O(poly(n)), the
question size of V AR is also O(poly(n)). The answers expected by V AR are constantly many
bits, so the answer size is O(1). Lastly, the verification time of V AR is determined by the
verification time of VPCPP, so it is also O(poly(n)). The completeness and soundness of V AR

follow from Theorem 35. Then the theorem statement follows from the Halting problem is
RE-complete. ◀

CCC 2024

Low-Depth Algebraic Circuit Lower Bounds over
Any Field
Michael A. Forbes #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
The recent breakthrough of Limaye, Srinivasan and Tavenas [15] (LST) gave the first super-
polynomial lower bounds against low-depth algebraic circuits, for any field of zero (or sufficiently large)
characteristic. It was an open question to extend this result to small-characteristic ([8, 9, 16]), which
in particular is relevant for an approach to prove superpolynomial AC0[p]-Frege lower bounds ([9]).

In this work, we prove super-polynomial algebraic circuit lower bounds against low-depth
algebraic circuits over any field, with the same parameters as LST (or even matching the improved
parameters of Bhargav, Dutta, and Saxena [3]). We give two proofs. The first is logical, showing that
even though the proof of LST naively fails in small characteristic, the proof is sufficiently algebraic
that generic transfer results imply the result over characteristic zero implies the result over all fields.
Motivated by this indirect proof, we then proceed to give a second constructive proof, replacing the
field-dependent set-multilinearization result of LST with a set-multilinearization that works over
any field, by using the Binet-Minc identity [17].

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases algebraic circuits, lower bounds, low-depth circuits, positive characteristic

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.31

Funding Michael A. Forbes: Supported by NSF CAREER award 2047310.

1 Introduction

Algebraic complexity asks for the best methods to compute multivariate polynomials
f(x1, . . . , xn) from the primitive operations of addition and multiplication, using constants
from the underlying field F for free. These computations are organized as an algebraic circuit,
a directed acyclic graph of these primitive operations from the input variables x1, . . . , xn. The
complexity of this object is primarily governed by its size, which is the number of operations
in the circuit. Another complexity measure is the product depth, which is the maximum
number of product operations on any input to output path. In a recent breakthrough, Limaye,
Srinivasan and Tavenas [15] (LST) gave the first superpolynomial lower bounds for explicit
polynomials to be computed by low-product-depth algebraic circuits, in large characteristic.1

The main motivation for our work was to better understand the breakthrough work of
Limaye, Srinivasan and Tavenas [15] (LST), as it left several open problems. In particular,
Limaye, Srinivasan and Tavenas noted in their survey [16] the challenge of obtaining their
lower bound over arbitrary fields; a problem this paper resolves. We briefly review the
motivation for this challenge.

Algebraic Circuit Lower Bounds

Obtaining circuit lower bounds over any field is a fundamental aspect of algebraic complexity
theory, as both the large and small characteristic settings are fundamentally interesting.
These two regimes are somewhat incomparable in their difficulty. However there is the general

1 For ease of exposition, we will write “large characteristic” to mean “large (or zero) characteristic”.

© Michael A. Forbes;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:miforbes@illinois.edu
https://doi.org/10.4230/LIPIcs.CCC.2024.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Low-Depth Algebraic Circuit Lower Bounds over Any Field

intuition that lower bounds in small characteristic “should be” easier, as there are “fewer”
efficient algorithms to rule out. Following this intuition, a small characteristic analogue of
LST should be achievable, as done in this paper.

To justify this intuition, here are examples of efficient algebraic algorithms known to
exist in large characteristic which currently lack analogues in small characteristic. First,
consider the Newton identities, which relate the elementary symmetric polynomials to the
power-sum polynomials, but only in large characteristic. These identities are crucial in various
algebraic complexity settings. For example, for constructing non-trivially small depth-4
formulas for the elementary symmetric polynomials ([20]) (as used by Limaye, Srinivasan
and Tavenas [15]). Another example is a folklore construction of a polylogarithmic-depth
polynomial-size algebraic circuit for the determinant (essentially the Faddeev–LeVerrier
algorithm, expressed as an algebraic circuit), which uses traces of matrix powers to compute
the power-sums of eigenvalues, and then computes the product of the eigenvalues (the
determinant) from these power-sums using a small formula constructed from the Newton
identities.

Another example is Fischer’s identity [5], which shows how to compute the monomial
x1 . . . xn as a homogeneous sum of powers of linear forms, but only in large characteristic. This
identity was crucial to the celebrated depth-reduction of algebraic circuits to depth-3 ([13]).

A more computational example is the fundamental result in algebraic complexity that
small algebraic circuits can be factored efficiently ([14]); however in characteristic p the result
only produces a factorization up to p-th powers. The current inability (despite recent progress
of Andrews [2]) to take p-th roots of algebraic circuits in characteristic p in particular leads
to weaker hardness versus randomness trade-offs.

On the other hand, there are efficient algorithms that arise only in small characteristic
and as such the above intuition is not quite correct. In particular, in characteristic p we
have the identity (x + y)p = xp + yp. In characteristic 2, we can compute the permanent
efficiently (as det = perm over such fields) and also have a tighter connection between
boolean and algebraic circuits. One can also view n× n Hadamard matrices as examples of
this phenomenon, as in large characteristic they are full rank (and as such, “hard”), but in
characteristic two then can have rank O(log n) (and as such, “easy”). Additionally, lifted
Reed-Solomon codes ([12]) and William’s algorithm for k-path ([22]) are other techniques
that only work in small characteristic.

Proof Complexity

Aside from interest in algebraic circuit lower bounds in small characteristic for their own
sake, there are significant applications of such lower bounds.

A long-standing open question in proof-complexity is to prove superpolynomial lower
bounds over constant-depth reasoning using modular gates, in particular the AC0[p]-Frege
system. This challenge is notable as the boolean circuit complexity version has been solved
by Razborov [19] and Smolensky [21], but the techniques have thus far not been successfully
exported into the proof-complexity setting. In the context of this challenge, Grochow and
Pitassi [11] showed that their Ideal Proof System (IPS) can efficiently simulate AC0[p]-Frege
when IPS is over a field of characteristic p, and hence in particular that superpolynomial
lower bounds for constant-depth IPS refutations of CNFs in characteristic p would give
superpolynomial lower bounds against AC0[p]-Frege.

Toward this goal, Govindasamy, Hakoniemi, and Tzameret [9] showed how the lower
bound of Limaye, Srinivasan and Tavenas [15] can yield a superpolynomial lower bound
against (multilinear) constant-depth IPS refutations for (a variant of) the subset-sum problem,
in large characteristic. While the subset-sum problem they use is easy in small characteristic

M. A. Forbes 31:3

and hence our lower bounds cannot as is improve their results, our results eliminate one
barrier to progress toward constant-depth IPS lower bounds in characteristic p, and hence
AC0[p]-Frege lower bounds.

Polynomial Identity Testing

For applications within algebraic complexity itself, Limaye, Srinivasan and Tavenas [15]
showed how their lower bound yields a deterministic subexponential time polynomial identity
testing (PIT) algorithm for constant-depth algebraic circuits, in large characteristic. The
restriction on characteristic comes from two places, the lower bound itself, as well as the
known relations between algebraic hardness and derandomization. By removing one of these
restrictions, our result hence makes progress toward obtaining corresponding PIT algorithms
in small characteristic.

2 Our results

The lower bound of LST has two components. The first is a new set-multilinearization result
for algebraic circuits, showing that algebraic circuits can be non-trivially set-multilinearized
in a particular regime of parameters. The second component is a new lower bound for
set-multilinear formulas. While the second component holds over any field, the first requires
large characteristic. As such, our work focuses on this first component, which we now discuss
more in depth.

Recall that for a partition of variables x1 ⊔ · · · ⊔ xd, a set-multilinear monomial is one of
the form x1,i1 · · ·xd,id

. A set-multilinear polynomial is a linear combination of set-multilinear
monomials. Many important polynomials are set-multilinear with respect to natural partitions
of the variables. For example, the permanent of a matrix is set-multilinear with respect
to the partition of the matrix into rows. For algebraic circuits computing set-multilinear
polynomials it is natural to ask that the circuit respects the set-multilinear structure. In
particular, we say that an algebraic circuit is (syntactically) set-multilinear if all product
gates f = f1 · · · fk in the circuit have that the fi are on disjoint parts of the variable partition.
It follows then that set-multilinear circuits can only compute set-multilinear polynomials.

The first step of LST is a set-multilinearization result which transforms a low-depth
algebraic circuit on n variables computing a degree d set-multilinear polynomial to one
computing the same polynomial, where now the computation is itself set-multilinear. One
pays for imposing this structure by increasing the circuit size. Crucially, the size only
increases by a function of the degree d, not in the number of variables n.

▶ Theorem 1 ([15]). Let F be a field of characteristic char(F) > d (or zero), where d is
a parameter. Let f a set-multilinear polynomial of degree d, computed by a product-depth
∆ circuit of size s. Then f is computed by a (dd · s)O(1)-size set-multilinear circuit of
product-depth 2∆.

This result is proven in two steps. The first is to use an efficient low-depth homogenization
transformation, that will double the product depth and increase the circuit size by 2O(

√
d).

This construction uses that the characteristic is large, and is a generalization of the following
result.

▶ Theorem 2 ([20]). Let F be a field of characteristic > d, or zero. Then the elementary
symmetric polynomial esymn,d =

∑
S∈([n]

d)
∏

i∈S xi has a homogeneous depth-4 sums of

products of sums of powers (
∑ ∏ ∑ ∧

) formula of size poly(n, 2
√

d).

CCC 2024

31:4 Low-Depth Algebraic Circuit Lower Bounds over Any Field

The standard connection between elementary symmetric polynomials and computing
homogeneous parts allows the above theorem to homogenize depth-3 circuits into homogeneous
depth-5 circuits with a 2O(

√
d)-blowup in circuit size. LST generalized Theorem 2 to weighted

elementary symmetric polynomials to allow the idea to succeed in higher depths.
After converting product-depth ∆ to homogeneous product-depth 2∆, LST then convert

the circuit to be set-multilinear while preserving the product-depth. This conversion will
work over any field, and is a simple gate-simulation proof.

▶ Theorem 3 ([15]). Let F be any field. Let f be a set-multilinear polynomial of degree
d, computed by a homogeneous product-depth ∆ circuit of size s. Then f is computed by a
poly(dd, s)-size set-multilinear circuit of product-depth ∆.

Combining the two steps of homogenization, then set-multilinearization, LST obtained
the following.

▶ Theorem 4 ([15]). Let F be a field of characteristic char(F) > d (or zero). Let f be a
set-multilinear polynomial computed by a product-depth ∆ circuit of size s. Then f can be
computed by a (dd · s)O(1)-size set-multilinear circuit of product-depth 2∆.

The most natural method to obtaining the result of LST in arbitrary fields would be to
give an efficient homogenization for low-depth circuits over all fields, and indeed this was
posed as an open question in [8, 9, 16]. However, a barrier to this approach is that it is still
open to develop an analogue of Theorem 2 in small characteristic fields.

Additionally, a recent work of Fournier, Limaye, Srinivasan, Tavenas [8] formalized this
barrier, by showing that in small characteristic that a certain form of Newton identities
cannot hold. This shows that while in large characteristic the Newton identities imply
efficient low-depth homogenization for low-degree polynomials, there are provable barriers
for obtaining an analogous result in small characteristic.

2.1 Lower bounds over any field, without explicit set-multilinerization
Our first result is to show that while we do not overcome this barrier, we never the less
obtain the lower bound of LST over any field, which we state here incorporating the improved
parameters from Bhargav, Dutta, and Saxena [3].

▶ Theorem (Main Theorem, Theorem 10). Let F be any field, and d = o(log n). Then the
iterated matrix multiplication polynomial IMMn,d = (X1 · · ·Xd)1,1 where Xi is an n × n
symbolic matrix, requires

n
Θ

(
d

1
F2∆+2−1 /∆

)
size algebraic circuits of product depth ∆, where Fk is the k-th Fibonacci number (so F0 = 0,
F1 = F2 = 1, F3 = 2, etc.).2

We observe that one can bypass the above barrier, and indeed the entire need for efficient
low-depth homogenization, by arguing that the original techniques of LST already suffice for
obtaining their result in low-characteristic, due to considerations from mathematical logic.
That is, we study the proof of LST, and argue that the proof is sufficiently algebraic so that
generic algebraic arguments imply the result holds over arbitrary fields.

2 Bhargav, Dutta, and Saxena [3] use a slightly different indexing of Fibonacci numbers.

M. A. Forbes 31:5

We abstract the methods of LST as follows, which is loosely inspired by Geometric
Complexity Theory, as well as the theory of algebraic natural proofs ([7, 10]). Given a
polynomial f of degree d in n variables, we can view the polynomial as a list of N =

(
n+d

d

)
coefficients which we call the coefficient vector coeff(f). We then seek to construct a
polynomial Q (or in fact a collection of polynomials Q1, . . . , QM) in N variables such that
Q(coeff(f)) = 0 whenever f has a small low-depth algebraic circuit. At the same time, we
want Q(coeff P) ̸= 0 (or in fact, Qi(coeff(P)) ̸= 0 for some i) for some polynomial P . One
can then conclude that P does not have a small low-depth algebraic circuit.

One can instantiate LST in this framework as follows. One can carefully rewrite the
coefficients of polynomial f into a matrix Cf , and argue that the matrix Cf has low-rank.
As matrix rank is characterized by the vanishing of determinant of submatrices, we can take
the polynomials Qi to be the relevant determinants. Any polynomial P whose associated
matrix CP has high-rank will have a non-vanishing determinant, and hence Qi(coeff(P)) ̸= 0
for some i.

Many lower bounds techniques in algebraic complexity theory fall in the above “rank
based” framework, and often in such proofs one proves that the matrix is high rank by
arguing that there exists a large triangular submatrix whose diagonal entries are all 1. In
such cases, the determinant of this submatrix is in fact 1, so the matrix is high-rank over
every field. LST follows this approach, and as such this part of the framework does not
depend on the characteristic.

Instead, the dependence on the characteristic comes into the argument that the rank
of the matrices Cf is small. To show the rank is small over any field, we first note that
the relevant determinants are in fact polynomials with integer coefficients, regardless of
the actual field of consideration. Second, we note that small low-depth algebraic circuits
have a universal circuit U(x, y) ([18]),3 such that f = U(x, β) for some constants β and
U(x, y) has a small low-depth circuit. Further, U has integer coefficients. We then argue
that viewing the field of computation as the characteristic zero field Q(y) (rational functions
in the indeterminates y), the matrix CU must have low-rank, as the argument of LST applies.
However, CU having low-rank over Q(y) implies certain determinants of integer polynomials
vanish, and thus also modulo p for any prime p. Hence CU has low-rank over any field, and
this will remain true even when we substitute y ← β. In particular, Cf has low rank as
desired.

The overall idea is the standard fact from mathematical logic that if you want to prove a
polynomial identity A(x) = 0 where A has integer coefficients, then proving this identity in
characteristic zero implies the result over every field because zero over the integers is zero
modulo every prime p. A well-known example of this is the Cayley-Hamilton theorem, which
states that every n×n matrix A is a root of its characteristic polynomial pA(x) = det(xI−A).
Viewing the entries of A as symbolic this can be viewed as a polynomial identity with integer
coefficients, so suffices to prove it in characteristic zero, even if you use techniques specific
to characteristic zero. The Cayley-Hamilton theorem can be proven in characteristic zero
in two steps. First, one argues the theorem is true for all diagonalizable matrices, which is
simple. Second, one argues that diagonalizable matrices are topologically dense in C (say,
in the Euclidean topology, a notion highly tied to characteristic zero) amongst all matrices,
and hence by continuity the identity must also vanish on all matrices as desired. As such,
one proves the Cayley-Hamilton theorem over all fields using techniques highly specific to
characteristic zero.4

3 In the actual proof we do not need the universal circuit machinery and appeal to simpler arguments.
4 One can avoid the use of characteristic zero here using better algebraic techniques, such as Jordan

normal form.

CCC 2024

31:6 Low-Depth Algebraic Circuit Lower Bounds over Any Field

2.2 Lower bounds over any field, via explicit set-multilinearization
The results from the previous section showed that we were able to obtain the result of LST over
any field without actually efficiently converting algebraic circuits to be set-multilinear. This is
very suggestive that such a transformation should be achievable. While the barrier from above
regarding efficient small-characteristic homogenization still is present, we observe that we
can bypass this barrier (again) by combining the homogenization and set-multilinearization
steps used by LST into a single transformation.

▶ Theorem (Corollary 27). Let F be any field. Let the variables x be partitioned into
x = x1 ⊔ · · · ⊔ xd. Let f be a set-multilinear polynomial computed by a product-depth ∆
circuit of size s. Then f can be computed by a (dd · s)O(1)-size set-multilinear circuit of
product-depth 2∆.

This result is proven by a standard gate simulation argument. The new component is to
replace the use of the Newton identities by LST (which only work in large characteristic),
by the Binet-Minc identity [17], which is a non-trivial depth-4 set-multilinear identity for
computing (rectangular) permanents over any field. This is a natural step, as the Binet-Minc
identity can, in large characteristic, be used (see Corollary 19) to recover the efficient depth-4
homogeneous formula for the elementary symmetric polynomial (Theorem 2) whose lack of
small characteristic analogue is a barrier for LST holding in small characteristic.

Replacing the set-multilinearization of LST with the above result allows the rest of the
proof of LST (and the improvement of Bhargav, Dutta, and Saxena [3]) to work over any
field, giving another proof of our main result from above.

We note that that Binet-Minc identity has also recently been used in algebraic complexity
by Curticapean, Limaye and Srinivasan [4] for unrelated reasons.

The above Corollary 27 is a more constructive method for proving the LST result in small
characteristic, while the logical method is much more indirect. However we present the logical
approach because it was the first proof we discovered, which motivated the constructive
proof, and also the logical approach may have applications in other situations.

2.3 Related Work
An intriguing aspect of the work of LST is that it does not use the somewhat recent notion
of shifted partial derivatives, which has powered numerous advances in algebraic circuit lower
bounds in the past decade. Motivated by this, Amireddy, Garg, Kayal, Saha, Thankey [1]
were able to essential re-establish LST using shifted partial derivatives. They gave a novel
analysis of shifted partials using several “imbalance” ideas related to LST, but crucially their
analysis avoided the need to discuss set-multilinear polynomials and as such is perhaps more
flexible than the set-multilinear methods of LST.

One of their main lower bounds was that any homogeneous product-depth ∆ formula
computing IMMn,d requires size ≥ nΩ(d21−∆

/∆), when d ≤ O(lg n), over any field. Recall
that LST showed, over fields of large characteristic, that general circuits computing degree d
polynomials can be homogenized with a doubling in product-depth, and a 2Ω(

√
d) blow-up

in circuit size. Invoking this transformation, it follows that the results of Amireddy, Garg,
Kayal, Saha, Thankey [1] establish super-polynomial lower bounds for general low-depth
circuits, over fields of large characteristic. Quantitatively, the resulting bounds are in between
those of LST and those of Bhargav, Dutta, and Saxena [3].

While this paper does not provide a low-depth homogenization transformation akin to that
of LST over arbitrary fields, the logical methods of section 3 straightforwardly extend to the
setting of Amireddy, Garg, Kayal, Saha, Thankey [1]. That is, the rank-based lower bound
they establish for IMMn,d holds over all fields. The rank-based upper bound shows that all

M. A. Forbes 31:7

low-depth general circuits are simple in characteristic zero, using LST’s homogenization and
their shifted partial analysis. One then can, as in section 3, generically transfer these two
rank bounds to arbitrary fields, hence obtaining the lower bound for computing IMMn,d via
low-depth circuits over an arbitrary field. We omit the straightforward details, in particular
because the resulting parameters are worse that what are obtained in this work because we
invoke the improved parameters from the set-multilinear lower bounds of Bhargav, Dutta,
and Saxena [3].

3 Lower bounds over any field, via mathematical logic

In this section, we prove that the LST lower bound holds over any field, using techniques
from mathematical logic that transfer the result from large characteristic to all characteristic.
The following is our key lemma that transfers algebraic statements between different fields,
in particular showing that an integer matrix having low rank in characteristic zero implies it
has low-rank over every field. For our actual needs, we will need to consider matrices with
entries that are polynomials with integer coefficients.

▶ Lemma 5. Let M ∈ Z[x]m×n be a matrix with integer polynomial entries. Let F be any
field, and interpret M ∈ F[x]m×n via the unique non-trivial ring homomorphism φ : Z→ F.
Then for any α ∈ Fx,

rankFM(α) ≤ rankF(x) M(x) ≤ rankQ(x) M(x) .

Proof.
1) rankF(x) M(x) ≤ rankQ(x) M(x): In both cases the matrix M is the same, we simply
change the field of interpretation. Recall that a matrix is rank ≤ s iff all (s+ 1)× (s+ 1)
submatrices have zero determinant. Let r = rankQ(x) M(x) so that all (r + 1) × (r + 1)
submatrices of M [x] have zero determinant in Q(x). As M has polynomial entries, and
the determinant is a polynomial, it follows that under the homomorphism φ that these
submatrices still have zero determinant. As such, all (s+ 1)× (s+ 1) submatrices of M have
zero determinant when viewed as a matrix in F[x]m×n, so that rankF(x) M(x) ≤ s.
2) rankF M(α) ≤ rankF(x) M(x): Let t = rankF(x) M(x), so that all (t + 1) × (t + 1)
submatrices of M have determinant zero in F[x]. Define the ring homomorphism ψ : F[x]→ F
by x→ α. As above, it then follows that all (t+ 1)× (t+ 1) submatrices of M have zero
determinant under this homomorphism. But as ψ(M(x)) = M(α), it then follows that all
such submatrices of M(α) have zero determinant in F, so rankFM(α) ≤ t. ◀

▶ Definition 6. Let F a field. Let x be a set of variables with a partition x = y1 ⊔ · · · ⊔ ydy
⊔

z1 ⊔ · · · ⊔ zdz
, where d = dy + dz. Let Y denote the set of all set-multilinear monomials

with respect to the partition y = y1 ⊔ · · · ⊔ ydy
, and let Z denote the set of all set-multilinear

monomials with respect to the partition z = z1 ⊔ · · · ⊔ zdz .
Given a polynomial f(x) which is set-multilinear with respect to the above partition, define

the coefficient matrix Cf ∈ FY ×Z by

(Cf)
yb,zc = Coeff

ybzc(f),

where yb, zc are set-multilinear monomials, and Coeff takes the coefficient of ybzc in f .
The relative rank of f is then defined as

relrankF(f) := rankF(Cf)√
|Y | · |Z|

.

where rankF(Cf) is the matrix rank of Cf over the field F.

CCC 2024

31:8 Low-Depth Algebraic Circuit Lower Bounds over Any Field

The following set-multilinearization result is a slight extension of what is proven in LST,
and follows from their methods as noted by [9].

▶ Definition 7. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd. A monomial is
set-multilinear (with respect to the partition x = x1 ⊔ · · · ⊔ xd) if it can be written has∏d

i=1(xi)ji
for some j1, . . . , jd.

Define the set-multilinear projection (with respect to the partition x = x1⊔· · ·⊔xd)
to be the linear map πsm : F[x]→ F[x] which is identity on set-multilinear monomials, and
zero on all other monomials.

▶ Theorem 8 ([9, 15]). Let F be a field of characteristic char(F) > d (or zero), where d is a
parameter. Let f be a product-depth ∆ circuit of size s. Let the variables x be partitioned
into x = x1 ⊔ · · · ⊔ xd. Then the set-multilinear projection πsm(f) has a (dd · s)O(1)-size
set-multilinear circuit of product-depth 2∆.

We quote here the summary of the LST lower bound results that we need, incorporating
the improved parameters from Bhargav, Dutta, and Saxena [3].

▶ Theorem 9 ([3, 15]). Let F a field. Let x be a set of n variables, and d ≤ o(log n) a
parameter. Then there exists a partition x = y1 ⊔ · · · ⊔ ydy

⊔ z1 ⊔ · · · ⊔ zdz
, only depending

on n and d, where d = dy + dz, such that any f(x) computed by a set-multilinear circuit of
size s and product-depth ∆ has relative rank bounded by

relrank(f) ≤ s · n
−Θ

(
d

1
F∆+2−1 /∆

)
.

Further, there exists a set-multilinear polynomial P with {0, 1}-coefficients such that

relrank(P) ≥ 1
nΘ(1) ,

and P can be computed via evaluating the iterated matrix multiplication polynomial IMMn,d

to carefully chosen linear forms.

We now give our characteristic-free version of the above.

▶ Theorem 10. Let F be any field, and d = o(log n). Then IMMn,d requires

n
Θ

(
d

1
F2∆+2−1 /∆

)
size algebraic circuits of product depth ∆.

Proof. Let x be a set of n variables. From Theorem 9, there exists a partition x =
y1 ⊔ · · · ⊔ ydy

⊔ z1 ⊔ · · · ⊔ zdz
, only depending on n and d (and not on F), where d = dy + dz,

such that any f(x) computed by a set-multilinear circuit of size s and product-depth ∆ has
relative rank bounded by

relrank(f) ≤ s · n
−Θ

(
d

1
F∆+2−1 /∆

)
.

Further, there exists a set-multilinear polynomial P with {0, 1}-coefficients such that

relrank(P) ≥ 1
nΘ(1) ,

M. A. Forbes 31:9

and P can be computed via evaluating the iterated matrix multiplication polynomial IMMn,d

to carefully chosen linear forms. In particular, any algebraic circuit lower bound for P
extends, up to poly(n) factors, to IMMn,d, so it suffices to prove the lower bound for P .

Suppose P (interpreted as a polynomial in F[x]) is computed by an algebraic circuit Φ
over F of size s and product-depth ∆. Create a new algebraic circuit Ψ by replacing each
field constant used in Φ with a distinct variable, so Ψ is size-s product-depth ∆ algebraic
circuit over the original variables x along with new variables w. Denote f(x,w) to be the
polynomial computed by Ψ. As Ψ is defined free from field constants, f can be viewed as
an integer polynomial f ∈ Z[x,w]. Finally, we can relate P and f by undoing the above, so
that there are values γ from F such that P (x) = f(x, γ).

Note that f(x,w) may not be set-multilinear, or even of particularly low-degree. However,
it does follow that πsm(P (x)) = πsm(f(x, γ)) as the equality P (x) = f(x, γ) is coefficient-wise,
so applying πsm to each side of equation either keeps the coefficient of P and f the same
(if the monomial is set-multilinear) or makes both coefficients zero (if the monomial is not
set-multilinear). As P is set-multilinear, we have P = πsm(P), so hence P = πsm(f(x, γ)).

Now view Ψ as a circuit with constants over the field Q(w), so that f ∈ Q(w)[x]. It follows
from Theorem 8 that πsm(f) has a (dd · s)O(1)-size set-multilinear circuit of product-depth
2∆, and as such,

relrankQ(w)(πsm(f(x,w))) ≤ (dd · s)O(1) · n
−Θ

(
d

1
F2∆+2−1 /∆

)
.

Using that relative rank is just the (scaled) rank of a matrix, we can invoke Lemma 5, to see
that

relrankF(πsm(f(x, γ))) ≤ relrankQ(w)(πsm(f(x,w))) .

As P = πsm(f(x, γ)), we thus obtain that

1
nΘ(1) ≤ relrankF(P) ≤ (dd · s)O(1) · n

−Θ
(

d
1

F2∆+2−1 /∆
)

which yields the desired lower bound for s (using that d = o(log n)). ◀

4 Lower bounds over any field, constructively

In this section we give a constructive proof that any small low-depth algebraic circuit can
be non-trivially set-multilinearized, over any field. As mentioned, by replacing the field-
dependent set-multilinearization of LST with our set-multilinearization, this gives another
proof of our main theorem (Theorem 10). The starting point for our construction is the
rectangular permanent.

▶ Definition 11. Let X be an n × m symbolic matrix of variables, with n ≤ m, where
Xi,j = xi,j are distinct variables. Define the (rectangular) permanent perm(X) ∈
Z[(xi,j)i∈[n],j∈[m]] by

permn×m(X) =
∑

σ:[n]↪→[m]

x1,σ(1) · · ·xn,σ(n) ,

that is, the sum runs over all injective maps σ from [n] to [m].

Note in particular that permn×m is a set-multilinear polynomial when we partition the
matrix into its rows.

It is sometimes helpful to view the rectangular permanent as a sum of square permanents.

CCC 2024

31:10 Low-Depth Algebraic Circuit Lower Bounds over Any Field

▶ Lemma 12. Let X be an n×m symbolic matrix of variables, with n ≤ m, where Xi,j = xi,j

are distinct variables. Then,

permn×m(X) =
∑

S∈([m]
n)

permn×n(X|[n]×S) .

The above lemma shows the rectangular permanent is computable by poly(mn) size
algebraic circuits. However, the following identity gives a non-trivially better algorithm.

▶ Theorem 13 (Binet-Minc Identity [17]). Let X be an n×m symbolic matrix of variables,
with n ≤ m, then the permanent can be computed by

permn×m(X) =
∑

F∈Pn

(−1)n−|F|
∏

S∈F
(|S| − 1)!

m∑
j=1

∏
i∈S

xi,j

where Pn is the set of all partitions of [n] into (non-empty) sets, and |F| is the number of
parts in the partition F of [n].

To understand the complexity of this expression it is helpful to have the following
definition.

▶ Definition 14. Define the n-th Bell number Bn to be the number of ways to partition
[n] into (non-empty) sets.

We will use the following asymptotic estimate of Bell number size.

▶ Fact 15 ([6]). Bn = Θ
(

n
ln n

)n.

The following lemma is easy to prove from the definition of Bell numbers.

▶ Lemma 16. Bn ·Bm ≤ Bn+m.

The Binet-Minc identity immediately implies the following algebraic circuit for the
permanent.

▶ Corollary 17. The rectangular permanent permn×m has a
∑Bn

∏n ∑m ∏n formula of
size poly(m,Bn), where the super-scripts are upper bounds on the respective fan-ins of the
formula. Further, this formula is set-multilinear (and hence homogeneous) with respect to
the partition of the n×m variables into rows.

Note that for m = n that this formula has complexity Θ(n
ln n)n, whereas Ryser’s formula

is also set-multilinear but has size poly(2n) (and is depth-3).
We now note that when the rows of the matrix are identical, the Binet-Minc identity

yields a small homogeneous depth-4 formula for the elementary symmetric polynomials, in
large characteristic. The resulting formula has the same parameters as the argument of
Shpilka and Wigderson [20], who proved it using the Newton identities. In particular, this
relation is analogous to how Ryser’s formula for the permanent, when applied to a matrix
with identical rows, yields Fischer’s depth-3 powering formula for the monomial.

▶ Lemma 18. Let x be n variables, and let Y be an d× n symbolic matrix of variables, with
d ≤ n, where Yi,j = xj. Then,

permd×n(Y) = d! esymn,d(x)

M. A. Forbes 31:11

Proof. d = n: This is immediate, as each monomial in the permanent now becomes x1 · · ·xn,
and there are n! many copies of this monomial.

d < n: Via Lemma 12,

permd×n(Y) =
∑

S∈([n]
d)

permd×d(Y |[d]×S)
=d!

∏
i∈S

xi

= d! esymn,d(x) . ◀

We now re-analyze the complexity of the above.

▶ Corollary 19. Let F be a field of characteristic > d (or zero). The degree-d elementary
symmetric polynomial in n variables esymn,d has a homogeneous

∑2O(
√

d) ∏d ∑n ∧d formula
of size poly(n, 2

√
d).

Proof.
Construction, correctness: Apply the Binet-Minc identity (Theorem 13) to the d×n matrix
Y where Yi,j = xj . By Lemma 18 this computes d! esymn,d, and we can divide by d! in F.

Complexity: We now analyze the complexity of the above.

permd×n(Y) =
∑

F∈Pd

(−1)d−|F|
∏

S∈F
(|S| − 1)!

n∑
j=1

∏
i∈S

Yi,j

=xj

=x
|S|
j

=
∑

F∈Pd

(−1)d−|F|
∏

S∈F
(|S| − 1)!

n∑
j=1

x
|S|
j

fF

noting that fF only depends on the sizes of the how the partition F refines the set [n], we
can group together the identical summands fF based on how they partition the integer n,

=
∑
λ⊢d

(−1)d−|λ|Nλ

∏
λ∈λ

(λ− 1)!
n∑

j=1
xλ

j

where the summation runs over all integer partitions λ of d, |λ| is the number of parts in
the partition λ, and Nλ ∈ Z is the number of set partitions of [n] whose set sizes equal the
integer partition λ.

Now note that the above formula is homogeneous (as the Binet-Minc identity is), and the
fan-ins of the formula are as desired because in particular the number of integer partitions
of d is 2O(

√
d) ([6]). Finally, observe that the bottom-most product gate is a powering

operation. ◀

The above implies that Binet-Minc can recover that depth-3 circuits can be efficient
homogenized into depth-5 circuits. As Binet-Minc holds over all fields and is additionally set-
multilinear, this suggests that we can perhaps go directly to set-multilinearization, bypassing
homogenization as an intermediate step. To do so, we need a slightly more general variant of
the permanent.

▶ Definition 20. Let X be an n × m symbolic matrix of variables, with n ≤ m, where
Xi,j = xi,j are distinct variables. Let k ≤ n. Define the k-surjective (rectangular)
permanent permn×m;k(X) ∈ Z[(xi,j)i∈[n],j∈[m]] by

permn×m;k(X) =
∑

σ:[n]↪→[m],im(σ)⊇[k]

x1,σ(1) · · ·xn,σ(n) ,

that is, the sum runs over all injective maps σ from [n] to [m] that contain [k] in their image.

CCC 2024

31:12 Low-Depth Algebraic Circuit Lower Bounds over Any Field

Note in particular that permn×m;k is a set-multilinear polynomial when we partition the
matrix into its rows.

We can compute the surjective permanent by standard permanents.

▶ Lemma 21. Let X be an n×m symbolic matrix of variables, with n ≤ m, where Xi,j = xi,j

are distinct variables. Let k ≤ n. Then, the k-surjective permanent can be written as

permn×m;k(X) =
∑

S∈([n]
k)

permk×k(X|S×[k]) · perm(n−k)×(m−k)(X|([n]\S)×([m]\[k])) .

Further, this expression is set-multilinear with respect to partitioning X by its rows.

Proof. This follows from the observation that each map σ : [n] ↪→ [m] with im(σ) ⊇ [k]
uniquely decomposes into a bijection τ : S ↔ [k] for some S ∈

([n]
k

)
, and an injection

ν : ([n] \ S) ↪→ ([m] \ [k]).
The claim about set-multilinearity then follows from noting that the multiplication

permk×k(X|S×[d]) · perm(n−k)×m−k(X|([n]\S)×([m]\[k]) is a product of two polynomials who
only use disjoint rows of X. ◀

We now analyze the complexity of computing the surjective permanent, by reduction to
standard permanents, and then applying the Binet-Minc identity.

▶ Corollary 22. Let k ≤ n ≤ m. The n×m k-surjective permanent has a poly(m,Θ(n
ln n)n)-

size depth-4 formula that is set-multilinear with respect to rows.

Proof. Via the above lemma, and the formula complexity of the Binet-Minc identity,

permn×m;k(X) =
∑

S∈([n]
k)

permk×k(X|S×[k])∑Bk
∏k ∑k ∏k

· perm(n−k)×(m−k)(X|([n]\S)×([m]\[k]))∑Bn−k
∏n−k ∑m−k ∏n−k

distributing the multiplication past the addition,

=
(n

k)∑ Bk·Bn−k∑
∑(n

k)BkBn−k

(
k∏ k∑ k∏

) · (
n−k∏ m−k∑ n−k∏

)∏n ∑m ∏n

from which the size bound follows by noting that
(

n
k

)
BkBn−k ≤ 2nBn ≤ Θ(n

ln n)n via
Lemma 16 and Fact 15.

The set-multilinearity of this formula follows from the fact that the decomposition used
here from the above lemma is set-multilinear, that Binet-Minc is set-multilinear, and that
our use of the distributive law preserves set-multilinearity. ◀

We now proceed to give a non-trivial set-multilinearization for low-depth algebraic circuits.
To do so, it will be helpful to have more notation for extracting various set-multilinear
components of polynomials.

▶ Definition 23. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd.
Let S ⊆ [d]. A monomial is S-set-multilinear if it can be written as

∏
i∈S(xi)ji for

some (ji)i∈S. Define the S-set-multilinear projection to be the linear map πsm,S which is
identity on S-set-multilinear monomials, and zero on all other monomials.

The set of S-set-multilinear monomials for some S ⊆ [d] are called at most set-
multilinear monomials. Define the non-set-multilinear projection to be the linear
map π¬sm which is zero on at-most set-multilinear monomials, and identity on all other
monomials.

M. A. Forbes 31:13

In particular, for S = [d], πsm(f) and πsm,S(f) are the same. For S = ∅, πsm,S(f) is
the constant part of f , πsm,∅(f) = f(0). More generally, we can decompose f into its
set-multilinear parts as follows.

▶ Lemma 24. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd. Then for any
polynomial f ,

f = π¬sm(f) + f(0) +
∑

∅̸=S⊆[d]

πsm,S(f) .

It immediately follows that we can simulate an addition (or even a linear combination) of
polynomials by instead adding the constituent set-multilinear parts.

▶ Lemma 25. Let f be any field. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd.
Let f1, . . . , fm be polynomials, with f = α1f1 + · · ·+ αmfm for α1, . . . , αm ∈ F. Let S ⊆ [d].
Then πsm,S(f) can be computed by a depth-1 poly(m, 2d)-size set-multilinear

∑
-circuit given

{πsm,S(fj)}S⊆[d],j∈[m] as inputs.

Less trivially is the simulation of a multiplication, for which we use the formula for the
surjective permanent (Corollary 22).

▶ Lemma 26. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd. Let f1, . . . , fm

be polynomials, with f = f1 · · · · · fm. Let S ⊆ [d] be of size ℓ. Then πsm,S(f) can
be computed by a depth-4 poly(m,Θ(ℓ

ln ℓ)ℓ, 2d)-size set-multilinear
∑ ∏ ∑ ∏

-circuit given
{πsm,S(fj)}S⊆[d],j∈[m] as inputs.

Proof. The number of inputs to the circuit is m2d. It remains to bound the number of gates
by poly(m,Θ(ℓ

ln ℓ)ℓ).
Rearrange the fi as needed so that f1(0) = · · · = fk(0) = 0 and fk+1(0), . . . , fm(0) ̸= 0,

for some k ≤ m. Thus, we can normalize the computation via

f =
m∏

i>k

fi(0) ·
∏

i∈[k]

fi ·
m∏

i>k

fi

fi(0)
,

and thus define

gi =
{
fi i ≤ k
fi/fi(0) i > k

,

and g =
∏

i gi. It then follows that f =
∏m

i>k fi(0) · g, gk+1(0) = · · · = gm(0) = 1, and
πsm,S(f) =

∏m
i>k fi(0) · πsm,S(g). As

∏m
i>k fi(0) is a non-zero constant, it suffices to prove

the claim for πsm,S(g).
Now write g as

g =
k∏

i=1

π¬sm(gi) +
∑

∅̸=Si⊆[d]

πsm,Si
(gi)

 · m∏
i>k

π¬sm(gi) + 1 +
∑

∅̸=Si⊆[d]

πsm,Si
(gi)

 .

In expanding the above product, the only at-most set-multilinear terms are of the form∏
j

πsm,Sij
(gij

) ,

where the Sij ⊆ [d] are disjoint (as otherwise we create non-multilinear terms), and the
indices {ij}j are distinct (as we take exactly one term from each gi [possibly the term 1]).

CCC 2024

31:14 Low-Depth Algebraic Circuit Lower Bounds over Any Field

Further, as gi(0) = 0 for i ≤ k, we must have {ij}j ⊇ [k]. Hence, by collecting like terms, we
see that

πsm,S(g) =
∑

F∈PS

∑
σ:F↪→[m];im(σ)⊇[k]

∏
T ∈F

πsm,T (gσ(T))

where PS is the collection of set partitions of S, which we can rewrite in terms of k-surjective
permanents as

=
∑

F∈PS

perm|F|×m;k(AF) ,

where for a partition F of S the matrix AF is |F| ×m size matrix defined by

(AF)T,j = πsm,T (gj) ,

for T ∈ F and j ∈ m. Note that the matrix AF has rows that access disjoint parts of the
set-multilinear partition of x, and so as the k-surjective permanent is set-multilinear with
respect to rows, the computation perm|F|×m;k(AF) is set-multilinear with respect to the
partition of x. Further, a set-multilinear computation of this permanent will be set-multilinear
with respect to x. Hence, we can use the set-multilinear computation from Corollary 22 for
the surjective permanent, which in this case yields a depth-4 set-multilinear formula of size
poly(m,Θ(|F|

ln |F|)
|F|).

Computing πsm,S(g) is then a sum of B|S| many such perm|F|×m;k(AF) terms, which does
not increase depth as we collapse two sequential layers of addition gates, and this preserves
set-multilinearity. The resulting size of the expression is poly(m,Θ(|F|

ln |F|)
|F|, B|S|, 2d)) ≤

poly(m,Θ(ℓ
ln ℓ)ℓ, 2d), as |S| = ℓ, |F| ≤ |S|. ◀

We now conclude with our set-multilinearization result over any field by gate-simulation.

▶ Corollary 27. Let F be any field. Let the variables x be partitioned into x = x1 ⊔ · · · ⊔ xd.
Suppose f ∈ F[x] can be computed by a size s product-depth ∆ algebraic circuit. Then
the set-multilinear projection πsm(f) ∈ F[x] can be computed by a size poly(s,Θ(d

ln d)d)-size
product-depth 2∆ circuit.

Proof. By gate simulation. Let Φ be the hypothesized circuit computing f . For each node v
in Φ, split v into its at-most set-multilinear parts πsm,S(v) for each S ⊆ [d].

If v = α1v1 + · · ·+ αmvm, then we can express the at-most set-multilinear parts of v in
terms of the vi using a poly(m, 2d)-size product-depth 0 set-multilinear circuit by Lemma 25.
If v = v1 × · · · × vm, then we can express the at-most set-multilinear parts of v in terms of
the vi using a poly(m,Θ(d

ln d)d)-size product-depth 2 set-multilinear circuit by Lemma 26.
Correctness of the computation follows by induction on the circuit.
The overall size of the circuit has increased from s to poly(s,Θ(d

ln d)d) by counting the
size of the additional local gadgets of the gate simulation. Simulation of addition gates adds
no product depth. Each product gate in the original circuit is turned into a product-depth 2
circuit in the gate simulation, hence the overall product-depth has at most doubled. ◀

References
1 Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey. Low-

depth arithmetic circuit lower bounds: Bypassing set-multilinearization. In Proceedings of
the 50th International Colloquium on Automata, Languages and Programming (ICALP 2023),
volume 261 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:20,
2023. Full version in the Electronic Colloquium on Computational Complexity (ECCC),
Technical Report TR22-151. doi:10.4230/LIPICS.ICALP.2023.12.

http://eccc.hpi-web.de/report/2022/151/
http://eccc.hpi-web.de/report/2022/151/
https://doi.org/10.4230/LIPICS.ICALP.2023.12

M. A. Forbes 31:15

2 Robert Andrews. Algebraic hardness versus randomness in low characteristic. In Proceedings
of the 35th Annual Computational Complexity Conference (CCC 2020), volume 169 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 37:1–37:32, 2020. Full version at
arXiv:2005.10885. doi:10.4230/LIPICS.CCC.2020.37.

3 C. S. Bhargav, Sagnik Dutta, and Nitin Saxena. Improved lower bound, and proof barrier,
for constant depth algebraic circuits. In Proceedings of the 47th Internationl Symposium on
the Mathematical Foundations of Computer Science (MFCS 2022), volume 241 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 18:1–18:16, 2022. doi:10.4230/
LIPICS.MFCS.2022.18.

4 Radu Curticapean, Nutan Limaye, and Srikanth Srinivasan. On the VNP-hardness of some
monomial symmetric polynomials. In 42nd International Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2022), volume 250 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:14, 2022. Full version in the
Electronic Colloquium on Computational Complexity (ECCC), Technical Report TR22-139.
doi:10.4230/LIPICS.FSTTCS.2022.16.

5 Ismor Fischer. Sums of like powers of multivariate linear forms. Mathematics Magazine,
67(1):59–61, 1994. URL: http://www.jstor.org/stable/2690560.

6 Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press,
2009. doi:10.1017/CBO9780511801655.

7 Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers to
proving algebraic circuits lower bounds. In Proceedings of the 49th Annual ACM Symposium on
Theory of Computing (STOC 2017), pages 653–664, 2017. Full version at arXiv:1701.05328.
doi:10.1145/3055399.3055496.

8 Hervé Fournier, Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. On the power
of homogeneous algebraic formulas. Electronic Colloquium on Computational Complexity
(ECCC), TR23-191, 2023. URL: https://eccc.weizmann.ac.il/report/2023/191.

9 Nashlen Govindasamy, Tuomas Hakoniemi, and Iddo Tzameret. Simple hard instances for
low-depth algebraic proofs. In Preliminary version in the 63rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2022), pages 188–199, 2022. Full version at
arXiv:2205.07175. doi:10.1109/FOCS54457.2022.00025.

10 Joshua A. Grochow, Mrinal Kumar, Michael E. Saks, and Shubhangi Saraf. Towards an
algebraic natural proofs barrier via polynomial identity testing. arXiv, 1701.01717, 2017. URL:
http://arxiv.org/abs/1701.01717.

11 Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial
identity testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2014), pages 110–119, 2014. Full version at arXiv:1404.3820.
doi:10.1109/FOCS.2014.20.

12 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting. In
Proceedings of Innovations in Theoretical Computer Science (ITCS 2013), pages 529–540, 2013.
Full version at arXiv:1208.5413. doi:10.1145/2422436.2422494.

13 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth three. In Proceedings of the 54th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2013), pages 578–587, 2013. Full version in the Electronic
Colloquium on Computational Complexity (ECCC), Technical Report TR13-026. doi:10.
1109/FOCS.2013.68.

14 Erich L. Kaltofen. Factorization of polynomials given by straight-line programs. In Silvio
Micali, editor, Randomness and Computation, volume 5 of Advances in Computing Research,
pages 375–412. JAI Press, Inc., Greenwich, CT, USA, 1989. URL: http://www.math.ncsu.
edu/~kaltofen/bibliography/89/Ka89_slpfac.pdf.

15 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial lower bounds
against low-depth algebraic circuits. In Preliminary version in the 62nd Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS 2021), pages 804–814, 2022. Full version in
the Electronic Colloquium on Computational Complexity (ECCC), Technical Report TR21-081.
doi:10.1109/FOCS52979.2021.00083.

CCC 2024

http://arxiv.org/abs/2005.10885
https://doi.org/10.4230/LIPICS.CCC.2020.37
https://doi.org/10.4230/LIPICS.MFCS.2022.18
https://doi.org/10.4230/LIPICS.MFCS.2022.18
http://eccc.hpi-web.de/report/2022/139/
https://doi.org/10.4230/LIPICS.FSTTCS.2022.16
http://www.jstor.org/stable/2690560
https://doi.org/10.1017/CBO9780511801655
http://arxiv.org/abs/1701.05328
https://doi.org/10.1145/3055399.3055496
https://eccc.weizmann.ac.il/report/2023/191
http://arxiv.org/abs/2205.07175
https://doi.org/10.1109/FOCS54457.2022.00025
http://arxiv.org/abs/1701.01717
http://arxiv.org/abs/1404.3820
https://doi.org/10.1109/FOCS.2014.20
http://arxiv.org/abs/1208.5413
https://doi.org/10.1145/2422436.2422494
http://eccc.hpi-web.de/report/2013/026/
http://eccc.hpi-web.de/report/2013/026/
https://doi.org/10.1109/FOCS.2013.68
https://doi.org/10.1109/FOCS.2013.68
http://www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_slpfac.pdf
http://www.math.ncsu.edu/~kaltofen/bibliography/89/Ka89_slpfac.pdf
http://eccc.hpi-web.de/report/2021/081/
https://doi.org/10.1109/FOCS52979.2021.00083

31:16 Low-Depth Algebraic Circuit Lower Bounds over Any Field

16 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Guest column: Lower bounds
against constant-depth algebraic circuits. SIGACT News, 53(2):40–62, 2022. doi:10.1145/
3544979.3544989.

17 Henryk Minc. Evaluation of permanents. Proc. Edinburgh Math. Soc. (2), 22(1):27–32, 1979.
doi:10.1017/S0013091500027760.

18 Ran Raz. Elusive functions and lower bounds for arithmetic circuits. Theory of Computing,
6(1):135–177, 2010. 40th Annual ACM Symposium on Theory of Computing (STOC 2008).
doi:10.4086/TOC.2010.V006A007.

19 Alexander A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Matematicheskie Zametki, 41(4):598–607, April 1987.

20 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Computational Complexity, 10(1):1–27, 2001. Preliminary version in the 14th Annual IEEE
Conference on Computational Complexity (CCC 1999). doi:10.1007/PL00001609.

21 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing
(STOC 1987), pages 77–82, 1987. doi:10.1145/28395.28404.

22 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,
2009. doi:10.1016/J.IPL.2008.11.004.

https://doi.org/10.1145/3544979.3544989
https://doi.org/10.1145/3544979.3544989
https://doi.org/10.1017/S0013091500027760
https://doi.org/10.4086/TOC.2010.V006A007
https://doi.org/10.1007/PL00001609
https://doi.org/10.1145/28395.28404
https://doi.org/10.1016/J.IPL.2008.11.004

BPL ⊆ L-AC1

Kuan Cheng # Ñ

Center on Frontiers of Computing Studies, School of Computer Science, Peking University,
Beijing, China

Yichuan Wang # Ñ

Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

Abstract
Whether BPL = L (which is conjectured to be equal) or even whether BPL ⊆ NL, is a big open
problem in theoretical computer science. It is well known that L ⊆ NL ⊆ L-AC1. In this work we
show that BPL ⊆ L-AC1 also holds. Our proof is based on a new iteration method for boosting
precision in approximating matrix powering, which is inspired by the Richardson Iteration method
developed in a recent line of work [1, 28, 10, 17, 12, 25, 8]. We also improve the algorithm for
approximate counting in low-depth L-AC circuits from an additive error setting to a multiplicative
error setting.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomiza-
tion; Theory of computation → Computational complexity and cryptography

Keywords and phrases Randomized Space Complexity, Circuit Complexity, Derandomization

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.32

Related Version Full Version: https://eccc.weizmann.ac.iℓ/report/2024/048/

Acknowledgements We thank anonymous reviewers for helpful comments.

1 Introduction

BPL is the class of languages that can be computed by randomized logspace Turing Machines
(TM) with error probability ≤ 1/3. Here by randomized we mean that the TM has read-once
access to a random tape. We also require that the TM halts on any input randomness.
Whether BPL ?= L is a big open problem of space-bounded derandomization in theoretical
computer science. Most believe that L = BPL is true. Different from time-bounded derandom-
ization, we even do not know whether L = NL implies L = BPL. But on the other hand, there
is no known barrier for proving L = BPL. The seminal work by Saks and Zhou [29] shows
that BPL ⊆ L3/2 and this was improved to be BPL ⊆ SPACE

[
O
(
(log n)3/2/

√
log log n

)]
by

Hoza [17].
The relation between (Randomized) small space-bounded computation and uniform low-

depth circuits is also an interesting topic. It is well known that L-NC1 ⊆ L ⊆ NL ⊆ L-AC1,
where L-NC1 and L-AC1 are complexity classes of logspace-uniform O(log n)-depth NC and
AC circuits. But for BPL, there is still an interesting question: is BPL also a subset of L-AC1?
If the conjecture L = BPL is true, or even if BPL ⊆ NL, then immediately BPL ⊆ L-AC1. But
without these assumptions, it becomes a challenge. In this work, we will unconditionally
prove that BPL ⊆ L-AC1. On the other hand, we mention that the inclusion BPL ⊆ AC1 for
non-uniform AC1, is obvious via non-uniform derandomization techniques.1 See Figure 1 for
a visualization of the known relations between the complexity classes.

1 There are two ways to prove BPL ⊆ non-uniform AC1: (1) By L ⊆ AC1 we know BPL can be computed by
randomized AC1 circuits, then apply the non-uniform derandomization for AC in [3] we know BPL ⊆ AC1;
(2) First by a standard non-uniform derandomization argument we have BPL ⊆ L/poly, then by L ⊆ AC1

we know BPL ⊆ L/poly ⊆ AC1.
© Kuan Cheng and Yichuan Wang;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckkcdh@pku.edu.cn
https://ckkcdh.github.io/
https://orcid.org/0000-0002-8972-1749
mailto:yichuan-21@mails.tsinghua.edu.cn
https://wyc908.github.io
https://orcid.org/0009-0009-1312-7338
https://doi.org/10.4230/LIPIcs.CCC.2024.32
https://eccc.weizmann.ac.il/report/2024/048/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 BPL ⊆ L-AC1

L-AC1

NL

L

L-NC1

BPL

This work

non-uniform AC1

Figure 1 Relation of Complexity Classes. A → B means A ⊆ B.

One may view derandomizing BPL as the problem of approximating powers of sub-
stochastic matrices. For a TM with s bits of memory, one can label all its states by elements
in [2s]. We can define A ∈ R2s×2s to be its transition matrix in the sense that Ai,j is
the probability that the machine moves from state i to state j in one step. Note that it
must arrive at an accept or reject state in 2s steps, so we only need to approximate A2s .
Saks and Zhou [29] showed that approximating An for A ∈ Rw×w can be done in space
O
(
(log n)3/2 +

√
log n · log w

)
. Hoza [17] gave a logarithmic improvement in the n = poℓy(w)

regime, attaining O(1√
log log n

(log n)3/2) space. Cohen, Doron, Sberlo and Ta-shma[12], and

also Putterman and Pyne [25] independently improved [29]’s result to Õ(log n+
√

log n · log w).
We mention that a closely related problem setting is to approximate the multiplication of
many distinct matrices, also called the iterated matrix multiplication (IMM) setting. This
corresponds to the read-once branching program (ROBP) model. IMM asks one to approxim-
ate A1A2 · · · An for a given sequence A1, · · · , An ∈ Rw×w. [29, 17, 12, 25] can also work
for IMM, attaining the same parameters respectively as their results for matrix powering.
In [29] and [17], this is done via a simple block-box reduction from the powering setting.
While in [12] and [25], a more careful analysis is applied. In the rest of our paper, we mainly
consider matrix powering since this is enough for our main result and IMM is also in BPL. A
key idea in [17, 12, 25] is to use Richardson Iteration to boost precision, which is developed in
a line of work [1, 28, 10, 12, 25, 8]. We briefly recall this method here. Consider the problem
of approximating X−1 for an invertible matrix X. Assume we already have a matrix Y, which
is an approximation of X−1 such that ∥I − YX∥ < ε. Then we can rewrite XX−1 = I as

X−1 = (I − YX)X−1 + Y.

Start from Y(0) = Y, by taking the iteration

Y(i+1) := (I − YX)Y(i) + Y,

we can reduce
∥∥Y(i) − X−1∥∥ very quickly. Then in the application of approximating

A1, · · · , An, we can take

K. Cheng and Y. Wang 32:3

X :=

I

−A I
−A I

. . .
−A I

 , X−1 =

I
A I
A2 A I

An−1 · · · I
An An−1 A I

.

In this way, approximating A, A2, · · · , An do not necessarily need to conduct approximating
for their inverse matrices. Although Richardson Iteration is a powerful method, an interesting
question is: are there any other iteration methods that have different or more powerful
effects? In fact we develop a more efficient iteration algorithm for boosting precision for our
setting in Section 4, which is the main ingredient of our proof of BPL ⊆ L-AC1. The new
iteration keeps using the idea of boosting precision via numerical analysis techniques, and it
does not rely on approximating matrix inversions even in its analysis.

Another side of proving BPL ⊆ L-AC1 is on the power of L-AC circuits. A key tool here is
the approximate counting computable by L-AC circuits. Specifically, the task is to decide
whether an n-bit string contains ≤ a or ≥ b 1’s by poly(n)-size low depth L-AC circuits. The
L-AC0 algorithm for distinguishing ≥ 2n/3 1’s and ≤ n/3 1’s was developed by Ajtai [2]. A
line of work [3, 30, 31, 13] further studies this question, achieving depth O

(log n
b−a

log log n + 1
)

(also

see our Lemma 17). We will show that this can actually be done by O

(
log b

b−a

log log n + 1
)

-depth

poly-size L-AC circuits. This can be viewed as improving the previous results from an additive
error setting to a multiplicative error setting. But even so, one can see still that L-AC circuits
are good at aggregating on many inputs, but not good at high precision. This triggers one to
think of some steps of boosting precision potentially by iteration methods.

1.1 Our Result
▶ Theorem 1 (Main Theorem, see also Corollary 21). BPL ⊆ L-AC1.

▶ Theorem 2 (Multiplicative Approximate Counting in AC, see also Theorem 14). Let n, a, b ∈ N

such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size O

(
log b

b−a

log log n + 1
)

-depth L-uniform

AC circuit family {Cn,a,b} that computes GapMaj[a, b] on n bits.2

1.2 Related Work
We investigate some more about related work on derandomizing BPL. For other results not
covered, we refer to these surveys [18][16].

A remarkable line of work [5, 22, 20, 24, 4, 6, 19, 7, 11, 27, 17] develops PRGs, weighted
PRGs, and Hitting-set generators for ROBPs, which directly provide black-box derandomiza-
tions for BPL and its related classes. Among them, the celebrated work [22] by Nisan presents
a logspace computable pseudorandom generator with seed length O(log n log nw

ε), error ε,
for length n width w ROBPs. Based on some special properties of this generator, Saks and
Zhou [29] showed BPL ⊆ L3/2, and Nisan [23] showed that BPL ⊆ TISP[poly(n), O((log n)2)].
Nisan and Zuckerman [24] showed a PRG for ROBPs with large widths but very short lengths

2 GapMaj[a, b] is the promise problem that asks us to distinguish whether the number of 1’s in an n-bit
string is ≥ b or ≤ a. See Definition 11 for a formal definition.

CCC 2024

32:4 BPL ⊆ L-AC1

i.e. n = poly(log w), attaining seed length O(log w) with error 2− log0.99 w. Armoni [4] gave
an improved construction by interpolating [22] and [24]. The recent improvement for PRGs
[6, 19, 7, 11, 27, 17] focus on achieving seed length optimal in the error parameter. Several
iteration-type methods are applied by these work, including the use of Richardson Iteration
developed by Ahmadinejad, Kelner, Murtagh, Peebles, Sidford, and Vadhan [1], and then
further developed in [28, 10, 17, 12, 25, 8].

There is also a sequence of work studying derandomizing BPL under assumptions. Klivans
and van Melkebeek [21] showed that under the assumption that SPACE[O(n)] requires 2Ω(n)

circuit size, one can have L = BPL. Cheng and Hoza [9] showed that under the assumption
that there exists a black-box hitting-set generator computable in logspace, one can have
L = BPL. Some recent works [15, 26, 14] further study upon this line with various and
enhanced requirements for derandomization.

1.3 Proof Overview
We sketch the proof of BPL ⊆ L-AC1 and discuss the organization of our paper.

In Section 2, we describe some basic concepts and tools for our main proof.
In Section 3, we prove that deciding whether n bits contains ≤ a or ≥ b 1’s can be done

in poly(n)-size O

(
log b

b−a

log log n + 1
)

-depth, see Theorem 14. This will be a building block for

approximating matrix operations. The main idea to prove Theorem 14 is to reduce the
general GapMaj[a, b] to the special case GapMaj[n/3, 2n/3] via pairwise independent hash
functions, and then apply [2]’s algorithm for GapMaj[n/3, 2n/3].

One can see that low-depth L-AC circuits are good at aggregating on many inputs, but
without a high precision. This motivates us to consider a step of boosting precision for matrix
powerings. However, we must be very careful since we cannot pay too much in depth.

In Section 4, we give the core iteration step. This is a depth-efficient iteration algorithm
for boosting precision in matrix powerings, which is the main ingredient of our proof.

▶ Theorem 3 (see also Theorem 18). Let A ∈ Rn×n be a substochastic matrix and k, t ∈ Z+

such that log n ≥ k ≥ t. Suppose substochastic matrices B0, · · · , Bk−1 are approximations of
A20

, · · · , A2k−1 such that
∥∥∥Bi − A2i

∥∥∥
1

≤ εi for i = 1, 2, · · · , k − 1. Define 3

C := −
t−1∑
i=1

∑
{j1<···<jp}⊎{j′

1<···<j′
q}

={k−1,k−2,··· ,k−i+1}

Bjp
· · · Bj1B2

k−iBj′
1

· · · Bj′
q

+
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−t+1}

Bjp
· · · Bj1B2

k−tBj′
1

· · · Bj′
q
.

Then∥∥∥C − A2k
∥∥∥

1
≤

t−1∑
i=1

2i−1ε2
k−i + 2tεk−t.

3 Here
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−i+1}

means taking the sum over all possible two-partitions of the set {k −

1, k − 2, · · · , k − i + 1}. Each two-partition partitions {k − 1, k − 2, · · · , k − i + 1} into two disjoint
subsets {j1, · · · , jp}, {j′

1, · · · , j′
q}. Here set elements are sorted in increasing order, i.e., j1 < · · · < jp

and j′
1 < · · · < j′

q. Therefore this
∑

is sum of 2i−1 terms.
When i = 1, {k − 1, k − 2, · · · , k − i + 1} represents the empty set.

K. Cheng and Y. Wang 32:5

Intuitively speaking, we can obtain a good approximation of A2k given these Bk−1, · · · , B0,
which either has lower accuracy or is an approximation of A2k′

for much smaller k′. We
will prove that the iteration step can be easily computed by low-depth L-AC circuits in
Theorem 19 which crucially uses our depth-efficient approximate counting in Section 3.

In Section 5 we present the complete algorithm. We compute intermediate matrices M(k, t)
for k, t ≤ O(log n), where M(k, t) is a 1/2t-approximation of A2k (i.e.,

∥∥∥M(k, t) − A2k
∥∥∥

1
≤

1/2t). We will use the iteration step developed in Section 4 to show that, for any k, t ≤
O(log n), given all M(k − i, [t/2] + 2i)’s (for i = 1, 2, · · ·), we can compute a valid M(k, t) in
O(t)-depth. Then we can compute a valid M(log n, log n) in O(log n)-depth.

Finally in Section 6 we will discuss some open problems.

2 Preliminaries

2.1 Matrix Approximation
▶ Definition 4 (L1-norm). Define the L1-norm of a vector (x1, · · · , xn)⊤ ∈ Rn to be∥∥(x1, · · · , xn)⊤∥∥

1 := |x1| + · · · + |xn|.

Define the L1-norm of a matrix A ∈ Rn×n to be

∥A∥1 := sup
x∈Rn

∥Ax∥1
∥x∥1

= max
1≤j≤n

{|A1,j | + |A2,j | + · · · + |An,j |} .

▶ Theorem 5. For any A, B ∈ Rn×n, we have:
1. ∥A + B∥1 ≤ ∥A∥1 + ∥B∥1;
2. ∥AB∥1 ≤ ∥A∥1 ∥B∥1;
3. If ∥A∥1 , ∥B∥1 ≤ 1, then for any p ∈ Z+, ∥Ap − Bp∥1 ≤ p ∥A − B∥1.

▶ Definition 6 (Non-negative Matrix). We say a matrix is non-negative if each of its entry is
non-negative.

▶ Definition 7 (Substochastic Matrix). We say a matrix A ∈ Rn×n is a substochastic matrix
if A is non-negative and ∥A∥1 ≤ 1.

For simplicity, we always assume that the size of a substochastic matrix is a power of 2. To
represent a substochastic matrix, we independently represent each entry in binary, accurate
to 100 log n decimal places.

2.2 L-uniform AC Circuit Family and Approximate Counting
▶ Definition 8 (AC circuit). AC circuit is a circuit with input gates, NOT gates, unbounded
fan-in AND/OR gates, and (possibly more than one) output gates. The size of a circuit is
defined by the number of AND/OR gates. The depth of a circuit is defined by the largest
number of AND/OR gates on any path from an input gate to an output gate.

▶ Definition 9 (L-uniform AC circuit family). For functions S, d : Z+ → R+, we say a collection
of circuits {Cn}n∈Z+ is an S-size d-depth L-uniform AC circuit family, if each Cn has size
≤ S(n) and depth ≤ d(n), and given the binary representation of n, the description of Cn

can be computed in uniform O(log n)-space.

CCC 2024

32:6 BPL ⊆ L-AC1

We need to mention that the number of input gates in Cn is not necessarily n. Also
note that since we can encode a tuple of O(1) many integers to a single integer, we can also
consider circuit collections with a tuple of integers as an index.

▶ Definition 10 (Complexity Class L-AC1). We say a language L is in the class L-AC1 if there
exists a poly(n)-size O(log n)-depth L-uniform AC circuit family {Cn} such that Cn computes
L on n-bit inputs.

▶ Definition 11 (GapMaj). For n ∈ Z+ and a, b ∈ R such that 0 ≤ a < b ≤ n, define the
promise problem GapMaj[a, b] on n bits as follow:

GapMaj[a, b](x1, · · · , xn) :=

YES if x1, · · · , xn contains ≥ b 1’s
NO if x1, · · · , xn contains ≤ a 1’s
⊥ otherwise

2.3 Tool: Pairwise Independent Hash Function
We will use pairwise independent hash function as a tool for approximate counting in AC.
We shall use the following construction based on convolution, which was also used in [22].

▶ Definition 12 (Convolution-Based Pairwise Independent Hash Function). Suppose m is a
power of 2. Define Hm :

[
m3] × [m] → [m] by: for (k, x) ∈

[
m3] × [m], let x1 · · · xlog m be

the binary representation of x − 1, let a1 · · · a2 log mb1 · · · blog m be the binary representation of
k − 1, let yj :=

(∑log m
i=1 ai+jxi + bj

)
mod 2 for j ∈ [log m], then define Hm(k, x) by letting

y1 · · · ylog m be the binary representation of Hm(k, x) − 1.

▶ Theorem 13. Hm is Pairwise Independent Hash Function in the following sense: for
any 1 ≤ i < j ≤ m, when k is sampled from the uniform distribution over

[
m3], the joint

distribution of (Hm(k, i), Hm(k, j)) is identical to the uniform distribution over [m] × [m].

3 Approximate Counting in AC

The goal of this Section is to prove Theorem 14, which will be a building block for the proof
of BPL ⊆ L-AC1.

▶ Theorem 14. Let n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size

O

(
log b

b−a

log log n + 1
)

-depth L-uniform AC circuit family {Cn,a,b} that computes GapMaj[a, b] on

n bits.

The proof depends on the next few Lemmas.

▶ Lemma 15 ([2]). Let n ∈ Z+. Then there exists poly(n)-size O(1)-depth L-uniform AC
circuit family {C(0)

n } that computes GapMaj[n/3, 2n/3] on n bits.

▶ Lemma 16 (Exact Counting). Let n, ℓ ∈ Z+ such that n ≥ ℓ. Then there exists a poly(n)-
size O

(
log ℓ

log log n + 1
)

-depth L-uniform AC circuit family {En,ℓ} such that on ℓ bits of input,
En,ℓ outputs the exact number of 1’s over the input bits, in binary form.

We remark that in Lemma 16, n is only used to bound the size of the circuit. Also, n, ℓ are
not necessarily polynomially related.

K. Cheng and Y. Wang 32:7

Proof. We only need to show how to compute sum of O(
√

log n) many O(log n)-bit4 non-
negative integers in O(1)-depth, then by divide-and-conquer we can compute sum of ℓ bits
in O

(
log ℓ

log log n + 1
)

-depth.

View the O(log n)-bit integers as 2
[√

log n
]
-base O(

√
log n)-digit integers. We use the

grade-school algorithm to sum O(
√

log n) integers as follow. We first guess the result and all

carry-bits, which involve at most O(
√

log n) · O

(
log
(√

log n · 2
[√

log n
]))

= O(log n) bits,

and thus has at most poly(n) choices. Then we can apply a local check on each digit, each
local check involves at most O(log n) bits, and thus deciding whether all local checks are
passed can be computed in O(1)-depth. Then we can take the result of the only guess that
passes all local checks. The total cost is O(1)-depth. ◀

▶ Lemma 17. Let n, a, b ∈ N such that 0 ≤ a < b ≤ n. Then there exists a poly(n)-size
O
(log n

b−a

log log n + 1
)

-depth L-uniform AC circuit family {C(1)
n,a,b} that computes GapMaj[a, b] on n

bits.

Proof. Only consider the case that n is a power of 2, otherwise we can use a simple
padding argument. By Lemma 15, it suffices to show how to reduce GapMaj[a, b] on n bits
to GapMaj[n3/3, 2n3/3] on n3 bits, via a poly(n)-size O

(log n
b−a

log log n + 1
)

-depth L-uniform AC
circuit.

If b − a ≤ 4
√

n then we can directly compute the number of 1’s exactly via Lemma 16.
Below we only consider b − a > 4

√
n.

Let ℓ :=
⌈

12n2

(b−a)2

⌉
. Suppose the GapMaj[a, b] instance is x1, x2, · · · , xn. Let Hn be the

hash function defined in Definition 12. Define y1, · · · , yn3 as follow: for i ∈ [n3], let yi be 1 if
at least a+b

2n fraction of xHn(i,1), · · · , xHn(i,ℓ) is 1, otherwise let yi be 0. Note that y1, · · · , yn3

can be computed via a poly(n)-size O
(

log ℓ
log log n + 1

)
-depth L-uniform AC circuit, by Lemma

16. Here O
(

log ℓ
log log n + 1

)
= O

(log n
b−a

log log n + 1
)

.
Let’s do some simple calculations. Assume p fraction of x1, · · · , xn is 1. Let Si be

number of 1’s in xHn(i,1), · · · , xHn(i,ℓ). Then we have Ei∼[n3][Si] = pℓ and Vari∼[n3][Si] ≤
ℓ. So if p ≤ a

n , then Pri∼[n3]

[
Si ≥ ℓ · (a+b)

2n

]
≤ ℓ(

ℓ· (b−a)
2n

)2 = 4n2

ℓ(b−a)2 ≤ 1
3 . Similarly if

p ≥ b
n then Pri∼[n3]

[
Si ≤ ℓ · (a+b)

2n

]
≤ 1

3 . This means if x1, · · · , xn is YES/NO instance of
GapMaj[a, b], then y1, · · · , yn3 is YES/NO instance of GapMaj[n3/3, 2n3/3]. The reduction is
completed. ◀

Proof of Theorem 14. We will try to reduce to Lemma 17. Suppose the GapMaj[a, b] instance
is x1, x2, · · · , xn. We only consider the case n is a power of 2, otherwise use a simple padding
argument. We only consider the case 10

(
b

b−a

)2
< n

b−a (or equivalently, n(b − a) > 10b2),
otherwise we can directly apply Lemma 17.

Let ℓ :=
[

n(b−a)
2b2

]
. For i ∈ [n3], let yi := xHn(i,1) ∨ · · · ∨ xHn(i,ℓ), here Hn is the

hash function defined in Definition 12. Then y1, · · · , yn3 can be computed via poly(n)-size
O(1)-depth L-uniform AC circuit.

Assume p fraction of x1, · · · , xn is 1. Let Si be number of 1’s in xHn(i,1), · · · , xHn(i,ℓ).
Then we have Ei∼[n3][Si] = pℓ and Ei∼[n3][S2

i] = ℓ(ℓ − 1)p2 + ℓp ≤ ℓp + ℓ2p2. Thus by

Ei∼[n3][Si]2

Ei∼[n3][S2
i] ≤ Pr

i∼[n3]
[Si ≥ 1] ≤ E

i∼[n3]
[Si]

4 Here “O(log n)-bit integers” refers to integers which has O(log n)-bits in its binary representation.

CCC 2024

32:8 BPL ⊆ L-AC1

we know: if p ≤ a
n , then Pri∼[n3][Si ≥ 1] ≤ ℓa

n ; if p ≥ b
n , then Pri∼[n3][Si ≥ 1] ≥ (ℓb

n)2

ℓb
n +(ℓb

n)2 ≥
ℓb
n −

(
ℓb
n

)2. To summarize, if x1, · · · , xn is YES/NO instance of GapMaj[a, b], then y1, · · · , yn3

is YES/NO instance of GapMaj
[[

n3 · ℓa
n

]
,
⌈
n3 ·

(
ℓb
n −

(
ℓb
n

)2)⌉].
Finally we observe that

(
ℓb
n −

(
ℓb
n

)2) − ℓa
n = ℓ ·

(
b−a

n − ℓb2

n2

)
≥ n(b−a)

3b2 · b−a
2n = (b−a)2

6b2 .

Thus by Lemma 17, GapMaj
[[

n3 · ℓa
n

]
,
⌈
n3 ·

(
ℓb
n −

(
ℓb
n

)2)⌉] over n3 bits can be computed

via a poly(n)-size O

(
log b

b−a

log log n + 1
)

-depth L-uniform AC circuit. ◀

4 The Iteration Method

In this section, we will introduce the iteration step, which is the core of our proof of
BPL ⊆ L-AC1.

▶ Theorem 18 (The Iteration). Let A ∈ Rn×n be a substochastic matrix and k, t ∈ Z+ such
that log n ≥ k ≥ t. Suppose substochastic matrices B0, · · · , Bk−1 are approximations of
A20

, · · · , A2k−1 such that
∥∥∥Bi − A2i

∥∥∥
1

≤ εi for i = 1, 2, · · · , k − 1. Define

C := −
t−1∑
i=1

∑
{j1<···<jp}⊎{j′

1<···<j′
q}

={k−1,k−2,··· ,k−i+1}

Bjp
· · · Bj1B2

k−iBj′
1

· · · Bj′
q

+
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−t+1}

Bjp · · · Bj1B2
k−tBj′

1
· · · Bj′

q
.

Then∥∥∥C − A2k
∥∥∥

1
≤

t−1∑
i=1

2i−1ε2
k−i + 2tεk−t.

Proof. Note that

C − A2k

= −
t−1∑
i=1

∑
{j1<···<jp}⊎{j′

1<···<j′
q}

={k−1,k−2,··· ,k−i+1}

Bjp
· · · Bj1

(
A2k−i

− Bk−i

)2
Bj′

1
· · · Bj′

q

−
∑

{j1<···<jp}⊎{j′
1<···<j′

q}
={k−1,k−2,··· ,k−t+1}

Bjp
· · · Bj1

(
A2k−t+1

− B2
k−t

)
Bj′

1
· · · Bj′

q
.

So by Theorem 5,

∥∥∥C − A2k
∥∥∥

1
≤

t−1∑
i=1

2i−1
∥∥∥A2k−i

− Bk−i

∥∥∥2

1
+ 2t

∥∥∥A2k−t

− Bk−t

∥∥∥
1

≤
t−1∑
i=1

2i−1ε2
k−i + 2tεk−t. ◀

K. Cheng and Y. Wang 32:9

▶ Theorem 19 (Computing the Iteration). Let n, k, t, A, B0, · · · , Bk−1, ε0, · · · , εk−1, C be
as defined in Theorem 18. Let d be an integer such that 4 log n ≥ d ≥ t/10. Then there
exists a poly(n)-size O(d)-depth L-uniform AC circuit family {In,k,t,d} such that on inputs
Bk−t, · · · , Bk−1, if

t−1∑
i=1

2i−1ε2
k−i + 2tεk−t ≤ 1

2d+2

is satisfied, then In,k,t,d outputs a substochastic matrix C′ such that
∥∥∥C′ − A2k

∥∥∥
1

≤ 1/2d.

The intuition behind Theorem 19 is that to approximately compute C, all arithmetic
operations only need a multiplicative accuracy of 1/2Θ(d). This can be done efficiently by
L-uniform AC circuit by Theorem 14.

Proof of Theorem 19. We observe that C is the sum of 2t−1 “+” terms and 2t−1 − 1 “−”
terms, and each term is a multiplication of not more than t + 1 substochastic matrices. We
will first show how to approximate the multiplication of substochastic matrices and then
show how to approximate their sum.

To approximate Z := XY for two substochastic matrices X, Y, we only need to approx-
imate

∑n
r=1 Xi,rYr,j for each pair (i, j) ∈ [n]2. We first represent each entry Xi,r, Yr,j

using n100 bits such that fraction of 1’s in these n100 bits is equal to the entry, then use
a layer of AND gate to represent each Xi,rYr,j using fraction of 1’s in n200 bits, and
then represent each 1

n

∑n
r=1 Xi,rYr,j using fraction of 1’s in n201 bits. Then we invoke

Cn201,ℓ,⌈ℓ(1+1/220d+10)⌉ (as defined in Theorem 14, which has depth ≤ O
(

d
log log n + 1

)
≤

O
(

d
log(t+1)

)
)5 for ℓ = 1, 2, · · · , n200 over these n201 bits. Suppose ℓ0 is the smallest index

such that Cn201,ℓ0,⌈ℓ0(1+1/220d+10)⌉ outputs 0, then we have

ℓ0 − 1
n200 < Zi,j <

ℓ0
(
1 + 1

220d+10

)
n200

and thus6

Zi,j

1 + 1
220d+10

− 1
n100 ≤ 1

n100

[
ℓ0

n100

]
≤ Zi,j .

Use [ℓ0/n100]/n100 as an approximation of Zi,j , then we obtain an approximation Z̃ of Z
such that Z − Z̃ is non-negative and Z̃ is substochastic and

∥∥∥Z − Z̃
∥∥∥

1
≤ 1/220d+10 + 1/n99.

We need to be careful that here we need a multiplicative small error on each entry and thus
we need to strengthen Lemma 17 to Theorem 14.

Then multiplication of not more than t + 1 substochastic matrices can be computed via
O(log(t + 1)) layers of multiplication of two matrices. Recall that multiplying two matrices
uses O

(
d

log(t+1)

)
-depth and has additive error 1/220d+10 + 1/n99. So the total depth for

computing multiplication of not more than t + 1 substochastic matrices is O(d) and the total
error is ≤ t(1/220d+10 + 1/n99) ≤ 1/219d+5.

5 In Theorem 14 we take (a, b) = (ℓ, ⌈ℓ(1 + 1/220d+10)⌉), and then log b
b−a ≤ O(d).

6 Since n200Zi,j is an integer, we have ℓ0−1
n200 < Zi,j =⇒ ℓ0

n200 ≤ Zi,j .

CCC 2024

32:10 BPL ⊆ L-AC1

To summarize, suppose C = −
∑2t−1−1

i=1 Di +
∑2t−1

i=1 D′
i, here each Di, D′

i is multiplication
of some substochastic matrices. Then we can compute their approximations D̃i, D̃′

i in O(d)
depth such that

∥∥∥Di − D̃i

∥∥∥
1

≤ 1/219d+5 and
∥∥∥D′

i − D̃′
i

∥∥∥
1

≤ 1/219d+5.

We approximate 1
2t−1

∑2t−1−1
i=1 D̃i and 1

2t−1

∑2t−1

i=1 D̃′
i. Use the similar idea as summing

1
n

∑n
r=1 Xi,rYr,j , we can compute substochastic matrices C−, C+ using O(d)-depth, such

that∥∥∥∥∥∥C− − 1
2t−1

2t−1−1∑
i=1

D̃i

∥∥∥∥∥∥
1

≤ 1
219d+5 ,

∥∥∥∥∥∥C+ − 1
2t−1

2t−1∑
i=1

D̃′
i

∥∥∥∥∥∥
1

≤ 1
219d+5 .

Then 2t−1(C+ − C−) is a good approximation of A2k since

∥∥∥2t−1(C+ − C−) − A2k
∥∥∥

1
≤ 2t−1

∥∥∥∥∥∥C− − 1
2t−1

2t−1−1∑
i=1

D̃i

∥∥∥∥∥∥
1

+ 2t−1

∥∥∥∥∥∥C+ − 1
2t−1

2t−1∑
i=1

D̃′
i

∥∥∥∥∥∥
1

+
2t−1−1∑

i=1

∥∥∥Di − D̃i

∥∥∥
1

+
2t−1∑
i=1

∥∥∥D′
i − D̃′

i

∥∥∥
1

+

∥∥∥∥∥∥−
2t−1−1∑

i=1
Di +

2t−1∑
i=1

D′
i − A2k

∥∥∥∥∥∥
1

≤ 2t−1

219d+5 + 2t−1

219d+5 + 2t−1

219d+5 + 2t−1

219d+5 +
∥∥∥C − A2k

∥∥∥
1

≤ 1
29d+4 +

(
t−1∑
i=1

2i−1ε2
k−i + 2tεk−t

)

≤ 1
29d+4 + 1

2d+2 .

Here the last step is from the statement of Theorem 19.
Finally we compute a substochastic matrix C′ which is a good approximation of A2k and

2t−1(C+ − C−). Here we need to be careful that C and 2t−1(C+ − C−) are not necessarily
non-negative or substochastic (but A2k is guaranteed substochastic). Let

C′′
i,j := max{2t−1(C+

i,j − C−
i,j), 0},

C′
i,j := 1

n100

[
C′′

i,j

(
1 − 1

2d+1

)
· n100

]
.

We can compute C′ given C+, C− by hardwiring the map (C+
i,j , C−

i,j) 7→ C′
i,j , which is

L-uniform. Obviously C′ is non-negative. Note that C′′ is entrywise closer to A2k than
2t−1(C+ − C−) and hence∥∥∥C′′ − A2k

∥∥∥
1

≤
∥∥∥2t−1(C+ − C−) − A2k

∥∥∥
1

≤ 1
29d+4 + 1

2d+2

Therefore C′ is substochastic since

∥C′∥1 ≤
(

1 − 1
2d+1

)
∥C′′∥1 ≤

(
1 − 1

2d+1

)(
1 + 1

29d+4 + 1
2d+2

)
≤ 1.

K. Cheng and Y. Wang 32:11

Also note that∥∥∥C′ − A2k
∥∥∥

1
≤ ∥C′ − C′′∥1 +

∥∥∥C′′ − A2k
∥∥∥

1

≤ 1
n99 + 1

2d+1 ∥C′′∥1 +
∥∥∥C′′ − A2k

∥∥∥
1

≤ 1
n99 + 1

2d+1

(
1 + 1

29d+4 + 1
2d+2

)
+ 1

29d+4 + 1
2d+2

≤ 1
2d

.

To summarize, we can output a valid C′ in O(d)-depth. And the circuit is poly(n)-size
and L-uniform. ◀

5 The Complete Algorithm

▶ Theorem 20. Let n be a power of 2. Then there exists a poly(n)-size O(log n)-depth
L-uniform AC circuit family {Mn}7 such that on input a substochastic matrix A ∈ Rn×n,
Mn outputs a substochastic matrix M ∈ Rn×n such that ∥M − An∥1 ≤ 1/n.

Proof. Only consider log n ≥ 10. For k, t ∈ N such that k ≤ log n and 1 ≤ t ≤ 3 log n − 2k,
we wish to compute a substochastic matrix M(k, t), which is an approximation of A2k , such
that

∥∥∥M(k, t) − A2k
∥∥∥

1
≤ 1/2t. Then M := M(log n, log n) is the desired matrix.

For k = 0, we can trivially let M(0, t) := A. Now we show how to recursively compute
M(k0, t0) for k0 = 1, 2, · · · , log n.

In Theorem 18, take the same n, A and take k := k0, take Bk−i := M(k − i, [t0/2] + 2i)
for 1 ≤ i ≤ k. Then we can take εk−i := 1/2[t0/2]+2i for 1 ≤ i ≤ k − 1 and ε0 = 0. Now we
will invoke Theorem 18, 19 by choosing parameter t properly according to the following two
cases.

Case 1. k ≤ 2t0 + 2.
Take the parameter t in Theorem 18 to be t := k. Then

k−1∑
i=1

2i−1ε2
k−i + 2kε0 =

k−1∑
i=1

1
22[t0/2]+3i+1 ≤ 1

2t0+2 .

In Theorem 19 take d := t0. It is easy to verify that log n ≥ k ≥ t and 4 log n ≥ d ≥ t/10 hold
when we invoke Theorem 18, 19. Given Bk−1, · · · , B0, use In,k0,k0,t0 (defined in Theorem
19) we can compute a substochastic matrix C′ such that

∥∥∥C′ − A2k
∥∥∥

1
≤ 1/2t0 .

Case 2. k ≥ 2t0 + 3.
Take t := 2t0 + 3 in Theorem 18. Then

2t0+2∑
i=1

2i−1ε2
k−i + 22t0+3εk−2t0−3 ≤

2t0+2∑
i=1

1
22[t0/2]+3i+1 + 1

2[t0/2]+2t0+3 ≤ 1
2t0+2 .

In Theorem 19 take d := t0. Given Bk−1, · · · , B0, use In,k0,2t0+3,t0 we can compute a
substochastic matrix C′ such that

∥∥∥C′ − A2k
∥∥∥

1
≤ 1/2t0 .

7 We require that given n, description of Mn can be computed in space O(log n).

CCC 2024

32:12 BPL ⊆ L-AC1

To summarize, take M(k0, t0) := C′, we can compute M(k0, t0) given M(k0 −i, [t0/2]+2i)
for 1 ≤ i ≤ k0, via a poly(n)-size O(t0)-depth L-uniform AC circuit.

Let γ > 0 be a concrete constant such that we can compute M(k0, t0) given M(k0 −
i, [t0/2] + 2i)’s via a poly(n)-size γt0-depth L-uniform AC circuit. Note that if M(k0 −
i, [t0/2] + 2i) can be computed in 2γ(2(k0 − i) + ([t0/2] + 2i))-depth for 1 ≤ i ≤ k0, then
M(k0, t0) can be computed in

γt0 + max
1≤i≤k0

{2γ(2(k0 − i) + ([t0/2] + 2i))} ≤ 2γ(2k0 + t0)

-depth. Also note that M(0, t0)’s are just the inputs, so by induction we know M(k0, t0) can
be computed in 2γ(2k0 + t0)-depth. Specially, M(log n, log n) (which is the desired output)
can be computed in 6γ log n ≤ O(log n)-depth. Also note that we use “compute M(k0, t0)
given M(k0 − i, [t0/2] + 2i)” O((log n)2) many times, so the total circuit size for computing
M(log n, log n) is still poly(n). ◀

▶ Corollary 21. BPL ⊆ L-AC1.

6 Open Problems

1. Our algorithm based on the improved iteration can be thought of as low-depth of
precision requirement. Can this method be applied to obtain other interesting results
in derandomizing BPL? It seems that the space-bounded model or nondeterministic
space-bounded model cannot deal with low accuracy aggregating on many bits at low
cost, as in the AC circuit model.

2. Our algorithm involves a “×O(log log n)” step when multiplying O(log n) matrices and a
“/O(log log n)” step in approximate counting in AC, which seems coincidentally achieves
O(log n)-depth. Can we improve the algorithm to obtain an O

(
log n

log log n

)
-depth AC circuit

for approximating powers of substochastic matrices? We need to mention that this does
not imply BPL can be computed by O

(
log n

log log n

)
-depth AC circuits since we do not know

whether L can be computed by O
(

log n
log log n

)
-depth AC circuits.

References
1 AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron Sidford,

and Salil P. Vadhan. High-precision estimation of random walks in small space. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1295–1306. IEEE, 2020. doi:10.1109/
FOCS46700.2020.00123.

2 Miklós Ajtai. Approximate counting with uniform constant-depth circuits. In Jin-Yi Cai,
editor, Advances In Computational Complexity Theory, Proceedings of a DIMACS Workshop,
New Jersey, USA, December 3-7, 1990, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 1–20. DIMACS/AMS, 1990. doi:10.1090/DIMACS/
013/01.

3 Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations.
In Richard A. DeMillo, editor, Proceedings of the 16th Annual ACM Symposium on Theory
of Computing, April 30 - May 2, 1984, Washington, DC, USA, pages 471–474. ACM, 1984.
doi:10.1145/800057.808715.

4 Roy Armoni. On the derandomization of space-bounded computations. In International
Workshop on Randomization and Approximation Techniques in Computer Science, pages 47–59.
Springer, 1998.

https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1109/FOCS46700.2020.00123
https://doi.org/10.1090/DIMACS/013/01
https://doi.org/10.1090/DIMACS/013/01
https://doi.org/10.1145/800057.808715

K. Cheng and Y. Wang 32:13

5 László Babai, Noam Nisant, and Márió Szegedy. Multiparty protocols, pseudorandom gen-
erators for logspace, and time-space trade-offs. Journal of Computer and System Sciences,
45(2):204–232, 1992.

6 Mark Braverman, Gil Cohen, and Sumegha Garg. Pseudorandom pseudo-distributions
with near-optimal error for read-once branching programs. SIAM Journal on Computing,
49(5):STOC18–242, 2019.

7 Eshan Chattopadhyay and Jyun-Jie Liao. Optimal error pseudodistributions for read-once
branching programs. In 35th Computational Complexity Conference, 2020.

8 Lijie Chen, William M. Hoza, Xin Lyu, Avishay Tal, and Hongxun Wu. Weighted pseu-
dorandom generators via inverse analysis of random walks and shortcutting. In 64th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA, USA,
November 6-9, 2023, pages 1224–1239. IEEE, 2023. doi:10.1109/FOCS57990.2023.00072.

9 Kuan Cheng and William M. Hoza. Hitting sets give two-sided derandomization of small space.
In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31,
2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 10:1–10:25.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.CCC.2020.10.

10 Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error reduction
for weighted prgs against read once branching programs. In Valentine Kabanets, editor,
36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario,
Canada (Virtual Conference), volume 200 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPICS.CCC.2021.22.

11 Gil Cohen, Dean Doron, Oren Renard, Ori Sberlo, and Amnon Ta-Shma. Error reduction for
weighted prgs against read once branching programs. In Proceedings of the 36th Computational
Complexity Conference, page 1, 2021.

12 Gil Cohen, Dean Doron, Ori Sberlo, and Amnon Ta-Shma. Approximating iterated multiplic-
ation of stochastic matrices in small space. In Barna Saha and Rocco A. Servedio, editors,
Proceedings of the 55th Annual ACM Symposium on Theory of Computing, STOC 2023, Or-
lando, FL, USA, June 20-23, 2023, pages 35–45. ACM, 2023. doi:10.1145/3564246.3585181.

13 Joshua Cook. Size bounds on low depth circuits for promise majority. In Nitin Saxena and Sunil
Simon, editors, 40th IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS 2020, December 14-18, 2020, BITS Pilani, K K Birla
Goa Campus, Goa, India (Virtual Conference), volume 182 of LIPIcs, pages 19:1–19:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.FSTTCS.2020.19.

14 Dean Doron, Edward Pyne, and Roei Tell. Opening up the distinguisher: A hardness to
randomness approach for BPL = L that uses properties of BPL. Electron. Colloquium Comput.
Complex., TR23-208, 2023. arXiv:TR23-208.

15 Dean Doron and Roei Tell. Derandomization with minimal memory footprint. In Amnon
Ta-Shma, editor, 38th Computational Complexity Conference, CCC 2023, July 17-20, 2023,
Warwick, UK, volume 264 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2023. doi:10.4230/LIPICS.CCC.2023.11.

16 Pooya Hatami and William Hoza. Theory of unconditional pseudorandom generators. Electron.
Colloquium Comput. Complex., TR23-019, 2023. arXiv:TR23-019.

17 William M. Hoza. Better pseudodistributions and derandomization for space-bounded com-
putation. In Mary Wootters and Laura Sanità, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2021, August
16-18, 2021, University of Washington, Seattle, Washington, USA (Virtual Conference), volume
207 of LIPIcs, pages 28:1–28:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPICS.APPROX/RANDOM.2021.28.

18 William M. Hoza. Recent progress on derandomizing space-bounded computation. Bull.
EATCS, 138, 2022. URL: http://eatcs.org/beatcs/index.php/beatcs/articℓe/view/728.

19 William M Hoza and David Zuckerman. Simple optimal hitting sets for small-success rl. SIAM
Journal on Computing, 49(4):811–820, 2020.

CCC 2024

https://doi.org/10.1109/FOCS57990.2023.00072
https://doi.org/10.4230/LIPICS.CCC.2020.10
https://doi.org/10.4230/LIPICS.CCC.2021.22
https://doi.org/10.1145/3564246.3585181
https://doi.org/10.4230/LIPICS.FSTTCS.2020.19
https://arxiv.org/abs/TR23-208
https://doi.org/10.4230/LIPICS.CCC.2023.11
https://arxiv.org/abs/TR23-019
https://doi.org/10.4230/LIPICS.APPROX/RANDOM.2021.28
http://eatcs.org/beatcs/index.php/beatcs/article/view/728

32:14 BPL ⊆ L-AC1

20 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proceedings of the twenty-sixth annual ACM symposium on Theory of computing,
pages 356–364, 1994.

21 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size
proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526,
2002. doi:10.1137/S0097539700389652.

22 Noam Nisan. Pseudorandom generators for space-bounded computation. Comb., 12(4):449–461,
1992. doi:10.1007/BF01305237.

23 Noam Nisan. RL ⊆ SC. Comput. Complex., 4:1–11, 1994. doi:10.1007/BF01205052.
24 Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and

System Sciences, 52(1):43–52, 1996.
25 Aaron (Louie) Putterman and Edward Pyne. Near-optimal derandomization of medium-width

branching programs. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June
20-23, 2023, pages 23–34. ACM, 2023. doi:10.1145/3564246.3585108.

26 Edward Pyne, Ran Raz, and Wei Zhan. Certified hardness vs. randomness for log-space. In 64th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023, Santa Cruz, CA,
USA, November 6-9, 2023, pages 989–1007. IEEE, 2023. doi:10.1109/FOCS57990.2023.00061.

27 Edward Pyne and Salil Vadhan. Pseudodistributions that beat all pseudorandom generators. In
36th Computational Complexity Conference (CCC 2021). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021.

28 Edward Pyne and Salil P. Vadhan. Pseudodistributions that beat all pseudorandom generators
(extended abstract). In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200
of LIPIcs, pages 33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:
10.4230/LIPICS.CCC.2021.33.

29 Michael E. Saks and Shiyu Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). J. Comput. Syst. Sci.,
58(2):376–403, 1999. doi:10.1006/JCSS.1998.1616.

30 Emanuele Viola. On approximate majority and probabilistic time. In 22nd Annual IEEE
Conference on Computational Complexity (CCC 2007), 13-16 June 2007, San Diego, California,
USA, pages 155–168. IEEE Computer Society, 2007. doi:10.1109/CCC.2007.16.

31 Emanuele Viola. Randomness buys depth for approximate counting. In Rafail Ostrovsky,
editor, IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 230–239. IEEE Computer Society, 2011.
doi:10.1109/FOCS.2011.19.

https://doi.org/10.1137/S0097539700389652
https://doi.org/10.1007/BF01305237
https://doi.org/10.1007/BF01205052
https://doi.org/10.1145/3564246.3585108
https://doi.org/10.1109/FOCS57990.2023.00061
https://doi.org/10.4230/LIPICS.CCC.2021.33
https://doi.org/10.4230/LIPICS.CCC.2021.33
https://doi.org/10.1006/JCSS.1998.1616
https://doi.org/10.1109/CCC.2007.16
https://doi.org/10.1109/FOCS.2011.19

Failure of Feasible Disjunction Property for k-DNF
Resolution and NP-Hardness of Automating It
Michal Garlík #

Department of Computing, Imperial College London, UK

Abstract
We show that for every integer k ≥ 2, the Res(k) propositional proof system does not have the weak
feasible disjunction property. Next, we generalize a result of Atserias and Müller [3] to Res(k). We
show that if NP is not included in P (resp. QP, SUBEXP) then for every integer k ≥ 1, Res(k) is
not automatable in polynomial (resp. quasi-polynomial, subexponential) time.

2012 ACM Subject Classification Theory of computation → Proof complexity

Keywords and phrases reflection principle, feasible disjunction property, k-DNF Resolution

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.33

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/037/

Funding Michal Garlík: Supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 101002742). Part of
this work was carried out at the Euler International Mathematical Institute and supported by a
grant from the Ministry of Science and Higher Education of the Russian Federation (agreement No.
075-15-2019-1620 dated 08/11/2019 and 075-15-2022-289 dated 06/04/2022). Part of this work was
supported by European Research Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme, grant agreement ERC-2014-CoG 648276 (AUTAR).

Acknowledgements I am grateful to Albert Atserias and Jan Krajíček for their valuable comments
on an earlier version of the paper. I would like to thank Ilario Bonacina and Moritz Müller for
several related conversations.

1 Introduction

Following Pudlák [20], a proof system P has weak feasible disjunction property if there exists
a polynomial p such that if a formula A∨B, in which A and B do not share variables, has a P

proof of length t, then either A or B has a P proof of length p(t). In this paper we deal with
refutation systems, which for the previous definition amounts to replacing in it “∨” by “∧”
and “proof” by “refutation”. It is known and easy to see that resolution has the weak feasible
disjunction property. Resolution also has feasible interpolation, a prominent concept in proof
complexity introduced by Krajíček [11, 12]. A refutation system P has feasible interpolation
if there is a polynomial p and an algorithm that when given as input a refutation Π of size
r of a CNF A(x, y) ∧ B(x, z), where y, x, z are disjoint sets of propositional variables, and
a truth assignment σ to the variables x outputs in time p(r) a value i ∈ {0, 1} such that if
i = 0 then A↾σ is unsatisfiable and if i = 1 then B ↾σ is unsatisfiable. Here F ↾σ denotes the
formula obtained from F by an application of a partial truth assignment σ to the variables
of F that are in the domain of σ.

Pudlák [20] comments that so far the weak feasible disjunction property has been observed
in all proof systems that were shown to have feasible interpolation. This is because known
feasible interpolation algorithms, like those in Chapter 17.7 in [15], actually construct a
refutation of one of the conjuncts.

A proof system P is polynomially bounded if there is a polynomial p such that any
tautology of size r has a P proof of size p(r). A fundamental problem in proof complexity is
to show that no polynomially bounded proof system exists. This is equivalent to establishing

© Michal Garlík;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 33; pp. 33:1–33:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgarlik@ic.ac.uk
https://orcid.org/0000-0002-8125-199X
https://doi.org/10.4230/LIPIcs.CCC.2024.33
https://eccc.weizmann.ac.il/report/2020/037/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

NP ≠ coNP, as observed by Cook and Reckhow [6]. There is a potentially useful observation
by Krajíček [14] that for the purpose of proving that some proof system P is not polynomially
bounded we may assume without a loss of generality that P admits the weak feasible
disjunction property. This readily follows from the fact that if a disjunction of two formulas
that do not share variables is a tautology, then one of the disjuncts is.

A propositional version of the negation of the reflection principle for a proof system P

is a conjunction of a propositional formula expressing that ‘z is a satisfying assignment of
formula x of length r’ and a propositional formula expressing that ‘y is a P refutation of
length t of formula x of length r’. Here P, t, r are fixed parameters and x, y, z are disjoint sets
of variables. When we plug in for the common variables x some formula F of length r, we
denote the conjunction by SATF ∧ REFF

P,t, and we call the second conjunct a P refutation
statement for F . We need to define one very mild requirement on a proof system in order
to state a result from [20] about the weak feasible disjunction property that is the main
source of motivation for this paper. We say that P is closed under restrictions if there is
a polynomial p such that whenever F has a P proof of length t and σ is a partial truth
assignment to the variables of F , then there is a P proof of F ↾σ of length at most p(t).

There is a proposition proved in [20] saying that if a proof system P has the weak feasible
disjunction property, has polynomial-size proofs of the reflection principle for P , is closed
under restrictions, and has the property that given a P proof of ¬SAT¬F there is at most
polynomially longer P proof of F , then for every formula F and every integer t which is at
least the size of F , either there is a P proof of F of length tO(1), or there is a tO(1) long P

proof of ¬REF¬F
P,t . Pudlák comments that the conclusion of this proposition seems unlikely

(and therefore it seems unlikely that a proof system satisfying the remaining three reasonable
properties has the weak feasible disjunction property). He concludes that the weak feasible
disjunction property is very unlikely to occur unless the system is very weak. Motivated
to find and emphasize the contrast between resolution and Res(2) (see Section 2) in this
respect, we show the following theorem.

▶ Theorem 1. For every integer k ≥ 2, Res(k) does not have the weak feasible disjunction
property. Moreover, there are families {An}n≥1 and {Bn,k}n≥1,k≥1 of CNFs, where An has
size nO(1), Bn,k has size nO(k), and An and Bn,k do not share any variables, such that all
the following hold:

(i) There exists α > 0 and an integer n1 such that for every k ≥ 1 and n ≥ n1, any Res(k)
refutation of An has size greater than 2nα .

(ii) For every k ≥ 1 there is β > 0 and an integer n2 such that for every n ≥ n2, any
Res(k) refutation of Bn,k has size greater than 2βn.

(iii) For all integers n ≥ 1 and k ≥ 1, An ∧ Bn,k has a Res(2) refutation of size O(k2n7k+7).

The idea is to employ a reflection, but instead of the reflection principle for Res(k),
which would correspond to the hypothesis of Pudlák’s proposition above, we work with
the reflection principle for resolution and make it harder by the relativization technique of
Dantchev and Riis [7]. More precisely, we replace in the reflection principle the resolution
refutation statement by its k-fold relativization. Most of this paper is then concerned with
proving length lower bounds on Res(k) refutations of a version of the k-fold relativization
of REFF

Res,t for every unsatisfiable CNF F (Theorem 18). This lower bound will be used
to prove Item ii above, but since it works for every unsatisfiable F , Item i will be easy to
get choosing F to be hard enough for Res(k). The upper bound, Item iii, generalizes upper
bounds for similar formulas [2, 3, 8], which all build on an idea from [20].

To prove Theorem 18, the mentioned main lower bound, we develop a switching lemma in
the spirit of [21] but respecting the functional properties of the formula REFF

Res,t. This will
come at a cost of worse parameters in the switching lemma and its narrowed applicability in
terms of random restrictions it works for.

M. Garlík 33:3

Our second result is a generalization of conditional non-automatability results for res-
olution [3] to the systems Res(k). Following [5, 2] and [3], we say that a refutation system
P is automatable in time T : N → N if there is an algorithm that when given as input an
unsatisfiable CNF F of size r outputs a P refutation of F in time T (r + sP (F)), where
sP (F) is the length of a shortest P refutation of F . If the function T is a polynomial,
then P is simply called automatable. A refutation system P is weakly automatable if there
is a refutation system Q, a polynomial p, and an algorithm that when given as input an
unsatisfiable CNF F of size r outputs a Q refutation of F in time p(r + sP (F)). It is known
that feasible interpolation is implied by weak automatability in refutation systems that are
closed under restrictions (see Theorem 3 in [2]).

First negative automatability results were obtained by Krajíček and Pudlák [16] who
showed that Extended Frege systems do not have feasible interpolation assuming that RSA
is secure against P/poly. Bonet et al. [5, 4] showed that Frege systems and constant-depth
Frege systems do not have feasible interpolation assuming the Diffie-Hellman key exchange
procedure is secure against polynomial and subexponential size circuits, respectively. All
these proof systems are closed under restrictions, hence these results conditionally rule out
weak automatability and automatability. As for resolution, before a recent breakthrough by
Atserias and Müller [3] who showed that resolution is not automatable unless P = NP, it was
known by a result of Alekhnovich and Razborov [1] that resolution is not automatable unless
W[P] = FPT. Here W[P] is the class of parametrized problems that are fixed-parameter
reducible to the problem of deciding if a monotone circuit C has a satisfying assignment of
Hamming weight k. Regarding weak automatability, Atserias and Bonet [2] proved that for
every k > 1, the following are equivalent: (i) Res(k) has feasible interpolation, (ii) Res(k) is
weakly automatable, (iii) resolution is weakly automatable. We refer the interested reader to
the introduction section of [3] for more on the history of the automatability problem.

Let QP denote the class of problems decidable in quasi-polynomial time 2(log n)O(1) , and
let SUBEXP denote the class of problems decidable in subexponential time 2no(1) . We show
the following theorem, which was proved for k = 1 in [3].

▶ Theorem 2.

1. If NP ̸⊆ P then for every integer k ≥ 1, Res(k) is not automatable in polynomial time.

2. If NP ̸⊆ QP then for every integer k ≥ 1, Res(k) is not automatable in quasi-polynomial
time.

3. If NP ̸⊆ SUBEXP then for every integer k ≥ 1, Res(k) is not automatable in subexponen-
tial time.

The basic idea of the proof is the same as in [3]: to map every formula F to a resolution
refutation statement for F and to show that if F is satisfiable then the refutation statement has
a polynomial-length Res(k) refutation, and if F is unsatisfiable then the refutation statement
requires long Res(k) refutations. An automating algorithm that finds short refutations
quickly enough can then be used to distinguish between the two situations, and hence to
solve SAT. We thus need to show strong lower bounds on the length of Res(k) refutations
of a version of resolution refutation statements. To do this, we use the aforementioned
Theorem 18 again.

Among the subsequent developments on non-automatability that appeared after [3] are
NP-hardness of non-automatability of Cutting Planes [9], of Nullstellensatz and Polynomial
Calculus [10], and of constant-depth Frege [18].

CCC 2024

33:4 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

2 Preliminaries

For a function f , we write dom(f) to denote its domain and im(f) to denote its image.
Functions f and g are compatible if f ∪ g is a function. If k is an integer, [k] denotes the set
{1, . . . , k}. For a propositional variable x, we denote by x1 the positive literal of x, that is,
x, and we denote by x0 the negative literal of x, that is, ¬x. A clause (resp. term) is a set
of literals, and is written as a disjunction (resp. conjunction) of its elements. A CNF is a set
of clauses, and is written as a conjunction of the clauses. A CNF whose each clause contains
at most k literals is called a k-CNF. A DNF is a set of terms, and is written as a disjunction
of the terms. A k-DNF is a DNF in which each term has at most k literals. We will identify
1-DNFs with clauses. A clause that does not contain both the positive and negative literal of
the same variable is called non-tautological. If C and D are clauses and D ⊆ C, we say that
C is a weakening of D. We say that a clause D is the resolvent of clauses C1 and C2 on a
variable x if x ∈ C1, ¬x ∈ C2 and D = (C1 \ {x}) ∪ (C2 \ {¬x}). A clause E is obtained by
the resolution rule from clauses C1 and C2 if E is a weakening of the resolvent of C1 and C2
on a variable x. The clauses C1 and C2 are called the premises of the rule.

Let C be a clause and F a CNF. A sequence of clauses Π = (C1, . . . , Ct) is a resolution
derivation of C from F if Ct = C and for all u ∈ [t], either Cu is a weakening of a clause in
F , or there are v, w ∈ [u − 1] such that Cu is obtained by the resolution rule from Cv and
Cw. A resolution refutation of F is a resolution derivation of the empty clause from F . The
length of a resolution derivation Π = (C1, . . . , Ct) is t. For v ∈ [t], the height of v in Π is
defined as the maximum integer h such that there is a subsequence (Cv1 , . . . , Cvh

) of Π in
which vh = v and for each i ∈ [h − 1], Cvi

is a premise of a resolution rule by which Cvi+1 is
obtained in Π. The height of Π is the maximum height of v in Π over v ∈ [t].

Let x1, . . . , xn be propositional variables. A partial assignment to x1, . . . , xn is a partial
map from {x1, . . . , xn} to {0, 1}. For a partial assignment γ and a CNF F , we denote by
F ↾γ the CNF formed from F by removing every clause containing a literal satisfied by γ,
and removing every literal falsified by γ from the remaining clauses. If Π = (C1, . . . , Ct) is a
sequence of clauses, Π↾γ is formed from Π by the same operations. It is easy to check that
if Π is a resolution refutation of F , then Π↾γ is a resolution refutation of F ↾γ.

The Res(k) refutation system is a generalization of resolution introduced by Krajíček
[13]1. The lines in Res(k) consist of k-DNFs. The inference rules of Res(k) are the following
(A, B are k-DNFs, j ∈ [k], and l, l1, . . . , lj are literals):

Axiomx ∨ ¬x
A ∨ l1 B ∨ (l2 ∧ · · · ∧ lj)

∧-introduction
A ∨ B ∨ (l1 ∧ · · · ∧ lj)

A Weakening
A ∨ B

A ∨ (l1 ∧ · · · ∧ lj) B ∨ ¬l1 ∨ · · · ∨ ¬lj
Cut

A ∨ B

A Res(k) derivation from a CNF F is a sequence of k-DNFs (D1, . . . , Dt) so that each Di

either is a member of F or is obtained from the preceding lines by an application of one of
the inference rules. A Res(k) derivation (D1, . . . , Dt) from F whose final line Dt is the empty
clause is called a Res(k) refutation of F . The length of a Res(k) derivation Π = (D1, . . . , Dt),
denoted by |Π|, is t. The size of Π, denoted by size(Π), is the number of symbols in Π.

1 In [13] (see also Chapter 5.7 in [15]) more general fragments R(f) of DNF-resolution are introduced,
where f : N → N is non-decreasing and a refutation Π is said to have R(f)-size s if its lines are
f(s)-DNFs and |Π| ≤ s. In the present paper we work with constant functions f .

M. Garlík 33:5

3 Resolution Refutations of s Levels of t Clauses

It will be convenient to work with a variant of resolution in which the clauses forming a
refutation are arranged in layers. All definitions in this section are taken from [8].

▶ Definition 3. Let F be a CNF consisting of r clauses in n variables x1, . . . , xn. A
resolution refutation of F of s levels of t clauses is a sequence of clauses Ci,j indexed by all
pairs (i, j) ∈ [s] × [t], such that each clause C1,j on the first level is a weakening of a clause
in F , each clause Ci,j on level i∈ [s]\{1} is a weakening of the resolvent of two clauses from
level i − 1 on a variable, and the clause Cs,t is empty.

The following proposition says that the requirement that clauses be arranged in layers is
not very restrictive, since this system quadratically simulates resolution and preserves the
height of the refutation.

▶ Proposition 4 ([8]). Assume that a (n−1)-CNF F in n variables has a resolution refutation
of height h and length s. Then F has a resolution refutation of h levels of 3s clauses.

We now formalize refutation statements for this system in the same way as in [8]. Let
n, r, s, t be integers. Suppose that F is a CNF consisting of r clauses C1, . . . , Cr in n variables
x1, . . . , xn. We define a propositional formula REFF

s,t, which expresses that F has a resolution
refutation of s levels of t clauses.

First we list the variables of REFF
s,t. D-variables D(i, j, ℓ, b), i ∈ [s], j ∈ [t], ℓ ∈ [n], b ∈

{0, 1}, encode clauses Ci,j as follows: D(i, j, ℓ, 0) (resp. D(i, j, ℓ, 1)) means that the literal
¬xℓ (resp. xℓ) is in Ci,j . R-variables R(i, j, j′) (resp. L-variables L(i, j, j′)), i ∈ [s]\{1},
j, j′ ∈ [t], say that Ci−1,j′ is a premise of the resolution rule by which Ci,j is obtained, and
it is the premise that contains the negative (resp. positive) literal of the resolved variable.
V -variables V (i, j, ℓ), i∈ [s]\{1}, j ∈ [t], ℓ ∈ [n], say that Ci,j is inferred by resolving on xℓ.
I-variables I(j, m), j ∈ [t], m ∈ [r], indicate that C1,j is a weakening of Cm.

The formula REFF
s,t (see Appendix A for a precise formalization) consists of clauses of

several kinds: they express that clause C1,j (described by D-variables) on the first level
contains all literals of the clause from F of which it is a weakening; that clauses Ci,j are
non-tautological; that the premises of the resolution rule contain the appropriate literal of
the resolved variable and that all the other literals of the premises are passed to the clause
inferred from them; that the last clause Cs,t is empty; and that the V, I, L, R-variables define
functions with appropriate domains and ranges.

▶ Definition 5. For i ∈ [s], j, j′ ∈ [t], ℓ ∈ [n], b ∈ {0, 1}, m ∈ [r], we say that (i, j) is the
home pair of the variable D(i, j, ℓ, b), of the variables R(i, j, j′), L(i, j, j′), V (i, j, ℓ) if i ̸= 1,
and of the variable I(j, m) if i = 1.

We write V (i, j, ·) to stand for the set {V (i, j, ℓ) : ℓ ∈ [n]}. Similarly, we write
I(j, ·), L(i, j, ·), and R(i, j, ·) to stand for the set {I(j, m) : m ∈ [r]}, {L(i, j, j′) : j′ ∈ [t]},
and {R(i, j, j′) : j′ ∈ [t]}, respectively. We denote by D(i, j, ·, ·) the set {D(i, j, ℓ, b) : ℓ ∈
[n], b ∈ {0, 1}}.

Let σ be a partial assignment. We say that V (i, j, ·) is set to ℓ by σ if σ(V (i, j, ℓ)) = 1
and for all ℓ′ ∈ [n]\ {ℓ}, σ(V (i, j, ℓ′)) = 0 . Similarly, we say that I(j, ·) is set to m by σ

if σ(I(j, m)) = 1 and for all m′ ∈ [r]\{m} we have σ(I(j, m′)) = 0. We say that L(i, j, ·)
(resp. R(i, j, ·)) is set to j′ by σ if σ(L(i, j, j′)) = 1 (resp. σ(R(i, j, j′)) = 1) and for all
j′′ ∈ [t]\{j′}, we have σ(L(i, j, j′′)) = 0 (resp. σ(R(i, j, j′′)) = 0). We say that D(i, j, ·, ·) is
set to a clause Ci,j by σ if for all ℓ ∈ [n], b ∈ {0, 1} we have σ(D(i, j, ℓ, b)) = 1 if xb

ℓ ∈ Ci,j

and σ(D(i, j, ℓ, b)) = 0 if xb
ℓ ̸∈ Ci,j.

CCC 2024

33:6 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

For Y ∈ {D(i, j, ·, ·), V (i, j, ·), I(j, ·), R(i, j, ·), L(i, j, ·)}, we say that Y is set by σ if Y is
set to v by σ for some value v. We will sometimes omit saying “by σ” if σ is clear from the
context.

4 Reflection Principle for Resolution

We repeat the formulation of a version of the reflection principle from [8]. The CNF expressing
the negation of the reflection principle for resolution can be written as SATn,r ∧ REFn,r

s,t , the
conjunction of two CNFs. The only common variables of the formulas SATn,r and REFn,r

s,t

encode a CNF with r clauses in n variables. The meaning of SATn,r is that the encoded CNF
is satisfiable, while the meaning of REFn,r

s,t is that the same CNF has a resolution refutation
of s levels of t clauses. A formal definition is given below.

We list the variables of the formula SATn,r. C-variables C(m, ℓ, b), m ∈ [r], ℓ ∈ [n], b ∈
{0, 1}, encode clauses Cm in the usual way: C(m, ℓ, 1) (resp. C(m, ℓ, 0)) means that the literal
xℓ (resp. ¬xℓ) is in Cm. T -variables T (ℓ), ℓ ∈ [n], and T (m, ℓ, b), m ∈ [r], ℓ ∈ [n], b ∈ {0, 1},
encode the truth value of the literals and clauses of the CNF {C1, . . . , Cr} (under an
assignment to the variables x1, . . . , xn). The meaning of T (ℓ) is that the literal xℓ is satisfied.
The meaning of T (m, ℓ, 1) (resp. T (m, ℓ, 0)) is that clause Cm is satisfied through the literal
xℓ (resp. ¬xℓ).

The clauses of SATn,r are the following:

T (m, 1, 1) ∨ T (m, 1, 0) ∨ . . . ∨ T (m, n, 1) ∨ T (m, n, 0) m ∈ [r], (1)
¬T (m, ℓ, 1) ∨ T (ℓ) m ∈ [r], ℓ ∈ [n], (2)
¬T (m, ℓ, 0) ∨ ¬T (ℓ) m ∈ [r], ℓ ∈ [n], (3)
¬T (m, ℓ, b) ∨ C(m, ℓ, b) m ∈ [r], ℓ ∈ [n], b ∈ {0, 1}. (4)

For m ∈ [r], clause (1) says that clause Cm is satisfied through some literal. Clauses (2) and
(3) say that if Cm is satisfied through a literal, then the literal is satisfied. The meaning of
(4) is that if clause Cm is satisfied through a literal, then it contains the literal.

Now let us take a look at REFn,r
s,t . The variables of REFn,r

s,t are the variables C(m, ℓ, b)
of SATn,r together with all the variables of REFF

s,t for some (and each) F of r clauses in n

variables. That is, REFn,r
s,t has the following variables: C(m, ℓ, b) for m ∈ [r], ℓ ∈ [n], b ∈ {0, 1};

D(i, j, ℓ, b) for i ∈ [s], j ∈ [t], ℓ ∈ [n], b ∈ {0, 1}; L(i, j, j′) and R(i, j, j′) for i∈ [s]\{1}, j, j′ ∈ [t];
V (i, j, ℓ) for i∈ [s]\{1}, j ∈ [t], ℓ ∈ [n]; I(j, m) for j ∈ [t], m ∈ [r].

The clauses of REFn,r
s,t are all clauses (12) - (25) of REFF

s,t together with the following
set of clauses (to replace clauses (11)):

¬I(j, m) ∨ ¬C(m, ℓ, b) ∨ D(1, j, ℓ, b) j ∈ [t], m ∈ [r], ℓ ∈ [n], b ∈ {0, 1}, (5)

saying that if C1,j is a weakening of Cm, then the former contains each literal of the latter.
So the difference with (11) is that Cm is no longer a clause of some fixed formula F , but is
described by C-variables.

In Appendix B we show a simple proposition saying that evaluating SATn,r by a partial
assignment describing a CNF F with r clauses in n variables results in a formula equivalent
to F .

5 The Upper Bounds

In this section we work with a stronger formulation of the negation of the reflection principle
for resolution, expressed by a CNF formula SATn,r ∧ RkREFn,r

s,t . The difference with the
previous formulation SATn,r ∧ REFn,r

s,t is that we replace REFn,r
s,t by its k-fold relativization

M. Garlík 33:7

RkREFn,r
s,t . The first-order logic notion of relativization of a first-order formula to a relation

was put to use in propositional proof complexity by Dantchev and Riis [7]. Informally
speaking, relativization turns a statement that some property holds for the whole universe
into a statement that the property holds for any non-empty subset S of the universe. In the
propositional setting, this is realized by introducing new variables to encode the characteristic
function of the subset S of the universe. We will actually use a conjunction of k fresh
variables for each element of the universe to indicate the presence of the element in S.

We first treat the case of a fixed F , that is, we show how to relativize REFF
s,t. The

relativization of REFn,r
s,t will then be immediate.

The k-fold relativization of REFF
s,t is denoted by RkREFF

s,t. The variables of this CNF are
those of REFF

s,t together with new variables Su(i, j), (i, j) ∈ [s] × [t], u ∈ [k]. The meaning
of RkREFF

s,t is that those clauses Ci,j (described by D-variables) for which
∧

u∈[k] Su(i, j) is
satisfied form a resolution refutation of F of s levels of at most t clauses. That is, only the
selected clauses Ci,j have to form a refutation, and nothing is asked of the clauses that are
not selected. Formally, RkREFF

s,t is defined in Appendix C.
It is immediate that the partial assignment that maps Su(i, j) to 1 for all (i, j) ∈ [s] × [t]

and all u ∈ [k] maps RkREFF
s,t to REFF

s,t.
We now define the formula RkREFn,r

s,t by a change to RkREFF
s,t completely analogous to

the change by which we obtained REFn,r
s,t from REFF

s,t. That is, the clauses of RkREFn,r
s,t

are (27) - (43) of RkREFF
s,t together with the following clauses (to replace (26)):∨

u∈[k]

¬Su(1, j) ∨ ¬I(j, m) ∨ ¬C(m, ℓ, b) ∨ D(1, j, ℓ, b)

j ∈ [t], m∈ [r], ℓ∈ [n], b∈{0, 1}, (6)

saying that if clause C1,j is selected and is a weakening of clause Cm (described by C-variables),
then it contains each literal of Cm.

▶ Theorem 6. The negation of the reflection principle for resolution expressed by the formula
SATn,r ∧ RkREFn,r

s,t has Res(2) refutations of size O(trn2 + tr2 + trnk + st2n3 + st2n2k +
st2nk2 + st3n).

The proof of this theorem is in Appendix D

6 The Lower Bounds

We need a modification of two results of Segerlind, Buss and Impagliazzo [21]. Namely, their
switching lemma works with the usual notion of the width of a clause, and we would like
it to work with the notion of “the number of pairs mentioned” in the sense of Definition 9
below. This is because our random restrictions have to respect the functional properties of
the formula REFF

s,t (expressed by clauses (18) - (25)), and it is therefore convenient to require
that they evaluate variables in groups determined by the home pair. Consequently, we do
not want to represent a k-DNF simplified by a random restriction by a standard decision
tree like in [21], as such a tree would branch exponentially in t, which would prevent taking
union bounds over the branches of shallow trees occurring in the proof of our switching
lemma. To circumvent this problem, the decision trees we construct (called decision trees over
REFF

s,t) ask queries like “What is the left premise of clause Ci,j?” rather than queries like
“Is L(i, j, j′) true?”. This makes their branching more manageable (though still exponential
in the number of variables of F), but there is a price to pay in terms of the parameters

CCC 2024

33:8 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

of the switching lemma (Theorem 16) and its more complicated proof, which uses certain
independence properties of our random restrictions. Also, such trees no longer represent
formulas over all partial assignments, but only over assignments that do not violate the
functionality axioms and evaluate variables in groups determined by home pairs. Accordingly,
we need to adapt to our different notions of width and representation a result in [21] which
says that if the lines of a Res(k) refutation can be strongly represented by shallow decision
trees, then the refutation can be converted to a resolution refutation of a small width.

Our random restrictions (Definition 15) will be applied to k-DNFs in the variables of
RkREFF

s,t and they are defined in two stages, the first of which evaluates all S-variables,
thereby declaring some pairs (i, j) selected (when

∧
u∈[k] Su(i, j) evaluates to 1), and in the

second stage all variables with a home pair that was not selected are evaluated randomly and
independently. The restricted k-DNF formula is therefore in the variables of REFF

s,t, and the
purpose of the switching lemma is to show that it can be represented by a shallow decision
tree over REFF

s,t with a high probability. We begin with a definition of these trees and the
notion of representation. Before reading the next definition, it is useful to recall Definition 5.

▶ Definition 7. A decision tree over REFF
s,t is a rooted tree T in which every internal node

is labelled with a pair (i, j) ∈ [s] × [t]. There are 22n · r edges leaving each node labelled
with (1, j) ∈ {1} × [t], and they are labelled with pairs (C1,j , m), where C1,j is a clause in
variables x1, . . . , xn, and m ∈ [r]. There are 22n · nt2 edges leaving each node labelled with
(i, j) ∈ {2, . . . , s} × [t], and these edges are labelled with tuples (Ci,j , ℓ, j′, j′′), where Ci,j is
a clause in variables x1, . . . , xn, ℓ ∈ [n], and j′, j′′ ∈ [t]. The leaves of T are labelled with
either 0 or 1. No pair (i, j) is allowed to label two nodes on any path from the root to a leaf
of T . For each node v of T , the path from the root to v is viewed as a partial assignment
πv that for each edge that is on the path, leaving a node with a label (i, j), evaluates the
variables of REFF

s,t with home pair (i, j) in the following way: If i = 1 and the label of the
edge is (C1,j , m), then πv sets D(1, j, ·, ·) to C1,j and I(j, ·) to m; otherwise i ∈ [s] \ {1} and
the label of the edge is some tuple (Ci,j , ℓ, j′, j′′), in which case πv sets D(i, j, ·, ·) to Ci,j,
V (i, j, ·) to ℓ, L(i, j, ·) to j′, and R(i, j, ·) to j′′. For b ∈ {0, 1}, we let Brb(T) stand for the
set of paths (viewed as partial assignments) that lead from the root to a leaf labelled with b.

▶ Definition 8. Let G be a DNF in the variables of REFF
s,t. We say that a decision tree T

over REFF
s,t strongly represents G if for every π ∈ Br0(T), for every q ∈ G, q ↾π = 0 and

for every π ∈ Br1(T), there exists q ∈ G, q ↾π = 1. The representation index-height of G,
hi(G), is the minimum height of a decision tree over REFF

s,t strongly representing G.

▶ Definition 9. Let π be a partial assignment to the variables of REFF
s,t, and let E be a

clause in the variables of REFF
s,t. We say that a pair (i, j) ∈ [s] × [t] is mentioned in π (resp.

E) if it is the home pair of a variable in dom(π) (resp. of a variable a literal of which is in
E).

▶ Definition 10. Let C be a clause in the variables of REFF
s,t. The index-width of C is the

number of pairs (i, j) ∈ [s] × [t] that are mentioned in C. The index-width of a resolution
derivation is the maximum index-width of a clause in the derivation.

The following theorem is an adaptation of [21, Theorem 5.1]. Its proof is in Appendix E

▶ Theorem 11. Let H be a CNF in the variables of REFF
s,t whose every clause has index-

width at most h ≥ 1. If for some k ≥ 1 there is a Res(k) refutation of H such that for each
line G of the refutation, hi(G) ≤ h, then there is a resolution refutation of H together with
the functionality clauses (18) - (25) of REFF

s,t such that the index-width of the refutation is
at most 3h.

M. Garlík 33:9

We now turn our attention to the formula RkREFF
s,t. Recall from its definition in Section 5

that its variables are those of REFF
s,t together with variables Su(i, j), (i, j) ∈ [s] × [t], u ∈ [k].

In the following definition we extend the notion of a home pair from Definition 5 to the
S-variables, and we extend the notion of a pair being mentioned accordingly.

▶ Definition 12. For (i, j) ∈ [s] × [t] and u ∈ [k], the home pair of the variable Su(i, j) is
(i, j).

We say that a pair (i, j) is mentioned in a clause E (resp. a partial assignment π; a term
q) if it is a home pair of a variable a literal of which is in E (resp. which is in dom(π); a
literal of which is in q).

▶ Definition 13. Let U ⊆ [s] × [t] and let G be a DNF in the variables of RkREFF
s,t. If for

each term q ∈ G there is (i, j) ∈ U such that (i, j) is mentioned in q, then we say that U is
an index-cover of G. The index-covering number of G, ci(G), is the minimum cardinality of
an index-cover of G.

▶ Definition 14. For a set U ⊆ [s] × [t], denote by Var(U) the set of all variables of REFF
s,t

with home pair in U , that is,

Var(U) :=
⋃

(i,j)∈U

D(i, j, ·, ·)∪
⋃

(i,j)∈U\([1]×[t])

(R(i, j, ·) ∪ L(i, j, ·) ∪ V (i, j, ·))∪
⋃

(1,j)∈U

I(j, ·).

Also, denote by VarS(U) the set of all S-variables with home pair in U ; in symbols, VarS(U) :=
{Su(i, j) : u ∈ [k], (i, j) ∈ U}.

We generalize random restrictions from [3] to our case of RkREFF
s,t.

▶ Definition 15. A random restriction ρk is a partial assignment to the variables of RkREFF
s,t

given by the following experiment:
1. Independently for each (i, j) ∈ [s] × [t] and u ∈ [k], map Su(i, j) to 0 or 1, each with

probability 1/2.
2. Let A be the set of those (i, j) ∈ [s] × [t] such that for every u ∈ [k], Su(i, j) is mapped to

1.
3. Map independently each variable from Var(([s] × [t]) \ A) to 0 or 1, each with probability

1/2.

The main theorem of this section is the following switching lemma. Its proof is in
Appendix F

▶ Theorem 16. Suppose that k ≥ 1, a ≥ 1 are integers such that k ≥ a. There is δ > 0 and
an integer n0 > 0 such that if n, r, s, t are integers satisfying

r ≤ t ≤ 2δn and n0 ≤ n, (7)

and F is a CNF with r clauses in n variables, then for every a-DNF G in the variables of
RkREFF

s,t and every w > 0,

Pr[hi(G↾ρk) > w] ≤ 2− w

na−1 γ(a), (8)

where γ(a) = (log e)a

2a2+3a−2a! .

The following theorem states a width lower bound. Its proof is in Appendix G

CCC 2024

33:10 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

▶ Theorem 17. Let w > 0. If n, r, s, t are integers satisfying

2 ≤ n + 1 ≤ s, 2w < t, (9)

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,
then any resolution refutation of REFF

s,t has index-width greater than w.

We now put together all the results so far in this section to show a length lower bound
on Res(k) refutations of RkREFF

s,t with an unsatisfiable F . The proof of the next theorem is
in Appendix H.

▶ Theorem 18. Suppose k ≥ 1 is an integer. There is δ > 0 and an integer n0 > 0 such
that if n, r, s, t are integers satisfying

n0 ≤ n, n + 1 ≤ s ≤ t, r ≤ t ≤ 2δn, nk ≤ t, (10)

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,
then any Res(k) refutation of RkREFF

s,t has length greater than 2β(k) t

nk−1 , where β(k) :=
(log e)k

2k2+4k+4k! .

From this theorem it is not dificult to derive the main results of this paper, Theorem 1
and Theorem 2. We include their proofs in Appendix I.

7 Conclusion

We have shown that for every integer k ≥ 2, the system Res(k) does not have the weak
feasible disjunction property and, unless P = NP, it is not automatable. Because of the
factor t/nk−1 that appears in the exponent of the lower bound in Theorem 18 and originates
in the switching lemma (Theorem 16), we have not been able to extend the results to
superconstant k.

A more important open question is to rule out weak automatability of these systems
assuming some standard hardness assumption. Weak automatability behaves better; e.g. in
contrast to automatability, it trivially follows that if a proof system P simulates Q and P is
weakly automatable, then so is Q.

References
1 Michael Alekhnovich and Alexander A. Razborov. Resolution is not automatizable unless W[P]

is tractable. SIAM Journal on Computing, 38(4):1347–1363, 2008. doi:10.1137/06066850X.
2 Albert Atserias and Maria Luisa Bonet. On the automatizability of resolution and related

propositional proof systems. Information and Computation, 189(2):182–201, 2004.
3 Albert Atserias and Moritz Müller. Automating resolution is NP-hard. In 60th Annual

Symposium on Foundations of Computer Science (FOCS), pages 498–509. IEEE, 2019.
4 Maria Luisa Bonet, Carlos Domingo, Ricard Gavaldà, Alexis Maciel, Toniann Pitassi, and

Ran Raz. Non-automatizability of bounded-depth Frege proofs. Computational Complexity,
13(1-2):47–68, 2004. doi:10.1007/s00037-004-0183-5.

5 Maria Luisa Bonet, Toniann Pitassi, and Ran Raz. On interpolation and automatization for
Frege systems. SIAM J. Comput., 29(6):1939–1967, 2000. doi:10.1137/S0097539798353230.

6 Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(1):36–50, 1979.

7 Stefan Dantchev and Søren Riis. On relativisation and complexity gap for resolution-based
proof systems. In M. Baaz and J. A. Makowsky, editors, Computer Science Logic (CSL 2003),
volume 2803 of Lecture Notes in Computer Science, pages 142–154. Springer, 2003.

https://doi.org/10.1137/06066850X
https://doi.org/10.1007/s00037-004-0183-5
https://doi.org/10.1137/S0097539798353230

M. Garlík 33:11

8 Michal Garlík. Resolution Lower Bounds for Refutation Statements. In Peter Rossmanith,
Pinar Heggernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Math-
ematical Foundations of Computer Science (MFCS 2019), volume 138 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 37:1–37:13. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.37.

9 M Göös, S Koroth, I Mertz, and T Pitassi. Automating cutting planes is np-hard. STOC
2020: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
2020. doi:10.1145/3357713.3384248.

10 M Göös, J Nordström, T Pitassi, R Robere, D Sokolov, and S deRezende. Automating algebraic
proof systems is np-hard. Preprint available at the Electronic Colloquium on Computational
Complexity (ECCC), TR20-064, 2020. URL: https://eccc.weizmann.ac.il/report/2020/
064/.

11 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. The Journal
of Symbolic Logic, 59(1):73–86, 1994. doi:10.2307/2275250.

12 Jan Krajíček. Interpolation theorems, lower bounds for proof systems, and independence
results for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997. doi:
10.2307/2275541.

13 Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-2):123–140,
2001. doi:10.4064/fm170-1-8.

14 Jan Krajíček. On the proof complexity of the Nisan–Wigderson generator based on a hard
NP ∩ coNP function. Journal of Mathematical Logic, 11(01):11–27, 2011. doi:10.1142/
S0219061311000979.

15 Jan Krajíček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 2019. doi:10.1017/9781108242066.

16 Jan Krajíček and Pavel Pudlák. Some consequences of cryptographical conjectures for S1
2 and

EF. Information and Computation, 140(1):82–94, 1998. doi:10.1006/inco.1997.2674.
17 Jan Krajíček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of

bounded depth frege proofs of the pigeonhole principle. Random Structures & Algorithms,
7(1):15–39, 1995. doi:10.1002/rsa.3240070103.

18 Theodoros Papamakarios. Depth d frege systems are not automatable unless p = np. Preprint
available at the Electronic Colloquium on Computational Complexity (ECCC), TR23-121, 2023.
URL: https://eccc.weizmann.ac.il/report/2023/121/.

19 Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Computational Complexity, 3(2):97–140, 1993. doi:10.1007/BF01200117.

20 Pavel Pudlák. On reducibility and symmetry of disjoint NP-pairs. Theoretical Computer
Science, 295:323–339, 2003.

21 Nathan Segerlind, Samuel R. Buss, and Russel Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing, 33(5):1171–
1200, 2004.

A Formula REFF
s,t

The formula REFF
s,t is the union of the following fifteen sets of clauses:

¬I(j, m) ∨ D(1, j, ℓ, b) j ∈ [t], m∈ [r], b∈{0, 1}, xb
ℓ ∈Cm, (11)

clause C1,j contains all literals of Cm if C1,j is a weakening of Cm,

¬D(i, j, ℓ, 0) ∨ ¬D(i, j, ℓ, 1) i∈ [s], j ∈ [t], ℓ∈ [n], (12)

clause Ci,j cannot contain both ¬xℓ and xℓ,

¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 1) i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (13)
¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 0) i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (14)

CCC 2024

https://doi.org/10.4230/LIPIcs.MFCS.2019.37
https://doi.org/10.1145/3357713.3384248
https://eccc.weizmann.ac.il/report/2020/064/
https://eccc.weizmann.ac.il/report/2020/064/
https://doi.org/10.2307/2275250
https://doi.org/10.2307/2275541
https://doi.org/10.2307/2275541
https://doi.org/10.4064/fm170-1-8
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1142/S0219061311000979
https://doi.org/10.1017/9781108242066
https://doi.org/10.1006/inco.1997.2674
https://doi.org/10.1002/rsa.3240070103
https://eccc.weizmann.ac.il/report/2023/121/
https://doi.org/10.1007/BF01200117

33:12 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

clause Ci−1,j′ used as the premise given by L(i, j, j′) (resp. R(i, j, j′)) when resolving on xℓ

must contain xℓ (resp. ¬xℓ),

¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)
i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 1), (15)

¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)
i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 0), (16)

clause Ci,j inferred by resolving on xℓ must contain each literal different from xℓ (resp. ¬xℓ)
from the premise given by L(i, j, j′) (resp. R(i, j, j′)),

¬D(s, t, ℓ, b) ℓ∈ [n], b∈{0, 1}, (17)

clause Cs,t is the empty clause,

V (i, j, 1) ∨ V (i, j, 2) ∨ . . . ∨ V (i, j, n) i∈ [s]\{1}, j ∈ [t], (18)
I(j, 1) ∨ I(j, 2) ∨ . . . ∨ I(j, r) j ∈ [t], (19)
L(i, j, 1) ∨ L(i, j, 2) ∨ . . . ∨ L(i, j, t) i∈ [s]\{1}, j ∈ [t], (20)
R(i, j, 1) ∨ R(i, j, 2) ∨ . . . ∨ R(i, j, t) i∈ [s]\{1}, j ∈ [t], (21)
¬V (i, j, ℓ) ∨ ¬V (i, j, ℓ′) i∈ [s]\{1}, j ∈ [t], ℓ, ℓ′ ∈ [n], ℓ ̸= ℓ′, (22)
¬I(j, m) ∨ ¬I(j, m′) j ∈ [t], m, m′ ∈ [r], m ̸= m′, (23)
¬L(i, j, j′) ∨ ¬L(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (24)
¬R(i, j, j′) ∨ ¬R(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (25)

the V, I, L, R-variables define functions.

B Obtaining F from SATn,r

▶ Proposition 19. Let F be a CNF of r clauses C1, . . . , Cr in n variables x1, . . . , xn, and
let γF be the assignment describing F , that is, the domain of γF consists of all C-variables,
and γF (C(m, ℓ, b)) = 1 if xb

ℓ ∈ Cm and γF (C(m, ℓ, b)) = 0 if xb
ℓ /∈ Cm. Then there is a

substitution τ that maps the T -variables of SATn,r ↾γF to {0, 1} ∪ {xb
ℓ : ℓ ∈ [n], b ∈ {0, 1}}

such that (SATn,r ↾ γF) ↾ τ is F together with some tautological clauses in the variables
x1, . . . , xn.

Proof. Define τ as follows. If γF (C(m, ℓ, b)) = 0, then set τ(T (m, ℓ, b)) = 0. This deletes
T (m, ℓ, b) from (1) and satisfies the corresponding clauses of (4) together with either (2) (if
b = 1) or (3) (if b = 0). If γF (C(m, ℓ, b)) = 1, then the corresponding clause in (4) has been
satisfied and we define τ(T (m, ℓ, b)) = xb

ℓ and τ(T (ℓ)) = xℓ. This choice turns (2) (if b = 1)
or (3) (if b = 0) into a tautological clause and correctly substitutes the remaining literals of
(1) to yield the clause Cm of F . ◀

C Formula RkREFF
s,t

The formula RkREFF
s,t is the union of the following sets of clauses:∨

u∈[k]

¬Su(1, j) ∨ ¬I(j, m) ∨ D(1, j, ℓ, b) j ∈ [t], m∈ [r], b∈{0, 1}, xb
ℓ ∈Cm, (26)

M. Garlík 33:13

∨
u∈[k]

¬Su(i, j) ∨ ¬D(i, j, ℓ, 1) ∨ ¬D(i, j, ℓ, 0) i∈ [s], j ∈ [t], ℓ∈ [n], (27)

∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 1)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (28)∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 0)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ∈ [n], (29)∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 1), (30)∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b) ∨ D(i, j, ℓ′, b)

i∈ [s]\{1}, j, j′ ∈ [t], ℓ, ℓ′ ∈ [n], b∈{0, 1}, (ℓ′, b) ̸= (ℓ, 0), (31)∨
u∈[k]

¬Su(s, t) ∨ ¬D(s, t, ℓ, b) ℓ∈ [n], b∈{0, 1}, (32)

∨
u∈[k]

¬Su(i, j) ∨
∨

ℓ∈[n]

V (i, j, ℓ) i∈ [s]\{1}, j ∈ [t], (33)

∨
u∈[k]

¬Su(1, j) ∨
∨

m∈[r]

I(j, m) j ∈ [t], (34)

∨
u∈[k]

¬Su(i, j) ∨
∨

j′∈[t]

L(i, j, j′) i∈ [s]\{1}, j ∈ [t], (35)

∨
u∈[k]

¬Su(i, j) ∨
∨

j′∈[t]

R(i, j, j′) i∈ [s]\{1}, j ∈ [t], (36)

∨
u∈[k]

¬Su(i, j) ∨ ¬V (i, j, ℓ) ∨ ¬V (i, j, ℓ′) i∈ [s]\{1}, j ∈ [t], ℓ, ℓ′ ∈ [n], ℓ ̸= ℓ′, (37)

∨
u∈[k]

¬Su(i, j) ∨ ¬I(j, m) ∨ ¬I(j, m′) j ∈ [t], m, m′ ∈ [r], m ̸= m′, (38)

∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ ¬L(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (39)

∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ ¬R(i, j, j′′) i∈ [s]\{1}, j, j′, j′′ ∈ [t], j′ ̸= j′′, (40)

Su(s, t) u ∈ [k], (41)∨
u∈[k]

¬Su(i, j) ∨ ¬L(i, j, j′) ∨ Su′(i − 1, j′) i∈ [s]\{1}, j, j′ ∈ [t], u′ ∈ [k], (42)

∨
u∈[k]

¬Su(i, j) ∨ ¬R(i, j, j′) ∨ Su′(i − 1, j′) i∈ [s]\{1}, j, j′ ∈ [t], u′ ∈ [k]. (43)

Clauses in (26) - (40) are just the clauses in (11) - (25) with the additional disjuncts∨
u∈[k] ¬Su(i, j) with the corresponding (i, j). Clauses (41) together with (32) make sure

that Cs,t is selected and empty. Clauses in (42) and (43) ensure that if Ci−1,j′ is not selected
then it cannot be used as a premise.

CCC 2024

33:14 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

D Proof of Theorem 6

By induction on i ∈ [s], we derive for each j ∈ [t] the clause

Di,j :=
∨

u∈[k]

¬S(i, j) ∨
∨

ℓ∈[n],b∈{0,1}

(
D(i, j, ℓ, b) ∧ T (ℓ)b

)
. (44)

The meaning of this clause is that if Ci,j (the clause described by D(i, j, ·, ·)) is selected then
it contains a satisfied literal. Then, cutting Ds,t with (32) for each ℓ ∈ [n] and b ∈ {0, 1},
followed by k cuts with clauses (41), yields the empty clause.

Base case: i = 1. For each j ∈ [t], m ∈ [r], ℓ ∈ [n], b ∈ {0, 1}, cut (4) with (6) to obtain∨
u∈[k] ¬Su(1, j) ∨ ¬I(j, m) ∨ ¬T (m, ℓ, b) ∨ D(1, j, ℓ, b). Applying ∧-introduction to this and

¬T (m, ℓ, b) ∨ T (ℓ)b (which is either (2) or (3)) yields∨
u∈[k]

¬Su(1, j) ∨ ¬I(j, m) ∨ ¬T (m, ℓ, b) ∨
(
D(1, j, ℓ, b) ∧ T (ℓ)b

)
. (45)

Cutting (45) for each ℓ ∈ [n] and b ∈ {0, 1} with (1) gives ¬I(j, m) ∨ D1,j . Cutting this for
each m ∈ [r] with (34) yields D1,j .

Induction step: Assume we have derived Di−1,j′ for all j′ ∈ [t]. We derive Di,j for each
j ∈ [t]. In the following we write P0 in place of R and P1 in place of L.

For each ℓ ∈ [n], b ∈ {0, 1}, j′ ∈ [t], cut
∨

u∈[k] ¬Su(i, j)∨¬D(i−1, j′, ℓ, 1)∨¬D(i−1, j′, ℓ, 0)
(from (27)) with

∨
u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ D(i − 1, j′, ℓ, 1 − b) (which is

from (28) or (29)) to obtain
∨

u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ, b).
Cutting this with Di−1,j′ yields∨

u∈[k]

¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨
(
Di−1,j′ \ {D(i − 1, j′, ℓ, b) ∧ T (ℓ)b}

)
. (46)

Cut (46) with T (ℓ) ∨ ¬T (ℓ) to get∨
u∈[k]

¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ T (ℓ)1−b

∨ (Di−1,j′ \ {D(i − 1, j′, ℓ, 0) ∧ ¬T (ℓ), D(i − 1, j′, ℓ, 1) ∧ T (ℓ)}) . (47)

Next, for each ℓ′ ∈ [n] \ {ℓ} and b′ ∈ {0, 1}, apply ∧-introduction to T (ℓ′) ∨ ¬T (ℓ′) and∨
u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ ¬D(i − 1, j′, ℓ′, b′) ∨ D(i, j, ℓ′, b′) (from (30) or

(31)) to get∨
u∈[k]

¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨
(

D(i, j, ℓ′, b′) ∧ T (ℓ′)b′
)

∨ ¬D(i − 1, j′, ℓ′, b′) ∨ T (ℓ′)1−b′
. (48)

Cutting (48), for each ℓ′ ∈ [n] \ {ℓ} and b′ ∈ {0, 1}, with (47) results, after an additional
weakening by (D(i, j, ℓ, 0) ∧ T (ℓ)0) ∨ (D(i, j, ℓ, 1) ∧ T (ℓ)1), in∨

u∈[k]

¬Su(i − 1, j′) ∨ ¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ T (ℓ)1−b ∨ Di,j . (49)

Cut (49), for each u′ ∈ [k], with
∨

u∈[k] ¬Su(i, j) ∨ ¬P1−b(i, j, j′) ∨ Su′(i − 1, j′) (from (42)
or (43)) to get

¬P1−b(i, j, j′) ∨ ¬V (i, j, ℓ) ∨ T (ℓ)1−b ∨ Di,j . (50)

M. Garlík 33:15

Recall that we have obtained (50) for each ℓ ∈ [n], b ∈ {0, 1}, j′ ∈ [t]. Cutting (50), for
each j′ ∈ [t], with

∨
u∈[k] ¬Su(i, j) ∨

∨
j′∈[t] P1−b(i, j, j′) (which is from (35) or (36)) yields

¬V (i, j, ℓ) ∨ T (ℓ)1−b ∨ Di,j . We have derived such a clause for each ℓ ∈ [n], b ∈ {0, 1}, so a
cut on T (ℓ) gives ¬V (i, j, ℓ) ∨ Di,j , and cutting this, for each ℓ ∈ [n], with (33) yields Di,j .

Let us estimate the size of the refutation. The size of the base case is O(t(rn2 +r2 +rnk)),
the total size of the induction steps is O(st(n3t + n2tk + ntk2 + nt2)), and the size of the
finish is O(n2 + nk). In total this is O(trn2 + tr2 + trnk + st2n3 + st2n2k + st2nk2 + st3n).

E Some results on trees and a proof of Theorem 11

▶ Definition 20. A partial assignment π to the variables of REFF
s,t is called respectful if for

each (i, j) ∈ [s] × [t], either (i, j) is not mentioned in π, or i ∈ [s]\{1} and each of D(i, j, ·, ·),
V (i, j, ·), R(i, j, ·), L(i, j, ·) is set by π, or i = 1 and both D(1, j, ·, ·) and I(j, ·) are set by π.
In other words, respectful assignments are exactly the assignments of the form πv where v is
a node of a decision tree over REFF

s,t.
If T is a decision tree over REFF

s,t and π is a respectful partial assignment, T ↾ π is
obtained as follows: for each node v of T with a label (i, j) that is mentioned in π, contract
the edge whose label determines an assignment to the variables with home pair (i, j) that is a
subset of π, and delete all other edges leaving v (and delete their associated subtrees).

▶ Lemma 21. Let T be a decision tree over REFF
s,t, let G be a DNF, and let π be a respectful

partial assignment. If T strongly represents G, then T ↾π strongly represents G↾π.

Proof. For a leaf v of T ↾π there is a unique leaf u of T such that πv = πu \ π, where πu,
πv are defined as in Definition 7. Moreover, v has the same label as u, and π and πu are
compatible. Therefore, for a term q ∈ G we have q ↾(π ∪ πu) = q ↾(π ∪ πv) = (q ↾π)↾πv. Also,
for b ∈ {0, 1}, if q ↾πu = b then q ↾(π ∪ πu) = b. ◀

In the other direction, we have the following lemma.

▶ Lemma 22. Let T be a decision tree over REFF
s,t, and let G be a DNF in the variables of

REFF
s,t. For each leaf v of T , let Tv be a decision tree that strongly represents G↾πv, where

πv is the path in T from the root to v. Moreover, assume that each label (i, j) of an internal
node of Tv is a home pair of a variable of G↾πv. Then the tree T ′ obtained by appending to
each leaf v of T the tree Tv strongly represents G.

Proof. This follows directly from the definitions. ◀

Proof of Theorem 11. Denote Π the Res(k) refutation. For a line G in Π, let TG be a
decision tree over REFF

s,t of minimum height that strongly represents G. We can assume
that no node of TG is labelled with a pair (i, j) that is not a home pair of any variable of G.

For any respectful partial assignment π let Cπ be the clause consisting of the following liter-
als: D(i, j, ℓ, b) if and only if π(D(i, j, ℓ, b)) = 0, ¬D(i, j, ℓ, b) if and only if π(D(i, j, ℓ, b)) = 1,
¬I(j, m) if and only if π sets I(j, ·) to m, ¬V (i, j, ℓ) if and only if π sets V (i, j, ·) to ℓ,
¬L(i, j, j′) if and only if π sets L(i, j, ·) to j′, ¬R(i, j, j′) if and only if π sets R(i, j, ·) to j′.

By induction on the lines of Π we show that for each line G of Π and for each π ∈ Br0(TG),
there is a resolution derivation ΠG(π) of Cπ from H together with the clauses (18) -
(25), such that the index-width of ΠG(π) is at most 3h. The theorem then follows from
{Cπ : π ∈ Br0(T∅)} = {C∅} = {∅}.

Assume that G is an axiom X ∨ ¬X. Then all the branches of TG are labelled with 1,
and so {Cπ : π ∈ Br0(TG)} = ∅.

CCC 2024

33:16 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

Next assume that G ∈ H. Let π ∈ Br0(TG). Since G is a clause, the node labels of TG

are exactly the pairs (i, j) mentioned in G. Note that since G↾π = 0, for every (i, j) each
literal of a variable in D(i, j, ·, ·) that is in G is also in Cπ. Suppose that π sets V (i, j, ·)
to ℓ ∈ [n]. If there is a literal in G of a variable from V (i, j, ·) such that the literal is not
in Cπ, then the literal must be V (i, j, ℓ′) for some ℓ′ ∈ [n] with ℓ′ ̸= ℓ. This follows from
G↾π = 0 and ¬V (i, j, ℓ) ∈ Cπ. Such literals V (i, j, ℓ′) can be removed from G by resolving
with the clause ¬V (i, j, ℓ) ∨ ¬V (i, j, ℓ′) from (22). Similarly, we remove from G the literals in
G \ Cπ of I, L, R-variables by resolving with the corresponding clauses from (23), (24), (25),
respectively. We have thus obtained a resolution derivation ΠG(π) of Cπ from {G} together
with the clauses (22) - (25). Because the index-width of G is at most h, the same is true for
the clauses in ΠG(π).

Now assume that line G in Π is inferred from previously derived lines G1, . . . , Gd for
d ∈ [2]. By the induction hypothesis, we have for each c ∈ [d] and for each π ∈ Br0(TGc) a
resolution derivation ΠG(π) of Cπ with the required properties. First construct a decision
tree T as follows: if d = 1, T is TG1 ; if d = 2, append to each branch π ∈ Br1(TG1) the tree
TG2 ↾π. Observe that for each π ∈ Br0(T) there is c ∈ [d] and π′ ∈ Br0(Tc) such that π′ ⊆ π,
and Cπ is a weakening of Cπ′ . Also, the index-width of Cπ is at most 2h, because so is the
height of T . For a node v of T define a partial assignment πv as in Definition 7.

Let σ ∈ Br0(TG) be given. Inductively, from the leaves to the root of T , we show that
if a node v of T is such that πv is compatible with σ, then there is a resolution derivation
ΠG(πv, σ) of Cπv

∨Cσ from H together with the clauses (18) - (25), such that the index-width
of ΠG(πv, σ) is at most 3h. When we reach the root of T , we will have obtained a derivation
ΠG(∅, σ) of Cσ, and this is the derivation ΠG(σ) we are after.

Assume that v is a leaf of T and πv is compatible with σ. Then πv ∈ Br0(T). This can
be seen as follows. It is easy to check that the rules of Res(k) have the property, called
strong soundness, that any partial assignment that satisfies all premises of a rule also satisfies
the conclusion of the rule. If we had πv ∈ Br1(T), then for each c ∈ [d], πv contains some
πc ∈ Br1(TGc), and so Gc ↾πv = Gc ↾πc = 1 because TGc strongly represents Gc. By strong
soundness it follows that G↾πv = 1. But this means that πv cannot be compatible with σ,
because σ falsifies every term of G. So indeed πv ∈ Br0(T). Further, we have that Cπv ∨ Cσ

is a weakening of Cπv
, which in turn is a weakening of Cπ′ for some π′ ∈ Br0(Tc) and some

c ∈ [d] such that that π′ ⊆ πv, by the construction of T . By the inductive hypothesis we have
a resolution derivation ΠG(π′) of Cπ′ with the required properties. Because the index-width
of Cπv

is at most 2h, the index-width of Cπv
∨ Cσ is at most 3h. We have thus obtained a

resolution derivation ΠG(πv, σ) of Cπv ∨ Cσ with the required properties.
Now assume that v is labelled with a pair (i, j) and πv is compatible with σ. We

distinguish two cases. In the first case, assume that (i, j) is mentioned in σ. Then there is a
child u of v such that πu \πv ⊆ σ. Also, πu is compatible with σ. By the induction hypothesis
we therefore have a resolution derivation ΠG(πu, σ) of Cπu

∨ Cσ with the required properties.
Because πu ∪ σ = πv ∪ σ, we have Cπu ∨ Cσ = Cπv ∨ Cσ, and so we define ΠG(πv, σ) to be
ΠG(πu, σ). In the second case, assume that (i, j) is not mentioned in σ. Then for each child u

of v, πu is compatible with σ. By the induction hypothesis, for each such u there is a resolution
derivation ΠG(πu, σ) of Cπu

∨ Cσ with the required properties. Notice that Cπu
∨ Cσ =

Cπu\πv
∨Cπv

∨Cσ. We first construct a resolution refutation Π′ of {Cπu\πv
: u is a child of v}

together with the clauses (18) - (21) such that the index-width of Π′ is 1. This is easy:
since {Cπu\πv

: u is a child of v} = {Cα : α is respectful and mentions just the pair (i, j)},
we use (18), (20), (21) (resp. (19) if i = 1) to remove all the negated V, L, R-variables
(resp. the negated I-variables) from the clauses Cα, and we refute the resulting clauses by a

M. Garlík 33:17

refutation in the form of a complete binary tree to resolve all the D-variables. Now, having
Π′, we define ΠG(πv, σ) as follows: add the literals of Cπv

∨ Cσ to each clause of Π′ other
than an initial clause from (18), (20), (21), (19), and derive each initial clause Cπu

∨ Cσ in
the resulting derivation using the derivation ΠG(πu, σ). It is easy to see that ΠG(πv, σ) has
the required properties. ◀

F Proof of Theorem 16

Denote the right hand side of the inequality (8) by pa(w). Let k ≥ 1 be given and denote
ρ := ρk. We prove the theorem by induction on a.

Base case: a = 1. G is a clause. If ci(G) ≤ w, then Pr[hi(G ↾ ρ) > w] = 0 because
we can build a decision tree strongly representing G ↾ ρ by querying the pairs from the
smallest index-cover of G. If ci(G) > w, we have Pr[hi(G ↾ ρ) > w] ≤ Pr[G ↾ ρ ̸= 1] ≤(
1 − (1 − 2−k)/2

)ci(G) ≤ (1 − 1/4)ci(G) ≤ e−ci(G)/4 = 2−ci(G)γ(1) ≤ 2−wγ(1).
Induction step: Assume the theorem holds for a − 1, witnessed by δ(k, a − 1) and

n0(k, a − 1). Find a positive δ(k, a) ≤ δ(k, a − 1) and an integer n0(k, a) ≥ n0(k, a − 1) such
that

−γ(a − 1)
2 n +

(
2 log t + log n + γ(a − 1)

na−2

)
· γ(a − 1)

4 ≤ −γ(a) (51)

holds for any n, r, t satisfying (7) with δ(k, a) and n0(k, a) in place of δ and n0, respectively.
Let G be an a-DNF, and let U be an index cover of G of size ci(G). We distinguish two
cases based on ci(G).

Case 1: ci(G) > w
na−1 · γ(a−1)

4 . In this case we want to show that ρ satisfies G with a
high probability. To this end, note that there are at least ci(G)/a many terms in G that are
index-independent, that is, for no two of them there is a pair (i, j) ∈ [s] × [t] mentioned by
both. (If every such set of terms was smaller than ci(G)/a, take a maximal one and observe
that the set of pairs mentioned by the terms forms an index-cover of G of cardinality smaller
than ci(G), a contradiction.) It is easy to see that each of these index-independent terms is
satisfied by ρ with independent probability at least 2−2a. Therefore,

Pr[hi(G↾ρ) > w] ≤ Pr[G↾ρ ̸= 1] ≤
(
1 − 2−2a

)ci(G)/a ≤ 2− (log e)
a22a ci(G) ≤ 2− (log e)

a22a · w

na−1 · γ(a−1)
4

= 2− w

na−1 γ(a)
.

This finishes the inductive step for Case 1.
Case 2: ci(G) ≤ w

na−1 · γ(a−1)
4 . Let U ′ ⊆ U , and let ν : VarS(U) ∪ Var(U \ U ′) → {0, 1}

satisfy the following conditions:
(ν1) for each (i, j) ∈ U ′ and each u ∈ [k], ν(Su(i, j)) = 1,
(ν2) for each (i, j) ∈ U \ U ′ there is u ∈ [k] with ν(Su(i, j)) = 0.
We have

Pr[hi(G↾ρ) > w | ρ↾dom(ν) = ν]
≤ Pr[∃π : Var(U ′) → {0, 1}, π is respectful ∧ hi((G↾π)↾ρ) > w − |U ′| | ρ↾dom(ν) = ν]

≤
∑

π:Var(U ′)→{0,1},
π is respectful

Pr[hi((G↾π)↾ρ) > w − |U ′| | ρ↾dom(ν) = ν]

=
∑

π:Var(U ′)→{0,1},
π is respectful

Pr[hi(((G↾π)↾ν)↾ρ) > w − |U ′|]

≤
(
t2n22n

)|U ′|
pa−1(w − |U ′|).

CCC 2024

33:18 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

Here the first inequality follows from Lemma 22 and from (G ↾ π) ↾ ρ = (G ↾ ρ) ↾ π (since
dom(π) ∩ dom(ρ) = ∅). The second inequality is obtained by the union bound. The equality
follows since the events hi(((G↾π)↾ν)↾ρ) > w − |U ′| and ρ↾dom(ν) = ν are independent (by
the definition of ρ). And the last inequality is by the induction hypothesis and by the upper
bound t2n22n = max{t2n22n, r22n} (recall that t ≥ r) over (i, j) ∈ [s] × [t] on the number of
respectful partial assignments mentioning exactly the pair (i, j).

Since the event A ∩ U = U ′ (where the random variable A is given by Definition 15) is
the disjoint union of events ρ↾dom(ν) = ν over all ν satisfying conditions (ν1) and (ν2), the
above calculation implies

Pr[hi(G↾ρ) > w | A ∩ U = U ′] ≤
(
t2n22n

)|U ′|
pa−1(w − |U ′|). (52)

Therefore,

Pr[hi(G↾ρ) > w] =
∑

U ′⊆U

Pr[hi(G↾ρ) > w ∧ A ∩ U = U ′]

=
∑

U ′⊆U

Pr[hi(G↾ρ) > w | A ∩ U = U ′] · Pr[A ∩ U = U ′]

≤
∑

U ′⊆U

(
t2n22n

)|U ′|
pa−1(w − |U ′|) · 2−k|U ′| (

1 − 2−k
)|U\U ′|

=
ci(G)∑
q=0

(
ci(G)

q

) (
t2n22n

)q
pa−1(w − q) · 2−kq

(
1 − 2−k

)ci(G)−q

≤
(
t2n22n

)ci(G)
pa−1(w − ci(G)). (53)

Here the first inequality is by (52) and by the definition of ρ. The second inequality follows
from

(
t2n22n

)q
pa−1(w − q) ≤

(
t2n22n

)ci(G)
pa−1(w − ci(G)) for q ≤ ci(G). From (53), using

the definition of pa−1(w − ci(G)) and the assumption ci(G) ≤ w
na−1 · γ(a−1)

4 , we get

log(Pr[hi(G↾ρ) > w]) ≤ (2 log t + log n + 2n) ci(G) − w − ci(G)
na−2 γ(a − 1)

=
(

2 log t + log n + 2n + γ(a − 1)
na−2

)
ci(G) − wγ(a − 1)

na−2

≤
(

2 log t + log n + 2n + γ(a − 1)
na−2

)
w

na−1 · γ(a − 1)
4 − wγ(a − 1)

na−2

= −wγ(a − 1)
2na−2 +

(
2 log t + log n + γ(a − 1)

na−2

)
w

na−1 · γ(a − 1)
4

≤ − w

na−1 γ(a),

where the last inequality is equivalent to (51). This finishes the inductive step for Case 2,
and the proof of the theorem.

G The width lower bound

▶ Definition 23. A partial assignment σ to the variables of REFF
s,t is called admissible if it

satisfies all the following conditions.
(A1) For each (i, j) ∈ [s] × [t], D(i, j, ·, ·) (resp. V (i, j, ·), I(j, ·), L(i, j, ·), R(i, j, ·)) either

is set to some clause (resp. some ℓ ∈ [n], some m ∈ [r], some j′ ∈ [t], some j′ ∈ [t]) by
σ or contains no variable that is in dom(σ).

M. Garlík 33:19

(A2) For each (i, j) ∈ [s] × [t], if L(i, j, ·) or R(i, j, ·) is set to some j′ ∈ [t], then both
D(i, j, ·, ·) and D(i − 1, j′, ·, ·) are set.

(A3) For each (i, j) ∈ ([s] \ {1}) × [t], D(i, j, ·, ·) is set if and only if V (i, j, ·) is set. For
each j ∈ [t], D(1, j, ·, ·) is set if and only if I(j, ·) is set.

(A4) For each (i, j) ∈ [s]×[t], if D(i, j, ·, ·) is set to a clause Ci,j , then Ci,j is non-tautological
and has at least min{s − i, n} many literals. If D(i, j, ·, ·) is set to a clause Ci,j with
less than n literals and V (i, j, ·) is set to some ℓ ∈ [n], then none of the literals of xℓ is
in Ci,j.

(A5) If D(s, t, ·, ·) is set, it is set to the empty clause.
(A6) For each j ∈ [t], if I(j, ·) is set, then σ satisfies all clauses in (11) with this j.
(A7) For each (i, j) ∈ ([s] \ {1}) × [t], if L(i, j, ·) (resp. R(i, j, ·)) is set, then σ satisfies all

clauses in (13) and (15) (resp. (14) and (16)) with this (i, j) (i.e., those clauses that
contain the literal ¬L(i, j, j′) (resp. ¬R(i, j, j′)) for some j′ ∈ [t]).

Proof of Theorem 17. Assume for a contradiction that there is a resolution refutation Π
of REFF

s,t of index-width at most w. We will show that if there is an admissible partial
assignment falsifying a clause E in Π obtained by the resolution rule from E0 and E1, then
there is an admissible partial assignment falsifying either E0 or E1. This immediately (by
induction) leads to a contradiction, since the empty assignment is admissible and falsifies the
last (empty) clause in Π, and, by definition, no admissible partial assignment falsifies any
clause of REFF

s,t.
Let then σ be an admissible partial assignment falsifying a clause E in Π. Without

loss of generality, assume that σ is a minimal (with respect to inclusion) admissible partial
assignment with this property.

Let Q be the variable resolved on to obtain E from E0 and E1. If Q ∈ dom(σ), then σ

already falsifies either E0 or E1. So assume that Q ̸∈ dom(σ). We consider two cases.
Case 1. Suppose that for some (i, j) ∈ [s] × [t], Q ∈ D(i, j, ·, ·) or Q ∈ V (i, j, ·) (resp.

Q ∈ I(j, ·) and i = 1). Note that by (A1), (A2), and (A3), no variable from D(i, j, ·, ·) ∪
V (i, j, ·) ∪ L(i, j, ·) ∪ R(i, j, ·) (resp. D(1, j, ·, ·) ∪ I(j, ·)) is in dom(σ), and, moreoever, for
any j′ ∈ [t], it is not the case that L(i + 1, j′, ·) or R(i + 1, j′, ·) is set to j by σ. Therefore,
we can extend σ to a partial assignment σ′ as follows. Set D(i, j, ·, ·) to any non-tautological
clause containing n literals, unless (i, j) = (s, t), in which case set D(i, j, ·, ·) to the empty
clause. In case i ≥ 2, set V (i, j, ·) to an arbitrary value ℓ ∈ [n]; in case i = 1, set I(j, ·) to
any m ∈ [r] such that the clause Cm is a subset of the clause to which we have set D(1, j, ·, ·).
(Here we use that F is unsatisfiable.) It is straightforward to check that σ′ is admissible.
Since Q ∈ dom(σ′), σ′ falsifies E ∪ {Q1−σ′(Q)}, of which either E0 or E1 is a subset.

Case 2. Suppose that for some (i, j) ∈ ([s] \ {1}) × [t], Q ∈ L(i, j, ·) (if Q ∈ R(i, j, ·),
we proceed in a completely analogous way). We may assume that D(i, j, ·, ·) is set to some
clause Ci,j by σ and V (i, j, ·) is set to some ℓ ∈ [n] by σ; if not, set them both as described
in Case 1. We now concentrate on the level i − 1. Since the index-width of E is at most w

and σ is a minimal admissible partial assignment falsifying E,

|{j′ : D(i − 1, j′, ·, ·) is set by σ}| ≤ 2w. (54)

This is because D(i − 1, j′, ·, ·) can be set by σ for two reasons: either (i − 1, j′) is mentioned
in E (which, together with (A2) and (A3), implies that D(i − 1, j′, ·, ·) is set by σ) or there is
some j′′ ∈ [t] such that a literal of a variable from L(i, j′′, ·) or R(i, j′′, ·) is in E (which forces
σ to set L(i, j′′, ·) or R(i, j′′, ·), respectively, in order to falsify the literal) and σ happens to
set L(i, j′′, ·) or R(i, j′′, ·), respectively, to j′ (and therefore by (A2) D(i − 1, j′, ·, ·) must be
set by σ too).

CCC 2024

33:20 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

We extend σ to a partial assignment σ′ as follows. Set L(i, j, ·) to any j′ that is not
from the set in (54). Such j′ exists because 2w < t. Set D(i − 1, j′, ·, ·) to the clause
Ci−1,j′ := (Ci,j \ {¬xℓ}) ∪ {xℓ}, where Ci,j and ℓ are as above. Finally, if i ∈ {3, . . . , s},
then either Ci−1,j′ has less than n literals and we set V (i − 1, j′, ·) to any ℓ′ ∈ [n] such that
no literal of xℓ′ is in Ci−1,j′ , or Ci−1,j′ has n literals, in which case we set V (i − 1, j′, ·)
arbitrarily. If i = 2, then by (A4), (9), and the definition of Ci−1,j′ we know that Ci−1,j′ has
n literals, and we set I(j′, ·) to any m ∈ [r] such that Cm ⊆ Ci−1,j′ . (Here we use that F is
unsatisfiable.) This finishes the definition of σ′.

It is again easy to verify that σ′ is admissible. Because Q ∈ dom(σ′), σ′ falsifies
E ∪ {Q1−σ′(Q)}, of which one of E0, E1 is a subset. ◀

H Proof of Theorem 18

Let k ≥ 1 be given. Take δ and n0 as given by Theorem 16 for a = k. If necessary, increase
n0 so that it satisfies

β(k)n0 > k + 1. (55)

Let n, r, s, t be integers satisfying (10), and let F satisfy the hypothesis of the theorem.
Assume for a contradiction that there is a Res(k) refutation Π of RkREFF

s,t of length at most
2β(k) t

nk−1 .
Recall the random variable A from Definition 15. We have that with probability 2−k,

(a) (s, t) ∈ A.

By the Chernoff bound and the union bound, with probability at least 1 − se−t2−k/8,
(b) for each i ∈ [s] the cardinality of A ∩ ({i} × [t]) is at least t/2k+1.
We have

se−t2−k/8 = 2log s− t log e

2k+3 ≤ 2log t− t log e

2k+3 ≤ 2log n0− n0 log e

2k+3 < 2−(k+1),

where we used s ≤ t, n0 ≤ s (from (10)), and n0 log e
2k+3 − log n0 > β(k)n0 > k + 1 (by (55)).

By Theorem 16 and the union bound, with probability at least 1 − |Π| · 2− t

nk−12k+5 γ(k),
(c) for every line G in Π, hi(G↾ρk) ≤ t/2k+5.
We have

|Π| · 2− t

nk−12k+5 γ(k) ≤ 2β(k) t

nk−1 · 2− t

nk−12k+5 γ(k) = 2−β(k) t

nk−1 ≤ 2−β(k)n0 < 2−(k+1),

where we used nk ≤ t, n0 ≤ n (from (10)), and (55).
It follows that there exists ρk such that (a), (b) and (c) hold. Fix any such ρk and denote

it by ρ. We now restrict RkREFF
s,t ↾ρ some more before we apply Theorem 11.

For each level i ∈ [s] select any t′ := ⌊t/2k+1⌋ − 2 home pairs (i, j) of variables of
RkREFF

s,t ↾ρ (they exist thanks to (b)), making sure to include the pair (s, t) in the selection.
Denote the set of selected pairs by B. Define a partial assignment ν : Var(RkREFF

s,t ↾
ρ) → {0, 1} by mapping all the variables with not selected home pairs so that they form an
arbitrary resolution derivation from F , that is, so that ν satisfies every clause of RkREFF

s,t ↾ρ

that contains a literal of a variable in dom(ν). (This derivation may require two clauses per
level, which is why we selected only ⌊t/2k+1⌋ − 2 on each level.) Note that ν is respectful.
Hence by (c) and Lemma 21 we have that for any line G in Π↾ρ, hi(G↾ν) ≤ t/2k+5.

Next, define a partial assignment λ as follows. For every (i, j) ∈ B \ ({1} × [t]) and every
j′ ∈ [t] such that (i − 1, j′) ̸∈ B, map both L(i, j, j′) and R(i, j, j′) to 0. Let us verify that
((RkREFF

s,t ↾ρ)↾ν)↾λ is REFF
s,t′ up to a re-indexing of variables determined by a bijection

M. Garlík 33:21

that maps, for each i ∈ [s], the elements of B ∩ ({i} × [t]) to (i, 1), . . . , (i, t′). Thanks to
Item a, clauses (41) are satisfied by ρ. All clauses (42) and (43) are satisfied: if (i, j) ∈ B and
(i − 1, j′) /∈ B, then the clause is satisfied by λ, otherwise it is satisfied by ρ or ν. Clauses
(26) - (40) with (i, j) /∈ B are satisfied either by ρ (if (i, j) /∈ A) or by ν. Clauses (26) - (40)
with (i, j) ∈ B become, after removing those clauses (28) - (31) that are satisfied by λ and
after the re-indexing of variables, the clauses (11) - (25) with t replaced by t′. (Here notice
that clauses (32) become (17) thanks to (s, t) ∈ B.) Hence ((RkREFF

s,t ↾ρ)↾ν)↾λ is indeed
REFF

s,t′ up to the re-indexing of variables.
Let us now show that for a line G in (Π↾ρ)↾ν we have that G↾λ is, after the re-indexing

of variables, strongly represented by a decision tree over REFF
s,t′ of height at most t/2k+5. As

we already verified, hi(G) ≤ t/2k+5, and therefore there is a tree T over REFF
s,t of minimum

height which strongly represents G and whose height is at most t/2k+5. Define a tree T ↾λ

by deleting all edges (and the corresponding subtrees) in T whose label is of the form
(Ci,j , ℓ, j′, j′′) with (i − 1, j′) /∈ B or (i − 1, j′′) /∈ B. T ↾λ is, after relabelling its nodes and
edges according to the re-indexing bijection, a decision tree over REFF

s,t′ . With every branch
π of T ↾ λ we associate a partial assignment πT ↾λ : Var(((RkREFF

s,t ↾ ρ) ↾ ν) ↾ λ) → {0, 1}
defined via the re-indexing bijection and Definition 7, understanding the relabelled T ↾λ as
a tree over REFF

s,t′ . But every branch π of T ↾λ is also a branch of T , hence Definition 7
with T (which is a tree over REFF

s,t) says how π should be viewed as a partial assignment to
Var(REFF

s,t); let us denote the partial assignment by πT for clarity. It is easy to see from
the definitions that for every branch π in T ↾λ, dom(λ) ∩ dom(πT ↾λ) = ∅ and πT ⊆ λ ∪ πT ↾λ.
It follows that G↾λ is strongly represented by T ↾λ. The tree T ↾λ has, of course, height at
most t/2k+5.

We can now apply Theorem 11 taking REFF
s,t′ (i.e., the re-indexed ((RkREFF

s,t ↾ρ)↾ν)↾λ)
for H, t′ for t, and t/2k+5 for h, to obtain a resolution refutation of REFF

s,t′ of index-width
at most 3t/2k+5.

But we have

2 · 3t/2k+5 < t/2k+2 < ⌊t/2k+1⌋ − 2 = t′,

where the second inequality follows from (10) and (55). Therefore, we can use Theorem 17,
taking 3t/2k+5 for w and t′ for t, to conclude that any resolution refutation of REFF

s,t′ has
index-width greater than 3t/2k+5. That is a contradiction.

I Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Denote by F the well-known CNF ¬PHPn+1
n called the negation of

the pigeonhole principle, expressing that a multi-valued function from n + 1 to n is injective.
It consists of r := n + 1 + (n3 + n2)/2 clauses in ñ := (n + 1)n variables.

Define An := SATñ,r ↾γF , where γF is as in Proposition 19.
Since by [17, 19] there exists α > 0 and an integer n1 such that for every n ≥ n1,

¬PHPn+1
n has no Res(k) refutations of size at most 2nα , the same is true for An. This is

because by Proposition 19 there is a substitution τ such that An ↾τ is ¬PHPn+1
n together

with some tautological clauses, and if Π is a Res(k) refutation of An then Π↾τ is a Res(k)
refutation of An ↾τ . This shows Item i.

Define Bn,k := RkREFF
s,t, where we set s := ñ + 1 and t := ñk.

Let δ > 0 and integer n0 witness Theorem 18. Set n2 ≥ n0 so that the hypotheses (10)
with ñ in place of n hold with our choice of r, s, t (as functions of ñ) for all ñ ≥ n2. By that
theorem, for every ñ ≥ n2, any Res(k) refutation of Bn,k has size greater than 2β(k)ñ. Item ii
follows.

CCC 2024

33:22 Failure of Feasible Disjunction Property and Automatability in k-DNF Resolution

Note that RkREFñ,r
s,t ↾γF is RkREFF

s,t, because γF turns the clauses (6) into (26) (and
the clauses satisfied by γF are removed). By Theorem 6 there is a Res(2) refutation of
SATñ,r ∧ RkREFñ,r

s,t of size O(k2ñ3k+3). Hence the same holds for An ∧ Bn,k = SATñ,r ↾γF ∧
RkREFñ,r

s,t ↾γF . This gives Item iii. ◀

Theorem 2 follows immediately from the more general Theorem 24 below. A function
T : N → N is called time-constructible if there is an algorithm that when given 1n (the string
of n many 1’s) computes 1T (n) in time O(T (n)). We call a function T : N → N subexponential
if T (n) ≤ 2no(1) .

▶ Theorem 24. Let T : N → N be time-constructible, non-decreasing and subexponential.
If there is an integer k ≥ 1 such that Res(k) is automatable in time T , then there are
c1, c2, c3, c4 > 0 and an algorithm that when given as input a 3-CNF F in n variables decides
in time c3(T (c1nc2k) + nk)c4 whether F is satisfiable.

Proof. Assume that for some integer k ≥ 1 the system Res(k) is automatable in time T

satisfying the assumptions of the theorem. Set r, s and t as functions of n as follows: r :=
(2n

3
)
,

s := n + 1, t := nk+3.
By Theorem 6 there are integers c1, c2 > 0 such that SATn,r ∧ RkREFn,r

s,t has a Res(2)
refutation Π of size at most c1nc2k; if necessary, increase c1 and c2 so that the size of Π plus
the size of the formula RkREFn,r

s,t is at most c1nc2k.
Let δ > 0 and integer n0 > 0 witness Theorem 18. Let n1 > n0 be such that for all

n ≥ n1,

r ≤ t ≤ 2δn (56)

and

2β(k) t

nk−1 > T (c1nc2k), (57)

where β(k) is as in Theorem 18. Here we use that T is subexponential.
Define algorithm M as follows. Given as input a 3-CNF F in n variables, check if n ≥ n1.

If n < n1, use brute force to decide if F is satisfiable or not, and output the answer. If n ≥ n1,
compute the formula RkREFF

s,t and run the automating algorithm on this formula for up to
T (c1nc2k) steps. If the automating algorithm returns a Res(k) refutation of RkREFF

s,t, then
output “satisfiable”. Else output “unsatisfiable”.

Since both computing RkREFF
s,t from F and checking whether the output of the auto-

mating algorithm is a Res(k) refutation of RkREFF
s,t are polynomial-time procedures, and

since T is time-constructible, it follows that there are c3, c4 > 0 such that the running time
of M is at most c3(T (c1nc2k) + nk)c4 . It suffices to show that M gives the correct answer on
3-CNFs F in n ≥ n1 variables such that each clause of F has exactly three literals. Let F be
such a 3-CNF, and let r′ be the number of its clauses. We have r′ ≤ r =

(2n
3

)
.

Assume first that F is satisfiable. Let γF and τ be as in Proposition 19, and let ν be a
satisfying assignment for F . We have

(((SATn,r′
∧RkREFn,r′

s,t)↾γF)↾τ)↾ν = ((SATn,r′
↾γF)↾τ)↾ν ∧RkREFn,r′

s,t ↾γF = RkREFF
s,t,

because by Proposition 19, (SATn,r′
↾γF)↾τ is F together with some tautological clauses in

the variables x1, . . . , xn. Let Π′ be the Res(2) refutation of SATn,r′
∧ RkREFn,r′

s,t given by
Theorem 6. Then Π′′ := ((Π′ ↾γF)↾τ)↾ν is a Res(2) refutation of RkREFF

s,t (note that it is
actually a resolution refutation), and we have

M. Garlík 33:23

size(Π′′) + size(RkREFF
s,t) ≤ size(Π′) + size(RkREFn,r′

s,t)
≤ size(Π) + size(RkREFn,r

s,t)
≤ c1nc2k.

Because T is non-decreasing, the automating algorithm finds within the allotted time
T (c1nc2k) a Res(k) refutation of RkREFF

s,t, and M outputs “satisfiable”.
Assume now that F is unsatisfiable. From our choices of r, s, t and n1 and from (56)

it follows that the hypotheses (10) of Theorem 18 are met for all n ≥ n1, and the same is
true with r′ in place of r. By that theorem, any Res(k) refutation of RkREFF

s,t has size
greater than 2β(k) t

nk−1 . Thanks to (57) this implies that the automating algorithm cannot
output any Res(k) refutation of RkREFF

s,t within the allotted time. M therefore outputs
“unsatisfiable”. ◀

CCC 2024

Search-To-Decision Reductions for Kolmogorov
Complexity
Noam Mazor #

Tel Aviv University, Israel

Rafael Pass #

Tel Aviv University, Israel
Cornell Tech, New York, NY, USA

Abstract
A long-standing open problem dating back to the 1960s is whether there exists a search-to-decision
reduction for the time-bounded Kolmogorov complexity problem – that is, the problem of determining
whether the length of the shortest time-t program generating a given string x is at most s.

In this work, we consider the more “robust” version of the time-bounded Kolmogorov complexity
problem, referred to as the GapMINKT problem, where given a size bound s and a running
time bound t, the goal is to determine whether there exists a poly(t, |x|)-time program of length
s + O(log |x|) that generates x. We present the first non-trivial search-to-decision reduction R for
the GapMINKT problem; R has a running-time bound of 2ϵn for any ϵ > 0 and additionally only
queries its oracle on “thresholds” s of size s + O(log |x|). As such, we get that any algorithm with
running-time (resp. circuit size) 2αspoly(|x|, t, s) for solving GapMINKT (given an instance (x, t, s),
yields an algorithm for finding a witness with running-time (resp. circuit size) 2(α+ϵ)spoly(|x|, t, s).

Our second result is a polynomial-time search-to-decision reduction for the time-bounded
Kolmogorov complexity problem in the average-case regime. Such a reduction was recently shown
by Liu and Pass (FOCS’20), heavily relying on cryptographic techniques. Our reduction is more
direct and additionally has the advantage of being length-preserving, and as such also applies in the
exponential time/size regime.

A central component in both of these results is the use of Kolmogorov and Levin’s Symmetry of
Information Theorem.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Kolmogorov complexity, search to decision

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.34

Related Version Full Version: https://eccc.weizmann.ac.il/report/2024/003/ [18]

Funding Noam Mazor : Research partly supported by NSF CNS-2149305 and DARPA under
Agreement No. HR00110C0086.
Rafael Pass: Supported in part by AFOSR Award FA9550-23-1-0387, AFOSR Award FA9550-23-1-
0312, and an Algorand Foundation grant. This material is based upon work supported by DARPA
under Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government, DARPA, AFOSR or the Algorand Foundation.

1 Introduction

In his historical account, Trakhtenbrot [22] describes efforts in the 1960s in the Russian
Cybernetics program to understand problems requiring brute-force search to solve [22, 23, 24].
The so-called Perebor (Russian for brute-force search) conjectures refer to the conjectures
that certain types of, what today are referred to as “meta-complexity”, problems require
brute-force search to be solved. These include (a) the Minimimum Circuit Size problem

© Noam Mazor and Rafael Pass;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 34; pp. 34:1–34:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noammaz@gmail.com
mailto:rafaelp@tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2024.34
https://eccc.weizmann.ac.il/report/2024/003/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Search-To-Decision Reductions for Kolmogorov Complexity

(MCSP) [12, 22] – finding the smallest Boolean circuit that computes a given function x, and
(b) the Time-Bounded Kolmogorov Complexity Problem [14, 21, 2, 13, 6, 20] – computing
the length, denoted Kt(x) of the shortest program (evaluated on some particular Universal
Turing machine U) that generates a given string x, within time t, where t = poly(|x|) is a
polynomial.

Our focus in this paper is on the Time-Bounded Kolmogorov Complexity problem. As
explained by Trakhtenbrot, two versions of this problem were considered since the 1960s.

The “existential” (i.e., decisional) version: Given a string x and a threshold s,
determining whether Kt(x) is less than “roughly” s.
The “constructive” (i.e., search) version: Given a string x and a threshold s, if
Kt(x) is less than “roughly” s, finding a program π of length “roughly” s that certifies
this.

Both of these problems are conjectured to require brute-force search: that is, to require
algorithms with running time close to 2n where n = |x| is the size of the given instance x.
This is referred to as the Perebor conjecture (with respect to the time-bounded Kolmogorov
complexity problem) and can be viewed as an early precursor, and stronger form, of the
NP ≠ P conjecture (as the problem trivially resides in NP). In fact, not only no non-trivial
uniform algorithms are known for the search versions1, but there are also no non-trivial
(uniform) algorithms (i.e., beating brute-force search) even if we have access to an oracle
solving the decisional version: That is, the only search-to-decision reduction is simply to
ignore the decision oracle and solve the search version using brute-force search.2

The central result of this paper is developing the first non-trivial search-to-decision
reduction for a gap-version of time-bounded Kolmogorov complexity; more precisely, we
develop such a reduction with running time 2ϵn for every ϵ > 0.

We additionally address search-to-decision reductions in the average-case regime (w.r.t.
the uniform distribution over instances). There, recently, Liu and Pass demonstrated a
polynomial time reduction [16], but the reduction is not length preserving and as such it
cannot be applied in the exponential regime. As our second result, we present a new direct
proof of the result of [16], but achieve also a length-preserving polynomial-time reduction
(which thus also applies in the exponential regime).

1.1 Our Results
To explain our results, let us first recall the MINKT and GapMINKT problems.

The GapMINKT Problem

Following Ko [13], we let MINKT denote the set of strings (x, 1t, 1s) such that Kt(x) ≤ s.
Since the notion of Kolmogorov complexity is highly dependent on the choice of the universal
Turing machine, a natural – and more “robust” – variant of this problem allows for (a) some
polynomial overhead in terms of the running time, and (b) some logarithmic slackness in
terms of the threshold [15, 13]. Following Hirahara [9], we refer to GappMINKT as the
promise problem where:

1 As we shall discuss shortly, two recent works [17, 11] demonstrate circuits (i.e., non-uniform algorithms)
of size 24n/5n+o(n) that solve it.

2 As just mentioned, in the non-uniform regime, non-trivial algorithms are known, but the same algorithm
solves both the search and the decisional problem, so also in the non-uniform setting, the best known
approach is to simply ignore the decisional oracle and solving the search problem from scratch.

N. Mazor and R. Pass 34:3

YES-instances consist of strings (x, 1t, 1s) where Kt(x) ≤ s;
NO-instances consist of strings (x, 1t, 1s) where Kp(t,|x|)(x) > s + log p(t, |x|);

and we say that an algorithm A solves GapMINKT if there exists some polynomial p such
that A decides GappMINKT. Furthermore, we say that A solves the search version of
the problem, search- GapMINKT if there exists some polynomial p such that given any
GappMINKT YES-instance (x, 1t, 1s), A outputs a program Π certifying that (x, 1t, 1s)
is not a NO-instance (i.e, the program can run in time p(t, |x|) and have length at most
s + log p(t, |x|).

Non-trivial Search-to-Decision for GapMINKT

Our first (and main) result, is a non-trivial search-to-decision reduction for GapMINKT.

▶ Theorem 1 (Informal). For any ε > 0, and every polynomial τ , there exists a random-
ized oracle-aided algorithm F such that for every A that decides Gapτ MINKT, F A solves
search- GapMINKT.

Moreover, on input (x, 1t, 1s) F runs in time 2ϵspoly(|x|, t, s), and only queries A on
inputs (y, 1t′

, 1s′) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and s′ ≤ s + log poly(|x|, t, s).

F A solves search- GapMINKT with gap τO(1/ϵ). We remark that the reduction is not
fully length preserving – the reduction invokes its oracle on statements x′ that are longer
than the original statement x, and at first sight, it may thus seem that the reduction is not
useful in the regime of exponential hardness.

The key point, however, is that it only invokes the oracle on thresholds s′ that are of
roughly the same size as the original threshold s. Therefore, since the hardness of the
GapMINKT problem most naturally should be thought to be a function of the threshold
s (as there is a trivial poly(|x|, t, s)2s algorithm, namely brute-force search), this reduction
still yields a non-trivial search-to-decision reduction in the exponential regime:

▶ Corollary 2. For any ϵ > 0, α > 0, τ ∈ poly, assume that there is an algorithm that solves
Gapτ MINKT in time (resp. size) 2α·spoly(|x|, t, s). Then there exists an algorithm that
solves search- GapMINKT in time (resp. size) 2(α+ϵ)s · poly(|x|, t, s) on inputs (x, 1t, 1s).

An Average-case Search-to-Decision Reduction

We turn to considering the average-case regime. Here we provide a polynomial-time reduction
that additionally is length-preserving and as such directly also applies in the exponential
regime. (This is in contrast to the earlier average-case search-to-decision reduction of [16]
that did not apply in the exponential regime.)

▶ Theorem 3. For every p, t ∈ poly there exists p̂ ∈ poly and t′ ∈ poly, and an efficient
oracle-aided algorithm F such that the following holds. Let A be an algorithm that computes
Kt′ with probability 1 − 1/p̂ on the uniform distribution. Then F A solves search- Kt with
probability 1− 1/p on the uniform distribution.

Moreover, on input x ∈ {0, 1}n, F makes only queries of the form x||y with y ∈ O(log n).

As corollaries, we thus get:

▶ Corollary 4 (reproving [16]). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that
the following holds: if there exists a polynomial time (reps. 2o(|x|) time) algorithm that
computes Kt′ with probability 1− 1/p̂ over the uniform distribution, then exists polynomial
time (resp. 2o(|x|) time) algorithm that solves search- Kt with probability 1 − 1/p on the
uniform distribution. Moreover, the same holds also in the non-uniform setting (i.e., w.r.t.
polynomial-size and respectively 2o(|x|) size algorithms).

CCC 2024

34:4 Search-To-Decision Reductions for Kolmogorov Complexity

▶ Corollary 5 (new). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the following
holds: if there exists a constant α > 0 and a 2α·|x|poly(|x|) time (reps. size) algorithm
that computes Kt′ with probability 1− 1/p̂ over the uniform distribution, then there exists a
2α·|x|poly(|x|) time (resp. size) algorithm that solves search- Kt w.p 1− 1/p over the uniform
distribution.

We note that while our reduction improves on [16] in the length-preserving aspect (and
additionally is significantly simpler), it also has some disadvantages: in particular, in [16] an
oracle for Kt′ for any polynomial t′ can be used to solve search- Kt for any other polynomial
t, whereas in our case, the reduction only works as long as t is sufficiently larger than t′.
Additionally, the same thing holds also with respect to the error probability polynomials p̂, p.
The reasons for these “amplifications” is that [16] passes through cryptographic techniques
(hardness amplification [25], and constructions of pseudorandom generators [7]) that blow up
the input size.

1.2 Related Works
While, as far as we know, no non-trivial search-to-decision reductions were previously known
for GapMINKT in the worst-case regime, there are several works that consider variants of
this question:
Slightly Subexponential Search-to-Decision for MFSP: An elegant work by Ilango con-

siders a formula size variant of the classic Perebor conjecture problem, MFSP, where the
goal is to find the shortest formula computing some given function. He demonstrates
a search-to-decision reduction with running-time 20.67n for MFSP. As far as we know,
this is the first result to demonstrate any non-trivial search-to-decision reduction for
a Perebor-style problem. (We note that in contrast, we here consider the standard
time-bounded Kolmogorov complexity problem, and we also get a smaller running time
of 2ϵn for any ϵ > 0.) Ilango also gets an improved running time of 2n/ log log n if only
requiring an algorithm that succeeds on most (i.e., a 1− 1/o(1)) fraction of instances. In
contrast, in this setting, we get a polynomial running time.

Average-case Search-to-Decision for MINKT: Liu and Pass [16] show a polynomial-time
algorithm that solves the search- GapMINKT) on average over the uniform (over x, and
for every t, s) given access to an oracle that solves GapMINKT on average. Our second
result is a strict strengthening of this result since our reduction is length-preserving (i.e.,
it only queries its oracle on input lengths that are O(log n) longer), and as such it also
applies in the exponential regime (whereas the result of [16] only apply in the polynomial
to subexponential regimes).

Conditional and Non-black-box Search-to-Decision for GapMINKT: An intriguing work
by Hirahara [10] presents a non-black-box search to decision reduction for GapMINKT
in the polynomial regime, under standard derandomization assumptions. More pre-
cisely, assuming that E does not have subexponential-size circuits, he shows that if
GapMINKT has a (deterministic, wlog due to the assumption) polynomial-time decider,
then search- GapMINKT has a polynomial-time algorithm. His result does not extend
to the non-uniform setting, or to algorithms running in time even just nlog n due to the
fact that the code of the GapMINKT attacker gets incorporated into the witness for the
search- GapMINKT problem. In contrast, ours is unconditional; on the other hand, ours
is only meaningful in the exponential regime (as the running time of the reduction is
subexponential).

N. Mazor and R. Pass 34:5

A different paper by Hirahara [8] gets an unconditional non-black-box search-to-decision
reduction for the polynomial regime for Gapτ MINKT w.r.t τ = 2

√
n.3 This result also

does not apply in the non-uniform setting, but does extend to the subexponential (but
not exponential) regime.

Search-to-Decision Reductions w.r.t. Black-box Solvers: In a very recent work, the cur-
rent authors consider black-box solvers for the MINKT problem that solve the problem
no matter what the underlying Universal Turing Machine U is, given black-box access to
it. A polynomial-size black-box search-to-decision reduction is demonstrated with respect
to such attackers. In contrast, we here consider all, and not just black-box, solvers.

Non-uniform Algorithms Beating Perebor: As mentioned above, two independent recent
works [17, 11] develop algorithms solving the MINKT problem using a circuit of size
24n/5poly(n), disproving the “non-uniform” version of the Perebor conjecture. These
algorithms directly also work for the search version of the problem and as such, even in
the non-uniform regime, it was not known how to make use of an GapMINKT oracle to
solve the search version better than simply solving it from scratch.

1.3 Proof Overview
We provide a brief overview of the proofs of Theorem 1 and 3, starting with Theorem 1,
which proceeds in two steps.

Worst-case Search-to-Decision Reduction for “Shallow” Instances

As an intermediary step, which may be of independent interest, we start by providing a
search-to-decision reduction whose running time is a function of the so-called computational
depth of the instance x we are reducing from (i.e., that we want to find a witness for). Recall
that the computational depth [1] of an instance x is defined as cdt(x) = Kt(x)−K(x). Note
that by a standard counting argument, we have that “computationally deep” strings (i.e.,
string x such that cdt(x) > O(log(|x|)) are rare.

We start by presenting a search-to-decision reduction with running time

2cdt(x)poly(|x|, t, s)

(which thus for most strings runs in polynomial time). The key idea behind the reduction is
the following. Given a string x, and a minimal-length t-time program Π generating x, the
Kt′-complexity of the string x||Π, for t′ = poly(|x|, t), is not significantly higher than the
Kt-complexity of the string x – since the string x||Π also can be generated by a self-printing
variant of Π. Furthermore, the above argument also holds even if we concatenate not only
the whole of Π but even just a prefix of it.

Thus, if we have access to a GapMINKT oracle, we ought to be able to find Π “bit-by-
bit” by simply concatenating a bit to x and checking if the Kt′-complexity remains below
s + O(log |x|). In more detail, we keep track of a set S of candidates y (whose prefix is x) and
at each iteration concatenate each bit b ∈ {0, 1} to y and check whether the Kt′ -complexity
of y||b remains small, and if so adding y||b to the set S. By the argument above and a
standard induction, we have that at iteration i, y = x||Π≤i (where Π≤i denotes the i first bit
of Π) must be in the set S, so we can finally find Π by simply going over all the elements
y = x||Π′ of S and checking whether Π′ generates x.

3 The results is actually a bit stronger – the running time only increases by a polynomial, but the gap
increases by

√
n, as opposed to the desired O(log n).

CCC 2024

34:6 Search-To-Decision Reductions for Kolmogorov Complexity

The problem, of course, is that the set S could contain lots of other elements. This is
where computational depth enters the picture. To see why, let us first start by showing that
if we had been dealing with Kolmogorov complexity, as opposed to t-bounded Kolmogorov
complexity, then the size of S can never be more than of polynomial size (in |x|, t). In fact,
this follows almost directly from Kolmogorov and Levin’s celebrated symmetry of information
(SoI) theorem [26] which states that for any strings a, b, we have that4

K(a||b) ≥ K(a) + K(b|a)−O(log(|a|+ |b|).

Indeed, recall that S consists of all strings y = x||Π whose K-complexity is roughly that of
x; by the SoI theorem, setting a = x and b = Π, we get that K(Π|x) ≤ O(log |x|) and thus
there can be at most poly(|x|) such strings.5

Finally, note that if considering a string x whose computational depth is d, then Kt(x)−
K(x) ≤ d, and as such for each element x||Π that remains in S, we have that

K(x||Π)−K(x) ≤ Kt(x||Π)−K(x)
≤ Kt(x) + O(log |x|)−K(x)
≤ Kt(x) + O(log |x|)− (Kt(x)− cdt(x))
≤ d + O(log |x|)

Thus, by the SoI theorem, we then get that K(Π|x) ≤ d+O(log |x|), and therefore we have
that |S| ≤ 2dpoly(|x|). As such, the running of our algorithm becomes 2cdt(x)poly(|x|, t, s),
as desired.

Dealing with Deep Instances

Note that given any instances x whose computational depth is bounded by ϵ|x|, then the
running time of the above algorithm becomes 2ϵ|x|poly(|x|, t, s), as desired. If not, and in
case the algorithm’s running time becomes larger than this, we must have that the set S
produced is bigger than 2ϵ|x|. Our key idea now is to simply stop the algorithm once the size
of S reaches 2ϵ|x|, and at this point selecting a random element in x′ ∈ S, and restarting the
algorithm on x′ instead (since a program generating x′ can easily be modified to a program
generating x). The reason for doing this is that since the set S is “big”, by choosing a random
element, we are guaranteed that the actual (i.e., not time-bounded) Kolmogorov complexity
of the chosen string x′ is roughly ϵn larger than that of x, yet since all strings in S have
roughly the same time-bounded Kolmogorov complexity (s + O(log |x|), we must have that
the computational depth of x′ is at least ϵn smaller than that of x. In essence, by picking
this random element, we are able to get a new instance x′ such that (a) the witness for x′ is
also a valid witness for x, yet (b) the computational depth of x′ is ϵ|x| smaller than that of x.

By iteratively continuing this process, we eventually (after 1/ϵ steps) end up with an
element with small computational depth and thus manage to find a witness in the desired
running time.

4 Recall that the conditional Kolmogorov complexity of b given a, denoted by K(b | a) is the minimal
length of a program that outputs b given input a.

5 This result may be of independent interest. It shows a polynomial-time “list-to-decision” reduction for
Kolmogorov-complexity – that is, a polynomial-time algorithm that given access to a decision oracle
outputs a polynomial-length list of candidate witnesses, one of which is correct. The reason why this
does not yield a search-to-decision reduction is that we cannot, in polynomial-time, determine if a
witness is correct by running it.

N. Mazor and R. Pass 34:7

Let us highlight why this approach only gives an algorithm with subexponential running
time: The issue is that each time we pick a random element x′ ∈ S, the time-bounded
Kolmogorov complexity of the element may increase by O(log |x|), so we can only afford a
constant number of iterations, which is why we need to make sure that we can eliminate a
constant fraction of the computational depth in each step. (An additional reason is that the
running-time t′ blows up as a polynomial of t in each iteration, so again, we can only afford
a constant number of iterations.)

Search-to-Decision in the Average-case Regime

We turn to discussing our search-to-decision reduction in the average-case regime. The
goal is to show how to use an oracle that (decides, or equivalently, computes) Kt with high
probability on the uniform distribution to find a Kt′ witness with high probability over the
uniform distribution for a polynomially related t′.

Towards this, we will show a reduction that again works in the worst-case regime, but
only on computationally shallow instances – that is, instances x with computational depth
O(log |x|). This reduction will improve on the one above in the sense that it is length
preserving; additionally, due to the length-preserving aspect of the reduction, it will also
follow that if we only require the reduction to work with high probability (over the uniform
distribution) over instances, then it suffices for the oracle to also work with high probability.

The idea is to, given an instance x, consider strings y = x||i||Πi, where Πi is the ith
“chunk” (of length O(log|x|)) of the smallest time-bounded program Π generating x; such
strings still have roughly the same time-bounded Kolmogorov complexity as x, and by
the same argument based on symmetry-of-information, we can argue that there cannot be
more than polynomially many strings y that have x as a prefix and also have roughly the
same time-bounded Kolmogorov complexity as x. This enables us to recover a small set of
candidates for (most) of the “coordinates” of Π. But, even if there are just 2 candidates
for each such coordinate, there will still be too many options to try out, as the number of
coordinates is polynomial in |Π|/|Πi| which can be as large as |x|/ log|x|.

To solve this problem, we will rely on the notion of a list-recoverable error-correcting
code [5, 3] – in essence, a type of an error-correcting code (ECC) from which we recover a
polynomial-length list of candidate messages (one of which is guaranteed to be the true one)
given a polynomial-length candidate list for each symbol of the encoding. Roughly speaking,
we find all strings y = x||i||zi that have small time-bounded Kolmogorov complexity, and
then apply the list-recoverable procedure of the ECC. By the existence of efficient list-
recoverable codes [5] (where both the encoding and decoding can be done efficiently), we
are still guaranteed that when zi is the ith symbol of the encoding of Π, then y indeed
has small time-bounded Kolmogorov complexity; next, the above symmetry-of-information
based argument will ensure that we can only have a “small” number of candidates for
most coordinates i, and as such, the list-recovering procedure will indeed find some short
program Π.

There is just one catch with this argument: using the above SoI based argument we
will get a too weak bound on the number of possible candidates for each symbol. We note,
however, that we can use the same argument to bound the total number of strings of the
form (x, i, z) with small time-bounded Kolmogorov complexity, and as such, use an averaging
argument to argue that for, say 90% of the coordinates, we get a sufficiently small list
of symbols. The issue remaining is that we can no longer rely on the list-recoverability
property to recover the message (as we no longer have a short list for every symbol of the
codeword). Luckily, there exist list-recoverable codes satisfying exactly this property (i.e.,

CCC 2024

34:8 Search-To-Decision Reductions for Kolmogorov Complexity

that we can recover a polynomial-length list of messages, even if we only have a bound on
the set of symbols, for a constant fraction of the coordinates) – indeed, as shown in [5, 4],
the Reed-Solomon code also satisfies such list-recoverability “with errors”.

To finally see why this reduction also works in the average-case regime, first recall that
computationally deep strings are rare, so the reduction will work with high probability over x,
as long as the oracle works on all instances. Next, note that the reduction, given an instance
x, only queries its oracles on instances of roughly the same length as x, and that have x as a
prefix, which suffices to argue that we only need an oracle that works with high probability.

2 Preliminaries

2.1 Notations
All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Let poly stand
for the set of all polynomials. Given a vector v ∈ Σn, let vi denote its ith entry, let
v<i = (v1, . . . , vi−1) and v≤i = (v1, . . . , vi). For x, y ∈ {0, 1}∗, we let xy and x||y denote the
concatenation of the strings x an y. An oracle-aided algorithm A is an algorithm with an
oracle access. Given a (randomized) function O, we use AO to denote the algorithm A when
using O as the oracle.

2.2 Distributions and Random Variables
When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a
(discrete) distribution P, let x← P denote that x was sampled according to P. Similarly,
for a set S, let x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity
Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗

is the length of the shortest program Π = (M, y) such that, when simulated by a universal
Turing machine, Π outputs x in t steps. Here, a program Π is simply a pair of a Turing
Machine M and an input y, where the output of Π is defined as the output of M(y). When
there is no running time bound (i.e., the program can run in an arbitrary number of steps),
we obtain the notion of Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We
now define the notion of Kolmogorov complexity with respect to the universal TM U.

▶ Definition 6. Let t ∈ N be a number. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t) = x}

where |Π| is referred to as the description length of Π. Similarly, for every z ∈ {0, 1}∗ define

Kt
U(x | z) = min

Π∈{0,1}∗
{|Π| : U(Π(z), 1t) = x}.

When there is no time bound, we define

KU(x) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N s.t. U(Π, 1t) = x}

and

KU(x | z) = min
Π∈{0,1}∗

{|Π| : ∃t ∈ N s.t. U(Π(z), 1t) = x}.

N. Mazor and R. Pass 34:9

It is well known that for every x, Kt(x) ≤ |x|+ c, for some constant c depending only on the
choice of the universal TM U.

▶ Fact 7. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗,
and for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

We will also use the following fact, which states that we can efficiently encode a pair
(x, y) with a small overhead.

▶ Fact 8. There exists q ∈ poly such that the following holds or every x, y ∈ {0, 1}∗,

Kq(|xy|)(x, y) ≤ |x|+ |y|+ log|x|+ 2 log log|x|+ O(1).

We will use the following bound on the Kolmogorov complexity of strings sampled from
the uniform distribution.

▶ Lemma 9. For any universal TM U, any string x ∈ {0, 1}∗ and any set S, it holds that

Pry←S [KU(y | x) < log|S| − i] ≤ 2−i.

In this paper, unless otherwise stated, we fix some universal Turing machine U that can
emulate any program Π with polynomial overhead, and let Kt = Kt

U and K = KU.
The computational depth of a string is the difference between its Kolmogorov complexity

and its time-bounded Kolmogorov complexity.

▶ Definition 10 (Computational depth [1]). For x ∈ {0, 1}∗ and t ∈ N, the computational
depth of x is defined to be cdt(x) = Kt(x)−K(x).

Since, by a simple counting argument, most strings x ∈ {0, 1}n have Kt(x) close to n, it
holds that most strings have small computational depth.

▶ Fact 11. For every n ∈ N and every t ∈ N, Prx←{0,1}n [cdt(x) > i] ≤ 2−i.

We will also use the Symmetry of Information lemma.

▶ Theorem 12 (Symmetry of Information [26]). There exists a constant c ∈ N such that for
every x, y ∈ {0, 1}∗,

K(x) + K(y | x) + c log(|x|+ |y|) ≥ K(x||y) ≥ K(x) + K(y | x)− c log(|x|+ |y|)

We next define MINKT and GapMINKT.

▶ Definition 13 (MINKT). MINKT is the following promise problem:
Y = {(x, 1t, 1s) : Kt(x) ≤ s}
N = {(x, 1t, 1s) : Kt(x) > s}

We say that an algorithm A solves search- MINKT if A finds a program Π such that |Π| ≤ s

and U(Π, 1t) = x, for every (x, 1t, 1s) ∈ Y.

We remark that MINKT is actually a language (every possible input is either in Y or in N),
and we define it as a promise problem for easy comparison with GapMINKT.

▶ Definition 14 (GapMINKT). Let τ ∈ poly be a polynomial such that τ(t, |x|) ≥ t for every
t, x. Then Gapτ MINKT is the following promise problem:
Y = {(x, 1t, 1s) : Kt(x) ≤ s}
Nτ =

{
(x, 1t, 1s) : Kτ(t,|x|)(x) > s + log τ(t, |x|)

}
We say that an algorithm A decides GapMINKT if there exists τ ∈ poly such that A decides
Gapτ MINKT.

We say that a (randomized) algorithm A solves search- GapMINKT if there exists τ ∈ poly
such that A (with probability 1/2) finds a program Π such that |Π| ≤ s + log τ(t, |x|) and
U(Π, 1τ(t,|x|)) = x, for every (x, 1t, 1s) ∈ Y.

CCC 2024

34:10 Search-To-Decision Reductions for Kolmogorov Complexity

3 Decision-to-Search for Shallow Instances

In this part we prove our search-to-decision reduction for inputs with small computational
depth.

▶ Theorem 15. There exists an oracle-aided algorithm F such that the following holds. Let
A be an oracle that decides GapMINKT. Then F A solves search- MINKT.

Moreover, on input (x, 1t, 1s), F runs in time 2cdt(x)poly(|x|, t, s), and only queries A on
inputs (y, 1t′

, 1s′) with |y| ≤ |x|+ s, t′ ∈ poly(|x|, t), and s′ ≤ s + O(log(|x|+ t)).

Directly from Theorem 15 we get the following corollary.

▶ Corollary 16. The following holds:
Assume that there is a poly-time (resp. poly size) algorithm that solves GapMINKT.
Then there exists an algorithm that solves search- GapMINKT in time (resp. size) 2cdt(x) ·
poly(|x|, t, s) on inputs (x, 1t, 1s).
Assume that for some α > 0 there is an algorithm that solves GapMINKT in time (resp.
size) 2α·spoly(|x|, t, s). Then there exists an algorithm that solves search- GapMINKT in
time (resp. size) 2cdt(x)+α·s · poly(|x|, t, s) on inputs (x, 1t, 1s).

The proof of Theorem 15 is almost immediate from the following lemma, in which the
running time of the algorithm that solves MINKT is larger for high values of the threshold s.

▶ Lemma 17. There exists an oracle-aided algorithm F ′ such that the following holds. Let
A be an oracle that decides GapMINKT. Then F ′A solves search- MINKT.

Moreover, on input (x, 1t, 1s), F ′ runs in time 2s−K(x)poly(|x|, t, s), and queries A on
inputs (y, 1t′

, 1s′) with |y| ≤ |x|+ s, t′ ∈ poly(t), and s′ ≤ s + O(log(|x|+ t)).

Proof of Theorem 15. Let F be the algorithm that given (x, 1t, 1s) runs F ′ on input
(x, 1t, 1s′) for every s′ = 1, . . . , s, until the first execution that outputs a program Π with
U(Π, 1t) = x. The theorem follows since the algorithm halts when s′ = Kt(x). ◀

We next prove Lemma 17. In the proof of Lemma 17 we will use the following claim.

▷ Claim 18. There exists a polynomial q ∈ poly and a constant c0, such that the following
holds for every x ∈ {0, 1}∗ with |x| ≥ 2, and every t ∈ N. Let Π a program of length Kt(x)
such that U(Π, 1t) = x. Then for every i ≤ Kt(x), Kq(t,|x|)(x||Π≤i) ≤ Kt(x) + c0 log|x|.

Proof of Claim 18. Let U′ be an efficient program such that U′(Π, i) = U(Π)||Π≤i (where we
encode Π, i using Fact 8), and let q be a polynomial such that q(t, |x|) is an upper bound
on the running time of U′ where t is a bound on the running time of U(Π) (recall that
|Π| = Kt(x) ≤ |x|+ O(1)).

Then Kq(t,|x|)(U(Π)||Π≤i) ≤ |(Π, i)|+ O(1) ≤ |Π|+ 3 log|Π|+ O(1) ≤ |Π|+ 3 log(|x|+ c) +
O(1), where the last inequality holds by Fact 7, for some constant c ∈ N. ◁

To prove Lemma 17, let q ∈ poly and c0 be the polynomial and constant promised by
Claim 18, and consider the following algorithm that finds a minimal Kt-witness.

N. Mazor and R. Pass 34:11

▶ Algorithm 19 (F’).
Oracle: GapMINKT decider A.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Set S0 = {x} and k = s + c0 log|x|.
2. For every i = 1, 2, . . . , s:

a. Compute Si =
{

yb : y ∈ Si−1, b ∈ {0, 1} and A(yb, 1q(t,|x|), 1k) = Yes
}

b. If exists y ∈ Si such that y = x||Π and U(Π, 1t) = x, output Π and terminate.
3. Output ⊥.

. .

We will show that the correctness of the above algorithm follows directly by Claim 18.
To bound the running time of Algorithm 19, we will use the following claim.

▷ Claim 20. On input (x, 1t, 1s), Algorithm 19 runs in time 2s−K(x) · poly(|x|, t, s).

Before proving Claim 20, let us use Claim 18 and Claim 20 to prove Lemma 17.

Proof of Lemma 17. We start with the correctness of Algorithm 19. Let (x, 1t, 1s) be the
input for the algorithm, and assume that Kt(x) ≤ s. Let Π be a program of minimal length
such that U(Π, 1t) = x. By Claim 18, the correctness of the oracle A, and by a simple
induction, x||Π≤i is in the set Si for every i ≤ |Π| ≤ s. Therefore, x||Π is in SKt(x), and thus
Algorithm 19 outputs a correct answer.

By Claim 20, Algorithm 19 runs in time 2s−K(x) · poly(|x|, t, s). Finally, it is not hard to
see that Algorithm 19 makes only queries of the form (yb, 1q(t,|x|), 1k) with k = s + c0 log|x|,
and |yb| ≤ |x|+ s. ◀

3.1 Proving Claim 20
We will use the following lemma, that bounds the number of k-bit strings y such that xy has
low Kolmogorov complexity

▶ Lemma 21. There exists a constant c ∈ N such that the following holds for every x ∈ {0, 1}∗

and for every k, ℓ ∈ N.∣∣∣{y ∈ {0, 1}≤k : K(xy) ≤ ℓ
}∣∣∣ ≤ 2ℓ+1−K(x) · (|x|+ k)c

Proof of Lemma 21. Let c be the constant from Theorem 12. By a simple counting
argument, there are at most 2ℓ+c log(|x|+k)+1−K(x) strings y ∈ {0, 1}≤k such that K(y |
x) ≤ ℓ + c log(|x| + k) − K(x). It thus enough to show that for every y ∈ {0, 1}≤k with
K(y | x) > ℓ+c log(|x|+k)−K(x), it holds that K(xy) > ℓ, which is true By Theorem 12. ◀

We are now ready to prove Claim 20.

Proof of Claim 20. The running time of Algorithm 19 is bounded by |
⋃
Si| · poly(|x|, t, s),

and thus it is enough to bound the size of
⋃
Si. Toward this goal, let τ ∈ poly be the

polynomial for which A decides Gapτ MINKT. We get that∣∣∣⋃Si

∣∣∣ ≤ ∣∣∣{y ∈ {0, 1}≤s : A(xy, 1q(t,|x|), 1s+c0 log|x|) = Yes
}∣∣∣

≤
∣∣∣{y ∈ {0, 1}≤s : Kτ(q(t,|x|),|x|)(xy) ≤ s + c0 log|x|+ log τ(q(t, |x|), |x|)

}∣∣∣
≤

∣∣∣{y ∈ {0, 1}≤s : K(xy) ≤ s + c0 log|x|+ log τ(q(t, |x|), |x|)
}∣∣∣

≤ 2s+c0 log|x|+log τ(q(t,|x|),|x|)+1−K(x) · poly(|x|+ s)

= 2s−K(x) · poly(|x|, t, s),

CCC 2024

34:12 Search-To-Decision Reductions for Kolmogorov Complexity

where the second inequality holds by the correctness of A, the third since K(xy) ≤ Kt(xy)
and the last inequality holds by Lemma 21. ◁

3.2 A List-to-Decision Reduction for K-complexity
We note that Algorithm 19 also gives “list-to-decision” reduction for Kolmogorov-complexity:
given access to an oracle that decides the threshold problem of Kolmogorov-complexity, a
simple variant of Algorithm 19 outputs a list of polynomial length, containing the witness.

▶ Theorem 22. There exists an efficient oracle-aided algorithm F such that the following
holds. Let A be an oracle that given x ∈ {0, 1}∗ and s ∈ N, decides if K(x) ≤ s. Then F A

outputs a list L, such that |L| ∈ poly(|x|), and L contains a K-witness for x: that is, there
exists Π ∈ L for which |Π| = K(x) and U(Π) = x.

As in Theorem 15, the same holds when the oracle A only solves the gap version of the
threshold problem (given x and s, A decides if K(x) ≤ s or K(x) ≥ s + O(log|x|).)

The algorithm is as follows.

▶ Algorithm 23 (F).
Oracle: A.
Input: x ∈ {0, 1}∗.
1. Use A to compute s = K(x).
2. Set S0 = {x} and k = s + c0 log|x|.
3. For every i = 1, 2, . . . , s:

a. Compute Si =
{

yb : y ∈ Si−1, b ∈ {0, 1} and A(yb, 1k) = Yes
}

4. Output Ss.
. .

Proof of Theorem 22. Fix an input x ∈ {0, 1}∗, and let Π be a K-witness for x. By Claim 18
and simple induction, there exists a constant c0 such that Π ∈ Ss. By Lemma 21, it holds
that |Ss| ∈ poly(|x|, K(x)) = poly|x|.

Finally, by Lemma 21 we get that |Si| ∈ poly(|x|, i), which implies that Algorithm 23
runs in polynomial time. ◀

4 Decision-to-Search Everywhere

In this part we prove our main search-to-decision reduction for GapMINKT.

▶ Theorem 24. Let ε > 0 be a constant. Then there exists a randomized oracle-aided
algorithm F such that the following holds for every τ ∈ poly. Let A be an oracle that decides
Gapτ MINKT. Then F A

τ = F A(τ, ·, ·, ·) solves search- GapMINKT.
Moreover, on input (x, 1t, 1s) F A

τ runs in time 2ϵspoly(|x|, t, s), and only queries A on
inputs (y, 1t′

, 1s′) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s), and s′ ≤ s + log poly(|x|, t, s).

Directly from Theorem 24 we get the following corollary.

▶ Corollary 25. The following holds for every τ ∈ poly and ϵ > 0: Assume that for some
α > 0 there is an algorithm that solves Gapτ MINKT in time (resp. size) 2α·spoly(|x|, t, s).
Then there exists an algorithm that solves search- GapMINKT in time (resp. size) 2(α+ϵ)s ·
poly(|x|, t, s) on inputs (x, 1t, 1s).

N. Mazor and R. Pass 34:13

We next prove Theorem 24. In the following, let q ∈ poly, c0 ∈ N be the polynomial and
constant from Claim 18, and let c be the constant from Theorem 12. We start with the
following algorithm, that with high probability outputs a program Π such that x is a prefix
of the output of Π. We later change the algorithm such that the output will be a program
that outputs x.

▶ Algorithm 26 (Find).
Parameters: ϵ > 0, τ ∈ poly
Oracle: Gapτ MINKT decider A.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Set x1 = x, t1 = t and s1 = s.
2. For every j = 1, . . . , ⌈1/ε⌉+ 1:

a. Set Sj
0 =

{
xj

}
, and kj = sj + c0 log

∣∣xj
∣∣.

b. Set rj = ϵs + (kj − sj) + c log(
∣∣xj

∣∣ + sj) + log τ(q(tj ,
∣∣xj

∣∣), ∣∣xj
∣∣ + sj) + log 4/ϵ.

c. For every i = 1, 2, . . . , sj:
i. Compute Sj

i =
{

yb : y ∈ Sj
i−1, b ∈ {0, 1} and A(yb, 1q(tj ,|xj|), 1kj) = Yes

}
ii. If exists y ∈ Sj

i such that y = xj ||Π and U(Π, 1tj) = xj, output Π and terminate.
iii. If

∣∣∣Sj
i

∣∣∣ ≥ 2rj , set Sj = Sj
i and move to Item 2d.

d. Randomly choose xj+1 ← Sj.
e. Set tj+1 = τ(q(tj ,

∣∣xj
∣∣), ∣∣xj+1

∣∣) and sj+1 = kj + log τ(q(tj ,
∣∣xj

∣∣), ∣∣xj+1
∣∣).

3. Output ⊥.
. .

We start with a simple observation on the parameters in Claim 28.

▷ Claim 27. For every j ≤ ⌈1/ϵ⌉+ 1 it holds that tj ∈ poly(|x|, t, s),
∣∣xj

∣∣ ∈ poly(|x|, t, s),
sj = s + log(poly(|x|, t, s)), kj = s + log(poly(|x|, t, s)), and rj = ϵ · s + log(poly(|x|, t, s)).

Proof of Claim 27. The claim holds since ϵ is a constant, τ and q are polynomials, and by
the definition of tj , xj , sj , kj and rj . ◁

We next bound the running time of Algorithm 26.

▷ Claim 28. On input (x, 1t, 1s), Algorithm 26 runs in time 2ϵs · poly(|x|, t, s). Moreover,
Algorithm 26 only queries A on inputs (y, 1t′

, 1s′) with |y| = poly(|x|, t, s), t′ = poly(|x|, t, s),
and s′ ≤ s + log poly(|x|, t, s).

Proof of Claim 28. Fix an input (x, 1t, 1s). Similarly to the proof of Claim 20, the running
time of the j-th iteration in Step 2 of Algorithm 26 is at most∣∣∣∣∣⋃

i

Sj
i

∣∣∣∣∣ · poly(
∣∣xj

∣∣, tj , sj) ≤ sj · 2rj

· poly(
∣∣xj

∣∣, tj , sj).

It thus enough to show that tj ∈ poly(|x|, t, s),
∣∣xj

∣∣ ∈ poly(|x|, t, s), sj = s+log(poly(|x|, t, s)),
and rj = ϵ · s + log(poly(|x|, t, s)) for every j ≤ ⌈1/ϵ⌉+ 1, which holds by Claim 27. ◁

To see that Algorithm 26 indeed outputs a program that outputs x, we have the following
claim.

▷ Claim 29. There exists a constant c ∈ N such that the following holds. Assume that on
input (x, 1t, 1s), Algorithm 26 enters the j-th iteration in Step 2. Then,

CCC 2024

34:14 Search-To-Decision Reductions for Kolmogorov Complexity

1. x is a prefix of xj ,
2. Ktj (xj) ≤ sj , and,
3. With probability at least 1− j · ϵ/4, K(xj) ≥ (j − 1) · ϵ · s + (sj − s).

Proof of Claim 29. The first item holds by the definition of the algorithm. The second item
holds since in Algorithm 26, xj is in the set Sj−1

i only if A(xj , 1q(tj−1,|xj−1|), 1kj−1) = Yes,
which implies by the correctness of A that

Kτ(q(tj−1,|xj−1|),|xj|)(xj) ≤ kj−1 + log τ(q(tj−1,
∣∣xj−1∣∣), ∣∣xj

∣∣),
and since tj = τ(q(tj−1,

∣∣xj−1
∣∣), ∣∣xj

∣∣), sj = kj−1 + log τ(q(tj−1,
∣∣xj−1

∣∣), ∣∣xj
∣∣).

The proof of the last item is by induction on j. Assume that

K(xj) ≥ (j − 1) · ϵ · s + (sj − s).

Observe that by definition of the algorithm, it holds that xj is a prefix of every element in
Sj . That is, we can write Sj = xj ||S ′j for a set S ′j of size at least 2rj .

Thus, xj+1 = xj ||z, for z ∈ {0, 1}≤sj

which is randomly chosen from a set of size at least
2rj . Using Lemma 9, it holds that with probability at least 1−ϵ/4 that K(z | xj) ≥ rj−log 4/ϵ.
by Symmetry of Information (Theorem 12) we get that

K(xj+1) ≥ K(xj) + rj − log 4/ϵ− c log(
∣∣xj

∣∣ + sj)
≥ (j − 1) · ϵ · s + (sj − s) + (ϵs + (kj − sj) + log τ(q(tj ,

∣∣xj
∣∣), ∣∣xj

∣∣ + sj))
≥ j · ϵ · s + (kj + log τ(q(tj ,

∣∣xj
∣∣), ∣∣xj

∣∣ + sj))− s

≥ j · ϵ · s + (kj + log τ(q(tj ,
∣∣xj

∣∣), ∣∣xj+1∣∣))− s

= j · ϵ · s + sj+1 − s

The proof now follows by the union bound. ◁

We can now prove Theorem 24.

Proof of Theorem 24. We start with the definition of the algorithm F . Let F be the
algorithm that first executes Algorithm 26, to get a program Π such that U(Π)≤|x| = x.
Then, F outputs a program Π′ that simulates Π, and outputs the |x| first bits of its output.
It follows that U(Π′) = x, and |Π′| ≤ |Π|+ O(log|x|). Moreover, the running time of Π′ is
bounded by a polynomial of the running time of Π.

Next, by Claim 28, F runs in the stated time. We now prove the correctness of F . First,
recall that by Fact 7, we can assume without loss of generality that s ≤ |x|+ O(1). Next,
observe that by Claim 29, in every iteration j it holds that x is a prefix of xj , and that
Ktj (xj) ≤ sj . Thus, by the correctness of Algorithm 19, if for every iteration i, Sj

i is not
larger than 2rj , then Algorithm 26 outputs a program of length at most

sj = s + log poly(|x|, t, s) = s + log poly(|x|, t)

that outputs xj in time

tj = poly(|x|, t, s) = poly(|x|, t).

We are left to deal with the case that in every iteration j of Step 2, Sj
i is larger than

2rj for some i. In this case, by the third item of Claim 29, with probability at least
1− (⌈1/ϵ⌉+ 1)ϵ/4 ≥ 1/2, in the last iteration we get that

K(x⌈1/ϵ⌉+1) ≥ (⌈1/ϵ⌉+ 1)ϵs + (s⌈1/ϵ⌉+1 − s) > s⌈1/ϵ⌉+1,

which is in contradiction to the second item of Claim 29, as K(x⌈1/ϵ⌉+1) ≤ Kt(x⌈1/ϵ⌉+1) for
every t ∈ N. ◀

N. Mazor and R. Pass 34:15

5 Decision-to-Search for MINKT using List Recoverable Codes

In this part we use list recoverable codes to get length-preserving decision-to-search for
instances with small computational depth. List recoverable codes [3] are defined next.

▶ Definition 30. For Σ = {Σn}n∈N and functions m : N → N, p : N → [0, 1], ℓ : N → N
and L : N→ N, an ensemble Enc = {Encn : {0, 1}n → Σm(n)

n }n∈N is an efficient (p, ℓ, L)-list-
recoverable code if Enc can be computed in polynomial time, and there exists an efficient
procedure Rec such that the following holds for every n ∈ N. Given sets S1, . . . ,Sm(n) ⊆ Σn

such that |Si| ≤ ℓ(n) for every i, Rec(S1, . . . ,Sm(n)) outputs a list R of size at most L(n),
containing all x ∈ {0, 1}n with

|{i ∈ [m(n)] : Enc(x)i /∈ Si}| ≤ p(n) ·m(n).

As shown in [5, 4], Reed-Solomon codes [19] are list recoverable with parameters that are
suitable for our needs. In particular:

▶ Theorem 31 ([5, 4]). For every efficiently computable w ∈ O(log n), there exists an efficient
Enc : {0, 1}n → [m(n)]m(n), for m(n) = 2w(n), such that Enc is an (p, ℓ, L) list recoverable
code , for any p ≤ 1−

√
ℓ(n) · n/m(n) and L(n) ∈ O(ℓ(n) ·m(n)).

Moreover, Enc : {0, 1}n → [m(n)]m(n) runs in time poly(n, w(n)).

We now state the main theorem of this part.

▶ Theorem 32. For every d ∈ N, there exists an oracle-aided algorithm F such that the
following holds. Let A be an oracle that decides MINKT. Then F A solves search- MINKT
on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.

Moreover, on input (x, 1t, 1s), F runs in time poly(|x|, t, s), and only queries A on inputs
(x||y, 1t′(|x|,t), 1s′) with |y| = r(|x|, t) ≤ log poly(|x|, t), t′ ∈ poly and s′ ≤ s + log poly(|x|, t).

In the following, let Enc = {Encn : {0, 1}n → Σm(n)
n } be an efficient (p, ℓ, L) list recoverable

code, and Rec the efficient reconstruction algorithm of Enc, for parameters Σn, m(n), p, ℓ, L

we will choose later. Let q ∈ poly and c0, c1 ∈ N be a polynomial and constants to be chosen
later. We will show that the following algorithm returns a short program that produces x,
when the input s is exactly equal to Kt(x), and then show how to get rid of this assumption.
For i ∈ [m(n)], we let ⟨i⟩ ∈ {0, 1}⌈log m(n)⌉ be the binary representation of i. Let cK be the
constant from Fact 7 such that Kt(x) ≤ |x|+ cK for every x.

▶ Algorithm 33 (Find).
Oracle: MINKT decider A.
Parameters: τ ∈ poly, d ∈ N.
Input: (x, 1t, 1s) for x ∈ {0, 1}∗, t, s ∈ N.
1. Let n = |x|+ cK .
2. For every i ∈ [m(n)], compute the set

Si =
{

y ∈ Σn : A(x||⟨i⟩||y, 1q(t,|x|), 1s+log m(n)+c1 log log m(n)) = Yes
}

.

3. For every i ∈ [m(n)] such that |Si| > ℓ(n), set Ŝi = ∅. Otherwise, set Ŝi = Si.
4. Compute Rec(Ŝ1, . . . , Ŝm(n)), and let R ⊆ {0, 1}n be the output.
5. Find a string Π ∈ {0, 1}s such that Π||0n−s ∈ R and U(Π, 1t) = x.
6. Output Π.. .

CCC 2024

34:16 Search-To-Decision Reductions for Kolmogorov Complexity

Note that in the above algorithm, the set Si is the set of all possible values (in Σn) for the
ith symbol in the encoding of Π. We start by showing that the size of S1, . . . ,Sm(n) is not
too large.

▷ Claim 34. There exists a constant c2 ∈ N such that the following holds for every
c1, d, w ∈ N. Let x ∈ {0, 1}∗ such that cdt(x) ≤ d log|x|. Then there are at most

M = 2w+(c1+c2)(log 2w)+d log|x|+c2 log|x|

pairs (i, α) ∈ [2w] · [2w] such that K(x||⟨i⟩||α) ≤ Kt(x) + w + c1(log w).

Proof. Immediate by Lemma 21. ◁

Next, we will use the following claim to show that Π is in the set R.

▷ Claim 35. For every w : N→ N, and every efficient code Enc : {0, 1}n → [2w(n)]2w(n) , there
exists a polynomial q such that the following holds for every x ∈ {0, 1}∗ with w(|x|) ≥ 2, and
every t ∈ N. Let Π a program of length Kt(x) such that U(Π, 1t) = x. Then for n = |x|+ cK

and every i ∈ [2w(n)],

Kq(t,|x|)(x||⟨i⟩||Enc(Π||0n−|Π|)i) ≤ Kt(x) + w(n) + c1 log w(n)

for some universal constant c1.

Proof. Let Π′ be the program that given input (Π, i), first simulates U(Π) to get an output
x, and then computes n = |x|+ cK and Enc(Π||0n−|Π|)i. Let q ∈ poly be the bound of the
running time of Π′. Then, using Fact 8, Kq(t,|x|)(x||⟨i⟩||Enc(Π)i) ≤ Kt(x)+w(n)+4 log w(n).

◁

We are now ready to prove Theorem 32.

Proof of Theorem 32. We will show that on input (x, 1t, 1s′) Algorithm 33 returns a program
Π such that U(Π, 1t) = x, if s′ = Kt(x). The theorem then follows by considering the algorithm
that enumerates over all possible values of s′ < s.

Let c1 and c2 be the constants promised by Claim 35 and Claim 34 respectively. Let
Enc : {0, 1}n → [2w(n)]m(n) be an efficient (p, ℓ, L) list recoverable code, for w(n) = 2(d +
c1 + c2) log n + 10, p(n) = 1/10, ℓ(n) = 2(c1+c2) log w(n)+(d+c2) log n+5, L(n) ∈ poly and
m(n) = 2w(n). By Theorem 31 such a code exists as

ℓ(n) · n/m(n) = n · 2(c1+c2) log w(n)−(d+2c1+c2) log n−5 ≤ 2−5 ≤ (1− p)2

for any large enough n. Finally, let q be the polynomial promised by Claim 35 with respect
to the code Enc.

We next show that when using Enc as the code in Algorithm 33, Algorithm 33 outputs a
minimal program Π that produces the input x. By the list recoverable property of Enc, it is
enough to show that Π||0n−s is in the list outputted by Rec. It thus enough to show that
(1) Enc(Π)i ∈ Si for every i ∈ [m(n)] and (2), Si = Ŝi for at least (1− 1/10)m(n) indexes
i ∈ [m(n)].

(1) follows immediately by Claim 35 and the definition of Si. For (2), by Claim 34 the
total size

∑
i|Si| of the sets Si is at most

2w+(c1+c2) log 2w+d log n+c2 log n = m(n) · ℓ(n) · 2−5.

By Markov, we get that there are at most 2−5 ·m(n) < 1/10 ·m(n) indexes i such that
|Si| > ℓ(n). For all other i’s it holds that Si = Ŝi , which concludes the proof. ◀

N. Mazor and R. Pass 34:17

5.1 Decision-to-Search on Average
▶ Definition 36. For a function t : N→ N, we say that an algorithm A computes Kt if for
every x ∈ {0, 1}∗, A(x) = Kt(|x|)(x). We say that A computes Kt with error ϵ if for every
n ∈ N, Prx←{0,1}n

[
A(x) = Kt(|x|)(x)

]
≥ 1− ϵ(n).

We say that A solves search- Kt with error ϵ if A outputs a program Π such that
U(Π, 1t(|x|)) = x and |Π| = Kt(|x|)(x) with probability 1− ϵ(n) over x← {0, 1}n.

We prove the following theorem.

▶ Theorem 37. For every p, t ∈ poly there exists p̂ ∈ poly and t′ ∈ poly, and an efficient
oracle-aided algorithm F such that the following holds. Let A be an that computes Kt′ with
error 1/p̂. Then F A solves search- Kt with error 1/p.

Moreover, on input x ∈ {0, 1}n, F makes only queries of the form x||y with y ∈ O(log n).

To prove Theorem 37, we will use the following theorem, which is followed by the same proof
as Theorem 32.

▶ Theorem 38. For every d ∈ N and t ∈ poly, there exists t′ ∈ poly and an oracle-aided
algorithm F such that the following holds. Let A be an oracle that computes Kt′ . Then F A

solves search- Kt on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.
Moreover, on input x, F runs in time poly(|x|), and only queries A on inputs x||y with

|y| = r(|x|, t) ≤ log poly(|x|, t).

Proof. This follows by a similar proof to Theorem 32, together with the observation that
MINKT can be decided on inputs (x, 1t(|x|), 1s) using oracle that computes Kt. ◀

Proof of Theorem 37. We start with the assumption that the oracle A is deterministic,
and later show how to eliminate this assumption. Fix p and t, and let t′ and F be the
polynomial and algorithm promised by Theorem 32. Let r be the parameters of F as defined
in Theorem 32, and let d be such that |x|d > 2p(|x|) for every x with |x| > 2. Finally, let
p̂(|x|) = 8p(|x|) · 2r(|x|,t(|x|)), and let A be an oracle the computes Kt′ with error 1/p̂ (when
the probability is taken only over the input x of A).

Let Â be an oracle that computes Kt′ correctly on every input. By Definition 36, on
a random x ← {0, 1}n

A and Â agree with probability 1 − 1/p̂(x). By Theorem 32, F Â

solves search- Kt on every input with cdt(|x|)(x) ≤ d log|x|, and thus, by Fact 11, F Â solves
search- Kt with error at most 1/|x|d ≤ 1/(2p(|x|)). It is thus enough to show that

Prx←{0,1}n

[
F A(x) = F Â(x)

]
≥ 1− 1/2p(|x|). (1)

To see Equation (1), let Bn be the set of all x ∈ {0, 1}n such that F A(x) ̸= F Â(x). By
definition of B, on every input x ∈ Bn, there must be some query x||y that F makes to the
oracle, such that A(x||y) ̸= Â(x||y). Let Rn ⊆ {0, 1}n be the set of all x’s, such that there
exists y ∈ {0, 1}r(n,t(n)) with A(x||y) ̸= Â(x||y). We get that |Rn| ≥ |Bn|, and,

1/p̂(n + r(n, t(n))) ≥ Prz←{0,1}n+r(n,t(n))

[
A(z) ̸= Â(z)

]
≥ |Rn| · 2−n−r(n,t(n)).

Thus, we get that

|Bn| ≤ 2n+r(n,t(n))+1 · 1/p̂(n + r(n, t(n))) ≤ 2n+r(n,t(n))+1 · 1/p̂(n),

which implies that |Bn|/2n ≤ 1/4p(n), which concludes the claim.

CCC 2024

34:18 Search-To-Decision Reductions for Kolmogorov Complexity

We next move to deal with randomized algorithm A. That is, A that err with probability
1/p̂, where the probability is now taken both over the input and the internal randomness of
A. To deal with such a randomized oracle A, we observe that by standard amplification, it is
enough to replace Equation (1), with Prx←{0,1}n

[
Pr

[
F A(x) ̸= F Â(x)

]
> 1/2

]
≤ 1/4p(|x|).

We can thus let Bn be the set of all x ∈ {0, 1}n such that Pr
[
F A(x) ̸= F Â(x)

]
> 1/2,

and Rn ⊆ {0, 1}n be the set of all x’s, such that with probability larger than 1/2 (over
the randomness of A) there exists y ∈ {0, 1}r(n,t(n)) with A(x||y) ̸= Â(x||y). We get that
|Rn| ≥ |Bn|, and,

1/p̂(n + r(n, t(n))) ≥ Prz←{0,1}n+r(n,t(n))

[
A(z) ̸= Â(z)

]
≥ 1/2 · |Rn| · 2−n−r(n,t(n)),

and the claim follows as in the deterministic case. ◀

We get the following two corollaries. The first was already proven in [16].

▶ Corollary 39 (reproving [16]). For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the
following holds:

Assume that there is a poly-time (resp. poly size) algorithm that computes Kt′ with error
1/p̂. Then there exists a poly-time (resp. poly-size) algorithm that solves search- Kt with
error 1/p.
Assume that there is an algorithm that computes Kt′(x) with error 1/p̂ in time (resp.
size) 2o(|x|). Then there exists an algorithm that solves search- Kt with error 1/p in time
(resp. size) 2o(|x|).

The second shows that the same holds also in the exponential regime.

▶ Corollary 40. For every p, t ∈ poly there exists p̂, t′ ∈ poly such that the following holds:
Assume that there exists a constant α > 0 and an algorithm that computes Kt′ with error
1/p̂ in time (resp. size) 2α·|x|poly(|x|). Then there exists an algorithm that solves search- Kt

with error 1/p in time (resp. size) 2α·|x|poly(|x|).

6 Decision-to-Search for GapMINKT using List Recoverable Codes

In this part we show that Theorem 32 holds even when we start with an oracle that solves
GapMINKT instead of MINKT.

▶ Theorem 41. For every τ ∈ poly and d ∈ N, there exists an oracle-aided algorithm F

such that the following holds. Let A be an oracle that decides Gapτ MINKT. Then F A solves
search- MINKT on inputs (x, 1t, 1s) with cdt(x) ≤ d log|x|.

Moreover, on input (x, 1t, 1s), F runs in time poly(|x|, t, s), and only queries A on
inputs (x||y, 1t′(|x|,t), 1s′) with |y| = ℓ(|x|, t) ≤ log poly(|x|, t), t′ ∈ poly and s′(|x|, t) ≤
s + log poly(|x|, t).

To prove Theorem 41 we will show that Algorithm 33 with different parameters works. When
the oracle A only decides GapMINKT, the size of the sets Si can be larger. The first claim
shows that it still cannot be too large.

▷ Claim 42. There exists a constant c2 ∈ N such that the following holds for every
c1, d, w ∈ N, and every τ, q ∈ poly. Let x ∈ {0, 1}∗ such that cdt(x) ≤ d log|x|. Then there
are at most

M = 2w+(c1+c2)(log 2w)+d log|x|+c2 log|x|)+log τ(q(t,|x|),|x|)

pairs (i, α) ∈ [2w] · [2w] such that K(x||⟨i⟩||α) ≤ Kt(x) + w + c1(log w) + log τ(q(t, |x|), |x|).

Proof. Immediate by Lemma 21. ◁

N. Mazor and R. Pass 34:19

To get non-trivial bound from Claim 42, we will need to choose out code alphabet size,
2w, to be larger than τ(q(t, |x|), |x|). Since the polynomial q is going to be dependent on the
code evaluation time, we will need to use codes where the running time of the code does not
grow too fast with the alphabet size. By Theorem 31, there is a family of list recoverable
codes, such that we can choose the size of the output alphabet Σ, and the running time of
the encoder only depends on log|Σ|. This property is used in the next claim, which shows
that Π||0n−s is in the set R.

▷ Claim 43. There exists a constant c1 and polynomial q′, such that the following holds
for every w : N→ N, every x ∈ {0, 1}∗ with |x| ≥ 16, and every t ∈ N. Let Π a program of
length Kt(x) such that U(Π, 1t) = x, and let Enc : {0, 1}n → [2w(n)]2w(n) be the code from
Theorem 31. Then for n = |x|+ cK and for every i ∈ [2w(n)],

Kq′(t,|x|,w(n))(x||⟨i⟩||Enc(Π||0n−|Π|)i) ≤ Kt(x) + w(n) + c1 log w(n).

Proof. The proof is similar to the proof of Claim 35, using the observation that the running
time of Π′ is polynomial in t, |x| and w(n) by the choice of Enc. ◁

We are now ready to prove Theorem 41.

Proof of Theorem 41. We will show that on input (x, 1t, 1s′) Algorithm 33 returns a program
Π such that U(Π, 1t) = x, if s′ = Kt(x). The theorem then follows by considering the algorithm
that enumerates over all possible values of s′ < s.

Let c1 and q′ be the constant and polynomial promised by Claim 43, and let c2 be the
constant from Claim 42. Let c0 be such that for w(n) = c0⌈log n + t(n)⌉,

w(|x|+ cK) (2)
≥ 2((c1 + c2) log w(|x|+ cK) + (d + c2) log|x|

+ log τ(q′(t(|x|), n, w(|x|+ cK)), |x|+ 2w(|x|+ cK))),

and, 2w(|x|+cK)/3 > |x|. Finally, let q(t, |x|) = q′(t, |x|, w).
The proof now continues similar to the proof of Theorem 32. ◀

References
1 Luis Antunes, Lance Fortnow, Dieter Van Melkebeek, and N Variyam Vinodchandran. Com-

putational depth: concept and applications. Theoretical Computer Science, 354(3):391–404,
2006.

2 Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets of
natural numbers. J. ACM, 16(3):407–422, 1969.

3 Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decodable
codes. In Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pages
658–667. IEEE, 2001.

4 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory.
Draft available at https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
web-coding-book.pdf, 2(1), 2012.

5 Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and algebraic-
geometric codes. In Proceedings 39th Annual Symposium on Foundations of Computer Science
(Cat. No. 98CB36280), pages 28–37. IEEE, 1998.

6 J. Hartmanis. Generalized kolmogorov complexity and the structure of feasible computations.
In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 439–445,
1983. doi:10.1109/SFCS.1983.21.

CCC 2024

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://doi.org/10.1109/SFCS.1983.21

34:20 Search-To-Decision Reductions for Kolmogorov Complexity

7 Johan Hastad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing, pages 1364–1396, 1999.

8 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within np. In 2018
IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 247–258.
IEEE, 2018.

9 Shuichi Hirahara. Non-disjoint promise problems from meta-computational view of pseudor-
andom generator constructions. In 35th Computational Complexity Conference (CCC 2020).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

10 Shuichi Hirahara. Symmetry of information from meta-complexity. In 37th Computational
Complexity Conference (CCC 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

11 Shuichi Hirahara, Rahul Ilango, and Ryan Williams. Beating brute force for compression
problems. Technical Report TR23-171, Electronic Colloquium on Computational Complexity,
2023.

12 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 73–79, 2000.

13 Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci., 48(3):9–33,
1986. doi:10.1016/0304-3975(86)90081-2.

14 A. N. Kolmogorov. Three approaches to the quantitative definition of information. International
Journal of Computer Mathematics, 2(1-4):157–168, 1968.

15 Leonid A. Levin. Universal’ny̆ıe pereborny̆ıezadachi (Universal search problems : in Russian).
Problemy Peredachi Informatsii, pages 265–266, 1973.

16 Yanyi Liu and Rafael Pass. On one-way functions and kolmogorov complexity. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pages 1243–1254. IEEE,
2020.

17 Noam Mazor and Rafael Pass. The non-uniform perebor conjecture for time-bounded
kolmogorov complexity is false. 15th Innovations in Theoretical Computer Science, 2024.

18 Noam Mazor and Rafael Pass. Search-to-decision reductions for kolmogorov1 complexity.
Electronic Colloquium on Computational Complexity, 2024.

19 Irving S Reed and Gustave Solomon. Polynomial codes over certain finite fields. Journal of
the society for industrial and applied mathematics, 8(2):300–304, 1960.

20 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing (STOC), pages 330–335, 1983.

21 R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1–22, 1964. doi:10.1016/S0019-9958(64)90223-2.

22 Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

23 Sergey Yablonski. The algorithmic difficulties of synthesizing minimal switching circuits.
Problemy Kibernetiki, 2(1):75–121, 1959.

24 Sergey V Yablonski. On the impossibility of eliminating perebor in solving some problems of
circuit theory. Doklady Akademii Nauk SSSR, 124(1):44–47, 1959.

25 A. C. Yao. Protocols for secure computations. In Annual Symposium on Foundations of
Computer Science (FOCS), pages 160–164, 1982.

26 Alexander K Zvonkin and Leonid A Levin. The complexity of finite objects and the development
of the concepts of information and randomness by means of the theory of algorithms. Russian
Mathematical Surveys, 25(6):83, 1970.

https://doi.org/10.1016/0304-3975(86)90081-2
https://doi.org/10.1016/S0019-9958(64)90223-2

Finer-Grained Hardness of Kernel Density
Estimation
Josh Alman #

Department of Compute Science, Columbia University, New York, NY, USA

Yunfeng Guan #

Department of Compute Science, Columbia University, New York, NY, USA

Abstract
In batch Kernel Density Estimation (KDE) for a kernel function f : Rm × Rm → R, we are given
as input 2n points x(1), . . . , x(n), y(1), . . . , y(n) ∈ Rm in dimension m, as well as a vector v ∈ Rn.
These inputs implicitly define the n × n kernel matrix K given by K[i, j] = f(x(i), y(j)). The goal
is to compute a vector v ∈ Rn which approximates Kw, i.e., with ||Kw − v||∞ < ε||w||1. For
illustrative purposes, consider the Gaussian kernel f(x, y) := e−||x−y||2

2 . The classic approach to this
problem is the famous Fast Multipole Method (FMM), which runs in time n · O(logm(ε−1)) and is
particularly effective in low dimensions because of its exponential dependence on m. Recently, as the
higher-dimensional case m ≥ Ω(log n) has seen more applications in machine learning and statistics,
new algorithms have focused on this setting: an algorithm using discrepancy theory, which runs in
time O(n/ε), and an algorithm based on the polynomial method, which achieves inverse polynomial
accuracy in almost linear time when the input points have bounded square diameter B < o(log n).

A recent line of work has proved fine-grained lower bounds, with the goal of showing that
the “curse of dimensionality” arising in FMM is necessary assuming the Strong Exponential Time
Hypothesis (SETH). Backurs et al. [NeurIPS 2017] first showed the hardness of a variety of Empirical
Risk Minimization problems including KDE for Gaussian-like kernels in the case with high dimension
m = Ω(log n) and large scale B = Ω(log n). Alman et al. [FOCS 2020] later developed new
reductions in roughly this same parameter regime, leading to lower bounds for more general kernels,
but only for very small error ε < 2− logΩ(1)(n).

In this paper, we refine the approach of Alman et al. to show new lower bounds in all parameter
regimes, closing gaps between the known algorithms and lower bounds. For example:

In the setting where m = C log n and B = o(log n), we prove Gaussian KDE requires n2−o(1)

time to achieve additive error ε < Ω(m/B)−m, matching the performance of the polynomial
method up to low-order terms.
In the low dimensional setting m = o(log n), we show that Gaussian KDE requires n2−o(1) time
to achieve ε such that log log(ε−1) > Ω̃((log n)/m), matching the error bound achievable by
FMM up to low-order terms. To our knowledge, no nontrivial lower bound was previously known
in this regime.

Our approach also generalizes to any parameter regime and any kernel. For example, we achieve
similar fine-grained hardness results for any kernel with slowly-decaying Taylor coefficients such
as the Cauchy kernel. Our new lower bounds make use of an intricate analysis of the “counting
matrix”, a special case of the kernel matrix focused on carefully-chosen evaluation points. As a key
technical lemma, we give a novel approach to bounding the entries of its inverse by using Schur
polynomials from algebraic combinatorics.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Kernel Density Estimation, Fine-Grained Complexity, Schur Polynomials

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.35

Funding Supported in part by a grant from the Simons Foundation (Grant Number 825870 JA) and
a Google Research Scholar award.

Acknowledgements We would like to thank Amol Aggarwal for constructive discussions on Schur
polynomials, and anonymous reviewers for helpful suggestions.

© Josh Alman and Yunfeng Guan;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 35; pp. 35:1–35:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:josh@cs.columbia.edu
https://orcid.org/0009-0002-2204-1359
mailto:yunfeng.guan@columbia.edu
https://orcid.org/0009-0000-1387-1727
https://doi.org/10.4230/LIPIcs.CCC.2024.35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Finer-Grained Hardness of Kernel Density Estimation

1 Introduction

In computational statistics and learning theory, many applications reduce to solving the
following problem: Given a set of points X ⊆ Rm sampled from some unknown distribution D,
estimate the probability density at a query point y ∈ Rm (or multiple such points Y ⊆ Rm).
This problem is known as the density estimation problem and has attracted interest in
theoretical computer science in recent years. One of the most common methods for this
problem is Kernel Density Estimation (KDE), which tries to approximate the distribution
by a sum of kernel functions centered at each data point x. More concretely, if a kernel
function k : Rm × Rm → [0, 1] is appropriately picked, then the Kernel Density KDF(y) :=
1
n

∑
x∈X k(x, y) is a reasonably good approximation of D at point y.1 In this work, we will

focus on the popular class of radial kernels, i.e., kernels of the form K(x, y) = f(∥x − y∥2
2)

for some function f : R≥0 → [0, 1]. Some prominent radial kernels include the Gaussian
kernel with f(u) = e−u, Rational Quadratic kernel with f(u) = 1/(1 + u)σ for constant σ,
and t-Student kernel with f(u) = 1/(1 + uρ) for constant ρ.

By virtue of its excellent statistical properties, Kernel Density Estimation has found
numerous applications in computational statistics for tasks like mean estimation, classification,
and outlier detection; see, for instance, the surveys [18, 13] and [24, Chapter 1]. The prevalence
of kernel methods in machine learning has also led to many new applications of Kernel
Density Estimation [22]. One popular recent example is in “attention computation”, the
time bottleneck in computations involving transformers and other large language models;
this is known to be essentially equivalent to Kernel Density Estimation with the Gaussian
kernel [3]2.

In light of its wide applicability, tremendous effort has also been put into designing
efficient algorithms for the KDE problem. The straightforward algorithm shows that for a
given y, KDF(y) can be computed in O(n) time, assuming f is efficiently computable.3 If
one aims at an exact result, this simple algorithm seems to be optimal. However, a number of
advances starting from the celebrated Fast Multipole Method [14] have successfully brought
the running time down to no(1) in various parameter regimes (after preprocessing the set
X), provided an approximation to the Kernel Density suffices. Before introducing these
algorithmic ideas, we first give a formal definition of the (approximate) KDE problem. For
simplicity, we present here the batched version, which asks to compute the KDF value for a
collection of query points simultaneously. (We also compare the batched version and the
data structure version in Section 1.5.)

▶ Definition 1 ((Approximate) Kernel Density Estimation KDEf (n, m, ε, B)). Let f : [0, B] →
[0, 1] be a real function and define the (kernel) function k(x, y) = f(∥x − y∥2

2).
Suppose we are given as input 2n points x(1), · · · , x(n), y(1), · · · , y(n) ∈ Rm with the

guarantee that ∥x(i) − y(j)∥2
2 ≤ B for all i, j ∈ [n]. Define the kernel matrix K ∈ [0, 1]n×n by

K[i, j] = f(∥x(i) − y(j)∥2
2) for i, j ∈ [n]. Then given additionally a vector u ∈ Rn, one needs

to output a vector v ∈ Rn such that ∥v − Ku∥∞ ≤ ε∥u∥1.

1 For example, when m = 1 and k(x, y) = 1[|x − y| ≤ 1], the KDF is the histogram of the dataset X.
2 The parameters of KDE correspond directly to the parameters in attention: n is the number of “tokens”

in the query sequence, and m is the dimension of the vectors which encode tokens.
3 In this work we always assume f(∥x − y∥2

2) can be exactly computed in O(1) time. Most of the previous
works adopt this assumption.

J. Alman and Y. Guan 35:3

1.1 Algorithms
As a computational problem, KDE has its running time dependent on four parameters: the
number of data points / query points n, the dimension of vectors m, the additive error
of approximation ε, and the maximum pairwise (square) distance B. Multiple parameter
regimes arise from the their interplay, and the KDE problem tends to have rather different
behavior across the regimes. Of course, the choice of the kernel function can also substantially
change the complexity of the problem; in the following discussion we take the Gaussian
kernel as a running example.

Low dimensional KDE: m = o(log n). The first nontrivial algorithm for the KDE problem
is Greengard and Roklin’s Fast Multipole Method [14]. In this method, one partitions the
space into bounded regions, and then Taylor expands the kernel around centers of these
regions. In this way a truncation of the Taylor series yields a approximation of high accuracy
when the data points lie in distant cells. For the Gaussian kernel, the Fast Multipole
Method runs in time O(n logO(m)(n/ε)), which is exceptionally good in low dimensions
(e.g., m = O(1) in the original physical context4 of [15]). However, in higher dimensional
regimes, this approach suffers from an exponential dependence on m, which is inherent in the
(deterministic) space partitioning procedure (essentially building a quad-tree), and shared by
other tree-based methods.

Moderate dimensional KDE: m = Θ(log n). One way to avoid the exponential dependence
on m of the Fast Multipole Method is to use the method of polynomial approximation directly,
without combining it with space partitioning. Alman and Aggarwal [1] pinned down the
optimal degree of a polynomial that approximates f(u) = e−Bu over u ∈ [0, 1] by analyzing its
Chebyshev truncation. A polynomial approximation of e−Bu then allows one to approximate
the Gaussian kernel matrix using a matrix consisting of only polynomial entries. Such a
matrix admits a decomposition as a product of two matrices of dimension n × no(1), for
which the matrix-vector product can be performed efficiently. As a result, they gave an
algorithm for Gaussian KDE running in n1+o(1) time when m = O(log n), B = o(log n) and
ε = 1/poly(n).

High dimensional KDE: m = ω(log n). Another technique often used in the study of
KDE is random sampling. For example, to compute 1

n

∑
x∈X k(x, y), one can sample a

subset S ⊆ X so that 1
|S|
∑

x∈S k(x, y) is a close approximation to KDF(y) when |S| is
sufficiently large. Simple calculation shows that |S| = O(log n/ε2) suffices, and a Õ(n/ε2)
time (randomized) algorithm follows. We note that this algorithm has no dependence on
m and works for arbitrarily high dimensions. This folklore random sampling algorithm
stood unchallenged until recently Phillips and Tai [20] devised an O(n/ε)-time algorithm by
building a small coreset based on discrepancy theory. They show that a clever subsampling
scheme yields a smaller S ⊆ X which has the same accuracy as its counterpart when used in
the random sampling algorithm. We in addition note that much effort [10, 11, 5, 7, 8, 9] has
been dedicated to the relative error setting, combining sampling schemes with techniques
from high-dimensional geometry (such as hashing-based space partitioning). See Section
1.5 below where we compare the additive error and relative error settings and survey these
algorithms in more detail.

4 The Fast Multipole Method was originally introduced to solve the n-body problem from physics.

CCC 2024

35:4 Finer-Grained Hardness of Kernel Density Estimation

1.2 Lower bounds
Despite the great variety of algorithms developed over the years, we still lack a comprehensive
understanding of the complexity of the KDE problem. In this work, our goal is to complement
the distinct algorithms targeting different parameter regimes with (nearly) matching running
time lower bounds, and explain how the complexity of KDE is affected by parameters.

The first and most influential known lower bound was developed by Backurs, Indyk and
Schimidt [6]. This work establishes a reduction from the Bichromatic Closest Pair (BCP)
problem to a collection of empirical risk minimization problems including KDE. As BCP is a
standard hard problem in fine-grained complexity assuming the Strong Exponential Time
Hypothesis (SETH), the reduction leads to conditional lower bounds on the running time of
KDE. To explain in detail, we first give the formal statement of the BCP problem.

▶ Problem 2 (Bichromatic Closest Pair). Hamming-BCP(n, m): Given two sets X = {x(1), · · · ,

x(n)}, Y = {y(1), · · · , y(n)} ∈ {0, 1}m, compute mini,j∈[n] ∥x(i) − y(j)∥2
2.

We then observe that terms in the KDE result ∥K × 1∥1 can be grouped according to the
pairwise distance between x(i) and y(j).

∥K × 1∥1 =
n∑

i=1

n∑
j=1

f(∥x(i) − y(j)∥2
2) =

m∑
p=0

f(p) · #
{

(i, j) ∈ [n]2 : ∥x(i) − y(j)∥2
2 = p

}
.

This identity provides a way of extracting minimum pairwise distance from the KDE result.
Indeed, if mini,j ∥x(i) −y(j)∥2 ≥ p+1, then ∥K ×1∥1 ≤ n2f(p+1) (assuming f is decreasing);
otherwise, there exists a pair (x(i), y(j)) with ∥x(i) − y(j)∥2 ≤ p and ∥K × 1∥1 ≥ f(p). In
this way, if f is decreasing quickly enough, one can decide whether mini,j ∥x(i) − y(j)∥2 ≤ p

based on a sufficiently accurate approximation of ∥K × 1∥1.
This relatively simple reduction gives strong running time lower bounds in the moder-

ate/high dimensional regime. In the original paper, [6] shows that when m = Ω(log n) and
B = Ω(log n), it requires n2−o(1) time to approximate the Gaussian KDE to ε = 2−poly log n.
This result is later improved by Alman and Aggarwal [1] (also in [11] for KDE with relative
error), who combine the same reduction with the hardness result of approximate BCP [21]
and show that even approximating to accuracy ε = 1/poly(n) requires n2−o(1) time.

However, we note that this reduction relies on a strong premise that f(p)/f(p + 1) > n2,
i.e., the kernel function has rapid decay. (The variant in [1] relies on a similar condition.)
This fails to hold for many kernels of interest, including all smooth kernels (such as the
Rational Quadratic kernels and t-Student kernels) and small-scale Gaussian kernels with
small B < o(log n).

To get around this barrier, Alman, Chu, Schild and Song [2] extends the reduction of [6],
by solving multiple KDE instances and, roughly speaking, combining their answers to extract
more information about the pairwise distances. Concretely, we define the distance vector (in
terms of two sets of points) and counting matrix (in terms of the function f) as follows.

▶ Definition 3. Let X = {x(1), · · · , x(n)}, Y = {y(1), · · · , y(n)} ∈ {0, 1}m be two sets of
points. We define the distance vector w = [#{(i, j) : ∥x(i) − y(j)∥2

2 = p}]p∈[m], and for
α1, · · · , αm ∈ [0, 1] define the counting matrix M = [f(αℓ · p)]ℓ,p∈[m].

Consider the matrix-vector multiplication M × w. By the same argument as in the reduction
of [6], we observe each entry in w̃ := M × w can be computed by some KDE instance Kℓ × 1
(Kℓ is associated with appropriately scaled X and Y):

w̃[ℓ] =
n∑

i=1

n∑
j=1

f(∥
√

αℓx
(i) −

√
αℓy

(j)∥2
2) =

m∑
p=0

f(αℓp) · #
{

(i, j) : ∥x(i) − y(j)∥2
2 = p

}
.

J. Alman and Y. Guan 35:5

Once w̃ is obtained from KDE subroutines, one can then approximate the distance vector by
simply computing M−1 × w̃. If this approximation to w has (additive) error bounded by
1/3, then a subsequent rounding step yields the exact distance vector, and automatically a
solution to the BCP problem.

To analyze this reduction, we define a key quantity

τ(M) := max
0̸=v∈Rm

∥M−1v∥∞

∥v∥∞
.

Suppose ∥Kℓ × 1∥∞ ≤ ε∥1∥1 for all ℓ ∈ [m]. Then

∥M−1w̃ − w∥∞ = ∥M−1(w̃ − Mw)∥∞ ≤ τ(M) · max
ℓ∈[m]

∥Kℓ × 1∥1 ≤ τ(M) · n2ε.

Therefore, any algorithm that approximates KDE instances to accuracy ε = 1/(3n2τ(M)) in
n2−Ω(1) time amounts to a truly subquadratic BCP algorithm and refutes SETH. (In this
paper below, we slightly modify this approach to improve the dependence on n in ε from
quadratic to linear; see Section 1.4 for more details.)

To complete the hardness result, it remains to bound the quantity τ(M) as a function of m

and B. [2] makes a generic statement relating τ(M) to the approximability of f by low-degree
polynomials. In particular, it is shown that for all three kernels – Rational Quadratic kernel,
t-Student kernel and small-scale Gaussian kernel – performing Ω(log n)-dimensional KDE
requires n2−o(1) time to achieve accuracy ε = 2−poly log n.

The proof of [2] for this bound on τ(M) is highly technical, and requires new tools from
analysis and linear algebra. For the sake of coherence, we defer an overview of the details to
Section 1.4. A main weakness of [2] is that it only gives hardness for very small ε, which is
an inherent consequence of their approach to bounding τ(M). One of the main technical
contributions of our paper, which we discuss in more detail shortly, is an improved approach
to bounding τ(M) which yields exponentially better bounds on ε for many kernel functions
of interest.

1.3 Our contribution
In this work we give stronger negative results for the KDE problem, and pin down its
complexity in each parameter regime. We mainly focus on the Gaussian kernel, and on two
of the most used smooth kernels – the Rational Quadratic kernel and the t-Student kernel.
That said, our approach is general and would apply to any other kernel of interest after
some calculations (See Section 1.5 for further discussion). To give a unified presentation, we
formulate both the positive and negative results as upper bounds and lower bounds on 1/ε.
More specifically, we will answer the following questions.

▶ Question 4. Fix a kernel function f and a parameter regime determined by m = o(log n)
(resp. Θ(log n), ω(log n)) and B = o(log n) (resp. Ω(log n)). What is the range of 1/ε

achievable in n1+o(1) time? What is the range of 1/ε that requires n2−o(1) time?

For simplicity, in the following discussion we understand “Easy” as being achievable in n1+o(1)

time, and understand “Hard” as requiring n2−o(1) time.

Gaussian kernel. In the regime m = Θ(log n), B = o(log n), the polynomial method [1]
gives the best known positive result: Gaussian KDE is Easy when 1/ε < (m/B)o(m). The
best known negative result due to [2] establishes the Hardness of KDE when 1/ε > 2poly log n.
In this work we improve the negative result and show that the polynomial method is optimal
up to a low-order 2O(m) factor in 1/ε.

CCC 2024

35:6 Finer-Grained Hardness of Kernel Density Estimation

▶ Theorem 5. Assuming SETH, for every q ∈ (0, 1), there exist C1, C2 > 0 such that when
m > C1 log n and 1/ε > (m/B)m · Cm

2 , GaussianKDE(n, m, B, ε) cannot be solved in O(n2−q)
time.

In the low dimensional regime5, clog∗ n < m < o(log n)/(log log n), the Fast Multipole
Method has stood unchallenged for over three decades. Using this method, Gaussian KDE
is Easy when log log(1/ε) < o(log n)/m. It is natural to conjecture that a substantial
improvement is impossible. However, to the best of our knowledge, no previous hardness
result was known for Gaussian kernel KDE in this regime.6 In this work we give the first
negative result against the Fast Multipole Method, and in particular show that the log log(1/ε)
achieved by the Fast Multipole Method is optimal up to a roughly logarithmic factor in m.

▶ Theorem 6. Assuming SETH, for every q > 0, there exist C1, C ′
1, C2 > 0 such that

when C log∗ n
1 < m < C ′

1(log n)/(log log n) and log log(1/ε) > (log n)/m · (log m) · C log∗ n
2 ,

GaussianKDE(n, m, B, ε) cannot be solved in O(n2−q) time.

Apart from the two major improvements above, our techniques also lead to new results in
other regimes. As a straightforward corollary of Theorem 5, we show 1/ε > ((log n)/B)Ω(log n)

is Hard for high-dimensional m = ω(log n), small-scale B = o(log n) regime, improving the
1/ε > 2poly log n bound in [2]. For the large scale regime, we note the hardness result in
[1] requires (B/ log n) to tend to infinity alongside (m/ log n). This inherent dependence
between B and m is an inevitable consequence of the rapid decay condition. In comparison,
as our new reduction is free of such restrictions, new hardness results can be developed as
well in the regime where B = Θ(log n) is fixed and only m/ log n tends to infinity.

We summarize all the known upper and lower bounds for Gaussian KDE in Table 1.

Table 1 Summary of known results for Gaussian KDE, incorporating our new Theorems 5 and 6.
The new hardness in high dimensions follows from our Theorem 5 and a straightforward reduction
from moderate to high dimension. The stated hardness results for large scale and moderate or high
dimension were previously known [6, 1], although we improve the constant C in these cases.

small scale

B = o(log n)

large scale

B = Ω(log n)

low dimension

clog∗ n < m < o
(log n

log log n

) Easy: log log(1/ε) < o((log n)/m)

Hard (new): log log(1/ε) > Ω̃(log n)/m)

moderate dimension

m = C log n

Easy: 1/ε < (m/B)o(m)

Hard (new): 1/ε > Ω(m/B)m

Easy: 1/ε < n1−q

Hard: 1/ε > nC for some C > 1

high dimension

m > ω(log n)

Easy: 1/ε < n1−q

Hard (new): 1/ε > ((log n)/B)Ω(log n)

Easy: 1/ε < n1−q

Hard: 1/ε > nC for some C > 1

Rational Quadratic kernel and t-Student kernel. For the Rational Quadratic kernel
f(x) = 1/(1 + x)σ and t-Student kernel f(x) = 1/(1 + xρ) parameterized by absolute
constants σ, ρ ≥ 1, we give similar lower bound results. In the moderate to high dimensional
regime d = Ω(log n), the best known negative result is again that 1/ε = 2poly log n is Hard
by [2]. We show that this can be improved to 1/ε = poly(n). This parallels the improvement

5 We use log∗ to denote the very slowly-growing iterated logarithm function.
6 For non-Lipschitz kernels, some hardness results for very low error in low dimensions were established

in [2].

J. Alman and Y. Guan 35:7

by [1] for the large-scale Gaussian kernel from 1/ε = 2poly log n to 1/ε = poly(n) (and we
recall that these kernels do not decrease quickly enough to prove this using the approach
of [6, 1]).

▶ Theorem 7. For Rational Quadratic kernel f(x) = 1/(1 + x)σ and t-Student kernel
f(x) = 1/(1+xρ) parameterized by absolute constants σ, ρ ≥ 1, the following holds. Assuming
SETH, for every q > 0, there exists C1, C2 > 0 such that if m > C1 log n, 1/ε > nC2 , then
KDEf (n, m, B = 1, ε) cannot be solved in O(n2−q). Here C2 is dependent on σ or ρ.

This result implies that KDE for Rational Quadratic kernel and t-Student kernel are strictly
harder than Gaussian KDE: for B = O(1) and m = Θ(log n), Gaussian KDE is Easy when
1/ε < mo(m) whereas KDE for Rational Quadratic kernel and t-Student kernel are Hard for
1/ε > 2Ω(m). Interestingly, this is in sharp contrast to the phenomenon in the study of KDE
with relative error, where KDE for smooth kernels are seemingly easier to solve. We discuss
this difference in detail in Section 1.5.

In the low dimensional regime, we also prove negative results against the Fast Multipole
Method. For both Rational Quadratic kernel and t-Student kernel, the Fast Multipole Method
has similar bound O(n logO(m)(n/ε)) on running time. We complement this algorithm with
a matching lower bound up to a Õ(log m) factor in log log(1/ε).

▶ Theorem 8. For Rational Quadratic kernel f(x) = 1/(1 + x)σ and t-Student kernel f(x) =
1/(1+xρ) parameterized by absolute constants σ, ρ ≥ 1, the following holds. Assuming SETH,
for every q > 0, there exist C1, C ′

1, C2 > 0 such that when C log∗ n
1 < m < C ′

1(log n)/(log log n)
and log log(1/ε) > (log n)/m · (log m) · C log∗ n

2 , KDEf (n, m, B = 1, ε) cannot be solved in
O(n2−q) time. Here C2 is dependent on σ or ρ.

1.4 Techniques
As discussed in Section 1.2, [2] established an upper bound on 1/ε which hinges on a key
quantity τ(M), and the central ingredient of their reduction is a bound on this quantity.
Therefore we start by sketching the proof [2] developed for this bound. By definition,

τ(M) = max
∥v∥∞=1

∥M−1v∥∞ ≤ max
∥v∥∞=1

max
s∈[m]

m∑
t=1

|M−1[s, t]||v[t]| ≤ m max
s,t∈[m]

|M−1[s, t]|.

By Cramer’s rule, we write M−1[s, t] = det(Ms−
t−)

det(M) , where Ms−
t− is the matrix obtained by

removing the s-th row and t-th column of M . Thus it suffices to bound det(M) and det(Ms−
t−).

We here make use of a common matrix decomposition technique in the study of the polynomial
method. If f has Taylor series f(x) =

∑∞
k=0

f(k)(0)
k! xk convergent over [0, 1], then

det(M) = det
[∞∑

k=0

f (k)(0)
k! αk

sβk
t

]
s,t∈[m]

= det
([

αk
s · f (k)(0)

k!

]
m×N

×
[
βk

t

]
N×m

)
.

One tool for computing determinants of the form det(A × B), where A and B are rectangular
matrices, is the Cauchy-Binet formula (See Section 2.3 for details), which gives

det(M) =
∑

0≤n1<···<nm

(
m∏

k=1

f (nk)(0)
nk!

)
det
[
αnk

s

]
s,k∈[m]

det
[
βnk

t

]
t,k∈[m]

. (1)

Observing that the determinants involved are effectively (m!)-term polynomials in α and
β, [2] then views the entire sum as a power series and applies a standard (yet technical)
analysis to derive a bound on τ(M).

In this work, we extend this approach in four aspects.

CCC 2024

35:8 Finer-Grained Hardness of Kernel Density Estimation

Direction 1: Schur polynomials. First, we improve on the analysis of the series (1).
Although this series is a rather concrete representation of det(M), the analysis of the (m!)-
term polynomials and infinite sum is still a strenuous task and tends not to lead to tight
bounds. In this work, we make further inspections of the structure of series (1) and observe
that all the determinants det [αnk

s]s,k∈[m] , det [βnk
t]t,k∈[m] have a special structure – they are

known as generalized Vandermonde matrices. Such matrices have been extensively studied in
Algebraic Combinatorics under the name Schur polynomials, and are central to the theory
of symmetric polynomials. For the classical theory and application of Schur polynomials
we point to Chapter 7 of [23]. In recent years, Schur polynomials have also found various
applications in computer science, such as in quantum computation [16, 19] and geometric
complexity theory [17].

One key property of Schur polynomials lies in its two equivalent definitions. The algebraic
definition by Cauchy establishes connection between Schur polynomials and generalized
Vandermonde matrices, while the combinatorial definition by Littlewood gives a concrete
specification of the coefficients of Schur polynomials.

▶ Definition 9 (Schur polynomials). Let m > 0 be an integer and λ1 ≤ · · · ≤ λm be positive
integers. We define the Schur polynomial sλ on variables (u1, · · · , um) by

sλ(u) = sλ(u1, · · · , um) =
det[uλk+(k−1)

i]i,k∈[m]∏
j>i(uj − ui)

. (Cauchy)

Equivalently, the Schur polynomial sλ(u) can be defined by

sλ(u) =
∑
T ∈T

m∏
i=1

u
t(T)i

i , (Littlewood)

where T is the set of all semi-standard Young tableaux of shape λ on alphabet [m], and
t(T) ∈ Nm is the type of T . (See Section 4 for the definition of Young tableaux and associated
parameters.)

Based on this property, we are able to represent det [αnk
s] and det [βnk

t] by “neater” poly-
nomials whose nonzero coefficients are uniformly 1, and whose monomials can be enumerated
using some combinatorial objects. One can thereby obtain stronger bounds through more
straightforward analysis. Moreover, many known results regarding the asymptotic behavior
of Schur polynomials also turn out useful in providing guidance on proof strategies.

Direction 2: Special counting matrices. We also observe that for many kernels of interest,
the counting matrix M itself has a special structure. For the t-Student kernel f = 1/(1 + xρ),
its associated counting matrix Mf = [1/(1 + αρ

sβρ
t)]s,t∈[m] is known as a (scaled) Cauchy

matrix, as is Ms−
t− . For the Gaussian kernel f = e−x, the associated counting matrix

Mf = [eαsβt]s,t∈[m] is a Vandermonde matrix, and Ms−
t− is (a relatively simple example of) a

generalized Vandermonde matrix. Closed-form formulas are known for determinants of such
special matrices. One may thus get around the Cauchy-Binet expansion and bounds can be
deduced via a direct argument.

Direction 3: Grouping vector pairs. Regarding the reduction per se, we show the reduction
in [2] can be modified so that ε = 1/(3nτ(M)) suffices, in contrast to the aforementioned
ε = 1/(3n2τ(M)) lower bound. The main idea is to perform the reduction on {x(i)} × Y for
each x(i) ∈ X separately. Note that for fixed i ∈ [n],

J. Alman and Y. Guan 35:9

(K × 1)[i] =
∑

j∈[n]

f(∥x(i) − y(j)∥2
2) =

m∑
p=0

f(p) · #
{

j : ∥x(i) − y(j)∥2
2 = p

}
.

By the same argument as before, one now recovers the components wi = [#{j ∈ [m] :
∥x(i) −y(j)∥2

2 = p}]p∈[m] of w for respective i ∈ [m]. We note, in this new reduction, it suffices
to approximate single entries (K × 1)[i], which is arguably a simpler task than approximating
∥K × 1∥1, as an error n times as large may accumulate in the latter case. Formalizing this
idea in Section 3, we successfully shave a factor of n.

This improvement on the dependence of n in addition raises an interesting question. In
the high dimensional regime, [20] showed that for any positive definite kernel f , one can
compute KDEf (n, m, ε, B) in truly subquadratic time with accuracy 1/ε < n1−δ for any
constant δ > 0. Against this algorithm, our improved reduction produces a lower bound
for 1/ε > Ω(n) · τ(M), leaving a gap of simply τ(M). This brings within reach a potential
tightness result: the optimality of [20] can be (in part) established as long as one can bound
τ(M) = O(1) for some positive definite kernel f . Such a result is arguably hard to obtain
from the previous lower bounds by either [6] or [2].

Direction 4: Low-dimensional BCP. To extend the negative result to the low-dimensional
regime, we combine our main reduction with a variant of the BCP problem. Williams [25] and
Chen [12] showed that the BCP problem for vectors with integer entries remains hard even in
extremely low dimensions d = 2O(log∗ n). (See Section 2.1 for a formal statement). With slight
modification, our main reduction can use KDE subroutines to recover the distance vector for
not only datapoints in {0, 1}m but those in Zm (though a larger counting matrix is required).
A hardness result for KDE in low dimensions thus follows from similar analysis. Moreover,
looking into the proofs of [25] and [12], we notice that they effectively showed a stronger
trade-off between the dimension of vectors and magnitude of vector entries. Translated into
the setting of KDE, this is a trade-off between dimension m and approximation error ε.

1.5 Discussion
Additive vs. Relative Error. In the previous discussion we focused mainly on the KDE
problem with additive error. In recent years, much effort has also been dedicated to algorithm
design in the setting with relative error, primarily in the moderate to high dimensional
regime d = Ω(log n). In this setting, the running time of KDE algorithms normally depends
not only on the relative error parameter εR but also on a lower bound of the kernel value
µ = minx∈[0,B] f(x). The folklore random sampling algorithm runs in time O(nε−2

R µ−1). For
the Gaussian kernel, Charikar and Siminelakis [10] made the first major improvement by
designing a O(nε−2

R µ−0.5)-time algorithm using a LSH-based Importance Sampling scheme.
Later Charikar et al. [8] presented an improved implementation of Importance sampling
that achieves O(nε−2

R µ−0.173) running time. For smooth kernels (including the Rational
Quadratic kernel and t-Student kernel), the first non-trivial improvement was due to Backurs
et al. [5], who presented an algorithm running in nε−2

R poly log(µ−1) time using tree-based
space partitioning techniques. Recently, Charikar, Kapralov and Waingarten [9] combined
this result with the discrepancy based sampling scheme by Phillips and Tai [20] and achieved
nε−1

R poly log(µ−1) running time, improving the dependence on εR.
Interestingly, our new lower bounds in Section 1.3 exhibits a sharp contrast between the

additive and relative error setting. The best known KDE algorithms stated above suggest
that KDE for smooth kernels are likely easier than that for Gaussian-like kernels in the

CCC 2024

35:10 Finer-Grained Hardness of Kernel Density Estimation

relative error setting. However, comparing between Theorem 5 and Theorem 7, we observe an
opposite trend. For example, for B = O(1) and m = Θ(log n), Gaussian KDE is Easy when
1/ε < mo(m) whereas KDE for Rational Quadratic kernel and t-Student kernel are Hard even
for 1/ε = 2Ω(m). This difference suggests that the discrepancy between two formulations is
likely inherent and they should be treated with respective care.

Dynamic vs. Batched KDE. As we see from the reduction of [6] and [2], the BCP problem
naturally reduces to the batched version of KDE, and thereby we take batched KDE as the
primary formulation in this work for simplicity. In the literature, the KDE problem is equally
often phrased in its dynamic version, e.g., in [10, 20, 9]. In the dynamic KDE problem for
kernel k(x, y), one is given a dataset X ⊂ Rm and a vector w ∈ Rn, and asked to design a
data structure A that preprocesses X and outputs an approximation to the Kernel Density∑

x∈X k(x, q)w[x] for each query point q ∈ Rm. Given a KDE data structure, one can easily
build a batched KDE algorithm in time T (preprocessing) + n ·T (query). Hence any hardness
result proved for batched KDE automatically holds for dynamic KDE as well. It is not
clear whether there is a reduction in the reverse direction, and it remains an open problem
to determine whether the batched version is strictly easier. Nonetheless, all the known
algorithms including the Fast Multipole method, Polynomial method and sampling-based
methods, are data structures or can be modified to solve the dynamic problem.

2 Preliminaries

2.1 SETH and known hard problems
We now introduce several variants of the Bichromatic Closest Pair problem.

▶ Problem 10 (Hamming (Exact) Bichromatic Closest Pair). Hamming-BCP(n, m): Given two
sets A = {x(1), · · · , x(n)}, B = {y(1), · · · , y(n)} ⊂ {0, 1}m, compute mini,j∈[n] ∥x(i) − y(j)∥2

2.

▶ Theorem 11 ([4]). Assuming SETH, for every q ∈ (0, 1), there exists C > 0 such that if
m > C log n, then Hamming-BCP(n, m) cannot be solved in time O(n2−q) for any constant
q > 0.

Similarly, one can define the Hamming approximate BCP problem and its decision version.

▶ Problem 12 (Hamming Approximate BCP). Hamming-Apx-BCP(n, m, µ): Given two sets
A, B as in Problem 10 as well as µ ∈ R+, output d ∈ R such that mini,j∈[n] ∥x(i) − y(j)∥2

2 ≤
d ≤ (1 + µ) mini,j∈[n] ∥x(i) − y(j)∥2

2.

▶ Theorem 13 ([21]). Assuming SETH, for every q > 0, there exist C > 0, µ > 0 such that
if m > C log n, then Hamming-Apx-BCP(n, m, µ) cannot be solved in time O(n2−q) for any
constant q > 0.

In the low dimensional regime m = o(log n), we consider the hardness of the ℓ2 BCP
problem.

▶ Problem 14 (ℓ2 (Exact) Bichromatic Closest Pair). ℓ2-BCP(n, m, D): Given two sets
A = {x(1), · · · , x(n)}, B = {y(1), · · · , y(n)} ∈ Zm such that maxi,j∈[n] ∥x(i) − y(j)∥2

2 ≤ D,
compute mini,j∈[n] ∥x(i) − y(j)∥2

2.

▶ Theorem 15 ([12]). Assuming SETH, for every q > 0, there exists C1, C2 > 0 such that
if m > C log∗ n

1 and D > mClog∗ n
2 ·(log n)/m, then ℓ2-BCP(n, m, D) cannot be solved in time

O(n2−q) for any constant q > 0.

J. Alman and Y. Guan 35:11

To unify the hardness results for BCP in different dimension regimes, we view the Hamming
BCP problem as an ℓ2 BCP problem with D = m. Formally, we combine Theorem 13 and
Theorem 15 as follows.

▶ Theorem 16. Assuming SETH, for every q > 0, there exists C > 0 such that ℓ2-
BCP(n, m, D) cannot be solved in time O(n2−q) for any constant q > 0 if either of the
following holds: (1) m > C log n, D = m, or (2) m > C log∗ n, D > mClog∗ n·(log n)/m.

2.2 Kernels of interest
In this work we focus primarily on three kernels k(x, y) = f(∥x − y∥2

2):
Gaussian kernel f(x) = e−x;
Rational Quadratic kernel f(x) = 1/(1 + x)σ for σ ≥ 1 a parameter;
t-Student kernel f(x) = 1/(1 + xρ) for ρ ≥ 1 a parameter.7

Rational Quadratic kernel and t-Student kernel are two typical kernels with mild decay (as
opposed to the rapid decay of Gaussian kernel). This property is abstracted by Backurs et
al. [5] in the definition of a smooth kernel. Here we only focus on decreasing radial kernels.

▶ Definition 17 (smooth kernel). A decreasing radial kernel k(x, y) = f(∥x − y∥2
2) is (L, t)

smooth if for any 0 < a < b, f(a)
f(b) ≤ L

(
b
a

)t.

By calculation one can verify that Rational Quadratic kernel and t-Student kernel are
respectively (1, 1)- and (1, ρ)-smooth.

Positive definite kernels. Most commonly-studied kernels are positive definite. We will
find that our lower bound approach takes a particularly nice form for such kernels.

▶ Definition 18 (Positive definite kernel). A kernel k : Rm × Rm → R is positive definite if
for any n points x1, · · · , xn ∈ Rm, the Gram matrix G = [k(xi, xj)]i,j∈[n] is always positive
definite.

For radial kernels, we have the following concise characterization of positive definite kernels.

▶ Definition 19. Let f : R≥0 → R be a real function. We say f is absolutely monotone if
G ∈ C∞(R≥0) and f (k)(t) for all k ∈ N and t ≥ 0, and we say f is completely monotone if
G ∈ C∞(R≥0) and (−1)k · f (k)(t) ≥ 0 for all k ∈ N and t ≥ 0.

▶ Theorem 20 (Schoenberg’s characterization). Let f : R≥0 → R be a real function. Then
the kernel k(x, y) = f(∥x − y∥2

2) is positive definite if and only if f is completely monotone
on R≥0.

2.3 Tools from linear algebra
As in prior work, we will make use of the Cauchy-Binet formula.

▶ Lemma 21 (Cauchy-Binet formula). Let k > 0 be an integer, and for functions A :
[k] × N → R and B : N × [k] → R, define the matrix C ∈ Rk×k by, for i, j ∈ [k], C[i, j] =∑∞

ℓ=0 A[i, ℓ]B[ℓ, j]. If the sum converges absolutely for all i, j, then

det(C) =
∑

1≤ℓ1<···<ℓk

det(A[ℓ1, · · · , ℓk]) · det(B[ℓ1, · · · , ℓk]).

Here A[ℓ1, · · · , ℓk](resp. B[ℓ1, · · · , ℓk]) is the k × k matrix obtained from A (resp. B) by
taking the columns (resp. rows) ℓ1, · · · , ℓk.

7 t in the name of the kernel in principle should be the name of the parameter. We here use ρ as parameter
while keeping the name t-Student kernel unchanged.

CCC 2024

35:12 Finer-Grained Hardness of Kernel Density Estimation

3 Main reduction from BCP

Most of our new lower bounds are based on the reduction below from Hamming or ℓ2 Exact
Bichromatic Closest Pair to KDE. This reduction generalizes a framework developed in [2]
to accommodate different parameter regimes. In this section we will give the outline of the
reduction and establish an upper bound on 1/ε determined by the quantity τ(M).

▶ Definition 22. Let D > 0 be an integer. Fix vectors α, β ∈ RD and c ∈ R. Suppose
c + αℓβp ∈ [0, 1] for all ℓ, p ∈ [D]. Then for function f : [0, 1] → R, the counting matrix
M = M(D; f, α, β) is a D × D matrix defined by M [ℓ, p] = f(c + αℓβp), ℓ, p ∈ [D].

▶ Theorem 23. Let α ∈ RD be a fixed vector and β ∈ RD be the identity vector defined
by βp = p. If KDEf (n, m, ε) can be solved in T (n, m, ε) time, then ℓ2-BCP(n, m, D) with
m = no(1), D = no(1) can be solved in T (n, m + 1, (3nτ(M))−1) · no(1) + n1+o(1) time, where
M is the D × D counting matrix associated with f, α, β and τ(M) = max0̸=b∈RD

∥M−1b∥∞
∥b∥∞

.

Proof. Given two sets X = {x(1), · · · , xn}, Y = {y(1), · · · , y(n)} ⊆ Zm such that maxi,j∈[n]
∥x(i) − y(j)∥2

2 ≤ D, let W ∈ ND×n denote the distance count matrix defined by W [p, i] =
#[j ∈ [n] : ∥x(i) − y(j)∥2

2 = p]. Then the matrix product U = M × W gives

U [ℓ, i] =
D∑

p=1
M [ℓ, p] · W [p, i] =

D∑
p=1

f
(
c + αℓβp

) ∑
j∈[n]

1

[
∥x(i) − y(j)∥2

2 = p
]

=
∑

j∈[n]

f
(

c + αℓ · β
[
∥x(i) − y(j)∥2

2

])
. (2)

We note that when β is the identity vector, the summation (2) can be formulated as a
KDE instance. More specifically, let x̃

(i)
ℓ , ỹ

(j)
ℓ ∈ Rm+1 be defined by x̃

(i)
ℓ [k] =

√
α(ℓ)x(i)[k]

if k ∈ [m] and x̃
(i)
ℓ [m + 1] =

√
c; ỹ

(j)
ℓ [k] =

√
α(ℓ)y(j)[k] if k ∈ [m] and ỹ

(j)
ℓ [m + 1] =

0. Then U [ℓ, i] =
∑

j∈[n] f(∥x̃
(i)
ℓ − ỹ

(j)
ℓ ∥2

2). Therefore we have the following algorithm
for ℓ2-BCP(n, m, D) using KDEf as a subroutine. On input X = {x(1), · · · , x(n)}, Y =
{y(1), · · · , y(n)} such that maxi,j∈[n] ∥x(i) − y(j)∥2

2 ≤ D:
1. For ℓ ∈ [D], construct vectors x̃

(i)
ℓ , ỹ

(j)
ℓ , i, j ∈ [n]. Then approximate the ℓ-th row of U :

Û [ℓ] ≈ U [ℓ] = Kℓ × 1 using the KDEf oracle.
2. Compute Ŵ = M−1 × Û , and round each entry to the closest integer.

We claim that if we call the KDEf subroutine with ε = (3nτ(M))−1, then the distance
count matrix W is exactly recovered after the rounding step. Indeed, for fixed i ∈ [n], letting
W [·, i], U [·, i] respectively denote the i-th column of matrix W and U , we have

∥Ŵ [·, i] − W [·, i]∥∞ = ∥M−1(Û [·, i] − U [·, i])∥∞ ≤ τ(M) · ∥Û [·, i] − U [·, i]∥∞.

If the KDEf subroutine guarantees that ∥Û [ℓ] − U [ℓ]∥∞ ≤ (3nτ(M))−1 · ∥1∥1 = (3τ(M))−1

for all ℓ ∈ {1, · · · , D}, then the entry-wise difference between Ŵ and W is bounded by 1/3.
The D calls to the subroutine then take in total D · T (n, m, (3nτ(M))−1) time. It takes

in addition D · O(nm) = n1+o(1) operations to construct the vectors and O(Dω) time for
step 2.8 ◀

8 We always assume f(x) can be exactly computed in constant time for any x ∈ [0, 1].

J. Alman and Y. Guan 35:13

We now combine the reduction above and the hardness result of BCP in Theorem 16.
The hardness of the KDE problem follows.

▶ Theorem 24. Assuming SETH, for every q > 0, there exists C ≥ 0 such that KDEf (n, m,

(3nτ(M))−1) cannot be solved in time O(n2−q) for any constant q > 0. if either of the
following holds: (1) m > C log n, D = m or (2) m > C log∗ n, D > mClog∗ n·(log n)/m. Here M

is the D × D counting matrix in Definition 22.

4 Schur polynomials

Let F be a field. For matrices A, B ∈ Fm×n, let A ◦ B denote the Hadamard product of
A and B, i.e. the m × n matrix with entries (A ◦ B)[i, j] = A[i, j] · B[i, j], i ∈ [m], j ∈ [n].
For matrix A ∈ Fm×n we define the Hadamard powers A◦1 = A and A◦(k+1) = A◦k ◦ A for
integer k ≥ 1. Similarly one can define the Hadamard product and Hadamard power for
vectors u ∈ Fm. Moreover, given a vector u ∈ Fm and a tuple r = (r1, · · · , rn) ∈ Nn, we
denote by u◦r the m × n matrix | | |

u◦r1 u◦r2 · · · u◦rn

| | |

 =

ur1
1 ur2

1 · · · urn
1

...
...

. . .
...

ur1
m ur2

m · · · urn
m

 .

In particular, when m = n, we call u◦r a generalized Vandermonde matrix. This is a
natural generalization of the (usual) Vandermonde matrix u◦δ associated with the tuple
δ = (0, 1, · · · , m − 1).

The concept of Schur polynomials was first proposed by Cauchy and defined as the ratio
of two generalized Vandermonde determinants. In what follows we denote by Nm

< = {x ∈
Nm : x1 < · · · < xm} the set of m-tuples composed of distinct entries in ascending order, and
define Nm

≤ = {x ∈ Nm : x1 ≤ · · · ≤ xm} similarly.

▶ Definition 25 (Cauchy’s definition of Schur polynomials). Let m > 0 be an integer and
λ = (λ1, · · · , λm) ∈ Nm

≤ an integer tuple. We define the Schur polynomial on variables
(u1, · · · , um) by

sλ(u) = sλ(u1, · · · , um) = det(u◦(λ+δ))
det(u◦δ) = det(u◦(λ+δ))

V (u) .

Here V (u) = det(u◦δ) =
∏

1≤i<j≤m(uj − ui) is the Vandermonde determinant.

It is known that Schur polynomial has an equivalent definition by Littlewood using Young
tableaux.

▶ Definition 26. Let m > 0 be an integer, and λ = (λ1, · · · , λm) ∈ Nm
≤ an integer tuple.

A semi-standard Young tableaux (SSYT) of shape λ on alphabet [m] is a left-aligned two-
dimensional rectangular array T of cells, with λi cells in the i-th row (i ∈ [m]), from bottom
to top, such that

each cell in T is assigned with an entry from 1, · · · , m;
entries weakly decrease in each row, from left to right;
entries strictly decrease in each column, from top to bottom.

Moreover, for a SSYT T , we define the type t(T) = (t1, · · · , tm) ∈ Nm of T , where tj is the
number of cells in T assigned with entry j ∈ [m].

CCC 2024

35:14 Finer-Grained Hardness of Kernel Density Estimation

▶ Definition 27 (Littlewood’s definition of Schur polynomials). Let m > 0 be an integer. For
integer tuple λ = (λ1, · · · , λm) ∈ Nm

≤ , the Schur polynomial sλ(u) can be equivalently defined
by

sλ(u) =
∑
T ∈T

ut(T),

where T is the set of all SSYT of shape λ on alphabet [m].

5 Direct calculation of τ (M): Gaussian kernel and t-Student kernel

5.1 Gaussian kernel
In this section we show upper bounds for

τ(M) = max
b∈RD :b̸=0

∥M−1b∥∞

∥b∥∞
≤ D · max

s,t∈[D]
|M−1[s, t]|

where M is the counting matrix associated with the Gaussian kernel f(x) = e−Bx. 9 By

standard facts in linear algebra, we can rewrite |M−1[s, t]| =
∣∣∣∣det(Ms−

t−)
det(M)

∣∣∣∣ with Ms−
t− the

submatrix of M consisting of all entries but those in row s or column t.
For the simplicity of analysis, we study the counting matrix M of dimension (D + 1). A

slight modification of the main reduction can employ such a matrix to recover the distance
matrix with a redundant row: W [p, i] = #[∥x(i) − y(j)∥2

2 = p], i ∈ [n], p = {0, 1, · · · , D}.

▶ Theorem 28. Let α ∈ RD+1 be a fixed vector and β ∈ RD+1 be the identity vector. Let
M be the (D + 1) × (D + 1) counting matrix associated with Gaussian kernel f = e−Bx and

α, β. Then there exists a vector α such that τ(M) ≤
(

5e
1−e−B/D

)D

.

Proof. Let xi = exp(−Bαi), then M = [xj
i : i, j ∈ {0, · · · , D}] is a Vandermonde matrix

with | det(M)| = | det(x◦(0,··· ,D))| = V (x). On the other hand, we observe that Ms−
t− can

be viewed as a generalized Vandermonde matrix. Making use of both the algebraic and
combinatorial definition of Schur polynomials, we have10

| det(Ms−
t−)| = | det((xs−)◦(0,··· ,t−1,t+1,··· ,D))| = V (xs−)

∑
R⊆{0,··· ,D}\{s}

∏
r∈R

xr,

in which xs− denotes the vector (x0, · · · , xs−1, xs+1, · · · , xD) and
∑

R⊆{0,··· ,D}\{s}
∏

r∈R xr

≤
∏

i∈{0,··· ,D}\{s}(1 + xi) ≤ 2D. Therefore

max
s,t

| det(Ms−
t−)| ≤ 2D · max

s
V (xs−) = 2D · V (x)

min
s

∏
i∈[D]\{s}

|xi − xs|

−1

.

We now pick 0 = α0 < · · · < αD−1 < αD = 1/D such that |xi+1 − xi| = | exp(−Bαi+1) −
exp(−Bαi)| = 1

D (1 − e−B/D). Let r = 1
D (1 − e−B/D), then

9 By a straightforward reduction, KDEf (n, m, ε, B) is equivalent to KDEg(n, m, ε, B = 1) where g =
f(Bx).

10 The Schur polynomial here in fact equals an elementary symmetric polynomial.

J. Alman and Y. Guan 35:15

∏
i∈{0,··· ,D}\{s}

|xi − xs| =
(

s−1∏
i=0

(s − i)r
)(

D∏
i=s+1

(i − s)r
)

= rD · s!(D − s)! ≥ rD · (D

2e
)D/2·2 = (1 − e−B/D

2e
)D.

Combining the calculations together, we have

τ(M) ≤ D · max
s,t

∣∣∣∣∣det(Ms−
t−)

det(M)

∣∣∣∣∣ ≤ D · 2D

min
s

∏
i∈[D]\{s}

|xi − xs|

−1

≤
(

5e

1 − e−B/D

)D

. ◀

The following hardness result for Gaussian KDE therefore arises from a combination of
the general KDE hardness Theorem 24 and the bound on τ(M) above.

▶ Theorem 29 (Hardness of Gaussian KDE). Let f(x) = e−Bx be the Gaussian kernel with
B ≥ 1. Then assuming SETH, for every q > 0, there exists C1, C ′

1, C2, C3, C ′
3, C4 ≥ 0 such

that KDEf (n, m, ε) cannot be solved in time O(n2−q) if either of the following holds:
(1) m > C1 log n, B < C ′

1 log n, 1/ε > (C2m/B)m, or
(2) C3 log∗ n < m < C ′

3(log n)/(log log n), log log(1/ε) > (log n)/m · (log m) · C log∗ n
4 .

Proof. For regime (1), first pick appropriate C ′
1 so that B/m < 1.

3nτ(M) = 3n

(
5e

1 − e−B/m

)m

≤ 3n

(
5e

B/(em)

)m

= 3 · 2C−1
1 m ·

(
5e2m

B

)m

≤
(

C2m

B

)m

for some constant C2 > 0. For regime (2), we have B/D ≤ 1 and thus

3n

(
5e

1 − e−B/D

)D

≤ 3n

(
5e2D

B

)D

≤ 3n(5e2D)D.

If m < (log n)/(log log n), log D = (log n)/m · (log m) · C log∗ m = (log log n)2(1 − o(1)) ·
C log∗ m > log log n. log(3nτ(M)) ≤ log(3n) + D log(5e2D) < C ′D log(5e2D). For some
C ′ > 0. Thus, log log(3nτ(M)) ≤ log D + log log(5e2D) ≤ (log n)/m · (log m) · C log∗ m

4 . ◀

5.2 t-Student kernel
For t-Student kernels f(x) = 1/(1 + xρ), we prove a similar bound on τ(M). The key
observation here is that both M and M t−

s− are (scaled) Cauchy matrices. For vectors
a, b ∈ Rn, the Cauchy matrix associated with a, b is defined by M [i, j] = 1/(ai + bj), i, j ∈ [n].
The following closed-form formula is known for its determinant.

▶ Theorem 30 (Cauchy determinant). Let n ≥ 1 be an integer. For a, b ∈ Rn, let M =
[1/(ai + bj)]i,j∈[n] be the associated Cauchy matrix. Then

det(M) =
∏

1≤i<j≤n(ai − aj)(bi − bj)∏
i,j∈[n](ai + bj) .

▶ Corollary 31. For a, b ∈ Rn with ai, bj ∈ (0, 1), ∀i, j ∈ [n], and s, t ∈ [n], we have∣∣∣∣ det[(1 + aibj)−1]i,j∈[n]

det[(1 + aibj)−1]i∈[n]s−,j∈[n]t−

∣∣∣∣ =

∣∣∣∣∣
∏

i∈[n]s−(ai − as)
∏

j∈[n]t−(bj − bt)∏
i∈[n](1 + aibt)

∏
j∈[n]t−(1 + asbj)

∣∣∣∣∣ .
Here [n]s− = [n]\{s}, [n]t− = [n]\{t}.

CCC 2024

35:16 Finer-Grained Hardness of Kernel Density Estimation

Before proving the bound on τ(M), we gather several simple inequalities to be used.

▶ Lemma 32.
(I) Let r ≥ 1, a, b > 0 be real numbers. Then (a + b)r ≥ ar + br.

(II) Let a, b ≥ 0 be integers. Then a!b! ≥ ((⌊ a+b
2 ⌋)!)2.

Proof.
(I) Taking the derivative, one can show f(x) = (1 + x)r − xr is increasing in x for x > 0.

Thus f(b/a) = (1 + b/a)r − (b/a)r ≥ f(0) = 1. The inequality follows.
(II) For a = b = 0, the inequality is trivial. If not, we have

(
a+b

a

)
≤
(

a+b
⌈(a+b)/2⌉

)
, a!b! ≥

(⌈ a+b
2 ⌉)!(⌊ a+b

2 ⌋)! ≥ ((⌊ a+b
2 ⌋)!)2. ◀

▶ Theorem 33. Let ρ ≥ 1 be a real number. Let α ∈ RD be a fixed vector and β ∈ RD be
the identity vector. Let M be the D × D counting matrix associated with t-Student kernel
f(x) = 1/(1 + xρ) and α, β. Then there exists a vector α such that τ(M) ≤ (7e)2ρD.

Proof. The counting matrix is M = [f(αiβj)]i,j∈[D] =
[

1
1+(αiβj)ρ

]
i,j∈[D]

. For simplicity we

assume D is odd. Let s, t ∈ [D]. By corollary 31, we have∣∣∣∣∣ det(M)
det(Ms−

t−)

∣∣∣∣∣ =

∣∣∣∣∣
∏

i∈[D]s−(αρ
i − αρ

s)
∏

j∈[D]t−(βρ
j − βρ

t)∏
i∈[D](1 + αρ

i βρ
t)
∏

j∈[D]t−(1 + αρ
sβρ

j)

∣∣∣∣∣ .
We set α = β to be the scaled identity vector with αi = βi = i/D, ∀i ∈ [D]. (By rescaling
αi = i/D2, βi = i one can make β the identity vector.) Then

∏
i∈[D](1 + αρ

i βρ
t)
∏

j∈[D]t−(1 +
αρ

sβρ
j) ≤ 22D−1,

∏
i∈[D]s−

|αρ
i − αρ

s | =
s−1∏
i=1

sρ − iρ

Dρ

D∏
i=s+1

iρ − sρ

Dρ
≥

s−1∏
i=1

(s − i)ρ

Dρ

D∏
i=s+1

(i − s)ρ

Dρ

=
(

(s − 1)!(D − s)!
DD−1

)ρ

≥

(
(⌊ D−1

2 ⌋)!
DD−1

)ρ

≥
(

D − 1
2eD

)ρ(D−1)
≥ (3e)−ρD.

Similarly,
∏

j∈[D]t− |βρ
j −βρ

t | ≥ (3e)−ρD. In conclusion, we have τ(M) ≤ D ·maxs,t

∣∣∣∣det(Ms−
t−)

det(M)

∣∣∣∣
≤ D · 22D · (3e)2ρD ≤ (7e)2ρD. ◀

Combining the bound on τ(M) above and the general KDE hardness Theorem 24, we
obtain

▶ Theorem 34 (Hardness results of t-Student KDE). Let f(x) = 1/(1 + xρ) be a t-Student
kernel parameterized by ρ ≥ 1 an absolute constant. Then assuming SETH, for every q > 0,
there exists C1, C2, C3, C ′

3, C4 ≥ 0 such that KDEf (n, m, ε) cannot be solved in time O(n2−q)
if either of the following holds:
(1) m > C1 log n, 1/ε > nC2 , or
(2) C3 log∗ n < m < C ′

3(log n)/(log log n), log log(1/ε) > (log n)/m · (log m) · C log∗ n
4 .

Here C1, C3, C ′
3 are absolute constants while C2, C4 are dependent on ρ.

Proof. Analogous to the proof of Theorem 29. ◀

J. Alman and Y. Guan 35:17

6 Cauchy-Binet Expansion

To bound τ(M) for counting matrices that are associated with more general kernels, we
establish the connection between the determinant det(M) and the Taylor coefficients of f via
Cauchy-Binet Expansion, based on a framework given in [2]. Our improvement mainly derives
from an observation that the terms in the expansion are in fact generalized Vandermonde
determinants. The additional structure in the determinants allows for simplifications in
analysis through Schur polynomials.

Define infinite matrices A : [D] × N → R, Ã : [D] × N → R, and B : N × [D] → R by

A[i, k] = αk
i , Ã[i, k] = f (k)(c)

k! αk
i , B[k, j] = βk

j .

Suppose the Taylor series of f(c+x) at c ∈ [0, 1] is absolutely convergent whenever c+x ∈ [0, 1].
Then for i, j ∈ [D], assuming c + αiβj ∈ [0, 1], we have

M [i, j] = f(c + αiβj) =
∞∑

k=0

f (k)(c)
k! αk

i βk
j =

∞∑
k=0

Ã[i, k]B[k, j].

By Cauchy-Binet formula, we expand det(M) as follows.

det(M) =
∑

n̄∈ND
<

det Ã[[D]; n̄] · det B[n̄; [D]]

=
∑

λ∈ND
≤

(
D∏

i=1

f (λi+δi)(c)
(λi + δi)!

)
det(α◦(λ+δ)) det(β◦(λ+δ)) (λ = n̄ − δ)

= V (α)V (β)
∑

λ∈ND
≤

(
D∏

i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α)sλ(β). (3)

The last step follows from the algebraic definition of Schur polynomials. Similarly,

det(Ms−
t−) = V (αs−)V (βt−)

∑
λ∈ND−1

≤

(
D−1∏
i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(αs−)sλ(βt−). (4)

6.1 Absolutely monotonic kernels
At this point one may try bounding (3) and (4) using analytic properties of Schur polynomials.
However, for a general function f , the arbitrary signs of Taylor coefficients largely complicate
the analysis, making tight bounds out of reach. Hence we first study the easy case where
τ(M) is associated with an absolutely monotonic kernel f , i.e., f : [0, 1] → [0, 1] satisfies
f (n)(c) ≥ 0 for all n ∈ N and c > 0. We will shortly see that such kernels are in fact not
artificial as all the positive definite kernels naturally reduce to this case.

We first use the following indentity of Schur polynomials to “align” (3) and (4).

▶ Proposition 35. If λ1 ̸= 0, then s(λ1,··· ,λn)(α1 = 0, α2, · · · , αn) = 0. If λ1 = 0, then
s(λ1,··· ,λn)(α1 = 0, α2, · · · , αn) = s(λ2,··· ,λn)(α2, · · · , αn).

Proof. By the combinatorial definition of Schur polynomials, we have s(λ1,··· ,λn)(α1, α2, · · · ,

αn) =
∑

T ∈T αt(T). where T is the set of all SSYT of shape λ = (λ1, · · · , λn) on alphabet
[n], and t(T) denotes the type of SSYT T . Now set α1 = 0. If the letter 1 appears in a SSYT

CCC 2024

35:18 Finer-Grained Hardness of Kernel Density Estimation

T , i.e. t(T)[1] > 0, then the corresponding monomial vanishes when evaluated. Therefore
the equation simplifies to s(λ1,··· ,λn)(α1, α2, · · · , αn) =

∑
T ∈T1

αt(T) where T1 is the set of all
SSYT of shape λ on alphabet {2, 3, · · · , n}.

However, if λ1 > 0, no sequence of length n on alphabet {2, 3, · · · , n} satisfies the (strictly)
decreasing constraint in the first column of the tableau. In this case s(λ1,··· ,λn)(α1, α2, · · · , αn)
= 0. If λ1 = 0, then T1 is essentially the set of all SSYT of shape λ′ = (λ2, · · · , λn)
over alphabet {2, 3, · · · , n}. By definition, s(λ1,··· ,λn)(α1, α2, · · · , αn) =

∑
T ∈T1

αt(T) =
s(λ2,··· ,λn)(α2, · · · , αn). ◀

In consequence, if we fix α = (α1, α2, · · · , αD) with α1 = 0, then

det(M) = V (α)V (β)
∑

λ∈ND
≤

(
D∏

i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α)sλ(β)

= V (α)V (β)f(c)
∑

λ∈ND−1
≤

(
D−1∏
i=1

f (λi+δi+1)(c)
(λi + δi+1)!

)
sλ(α1−)sλ(β1−).

Here λ1−, α1−, β1− are obtained by removing the first entry in the corresponding par-
tition/vector λ, α, β. (In the last step we abuse the notation by renaming λ1− as λ.)
Meanwhile,

max
s,t

det(Ms−
t−) ≤

(
max

s,t
V (αs−)V (βt−)

) ∑
λ∈ND−1

≤

(
D−1∏
i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α1−)sλ(β1−).

In what follows, we let

Eλ =
(

D−1∏
i=1

f (λi+δi+1)(c)
(λi + δi+1)!

)
sλ(α1−)sλ(β1−), Fλ =

(
D−1∏
i=1

f (λi+δi)(c)
(λi + δi)!

)
sλ(α1−)sλ(β1−)

denote the corresponding terms in the two sums. For absolutely monotonic function f , we
have Fλ > 0 and Eλ > 0 for all λ ∈ ND−1

≤ . Thus,

max
s,t

det(Ms−
t−)

det(M) ≤ 1
f(c) max

s,t

V (αs−)V (βt−)
V (α)V (β) max

λ∈ND−1
≤

Fλ

Eλ
. (5)

6.2 KDE hardness for positive definite kernels
To accommodate positive definite kernels, we slightly modify the reduction in Section 3.
Let k(x, y) = f(∥x − y∥2

2) be a positive definite kernel. By Schoenberg’s characterization
(Theorem 20), we have (−1)k · f (k)(t) ≥ 0 for all k ∈ N, t ≥ 0. Then for the function
g(x) = f(1 − x), it holds g(k)(t) = (−1)k · f (k)(1 − t) ≥ 0 for all k ∈ N, t ∈ [0, 1]. Namely g is
an absolutely monotonic kernel.

Next we see how KDEf can be related to τ(Mg). Let M be the D × D counting matrix
associated with g, and let W ∈ ND×n be a re-indexed distance count matrix defined by
W [p, i] = #[j ∈ [n] : ∥x(i) − y(j)∥2

2 = D − p]. Then the matrix product U = M × W gives

U [ℓ, i] =
D∑

p=1
M [ℓ, p] · W [p, i] =

D∑
p=1

g
(
αℓβp

) ∑
j∈[n]

1

[
∥x(i) − y(j)∥2

2 = D − p
]

=
∑

j∈[n]

g
(

c + αℓ · β
[
D − ∥x(i) − y(j)∥2

2

])
. (6)

J. Alman and Y. Guan 35:19

If β is the identity vector, then

U [ℓ, i] =
∑

j∈[n]

g
(

c + αℓ · (D − ∥x(i) − y(j)∥2
2)
)

=
∑

j∈[n]

f
(

1 − c − αℓD + αℓ∥x(i) − y(j)∥2
2

)
.

Constructing vectors x̃
(i)
ℓ , ỹ

(j)
ℓ ∈ Rm+1 defined by x̃

(i)
ℓ [k] =

√
α(ℓ)x(i)[k] if k ∈ [m] and

x̃
(i)
ℓ [m + 1] =

√
1 − c − αℓD; ỹ

(j)
ℓ [k] =

√
α(ℓ)y(j)[k] if k ∈ [m] and ỹ

(j)
ℓ [m + 1] = 0, we have

U [ℓ, i] =
∑

j∈[n] f(∥x̃
(i)
ℓ − ỹ

(j)
ℓ ∥2

2). In this way we show that the new product U can also be
computed using KDE subroutines, and the reduction proceeds the same way as in Section 3
to recover the (re-indexed) distance count matrix. By similar analysis, we have the following
hardness result relating the complexity of KDEf to τ(Mg).

▶ Theorem 36. Let f : [0, 1] → [0, 1] be a function and g(x) = f(1 − x). Then assuming
SETH, for every q > 0, there exists C ≥ 0 such that KDEf (n, m, (3nτ(M))−1) cannot
be solved in time O(n2−q) for any constant q > 0. if either of the following holds: (1)
m > C log n, D = m or (2) m > C log∗ n, D > mClog∗ n·(log n)/m. Here M is the D × D

counting matrix associated with function g.

6.3 Hardness of Rational Quadratic kernel
For f, α, β of certain forms, we give explicit bounds on the two terms in (5). Regarding the
ratio of Vandermonde determinants, we focus on V (xs−)/V (x) for scaled identity x defined
by xp = p/D.

▶ Proposition 37. Let ρ ≥ 1 be a real number and x ∈ [0, 1]D be the vector defined by
xi = i/D. Then for s ∈ [D] we have V (xs−)

V (x) =
∏

i∈[D]\{s} |xi − xs|−1 ≤ (3e)D.

Proof.
∏

i∈[D]\{s} |xi −xs| =
∏s−1

i=1
s−i
D ·

∏D
i=s+1

i−s
D = (s−1)!(D−s)!

DD−1 ≥
(

D−1
2eD

)(D−1) ≥ (3e)−D.
◀

Hence for vectors α defined by αℓ = ℓ/D, ℓ ∈ [D] and β defined by βp = p/D, p ∈ [D], we
have maxs,t

V (αs−)V (βt−)
V (α)V (β) ≤ (3e)2D.

For the term involving Taylor coefficients, we fix a real number σ ≥ 1 and focus on
the absolutely monotonic function f(x) = (2 − x)−σ. By calculation, for k ∈ N, f (k)(x) =
(2 − x)−(σ+k)∏k−1

i=0 (σ + i). Then for c = 0, we have

Fλ

Eλ
=
(

D−1∏
i=1

f (λi+δi)(0)
(λi + δi)!

)/(
D−1∏
i=1

f (λi+δi+1)(0)
(λi + δi+1)!

)
=

D−1∏
i=1

(
2 · 1 + λi + δi

σ + λi + δi

)
≤ 2D−1.

Combining the calculations, we obtain the following bound on τ(M).

▶ Theorem 38. Let σ ≥ 1 be a real number. Let f : [0, 1] → [0, 1] be the function
f(x) = (2 − x)−σ, and let vectors α, β ∈ RD be defined by αℓ = ℓ/D, βp = p/D. Then the
D×D counting matrix M associated with f, α, β has τ(M) ≤ D ·2σ ·(3e)2D ·2D−1 ≤ 2σ(7e)2D.

Combining the bound on τ(M) associated with f(x) = (1 + (1 − x))−σ with the hardness
of positive definite KDE Theorem 36, we obtain

▶ Theorem 39 (Hardness of Rational Quadratic KDE). Let f(x) = 1/(1 + x)σ be a Rational
Quadratic kernel parameterized by σ ≥ 1 an absolute constant. Then assuming SETH, for
every q > 0, there exists C1, C2, C3, C ′

3, C4 ≥ 0 such that KDEf (n, m, ε) cannot be solved in
time O(n2−q) for any constant q > 0. if either of the following holds:

CCC 2024

35:20 Finer-Grained Hardness of Kernel Density Estimation

(1) m > C1 log n, 1/ε > nC2 , or
(2) C3 log∗ n < m < C ′

3(log n)/(log log n), log log(1/ε) > (log n)/m · (log m) · C log∗ n
4 .

Here C1, C3, C ′
3 are absolute constants while C2, C4 are dependent on σ.

Proof. Analogous to the proof of Theorem 29. ◀

References
1 Amol Aggarwal and Josh Alman. Optimal-Degree Polynomial Approximations for Exponentials

and Gaussian Kernel Density Estimation. In 37th Computational Complexity Conference
(CCC 2022), 2022.

2 Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for
linear algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of
Computer Science (FOCS), 2020. doi:10.1109/FOCS46700.2020.00057.

3 Josh Alman and Zhao Song. Fast attention requires bounded entries. In NeurIPS, 2023.
4 Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neighbors.

2015 IEEE 56th Annual Symposium on Foundations of Computer Science, October 2015.
doi:10.1109/focs.2015.18.

5 Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evalu-
ation for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 615–626, 2018. doi:10.1109/FOCS.2018.00065.

6 Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of
empirical risk minimization: Kernel methods and neural networks. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed-
itors, Advances in Neural Information Processing Systems, volume 30. Curran Associ-
ates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/2017/file/
635440afdfc39fe37995fed127d7df4f-Paper.pdf.

7 Arturs Backurs, Piotr Indyk, and Tal Wagner. Space and time efficient kernel density estimation
in high dimensions. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, Red Hook, NY, USA, 2019. Curran Associates Inc.

8 Moses Charikar, Michael Kapralov, Navid Nouri, and Paris Siminelakis. Kernel density
estimation through density constrained near neighbor search. In 2020 IEEE 61st Annual
Symposium on Foundations of Computer Science (FOCS), pages 172–183, 2020. doi:10.1109/
FOCS46700.2020.00025.

9 Moses Charikar, Michael Kapralov, and Erik Waingarten. A quasi-monte carlo data structure
for smooth kernel evaluations. In Proceedings of the 2024 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 5118–5144, 2024. doi:10.1137/1.9781611977912.184.

10 Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high
dimensions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1032–1043, 2017. doi:10.1109/FOCS.2017.99.

11 Moses Charikar and Paris Siminelakis. Multi-resolution hashing for fast pairwise summations.
In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
769–792, 2019. doi:10.1109/FOCS.2019.00051.

12 Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner product.
Theory of Computing, 16(4):1–50, 2020. doi:10.4086/toc.2020.v016a004.

13 Yen-Chi Chen. A tutorial on kernel density estimation and recent advances. Biostatistics &
Epidemiology, 1(1):161–187, 2017.

14 L Greengard and V Rokhlin. A fast algorithm for particle simulations. Journal of Computational
Physics, 73(2):325–348, 1987. doi:10.1016/0021-9991(87)90140-9.

15 Leslie Greengard and John A. Strain. The fast gauss transform. SIAM J. Sci. Comput.,
12:79–94, 1991. URL: https://api.semanticscholar.org/CorpusID:3145209.

https://doi.org/10.1109/FOCS46700.2020.00057
https://doi.org/10.1109/focs.2015.18
https://doi.org/10.1109/FOCS.2018.00065
https://proceedings.neurips.cc/paper_files/paper/2017/file/635440afdfc39fe37995fed127d7df4f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/635440afdfc39fe37995fed127d7df4f-Paper.pdf
https://doi.org/10.1109/FOCS46700.2020.00025
https://doi.org/10.1109/FOCS46700.2020.00025
https://doi.org/10.1137/1.9781611977912.184
https://doi.org/10.1109/FOCS.2017.99
https://doi.org/10.1109/FOCS.2019.00051
https://doi.org/10.4086/toc.2020.v016a004
https://doi.org/10.1016/0021-9991(87)90140-9
https://api.semanticscholar.org/CorpusID:3145209

J. Alman and Y. Guan 35:21

16 Sean Hallgren, Alexander Russell, and Amnon Ta-Shma. Normal subgroup reconstruction
and quantum computation using group representations. In Proceedings of the Thirty-Second
Annual ACM Symposium on Theory of Computing, STOC ’00, pages 627–635, New York, NY,
USA, 2000. Association for Computing Machinery. doi:10.1145/335305.335392.

17 Christian Ikenmeyer and Greta Panova. Rectangular kronecker coefficients and plethysms
in geometric complexity theory. In 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), pages 396–405, 2016. doi:10.1109/FOCS.2016.50.

18 Krikamol Muandet, Kenji Fukumizu, Bharath Sriperumbudur, Bernhard Schölkopf, et al.
Kernel mean embedding of distributions: A review and beyond. Foundations and Trends® in
Machine Learning, 10(1-2):1–141, 2017.

19 Ryan O’Donnell and John Wright. Quantum spectrum testing. In Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 529–538, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2746539.2746582.

20 Jeff M. Phillips and Wai Ming Tai. Near-optimal coresets of kernel density estimates. Discrete
Comput. Geom., 63(4):867–887, June 2020. doi:10.1007/s00454-019-00134-6.

21 Aviad Rubinstein. Hardness of approximate nearest neighbor search. Proceedings of the
50th Annual ACM SIGACT Symposium on Theory of Computing, June 2018. doi:10.1145/
3188745.3188916.

22 Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

23 Richard Stanley. Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics.
Cambridge University Press, 2 edition, 2023.

24 Paraskevas Syminelakis. Fast kernel evaluation in high dimensions: Importance sampling and
near neighbor search. PhD thesis, Stanford University, 2019.

25 Ryan Williams. On the difference between closest, furthest, and orthogonal pairs: Nearly-linear
vs barely-subquadratic complexity. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, 2018.

CCC 2024

https://doi.org/10.1145/335305.335392
https://doi.org/10.1109/FOCS.2016.50
https://doi.org/10.1145/2746539.2746582
https://doi.org/10.1007/s00454-019-00134-6
https://doi.org/10.1145/3188745.3188916
https://doi.org/10.1145/3188745.3188916

Gap MCSP Is Not (Levin) NP-Complete in
Obfustopia
Noam Mazor #

Tel Aviv University, Israel

Rafael Pass #

Tel Aviv University, Israel
Cornell Tech, New York, NY, USA

Abstract
We demonstrate that under believable cryptographic hardness assumptions, Gap versions of standard
meta-complexity problems, such as the Minimum Circuit Size Problem (MCSP) and the Minimum
Time-Bounded Kolmogorov Complexity problem (MKTP) are not NP-complete w.r.t. Levin (i.e.,
witness-preserving many-to-one) reductions.
In more detail:

Assuming the existence of indistinguishability obfuscation, and subexponentially-secure one-
way functions, an appropriate Gap version of MCSP is not NP-complete under randomized
Levin-reductions.
Assuming the existence of subexponentially-secure indistinguishability obfuscation,
subexponentially-secure one-way functions and injective PRGs, an appropriate Gap version of
MKTP is not NP-complete under randomized Levin-reductions.

2012 ACM Subject Classification Theory of computation → Computational complexity and crypto-
graphy

Keywords and phrases Kolmogorov complexity, MCSP, Levin Reduction

Digital Object Identifier 10.4230/LIPIcs.CCC.2024.36

Related Version Full Version: https://eprint.iacr.org/2024/420 [52]

Funding Noam Mazor : Research partly supported by NSF CNS-2149305 and DARPA under
Agreement No. HR00110C0086.
Rafael Pass: Supported in part by AFOSR Award FA9550-23-1-0387, AFOSR Award FA9550-23-1-
0312, and an Algorand Foundation grant. This material is based upon work supported by DARPA
under Agreement No. HR00110C0086. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
United States Government, DARPA, AFOSR or the Algorand Foundation.

1 Introduction

As described by Trakhtenbrot [62], starting in the 1960s, there has been an on-going effort
studying the computational complexity of so-called “meta-complexity” problems; notably (a)
the Minimum Circuit Size problem (MCSP) [37, 62] – determining the size of the smallest
Boolean circuit that computes a given function x, and (b) the Time-Bounded Kolmogorov
Complexity Problem (MKTP) [41, 61, 16, 39, 26, 60] – determining the the length, denoted
Kt(x) of the shortest program (evaluated on some particular Universal Turing machine U) that
generates a given string x, within time t, where t = poly(|x|) is a polynomial. In particular,
a major problem since the 1960s is whether these problems, or the Gap versions of them
(where the goal is to determine whether the size is above a threshold s2 or below a threshold
s1) are NP-complete. Indeed, as recounted by [4, 30, 31], Levin is said to have delayed
the publication of his theory of NP-completeness [44] in order to show NP-completeness of
MCSP.

© Noam Mazor and Rafael Pass;
licensed under Creative Commons License CC-BY 4.0

39th Computational Complexity Conference (CCC 2024).
Editor: Rahul Santhanam; Article No. 36; pp. 36:1–36:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noammaz@gmail.com
mailto:rafaelp@tau.ac.il
https://doi.org/10.4230/LIPIcs.CCC.2024.36
https://eprint.iacr.org/2024/420
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

In the following decades, there has been a lot of amazing progress – providing evidence
pointing towards both a positive and a negative answer:
Towards NP-completeness: While it is still unknown whether the original problems are

NP-complete, several generalizations of them have been proven to be NP-complete.
Most notably, Ilango first demonstrated this for an oracle version of MCSP [30]; this was
subsequently extended to a multi-bit version of MCSP referrer to as Multi-MCSP [32], to
a conditional version of the MKTP problem, McKTP [51], and to other variants [27]. [29]
recently improved the parameters of the reduction to McKTP [51], assuming that witness
encryption scheme exists. Additionally, Ilango [31] very recently demonstrates that
NP-hardness of a variant of MCSP and MKTP where the programs are allowed to access
a random oracle, yielding a heuristic NP-completeness Karp (i.e., many-one) reduction
for these problems (if instantiating the random oracle with a concrete hash function).
Finally, a recent work by Impagliazzo, Kabanets, and Volkovich [33] provides various
different results that can be interpreted as giving evidence that MCSP is NP-complete
with respect to randomized reductions.

Towards Non NP-completeness: There is also evidence pointing towards non NP com-
pleteness: Allender and Hirahara [3] showed that assuming one-way functions, the gap
version of MCSP is not NP complete for super-polynomial gap. Ko [40] showed that a
version of MKTP is not NP complete with respect to an oracle, and Ren and Santhanam
[56] gave an oracle with respect to which MCSP is not NP complete. Other works prove
limitations on the structure of reduction to meta-complexity problems. Murray and
Williams [53] prove that MCSP is not NP complete under so-called local reductions.
Kabanets and Cai [37] and Saks and Santhanam [58] show that the NP-completeness
of MCSP under Turing reductions with certain properties implies circuit lower bounds.
For example if MCSP is complete under so-called parametric honest Turing reductions,
then E ⊈ SIZE(poly). More recently, Saks and Santhanam [59] gave evidence that the
running time of any randomized non-adaptive reduction from SAT to Kt approximation
must grow with the time parameter t. These results, however, only rule out quite limited
types of reductions.

Despite this progress, the original question, however, remains wide open.

1.1 Our Results
The current paper provides strong evidence that the Gap versions of MCSP and MKTP
are not NP-complete w.r.t. Levin reductions – that is witness-preserving many-to-one
reductions. In particular, we demonstrate that under somewhat strong, but generally
believed, cryptographic hardness assumptions, the Gap version of MCSP is not NP-complete
w.r.t. Levin reductions.

Levin Reductions

The three original ways [17, 38, 45] of defining NP completeness differ in how reductions
from a language L to a language L′ are defined (see e.g., [24] for a discussion). Cook [17]
considers the most permissive notion: a Turing machine deciding L having oracle access to
a decider for L′. Karp’s notion – called a Karp reduction (or many-one reduction) is more
restrictive: it requires efficiently mapping an instance x into an instance x′ such that x ∈ L iff
x′ ∈ L′. Levin’s notion, called a Levin reduction (or a witness preserving many-one reduction)
is the most restrictive: it additionally requires efficiently mapping any witness w for x into a
witness for x′, and furthermore any witness w′ for x′ into a witness w for x. While Karp

N. Mazor and R. Pass 36:3

reductions are most commonly used, as far as we are aware, most natural NP-completeness
reductions are actually of the Levin type as well. Furthermore, for constructive applications
of NP-completeness, NP-hardness demonstrated using a Levin reduction is typically what is
needed: In particular, for cryptographic application to interactive proofs (e.g., demonstrating
that every language in NP has a zero-knowledge proof of knowledge [19], or that every
language in NP has a succinct argument [11], the notion of a Levin reduction is crucial
(see e.g., [11] that in particular notes that even the most sophisticated NP completeness
reductions, as those provided by the PCP theorem [9, 10], are Levin reductions). Our focus
here is on such Levin reductions; in particular, we will present the (conditional) impossibility
of Levin reductions for demonstrating NP-completeness; in fact, our impossibility will apply
not only to deterministic but also randomized Levin reductions (where the reduction is
allowed to fail with some small constant probability).

We mention that e.g,. the NP-completeness results of [31] and [51] rely on the NP-
completeness of approximation for the Set-Cover problem [18, 63]. In both works, the
reductions from Set-Cover to the GapMCSP and GappMKtP (or the conditional version in
the case of [51]) are (randomized) Levin reductions (see the full version of this paper for
a discussion of the result of [31]). The Set-cover NP-completeness itself relies on a long
sequence of the reductions that we have not been able to verify whether they are all Levin
(although, as mentioned above, the main technical core, the PCP theorem, is).

Our Cryptographic Hardness Assumptions: Indistinguishability Obfuscation

We will rely on the existence of indistinguishability obfuscation (iO) for circuits [12]. Roughly
speaking, an indistinguishability obfuscator is an efficient algorithm iO that given a circuit
C outputs an “obfuscated” version of C having the property that obfuscations of any two
functionally equivalent circuits are indistinguishable. Following the ground-breaking work
of [20], several heuristic candidates were proposed, as well as provably secure constructions
based on various assumptions [55, 23, 46, 64, 49, 50, 47, 6, 35, 35, 5, 21, 2, 1]. Most notable,
the recent breakthrough result presents a construction based on several well-founded (and
generally believed) hardness assumption [36]. (Constructions based on less standard, but
seemingly quantum-safe, “circular-security” assumptions also appear in [15, 22, 14]).

For our main results on MCSP, we will simply rely on indistinguishability obfuscation
and subexponentially-secure one-way function. For our results on MKTP, we will rely on iO

with subexponential security as well as other standard cryptographic assumptions such as
injective pseudorandom generators (PRGs), that e.g., are implied by the existence of one-way
permutations.

Main Theorem

We present the following main result:
Assuming the existence of indistinguishability obfuscation and subexponentially-secure
one-way function, an appropriate Gap version of MCSP is not NP-complete under
randomized Levin-reductions.
Assuming the existence of subexponentially-secure indistinguishability obfuscation,
subexponentially-secure one-way function and injective PRGs, an appropriate Gap version
of MKTP is not NP-complete under randomized Levin-reductions.

In more detail, let GapMCSP[s0, s1] be the promise problem in which given a truth table x

we need to distinguish between the following two cases:
Yes instances: There exists a circuit C of size at most s0(|x|) that computes x.
No Instances: There is no circuit of size s1(|x|) that computes x.

CCC 2024

36:4 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Our first theorem states that when the gap between s0 and s1 is large enough, and under
cryptographic assumptions, GapMCSP[s0, s1] is not NP-complete with respect to Levin
reductions.

▶ Theorem 1. Assume that iO and subexponentially-secure one-way functions exist. Then
there exists a polynomial p, such that for any pair of efficiently computable functions
s0, s1 : N → N for which s1(n) > p(s0(n)), it holds that GapMCSP[s0(n), s1(n)] is not
NP complete with respect to Levin reductions.

We remark that if all of the assumed cryptographic primitives are secure against sub-
exponential adversaries (in contrast to just polynomial adversaries), then our results rule out
also randomized Levin reductions that run in sub-exponential time.

Additionally, the assumption of subexponentially-secure one-way functions in Theorem 1
is only to handle so-called non honest reductions: A Karp reduction f is to be honest if for
every x ∈ {0, 1}∗, |f(x)| ≥ |x|δ for some constant δ > 0 (i.e., the mapping from statements x

to x′ is polynomially preserving).
To exclude only honest reductions, it is enough to assume one-way function with poly-

nomial security. Such one-way functions are known to exist assuming iO and the minimal
assumption that NP /∈ ioBPP [42]. We get the following theorem.

▶ Theorem 2. Assume that iO exists, and that NP ⊈ ioBPP. Then there exists a polynomial
p, such that for every ϵ > 0, for any pair of efficiently computable functions s0, s1 : N→ N
for which s1(n) > p(s0(n)) and s0(n) > nϵ, it holds that GapMCSP[s0(n), s1(n)] is not NP
complete with respect to honest Levin reductions.

Our second result is a similar result for the GappMKtP problem. Recall that Kt(x) is the
minimal length of a program that outputs x within t(|x|) steps. For polynomials t and p, let
GappMKtP[s0, s1] be the promise problem in which given a string x we need to distinguish
between the following two cases:

Yes instances: Kt(x) ≤ s0(|x|)
No Instances: Kp(t)(x) > s1(|x|).

We prove the following theorem.

▶ Theorem 3. Assume that subexponentially-secure iO, subexponentially-secure one-way
functions and injective PRG exist. Then there exist a polynomial q such that for any t ∈ poly
and any efficiently computable functions s0, s1 : N→ N for which s1(n) > q(log t(n), s0(n)),
and for every large enough polynomial p, it holds that GappMKtP[s0, s1] is not NP complete
with respect to Levin reductions.

Achieving a smaller gap under stronger assumptions

As discussed above, several generalizations of the GapMCSP and GappMKtP problem have
been proven NP complete. The work of [31] showed that the same problems we consider
here are NP complete relative to a random oracle. There, the gap between the Yes and No
instances is a multiplicative (1 + ϵ) gap, for a small constant ϵ > 0 while in the theorems
above we need the gap to be larger. Similarly, [51] showed that deciding a conditional version
of MKTP is NP-hard, and their result can be generalized to a gap problem with a larger
constant multiplicative factor. Hirahara [28] used a reduction from the Minimum Monotone
Satisfying Assignment problem to McKTP, resulting with a NP-hardness of the GapMcKTP
with a larger multiplicative gap, but still sub polynomial in the input length (no(1)).

N. Mazor and R. Pass 36:5

The polynomial p in Theorems 1 and 2 is the overhead of the iO algorithm we use. By
assuming a stronger assumption – that iO with a small overhead exists – we can improve the
gap. For example, we say that iO has additive overhead if on input C and security parameter
λ, the size of the obfuscated circuit is |C|+ poly(λ). If we assume iO with additive overhead,
we would get the hardness of GapMCSP also for the additive gap case. Unfortunately,
such iO constructions are currently not known (but as far as we know, there are also no
results indicating that this should be impossible). However, if we consider slightly stronger
assumptions, we can get iO for TM with a factor 2 + ϵ overhead (for any constant ϵ > 0) [8],
yielding the following theorem.1

▶ Theorem 4. Assume subexponential-secure iO, and subexponentially-secure one-way func-
tion exist and assume subexponential DDH or LWE. Then for every very constant ϵ > 0, for
every large enough polynomial p, and for every efficiently computable function s0 it holds
that GappMKtP[s0, (2 + ϵ)s0(n)] is not NP complete with respect to Levin reductions.

Proof Overview

In this proof outline, we will for simplicity focus on ruling out deterministic Levin reductions
for the GapMCSP problem. Additionally, on top of the existence of iO , we will here
assume the existence of a collision-resistant hash function; that is the existence of a family of
compressing functions such that for a randomly sampled h, it is infeasible to find two inputs
x1, x2 that “collide” (i.e., h(x1) = h(x2)) although such collision exists. (In our actual proof,
we instead rely on the weaker primitive of a target collision-resistant hash function (TCR;
also known as, universal one-way hash function [54]) which can be constructed from one-way
functions [57]. Finally, let us start by assuming that the reduction is ”honest” (i.e., mapping
statements x to statements x′ of polynomially-related length.

x = h(w̃1) (x′, w̃′1)

x = h(w1) (x′, w′1)
Levin

Reduction
iO

Levin
Reduction

Figure 1 The proof overview. Given a witness w1 such that h(w1) = x, we use the Levin reduction
to get MCSP witness. Then we use the iO to get a new MCSP witness, and use the Levin reduction
again to get back w̃1 such that h(w̃1) = x.

The key idea will be to use the Levin reduction and the iO in order to find a collision
for h. Roughly speaking, we start by sampling some w1 and compute x = h(w1); we think
of x as a statement for the language of images of h, and of w1 as the witness for x. We
next use the Levin reduction to get an MCSP statement x′ and its corresponding witness
w′1. Note that the witness w′1 is a circuit computing x′. We then obfuscate w′1 using the
iO to get a new witness w̃′1 for x′. Using the Levin reduction, we can finally turn w̃′1 into
a (hopefully new) witness w̃1 for x. Indeed, the key point is that if we had started with a

1 In a previous version of this paper, we claimed a similar result for GapMCSP using iO for circuits with
a factor 2 + ϵ overhead. iO with such small overhead w.r.t. circuits does not appear to be known; while
[8] claim an iO where the size of an obfuscation of a circuit C is of length 2|C| + poly(λ), it appears
that this “program" may need to be further interpreted, which may result in larger circuit size.

CCC 2024

36:6 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

different preimage w2 ̸= w1 for x = h(w1) and done the same process, then w′2 would become
a functionally equivalent circuit to w′1 and thus by the security of the iO, the distributions
of w̃′2 and w̃′1 are computationally indistinguishable, so we conclude that w̃2 and w̃1 also are.
In particular, it follows that w̃1 ≠ w1 with probability at least 1/2, and we have thus found
a collision.

Note that we here rely on the NP-completeness of the Gap version of the MCSP problem
since when applying the iO we get a new witness for x′ but this witness (i.e, the circuit)
is bigger than the original one. In particular, the overhead of the iO translates into the
gap of the problem – for instance, if the overhead of the iO is only linear, we can handle a
linear gap, and if it has polynomial overhead then we can only rule out reductions for the
polynomial gap version of the problem.

Dealing with Non-honest Reductions

If the reduction is not honest, the statement x′ could be a lot shorter than x; the problem
then becomes if we run the iO on a security parameter that is polynomially related to |x′|
(which we require to ensure that we stay within the promise), we may no longer have security
with respect to an attacker who runs in time polynomial in |x| = n (which is required to
ensure that we find a collision). However, if we start off with a collision-resistant hash
function with sub-exponential security (i.e., 2nϵ security), we can resolve this problem using
a case-analysis. If |x′| ≤ nϵ, then we simply find a new witness w̃′ using brute-force search,
and otherwise use the iO. This ensures that we only run the iO in case the reduction behaves
”honestly”; on the other hand, when the reduction chooses a short x′, we still contradict the
subexponential security of the collision-resistant hash function.

Extensions for GappMKtP

We next generalize the above proof for the GappMKtP problem. To be able to do so, we
need a way to move from one GappMKtP witness to another, when a GappMKtP witness is
a t-time TM P of size at most s0(|x|) that outputs x. A naive approach is to first convert
the TM P into a circuit, then apply the iO for circuits, and lastly, convert the circuit back
to a TM. The problem in this approach is that since the program P outputs x, the time
bound t must be at least |x|. This means that the circuit we construct from P will have a
trivial size, and we will not be able to get back a non-trivial program that outputs x.

Luckily, we can use iO for TMs directly on P , or even it suffices to rely on a weaker
primitive of a randomized encoding. Randomized encoding for TMs is known to exist assuming
subexponential-secure iO for circuits and injective PRGs [43, 48].

Discussion

The results presented yield give a strong evidence that the GapMCSP and GappMKtP
are not NP-complete w.r.t. Levin reductions, at least when the gap is at least a factor 2.
Furthermore, although there are no known constructions of iO with only additive overhead
based on well-founded hardness assumptions, one can come up with candidate constructions
with only linear additive overhead and heuristically assume that they satisfy the notion of
indistinguishability obfuscation.2 Under these more heuristic assumptions (which in our eyes

2 In particular, take the constructions from e.g. [13, 8] and instead of encrypting the program twice under
an FHE with additive linear overhead, simply encrypt the program once. While the two encryptions are
needed for the security proof, the construction without the two encryptions seems heuristically secure.

N. Mazor and R. Pass 36:7

seem reasonable), our results thus give evidence that these problems are not NP-complete
w.r.t. Levin reductions even when the gap is a small additive term. These results thus
provide (in our eyes) convincing cryptographic evidence that the original task set out by
Levin is impossible (since he indeed defined NP-completeness through the notion of what
today is referred to as a Levin reduction.)

Of course, it could still be that a weaker notion of a reduction (e.g., a Karp) reduction
can be used to prove NP-completeness of these problems. In particular, consider the results
of [31], which shows NP-completeness of GapMCSP in the random oracle model. While, as
discussed, his reduction from (approximate) Set-Cover to GapMCSP is a Levin reductions
(see the full version of this paper), the witness preserving part of the reduction relies on
the random oracle – in particular, the witness reconstruction step relies on observing the
queries to the random oracle performed by the circuit w̃′ (i.e., the witness for the transformed
statement x′).3 If instantiating the random oracle with a concrete hashfunction h, it is no
longer clear how to perform this task – in particular if the circuit has been obfuscated so
that it (intuitively) becomes hard to find the code of h in the description of the circuit. As
such, when instantiating the random oracle with a hashfunction, the reduction most likely is
no longer a Levin reduction, but conceivably it could still be a Karp reduction.

In contrast, as was shown in [34], if iO exists and MCSP ∈ BPP (and using similar ideas,
even if GapMCSP or Gap MKTP with polynomial gap are in BPP), then NP ⊆ BPP.
Indeed, if GapMCSP[nϵ, n1−ϵ] ∈ BPP then (infinitely-often) one-way functions do not exist,
and thus by the result of [42], NP ⊆ BPP. This result gives, assuming obfuscation, a
randomized reduction from NP to GapMCSP. This reduction however is not a Karp (or
Levin) reduction.

2 Preliminaries

2.1 Notations
All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. Given a set S ⊆
{0, 1}∗, we let S = {0, 1}∗ \ S. Let poly stand for the set of all polynomials. Let ppt
stand for probabilistic poly-time, and n.u.-poly-time stand for non-uniform poly-time. An
n.u.-poly-time algorithm A is equipped with a (fixed) poly-size advice string set {zn}n∈N. Let
neg stand for a negligible function. For a SAT formula ϕ over n variables and an assignment
v ∈ {0, 1}n, we use ϕ[v] ∈ {0, 1} to denote the truth value of the evaluation of ϕ on v.

2.2 Distributions and Random Variables
When unambiguous, we will naturally view a random variable as its marginal distribution.
The support of a finite distribution P is defined by Supp(P) := {x : PrP [x] > 0}. For a
(discrete) distribution P, let x← P denote that x was sampled according to P. Similarly,
for a set S, let x← S denote that x is drawn uniformly from S.

2.3 Kolmogorov Complexity
Roughly speaking, the t-time-bounded Kolmogorov complexity, Kt(x), of a string x ∈ {0, 1}∗

is the length of the shortest program Π = (M, y) such that, when simulated by a universal
Turing machine, Π outputs x in t(|x|) steps. Here, a program Π is simply a pair of a Turing

3 Interestingly, a similar method of observing the queries to the random oracle was used by [25] to show
that there is no obfuscation for circuits with oracle access to a random oracle.

CCC 2024

36:8 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Machine M and an input y, where the output of Π is defined as the output of M(y). When
there is no running time bound (i.e., the program can run in an arbitrary number of steps),
we obtain the notion of Kolmogorov complexity.

In the following, let U(Π, 1t) denote the output of Π when emulated on U for t steps. We
now define the notion of Kolmogorov complexity with respect to the universal TM U.

▶ Definition 5. Let t ∈ N be a number. For all x ∈ {0, 1}∗, define

Kt
U(x) = min

Π∈{0,1}∗
{|Π| : U(Π, 1t) = x}

where |Π| is referred to as the description length of Π.

It is well known that for every x, Kt(x) ≤ |x|+ c, for some constant c depending only on the
choice of the universal TM U.

▶ Fact 6. For every universal TM U, there exists a constant c such that for every x ∈ {0, 1}∗,
and for every t such that t(n) > 0, Kt

U(x) ≤ |x|+ c.

In the following we fix some universal TM U and omit it from the notation.

2.4 Levin Reductions
For a relation R ⊆ {0, 1}∗ × {0, 1}∗, let L(R) =

{
x ∈ {0, 1}∗ : ∃w ∈ {0, 1}∗ s.t. (x, w) ∈ R

}
.

We say that a relation R is the witness relation of a language L ⊆ {0, 1}∗ if L(R) = L.

▶ Definition 7 (Levin reduction). Let R1 and R2 be relations. A triplet of efficiently
computable functions (f, g, h) is a Levin reduction from R1 to R2 if

For every (x, w) ∈ R1, (f(x), g(x, w)) ∈ R2.
If (f(x), w) ∈ R2 then (x, h(x, w)) ∈ R1.

▶ Remark 8. Notice that if (f, g, h) a Levin reduction from R1 to R2, then f is a Karp
reduction from L(R1) to L(R2). Indeed, the first item above implies that if x ∈ L(R1) then
f(x) ∈ L(R2), and the second item implies the other direction.
A Levin reduction (f, g, h) is honest if there exists a constant δ > 0 such that for every large
enough n ∈ N and every x ∈ {0, 1}n, f(x) ≥ nδ.

When for two languages L1 and L2 we fix canonical relations R1 and R2, we say that
there is a Levin reduction from L1 to L2 if there is a Levin reduction from R1 to R2. We
say that L ∈ NP is NP complete under Levin reductions if there exists a Levin reduction
from SAT to L, where the canonical relation for SAT is

RSAT = {(ϕ, v) : ϕ is a SAT formula and ϕ[v] = 1}.

We also define Levin reductions for promise problems. In the following, we consider promise
problem (Y,N) that is associated with two relations (RY ,RN) such that RY ⊆ RN ,
where RY is the witness relation for Y, and RN is the witness relation for N . That is,
(Y,N) = (L(RY),L(RN)).

▶ Definition 9 (Levin reduction, promise problems). Let (R1
Y ,R1

N) and (R2
Y ,R2

N) be pairs of
relations such that R1

Y ⊆ R1
N and R2

Y ⊆ R2
N . A triplet of efficiently computable functions

(f, g, h) is a Levin reduction from (R1
Y ,R1

N) to (R2
Y ,R2

N) if
For every (x, w) ∈ R1

Y , (f(x), g(x, w)) ∈ R2
Y .

If (f(x), w) ∈ R2
N then (x, h(x, w)) ∈ R1

N .

N. Mazor and R. Pass 36:9

Note that we can define reductions from language to promise problem by taking RY = RN .
Lastly, our results hold even when the reductions are allowed to be randomized. In this case,
f(x; r) can be a randomized function (that uses randomness r), and both g, h get access to r

(and possibly use more randomness). We then only require that the above requirements hold
with high probability over r.

▶ Definition 10 (Randomized Levin reduction, promise problems). Let (R1
Y ,R1

N) and (R2
Y ,R2

N)
be pairs of relations such that R1

Y ⊆ R1
N and R2

Y ⊆ R2
N . A triplet of efficiently computable

functions (f, g, h) is a randomized Levin reduction with ϵ-error from (R1
Y ,R1

N) to (R2
Y ,R2

N)
if

For every x ∈ L(R1
Y), with probability at least 1− ϵ over the choice of r1 the following

holds:
1. (f(x; r1), g(x, w; r1)) ∈ R2

Y , and,
2. for every w′ such that (f(x; r1), w′) ∈ R2

N it holds that

Prr2←{0,1}∗

[
(x, h(x, w′; r1, r2)) ∈ R1

N

]
≥ 1− ϵ.

For every x /∈ L(R1
N) it holds that Prr1←{0,1}∗

[
f(x; r1) ∈ L(R2

N)
]
≤ ϵ.

2.5 Cryptographic Primitives
In this part we define the cryptographic tools we will use. We start with the definition of
one-way function.

▶ Definition 11 (One-way function). A polynomial-time computable function f : {0, 1}∗ →
{0, 1}∗ is called a one-way function if for every ppt algorithm A, there is a negligible function
µ : N→ [0, 1] such that for every n ∈ N

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ µ(n).

A one-way function is subexponentially-secure if there exists a constant δ > 0 such that
for every 2nδ time algorithm A, and for every large enough n ∈ N

Prx←{0,1}n

[
A(f(x)) ∈ f−1(f(x))

]
≤ 2−nδ

.

Next, we define iO.

▶ Definition 12 (indistinguishability obfuscation). An efficiently randomized algorithm iO is
an indistinguishability obfuscator if for every λ, n ∈ N and any circuit C : {0, 1}n → {0, 1},

Pr
Ĉ←iO(1λ,C),x←{0,1}n

[
C(x) = Ĉ(x)

]
= 1,

and for every s ∈ poly and every n.u.-poly-time algorithm A, there exists a negligible
function µ, such that for every λ ∈ N and every two circuit C, C ′ : {0, 1}n → {0, 1} with
|C| = |C ′| ≤ s(λ) and n ≤ λ,∣∣Pr

[
A(1λ, iO(1λ, C)) = 1

]
− Pr

[
A(1λ, iO(1λ, C ′)) = 1

]∣∣ ≤ µ(λ).

We say that iO has overhead p if for every C and λ,
∣∣iO(1λ, C)

∣∣ ≤ p(|C|, λ) with probability 1.

Next we define Target collision-resistant hash functions, also known as universal one-way
hash functions.

CCC 2024

36:10 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

▶ Definition 13 (Target collision resistant hash). An efficiently computable function

T : {0, 1}n → {0, 1}n−s(n)

is a Target collision resistant hash function (TCR) if s(n) ≥ 1 and for every ppt algorithm A,

Prx←{0,1}n [x′ ← A(x); T (x) = T (x′) and x ̸= x′] = neg(n).

We say that a TCR is secure against subexponential adversaries if there exists a constant
δ > 0 such that for every 2nδ time algorithm A,

Prx←{0,1}n [x′ ← A(x); T (x) = T (x′) and x ̸= x′] = neg(n).

Rompel [57] showed that TCR can be constructed from one-way functions.

▶ Theorem 14 ([57]). Assume that one-way functions exist. Then TCR T : {0, 1}n →
{0, 1}n−s(n) with s(n) ∈ ω(log n) exists.

Since the proof of the theorem above is black-box, the same holds for subexponential
adversaries.

▶ Theorem 15. Assume that subexponentially-secure one-way functions exist. Then there
exists a TCR T : {0, 1}n → {0, 1}n−s(n) secure against subexponential adversaries, with
s(n) ∈ ω(log n).

We will also use the following theorem, by [42].

▶ Theorem 16 ([42]). Assume that iO exists and NP ⊈ ioBPP. Then one-way functions
exist.

Lastly, we will also use the fact that a TCR is a one-way function.

▷ Claim 17. Let T : {0, 1}n → {0, 1}n−s(n) be a TCR with s(n) ∈ ω(log n). Then T is a
one-way function. That is, for every ppt algorithm A,

Prx←{0,1}n

[
A(f(x)) ∈ T−1(T (x))

]
= neg(n).

Moreover, if secure against subexponential adversaries, the above holds for any algorithm A
with running time at most 2nδ , for some constant δ.

We sketch the proof here.

Proof. Assume that algorithm A can invert T with non-negligible probability. We claim that
A can be used to find a collision with non-negligible probability. Indeed, let X ← {0, 1}n be
a uniformly distributed random variable. Let A′ be the algorithm that given random input
X, executes A(T (X)) and outputs its output.

Given that A(T (X)) found a pre-image x′ of T (X), we get that the input of A′, X,
uniformly distributed over the set T−1(T (x′)). Since the size of T−1(T (x′)) is large (the
probability that

∣∣T−1(T (x′))
∣∣ ≤ k is at most k · 2−s(n)), with high probability it holds that

x ̸= X, and thus A′ found a collision. ◁

N. Mazor and R. Pass 36:11

3 GapMCSP is not NP-complete under Levin Reductions

In this section we prove our main result for GapMCSP. We first define GapMCSP[s0, s1].
In the following, a circuit C computes a string x if the truth table of C is x.

▶ Definition 18. For two functions s0, s1 : N→ N, let GapMCSP[s0, s1] denote the following
promise problem.
Y = {x ∈ {0, 1}n : There exists a circuit C of size at most s0(n) that computes x}
N = {x ∈ {0, 1}n : There is no circuit of size s1(n) that computes x}

We define the relations RY and RN for GapMCSP[s0, s1] in the natural way:

RY = {(x, C) : C is a circuit of size at most s0(n) that computes x},

and,

RN = {(x, C) : C is a circuit of size at most s1(n) that computes x}.

We start with the following theorem for deterministic reductions. In Section 3.2 we prove a
similar theorem for randomized Levin reductions.

▶ Theorem 19. Let p : N×N→ N be a function. Assume that there exists iO with overhead
p, and subexponentially-secure one-way function. Then for any constant α > 0 and for any
pair of efficiently computable functions s0, s1 : N→ N for which s1(n) > p(s0(n), (s0(n))α),
it holds that GapMCSP[s0(n), s1(n)] is not NP complete with respect to Levin reductions.

Since iO is an efficient algorithm, the overhead of any iO is polynomial. Combining this
observation with Theorem 19 yields Theorem 1.

3.1 Proving Theorem 19
To prove Theorem 19, let iO be an indistinguishability obfuscator, and let p ∈ poly be
the overhead of iO. Let T : {0, 1}n → {0, 1}n−ω(log n) be a TCR with security against
subexponential algorithms.

Consider the following distribution ensemble D = {Dn}n∈N over SAT formulas and
assignments (ϕ, v). For every n ∈ N, to sample from Dn: sample a random x ∈ {0, 1}n. Let
ϕT (x) be a formula such that ϕT (x)[x′] = 1 if and only if T (x′) = T (x). Output (ϕT (x), x).
We remark that ϕT (x) only depends on the value of T (x) and not on x itself.

We start with the following claim.

▷ Claim 20. The following hold for every n ∈ N:
Pr(ϕ,v)←Dn

[ϕ[v] = 1] = 1
Pr(ϕ,v)←Dn

[∃v′ s.t. v ̸= v′ and ϕ[v′] = 1] = 1− neg(n), and,
for every ppt algorithm A

Pr(ϕ,v)←Dn
[A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1] = neg(n).

Proof. The first and last items follow directly from the definition of the distribution D and
the definition of TCR. The second item holds since T is shrinking. ◁

We also prove the following claim, which states that for any reduction f from SAT to
GapMCSP, the output of f on inputs samples from Dn must have length polynomial in n.
Here we need the subexponential security of T .

CCC 2024

36:12 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

▷ Claim 21. Let (f, g, h) be a Levin reduction from SAT to GapMCSP[s0, s1]. Then there
exists a constant δ > 0 such that

Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) ≥ nδ

]
≥ 1− neg(n)

▶ Remark 22. Claim 21 is the only place in which we use the subexponential security
assumption. We need it to make sure that (with high probability over D) |s0(f(ϕ))| is not
too small. While we can require that s0(n) ≥ nϵ for some ϵ > 0, the reduction f itself can
return short outputs.

When the reduction f is honest (that is, |f(x)| ≥ |x|α for all inputs x and for some
α > 0), we can replace the assumption on exponentially-secure one-way function with the
above requirement that s0(n) ≥ nϵ, and minimal assumption that NP ⊈ ioBPP. The latter
assumption is known to imply (together with iO) one-way function (see Theorem 16). Using
the same proof as follows we get Theorem 2.

Proof. Assume toward a contradiction that this is not the case for all constant δ > 0. We
will show how to invert T . That is, we will show an algorithm A that runs in time 2nc·δ for
some constant c such that

Prx←{0,1}n

[
A(T (x)) ∈ T−1(T (x))

]
≥ Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) < nδ

]
.

The claim will then follow by Claim 17, as by assumption Pr(ϕ,v)←Dn

[
s0(|f(ϕ)|) < nδ

]
is

non-negligible for all choices of δ > 0 (and for infinitely many n’s).
Let A be the algorithm that given y = T (x), constructs the formula ϕy, and then uses

brute force to find a minimal circuit C of size at most nδ that computes f(ϕy). Lastly, if
such C exists, A outputs h(ϕy, C).

It is not hard to see that A runs in time 2poly(nδ). By the definition of Levin reductions,
when s0(

∣∣f(ϕT (x))
∣∣) < nδ, A always outputs x′ such that T (x′) = T (x). Lastly, observe that

the distribution of ϕy for y = T (x) when x← {0, 1}n, is exactly the distribution of ϕ when
(ϕ, v)← Dn. ◁

The next lemma shows it is possible to use iO to find collisions in the TCR.

▶ Lemma 23. Let iO be an indistinguishability obfuscator with overhead p, and let s0 and s1
as in Theorem 19. Assume that there exists a Levin reduction from SAT to GapMCSP[s0, s1].
Then there exists an efficient algorithm A such that for every large enough n ∈ N

Pr(ϕ,v)←Dn
[A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1] > 1/4.

Proof. We start with the definition of A. Let f, g, h be the Levin reduction between SAT to
GapMCSP[s0, s1]. Define A(ϕ, v) = h(ϕ, iO(1|g(ϕ,v)|α , g(ϕ, v))). In the following we omit the
security parameter 1|g(ϕ,v)|α from the notation.

Next, we show that A(ϕ, v) returns v′ ̸= v that satisfies ϕ with probability at least 1/4. By
Claim 20, such v′ exists with all but negligible probability over a random sample (ϕ, v)← Dn.
For the constant δ > 0 from Claim 21 let G be the set of all (ϕ, v) such that s0(|f(ϕ)|) ≥ nδ

and that exists v′ ̸= v with ϕ[v′] = 1. By Claim 21, Pr(ϕ,v)←Dn
[(ϕ, v) ∈ G] ≥ 1− neg(n). In

the following, fix n ∈ N, and fix (ϕ, v) ∈ G, and v′ ̸= v with ϕ[v′] = 1.
By the correctness of f and g, g(ϕ, v) and g(ϕ, v′) are two circuits with size at most

s0(|f(ϕ)|) with the same truth table f(ϕ). We assume without loss of generality that
|g(ϕ, v)| = |g(ϕ, v′)| = s0(|f(ϕ)|). By the assumption on the overhead time of the obfuscator
iO, we get that the size of the output of iO(g(ϕ, v)) and iO(g(ϕ, v)) is at most

p(|g(ϕ, v)|, |g(ϕ, v)|α) = p(s0(|f(ϕ)|), (s0(|f(ϕ)|))α) < s1(|f(ϕ)|).

N. Mazor and R. Pass 36:13

Thus, the output iO(g(ϕ, v)) is a witness that f(ϕ) is not a No instance of GapMCSP[s0, s1],
and by the definition of h, h(ϕ, iO(g(ϕ, v))) returns a witness that ϕ ∈ SAT. Similarly, the
same holds for v′: h(ϕ, iO(g(ϕ, v′))) returns a witness that ϕ ∈ SAT.

Lastly, we use the security of iO to claim that h(ϕ, iO(g(ϕ, v))) ̸= v with a good probability.
By the security of the obfuscator, and since g(ϕ, v) and g(ϕ, v′) compute the same function f(ϕ)
the output distributions of iO(g(ϕ, v)) and iO(g(ϕ, v′)) are indistinguishable. Moreover, since
the iO is secure against non-uniform algorithms, the above distributions are indistinguishable
also given (ϕ, v, v′) (importantly, the size of (ϕ, v, v′) is polynomial in the security parameter
and in the size of the circuit g(ϕ, v) when s0(|f(x)|) ≥ nδ). In particular, by data processing,
the distributions h(ϕ, iO(g(x, v))) and h(ϕ, iO(g(x, v′))) must be indistinguishable.

By the definition of A, we get that

Pr[A(ϕ, v) = v] ≤ Pr[A(ϕ, v′) = v] + µ(s0(|f(ϕ)|))

for some negligible function µ. Since (ϕ, v) ∈ G, for every large enough n we get that

Pr[A(ϕ, v) = v] ≤ Pr[A(ϕ, v′) = v] + µ(s0(|f(ϕ)|)) ≤ Pr[A(ϕ, v′) ̸= v′] + 1/3,

which implies that

1− Pr[A(ϕ, v) ̸= v] ≤ Pr[A(ϕ, v′) ̸= v′] + 1/3,

or that

1/2 · (Pr[A(ϕ, v) ̸= v] + Pr[A(ϕ, v′) ̸= v′]) ≥ 1/3. (1)

To finish the proof, consider the distribution D′n, in which we sample (ϕ, v)← Dn, and then
if (ϕ, v) ∈ G, we sample a random v′ ̸= v such that ϕ[v′] = 1 (or let v′ = v if (ϕ, v) /∈ G). We
then output (ϕ, v, v′).

We get that

Pr(ϕ,v)←Dn
[A(ϕ, v) ̸= v]

≥ Pr(ϕ,v)←Dn
[A(ϕ, v) ̸= v | (ϕ, v) ∈ G] · Pr(ϕ,v)←Dn

[(ϕ, v) ∈ G]
= Pr(ϕ,v)←Dn

[A(ϕ, v) ̸= v | (ϕ, v) ∈ G] · (1− neg(n))
= Pr(ϕ,v0,v1)←D′

n
[A(ϕ, v0) ̸= v0 | (ϕ, v0) ∈ G] · (1− neg(n))

= Pr(ϕ,v0,v1)←D′
n,b←{0,1}[A(ϕ, vb) ̸= vb | (ϕ, vb) ∈ G] · (1− neg(n))

= 1/2 ·
∑

b∈{0,1}

Pr(ϕ,v0,v1)←D′
n
[A(ϕ, vb) ̸= vb | (ϕ, vb) ∈ G] · (1− neg(n))

≥ 1/3− neg(n).

where the third equality holds since the distribution of (ϕ, v0) and (ϕ, v1) are identical for
(ϕ, v0, v1)← D′n, and the last inequality by Equation (1). ◀

We are now ready to prove Theorem 19.

Proof of Theorem 19. Assume that iO and subexponential one-way functions exist. By
Theorem 15, there exists a TCR with security against subexponential adversaries.

Assume there exists Levin reduction from SAT to GapMCSP[s0, s1], and let D be the
distribution defined above. By Claim 20, there is no efficient algorithm that given a random
sample (ϕ, v) from Dn finds v′ ̸= v such that ϕ[v′] = 1 with non-negligible probability. But
by Lemma 23, there exists such an algorithm that succeeds with probability 1/4, which is a
contradiction. ◀

CCC 2024

36:14 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

3.2 Randomized Levin Reductions
In this part we generalize Theorem 19 to hold with respect to randomized reductions. We
prove the following theorem.

▶ Theorem 24. Let 0 ≤ ϵ ≤ 1/30 be a constant, and let p : N×N→ N be a function. Assume
that there exist iO with overhead p, and subexponentially-secure one-way function. Then for
any constant α > 0 and for any pair of efficiently computable functions s0, s1 : N → N for
which s1(n) > p(s0(n), (s0(n))α), it holds that GapMCSP[s0(n), s1(n)] is not NP complete
with respect to randomized Levin reductions with ϵ-error.

Theorem 1 (for randomized reductions) directly follows by Theorem 24 and the observation
that the overhead p is always bounded by polynomial. The proof of Theorem 24 is similar
to the proof of Theorem 19. Let iO be an indistinguishability obfuscator with overhead p,
and T : {0, 1}n → {0, 1}n−ω(log n) be a TCR secure against subexponential adversaries. Let
D = {Dn}n∈N be the same distribution as defined in the proof of Theorem 19.

The following claim is the analog of Claim 21 for randomized reductions.

▷ Claim 25. Let (f, g, h) be a randomized Levin reduction with ϵ-error from SAT to
GapMCSP[s0, s1]. Then there exists a constant δ > 0 such that

Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) ≥ nδ

]
≥ 1− 2ϵ− neg(n)

Proof. The proof follows the same lines as the proof of Claim 21. Specifically, let δ > 0, A
be the algorithm described in the proof of Claim 21. We will show that

Prx←{0,1}n

[
A(T (x)) ∈ T−1(T (x))

]
≥ Pr(ϕ,v)←Dn,r1←{0,1}∗

[
s0(|f(ϕ)|) < nδ

]
− 2ϵ.

The claim will then follow by Claim 17.
By the definition of randomized Levin reductions, with probability at least 1− ϵ over the

choice of r1, it holds that h succeed to convert a witness for f(ϕ; r1) to a witness for ϕ with
probability at least 1− ϵ. By the union bound, with probability at least

1− Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) < nδ

]
− ϵ

over the choice of (ϕ, v)← Dn and r1, it holds that both s0(|f(ϕ; r1)|) < nδ, and h converts
witnesses for f(ϕ; r1) to witnesses for ϕ with probability at least 1− ϵ. In this case, A finds
a witness for f(ϕ; r1) and outputs a pre-image of T with probability 1− ϵ.

Using the union bound again, we get that A finds such a pre-image with probability at
least

1− Pr(ϕ,v)←Dn,r1←{0,1}∗
[
s0(|f(ϕ; r1)|) ≥ nδ

]
− 2ϵ

as claimed. ◁

The next lemma generalized Lemma 23, to shows it is possible to use iO and randomized
Levin reduction to find collisions in the TCR.

▶ Lemma 26. Let iO be indistinguishability obfuscator with overhead p, and let ϵ, s0 and s1
as in Theorem 24. Assume that there exists a randomized Levin reduction with ϵ-error from
SAT to GapMCSP[s0, s1]. Then there exists an efficient algorithm A such that for every
large enough n ∈ N

Pr(ϕ,v)←Dn
[A(ϕ, v) = v′; v ̸= v′ and ϕ[v′] = 1] > 1/4− 7ϵ.

N. Mazor and R. Pass 36:15

Proof. We start with the definition of A. Let f, g, h be the Levin reduction between SAT to
GapMCSP[s0, s1], and define A to be the algorithm that on input ϕ, v, outputs

h(ϕ, iO(1|g(ϕ,v;r1)|α , g(ϕ, v; r1)); r1, r2),

for a random choice of randomness r1, r2 for g, h. In the following we omit the security
parameter 1|g(ϕ,v;r1)|α from the notation.

Next, we show that A(ϕ, v) returns v′ ̸= v that satisfies ϕ with probability at least 1/4.
Let G be the set of all SAT formulas ϕ such that there are v ̸= v′ such that ϕ[v] = ϕ[v′] = 1.

Let δ > 0 be the constant from Claim 25. In the following, we say that a randomness r1
is good for a formula ϕ and a satisfying assignments v, if it holds that (1) s0(|f(ϕ; r1)|) ≥ nδ,
(2) g(ϕ, v; r1) is a circuit of size at most s0(|f(ϕ; r1)|) that computes f(ϕ; r1), and (3), for any
circuit C of size less than s1(|f(ϕ; r1)|) which computes f(ϕ; r1), it holds that h(ϕ, C; r1, r2)
is a satisfying assignment for ϕ with probability at least 1− ϵ over the choice of r2. That is,
r1 is good if the output of f(ϕ; r1) is not too short, and if the reduction succeed in converting
witnesses from SAT to GapMCSP using the randomness r1.

By the definition of Levin reductions with ϵ-error a random r1 fulfils the last two
requirements with probability at least 1− ϵ. Using Claim 25 and the union bound, we get
that a random r1 is good for (ϕ, v) with probability at least 1− 3ϵ− neg(n).

For ϕ ∈ G, and two satisfying assignments v ̸= v′, let Rϕ,v,v′ be the set of all random
strings r1 such that r1 is good both for (ϕ, v) and for (ϕ, v′). Using the union bound again,
we get that

Prr1←{0,1}∗ [r1 ∈ Rϕ,v,v′] ≥ 1− 6ϵ− neg(n). (2)

We continue as in the proof of Lemma 23. In the following, fix ϕ ∈ G and two satisfying
assignments v ̸= v′, and fix r1 ∈ Rϕ,v,v′ .

By the definition of Rϕ,v,v′ , g(ϕ, v; r1) and g(ϕ, v′; r1) are two circuits with size at most
s0(f(ϕ)) with the same truth table f(ϕ; r1). We assume without loss of generality that
|g(ϕ, v)| = |g(ϕ, v′)| = s0(|f(ϕ)|). As in the proof of Lemma 23, by the assumption on the
overhead of the obfuscator iO, we get that the size of the output of iO(g(ϕ, v; r1)) and
iO(g(ϕ, v′; r1)) is less than s1(|f(ϕ; r1)|). Thus, the output iO(g(ϕ, v; r1)) is a witness that
f(ϕ; r1) is not a No instance of GapMCSP[s0, s1], and by the definition of h and Rϕ,v,v′ ,
h(ϕ, iO(g(ϕ, v; r1, r2))) returns a witness that ϕ ∈ SAT with probability at least 1− ϵ over
the choice of r2. Similarly, the same holds for v′: h(ϕ, iO(g(ϕ, v′))) returns a witness that
ϕ ∈ SAT with the same probability.

Lastly, we use the security of iO to claim that h(ϕ, iO(g(ϕ, v; r1); r1, r2) outputs an
satisfying assignment to ϕ which is not equal to v with a good probability. By the se-
curity of the obfuscator, and since g(ϕ, v; r1) and g(ϕ, v′; r1) computes the same function
f(ϕ; r1) the output distributions of iO(g(ϕ, v; r1)) and iO(g(ϕ, v′; r1)) are indistinguishable.
Moreover, by the non-uniform security, the above distributions are indistinguishable also given
(x, v, v′, r1). In particular, by data processing, the distributions h(ϕ, iO(g(x, v; r1)); r1, r2)
and h(ϕ, iO(g(x, v′; r1)); r1, r2) must be indistinguishable. Let A(ϕ, v; r1) be the output of
A(ϕ, v) when we fix the randomness A uses for f to be r1. In the following we assume
without loss of generality that whenever A do not output a satisfying assignment for ϕ, it
outputs ⊥. By the definition of A, when r1 ∈ Rϕ,v,v′ we get that

Pr[A(ϕ, v; r1) = v] ≤ Pr[A(ϕ, v′; r1) = v] + µ(s0(|f(ϕ)|))

for some negligible function µ. As in the proof of Lemma 23, this implies that

1/2 · (Pr[A(ϕ, v; r1) ̸= v] + Pr[A(ϕ, v′; r1) ̸= v′]) ≥ 1/3. (3)

CCC 2024

36:16 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

Since h fails with probability at most ϵ, we get that

1/2 · (Pr[A(ϕ, v; r1) /∈ {v,⊥}] + Pr[A(ϕ, v′; r1) /∈ {v′,⊥}]) ≥ 1/3− ϵ. (4)

To finish the proof, consider the distribution D′n, in which we sample (ϕ, v)← Dn, and
then if ϕ ∈ G, we sample a random v′ ̸= v such that ϕ[v′] = 1 (otherwise we let v′ = v). We
then output (ϕ, v, v′).

We get that

Pr(ϕ,v)←Dn,r1←{0,1}∗ [A(ϕ, v; r1) /∈ {v,⊥}]
= Pr(ϕ,v0,v1)←D′

n,r1←{0,1}∗ [A(ϕ, v0; r1) /∈ {v0,⊥}]
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

[A(ϕ, v0; r1) /∈ {v0,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1]

· Pr[r1 ∈ Rϕ,v0,v1 | ϕ ∈ G] · Pr[ϕ ∈ G]
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

[A(ϕ, v0; r1) /∈ {v0,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1]

· (1− 6ϵ− neg(n))(1− neg(n))
≥ Pr(ϕ,v0,v1)←D′

n,
r1←{0,1}∗

b←{0,1}

[A(ϕ, vb; r1) /∈ {vb,⊥} | ϕ ∈ G, r1 ∈ Rϕ,v0,v1]

· (1− 6ϵ− neg(n))(1− neg(n))
≥ (1/3− ϵ) · (1− 6ϵ− neg(n))(1− neg(n))
≥ 1/4− 7ϵ.

where the second inequality holds by Equation (4) and by Claim 25, the third equality holds
since the distribution of (ϕ, v0) and (ϕ, v1) are identical for (ϕ, v0, v1)← D′n, in by a similar
argument as in the proof of Lemma 23, and the last inequality holds for large enough n and
for a small enough constant ϵ. ◀

We are now ready to prove Theorem 19.

Proof of Theorem 19. Assume that iO and subexponentially-secure one-way function exist.
By Theorem 15, there exists a TCR with security against subexponential adversaries.

Assume there exists Levin reduction from SAT to GapMCSP[s0, s1], and let D be the
distribution defined above. By Claim 20, there is no efficient algorithm that given a random
sample (ϕ, v) from Dn finds v′ ̸= v such that ϕ[v′] = 1 with non-negligible probability. But
by Lemma 26, there exists such an algorithm that succeeds with probability 1/4− 7ϵ, which
is a contradiction when ϵ < 1/28. ◀

4 GappMKtP is not NP-complete under Levin Reductions

In this section we prove our result for MKtP. That is, we prove that (under cryptographic
assumptions) there is no Levin reduction from SAT to the following promise problem. For
p, t ∈ poly, let GappMKtP[s0, s1] be the following promise problem:
Y =

{
x ∈ {0, 1}n : Kt(n)(x) ≤ s0(n)

}
N =

{
x ∈ {0, 1}n : Kp(t(n))(x) > s1(n)

}

N. Mazor and R. Pass 36:17

We define the relations RY and RN for GappMKtP[s0, s1] in the natural way:

RY =
{

(x, P) : P is a program of length at most s0(n) such that U(P, 1t(|x|)) = x
}

,

and,

RN =
{

(x, P) : P is a program of length at most s1(n) such that U(P, 1p(t(|x|))) = x
}

.

The proof follows the same line as the proof of Theorem 19, where we replace the iO

with randomized encoding for Turing machines with indistinguishability-based security [7].

▶ Definition 27 (Randomized encoding for TM). A pair of efficient randomized algorithms
(Enc, Dec) is randomized encoding for TMs if the following holds: Let M be a TM and
x ∈ {0, 1}∗ be an input, λ ∈ N be a security parameter and let T ∈ N be a bound on the
running time of M(x). Then
1. (Correctness:) Pr

[
Dec(Enc(1λ, M, x, T)) = M(x)

]
= 1

2. (Efficiency:) Enc(1λ, M, x, T) runs in time poly(λ, |M |, |x|, log T) and Dec(M̂(x)) runs
in time poly(λ, |M |, |x|, t) for M̂(x)← Enc(1λ, M, x, T) and where t ≤ T is the running
time of M(x), and,

3. (Security:) For every ppt algorithm A and every s ∈ poly there exists a negligible
function µ, such that for every TM M and two inputs x0, x1 such that M(x0) = M(x1),
|M | ≤ s(λ), |x0| ≤ s(λ), |x1| ≤ s(λ) and the running time of M on x0 at most s(λ) and
is the same as the running time of M on x1, the following holds:∣∣Pr

[
A(Enc(1λ, M, x0, T)) = 1

]
− Pr

[
A(Enc(1λ, M, x1, T)) = 1

]∣∣ = µ(λ).

We say that (Enc, Dec) has overhead p if
∣∣Enc(1λ, M, x, T)

∣∣ ≤ p(|M |, |x|, T, λ) with probabil-
ity 1.

Using randomized encoding, we get the following theorem.

▶ Theorem 28. Let 0 ≤ ϵ ≤ 1/30 be a constant. Assume that randomized encoding for
TMs with overhead q, and subexponentially-secure one-way function exists. Then there exists
a constant c ∈ N such that for every constant α > 0, for any t ∈ poly and any efficiently
computable functions s0, s1 : N→ N for which

s1(n) > q(c, s0(n) + c log(t(n)) + c log(s0(n)), log t(n), (s0(n))α),

and for every large enough polynomial p, it holds that GappMKtP[s0, s1] is not NP complete
with respect to randomized Levin reductions with ϵ-error.

By the results of [48, 43] such randomized encoding with polynomial overhead q for poly-
time TMs can be constructed assuming one-way functions, subexponentially-secure iO for
circuits and injective PRG (that can be constructed from one-way permutation). Together
with Theorem 28 we get Theorem 3. As in Theorem 19, we can relax the requirement for
subexponentially-secure one-way function if we only want to exclude honest reductions.

[8] constructed iO for TM with multiplicative overhead. By combining the construction
of randomized encoding for TMs of [48] with the iO of [8], we get randomized encoding with
multiplicative overhead.

▶ Theorem 29. Assuming subexponentially-secure iO and subexponentially secure rerandom-
izable encryption schemes, there exists a randomized encoding for TMs scheme with overhead
q(|M |, |x|, T, λ) = 2(|M |+ |x|) + poly(λ, log T).

CCC 2024

36:18 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

We get the following corollary.

▶ Corollary 30. Let 0 ≤ ϵ ≤ 1/30 be a constant. Assume subexponential-secure iO, and
subexponentially-secure one-way function exist and assume subexponential DDH or LWE.
Then for every constant α > 0, and for any efficiently computable function s0, it holds
that GappMKtP[s0(n), (2 + α)s0(n)] is not NP complete with respect to randomized Levin
reductions with ϵ-error.

Proof of Theorem 28. For ease of notation, we explain how to modify the proof of The-
orem 19 to get the proof of Theorem 28 for deterministic reductions. Similar changes to the
proof of Theorem 24 yield the result for randomized reductions.

We only need to change the proof of Lemma 23. Let (f, g, h) be the Levin reduction
from SAT to GappMKtP[s0, s1], and assume that for every (ϕ, v) in the support of D, g(ϕ, v)
output a program of length exactly s0(|f(ϕ)|) that runs in time exactly t(|f(ϕ)|) (this can
be assume by adding O(log t(n) + log s0(n)) bits to the description of g(ϕ, v)). Let U be a
universal TM and (Enc, Dec) be randomized encoding for TMs. Consider the algorithm

A(ϕ, v) = h(ϕ, ĝ(ϕ, v))),

where ĝ(ϕ, v) is a program that runs Dec on P̂ for P̂ ← Enc(1|g(ϕ,v)|α , U, g(ϕ, v), t(|f(ϕ)|)).
That is, we replace the iO in the construction of A from the proof of Lemma 23, with a
randomized encoding of U(g(ϕ, v)). Since for every two witnesses v, v′ of ϕ it holds that
U(g(ϕ, v)) = U(g(ϕ, v′)) = f(ϕ), we get that ĝ(ϕ, v) and ĝ(ϕ, v′) are indistinguishable.

By the overhead of the randomized encoding scheme,∣∣∣ĝ(ϕ, v′)
∣∣∣ ≤ q(|U|, s0(n) + O(log(t(n)) + log(s0(n)), log t(n), |g(ϕ, v)|α).

By the efficiency of Dec, the running time of ĝ(ϕ, v′) is at most poly(s0(|f(ϕ)|), t(|f(ϕ)|)) =
poly(t(|f(ϕ)|)), where the equality holds since s0(|f(ϕ)|) ≤ |f(ϕ)|+ O(1) or the
GappMKtP[s0, s1] problem is trivial. Thus, by taking p be a polynomial that bound the
running time of ĝ(ϕ, v′), we get that ĝ(ϕ, v′) is a witness that f(ϕ) is not a No instance. The
proof continues along the same lines as the proof of Lemma 23. ◀

References
1 Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: new methods

for bootstrapping and instantiation. In Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38, pages 191–225. Springer,
2019.

2 Shweta Agrawal and Alice Pellet-Mary. Indistinguishability obfuscation without maps: Attacks
and fixes for noisy linear fe. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 110–140. Springer, 2020.

3 Eric Allender and Shuichi Hirahara. New insights on the (non-) hardness of circuit minimization
and related problems. ACM Transactions on Computation Theory (ToCT), 11(4):1–27, 2019.

4 Eric Allender, Michal Kouckỳ, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded kolmogorov complexity in computational complexity theory. Journal of
Computer and System Sciences, 77(1):14–40, 2011.

5 Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. Indistin-
guishability obfuscation without multilinear maps: new paradigms via low degree weak
pseudorandomness and security amplification. In Annual International Cryptology Conference,
pages 284–332. Springer, 2019.

N. Mazor and R. Pass 36:19

6 Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation without
multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness. Cryptology ePrint
Archive, 2018.

7 Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact func-
tional encryption. In Annual Cryptology Conference, pages 308–326. Springer, 2015.

8 Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation for
turing machines: constant overhead and amortization. In Annual International Cryptology
Conference, pages 252–279. Springer, 2017.

9 Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and the hardness of approximation problems. Journal of the ACM (JACM),
45(3):501–555, 1998.

10 Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of
np. Journal of the ACM (JACM), 45(1):70–122, 1998.

11 Boaz Barak and Oded Goldreich. Universal arguments and their applications. SIAM Journal
on Computing, 38(5):1661–1694, 2009.

12 Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,
and Ke Yang. On the (im) possibility of obfuscating programs. In Annual international
cryptology conference, pages 1–18. Springer, 2001.

13 Elette Boyle, Kai-Min Chung, and Rafael Pass. On extractability obfuscation. In Theory of
cryptography conference, pages 52–73. Springer, 2014.

14 Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Factoring and pairings
are not necessary for io: Circular-secure lwe suffices. Cryptology ePrint Archive, 2020.

15 Zvika Brakerski, Nico Döttling, Sanjam Garg, and Giulio Malavolta. Candidate iO from
homomorphic encryption schemes. Journal of Cryptology, 36(3):27, 2023.

16 Gregory J. Chaitin. On the simplicity and speed of programs for computing infinite sets of
natural numbers. J. ACM, 16(3):407–422, 1969.

17 Stephen A. Cook. The complexity of theorem-proving procedures. In Annual ACM Symposium
on Theory of Computing (STOC), pages 151–158, 1971.

18 Irit Dinur, Venkatesan Guruswami, Subhash Khot, and Oded Regev. A new multilayered pcp
and the hardness of hypergraph vertex cover. In Proceedings of the thirty-fifth annual ACM
symposium on Theory of computing, pages 595–601, 2003.

19 Uriel Fiege, Amos Fiat, and Adi Shamir. Zero knowledge proofs of identity. In Proceedings of
the nineteenth annual ACM symposium on Theory of computing, pages 210–217, 1987.

20 Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. SIAM
Journal on Computing, 45(3):882–929, 2016.

21 Romain Gay, Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from
simple-to-state hard problems: New assumptions, new techniques, and simplification. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 97–126. Springer, 2021.

22 Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security. In
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages
736–749, 2021.

23 Craig Gentry, Allison Bishop Lewko, Amit Sahai, and Brent Waters. Indistinguishability
obfuscation from the multilinear subgroup elimination assumption. In 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pages 151–170. IEEE, 2015.

24 Oded Goldreich. Computational complexity: A conceptual perspective, 2008.
25 Shafi Goldwasser and Guy N Rothblum. On best-possible obfuscation. Journal of Cryptology,

27(3):480–505, 2014.
26 J. Hartmanis. Generalized kolmogorov complexity and the structure of feasible computations.

In 24th Annual Symposium on Foundations of Computer Science (sfcs 1983), pages 439–445,
1983. doi:10.1109/SFCS.1983.21.

CCC 2024

https://doi.org/10.1109/SFCS.1983.21

36:20 Gap MCSP Is Not (Levin) NP-Complete in Obfustopia

27 Shuichi Hirahara. NP-hardness of learning programs and partial mcsp. In 2022 IEEE 63rd
Annual Symposium on Foundations of Computer Science (FOCS), pages 968–979. IEEE, 2022.

28 Shuichi Hirahara. Symmetry of information from meta-complexity. In 37th Computational
Complexity Conference (CCC 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

29 Yizhi Huang, Rahul Ilango, and Hanlin Ren. NP-hardness of approximating meta-complexity:
A cryptographic approach. Cryptology ePrint Archive, 2023.

30 Rahul Ilango. Approaching MCSP from above and below: Hardness for a conditional variant
and AC0[p]. In 11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

31 Rahul Ilango. SAT reduces to the minimum circuit size problem with a random oracle. In 2023
IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 733–742.
IEEE, 2023.

32 Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. NP-hardness of circuit minimization
for multi-output functions. In CCC’20: Proceedings of the 35th Computational Complexity
Conference, pages 1–36, 2020.

33 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties
as oracles. computational complexity, 32(2):6, 2023.

34 Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. Synergy between circuit ob-
fuscation and circuit minimization. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023.

35 Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness of constant-
degree expanding polynomials over R to build iO. In Advances in Cryptology–EUROCRYPT
2019: 38th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19–23, 2019, Proceedings, Part I 38, pages 251–281.
Springer, 2019.

36 Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 60–73, 2021.

37 Valentine Kabanets and Jin-yi Cai. Circuit minimization problem. In Proceedings of the
Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland,
OR, USA, pages 73–79, 2000.

38 Richard M. Karp. Reducibility among combinatorial problems. In J. W. Thatcher and R. E.
Miller, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, Inc.,
1972.

39 Ker-I Ko. On the notion of infinite pseudorandom sequences. Theor. Comput. Sci., 48(3):9–33,
1986. doi:10.1016/0304-3975(86)90081-2.

40 Ker-I Ko. On the complexity of learning minimum time-bounded turing machines. SIAM
Journal on Computing, 20(5):962–986, 1991.

41 A. N. Kolmogorov. Three approaches to the quantitative definition of information. International
Journal of Computer Mathematics, 2(1-4):157–168, 1968.

42 Ilan Komargodski, Tal Moran, Moni Naor, Rafael Pass, Alon Rosen, and Eylon Yogev. One-way
functions and (im) perfect obfuscation. In 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science, pages 374–383. IEEE, 2014.

43 Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation
for turing machines with unbounded memory. In Proceedings of the forty-seventh annual ACM
symposium on Theory of Computing, pages 419–428, 2015.

44 Leonid A. Levin. Universal’ny̆ıe pereborny̆ıezadachi (Universal search problems : in Russian).
Problemy Peredachi Informatsii, pages 265–266, 1973.

45 Leonid Anatolevich Levin. Universal sequential search problems. Problemy peredachi informat-
sii, 9(3):115–116, 1973.

https://doi.org/10.1016/0304-3975(86)90081-2

N. Mazor and R. Pass 36:21

46 Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding schemes.
In Advances in Cryptology – EUROCRYPT 2016: 35th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016,
Proceedings, Part I 35, pages 28–57. Springer, 2016.

47 Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs. In
Annual International Cryptology Conference, pages 599–629. Springer, 2017.

48 Huijia Lin, Rafael Pass, Karn Seth, and Sidharth Telang. Output-compressing randomized
encodings and applications. In Theory of Cryptography Conference, pages 96–124. Springer,
2015.

49 Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear maps and
block-wise local prgs. In Annual International Cryptology Conference, pages 630–660. Springer,
2017.

50 Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like as-
sumptions on constant-degree graded encodings. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 11–20. IEEE, 2016.

51 Yanyi Liu and Rafael Pass. On one-way functions from NP-complete problems. In 37th
Computational Complexity Conference, 2022.

52 Noam Mazor and Rafael Pass. Gap MCSP is not (levin) NP-complete in obfustopia. Cryptology
ePrint Archive, 2024.

53 Cody D Murray and R Ryan Williams. On the (non) NP-hardness of computing circuit
complexity. Theory of Computing, 13(1):1–22, 2017.

54 Moni Naor and Moti Yung. Universal one-way hash functions and their cryptographic
applications. In Proceedings of the 21st Annual ACM Symposium on Theory of Computing
(STOC), pages 33–43, 1989.

55 Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from
semantically-secure multilinear encodings. In Advances in Cryptology–CRYPTO 2014: 34th
Annual Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2014, Proceedings,
Part I 34, pages 500–517. Springer, 2014.

56 Hanlin Ren and Rahul Santhanam. A relativization perspective on meta-complexity. In 39th
International Symposium on Theoretical Aspects of Computer Science (STACS 2022). Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

57 John Rompel. One-way functions are necessary and sufficient for secure signatures. In Annual
ACM Symposium on Theory of Computing (STOC), pages 387–394, 1990.

58 Michael Saks and Rahul Santhanam. Circuit lower bounds from NP-hardness of MCSP under
Turing reductions. LIPIcs, 169, 2020.

59 Michael Saks and Rahul Santhanam. On randomized reductions to the random strings. In
37th Computational Complexity Conference (CCC 2022). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

60 Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the 15th
Annual ACM Symposium on Theory of Computing (STOC), pages 330–335, 1983.

61 R.J. Solomonoff. A formal theory of inductive inference. part i. Information and Control,
7(1):1–22, 1964. doi:10.1016/S0019-9958(64)90223-2.

62 Boris A Trakhtenbrot. A survey of russian approaches to perebor (brute-force searches)
algorithms. Annals of the History of Computing, 6(4):384–400, 1984.

63 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 453–461, 2001.

64 Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious lwe sampling. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages
127–156. Springer, 2021.

CCC 2024

https://doi.org/10.1016/S0019-9958(64)90223-2

	p000-Frontmatter
	Preface
	Conference Organization

	p001-Hoza
	1 Introduction
	1.1 Average-Case Circuit Lower Bounds
	1.2 Hardness Amplification and Yao's XOR Lemma
	1.3 Our Contributions
	1.3.1 Correlation Bounds for Depth Reduction Within AC^0
	1.3.2 Correlation Bounds for XOR of Majority

	1.4 Our Technique
	1.4.1 XOR Lemmas for Decision Trees
	1.4.2 Amplifying the Average-Case Depth Hierarchy Theorem
	1.4.3 Amplifying the Hardness of the Majority Function

	1.5 Related Work
	1.6 Organization

	2 Preliminaries
	2.1 Boolean Functions
	2.2 Probability and Correlation
	2.3 Generalized Restrictions
	2.4 Logarithmic Concavity

	3 XOR Lemmas for Decision Trees
	4 XOR Lemmas for the Random Simplification Method
	5 Directions for Further Research

	p002-Cormode
	1 Introduction
	1.1 Zero-knowledge in the streaming model
	1.2 Main results
	1.2.1 Streaming commitment protocols

	1.3 Applications
	1.4 Related work
	1.5 Open problems

	2 Technical overview
	2.1 A starting point: the polynomial evaluation protocol
	2.2 Curtailing leakage with commitments
	2.3 From honest to malicious verifiers: temporal commitments
	2.4 A sketch of the zero-knowledge index protocol
	2.5 A general-purpose zero-knowledge SIP: sumcheck

	3 Preliminaries
	3.1 Information theory

	4 Zero-knowledge streaming interactive proofs
	4.1 Definition

	5 Algebraic and temporal commitments
	5.1 Low-degree extensions and polynomial evaluation
	5.2 A prover-to-verifier commitment protocol
	5.3 Making the commitment algebraic
	5.4 A verifier-to-prover temporal commitment

	6 A zero-knowledge SIP for polynomial evaluation
	6.1 The protocol
	6.2 Analysis of the protocol
	6.3 Zero-knowledge
	6.4 Applications: index, point-query, range-count and selection

	7 A zero-knowledge sumcheck SIP
	7.1 The protocol
	7.2 Analysis of the protocol
	7.3 Zero-knowledge
	7.4 Applications: frequency-moment and inner-product

	A Deferred proofs
	A.1 Proof of Theorem 21
	A.2 Proof of Theorem 24
	A.3 Proof of Claim 30

	p003-Bafna
	1 Introduction
	1.1 Unique-Games
	1.1.1 NP-hardness Reduction for 2-2 Games and Global Hypercontractivity

	1.2 Our Results
	1.2.1 Candidate Hard Instances for Unique Games
	1.2.2 New Rounding Scheme for Higher Degree SoS
	1.2.3 The Emergence of Unique-Games Instances in Other Contexts

	1.3 Open Problems

	2 Overview of Our Techniques
	2.1 The Approach of [5]: Rounding analysis via the Shift Partition
	2.2 Our Approach: Conditioning on the Event E via (Eliminating) Global Correlations
	2.3 Getting Small Completeness: Capturing all of the Non-expanding Edges

	p004-Pyne
	1 Introduction
	1.1 Proof Overview for Initial Derandomization
	1.2 Proof Overview for Recursive Derandomization
	1.3 Search Problems in Catalytic Space
	1.4 Roadmap

	2 Catalytic Machines and Composition
	2.1 Composition of Catalytic Algorithms

	3 Catalytic Derandomization From Conditional Compression
	4 Catalytic Recursive Matrix Powering
	A Proofs of Lemmas

	p005-Cook
	1 Introduction
	1.1 Main Results
	1.2 Invertible Condensers
	1.3 Barrier To Time-Space Efficient PCP for Delegated Computation
	1.4 Time and Space Efficient Decoding?!
	1.5 On Sequential Access to The Input

	2 Technique
	2.1 Sequential Access To The Message
	2.1.1 Non-Adaptive Lower Bound
	2.1.2 Adaptive Lower Bound
	2.1.3 Upper Bound

	2.2 Random Access To The Message
	2.2.1 Weight Fixers From Condensers
	2.2.2 Mixing Weight Fixers
	2.2.3 Weight Fixers For Large Weight Messages
	2.2.4 Distance Amplification

	2.3 Invertible Condensers

	3 Comparison With Other Codes
	3.1 Comparisons With Codes For Shallow Circuits
	3.2 Why Spielman Codes Aren't Enough

	4 Open Problems
	5 Preliminaries
	6 From Condensers To Codes
	6.1 Weight Fixers
	6.2 Weight Fixer Mixer
	6.3 Weight Fixers From Invertible Condensers
	6.4 Distance Amplification
	6.5 Putting it all together

	7 Constructing Invertible Condensers
	7.1 Composition Theorems
	7.2 Our Base Condenser
	7.3 Our Condenser for Polylogarithmic Entropy
	7.4 Final Condenser

	8 Spielman Style Weight Fixers
	9 Encoders With Sequential Access To The Message
	9.1 Lower Bounds
	9.2 Upper Bounds
	9.3 Basic Relations of Sequential Access

	p006-Grewal
	1 Introduction
	1.1 Our Results
	1.2 Main Ideas
	1.3 Related and Concurrent Work
	1.4 Open Problems

	2 Preliminaries
	2.1 Quantum Information
	2.2 A Min-Max Theorem
	2.3 Previously Studied Hierarchies

	3 The Entangled Quantum Polynomial Hierarchy
	4 The Entangled Quantum Polynomial Hierarchy Collapses
	5 PH and QCPH Are Contained in prodQPH
	6 Distribution Hierarchies

	p007-Assadi
	1 Introduction
	1.1 Polynomial Pass Lower Bounds in Graph Streams
	1.2 k-Cores and Degeneracy in Graph Streams
	1.3 Our Results

	2 Overview
	2.1 Hidden Pointer Chasing
	2.2 Reduction to Degeneracy
	2.3 Communication Upper Bounds for Degeneracy

	p008-Cohen
	1 Introduction
	1.1 Our result

	2 Proof Overview
	2.1 Expander codes are locally testable in their vicinity
	2.1.1 Expander codes
	2.1.2 Expander codes are locally testable in their vicinity

	2.2 RLCCs from expander codes
	2.2.1 The construction
	2.2.2 The tester and its analysis
	2.2.3 Improving the correction radius
	2.2.4 Explicitness

	3 Preliminaries
	3.1 Notations and conventions
	3.2 Error correcting codes
	3.3 Relaxed locally correctable codes
	3.4 Expanders and expander codes

	4 Vicinity Locally Testable Codes
	5 RLCCs from VLTCs

	p009-Alekseev
	1 Introduction
	1.1 Our results and methods
	1.1.1 Decision tree depth to size
	1.1.2 Conjunction DAG width to size
	1.1.3 Decision tree depth to parity decision tree depth and size
	1.1.4 Block sensitivity to communication complexity

	2 Prerequisites
	2.1 Notation
	2.2 Complexity measures

	3 Decision tree depth to size
	3.1 Resistant gadgets
	3.2 Weakly resistant gadgets
	3.3 Gadget classification
	3.4 Generalization to search problems

	4 Conjunction DAG width to size
	4.1 Conjunction DAGs
	4.2 Size vs width
	4.3 Separation between decision tree size and conjunction DAG size
	4.4 Gadget classification

	5 Decision tree depth to parity decision tree depth and size
	5.1 Stifling gadgets
	5.2 Minimum weight lemma
	5.3 OR gadget
	5.3.1 Separation
	5.3.2 Lifting

	5.4 AND/OR gadgets
	5.5 Gadget classification
	5.6 Lifting for OR gadget and the log-rank conjecture

	6 Block sensitivity to communication complexity
	6.1 Reductions in communication complexity
	6.2 Gadget classification for randomized communication complexity
	6.3 Gadget classification for deterministic communication complexity

	7 Open problems

	p010-Li
	1 Introduction
	1.1 Our Results

	2 Overview of the Techniques
	2.1 Directional affine extractors
	2.2 Linear somewhere condenser
	2.3 Lg average-case hardness for Lgs

	3 Open Problems

	p011-Holmgren
	1 Introduction
	1.1 Related Work
	1.1.1 Tight Compaction
	1.1.2 Uniselection Lower Bounds.

	2 Technical Overview
	2.1 Weak multiselection from superconcentrators
	2.2 Amortizing the computation of the advice string
	2.3 Reordering the outputs and handling non-unique inputs
	2.4 From block-multiselection back to bit-multiselection
	2.5 Achieving low-depth

	3 Preliminaries
	3.1 Uniformity
	3.2 Boolean Circuits for Uniselection
	3.3 Small-Size Sorting Circuits

	4 Low-Depth Sorting of Logarithmic-Length Keys
	4.1 Sorting Networks
	4.2 From Sorting Networks to Boolean Circuits

	5 Unordered Multiselection Over Large Alphabets
	5.1 Superconcentrators and Routing
	5.2 From Superconcentrators To Unordered Multiselection
	5.3 Computing Set Indicator Strings

	6 From Unordered to Ordered Multiselection
	6.1 Boolean Circuits for Inner Joins
	6.2 A Circuit for Ordered Multiselection

	7 Binary Multiselection and Proof of Main Theorem
	A Applications
	A.1 Application 1: Simplifying Efficient Arguments
	A.2 Application 2: More Efficient Batch PIR
	A.3 Prior Work
	A.3.1 Batch PIR via Batch Codes
	A.3.2 Doubly Efficient PIR.

	B Linear-time Uniformity

	p012-Hrubes
	1 Introduction
	2 The main result
	3 Hurwitz-Radon conditions
	4 The construction
	4.1 Comments

	5 Modifications and extensions
	5.1 A sum of bilinear products
	5.2 A tensor product construction

	6 Open problems
	A Proof of Lemma 7 in positive characteristic

	p013-Hrubes
	1 Introduction
	2 Main results
	3 A combinatorial lemma
	4 1-Partition number
	4.1 A somewhat non-trivial example

	5 Communication complexity, and a comparison with the log-rank conjecture
	6 Non-negative rank
	6.1 Extended formulations and separation complexity
	6.2 Submatrices of large non-negative rank
	6.3 Tightness

	7 Open problems
	A Proof of Theorem 13

	p014-Burgisser
	1 Introduction
	1.1 Background and high-level summary of results
	1.2 Torus actions: structure, input model, parameters
	1.3 Robust orbit problems: definitions
	1.4 Robust orbit problems: hardness
	1.5 Robust orbit problems: algorithms
	1.6 Separation hypotheses and the abc-conjecture
	1.7 Proof sketch of the lattice lifting theorem
	1.8 The method of Kempf-Ness
	1.9 Conclusion and outlook
	1.10 Organization of the paper

	2 Preliminaries
	2.1 Notation
	2.2 Invariant theory of torus actions
	2.3 Singular values
	2.4 Complexity of elementary functions
	2.5 Quotient topology and quotient metric

	3 Logarithmic image of orbits
	3.1 Structure of logarithms of orbits
	3.2 Approximation of orbit distances by linear forms in logarithms: T-orbits
	3.3 Approximation of orbit distances by linear forms in logarithms: K-orbits

	4 The separation hypotheses and the abc-conjecture
	4.1 The abc-conjecture and the Number-Theoretic Hypothesis 1.11
	4.2 Equivalence of Separation Hypotheses with the Number-Theoretic Hypothesis 1.11

	5 Approximations of orbit distances
	5.1 Approximate orbit distance problems
	5.2 The subspace-to-cubic-lattice distance problem
	5.3 Proof of Theorem 5.2
	5.4 Reductions from SLDP to ROP

	6 Hardness of robust orbit problems
	6.1 The closest vector problem
	6.2 The reduction from CVP to SLDP via lattice liftings
	6.3 Proof of Theorem 1.5

	7 Orbit Problems and the Kempf-Ness Approach
	7.1 The general Kempf-Ness theorem
	7.2 Efficient approximation of the Kempf-Ness orbit
	7.3 Deciding the equality of the Kempf-Ness orbits

	p015-Arteche
	1 Introduction
	2 Preliminaries
	2.1 Proof complexity
	2.2 Lattice geometry
	2.3 Learning with Errors (LWE)
	2.4 The formal theory LA

	3 Quantum automatability and feasible interpolation
	4 TC^0-Frege is hard to quantum automate
	4.1 Security of f_A
	4.2 Existence of certificates of injectivity: Proof of Proposition 21
	4.3 Formalization
	4.3.1 The conservative extension LA_Q
	4.3.2 Formalization of the proofs

	4.4 Proof of Theorem 16

	A The propositional translation for LA_Q
	B Axioms and basic theorems of LA

	p016-Blanc
	1 Introduction
	1.1 This work

	2 Broader context: Comparison with the randomized setting
	2.1 A simple and near-optimal strong direct sum theorem for overline{R}
	2.2 Error reduction fails in the distributional setting
	2.3 A brief summary of our approach

	3 Prior Work
	3.1 Standard direct sum and product theorems
	3.2 Progress and barriers towards a strong direct sum theorem
	3.3 Results in light of Shaltiel's counterexample
	3.4 Summary

	4 Formal statements of our results and their tightness
	4.1 Tightness

	5 Technical Overview for Theorem 2
	5.1 Hardcore measures and the Hardcore Theorem
	5.2 Two key quantities: hardcore density and hardcore advantage at a leaf
	5.3 Expected total hardcore density and advantage
	5.3.1 Done if Jensen went the other way

	5.4 A resilience lemma for hardcore measures

	6 Discussion and Future Work
	7 Preliminaries
	7.1 Randomized vs. deterministic decision trees

	8 Proof of Theorem 2
	8.1 The structure of this section
	8.2 How hardcore density and advantage distribute over the leaves
	8.3 Understanding the error in terms of hardcore density and advantage
	8.4 Completing the proof of the threshold direct sum theorem

	9 Equivalence between direct sum theorems and XOR lemmas and the proof of Theorem 3
	9.1 Proofs of Claim 35 and Theorem 3 assuming Lemma 37
	9.2 Proof of Lemma 37

	10 Proof of Claim 4
	A Figures of stacked and fair trees
	B Proof of Theorem 6
	C The lack of error reduction for distributional error

	p017-Gurumukhani
	1 Introduction
	1.1 Local enumeration, k-SAT and lower bounds for Majority function
	1.2 Our contributions

	2 Preliminaries
	3 Transversal Trees and Tree Search
	3.1 Construction of Transversal Trees
	3.2 TreeSearch: An Algorithm for Enumerating the Valid Leaves of T
	3.3 Canonical Clause Ordering and Random Tree Edge Ordering

	4 Analysis of TreeSearch for Monotone k-CNFs
	4.1 Random Tree Edge Ordering and Pruning
	4.2 An Analysis of TreeSearch for Monotone 3-CNF
	4.2.1 Upper Bounds on M(w,d)
	4.2.2 Proof of Theorem 4 for monotone formulas
	4.2.3 Proof of Lemma 32

	5 Analysis of TreeSearch for arbitrary 3-CNFs
	5.1 Slight modification to canonical ordering and TreeSearch
	5.2 Fullness and Double marking
	5.3 An Analysis of TreeSearch for arbitrary 3-CNF
	5.3.1 Proving Theorem 4
	5.3.2 Upper bounds on NM(w,d,y)
	5.3.3 Proving NM(w,d,y)<=L(w,d,y)
	5.3.4 Upper bound on L(w,d,0)
	5.3.5 Upper bound on L(w,d,y)

	6 Satisfiability for CNFs with bounded negations
	7 Conclusion

	p018-Derksen
	1 Introduction
	1.1 Our results
	1.2 Krawtchouk polynomials

	2 Small-bias plus noise is far from bounded uniformity
	2.1 Distinguishing D_alpha from uniform with a threshold
	2.2 Distinguishing D_alpha from bounded uniformity with a symmetric test

	3 Bounded uniformity plus noise fools symmetric tests
	4 Shifted symmetric small-bias fools symmetric tests
	4.1 Proof of Corollary 33
	4.2 General case

	5 Proof of Theorem 14
	6 Bounds on Krawtchouk polynomials
	6.1 Proof of Lemma 36
	6.2 Lower bound on Krawtchouk polynomials

	p019-Efremenko
	1 Introduction
	1.1 Our Result
	1.2 Related Work
	1.3 Additional Discussion and Future Directions

	2 Proof Overview
	2.1 Reducing Noiseless GapMaj^{m}_{n} to Noisy Dissemination
	2.2 Communication Lower Bound for GapMaj^{m}_{n}

	3 Model and Preliminaries
	3.1 Concentration Inequalities
	3.2 Error Correcting Codes
	3.3 The Adversarial Broadcast Channel
	3.4 Our Result

	4 Our Information Dissemination Protocol
	5 Reducing Gap Majority to Information Dissemination
	6 Lower Bound for Direct Sum Gap-Majority
	6.1 Properties of Pi_{aug}
	6.2 Many Clean Transcripts
	6.3 Properties of Clean Transcripts
	6.4 Finishing the Proof

	A Information Theory Preliminaries
	A.1 Entropy
	A.2 Mutual Information
	A.3 KL Divergence
	A.4 Total Variation Distance

	p020-Chatterjee
	1 Introduction
	1.1 Background on Algberaic Complexity
	1.2 Set-Multilinearity: A Key Syntactic Restriction
	1.3 Our Results
	1.4 The ROABP Perspective
	1.5 Related Work
	1.6 Proof Overview

	2 Relative Rank and its Properties
	3 The Hard Polynomial
	3.1 Inner Product Gadget
	3.2 A Hard Set-multilinear Polynomial in VNP
	3.3 A Hard Set-multilinear Polynomial in VP
	3.4 A Hard Set-Multilinear Polynomial in VBP
	3.4.1 Arc-partition Measure Description
	3.4.2 Construction of an Arc-full-rank Polynomial

	p021-Bouland
	1 Introduction
	1.1 Near area-law public-key pseudoentanglement
	1.2 Hardness of learning ground state entanglement structure
	1.3 Related work
	1.4 Discussion and open questions

	2 Preliminaries
	2.1 Notation
	2.2 Independent hash functions
	2.3 Entropies
	2.3.1 Continuity properties

	2.4 Entanglement measures
	2.4.1 Pure state entanglement measure
	2.4.2 Entanglement entropy for phase states

	3 Public-key pseudoentanglement: definition and construction
	3.1 Construction of lossy functions
	3.2 Public-key pseudoentanglement across a single cut
	3.3 Area-law public-key pseudoentangled states on a 1D line
	3.4 Area-law public-key pseudoentangled states on a 2D grid

	4 Computational hardness of learning ground state entanglement structure
	4.1 1D Hamiltonians with log n-locality and pure states
	4.2 1D Hamiltonians with constant locality and mixed states
	4.3 2D Hamiltonians with geometric locality and pure states

	p022-Papamakarios
	1 Introduction
	2 Bounded-depth Frege systems and automatability
	2.1 Basic definitions
	2.2 LK proofs
	2.3 Semantic proofs, variable width and decision trees
	2.4 Automatability and the main result

	3 The formulas Ref
	4 Upper bounds
	5 Lower bounds
	5.1 The robustness of RRef_{d,N}
	5.2 The Furst-Saxe-Sipser switching lemma
	5.3 The lower bound for RRef_{d,N}

	6 Non-automatability of bounded-depth Frege systems
	7 Conclusion

	p023-Bhattacharya
	1 Introduction
	2 A Formula Hard For Just Regular ResLin
	3 Resolution Proof Systems and Branching Programs
	3.1 ROLBP Computing Boolean Function

	4 Linear Algebraic Facts
	5 Proof Outline
	6 Upper Bound
	7 Lower Bound
	7.1 The Stone Formula is Average-Case Hard for Decision Trees
	7.2 Lifting the Average-Case Hardness to Parity Decision Trees
	7.3 Foolable Nodes Are Frequent
	7.4 Foolability Implies Large Rank
	7.5 Lifted Distributions Fool Rank
	7.6 Putting Everything Together

	8 Future Directions

	p024-Aaronson
	1 Introduction
	1.1 Distribution-free Interactive Proofs of Proximity
	1.2 Our Results
	1.2.1 Distribution-free IPPs for NC
	1.2.2 IPPs for NC: The case of small epsilon
	1.2.3 On the power of distribution-free IPPs

	1.3 Technical Overview
	1.3.1 Proof outline of Theorem 1
	1.3.2 Proof outlines of Theorems 3 and 4

	1.4 Related Work

	p025-Kedlaya
	1 Introduction
	2 Lower bound for polynomials computing square roots
	2.1 Consecutive zero coefficients in powers of polynomials
	2.2 Remarks

	3 A robust version
	4 Upper bound for special p
	5 Upper bounds for general p
	5.1 Distribution of values of P_y(g^j)

	6 t-th roots

	p026-Jeronimo
	1 Introduction
	1.1 Super Product Test
	1.2 A Gap Amplification for QMA+(2) up to Criticality
	1.3 Organization

	2 Preliminaries
	3 The Disentangler from Unentanglement
	3.1 Analysis of PAPO
	3.2 The Disentangler from Unentanglement

	4 Quantum Slicing de Finetti Theorem
	4.1 One-versus-Many Slicing de Finetti
	4.2 Many-versus-Many Slicing de Finetti
	4.3 Proof of Slicing de Finnetti

	5 A Framework: Multiplexing Unentangled States for Property Testing
	6 The Super Swap and Super Product Tests
	7 Gap Amplification for QMA+(k) up to Criticality and Almost-QMA(k)=NEXP
	7.1 Gap Amplification for QMA+(k) up to Criticality
	7.2 Almost-QMA real(k)=NEXP

	p027-Guruswami
	1 Introduction
	2 Preliminaries
	3 Baby PIH
	4 Average Baby PIH
	4.1 A Counter Example for Direct Product Construction
	4.2 Towards the Inapproximability of k-ExactCover

	5 Discussion and Open Problems
	5.1 Average Baby PIH from Clique Hardness?
	5.2 PIH via Direct Product Testing Theorems?

	p028-Chakrabarti
	1 Introduction
	1.1 Groundwork for Our Results
	1.2 Our Results
	1.3 Related Work

	2 Organization of This Extended Abstract
	2.1 Notation
	2.2 Preliminary Remarks

	3 Random Tape Upper Bound
	4 Random Tape Lower Bound
	4.1 Technical Details

	5 Random Seed Lower Bound
	6 Pseudo-Deterministic Lower Bound
	6.1 Technical Details

	p029-Hirahara
	1 Introduction
	1.1 Results
	1.1.1 Average-Case Search-to-Decision for Kt
	1.1.2 Average-Case Search-to-Decision for rKt
	1.1.3 Worst-Case to Average-Case Search-to-Decision
	1.1.4 Weaker Assumptions on the Decision Problems

	1.2 Related Work
	1.3 Techniques
	1.4 Concluding Remarks, Directions, and Open Problems

	2 Preliminaries
	2.1 Definitions and Notation
	2.2 Basic Results in Kolmogorov Complexity

	3 Errorless Average-Case Search-to-Decision Reduction for rKt
	3.1 Technical Tools
	3.2 On Computational Depth
	3.3 Finding -Witnesses for Strings of Small Computational Depth
	3.4 Proof of

	4 Errorless Average-Case Search-to-Decision Reduction for Kpoly
	4.1 Technical Tools
	4.2 Proof of

	5 Error-Prone Average-Case Search-to-Decision Reduction for Conditional Kt
	5.1 Technical Tools
	5.2 Proof of PDFstring

	6 Worst-Case to Average-Case Search-to-Decision Reductions
	6.1 Worst-Case to Average-Case Search-to-Decision for rKpoly
	6.2 Worst-Case to Average-Case Search-to-Decision for Kpoly

	A Symmetry of Information for PDFstring
	B Quasi-Polynomial-Time Average-Case Search-to-Decision Reduction for rKt
	B.1 Technical Tools
	B.1.1 A Generator with rKt Reconstruction
	B.1.2 Symmetry of Information for rKt
	B.1.3 Coding Theorem for rkt
	B.1.4 Approximate Computational Depth for rKt

	B.2 Proof of

	C Search-to-Decision Reductions for the Problem
	D Errorless Average-Case Search-to-Decision Reduction for over the Uniform Distribution

	p030-Dong
	1 Introduction
	1.1 Proof Overview
	1.1.1 Approximating the Values of Noisy Games is NP-Complete
	1.1.2 Hardness of Noiseless MIP*[poly, O(1)]

	1.2 Technical Contributions
	1.2.1 Invariance Principle and Derandomized Invariance Principle for Matrix Functions
	1.2.2 Positivity Tester for Low-degree Matrices
	1.2.3 Answer Reduction with the Hadamard Code

	1.3 Discussions and Open Problems

	2 Nonlocal Games and MIP* Protocols
	3 Invariance Principle for Matrix Spaces
	3.1 Hypercontractivity
	3.2 Invariance Principle
	3.3 Derandomized Invariance Principle

	4 Positivity Tester for Low Degree Operators
	5 Noisy Nonlocal Games are NP-complete
	5.1 The Nondeterministic Algorithm
	5.2 NP-Hardness

	6 MIP* Protocol for RE with O(1)-size Answers
	6.1 Subset Tester for the Hadamard Code
	6.2 Answer Reduction Protocol

	A Preliminary
	A.1 Quantum Mechanics
	A.2 Matrix Analysis
	A.2.1 Matrix Spaces
	A.2.2 Random Matrices
	A.2.3 Fréchet Derivatives and Spectral Functions
	A.2.4 The Distance from PSD Matrices

	A.3 k-wise Uniform Hash Functions and Random Variables
	A.4 Lemmas for Noisy MIP*
	A.5 Lemmas for the Answer Reduction of MIP*

	B Proofs of Theorems
	B.1 Invariance Principle for Matrix Spaces
	B.2 Positivity Tester for Low Degree Operators
	B.3 Noisy Nonlocal Games are NP-complete
	B.3.1 The nondeterministic algorithm
	B.3.2 NP-hardness

	B.4 MIP* Protocol for RE with O(1)-size Answers

	p031-Forbes
	1 Introduction
	2 Our results
	2.1 Lower bounds over any field, without explicit set-multilinerization
	2.2 Lower bounds over any field, via explicit set-multilinearization
	2.3 Related Work

	3 Lower bounds over any field, via mathematical logic
	4 Lower bounds over any field, constructively

	p032-Cheng
	1 Introduction
	1.1 Our Result
	1.2 Related Work
	1.3 Proof Overview

	2 Preliminaries
	2.1 Matrix Approximation
	2.2 L-uniform AC Circuit Family and Approximate Counting
	2.3 Tool: Pairwise Independent Hash Function

	3 Approximate Counting in AC
	4 The Iteration Method
	5 The Complete Algorithm
	6 Open Problems

	p033-Garlik
	1 Introduction
	2 Preliminaries
	3 Resolution Refutations of s Levels of t Clauses
	4 Reflection Principle for Resolution
	5 The Upper Bounds
	6 The Lower Bounds
	7 Conclusion
	A Formula REF^{F}_{s,t}
	B Obtaining F from SAT^{n,r}
	C Formula R^kREF^{F}_{s,t}
	D Proof of Theorem 6
	E Some results on trees and a proof of Theorem 11
	F Proof of Theorem 16
	G The width lower bound
	H Proof of Theorem 18
	I Proofs of Theorem 1 and Theorem 2

	p034-Mazor
	1 Introduction
	1.1 Our Results
	1.2 Related Works
	1.3 Proof Overview

	2 Preliminaries
	2.1 Notations
	2.2 Distributions and Random Variables
	2.3 Kolmogorov Complexity

	3 Decision-to-Search for Shallow Instances
	3.1 Proving Claim 20
	3.2 A List-to-Decision Reduction for K-complexity

	4 Decision-to-Search Everywhere
	5 Decision-to-Search for MINKT using List Recoverable Codes
	5.1 Decision-to-Search on Average

	6 Decision-to-Search for GapMINKT using List Recoverable Codes

	p035-Alman
	1 Introduction
	1.1 Algorithms
	1.2 Lower bounds
	1.3 Our contribution
	1.4 Techniques
	1.5 Discussion

	2 Preliminaries
	2.1 SETH and known hard problems
	2.2 Kernels of interest
	2.3 Tools from linear algebra

	3 Main reduction from BCP
	4 Schur polynomials
	5 Direct calculation of tau(M): Gaussian kernel and t-Student kernel
	5.1 Gaussian kernel
	5.2 t-Student kernel

	6 Cauchy-Binet Expansion
	6.1 Absolutely monotonic kernels
	6.2 KDE hardness for positive definite kernels
	6.3 Hardness of Rational Quadratic kernel

	p036-Mazor
	1 Introduction
	1.1 Our Results

	2 Preliminaries
	2.1 Notations
	2.2 Distributions and Random Variables
	2.3 Kolmogorov Complexity
	2.4 Levin Reductions
	2.5 Cryptographic Primitives

	3 GapMCSP is not {NP}-complete under Levin Reductions
	3.1 Proving Theorem 19
	3.2 Randomized Levin Reductions

	4 Gap_{p}MK^tP is not {NP}-complete under Levin Reductions

