
Move-r: Optimizing the r-index
Nico Bertram #

Technische Universität Dortmund, Germany

Johannes Fischer #

Technische Universität Dortmund, Germany

Lukas Nalbach #

Technische Universität Dortmund, Germany

Abstract
We present a static text index called Move-r, which is a highly optimized version of the r-index ([11]
Gagie et al., 2020) that encorporates recent theoretical developments of the move data structure
([19] Nishimoto and Tabei, 2021). The r-index is the method of choice for indexing highly repetitive
texts, such as different versions of a text document or DNA from the same species, as it exploits the
compressibilty of the underlying data. With Move-r, we can answer count- and locate queries 2–35
(typically 15) times as fast as with any other r-index supporting locate queries while being 0.8–2.5
(typically 2) times as large. A Move-r index can be constructed 0.9–2 (typically 2) times as fast
while using 1/3–1 (typically 1/2) times as much space.
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1 Introduction

Answering pattern matching queries on repetitive texts is a common task in bioinformatics,
in particular when indexing DNA (assembled or unassembled) from the same species. In
such situations, it is important to exploit the repetitiveness of the data, and not use indexes
that store the whole data uncompressed.

The r-index [11] is a recent and important development in this area, and uses O(r) words
of space, where r is the number of equal-letter runs in the Burrows-Wheeler Transform-
ation, which is an accepted measure for compressibility of highly similar texts [17]. The
r-index answers counting queries (counting the number of matches of a length-m pattern) in
O(m log logw(σ + n/r)) time, and locate queries (listing all matching positions) in additional
O(occ log logω(n/r)) time, where n is the total text length, occ is the number of matches, σ

is the alphabet size, and w the word width of the word-RAM.
The bottleneck during the computation of those queries are predecessor queries. Recently,

the so-called move data structure has been proposed [19], which can answer the r-index-
specific predecessor queries in O(1) time. The move data structure uses the property that
two important functions (LF and Φ, see next section for their definitions) can be divided into
r intervals where the function values increase by exactly 1. Due to specific access patterns of
those functions during a pattern query, it is possible to subdivide those intervals (a process
called balancing) such that the functions can be evaluated in O(1) time, while still using
only O(r) space.
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Our Contributions. The practical performance of the move data structure is still largely
open: how can it be constructed efficiently, how fast does it answer queries, and how does
it compare with other implementations of the r-index? Does it even lead to a practical
advantage? We answer these questions and make the following contributions with a data
structure that we call Move-r:

We present a fast construction algorithm for the move data structure (Section 4.1). While
the general idea of the move data structure is simple to implement, it is not obvious how
to practically perform the balancing step (Section 3.2) efficiently.
We present a practically optimized locate-algorithm (Section 4.2) that significantly reduces
the number of memory accesses, at the cost of an asymptotically worse running time.
We introduce additional practical improvements to the move data structure that reduce
the space and improve cache efficiency (Appendix B).
From our experiments we conclude that the theoretical benefit of the O(1) time over
the O(log logω(n/r)) time to answer predecessor queries is reflected in practice, since
although Move-r indexes are 0.8–2.5 (typically 2) times as large as the fastest other r-index
supporting locate queries, they can answer count- and locate queries 2–35 (typically 15)
times as fast. Move-r can also be constructed 0.9–2 (typically 2) times as fast (and 2.5–30,
typically 20, times as fast as any dynamic r-index), while leaving a memory footprint that
is 1/3–1 (typically 1/2) times as large as those of other static r-indexes and sometimes
even competitive with dynamic r-indexes.

2 Preliminaries

In the following, we define necessary notations for the rest of this paper. An interval [i, j]
describes the set {i, ..., j}. For convenience, we use the following notations: [i, j] = [i, j +1) =
(i − 1, j] = (i − 1, j + 1). Given a set S ⊂ U , we define the predecessor of i ∈ U in S

as pred(i) = max{j|j ∈ S ∧ j < i}. Similarly, we define the successor of i ∈ U in S as
succ(i) = min{j|j ∈ S ∧ j > i}. We assume that all described algorithms work in the
word-RAM model with word size w [13].

An alphabet Σ is a finite ordered set of symbols of size |Σ| = σ. A string T ∈ Σ∗ with
|T | = n is a sequence of symbols in the alphabet Σ. In case that |T | = 0, T is the empty
string ϵ. We can access the i-th symbol of T with T [i]. A substring T [i, j] is defined by
T [i] · T [i + 1] · ... · T [j]. In case that i > j, we set T [i, j] = ϵ. The substring T [1, i] is called
the i-th prefix of T and the substring T [i, n] is called the i-th suffix of T and is denoted by
Ti. In case that the length of a prefix or suffix is at least 1 and at most n− 1 we call them
proper. We assume an order c1 < c2 < ... < cσ on the alphabet Σ = {c1, c2, ..., cσ}. The
lexicographic order of strings is then defined by T < T ′ ⇔ T is a proper prefix of T ′ ∨ ∃i :
T [1, i] = T ′[1, i] ∧ T [i + 1] < T ′[i + 1]. We are also interested in how often a character c

appears in a string T [1, i], which we denote by rank(T, c, i).

2.1 Burrows-Wheeler Transform
In the following, each string T ∈ Σ∗ is terminated by a sentinel symbol $ that is lexicograph-
ically smaller than all other symbols in Σ. This allows us to simplify our algorithms.

The suffix array [14] SA of a string T consists of the starting positions of all suffixes of T

in their lexicographic order, i.e, TSA[1] < TSA[2] < ... < TSA[n]. For a pattern P ∈ Σ∗, there is
a maximum interval in the suffix array (the suffix array interval of P ) containing exactly
the positions of all occurrences of P in T . For a string T , the i-th rotation is defined by
T [i, n]T [1, i− 1]. The rotation matrix is then the n× n matrix where the i-th row consists of
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the i-th rotation of T . When we sort the rotation matrix lexicographically, the last column
L is then called the Burrows-Wheeler Transform (BWT) [6] of T and the first column is
denoted by F . The BWT has the property that same symbols are often grouped runs of
the same symbols. For that reason, we can compress the BWT by applying a run-length
encoding to it. Let L1, L2, ..., Lr denote those runs, i.e, r is the number of runs in L and
L = L1 · L2 · ... · Lr. Then we can compress the BWT into the run-length encoded BWT
(RLBWT) (L1[1], |L1|), (L2[1], |L2|), ..., (Lr[1], |Lr|).

The last-to-first (LF) mapping of a string maps each symbol in the BWT to the corres-
ponding symbol in F and is defined by LF(i) = j ⇔ SA[j] = SA[i] − 1 if SA[i] > 1, and
LF(i) = 1 if SA[i] = 1. The LF property describes that the order of same symbols is identical
in F and L, i.e, L[i] = L[j] ∧ i < j ⇒ LF(i) < LF(j). Given the BWT L of a string T , we
can augment L with a rank data structure and the frequency array C of each character with
C[c] = |{i ∈ [1, n] | T [i] < c}|. Then, LF(i) = C[L[i]] + rank(L, L[i], i) because equal symbols
in F are grouped together, and the LF property. Thus, the following important property
holds, which allows us to implement LF in O(r) space:

▶ Lemma 1. Let T be a string of length n and L be its BWT. Let l1 < l2 < ... < lr be the
starting positions of each run in L and let lr+1 = n + 1. Then LF(i) = LF(lx) + (i− lx) holds
for lx ≤ i < lx+1.

2.2 Backward Search
We can answer count queries for a pattern P of length m by using a backward search [10]. We
search for P by iterating from right to left over P and determining in iteration i (implicitly)
the suffix array interval [b, e] that is prefixed by P [m− i + 1, m]. We initialize [b, e] with [1, n].
Now, consider the i-th iteration. Let c = P [m− i + 1] be the character under consideration.
We can find the suffix array interval that is prefixed by c by accessing C[c]. By using the
LF-property, we have to jump over all occurrences of c in L before [b, e] by using rank queries.
So, we set b = C[c] + rank(L, c, b − 1) + 1 and e = C[c] + rank(L, c, e). Having read P

completely, the output |[b, e]| is the number of occurrences of P in T . If |[b, e]| = 0, there are
no occurrences of P in T . If the suffix array is at hand, we can also answer locate queries by
outputting all starting positions of the occurrences in T .

A main insight of the r-index is the following: If we know the last value of a suffix array
interval, we can reconstruct the values in the entire interval without explicitly storing SA. This
is formalized by the function Φ, where Φ(SA[i]) = SA[i− 1] for i > 1 and Φ(SA[1]) = SA[n].
The following property holds, which allows us to implement Φ in O(r) space – note the
similarity to Lemma 1.

▶ Lemma 2 ([11], lemma 3.5). Let {u1, u2, ..., ur+1} = {SA[l1], SA[l2], ..., SA[lr], n + 1} and
u1 < u2 < ... < ur+1 = n + 1. Then Φ(i) = Φ(ux) + (i− ux) for ux ≤ i < ux+1.

3 The Move Data Structure

We now describe the move data structure [19]. By Lemma 1, the LF function can be divided
into r blocks with starting positions l1, l2, ..., lr and lr+1 = n + 1. Similarly, we can divide
Φ into r blocks (see Lemma 2) with starting positions u1, u2, ..., ur. Thus, we only need to
store the function values for each block head, and can compute every other value by adding
the offset between the value and the block head. In the following we will generalize this
concept to interval sequences [19] and describe how to efficiently answer queries on interval
sequences.

SEA 2024
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1 4 5 6 7 i

9− 7 = 2

4 + 2 = 6

i′

x′

1 2 3 4 8

Figure 1 Visualization of the disjoint inter-
val sequence I = (1, 8), (4, 3), (5, 1), (6, 2), (7, 4)
with n = 10, and the evaluation of the query
move(9, 5) = (6, 4).

1 n/2 + 1 n/2 + 2 ... n

1 2 ... n/2 n/2 + 1

Figure 2 When evaluating the query
move(n/2, 1) = (n, k) on this sequence, we set
x′ ←Midx[1] = 2 and increment x′ k− 2 times
until we get x′ = k.

3.1 Disjoint Interval Sequence
We first formally define disjoint interval sequences.

▶ Definition 3. Let I = (p1, q1), (p2, q2), ..., (pk, qk) be a sequence of pairs of elements in
the range [1, n], where q1, q2, ..., qk are pairwise distinct, let π be the permutation of [1, k]
s.t. 1 = qπ[1] < qπ[2] < ... < qπ[k] ≤ n, let pk+1 = n + 1 = qk+1, and let di = pi+1 − pi for
i ∈ [1, k]. Then, I is called a disjoint interval sequence if 1 = p1 < p2 < ... < pk < pk+1 and
dπ[i] = qπ[i+1] − qπ[i] for all i ∈ [1, k].

A disjoint interval sequence defines a sequence of input intervals and output intervals.
The input intervals consist of the ranges [pi, pi + di), and the output intervals consist of the
ranges [qi, qi + di), where the input interval starting with pi and the output interval starting
with qi have the same size di. It describes the bijective function fI that maps a position in
an input interval to the position with the same offset in its corresponding output interval
by fI(i) = qx + (i− px), where x is the index of the input interval containing the position i.
See Figure 1 for an example. The intervals at the top represent the input intervals and the
intervals at the bottom represent the output intervals. A line between an input interval and
an output interval is drawn between corresponding intervals and represents the permutation
π. A move query move(i, x) = (i′, x′) evaluates for a given value i ∈ [1, n] and the index
x ∈ [1, k] of the input interval containing i the function fI(i) = i′, and also returns the index
x′ of the input interval containing i′. x′ can then be used to directly evaluate the next query
move(i′, x′). See again Figure 1 for an example.

To answer move queries on I, we use a move data structure M, which stores three arrays
Mp[1..k] = [p1, p2, ..., pk], Mq[1..k] = [q1, q2, ..., qk] and Midx[1..k], where Midx stores at
position j the index of the input interval containing qj , i.e, Midx[j] = i iff qj ∈ [pi, pi + di).
This allows us to compute the i′-part of the query move(M, i, x) = (i′, x′) by i′ =Mq[x] +
(i −Mp[x]). To find x′, we set x′ ← Midx[x]. Now, we have to iterate over the starting
positions of the input intervals while incrementing x′ to find the input interval containing i′.
In the worst case this can take O(k) steps (see Figure 2). In the following, we show how to
reduce the time to answer a move query to O(a) for a fixed parameter a.

3.2 Balancing a disjoint interval sequence
Now, we show how to balance a disjoint interval sequence, which guarantees constant time
to answer move queries.
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▶ Definition 4. We call an output interval [qj , qj + dj) of I a-heavy if there are at least
2a input intervals of I starting in it. Otherwise, we call it a-balanced. We call a disjoint
interval sequence a-balanced iff all of its output intervals are a-balanced. Otherwise, we call
it a-heavy.

The general idea of a balancing algorithm is to find an a-heavy output interval and
split it (and its corresponding input interval) into two new intervals, each. The first new
output interval will be a-balanced, and the second new output interval is either a-heavy
or a-balanced. By iteratively applying this procedure (the a-balancing step), we obtain a
disjoint interval sequence that is a-balanced.

▶ Definition 5. We define an a-balancing step on I to be the process of splitting an a-heavy
output interval [qj , qj + dj) of I and its corresponding input interval [pj , pj + dj) at the
offset d = pi+a − qj to obtain the disjoint interval sequence I ′ = (p1, q1), ..., (pj , qj), (pj +
d, qj + d), (pj+1, qj+1), ..., (pk, qk), where [pi, pi + di) is the first input interval of I starting
in [qj , qj + dj). We call an algorithm A a balancing algorithm, if A takes a disjoint Interval
sequence I and an integer a ≥ 2 as input, iteratively performs a-balancing steps starting with
I until the disjoint interval sequence is a-balanced, and finally returns the resulting disjoint
interval sequence.

Now we show that every balancing algorithm terminates and that the resulting disjoint
interval sequence is at most a

a−1 times as large as I.

▶ Theorem 6 (Generalization of Lemma 6 [19]). Let I be a disjoint interval sequence of size k,
let a ≥ 2 be an integer, let A be a balancing algorithm and let Ba(I) be the disjoint interval
sequence resulting from an execution of A on I. Then fBa(I) = fI and |Ba(I)| ≤ a

a−1 k.

Proof. Let t′ be the number of a-balancing steps A performs during this execution, let
t ∈ [1, t′], let It be the disjoint interval sequence after the t-th step, let I0 = I, let [qj , qj + dj)
be the output interval of It−1 that A splits in the t-th step, and let [pi, pi + di) be the first
input interval of It−1 starting in [qj , qj + dj).

Since A splits [pj , pj + dj) and [qj , qj + dj) at the same offset d = pi+a − qj to obtain
It from It−1, clearly |It| = |It−1| + 1 and fIt = fIt−1 and therefore |It| = k + t and
fI = fI0 = fI1 = ... = fIt′ = fBa(I).

Let Oa,t be the set of output intervals in It containing at least a input intervals of
It. We have Oa,t ⊇ Oa,t−1 \ {[qj , qj + dj)} ∪ {[qj , qj + d), [qj + d, qj + dj)}, which implies
|Oa,t| ≥ |Oa,t−1|+ 1 and therefore |Oa,t| ≥ t. Since the output intervals in Oa,t are pairwise
disjoint, there cannot be less than a|Oa,t| input intervals in It, which yields k + t = |It| ≥
a|Oa,t| ≥ at⇔ t ≤ k

a−1 and therefore |Ba(I)| = k + t′ ≤ a
a−1 k. ◀

Recall that the dominating part of answering a query move(i, x) = (i′, x′) is to determine
x′ by starting at the first input interval starting in the output interval [qx, qx + dx) and
iterating over possibly all other input intervals starting in [qx, qx + dx). Since in Ba(I), the
number of these input intervals is bounded by 2a− 1, the following corollary holds.

▶ Corollary 7 (The Move Data Structure). Let I be a disjoint interval sequence of length k

and a ≥ 2 be an integer. Then there is a data structure of size O( a
a−1 k) that allows us to

consecutively evaluate fI in O(a) time using move queries.

SEA 2024
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4 Algorithmic Optimizations

At first, we present our new efficient algorithm to balance disjoint interval sequences. Then,
we discuss Move-r and compare it with Nishimoto and Tabei’s OptBWTR [19] index. In
Appendix B, we describe discuss further practical improvements.

4.1 New algorithm to balance disjoint interval sequences
For constructing an a-balanced disjoint interval sequence given a disjoint interval sequence,
we use two balanced search-trees Tin and Tout storing the pairs of I sorted by the starting
positions of the input intervals and the output intervals, respectively. We add (n+1, n+1) to
both s.t. for every pair in Tin or Tout we can compute the length of the input- or output-interval
it creates by accessing the next pair in Tin or Tout, respectively.

To speed up the construction of Tout, we at first calculate the permutation π[1..k] from
the definition of the disjoint interval sequence by sorting any permutation of [1, k] by the
starting positions of the output intervals of I. Since π[i] points to the pair creating the i-th
output interval, we can build Tout in O(k) additional time by inserting the pairs in the order
(pπ[1], qπ[1]), (pπ[2], qπ[2]), ..., (pπ[k], qπ[k]) into Tout.

Let T be a balanced search-tree over a set X. Then ⟨v⟩ denotes the node in T storing
v ∈ X, T .has-next(⟨v⟩) returns whether ⟨v⟩ has a successor node in T , T .next(⟨v⟩) returns this
successor node, T .next(⟨v⟩, n) returns the n-th successor of ⟨v⟩ in T , T .pred(v) = ⟨max{w ∈
T |w ≤ v}⟩, T .succ(v) = ⟨min{w ∈ T | v ≤ w}⟩, T .min() = ⟨min{v ∈ T }⟩ and ⟨p, q⟩in, and
⟨p, q⟩out denote the nodes in Tin and Tout storing (p, q), respectively. The algorithm is-a-heavy
expects an output interval [qj , qj + dj) and ⟨pi, qi⟩in, where [pi, pi + di) is the first input
interval starting in [qj , qj + dj). It iterates forward at most 2a steps in Tin starting with
⟨pi, qi⟩in and returns whether [qj , qj + dj) is a-heavy.

4.1.1 Framework Balancing Algorithm
The general idea of our balancing algorithm is to not explicitly store all a-heavy output
intervals in a data structure, but to compute and balance them on-the-fly. We achieve this
by implementing a deterministic balancing algorithm that in each step chooses to balance
the output interval with the smallest starting position. Algorithm 1 is the framework of our
balancing algorithm.

In the iterations of main while-loop (lines 3-13), we consider the pairs (pi, qi) ∈ Tin and
(pj , qj) ∈ Tout ascendingly ordered by qj , where i is minimal s.t. qj ≤ pi < qj + dj holds, if
such i exists, i.e, we consider the output intervals [qj , qj + dj) in ascending order of their
starting position together with the respective first input intervals [pi, pi + di) starting in
them. We initialize ⟨pi, qi⟩in and ⟨pj , qj⟩out with the first pairs in Tin and Tout, respectively.
For those, qj ≤ pi < qj + dj trivially holds, since qπ[1] = p1 = 1 < qπ[1] + dπ[1].

Given some combination of such pairs ⟨pi, qi⟩in and ⟨pj , qj⟩out, we want to find the next
combination of such pairs, that is we want to find (pi′ , qi′) ∈ Tin and (pj′ , qj′) ∈ Tout, where
qj′ is minimal s.t. qj′ > qj and there exists a pair (pi′ , qi′) ∈ Tin, where pi′ is minimal s.t.
qj′ ≤ pi′ < qj′ + dj′ . To find those, we at first iterate further one step with ⟨pj , qj⟩out in Tout
(line 8). We then iterate (possibly zero steps) with ⟨pi, qi⟩in in Tin, until pi > qj holds, or we
have reached the second to last pair in Tin (lines 10-12). If then also pi < qj + dj holds (line
13), we have found the next combination of such pairs. Else, we again alternately iterate
further as described with ⟨pi, qi⟩in and ⟨pj , qj⟩out until we find such pairs or until we reach
the second to last pair in Tin or Tout, respectively.
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Algorithm 1 balance-framework().

1 ⟨pi, qi⟩in ← Tin.min();
2 ⟨pj , qj⟩out ← Tout.min();
3 while true do
4 if is-a-heavy([qj , qj + dj), ⟨pi, qi⟩in) then
5 balance-up-to(⟨pi, qi⟩in, ⟨pj , qj⟩out, qj);
6 else
7 do
8 ⟨pj , qj⟩out ← Tout.next(⟨pj , qj⟩out);
9 if ¬Tout.has-next(⟨pj , qj⟩out) then return;

10 while pi < qj do
11 ⟨pi, qi⟩in ← Tin.next(⟨pi, qi⟩in);
12 if ¬Tin.has-next(⟨pi, qi⟩in) then return;

13 while qj + dj ≤ pi;

We want to make sure that each output interval [qj , qj +dj) considered in the main while-
loop is a-balanced. To do this, we check if [qj , qj +dj) is a-heavy by calling is-a-heavy([qj , qj +
dj), ⟨pi, qi⟩in) in line 4. If it is a-balanced, we proceed to iterate further over Tin and Tout
as described to find the next combination of ⟨pi, qi⟩in and ⟨pj , qj⟩out (lines 7-13). Else, we
call balance-up-to(⟨pi, qi⟩in, ⟨pj , qj⟩out, qj) in line 5, which performs at least one a-balancing
step. More precisely, it splits [qj , qj + dj) at the offset d = pi+a − qj into two new output
intervals [qj , qj + d) and [qj + d, qj + dj), then possibly recursively a-balances all output
intervals starting before qj becoming a-heavy in the process. We will prove the correctness
of balance-up-to in the next section (see Theorem 9). After each iteration of the main
while-loop, all output intervals starting before qj are a-balanced, hence, after the main
while-loop, all output intervals are a-balanced.

4.1.2 Balancing Step
In Algorithm 1, we always call balance-up-to with qj = qu (the non-recursive case). Inside
balance-up-to, we will (possibly) recursively call balance-up-to with qj < qu only (the recursive
case). At first, we prove the correctness of balance-up-to in the recursive case. Let t′ denote
the number of balancing steps our balancing algorithm performs.

Algorithm 2 balance-up-to(⟨pi, qi⟩in, ⟨pj , qj⟩out, qu).

1 ⟨pi+a, qi+a⟩in ← Tin.next(⟨pi, qi⟩in, a);
2 d← pi+a − qj ;
3 Tin.insert((pj + d, qj + d));
4 Tout.insert((pj + d, qj + d));
5 if pj + d < qu then
6 ⟨py, qy⟩out ← Tout.pred(pj + d);
7 ⟨pz, qz⟩in ← Tin.succ(qy);
8 if is-a-heavy([qy, qy + dy), ⟨pz, qz⟩in) then
9 balance-up-to(⟨pz, qz⟩in, ⟨py, qy⟩out, qu);

SEA 2024
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... pz ... pj pj + d ... pz+2a−2 ... pi ... pi+a ... pi+2a−1 ...

... qy ... qj qj + d ... qu

Figure 3 Illustration of an a-balancing step, where pj + d < qu and Oy = [qy, qy + dy) is a-heavy.

▶ Lemma 8. Let s ∈ [0, t′), let [qj , qj +dj) be an a-heavy output interval of Is and let qu > qj ,
where [qj , qj + dj) contains exactly 2a input intervals of Is, and all other output intervals of
Is starting before qu are a-balanced. Let [pi, pi + di) be the first input interval of Is starting
in [qj , qj + dj), let t ∈ (s, t′] be minimal s.t. all output intervals in It starting before qu are a-
balanced, and assume Tin and Tout store Is. Then calling balance-up-to(⟨pi, qi⟩in, ⟨pj , qj⟩out, qu)
updates Tin and Tout to store It.

Proof. We at first update Tin and Tout to store Is+1 by finding ⟨pi+a, qi+a⟩in and inserting
(pj + d, qj + d) into Tin and Tout, where d = pi+a − qj . Compared with Is, there are two
new output intervals [qj , qj + d) and [qj + d, qj + dj) in Is+1. Both contain exactly a input
intervals, hence they are a-balanced. Let Oy = [qy, qy + dy) be the output interval of Is+1
containing pj + d. Since pj + d ∈ Oy, Oy is the only possibly a-heavy output interval in
Is+1 starting before qu. If the if -clause in line 5 fails, then Oy starts at or after qu, hence
It = Is+1 and we are done.

Else, let [pz, pz + dz) be the first input interval of Is+1 starting in Oy. We now find
⟨py, qy⟩out with a predecessor search over Tout and ⟨pz, qz⟩in using a successor search over Tin.
Then, we check if Oy is a-heavy in Is+1 by calling is-a-heavy([qy, qy + dy), ⟨pz, qz⟩in). If it is
a-balanced, then It = Is+1 and we are done.

If it is a-heavy, then there are exactly 2a input intervals of Is+1 starting in Oy, because
Oy is a-balanced in Is and compared with Is, the number of input intervals of Is+1 starting
in Oy has increased by exactly one (see Figure 3). Therefore, calling balance-up-to(⟨pz, qz⟩in,

⟨py, qy⟩out, qu) in line 9 satisfies the requirements of Lemma 8, hence we can iteratively apply
the same overall argument to obtain Is+2 from Is+1, Is+3 from Is+2, etc. in the inner recursive
calls of balance-up-to. Let balance-up-to(⟨pi′ , qi′⟩in, ⟨pj′ , qj′⟩out, qu) be the t − s − 1-th such
recursive call and let Oy′ = [qy′ , qy′ + dy′) be the output interval of It containing pj′ + d′,
where d′ = pi′+a − qj′ . In this call, we update Tin and Tout to store It. By the definition of
It, Oy′ either starts at or after qu or is a-balanced in It, hence one of the if -clauses fails and
the series of recursive calls ends. ◀

With Lemma 8, we can now prove the correctness of balance-up-to in the non-recursive
case (qj = qu).

▶ Theorem 9. Let s ∈ [0, t′), let [qj , qj + dj) be the first a-heavy output interval of Is and let
[pi, pi + di) be the first input interval of Is starting in [qj , qj + dj). Let t ∈ (s, t′] be minimal
s.t. all output intervals in It starting before qj are a-balanced, and assume Tin and Tout store
Is. Then calling balance-up-to(⟨pi, qi⟩in, ⟨pj , qj⟩out, qj) updates Tin and Tout to store It.

Proof. As in the proof of Lemma 8, let Oy = [qy, qy + dy) be the output interval of Is+1
containing pj + d. If Oy starts at or after qj or if Oy is a-balanced in Is+1, then It = Is+1
and we are done after inserting (pj + d, qj + d) into Tin and Tout (lines 3 and 4).
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Else we can argue as in the proof of Lemma 8 to infer that Oy is the only a-heavy output
interval of Is+1 starting before qj , there are exactly 2a input intervals of Is+1 starting in Oy

and that we call balance-up-to(⟨pz, qz⟩in, ⟨py, qy⟩out, qj) in line 12, which updates Tin and Tout
to store It by Lemma 8. ◀

4.1.3 Running time analysis
▶ Theorem 10. Given Tin and Tout for a disjoint interval sequence I of size k and an integer
a ≥ 2, we can compute Ba(I) in O(k + k

a log k) time and O(1) additional space.

Proof. As argued in Section 3.2, Tin contains such an a-balanced disjoint interval sequence
Ba(I) after performing Algorithm 1. Here, we iterate once over Tin and Tout in total. This
takes O(k) time. Overall, we call balance-up-to (recursively and non-recursively) at most k

a−1
times, since by Theorem 6, the disjoint interval sequence is a-balanced after ≤ k

a−1 balancing
steps. In Algorithm 1, we need O(1) additional space.

In each of those calls of balance-up-to, we find ⟨pi+a, qi+a⟩in (O(a) time), insert (pj +
d, qj +d) into Tin and Tout (O(log k) time) and possibly perform a predecessor- and a successor
search over Tout and Tin (O(log k) time), respectively. Overall, one call of balance-up-to needs
O(a + log k) time. We do not need the local variables in balance-up-to, once we recursively
call balance-up-to, hence balance-up-to needs O(1) additional space. In total, this yields
O(k + k

a (a + log k)) = O(k + k
a log k) time and O(1) additional space. ◀

4.2 Practically optimized locate algorithm
Now we describe our practically optimized locate algorithm. At first, we introduce preparatory
definitions and lemmas. Then, we discuss Nishimoto and Tabei’s count algorithm [19] together
with our practically optimized version of their locate algorithm.

▶ Definition 11. Let MLF of size r′ ≥ r be a move data structure (Corollary 7) built from
the disjoint interval sequence Ba(ILF), where ILF = (l1, LF(l1)), (l2, LF(l2)), ..., (lr, LF(lr)). Let
MΦ of size r′′ ≥ r be a move data structure built from the disjoint interval sequence Ba(IΦ),
where IΦ = (u1, Φ(u1)), (u2, Φ(u2)), ..., (ur, Φ(ur)). Let L′[1..r′] be a string containing the
characters L[MLF

p [1]], L[MLF
p [2]], ..., L[MLF

p [r′]].

Note that r′ and r′′ depend on the balancing parameter a. The total used space of these
data structures is O(r), because r′, r′′ ≤ a

a−1 r = O(r) hold with Theorem 6.

▶ Definition 12. Let i ∈ [1, m], let [bi, ei] be the suffix array interval of Pi, let b′
i = LF−1(bi),

e′
i = LF−1(ei), let b̂i, êi, b̂′

i and ê′
i be the indices of the input intervals in MLF containing

bi, ei, b′
i and e′

i, respectively. Define z(i) = SA[ei] (the lexicographically largest suffix of T

starting with Pi), let s(i, j) = z(j)+i−j and let y(i) = max{j ∈ [1, m] |Ts(i,j) starts with Pi}.
Finally, define bm+1, b̂m+1, em+1 and êm+1 analogously, i.e, bm+1 = 1, b̂m+1 = 1, em+1 = n

and êm+1 = r′.

Let S be a string that occurs in T and let Tl be the lexicographically largest suffix
of T among those starting with S. Then we call T [l, l + |S|) the lexicographically largest
occurrence of S in T . Intuitively, Py(i) is the shortest suffix of P s.t. the lexicographically
largest occurrence of Py(i) in T is a suffix (in T ) of the lexicographically largest occurrence
of Pi in T .

▶ Lemma 13. For i ∈ [1, m], Ts(i,y(i)) is the lexicographically largest suffix of T starting with
Pi, that is, it holds s(i, y(i)) = z(i).

SEA 2024
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Figure 4 Illustrations of Case 1 (left) and Case 2 (right) of Lemma 15, where c′ = P [y(i + 1)].

Proof. Suppose there was a suffix Tw > Ts(i,y(i)) starting with Pi. Then Tw+y(i)−i starts
with Py(i) and Tw+y(i)−i > Tz(y(i)), contradicting the definition of Tz(y(i)). ◀

▶ Lemma 14. For i ∈ [1, m], p = SA−1[z(y(i)) + 1] is the end position of a BWT run.

Proof. See Appendix A. ◀

The query select(T, c, i) returns the position of the i-th occurrence of c in T .

▶ Lemma 15. Let i ∈ [1, m]. Given bi+1, b̂i+1, ei+1 and êi+1 (and additionally y(i + 1) and
ê′

y(i+1), for i < m). If we augment L′ with an O(log logω σ) time and O(r′) space rank data
structure and an O(1) time and O(r′) space select data structure, we can compute bi, b̂i, ei,
êi, y(i) and ê′

y(i) in O(a + log logω σ) time.

Proof. Let c = P [i]. To obtain bi and b̂i from bi+1 and b̂i+1, we can use that TSA[b′
i
] is

the lexicographically smallest suffix of T starting with Pi+1 that is preceded by c, and
therefore, b′

i and b̂′
i are the first occurrences of c at or after bi+1 and b̂′

i+1 in L and L′,
respectively, allowing us to compute b̂′

i = select(L′, c, rank(L′, c, b̂i+1 − 1) + 1), b′
i =MLF

p [b̂′
i]

and (bi, b̂i) = move(MLF, b′
i, b̂′

i). Analogously, we obtain ei and êi from ei+1 and êi+1 by
ê′

i = select(L′, c, rank(L′, c, êi+1)), e′
i =MLF

p [ê′
i + 1]− 1 and (ei, êi) = move(MLF, e′

i, ê′
i). An

implementation of the required rank-select data structure for L′ can be found in [19] or
Appendix B.1.

Now it remains to compute y(i) and ê′
y(i). If i = m, then y(i) = m, because Pm occurs at

z(m) Def. 12= s(m, m), and therefore ê′
y(i) = ê′

m. Else, we have i < m. Here, we consider two
cases (see Figure 4).
Case 1: e′

i = ei+1. Then TSA[ei+1]
Def. 12= Tz(i+1) is preceded by c, hence Pi occurs at

z(i + 1) − 1 Lem. 13= s(i + 1, y(i + 1)) − 1 Def. 12= s(i, y(i + 1)), hence (i) y(i) ≥ y(i + 1).
Let j ∈ (y(i + 1), m]. Since Pi+1 does not occur at s(i + 1, j), Pi does not occur at
s(i + 1, j) − 1 Def. 12= s(i, j), hence (ii) y(i) ≤ y(i + 1). Combining (i) and (ii) yields
y(i) = y(i + 1), and therefore ê′

y(i) = ê′
y(i+1).
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Case 2: e′
i < ei+1. Then Tz(i+1) is not preceded by c, hence Pi does not occur at z(i+1)−1.

By induction, Pi also does not occur at z(i + 2)− 2, z(i + 3)− 3, ..., z(m) + i−m. More
generally, Pi does not occur at s(i, j), for each j ∈ (i, m], hence (i) y(i) ≤ i. Since Pi

occurs at z(i) Def. 12= s(i, i), we get (ii) y(i) ≥ i. Combining (i) and (ii) yields y(i) = i,
and therefore ê′

y(i) = ê′
i.

In total, we perform two move queries on MLF (O(a) time) and at most two rank queries
on L′ (O(log logω σ) time). The remaining computations take O(1) time, hence the running
time bound follows. ◀

Note that iff L′[b̂i+1] = c holds, then b′
i = bi+1 and b̂′

i = b̂i+1. Similarly, L′[êi+1] = c⇔
e′

i = ei+1 ∧ ê′
i = êi+1. In practice, we use this to save up to two rank-select queries on L′,

which improves performance, especially if the text has a small alphabet. This optimization
and the first part of Lemma 15, i.e, the computation of bi, ei, b̂i and êi is identical in the
algorithms proposed by Nishimoto and Tabei [19].

▶ Theorem 16. We can answer a count query in O(m(a + log logω σ)) time.

Proof. We compute b1, e1, b̂1 and ê1 by applying Lemma 15 m times starting with bm+1,
em+1, b̂m+1 and êm+1 and return the length |[b1, e1]| of the suffix array interval of P . ◀

Note that we do not need y(1) and ê′
y(1) to answer a count query. Those values are only

necessary for answering a locate query, which we will discuss next.

▶ Definition 17. For i ∈ [1, r′], let pi =MLF
p [i + 1]− 1. If pi is the end position of a BWT

run, then there exists an output interval in IΦ (and therefore also in MΦ) that starts with
SA[pi]. Let xi be the index of this output interval ofMΦ, i.e, xi ∈ [1, r′′] s.t.MΦ

q [xi] = SA[pi].
Finally, let SAΦ[1..r′] be an array, where

SAΦ[i] =
{

xi pi is the end position of a BWT run,
⊥ else.

▶ Theorem 18. We can answer a locate query in O(m(a + log logω σ) + occ · a) time.

Proof. As in Theorem 16, we compute b1, e1, b̂1 and ê1 and additionally y(1) and ê′
y(1)

by applying Lemma 15 m times starting with bm+1, em+1, b̂m+1 and êm+1. This takes
O(m(a + log logω σ)) time. Then, we compute

s = SA[e1] Lem. 13= s(1, y(1)) Def. 12= z(y(1)) + 1− y(1) Def. 12= SA[ey(1)] + 1− y(1)
Def. 12= SA[e′

y(1)]− y(1) (i)= SA[MLF
p [ê′

y(1) + 1]− 1]− y(1) (ii)= MΦ
q [SAΦ[ê′

y(1)]]− y(1)

and report s. Lemma 14 yields, that e′
y(1)

Def. 12= LF−1(ey(1))
Def. 12= SA−1[z(y(1)) + 1] is the

end position of a BWT run. Since the BWT run end positions are a subset of the input
interval end positions of MLF, e′

y(1) is also the end position of the ê′
y(1)-th input interval of

MLF, hence (i) holds and (ii) follows with Definition 17. If b1 = e1, then we are done.
Else, we compute the remaining occurrences {SA[e1− 1], SA[e1− 2], ..., SA[b1]} = {Φ1(s),

Φ2(s), ..., Φe1−b1(s)} by consecutively performing e1 − b1 move queries on MΦ starting with
(s, ŝ) and reporting s after each move query, where ŝ is the index of the input interval inMΦ

containing s. This takes O(occ · a) additional time. To compute ŝ, we at first compute the
index x̂ =MΦ

idx[SAΦ[ê′
y(1)]] of the input interval in MΦ containing SA[e′

y(1)]. Again, we can
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do this by Definition 17, because e′
y(1) is the end position of both a BWT run and the ê′

y(1)-th
input interval of MLF. Then, we find ŝ in O(log m) time with an exponential search to the
left over the input interval starting positions of MΦ starting at x̂. We can do this, because

x̂ − ŝ
(iii)
≤ SA[e′

y(1)] − SA[e1] Def. 12, Lem. 13= z(y(1)) + 1 − s(1, y(1)) Def. 12= y(1)
Def. 12
≤ m,

where (iii) holds, because an input interval of MΦ has at least size one. ◀

Comparing Move-r with OptBWTR
Move-r consists of the data structures MLF, MΦ, L′ (see Definition 11), a rank-select data
structure RSL′ for L′ (see Appendix B.1) and SAΦ (see Definition 17). Overall, Move-r needs
O(r) space, because r′, r′′ = O(r) hold with Theorem 6.

Now we discuss the differences between OptBWTR and Move-r. OptBWTR implements
Φ−1 instead of Φ, which results in symmetric algorithms and data structures. To compute
the initial suffix array value during a locate query, OptBWTR stores two arrays SAs[1..r′]
and SAidx[1..r′] instead of SAΦ, where SAs[i] = SA[MLF

p [i]] and SAidx[i] stores the index of the
input interval in MΦ containing SAs[i]. With Move-r, we access SAΦ only once and MΦ

p at
most log m times to compute the initial suffix array value during a locate query. This saves
up to 3m cache misses compared with OptBWTR, because there, MΦ

p , SAs and SAidx are
randomly accessed in potentially each iteration of the backward search. Another difference is
that Move-r uses a practically optimized implementation of RSL′ (see Appendix B.1). Finally,
Move-r encorporates further practical optimizations (see Appendix B.2 and Appendix B.3).

5 Experimental Evaluation

We implemented the algorithms described in Section 4 in C++20. We implemented a practically
optimized version the balancing algorithm described in Section 4.1. For Tin and Tout, we
used the B-tree implementation from the abseil-cpp library. For sorting, we used the
in-place sample sort implementation ips4o [1]. We used the uncompressed bit vector- and
sd-array implementations in the SDSL [12] to implement RSL′ . To measure peak memory
consumption, we used malloc_count. Links to all software used can be found in our GitHub
repository.

Now we discuss the tested indexes. Some of them use Big-BWT [15], which constructs the
so-called prefix free parsing (PFP) [4] of T to build the BWT and suffix array samples. This
approach reduces the working space needed to construct an r-index from O(n) to O(|PFP|)
words, where |PFP| is the sum of the lengths of all dictionary phrases and the number of all
phrases in the factorization of the PFP of T . grlBWT [9] is a BWT construction algorithm
for string collections that uses string compression. For most inputs, it is currently the fastest
and most memory-efficient algorithm. However, it does not support the computation of
suffix-array samples, which are necessary for efficiently answering locate queries.

move-r: Our implementation. It uses Big-BWT build the BWT and suffix array samples.
In preliminary experiments, we observed that the balancing process can drastically
increase query throughput and determined a = 8 to be the optimal trade-off between
index size and performance.
r-index: [11] The original implementation of the r-index (adjusted to use Big-BWT).
online-rlbwt: [2] A refined version of the dynamic RLBWT implementation from [22],
which additionally supports answering locate queries.
rcomp-glfig: [18] A dynamic r-index developed by the inventors of the move data
structure. It uses their so-called divided BWT (DBWT) and grouped LF-interval graph
(GLFIG) representations of the BWT, which maintain the stricter so-called α-balancedness
property, where α ≥ 2 is an integer. The grouping parameter g has been set to 16.
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Table 1 Statistics of the tested texts (r′ and r′′ calculated for a = 2). N denotes the number of
queried patterns, m is the pattern length and occ is the average number of occurrences per pattern.

text size [GB] σ n/r r′/r r′′/r N m occ

einstein.en.txt 0.47 139 1611.18 1.23 1.49 100000 800 748.82
10000 7 74237.84

sars2 84.19 80 686.57 1.38 1.06 1000 5000 7290.24
50 50 524838.82

dewiki 68.72 210 345.80 1.23 1.35 20000 320 313.49
130 10 216783.43

chr19 58.57 52 272.20 1.06 2.00 150 50000 61806.96
200 80 719590.32

english 2.21 239 3.36 1.19 1.20 30000 35 34.60
150 7 98864.59

For reasons of completeness, we also include the following data structures in our test,
although they do not support locate queries. They should thus not be directly compared
with the other indexes.

r-index-f: [5] An r-index that also uses a move data structure to compute LF. However,
it does not perform a balancing algorithm on ILF. It uses Big-BWT and pfp-thresholds,
to build the BWT, and has been optimized to reduce the index size. It does not support
answering locate queries. We used the variant lookup-bv as recommended by the authors.
block-rlbwt-2: [8] An index that splits L into blocks of size b = 211 and applies
run-length encoding to those. rank(L, c, i) is computed by looking up the number of
occurrences of c before the ⌊i/b⌋-th block and scanning over it up to position i. Runs
exceeding length 216−⌈log2 σ⌉ are split s.t. one run can be encoded using two bytes. It
uses grlBWT to build the BWT and does not support answering locate queries.
block-rlbwt-v: [8] Uses the same approach as block-rlbwt-2, but avoids splitting runs
by using O(log l + log σ) bytes to encode a run of length l, and uses b = 214.
block-rlbwt-r: [8] Uses the same approach as block-rlbwt-2, but instead splits L into
blocks of b′ = 32 runs. To compute rank(L, c, i), the block containing i is found using a
heap ordered B+-tree of the block starting positions.

We compared all indexes using our tool move-r-bench, which is included in our GitHub
repository, on a system with two AMD EPYC 7452 CPUs (32/64x 2.35-3.35GHz, 2/16/128MB
L1/2/3 cache) and 1TB of 3200 MT/s DDR4 RAM using the GCC 9.4.0 compiler and the
compile flags "-march=native -DNDEBUG -Ofast" on Ubuntu 18.04.6. Table 1 shows the
tested texts. einstein.en.txt and english are part of the Pizza&Chili Corpus. dewiki is a
highly repetitive text that has been handcrafted from German Wikipedia entries. chr19
consists of concatenated human chromosome 19 haplotypes, and sars2 is a collection of
Sars-Cov-2 genomes, both of which were crafted out of datasets from the National Center for
Biotechnology Information (NCBI) database. Links to all texts can be found in our GitHub
repository.

5.1 Construction performance
Figure 5 shows index construction performance (time and peak memory consumption).
Commonly, the block-rlbwt indexes can be constructed the fastest and while using the
least space (except with einstein.en.txt). This is because they use grlBWT to build the BWT.
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With repetitive texts, index construction time and peak memory usage are dominated by the
construction of the BWT. In this case, any static r-index can easily be adapted to instead use
grlBWT and achieve similar construction performance with the limitation that it then only
supports count queries. Compared with the closest other index supporting locate queries,
move-r can be constructed 0.9–2 (typically 2) times as fast while requiring 1/3–1 (typically
1/2) times as much memory. In some cases, move-r even competes with the dynamic indexes
regarding memory usage (see chr19, dewiki and english). Constructing static indexes is 2–20
times as fast and requires 1–10 times as much space than constructing dynamic indexes.
Comparing the two dynamic indexes, rcomp-glfig’s construction consumes 2–3 times as
much memory as that of online-rlbwt while sometimes one and sometimes the other takes
(at most 60%) longer.
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Figure 5 Peak memory consumption during the index construction versus index construction
time. The indexes in the left legend column (solid marks) support answering locate queries, while
the others do not.
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Figure 6 Query throughput versus index size. The indexes in the upper legend row (solid marks)
support answering locate queries, while the others do not.
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5.2 Query performance

For each text, we generated two sets of query patterns (two lines per file in Table 1) using
our tool move-r-patterns. The tool, generated patterns and scripts for replicating our
experiments are included in our GitHub repository. We chose the patterns in the first set s.t.
occ ≈ m. This implies that when locating those patterns, we measure a blend of LF-, Φ- and
rank-select queries on L′, since we perform occ ≈ m Φ queries, 2m LF queries and at most
2m rank-select queries on L′. The patterns in the second set were chosen s.t. occ ≈ 105m.
When locating those patterns, we practically only measure Φ query performance. To measure
count performance, we used the first set of patterns.

Figure 6 shows query performance versus index size. Out of the indexes without locate
support, different block-rlbwt indexes provide the best trade-off between query performance
and index size, depending on the repetitiveness and alphabet size of the text (see [8] for a
more detailed discussion). r-index-f is consistently the smallest index, but also achieves
low query throughput. Out of the dynamic indexes, online-rlbwt clearly performs better,
because rcomp-glfig is consistently 3–4 times as large as it and often achieves a lower query
throughput. r-index usually provides query performance similar to online-rlbwt while
being only 1/3 as large. move-r outperforms r-index by factors between 3 and 35 (typically
15) while being 2–2.5 times as large. Comparing move-r with the fastest block-rlbwt index,
respectively, move-r is 2–3 (typically 2) times as fast and 0.8–6 (typically 2) times as large.
However, move-r can also be constructed without locate support, which roughly halves its
size. This lessens (by a factor of 2) and sometimes cancels out the index size advantage of
the respective fastest block-rlbwt index.

6 Conclusion

Overall, we have shown that the move data structure speeds up the r-index while causing an
acceptable space increase and can be constructed efficiently. Regarding query throughput,
Move-r outperforms the fastest other r-index supporting locate queries ([11] or [2]) by factors
between 2 and 35 (typically 15) while being 0.8–2.5 (typically 2) times as large. Move-r can
be constructed 0.9–2 (typically 2) times as fast while consuming 1/3–1 (typically 1/2) times
as much memory. Compared with the fastest r-index supporting only count queries, Move-r
achieves 2–3 (typically 2) times better query throughput while being 0.4–3 (typically 1) times
as large.
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A Proof of Lemma 14

▶ Lemma 14. For i ∈ [1, m], p = SA−1[z(y(i)) + 1] is the end position of a BWT run.

Proof. Let p′ = SA−1[z(y(i) + 1)]. By the definition of Py(i), Tz(y(i)+1)−1 does not start
with Py(i), hence L[p′] = T [z(y(i) + 1) − 1] ̸= P [y(i)]. The definition of Tz(y(i)+1) implies
Tz(y(i))+1 < Tz(y(i)+1) and therefore p < p′. Now suppose p was not the end position of
a BWT run. Since L[p + 1] = L[p] = P [y(i)] implies p + 1 < p′, TSA[p+1] starts with
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Py(i)+1 and TSA[LF(p+1)] starts with Py(i). However, because LF(p) < LF(p + 1) follows with
the LF-property, TSA[LF(p+1)] is lexicographically larger than Tz(y(i)), which contradicts the
definition of Tz(y(i)), hence the claim is correct. ◀

B More practical optimizations

B.1 Practically optimized rank-select data structure
Nishimoto and Tabei proposed the following data structures to implement RSL′ :

RSmap[1..σ]: deterministic dictionary [21] storing the order-preserving mapping function
from Σ to the effective alphabet Σ′ of Σ
RSrank: wavelet tree [3] of L′

RSselect of size r′, where RSselect[c][i] = select(L′, c, i) for c ∈ Σ′ and i ∈ [1, |Occ(c, L′)|]

With RSrank, we can answer rank queries on L′ in O(log logω σ) time. With RSmap and
RSselect, we can answer select queries on L′ in O(1) time. With the move data structureMLF,
the asymptotic runtime of the count algorithm is bounded by the runtime O(m log logω σ)
(for a = O(1)) of the rank queries on the wavelet-tree of L′. This is also the case in the locate
alorithm, if occ = O(m log logω σ) (for a = O(1)).

We instead store σ bit-vectors of size r′ each in RSL′ [1..σ][1..r′], where RSL′ [c][i] = 1⇔
L′[i] = c. Then we can answer rank(L′, c, i) by computing RSL′ [c].rank1(i). Similarly, we
compute RSL′ [c].select1(i) to answer select(L′, c, i).

If a character c ∈ Σ occurs at least r′/10 times in L′, we implement RSL′ [c][1..r′] with
an uncompressed bit vector and augment it with O(1) time and o(r′) space rank1- [23] and
select1 [7] data structures. Else, we use an sarray [20] to implement RSL′ [c][1..r′]. This
results in O(log r′

nc
+ log4 nc/ log r′) time to answer a rank query on L′ and O(log4 nc/ log r′)

time to answer a select query on L′, where c ∈ Σ and nc denotes the number of occurrences
of c in L′. Overall, we need O(

∑m
i=1(a + log r′

nP [i]
+ log4 nP [i]/ log r′)) = O(m(a + log3 r))

time to answer a count query, because 1 ≤ nc < r′ ∀c ∈ Σ and r′ = O(r), where nP [i]
denotes the number of occurrences of P [i] in L′. This is asymptotically worse than the
O(m(a + log logω σ)) time that we get when using a wavelet-tree of L′. In practice, our
rank-select data structure reduces the running time of count- and locate queries (for occ ⪅ m)
by a factor up to 3.

Since there are at most 9 characters c ∈ Σ occurring at least r′/10 times in L′ (because $
occurs exactly once in L′), there are at most 9 uncompressed bit vectors in RSL′ , which need
9r′+o(r′) bits. The size of the sarrays in RSL′ is bounded by

∑
c∈Σ(nc log( r′

nc
)+2nc+o(nc)) =∑

c∈Σ(nc log( r′

nc
)) + 2r′ + o(r′) = r′H0(L′) + 2r′ + o(r′) bits, which is asymptotically not

larger than a huffman-shaped wavelet-tree of L′, which needs r′H0(L′)+o(r′H0(L′)+1)+σω

bits (see [16]), where H0(L′) is the Zeroth Order Entropy of L′. In practice, RSL′ is roughly
2 times as large as a huffman-shaped wavelet-tree of L′.

B.2 Reducing index construction time in practice
In [19], they showed how to construct Midx in O(k′ log k′) time using a binary search over
Mp[1..k′] for each entry inMidx[1..k′]. To speed up the construction in practice, we compute
π for Ba(I) and use it to iterate over the output intervals of Ba(I) in O(k′) time. We
simultaneously iterate over the input intervals to keep track of the index i of the input
interval containing the starting position of the current (j-th) output interval. Hence, we
can write Midx[π[j]] ← i for each j-th output interval. Since the construction of π takes
O(k′ log k′) time, this method still results in the same theoretical time to construct Midx,
but is much faster in practice.
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We can apply a similar method to build SAΦ. We at first build the array SA′
s[1..r′], where

SA′
s[i] = SA[MLF

p [i+1]−1], if pi is the end position of a BWT run and SA′
s[i] =∞, else. Then,

we build the permutation π′[1..r′] storing the order of the values in SA′
s in O(r′ log r′) time.

To iterate over the output intervals of MΦ, we can reuse πΦ from the construction of MΦ
idx,

i.e, we can build SAΦ by simultaneously iterating overMΦ
q [πΦ[1]],MΦ

q [πΦ[2]], ...,MΦ
q [πΦ[r′′]]

and SA′
s[π′[1]], SA′

s[π′[2]], ..., SA′
s[π′[r]] in O(r + r′′) = O(r) time and setting SAΦ[π′[i]]← ⊥

for i ∈ (r, r′] in O(r′ − r) = O(r) time.

B.3 Reducing index size in practice
We reduced the size of the move data structure by using the following tricks. Instead of
storing Mq, we only store the offset of each output interval starting position in the input
interval containing it, i.e, we store the arrays Mp[1..k], Moffs[1..k] and Midx[1..k], where
Moffs[i] = qi −Mp[Midx[i]], for i ∈ [1, k]. This allows us to compute qi with one random
access to Mp at the position Midx[i], which is irrelevant when evaluating a move query,
because when computing move(M, i, x) = (i′, x′), we start scanning over Mp at the position
Midx[x] to find x′.

The length of the longest input interval is an upper bound of any value in Moffs. This
implies that we can storeMoffs with the word width ωoffs by limiting the length of each input
interval to 2ωoffs . We can do this by iterating over the input intervals from left to right and
splitting each input interval considered (and its corresponding output interval) at the offset
2ωoffs if it is longer than 2ωoffs . We split the input intervals before performing the balancing
algorithm, because splitting an input interval can make the output interval containing the split
position a-heavy. Since we perform ≤ n

2ωoffs splits, the number of input- and output intervals
increases by a factor ≤ 1 + n

k2ωoffs . We choose ωoffs = min{ω ∈ {8, 16, 24, 32, 40} : n
k2ω ≤ ϵ}

to bound the overall size of the resulting move data structure to O((1 + ϵ) a
a−1 k), for some

ϵ > 0. This suffices, if we assume n ≤ 240, that is if the text file is smaller than ≈ 1TB. In
practice, ϵ = 1

8 turns out to be reasonable trade-off.
We also store Mp and Midx with the minimum possible word widths ωp = min{ω ∈

{8, 16, 24, 32, 40} : n ≤ 2ω} and ωidx = min{ω ∈ {8, 16, 24, 32, 40} : k′ ≤ 2ω}, respectively.
Finally, we store Mp, Moffs and Midx interleaved with each other, to reduce the number of
cache misses when performing move queries.

To further reduce the number of cache misses, we store L′ interleaved with the arrays of
MLF. Since SAΦ[i] ∈ [1, r′′], we can store SAΦ with the same word width ωidx as MΦ

idx.
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