
Engineering Weighted Connectivity Augmentation
Algorithms
Marcelo Fonseca Faraj #

Heidelberg University, Heidelberg, Germany

Ernestine Großmann #

Heidelberg University, Heidelberg, Germany

Felix Joos #

Heidelberg University, Heidelberg, Germany

Thomas Möller #

Heidelberg University, Heidelberg, Germany

Christian Schulz #

Heidelberg University, Heidelberg, Germany

Abstract
Increasing the connectivity of a graph is a pivotal challenge in robust network design. The weighted
connectivity augmentation problem is a common version of the problem that takes link costs into
consideration. The problem is then to find a minimum cost subset of a given set of weighted links
that increases the connectivity of a graph by one when the links are added to the edge set of the
input instance. In this work, we give a first implementation of recently discovered better-than-2
approximations. Furthermore, we propose three new heuristics and one exact approach. These
include a greedy algorithm considering link costs and the number of unique cuts covered, an approach
based on minimum spanning trees and a local search algorithm that may improve a given solution by
swapping links of paths. Our exact approach uses an ILP formulation with efficient cut enumeration
as well as a fast initialization routine. We then perform an extensive experimental evaluation
which shows that our algorithms are faster and yield the best solutions compared to the current
state-of-the-art as well as the recently discovered better-than-2 approximation algorithms. Our novel
local search algorithm can improve solution quality even further.

2012 ACM Subject Classification Mathematics of computing → Optimization with randomized
search heuristics; Theory of computation → Approximation algorithms analysis; Theory of computa-
tion → Randomized local search

Keywords and phrases weighted connectivity augmentation, approximation, heuristic, integer linear
program, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.11

Related Version Full Version: https://arxiv.org/pdf/2402.07753.pdf

Supplementary Material Software (Source Code): https://github.com/HeiConnect

Funding We acknowledge support by DFG grant SCHU 2567/3-1.

1 Introduction

Many real-world coherences can be modeled as graphs, including technological, social, and
biological networks. A common problem of interest is the robustness of such a graph.
Particularly in technological networks this is important for creating systems that are robust
and fail-safe [12]. An example is a power grid where single lines can fail, either randomly due
to age, or by targeted attacks. If a line fails, alternative routes are used which is increasing
the load on them and therefore the chance of failure. To obtain a fail-safe network that can

© Marcelo Fonseca Faraj, Ernestine Großmann, Felix Joos, Thomas Möller, and Christian Schulz;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 11; pp. 11:1–11:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marcelofaraj@informatik.uni-heidelberg.de
https://orcid.org/0000-0001-7100-236X
mailto:e.grossmann@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-9678-0253
mailto:joos@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-8539-9641
mailto:thomas.moeller@uni-heidelberg.de
https://orcid.org/0009-0005-4312-2272
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
https://doi.org/10.4230/LIPIcs.SEA.2024.11
https://arxiv.org/pdf/2402.07753.pdf
https://github.com/HeiConnect
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Engineering Weighted Connectivity Augmentation Algorithms

survive both, random failures and targeted failures of important lines, the graph needs to
be well-connected. Increasing the connectivity and therefore improving the robustness at
minimum cost is known as connectivity augmentation or the survivable network problem.
Another technological example is a computer network like the internet which should be
designed in a fail-safe way while reliable transportation networks can avoid traffic congestion.

However, it is well-known that the weighted connectivity augmentation problem is NP-
hard. Eswaran and Tarjan [8] have shown that the decision problem, whether there is
an augmentation of at most a given weight, is NP-complete. Frederickson and Ja’Ja’ [11]
have shown that this is also true for the simpler special case where the graph is a tree,
with weights being only 1 or 2. This justifies the importance of good heuristic and ap-
proximation algorithms. Furthermore, the weighted connectivity augmentation problem is
APX-hard, which was also shown for the weighted tree augmentation problem by Kortsarz,
Krauthgamer and Lee [21]. Despite the fact that there is no polynomial time approximation
algorithm with an approximation factor arbitrarily close to 1, there has been much progress
in improving the approximation ratio. Recently, the connectivity augmentation problem has
been discussed frequently in the context of approximation algorithms with approximation
factors below 2 [2, 27, 29, 30]. This includes work on special cases like the tree augmentation
problem [29], as well as the general case [2, 30].

In recent years, Henzinger et al. [16, 17] developed the leading codes for the minimum cut
problem in graphs. This includes the development of cutting-edge shared-memory inexact
algorithms, consistently delivering near-optimal results. Additionally, they engineered state-
of-the-art shared-memory exact algorithms [14], surpassing the previous state-of-the-art by
an order of magnitude in running time, as well as highly efficient approaches for tackling the
broader all minimum cut problem [18]. It turns out that these algorithms, i.e. computing
minimum cuts, (enumeration of) all minimum cuts, and the efficient computation of a cactus
representation of a graph, are important subroutines for algorithms that tackle the connectivity
augmentation problem. Thus in this work, we heavily employ these recently developed
techniques to engineer efficient algorithms for the connectivity augmentation problem.

Our Results. Our contribution in this work is two-fold. First, we give the first implement-
ation and experimental evaluation of two recently discovered connectivity augmentation
approximation algorithms due to Traub and Zenklusen [30]. More precisely, Traub and
Zenklusen describe two algorithms: a greedy (1 + ln 2 + ϵ)-approximation and the local search
based (1.5 + ϵ)-approximation, which we implement and evaluate.

Secondly, we propose three new heuristic and an exact algorithm. The first algorithm
is a greedy heuristic considering link costs and the number of cuts covered by a link. This
simple algorithm already outperforms all previous state-of-the-art algorithms by more than
22 % improvement in solution quality (reduced link costs) on instances where links have
small costs. Our second strategy uses minimum spanning trees to find a feasible solution
first and then greedily improves it. Additionally, we present a local search algorithm that
can improve a given solution by replacing link sets with cheaper ones. On instances with
large link costs, the minimum spanning tree algorithm has the overall best performance
regarding solution quality, running time and memory consumption. It computes solutions
8 % better than the best performing previous state-of-the-art on these instances, while being
a factor of 7 times faster on average. With our local search algorithm we can further improve
these solutions on average by 2 %. Lastly, we introduce a new exact solver using an ILP
formulation with efficient cut enumeration as well as a fast initialization routine, for which
we utilize our fast minimum spanning tree heuristic. Especially on real-world instances, it is
able to outperform the previous state-of-the-art heuristic solvers regarding running time for
both small and large link costs.

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:3

2 Preliminaries

An undirected graph G = (V, E) is a structure that consists of a set of vertices V and a set
of edges E ⊆

(
V
2
)

connecting pairs of vertices. The number of vertices is denoted as n and
the number of edges as m. The graph G is connected if there is a path between any two
vertices. The edge connectivity of a graph is the maximal number of edge-disjoint paths that
exist between any pair of vertices. A graph is k-edge-connected, if k − 1 arbitrary edges can
be removed without disconnecting the graph. A partition of a graph is a partition of the
vertex set into mutually disjoint sets.

A cut of a graph is a partition of the vertex set into two disjoint subsets, also called a
bipartition. Any cut can be represented as one of its two constituent vertex sets. Every
non-empty proper subset of V is a cut. To prevent different representations of the same cut
we use the notation where a cut is given as one set of the partition (only the representation
that does not include an arbitrarily chosen root r ∈ V (G) is used). The size or weight of a
cut is the number of edges or the sum of the edge weights that have one endpoint in each
subset. A cut is a minimum cut if there is no cut with smaller size or weight. The set of all
minimum cuts is denoted as CG and cut : CG ×

(
V
2
)
→ {0, 1} is a function that is 1 if and

only if the endpoints u and v of an edge e = uv ∈
(

V
2
)

lie in different sets of the partition of
a cut c ∈ CG.

The goal of the Weighted Connectivity Augmentation Problem (WCAP) is to increase the
edge connectivity of a graph. More formally, for a given k-connected graph G with a set of
links L ⊆

(
V
2
)

and a cost function c : L → R≥0, the task is to find the cheapest subset of
links S ⊆ L that will increase the edge connectivity to k + 1. A link l ∈ L covers a minimum
cut c ∈ CG if the size or weight of the cut c is increased in the graph G′ = (V, E ∪ {l}). The
graph GL = (V, L) is called the link graph. The set of links is disjoint with the set of edges,
i.e. L ∩ E = ∅. For the ease of notation the cost function is extended to sets, where it is the
sum of the cost of all elements.

If the input graph is disconnected, the weighted connectivity augmentation problem
coincides with the minimum spanning tree problem among its components. In this work we
therefore only focus on connected graphs, as the other case is simple to solve via well-known
efficient minimum spanning tree algorithms.

A cactus graph is a connected graph, such that any two cycles have at most one vertex in
common. To distinguish between edges that lie within a cycle and those that do not, they
are called cycle edges and tree edges, respectively. The cactus graph representation of the set
of minimum cuts CG of a graph G = (V, E) is a cactus graph C = (Vc, Ec) with a function
Π : V → Vc and its inverse Π−1 : Vc → 2V which is defined as v 7→ {u ∈ V : Π(u) = v}.
The functions Π and Π−1 are defined such that each minimum cut in C corresponds to a
minimum cut in G, i.e. for all c ∈ CC :

⋃
v∈c Π−1(v) ∈ CG and each minimum cut in G is

represented in the cactus graph, i.e. for all cG ∈ CG there exists a cut cC ∈ CC such that
Π(v) ∈ cC for all v ∈ cG. Figure 1 gives an example for a graph, with its minimum cuts and
the corresponding cactus graph representation. Dinitz et al. [5] have shown that all minimum
cuts of a connected graph G = (V, E) can be represented as a cactus graph C = (Vc, Ec). For
more details on the computation of the cactus graph, we refer the reader to [18]. Analogous
to the link graph GL, we define the cactus link graph CL = (Vc, Lc). The set Lc ⊆ L is
defined as Lc = {(Π(v1), Π(v2)) : (v1, v2) ∈ L} where we only keep the cheapest link between
each vertex pair (Π(v1), Π(v2)).

SEA 2024

11:4 Engineering Weighted Connectivity Augmentation Algorithms

Π
2

1

1
1

Figure 1 A graph and its weighted cactus graph with corresponding minimum cuts drawn as
dashed lines of same color. Vertex colors encode the function Π.

3 Related Work

This paper is a summary and extension of the master theses [24]. In this section, we present the
state-of-the-art for computing all minimum cuts of a graph in the cactus graph representation,
followed by research and implementations in the field of connectivity augmentation problems.

3.1 Minimum Cuts
Computing all minimum cuts is usually a fundamental step in connectivity augmentation.
Nagamochi, Nakao and Ibaraki presented an efficient algorithm to compute all minimum
cuts in the cactus graph representation [25]. A cactus representation can be computed in
O(mn + n2 log n + n∗m log n) time where n∗ is the number of cycles in the cactus represent-
ation. They observed that all minimum cuts between two vertices s and t can be computed
by running a maximum s-t-flow algorithm, and edges that are cut by no minimum cut
can be contracted.

The current state-of-the-art algorithm to compute all minimum cuts is VieCut by
Henzinger et al. [14, 18]. It uses linear time edge contraction based reduction rules and an
optimized version of the algorithm by Nagamochi, Nakao and Ibaraki. For example, an edge
uv can be contracted if the connectivity between u and v is larger than the minimum cut.
Such edges could be found by computing k edge-disjoint spanning trees where k is the size of
the minimum cut [14, 26]. Furthermore, reduction rules by Padberg and Rinaldi [28] were
adapted from the problem of finding one minimum cut to the problem of finding all minimum
cuts. Lastly, edges that form a trivial minimum cut are contracted and remembered. These
cuts are reintroduced at the end of the algorithm. The reduction rules are used exhaustively
as long as a significant number of edges is contracted. The remaining kernel is solved based on
the algorithm by Nagamochi, Nakao and Ibaraki [25]. In this work, we use VieCut [14, 18]
to compute the cactus representation of a graph, which has a much better performance
in practice than what the worst-case analysis predicts. Henceforth, when we analyse the
complexity of an algorithm, we do not include the complexity to compute the cactus, as this
is the same for all algorithms.

3.2 Connectivity Augmentation
There have been several approximation algorithms for the connectivity augmentation problem
in the past. An early approach is using minimum cost arborescences, which was introduced by
Frederickson and Ja’Ja’ [11] for bridge connectivity augmentation, the case where the graph
is 1-connected but not 2-connected, and generalized for the WCAP by Watanabe et al. [32].
The bridge connectivity algorithm results in a 2-approximation while the generalization
cannot guarantee an approximation factor. There are well-known 2-approximations for the
WCAP. One possibility was discovered in 1992 and reduces the problem to a directed version
by replacing each undirected edge with two directed edges [20]. The directed version can be

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:5

solved in polynomial time based on minimum-cost flows [10] or by using a linear program which
has integral solutions for the cactus augmentation problem [3]. Another approach involves
the LP relaxation of an ILP formulation combined with iterative rounding techniques [19].

Only recently, progress has been made on various approximation algorithms regard-
ing special cases of the connectivity augmentation problem, as well as the general case.
For the unweighted version of the connectivity augmentation problem the first approx-
imation with factor below 2 was found in 2020 by Byrka et al. [2, 27]. The WCAP
is reduced to the steiner tree problem, for which a specialized approximation gives an
approximation factor of 1.91.

For the tree augmentation problem (TAP), where the cactus graph is a tree, and the
unweighted connectivity augmentation problem an approximation factor of 1.393 was found in
2021 [3]. For the weighted tree augmentation problem, Traub and Zenklusen [29] discovered
a (1 + ln 2 + ϵ)-approximation, which builds upon the 2-approximation reducing the problem
to a directed one and greedily improves this solution. Afterwards, they transferred the
algorithm to the weighted connectivity augmentation problem and refined it to a (1.5 + ϵ)-
approximation [30], which improves an arbitrary solution through local search. However, no
implementations or experimental results of those algorithms existed until this point.

There has been recent work on randomized Monte Carlo algorithms that give a solution
with high probability on graphs with integer edge weights based on maximum flow computa-
tions. The state-of-the-art is an Õ(m) time algorithm that gives a near-linear running time
by Cen et al. [4]. This shows that the connectivity augmentation problem is simpler than
the maximum flow problem as there is no known Õ(m) time maximum flow algorithm.

Experimentally Evaluated Algorithms
There have been practically applicable heuristic algorithms in the past, however, there has
not been much progress on the WCAP recently. Watanabe et al. [23, 34, 33, 32] proposed
five different approaches, called FSA, MW, FSM, SMC and HBD, including experimental
evaluation. An observation used for all algorithms is that there is a subset of all vertices of the
cactus graph representation that must be an endpoint in any augmentation. The algorithm
FSA uses minimum cost arborescences based on the ideas of Frederickson and Ja’Ja’ [11].
MW is a 2-approximation also based on arborescences. FSM is based on maximum cost
matchings. The third approach, SMC, is a greedy strategy adding the cheapest incident link
for each vertex of the cactus graph representation. HBD is a combination of FSM and SMC.
Experimental results showed that the solution quality of FSM is the best, followed by HBD,
SMC, FSA and lastly MW [23, 32]. Regarding running time, SMC is the fastest algorithm,
followed by FSA, HBD, FSM and lastly MW. HBD is considered the best general algorithm,
because it prevents arbitrary bad solutions that may be produced by FSM or SMC. MW is
the only algorithm with a guaranteed approximation factor, however, in practice it is slower
and the solution quality of the other algorithms is better [23]. To the best of our knowledge,
no other experimentally evaluated algorithms are mentioned in the literature.

4 Approximation Algorithms

We now describe the approximation algorithms implemented in this paper in more detail.
First we describe the 2-approximation [3] followed by brief discussions on two approximation
algorithms with approximation factors (1+ln 2+ ϵ) and (1.5+ ϵ) by Traub and Zenklusen [30]
for which we present first implementations and experimental evaluations. For further, highly
detailed information see [3, 30].

SEA 2024

11:6 Engineering Weighted Connectivity Augmentation Algorithms

4.1 LP-based 2-Approximation

For the 2-approximation each undirected link l = uv is replaced by two directed links
l1 = (u, v) and l2 = (v, u), resulting in a set L⃗ with |L⃗| = 2 · |L|. Then, the easier directed
problem can be solved. Later, a directed solution is transferred to the undirected problem
by replacing each link in the directed solution with the undirected one while removing
duplicates. To solve the directed problem, a linear program based algorithm is implemented.
This approach was first proposed by Jain [19], and Cecchetto, Traub and Zenklusen [3]
provided a definition where the solution is integral for any cactus augmentation instance.
Using Brand’s O(N2.37 log2 N log N/δ) algorithm [31] where N is the number of variables,
the time complexity of the 2-approximation is O(n4.74 log2 n log n/δ).

4.2 Relative Greedy (1 + ln 2 + ϵ)-Approximation

Traub and Zenklusen presented in [30] a greedy algorithm that improves upon the 2-
approximation described above. It begins by exactly reducing a cactus graph representation
to a ring graph and then replacing directed links in the solution with so called shadows, to
form an arborescence. These shadows are links, that have the same weight as the original links
and together still form an augmentation. The algorithm proceeds by greedily substituting
sets of directed links with undirected ones resulting in mixed solutions. If all directed links
are replaced by undirected ones, the solution is a solution to the original problem. The
greedy objective is the ratio of the cost of the added undirected links and the cost of the
directed links that are not needed anymore. Since this is difficult to compute, they only
consider link sets that can be constructed iteratively by a dynamic program. Furthermore, it
is easier to check if a given ratio is better or worse than the optimum. The algorithm uses
binary search with respect to the ratio to determine the optimum along with a set of links
that achieves this ratio. For each bisection a dynamic program is run.

The (1 + ln 2 + ϵ)-approximation algorithm has a polynomial running time, but it is
computationally expensive, especially due to the complexity of the dynamic program involved.
Let α = 4⌈ 2

ϵ ⌉, then, for graphs with n > α + 2 the size of the dynamic programming table
is O(n2α+2). With this, the overall computational complexity of the algorithm for integer
weighted problems is O(n4α+7 ln(OPT)), where OPT is the optimal augmentation weight.
Note that the approximation ratio can only be improved if 1 + ln 2 + ϵ < 2 requiring α ≥ 28.

4.3 Local Search (1.5 + ϵ)-Approximation

The state-of-the-art approximation algorithm by Traub and Zenklusen [30] is a (1.5 + ϵ)-
approximation. A more detailed description and correctness proofs can be found in [30].
The algorithm is based on the ideas and the dynamic program of their relative greedy
(1 + ln 2 + ϵ)-approximation described previously. The main difference is that the algorithm
does not only greedily replace all links of a directed solution with undirected links. Instead,
replaced links should iteratively improve the solution and can themselves be replaced in
further iterations. The main part of this algorithm, the dynamic program, is the same as for
the (1 + ln 2 + ϵ)-approximation. Therefore, the size of the dynamic programming table is
bounded by O(n2α+2). The total running time is bounded by O(n4α+7/ϵ). In contrast to the
(1 + ln 2 + ϵ)-approximation this is independent of the (upscaled) augmentation weight OPT .

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:7

5 Weighted Connectivity Augmentation Algorithms

This section describes our heuristic approaches and our exact algorithm for the WCAP. The
data structures used for these algorithms are briefly described in Section 5.1. Unlike the
approximation algorithms in the previous section, the heuristics cannot give guarantees on
the solution quality, but aim at being fast or giving good solutions for many real-world cases.
For all considered algorithms we only compute a solution on the cactus graph representation
which can be transformed to the solution on the original graph, as stated in Theorem 1.

▶ Theorem 1 (Dinic, Karzanov and Lomonosov [5]). Let G be a graph and L the set of
links. Furthermore, let C be the corresponding cactus graph representation of G and CL be
the link graph of C. Then, a valid solution for the WCAP on C is a valid solution to the
WCAP on G.

5.1 Data Structures
All minimum cuts of a graph G can be represented as a (potentially significantly smaller)
cactus graph C, it is sufficient to do computations on the cactus graph C. To be able to give
an augmentation for the original graph G, it is stored in adjacency list representation along
with an array modeling the function Π : V (G)→ V (C). Additionally, the link set L must
be transferred to a link set LC for the cactus graph C. A link l = (u, v) is translated to a
link lC = Π(l) := (Π(u), Π(v)) in the cactus graph. To be able to reverse this function and
obtain a link in G, the endpoints of the original link l are stored as well. This can lead to
parallel links g, h ∈ L, g ̸= h with Π(g) = Π(h) in the link graph GLC

(with not necessarily
equal weight). We drop all parallel links in GLC

except for one of smallest weight. We store
the link set LC in an adjacency matrix and only keep one link of minimum weight per vertex
pair.

Dynamic Cactus / Updating Cactus
For a dynamic cactus representation we use a similar approach for updating the cactus as
proposed by Henzinger, Noe and Schulz in [15], where a union find data structure is used to
keep track of the function Π that associates each vertex of G with a vertex of the cactus C.

When adding a link l = (u, v) that crosses a minimum cut, the cactus shrinks. Dinitz
has shown that cuts on the uv-path are affected [6]. In particular, vertices that lie on every
uv-path in the cactus are contracted to update the cactus [15]. Those can be found by
computing a path in the tree of cycles T . This is the graph that contains all cycles as vertices
and has an edge between two vertices if the corresponding cycles share a vertex. Since T is a
tree, the paths are unique. For every cycle in the path, the shared endpoints are contracted.
This graph T is maintained by our data structure.

To be able to efficiently compute the number of minimum cuts that a given link crosses,
this data structure is extended and modified. The naive approach of counting the number of
cuts that a given link crosses evolves checking every possible cut and takes O(|Vc|2).

▶ Theorem 2. Using our data structure, we can compute the number of cuts that a given
link crosses in O(|Vc|).

Proof. A cut always cuts two edges of the same cycle, therefore each cycle can be considered
separately. As a link l = (u, v) affects all cuts on the uv-path [5], all cycles on the uv-path
need to be considered. These cycles are found by a BFS in T taking O(|Vc|) time because T
is a tree and there cannot be more cycles than vertices in the cactus graph. Counting the

SEA 2024

11:8 Engineering Weighted Connectivity Augmentation Algorithms

Algorithm 1 GWC.

input G = (V, E), L, c : L→ R≥0
output augmentation S ⊆ L

procedure GWC(G, L, c)
C = (Vc, Ec)←cactusByVieCut(G)
CL = (Vc, Lc)←buildLinkGraph(Vc, L)
S ← ∅
while Lc ̸= ∅ do

l← argmin{c(l)/coveredCuts(C, l) | l ∈ Lc}
S ← S ∪ {l}
C ←updateCactus(C, l)
Lc ← {l ∈ Lc | l covers a mincut in C}

return S

number of cuts that the computed path crosses can be done in linear time too. For each
edge in the path we go through all vertices contained in the corresponding cycle to compute
the distance of the articulation points. As this is done at most once per cycle, we are able to
compute the number of cuts that a given link crosses within O(|Vc|). ◀

For further implementation details, we refer to [24].

5.2 Heuristic Algorithms

In this section we introduce a new heuristic GreedyWeightCoverage (GWC), where links
are added to the solution greedily based on the costs per augmented cut, an algorithm based
on minimum spanning trees called MSTConnect as well as a local search algorithm LS(k).

5.2.1 GWC

As the problem aims at minimizing the cost of an augmentation, it is natural to add links of
small weight. At the same time, we want to minimize the number of links added. This leads
to the heuristic GWC, where we greedily pick the link, for which the cost per augmented
minimum cut, i.e. c(l)/al with al = coveredCuts(C, l) := |{c ∈ CG : cut(c, l) = 1}| is
minimal. If al = 0 the link l is not considered. This regards listing all minimum cuts in the
cactus graph computed using VieCut [14, 18].

A naive bound for the complexity of this is O(|Vc|5), because the solution has at most
O(|Vc|) links, and in each iteration the heuristic is computed for O(|Lc|) = O(|Vc|2) links by
checking O(|Vc|2) minimum cuts. Using our custom data structure, see Section 5.1, we can
run the algorithm in O(|Vc|4).

The bound is very pessimistic and in practice the performance of the algorithm is much
better, especially since we use efficient algorithms to enumerate all minimum cuts [18].

We also tested other heuristics such as choosing the link with the smallest weight, such
that at least one cut is covered, or picking an arbitrary uncovered minimum cut c and
choosing the smallest weight link that covers c. However, GWC produced significantly better
results, which is why we only report details of this algorithm here.

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:9

Algorithm 2 MSTConnect.

input G = (V, E), L, c : L→ R≥0
output augmentation L′ ⊆ L

procedure MSTConnect(G, L, c)
C = (Vc, Ec)←cactusByVieCut(G)
CL ←buildLinkGraph(Vc, L)
LMST ← MST(CL, c)
L′ ← sortDesc(LMST , c)
for l ∈ L′ do

if disposableLink(l, C, L′)
L′ ← L′ \ {l}

return L′

5.2.2 MSTConnect
After computing the cactus graph representation using VieCut [14, 18], the greedy strategies
described above work by adding links to a set until this set is a valid connectivity augmentation.
For MSTConnect, see Algorithm 2, we have a different approach. Here, we start with a
(possibly much larger) set of links that increases the connectivity when added to the cactus
graph. Then, we reduce this link set, while keeping a valid solution.

The complete set of links can have O(|Vc|2) size. As checking if a link can be removed
from a set can also be expensive, a small initial solution is essential. Using Theorem 3,
an intuitive starting point is a minimum spanning tree (in case of incomplete link sets a
minimum spanning forest) LMST of the cactus link graph CL. For each link in this set, we
check whether it can be removed in disposableLinks of Algorithm 2. Since we start with
a MST the remaining links L′ are always bounded such that |L′| < |Vc|. Therefore, this
process needs linear time, as shown in Theorem 4. If a link is disposable, we exclude it from
the solution. Figure 2 (left) illustrates an example.

▶ Theorem 3. Let C = (Vc, Ec) be a cactus graph and CL = (Vc, Lc) the link graph of C, such
that a feasible solution to the WCAP exists. Then, a minimum spanning forest LMST ⊂ Lc

for CL is a feasible solution to the WCAP on C.

Proof. See Appendix B. ◀

▶ Theorem 4. Let G = (V, E) be a k-connected graph and C = (Vc, Ec) its cactus graph
representation, L′ ⊂ L an augmentation on the link graph CL and l ∈ L′. If |L′| < |Vc|, then
we can check if L′ \ {l} is still an augmentation in O(|Vc|).

Proof. See Appendix B. ◀

A minimum spanning forest on the cactus link graph CL is computed using Kruskal’s
algorithm with a complexity of O(m log m) [22], where m is the number of links in CL.
Checking if O(|Vc|) links can be removed from the solution is done in O(|Vc|2), see Theorem 4.
This results in an overall complexity of O(|Vc|2 log |Vc|) for MSTConnect.

As in GWC, we also tested the cost per augmented minimum cut c(l)/al as weight to
compute the minimum spanning forest as well as using c(l)/al to sort the links to be removed
in Algorithm 2. However, our experiments showed that using the weight c(l) of the links
performed significantly better in both cases and thus the other versions are omitted.

SEA 2024

11:10 Engineering Weighted Connectivity Augmentation Algorithms

Algorithm 3 LS(k).

input G = (V, E), L, c : L→ R≥0, S

output improved augmentation S′ ⊆ L

procedure LS(k)(G, L, c, S)
C = (Vc, Ec)←cactusByVieCut(G)
L′ ← reduceLinkSet(C, L, c)
X ← getSwapCands(L′, S)
S′ ← S

while X ̸= ∅ do
(Lin, Lout)← bestCandidate(X)
X ← X \ (Lin, Lout)
if isSwapValid(Lin, Lout)

S ← swap(S′, Lin, Lout)
X ← getSwapCands(L′, S′)

return S′

5.2.3 Local Search

The core idea of our local search algorithm LS(k) is the following. We want to remove links
from our solution and replace them with a lighter set of links. The parameter k limits the
number of links within such a swap. Since these swaps can result in infeasible solutions,
we have to check feasibility for each swap. This way a non-optimal solution S ⊂ L can
be improved. Next we describe the different steps of LS(k) in detail, an overview is given
in Algorithm 3.

We first compute the cactus graph representation C of G using VieCut [14, 18]. Af-
terwards, we reduce the link set L to the union of t disjoint minimum spanning forests
in the link graph CL. Here, the next minimum spanning forest is computed on CL after
removing the links of the previously computed minimum spanning forest. This way the
average degree is a small constant depending on t. We set t = 2, since larger values did not
improve the performance.

The main idea of the remaining part in LS(k) is the following. We search for non-
solution links Lin ⊂ L \ S and solution links Lout ⊂ S with |Lin| ≤ kin, |Lout| ≤ kout and
kin + kout ≤ k. If the swap (Lin, Lout) is feasible, we can create a new improved solution by
swapping these sets, i.e. S′ := S \Lout ∪Lin. In getSwapCandidates we compute possible
swap candidates (Lin, Lout). These have to fulfill the following conditions:

Lin ∪ Lout form an alternating path from Lin and Lout of length at most kin + kout = k

c(Lin)− c(Lout) < 0, i.e. the swap improves the solution
non-triviality, i.e. ∀v ∈ V (Lout) : {v} is no minimum cut

We restrict the search for swaps to alternating paths. Since endpoints of these paths
in Lout lose an adjacent link, it is likely that a new adjacent link is necessary to keep the
cut covered. Interior links of the path cover two vertices at once. Utilizing the specified
criteria, we determine the sets Lin and Lout within the getSwapCandidates function. This
is achieved through an adapted depth-first search process, where traversal is restricted to
alternate edges that are part of the solution and those that are not. The depth of the search
is restricted by the parameter k. This modified search is executed starting at each vertex in
|Vc|. At every vertex encountered, we verify the adherence to the second and third condition.
If they are met, the path currently identified is included in the collection of potential swap
candidates.

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:11

LMST

drop
disposable

links

MSTConnect
Solution

improve

LS(3)
Step

swap

Optimal
Solution

Figure 2 Example of applying MSTConnect (right) and improving its solution with our local
search LS(3). All links have weight 1. Green edges represent the current solution, black dashed
edges are the edges of the cactus graph representation, light gray edges are the non-solution links.
The dashed green (Lout) and red (Lin) edges show the swap found in the local search.

These conditions are not sufficient to form a feasible swap, they rather help to prune
the set of possible candidates in advance. For the best candidate, i.e. the candidate where
c(Lin) − c(Lout) is lowest, we check the validity of the swap in isSwapValid. Using a
maximum flow approach, similar to MSTConnect, this check can be done efficiently as
shown in Theorem 4. If the swap is valid, we swap links, recompute possible candidates and
start over. If the swap is not valid, we check the next best candidate.

Figure 2 shows an example of how the LS(3) algorithm improves the solution computed by
MSTConnect. We further improved the algorithm LS(k) by integrating path caching, where
we maintain vertex sequences of a path already checked using a hash table. Using Theorem 5,
the running time for LS(3) is O(|Vc|3 ×∆2 + |Vc|4) and for LS(5) O(|Vc|4 ×∆2 + |Vc|5).

▶ Theorem 5. LS(k) has a complexity of O(|Vc|2(|Vc|⌊
k
2 ⌋ ×∆2 + |Vc|⌈

k
2 ⌉)).

Proof. See Appendix B. ◀

5.3 Exact Algorithm

We now describe an efficient implementation of an integer linear program for the problem,
which can be used to solve (small) instances to optimality. The formulation is inspired by
the linear program used for the 2-approximation in [3]. To the best of our knowledge, this
formulation itself has not been used before. For the formulation of the WCAP, we introduce
binary variables x ∈ L that decide which links are added to the augmentation. The objective
given in (1) sums up the weight of all selected links. The constraint ensures that each
minimum cut in the graph G is increased by at least one link added to the augmentation.

min
x

∑
l∈L

xlc(l) s.t.
∑
l∈L

cut(c, l)xl ≥ 1 ∀c ∈ CG; xl ∈ {0, 1}|L|. (1)

Our ILP formulation is run on the cactus representation and uses efficient enumeration
algorithms on it to list all minimum cuts CG of VieCut [18]. Moreover, our solver, which
we call eILP, uses an initial solution computed by MSTConnect, which improves the
running time by 5.5% on cycle graphs, which are the most difficult instances to solve with
eILP. We choose MSTConnect since it is the fastest heuristic approach already giving
good results (see Section 6).

SEA 2024

11:12 Engineering Weighted Connectivity Augmentation Algorithms

6 Experimental Evaluation

We now experimentally evaluate the algorithms described in the previous sections. The
approximation algorithms are evaluated and compared in terms of quality and running
time in Section 6.2. Afterwards, our new proposed algorithms GWC, MSTConnect and
MSTConnect+LS(k) are compared to the state-of-the-art solvers HBD, FSM and SMC
in terms of solution quality, running time and memory consumption.

6.1 Overview
6.1.1 Methodology
The experiments are run on a computer with an AMD EPYC 9754 128 core processor with
256 threads running at 3.1 GHz and 755 GB of main memory running Linux. The C++ code
is compiled using gcc 11.4.0 with optimization level O3. The memory for each process is
limited to 50 GB and the running time is limited to 3 hours. We run our algorithms on
each instance with 5 different seeds to generate link costs as described below or in cases
of generated cactus graphs we create 5 different graphs with the same number of vertices
and cycles. The objective, i.e. the weight of the augmentation, the running time and the
maximum memory used is measured. We use the geometric mean when averaging over
different seeds or instances such that every instance has a comparable influence on the result.

Different algorithms are compared using performance profiles [7]. These plots use the
best algorithm as baseline for each instance and relate the other algorithms to this baseline.
A performance profile can use the objective function to compare quality, running time and
memory consumption. The x-axis shows a parameter τ ≥ 1. On the y-axis the fraction
of instances whose objective is at most τ · best is plotted, in particular #{objective ≤
τ · best}/#instances. For running time and memory usage, time and memory are used
instead of the objective, respectively. At τ = 1 the plot shows the fraction of instances
where the algorithm is able to find the best solution / has the fastest running time or
lowest memory consumption. Some algorithms are not able to solve every instance due to
constraints on memory and time. We give more details in the respective sections. To solve
the integer linear program in eILP and the linear program in the 2-approximation algorithm
we used the Gurobi Optimizer [13]. The integer linear program solver uses pre-solving and
the MSTConnect solution as initial solution.

6.1.2 Instances
The algorithms are evaluated using two different sets. The first set consists of three types
of generated graph instances: cycles or ring graphs, stars and cactus graphs. Cycles and
stars represent edge cases of cactus graphs, with an amount of minimum cuts between
O(|Vc|) and O(|Vc|2). To be able to test the algorithms on instances that represent more
complex and larger cactus graphs, we generated cactus graphs by the algorithm described in
Appendix A. All instances are listed in Table 1 including their properties. The second set
are real-world instances. Many real-world graphs have unique or very few distinct minimum
cuts, which leads to very small cactus graphs with only a few vertices. We used all connected
graphs with non-trivial cactus graph representations from the 10th DIMACS Implementation
Challenge [1] for which the cactus graph representation has at least 100 edges and at most
40 000 vertices. In general, we use VieCut [18] to compute the cactus representation of a
graph. We only compute the cactus representation once for every graph and henceforth only
report running times of the algorithms when run on the cactus representation.

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:13

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6

in

st
an

ce
s
≤
τ

op
t

τ

Solution Quality

eILP
(1.5+ε)-Apx

(1+ln 2+ε)-Apx
2-Apx

10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

 5 6 7 8 9

Ti
m

e
(s

)

n

Running Time

eILP
(1.5+ε)-Apx

(1+ln 2+ε)-Apx
2-Apx

Figure 3 Performance profile comparing solution quality of approximations with ϵ = 0.15 on tiny
cycle and star instances on the left. The right plot shows the running times.

6.1.3 Link Sets

The algorithms can perform differently based on the distribution of the link costs. For
instance the performance of MSTConnect is affected due to different structured minimum
spanning trees and lower cardinality of optimum solutions make matching-based approaches
like FSM and HBD or our greedy heuristic GWC more efficient. Thus, we choose a uniform
distribution in different intervals. First, we have a set of small link cost choosing the costs
uniformly from the sets {1, 2}, {1, . . . , 9} and {1, . . . , 99} as used in [32, 34] to reproduce
their results. The second set of large link costs consists of links chosen uniformly from the
set {1, . . . , 100 000}. Since our algorithms need link costs within the interval [0, 1], we scale
those costs by dividing through the largest occurring link cost. Furthermore, all instances
have complete link sets, i.e. G = (V, E ∪ L) is a complete graph.

6.2 Approximations

We first analyse the performance of the different approximation algorithms described in
Section 4. Here, we can only consider very small graphs, as the approximation algorithms (see
below) do not scale at all. For following experiments, we only report the results for ϵ = 0.15.
This is due to the fact that ϵ is only used to limit the number of considered links crossing
cuts to 4⌈ 4

ϵ ⌉ for the (1.5 + ϵ)-Approximation and 4⌈ 2
ϵ ⌉ for the (1 + ln 2 + ϵ)-Approximation.

However, on small graphs the number of links that may cross a minimum cut is already
limited by the number of vertices. Thus, although we tested values for ϵ in [0.1, 0.5], it did
not yield different result in terms of running time or link cost.

Figure 3 (left) shows a performance profile of the solution quality, for tiny graphs. As
the optimal solution was computed by eILP, the x-axis gives the approximation ratio. The
2-approximation consistently gives the worst solutions, which means both, the (1 + ln 2 + ϵ)-
approximation and the (1.5 + ϵ)-approximation, can improve this initial solution.

Figure 3 (right) shows the running time of the approximation algorithms as well as our
solver eILP with respect to the graph size. The graphs are cycle graphs with a complete set
of links. The running time increases exponentially for the approximation algorithms. This
is expected for graphs with fewer than α ≥ 28 vertices as the computational complexity is
exponential in 4 min(n, α) + 7. Both, the (1 + ln 2 + ϵ)-approximation and the (1.5 + ϵ)-
approximation are orders of magnitude slower than the optimal integer linear program. Hence,

SEA 2024

11:14 Engineering Weighted Connectivity Augmentation Algorithms

we do not consider them further when comparing against other state-of-the-art algorithms.
The 2-approximation is slightly faster than eILP, but the difference is negligible and both
can easily solve tiny graphs solvable by the dynamic program based approximations. Overall,
we conclude that the approximations have very little relevance for solving connectivity
augmentation problems and may only have theoretical value. Since the 2-approximation is
able to solve larger graphs it is also used for the comparisons in the following.

6.3 State-of-the-Art Comparison
In this section we compare our algorithms GWC, MSTConnect and MSTConnect com-
bined with LS(k) as well as eILP against the performance of the 2-approximation algorithm as
well as to the best, i.e. FSM and HBD, and the fastest, i.e. SMC, state-of-the-art solvers from
Watanabe et al. [32, 33, 34]. For the algorithms from Watanabe et al. [32, 33, 34], neither the
instances used in their experimental evaluation nor source code or binaries for the algorithms
are available.1 Hence, we compare them against our implementation of these algorithms.
For the comparison of solution quality, running time and memory consumption we give
performance profiles for generated and real-world instances in Figure 4 (small link cost) and
Figure 5 (large link cost).

General Remarks. First note that the 2-approximation algorithm yields the worst results
(highest cost) on both data sets and link costs. Additionally, it is also the slowest and most
memory consuming algorithm. The high memory consumption results from a) the reduction
of undirected to directed links, which doubles the size of the link set which roughly gives factor
of two and b) more importantly from running the linear program solver. We now analyse
results for the remaining algorithms for different link costs and instances types separately.

6.3.1 Small Link Costs
The best performing heuristic in terms of solution quality on the graphs with small link costs
is GWC, see Figure 4. Unlike the other algorithms, GWC uses the cost per augmented
minimum cut to decide for the solution links. For small link costs, there are a lot of links
having the same or similar costs. Therefore, the cost per augmented minimum cut is more
impactful than relying only on the cost of a link. For small link costs the MSTConnect
algorithms are outperformed by the competitors FSM and HBD regarding the solution
quality. On the instances solvable by all algorithms, GWC achieves solutions that are
on average only 4% larger than the optimum solution, while the results computed by the
competitors FSM and HBD are on average 28 % larger than the optimum solution value.
The SMC algorithm computes worse results than any of our algorithms, performing only
slightly better than the 2-approximation. Overall, our exact solver eILP can solve 85.6 % of
these instances to optimality. As can be seen in Figure 4 (middle), MSTConnect is the
overall fastest algorithm. On generated instances with small link costs GWC, which yielded
the overall best results on these graphs, is on average the second fastest algorithm for these
instances. On real-world instances on the other hand, our exact solver eILP is on average
more than 3 times faster than GWC and also outperforms all the previous state-of-the-art
competitors regarding running time. Since the cactus graph representation of real-world
instances usually do not have large cycles, this benefits our solver eILP. The number of
minimum cuts and therefore the number of constraints of the ILP (1) grows quadratically
with the size of the largest cycle and only linearly with tree edges.

1 We contacted the authors, however, we did not get an answer.

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

in

st
an

ce
s
≤
τ

be
st

τ

Generated, Objective

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.2 1.4 1.6 1.8 2

in

st
an

ce
s
≤
τ

be
st

τ

Real-World, Objective

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Time

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Time

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Memory

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Memory

Figure 4 Performance profile for the state-of-the-art comparison on solution quality, running
time and memory consumption on instances with small cost links.

6.3.2 Large Link Costs

The best (heuristic) results for graphs with large link costs are achieved by MSTConnect
improved by LS(k) for k = 5 closely followed by k = 3, see Figure 5 (top). On this
set, the wide range of different link costs makes the cost per link more significant, which
benefits MSTConnect. All competing algorithms HBD, FSM and SMC yield worse results
compared to all our MSTConnect approaches including MSTConnect without local
search and GWC. In particular, our fastest algorithm MSTConnect, is on average 8 %

SEA 2024

11:16 Engineering Weighted Connectivity Augmentation Algorithms

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

in

st
an

ce
s
≤
τ

be
st

τ

Generated Instances, Objective

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

in

st
an

ce
s
≤
τ

be
st

τ

Real-World, Objective

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Time

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Time

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Memory

 0

 0.2

 0.4

 0.6

 0.8

 1

100 101 102 103 104

in

st
an

ce
s
≤
τ b

es
t

τ

Memory

Figure 5 Performance profile for the state-of-the-art comparison on solution quality, running
time and memory consumption on instances with large cost links.

(restricted to the instances solvable by SMC) better compared to SMC, the best performing
competitor on these instances, while also being 7 times faster. When comparing to the exact
solution on the instances solvable by eILP, MSTConnect is on average 3.8 % away from
the optimal solution. When additionally using our local search to improve the solution, i.e.
using LS(5), the result is only 1.8 % away from the optimum solution. All of our heuristic
algorithms outperform even the fastest competitor SMC with regard to running time on
most large cost real-world instances. On all instances even our slowest algorithm GWC is
1.7 times faster than SMC, while our fastest algorithm MSTConnect outperforms SMC by

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:17

a factor of 6.3. When only considering real-world instances, the difference gets even larger.
Here, MSTConnect is on average 9.1 times faster than SMC and even our exact solver
eILP is a factor of 2.6 times faster than SMC.

6.3.3 Memory Consumption
MSTConnect requires overall the least amount of memory. Indeed, improving the solution
with LS(k) increases the memory consumption with increasing k, especially on small link
cost instances. Still, the memory usage for MSTConnect + LS(5) is on average 1.8 times
better than the memory consumption of the previous state-of-the-art algorithms. On average
all our algorithms outperform the competitors regarding memory consumption on generated
graphs. For the real-world instances only MSTConnect and MSTConnect + LS(3) (with
large link costs also LS(5)), need less memory than the other algorithms on almost every
instance. Overall, MSTConnect uses 2.6 times less memory than the competitor SMC
with the lowest memory consumption. Lastly, we like to note that most of the real-world
instances not solvable by eILP are only solvable with our MSTConnect approaches.

6.3.4 Advise for Practitioners
A critical factor for the algorithms is the cost associated with the links of the augmentation
problem. When dealing with scenarios where the link costs are very large, it is advisable
to lean towards MSTConnect algorithms. Conversely, for cases where the link costs
are relatively small and instances are similar to the generated ones used in this work, the
GWC algorithm emerges as a preferable choice. For other real-world instances with small
link cost, the eILP method is the algorithm of choice. In general, local search can help to
improve the result at the expense of running time.

7 Conclusion

In recent years, new scalable algorithms for the minimum cut and the all minimum cut
problem have been engineered [16, 17]. These algorithms are important subroutines for
algorithms that tackle the connectivity augmentation problem. This inspired us to engineer
novel efficient algorithms for the connectivity augmentation problem. In this work, we
implemented recently published approximation algorithms, as well as new heuristic strategies
and an exact approach for solving the weighted connectivity augmentation problem in large
graphs efficiently. Our greedy heuristic GWC excels in solving small link cost instances, while
our minimum spanning tree-based algorithm MSTConnect is the top choice for large cost
instances in terms of solution quality, running time, and memory consumption. Additionally,
we introduce a novel local search algorithm LS(k) that enhances existing solutions – the first
local search algorithm in the literature. Lastly, we engineer an exact solver eILP, which is
also able to compete regarding running time on real-world instances with small link costs. We
conducted experiments comparing our implementations with our best faith implementation
of Watanabe et al.’s state-of-the-art solvers. Our algorithms significantly surpass their results
in solution quality, running time, and memory consumption and are very close to optimal
solutions. Surprisingly, on real-world instances all previous state-of-the-art algorithms, i.e.
the algorithm by Watanabe et al., are even outperformed in terms of running time by our
exact solver eILP on the (large number of) instances that it could solve. Instances that the
eILP approach could not solve, have also not been solved by the algorithms by Watanabe
et al.. Important future work includes exploring additional local search algorithms and
reducing its search space through additional pruning. Additionally, we want to improve the
scalability of these algorithms even further.

SEA 2024

11:18 Engineering Weighted Connectivity Augmentation Algorithms

References
1 David A. Bader, Andrea Kappes, Henning Meyerhenke, Peter Sanders, Christian Schulz, and

Dorothea Wagner. Benchmarking for graph clustering and partitioning. In Reda Alhajj and
Jon G. Rokne, editors, Encyclopedia of Social Network Analysis and Mining, 2nd Edition.
Springer, 2018. doi:10.1007/978-1-4939-7131-2_23.

2 Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: A reduction to steiner tree. SIAM J. Comput., 52(3):718–
739, 2023. doi:10.1137/21M1421143.

3 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 370–383. ACM, 2021.
doi:10.1145/3406325.3451086.

4 Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Edge connectivity augmentation in near-linear
time. In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 137–150. ACM,
2022. doi:10.1145/3519935.3520038.

5 E. Dinic, Alexander Karzanov, and M. Lomonosov. The system of minimum edge cuts in
a graph. In book: Issledovaniya po Diskretnǒı Optimizatsii (Engl. title: Studies in Discrete
Optimizations), A.A. Fridman, ed., Nauka, Moscow, 290-306, in Russian,, January 1976.

6 Yefim Dinitz. Maintaining the 4-edge-connected components of a graph on-line. In Second Israel
Symposium on Theory of Computing Systems, ISTCS 1993, Natanya, Israel, June 7-9, 1993,
Proceedings, pages 88–97. IEEE Computer Society, 1993. doi:10.1109/ISTCS.1993.253480.

7 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2):201–213, 2002. doi:10.1007/S101070100263.

8 Kapali P. Eswaran and Robert Endre Tarjan. Augmentation problems. SIAM J. Comput.,
5(4):653–665, 1976. doi:10.1137/0205044.

9 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

10 András Frank and Éva Tardos. An application of submodular flows. Linear Algebra and
its Applications, 114-115:329–348, 1989. Special Issue Dedicated to Alan J. Hoffman. doi:
10.1016/0024-3795(89)90469-2.

11 Greg N. Frederickson and Joseph F. JáJá. Approximation algorithms for several graph
augmentation problems. SIAM J. Comput., 10(2):270–283, 1981. doi:10.1137/0210019.

12 Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and Duen Horng Chau. Graph
vulnerability and robustness: A survey. IEEE Trans. Knowl. Data Eng., 35(6):5915–5934,
2023. doi:10.1109/TKDE.2022.3163672.

13 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL: https://www.
gurobi.com.

14 Monika Henzinger, Alexander Noe, and Christian Schulz. Shared-memory exact minimum
cuts. In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2019, Rio de Janeiro, Brazil, May 20-24, 2019, pages 13–22. IEEE, 2019. doi:10.1109/IPDPS.
2019.00013.

15 Monika Henzinger, Alexander Noe, and Christian Schulz. Practical fully dynamic minimum
cut algorithms. In Cynthia A. Phillips and Bettina Speckmann, editors, Proceedings of the
Symposium on Algorithm Engineering and Experiments, ALENEX 2022, Alexandria, VA,
USA, January 9-10, 2022, pages 13–26. SIAM, 2022. doi:10.1137/1.9781611977042.2.

16 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practical minimum
cut algorithms. In ALENEX, pages 48–61. SIAM, 2018.

17 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Practical minimum
cut algorithms. ACM J. Exp. Algorithmics, 23, 2018.

https://doi.org/10.1007/978-1-4939-7131-2_23
https://doi.org/10.1137/21M1421143
https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1145/3519935.3520038
https://doi.org/10.1109/ISTCS.1993.253480
https://doi.org/10.1007/S101070100263
https://doi.org/10.1137/0205044
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1016/0024-3795(89)90469-2
https://doi.org/10.1016/0024-3795(89)90469-2
https://doi.org/10.1137/0210019
https://doi.org/10.1109/TKDE.2022.3163672
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.1109/IPDPS.2019.00013
https://doi.org/10.1137/1.9781611977042.2

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:19

18 Monika Henzinger, Alexander Noe, Christian Schulz, and Darren Strash. Finding all global
minimum cuts in practice. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 59:1–59:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPICS.ESA.2020.59.

19 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Comb., 21(1):39–60, 2001. doi:10.1007/S004930170004.

20 Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for graph augmenta-
tion. J. Algorithms, 14:214–225, 1993. doi:10.1006/JAGM.1993.1010.

21 Guy Kortsarz, Robert Krauthgamer, and James R. Lee. Hardness of approximation for
vertex-connectivity network design problems. SIAM J. Comput., 33(3):704–720, 2004. doi:
10.1137/S0097539702416736.

22 Harry R. Lewis. Ideas That Created the Future: Classic Papers of Computer Science. The
MIT Press, February 2021. doi:10.7551/mitpress/12274.001.0001.

23 Toshiya Mashima and Toshimasa Watanabe. Approximation algorithms for the k-edge-
connectivity augmentation problem. In 1995 IEEE International Symposium on Circuits and
Systems, ISCAS 1995, Seattle, Washington, USA, April 30 - May 3, 1995, pages 155–158.
IEEE, 1995. doi:10.1109/ISCAS.1995.521474.

24 Thomas Möller. Engineering Weighted Connectivity Augmentation Problems. master thesis,
Universität Heidelberg, 2023.

25 Hiroshi Nagamochi, Yoshitaka Nakao, and Toshihide Ibaraki. A fast algorithm for cactus
representations of minimum cuts. Japan Journal of Industrial and Applied Mathematics,
17:245–264, April 2012. doi:10.1007/BF03167346.

26 Hiroshi Nagamochi, Tadashi Ono, and Toshihide Ibaraki. Implementing an efficient minimum
capacity cut algorithm. Math. Program., 67:325–341, 1994. doi:10.1007/BF01582226.

27 Zeev Nutov. Approximation algorithms for connectivity augmentation problems. In Rahul
Santhanam and Daniil Musatov, editors, Computer Science - Theory and Applications - 16th
International Computer Science Symposium in Russia, CSR 2021, Sochi, Russia, June 28 -
July 2, 2021, Proceedings, volume 12730 of Lecture Notes in Computer Science, pages 321–338.
Springer, 2021. doi:10.1007/978-3-030-79416-3_19.

28 Manfred Padberg and Giovanni Rinaldi. A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Rev., 33(1):60–100, 1991. doi:
10.1137/1033004.

29 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 1–12. IEEE, 2021. doi:10.1109/FOCS52979.2021.00010.

30 Vera Traub and Rico Zenklusen. A (1.5+ϵ)-approximation algorithm for weighted connectivity
augmentation. In Barna Saha and Rocco A. Servedio, editors, Proceedings of the 55th Annual
ACM Symposium on Theory of Computing, STOC 2023, Orlando, FL, USA, June 20-23, 2023,
pages 1820–1833. ACM, 2023. doi:10.1145/3564246.3585122.

31 Jan van den Brand. A deterministic linear program solver in current matrix multiplication
time. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 259–278. SIAM,
2020. doi:10.1137/1.9781611975994.16.

32 Toshimasa Watanabe, Toshiya Mashima, and Satoshi Taoka. The k-edge-connectivity aug-
mentation problem of weighted graphs. In Toshihide Ibaraki, Yasuyoshi Inagaki, Kazuo Iwama,
Takao Nishizeki, and Masafumi Yamashita, editors, Algorithms and Computation, pages 31–40,
Berlin, Heidelberg, 1992. Springer Berlin Heidelberg.

33 Toshimasa Watanabe, Toshiya Mashima, and Satoshi Taoka. Approximation algorithms for
minimum-cost augmentation to k-edge-connect a multigraph. In 1993 IEEE International
Symposium on Circuits and Systems, ISCAS 1993, Chicago, Illinois, USA, May 3-6, 1993,
pages 2556–2559. IEEE, 1993.

SEA 2024

https://doi.org/10.4230/LIPICS.ESA.2020.59
https://doi.org/10.1007/S004930170004
https://doi.org/10.1006/JAGM.1993.1010
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.1137/S0097539702416736
https://doi.org/10.7551/mitpress/12274.001.0001
https://doi.org/10.1109/ISCAS.1995.521474
https://doi.org/10.1007/BF03167346
https://doi.org/10.1007/BF01582226
https://doi.org/10.1007/978-3-030-79416-3_19
https://doi.org/10.1137/1033004
https://doi.org/10.1137/1033004
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.1145/3564246.3585122
https://doi.org/10.1137/1.9781611975994.16

11:20 Engineering Weighted Connectivity Augmentation Algorithms

34 Toshimasa Watanabe, Satoshi Taoka, and Toshiya Mashima. Maximum weight matching-based
algorithms for k-edge-connectivity augmentation of a graph. In International Symposium on
Circuits and Systems (ISCAS 2005), 23-26 May 2005, Kobe, Japan, pages 2231–2234. IEEE,
2005. doi:10.1109/ISCAS.2005.1465066.

A Cactus Graph Generation

This section describes an algorithm that is able to generate graphs with given properties,
namely the number of vertices and the number of cycles.

A.1 Generating Cactus Graphs
Given two integers n, c ∈ N, n > c, the goal is to generate a cactus graph C with n vertices
and c cycles. This is done by generating the cycles iteratively. The average number of
vertices per cycle is n/c. To get a larger amount of possible graphs the number of vertices
per cycle is randomly distributed around the average n/c. A Poisson distribution turned out
to yield a higher variety of graphs than a uniform distribution. To ensure that the correct
number of cycles will be achieved, the distribution range is bounded such that, considering
cycles already generated, at least one vertex for every remaining cycle is available. The first
generated cycle is used as the base graph. Each consecutive cycle must additionally use an
existing vertex to connect to the base graph. This vertex is chosen uniformly among existing
vertices.

A.2 Graph with given Cactus Graph
Given a cactus graph C, one might ask how a graph G of which C represents all minimum
cuts could look like. Trivially G could be equal to C. Different graphs could be constructed
by reversing the process of edge contractions during the computation of a cactus graph. In
particular, each vertex of the cactus graph C could be replaced by a dense subgraph. Let k be
the desired connectivity. Then, each vertex can be replaced by an at least (k + 1)-connected
subgraph while each link is replaced by k unweighted links in case of a tree edge or by
k/2 links in case of a cycle edge between corresponding dense subgraphs. However, for
all algorithms considered in this paper, neither the structure of the original graph nor the
connectivity k matter as they are abstracted in preprocessing steps. Therefore, only the
simplest case of cactus graphs with connectivity k = 2 is considered.

B Omitted Proofs

▶ Theorem (3). Let C = (Vc, Ec) be a cactus graph and CL = (Vc, Lc) the link graph of C,
such that a feasible solution to the weighted connectivity augmentation problem exists. Then,
a minimum spanning forest LMST ⊂ Lc for CL is a feasible solution to the connectivity
augmentation problem on C.

Proof. If the graph CL is connected, LMST is a tree. In this case there is a path in CL

between any two vertices and therefore every cut in C is covered. Therefore, LMST is a feasible
solution to the weighted connectivity augmentation problem. Assume CL is not connected
and LMST is not a feasible solution to the WCAP, i.e. the connectivity of C̃ = (Vc, Ec∪LMST)
is not increased compared to the connectivity of C. Then, there must be a cut c which is not
covered by the links in LMST . However, since there exists a solution to the problem there
must be a link l = (u, v) in CL covering the cut c. Since LMST is a minimum spanning forest

https://doi.org/10.1109/ISCAS.2005.1465066

M. F. Faraj, E. Großmann, F. Joos, T. Möller, and C. Schulz 11:21

u and v must be in the same connected component. Therefore, there is a path between u

and v in LMST which results in c being covered. This forms a contradiction and therefore
LMST is a solution to the weighted connectivity augmentation problem. ◀

▶ Theorem (4). Let G = (V, E) be a k-connected graph and C = (Vc, Ec) its cactus graph
representation, L′ ⊂ L an augmentation on the link graph CL and l ∈ L′. If |L′| < |Vc|, then
we can check if L′ \ {l} is still an augmentation in O(|Vc|).

Proof. A link l = (u, v) ∈ L′ can be removed, i.e. is disposable, if L′ \ {l} is still an
augmentation. Therefore, we check the connectivity between u and v in the graph C ′ =
(Vc, Ec ∪ L′ \ {l}) using a maximum flow algorithm. A link l = (u, v) can be removed, if the
u-v-flow and therefore the minimum u-v-cut in C ′ is larger than k. Let m = |Ec ∪ L′|. To
compute a maximum u-v-flow we use Ford-Fulkerson with complexity O(m · f), where f

is the flow value [9]. We can improve this factor by initially computing augmenting paths
only using edges from the cactus graph. Since these edge weights are in {k

2 , k}, there can
be at most two rounds of augmenting paths, each with weight at least k

2 . Therefore, this
can be done in O(|Vc|) time. Afterwards, to determine whether the u-v-connectivity in C ′ is
larger than k, we only need to do one iteration of Ford-Fulkerson which takes O(m) time. As
|L′| < |Vc| and Ec are the edges of a cactus graph, it holds m ∈ O(|Vc|) and we can therefore
determine if a link l = (u, v) is disposable within O(|Vc|). ◀

▶ Theorem (5). LS(k) has a complexity of O(|Vc|2(|Vc|⌊
k
2 ⌋ ×∆2 + |Vc|⌈

k
2 ⌉)).

Proof. The running time for LS(k) is dominated by the while loop in Algorithm 3. We
have at most |Vc| re-computations of the set X. Therefore, we need to check validity for at
most |Vc| × |X| swaps. This results in a running time of O(|Vc|2 × |X|). To estimate |X| we
only consider the swaps using exactly k links, since these are the dominating factor. Each
path of length exactly k has to have at least k1 = ⌊k

2 ⌋ and at most k2 = ⌈k
2 ⌉ edges from the

current solution S. There can be O(|Vc|k1 + |Vc|k2) swaps in X using different links from
S. Now we estimate the number of different paths using the same links from S. Let k be
odd and there are k2 equal solution links in the path. Then, there can only be one such
path, since the endpoints are fixed. If there are only k1 equal solution links in the path, then
both endpoints can vary. This results in at most ∆2 different paths, where ∆ is the max
degree in (Vc, L′ ∪ S). When k is even, one endpoint of the path is free and there are at
most ∆ different paths. Overall, this yields |X| ∈ O(|Vc|⌊

k
2 ⌋ ×∆2 + |Vc|⌈

k
2 ⌉) and results in a

complexity for LS(k) of O(|Vc|2(|Vc|⌊
k
2 ⌋ ×∆2 + |Vc|⌈

k
2 ⌉)). ◀

SEA 2024

11:22 Engineering Weighted Connectivity Augmentation Algorithms

C Instance Details

Table 1 Properties of all graphs G and their corresponding cactus graph C used in the evaluation.

class graph |V (C)| |E(C)| |V (G)| |E(G)|

Real-World coAuthorsCiteseer 30 322 30 321 227 320 814 134
preferentialAttachment 28 530 28 529 100 000 499 985
delaunay_n21 23 719 23 718 2 097 152 6 291 408
luxembourg.osm 23 077 23 076 114 599 119 666
kkt_power 22 388 22 387 2 063 494 6 482 320
delaunay_n20 11 740 11 739 1 048 576 3 145 686
coPapersDBLP 10 244 10 243 540 486 15 245 729
as-22july06 7 999 7 998 22 963 48 436
hugetric-00000 6 617 8 040 5 824 554 8 733 523
coPapersCiteseer 6 372 6 371 434 102 16 036 720
delaunay_n19 5 977 5 976 524 288 1 572 823
PGPgiantcompo 5 513 5 512 10 680 24 316
vsp_vibrobox_scagr7-2c_rlfddd 3 956 3 955 77 328 435 586
vsp_finan512_scagr7-2c_rlfddd 3 936 3 935 139 752 552 020
vsp_sctap1-2b_and_seymourl 3 288 3 287 40 174 140 831
finan512 3 073 3 072 74 752 261 120
delaunay_n18 2 929 2 928 262 144 786 396
vsp_south31_slptsk 2 710 2 709 39 668 189 914
vsp_model1_crew1_cr42_south31 2 561 2 560 45 101 189 976
vsp_c-30_data_data 1 768 1 767 11 023 62 184
power 1 612 1 611 4 941 6 594
delaunay_n17 1 484 1 483 131 072 393 176
af_shell9 1 276 1 275 504 855 8 542 010
vsp_bump2_e18_aa01_model1_crew1 1 212 1 211 56 438 300 801
t60k 1 136 1 332 60 005 89 440
vsp_p0291_seymourl_iiasa 942 941 10 498 53 868
ldoor 904 903 952 203 22 785 136
latin_square_10 901 900 900 307 350
delaunay_n16 790 789 65 536 196 575
add32 681 680 4 960 9 462
vibrobox 625 624 12 328 165 250
add20 367 366 2 395 7 462
delaunay_n15 359 358 32 768 98 274
NLR 336 335 4 163 763 12 487 976
G3_circuit 317 316 1 585 478 3 037 674
vsp_befref_fxm_2_4_air02 215 214 14 109 98 224
delaunay_n14 181 180 16 384 49 122
audikw1 163 162 943 695 38 354 076
email 156 155 1 133 5 451
uk 136 135 4 824 6 837
M6 132 131 3 501 776 10 501 936
cage15 129 128 5 154 859 47 022 346
memplus 110 109 17 758 54 196

Generated Cycles cycle-5000 5 000 5 000
cycle-1000 1 000 1 000
cycle-500 500 500
cycle-300 300 300
cycle-200 200 200
cycle-100 100 100
cycle-50 50 50

Generated Stars star-5000 5 000 4 999
star-1000 1 000 999
star-500 500 499
star-300 300 300
star-200 200 199
star-100 100 99
star-50 50 49

Generated Cacti cactus{16-20} 1000 1199
cactus{11-15} 200 279
cactus{06-10} 100 119
cactus{01-05} 100 109

	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 Minimum Cuts
	3.2 Connectivity Augmentation

	4 Approximation Algorithms
	4.1 LP-based 2-Approximation
	4.2 Relative Greedy (1+ln2+epsilon)-Approximation
	4.3 Local Search (1.5+epsilon)-Approximation

	5 Weighted Connectivity Augmentation Algorithms
	5.1 Data Structures
	5.2 Heuristic Algorithms
	5.2.1 GWC
	5.2.2 MSTConnect
	5.2.3 Local Search

	5.3 Exact Algorithm

	6 Experimental Evaluation
	6.1 Overview
	6.1.1 Methodology
	6.1.2 Instances
	6.1.3 Link Sets

	6.2 Approximations
	6.3 State-of-the-Art Comparison
	6.3.1 Small Link Costs
	6.3.2 Large Link Costs
	6.3.3 Memory Consumption
	6.3.4 Advise for Practitioners

	7 Conclusion
	A Cactus Graph Generation
	A.1 Generating Cactus Graphs
	A.2 Graph with given Cactus Graph

	B Omitted Proofs
	C Instance Details

