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Abstract
Graph algorithms with polynomial space and time requirements often become infeasible for massive
graphs with billions of edges or more. State-of-the-art approaches therefore employ approximate
serial, parallel, and distributed algorithms to tackle these challenges. However, such approaches
require storing the entire graph in memory and thus need access to costly computing resources such
as clusters and supercomputers. In this paper, we present practical streaming approaches for solving
massive graph problems using limited memory for two prototypical graph problems: maximum
weighted matching and minimum weighted edge cover. For matching, we conduct a thorough
computational study on two of the semi-streaming algorithms including a recent breakthrough result
that achieves a 1/(2 + ε)-approximation of the weight while using O(n log W/ε) memory (here n is
the number of vertices and W is the maximum edge weight), designed by Paz and Schwartzman
[SODA, 2017]. Empirically, we show that the semi-streaming algorithms produce matchings whose
weight is close to the best 1/2-approximate offline algorithm while requiring less time and an
order-of-magnitude less memory.

For minimum weighted edge cover, we develop three novel semi-streaming algorithms. Two of
these algorithms require a single pass through the input graph, require O(n log n) memory, and
provide a 2-approximation guarantee on the objective. We also leverage a relationship between
approximate maximum weighted matching and approximate minimum weighted edge cover to develop
a two-pass 3/2 + ε-approximate algorithm with the memory requirement of Paz and Schwartzman’s
semi-streaming matching algorithm. These streaming approaches are compared against the state-of-
the-art 3/2-approximate offline algorithm.

The semi-streaming matching and the novel edge cover algorithms proposed in this paper can
process graphs with several billions of edges in under 30 minutes using 6 GB of memory, which is
at least an order of magnitude improvement from the offline (non-streaming) algorithms. For the
largest graph, the best alternative offline parallel approximation algorithm (GPA+ROMA) could
not finish in three hours even while employing hundreds of processors and 1 TB of memory. We also
demonstrate an application of semi-streaming algorithm by computing a matching using linearly
bounded memory on intersection graphs derived from three machine learning datasets, while the
existing offline algorithms could not complete on one of these datasets since its memory requirement
exceeded 1TB.
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12:2 Streaming Matching and Edge Cover in Practice

1 Introduction

Solving large-scale graph problems is at the forefront of various research fields, such as high
performance computing, data science, and machine learning. An attractive computational
model for large-scale graph computations is the semi-streaming model [14, 35], which promises
to require significantly lower space than the traditional offline algorithms. In this paper,
we study maximum weight Matching (MWM) and minimum weight edge cover (MWC) in the
semi-streaming model. A matching (edge cover) in a graph is a subgraph where the degree
of each vertex has an upper (lower) bound of one. On weighted graphs, for the MWM, we seek
a subgraph with the maximum sum of weights of the edges, while for the MWC we minimize
the sum of weights.

Matchings have been heavily researched in combinatorial optimization as they have rich
algorithmic structures with many real-world applications. MWM can be solved in polynomial
time, but the optimal algorithms are expensive and not suited for graphs with billions of
edges or more. Consequently, for the past twenty years, offline approximation algorithms
have been developed for the MWM problem [3, 40, 8, 37, 9]. See [32, 39] for surveys and a
computational study of these algorithms. In the semi-streaming model, matching has also
been extensively studied. The first semi-streaming algorithm for MWM is 1/6-approximate,
and is due to Feigenbaum et. al. [14] (FB, henceforth). After several improvements, an
algorithm with the approximation ratio of 1

2+ε was designed by Paz and Schwartzman [36]
(PS, henceforth). Both algorithms use only O(n polylog(n)) bits of space, where n is the
number of vertices of the graph.

Several natural questions arise: are these streaming algorithms memory-efficient in
practice? By optimizing memory, do they sacrifice quality or runtime compared to offline
approximation algorithms? In this paper we conduct a thorough computational study
of two of the streaming matching algorithms (FB and PS) and compare them with four
representative offline approximation algorithms (Greedy [3], PGA [8], GPA [32] and ROMA [37]).
Our experiments reveal that the streaming algorithms (especially PS) stand out in terms
of quality, memory, and runtime. We also show that the post-processing phase of the PS
algorithm can be made parallel using a locally dominant strategy.

Edge cover has not been studied in the semi-streaming model, while in offline settings,
there exist several approximation algorithms [27, 17, 16, 39]. For edge cover, we develop and
implement three new semi-streaming algorithms (NN, OnePass and TwoPass) with approxima-
tion guarantees of 3

2 + ε and 2. These algorithms are compared against a state-of-the-art
offline algorithm, the primal-dual algorithm (PD [17]), which is 3/2-approximate.

We also consider an application for MWM, MWC and variants: construct sparse graph
representations of large datasets, where each instance has several features. Such data sets
are used for downstream applications such as semi-supervised learning [25] and privacy
preservation [26]. A common practice here is to construct a complete graph with instances as
the vertices and edges weighted by a similarity or dissimilarity measure computed from the
features of their endpoints. This graph is then sparsified by selecting a subset of edges using
variants of matching or edge cover. But this limits the size of data one can process since
the complete graph has O(n2) edges for n instances. This motivates the use of streaming
algorithms, where we do not need to store the graph as it is generated but only a small
footprint of it. Indeed, for one of our test problems, the offline algorithm runs out of memory,
whereas for two others, we reduce the memory used by a factor of more than 100.
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2 Preliminaries

Notations. Let G = (V, E, w) be a simple undirected graph with vertex set V and edge
set E, and let w : E → R>0 be a positive weight function defined on the edges. We denote
|V | = n and |E| = m throughout the paper. Let Wmax denote maxe∈E{w(e)}, and Wmin

denote mine∈E{w(e)}. We assume both Wmax and Wmax/Wmin are O(nα), where α is a
positive real-valued constant. This assumption lets us represent the weights and their sum in
O(log n) bits. An edge subset F ⊆ E induces a subgraph of G with the endpoints of F as
vertices and edges from F . We use NF (.) to denote the neighborhood of a vertex or edge in
the subgraph induced by F . For a vertex v, NF (v) may represent the edges incident on v

({e ∈ E : v ∩ e /∈ ∅}) or vertices adjacent to v ({u ∈ V : {u, v} ∈ E}), and which definition
is used will be clear from the context. Similarly, we define NF (e) for an edge e. If f is a
function and X is a set of elements on which f is defined, then f(X) =

∑
e∈X f(e).

MWM and MWC Problem. Given a graph G = (V, E, w), a matching is a subset of edges
M ⊆ E, where every vertex of G has at most one endpoint in M . A maximum weight
matching (MWM) is a matching M∗ of maximum sum of weights w(M∗) among all matchings.
In an edge cover C ⊆ E, every vertex of G has at least one endpoint in C. A minimum weight
edge cover (MWC) is an edge cover C∗ of minimum sum of weights w(C∗). The primal-dual
formulation of the MWM problem is shown in Equations (1) and (2).

max
∑
e∈E

w(e)x(e)

s.t.
∑

e∈δ(v)

x(e) ≤ 1 ∀v ∈ V

x(e) ≥ 0 ∀e ∈ E.

(1)

min
∑
v∈V

y(v)

s.t. y(u) + y(v) ≥ w(e) ∀e = (u, v) ∈ E

y(v) ≥ 0 ∀v ∈ V.

(2)

The Semi-Streaming Model. For the semi-streaming MWM and MWC problems, in a pass,
the edges of E are presented one at a time in an arbitrary order. We aim to compute a
matching or edge cover in G at the end of the stream, using small memory and few passes.
The semi-streaming algorithm is output-sensitive, i.e., it is allowed to use memory sizes for
processing that are proportional (up to a polylog factor) to the size of the memory needed to
store the output. For MWM and MWC, the final solution size is O(n), and hence the memory
limit is O(n polylog(n)).

3 Related Work

Henzinger et al. first considered streaming graph problems, using sublinear space in [23].
Unfortunately, many graph problems, such as connectivity and finding paths, are provably
intractable with sublinear space. Hence the Semi-streaming model [14, 35] was introduced,
which relaxes the memory limit to O(n polylog(n)), where n is the number of vertices of
the graph. Most of the semi-streaming graph algorithms are analyzed in either an arbitrary
or random order of arrival of the elements. A random order stream assumes the streaming
elements arrive uniformly at random, whereas in arbitrary order, the arrival of the stream
could be adversarial. An early survey of semi-streaming graph problems is included in [34].

SEA 2024



12:4 Streaming Matching and Edge Cover in Practice

Algorithm 1 PS Matching({e{u, v}},ε).

Input: Stream of edges e{u, v}, A constant ε

Output: Matching M , using O( n log2 n
ε

) bits space
1: ∀v ∈ V : ϕ(v) = 0; S ← ∅; M ← ∅ ▷ Initialization
2: ▷ Stream Process
3: for e(u, v) ∈ E do
4: if w(e) > (1 + ε)(ϕ(u) + ϕ(v)) then
5: w′(e) = w(e)− (ϕ(u) + ϕ(v))
6: ϕ(u) = ϕ(u) + w′(e); ϕ(v) = ϕ(v) + w′(e)
7: S.push(e)
8: ▷ Post Processing
9: while S is not empty do

10: e(u, v)← S.pop()
11: if (V (M) ∩ {u, v}) = ∅ then
12: M ←M ∪ {e}

Matching problems are an active area of research in the semi-streaming model. For
arbitrary edge arrival, Feigenbaum et al. [14] first studied semi-streaming MWM and presented
a 1/6-approx matching, which was improved by several authors over time: [33, 42, 12, 6].
In a recent breakthrough, Paz and Schwartzman [36] showed that a simple algorithm could
achieve a 1/(2 + ε)-approximation. Ghaffari and Wajc further simplified their algorithm
and analysis in [19]. For arbitrary order of stream, this result remains the best till now.
For random arrival, Gamlath et al. [18] broke the 1/2-approximate barrier and showed a
(1/2 + ε)-approximate algorithm in a single pass.

For the MWC problem, we are unaware of any semi-streaming algorithms in the literature.
An edge cover can be formulated as a special case of a set cover problem, and for weighted
set cover, Emek and Rosen [11] designed a single pass semi-streaming algorithm with
approximation ratio

√
n. However, we report constant factor approximation algorithms for

edge cover.
Software for modeling streaming graphs includes STINGER [10], graph-stream [29], and

GraphStream [38]. Recent algorithmic and computational studies on streaming combinatorial
problems include set-cover [4], connected components [41], and hypergraph partitioning [13].
However, we are not aware of any implementation and experimental study of streaming
matching algorithms in the literature. Recent work on engineering algorithms for the dynamic
matching problem with computational evaluations is presented in [1, 2, 21, 22].

4 Semi-streaming MWM Algorithms

We briefly describe the two semi-streaming MWM algorithms we implemented. Feigenbaum et
al. [14] developed the first semi-streaming MWM algorithm (FB), which maintains a matching
M , and modifies it when a sufficiently heavy edge arrives. When an edge e{u, v} arrives,
FB inspects whether w(e) > 2 · w(NM (e)), where NM (e) represents the neighboring edges
of e already in M . If the inequality is true, e is inserted into M , and the edges in NM (e)
are removed; otherwise, e is ignored. The breakthrough 1

2+ε -approximate semi-streaming
algorithm (PS) for maximum weighted matching is due to Paz and Schwartzman [36]. The
original algorithm was analyzed using local ratio techniques, but later Ghaffari and Wajc [19]
provided a simpler primal-dual based analysis of the algorithm which we adopt here.

We now describe the idea underlying the Paz and Schwarzman algorithm. Consider the
non-streaming setting first. The algorithm chooses an edge with positive weight, includes it
in a stack for candidate matching edges, and subtracts its weight from neighboring edges. It



S M Ferdous, A. Pothen, and M. Halappanavar 12:5

repeats this process as long as edges with positive weights remain. At the end, we unwind the
stack and greedily add edges in the stack to the matching. This means that once an edge is
added to the matching, any neighboring edges in the stack cannot be added to the matching.
To adapt this algorithm to the streaming setting, we keep an approximate dual variable for
each vertex that accumulates the weight of edges incident on the vertex and added to the
stack. When an edge arrives, we subtract the sum of dual variables of the endpoints of the
edge from its weight, and if this reduced weight is positive, then it is added to the stack. If
not, it is discarded. The rest of the algorithm proceeds as before. To bound the size of the
stack to O(n log n), we need one more idea, which is to include an edge in the stack only if
its weight is greater than a constant factor (1 + ε) times the sum of the approximate dual
variables. It can be shown that if the edge weights are polynomial in n, then the size of the
stack is bounded as desired, and that the approximation ratio becomes 1/(2 + ε).

A formal description of the method is shown in Algorithm 1. It initializes the approximate
dual variables (the vector ϕ) to zero, and then processes the streaming edges one by one.
When an edge e arrives, the algorithm decides whether to store it in the set of candidate
matching edges (the Stack S) or to discard it. This decision is based on whether the dual
constraint (shown in the Algorithm) is approximately satisfied for this edge. If the edge is
stored, we compute the reduced weight w′(e) = w(e) − (ϕ(u) + ϕ(v)) and add it to both ϕ(u)
and ϕ(v). Ghaffari and Wajc [19] showed that as edges incident on a vertex v are inserted
into the stack S, they have weights that exponentially increase with the factor 1 + ε. Thus
for each vertex at most O(log1+ε Wmax) = O( log Wmax

ε ) = O( log n
ε ) edges are stored in S

(since we assume weights to be polynomial in n).
In the post-processing phase, the algorithm unwinds the stack and constructs a maximal

matching, processing edges in the stack order, in serial. The post processing phase of PS can
be parallelized by computing a locally dominant matching that preserves the approximation
guarantee, which we discuss next.

4.1 Post-processing using Locally Dominant Algorithm
We now show that the post-processing phase of the PS algorithm (Algorithm 1) can be
made parallel using locally dominant matchings. To do so, we maintain an array of n stacks
S instead of a single stack S. In the streaming phase, for the eligible incident edges of a
vertex v, S[v] stores the neighboring vertices of v. When an edge {u, v} arrives if it is not
discarded, we push v in S[u] and u in S[v]. Let ES be the set of edges stored in S, i.e.,
ES :=

⋃
u∈V ∪v∈S[u]{u, v}.

In the post-processing phase, we use S to compute a maximal matching locally. Given
a set of matching edges M , let V (M) be the union of the endpoints of M , i.e., V (M) =
∪{u,v}∈M {u, v}. An edge e{u, v} is available w.r.t a matching M if e can be added to M

without violating any matching constraints, i.e., V (M) ∩ {e, v} = ∅. Given a matching M ,
we say an edge e{u, v} ∈ ES is locally dominant if the edge is available with respect to M

and u is on the top of S[v] and v is on the top of S[u]. The matching M is locally dominant
if every edge of M is locally dominant when added to the matching. When the streaming
phase ends, we compute a locally dominant matching in the subgraph induced by the edges
in ES .

This new post-processing does not change the approximation guarantee of the original
algorithm. We reuse an observation and a corollary from [19].

▶ Observation 1. For v ∈ V , y(v) = (1 + ε)ϕ(v) is feasible in the dual LP (2).

SEA 2024



12:6 Streaming Matching and Edge Cover in Practice

Algorithm 2 Semi-Stream Matching({e{u, v}},ε).

Input: Stream of edges e(u, v), a constant ε

Output: 1
2+ε

-approximate Matching M , using O(n log2 n/ε) bits space
1: ∀v ∈ V : ϕ(v) = 0; M ← ∅ ▷ Initialization
2: S ← Array of n empty stacks
3: for e(u, v) ∈ E do ▷ Stream Process
4: if w(e) > (1 + ε)(ϕ(u) + ϕ(v)) then
5: w′(e) = w(e)− (ϕ(u) + ϕ(v))
6: ϕ(u) = ϕ(u) + w′(e); ϕ(v) = ϕ(v) + w′(e)
7: S[u].push(v);S[v].push(u)

8: while {∃e{u, v} ∈ ES : e is locally dominant} do ▷ Post Processing
9: M ←M ∪ {e}

10: Remove u from S[v] and v from S[u]

▶ Corollary 2. Let OPT (LP ) denote the weight of an optimal solution of the LP (1). Any
optimal matching M∗ satisfies w(M∗) ≤ OPT (LP ) ≤ (1 + ε)

∑
v∈V ϕ(v).

Let ∆ϕ(e) for an edge e be the change to
∑

v ϕ(v) in Lines 6 in the Algorithm 2. We observe
that if we decide to push the endpoints of e into S, then the change in the total approximate
dual (

∑
v∈V ϕ(v)) due to e is ∆ϕ(e) = 2w′(e). Otherwise, ∆ϕ(e) = 0. At the end of the

streaming phase,
∑

e∈E ∆ϕ(e) =
∑

v∈V ϕ(v).
The following Lemma proves a relationship between the weight of an edge e and the

reduced weight of all of its neighbors in ES that occur in the stream before e.

▶ Lemma 3. Let the preceding edges of an edge e{u, v} ∈ ES be denoted by P(e) = {e′|e′ ∩e ≠
∅, e′ is inspected no later than e}. Then w(e) ≥ 1

2
∑

e′∈P (e) ∆ϕ(e′) =
∑

e′∈P (e) w′(e′).

Proof. Before inspecting e in the stream, let the values of ϕ(u) and ϕ(v) be ϕ′(u) and
ϕ′(v), respectively. Let us first consider ϕ′(u), which is the accumulation of all the updates
w′({u, x}) = 1

2∆ϕ({u, x}) for some vertex x, where the edge {u, x} arrives before e in the
stream. Hence, {u, x} is in P(e), and v is positioned higher than x in S[v]. A similar
argument also holds for the edges {v, x} arriving before e. So we have ϕ′(u) + ϕ′(v) ≥
1
2

∑
e′∈P(e)\e ∆ϕ(e′). By construction (Line 5) of Algorithm 2, we have

w(e) = w′(e) + ϕ′(u) + ϕ′(v) ≥ 1
2∆ϕ(e) + 1

2
∑

e′∈P(e)\e

∆ϕ(e′) = 1
2

∑
e′∈P(e)

∆ϕ(e′). ◀

▶ Lemma 4. The matching M produced by Algorithm 2 is 1
2+ε -approximate.

Proof. We denote the constant in the algorithm by ε′. We observe that each edge e ∈ ES ,
which does not belong to the matching M , has a neighboring edge in M inspected later than
e in the stream. Hence∑

e∈M

w(e) ≥ 1
2

∑
e∈M

∑
e′∈P(e)

∆ϕ(e′) [from Lemma 3]

≥ 1
2

∑
e∈ES

∆ϕ(e) = 1
2

∑
e∈E

∆ϕ(e) = 1
2

∑
v∈V

ϕ(v) [∆ϕ(e) = 0 if e /∈ ES ]

≥ 1
2(1 + ε′)

∑
v∈V

y(v) ≥ 1
2(1 + ε′)

∑
e∈M∗

w(e) [from Obs. 1 and Cor. 2]. ◀
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Algorithm 3 Finding a locally dominant edge.

1: function bestMate(u, S[u])
2: bestU = -1
3: while S[u] is not empty do
4: if S[u].top() is marked as deleted

then
5: S[u].pop()
6: continue
7: bestU = S[u].top()
8: break
9: return bestU

Input: a vertex u; the stacks S; Current Match-
ing M

Output: Matching endpoints for each vertex,
mate

10: procedure ldCheck(u,S,M)
11: if u is not marked as deleted then
12: v = bestMate(u,S[u])
13: if v = -1 then
14: Mark u as deleted; return
15: bestV = bestMate(v,S[v])
16: if u = bestV then ▷ Locally dominant
17: mate[u] = v; mate[v] = u

18: S[u].pop(); S[v].pop()
19: Mark u and v as deleted

Note that the ε = 2ε′ here is yet another constant. We could also express the approxima-
tion ratio as 1

2 − ε as 1
2+ε is equivalent to it. The memory requirement of the new algorithm

is the same as that of the serial one; since both these algorithms retain the same edges, and
the new post-processing requires memory linear in the size of ES .

4.2 Parallel Implementation

We have proved that any algorithm that computes a locally dominant matching is 1
2+ε -

approximate, and now we discuss the detailed implementation of our locally dominant
algorithm that builds on a Procedure LdCheck described next. In LdCheck, for a vertex
u, we find its best choice for mate, say v, in the order of its stack and check whether u is also
the best choice for v. In that case, {u, v} is a locally dominant edge. We apply the matching
operation on this edge, which includes popping both stacks, updating the mate arrays, and
marking u and v as deleted.

To be efficient, we maintain a work queue that stores the candidate vertices for matching
(a vertex may be stored multiple times). Initially, this queue holds all the vertices. The
algorithm continues by deleting a vertex from the work queue until the queue is empty and
applies the LdCheck procedure on this vertex. When an edge is matched, all of its available
neighbors are inserted in the queue since, for these vertices, the corresponding stacks could
potentially be modified. A vertex can be inserted into the queue at most |NEs

(v)| times, and
the total amortized work of a vertex (w.r.t all of its insertions in the queue) is O(|NEs

(v)|).
The overall time complexity is thus linear in the size of ES which is O(n log n).

In the shared memory parallel implementation, we maintain queues for each of the
processors. Initially, all the queues form a partition of V . Each processor in parallel runs the
ldcheck procedure on the vertices of its own queue and updates the queues similarly to the
serial algorithm. In the parallel algorithm, a vertex can be in multiple queues and thus may
call ldcheck simultaneously. Moreover, both endpoints of an edge can initiate ldcheck
at the same time. To resolve these, we employ synchronization by defining a lock for each
vertex. If an edge {u, v} is locally dominant, instead of applying the matching operations
immediately, we use the test-and-lock function to lock x, where x = min{u, v}. If the
lock test fails, then the vertex is ignored. Otherwise, we recheck the availability of u and v,

SEA 2024



12:8 Streaming Matching and Edge Cover in Practice

perform the pop operation, update the matching, and mark u and v as deleted. The lock is
released afterward. The detailed pseudocode of LdCheck is in Algorithm 3 with the critical
region highlighted.

The total work of the parallel algorithm is the same as the serial, i.e., linear in the size
of edges in the stack. (The depth might not be O(log n) even when the edge weights in
the graph are random or the edges are streamed in random order since the stacks keep a
non-random subset of edges). By induction on the edges matched by the post-processing
algorithm of Paz and Schwartzman, we can show that the matchings obtained by the two
algorithms are identical.

We implemented our parallel post-processing using the OpenMP library. Since the number
of edges in the post-processing step is relatively small (geometric mean of the ratio of the
stack size to the number of edges is only 2.65% for Large graphs), the added overhead of
the parallel algorithm provides only slight benefits over the original post-processing, even
when 128 processors are used. However, we expect that for massive graphs with trillions of
edges, our parallel implementation could outperform the sequential one significantly.

5 Semi-streaming MWC Algorithms

5.1 Nearest Neighbor (NN) Algorithm

The 2-approximate Nearest Neighbor (NN) algorithm chooses an edge of minimum weight
incident on a vertex to cover it. The NN algorithm can be implemented easily in a semi-
streaming computational model. We maintain an array of edges (µ) of size n, representing
a minimum weighted edge incident on a vertex, initialized to the empty set and updated
in the course of the algorithm. When an edge {u, v} arrives in the stream, we compare its
weight with the weights of µ(u) and µ(v) and update them accordingly.

▶ Lemma 5. The approximation ratio of the NN algorithm is 2, and its memory requirement
is O(n log n) bits.

Proof. Let C∗ be an optimum edge cover, and let C denote an edge cover computed by
the NN algorithm. For any vertex v ∈ V , we denote by ν(v) an arbitrary edge in NC∗(v).
Since µ(v) is a minimum weighted edge incident on v, we have w(ν(v)) ≥ w(µ(v)). An edge
in the optimal solution can cover at most two vertices. Hence w(C∗) ≥ 1

2
∑

v∈V w(ν(v)) ≥
1
2

∑
v∈V w(µ(v)) = 1

2 w(C).
For each vertex v, NN stores µ(v), which requires O(log n) bits, and hence the memory
requirement. ◀

5.2 Two pass 3
2 + ε-approx (TwoPass) Algorithm

We will exploit a relationship between a minimum weighted edge cover (MWC) and a maximum
weighted matching (MWM) to design a two-pass streaming algorithm. An MWC can be constructed
by solving an MWM on a weight-transformed graph. For a vertex subset W , we will denote by
µ(W ) the set of minimum weight edges incident on vertices in W . We denote by V (M) the
set of endpoints of edges in a matching M . The following observation shows that some edges
of the graph can be pruned for the MWC problem.

▶ Observation 6. Any edge e{u, v} ∈ E with weight w(e) such that w(e) ≥ w(µ(u))+w(µ(v))
can be removed without changing the weight of an optimal edge cover.
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We define the transformed weight of an edge {u, v} as w′({u, v}) = w(µ(u)) + w(µ(v)) −
w({u, v}). By Observation 6, we may discard any edges with w′({u, v}) ≤ 0. Let E′ be the
set of edges in G after removing such edges, and G′ = (V, E′, w′) be the subgraph induced by
E′. Let M∗ be a maximum weight matching in G′. Then an edge cover can be constructed
as C∗ = M∗ ∪ µ(V \ V (M∗)). We show in Lemma 7 that C∗ is a minimum weight edge cover.

▶ Lemma 7. Let M∗ be a maximum weight matching obtained with the transformed weights
w′ from a graph G(V, E, w). Then the edges in M∗ together with a set of minimum weight
eges incident on the unmatched vertices constitute a minimum weight edge cover C∗ of the
graph G.

Proof. By construction of C∗, we have

w(C∗) = w(M∗) + w(µ(V \ V (M∗)))

=
∑

e={u,v}∈M∗

w(µ(u)) + w(µ(v)) − w′(e) + w(µ(V \ V (M∗)))

= w(µ(V )) − w′(M∗).

Let C be an arbitrary edge cover, and M ⊆ C be an arbitrary maximal matching (a
matching to which we cannot add an edge without violating the matching conditions) in
G′. We construct a new edge cover, C ′, with a possibly lower weight than C by C ′ =
M ∪ µ(V \ V (M)). Since each of the edges in C \ M covers a single vertex in V \ V (M),
we have w(C ′) ≤ w(C). It follows that w(C) ≥ w(C ′) = w(µ(V )) − w′(M). This shows the
equivalence of MWM and MWC. Since w(µ(V )) is a constant, w(C) is minimized when w′(M) is
maximized. ◀

In fact, this transformation is also approximation preserving. We state and prove the
following theorem from [24].

▶ Theorem 8. Let M be a (1 − α)-approximate matching obtained with the transformed
weights w′ from a graph G = (V, E, w). Then the edges in M together with a set of minimum
weight edges incident on the unmatched vertices constitute a (1 + α)-approximate edge cover
C of the graph G with respect to the original weights w.

Proof. Let C∗ denote an optimal edge cover with respect to the weights w and let M∗

denote an optimal matching with respect to the weights w′. It is easy to verify that
w′({u, v}) ≤ w({u, v}) for all edges {u, v}. We have

w′(M∗) =
∑

{u,v}∈M∗

w′({u, v}) ≤
∑

{u,v}∈M∗

w({u, v}) = w(M∗) ≤ w(C∗). (3)

From the construction of C and the definition of M , we have

w(C) = w(M) + µ(V \ V (M)) = µ(V (M)) − w′(M) + µ(V \ V (M)) = µ(V ) − w′(M).

Using the approximation ratio of the matching algorithm that computed M , we obtain

w(C) = w(µ(V )) − w′(M) ≤ w(µ(V )) − (1 − α)w′(M∗)
= w(µ(V )) − w′(M∗) + α w′(M∗) = w(C∗) + α w′(M∗) ≤ (1 + α) w(C∗).

In the second line, first we use the equation in the proof of Lemma 7, and next we use
inequality (3). This completes the proof. ◀

SEA 2024



12:10 Streaming Matching and Edge Cover in Practice

We use this transformation to develop a two-pass (TwoPass) streaming edge cover algorithm.
In the first pass, we find the edges {µ(v) : v ∈ V } using the NN Algorithm discussed in
Section 5.1. In the next pass, we construct the reduced weight for an edge in the stream
and employ the PS streaming matching algorithm discussed in Section 4. Any vertices v

that are unmatched in the matching are then covered by the edges from {µ(v)}. Since
the PS algorithm is ( 1

2+ε ) ≡ ( 1
2 − ε)-approximate, by Theorem 8, the TwoPass algorithm is

( 3
2 + ε)-approximate for a constant ε ≥ 0. This algorithm requires an additional O(n log n)

bits space, to store the µ(.)s, compared to the PS algorithm.

5.3 One pass 2-approx (OnePass) Algorithm
We develop here another one-pass 2-approximation algorithm for the MWC problem. Although
this OnePass algorithm provides the same worst-case approximation guarantee and has the
same memory requirement as NN, empirically it obtains lower weights.

For each vertex v ∈ V , the algorithm maintains a potential function ϕ(v) initialized to
∞ and a tag(v) initialized to zero. It also maintains an array cover for each vertex v ∈ V

that stores the covering edge of v. We say an edge is a 2-covering edge if half of its weight is
smaller than the current potentials of both of its endpoints. It is a 1-covering edge if the
weight of this edge is smaller than the potential of only one of the endpoints. When an edge
e{u, v} arrives in the stream, the algorithm updates µ(u) and µ(v), if necessary. Then it
checks whether it is a 2-covering or 1-covering edge, and processes it as described below. If
the edge satisfies neither condition, it discards the edge.

e is a 2-covering edge. We update ϕ(u) and ϕ(v) values to w(e)/2, and tag u and v as
vertices covered by a 2-covering edge by assigning tag(u) = tag(v) = 2. The algorithm
also updates the values of cover(u) and cover(v) to e. If u or v was covered earlier by a
2-covering edge (Line 7 is true), we change the potential of the other endpoint, say y, to
w(µ(y)). We also set cover(y) to µ(y), and tag y to be covered by a 1-covering edge.
e is a 1-covering edge. Denote the covering endpoint by u. We update cover(u) = µ(u),
the potential ϕ(u) = w(µ(u)), and set tag u to 1.

When the streaming phase ends, the µ(.) array stores a minimum weight edge incident on
each vertex. In the post-processing phase, for each vertex v, we update cover(v) = µ(v), and
ϕ(v) = w(µ(v)) if v is marked as covered by a 1-covering edge. Finally, C =

⋃
v∈V cover(v)

is returned as the edge cover. We show the detailed pseudocode in Algorithm 4.
To prove the approximation guarantee, we start with a simple observation.

▶ Observation 9. w(C) =
∑

v∈V ϕ(v).

▶ Lemma 10. After the post processing phase, ϕ(u) ≤ w(µ(u)) for all u ∈ V .

Proof. If u is covered by a 1-covering edge, then after the post-processing step, ϕ(u) =
w(µ(u)). Hence assume that u is covered by a 2-covering edge, say e{u, v}. There are
two cases to consider. i) When the edge µ(u) streams after {u, v}. Since µ(u) was not
considered to cover u, we have ϕ(u) ≤ w(µ(u). ii) When the edge µ(u) is streamed before
{u, v}. Consider the iteration after µ(u) arrives and before u is covered by {u, v}. If in any
one of these iterations, u is covered by a 1-covering edge, ϕ(u) becomes w(µ(u)). When
{u, v} arrives, ϕ(u) must be less than w(µ(u)). On the other hand, if u is always covered by
a 2-covering edge in all these iterations, then trivially ϕ(u) ≤ w(µ(u)). ◀

▶ Lemma 11. The OnePass algorithm is 2-approximate and uses O(n log n) bits of memory.
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Algorithm 4 OnePass Edge Cover({e(u, v)}).

Input: Stream of edges e(u, v)
Output: 2-approximate Edge Cover C, using O(n log n) bits space
1: ∀v ∈ V : ϕ(v) =∞, tag(v)= 0, cover(v) = ∅, µ(v) = ∅; C ← ∅ ▷ Initialization
2: ▷ Stream Process
3: for e{u, v} ∈ E do
4: Update µ(u) and µ(v)
5: if e is a 2-covering edge then
6: for x ∈ {u, v} do
7: if tag(x) = 2 then
8: y = cover(x) \ x ▷ y is the other endpoint of the edge that covers x

9: Update cover(y), tag(y) and ϕ(y)
10: Update cover(x), tag(x) and ϕ(x)
11: else if e is a 1-covering edge of x then
12: Update cover(x), tag(x) and ϕ(x)
13: ▷ Post Processing
14: if tag(v) = 1 then
15: Update ϕ(v) and cover(v) ▷ ϕ(v) is updated for analysis only
16: C =

⋃
v∈V

cover(v)

Proof. Let C∗ be an optimal edge cover. By Observation 9,

w(C) =
∑
u∈V

ϕ(u) ≤
∑
u∈V

w(µ(u)) ≤ 2w(C∗).

The last two inequalities follow from Lemma 10 and the proof of Lemma 5, respectively. ◀

For each vertex v ∈ V , the OnePass algorithm stores the edges µ(v), cover(v), and a flag
value representing whether this vertex is covered by 2-covering or 1-covering edge. Thus, the
total memory per vertex is O(log n) bits, and the memory required is O(n log n) bits.

6 Experimental Results

We have implemented the streaming matching and edge cover algorithms discussed in the
previous sections and performed a thorough comparison of the algorithms with a number
of offline approximation algorithms that are implemented on a node of a cluster computer
to meet the memory requirements of the large graphs we work with. For larger graphs, the
shared memory parallel (OpenMP) version of the ROMA algorithm (Table 2) is used, since it
is compute-intensive. All other algorithms are sequential. The algorithms are executed on
a node of a community cluster computer with 128 cores in the node, where the node is an
AMD EPYC 7662 with 1 TB of total memory. The algorithms are implemented in C++17
and compiled with g++9.3.0 using the -O3 optimization flag.

We provide two options for streaming of the edges: one option directly reads the edges
from a file one by one, which we call TrueStream, while the other reads all the edges into
memory first and then simulates the streaming algorithm by reading edges from memory,
which we call SimStream. The TrueStream setting is used for comparing the overall runtime
and memory of the competing algorithms and the SimStream is used for comparing the actual
processing time of the algorithms without the graph reading and construction time. The
SimStream also reveals the performance of the streaming algorithms executing in an offline
setting. For reporting memory, we use the getrusage system call to retrieve the maximum
resident set size (RSS) during the program’s execution. We refer to the title page for the
source code repository that contains our implementation of the streaming algorithms.
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Table 1 Graph statistics of our dataset. K, M and B stand for thousand, million and billion,
respectively.

(a) Small graph instances. All the graphs are weighted.

Graph n m Avg. Deg. Max. Deg. Min. Deg.

astro-ph 16,706 121,251 14.52 360 0
Reuters911 13,332 148,038 22.21 2,265 0
cond-mat-2005 40,421 175,691 8.69 278 0
gas_sensor 66,917 818,224 24.45 32 7
turon_m 189,924 778,531 8.20 10 1
Fault_639 638,802 13,303,571 41.65 266 0
mouse_ gene 45,101 14,461,095 641.27 8,031 0
bone010 986,703 23,432,540 47.50 62 11
dielFil.V3real 1,102,824 44,101,598 79.98 269 8
kron.logn21 2,097,152 91,040,932 86.82 213,904 0

(b) Large graph instances. U: Unweighted, W: Weighted Graph.

Graph n m Avg. Deg. Max. Deg. Min. Deg.

mycielskian20 (U) 786.43 K 1.36 B 3446.42 393,215 19
com-Friendster (U) 65.61 M 1.81 B 55.06 5,214 1
GAP-kron (W) 134.22 M 2.11 B 31.47 1,572,838 0
GAP-urand (W) 134.22 M 2.15 B 32 68 6
MOLIERE_2016 (W) 30.24 M 3.34 B 220.81 2,106,904 0
Agatha_2015 (U) 183.96 M 5.79 B 62.99 12,642,631 1

(c) ML Datasets.

Dataset # of items # of features # of edges
IMDb 45,039 30,000 992.94 M
MNIST 60,000 784 1.80 B
DBpedia 545,721 10,000 40.42 B

6.1 Dataset and Benchmark Algorithms

Our testbed (shown in Table 1) consists of three datasets. In Table 1a, we show the Small
dataset, which includes ten weighted graphs from the Suitesparse Matrix Collection [7]
frequently used for comparing matching algorithms [28, 20]. In Table 1b, we show the Large
benchmark data that consists of six of the largest undirected graphs in the Suitesparse Matrix
Collection [7], with each graph having more than 1 billion edges. We assign uniform random
weights in the range [1, 106] for the three unweighted graphs. Table 1c lists three popular
machine learning datasets. The MNIST is a hand-written digit recognition dataset, while
the two others are text classification data. IMDb [31] is a binary sentiment analysis dataset,
and DBpedia [30, 43] is ontology classification data.

We compare the streaming algorithms with a few representative approximate offline algo-
rithms from the literature listed in Table 2. These algorithms are practical to implement [32]
and have a similar approximation guarantee as the streaming ones. The parameter ε in the
PS algorithm is set to 10−3 unless otherwise specified. Following [32], we ran only one phase
of ROMA (n random augmentations) on an initial matching generated by GPA algorithm
(GPA+ROMA). The PGA, GPA and parallel ROMA implementations are due to Manne and
Berge [5]. For a detailed description of these approximation algorithms, we refer the reader
to [32, 39].
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Table 2 Benchmark Approximation Offline Algorithms.

Algorithm Approx. Time
Ratio Complexity

Greedy [3] 1/2 O(m log n)
Global Path Algo. (GPA) [32] 1/2 O(m log n)
Path Growing Algo. (PGA) [8] 1/2 O(m)
Random Order Augmentation
Matching Algo. (ROMA) [37]

2/3 - ε O(m log 1/ε)

Primal-dual MWC (PD) [17] 3/2 O(mn)

6.2 Matching Results

Figure 2 shows the relative weight, memory and runtime comparisons of the streaming and
offline matching algorithms for the Small (Figure 2a) and Large (Figure 2b) datasets.
The relative quantities are computed w.r.t. a baseline algorithm. For weights, the baseline
is GPA+ROMA, while for the runtime and memory it is the FB algorithm. The number of
runs for each graph and algorithm pair is set to five for the Small dataset and three for
the Large graphs. The relative quantity of interest is obtained by computing the mean
value of the quantity over the runs and then taking its ratio with the mean baseline value.
The top-left plots in both of the subfigures show the box plots of the weights achieved by
the algorithms across all the graphs relative to the weights of GPA+ROMA. For reporting
relative runtime and memory results we show line plots, where the x-axis represents the graph
instances (sorted from high to low w.r.t. to the edges) and the y-axis represents the relative
memories (bottom-left) or runtimes (top and bottom right) of the algorithms compared. The
two right plots in both Subfigures in Figure 2 report the relative runtimes. Of these, the top
right ones show the total runtimes that include reading, graph constructions, initialization,
processing, and post-processing time. The bottom-right plots report only the algorithmic
time excluding reading and graph construction time. For this experiment (bottom-right
plots), when streaming algorithms are executed, we used the SimStream setting. For all other
experiments, we used TrueStream streaming option. For the largest instance in our data set,
the Agatha_2015 graph, the parallel ROMA did not terminate within three hours of runtime.
For this instance, we chose GPA weight to be the baseline. We report the quantitative results
of the baseline algorithms for our dataset in Table 3.

Quality. From the top left plots in Figure 2, we see that the GPA+ROMA obtains higher
weights than other algorithms on almost all the graphs. On the Small dataset, GPA
and Greedy perform the next best with similar median relative weights. Then we have
the PGA and the streaming algorithm PS. All these algorithms achieved relative weight
≥ 95% of GPA+ROMA. The FB algorithm performs the worst achieving around 90% of the
relative weights in terms of median. On the Large dataset, the weight differences from the
GPA+ROMA are more pronounced. In terms of median relative weights, the streaming PS and
the GPA perform similarly with around 90% in the median. The next are the Greedy and PGA.
This result suggests that, for our benchmark instances, the algorithms follow their worst case
approximation guarantee in a relative manner. The GPA+ROMA is 2/3 − ε-approximate, and
it achieves the best weight, while all the other offline algorithms are 1/2-approximate. The
quality of PS is better than the FB and comparable to the other half approximate offline
algorithms. We note that for a few graphs (e.g., myc20), the streaming algorithms perform
significantly worse than the others.
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Memory. For memory usage (bottom left plots), as expected, we see that the streaming
algorithms significantly outperform the offline ones. For both the datasets, the FB algorithm
requires the smallest memory while the PS follows it closely. The Greedy algorithm is the next,
which requires 4× to 256× more memory than FB across the Small graphs. For Large
graphs, the range is [16, 2048]×. All other offline algorithms require approximately twice
the memory of the Greedy. This experiment suggests the streaming algorithms are extremely
memory efficient and well-suited to compute matchings in massive graphs.

Runtimes. Finally, we discuss the runtime results. All these algorithms, except the Greedy,
GPA and GPA+ROMA, have linear time complexity. In terms of total runtime in the Small
dataset (top-right plot in Figure 2a), we see that all the algorithms except GPA and GPA+ROMA
are comparable, with PS completing faster for a few of the instances than FB. The GPA and
GPA+ROMA require almost twice the time of FB for most of the instances, except for kron,
where the GPA+ROMA is 8× slower. For the Large dataset, the streaming and the Greedy
algorithms are comparable, except for the myc20 graph, where Greedy requires twice the time
of the streaming algorithms. When we look into the algorithmic times of these competing
algorithms (bottom-right plots in Figure 2, we see clear separations. FB is the fastest, and PS
requires at most twice as much time as FB in most of the instances for Small graphs, while
for Large graphs both streaming algorithms are similar. Next is the PGA requiring 2× to 4×
more time than the FB for both Small and Large datasets. The Greedy algorithm is 2× to
16× slower than the FB on the Small dataset, while on Large ones, it is up to 32× slower.
GPA and GPA+ROMA are the two slowest algorithms, where for the Small dataset the ranges
of relative runtimes are [4, 32] and [32, 128], respectively. For the Large graph experiments,
GPA needs 8× to 32× more time to complete than the baseline, whereas for GPA+ROMA the
range is [8, 64]×. We note that for the large graphs, the ROMA timing reported is from the
parallel algorithm using 128 threads, and it did not finish for the Agatha_2015 graph in 3
hours.

These experiments suggest that the streaming algorithms are suitable for solving massive
graph problems since they are more memory efficient and faster than the offline ones. We
highlight the PS algorithm to be the overall winner since it often achieves quality close to
the best weights while significantly outperforming the offline algorithms for memory and
runtimes.

Effect of ε on PS. Figure 1 shows the effect of the parameter ε on the streaming matching
algorithm, PS. We choose ε from the set {0, 2−x}, where x = {16, 14, 12, 10, 8, 6, 4, 2, 1, 0}.
The value of ε influences both the approximation ratio and the memory requirement of the
algorithm. With increasing ε, we see that both the memory requirement and the weight of
the matching decrease. But in almost all cases, the change in the weight is smaller than
the decrease in the memory. This experiment suggests that we can substantially decrease
memory without significantly decreasing the matching weight.

6.3 Edgecover Results
We now explain Figure 3, which shows the edge cover results for our streaming algorithms(
NN, OnePass and TwoPass) and the offline primal-dual algorithm (PD). The experimental
setup, number of runs, and subplot description of the figure are exactly the same as the
matching experiments described in Section 6.2. For weights, we choose PD to be the baseline,
while the runtime and memory results are relative to the NN algorithm.
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Figure 1 Memory and weight changes of the streaming matching with varying ε on the Large
dataset. The relative weights and memory are wrt the weights and memory using ε = 0.

Quality. The two top-left plots of Figure 3 show the relative weights of the edge cover
algorithms. Here, the lower is the better. We see that on both Small and Large datasets,
our TwoPass algorithm finds edge cover with smaller weights than the offline PD algorithm.
The OnePass is better than NN algorithm in terms of median weight for both datasets, while
the NN is the worst in terms of quality.

Memory. The bottom-left plots in the two subfigures of Figure 3 present the relative memory
of the edge cover algorithms. The NN requires the least amount of memory space to execute,
while both the OnePass and TwoPass need approximately twice the memory across all the
datasets. An exception is the mouse_gene dataset, where the TwoPass algorithm takes 8×
memory than the NN. The offline PD algorithm is significantly more memory-demanding than
the streaming ones. For Small dataset, the PD algorithm requires 8-512× more memory,
while for the Large dataset, the range is [16, 8192].

Runtime. The two right plots on the two subfigures of Figure 3 show the relative total
runtime and algorithmic time taken by the algorithms. NN and OnePass behave similarly for
both datasets, whereas TwoPass is about twice slower. TwoPass reads the graph twice from the
file, which dominates the overall runtime. The offline PD is faster than the TwoPass algorithm
and comparable to the NN. If we consider only the algorithmic time, the ranking order of the
algorithms is: NN, OnePass, TwoPass and the offline PD for both Small and Large datasets.

These experiments highlight the applicability of our streaming algorithm to solve large-
scale MWC problems. The geometric means of the relative quantities of MWM and MWC algorithms
on both datasets are listed in Table 4.

6.4 Baseline Results
Table 3 presents the weight, time and memory quantities for the baseline algorithms for our
experiment. Table 4 shows the geometric means of all the algorithms for both MWM and MWC
across the Small and Large datasets. We can conclude that the streaming algorithms
reduce the memory required by the offline algorithms by one or two factors of ten. They

SEA 2024



12:16 Streaming Matching and Edge Cover in Practice

are also faster than the offline algorithms, and the weights computed by the PS matching
algorithm and the TwoPass edge cover algorithms are close to the values obtained by the best
performing offline algorithms.

Table 3 Baseline algorithm results for matching and edge cover.

MWM MWC
Weight Total Proc. Mem Weight Total Proc. Mem

Graph Time(s) Time(s) (MB) Time(s) Time(s) (MB)
Base. Alg. GPA+ FB FB FB PD NN NN NN
astro-ph 6.44e+3 0.056 0.001 0.52 3.80e+3 0.05 0.001 0.52
Reuters911 2.55e+4 0.050 0.002 0.52 1.02e+4 0.04 0.001 0.52
cond-mat-2005 1.94e+4 0.086 0.001 0.77 1.17e+4 0.07 0.002 0.77
turon_m 5.84e+4 0.547 0.006 3.08 5.62e+4 0.37 0.006 3.08
gas_sensor 1.56e+3 0.925 0.005 1.30 2.06e+1 0.49 0.007 1.29
Fault_639 2.57e+18 6.730 0.103 10.09 6.17e+14 6.43 0.094 10.15
mouse_gene 1.33e+3 7.719 0.114 1.03 6.49e+2 7.05 0.070 1.04
bone010 1.84e+9 15.555 0.113 15.40 4.87e+7 14.25 0.128 15.52
dielFilterV3real 1.76e+5 27.512 0.270 17.17 3.03e+0 26.51 0.322 17.31
kron_g500-logn21 4.63e+5 30.595 1.577 32.34 1.14e+6 27.74 1.167 32.60
mycielskian20 3.22e+11 207.199 6.016 12.33 1.12e+9 206.96 6.526 12.42
com-Friendster 1.99e+13 479.481 45.842 1,001.44 1.18e+13 452.40 50.864 1,009.27
GAP-kron 2.79e+9 887.629 52.938 2,048.34 3.76e+9 880.56 55.430 2,064.35
GAP-urand 1.58e+10 933.648 55.375 2,048.34 8.78e+8 955.00 67.333 2,064.35
MOLIERE_2016 1.67e+6 1,710.526 75.416 461.76 2.74e+6 1,698.38 94.983 465.37
AGATHA_2015 4.88e+13 1,531.040 165.304 2,807.40 1.76e+13 1,435.73 224.678 2,829.34

Table 4 Geometric mean of quantities relative to baseline algorithms for the MWM and MWC problems.
For baseline algorithms, see Table 3.

Small Dataset Large Dataset
Algorithm Rel. Rel. Rel. Rel Rel. Rel. Rel. Rel

Wt. Mem. Tot. Tm. Proc. Tm. Wt. Mem. Tot. Tm. Proc. Tm.

MW
M

FB 0.89 1.00 1.00 1.00 0.76 1.00 1.00 1.00
PS 0.96 1.70 0.91 1.13 0.90 2.44 0.98 1.26

Greedy 0.96 21.22 1.13 6.92 0.86 73.41 1.23 5.69
PGA 0.95 61.63 1.08 2.56 0.85 231.26 2.12 2.60
GPA 0.98 66.81 1.48 17.77 0.89 233.68 2.72 12.13

GPA+ROMA 1.00 66.74 2.12 60.82 1.00 272.40 3.56 24.13

MW
C

NN 1.26 1.00 1.00 1.00 1.05 1.00 1.00 1.00
OnePass 1.20 2.17 1.02 1.94 1.02 2.54 1.07 1.51
TwoPass 0.97 2.57 2.28 2.57 0.98 2.38 2.01 2.02

PD 1.00 34.55 1.32 7.31 1.00 75.01 1.04 3.36

6.5 Matching on ML Dataset
Next we show results on graphs generated from Machine Learning datasets. To compute an
item intersection graph from a dataset, for each distinct pair of items, we create an edge
with an edge weight calculated from the two feature vectors of the items. Note that the item
intersection graph is dense; indeed, it could be a complete graph. For our experiment, we
have used cosine similarity for the IMDb and DBpedia datasets since they are text data. We
compute edge weights for the MNIST by subtracting the squared Euclidean distance of the
feature vectors from the maximum possible squared distance. Since the size of each image is
28×28 pixels (the size of the feature vector is 784), with pixel value in [0,255], the maximum
possible squared distance for MNIST is 784 ∗ 2552. The streaming algorithm assumes these
edges are generated one by one and passed to the algorithm. But for the offline algorithms,
we are required to generate all the edges and then apply the algorithm to them. We compare
the PS algorithm (streaming) and the Greedy algorithm (offline), the latter chosen since it is
most memory-efficient among offline algorithms.



S M Ferdous, A. Pothen, and M. Halappanavar 12:17

Table 5 The weight, time, and memory requirement of item intersection graphs for the PS
algorithm, and relative results for the Greedy algorithm. The memory for PS is in Megabytes.

PS (ε = .001) Greedy
Dataset Wt. Time Mem. Edge-Retn. Wt. Rel. Rel.

(Sec.) (MB) Ratio. (%) Impr. (%) Time Mem.
IMDb 4.42e+3 901.61 98.15 0.02 8.17 1.37 167.92
MNIST 1.43e+12 1,715.88 254.91 0.18 3.81 1.18 129.35
DBpedia 1.25e+5 33,062.95 318.65 0.01 Out of Memory

In Table 5, we observe that while Greedy gets better weights for two of the datasets (8%
and 3% increase in weights, respectively), it requires two orders of magnitude memory than
the Streaming algorithm. For the DBpedia dataset, where the item intersection graphs
contain more than 40 billion edges, the Greedy algorithm failed to terminate since it needed
more than 1 TB of memory. This experiment also shows the utility of the streaming algorithm
(particularly the PS algorithm) for dense graphs. The edge-retention ratio, defined as the ratio
of the number of edges in the stack to the total number of edges (in percent), is extremely
low, as shown in Table 5.

7 Conclusion and Future work

The best streaming algorithms for matching and edge cover compute weights close to the
offline algorithms, but as expected, use one to two factors of ten less memory to solve the
problems. In a machine learning application, we show that the offline algorithm can run out
of memory where the streaming algorithm does not. The streaming algorithms are generally
also faster than the offline algorithms. For the MWC, we describe a two-pass 3

2 + ε-algorithm,
and an open question is whether there exists a single pass algorithm with the same guarantee.
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(a) Offline and Streaming algorithm comparison for matching on the small dataset.
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(b) Offline and Streaming algorithm comparison for matching on the large dataset. The GPA+ROMA
algorithm is run on 128 threads to compute solution faster.

Figure 2 Comparison of matching algorithms in the small and large dataset. ε = 0.001 for the
PS algorithm. Weight baseline: GPA+ROMA, Runtime and memory baseline: FB. For runtime and
memory results, the y-axis scale is logarithmic.
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(a) Offline and Streaming algorithm comparison for edge cover on the small dataset.
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(b) Offline and Streaming algorithm comparison for edge-cover on the large dataset.

Figure 3 Comparison of edge cover algorithms in the small and large datasets. ε = 0.001 for the
TwoPass algorithm. Weight baseline: PD, Runtime, and memory baseline: NN. For runtime and
memory results, the y-axis scale is logarithmic.
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