
3/2-Dual Approximation for CPU/GPU Scheduling
Bernhard Sebastian Germann #

Kiel University, Germany

Klaus Jansen #

Kiel University, Germany

Felix Ohnesorge #

Kiel University, Germany

Malte Tutas #

Kiel University, Germany

Abstract
We present a fast and efficient 3/2 dual approximation algorithm for CPU/GPU scheduling under
the objective of makespan minimization. In CPU/GPU scheduling tasks can be scheduled on two
different architectures. When executed on the CPU, a task is moldable and can be assigned to
multiple cores. The running time becomes a function in the assigned cores. On a GPU, the task is
a classical job with a set processing time. Both settings have drawn recent independent scientific
interest. For the moldable CPU scheduling, the current best known constant rate approximation
is a 3/2 approximation algorithm [Wu et al. EJOR volume 306]. The best efficient algorithm for
this setting is a 3/2+ε approximation [Mounie et al. SIAM ’07] whereas GPU scheduling admits
a 13/11 approximation [Coffman, Garey, Johnson SIAM’78]. We improve upon the current best
known algorithms for CPU/GPU scheduling by Bleuse et al. by formulating a novel multidimensional
multiple choice knapsack to allot tasks to either architecture and schedule them there with known
algorithms. This yields an improved running time over the current state of the art. We complement
our theoretical results with experimentation that shows a significant speedup by using practical
optimizations and explore their efficacy.

2012 ACM Subject Classification Theory of computation → Rounding techniques; Mathematics of
computing → Discrete optimization; Theory of computation → Scheduling algorithms

Keywords and phrases computing, machine scheduling, moldable, CPU/GPU

Digital Object Identifier 10.4230/LIPIcs.SEA.2024.13

Supplementary Material
Software (Source Code): https://github.com/Felioh/CPU-GPU-Scheduling [5]

archived at swh:1:dir:6b62fa88e3d3dde792b3c7a9803a04ef24651239

Funding Supported in part by DFG-Project JA 612/25-1.

1 Introduction

Scheduling tasks in an efficient manner is one of the most ubiquitous problems in operations
research. Applications range from the minute details of computing to large scale factory
management and concern most facets of modern society. Computers are becoming more
and more powerful, but to fully leverage that power efficient algorithms are required. Tasks
that can be executed on parallel and distributed systems such as GPUs and CPUs require
sophisticated algorithms to schedule. While sequential tasks on the GPU can be executed
without any overhead by simply assigning a starting time and machine to each task, the
CPU tasks require a different approach. Tasks on CPUs are moldable, i.e. a task that can
be executed on several processors. Their execution time is a function dependent on the
number of assigned machines. To account for communication costs between the processors

© Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas;
licensed under Creative Commons License CC-BY 4.0

22nd International Symposium on Experimental Algorithms (SEA 2024).
Editor: Leo Liberti; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bernhard.germann@pm.me
mailto:kj@informatik.uni-kiel.de
https://orcid.org/0000-0001-8358-6796
mailto:felix-eutin@gmx.de
mailto:mtu@informatik.uni-kiel.de
https://orcid.org/0000-0002-1360-4634
https://doi.org/10.4230/LIPIcs.SEA.2024.13
https://github.com/Felioh/CPU-GPU-Scheduling
https://archive.softwareheritage.org/swh:1:dir:6b62fa88e3d3dde792b3c7a9803a04ef24651239;origin=https://github.com/Felioh/CPU-GPU-Scheduling;visit=swh:1:snp:86d753c617f3e52f02f4c34630793b756f0257df;anchor=swh:1:rev:e82b1d14e1a3a1dce87fd2d4974a6f8ac855c13a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Scheduling on CPU/GPU

T

m1 m2 m3 m4 m5
(a)

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T21

T22

T13

T14

T15

T16

T17
T18

T19
T20

T

mc
(b)

Figure 1 An illustration of a CPU/GPU schedule. On the GPU side (a) each task occupies
a single processor, where the height represents the processing time. On the CPU side (b), the
width of tasks represents the number of machines assigned to a task, while the height represents the
processing time on as many machines. The makespan is defined by T7 and T17 and denoted with T .

executing the task this function is not linear in the amount of used processors. Both of these
settings have been studied in the context of makespan minimization [17, 8]. The makespan
corresponds to the earliest time at which all tasks in the given instance finish when all
processors start at the same point in time. Applications of makespan scheduling are again
widespread.

In this paper, we consider the CPU/GPU scheduling problem. Here, each task can be
executed on either the GPU or CPU architecture, i.e. it has both a processing time when
executed on the GPU and a function representing the moldable work for execution on the
CPU. We present a low complexity algorithm that yields a 3/2 + ε approximation guarantee
of the maximum makespan.

1.1 Notation
We define the natural numbers as N := {1, 2, 3, . . . } and N0 := N ⊔ {0}, where ⊔ denotes the
disjoint union. More, we define [n] := {m ∈ N : m ≤ n} and [n]0 := [n] ⊔ {0} for all n ∈ N0.

1.2 Problem Definition
In P ||Cmax (or GPU scheduling) a task can be executed only sequentially on one machine.
An instance is given by a number n ∈ N of tasks, a number m ∈ N of machines and processing
times pj ∈ Q>0 for all tasks j ∈ [n]. The goal is to find a schedule π : [n] → [m] of tasks to
machines, that minimizes the maximum makespan maxi∈[m]

∑
j∈π−1 pj .

In P | fnctj |Cmax (or CPU scheduling, also often called scheduling independent monotonic
moldable tasks) a task can be executed on multiple machines in parallel. An instance is
given by a number of tasks n ∈ N, a number of machines m ∈ N, and for each task j ∈ [n]
a function pj : [m] → Q>0, where pj(ℓ) describes its processing time when scheduled on ℓ

machines. We define the work (area) function wj : [m] → Q>0 for every task j ∈ [n] by
wj(ℓ) := ℓpj(ℓ). Also, we assume the monotony properties that first, pj is non-increasing
and second, wj is non-decreasing for all tasks j ∈ [n]. These represent the assumption that
assigning more machines to a task does not increase its processing time but may come with
an increase in work due to communication overhead. Further, we define for each task j ∈ [n]
the function for the canonical number of machines γj : Q>0 → [m] such that γj(h) is the
minimal number of machines needed to execute task j in time h, and by convention set to
+∞ if no such number exists.

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:3

A schedule is a mapping π : [n] → Q>0 × N, that maps to each task a starting time
and a number of machines. The maximum makespan of a schedule is max{s + pj(ℓ) : j ∈
[n], (s, ℓ) = π(j)}. A schedule is valid if the total number of machines that tasks are scheduled
to does not exceed m at any point in time. The goal is to find a schedule that minimizes the
maximum makespan. For an illustration of such a schedule see Figure 1(b).

CPU/GPU scheduling is a combination of CPU scheduling and GPU scheduling, where
each task can be scheduled to either the CPU or the GPU. An instance consists of a number
of tasks n ∈ N, the number of CPU machines mc and the number of GPU machines mg,
as well as a processing time on the GPU and a processing time function on the CPU for
each task. A valid schedule is a partition of the tasks onto the CPU and GPU and a valid
schedule on each for its respective partition. The maximum makespan is the maximum
of both makespans. The goal is to find a schedule that minimizes the overall maximum
makespan.

1.3 Related Work

CPU/GPU scheduling combines two scheduling paradigms. It is known that, on their
own, both CPU and GPU scheduling are NP-complete [15, 11]. Furthermore, without
monotony assumptions CPU-scheduling does not admit an approximation algorithm with an
approximation rate less than (3/2) unless P = NP [3].

For moldable CPU scheduling, there exist several approximation algorithms. Most
relevant to this work is the algorithm by Mounié et al. [17]. They present a (3/2 + ε)-
approximation algorithm that runs in time O(nmc log(n/ε)). Their paper is in turn based
on a two-phase approach by Turek et al. [18]. There have been several improvements made
to the running time of the algorithm by Mounié. First, Jansen and Land reduced the
dependence of the running time regarding m to a poly-logarithmic factor [10]. Later on,
Grage et al. further improved this poly-logarithmic dependence, yielding a running time of
O(n log2(1

ε + log(εmc)
ε) + n

ε log(1
ε) log(εmc)). The best approximation ratio for this problem

is a (3/2) approximation algorithm given by Chen et al. [19]. Furthermore, it is known that
this problem admits a PTAS [12] however its running time depends on a superexponential
function. Jansen and Land show that there exists an FPTAS for the case where there are
many (m > 8 · n/ε) machines [10]. The running time of the FPTAS in this case was again
improved in [6].

On the GPU side we model one of the most widespread and well-researched scheduling
problems, makespan scheduling on parallel machines. This problem has been researched
continuously since at least 1969 [7]. As the research in this field is so varied, we focus only
on the results relevant to our work. For constant rate approximations, there exists the (4/3)
approximation LPT-algorithm [7], which runs efficiently in O(n log(n)). Furthermore, there
is the best known constant rate approximation algorithm provided by MULTIFIT, with a
ratio of (13/11) [13]. It is known that this problem admits an EPTAS [9]. More relevant
to our result is the PTAS developed by Hochbaum and Shmoys [8]. They present the dual
approximation framework, which we also employ to generate our solution.

The combination of both settings, i.e. CPU/GPU scheduling, was first considered by
Bleuse et al. in [1]. They present an ILP based (3/2 + ε)-approximation algorithm whose
complexity is not polynomial in theory. Additionally, the authors claim that adapting a
technique from [2] yields a dual approximation algorithm with running time O(n2m4

cm2
g)

and the same approximation ratio however, they do not explain how to adapt the technique.

SEA 2024

13:4 Scheduling on CPU/GPU

1.4 Our Contribution
We present a low complexity (3/2 + ε)-algorithm for CPU/GPU scheduling that runs in time
O(log(nmcmg/ε) · n2mcmg) and optimize it for the case n > m2

g such that it then runs in
time O(log(nmcmg/ε) · nmc max(n, m2

g)). Our algorithm follows the idea and structure of
the CPU scheduling algorithm by Mounié et al. [17] and extends it to the CPU/GPU setting.
Further, we implemented our algorithms and evaluated them experimentally.

2 Description of the algorithm

In this section, we describe the algorithm that comprises our main result. We begin by
describing the framework in which we embed the algorithm. Then we describe how to
generate suitable bounds to apply the framework. Next, we present the main part of the
algorithm, the allocation of tasks onto machines. We finish the description of the algorithm
by describing how we calculate a feasible schedule for the sequential machines and argue the
complexity of the entire algorithm in its framework.

2.1 Dual Approximation Framework
Our algorithm uses the dual approximation framework [8].

▶ Definition 1 (λ-dual approximation problem). Let λ > 1. The λ-dual approximation
problem to a makespan minimization scheduling problem consists of a scheduling instance I

and a makespan guess d. The goal is to either find a schedule with a makespan of at most λd

or decide that no schedule with a makespan at most d exists.

Now, given lower and upper bounds for the minimal makespan, one can use a λ-dual
approximation algorithm to binary search for the minimal makespan and obtain a λ(1 + ε)-
approximation for the primal problem. This yields the following lemma, a proof of which
can be derived from [8].

▶ Lemma 2 (primal approximation). Let I be a makespan minimisation scheduling instance,
d∗ its minimal makespan, k ≥ 0, λ > 1, ε > 0, and ω ∈ Q>0 a lower bound such that
ω ≤ d∗ ≤ (2 + k)ω. Then we can construct from a λ-dual approximation algorithm that runs
in time O(f(I)) a λ(1 + ε)-approximation algorithm for the primal problem that runs in time
O(log(1/ε + k)f(I)).

The goal of this paper is to construct a 3/2-dual approximation algorithm for CPU/GPU
scheduling to then use Lemma 2. But first, we have to find an algorithm that constructs a
suitable lower bound on the optimal makespan. For CPU scheduling, Ludwig and Tiwari [16]
describe an algorithm that computes a lower bound in time O(mn log n). Next, we show
that their approach can be adapted to CPU/GPU scheduling.

▶ Lemma 3. For an instance of CPU/GPU scheduling with optimal makespan d∗, a lower
bound ω ∈ Q>0 can be computed in time O((mcn + mg) log(mcn + mg)), with ω ≤ d∗ ≤ 4ω.

Proof. Let tj : [mc] → Q>0 be the processing time function, wj the work area function on
the CPU, and pj the processing time on the GPU for each task j ∈ [n].

Now we define the mapping ω : [mc][n] × P([n]) → Q>0 by

ω(α, A) := max

 1
mc

∑
j∈A

wj(α(j)), max
j∈A

{tj(α(j))},
1

mg

∑
j∈AC

pj , max
j∈AC

{pj}

 .

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:5

There
A ⊆ [n] represents the tasks scheduled on the CPU, and AC = [n] \ A on the GPU,
the mapping α : A → [mc] assigns to each task a number of CPU machines,

1
mc

∑
j∈A wj(α(j)) is the average work per machine on the CPU,

maxj∈A{tj(α(j))} is the maximum processing time of any task on the CPU,
1

mg

∑
j∈AC pj is the average work per machine on the GPU, and

maxj∈AC {pj} is the maximum processing time of any task on the GPU.

Given an assignment α and a partition A ∪ AC = [n], the 2-approximate algorithm by
Garey and Graham yields a CPU/GPU schedule with a makespan that does not exceed
2ω(α, A) [4]. This suggests the following strategy to find the desired lower bound: Find an
assignment and partition such that ω(α, A) ≤ d∗ ≤ 2ω(α, A).

Now, ω defined by

ω := min
A⊆[n]

min
α:[n]→[mc]

ω(α, A)

is a trivial lower bound on the minimum makespan for CPU/GPU scheduling, and, by Garey
and Graham’s algorithm, satisfies ω ≤ d∗ ≤ 2ω. Next, we will derive an efficient way to
compute ω.

Let H := {pj : j ∈ [n]} ∪ {tj(p) : j ∈ [n], p ∈ [mc]} be the set of processing times of tasks
on the CPU/GPU. Further, let hc(α, A) := maxj∈A tj(α(j)), and hg(AC) := maxj∈AC pj

be the maximum processing times on CPU and GPU respectively, given an assignment
α : A → [mc] and a subset A ⊆ [n]. Then we can rewrite ω as follows (see the Appendix for
the complete derivation):

ω = min
τ∈H

max

τ, min
A⊆[n]

s.t. hg(AC)≤τ

max

∑
j∈A

wj(γj(τ))
mc

,
∑

j∈AC

pj

mg

 .

Here, computing the term

W (τ) := min
A⊆[n]

s.t. hg(AC)≤τ

max

∑
j∈A

wj(γj(τ))
mc

,
∑

j∈AC

pj

mg

for some τ ∈ H can be interpreted as minimizing the maximum makespan of two unrelated
machines (R2||Cmax), where wj(γj(τ))

mc
is the processing time for task j on the first machine,

and pj

mg
for the second machine, with the additional constraint that tasks j ∈ [n] with pj > τ

must be assigned to the first machine, which can be modeled by setting their processing time
for the second machine to +∞.

Now note that the identity mapping τ 7→ τ is increasing, while τ 7→ W (τ) is non-increasing.
So one can find minτ∈H max{τ, W (τ)} by binary searching over the sorted processing times
in H, as described by Ludwig and Tiwari in [16].

The problem here is that we can not compute W (τ) in polynomial time, since makespan
minimization for two identical machines is already NP-complete [15]. But the greedy algorithm,
that assigns each task to the machine on which it takes the least time, is a 2-approximate
algorithm for R2||Cmax [15].

When using a 2-approximation W̃ (τ) with W (τ) ≤ W̃ (τ) ≤ 2W (τ), the binary search
yields a 2-approximation ω̃ of ω with ω ≤ ω̃ ≤ 2ω. Thus

ω̃/2 ≤ ω ≤ d∗ ≤ 2ω ≤ 2ω̃.

So ω̃ satisfies our criteria.

SEA 2024

13:6 Scheduling on CPU/GPU

Finally, we analyze the complexity of computing ω̃. Sorting H is in O((mcn +
mg) log(mcn + mg)). The binary search takes O (log(mcn + mg)) steps, each step cost-
ing O(n) to solve the unrelated machine scheduling and O(n log mc) to find γj(τ) for each
task j via binary search. Therefore the overall runtime is dominated by sorting H. ◀

Now that we can bound the optimal makespan for CPU/GPU scheduling, the next step
is to derive a 3/2-dual approximate algorithm. We closely follow the approach from [17].

Let d be a makespan guess of some CPU/GPU scheduling instance. If a schedule of
length at most d exists, then a 3/2-dual approximate algorithm has to find a schedule of
length at most 3d/2, but else it can reject the guess. We can exploit the assumption, that
a schedule of at most d exists, to reduce the search space by finding properties, that such
schedules must satisfy and restrict the search to those. We list some basic such properties:
▶ Remark 4 (structure of schedules with bounded length). Every CPU/GPU schedule of length
at most d ∈ Q>0 satisfies:
1. The processing time of each task in that schedule is at most d, the total work area on the

CPU is at most mcd, and the total work area in the GPU is at most mgd.
2. If two tasks are scheduled to the CPU on the same machine, then at least one of them has

a processing time at most d/2. This implies, that tasks on the CPU with more processing
time than d/2 use at most mc machines in total.

3. For each machine on the GPU: First, if a task with processing time more than 2d/3
is scheduled to it, then other tasks scheduled to it have processing time at most d/3.
Second, at most two tasks with processing time more than d/3 can be scheduled on it.

Derived from Remark 4, the basic idea from [17] for CPU scheduling is to first partition
the tasks into two sets, T1 for tasks with processing time more than d/2, and T2 for those with
time at most d/2, such that the properties from Remark 4 are satisfied, and then compute a
schedule from that partition. Note that the processing time of a task depends on the number
of machines they are assigned to. But by also noting, that if those properties are satisfied
under some assignment of tasks to machines, then they stay satisfied when assigning each
task j from T1 to γj(d) machines, and from T2 to γj(d/2). In particular, they showed:

▶ Lemma 5 (BuildFeasible [17]). Let I = (n, m, (tj)j∈[n]) be an instance of CPU scheduling
and d ∈ Q>0 a makespan guess. Given a partitioning of tasks T1 ⊔ T2 = [n] with∑

j∈T1
γj(d) ≤ m and∑

j∈T1
wj(γj(d)) +

∑
j∈T2

wj(γj(d/2)) ≤ md

one can compute a schedule of length at most 3d/2 in time O(mn).

We can extend their idea to CPU/GPU scheduling by adding a third partition Tg for
tasks that are to be scheduled on the GPU. Now it is left to show how to compute such a
partitioning, and how to compute a schedule of length at most 3d/2 on the GPU from Tg.

2.2 The 3/2-dual approximate algorithm
Next, we describe how to compute a partitioning into sets T1, T2, Tg as described previously,
that satisfies the properties from Remark 4. As preparation we want to express also Property 3
as a simple inequality constraint as we did Property 2. For that, we define a size function
that classifies tasks as being either small, medium, or big on the GPU.

▶ Definition 6 (size function φ). Let there be an instance of CPU/GPU scheduling and
a makespan guess d. Then we define the size function φ : [n] → {0, 1, 2, +∞} by φ(j) :=
max{k ∈ {0, 1, 2} : kd/3 < pj} if pj ≤ d, and φ(j) := +∞ if pj > d.

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:7

Then Property 3 and pj ≤ d for every j ∈ [n] implies, that the total size of tasks on the GPU
is at most 2mg. The remaining properties of Remark 4 can be expressed by the following
constraints:

▶ Definition 7 (Constraints 1-4). Let there be a CPU/GPU scheduling instance, let d ∈ Q>0
be a makespan guess, and T1 ⊔ T2 ⊔ Tg = [n] a partitioning. We define constraints

1.
∑

j∈T1
wj(γj(d)) +

∑
j∈T2

wj(γj(d/2)) ≤ mcd

2.
∑

j∈T1
γj(d) ≤ mc

3.
∑

j∈Tg
φ(j) ≤ 2mg

4.
∑

j∈Tg
pj ≤ mgd

Now, a core insight is that partitioning the tasks under these constraints can be modeled
as a multidimensional multiple-choice knapsack problem (MMCKP), as described in [14].
Here we interpret the first constraint as the cost that has to be minimized, and the other
three constraints from Definition 7 are represented as weights in the MMCKP, where the
right-hand sides (RHSs) of Constraints 2-4 can be seen as a capacity vector (a, b, c). For now,
we ignore that for a knapsack formulation weights must be integer, and thus the instance
processing times would need to be scaled first. While the MMCKP is NP-hard, there is a
pseudopolynomial algorithm that uses dynamic programming and runs in time O(n ·abc) [14],
similar to the standard 0-1-knapsack problem. Here, the problem is, that the two RHSs
mcd and mgd are in general not polynomial in n, mc, mg, and thus neither would be the
complexity of solving the knapsack, since at least one of them would turn up in the capacity
vector. We manage this by choosing Constraint 1 as the minimization target and employing a
scaling and rounding scheme for Constraint 4, that bounds its RHS but introduces a rounding
error. Next, we define the scaled and rounded constraint and discuss its choice afterward.

▶ Definition 8 (δ, µ, p̃j , Constraint 5). Let there be a CPU/GPU scheduling instance, and
a makespan guess d ∈ Q>0, and Tg ⊆ [n]. Let there also be a error coefficient δ ∈ Q>0.
We define the scaling factor µ := n

δdmg
, and the scaled and rounded GPU processing times

p̃j := ⌊µpj⌋ for all tasks j ∈ [n]. Then we define the constraint

5.
∑

j∈Tg
p̃j ≤ µ · mgd = n/δ.

We need these definitions to satisfy some requirements that are critical for us. First,
the p̃j are integers, which is necessary for the dynamic program that solves the MMCKP.
Second, for a constant δ ∈ Q>0 the RHS is a small polynomial in n, mc and mg such that
we can solve the MMCKP efficiently. These two are obviously satisfied. But third, since we
want to compute a GPU schedule of length at most 3d/2 from a partitioning that satisfies
the knapsack constraints, we also need the constraint to imply a good bound on the total
work area on the GPU. For example, if the total work area on the GPU of the tasks in Tg is
more than 2dmg, then deriving a GPU schedule of length at most 3d/2 would be impossible.
The next lemma shows the bound that Constraint 5 implies for the total work on the GPU,
which puts it in relation to Constraint 4.

▶ Lemma 9. Let there be a CPU/GPU scheduling instance, d ∈ Q>0 a makespan guess,
δ ∈ Q>0, and Tg ⊆ [n]. If Constraint 5 holds, then

∑
j∈Tg

pj ≤ mg · (1 + δ)d. If Constraint 5
does not hold, then

∑
j∈Tg

pj > mgd.

SEA 2024

13:8 Scheduling on CPU/GPU

Proof. The definition of p̃j yields p̃j/µ ≤ pj ≤ (p̃j + 1)/µ for all j ∈ [n]. If Constraint 5
holds:∑

j∈Tg

pj ≤
∑
j∈Tg

(
p̃j

µ
+ 1

µ

)
≤ 1

µ

∑
j∈Tg

p̃j + n

µ

≤ 1
µ

· n

δ
+ n

µ
= mgd + mgδd = mg · (1 + δ)d,

and if Constraint 5 does not hold:
∑

j∈Tg
pj ≥ 1

µ

∑
j∈Tg

p̃j > 1
µ · n

δ = mgd. ◀

The preceding Lemma 9 shows that the scaling and rounding scheme implies a relaxation of
Constraint 4 by the factor (1 + δ). Therefore reducing the error coefficient δ improves the
bound on the total work by reducing the rounding error, but increases the time complexity
of solving the MMCKP by increasing the RHS. The maximal possible choice of δ depends
on the algorithm used to build a GPU schedule from the partition Tg. Next, we describe
this algorithm and bound the makespan of the resulting schedule under the assumption that
Constraint 3 and a relaxed version of Constraint 4 hold.

▶ Lemma 10 (Build feasible schedule for the GPU). Let there be a CPU/GPU scheduling
instance, a makespan guess d ∈ Q>0, c ≥ 0, and Tg ⊆ [n]. If Constraint 3 holds, and∑

j∈Tg
pj ≤ mg(1 + c)d, then we can construct a GPU schedule of length at most (4/3 + c)d

in time O(n log n).

Proof. We can build a schedule with makespan at most (4/3 + c)d using LPT-scheduling:
1. Sort the tasks j ∈ Tg by descending processing times pj .
2. In that order, assign each task to the machine with the smallest workload.
This algorithm runs in time O(n log n) since the runtime is dominated by sorting the tasks.
Now, we bound the makespan of the resulting schedule by (4/3 + c)d.

With LPT, the tasks j ∈ Tg of size φ(j) = 2 get assigned first. Since by Constraint 3
there can be at most mg such tasks in Tg, every machine is assigned at most one task and
therefore has a workload of at most d.

Next, the tasks j ∈ Tg of size φ(j) = 1 get assigned. Suppose task j ∈ Tg is the first such
task that is assigned to a machine with a load of more than (2/3)d. Then, by construction,
all machines have a load of more than (2/3)d. If a machine has a load of more than (2/3)d
while only tasks of size 2 or 1 are assigned to it, then at least one task with size 2 is assigned
to it, or at least two tasks with size 1. So the total size on all machines is already at least
2mg, excluding task j. Including task j yields a contradiction to Constraint 3.

Thus, tasks with size 1 get assigned only to machines with a load of at most (2/3)d, and
after assigning such a task to a machine, its load is at most (4/3)d.

Tasks j ∈ Tg of size φ(j) = 0 get assigned last. When some task j with size 0 gets
assigned to some machine k ∈ [mg], such that its workload changes from less than (1 + c)d to
more than (1 + c)d, then two properties hold. First, its workload is still at most (4/3 + c)d.
Second, no other task will get assigned to machine k, before all machines have a workload of
more than (1 + c)d because of the second step of the algorithm. If at any point in time all
machines had a workload of more than (1 + c)d, though, then that state would contradict
our assumption that

∑
j∈Tg

pj ≤ mg(1 + c)d. Thus, no task with size 0 gets assigned to a
machine with a workload of more than (1 + c)d.

In conclusion, no step of assigning a task to a machine will increase the workload of a
machine to more than (4/3+c)d, and thus the algorithm constructs a schedule with makespan
at most (4/3 + c)d. ◀

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:9

Now we can see that δ = 1/6 is the maximal constant such that Lemma 10 guarantees a
schedule of length at most 3d/2, when given a partition Tg that satisfies Constraints 3 and 5.

To summarise we now define the MMCKP for CPU/GPU scheduling.

▶ Definition 11 (MMCKP for CPU/GPU scheduling). Let there be a CPU/GPU scheduling
instance, d ∈ Q>0 a makespan guess and δ := 1/6. The goal of the Multidimensional
Multiple Choice Knapsack Problem for CPU/GPU scheduling is find to find a partitioning
T1 ⊔ T2 ⊔ Tg = [n] that minimises under the Constraints 2, 3, and 5 the function

W (T1, T2) :=
∑
j∈T1

wj(γj(d)) +
∑
j∈T2

wj(γj(d/2)).

▶ Remark 12. As discussed previously, a solution of the MMCKP for CPU/GPU scheduling
can be computed in time O(nmc2mgn/δ) = O(n2mcmg) by dynamic programming [14].

Now we can describe a 3/2-dual approximate algorithm for CPU/GPU scheduling, see
Algorithm 1. We begin by constructing a partition T1⊔T2⊔Tg = [n] using the multidimensional
multiple choice knapsack algorithm in Remark 12. If we find a valid partition of the tasks
with W (T1, T2) ≤ mcd, we use Lemma 5 to construct the schedule for the CPU. Next, we use
Lemma 10 to build a schedule for the GPU. Finally, we combine both schedules, resulting in
a CPU/GPU schedule.

On the other hand, if there is no valid partition found, we can reject the makespan guess
d and return NO, as we know that no feasible schedule exists for it.

Algorithm 1 Description of the 3/2-dual approximation algorithm.

Require: CPU/GPUscheduling instance I

1: Construct T1 ⊔ T2 ⊔ Tg = [n] using MMCKP ▷ Remark 12
2: if W (T1, T2) ≤ mcd then
3: Build schedule σc for CPU from T1, T2 ▷ Lemma 5
4: Build schedule σg for GPU from Tg ▷ Lemma 10
5: Return schedule (σc, σg)
6: else Return NO
7: end if

We continue by showing the correctness of Algorithm 1.

▶ Lemma 13. Let there be a CPU/GPU scheduling instance and d ∈ Q>0 a makespan guess
and δ = 1/6. If a schedule of length at most d exists, then the 3/2-dual approximate algorithm
returns a schedule of length at most 3d/2.

Proof. Consider a schedule of length at most d. The schedule implies a partitioning of tasks
into those processed on the CPU with processing time more than d/2 (and at most d), those
on the CPU with time at most d/2, and those processed on the GPU, called T1, T2, and Tg

respectively. The schedule also implies a mapping π : T1 ∪ T2 → N of tasks to the number of
machines on the CPU they are processed on. Then, by Remark 4 the partitioning satisfies:∑

j∈T1∪T2
wj(π(j)) ≤ mcd,∑

j∈T1
π(j) ≤ mc,

as well as Constraints 3 and 4. By definition we have γj(d) ≤ π(j) for all j ∈ T1 and
γj(d/2) ≤ π(j) for all j ∈ T2. Then, we get from the first point and the monotony of wj , that
Constraint 1 holds, and from the second point that Constraint 2, too. Finally, Constraint 5
holds, since it would otherwise violate Constraint 4 with Lemma 9.

SEA 2024

13:10 Scheduling on CPU/GPU

In conclusion, the constructed partitioning is a feasible solution to the MMCKP for
CPU/GPU scheduling with W (T1, T2) ≤ mcd, therefore the set of solutions is non-empty
and the MMCKP algorithm delivers a feasible solution. Lemma 5 and 10 guarantee that a
CPU/GPU schedule of length at most 3d/2 is returned. ◀

2.3 Optimizing the Algorithm
If we look closely, the MMCKP for CPU/GPU scheduling processes some unnecessary or
redundant information:
1. For Constraint 3 the tasks j ∈ [n] with size φ(j) = 0 are irrelevant.
2. In Definition 8 we chose µ such that nµ = δmgd, because in the proof of Lemma 9 we

can bound the number of tasks in Tg only by n. But the number of tasks j ∈ [n] with
size φ(j) ≥ 1 can be bound by 2mg due to Constraint 3. Thus, when considering only
those tasks we could choose a scaling factor λ such that 2mg/λ = δmgd ⇔ λ = 2/(δd).
When scaling Constraint 4 with λ, then its RHS becomes 2mg/δ, which is smaller than
n/δ if 2mg < n.

3. The size function φ and Constraints 3 and 5 carry duplicate information about the
processing time of tasks on the GPU. This suggests that we could reduce the RHS of the
constraint for the total work on the GPU, if we cut out that redundant information.

The first two points suggest splitting the MMCKP for CPU/GPU scheduling into two
stages, one for the tasks with size at least 1, and one for those with size 0. This justifies
giving names to those classes of tasks. The third point can be treated separately.

▶ Definition 14 (small and big tasks, B, S). Let there be a CPU/GPU scheduling instance.
Tasks j ∈ [n] with φ(j) ≥ 1 we call big (on the GPU), and those with φ(j) = 0 we call small
(on the GPU). Further we define the set of big tasks B := φ−1({1, 2, +∞}), and the set of
small tasks S := φ−1(0).

Split MMCKP

▶ Definition 15 (λ, Constraint 6). Let there be a CPU/GPU scheduling instance, d ∈ Q>0
a makespan guess, Tg ⊆ [n], and an error coefficient δ ∈ Q>0. We define the scaling factor
λ := 2

δd , and the constraints
6.

∑
j∈Tg

⌊λpj⌋ ≤ λmgd = 2mg/δ.

We want to split the knapsack into two stages, the first processing only big tasks j ∈ B
and the second only processing small tasks j ∈ S. But we also need to compose them in some
way, to ensure global optimality of the resulting partitioning, and not just locally for each
set of big or small tasks. The dynamic programming algorithm for the MMCKP internally
computes a table, where each entry encodes a solution for a smaller subproblem [14]. So
we use the whole table that the big task knapsack computes as an input for the small
task knapsack. Then the multiple-choice knapsack for the small tasks first has to choose a
partitioning of the big tasks, among those encoded in that table.

Now we define the knapsack for big tasks. We will see later in Remark 19 how to choose
the error coefficient δ.

▶ Definition 16 (Big Tasks MMCKP for CPU/GPU scheduling). Let there be a CPU/GPU
scheduling instance, a makespan guess d ∈ Q>0, and an error coefficient δ ∈ Q>0. Let
B = {b1, . . . , bK} be an enumeration.

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:11

One goal of the Big Tasks Multidimensional Multiple Choice Knapsack Problem for
CPU/GPU scheduling is to compute a table W ∗

B, where for all (j, a, b, c) ∈ [K] × [mc]0 ×
[2mg]0 × [2mg/δ]0 the entry W ∗

B(j, a, b, c) minimises the target function

W (T1, T2) :=
∑
j∈T1

wj(γj(d)) +
∑
j∈T2

wj(γj(d/2))

over all partitions T1 ⊔ T2 ⊔ Tg = {b1, . . . , bj} such that the left-hand-sides of Constraints 2,
3, and 6 are equal to a, b, and c respectively.

Another goal is to compute a minimizing partitioning given such a tuple (j, a, b, c).

W ∗
B(K, a, b, c) encodes a partitioning of B that satisfies above properties. The knapsack

for small tasks first chooses one of those entries. The total work on the GPU, encoded in
term c by the big tasks knapsack is scaled by factorλ, but the small tasks knapsack uses the
scaling factor µ. Thus we need to re-scale that information to use it in the constraint for the
small tasks knapsack:

▶ Definition 17 (Small Tasks MMCKP for CPU/GPU scheduling). Let there be a CPU/GPU
scheduling instance, a makespan guess d ∈ Q>0, and an error coefficient δ ∈ Q>0. Let the
table W ∗

B be a solution to the big tasks MMCKP for CPU/GPU scheduling. The goal of the
Small Tasks Multidimensional Multiple Choice Knapsack Problem for CPU/GPU scheduling
is to choose a triple (a, b, c) ∈ [mc]0 × [2mg]0 × [2mg/δ]0 and a partitioning T1 ⊔ T2 ⊔ Tg = S
that minimizes

WS((a, b, c), T1, T2) := W ∗
B(K, a, b, c) +

∑
j∈T1

wj(γj(d)) +
∑
j∈T2

wj(γj(d/2))

under the following modifications of Constraints 2 and 5:
a +

∑
j∈T1

γj(d) ≤ mc, and

⌊ µ
λ c⌋ +

∑
j∈Tg

p̃j ≤ n/δ.

Then, in total, we compute a partitioning T1 ⊔ T2 ⊔ Tg = [n] by first computing the
table W ∗

B from the big tasks MMCKP, then with that table we compute a triple (a, b, c) and
a partitioning T ′

1 ⊔ T ′
2 ⊔ T ′

g = S from the small tasks MMCKP, and then with the tuple
(K, a, b, c), where K = |B|, we compute a partitioning T ′′

1 ⊔ T ′′
2 ⊔ T ′′

g = B from the big tasks
MMCKP. Finally we set T1 := T ′

1 ∪ T ′′
1 , T2 := T ′

2 ∪ T ′′
2 , and Tg := T ′

g ∪ T ′′
g .

We still need to show that the scaled and rounded constraint for the total work on the
GPU in the small tasks MMCKP implies a good bound on the actual work area, as we did
in the previous section.

▶ Lemma 18. Let there be a CPU/GPU scheduling instance, a makespan guess d ∈ Q>0,
and an error coefficient δ ∈ Q>0. Let Tb ⊆ B such that Constraints 3 and 6 hold. Let Ts ⊆ S
such that

⌊
µ
λ

∑
j∈Tb

⌊λpj⌋
⌋

+
∑

j∈Ts
p̃j ≤ n/δ holds. Then

∑
j∈Tb∪Ts

pj ≤ mg(1 + 2δ + δ/n)d.

Proof. (See the Appendix.) ◀

▶ Remark 19. Lemma 18 shows that if we set the error coefficient to δ := 1/⌈12 + 6
n ⌉, then

Lemma 10 builds a schedule of length at most 3d/2 from the set of tasks Tg := Tb ∪ Ts.

We skip the correctness proof for the dual approximation that uses the split MMCKP, as
it works with arguments analogous to those in Lemma 13.

SEA 2024

13:12 Scheduling on CPU/GPU

Cutting redundant information

In this section, we show how to decrease the RHS of the constraint that represents the total
work area on the GPU in the big tasks MMCKP, which improves the time complexity of
solving it. First, we describe how to modify the knapsack to achieve this, and then analyze
the time savings.

▶ Definition 20 (Modified Big and Small Tasks MMCKP for CPU/GPU scheduling, β). The
modified big tasks MMCKP for CPU/GPU scheduling is the unmodified one, except with the
following modifications. First, define β := ⌊λd/3⌋, which is the scaled and rounded work area
represented by one size step of φ.

The table is defined for all tuples (j, a, b, c) such that (j, a, b) ∈ [K] × [mc]0 × [2mg]0 and
c ∈ [2mg/δ − bβ]0.
Instead of Constraint 6 we use the constraint

∑
j∈Tg

⌊λpj⌋ − φ(j)β = c

The modified small tasks MMCKP for CPU/GPU scheduling is modified such that
We choose a triple (a, b, c) with (a, b) ∈ [mc]0 × [2mg]0 and c ∈ [2mg/δ − bβ]0 instead.
We use the constraint ⌊ µ

λ (c + βb)⌋ +
∑

j∈Tg
p̃j ≤ n/δ as the modification of Constraint 5.

This modification decreases the size of the table W ∗
B to almost 2/3 of its original size.

While this does not improve the time complexity in O-notation, this is a significant speedup
for implementations of the algorithm, since the main computational cost of solving the
knapsack by dynamic programming lies in computing every entry of the table. In the next
lemma, we prove the stated speedup factor.

▶ Lemma 21. Let there be a CPU/GPU scheduling instance. Let W ∗ the table from the big
tasks MMCKP, and X∗ from the modified one. Let the mapping | · | count their number of
entries. Then |X∗|

|W ∗| ≤ 2
3 (1 + δ).

Proof. (For a more detailed calculation see the Appendix.) Let K := |B|. We have |W ∗| =
K(mc+1)(2mg+1)(2mg/δ+1). Further, we have |X∗| = K(mc+1)(2mg+1)(2mg/δ+1−βmg).
Now, with β = ⌊2/(3δ)⌋ ≥ 2/(3δ) − 1 we get

(2mg/δ + 1 − βmg) ≤ (2/3)(2mg/δ + 1) + (1/3) + mg.

Then one can show, that |X∗|
|W ∗| ≤ 2

3 + 4
3 · 1

2/δ = 2
3 (1 + δ). ◀

3 Complexity

We showed that we can compute a bound ω on the optimal makespan d∗ such that such that
ω ≤ d∗ ≤ 4ω in time O((mcn + mg) log(mcn + mg)).

The complexity of the 3/2-dual approximation for both, the unmodified and the modified
version, is dominated by the complexity of solving their knapsack problems. Solving the
unmodified MMCKP is in O(n2mcmg), see Remark 12. Solving the modified MMCKP for big
tasks is in O(nmcm2

g), for small tasks in O(n2mc), so solving both is in O(nmc ·max(n, m2
g)).

Therefore, with Lemma 2, computing a (3/2 + ε)-approximation for the CPU/GPU
scheduling is in total

O((mcn + mg) log(mcn + mg) + log(1/ε)n2mcmg ⊆ O(log(nmcmg/ε) · n2mcmg)

for the unmodified version, and O(log(mcnmg/ε) ·nmc ·max(n, m2
g)) for the modified version.

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:13

4 Implementation

To complement our theoretical improvements on the current state of the art, we implemented
both the naive and improved version of our algorithm. In the following, we describe the
implementation and compare these implementations not only to each other but also to the
current state of the art. The implementation is in Java and publicly available on GitHub
(https://github.com/Felioh/CPU-GPU-Scheduling) as well as the test results.

4.1 Test Environment
The experiments were run on the High-Performance-Cluster of the University of Kiel, more
specifically on a node with 2 AMD Epyc 7313 CPUs (32 Cores) and 512GB main memory.
We disabled the Java Garbage Collector, as the default is non-deterministic. It is important
to note that obtaining meaningful results can be challenging due to the various parameters
involved, including the number of CPU machines, the number of GPU machines, the number
of tasks, and the processing time required for each task on both the CPU and GPU machines.
We primarily used randomly generated instances to ensure the robustness of the results
across a large number of instances.

4.2 Results
We conducted two sets of tests: one to demonstrate the dependence on machine numbers
and the other to show the dependence on task numbers. For both test runs we set ε = 0.1
and the processing time of all tasks to be randomly distributed in the interval [20, 100]. The
processing time of GPU tasks on one machine is generated in the same way. The processing
time for more machines is generated by respecting the given constraints. Additionally, the
number of GPU machines was always set to 20% of the number of CPU machines as we
believe this relationship could significantly impact the running time. All test results are
available in the corresponding GitHub Repository.

To test the effect of the number of machines on our instances, we created instances with a
minimum of 10 and a maximum of 100 CPU machines. To maintain consistency, we restricted
the number of tasks to 50. The results of these tests are shown in Figure 2.

To examine how the number of tasks affects the total runtime of our algorithm, we
generated instances with 50 CPU machines and the number of tasks varying from 10 to 100.
The results of these tests are shown in Figure 3.

The results indicate a greater improvement than expected, likely due to inefficiencies in
memory accesses caused by the naive implementation’s increased memory requirements.

Table 1 shows the comparison of our implementation and the implementation by Bleuse
et al. [1]. To achieve these results we tested both implementations with the same input
instances. We can observe that our implementation is significantly slower for small instances.
As the instances get bigger our implementation catches up with the trade-off of using more
memory. The instances used for these tests and the full results are available on GitHub.

5 Conclusion

We presented an efficient algorithm to approximate the maximum makespan of the GPU/CPU
scheduling problem with a factor of (3/2 + ε), using the dual approximation framework. We
improve the asymptotic running time of the dual approximation from a theorized [1] time
of O(n2m4

cm2
g) to O(n2mcmg). Impressively, we manage to reduce the dependency on the

number of CPU-machines by m3
c , while also reducing the dependence on GPU-machines by

SEA 2024

https://github.com/Felioh/CPU-GPU-Scheduling

13:14 Scheduling on CPU/GPU

mg. Our implementation utilizes a knapsack formulation to assign tasks. Solving this knapsack
dominates the running time. To improve it, we observe that large parts of information are
superfluous. This does not strictly improve the asymptotic running time, resulting in a time
of O(nmc · max(n, m2

g)) for the dual approximation. However, we show that these practical
improvements have a large impact on the execution time of the algorithm.

In future work, the runtime could be further improved by applying compression techniques
from [6], using a more sophisticated algorithm to solve the MMCKP, or using two different
algorithms depending on the sizes of mc, mg.

Further, we compare our implementation to another existing state of the art algorithm [1],
that makes use of commercial solvers like CPLEX, Gurobi, or GLPK and show that our
implementation is faster for big instances while keeping the same makespan guarantee.

References
1 Raphaël Bleuse, Sascha Hunold, Safia Kedad-Sidhoum, Florence Monna, Gregory Mounie,

and Denis Trystram. Scheduling independent moldable tasks on multi-cores with gpus. IEEE
Trans. Parallel Distributed Syst., 28(9):2689–2702, 2017. doi:10.1109/TPDS.2017.2675891.

2 Raphaël Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié, and Denis Trystram.
Scheduling independent tasks on multi-cores with GPU accelerators. Concurr. Comput. Pract.
Exp., 27(6):1625–1638, 2015. doi:10.1002/CPE.3359.

3 Maciej Drozdowski. On the complexity of multiprocessor task scheduling. Bulletin of The
Polish Academy of Sciences-technical Sciences, 43:381–392, 1995.

4 M. R. Garey and Ronald L. Graham. Bounds for multiprocessor scheduling with resource
constraints. SIAM J. Comput., 4(2):187–200, 1975. doi:10.1137/0204015.

5 Bernhard Sebastian Germann, Klaus Jansen, Felix Ohnesorge, and Malte Tutas.
Felioh/CPU-GPU-Scheduling. Software, DFG-Project JA 612/25-1, swhId:
swh:1:dir:6b62fa88e3d3dde792b3c7a9803a04ef24651239 (visited on 2024-07-01). URL:
https://github.com/Felioh/CPU-GPU-Scheduling.

6 Kilian Grage, Klaus Jansen, and Felix Ohnesorge. Improved algorithms for monotone moldable
job scheduling using compression and convolution. In José Cano, Marios D. Dikaiakos,
George A. Papadopoulos, Miquel Pericàs, and Rizos Sakellariou, editors, Euro-Par 2023:
Parallel Processing - 29th International Conference on Parallel and Distributed Computing,
Limassol, Cyprus, August 28 - September 1, 2023, Proceedings, volume 14100 of Lecture Notes
in Computer Science, pages 503–517. Springer, 2023. doi:10.1007/978-3-031-39698-4.

7 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

8 Dorit S. Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems theoretical and practical results. J. ACM, 34(1):144–162, 1987. doi:10.1145/7531.
7535.

9 Klaus Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relaxation
with a constant number of integral variables. In ICALP (1), volume 5555 of Lecture Notes in
Computer Science, pages 562–573. Springer, 2009.

10 Klaus Jansen and Felix Land. Scheduling monotone moldable jobs in linear time. In 2018
IEEE International Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver,
BC, Canada, May 21-25, 2018, pages 172–181. IEEE Computer Society, 2018. doi:10.1109/
IPDPS.2018.00027.

11 Klaus Jansen, Felix Land, and Kati Land. Bounding the running time of algorithms for
scheduling and packing problems. SIAM J. Discret. Math., 30(1):343–366, 2016. doi:10.
1137/140952636.

12 Klaus Jansen and Ralf Thöle. Approximation algorithms for scheduling parallel jobs. SIAM J.
Comput., 39(8):3571–3615, 2010.

https://doi.org/10.1109/TPDS.2017.2675891
https://doi.org/10.1002/CPE.3359
https://doi.org/10.1137/0204015
https://archive.softwareheritage.org/swh:1:dir:6b62fa88e3d3dde792b3c7a9803a04ef24651239;origin=https://github.com/Felioh/CPU-GPU-Scheduling;visit=swh:1:snp:86d753c617f3e52f02f4c34630793b756f0257df;anchor=swh:1:rev:e82b1d14e1a3a1dce87fd2d4974a6f8ac855c13a
https://github.com/Felioh/CPU-GPU-Scheduling
https://doi.org/10.1007/978-3-031-39698-4
https://doi.org/10.1145/7531.7535
https://doi.org/10.1145/7531.7535
https://doi.org/10.1109/IPDPS.2018.00027
https://doi.org/10.1109/IPDPS.2018.00027
https://doi.org/10.1137/140952636
https://doi.org/10.1137/140952636

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:15

13 Edward G. Coffman Jr., M. R. Garey, and David S. Johnson. An application of bin-packing
to multiprocessor scheduling. SIAM J. Comput., 7(1):1–17, 1978.

14 Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack problems. Springer, 2004.
doi:10.1007/978-3-540-24777-7.

15 Jan Karel Lenstra and David B. Shmoys. Elements of scheduling. CoRR, abs/2001.06005,
2020. arXiv:2001.06005.

16 Walter Ludwig and Prasoon Tiwari. Scheduling malleable and nonmalleable parallel tasks. In
Daniel Dominic Sleator, editor, Proceedings of the Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. 23-25 January 1994, Arlington, Virginia, USA, pages 167–176. ACM/SIAM,
1994. URL: http://dl.acm.org/citation.cfm?id=314464.314491.

17 Gregory Mounie, Christophe Rapine, and Denis Trystram. A 3/2-approximation algorithm for
scheduling independent monotonic malleable tasks. SIAM J. Comput., 37(2):401–412, 2007.
doi:10.1137/S0097539701385995.

18 John Turek, Joel L. Wolf, and Philip S. Yu. Approximate algorithms scheduling parallelizable
tasks. In Lawrence Snyder, editor, Proceedings of the 4th Annual ACM Symposium on Parallel
Algorithms and Architectures, SPAA ’92, San Diego, CA, USA, June 29 - July 1, 1992, pages
323–332. ACM, 1992. doi:10.1145/140901.141909.

19 Fangfang Wu, Xiandong Zhang, and Bo Chen. An improved approximation algorithm for
scheduling monotonic moldable tasks. Eur. J. Oper. Res., 306(2):567–578, 2023.

A Proofs

Proof of Lemma 3. Let tj : [mc] → Q>0 be the processing time function, wj the work area
function on the CPU, and pj the processing time on the GPU for each task j ∈ [n].

Now we define the mapping ω : [mc][n] × P([n]) → Q>0 by

ω(α, A) := max

 1
mc

∑
j∈A

wj(α(j)), max
j∈A

{tj(α(j))},
1

mg

∑
j∈AC

pj , max
j∈AC

{pj}

 .

There
A ⊆ [n] represents the tasks scheduled on the CPU and its complement AC = [n]/A on
the GPU,
the mapping α : A → [mc] assigns to each task a number of CPU machines,

1
mc

∑
j∈A wj(α(j)) is the average work per machine on the CPU,

maxj∈A{tj(α(j))} is the maximum processing time of any task on the CPU,
1

mg

∑
j∈AC pj is the average work per machine on the GPU, and

maxj∈AC {pj} is the maximum processing time of any task on the GPU.

Given an assignment α and a partition A ∪ AC = [n], the 2-approximate algorithm by
Garey and Graham yields a CPU/GPU schedule with a makespan that does not exceed
2ω(α, A) [4]. This suggests the following strategy to find the desired lower bound: Find an
assignment and partition such that ω(α, A) ≤ d∗ ≤ 2ω(α, A).

Now, ω defined by

ω := min
A⊆[n]

min
α:[n]→[mc]

ω(α, A)

is a trivial lower bound on the minimum makespan for CPU/GPU scheduling, and, by Garey
and Graham’s algorithm, satisfies ω ≤ d∗ ≤ 2ω. Next, we will derive an efficient way to
compute ω.

SEA 2024

https://doi.org/10.1007/978-3-540-24777-7
https://arxiv.org/abs/2001.06005
http://dl.acm.org/citation.cfm?id=314464.314491
https://doi.org/10.1137/S0097539701385995
https://doi.org/10.1145/140901.141909

13:16 Scheduling on CPU/GPU

Let H := {pj : j ∈ [n]} ∪ {tj(p) : j ∈ [n], p ∈ [mc]} be the set of processing times of tasks
on the CPU/GPU. Further, let hc(α, A) := maxj∈A tj(α(j)), and hg(AC) := maxj∈AC pj

be the maximum processing times on CPU and GPU respectively, given an assignment
α : A → [mc] and a subset A ⊆ [n]. Then we can rewrite ω as follows:

ω = min
A⊆[n]

min
α:A→[mc]

ω(α, A)

= min
A⊆[n]

min
α:A→[mc]

max

 1
mc

∑
i∈A

wj(α(j)), max
j∈A

{tj(α(j))},
1

mg

∑
j∈AC

pj , max
j∈AC

{pj}

= min

τ∈H
min

A⊆[n]
s.t. hg(AC)≤τ

min
α:A→[mc]

s.t. hc(α,A)≤τ

max

τ,
1

mc

∑
j∈A

wj(α(j)), 1
mg

∑
j∈AC

pj

= min

τ∈H
min

A⊆[n]
s.t. hg(AC)≤τ

max

τ,
1

mc
min

α:A→[mc]
s.t. hc(α,A)≤τ

∑
j∈A

wj(α(j)), 1
mg

∑
j∈AC

pj

= min

τ∈H
min

A⊆[n]
s.t. hg(AC)≤τ

max

τ,
1

mc

∑
j∈A

wj(γj(τ)), 1
mg

∑
j∈AC

pj

= min

τ∈H
max

τ, min
A⊆[n]

s.t. hg(AC)≤τ

max

∑
j∈A

wj(γj(τ))
mc

,
∑

j∈AC

pj

mg

 .

Here, computing the term

W (τ) := min
A⊆[n]

s.t. hg(AC)≤τ

max

∑
j∈A

wj(γj(τ))
mc

,
∑

j∈AC

pj

mg

for some τ ∈ H can be interpreted as minimizing the maximum makespan of two unrelated
machines (R2||Cmax), where wj(γj(τ))

mc
is the processing time for task j on the first machine,

and pj

mg
for the second machine, with the additional constraint that tasks j ∈ [n] with pj > τ

must be assigned to the first machine, which can be modeled by setting their processing time
for the second machine to +∞.

Now note that the identity mapping τ 7→ τ is increasing, while τ 7→ W (τ) is non-increasing.
So one can find minτ∈H max{τ, W (τ)} by binary searching over the sorted processing times
in H, as described by Ludwig and Tiwari in [16].

The problem here is that we can not compute W (τ) in polynomial time, since makespan
minimization for two identical machines is already NP-complete [15]. But the greedy algorithm,
that assigns each task to the machine on which it takes the least time, is a 2-approximate
algorithm for R2||Cmax [15].

When using a 2-approximation W̃ (τ) with W (τ) ≤ W̃ (τ) ≤ 2W (τ), the binary search
yields a 2-approximation ω̃ of ω with ω ≤ ω̃ ≤ 2ω. Thus

ω̃/2 ≤ ω ≤ d∗ ≤ 2ω ≤ 2ω̃.

So ω̃ satisfies our criteria.
Finally, we analyze the complexity of computing ω̃. Sorting H is in O((mcn +

mg) log(mcn + mg)). The binary search takes O (log(mcn + mg)) steps, each step cost-
ing O(n) to solve the unrelated machine scheduling and O(n log mc) to find γj(τ) for each
task j via binary search. Therefore the overall runtime is dominated by sorting H. ◀

B. S. Germann, K. Jansen, F. Ohnesorge, and M. Tutas 13:17

Proof of Lemma 18. The definition of p̃j yields p̃j/µ ≤ pj ≤ (p̃j + 1)/µ for all j ∈ Ts, and
analogously we also have ⌊λpj⌋/λ ≤ pj ≤ (⌊λpj⌋ + 1)/λ for all j ∈ Tb. Note, that from
Constraint 3 follows, that |Tb| ≤ 2mg. Then:∑

j∈Tb∪Ts

pj =
∑
j∈Tb

pj +
∑
j∈Ts

pj

≤

 1
λ

∑
j∈Tb

⌊λpj⌋

 + 2mg

λ
+

 1
µ

∑
j∈Ts

p̃j

 + n

µ

≤ 1
µ

µ

λ

∑
j∈Tb

⌊λpj⌋ +
∑
j∈Ts

p̃j

 + 2mg

λ
+ n

µ

≤ 1
µ

1 +

µ

λ

∑
j∈Tb

⌊λpj⌋

 +
∑
j∈Ts

p̃j

 + 2mg

λ
+ n

µ

≤ 1
µ

+ n

µδ
+ 2mg

λ
+ n

µ

= mgδd

n
+ nmgδd

nδ
+ 2mgδd

2 + nmgδd

n

= mg(1 + 2δ + δ

n
)d ◀

Proof of Lemma 21. Let K := |B|. We have |W ∗| = K(mc + 1)(2mg + 1)(2mg/δ + 1).
Further, we have

|X∗| = K(mc + 1)
∑

0≤b≤2mg

(2mg/δ + 1 − bβ)

= K(mc + 1)

(2mc + 1)(2mg/δ + 1) − β
∑

1≤b≤2mg

b

= K(mc + 1)(2mg + 1)(2mg/δ + 1 − βmg)

Now, with β = ⌊2/(3δ)⌋ ≥ 2/(3δ) − 1 we get

(2mg/δ + 1 − βmg) ≤ 2
3(2mg/δ + 1) + 1

3 + mg.

Concluding:

|X∗|
|W ∗|

= 2mg/δ + 1 − βmg

2mg/δ + 1

≤ 2
3 + 1

3 · 1
2mg/δ + 1 + mg

2mg/δ + 1

≤ 2
3 + 4

3 · 1
2/δ

= 2
3(1 + δ). ◀

SEA 2024

13:18 Scheduling on CPU/GPU

B Figures and Tables

Figure 2 Runtime in relation to machine numbers.

Figure 3 Runtime in relation to task numbers.

Table 1 Comparison of makespan and runtime with [1] for 100 ≤ n ≤ 400 and ε = 0.1.

mc mg n our time [s] time of [1] [s]

100 20 100 19.7 1.0
100 20 150 28.8 2.1
100 20 200 41.7 20.9
100 20 250 67.1 18.2
100 20 300 95.6 32.4
100 20 350 93.6 183.0
100 20 400 127.6 199.8

	1 Introduction
	1.1 Notation
	1.2 Problem Definition
	1.3 Related Work
	1.4 Our Contribution

	2 Description of the algorithm
	2.1 Dual Approximation Framework
	2.2 The 3/2-dual approximate algorithm
	2.3 Optimizing the Algorithm

	3 Complexity
	4 Implementation
	4.1 Test Environment
	4.2 Results

	5 Conclusion
	A Proofs
	B Figures and Tables

