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Abstract
Given a flow network, the Minimum Flow Decomposition (MFD) problem is finding the smallest
possible set of weighted paths whose superposition equals the flow. It is a classical, strongly NP-
hard problem that is proven to be useful in RNA transcript assembly and applications outside of
Bioinformatics.

We improve an existing ILP (Integer Linear Programming) model by Dias et al. [RECOMB
2022] for DAGs by decreasing the solver’s search space using solution safety and several other
optimizations. This results in a significant speedup compared to the original ILP, of up to 34× on
average on the hardest instances. Moreover, we show that our optimizations apply also to MFD
problem variants, resulting in speedups that go up to 219× on the hardest instances.

We also developed an ILP model of reduced dimensionality for an MFD variant in which the
solution path weights are restricted to a given set. This model can find an optimal MFD solution for
most instances, and overall, its accuracy significantly outperforms that of previous greedy algorithms
while being up to an order of magnitude faster than our optimized ILP.
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1 Introduction

Motivation. Minimum Flow Decomposition (MFD) is the problem of finding a minimum
number of weighted paths to decompose a flow on a directed graph, such that the sum of
weights of the paths crossing an edge is equal to the flow on that edge. We refer to this
number as the size of the MFD. Hartman et al. [9] proved that MFD is NP-hard, even on
directed acyclic graphs (DAGs), and even if the flow values are only in {1, 2, 4}.

MFD is a crucial tool in many applications, for example, in networking, where the paths
represent traffic going through a sequence of routers. Minimizing the number of these paths
reduces the amount of maintenance work, among other additional benefits [9]. In RNA
sequence reconstruction problems, MFD is used by e.g. [16, 22, 6, 2, 21, 25] to decompose
a splice graph, in which every node is a gene exon, and every weighted path is an RNA
sequence that needs to be reconstructed. This splice graph can, for example, be constructed
by aligning RNA-seq reads to a reference genome. MFD can also used to reconstruct viral
quasispecies [1]. The input graphs in these applications are DAGs, and all previous work on
MFD that we cite below is also on DAGs. As such, in this paper, all graphs are DAGs.

Moreover, MFD variants are of practical interest. For example, one practical strategy is to
incorporate longer reads as subpaths potentially spanning more than two nodes [16, 19, 26, 8],
which must appear in some solution path (i.e. reconstructed transcript or viral genome).
Alternatively, the edge weights may not form an exact flow, due to sequencing errors and
read mapping artifacts. An MFD variant adapted to this case is to consider intervals of edge
weights instead, called inexact flows in [18, 25].

Related work. Given the complexity of the problem, it is common to use heuristic meth-
ods [20], for example, by using a greedy approach, iteratively removing the path with the
largest currently available flow until the flow is fully decomposed. Cáceres et al. [17] showed
that for DAGs this approach performs well, with an approximation ratio of O(log val(f))
(where val(f) is the total flow of the graph), only if the width of the graph (the minimum
number of paths to cover all edges) does not increase in the process; otherwise it gives an
exponentially worse result than the optimal with an approximation ratio of Ω(m/ log m).

Mumey et al. [14] gave an approximation algorithm on DAGs with ratio λlog∥f∥ log∥f∥,
where λ is the longest source-to-sink path length and ∥f∥ is the maximum-norm on the flow
f (i.e., the largest flow value of the graph). Polynomial-time approximation algorithms with
sublinear ratio in the size of the graph are not known, neither whether the problem is in
APX, i.e. admits a constant-factor approximation algorithm.

Kloster et al. [11] proposed the first algorithm solving MFD optimally, which is linear-time
fixed-parameter tractable (FPT), parameterized on the MFD size k. While it performs well
for small k values, it quickly becomes unfeasible for larger k values, since the parameterized
runtime grows exponentially on k with a degree 2 polynomial in the exponent. This is a
limiting factor to the usability of such algorithms in practical applications.

In a recent work, Dias et al. [4] formulated an Integer Linear Problem (ILP) model for
MFD on DAGs and showed that it performs faster on graphs with larger solution sizes than
the FPT algorithm of Kloster et al. [11]. Due to this better performance of an ILP, it is
natural to work on further optimizations. An additional strength of ILP formulations is their
extensibility, since ILPs can easily be modified to handle other aspects of the applications,
such as subpath constraints and inexact flows cited above, see [4].
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Contributions. In this paper, we significantly optimize the ILP for MFD using the notion
of safe paths for all flow decompositions in DAGs, first studied by Khan et al. [10]. More
specifically, a path P is said to be safe if all flow decompositions (of any size) have at least
one path containing P as a subpath. Clearly, safe paths must appear in any MFD. We show
how they can be used to reduce the ILP search space by using them to fix many binary
variables of the ILP. At a high level, this approach is along the same lines as for other
NP-hard problems, for example, Bumpus et al. [3] analyzed c-essential vertices, as those
vertices belonging to any c-approximate solution, for some specific graph problems whose
solutions are sets of vertices. Clearly, c-essential vertices also belong to all optimal solutions,
and can be simply removed from the graph when running e.g. an FPT algorithm (see [3]).

In our case, safe solutions are sets of paths (not single vertices), and it is non-trivial how to
use them to simplify the input graph, or how to integrate them into a combinatorial algorithm
(e.g., we cannot simply remove them, they could overlap, etc.). However, incorporating safe
paths into an ILP is easily supported since they can be modelled by additional constraints,
or by fixing some ILP variables. Moreover, in order to use more than one safe path, we
observe that pairwise unreachable paths (they are not subpaths of a superpath) must be
present in different MFD solution paths. As a fast heuristic to select a set of such paths
of large total length, we use a reduction to a maximum weight antichain problem [12]. In
Appendix B we show that a maximum-length set of pairwise unreachable safe paths can also
be found in polynomial time, but this procedure is overall computationally more involved,
and thus may be too expensive as a pre-processing step.

Furthermore, as observed by Cáceres et al. [17], the size of any edge antichain (like ours)
is a lower bound on the MFD size. As such, we can also use this lower bound to check if a
heuristic MFD solution size attains this lower bound, in which case it is optimal. To the best
of our knowledge, this is the first time such a (non-trivial) lower bound is used in an MFD
solver. Lastly, before running the ILP solver, we also simplify the input graph using the
Y-to-V graph compaction, also used in the implementation of the FPT algorithm of Kloster
et al. [11], but not used in the one of the ILP by Dias et al. [4]. Using all these optimizations,
we experimentally show that we obtain significant speedups over the original ILP, of up to
34× on the harder inputs.

In addition, we also adapt these optimizations to the MFD variants considering inexact
flows and subpath constraints, proving that such adaptations can easily be done also for MFD
variants of practical interest. Furthermore, we also show (in Section 4) how the Y-to-V graph
compaction can be modified for these two variants, an issue which has not been considered
before in the literature. With these optimizations, on the hardest graphs among the instances
with inexact flows, we obtain an impressive speedup of 219× compared to the original ILP
for MFD with subpath constraints.

As a last contribution, we tackle an MFD variant where the weights of the solution paths
must belong to a given set, initially defined by Kloster et al. [11]. We show that this problem
on DAGs admits a simpler and thus faster ILP than the one for MFD. When the set of
given weights consists of powers of 2 (up to the maximum flow value of any edge), this ILP
provides a log ||f ||-factor approximation ratio for the original MFD problem. For practical
applications, we show that if we also add the flow values of all edges to the given set of
weights, then this ILP returns an MFD solution with a number of paths that is significantly
closer to the minimum one than the state-of-the-art heuristic MFD solver Catfish [20], on
instances with large MFD size. These are of particular interest, since our optimized solver
runs in under 2 seconds on instances of solution size at most 10. The ILP for this problem
variant is up to a further order of magnitude faster than our optimized ILP, and running in
under 1 second on average.
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2 Preliminaries

Definitions. We let G = (V, E) be a graph and assume throughout the paper that G is
a DAG (i.e. directed and acyclic). For simplicity we also assume that G has no parallel
edges and that it has a single source node s and a single sink node t. We denote by N the
natural numbers including 0 and by Z+ = N \ {0} the positive integers. A u-v path P is a
sequence of edges going from the node u to v and its length |P | is defined as its number
of edges. Additionally, we identify paths P with functions P : E → {0, 1} where P (e) = 1
iff e ∈ P . We call two paths P1, P2 (and resp. edges) independent, if there exists no path
P ∗ such that P1 and P2 are subpaths of P ∗. The motivation for this definition is the fact
that reachability between paths is closed under transitivity. If the DAG is a poset (i.e., E is
closed under transitivity), then two edges (u, v) and (x, y) are independent if and only if the
nodes v and x are independent or u and y are independent. For a path P = (e1, . . . , e|P |)
we denote by P [ℓ..r] := (eℓ, . . . , er) a subpath of length r − ℓ + 1. A flow network is the
tuple G = (V, E, f), where f : E → Z+ is a flow, i.e. a function that preserves the flow
conservation

∑
(u,v)∈E fuv =

∑
(v,w)∈E fvw, ∀v ∈ V \ {s, t}.

By a k-flow decomposition of a flow f (see Figure 1) we denote a family of s-t paths
P = (P1, . . . , Pk) with their associated weights w = (w1, . . . , wk) ∈ (Z+)k, such that:∑

i∈{1,...,k}

Pi(u, v)wi = fuv, ∀(u, v) ∈ E. (1)

In this paper, we focus on positive integer flow values, which is motivated by its application in
RNA sequence reconstruction. Vatinlen et al. [24] proved that there is always a (|E|−|V |+2)-
flow decomposition. The Minimum Flow Decomposition (MFD) problem asks for a k-flow
decomposition with minimum k.

In case of imperfect data, Williams et al. [25] considered the problem variant Minimum
Inexact Flow Decomposition (MIFD) where for each edge (u, v) we have a lower bound Luv and
an upper bound Ruv, and constraint (1) is changed to require that

∑
i∈{1,...,k} Pi(u, v)wi ∈

[Luv, Ruv], ∀(u, v) ∈ E. Another MFD variant of practical interest is Minimum Flow
Decomposition with Subpath Constraints (MFDSC) [26]. The only difference with respect to
MFD is that in the input we also have a set of paths R, called subpath constraints, and it is
required that every path in R is a subpath of at least one path of the decomposition.

(a) A flow network.
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(b) A flow decomposition into paths of weights
(1, 1, 2, 3, 3).

Figure 1 Example of a flow network in (1a) and a decomposition of it into five s-t paths in (1b).

ILP formulations. We now review the ILP formulation for MFD given by Dias et al. [4],
which decomposes the flow into k paths. Since the value for k is not known beforehand, one
must iterate and increase this value until the ILP becomes feasible. To model each path Pi,
i ∈ {1, . . . , k}, binary variables xuvi are introduced to represent each edge (u, v) ∈ E. We set
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xuvi = Pi(u, v), i.e. xuvi = 1 if (u, v) ∈ Pi and otherwise xuvi = 0. At the same time, each
path is required to start from the source and end in the sink. For all the intermediary nodes
of a path, a unit in-degree and a unit out-degree is required. Those requirements can be
modeled by the following constraints. For all v ∈ V and for all i ∈ {1, . . . , k}:

∑
(u,v)∈E

xuvi −
∑

(v,u)∈E

xvui =


0, if v ∈ V \ {s, t},

1, if v = t,

−1, if v = s,

(2)

Constraint (1) is then modeled as:

fuv −
∑

i∈{1,...,k}

xuviwi = 0, ∀(u, v) ∈ E. (3)

The above constraint contains the non-linear term xuviwi that standard linear solvers
cannot solve. However, using basic linearization techniques, each such constraint can be
replaced by three linear constraints, see [4] for details. For completeness, we give the full
formulation in Appendix A.1.

Dias et al. [4] used the flexibility of this ILP formulation to easily model also the two
variants MIFD and MFDSC. The former problem can easily be modeled in ILP by changing
the (linearized version of) constraint (3) to state that

∑
i∈{1,...,k}

xuviwi belongs to the interval

[Luv, Ruv]. The latter problem can be modeled by introducing additional indicator variables
rij ∈ {0, 1} for every i ∈ {1, . . . , k}, and every path Rj ∈ R, modeling if the subpath j is
contained in the i-th path of the flow decomposition, via the additional constraints:∑

(u,v)∈Rj

xuvi ≥ |Rj |rij , ∀i ∈ {1, . . . , k}, ∀Rj ∈ R, (4)

∑
i∈{1,...,k}

rij ≥ 1, ∀Rj ∈ R. (5)

3 Reducing the ILP search space via safe paths

In this section, we optimize the ILP model for MFD presented above based on the notion of
solution safety (see e.g. Tomescu and Medvedev [23]). Then, in Remarks 2 and 3, we discuss
how this method can also be applied to the MIFD and MFDSC problems.

We call a path safe if it is part of every (not necessarily optimal) flow decomposition;
that is, if it is a subpath of some path in every decomposition (not necessarily of minimum
size). Khan et al. [10] characterized all safe paths via the notion of excess flow, which can
be thought of as the flow value of the first edge of the path minus the flow values of the
non-path edges out-going from the internal nodes of the path (i.e., the flow “leaking” from
the path). Formally:

▶ Lemma 1 ([10]). For a path P = (e1, . . . , e|P |) with ei = (ui, ui+1), define its excess flow:

fP := f(e1) −
∑

(ui,v)∈E
i∈{2,...,|P |},v ̸=ui+1

f(ui, v).

A path P is safe if and only if fP > 0.

SEA 2024
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Since we assume the flow to be positive, every edge must be decomposed, and is thus (as a
path of length 1) safe. Khan et al. [10] gave a simple algorithm for finding all safe paths,
as follows. We can find all safe subpaths in each s-t path P = (e1, . . . , e|P |) of an arbitrary
flow decomposition, since safe paths are part of all flow decompositions, using a two-pointer
algorithm. Starting with ℓ = 1 and r = 2 as an inclusive interval (i.e., including two edges), we
increase r as long as fP [ℓ..r] > 0, and increase ℓ as long as fP [ℓ..r] ≤ 0. That is, for every index
r = 2, . . . , |P |, we find the minimum ℓ < r such that the subpath P [ℓ..r] is safe. The runtime
of this procedure is O(out-degree(P )), where out-degree(P ) :=

∑
(u,v)∈P out-degree(u), since

flows of edges across P are at most added and subtracted twice throughout the algorithm.
To find the set S of all safe paths of G, we can find any flow decomposition P and run
the two-pointer algorithm on all paths in P. For quickly obtaining a flow decomposition,
one could e.g. use the greedy approach of removing paths of largest currently available
flow in runtime O(|P| · (n + m)) and use it as upper bound to the optimal solution in the
ILP [24]. In our implementations for the three problems MFD, MIFD, MFDSC we use flow
decompositons obtained from the fastest heuristic solvers for these problems.

An (edge) antichain is a subset Q ⊆ E such that every pair of edges e1, e2 ∈ Q is
independent. The size of any edge antichain is also a lower bound on the size of an MFD, as
noted by [17], since each edge in the antichain must be traversed by different paths in any
flow decomposition by the definition of independent edges. The idea is to use such edges
(and extensions of them via safe paths, as we discuss next) to fix some ILP variables.
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(a) A flow network.
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(d) Long collection of independent safe paths.

Figure 2 Application of safe paths in introducing new constraints into previous ILP models. A
flow network is displayed in Figure 2a. From this network, all maximal safe paths (that cannot be
extended left or right) can be calculated (displayed in different colours with their respective lengths
in Figure 2b). We attach to every edge the maximum length of all safe paths crossing that edge
as weight. By calculating the maximum weight antichain (Figure 2c), we obtain a set of pairwise
independent safe paths (Figure 2d). In the ILP formulation, we set to 1 the xuvi variables of each
edge (u, v) in the i-th safe path of the maximum weight antichain.

For every edge e ∈ E, denote by a(e) the length of the longest safe path traversing
e, i.e. a(e) := maxP ∈S,e∈P |P |; this can be obtained from the computation of safe paths
described above. Let P(Q) = {P1, . . . , P|Q|} be the corresponding longest safe paths passing
through the edges in Q; see Figure 2 for an illustration. If Q ⊆ E is an antichain, then also
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the corresponding longest safe paths for the edges of Q must be fully traversed by different
paths in any flow decomposition (otherwise, if some Pi and Pj were traversed by the same s-t
path in some flow decomposition, then also the corresponding edges in Q could be traversed
by the same path, contradicting the fact that Q is an antichain).

As such, without loss of generality, we can fix in the ILP the i-th path of the MFD to
contain the i-th safe path in P(Q):

xuvi = 1, ∀(u, v) ∈ Pi, ∀Pi ∈ P(Q). (6)

Additionally, in order to further optimize the choice of the antichain Q, we consider the
following notion. Given a weight function a : E → N, a maximum weight antichain is an
antichain Q maximizing

∑
e∈Q a(e) [12]. Maximum weight antichains can be found by a

reduction to minimum flows, with demands on the edges given by their weights, in runtime
O(m ·

∑
e∈E a(e)) ⊆ O(n ·m2), followed by a depth-first search through the graph. Maximum

weight antichains are cut-sets with edges whose minimum flow is equal to their demand [12].
In order to heuristically fix as many xuvi variables as possible, we set the weight a(e) of
each edge e to be the length of the longest safe path traversing e. The overall runtime of
this preprocessing is thus O(m ·

∑
e∈E a(e)). Note that this approach does not yield the

maximum total length of independent safe paths, we describe an approach on how to find
them in Appendix B.

As further optimization, note that symmetries are well known to slow down ILP solvers.
In the previous ILP formulations, the paths can be arbitrarily permuted, which we can
mitigate with the following constraints: wi+1 ≤ wi, ∀i ∈ {|Q| + 1, . . . , k − 1}. We show the
complete optimized ILP in Appendix A.2.

Moreover, running the heuristic solvers on the instances beforehand to calculate the safe
paths gives us an upper bound to the optimum solution. In our optimized ILPs we have
an additional check on whether the lower bound |Q| equals this upperbound. If this holds,
then the heuristic flow decomposition is of minimum size, and we directly report it without
running the ILP. Thus, safe paths give us the advantage, that they either yield a good lower
bound, showing that heuristic methods solved the instance optimally, or can be used to
accelerate the ILP when the lower bound is smaller than the solution of the heuristic solution.
▶ Remark 2. Since any flow decomposition satisfying the subpath constraints is (trivially) a
flow decomposition, it follows that safe paths for all flow decompositions are also safe for flow
decompositions with subpath constraints. However, they do not capture all the safe paths
for MFDSC. Nevertheless, we can still use such paths with positive excess flow as described
above to again reduce the search space of the ILP solver for MFDSC.
▶ Remark 3. Since in the MIFD problem we are given intervals, instead of a single value,
for every edge, the excess flow characterization needs to be adapted. In fact, it is an open
problem how to find all the safe paths for all feasible inexact flow decompositions (of any
size). However, in this paper we consider a “conservative” adaptation of the excess flow
notion (inexact excess flow), and prove that paths having positive inexact flow are safe for
all inexact flow decompositions. As such, we can use them in the same manner as described
above to reduce the search space of the ILP solver for MIFD.

▶ Lemma 4 (Inexact excess flow). For a path P = (e1, . . . , e|P |) with ei = (ui, ui+1) define
its inexact excess flow as

fP := Le1 −
∑

(ui,v)∈E
i∈{2,...,|P |},v ̸=ui+1

Ruiv.

A path P is safe if fP > 0.

SEA 2024
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Proof. Let fP > 0 and assume that no path of a flow decomposition P of assigned weights
w ∈ Z+|P| routed through edge e1 passes through all of P . This means they all leave
P through edges OUT := {(ui, v) ∈ E | i ∈ {2, . . . , k}, v ̸= ui+1} carrying weight at most∑

e∈OUT Re < Le1 . This contradicts the assumption that
∑

Pj∈P:Pj(e1)=1 wj ∈ [Le1 , Re1 ]. ◀

Note that we lose the if and only if property by assuming the worst case of only sending the
lowest possible amount of flow through the first edge and of removing the largest possible
amount of flow through the outgoing edges of the path. This means that inexact excess flows
will not necessarily find all safe paths.

4 Y-to-V reduction for subpath constraints and inexact flows

Koster et al. [11, Lemma 4.1] used optimization to reduce the graph size in a pre-processing
step by suitably contracting all edges entering nodes with in-degree 1, and respectively,
exiting from nodes with out-degree 1, as we review below. This reduction has sometimes
been used, under the name “Y-to-V”, to simplify the input graphs to other problems, see
e.g. [23]. Note that the ILP solver by Dias et al. [4] did not include pre-processing step. In
this section, we show how to extent this pre-processing step for the two problem variants
MIFD and MFDSC.

The Y-to-V reduction for MFD works the following way. Consider the graph (V, E) and
let v ∈ V be a node of in-degree 1, and let u ∈ V be the unique node with (u, v) ∈ E.
Let v have out-degree ℓ and let wi ∈ V , i = 1, . . . , ℓ be all nodes with (v, wi) ∈ E. The
reduction creates a new graph (V \ {v}, E′) with edges (u, wi) and flow f ′ : E′ → N with
f ′(u, wi) = f(v, wi) for i = 1, . . . , ℓ. This process can be repeated until no nodes of in-degree
1 exist anymore, while all other edges are copied to the new graph. Analogously this can be
done for nodes of out-degree 1.

For the MFDSC problem (with subpath constraints), subpaths are given with respect
to the original graph, and hence we need to modify them for the Y-to-V contracted graph.
The induced subgraphs of nodes of in-degree (resp. out-degree) 1 define a forest of out-trees
(resp. in-trees). Subpaths can potentially pass through, begin in or end in such trees (see
Figure 3 for an example).

If a path completely passes through a tree, we can merely merge the edges of the tree in
the path to the contracted edge. In that case, the subpath which intersects with the tree
gets translated a single new edge. If a path stops inside an out-tree or begins inside an
in-tree, we can not do that because we do not know which leaf the path will cross in the
decomposition. In that case, the subpath which intersects with the tree gets translated to
several new, parallel edges.

We first contract all out-trees and describe how to reduce the path to the contracted
graph. We can follow up by contracting all in-trees analogously. We can partition the graph
uniquely in maximal-size out-trees, such that no adjacent out-trees can be merged to a new
out-tree. An out-tree in this partition consists of a single edge if and only if this edge will
not be contracted in the Y-to-V reduction. Let the subpath Rj ∈ R intersect the out-trees
T1, . . . , Tℓj

, ending at node u ∈ Tℓj
. We can contract the path to obtain R′

j in the following
way. Let the set of leaf nodes of Tℓj

that can be reached from u be denoted by L(Tℓj
, u).

For every tree T1, . . . , Tℓj−1, we add an edge from the root of the tree to the leaf the path is
crossing to R′

j . For Tℓj
we add the parallel edges (root(Tℓj

), v) for all v ∈ L(Tℓj
, u). That

means R′
j is a path of length ℓj − 1 followed by some parallel edges. Let the obtained set of

“subpaths” R′
j be R′. We change the constraints (4) and (5) to:
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(a) Original graph with one subpath constraint
((b, d), (d, f)) in green. Every path passing the sub-
path continues to either node h or node i.

a d

e

h

i

g

(b) Y-to-V contracted graph with subpath con-
straint, which consists of a path of length 1 followed
by two edges in the last out-tree. Constraint (7)
with ℓj = 2 enforces that exactly one of the edges
will be used.

Figure 3 A DAG with subpath constraint in green and three out-trees, which are the induced
subgraphs of {a, b, d}, {a, c, d} and {d, e, f, g, h, i}. The subpath constraint passes two out-trees in
(a), and is extended to start in an out-tree root to two out-tree leaf nodes in (b).

∑
(u,v)∈R′

j

xuvi ≥ |ℓj |rij , ∀i ∈ {1, . . . , k}, ∀R′
j ∈ R′, (7)

∑
i∈{1,...,k}

rij ≥ 1, ∀R′
j ∈ R′. (8)

Note that only the set R and the integers |Rj | change compared to the constraints (4)
and (5).

▶ Lemma 5. The constraints (7) and (8) are true in the original graph if and only if the
constraints (4) and (5) are true in the Y-to-V contracted graph.

Proof. We analyze the possible routes a path Rj can be extended to, such that it begins
and stops at nodes that lie in between different out-trees of the graph partition.

The path Rj begins in the out-tree T1, potentially not at the root. Since T1 is an out-tree,
it can uniquely be extended to the root w.l.o.g., and we can assume that it starts at the root
of T1.

As such, the path passes through the out-trees T1, . . . , Tℓj−1 from the out-tree root to
one of its leaves, which will be the root of the next tree. For these trees, there exists a unqiue
edge in the contracted graph, that connects the root to that leaf.

We now analyze the path reduction for the last out-tree Tℓ. R′
j has been constructed to

contain ℓj − 1 edges that form a path in the Y-to-V contracted graph, followed by parallel
edges adjacent to that path. These parallel edges describe exactly all possibilities for Rj to
be extended to the right, such that it ends outside of the out-tree. Since they are parallel,
and the variables xuvi are constrained to represent paths, exactly one of the parallel edges is
forced to be used by constraint (7). ◀

The flow conservation is a necessary property for the Y-to-V reduction to work, since
because of it, a single out-edge carries no further information. All paths of a flow decom-
position entering a node of out-degree 1 must continue through this edge, and will together
decompose it (and similarly for nodes of in-degree 1). In the case of MIFD, we do not require
the input to have any conservation of flow, and unlike in MFD, valid inputs can also be
infeasible to solve.

For nodes of in-degree 1 (resp. out-degree 1) we generalize flow conservation to the
property of inexact flow conservation, which nodes must have in order for its edges to be
contracted: Lin ≤

∑
(u,v)∈E Luv ≤

∑
(u,v)∈E Ruv ≤ Rin, where [Lin, Rin] is the interval
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14:10 Accelerating ILP Solvers for Minimum Flow Decompositions

of the single in-edge of u (respectively for the sum of all outgoing edges and the interval
[Lout, Rout] of the single out-edge of u). Note that the second inequality is always fulfilled
since Luv ≤ Ruv. The Y-to-V reduction for MIFD works the same as the Y-to-V reduction for
MFD, but defines intervals [L′

uwi
, R′

uwi
] (resp. [L′

wiu, R′
wiu]) instead of flow values f ′(u, wi)

(resp. f ′(wi, u)) and is restricted on nodes of in-degree (resp. out-degree) 1 fulfilling the
inexact flow conservation.

▶ Lemma 6. The Y-to-V reduction for MIFD is correct.

Proof. Consider an inexact flow decomposition of the original graph. By uniquely adapting
the paths to the contracted graph, they trivially define a feasible solution, as the same set of
weighted paths contribute to the same intervals as before.

Consider an inexact flow decomposition of the contracted graph. By uniquely adapting the
paths to the original graph, they define a feasible solution, since the inexact flow conservation
enforces the sum of the weights of paths passing through an edge with an interval that has
been removed in the contracted graph to lie inside this interval. ◀

5 MFD with given weights

Figure 4 Another flow decomposition of the flow network displayed in Fig. 1a. In this scenario,
all weights are already known and limited to only power of 2 (1, 2, 4, 8) values.

In this section we consider an MFD variant in which the path weights in the solution
are restricted to belong to a given set W = {w1, . . . , wℓ}, see also Figure 4 for an example
and note that not all weights in W must be used by the solution paths. This problem was
initially defined by Kloster et al. [11, Sec. 6], and in this paper we call it MFD with given
weights (MFDW). More formally, given a flow network G = (V, E, f) and a set of weights
W = {w1, . . . , wℓ} ⊆ Z+, find a minimum-sized set of s-t paths P = (P1, . . . , Pk) with
associated weights (w̃1, . . . , w̃k), with each w̃i ∈ W , such that

∑
i∈{1,...,k} Pi(u, v)w̃i = fuv,

∀(u, v) ∈ E.
This problem has a smaller search space than MFD because the weights are restricted to

W , and thus can potentially admit faster solvers. Moreover, if the weights of an optimal
solution are already known, then an optimal solution to MFDW is also an optimal solution
to MFD, and this problem can be used as potentially faster solver. For instance, Kloster et
al. [11] have observed that path weights can be found in the flow in graphs used for RNA
sequence reconstruction.

In the rest of this section we show that knowing such a set W , we are able to formulate a
model with substantially fewer variables than the ILP model for MFD, potentially decreasing
the runtime of the ILP solver by a substantial amount. This formulation also has the potential
to be an alternative efficient heuristic algorithm for MFD, if W is well chosen.
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Given the set of possible weights, our ILP model will be able to answer the following
question: In an optimal solution (that minimizes the number of used paths), how many
paths of weight wi pass through an edge e? In other words, to decompose a flow f using the
weights in W , we aim to find flows Xi such that f =

∑|W |
i=1 wiXi, where each Xi(e) answers

that question. The ILP model for MFDW is the following:

Minimize k :=
∑

(s,u)∈E

|W |∑
i=1

xsui

Subject to:

fuv =
|W |∑
i=1

wixuvi, ∀(u, v) ∈ E, (9a)∑
(u,v)∈E

xuvi −
∑

(v,u)∈E

xvui = 0, ∀v ∈ V \ {s, t}, ∀i ∈ {1, . . . , |W |}, (9b)

xuvi ∈ N, ∀(u, v) ∈ E, ∀i ∈ {1, . . . , |W |}. (9c)

Note that the flow Xi(u, v) = xuvi can be decomposed trivially into weight 1 paths. In
addition, the product xuviwi does not require linearization, due to wi being an input in this
problem.

▶ Lemma 7. The ILP model described by constraints (9a) to (9c) solves MFDW optimally.

Proof. Let P = {P1, . . . , Pk} with weights in W = {w1, . . . , wℓ} be a flow decomposition.
Let P(wi) ⊆ P denote the multiset of paths of weight wi ∈ W and let xuvi = |P(wi) ∩
{s-t paths crossing (u, v)}|. The variables xuvi define a feasible solution to the ILP model
and we have

∑
(s,u)∈E

∑|W |
i=1 xsui = k for the objective function.

Given a feasible solution of the ILP model consisting of variables xuvi, construct s-t paths
P of weight wi ∈ W in the following way. Start at node s, choose an arbitrary neighbour u

of s with xsui > 0 and append the edge (s, u) to P . Reduce xsui by one, and continue this
step with u instead of s until the current node is t, which finishes the path P . Repeating
this process until all the xuvi are zero yields a flow decomposition using

∑
(s,u)∈E

∑|W |
i=1 xsui

many paths. ◀

We now further argue that MFDW is strongly NP-hard and that solving MFDW of
G with weights {2i | i = 0, . . . , ⌈log ||f ||⌉} optimally is a ⌈log ||f ||⌉ + 1-approximation of
MFD. This is in particular useful when no small set W of optimal solution path weights
is known. Depending on the application, weight sets other than powers-of-two can give a
better approximation or faster runtime. We can for example use powers of 2i for any i ∈ Z+,
which yields an approximation scheme with approximation factor (2i − 1)⌈(log ||f || + 1)/i⌉.
Increasing i, we expect a decreased runtime due to the reduced dimension of the ILP model,
but the size of the decomposition increases.

▶ Lemma 8. Let W = {w1, . . . , wℓ} be a set of weights, and P with associated weights
W ′ = {w′

1, . . . , w′
k} be an optimal solution of an MFD instance G = (V, E, f). If W ′ ⊆ W ,

then solving MFDW with weight set W optimally solves MFD optimally.

Proof. This follows from the fact that an optimal solution of MFDW always contains at
least as many paths as an optimal solution of MFD. ◀

▶ Corollary 9. MFDW is strongly NP-hard.
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Proof. Hartman et al. have shown that MFD is NP-hard on graphs using flow values only
from {1, 2, 4} [9]. MFDW with W = {1, . . . , c} solves MFD on instances where the flows are
upper bounded by a constant c by Lemma 8. ◀

▶ Lemma 10. For an MFD instance G = (V, E, f), solving MFDW of G with weights
{2j | j = 0, . . . , ⌈log ||f ||⌉} optimally is a ⌈log ||f ||⌉ + 1-approximation of MFD.

More generally, solving MFDW of G with weights {(2i)j | j = 0, . . . , ⌈log ||f ||/i⌉ for some
i ∈ Z+ is a (2i − 1)⌈(log ||f || + 1)/i⌉-approximation of MFD.

Proof. Let P = {P1, . . . , Pk} with associated weights {w1, . . . , wk} be an optimal solution
to G for MFD and let Pw be an optimal solution for MFDW. We can construct a feasible
solution for MFDW using P by copying every Pi ∈ P for every positive j-th bit in the power
of two decomposition of wi and assigning weight 2j to that copy. Since wi ≤ ||f ||, this yields
at most ⌈log ||f ||⌉ + 1 paths for every Pi ∈ P. Thus, |Pw| ≤ k⌈log ||f || + 1⌉.

If we only use every i-th bit, the bits on positions divisible by i need to cover the next
i − 1 bits. Let the path P have weight w =

∑
j=0,...,⌈log ||f ||⌉ bj2j for bj ∈ {0, 1}, then

wi =
∑

j=0,...,⌈log ||f ||/i⌉ 2ij(bij + 2bij+1 + · · · + 2i−1bij+i−1) = 20(b0 + 2b1 + · · · + 2i−1bi−1) +
2i(bi + 2bi+1 + · · · + 2i−1b2i−1) + . . . . The sums (bij + 2bij+1 + · · · + 2i−1bij+i−1) ≤ 2i − 1
denote how often we need to copy P using weight 2ij . ◀

6 Experimental results

Solvers and datasets. Our implementation of the ILPs uses the GUROBI Python API
under default settings and is available at https://github.com/algbio/optimized-fd. We
compare the ILPs for MFD, MFDSC and MIFD also to the heuristic algorithms for them
by [20] (Catfish), by [26] (CoasterHeuristic) and by [25] (IFDSolver), respectively. For MFDW
we used the weight set W = {2i | i ≤ log ||f ||} ∪ {f(e) | e ∈ E}.

We also experimented with the implementation from the Catfish solver of the standard
greedy algorithm for MFD [24], but since we observed that it performs worse than the Catfish
heuristic algorithm, we did not include it in the results. We also did not include in the results
the Toboggan implementation by Kloster et al. [11] of the FPT algorithm for MFD, nor the
Coaster implementation by Williams et al. [26] of the FPT algorithm for MFDSC since it
was already observed in [4] that they do not scale for minimum flow decomposition sizes
larger than 6 (which we also confirmed experimentally).

The runtimes of all ILPs (except MFDW) include a linear scan in increasing order to find
the smallest k for which there is a flow decomposition in k paths. As discussed in Section 3,
the size of the maximum weight antichain Q is a lower bound on k, thus the linear scans for
MFD-optimized, MFDSC-optimized and MIFD-optimized start at |Q|. We set up a time limit
of up to 30 minutes for each input and each method. Our experiments were performed in a
server running Linux with one AMD Ryzen Threadripper PRO 3975WX 32-core CPU with
512 GB RAM.

For the MFD problem, we experimented with the datasets created by Shao
and Kingsford [20]. These contain graphs created from human transcriptome us-
ing the quantification tool Salmon [15], and also datasets created from human and
mouse transcriptomes using Flux-Simulator [7]. First, we took a single sample file
from their dataset, referred to as SRR020730 Salmon (corresponding to the file
rnaseq/salmon/sparse_quant_SRR020730.graph), followed by the entire archive present
in the directories rnaseq/human/ and rnaseq/mouse/, referred to as Catfish Human and
Catfish Mouse, respectively. From those two directories, only the graphs that had 50 nodes

https://github.com/algbio/optimized-fd
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or more (prior to Y-to-V) were considered. For MFDSC, two datasets were used: an ad-
aptation of the SRR020730 Salmon, where subpaths were generated and another dataset
SRR30790 StringTie, which was created by Khan et al. [10] from human RNA-seq reads
SRR307903 assembled using the StringTie tool [16]). In both datasets, instances are limited
to four subpaths (due to performance limitations regarding previous tools used as bench-
marks). Finally, for MIFD, we simulate interval flows similar to what was done in [25]: since
infeasible instances are generated in the process, we repeat the process until only feasible
instances are generated.

Experimental setup. To show the behaviour of the solvers for graphs of increasingly large
MFD, we group the input graphs in ranges based on their MFD size, computed with MFD-
optimized. If MFD-optimized does not finish within the time limit on an instance, we exclude it
also from all other solvers – note that only the heuristic solvers are faster than MFD-optimized,
which are not optimal in general. For each solver, we report the average runtime per range
of graphs (column Avg.), and the total runtime in that range on the graphs (column Total),
both in seconds, and only for the graphs on which that solver finished within the time limit.
Thus, these numbers are an underestimation of the time one would need to run the solver
in practice, since it would run for at least 30 minutes on unsolved instances. In column
#Solved we list the number of instances on which the solver finished. We captured the
runtime with the GNU time tool by separating the graphs into individual files and running
the tools separately on each instance.

Column ∆(|P|) shows the approximation accuracy of the heuristic methods as follows:
for each instance, we compute the difference between the number of paths reported by each
formulation and the minimum number of paths in an MFD (computed with MFD-optimized).
In each table cell, corresponding to a specific range of inputs, we list the sum of these
differences, and in parentheses their averages.

Discussion. Table 1 illustrates the performance of the MFD solvers. MFD-optimized improves
over MFD-original in all ranges of MFD size. Generally, the larger the MFD size, the more
significant the runtime improvement. For example, for Catfish Human (min k ≥ 16), MFD-
optimized is 27-31× faster than MFD-original on average and for Catfish Mouse (min k ≥ 21),
MFD-optimized is 23× faster than MFD-original on average.

As mentioned above, in the reported runtimes of the solvers we are not including instances
which did not finish within the time limit. Thus, in practice MFD-optimized has even larger
speedups compared to MFD-original, since MFD-optimized solves more instances within the
time limit than MFD-original, for Catfish Human and Mouse this happened for min k ≥ 6. In
SRR020730 Salmon and Catfish Mouse MFD-optimized solves all instances, and on Catfish
Human MFD-optimized solves 23 more instances.

Among the two heuristic solvers, Catfish finishes on all instances in a few seconds in total,
whereas MFDW is slower than Catfish, but still running in under one second on average per
graph and faster than MFD-optimized in almost all cases. When comparing the approximation
accuracy, note that the instances of practical interest are those for which the MFD size is
more than 10, since for smaller sizes MFD-optimized already returns an optimal solution in
under 2 seconds on average. On these, MFDW is more accurate than Catfish, and interestingly,
the larger the MFD size, the more accurate MFD-optimized becomes (for min k ≥ 21 being
fully accurate on all datasets). One reason might be that in more complex graphs, the
optimal MFD weights appear among the flow values of the edges (which are added to W ).
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Table 1 Results for Problem MFD. MFD-original denotes the original ILP for MFD from Dias et al. [4]
(Section 2), MFD-optimized denotes our optimized ILP described in Section 3 and Section 4, and MFDW
the ILP from Section 5. Runtimes are in seconds; a timeout of 30 minutes was used. The total number of
instances in the datasets is mentioned in the rows “All”, in parentheses. Since the heuristic solvers finish
on all instances, we do not have #Solver columns for them.

Catfish heuristic MFDW heuristic MFD-original MFD-optimized

min k Avg. Total ∆(|P|) Avg. Total ∆(|P|) Avg. Total #Solved Avg. Total #Solved

SR
R

02
07

30
Sa

lm
on

1-5 0.01 382.38 1 (0.00) 0.29 11150.07 13 (0.00) 0.30 11751.06 38703 0.29 11064.77 38703
6-10 0.01 19.80 14 (0.01) 0.32 628.14 2 (0.00) 0.48 958.88 1988 0.31 608.25 1988

11-15 0.01 1.62 6 (0.04) 0.33 53.29 0 (0.00) 2.02 327.71 162 0.34 55.63 162
16-20 0.01 0.13 0 (0.00) 0.37 4.84 0 (0.00) 15.97 191.68 12 1.27 16.48 13

21-max 0.01 0.06 6 (1.50) 0.40 1.58 0 (0.00) 17.56 52.68 3 0.57 2.28 4

All (40870) 0.01 403.99 27 (1.55) 0.29 11837.92 15 (0.00) 0.32 13282.01 40868 0.29 11747.41 40870

C
at

fis
h

H
um

an

1-5 0.00 1.07 3 (0.00) 0.30 3084.70 299 (0.03) 0.35 3631.62 10301 0.29 3010.90 10301
6-10 0.00 2.42 61 (0.06) 0.35 375.06 243 (0.22) 3.67 3976.98 1083 1.06 1155.47 1085

11-15 0.01 1.33 53 (0.25) 0.42 89.77 29 (0.14) 16.94 3558.35 210 9.97 2133.17 214
16-20 0.01 1.23 132 (1.08) 0.39 47.34 6 (0.05) 43.56 4747.77 109 1.26 154.02 122

21-max 0.01 0.10 16 (2.67) 0.43 2.61 0 (0.00) 50.81 101.63 2 1.62 9.69 6

All (11730) 0.00 6.15 265 (0.02) 0.31 3599.48 577 (0.05) 1.37 16016.35 11705 0.55 6463.25 11728

C
at

fis
h

M
ou

se

1-5 0.00 0.94 2 (0.00) 0.30 3578.96 280 (0.02) 0.35 4202.92 12047 0.29 3513.08 12047
6-10 0.00 6.29 139 (0.09) 0.35 563.83 577 (0.36) 3.29 5247.45 1594 1.07 1706.72 1597

11-15 0.01 3.16 259 (0.78) 0.55 180.95 173 (0.52) 72.22 21234.09 294 20.84 6877.37 330
16-20 0.01 0.74 69 (0.93) 0.42 31.26 6 (0.08) 58.18 3607.16 62 6.44 476.43 74

21-max 0.01 0.45 57 (1.84) 0.46 14.28 0 (0.00) 77.59 1862.17 24 3.35 103.75 31

All (14079) 0.00 11.58 526 (0.04) 0.31 4369.28 1034 (0.07) 2.58 36153.79 14021 0.90 12677.35 14079

In Table 2, we show the results for the MFDSC problem. We observe a similar and
even more pronounced trend as for the MFD solvers, where the larger the MFDSC size, the
larger the improvement of our optimized ILP. For example, for dataset SRR020730 Salmon,
MFDSC-optimized is 11×, 69× and 121× faster than MFDSC-original for min k in ranges
11-15, 16-20, 21-max, respectively. For both datasets, MFDSC-optimized manages to solve
one more instance than MFDSC-original, and in SRR020730 Salmon it solves all instances.
Moreover, the total running time of CoasterHeuristic is more than half of the running time
of MFDSC-optimized, while not giving optimal solutions (which are also less accurate on
average than the heuristic solvers for MFD).

Table 2 Results for Problem MFDSC. Runtimes are in seconds. A timeout of 30 minutes was used.
MFDSC-original is the original ILP from from Dias et al. [4], and MFDSC-optimized is our optimized ILP as
described in Section 3 and Section 4. Note that the dataset SRR30790 StringTie has no instances where
the optimum MFDSC solution size is larger than 15.

CoasterHeuristic MFDSC-original MFDSC-optimized

min k Avg. Total ∆(|P|) Avg. Total #Solved Avg. Total #Solved

SR
R

02
07

30
Sa

lm
on

1-5 0.19 685.58 109 (0.03) 0.70 2543.97 3643 0.29 1066.78 3643
6-10 0.19 381.11 411 (0.21) 1.11 2214.29 1988 0.30 598.04 1988

11-15 0.20 32.39 126 (0.78) 3.79 613.24 162 0.33 53.86 162
16-20 0.21 2.76 22 (1.69) 70.52 846.29 12 1.01 13.16 13

21-max 0.23 0.90 5 (1.25) 93.28 373.12 4 0.77 3.09 4

All (5810) 0.19 1102.74 673 (0.12) 1.13 6590.91 5809 0.30 1734.93 5810

SR
R

30
79

0
St

ri
ng

T
ie 1-5 0.27 226.04 190 (0.23) 0.69 568.43 828 0.34 280.98 828

5-10 0.27 63.12 75 (0.32) 1.24 287.75 232 0.37 85.15 232
11-15 0.24 1.43 1 (0.17) 2.31 11.56 5 0.91 5.44 6

All (1067) 0.27 290.59 266 (0.25) 0.81 867.74 1065 0.35 371.57 1066

In Table 3, we show the results for MIFD problem and again observe a significant
speedup compared to MIFD-original on complex instances. For example, for min k in 11-15,
MIFD-optimized is up to 30× faster on SRR020730 Salmon, up to 219× faster on Catfish
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Human and up to 100× faster on Catfish Mouse. On the latter two datasets, MIFD-optimized
drastically runs in less than 1 second on average. In addition, although IFDSolver has, on
average, a better runtime, its difference compared to MIFD-optimized is negligible. Notably,
MIFD-optimized solved all instances.

Table 3 Results for Problem MIFD. Runtimes are in seconds. A timeout of 30 minutes was used.
MIFD-original is the original ILP from from Dias et al. [4], and MIFD-optimized is our optimized ILP as
described in Section 3 and Section 4. Note that the dataset Catfish Human has no instances where the
optimum MIFD solution size is larger than 15 and the dataset Catfish Mouse has no instances where the
optimum MIFD solution size is larger than 20.

IFDSolver heuristic MIFD-original MIFD-optimized

min k Avg. Total ∆(|P|) Avg. Total #Solved Avg. Total #Solved

SR
R

02
07

30
Sa

lm
on

1-5 0.25 9561.44 2161 (0.06) 0.58 22559.20 38706 0.29 11094.01 38706
6-10 0.26 512.92 1697 (0.85) 1.03 2044.12 1986 0.32 644.24 1986

11-15 0.29 46.58 302 (1.88) 11.72 1887.70 161 0.38 60.87 161
16-20 0.32 4.12 46 (3.54) 28.18 309.97 11 1.25 16.31 13

21-max 0.44 1.74 21 (5.25) 66.30 198.90 3 4.71 18.82 4

All (40870) 0.25 10126.80 4227 (0.10) 0.66 26999.89 40867 0.29 11834.25 40870

C
at

fis
h

H
um

an

1-5 0.24 2652.76 957 (0.09) 0.59 6398.51 10911 0.29 3151.02 10911
6-10 0.26 40.52 198 (1.25) 1.36 215.40 158 0.34 53.57 158

11-15 0.24 0.98 14 (3.50) 101.01 404.03 4 0.46 1.84 4

All (11073) 0.24 2694.26 1169 (0.11) 0.63 7017.94 11073 0.29 3206.43 11073

C
at

fis
h

M
ou

se

1-5 0.24 3182.89 1521 (0.12) 0.58 7562.22 13009 0.29 3731.19 13010
6-10 0.25 26.83 139 (1.31) 1.47 155.55 106 0.34 35.90 106

11-15 0.36 1.79 19 (3.80) 45.35 226.77 5 0.45 2.26 5
16-20 0.29 0.29 3 (3.00) 0.00 0.00 0 0.56 0.56 1

All (13122) 0.24 3211.80 1682 (0.13) 0.61 7944.54 13120 0.29 3769.91 13122

Finally, we computed quantitative statistics on the contributions of our various optimiza-
tions, see Table 4. Overall, the Y-to-V reduction shrinks the number of edges to less than
50%, even in the inexact flow instances where not every node of in- or outdegree 1 can be
contracted. Moreover, the amount of path indicators variables set to 1 by safe paths in an
antichain goes up to 21%, and is at least 10% in datasets where less than half of the instances
were solved optimally using only heuristic methods (i.e., where the lower bound is equal to
the upper bound). The last column shows that the safety predicted about 40% of the final
solution paths has been predicted using the independent safe paths.

7 Conclusion

In this paper, we proposed optimizing the ILP formulations for MFD using the notion of
safe paths for all flow decompositions. Since safe paths cannot be simply be removed from
the graph, we observed that we can use a set of independent safe path to suitably fix a large
number of ILP variables corresponding to their edges. Combined with the Y-to-V reduction,
and the first usage of an antichain lower bound in a solver to detect the optimality of a
heuristic solution, this resulted in a significantly faster MFD solver (up to 34× on the harder
instances). We also developed an ILP that can work as a heuristic for MFD, running in
under 1 second on average, and more accurate than the state-of-the-art heuristic Catfish on
graphs of practical interest. We also showed that these optimizations can be applied to two
MFD variants of practical interest (by also adapting the Y-to-V reduction the first time for
these variants), resulting in even bigger speedups.

Future research encompasses extending such improvements to the ILPs for MFD in general
graphs with cycles [5]. Another point of improvement is a further search space reduction
through further optimizations on the application of safety, for example, by answering
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Table 4 Quantitative statistics of the various optimisations. The first two columns |E| original
and |E| Y-to-V show the number of edges in the original and in the Y-to-V contracted graph (and, in
parentheses, the proportion of this number relative to the original graphs), respectively, summed over
all graphs in that dataset. The column LB = UB shows the proportion of instances in each dataset
where the calculated lower bound (the number of safe paths in a maximum antichain) is equal to
the upper bound (the number of heuristically calculated paths). This column indicates in how many
instances we have proven that the heuristic solver is optimum using safety. The column pIND shows
the proportion of all path indicators xuvi variables that were set to 1 as part of a safe path with
respect to all edges of the contracted graph, where i is the index of the path and (u, v) is an edge.
The last column #IND/

∑
|P | shows the proportion of path indicator variables with respect to the

sums of the solution’s path lengths, since the total solution path length is an upperbound on how
many variables we can set to 1.

|E| original |E| Y-to-V LB = UB pIND #IND/
∑

|P |

MFD
SRR020730 Salmon 354519 147996 (41.75%) 32.32% 10.95% 48.60%
Catfish Human 621297 109870 (17.68%) 63.67% 9.03% 41.85%
Catfish Mouse 687763 126388 (18.38%) 54.89% 8.36% 37.37%

MFDSC
SRR020730 Salmon 214380 94986 (44.31%) 91.45% 8.05% 43.71%
SRR30790 StringTie 24912 8926 (35.83%) 31.02% 15.84% 48.63%

MIFD
SRR020730 Salmon 355526 166136 (46.73%) 26.77% 11.91% 23.39%
Catfish Human 115774 48903 (42.24%) 34.12% 20.46% 27.29%
Catfish Mouse 101123 40865 (40.41%) 28.05% 21.92% 28.02%

the following question: Is it tractably possible to find subpaths that are part of all α-
approximations of MFD, where α can either be a constant or depend on the input size?
Such α-safe paths (following the notion of c-essential vertices by Bumpus et al. [3]) would be
longer the closer α is to 1, while safe paths in this paper would refer to ∞-safe paths. For
the problem variants MFDSC and MIFD, can we find all ∞-safe paths in polynomial time?
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A ILP formulations

A.1 MFD-original

∀i ∈ {1, . . . , k} :∑
(s,v)∈E

xsvi = 1 (10a)

∑
(u,t)∈E

xuti = 1 (10b)

∑
(u,v)∈E

xuvi −
∑

(v,w)∈E

xvwi = 0 ∀v ∈ V \ {s, t}, (10c)

fuv =
∑

i∈{1,...,k}

ϕuvi ∀(u, v) ∈ E, (10d)

∀(u, v) ∈ E, ∀i ∈ {1, . . . , k} :
ϕuvi ≤ fmaxxuvi (10e)
ϕuvi ≤ wi (10f)
ϕuvi ≥ wi − (1 − xuvi)fmax (10g)

wi ∈ Z+ ∀i ∈ {1, . . . , k}, (10h)
xuvi ∈ {0, 1} ∀(u, v) ∈ E, ∀i ∈ {1, . . . , k}, (10i)
ϕuvi ∈ N ∀(u, v) ∈ E, ∀i ∈ {1, . . . , k}. (10j)

A.2 MFD-optimized
Equations (10) together with:

xuvi = 1, ∀(u, v) ∈ Pi, ∀Pi ∈ P(Q) (11a)
wi+1 ≤ wi, ∀i ∈ {|Q| + 1, . . . , k − 1} (11b)

A.3 MFDW

Minimize
∑

(s,u)∈E

|W |∑
i=1

xsui
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Subject to:

fuv =
|W |∑
i=1

wixuvi, ∀(u, v) ∈ E (12a)∑
(u,v)∈E

xuvi −
∑

(v,u)∈E

xvui = 0, ∀v ∈ V \ {s, t}, ∀i ∈ {1, . . . , |W |} (12b)

xuvi ∈ N, ∀(u, v) ∈ E, ∀i ∈ {1, . . . , |W |} (12c)

B Maximum length independent safe paths

The approach used in Section 3 to calculate independent safe paths of a flow network
(G, f) does not return them of maximum length, but works only as a heuristic. In order
to find independent safe paths of maximum length in polynomial time, one can, as in the
heuristic approach, reduce to maximum weight antichains, on the following dependency
graph D = (V (D), E(D)): nodes represent safe paths, with given weights of their length. A
directed edge (u, v) is added if there exists a path in G which first traverses both safe paths
represented by u and v, entering the safe path of u first and then entering the safe path of v.

▶ Lemma 11. A ⊆ V (D) is an independent set in D if and only if the set of safe paths
corresponding to the nodes in A is independent in G, where the total weight of A is the total
length of the corresponding safe paths. As a result, a maximum length independent path set
of safe paths in G can be calculated in polynomial time O(|S|2 ·

∑
S∈S |S|) ⊆ O(|S|2 · n · m),

where S is the set of all safe paths.

Proof. The graph D is a transitive graph, i.e. (u, v), (v, w) ∈ E(D) implies that (u, w) ∈
E(D). That is because path dependencies are transitive: If there is a path P1 traversing
safe paths s1 and s2, and there is a path traversing safe paths s2 and s3, one can construct
a path that traverses all of s1, s2 and s3. Thus, independent node sets in D correspond
exactly to independent safe paths in G: Two safe paths are independent if and only if they
are not connected by an edge in D. The graph D can be constructed in O(|S|2 · m) time, by
performing a graph search for every pair of safe paths to check whether they are independent
or not.

It is a classical result ([13]), that finding a maximum weighted independent node set on
transitive graphs is solvable in polynomial time by finding a maximum weight node antichain.
Since the weights of the nodes are |S| for S ∈ S, it runs in time O(|E(D)| ·

∑
S∈S |S|) ⊆

O(|S|2 ·
∑

S∈S |S|). ◀
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