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Abstract
An important special case of the quadratic assignment problem arises in the synthesis of DNA
microarrays for high-resolution spatial transcriptomics. The task is to select a suitable subset from
a set of barcodes, i. e. short DNA strings that serve as unique identifiers, and to assign the selected
barcodes to positions on a two-dimensional array in such a way that a position-dependent cost
function is minimized. A typical microarray with dimensions of 768×1024 requires 786,432 many
barcodes to be placed, leading to very challenging large-scale combinatorial optimization problems.

The general quadratic assignment problem is well-known for its hardness, both in theory and
in practice. It turns out that this also holds for the special case of the barcode layout problem.
We show that the problem is even hard to approximate: It is MaxSNP-hard. An ILP formulation
theoretically allows the computation of optimal results, but it is only applicable for tiny instances.
Therefore, we have developed layout constructing and improving heuristics with the aim of computing
near-optimal solutions for instances of realistic size. These include a sorting-based algorithm, a
greedy algorithm, 2-OPT-based local search and a genetic algorithm. To assess the quality of the
results, we compare the generated solutions with the expected cost of a random layout and with
lower bounds. A combination of the greedy algorithm and 2-OPT local search produces the most
promising results in terms of both quality and runtime. Solutions to large-scale instances with
arrays of dimension 768×1024 show a 37% reduction in cost over a random solution and can be
computed in about 3 minutes. Since the universe of suitable barcodes is much larger than the
number of barcodes needed, this can be exploited. Experiments with different surpluses of barcodes
show that a significant improvement in layout quality can be achieved at the cost of a reasonable
increase in runtime. Another interesting finding is that the restriction of the barcode design space
by biochemical constraints is actually beneficial for the overall layout cost.
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1 Introduction

We study a challenging large-scale combinatorial optimization problem that arises in the
synthesis of microarrays for high-resolution spatial transcriptomics [26, 41], a rapidly evolving
molecular profiling method that allows scientists to measure the gene activity in a tissue
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17:2 Barcode Layout Optimization

sample and map where that activity occurs. At a more abstract level, we consider a special
case of the famous quadratic (semi-)assignment problem. The task is to select a suitable
subset from a given universe of barcodes and to assign the selected barcodes to the positions
(sites) of an array in such a way that a position-dependent cost function is minimized.

Motivation and background. DNA barcodes are short strings of fixed length over the
alphabet {A, C, G, T}. In bioinformatics, they are commonly used as tags in pooled se-
quencing experiments to enable the identification of reads originating from the same cell.
Applications include the study of gene expression at the single-cell level [17], lineage tracing
and screening [16], the exploration of developmental trajectories, progression and anti-tumor
drug discovery for cancer therapy [2, 40], DNA data storage [1], and high-resolution spatial
transcriptomics [26, 41]. The purpose of a barcode is to act as a unique identifier. This
means that barcodes must be as easily distinguishable from each other as possible. They
must be robust in experimental environments where errors alter the original barcodes by
unintentional substitutions, insertions and deletions. Such errors can occur at all stages
of the experimental workflow. They can be introduced during barcode synthesis, during
the course of the experiment and in the final sequencing [33]. Modern techniques such as
photolithographic microarray synthesis generate barcodes on the array in multiple rounds
using computer-controlled micromirrors which nowadays replace physical masks. In each
round, a subset of all sites (array positions) is exposed to light to activate oligonucleotides for
further synthesis. In round i, a particular nucleotide si ∈ {A, C, G, T} is available to be added
to the light-exposed sites. Typically, the nucleotide deposition sequence S = s1, s2, . . . , sK is
assumed to be periodic, i.e. S = (ACGT )k for a sufficiently large k such that all barcodes
can be generated [15]. Barcode synthesis faces serious manufacturing challenges due to
unintended illumination effects such as scattered or diffracted light which cause a significant
amount of error [21]. Experimental analysis has shown that photolithographic microarray
synthesis produces barcodes with a comparatively high nucleotide error rate in the range of
10-20% per base [25]. Figure 1 visualizes the principle of the microarray synthesis and how
errors depending on adjacent barcodes occur during this process.

This motivates the combinatorial optimization problem studied in this paper. For a
given set of barcodes, we try to optimize the layout of the barcodes on the given array by
minimizing the dissimilarity of neighboring barcodes. The main goal of this work is to achieve
a significant reduction in barcode synthesis errors through a clever combination of barcode
selection and layout optimization.

Barcode set construction. The construction of large barcode sets is a problem in itself
which has been studied intensively, but is not the focus of this paper. The obvious minimum
requirement for barcode sets is that all barcodes are unique. However, they should also be
designed so that errors can be corrected. The Levenshtein (or edit distance) of two strings
of length ℓ is the minimum number of insertions, deletions, and substitutions required to
transform one string into the other [23]. A Levenshtein distance of at least d between any
two barcodes provides the worst-case guarantee that up to (d − 1)/2 errors can be corrected.
Since the length of corrupted barcodes can vary, it is even preferable to use a generalized
editing metric, the so-called sequence Levenshtein (SL) distance [3].

In addition, for biochemical reasons barcodes should satisfy several additional constraints
such as a narrow GC-content range between 40 and 60%, avoidance of homopolymers and
repeats of length ≥ 3, i.e. substrings of the type (X)k, (XY )k, (XY Z)k, . . . for k ≥ 3, and a
distance from special sequences (primers, promoters, flowcell attachments) [6, 7, 38]. The
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Figure 1 Microarray synthesis using photolithography, insertion error due to local scattering.
The microarray appears as a blue bar. The barcodes are shown as colored sticks attached to the
microarray, partially with protective layers displayed as dark gray circles. 1) Protective layer on all
barcode stubs. 2) UV-exposure removes protective cover. 3) Microarray is flooded with nucleotides.
4) Nucleotides bind with unprotected barcodes stubs. 5) Excessive nucleotides are removed, next
synthesis cycle begins. 6-8) Local scattering uncovers neighboring barcode stub, leading to an
insertion error.

construction of large barcode sets can be done by rejection sampling. The crucial observation
is that if we generate barcode candidates of sufficient length, say of length 30-40, as uniformly
random DNA strings, then any two barcodes will have a relatively large Levenshtein distance
with high probability [33]. Hence, one can easily generate as many barcode candidates as
needed. In the sampling scheme, barcodes that do not fulfill some of the side constraints can
be rejected. We will exploit the possibility to choose from large barcode sets to improve the
cost of the layout.

Contribution. In this paper, we present the following results.
By giving an L-reduction from path-TSP on Hamming spaces we show that the barcode
layout problem is MaxSNP-hard and thus also APX-hard. Therefore, it does not admit a
polynomial-time approximation scheme (PTAS) unless P=NP.
We study and compare several lower bounds. These include the LP relaxation of an
integer linear programming (ILP) formulation and three combinatorial lower bounds,
including an adaptation of the Gilmore-Lawler bound for the QAP [9, 22], a simple
combinatorial bound proposed by Kahng et al. [15] and a b-matching relaxation.
To solve the barcode layout problem in practice, we consider several approaches: different
versions of greedy-type algorithms, a 2-OPT-based local search, and a genetic approach.
To achieve reasonable running times for solving large instances with these heuristics, most
of them had to be implemented on a GPU.
We present a computational study on a large array with dimensions 768×1024. In
experiments, we investigate instances with the same number of barcodes as positions
to be filled. To assess the quality of the results, we compare the generated solutions
with the expected cost of a random layout and with lower bounds. Interestingly, our
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17:4 Barcode Layout Optimization

GPU implementation of a greedy algorithm produces promising results in terms of both
quality and runtime. Solutions to large instances with 768×1024 many positions show a
37% reduction in cost over a random solution and can be computed in about 94 seconds.
Marginal additional improvements can be achieved by performing a local search starting
from the greedy solution at moderate additional computational cost.
Other experiments examine the effect of being able to select barcodes from larger sets
with varying degrees of redundancy. We observe that the layout costs can be significantly
improved, with a nice trade-off between quality improvement and additional runtime.
In a final experiment, we explore the problem under different side constraints that barcodes
have to fulfill. Very interestingly, adding extra constraints on the barcode type can be
beneficial to the overall cost of the layout.

Related work. The placement of probes arises in a similar way in the design of DNA, protein,
and peptide microarrays. It was first discussed under the name border length minimization
problem (BLMP) by Hannenhalli et al. [11]. At that time, the standard fabrication technology
used a sequence of masks instead of micromirrors, but the basic principle of synthesis in
rounds was the same. Each mask exposes a subset of sites to light, namely exactly those
where a nucleotide is to be coupled in the current round. Optical effects such as diffraction or
reflection of light can cause unwanted illumination and therefore activation of sites adjacent
to those that are intentionally exposed to light. To reduce this risk, one seeks a placement of
probes minimizing the sum of border lengths in all masks. The NP-hardness of the BLMP has
been shown in [32] (but allowing unbounded alphabets for strings as input, while our alphabet
is fixed to size four) and for rectangular and square arrays in [20, 21]. Kahng et al. [15]
distinguish between synchronous and asynchronous DNA array synthesis. In synchronous
synthesis, the i-th period (ACGT ) of the periodic schedule synthesizes a single nucleotide in
each probe, whereas asynchronous array synthesis permits any number between 1 and 4 of
nucleotides in any given period, allowing shorter synthesis schedules. Finding an optimal
deposition sequence (often referred to as embedding) of probes adds another challenging
dimension to the BLMP. The combined optimization of placement and embedding has been
studied by [5]. For simplicity and to minimize the number of synthesis cycles, in this paper
we always use a fixed deposition schedule with a leftmost embedding strategy.

A few approximation results are known for the BLMP. Li et al. [24] show that the special
case of a one-dimensional array (i.e. a single row) can be approximated by a constant factor.
For asynchronous synthesis, they show that the BLMP is

√
n log2 n-approximable when n

probes need to be placed. This approximation guarantee has been improved to a factor of
n1/4 log2 n by Popa et al. [32]. Simple combinatorial lower bounds have been proposed by
Kahng et al. [15]. The main difference of the classical placement problem to our version is
that the given set of probes is usually fixed, whereas the barcode layout problem has the
freedom to select from a much larger set of barcodes. The classical BLMP considers the
4-neighborhood of each site as a proxy for measuring the risk of unintended light exposure.
The 8-neighborhood of each site includes not only adjacent sites along edges but also at
corners. A natural extension is to apply more general distance functions [4], for example
using all sites up to a distance of two or three with an appropriate weighting of the distance.

Carvalho and Rahmann [4] recognized the microarray layout problem as a special case
of the quadratic assignment problem (QAP). The barcode layout problem studied in this
paper can be formulated in a similar way. The QAP is one of the cornerstone problems
in combinatorial optimization with a long and rich research history, see for example the
surveys [8, 27, 36]. The QAP has a wide range of applications in facility location, scheduling,
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A C T G C A G T

T A G T A C T G

b1:

b2:

Cycle 1 Cycle 2 Cycle 3 Cycle 4

A C G T A C G T A C G T A C G T

b1 1 1 0 1 0 0 1 0 0 1 0 0 1 0 1 1

b2 0 0 0 1 1 0 1 1 1 1 0 1 0 0 1 0

Figure 2 Example: Two barcodes of length ℓ = 8 and synthesis distance d(b1, b2) = 8.

transportation, and placement problems in VLSI design. It was originally introduced by
Koopmans and Beckmann in 1957 as a mathematical model for allocating a set of n facilities
to n locations [18]. The QAP is well-known for its theoretical and practical intractability. It
includes hard combinatorial optimization problems such as the traveling salesman problem
(TSP), graph partitioning and maximum clique as special cases. Exactly solving instances
with n > 30 is typically infeasible in practice, that is, such instances cannot be solved in
reasonable computational time. Sahni and Gonzalez [34] showed that the QAP is NP-hard
and even finding an ϵ-approximate solution is hard. For the general QAP it is even hard
to find locally optimal solutions, it is known to be PLS-complete for a Kernighan-Lin type
neighborhood and the 2-OPT (or pair exchange neighborhood) [31, 35]. Due to its difficulty,
all kinds of meta-heuristics have been applied to QAP [19]. However, their performance
depends strongly on the specific application. These meta-heuristics can be combined with a
hierarchical refinement algorithm [21].

Overview. The rest of this paper is organized as follows. In Section 2, we formally introduce
the barcode layout optimization problem. Then, in Section 3 we study its computational
complexity and show its MaxSNP-hardness. Section 4 discusses several lower bounds. As
the problem is computationally hard we consider several heuristic approaches in Section 5.
In Section 6, we present a computational study evaluating these heuristics on large instances.
Finally, in Section 7, we conclude with a brief summary. Source code and data are made
freely available at https://github.com/uni-halle/BarLay.

2 Problem Definition

In order to provide a formal problem definition, we first have to formalize the term barcode.
For our purposes, a barcode is a word of fixed length ℓ over the alphabet {A, C, G, T}. We
define a barcode layout as a function that assigns barcodes to array positions.

▶ Definition 1 (barcode layout). Let w, h ∈ N be dimensions of a two-dimensional array and
B with |B| ≥ w · h a set of barcodes of length ℓ. The injective layout function L(x, y) assigns
a barcode b ∈ B to each position (x, y) with 1 ≤ x ≤ w and 1 ≤ y ≤ h.

During photolithographic synthesis of a microarray, each barcode b of length ℓ will be
uniquely associated with its synthesis schedule s(b), which is a bitstring of length ≤ 4ℓ. This
schedule determines in which synthesis cycles the barcodes should grow on the microarray.
Figure 2 shows an example of barcodes and their associated synthesis schedules. Insertion
errors can occur if a barcode is growing in a synthesis cycle it is not supposed to. Typically
this happens when a neighboring barcode is illuminated and the light scatters. In this
case, the synthesis schedules of the two barcodes are different for the cycle in question.
Consequently, the risk of unwanted insertions can be quantified by the Hamming distance of
the synthesis schedules. This leads to a natural distance measure between synthesis schedules.

SEA 2024
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17:6 Barcode Layout Optimization

▶ Definition 2 (synthesis distance of barcodes). Let b1 and b2 be two barcodes. The synthesis
distance d(b1, b2) is the Hamming distance of their synthesis schedules s(b1) and s(b2).

In this paper, we consider the 8-neighborhood of a position to be the set of positions at
which unwanted insertions are most likely to occur.

▶ Definition 3 (8-neighborhood). For a position (x, y) on a w × h-array, the set

N(x, y) := ({(x̃, ỹ) : |x − x̃| ≤ 1 ∧ |y − ỹ| ≤ 1} \ {(x, y)}) ∩ {1, . . . , w} × {1, . . . , h}

contains the 8-neighborhood around (x, y).

Now, we define a local cost function for each barcode position.

▶ Definition 4 (local cost of a neighborhood). Let L be a barcode layout on a w × h-array.
We define the local cost at position (x, y) as

cost(L, x, y) =
∑

(x̃,ỹ)∈N(x,y)

d(L(x, y), L(x̃, ỹ)).

Finally, we are able to define the BARCODE-LAYOUT minimization problem:

▶ Definition 5 (BARCODE-LAYOUT problem).
Input: Set B of barcodes of length ℓ. Array dimensions w, h ∈ N where |B| ≥ wh.
Output: Barcode layout L that minimizes

cost(L) =
w∑

x=1

h∑
y=1

cost(L, x, y).

3 Computational Complexity

Before presenting our algorithmic approaches, we would like to convey our theoretical findings
on the complexity of the BARCODE-LAYOUT problem. We show that every problem in MaxSNP
is L-reducible to the BARCODE-LAYOUT problem and thus, that the BARCODE-LAYOUT problem
is MaxSNP-hard [29].

▶ Definition 6 (L-reduction [29, 37]). Consider two optimization problems A and B. A is
said to be L-reducible to B if there exist two positive constants α, β and two polynomial-time
functions f, g such that
1. for each input x to A, f(x) is a valid input to B

2. optB(f(x)) ≤ α · optA(x)
3. if y is a solution to B on the input f(x), then g(x, y) must be a valid solution to A

4. |optA(x) − costA(x, g(x, y))| ≤ β · |optB(f(x)) − costB(f(x), y)| .

For our proof, we are going to perform an L-reduction from the path-TSP on Hamming
spaces to our BARCODE-LAYOUT problem.

▶ Definition 7 (path-TSP on Hamming spaces). Given n cities i = 1, 2, . . . , n with coordinates
ci ∈ {0, 1}k and pairwise distances dij = dHamming(ci, cj), find a Hamiltonian path of
minimum total length.
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Trevisan [37] gave a proof for the MaxSNP-hardness of the related TSP on Hamming spaces,
in which one looks for a Hamiltonian cycle instead of a Hamiltonian path. He described
an L-reduction from (1,2)-TSP to TSP on Hamming spaces. It is straight-forward to apply
the same technique to L-reduce (1,2)-path-TSP to path-TSP on Hamming spaces. As
(1,2)-path-TSP has been shown to be MaxSNP-hard by Papadimitriou and Yannakakis [30]
the following lemma holds.

▶ Lemma 8. path-TSP on Hamming spaces is MaxSNP-hard.

Having established this, we can now prove that BARCODE-LAYOUT is MaxSNP-hard by
means of an L-reduction of path-TSP on Hamming spaces.

▶ Theorem 9. BARCODE-LAYOUT is MaxSNP-hard.

Proof. Consider an arbitrary instance x to path-TSP on Hamming spaces. We construct
an input f(x) to the BARCODE-LAYOUT problem in linear time such that every layout y to
f(x) is associated to some Hamiltonian path g(x, y). For this purpose we transform the
coordinates c = c1, · · · , ck of each city in x to a barcode of length 2k by applying the following
substitutions:

1 7→ AC with s(AC) = 1100

0 7→ AG with s(AG) = 1010

Consequently, the synthesis distance of two barcodes is twice the Hamming distance of the
original coordinates. Furthermore, the objective value cost(y) of each layout is exactly twice
the objective value of the corresponding Hamiltonian path g(x, y), as each synthesis distance
between neighboring barcodes is included twice in the cost function (see Definition 4). Thus,
the transformation is isometric except for a constant factor of four. We now arrange these
constructed barcodes on an n × 1-array. Since the height coordinate is collapsed into a single
value, the solution of the input to BARCODE-LAYOUT will provide a permutation of the input
barcodes. The cost of this permutation is determined by the sum of the synthesis distances
between successive barcodes. If we convert the barcodes in this permutation back to the
original Hamming coordinates, we obtain an equivalent solution to path-TSP, where the
sum of Hamming distances between successive Hamming coordinates is minimized. We still
need to prove that this transformation is indeed an L-reduction. The application of the
above substitutions represents the function f , while the application of the obtained barcode
order to the original Hamming coordinates is the function g. Furthermore, the conditions 2
and 4 in Definition 6 hold true for α = β = 4. So we have shown that BARCODE-LAYOUT is
MaxSNP-hard, even if one of the dimensions is collapsed to a single value. ◀

4 Lower bounds

As the optimization problem is hard, we are interested in lower bounds for the best possible
cost of a layout. We consider four different lower bounds and sketch the underlying ideas. In
Section 6, a comparison of these bounds in terms of strength and computational effort will
be presented. For ease of exposition, we assume in this section that the number of barcodes
equals the number of array positions, i.e. |B| = wh.

LP lower bound. As mentioned before, the BARCODE-LAYOUT problem is a special case of the
QAP and therefore can also be formulated as an ILP. Here, we use Lawler’s linearization [22]
which requires O(wh|B|2) variables. While solving these ILPs is only feasible for very small
instances with state of the art solvers like Gurobi, we hope that at least the LP relaxation
can be computed for larger instances.

SEA 2024
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A quadratic formulation of the BARCODE-LAYOUT minimization problem uses assignment
variables xijb where (i, j) is a position on the array and b ∈ B a barcode. The variable xijb

shall be 1 if and only if barcode b is assigned to position (i, j). In a standard formulation of
the QAP, quadratic terms such as xijbxi′j′b′ are used to determine whether the barcodes b

and b′ are adjacent in the positions (i, j) and (i′j′). To linearize these quadratic terms we
introduce 0/1-variables y(ijb)(i′j′b′) such that y(ijb)(i′j′b′) = xijbxi′j′b′ .

Based on these variables, we obtain the following formulation:

min
w∑

i=1

h∑
j=1

∑
b∈B

∑
b′∈B,
b′ ̸=b

∑
(i′,j′)

∈N(i,j)

d(b, b′)·y(ijb)(i′j′b′) (1)

s. t.
∑
b∈B

xijb = 1 ∀i∈{1,...,w},∀j∈{1,...,h} (2)

w∑
i=1

h∑
j=1

xijb = 1 ∀b ∈ B (3)

w∑
i=1

h∑
j=1

∑
b∈B

∑
b′∈B,
b′ ̸=b

∑
(i′,j′)

∈N(i,j)

y(ijb)(i′j′b′) = 2m (4)

xijb + xi′j′b′ − y(ijb)(i′j′b′) ≤ 1 ∀i∈{1,...,w},∀j∈{1,...,h},
∀b ̸=b′∈B,∀(i′,j′)∈N(i,j) (5)

xijb + xi′j′b′ − 2 · y(ijb)(i′j′b′) ≥ 0 ∀b ̸=b′∈B,∀(i′,j′)∈N(i,j) (6)

xijb ∈ {0, 1}, y(ijb)(i′j′b′) ∈ {0, 1} ∀i∈{1,...,w},∀j∈{1,...,h},
∀b ̸=b′∈B,∀(i′,j′)∈N(i,j) (7)

Equation 2 ensures that every position (i, j) of the array is assigned with exactly one
barcode and Equation 3 ensures that each barcode is assigned to exactly one position.
Equation 4 says that exactly 2m of the y(ijb)(i′j′b′) variables are set to 1, where m is defined
as the number of neighborhood relations (vertical, horizontal and diagonal) in an array of
size w × h:

m := 2 · (w − 1) · (h − 1) + w · (h − 1) + (w − 1) · h (8)

Finally, Equations 5 and 6 couple the x and y variables. Equation 5 models the implication
(xijb = 1∧xi′j′b′ = 1) ⇒ y(ijb)(i′j′b′) = 1 and Equation 6 models the implication y(ijb)(i′j′b′) =
1 ⇒ (xijb = 1 ∧ xi′j′b′ = 1). Consequently, y(ijb)(i′j′b′) = xijbxi′j′b′ as desired.

Gilmore-Lawler bound. In the field of QAPs, a classical lower bound is the so-called
Gilmore-Lawler bound (GLB) [9, 22]. We adapt it to the special case of the BARCODE-LAYOUT
problem. In a first step, we compute for each barcode the neighborhood cost for the best
neighbors it can possibly have. The values differ depending on the position of the barcode
on the array: in a corner, the barcode chooses 3 neighbors; in a border position 5 neighbors
and in the middle 8 neighbors. That gives three coefficients for each barcode b: l

(3)
b as the

optimal cost with 3 neighbors, l
(5)
b with 5 and l

(8)
b with 8 neighbors. We then have to decide

for each barcode whether it is best placed in a corner, at the border or in the middle.
We formulate this problem as an ILP. The binary variables x

(3)
b , x

(5)
b and x

(8)
b indicate

for barcode b whether it is best placed in a corner, at the border or in the middle. We
then solve a linear assignment problem to choose the optimal position for each barcode with
respect to the coefficients l

(3)
b , l

(5)
b and l

(8)
b . The following ILP shows how we compute the

Gilmore-Lawler bound:
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min
∑
b∈B

(
l
(3)
b · x

(3)
b + l

(5)
b · x

(5)
b + l

(8)
b · x

(8)
b

)
(9)

s. t.
∑
b∈B

x
(3)
b = 4 (10)∑

b∈B

x
(5)
b = 2 · (w − 2) + 2 · (h − 2) (11)∑

b∈B

x
(8)
b = (w − 2) · (h − 2) (12)

x
(3)
b + x

(5)
b + x

(8)
b = 1 ∀b ∈ B (13)

x
(3)
b , x

(5)
b , x

(8)
b ∈ {0, 1} ∀b ∈ B (14)

We take into account how many barcodes with 3 (Equation 10), 5 (Equation 11) or 8
(Equation 12) neighbors we need for a valid layout. We also ensure that each barcode is
assigned to exactly one position (Equation 13).

Kahng bound. A simple combinatorial idea is to select for each barcode the 8 closest
barcodes in the set with respect to the synthesis distance. Since the border and corner
positions have fewer neighbors, we have to discard a certain number of values. With m

defined as in Equation 8, we then keep only the 2m values with the smallest weights. It is
clear that the total weight cannot exceed the cost of an optimal layout and therefore is a
lower bound. In the context of microarray design, this bound has been described by Kahng
et al. [15] for a 4-neighborhood. It will be referred to as the Kahng bound in the following.

b-matching bound. Inspired by the 2-matching relaxation of the TSP, we developed a
fourth bound. Let H be an undirected complete graph on the barcode set with the synthesis
distance as edge weights. A subset of the edges is chosen such that each node has a degree of
at least 3 and at most 8. The number of edges chosen is equal to the number of neighborhood
relations on the array, i.e. m as in Equation 8. Instead of letting each barcode freely choose
its eight closest neighbors as edges, we now ensure that neighboring positions must choose
their edges consistently. The resulting bound is twice the sum of the edge weights chosen.

The following ILP shows how we compute the b-matching bound.

min 2 ·
∑
b∈B

∑
b′∈B,
b′ ̸=b

d(b, b′) · xbb′ (15)

s. t.
∑
b∈B

∑
b′∈B,
b′ ̸=b

xbb′ = m (16)

∑
b′∈B,
b′ ̸=b

xbb′ ≤ 8 ∀b ∈ B (17)

∑
b′∈B,
b′ ̸=b

xbb′ ≥ 3 ∀b ∈ B (18)

xbb′ ∈ {0, 1} ∀b ̸= b′ ∈ B (19)

The variables xbb′ indicate neighborhood relations: xbb′ = 1 if and only if barcodes b

and b′ are connected by an edge. The number of chosen edges is restricted by Equation 16
where m is the number of edges defined in Equation 8. Equations 17 and 18 ensure the node
degrees.
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5 Heuristic Approaches

Since we have shown that the BARCODE-LAYOUT problem is MaxSNP-hard, we decided to
focus on developing heuristic approaches.

LEXSORT. We first consider a sorting based algorithm, which sorts the input lexicograph-
ically and subsequently fills the layout with barcodes column by column. This ensures that
vertically neighboring barcodes have a maximum common prefix. These barcodes will be
synthesized identically for the length of their common prefix. The runtime of this heuristic is
dominated by sorting the input. This approach is therefore applicable to large input sets.
However, it has several shortcomings in terms of layout quality. First, it only considers the
common prefix of barcodes, which can lead to many missed opportunities for good neighbors,
which are synthesised differently in the first few cycles. Second, it only optimizes vertically,
leaving the possibility of highly sub-optimal neighbors in all other directions.

Greedy Algorithms. Kahng et al. [15] describe a greedy algorithm (which they call ROW-
EPITAXIAL) and show that it gives promising results. We adapted their algorithm to
our problem by making minor changes. The algorithm fills the layout column by column
(originally row by row). For each position (x, y), the algorithm selects some yet unassigned
barcode b that minimizes the local synthesis distance

d(L, x, y, b) =
∑

(x̃,ỹ)∈N(x,y)

d(b, L(x̃, ỹ))

which describes the (partial) cost of placing the barcode b at position (x, y). When evaluating
the sum, we only consider neighboring positions to which we already assigned some barcode
in a previous step. When considering the i-th position (x, y), the algorithm needs to calculate
the local synthesis distance for each of the |B| − i + 1 yet unassigned barcodes b. As a
result, the algorithm must perform O(wh|B|) calculations of the local synthesis distance,
which can be unpleasantly large in practice. For this reason, the original ROW-EPITAXIAL
algorithm suggested by Kahng et al. had to use a limited lookahead in order to produce
results within a reasonable time. Their idea was to select the best unassigned barcode b from
the first ≤ 20, 000 unassigned barcodes in lexicographic order. This reduces the number of
local synthesis distance evaluations to O(wh), since 20,000 is a constant.

In contrast to Kahng et al., we used an unlimited lookahead (i.e. we chose b from all
unassigned barcodes). This was achieved by using GPU parallelization.

2-OPT Local Search. We developed another algorithm to improve existing layouts based
on the well-known local search principle. Starting with some initial layout, we iteratively
determine pairs of barcodes that can be swapped to improve the layout cost. In each iteration,
we first determine the current best swap partner for each barcode on the array. Improving
swaps are then performed sequentially, starting with the one that gives the best improvement.
Elements that have already been repositioned in this iteration, or are in the neighborhood
of such an element, are not swapped. When there are no more profitable swaps, a local
minimum is reached and the algorithm terminates. It is straight-forward to extend this idea
to the more general situation where we have more barcodes than positions on the layout.

In the first iteration of the local search, we have to calculate the effect of swapping each
barcode on the layout with every other barcode in B. Thus, the computational effort in this
iteration grows like O(wh|B|). In subsequent iterations we can take advantage of the fact
that new improving swaps can only occur for swapped barcodes or in their neighborhood.
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Table 1 Types of barcode sets used in our experiments. All barcodes have length 34 and have
been sampled uniformly at random by rejection sampling as sketched in Section 1. Note that
4ℓ = 136 is an upper bound on synthesis cycles required but in practice much shorter schedules can
be achieved.

Set name Constraints
random no additional constraints
GC GC content is 40-60 %
maxCycles number of synthesis cycles is less than 93
no repeats no homopolymers and no repeats of length ≥ 3
constrained GC + maxCycles + no repeats
distance constrained + pairwise SL distance at least 9

Genetic Algorithm. In a further effort to improve the quality of layouts, we have developed
a genetic algorithm. This approach models biological evolution by modifying a population of
1024 layouts using a combination of selection, crossover and mutation, hopefully converging
towards a local optimum [13, 14]. We use tournament selection [12] with 8 participants
to select a subset of the population for reproduction. The selected couples then produce
two offspring using a crossover operator that is based on the partially mapped crossover
operator [39], but favors barcode placements which already have a low local cost function
within their neighborhood. The idea of using local cost information for an optimized crossover
operator comes from [28] and [10]. Finally, a simple swap operator is applied to these offspring
to improve genetic diversity.

6 Experimental Results

In this section, we evaluate the solution quality of our algorithms. For this purpose, we
experiment with multiple barcode sets that differ by several additional constraints (see
Table 1).

6.1 Comparison of Lower Bounds
We start by comparing the quality of the lower bounds described in Section 4.

Experimental setup. We sampled several subsets from size 10 × 10 to size 768×1024 from
the barcode set distance and evaluated the four lower bounds on each subset. To solve the
(I)LPs, we used Gurobi in version 9.52.

Results and discussion. Table 2 shows the results of the experiment. We see that the
bounds calculated with the (I)LP solver can only be computed for small instances within
reasonable time. The LP bound turns out to be much weaker than the other bounds. In
contrast, the Kahng and GLB bounds are much stronger and can be evaluated for large
instances within reasonable time. The b-matching is only marginally better than the Kahng
bound but scales less well. Thus, we decided to use the Kahng bound in the following
experiments.

6.2 Expected Cost of Random Layouts
To get another baseline for the heuristics, we calculated the expected cost of a random layout,
where a random barcode is selected from B and assigned to each array position.
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Table 2 Lower bounds for different array sizes and barcode sets of size w · h of type distance.
Entries with NA stand for instances which we could not solve within reasonable time and memory.

method 10 × 10 15 × 15 20 × 20 100 × 100 768×1024
LP 13,216 30,120 NA NA NA
GLB 21,344 48,202 84,988 1,881,900 119,211,464
Kahng 20,964 47,744 84,376 1,884,112 119,215,966
b-matching 21,032 47,852 84,676 1,884,904 NA

Experimental setup. To calculate the expected layout cost E(cost), we first need to calculate
the expected synthesis distance E(d) between two barcodes sampled uniformly at random
from B. This value depends on the specific barcode set B and can be calculated by summing
over all barcode pairs of this set. We then calculate the expected layout cost using the
formula E(cost) = 2m · E(d) with m as defined in Equation 8.

Results and discussion. For the given set of type distance with 768×1024 barcodes, this
resulted in E(cost) ≈ 254, 498, 050 for a 768×1024 array. This baseline was also empirically
confirmed as the mean cost of 10 randomly generated layouts was 254, 485, 241.6 with a
standard deviation of 14, 378.1. We observe that the expected cost is about twice as large as
the Kahng bound.

6.3 Comparison of Heuristics

Next, we investigated the quality of our heuristics.

Experimental setup. We ran each heuristic ten times on the barcode set of type distance
with 768×1024 barcodes and the same layout dimension (thus without any excess on barcodes)
and determined the average layout cost. Since the genetic algorithm and the 2-OPT local
search require initial layouts, we tested these algorithms first with random initial layouts
and afterwards with pre-optimized layouts produced by the unlimited Greedy Algorithm.
For each heuristic, we calculated the percentage improvement over the expected layout cost
(gain) and the gap to Kahng’s lower bound (gap).

Table 3 Gain (%) gives the improvement over the expected cost of a random layout in percent.
Gap (%) shows the optimality gap to the Kahng lower bound in percent.

Algorithm Average Cost gain (%) gap (%)
Lower bound (Kahng) 119, 215, 966 — —
Random layout (expected value) 254, 498, 050 — 113.48
LEXSORT 218, 300, 868 14.22 83.11
Greedy (lookahead 20000) 178, 342, 888 29.90 49.60
Greedy (unlimited) 159, 937, 955 37.16 34.16
2-OPT Local Search (random initial layout) 181, 718, 241.2 28.60 52.43
2-OPT Local Search (pre-optimized initial layout) 159, 887, 640.4 37.18 34.12
Genetic Algorithm (random initial layouts) 203, 261, 559 20.13 70.50
Genetic Algorithm (pre-optimized initial layout) 163, 691, 770 35.70 37.31
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Table 4 Average runtimes for sequential CPU or parallelized GPU implementations of selected
algorithms in Table 3. Sequential runtimes for 2-OPT were estimated from the sequential runtime
of a single iteration.

Algorithm CPU (sequential) GPU (parallelized)
LEXSORT 0.39 sec -
Greedy (unlimited) 7.86 hours 94.1 sec
2-OPT Local Search (random initial layout) 46.4 days 15.6 min
2-OPT Local Search (pre-optimized initial layout) 3.7 days 89.5 sec

Results and discussion. Table 3 and Table 4 show the results. We highlight some essential
observations.

We observe that the unlimited Greedy Algorithm produces solutions of high quality,
which could be improved marginally by a successive 2-OPT local search at the cost of
small additional runtime.
Interestingly, starting the 2-OPT local search with a random initial layout produces
layouts that are local optima, but far worse than the layout produced by our greedy
algorithm. This suggests that the local optima of the 2-OPT neighborhood relation differ
drastically in their quality.
Looking into the 2-OPT local search in more detail, we observe that it improved a random
initial layout by about 28.60% in 204.1 iterations on average (see Figure 3a) and thus
performs better than LEXSORT, but much worse than the unlimited Greedy Algorithm.
Using a pre-optimized layout generated by the unlimited Greedy Algorithm, a local
optimum was quickly reached after only 12.4 iterations on average, as can be seen in
Figure 3b.
Unfortunately, the Genetic Algorithm could not further reduce the cost of layouts produced
by the unlimited Greedy Algorithm. Instead, we observed increasing costs within the first
generations and a plateau afterwards. This behaviour is probably caused by the mutation
operator, which is applied after each generation. This operator swaps randomly selected
barcodes in order to maintain sufficient genetic diversity throughout the population. In
highly optimized layouts, this tends to destroy good neighborhoods and create more
average ones, increasing the overall cost of the layout.
GPU parallelization greatly accelerates our algorithms compared to a sequential CPU
implementation. We estimate the speedup factor of the 2-OPT algorithm to be more
than 4000. The Greedy Algorithm was accelerated by a factor of about 300.

6.4 Barcode Sets with Excess
Our experiments suggest that the greedy algorithm provides a significant improvement in
layout cost when compared to random layouts. However, a typical weakness for greedy
algorithms is that the choices made later in the process get worse as there are fewer options
left. To address this issue, we run an additional experiment where we provide more barcodes
to choose from than the Greedy Algorithm needs for the layout.

Experimental setup. Starting with 768×1024 barcodes of type random, we iteratively
increased the barcode excess by including more barcodes. In doing so, we generated barcode
sets that are 1×, 1.5×, 2×, 2.5×, 3×, 3.5×, and 4× as large as the initial set. We ran the
unlimited Greedy algorithm 10 times on each set and determined the average layout cost.
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Figure 3 The performance of local-search based 2-OPT.

Results and discussion. Figure 4 shows the average layout cost of our greedy heuristic for
barcode sets with multiple excess factors. As expected, there is a clear decrease in cost as
the size increases. Even a small excess factor of 1.5 has an effect: The cost decreases by
about 10.71% compared to using the original set of 768×1024 barcodes (without any excess).
The cost decreases by up to 43.42% compared to the baseline as the size of the barcode set
increases.

1.
45

e+
08

1.
55

e+
08

1.
65

e+
08

Excess Factor

C
os

t

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Figure 4 The average cost value for each barcode set size used.

We conclude that even a small excess of barcodes can largely improve the layout quality.
Runtime increases linearly with the barcode set size: The runtime for the set of 4 · w · h

barcodes is 386 seconds and thus about 4 times as long as for the set of w · h barcodes with
94 seconds. Our observations show that our implementation scales well and is even suitable
for next-generation microarrays with four million positions.
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Figure 5 Average local cost of every column
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Figure 6 Average local cost of every column
in the layout for each barcode set type used.

6.5 Distribution of Layout Cost
Next we analyse how much each layout position (x, y) contributes to the total layout cost.
To do this, we first normalized the local cost (see Definition 4) of each position (x, y) by the
number of its neighbors (which is either 3, 5, or 8). This allows us to fairly compare the
contributions of each layout position regardless of their number of neighbors. For the matter
of a clear presentation, we show the normalized local costs averaged over each column y.
Thus, the average local cost of column y is defined as

1
w

w∑
x=1

cost(L, x, y)
|N(x, y)| .

The larger this value, the more the y-th column contributes to the layout cost.

Experimental setup. We repeated the previous experiment, now calculating the individual
average local costs for each column.

Results and discussion. Figure 5 shows the results of this experiment. We observe a rapid
increase in cost in the last columns, when the greedy algorithm has almost no freedom of
choice anymore. If we use more barcodes than necessary, this effect disappears. Instead, we
see an almost linear change in quality with a slope that decreases with larger barcode sets.
These observations confirm our previous conclusions.

6.6 Influence of Barcode Set Type
As mentioned earlier, barcode sets are usually constrained for technical and other reasons.
We therefore carried out a final experiment to assess whether our Greedy Algorithm behaves
differently on constrained barcode sets.

Experimental setup. We used a barcode set of each type mentioned in Table 1 and evaluate
the average layout cost of the unlimited Greedy Algorithm for an array of size 400×500.
Each barcode set contained 800,000 barcodes. Similar to the previous experiment, we plot
the average local cost of each individual column.

SEA 2024



17:16 Barcode Layout Optimization

Results and discussion. Figure 6 shows the results. There are two distinct groups: The
first group with the higher costs consists of the random set, the GC set and the maxCycles
set. The distance set, the constrained set and the no repeats set form the second group
with the lower cost values. We conclude that constraining the GC content and the number of
synthesis cycles has little effect on the barcodes, which is why these sets behave almost the
same as the random set. The exclusion of repeats greatly reduces the set of valid barcodes.
This means that the average synthesis distance between barcodes is significantly reduced,
which translates into lower costs for the generated layouts.

We conclude that using certain constraints on the barcode sets doesn’t have a negative
impact on the cost of the layout. On the contrary, the cost even improves compared to a
random set of barcodes.

7 Summary

In this paper we provided a computational study on the BARCODE-LAYOUT problem that
arises in the synthesis of DNA microarrays by photolithography. Experiments on instances
of typical size demonstrate that the resulting combinatorial optimization problems are very
hard to solve. We obtained the best results with a greedy approach followed by 2-OPT local
search which improved on a random layout by 37%. However, the optimality gap with respect
to the best lower bound is also relatively large at 34%. We suspect that the available lower
bounds are quite weak so that the actual solutions are not too far away from the unknown
optimum. Due to the long runtimes of the sequential versions of the Greedy and 2-OPT
algorithms, it was crucial to implement variants that are accelerated on a GPU.

Our attempts to further improve the greedy solutions using stochastic meta-heuristics has
been rather disappointing. Exemplarily we reported non-competitive results with a genetic
algorithm. Future work could explore other meta-heuristics in more detail.

One important finding is that we can benefit greatly from selecting barcodes from a large
pool of candidates. This can improve solutions by up to 43% compared to random layouts.
Additionally, experiments with realistic barcode sets that meet practical side constraints
result in even better layouts than those with randomly chosen barcodes.
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